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SCALABLE PACKET PROCESSING FOR HIGH-SPEED NETWORKS

Abstract

by Yan Sun, Ph.D
Washington State University

December 2011

Chair: Min Sik Kim

Rapid expansion of the Internet has led to the exponential growth of requirement for high-

speed packet processing, including both header processing and payload processing. In network

applications such as Routers, Firewalls and Intrusion Detection Systems (IDS), there are three im-

portant issues needed to be designed efficiently to support today’s high speed network: IP route

lookup, packet classification and deep packet inspection. And these three procedures are usually

implemented as different components, which make packet processing too slow to meet high-speed

network’s requirements. So how to design efficient packet processing components is very impor-

tant. Special hardware, such as TCAMs, are widely used networking applications to achieve high

throughput, but their disadvantages such as high cost and high power consumption usually limit

their application. We focus on these issues and design efficient schemes to solve problems in to-

day’s and tomorrow’s networks. Our approaches are based on the observation that all of these

components contain redundancy and we can reduce the hardware consumption and increase the

throughput if we can remove the redundancy efficiently. Furthermore, we remove the redundancy

between different components to further improve the performance and we propose a new integrated

architecture which integrates these three components efficiently.

In order to design an efficient combined security gateway system, we first focus on how to

design efficient three individual components, including routing table lookup, packet classification

iv



and deep packet inspection, and then propose an efficient combination approach to further re-

duce hardware consumption and increase overall throughput. Our approaches are mainly based on

Ternary Content Addressable Memories (TCAMs) and the system can be easily implemented in a

single FPGA. We focus on how to reduce redundancy in both individual components and integrated

architecture to not only reduce the hardware consumption but also increase the overall throughput.

The simulation results on both proposed individual components and integrated architecture show

that we can achieve expected goals.
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CHAPTER one

INTRODUCTION

Rapid expansion of the Internet has led to the exponential growth of requirement for high-

speed packet processing, including both header processing and payload processing. In network

applications such as Routers, Firewalls and Intrusion Detection Systems (IDS), there are three

important issues needed to be designed efficiently to support today’s high speed network: IP route

lookup [1,2], packet classification [3,4] and deep packet inspection [5]. And these three procedures

are usually implemented as different components, which make packet processing too slow to meet

high-speed network’s requirements. So how to design efficient packet processing components is

very important. Special hardware, such as TCAMs, are widely used networking applications to

achieve high throughput, but their disadvantages such as high cost and high power consumption

usually limit their application. We focus on these issues and design efficient schemes to solve

problems in today’s and tomorrow’s networks. Our approaches are based on the observation that

all of these components contain redundancy and we can reduce the hardware consumption and

increase the throughput if we can remove the redundancy efficiently. Furthermore, we can remove

the redundancy between different components to further improve the performance and we propose

a new integrated architecture which combines these three components efficiently.

Current routers receive packets and check them, then forward them to their corresponding

next destination on the Internet, so they typically focus on how to perform IP route lookup and the

destination IP address in the packets need to be checked. The firewalls usually perform as traffic

filters, and they usually check 5-tuple in the packet headers to decide whether to block or accept a

packet. The Intrusion Detection Systems (IDS) usually focus on checking the payload of packets.

1



These three kinds of devices usually work independently, and routers can not support network se-

curity requirements in this situation. However, there is a trend that one such device integrates more

than one function. For example, in the latest gateway system, it usually contains firewall functions

besides routing function. Traditionally, the firewall only performs as a traffic filter, but one of the

more recent innovations in firewall is the application of deep packet inspection, which is usually

performed in Intrusion Detection System (IDS) before. Unified Threat Management (UTM) is a

good example of an important tread in networks: combining network functions with comprehen-

sive security functions. UTM integrates many security products in a single application to provide

better security checking services. So our goal is to design a security gateway, which can support

all these three important tasks in a single device. Unfortunately, current research only focuses on

a single topic, such as how to design an efficient IP route lookup, how to design efficient packet

classification or how to design efficient deep packet inspection. So we will focus on the combined

security gateway which can provide greater functionality than separate individual devices because

combined device can not only increase overall performance but also provide better understanding

of the inspected packets to achieve better security goal. There are two challenges of improving

the efficiency of the security gateway, first, how to design efficient three individual components,

second, how to combine them effectively. So we focus on individual components first and then fo-

cus on combination scheme. Our main contribution is to propose a new efficient integrated packet

processing architecture instead of simply combining independent devices together.

In the IP route lookup design, we propose two approaches to design efficient routing table

lookups. In the first approach, our goal is to reduce the usage to TCAMs in IP route lookup

without modifying the TCAM circuit itself. We achieve it by adding a small extra logic circuit,

which occupies negligible area and consumes significantly less power compared with TCAMs.

We identify two kinds of redundancy in the TCAM-based IP route lookup. Then we build a hybrid
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scheme that eliminates such redundancy and take advantages of both Binary and Ternary CAMs. In

the second approach, we present a novel approach to IP route lookup using TCAMs to save memory

usage, increase update speed and improve the throughput of longest prefix matching process.

In the packet classification design, we propose an efficient TCAM-based packet classifica-

tion algorithm by building minimum Range Tree, which consists of two parts: overlapping removal

in a rule set using a tree representation of rules, and the postprocess optimization. The proposed al-

gorithm first removes redundant rules and combines overlaying rules to build an equivalent, smaller

rule set for a given packet classifier, and then removes priority encoder and memory access process

based on the properties of non-overlapping rule set. Based on the non-overlapping rule set, we

propose one-directional range extension algorithm and bidirectional range extension algorithm to

further reduce the TCAM consumption, and we also propose a fast TCAM entry update approach

based on the non-overlapping rule set.

In the deep packet inspection design, we first propose an efficient hierarchical NFA-based

pattern matching approach which serves to exclude most packets from full regular expression

matching leaving only a small percentage to be fully checked in the regular expression match-

ing process. This hierarchical pattern matching improves throughput for the average case. Then

we propose a hybrid algorithm that combines both NFA and DFA. It divides a complex regular

expression and configures them into multiple cores to take advantage of available parallelism pro-

vided by multi-core processors. We also propose a DFA-based regular expression matching on

compressed traffic at last.

In the combination design, we combine these three components together to further improve

the overall performance and further reduce the hardware consumption. We share some hardware

resources between routing lookup and packet classification to not only reduce the hardware con-

sumption but also reduce the packet processing latency.

3



There is a trend to integrate multiple devices into a single device to reduce cost, and in this

thesis, we show how to design efficient network components and how to integrate them into an

efficient system. This approach can also be used to integrate other network components to further

improve the overall performance.
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CHAPTER two

IP ROUTE LOOKUP

2.1 Introduction

Rapid expansion of the Internet has led to the exponential growth of routing tables in routers,

and the longest prefix matching in IP route lookup is often the bottleneck in today’s routers with

such large routing tables. Thus, designing an efficient scheme to perform longest prefix matching

operations is a critical problem in high-speed routers. A routing table in a router stores variable-

length IP address prefixes and corresponding outgoing ports. Table 2.1 shows a simple routing

table with four IP address prefixes.

Table 2.1: A Simple Routing Table
Destination IP Address Mask Port

152.168.22.0 /24 5
152.168.30.0 /24 1
132.165.0.0 /16 8
122.128.0.0 /18 4

When a packet arrives, a router searches for the longest prefix match for the destination IP

address of the packet, and then retrieve the corresponding outgoing port. Since this procedure has

been the bottleneck of routers’ performance, many approaches have been proposed by researchers,

both software-based and hardware-based ones.

Ternary Content Addressable Memories (TCAMs) have been widely adopted by routers to

improve the speed of the longest prefix matching. They allow the “don’t care” state to be stored in

each memory cell as well as binary states 0 and 1. A memory cell in a “don’t care” state matches
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both 0 and 1 in the corresponding input bit. A TCAM-based routing table is extremely fast because

it allows the input key to compare with all the prefixes stored in the TCAM simultaneously and

retrieve the result in a single clock cycle. The architecture of a TCAM used in the longest prefix

matching is shown in Fig. 2.1.

Entry 0 (32-bit)

Entry 1 (32-bit)

Entry k-2  (32-bit)

Entry k-1 (32-bit)

Input Register (key)

1-bit

1-bit

1-bit

1-bit

Logk

match vector
priority
encoder

output

Figure 2.1: TCAMs used in the Routing Tables

A key (destination IP address) is stored in the input register and each prefix is stored in

a single entry. The key compares with all the prefixes in parallel and the results are stored in the

match vector, where 1’s represent the corresponding entries match the key, and the priority encoder

chooses the longest prefix match. At last, the output signal is used to find the corresponding

outgoing port. While the TCAM-based search is very fast, TCAMs have two major disadvantages:

high cost and high power consumption. In fact, both of them result from the circuit complexity

of each TCAM cell. The high power consumption also affects the total cost and performance of

routers, not only because it increases the power supply and cooling costs but also it reduces the

port density since more space is needed between ports for cooling purpose. Therefore, how to

use TCAMs efficiently becomes a critical issue, and many methods have been proposed to reduce
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TCAM requirements for a given set of prefixes. Compared with TCAMs, Binary CAMs (BCAMs)

require fewer transistors and less power because no mask is needed and the comparison circuit is

simpler. However, they can store only 0 and 1; they don’t have the “don’t care” state.

We propose two approaches to design efficient routing table lookups in this chapter. In

the first approach, our goal is to reduce the usage to TCAMs in IP route lookup without modify-

ing the TCAM circuit itself. We achieve it by adding a small extra logic circuit, which occupies

negligible area and consumes significantly less power compared with TCAMs. We identify two

kinds of redundancy in the TCAM-based IP route lookup. Then we build a hybrid scheme that

eliminates such redundancy by dividing all the input keys into seven groups, each of which is han-

dled separately, taking advantages of both Binary and Ternary CAMs. We evaluate our scheme by

measuring savings in terms of the number of transistors when it is applied to real-world routing

tables. In the second approach, we present a novel approach to IP route lookup using TCAMs to

save memory usage, increase update speed and improve the throughput of longest prefix match-

ing process. Most of researches focus on how to reduce the usage of TCAM entries and power

consumption in TCAM-based route lookup. Our goal is to find out other problems and propose an

efficient algorithm to solve them. We achieve it by dividing prefixes into two groups and treat them

separately. We discussed three important issues still have not been well studied in TCAM-based

IP route lookup including large RAM usage and long memory accesses, slow update process of

routing table and unscalable problem. Based on the observation that all of them result from the

sorted storage in TCAM entries, we store IP prefixes can be stored out of order in the first group

and the remaining ones in the second group, and deal with them separately.

The remainder of this chapter is organized as follows. Section 2.2 surveys related work on

longest prefix matching algorithms. Section 2.3 details the design of the proposed hybrid scheme

for longest prefix matching in IP route lookup. Section 2.4 details the design of the proposed
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scalable scheme for TCAM-based prefix matching in IP route lookup.

2.2 Related Work

There are three major categories of approaches are used for IP route lookup, including hash-based

approaches, trie-based approaches and TCAM-based approaches. We will discuss them separately.

Hash-based solutions Many hash-based routing lookup table approaches have been proposed

in [6–9]. These approaches hash prefixes and store them in a hash table for looking up. They are

memory efficient but the hash-based approaches do not deal with variable lengths well, so they

need to process prefixes with different lengths separately or expend short prefixes to long prefixes

to reduce the number of unique prefix lengths. Some approaches use boom filters to filter some

lengths of prefixes [10–13]. These approaches are efficient in large lookup table applications,

however, multiple sets of bloom filters are needed to process different lengths of prefixes and the

false positive in bloom filters increase the number of memory accesses.

Trie-based solutions Many trie-based longest prefix matching techniques have been proposed [14–

20]. These techniques use tree-like architectures to store prefixes and corresponding output port

information. They are easy to be implemented in general purpose processors or network processors

and efficient in reducing memory consumption. However, these approaches usually need multiple

memory accesses for a single input packet, they usually cannot meet the requirement of today’s

high-speed forwarding.

TCAM-based solutions Among hardware-based longest prefix matching techniques, the CAM-

based ones dominate the high-speed router market, especially of multi-gigabits per second and
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faster routers. A disadvantage is that the TCAM chips are expensive and power-hungry. Therefore,

techniques have been proposed to use TCAM entries more efficiently or to reduce the required

amount of TCAMs [21–26]. These approaches usually need to pre-process prefixes to compress

them and then configure into TCAMs. However, these approaches should undergo a very complex

update process, because they have to pre-process the set of prefixes again. Other approaches focus

on the TCAM cell itself and try to reduce the number of transistors and power consumed by a

single TCAM cell [27–29]. They usually need to modify the circuit within a TCAM cell or within

a TCAM entry.

2.3 Hybrid CAM-Based Approach

Ternary Content Addressable Memories (CAMs) are widely used by high-speed routers to

find matching routes in a routing table, because they enable the longest prefix matching operation

to complete in a single clock cycle. However, they are costly and their power consumption is very

high. In this section, we identify two kinds of redundancy in the usage of TCAMs in IP route

lookup, and then propose a hybrid scheme which combines Binary CAMs and Ternary CAMs to

reduce the total area and power consumption, exploiting the uneven distribution of IP prefix lengths

in real-world IP routing tables. We also introduce shared memory blocks for further simplification

of the lookup circuit. The simulation results show that our approach can save more than 50% of

transistors in CAMs, compared with the traditional way in storing a set of real-world routing tables,

and that it reduces the critical path in IP route lookup significantly.

2.3.1 Hybrid Approach Using BCAMs and TCAMs

(1). Redundancy in Using of TCAMs for IP Route Lookup
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Table 2.2: Four Real-World Routing Tables
Name of Routing Tables Date of Collection Number of Prefixes

Oix-1997 11/08/1997 19,017 (104.28)
Oix-2001 08/01/2001 53,842 (104.73)
Oix-2005 08/01/2005 107,679 (105.03)
Oix-2009 08/19/2009 10,471,325 (107.02)

Because IP route lookup is longest prefix matching, each 32-bit entry in a TCAM consists

of the prefix part and the following “don’t care” bits. This implies two kinds of redundancy as

follows:

• Each bit in the prefix part has two possible values only: 0 and 1; there is no “don’t care” bit

in the prefix. Therefore, a Binary CAM should suffice to match the prefix.

• No comparison is needed for the “don’t care” suffix, since they always match the input.

Based on these observations, we propose a new approach to mitigate both kinds of waste.

(2). Real-world IPv4 Prefix Distribution

In this section, we analyze the distribution of real-world prefixes. We collect the routing

tables from the Route Views project [30]. In order to ensure that the characteristics of the distribu-

tions are not specific to some particular routers or time intervals, we inspect many routing tables

and finally select four typical sets of routing table information from year 1997 to year 2009, where

each set consists of all the data in a single typical day. The information regarding the selected

routing tables are summarized in Table 2.2. The numbers of prefixes of the selected routing tables

are plotted in Fig. 2.2. (Note the logarithmic scale on the vertical axis).

We can see that the number of prefixes is growing exponentially, and is even growing faster

in recent four years. This indicates that the longest prefix matching will remain to be the bottleneck

in high-speed routers.
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Figure 2.2: The Number of Prefixes in a Real Typical Network

The distributions of prefixes of these four sets of routing tables are shown in Fig. 2.3. The

horizontal axis is the length of prefixes and the vertical axis is the number of prefixes. We can see

that the distributions in the four different years are similar, and the trend is that the percentages

of prefixes shorter than 16-bit and longer than 24-bit are decreasing. It is this trend that provides

room to design a more efficient algorithm. We can see that in recent routing tables, the 24-bit

Class C Prefixes dominate the number of prefixes (about 50% alone), and over 90% of the prefixes

are between 18-bit and 24-bit long. Based on these observations, we propose a scheme to utilize

CAMs more efficiently.

(3). Proposed Scheme

Based on the observations of TCAM redundancy and real-world IPv4 prefix distribution

discussed above, we propose our approach to reducing the usage of TCAMs in IP route lookup.

Given IP address prefixes with the maximum length of 32 bits, we divide them into seven cate-
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Figure 2.3: The Distribution of Prefix Lengths in the Past Twelve Years

gories, P1, P2, P3, P4, P5, P6, and P7, according to the prefix lengths. All 8-bit long prefixes are

added to P1, 9 to 15-bit long prefixes to P2, 16-bit to P3, 17 to 23-bit to P4, 24-bit to P5, 25 to 31-bit

to P6, and 32-bit to P7. For the categories P1, P3, P5, and P7, the length of prefixes is unique, and

thus Binary CAMs, one for each category, should suffice to perform prefix matching. On the other

hand, for the categories P2, P4, and P6, we need to split each prefix into the fixed-length prefix part

and the remainder part, the former containing binary values which can be stored in a Binary CAM,

and the latter containing “don’t care” bits which should be stored in a Ternary CAM. For example,
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since P2 has prefixes of length between 9 and 15, the first 9 bits are stored in a Binary CAM while

the remaining bits are stored in a Ternary CAM. To combine the results from two CAMs, we need

to perform an AND operation between the two to see whether an entry matches the destination IP

address of a given packet. For further improvement, we pipeline our scheme as shown in Fig. 3.30.

Classifier

Routing Table Update

BCAM-8

TCAM

BCAM-16

TCAM

BCAM-24

TCAM

P1P2 P3P4 P5P6 P7

Priority
Encoder

Priority Encoder

Priority
Encoder

Priority
Encoder

Stage 1

Stage 2

Stage 3

Packet Flow
BCAM-32

Figure 2.4: The Architecture of the Hybrid Approach

In the first stage, the routing table update prefixes are classified into seven categories. The

second stage consists of BCAMs and TCAMs, and both updating the routing table and handling

incoming packets are performed in this stage. All the TCAM blocks are 7 bits wide and the
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four BCAM blocks are 8 bits, 16 bits, 24 bits, and 32 bits wide, respectively. Because a 32-bit

destination IP address is divided into two parts if the length of prefix is not a multiple of 8, we

need to combine the results of these two parts together using AND logic in the third stage to get

the matching result. As shown in Fig. 3.30, the seven categories are divided into four groups, G0,

G1, G2, and G3, containing P1 and P2, P3 and P4, P5 and P6, and P7, respectively. Based on the

longest prefix matching policy, each group chooses the matching bit with the highest priority, G3

being the highest and G0 the lowest. The three Priority Encoders used by the three groups can

operate in parallel to reduce the latency of stage 3.

For each routing lookup entry, we need at most a 7-bit-wide TCAM. When the length of

the prefixes is a multiple of 8, no TCAM is needed and only BCAM entries are used. When the

length of entries is shorter or the TCAM is replaced by a BCAM, the memory access latency is

reduced, especially for write operations, which result in higher clock speed.

One of major disadvantages of TCAM-based approaches is that all the prefixes stored in

TCAM must in the order of increasing prefix length because the longest prefix policy is imple-

mented using a priority encoder. In our approach, sorting overhead is significantly lower because

four smaller sorting operations are performed in parallel.

In Fig. 3.30, different groups use different TCAM blocks. For further improvement, we

can use a single TCAM block with dynamic boundaries between different groups.

(4). Shared CAM

The distribution of prefix lengths varies. Spatially, core routers have more short prefixes

than edge routers. Temporally, the percentages of entries in the four groups change over time as

shown in Fig. 2.3. To make our approach more flexible and efficient in utilizing CAM resources,

we introduce the shared CAM mechanism, where four groups share the same memory. In this

mechanism, we let entries from P3, P4, and P7 share a BCAM block, and entries from P1, P2, P5,
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and P6 share another BCAM block. For the first share group, each BCAM entry has 16 bits, and

each element in P3 and P4 only uses one 16-bit entry while each element in P7 uses two adjacent

16-bit entries. They are depicted in Fig. 2.5. A 32-bit IP address is stored in a pair of 16-bit BCAM

entries, starting from the pair with the highest address. A 16-bit prefix is stored in a single 16-bit

BCAM entry, starting from the entry with the lowest address.
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Figure 2.5: BCAM Shared by 32-bit and 16-bit Prefixes

Similarly, the 24-bit binary prefixes and 8-bit binary prefixes share the same resources. We

use a 8-bit-wide BCAM block to locate both prefixes as shown in Fig. 2.6. A 24-bit prefix is be

stored in a triple of three BCAM entries, starting from the triple with the highest address. A 8-bit

prefix is stored in a single 8-bit BCAM entry, starting from the entry with the lowest address.

The two 8-bit entries in a single pair have different search operations, which are shown in

Fig. 2.7. The value of “Sel” in Fig. 2.7 is based on whether this block is used by a 32-bit prefix.

Similarly, the three 8-bit entries in a triple have different search operations, which are

shown in Fig. 2.8. The value of “Sel” in Fig. 2.8 is based on whether this block is used by a 24-bit
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Figure 2.6: BCAM Shared by 24-bit and 8-bit Prefixes

prefix.

2.3.2 Evaluation

(1). Transistors Savings

In a Binary CAM entry cell, the content can be made up of binary bits, each of which has

either 0 or 1. In a Ternary CAM cell, however, a third “don’t care” state can be used as a bit

value. An entry of a Ternary CAM stores content as a (value, mask) pair, where value and mask

are W -bit numbers, requiring W storage cells for the value and additional W storage cells for the

mask. Moreover, the matching circuitry is more complicated than that of a Binary CAM.

A typical TCAM cell requires six transistors as a SRAM cell. The same number of transis-

tors are required to store the mask bit, and four transistors for the match logic. Thus, each TCAM

cell requires 16 transistors, which is about 2.7 times of a typical SRAM cell. However, different

techniques used by CAM manufactures result in different numbers [31]. For the evaluation of
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Figure 2.7: IP address selected by the shared BCAM for P3, P4 and P7 in the Search Operation

our scheme in this section, we assume that the number of transistors and power consumption of a

TCAM are two times as large as those of a BCAM cell on average.

Table 2.3 shows the transistors saved under different lengths of prefixes, compared with

ordinary TCAM-based routing tables. On average, it can save about 60.7% of transistors.

(2). Simulation with Real-World IPv4 Prefix Distribution

We use the data collected in year 2009 shown in Fig. 2.3 to evaluate our approach with

Table 2.3: Transistors Saved
Prefix BCAM length (bits) TCAM length (bits) Transistor Saved (%)
8-bit 8 0 87.5

9-bit to 15-bit 8 7 62.5
16-bit 16 0 75.0

17-bit to 23-bit 16 7 50.0
24-bit 24 0 62.5

25-bit to 31-bit 24 7 37.5
32-bit 32 0 50.0
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Figure 2.8: IP address selected by the shared BCAM for P1, P2, P5 and P6 in the Search Operation

Table 2.4: Transistors saved by our approach
Length of Prefix(bits) Number of Prefix Percentage(%) Transistors Saved (%)

8 768 0.2368 87.5
9 to 15 93423 0.8922 62.5

16 419800 4.0090 75.0
17 to 23 4595478 43.8863 50.0

24 5326651 50.8689 62.5
25 to 31 24795 0.2368 37.5

32 258 0.0025 50.0

real-world IP address prefixes. We see that the 24-bit Class C Prefixes dominate the number of

prefixes (about 50% alone), and over 90% of the prefixes are between 18-bit and 24-bit. Under this

condition, the traditional way requires 10,471,325 32-bit TCAM entries. The BCAM and TCAM

usage by our approach is shown in Table 2.4.

We calculate the total transistors saved by our approach using following equation:
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TotalTransistorsSaved =

7∑
i=1

TransistorsSaved(i)× Percentage(i)
(2.1)

where i represents each prefix group shown in Table 2.4.

According to data shown in Table 2.4 and the equation above, we can save 57.6% transistors

by reducing and replacing the TCAMs in IP route lookup, and the additional logic introduced by

our approach is much smaller than typical logic in TCAMs. Thus we conclude that our approach

can reduce both the area and power consumption significantly.

Our approach can be used together with existing algorithms that solve other problems of

CAM-based IP route lookup, such as dealing with more routing table entries than TCAM entries.

For example, our approach can be combined with software-based approaches to reduce the number

of required CAM entries, because our approach is designed to be a drop-in replacement of TCAM-

based longest prefix matching.

Furthermore, our approach enables different groups of prefixes to update operate in paral-

lel, which leads to further increase of the throughput of packet processing. Using the same data

collected in year 2009, our approach needs about 51% of total clock cycles used by the traditional

way to update these prefixes.

Finally, using narrower TCAMs can help increase the clock speed in ASIC or FPGA. In

our algorithm, the critical path is the delay of the 32-bit-wide BCAM, which is about half of the

delay of a 32-bit-wide TCAM in the SMIC 0.13µm CMOS technology; we get the similar results

using FPGAs. Therefore, the critical path of the ACL subsystem can be shorter compared with the

traditional approach.
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2.3.3 Summary

In this section, we present a hybrid approach to IP route lookup using Binary CAMs to save

memory usage and improve the throughput of longest prefix matching process. We treat prefixes

with different lengths separately in parallel, and use different types of CAMs to take advantage

of their characteristics. The simulation results show that our approach saves 57.6% of transistors,

reducing the area and power consumption significantly. Our approach can double the throughput

of the longest prefix matching under the same clock speed. Furthermore, the clock speed can

also be increased because the paths traversing through CAMs are shorter. Because our approach

provides the same interface as that of the traditional TCAM-based approach, it can be used with

other preprocessing-based approaches together to increase performance further. Our approach can

be easily extended to be used in IPV6 applications based on the properties of routing tables in

IPV6.

2.4 Scalable TCAM-Based Route Lookup

Ternary Content Addressable Memories (TCAMs) are widely used by high-speed routers

to find matching routes in a routing table. TCAMs are very fast because all the TCAM entries

work in parallel and can perform the longest prefix matching operation in a single clock cycle.

However, they are costly and power hungry because of the complexity of hardware circuit. Some

approaches have been proposed to solve these problems, but some issues still have not been well

studied. First, large priority encoders used after TCAMs consume a lot hardware resources and

increase the overall latency. Second, the memory accesses after TCAMs match operations often

take down the high speed of TCAMs. Third, the prefixes must be sorted according to lengths in
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decreasing order, which makes the update process of routing table very slow. Last, even though

the TCAMs are pretty fast, they can only perform one prefix match at one time, which makes

them unscalable. In this section, we first discuss these problems and propose an efficient algorithm

to solve them and the simulation results show that our approach can reduce the usage of TCAM

entries and increase the throughput significantly. Furthermore, the update process speed also has

been increased significantly compared with the traditional way of sorting a set of real-world routing

tables.

While the TCAM-based search is very fast, TCAMs usually have some major disadvan-

tages such as well studied problems: high cost and high power consumption. In fact, both of them

result from the circuit complexity of each TCAM cell. A typical TCAM cell requires two SRAM

cells to store both value bit and mask bit, and four transistors for the match logic. A typical SRAM

cell requires six transistors, which means each TCAM cell requires 16 transistors, which is about

2.7 times of a typical SRAM cell [32]. The high power consumption also affects the total cost

and performance of routers, not only because it increases the power supply and cooling costs but

also it reduces the port density since more space is needed between ports for cooling purpose. For

the overall power consumption, a single TCAM chip usually consumes more than 20W of power

and we should use multiple TCAM chips for a large routing table, however, a single line card only

allows no more than a few hundred watts [11], so there are very limited power budget left for other

components when using TCAM chips. And some solutions have been proposed. Such as divide the

TCAM into several small blocks and only a subset of them will be triggered each time. However,

these approaches are still not efficient enough to meet fast growing routing lookup tables especially

when moving to IPv6, which consumes four times as long as a prefix in IPv4.

Therefore, how to use TCAMs efficiently becomes a critical issue. Furthermore, there are

some other important drawbacks have not been well studied in TCAM-based approaches. For
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instance, in IP route lookup applications, large priority encoder and the memory accesses to fetch

the corresponding output port usually take down the high speed of TCAMs and consume a lot of

hardware resources; and the update of a TCAM entry usually takes much longer than a parallel

search process in TCAMs, combined with the requirement that all the prefixes stored in TCAMs

must be sorted according to lengths in decreasing order, which makes the update of routing table

very slow, especially in today’s increasing route table update frequency. Furthermore, even though

the TCAMs are pretty fast, they can only perform one match at one time, which makes them

unscalable in today’s high throughput requirement. last but not least, a large priority encoder is

needed to select the matched TCAM entry with the highest priority, and such a large priority not

only consumes much hardware area but also increase the latency of the whole process.

In this section, we first discuss these problems which have not attracted enough attention

and propose an efficient algorithm to solve these problems. We divide all the prefixes into two

groups, and there is no overlap in the first group, which provides more room to solve these prob-

lems. The simulation results show that our approach can reduce the usage of TCAM entries and

increase the throughput significantly, and the power consumption can also be reduced with the

same throughput. The update process speed also has been increased significantly compared with

the traditional way of sorting a set of real-world routing tables.

2.4.1 Problems in TCAM-Based Route Lookup

We generalize problems in TCAM-based Rout Lookup and some of them have not been attract

enough attention from research community. So we analyze four types of drawback of TCAMs

especially in IP route lookup as follows and the last three types are not well studied and our

approach focuses on how to solve these problems.

(1). Large Priority Encoder
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In TCAM-based longest prefix matching applications, large priority encoders must be used

together with TCAMs, the large priority encoders consume a lot hardware resources and increase

the overall latency. The logic of an 8 to 3 priority encoder is shown below:

• Y6 = I7

• Y5 = I7 · I6

• Y4 = I7 · I6 · I5

• Y3 = I7 · I6 · I5 · I4

• Y2 = I7 · I6 · I5 · I4 · I3

• Y1 = I7 · I6 · I5 · I4 · I3 · I2

• Y0 = I7 · I6 · I5 · I4 · I3 · I2 · I1

• O2 = Y6|Y5|Y4|Y3

• O1 = Y6|Y5|Y2|Y1

• O0 = Y6|Y4|Y2|Y0

And “Ii” is input, “Yi” is temporary value, “Ii” is negation logic, “|” is OR logic, “·” is

AND logic and “Oi” is output. We can see that the priority encoder becomes complex when the

input is very large. In [33], the 32 bits priority encoder consumes 1106 transistors and a maximum

power consumption of 13.8 mW, and the latency is about 1.5 ns using 0.15 µm TSMC CMOS

technology. For thousands of TCAM entries, the latency of the priority encoder will be longer

than the TCAM matching process, which makes the priority encoder the bottleneck of the routing

lookup.
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(2). Slow Memory Access

After finding a match in the TCAM entries, we need to access SRAM or DRAM to retrieve

the corresponding output port. The rapid growth of global routing tables has increased the usage

of large RAM, which results in both slow memory access and high cost, and the memory accesses

often take down the high speed of TCAMs. Then how to solve this problem is important.

(3). Slow Update

Due to the IP route lookup is the longest prefix matching process, the prefixes must be

sorted in prefix length decreasing order, so updating a TCAM entry usually affects other TCAM

entries, which makes the update of routing table very slow. With the increasing update frequency

of IP route lookup table, the overall performance declines dramatically.

(4). Only Process One Match at a Time

Even though the TCAMs are pretty fast, they can only process one match at a time, which

makes TCAM-based approaches unscalable. The naive approach to increase throughput is to use

multiple sets of TCAMs to work in parallel and each set of TCAMs contains the whole IP route

table, but this approach consumes too much TCAMs. So how to increase TCAM through using

reasonable TCAM entries is very important.

2.4.2 Proposed Algorithm to Reduce Drawbacks of TCAM-Based IP Route Lookup

(1).Separate IP Prefixes into Two Groups

Because the IP route lookup is the longest prefix matching process, the IP prefixes must be

sorted in prefix length decreasing order. This will result in many problems such as slow update

and it makes the route lookup inflexible. Our approach is based on the following two observations:

first, changing the order of most of the IP prefixes does not change the rule set’s semantics because

they don’t overlap with others or still have higher priority in new positions, second, we can design
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much more efficient algorithm if we can store the IP prefixes out of order in the TCAM because

there is no strict requirement any more. Based on these observations, we separate the prefixes into

two groups, the first group contains IP prefixes have at least one of the following properties:

(i). It does not overlap with other IP prefixes;

(ii). It overlaps with some other IP prefixes, and it has higher priority than all other over-

lapped prefixes;

(iii). It overlaps with some other IP prefixes, and it has the same decision as the IP prefix

with the highest priority in these IP prefixes

Then the remaining IP prefixes belong to the second group. This strategy ensure the maxi-

mum number of IP prefixes can be stored out of order in the first group because any more IP prefix

addition to the first group will lead to overlap between IP prefixes in the first group. In the first

group, there is no overlap between any two IP prefixes, so when a destination IP address comes in,

there is at most one IP prefix matches. And we store the second group in a small set of TCAMs,

when there is no match found in the first group, the output of the TCAMs is selected. The main

architecture is shown in Figure 2.9.

In Figure 2.9, the upper TCAM block stores the first group of IP prefixes out of order and

the lower TCAM block stores the second group of IP prefixes in order. Because there is no overlap

between any two IP prefixes in the first group, there is at most one match in the upper TCAM

block then only an ordinary encoder is used by the upper TCAM block, this does not only reduce

the circuit complexity of a single bit in encoder but also reduce the circuit complexity and timing

delay of long-length encoder, that because ordinary encoders do not need to consider priority

compared with priority encoder. Actually, we can use a single TCAM instead of two blocks and

just separate them in high level.

How to separate the IP prefixes into two groups as discussed above is an important issue.
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Figure 2.9: The proposed architecture using TCAMs in the Routing Tables

First, we should find out the relations between two prefix to see whether they overlap with each

other. Actually, each prefix represents a range, and there are three possible relationship between

two ranges: they do not have overlapping part, they partially overlap with each other and one range

is a part of another. For two prefixes, which are two special ranges, we have the following theorem:

Theorem 1. For any two different prefixes, there are only two relationship between them: there is

no overlap between them or one prefix is a subset of another.

Proof. For any two different prefixes P1 and P2, we assume their represented ranges partial overlap

with each other. So there must be a common value V in both ranges, and the value V matches both

prefixes, then we can say P1 and P2 are two different prefixes of value V , so one prefix must be the

prefix of another one and one prefix must be a subset of another, that means one represented range

contains another one, not partial overlap, which is a contrary.
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Therefore, for any two different prefixes, there are only two relationship between them:

there is no overlap between them or one prefix is a subset of another.

So based on Theorem 1, when separating the prefixes into two groups, we only need to

check whether an IP prefix is a prefix of any other IP prefixes, and the algorithm is shown in

Algorithm 1 and we assume the input IP prefixes have been sorted in prefix length decreasing

order.

Algorithm 1 Separate IP Prefixes into Two Groups
Input : A Set of IP Prefixes P : p1, p2, . . . , pn
Output: Two Sets of IP Prefixes Q: q1, q2, . . . , qm and R: r1, r2, . . . , rt
for i = n to 2 do
j = i− 1
while j > 0 do

if Pi is a prefix of Pj then
add Pi to R
BREAK

end if
j −−

end while
if j == 0 then

add Pi to Q
end if

end for
add P1 to Q

And the update process is also simple, which contains inserting a prefix and removing a

prefix shown in Algorithm 2 and Algorithm 3 respectively.

We can see that these algorithms are straightforward and easy to be implemented. However,

the complexity of algorithm is O(n2), so it is not suitable for large IP lookup tables. Actually, we

can build a trie architecture to separate a set of IP prefixes into two groups, and all the IP prefixes in

leaf nodes belong to the first group and the remaining IP prefixes belong to the second group. The
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Algorithm 2 Insert a new IP Prefix into Existing Two Groups
Input : The first group Q: q1, q2, . . . , qm, the second group R: r1, r2, . . . , rt and inserting prefix
pn+1

Output: Updated the first group Q′ and the second group R′

i = 1
while i < m+ 1 do

if pn+1 is a prefix of qi then
insert pn+1 into R according to prefix length decreasing order
BREAK

else
if qi is a prefix of pn+1 then

insert qi into R according to prefix length decreasing order
replace qj with pn+1

BREAK
end if

end if
i++

end while
if i == m+ 1 then

insert pn+1 into Q
end if
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Algorithm 3 Remove a new IP Prefix into Existing Two Groups
Input : The first group Q: q1, q2, . . . , qm, the second group R: r1, r2, . . . , rt and removing prefix
pn+1

Output: Updated the first group Q′ and the second group R′

i = t
while i > 0 do

if pn+1 == ri then
remove ri from R
BREAK

else
if ri is a prefix of pn+1 then
j = i

end if
end if
i−−

end while
if i == 0 then

for i = 1 to m do
if pn+1 == qi then

replace qi with rj
remove rj from R
BREAK

end if
end for

end if
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algorithm is shown in Algorithm 4 and the update process is shown in Algorithm 5 and Algorithm

6.

Algorithm 4 Separate IP Prefixes into Two Groups Using a Trie Structure
Input : A Set of IP Prefixes P : p1, p2, . . . , pn
Output: Two Sets of IP Prefixes Q: q1, q2, . . . , qm and R: r1, r2, . . . , rt
for i = 1 to n do

insert Pi to the trie T and record Pi in the corresponding node
end for
traverse the trie to insert all prefixes in non-leaf nodes into R
insert all the remaining prefixes into Q

Algorithm 5 Insert a Prefix Based on the Trie Structure
Input : The first group Q: q1, q2, . . . , qm, the second group R: r1, r2, . . . , rt, a corresponding trie
T and update prefix pn+1 with property
Output: Updated trie T ′, the first group Q′ and the second group R′

insert Pn+1 to the trie T and record Pi in the corresponding node
if the inserted node becomes a non-leaf node then

insert pn+1 into R according to prefix length decreasing order
else

if the inserted node becomes a leaf node and another leaf node representing qi becomes a
non-leaf node then

replace qi with pn+1 and insert qi into R according to prefix length decreasing order
end if

else
insert pn+1 into Q

end if

We get two groups of IP prefixes after the separation process, the first group of IP prefixes

can be stored out of order, and do not need priority encoder. The second group of IP prefixes need

to be stored in order in the TCAM entries, and each IP prefix in the second group must be an IP

prefix of at lease one prefix in the first group, and the priority encoder is needed in the second

group. It is obvious the first group has higher priority compared with the second group, so the

second group needs to be checked only if there is no match in the first group. Based on these
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Algorithm 6 Remove a Prefix Based on the Trie Structure
Input : The first group Q: q1, q2, . . . , qm, the second group R: r1, r2, . . . , rt, a corresponding trie
T and update prefix pn+1 with property
Output: Updated trie T ′, the first group Q′ and the second group R′

remove Pn+1 from the trie T
if the removed node is a non-leaf node then

remove pn+1 from R
else

if the removed node is a leaf node and a non-leaf node representing rj becomes a leaf node
then

replace pn+1 in Q with rj and remove rj from R
end if

else
remove pn+1 from Q

end if

properties, we can further optimize TCAM-based IP route lookup as discussed in the following

subsections.

(2). Reduce Memory Access

In order to reduce the memory access latency, we can use the address of the TCAMs to

represent the output port number when the IP prefixes can be stored out of order. In fact, the

number of output ports is very limited compared with the number of IP prefixes need to be stored,

but we need a large RAM to store these output ports because all the IP prefixes need to be stored

in order, and every output port number needs to be stored in RAM for many times in different

addresses, which is a big waste. Fortunately, we do not need to consider the order of IP prefixes

in the first group, then we can eliminate the usage of RAM here. We store prefixes with the same

output port together and distinguish different sets of prefixes from each other with a small number

of range comparators. We use the comparison-enabled CAM (CCAM) which stores ranges in

CAM like entries and compares ranges in parallel like TCAMs. And the matched address of

CCAM represents the corresponding output port. The architecture is shown in Figure 2.10. Here
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we assume there are 6 output ports, and we store the distinguish lines of TCAM address in the

CCAM entries. Because the design of CCAM is easy and only a few CCAM entries are needed,

we will not discuss the detail architecture of CCAM.

...

TCAM

...

Output
  port

CCAM

Figure 2.10: The proposed prefix storage using TCAMs without memory access in the Routing
Tables

We use a small set of comparators instead of a large RAM, this not only eliminates memory

access in the first group but also reduces hardware resource consumption.

(3). Process Route Lookup in Parallel

In order to enable the TCAMs to process prefix matching in parallel, the naive approach

is to use multiple sets of TCAMs and each set of TCAMs contains a whole set of prefixes, but

many more TCAM entries are required. We separate the first part into multiple blocks, and we

separate it into four blocks in this section for example, and each block deals with different kinds

of prefixes, so we separate the prefixes by the 23th bit and the 24th bit in the IP prefixes because

of the following two reasons:

• The length of any IP prefix is between 8-bit and 32-bit, so we should choose common bits
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from the highest 8-bit of IP prefixes.

• The IP prefixes have well balanced distribution on these two bits based on our simulation,

that because higher bits in IP prefixes usually used to indicate different classes or groups.

So the first block stores IP prefixes with such two bits “00”, the second block stores IP prefixes

with such two bits “01”, the third block stores IP prefixes with such two bits “10”, and the last

block stores IP prefixes with such two bits “11”. When a packet comes in, these two-bit of the

destination IP will be checked at first and forwarded to corresponding TCAM block, if a match can

be found, the output port can be found by the matching address of the TCAM entry, otherwise, the

destination IP address will be forwarded to the second group of TCAMs and the memory access is

needed. Each TCAM block and the second part have their own waiting queue to store destination

IP addresses waiting for check. The parallel structure is shown in Figure 2.11. The distributor

distributes the incoming destination IP address into different TCAM blocks, and it also controls

the input of sorted TCAM blocks based on the feedback from the four out of order TCAM blocks

and the feedback signals are omitted in Figure 2.11.

In order to utilize the second part efficiently, we use two sets of the second IP prefix group to

not only increase the overall throughput but also provide fast update in the second group. Because

the IP prefixes in the second group are much fewer than in the first group, so we only need to add

a small number of TCAM entries. As we discussed, it is pretty fast to update IP prefixes in the

first group because of out of order storage, but the update process in the second group is slow even

though it has much less IP prefixes because all of them should be stored in order. With two sets

of the second IP prefix groups, one works as usually and another performs prefix update process

when update is needed, then they switch their tasks until both of them have the latest IP prefixes.

The parallelism approach can not only increase the throughput of the route lookup, but also
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Figure 2.11: The proposed parallel processing architecture using TCAMs in the Routing Tables

reduce the power consumption because only a subset of TCAM entries are active when processing

a lookup. And our approach can be easily pipelined to increase the throughput.

2.4.3 Evaluation

We first analyze the properties and trends of IP prefixes, and then simulate the benefits of three

main ideas: separate prefixes, memory access removal and parallel processing units.

(1). Real-world IPv4 Prefixes

In this section, we analyze the properties of real-world prefixes. We collect all the routing
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Table 2.5: Four Real-World Routing Tables
Name of Routing Tables Date of Collection Number of Prefixes

Oix-1998 09/18/1998 20,417 (104.31)
Oix-2002 09/18/2002 61,659 (104.79)
Oix-2006 09/18/2006 154,882 (105.19)
Oix-2010 09/18/2010 16,218,100 (107.21)

tables from the Route Views project [30]. In order to ensure that the characteristics of the distribu-

tions are not specific to some particular routers or time intervals, we inspect many routing tables

and finally select four typical sets of routing table information from year 1998 to year 2010, where

each set consists of all the data in a single typical day. The numbers of prefixes of the selected rout-

ing tables are shown in Table 2.5. and the comparison between them are plotted in Figure 2.12.

(Note the logarithmic scale on the vertical axis).
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Figure 2.12: The Number of Prefixes in a Real Typical Network

We can see that the number of prefixes is growing exponentially, and is even growing faster
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Table 2.6: Prefixes need to be stored sorted in different years
Routing Tables Collection Date Sorted Prefixes Total Prefixes Percentage (%)

Oix-2003 08/16/2003 8,157 81,654 9.99
Oix-2004 08/16/2004 7,871 94,891 8.29
Oix-2005 08/16/2005 7,077 105,947 6.68
Oix-2006 08/16/2006 8,255 126,180 6.54
Oix-2007 08/16/2007 10,229 149,700 6.83

Table 2.7: Prefixes need to be stored sorted in different time period in the same day
Routing Tables Collection Time Sorted Prefixes Total Prefixes Percentage (%)

Oix-2007-0 0am/08/16/2007 10,229 149,700 6.83
Oix-2007-2 2am/08/16/2007 10,198 149,703 6.83
Oix-2007-4 4am/08/16/2007 10,237 149,677 6.84
Oix-2007-6 6am/08/16/2007 10,258 149,862 6.84
Oix-2007-8 8am/08/16/2007 10,242 149,812 6.84

in recent four years. This indicates that the longest prefix matching will remain to be the bottleneck

in high-speed routers.

(2). Benefits of separating prefixes

We simulate the percentages of prefixes in different groups, the first group eliminates the

usage of priority encoder and the update speed increase.

(3). Overlap between IP Prefixes

In order to find out how many percentages of prefixes are needed to be stored in the sorted

TCAM block, we evaluate five sets of prefixes in different years from 2003 to 2007 and five sets

of prefixes in different time period in the same day, and the results are shown in Table 2.6 and

Table 2.7.

We can see that there is usually less than 10 percent of the total prefixes need to be stored

in order. That also means that the RAM usage can be reduced more than 90 percent, and smaller

RAM also means faster memory access.
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Table 2.8: Prefixes update in year 2002
Continuous time periods Prefixes removed Prefixes added Update times per second

8am-12pm 976 1,048 0.28
10am-2pm 1,029 991 0.28
12pm-4pm 956 998 0.27
2pm-6pm 1,006 973 0.27
4pm-8pm 1,044 1,093 0.30

6pm-10pm 960 1,053 0.28

One of major disadvantages of TCAM-based approaches is that all the IP prefixes stored

in TCAM must in the order of increasing prefix length because the longest prefix policy is imple-

mented using a priority encoder. This simulation result means that most of the IP prefixes can be

stored in the first group out of order in our approach, so this shows that our approach is reasonable.

(4). Eliminating use of priority encoder in the first group

With the increasing number of IP prefixes, the priority encoder consumes considerable

hardware resource and the latency increases. Assume the number of IP prefixes in the first groups

is n, which is also the bits of input of the priority encoder, the transistor consumption is O(n), and

the latency is O(logn). Replaced with simple encoder, the hardware resource and latency can be

reduced.

(5). Update Speed Improvement

In order to evaluate prefix update frequency, we collet data from the same router in different

years: 2002, 2006 and 2010. Each data set consists prefixes in two hours, and we extract prefix

update in two such continuous time periods.

The Table 2.8, Table 2.9 and Table 2.10 present the update frequency in different years.

The update frequencies in different years are shown in Figure 2.13.

We can see that the update frequency is steady in a short period, but increasing dramatically

in recent years.
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Table 2.9: Prefixes update in year 2006
Continuous time periods Prefixes removed Prefixes added Update times per second

8am-12pm 2,017 1,970 0.55
10am-2pm 1,930 2,078 0.56
12pm-4pm 2,063 1,994 0.56
2pm-6pm 2,063 2,065 0.57
4pm-8pm 1,942 2,073 0.56

6pm-10pm 2,067 1,918 0.55

Table 2.10: Prefixes update in year 2010
Continuous time periods Prefixes removed Prefixes added Update times per second

8am-12pm 10,101 10,306 2.83
10am-2pm 11,087 10,225 2.96
12pm-4pm 10,341 10,930 2.95
2pm-6pm 10,099 10,144 2.81
4pm-8pm 10,426 10,342 2.88

6pm-10pm 10,312 10,340 2.87

In this part, we use the IP prefixes selected from the last IP prefix group in 2010 in Fig-

ure 2.2 for our simulation. In average, for a group of 100,000 IP prefixes, each IP prefix update

needs 23,482 TCAM entry writing processes in original approach, and in our approach it only

needs 0.9 TCAM entry writing process in the first group and 2,196 TCAM entry writing processes

in the second group. That’s because when we need to update an IP prefix, at most one TCAM

entry need to be written in the first group, and it may also affect TCAM entries in the second

group. Actually, we can leave some gaps in the TCAMs to reduce the number of TCAM en-

try writing processes in the sorted TCAMs, but the update speed improvement ratio will not be

changed by our approach. With two sets of the second IP prefix group, one works as usually and

another performs prefix update process when update is needed, then they switch their tasks until

both of them have the latest IP prefixes. By this way, packets go through the first IP prefix group

will not be affected and packets go through the second IP prefix group are routed according to
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Figure 2.13: The differences of update frequencies in the past ten years

the previous route lookup table instead of being congested or dropped. That means with less than

10 percent more TCAM entries, we not only increase the overall throughput but also the update

process dramatically.

(6). Benefits of memory access removal

We simulate the SRAM reduction, encoder removal and latency reduction on NetFPGA [34].

We use two bytes to store one output port information and the SRAM we used runs at 300 MHz

with a Quad Data Rate (QDR II) SRAM interface [35]. We use the same sets of IP prefixes in

Table 2.6 and the memory consumption reductions are shown in Table 2.11.

There are two data paths in our proposed architecture, including the first group of IP pre-

fixes followed by OR logics and the second group of IP prefixes followed by priority encoder and
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Table 2.11: SRAM consumptions reduction in different sets of IP prefixes
Routing Tables Original Consumption (KB) Our Approach (KB) Reduction (%)

Oix-2003 163.308 16.314 90.01
Oix-2004 189.782 15.752 91.71
Oix-2005 211.894 14.154 93.32
Oix-2006 252.36 16.510 93.46
Oix-2007 299.4 20.458 93.17

Table 2.12: Hardware resource consumption of Priority Encoder(PE) and the latency of an IP prefix
matching process based on different number of prefixes

Number of prefixes PE reduction (%) Latency reduction (%)
100 92.65 75.84
200 91.78 73.16

1000 90.84 71.94
2000 90.23 71.22

memory access. And our simulation shows that the second date path is the critical path and the

hardware resource consumption of priority encoders and the latency of an IP prefix matching pro-

cess based on different number of prefixes are shown in Table 2.12. We assume 10% of prefixes

are in the second group and every prefix have the same hit rate.

We can see that the priority encoder can be reduced dramatically due to the small number

of prefixes in the second group and the latency reduction is mainly because of the smaller priority

encoder and fewer memory accesses.

(7). Benefits of parallel processing units

(i). Load Balancing between Different Blocks in the First Group

In order to evaluate the load balancing between different blocks in the first groups, we

collect five different sets of prefixes in 2011. The percentages of the four blocks are shown in

Figure 2.14.

From the Figure 2.14 we can see that our approach can provide good load balancing be-

40



30

20

10

0

15

25

5

Percentage

Blocks00 01 10 11

Figure 2.14: The percentage ranges of the four blocks

tween different blocks in the first group.

(ii). Throughput Improvement

We implement our approach as discussed above: the first IP prefix group is divided into

four blocks and there are two sets of the second IP prefix group. We use selected IP prefix group

in 2010 as shown in Figure 2.12 for our simulation. With the same clock cycle, original approach

process one Destination IP address in a single clock cycle, and our approach process about 3.4

Destination IP addresses in a single clock cycle in average. So compared with original approach,

our approach achieves 3.4 times as fast as before. Obviously, the maximum throughput is 4 times

as fast as before, and the difference is caused by the different load balance in different blocks in

the first IP prefix group and slower throughput in the second IP prefix group.
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Our approach can be used together with existing algorithms that solve other problems of

CAM-based IP route lookup, such as dealing with more routing table entries than TCAM entries.

For example, our approach can be combined with software-based approaches to reduce the number

of required CAM entries, because our approach is designed to be a drop-in replacement of TCAM-

based longest prefix matching.

(8). Discussion

When the TCAM entries are run out, we should have an efficient back up strategy to deal

with increasing number of IP prefixes in a system, but to the best of our knowledge, there are no

such research on this issue and some products just use straightforward approaches. It can happen

in some applications, for example, in network process based system, TCAM usually works as a

coprocessor and have limited TCAM resources, so we should not rely on the TCAM to store all

IP prefixes. Our algorithm provides a good way to use TCAM to cooperate with other approaches

when the TCAM resource is no large enough. We can store the second group of prefixes in the

TCAM, and we have shown that the percentage of these prefixes usually less than 10 percent,

then we process the prefixes in the first group in other approaches, such as Trie-based approaches.

The benefits of this approach is that the Longest Prefix Matching (LPM) problem becomes Prefix

Matching (PM) prefix, which means for each destination IP address there is at most one path from

the root node to the leaf node, so this reduces the task of the main processor, and the coprocessor

works only when there is no result found in the main processor. We hope this first step can attract

more researchers’ attention on how to design efficient algorithm to solve limited TCAM resource

problem.

Our approach can be easily extended to be used in IPv6 applications because the advantages

of our approach are not affected by the new properties of IPv6 compared with IPv4.

The TCAMs support “don’t care” state in any bit in a TCAM entry, however, some ap-
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plications only use TCAMs to store prefixes, such as longest prefix matching problem. In such

applications, the “don’t care” state can only appear in continuous “don’t care” state sequence from

the least significant bit of a TCAM entry, and that will cause hardware waste. And a simplified

TCAM can be designed to only support prefix storage and we call this kind of CAM “PCAM”,

where “P” represents prefix. The logic of original 8-bit TCAM and the proposed architecture of

8-bit PCAM is shown in Figure 2.15 and Figure 2.16 respectively, and a 8-bit prefix “1110∗ ∗ ∗∗”

is stored in both of them. In the TCAM, each pair of value and mask represent a single bit value

in Figure 2.15, and value and mask are stored in SRAM separately, but we can remove the storage

of mask because we only need to store the boundary between binary bits and “don’t care” bits. So

we append an extra value storage after the least significant bit and store a value “1” in the value

storage to separate binary bits and “don’t care” bits in Figure 2.16. So we can figure out the prefix

when finding out the least significant value “1”.

1 1 1 0 0 0 0 0

1 1 1 0 0 0 01

b7 b6 b5 b4 b3 b2 b1 b0

0    1

1

0    1

1

0    1

1

0    1

1

0    1

1

0    1

1

0    1

1

0    1

1

Value

Mask

Result

Figure 2.15: The logic of 8-bit TCAM storage
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Figure 2.16: The architecture of proposed PCAM supporting prefix storage

2.4.4 Summary

In this section, we present a novel approach to IP route lookup using TCAMs to save memory

usage, increase update speed and improve the throughput of longest prefix matching process. We

discussed three important issues still have not been well studied in TCAM-based IP route lookup

including large RAM usage and long memory accesses, slow update process of routing table and

unscalable problem. Based on the observation that all of them result from the sorted storage in

TCAM entries, we store IP prefixes can be stored out of order in the first group and the remaining

ones in the second group, and deal with them separately. The simulation results show that our

approach solve these problems efficiently: the usage of RAM has been reduced, the throughput

has been increased and the update process speed also has been increased significantly compared

with the traditional ways. Furthermore, the clock speed can also be increased because the memory

access latency is reduced and the priority encoders are simplified. Our main contribution of this
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section is to present an approach to solve multiple major problems in TCAM-based applications,

not only try to solve one problem but usually worsen the others.
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CHAPTER three

PACKET CLASSIFICATION

3.1 Introduction

There are a number of network services that require packet classification, such as policy-based

routing, firewalls, provision of differentiated qualities of service, and traffic billing. In each case, it

is necessary to determine which flow an arriving packet belongs to so as to determine, for example,

where to forward it, whether to forward or filter it, what class of service it should receive, or how

much should be charged for transporting it. As packet classification has been widely deployed on

the Internet, demand for efficient packet classification grows. The function of a packet classifica-

tion system is to map each packet to a decision according to a sequence of rules, which is called a

packet classifier. The rules specified in a packet classifier may or may not be mutually exclusive;

two rules may overlap in a packet classifier. When it happens with no explicit priorities specified,

we follow the convention that a rule closer to the top of the list takes priority. Table 3.1 shows a

simple packet classifier of four rules.

Perhaps the most popular method for high-speed packet classification in practice is to use

Ternary Content Addressable Memory (TCAM) [36]. A TCAM is a memory chip where each entry

Table 3.1: A Simple Header Rule Set
Rule Type Src IP Dst IP Src Port Dst Port Decision
r1 TCP * 192.168.0.0/16 <1024 * accept
r2 TCP * 192.168.14.1 * 139 discard
r3 UDP 192.168.0.0/16 10.163.38.0/8 * 700:900 accept
r4 TCP * * * * discard
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can store a packet classification rule in ternary form. It stores data patterns in the form of (value,

bit mask) pairs. A query key can be simultaneously compared against all the patterns stored in

a TCAM. A key q is said to match a stored pattern (v,m) if q & m = v & m, where

“&” is the bit-wise logical AND operator. Given a packet, the TCAM hardware can compare the

packet with all stored rules in parallel and then return the decision of the first rule that the packet

matches through a priority encoder. Thus, it takes O(1) time to find the decision for any given

packet. Because of their high speed, TCAMs are widely used in prefix matching applications [26]

and TCAMs have become the industrial standard for high speed packet classification [37]. The

architecture of a TCAM used in the packet classification is shown in Figure 3.1. The input data

compares with TCAM entries in parallel, and the priority encoder selects the matched entry with

the highest priority, at last, memory access is performed to fetch corresponding result. Note that the

priority encoder and memory access process may consumes much hardware resources and increase

the overlay latency, and we will discuss these problems and solve them based on our approach.

Entry 0

Entry 1

EntryN-2

EntryN-1

Input Register (key)

1-bit

1-bit

1-bit

1-bit

LogN

match vector
priority
encoder

RAM

Figure 3.1: TCAMs used in the packet classification
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A key (Protocol, Source IP address, Destination IP address, Source Port, and Destination

Port) is stored in the input register and the rules are stored in the TCAM entries. The key compares

with all the entries in parallel and the results are stored in the match vector, where 1’s represent

that the corresponding entries match the key, and the priority encoder chooses the match with the

highest priority. At last, the output signal is used to find the corresponding action.

Despite their high speed, TCAMs have two major drawbacks when used in packet clas-

sifiers. First, they consume a large amount of power and have high hardware cost. Thus, their

capacity in packet classifiers is often limited. Second, they are inefficient when applied to packet

classifiers with port number ranges, because TCAMs can only store rules in ternary form, which

means that port numbers need to be converted to one or more prefixes before being stored in

TCAMs. This may lead to a significant increase in the number of TCAM entries needed to encode

a rule. For example, 30 prefixes are needed to represent a single range [1, 65534], and 20 prefixes

are needed to represent [1, 2046]. Overall, 30×20 = 600 TCAM entries are required to represent a

single rule with these two ranges. We observe that packet classifiers typically have at most one port

range in each rule, and rules specifying two port ranges are very rare. However, a small number

of such rules can consume most of the TCAM entries and the number of such rules is increasing.

Therefore, minimizing the number of required TCAM entries is crucial.

In this chapter, we first propose a tree-based algorithm to minimize the number of TCAM

entries used by a packet classifier. An effective way to reduce the number of TCAM entries is to

remove redundant rules and combine overlaying rules, yielding an equivalent set of rules without

affecting the classification results. Based on the new non-overlapping rule set, we can remove a set

of rules with the same decision from TCAMs to reduce the TCAM consumption. Furthermore, we

can store rules in TCAMs out of order, then we can remove the priority encoder and memory access

process. Our algorithm is based on such an equivalent transformation. It can reduce the number of
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TCAM entries significantly while preserving the behavior of packet classifiers. A key advantage of

reducing TCAM entries through this algorithm is that the algorithm can be easily deployed without

any modification of existing packet classification systems. Our experiments show that we achieve

a total reduction of 85.4% in the number of TCAM entries by removing overlaps between rules

and removing the most rules with the same decision.

Our approach removes all redundancy in the original rule set to make sure each packet

matches and only matches a single new rule. Based on the new non-redundant rule set, we further

propose two range extension algorithms, one-directional range extension and bidirectional range

extension, which require less TCAM entries to store them. Our algorithm is based on such an

equivalent transformation. It can reduce the number of TCAM entries significantly while pre-

serving the behavior of packet classifiers. A key advantage of reducing TCAM entries through

this algorithm is that the algorithm can be easily deployed without any modification of existing

packet classification systems. Our experiments show that we achieve a total reduction of 79.28 and

84.27% in the number of TCAM entries by removing redundant rules, combining overlaying rules

and employing the range extension scheme.

Priority encoders are commonly employed with TCAMs together to detect the matching

result with the highest priority among all matched entries [38–40]. The priority encoders usu-

ally consume considerable hardware area especially with large number of TCAM entries. So we

also propose the Leading-zero counter to replace the priority encoder and the simulation shows

significant area reduction introduced by our approach.

Based on the new non-redundant rule set, we also propose a fast TCAM update scheme

which enable out of order storage in the TCAM and reduce the TCAM entries usage. Our experi-

ments show that only 15.27 TCAM entries needed to be updated by adding a new rule in average,

and our algorithm consumes approximately 29% and 36% TCAM entries update of original method
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and existing compression method when removing a rule.

At last, we propose Comparator Content Addressable Memories (CCAMs), which can store

ranges in CCAM entries besides ternary state numbers. In our algorithm, the hardware can be

configured to store all kinds of port number ranges. If a rule contains any two-direction ranges,

only two CCAM entries are needed to store it, otherwise, each rule can be stored in a single CCAM

entry. Our simulations show that CCAMs consume about 27.6% entries compared with original

TCAMs. Considering the transistor consumption, our approach saved about 66.4% transistors.

Furthermore, the update process of CCAMs can be as fast as that of TCAMs usage without any

compressions.

Our contributions are as follows:

1. We propose an overlapping removal algorithm to reduce the number of TCAM entries con-

sumed and provide a good property: exact one matched TCAM entry for every searching,

and we call that one-match property.

2. Based on the one-match property, we can remove a set of rules with the same decision from

TCAM to further reduce the TCAM entries consumption. Of course, we remove the same

decision rules consumes the most TCAM entries.

3. When there are only two decisions “accept” and “discard” in the rule set, based on the one-

match property and the contribution (2), there is no priority encoder and memory access

needed, because all the rules stored in TCAM has the same decision, and we know the

decision by knowing whether there is a match in the TCAM entries.

4. When there are more than two decisions in the rule set, Based on the one-match property,

we can store rules in TCAM entries out of order, so we store rules with the same decision
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together and use Leading-zero counter to replace the priority encoder and use comparators

to replace memory access process.

5. TCAM-based rule updating process usually takes long time and degrades the performance of

packet classification because the packets must be buffered during the update. However,our

approach provides fast TCAM update due to out of order storage in the TCAM.

The remainder of the chapter is organized as follows. Section 3.2 presents previous work

related to this chapter. Section 3.3 proposes our tree-based algorithm and Section 3.4 presents

range extension algorithm to reduce the number of TCAM entries. Section 3.5 and Section 3.6

present the fast rule update scheme and CCAM respectively. Finally, we conclude in Section 3.3.5.

3.2 Related Work

Previous work exploring solutions to deal with the range expansion problem falls into two ma-

jor categories: hardware-based solutions, which require changing TCAM hardware circuits, range

reencoding solutions, which reencode original ranges into other formats, and classifier compres-

sion solutions, which do not require such changes. Next, we review previous work in these three

categories.

Hardware-based solutions The basic idea of hardware-based solutions is to modify TCAM

circuits and architecture [37, 41–47]. For example, van Lunteren et al. proposed a method of

adding comparators at each entry to better accommodate range matching in packet classifiers [43].

While this allows to use TCAMs more efficiently, any solution from this research line has some

drawbacks such as the cost of hardware modification.
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Range Reencoding solutions Many range reencoding compression solutions have been pro-

posed [37, 48–52]. Their basic idea is to reencode field’s value into more simple values. But this

kind of approaches suffer from large RAM consumption and complex preprocessing of ranges.

Furthermore, every income packet is need to be preprocessed before performing match operation.

Therefore, we do not focus on this kind of solutions.

Classifier Compression solutions Many classifier compression solutions have been proposed [4,

45,48, 52–61]. Their basic idea is to preprocess ranges that appear in a packet classifier or convert

a given packet classifier to another semantically-equivalent packet classifier that requires fewer

TCAM entries, and then store the new rule set in a TCAM. Hence, the TCAM circuits need not be

modified to implement range storage, but the preprocessing is required. Although these methods

can efficiently reduce the redundancy in the rule set, they may still miss some redundancy. Our

work falls into this category and further optimizes existing approaches. Classifier compression

solutions are more likely to be adopted by networking vendors and ISPs because they do not require

changing TCAM hardware or existing packet classification systems and the income packets are not

need to be preprocessed.

There are some other software-based packet classification, such as tree-based approaches [62–

65] and hash-based approaches [66–68]. They usually require multiple memory access for each

packet and we will not discuss them in detail because they are not our focus in this chapter.

3.3 Tree-Based Minimization of TCAM Entries for Packet Classification

Packet classification is a fundamental task for network devices such as edge routers, firewalls, and

intrusion detection systems. Currently, most vendors use Ternary Content Addressable Memories

(TCAMs) to achieve high-performance packet classification. TCAMs use parallel hardware to
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check all rules simultaneously. Despite their high speed, TCAMs have a fundamental drawback

in dealing with ranges efficiently. Many packet classification rules contain range specifications,

each of which needs to be translated into multiple prefixes to store in TCAMs. Such translation

may result in an explosive increase in the number of required TCAM entries. Furthermore, the

priority encoder and memory access after TCAM match consumes too much hardware resources

and increase the overall latency and we call them postprocess of TCAM matching. In this section,

we propose an efficient TCAM-based packet classification algorithm, which consists of two parts:

overlapping removal in a rule set using a tree representation of rules, and the postprocess opti-

mization. The proposed algorithm first removes redundant rules and combines overlaying rules to

build an equivalent, smaller rule set for a given packet classifier, and then removes priority encoder

and memory access process based on the properties of non-overlapping rule set. Our experiments

show a reduction of 85.4% in the number of TCAM entries based on Minimal Range Tree (MRT).

Besides, we propose the leading-zero counter instead of priority encoder circuits and use com-

parators instead of RAM to reduce the hardware area and overall latency. It can also be used as

a preprocessor, in tandem with other methods, to achieve further performance improvement. We

first discuss the hyperrectangular partitioning problem in the packet classification.

3.3.1 Hyperrectangular Partitioning Problem

In d-dimensional packet classification, a packet is represented as a d-dimensional al vector, p =

(f1, f2, . . . , fd), where fi is the value of the ith field of the packet. A d-dimensional packet classifier

C is defined as a sequence of condition-action pairs:

C = ((c1, a1), (c2, a2), . . . , (cn, an)) (3.1)
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where ci is a subset of the d-dimensional space and ai is an action taken when a packet p is in

ci. Because conditions are usually given as prefixes and ranges, ci represents a d-dimensional

hyperrectangle. In an IPv4 packet, those d dimensions are usually source IP address, destination

IP address, source port, destination port, and protocol type, of which the lengths are 32, 32, 16, 16,

and 8 bits, respectively. If
∪

1≤i≤n ci is the d-dimensional space itself, the classifier C is complete.

Note that virtually all packet classifiers are complete because they have a “default” condition that

covers the entire space.

TCAMs are usually used to store these rules to accelerate the searching process. In or-

der to store ci into a TCAM entry, every ci must be represented as an exact binary value or a

binary value with wildcard bits. For example, an IP address prefix 127.0.0.1/16 is converted to

0111111100000000****************, where * is a wildcard bit. However, some fields

such as source and destination port numbers are represented as integer ranges rather than exact

values or prefix values. Thus, ci with fields represented as integer ranges may need to be converted

into more than one prefixes, which is called “range expansion.” The process of range expansion

consists of two parts. In the first part, each field of the condition is expanded independently. For

example, if a condition for a 3-bit field is [1, 6], the corresponding minimum set of prefixes are

001, 01*, 10*, and 110. The worst-case range expansion of a w-bit integer range yields 2w − 2

prefixes [69]. Then, the second part is to compute the cross-product of obtained prefix sets for all

fields, resulting in an exponential increase of number of TCAM entries needed to store a single

condition.

In order to mitigate this problem, we propose our approach based on removing overlaps

between different rules. Two rules in a packet classifier may overlap, which means that one packet

may match two or more rules. Besides, two rules in a packet classifier may conflict with each other.

In other words, two overlapping rules may have different decisions. Packet classifiers typically
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Table 3.2: Number of prefixes needed by a range

Range
length

Possible numbers of
prefixes required to
represent the range

Frequency ratio
of required

prefix numbers

Average number
of reqruied

prefixes
1 1 1 1
2 1, 2 1:1 1.5
3 2 1 2
4 1, 2, 3 1:1:2 2.25
5 2, 3 1:1 2.5
6 2, 3, 4 2:1:1 2.75
7 3 1 3
8 1, 2, 3, 4 1:1:2:4 3.125
9 2, 3, 4 1:1:2 3.25

10 2, 3, 4, 5 2:3:1:2 3.375

resolve conflicts by employing the first match, which has higher priority. For firewalls, typical

decisions include “accept,” “discard,” “accept with logging,” and “discard with logging.”

One motivation of removing overlaps is based on the observation that smaller range is likely

to occupy fewer TCAM entries. For example, Table 3.2 shows the number of prefixes needed by

ranges with different lengths varying from 1 to 10. We can see in the second column that ranges

with the same length may need different numbers of prefixes. We compute the frequency of each

number of prefixes in the third column, assuming that ranges are uniformly distributed. Using the

frequency as weight, we obtain the average number of prefixes for each range length in the last

column. The average number of prefixes increases as the range length increases. Note that the

sum of two average lengths is larger than the average length of the sum of their range lengths. For

example, the average number of prefixes for a range of length 3 is 2 and that for a range of length

4 is 2.25. However, if we combine two ranges into one of length 7, the corresponding average

number of prefixes is 3. Thus, the compression ratio becomes (2 + 2.25− 3)/(2 + 2.25) = 29%.

For longer ranges, the average number of prefixes grows logarithmically.
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Figure 3.2: A simple packet classifier

One motivation of removing overlaps is based on the fact that overlaps between rules re-

quire the usage of priority encoder, and large number of rules will result in a very large priority

encoder, which not only consumes a lot of hardware resource but also increase the processing la-

tency significantly. So we can remove the large priority encoder by removing overlaps between

rules.

We define redundancy in rules as follows:

• Redundancy in a rule set: A rule set contains redundancy if any packet matches more than

one rules in the rule set.

For example, a simple packet classifier with three rules is shown in Figure 3.2. The rules

r2 and r3 contain redundancy ranges of [3, 4] and [2, 7] respectively.

Compared with redundancy removal approach in [69], our approach further reduces the

overlap redundancy and combine continuous ranges with same decision, which not only further

reduce the number of TCAM entries consumption but also provide basic non-gap non-overlap

rules for further optimization algorithms and we will discuss the details in the following sections.

So we define the hyperrectangular partitioning problem as follows:

• Given a d−dimensional packet classifier C, how to cut the whole d−dimensional space into

a set of d−dimensional cubes to meet the following requirements:
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I Each d−dimensional cube has a single decision.

I This set of d−dimensional cubes and packet classifier C are semantically-equivalent.

I Among all the possible sets of d−dimensional cubes, this set of d−dimensional cubes

require minimum number of TCAM entries to store them when each dimension of a cube is

presented by a prefix.

3.3.2 Proposed Algorithms

In order to reduce the number of TCAM entries consumption, we propose the minimal range tree

to remove all redundancy in the original rules. In the new rules we get, there is no overlap or gap

in all the five fields, which ensure any income packet matches and only matches one new rule.

Based on the new non-overlapping rule set, we remove a set of rules with the same decision from

TCAMs to reduce the TCAM consumption. Furthermore, we store rules in TCAMs out of order,

then we remove the priority encoder and memory access process. We first consider rule set with

two decisions in our approach and then extend it to rules with more decisions. In the latter situation,

we propose the Leading-zero counter and comparator approach to replace the priority encoder and

memory access process respectively to reduce consumed hardware area and the overall latency. In

order to better describe our approach, we first consider rules only contain two decisions “accept”

and “discard”, and then describe rules with more than two decisions.

(1). Minimal Range Tree

Our goal is reducing redundancy in a given packet classifier, including redundant rules and

overlapping parts. To achieve the goal, we build a minimal range tree as follows.

A range tree T for a packet classifier f : (r1, r2, . . . , rn) over fields F1, . . . , Fd is a tree that

has the following properties:

57



• The height of the tree is equal to the number of fields in the packet classifier.

• Edges of each depth of the tree store the ranges of the corresponding field. All edges in the

same depth cover the whole range of the field, and there is no overlap between any pair of

them.

• A directed path from a leaf node to the root is called a decision path. For a given packet, the

tree has exactly one matched decision path.

• Each leaf node is labeled with decision that is associated with the corresponding decision

path.

Figure 3.4(a) shows a range tree for the simple packet classifier in Figure 3.3. In this

example, we assume every packet has only two fields, F1 and F2, and the domain of each field is

[0, 9].

r1 : F1 ∈ [0, 4] ∧ F2 ∈ [0, 9] → accept

r2 : F1 ∈ [0, 4] ∧ F2 ∈ [4, 9] → accept

r3 : F1 ∈ [5, 9] ∧ F2 ∈ [7, 9] → accept

r4 : F1 ∈ [5, 9] ∧ F2 ∈ [0, 2] → discard

r5 : F1 ∈ [0, 9] ∧ F2 ∈ [0, 9] → discard

Figure 3.3: A simple packet classifier with five rules
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(a)

(b)                                      (c)

Figure 3.4: Constructing a minimal range tree for the packet classifier in Figure 3.3

We use number 1 as a shorthand for “accept” and number 0 as a shorthand for “discard” in

labeling leaf nodes in Figure 3.4. In Figure 3.4, each edge represents a range in the corresponding

field. We first build a tree as in Figure 3.4(a) according to the packet classifier in Figure 3.3, and

the rules below each leaf node represent which rules satisfy the decision path. They are not a part

of the tree. Then we combine two neighboring leaf nodes if they have the same decision and share

the same parent node. The result is shown in Figure 3.4(b). Last, we move a leaf node to its parent

node if this leaf node is the only child node as shown in Figure 3.4(c). As a result, we get the
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minimal range tree in Figure 3.4(c). It corresponds to three new rules in Figure 3.5, which are

equivalent to the rules in Figure 3.3.

r′1 : F1 ∈ [0, 4] → accept

r′2 : F1 ∈ [5, 9] ∧ F2 ∈ [0, 6] → discard

r′3 : F1 ∈ [5, 9] ∧ F2 ∈ [7, 9] → accept

Figure 3.5: Three new rules according to Figure 3.4(c)

In this example, we remove all redundancies in the leaf level. However, there may be

redundancies among internal nodes. Therefore, we also need to remove such redundancies. After

removing redundancies in leaf nodes, some of their parents may become leaf nodes. We apply the

same algorithm recursively from leaf nodes to the root to check the redundancy for them.

There is another type of redundancy that is not removed by the previous algorithm. After

applying the previous algorithm, it is obvious that if two leaf nodes still have the same decision

and have the same field range, then these two nodes must have different parent nodes. If these two

nodes have the same grandparent node, it implies that there must be redundancy in their parent

nodes, which we call parent redundancy. However, we cannot reduce this kind of redundancy

through the algorithm we discussed above; we need to search for parent redundancy in a separate

step. Figure 3.6 shows a simple example of removing parent redundancy.
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Figure 3.6: An example of removing parent redundancy

In Figure 3.6(a), the first leaf node and the third leaf node have the same decision (0), the

same field range ([0, 2]), and the same grandparent node (F1). Therefore, there is redundancy

between their parent nodes (two F2). In this case, we delete the second leaf node and combine

their parent nodes’ field ranges ([0, 4] and [5, 9]) so that it becomes the second field range of the

first leaf node as shown in Figure 3.6(b). This new range overrides its parent’s field range [0, 4],

yielding the following decision path:
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F2 ∈ [0, 2] ∧ F1 ∈ [0, 9] → discard. (3.2)

From the discussion above, in order to reduce TCAM entries, we have the following three

strategies:

1. Reduce redundant rules,

2. Reduce overlapping between rules, and

3. Combine rules even there is no overlapping.

These three strategies are based on the following observations:

• The number of prefixes increases as the range length increases.

• For two ranges, [a, b] and [c, d], are overlapping with each other or have no gap between

them (b + 1 = c or d + 1 = a), the number of prefixes needed by them is larger than the

number of prefixes needed by the combined range [mina, c, maxb, d].

We have the following theorem and corollary:

Theorem 2. Given a range R12, when we randomly cut it into two ranges R1 and R2, the minimum

number of prefixes needed to represent both R1 and R2 is larger than or equal to the minimum

number of prefixes needed to represent R12.

Proof. Given a range R12, when we randomly cut it into two ranges R1 and R2, assume the two

minimum sets of prefixes needed to present R1 and R2 are p1 . . . pm and q1 . . . qn respectively. For

the combined range R12, we can also use the same prefixes p1 . . . pm and q1 . . . qn to represent it,

or we can combine multiple prefixes to reduce the number of prefixes.
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Therefore, given a range R12, when we randomly cut it into two ranges R1 and R2, the

minimum number of prefixes needed to represent both R1 and R2 is larger than or equal to the

minimum number of prefixes needed to represent R12.

Corollary 1. For any two ranges and their relation belongs to one of the following three cate-

gories: (1). One range is a subset of another. (2). A part of a range is a subset of another. (3).

There is no overlap and no gap between the two ranges and we can call them continuous ranges.

Then we can combine these two ranges to reduce the number of prefixes to represent them or the

number remains the same in the worst case.

Proof. Given two ranges R1, R2 and combined range R12, assume the minimum sets of prefixes

needed to present R1, R2 and R12 are p1 . . . pm, q1 . . . qn and c1 . . . cw respectively, we approve it

in three situations separately:

• If R1 is a subset of R2, we can use q1 . . . qn to represent R12, then m+ n > w. If R2 is a

subset of R1, we have the same result.

• If a part of R1 is a subset of R2, that also means a part of R2 is a subset of R1, we can

use p1 . . . pm and q1 . . . qn to represent combined range R12, and we can further combine some

prefixes to reduce the number of prefixes needed to present R12, then we get that m+ n ≥ w.

• If there is no overlap and no gap between the two range R1 and R2, based on Theorem 2,

then we get that m+ n ≥ w.

Therefore, for any two ranges and their relation belongs to one of the following three cat-

egories: (1). One range is a subset of another. (2). A part of a range is a subset of another. (3).

There is no overlap and no gap between the two ranges and we can call them continuous ranges.

Then we can combine these two ranges to reduce the number of prefixes to represent them or the

number remains the same in the worst case.
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Table 3.3: Analysis of Snort Rules

Field
Number of

distinct values
Most frequently

used values
Number
of rules

Protocol type 4

TCP 7550
UDP 490
ICMP 135

IP 39

Destination port 314

445 1574
$HTTP PORTS 1568

any 1564
139 1464

$ORACLE PORTS 291

Source port 196
any 7056

$HTTP PORTS 737
1024 43

Destination IP 15
$HOME NET 5519

$EXTERNAL NET 1220
$HTTP SERVERS 959

Source IP 11
$EXTERNAL NET 6952

$HOME NET 1198
any 28

So based on the above theorem and corollary, we should combine all possible ranges we

could.

In what order we should use the fields to construct the tree, starting from the root, is another

issue we need to address. In order to reduce the redundancy effectively, the complexity of fields

should increase as we move from the root to leaf nodes. As a case study, Table 3.3 presents the

analysis of the complete set of the 8214 Snort rules [70].

While IP addresses have only a few distinct values, port numbers have hundreds of distinct

values. In addition, destination IP addresses and port numbers have more distinct values than

source IP addresses and port numbers, respectively. Therefore, in order to build the most efficient

tree, the protocol type, which is the simplest, should be used in the root level, and source IP address,
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destination IP address, source port number, and destination port number should follow in that order.

The same tendency is observed in other rule sets we used in experiments. When processing every

field of the five tuples in the rule set, for each node in upper level, our algorithm creates continuous

and non-overlap ranges, which are represented by all the edges in the corresponding depth in the

tree. So, for any income packet, every tuple in its header can match and only match a single edge

in every depth of the tree from root to the leaf nodes. So we can assure any packet matches and

only matches one path from root node to the leaf nodes, which shows that our algorithm removes

complete redundancy in the rule set.

Overall, the non-overlapping rule set building algorithm is shown in Algorithm 1. We insert

original rules into the tree one by one, and process different fields from the root to the leaf nodes.

During this process, we partition the ranges in each field if needed and then combined all possible

continuous branches. And the complexity of Algorithm 1 is O(n2).

Some applications may have very limited TCAM storage to store all the prefixes even after

the number of prefixes is reduced by our algorithm. Even in such cases, our algorithm can still

be used as a preprocessor, making actual mapping between prefixes and TCAM entries by other

methods easier.

(2). Store Prefixes in a TCAM

After building the minimal range tree, we can extract the decision path from each leaf node

to the root. The number of decision paths is equal to the number of leaf nodes. Note that these

decision paths cover the entire ranges and there is no overlap. Then we convert the ranges along

each decision path into prefixes and store them in a TCAM. When a packet enters the TCAM for

comparison, the output bits contain only a single 1 indicating a match, and all the other bits are 0s

indicating no match. Because there is exact one match for every incoming packet and there are two

decisions “accept” and “discard,” we only need to store a set of rules with the same decision, for
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Algorithm 7 Non-Overlapping Rule Set Building
Input : A rule set R: r1, r2, . . . , rn
Output: A non-overlapping rule set tree
for Each rule from R do

for Each field from root to leaf do
if this range exists in this level in the tree and this is not the leaf node level then

mark the child node as the beginning of next level
end if
if this range does not exist in this level in the tree then

add a new edge labeled with this range
mark the new node as the beginning of next level

else
if this range contains existing ranges or parts of existing ranges in this level in the tree
then

split the ranges in the tree based on their overlap
split the rule and deal with the first one, and insert remaining rules after the current
rule in R

end if
end if

end for
end for
for Each edge level from leaf node to root node do

for Each edge from left to right do
if the current edge and the next edge have the same parent node and have the same subtree
or node then

combine these two edges
end if

end for
end for
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example, we store rules with decision “accept,” therefore, the incoming packet will be accepted if

there is a match in the TCAM entries, otherwise, the incoming packet will be discarded. By this

way, at least half of TCAM entries can be further reduced based on the non-overlapping rule set.

In the worst case, the number of prefixes consumed by rules with decision “accept” equals to the

number of prefixes consumed by rules with decision “discard” and the number of TCAM entries

can reduced half. Because we only need to check whether there is a match in the TCAM, therefore,

priority encoder circuits (PEC) are not required in our algorithm and only a sequence of OR logic

is needed, the incoming packet will be accepted if the result is 1, otherwise, the incoming packet

will be discarded. Obviously, the memory accesses used to fetch corresponding decision can be

eliminated, this not only reduce the memory hardware resource, but also reduce the overall packet

classification process latency.

When storing a range in the TCAM, we need to convert the range into prefixes at first.

And the pseudocode for generating the minimum set of prefixes needed to present a given range is

shown in Algorithm 2. We showed that w-bit integer range yields at most 2w − 2 prefixes, and w

are 32 and 16 in IP address field and port field respectively, so the complexity of Algorithm 2 is

O(1).

And the minimum prefixes needed to present a given range is unique based on the following

theorems and corollary:

Theorem 3. For any two different prefixes, there are only two relationship between them: there is

no overlap between them or one prefix is a subset of another.

Proof. For any two different prefixes p1 and p2, we assume their represented ranges partial overlap

with each other. So there must be a common value v in both ranges, and the value v matches both

prefixes, then we can say p1 and p2 are two different prefixes of value v, so one prefix must be the
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Algorithm 8 Generating the Minimum Set of Prefixes for A Range
Input : A range R
Output: A set of prefixes P : p1, p2, . . . , pn
convert the low boundary of R into binary format Rl

convert the high boundary of R into binary format Rh

if Rl == Rh then
add Rh to P
return P

end if
while Rl ≤ Rh do

if Rl == Rh then
add Rh to P
return P

end if
if Rh is even then

add Rh to P
Rh −−

else
find the longest continuous 1s from the least significant bit of Rh and satisfy the condition:
after converting these 1s in Rh into 0s, Rh ≥ Rl

convert these 1s in Rh into ∗s and add it to P
convert these ∗s in Rh into 0s
if Rl == Rh then

return P
end if
Rh −−

end if
end while
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prefix of another one and one prefix must be a subset of another, that means one represented range

contains another one, not partial overlap, which is a contrary.

Therefore, for any two different prefixes, there are only two relationship between them:

there is no overlap between them or one prefix is a subset of another.

Theorem 4. For any range, the minimum set of prefixes needed to represent it is unique.

Proof. In order to present a range R with minimum prefixes, we can not use two prefixes pm and

pn when pm is a prefix of pn, because pn is redundant in this situation. Based on the Theorem 1,

we know we can not use two prefixes pm and pn and they partial overlap with each other. So all

the prefixes we need must not overlap with each other. Furthermore, our prefixes need to cover the

whole range R, so all the prefixes must continuous and do not overlap with each other. So when

converting range R to prefixes from low boundary and high boundary will result in the same prefix

set.

Therefore, For any range, the minimum set of prefixes needed to represent it is unique.

Corollary 2. In our non-overlapping rule set tree, the minimum set of prefixes in fields needed to

represent it is unique.

Proof. Because each branch in our non-overlapping rule set tree represent a new rule, and each

branch consists of five ranges R1 . . . R5, and any range Ri (1 ≤ i ≤ 5) can be a exact value

here. Based on Theorem 4, prefixes for each range Ri is unique, so prefixes needed to represent

this branch is unique and the number of prefixes consumed by this branch is the multiplication

of numbers of prefixes in these five ranges. Because all the branches are independently when

converted into prefixes, the total prefixes in fields to represent our non-overlapping rule set is also

unique.
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Therefore, in our non-overlapping rule set, the minimum set of prefixes in fields needed to

represent it is unique.

Until now, we have shown our approach to solve the hyperrectangular partitioning problem.

Based on the minimal range tree, we propose further optimization in the following subsections.

(3). Extend Our Approach to Deal with Rules with More Decisions

Most packet classification optimization approaches only consider rules with two decisions.

In order to make our approach more scalable, we simply modify our approach to deal with unlim-

ited decisions. Our approach can be easily extended to deal with more than two decisions. For

example, assume we have decisions D1 . . .Dn in our rule set. When building the Minimal Range

Tree, we can remove the redundant rules and overlap parts as before, and we also combine possible

rules with the same decision as before. However, the approach proposed in the previous subsection

does not work when dealing with more than two decisions in the rule set. Therefore, we propose

modified approach.

Because there is no overlap in the new rule set and there is exactly one match for each

incoming packet, which means we can store the rules in TCAMs out of order, and that also means

we can store rules with the same decision together and then we use comparators to replace priority

encoder and the memory access can be eliminated. In this situation, we can remove a set of rules

with the same decision for TCAMs. Of course, we would like to remove rules with the same

decision consume the least TCAM entries. For example, if we do not store rules with decision

“discard” in TCAMs, if there is no match in the TCAM, that means the corresponding decision

is “discard,” otherwise, we need to find out that which block the matched entry belongs to. The

architecture is shown in Figure 3.7 and we assume there are seven decisions and we do not store

the rules with decision “discard”, which is also the decision of the default rule. We store rules
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with the same decision together and the comparators store the boundaries used to compare with

matched result in TCAM. For example, there are 500 TCAM entries are used to store the first

group of rules with the same decision, the first comparator is used to find out whether the matched

result is smaller than 500.

...

TCAM etnries

...

Decision

Comparators

Figure 3.7: Rules stored in TCAMs in groups

As we discussed above, existing TCAM-based approaches need priority encoder and mem-

ory access after TCAM matching process, and the priority encoder consumes too much hardware

resources and increase the overall latency. In [33], the 32 bits priority encoder consumes 1106

transistors and a maximum power consumption of 13.8 mW, and the latency is about 1.5 ns using

0.15 µm TSMC CMOS technology. For thousands of TCAM entries, the latency of the priority

encoder will be longer than the TCAM matching process, which makes the priority encoder the

bottleneck of the packet classification. Based on our approach, there is at most one match in the

TCAM, so we can simply replace the priority encoder with an ordinary encoder. In order to further
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reduce this bottleneck in the packet classification, we use leading-zero counter circuit to replace

encoder and we will show the leading-zero counter circuit in the next subsection.

(4). Leading-zero Counter Circuit

Usually, there are thousands of TCAMs entries which make the priority encoder very large,

so how to design efficient priority encoder is also important when using TCAMs. So we design our

encoder as follow to replace commonly used encoders. We only need to calculate the maximum

number of continuous zeros start from the highest end. The logic is shown in Figure 3.8.

I7I6 I5I4 I3I2 I1I0

O2 O1 O0

0      1

0      10      1

0      1

Figure 3.8: The 8-bit leading-zero counter

In Figure 3.8, there are only 8-bit input represents the 8-bit TCAM entries matching output,

and it can be easily extended to meet the length of TCAM entries output. We assume that there are
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Table 3.4: Gates used by our leading zero counter and the ordinary priority encoder with 8-bit
input

Gates Number of Transistors(CMOS) Our Algorithm Ordinary priority encoder
2-input NOR 4 3 1

2-input NAND 4 1 1
3-input NAND 6 0 2
4-input NAND 8 0 3

2-input Multiplexer 2 4 0
Not 2 3 8

3-input AND 8 0 2
4-input AND 10 0 1
4-input OR 10 0 3

at least one entry matching so we do not need to consider the lowest input bit I0. And the output

O2O1O0 is the number of leading zeros. We compare the logic gates used by our algorithm and

the ordinary priority encoder shown in Table 3.4.

This extension scheme can reduce the TCAM entry requirement, but it can only be used

in one field to reduce the entries, we use it in the source port in our implementation. In order to

further reduce the number of entries, we must consider another field with many ranges, which is

destination port in our implementation. The number of entries used is equal to the multiplication of

different fields as we discussed above, so we can reduce the entries significantly if we can separate

these two fields to convert the multiplication to addition.

In our implementation, we separate the destination port field from other fields and call

them part2 and part1 respectively. After the matching lookup and encode in part1, we will get the

address of the matching address of part1, we use this address to find the corresponding address

in part2 after access a pre-computed address converter, which stored in a SRAM chip or on chip.

The output of the converter is a encoded bit mask, which is used to filter out rules higher than the

matching rule. So we can get the final encoded address from part2, and then access the memory to
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get the result. This process is designed in pipeline to accelerate the speed as shown in Figure 3.9.

CAM
(part1)

Address
Converter

Encoder

D ecoder
C AM

(part2)

Encoder

Key

S tage 1

S tage 2

S tage 3

Figure 3.9: Pipelined architecture of separated fields

The logic used to generate mask is shown in Figure 3.10.
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I3 I2 I1 I0

M7 M6 M5 M4 M3 M2 M1

1

1

Block0

Block1

0    10    10    1

0    10    11    0 1    0

Figure 3.10: The 8-bit mask generater

In Figure 3.10, we use 3-bit input I2 to I0 to generate the 8-bit mask M7 to M0. The 3-bit

input represents the number of leading zeros in the mask and all the other bits are set to value 1.

We assume that there are at least one entry matching so the value of M0 must be 1 and is omitted

in Figure 3.10. The input I3 is only used to extend our scheme to meet longer mask requirement.

Actually, we use the radix-4 scheme to extend the logic, the block0 is used to generate the least

4-bit output, the block1 is used to generate higher 4-bit output, and it can be easily to extend the

length of mask.

(5). Comparators

Because there are usually very limited decisions in a rule set, only a small number of

comparators, actually adder circuit, are needed, and we need adders which achieve a good balance

between calculation speed and hardware resource consumption. Because adders have been well
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studied, so we will not discuss too much about this, we use the adder proposed in [71] to meet our

requirement, and all the details can be found there.

3.3.3 Simulation Results

Because our main goal is reducing the TCAM entries consumption and optimize post TCAM match

process, so we first simulate the number of TCAM entries can be reduced by the minimal range

tree approach. Finally, we simulate the area reduction can be achieved by our leading-zero counter

approach.

(1). Experimental Results on Minimal Range Tree

For experiments, we collected rules generated from [72]. Because rule sets vary across

different applications, we gathered as many rules as we could and then randomly selected one

thousand rules from them. We compared the number of TCAM entries used by original rules and

the number of TCAM entries used after reducing redundancies with our algorithm. The result is

shown in Figure 3.11.
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Figure 3.11: Ratio of TCAM entries left after redundancy removal

After reducing redundancies for each level of the tree, starting from leaf nodes, we get the

percentage of TCAM entries left. We can see that the redundancy of the destination port field alone

affects the number of required TCAM entries most; 41.3% of TCAM entries are reduced. On the

other hand, the IP address fields have only a small impact, and the reduction by the protocol type

field is almost negligible. Finally, the parent redundancy removal reduces 4.5% TCAM entries.

Overall, our algorithm reduces 70.9% of TCAM entries in this experiment.

As we discussed above, because there is exact one match for every incoming packet and

there are two decisions “accept” and “discard,” we only need to store a set of rules with the same

decision in the TCAM. By this way, at least half of TCAM entries can be further reduced based

on the non-overlapping rule set. In the worst case, the number of prefixes consumed by rules

with decision “accept” equals to the number of prefixes consumed by rules with decision “discard”

and the number of TCAM entries can reduced half. In this situation, TCAM entry reduction can
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achieve 85.4%.

For comparison with other existing approaches, we selected the latest redundancy removing

algorithm, which was proposed by Liu et al [73]. Compared with their approach, our approach not

only removes the redundant rules but also removes some parts of other rules, which we called

partial redundant rules, furthermore, we combine continuous rules with the same decision and our

approach only needs to store a set of rules with the same decision in the TCAM. Using the same

rules, only removing redundant rules can reduce 51.6% TCAM entries. Therefore, our approach

reduces 33.8% (85.4%− 51.6%) more TCAM entries.

When there are two decisions, priority encoder and the memory accesses used to fetch

corresponding decision can be eliminated entirely, so the hardware resource and latency reduction

depend on the number of TCAM entries used. So we do not need to simulate them and we discuss

them in discussion section.

(2). Area Reduction by Leading-Zero Counter

When dealing with more than two decisions in the rule set, our leading-zero counter will

be applied. Based on the information of transistor consumption in Table 3.4, we can know that

our leading-zero counter circuit only consumes 32.8% (38/116) transistors of the consumption

of an ordinary priority encoder. The simulation in Xilinx Virtex-5 FPGA shows that the area

consumption of our leading-zero counter circuit is about 46.2% of the area consumption of an

ordinary priority encoder.

3.3.4 Discussion

Because we eliminate the usage of priority encoder and RAM, so the critical path is the delay of

TCAM itself. And the merit of RAM removal is significant, and we discuss this in two situations.

First, if we use off-chip memory, which means the TCAM and RAM are in different chips. In
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this situation, we have enough RAM resource but the latency is much longer than on chip memory

access, so our approach can remove such latency. Second, if we use on-chip memory, which means

the TCAM and RAM are in the same chip. In this situation, the memory access is much faster than

off-chip memory, but the RAM resource is very limited due to the high complexity and higher

power of TCAM circuitry. With large number of TCAM entries, it is difficult to store all decisions

in the on-chip RAM. So our approach can remove such RAM consumption.

Due to the original rules should be stored in the TCAM in priority descending order, so

updating a rule in the TCAM entry usually affects other TCAM entries, and the whole TCAM

entries needed to be rewrite in the worst case. Even though the TCAM search process is very

fast and usually costs a single clock cycle, the update process is much slower than the search

process; for example, a single entry update process consumes 16 times as many clock cycles as a

search operation for TCAM entries in FPGA [74]. This update process degrades the performance

of packet classification because the packets must be buffered during the update. Therefore, a fast

update scheme becomes more and more important with the increasing number of rules in a rule

set and the increasing frequency of rule updates. Our approach can provide fast TCAM update

due to the non-overlapping property. As we discussed above, we can store the non-overlapping

rules in the TCAM out of order, so when updating a rule, only related TCAM entries needed to be

modified, and all others remain the same.

The advantage of our approach compared with complete removal of redundant rules [73]

is that, our approach not only removes the redundant rules but also removes some parts of other

rules, which we called partial redundant rules, furthermore, we combine continuous rules with the

same decision. And these lead to two major different results: first, there is no overlap in our new

rule set and there is only one match for each incoming packet, but approach in [73] may also have

multiple matches for each incoming packet because there may still have overlaps between remain-
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ing rules; second, redundancy removal algorithm in [73] is complete, but the removed set of rules

is not guaranteed to be maximal because there may be different new rule set when processing rules

in different sequences. Our approach does not have such problem because we do not only remove

redundant rules but also remove partial redundant rules and combine continuous rules, and differ-

ent processing sequences of rules will result in the same result as we have proved above. We have

proved that our approach can achieve the minimum number of TCAM entries when using prefixes

in different fields to represent a non-overlapping rule set tree, so we can achieve the optimal hyper-

rectangular partitioning using prefixes based on our non-overlapping rule set tree. However, our

approach can not guarantee the minimum number of TCAM entries consumed by a given rule set

due to two reasons and we analyze them separately.

First, we have proved that our approach can achieve the minimum number of TCAM entries

when using prefixes in different fields to represent a non-overlapping rule set tree, but we can build

different non-overlapping rule set trees with different sequences of fields as we discussed in section

4.1. If we convert the original rule set into prefix format directly, different sequences of fields will

result in the same number of TCAM entries because all the original rules are independent and any

change of field sequence will only result in fields relocation in TCAM entries. However, we will

reduce TCAM entry consumption when we build the non-overlapping rule set tree and different

sequences of fields will result in different TCAM entry reduction. To solve this problem, the

brute force approach is to calculate all the possible TCAM entry consumptions and choose the

minimum one, but this will consume much more time. As we discussed the sequence we selected,

our strategy is to reduce redundancy and combine ranges as many as possible because they can

reduce the number of prefixes needed to represent the rule set.

Second, we have proved that our approach can achieve the minimum number of TCAM

entries when using prefixes in different fields to represent a new non-overlapping rule set, but we
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cannot guarantee the minimum usage of TCAM entries because the wildcard can happen anywhere

in a TCAM entry, not only happens in the suffixes in each field. The problem of finding the

minimum number of TCAM entries to store a rule set is a 104-hypercube problem, where 104 is

the total length of 5-tuples. Each node connects with nodes with only one different bit, so each

node connects with other 104 nodes, and we can combine connected two nodes with the same

decision, and the problem is that we should find the minimum nodes. The different combination

sequences can result in different results. Similarly, based on our non-overlapping rules, we can

combine every two entries with exact one different bit and with the same decision. By this way, we

will not introduce new overlap but different combination sequences may result in different results.

For example, in Figure 3.12, we have two combination options: first, combine r1 and r2, then

combine r4 and r5; second, combine r1 and r3, then combine r4 and r5, at last, combine them

together. So different combine sequences will result in different results.

r1 : 0000 ∗ ∗ → accept r′1 : 00 ∗ 0 ∗ ∗ → accept r′′1 : ∗ ∗ 00 ∗ ∗ → accept

r2 : 0010 ∗ ∗ → accept r′2 : 0100 ∗ ∗ → accept r′′2 : 0100 ∗ ∗ → accept

r3 : 0100 ∗ ∗ → accept r′3 : 1 ∗ 00 ∗ ∗ → accept

r4 : 1000 ∗ ∗ → accept

r5 : 1100 ∗ ∗ → accept

Figure 3.12: Combine rules with different sequences

Therefore, there are still two problems unsolved: 1) Is there any algorithm that can be used

to bound the difference between our prefix-based minimum number of TCAM entries approach and

the minimum number of TCAM entries without overlap? 2) Is the problem of detecting minimum

number of TCAM entries without overlap in a rule set NP-hard?
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3.3.5 Summary

In this section, we propose a tree-based overlapping removal algorithm to remove redundant rules

and combine overlaying rules to build new rule sets in packet classifiers, and then remove a set of

rules with the same decision based on the non-overlapping rule set. This equivalent transformation

can significantly reduce the number of TCAM entries needed by a packet classifier and our exper-

iments show a reduction of 85.4% in the number of TCAM entries after performing the two steps.

Based on the properties of non-overlapping rule set, we optimize the post TCAM match process.

When there are only two decisions “accept” and “discard” in the rule set, the priority encoder can

be removed and the memory access can be eliminated, because all the rules stored in TCAM has

the same decision, and we know the decision by knowing whether there is a match in the TCAM

entries. When there are more than two decisions in the rule set, we can store rules in TCAM entries

out of order, so we store rules with the same decision together and use Leading-zero counter to

replace the priority encoder and the simulation result shows about 53.8% area reduction in FPGA

by using Leading-zero counter. And we also replace the SRAM memory with comparators to re-

duce processing latency. Furthermore, our approach provides fast rule updating process. In some

applications, our algorithm can be used as preprocessor, which combined with other algorithms to

achieve better results.

3.4 Range Extension for TCAM-Based Packet Classification

82



3.4.1 One-Directional Range Extension Algorithm

In order to future reduce the TCAM consumption after redundancy removal proposed in previous

section, we first propose the one-directional range extension approach as following.

Based on the minimal range tree, there is no overlap and no gap between different rules,

and all new rules have been sorted. So we can extend the range towards the same direction and we

extend ranges towards “0” in this section. We extend the ranges because the minimum range does

not guarantee the minimum number of represented prefixes, which means extended large range

may consumes less TCAM entries than the original one, so we find the extended range which

consumes the minimum number of TCAM entries for each range. There will be overlap between

different rules after using range extension approach, which means there maybe multiple matches

for a single income packet, but the priority encoder will choose the correct result, and that’s why

we must extend the ranges towards the same direction. For example, a port range [15, 1023] will

be extended to [0, 1023], then the corresponding TCAM entries will be reduced from 10 to 1, and

the matching result will be unchanged.

A simple example is shown in Fig. 3.13. The original scheme with five rules is shown in

Fig. 3.13 (a), and the corresponding new scheme is shown in Fig. 3.13 (b). We can see that the

new rule set has different ranges and the entries requirement is reduced from 12 to 7, note that we

do not need to store the rule in TCAM. Actually, the range extension will introduce redundancy

to the rule sets, when a packet with a value “0010”, it matches r1 based on Fig. 3.13 (a), and it

will match r1, r2 and r3 in Fig. 3.13 (b), but the priority encoder will chose r1 as the final result,

which is the same as in Fig. 3.13 (a). This is also the reason we extend all rages towards the same

direction instead of two directions.
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Figure 3.13: TCAM entries left after different redundancy removal

So we use the following algorithm to find the minimum number of entries for each rule.

For each range, name the lower boundary Bl and the upper boundary Bu.

(1) Find the longest same prefixes of Bl and Bu, called Pm with length of m-bit.

(2) The remainder part of lower boundary and upper boundary is called Rl and Ru respec-

tively with length of n-bit, and m+ n = 16. It is obvious that the highest bit of Rl and Ru is 0 and

1 respectively.

(3) The extended prefix is Pm followed by a “0” and n− 1 “don’t-care” states.

(4) The remaining entries are generated from Pm followed by n zero to Bu.

The algorithm using C-code is shown in Fig. 3.14. For the worst case, the single interval

[1, 65534] requires only 16 TCAM entries in our algorithm instead of 30 entries, which reduces
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about 46.7%.

The priority encoder will choose the highest matching entry, which has the result bit of 1

from all the matching entries, which is the correct result.

In Fig. 3.15, a simple example with the range from to is shown to compare the ordinary

approach in Fig. 3.15 (a) and our approach in Fig. 3.15 (b). In Fig. 3.15 (a), the dash line is used to

separate the same prefix and remainder parts, and three TCAM entries are generated: E0, E1, and

E2. In Fig. 3.15 (b), only two TCAM entries are generated: E0 and E1, and the low boundary of

the range will be ignored, which can increase the processing speed.
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High Boundary: 11011011
Low Boundary: 11010011

      1101 1011
      1101 0011
E0=1101 10**

      1101 0111
      1101 0011
E1=1101 01**

      1101 0011
      1101 0011
E2=1101 0011

High Boundary: 11011011
Low Boundary: 11010011

      1101 1011
      **** ****
E0=1101 10**

      1101 0111
      **** ****
E1=1101 0***

(a) (b)

Figure 3.15: A simple example of TCAM entries generations using ordinary approach and our

approach

3.4.2 Bidirectional Range Extension Algorithm

After removing redundancies with the minimal range tree, there remains no overlap between dif-

ferent rules, and thus we can sort all the new rules by their ranges in a field. However, this does

not solve the range explosion problem; it only mitigates it. Still, a single range may need multiple

TCAM entries to represent itself. In the worst case, 2m − 2 entries are needed to store a single

m-bit range. For a 16-bit port range, it may need 30 TCAM entries. In order to further reduce the
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number of TCAM entries, we propose a bidirectional range extension, which only needs at most

two TCAM entries to represent a single range regardless of the length of the range.

Given a list of ranges, we assume that every value belongs to exactly one range, that a range

appearing earlier in the list has a higher priority than a range appearing later, and that the output

of range matching for each range is binary, either 1 or 0. Note that applying the minimal range

tree algorithm described in Sec. 3.3 and sorting resulting ranges by the boundary values yield a list

of ranges satisfying these assumptions. Assuming these, we take the following steps to reduce the

number of required TCAM entries.

We divide each range into two parts, each of which is represented as a single prefix. One

part is called an upward extension and the other a downward extension. It is demonstrated in

Fig. 3.16. Given a range, e.g., [100001, 110101], find a number N that belongs to the range and

has the most consecutive 0’s starting at the least significant bit (LSB). In our example, N will be

110000. Convert all the rightmost consecutive 0’s of N into “don’t care” bits. The result will be

the upward extension (master entry). If N is equal to the lower bound of the original range, this

range does not need a downward extension. Otherwise, the numeric prefix (excluding “don’t care”

bits) of the upward extension minus 1 (10 in our example), followed by the same number of “don’t

care” bits will be the downward extension (slave entry) as shown in Fig. 3.16(a). We use the set of

all upward extensions as the master set and the set of downward extensions as the slave set. Note

that the master set has the same number of entries as the number of ranges in the original list. On

the other hand, the slave set only contains entries for those ranges where the original range is not a

subset of the upward extension.
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High-boundary:  110101

Longest continuous zero
from least significant bit

110000

Master entry:
Slave entry:

11****
10****

111111

110101

110000
101111

100001
100000

Original
 Range

Master Entry

Slave Entry

...
...

...

Low-boundary :  100001

(a)                                                                (b)

Figure 3.16: An example of how to divide a range and generate master/slave entries

Below, We prove that the original range is a subset of the master and slave entries combined.

Proof. Assume that the range is [NL, NH]. Suppose NL =
∑n−1

i=0 bLi 2
i and NH =

∑n−1
i=0 bHi 2

i,

where bLi , b
H
i ∈ {0, 1}. Let N be the number in [NL, NH] that has the longest consecutive zeros

(n0 bits) starting at LSB. Thus, we have N = 2n0 +
∑n−1

i=n0+1 bi2
i, where bi ∈ {0, 1}. Then the

master entry is a range [N , Nmaster], where Nmaster = N +
∑n0−1

i=0 2i with at least consecutive

n0 + 1 1’s starting at LSB. Therefore, Nmaster + 1 = 2n0+1 +
∑n−1

i=n0+1 bi2
i, which has at least

n0 + 1 consecutive 0’s starting at LSB, or more 0’s than N , and thus should not be in [NL, NH].

Therefore,

NH ≤ Nmaster . (3.3)

Similarly, the slave entry, if we have one, is a range [Nslave, N − 1], where Nslave =

N − 2n0 =
∑n−1

i=n0+1 bi2
i. Note that Nslave has at least n0 + 1 consecutive 0’s starting at LSB, or
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more 0’s than N , and thus should not be in [NL, NH]. Therefore,

NL > Nslave . (3.4)

By Eq. 3.3 and Eq. 3.4, [NL, NH] is a subset of [Nslave, Nmaster].

Note that each of the master and slave entries can be represented by a single prefix, and

thus by a single TCAM entry.

A field of an incoming packet is compared against both the master and slave sets; each

set is stored in a separate TCAM. After knowing the decision from the master set, we need to

find out whether the matched entry has a corresponding entry in the slave set. If there is no such

entry, the decision in the master set becomes the final decision; otherwise, we need to consider the

corresponding slave entry. In the slave set, we obtain the decision and the low-boundary (NL) of

the corresponding entry. If both decisions, one from the master set and the other from the slave set,

are identical, that becomes the final decision; otherwise we compare the low-boundary from the

slave set with the input key. If the low-boundary is smaller than the key, we choose the decision

from the slave set; otherwise we choose the decision from the master set.

For the worst case, the single interval [1, 65534] requires only 2 TCAM entries in our

algorithm instead of 30 entries, which reduces about 93.3%.

3.4.3 Simulation Results

Because our main goal is reducing the TCAM entries consumption, so we first simulate the number

of TCAM entries can be reduced by the minimal range tree approach, and then simulate the number

of TCAM entries can be reduced by the range extension approach based on the new rules generated
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Table 3.5: Analysis of a single range in one-directional range extension
The Range

in the
field (bits)

Total Entries
used by

Our Algorithm

Total Entries
used by

Normal Algorithm

Entries Saved
(%)

1 1 1 0.00
2 8 10 20.00
3 48 65 26.15
4 256 355 27.89
5 1280 1831 30.09
6 6144 9103 32.51
7 28672 43935 34.74
8 131072 206911 36.65
9 589824 955007 38.24

10 2621440 4335871 39.54
11 11534336 19421695 40.61
12 50331648 86033407 41.50
13 218103808 377595903 42.24
14 939524096 1644400639 42.87
15 4026531840 7114039295 43.40
16 17179869184 30602706943 43.86

from minimal range tree. Finally, we simulate the area reduction can be achieved by our leading-

zero counter approach.

(1). Analysis of Range Extension

In this subsection we analyze the performance of our range extension algorithm on a single

range, such as the destination port range. First, we assume every possible range has the same

possibility 1 appear in the rule set, so the rule set contains ranges [0, 1], [0, 2], . . . , [0, 2n − 1],

[1, 2], [1, 3],. . . ,[2n − 2, 2n − 1] in average, where is the number of bits of this field. And the

simulation results are shown in Table 3.5.

The percentages of entries saved with different field widths are shown in Fig. 3.17. We can

see that the percentages of entries saved by our algorithm increase with the field width increase,
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and we can save 43.86% entries of a 16-bit port number, and for the rule sets we collected from

real world show that our algorithm can save 33.75% percent and 31.98% entries for the destination

port ranges and source port ranges respectively in average. For a single 16-bit port number, our

approach reduces the average number of entries from 14.25 by ordinary approach to 8.
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Figure 3.17: The entries saved with different field width

For both destination port and source port our algorithm can further save the entries because

of the multiplication has been replaced by addition. So for the situation shown in Table 3.5 our

algorithm can save 88.35% for the ranges in both Source port and Destination port in average, and

for the rule sets we collected from real world can save 28.8% based on our non-redundant rules.
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Table 3.6: Analysis of a single range in bidirectional range extension
Range length # of TCAM entries # of TCAM entries Saving

(bits) with range extension w/o range extension (%)
1 1 1 0.00
2 9 10 10.00
3 49 65 24.62
4 225 355 36.62
5 961 1831 47.52
6 3969 9103 56.40
7 16129 43935 63.29
8 65025 206911 68.57
9 261121 955007 72.66
10 1046529 4335871 75.86
11 4190209 19421695 78.43
12 16769025 86033407 80.51
13 67092481 377595903 82.23
14 268402689 1644400639 83.68
15 1073676289 7114039295 84.91
16 4294836225 30602706943 86.00

So combine the minimal range tree algorithm with the range extension algorithm, we can

reduce 79.28% (1-29.1% × 71.2%) entries for the real world rule sets we collected.

(2). Analysis of Bidirectional Range Extension

In this subsection we analyze the performance of the proposed bidirectional range extension

algorithm on a single range, such as the destination port range. Given the number of bits for the

field, we generate every possible range whose length is greater than 1 with the same probability.

Thus, the generated rule set may include ranges [0, 1], [0, 2], . . . , [0, 2n−1], [1, 2], [1, 3],. . . ,[2n−2,

2n − 1], where n is the number of bits of this field. And the simulation results are shown in Table

3.6.

The percentages of entries saved with different field widths are shown in Fig. 3.18. We

can see that the percentage of entries saved by our algorithm increases as the field width increases,
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and we can save 86.00% of TCAM entries of the 16-bit port number field. For the rule sets we

collected from [72], our algorithm can save 77.47% and 74.81% entries for the destination port field

and source port field, respectively, excluding non-range rules. For a single 16-bit port number, our

approach reduces the average number of entries from 14.25 to 2.
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Figure 3.18: The Entries saved with Different Field Width

For a rule with both destination port and source port ranges, our algorithm can further save

TCAM entries because of the multiplication effect. For the scenarios shown in Table 3.6, our
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algorithm saves 98.04% of TCAM entries for randomly generated rules with both destination port

and source port fields, and saves 82.78% for the ranges included in the real-world rule sets. The

difference between them is mainly caused by the fact that some popular ranges, such as [0, 1023],

can be represented by a single prefix in real-world rule sets. If we include rules without ranges in

the simulation, our algorithm can save 53.18% TCAM entries for the real-world rule sets.

From both redundancy removal using the Minimal Range Tree and the bidirectional range

extension, we can reduce 84.27% of entries for the real-world rule sets with additional circuits

such as two adders and a little latency.

3.4.4 Discussion

The one-directional range extension algorithm and bidirectional range extension algorithm have

some different properties. The one-directional range extension algorithm can only extend the

ranges toward the same direction to maintain the priority sequence of original rules. And the

bidirectional range extension algorithm first divides a range into two ranges, and then extends the

ranges upward and downward to make each extended range consumes at most one TCAM entry.

The result is that each range consumes at most two TCAM entries. Therefore, the bidirectional

range extension algorithm can reduce more TCAM entries, but the rule set cannot be stored in a

single TCAM, and it is more suitable to be pipelined in ASIC or FPGA. And the advantage of

the one-directional range extension algorithm over bidirectional range extension algorithm is that

the one-directional range extension approach does not need to modify the original TCAM-based

packet classification architecture because all the five fields can be stored in a single TCAM.
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3.4.5 Summary

In this section, we first propose a tree-based redundancy removal algorithm to remove redundant

rules and combine overlaying rules to build new rule sets in packet classifiers, and then propose

one-directional range extension algorithm and bidirectional range extension algorithm based on

the new rule set. This equivalent transformation can significantly reduce the number of TCAM en-

tries needed by a packet classifier and our experiments on random selected rules from real packet

classifiers. The final experiments show a reduction of 70.9% in the number of TCAM entries

after performing non-overlapping algorithm, Furthermore, 79.28% and 84.27% reductions in the

number of TCAM entries after performing the one-directional and bidirectional range extension al-

gorithms respectively. Furthermore, we replace priority encoding circuit with leading-zero counter

circuit and the simulation result shows about 53.8% area reduction in FPGA. In some applications,

our algorithm can be used as preprocessor, which combined with other algorithms to achieve better

results.

3.5 A Fast Update Scheme for TCAM-based Packet Classification

In this section, we propose a fast update scheme to meet the fast matching requirement with small

TCAM entries requirement. Our scheme eliminates the requirement of sorted rules in the TCAMs

by removing all the redundancy in the rule set to make sure at most one entry matches a incom-

ing packet, which allows out of order storage in the TCAMs. So updating a rule only affect the

corresponding TCAM entries, which reduce the update latency significantly. And our scheme also

reduces the number of TCAM entries used by a packet classifier.

Because TCAMs need to store a sorted list, so the slow update problem also happens in

TCAM-based routing lookup tables, and some algorithms are designed to optimize this prob-
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lem [75–77]. In [75], the authors claim they propose the first algorithmically algorithm to op-

timize update process on a TCAM, and most TCAM vendors live with an O(N) worst case update

process. They propose two algorithms to constrain the update process latency small in the worst

case. [76] proposes a TCAM-based fast update scheme for IPv6 routing lookup architecture, it

uses multiple TCAMs to store prefixes with different lengths and the TCAM space management

controls four storage space and two empty spaces. And the simulation shows good result on the

update process. In [77], the authors analyse the requirements for inserting a new entry into TCAM,

and design a TCAM management scheme based on the properties of prefixes to eliminate unnec-

essary sorting such as only the overlapping prefixes need sorting. All these approaches are capable

to deal with the destination IP address problem in routing lookup tables, but can not be used in

the much more complex five-tuple packet classifiers, which includes Protocol, Source IP address,

Destination IP address, Source port, and Destination port. Furthermore, the ranges in Source port

and Destination port usually cause the range expansion problem as we discussed, so the compres-

sion approaches should be used before stored in the TCAM, which makes the update optimization

more difficult. Our work first reduces the redundancy in the rule sets and then store the new rule

set in TCAMs out of order to reduce the TCAM entry shift frequency.

To the best of our knowledge, there is no previous algorithm to optimize the TCAM update

for packet classification. Ordinary TCAM chips need O(N) update time in the worst case, where

N is the depth of TCAM.

3.5.1 Proposed Algorithms for Fast Packet Classifiers

Our approach is based on the previous minimal range tree approach. In order to reduce the update

latency, we must reduce the number of TCAM writing. That because the writing time is usually

16 times of reading time for a TCAM entry. Furthermore, the bandwidth is limited especially for
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the wide TCAM entries. So our algorithm only modifies related TCAM entries based on the out of

order storage.

We use the same example to show our approach and we assume there are five original rules

in the rule set shown in Figure 3.19.
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int boundary_l;    //lower boundary
int boundary_u;   //upper boundary
int boundary_nl;  //new lower boundary
int prefix;            //the same prefix
int m;                  //length of the same prefix
int remainder;      //remainder part of upper boundary
int shift_cnt = 0;  //shift counter
int entry_cnt = 0; //entry counter
int entry[1024];    //TCAM entry
int mask[1024];    //corresponding mask

prefix = ~ (boundary_l ̂  boundary_u);
m = prefixlength(prefix);
prefix = prefix & (0xFFFF << (16 - m));
entry[0] = prefix;
mask[0] = 0xFFFF << (15 - m);
boundary_nl = prefix | (1 << 15 - m);
remainder = boundary_u & (0xFFFF >> m);
if(remainder%2 == 0) {
      entry[entry_cnt] = prefix | remainder;
      mask[entry_cnt ++] = 0xFFFF;
      remainder -= 1;
 }
 while(remainder != 0){
     if(remainder % 2 == 0) {
         entry[entry_cnt] = prefix | (remainder << shift_cnt);
         mask[entry_cnt ++] = 0xFFFF << shift_cnt;
         remainder -= 1;
     }
     else{ //the last bit is one
         do{
             remainder >>= 1;
             shift_cnt ++;
          } while(remainder % 2 != 0);
         entry[entry_cnt] = prefix | (remainder << shift_cnt);
         mask[entry_cnt ++] = 0xFFFF << shift_cnt;
     }
}

Figure 3.14: The C code of proposed entries generater
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r1 : F1 ∈ [0, 4] ∧ F2 ∈ [0, 9] → accept

r2 : F1 ∈ [0, 4] ∧ F2 ∈ [4, 9] → accept

r3 : F1 ∈ [5, 9] ∧ F2 ∈ [7, 9] → accept

r4 : F1 ∈ [5, 9] ∧ F2 ∈ [0, 2] → discard

r5 : F1 ∈ [0, 9] ∧ F2 ∈ [0, 9] → discard

Figure 3.19: Five rules in a simple packet classifier

Now we need to add three new rules: r6, r7 and r8, and all other old rules shift down

accordingly. The three new added rules are shown in Figure 3.20.

r6 : F1 ∈ [3, 4] ∧ F2 ∈ [4, 9] → discard

r7 : F1 ∈ [5, 7] ∧ F2 ∈ [8, 9] → accept

r8 : F1 ∈ [5, 9] ∧ F2 ∈ [3, 8] → accept

Figure 3.20: Three added rules

When adding a new rule, we compare the first field of the new rule with existing entries one

by one, and we only need to compare the next field if and only if there is overlapping between this

field and they also have different decisions. There are four situations for each field comparison,

which are shown in Figure 3.21.
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High boundary

Low boundary

(a)             (b)             (c)             (d)

Figure 3.21: Four overlapping situations in a single field

The high boundary and low boundary of the field in the existing field is shown in Fig-

ure 3.21 and the shadow areas are overlapped ranges with the adding rule. Note that we only need

to compare the rules with different decisions. So for the situation shown in Figure 3.21(a), just sim-

ply convert the decision and combine the new rule with nearby rules if they can. For the situation

shown in Figure 3.21(b), convert the existing high boundary with new low boundary minus one,

and generate two same new rules: one with the same range and the same decision with the new

range, and another replace the low boundary with new high boundary plus one. For the situation

shown in Figure 3.21(c), convert the existing high boundary with new low boundary minus one,

and generate a same new rule: one with the same range and the same decision with the new range,

then combine it with the following rule if they can. For the situation shown in Figure 3.21(d), con-

vert the existing low boundary with new high boundary plus one, and generate a same new rule:

one with the same range and the same decision with the new range, then combine it with the pre-
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r′1 : F1 ∈ [0, 2] → accept

r′2 : F1 ∈ [3, 4] ∧ F2 ∈ [0, 3] → discard

r′3 : F1 ∈ [3, 4] ∧ F2 ∈ [4, 9] → accept

r′4 : F1 ∈ [5, 9] ∧ F2 ∈ [0, 2] → discard

r′5 : F1 ∈ [5, 9] ∧ F2 ∈ [3, 9] → accept

Figure 3.22: New rules after adding three rules

vious rule if they can. During deal with one field, make sure other fields are unchanged. In order

to perform efficient new rule insertion, affected rules searching, we store the new non-redundancy

rules sorted, and this task can be done after the TCAM update. The psudocode of adding a new

rule is shown in the following algorithm.

So r6 separates r′1 into three parts, r7 does not affect the new rules. r8 separates r′2 into two

parts, and does not affect r′3. After adding the new rules, we combine two continuous rules with

the same decision and the same parent node. The final new rules are shown in Figure 3.22.

The removing rule scheme is usually more complex than the adding rule scheme, especially

for the compressed rule sets. In order to remove an old rule, we must keep the information of

every original rule. So our algorithm stores the original and new non-redundancy rule sets in

the following format: each new rule does not only store the final decision but also the previous

decisions which has been covered by other rules with higher priority. Each decision is presented

by a single bit, and an extra bit “1” indicates the beginning of the decision chain, and the least

significant bit . For example, “00101101” indicates the decision sequence is “0”, “1”, “1”, “0”

and “1”, and the recent final decision is “1”. When adding a new rule with a “discard” decision

to this decision chain, the new decision chain becomes “01011010”, and the final decision will be

changed. When removing an original rule corresponding to the third decision, then the decision
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chain becomes “00101010”, and the corresponding TCAMs do not need to be changed due to the

final decision is unchanged. The decision chain becomes “00010101” when removing an original

rule corresponding to the fifth (last) decision, and the corresponding TCAMs need to be changed.

If the second decision is the same as the first one, we can remove the second decision record,

because remove such rules does not affect the final decision, so the first decision and the second

decision must be different.

And each original rule records the new rule number and corresponding bit in the decision

chains. So the format is:

rule (new rule number, bit number)

When removing an original rule, just update the corresponding new rules. And we also

need to update the bit numbers in the original rules which have the same “new rule number”.

We take the same example in Fig. 3.19. In this example, we add the rules one by one, and

the final original rules are shown in Figure 3.23 and the new rules before combination are shown

in Figure 3.24.
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Algorithm 9 Pseudocode of adding a new rule
1: i = 0;
2: n = 0;
3: while no overlap between new rule and rule n do
4: n := n+ 1;
5: end while
6: while overlap between new rule and rule n do
7: for i := 2 to 5 do
8: if Overlap in Figure 3.21(b) then
9: insert two rules the same as rule n

10: set rule n’s high boundary to new rule’s low boundary minus one
11: set rule (n+ 1)’s low boundary to new rule’s low boundary
12: set rule (n+ 1)’s high boundary to new rule’s high boundary
13: set rule (n+ 2)’s low boundary to new rule’s high boundary plus one
14: n := n+ 1;
15: else
16: if Overlap in Figure 3.21(c) then
17: insert one rule the same as rule n
18: set rule n’s high boundary to new rule’s low boundary minus one
19: set rule (n+ 1)’s low boundary to new rule’s low boundary
20: set rule (n+ 1)’s high boundary to new rule’s high boundary
21: n := n+ 1;
22: else
23: if Overlap in Figure 3.21(d) then
24: insert one rule the same as rule n
25: set rule n’s high boundary to new rule’s low boundary
26: set rule (n+ 1)’s low boundary to new rule’s high boundary plus one
27: end if
28: end if
29: end if
30: end for
31: end while
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When we remove r2, the r′2 needs to be modified. So the decision chain becomes “00000101”,

and we can combine r′1 and r′2.

So our algorithm has three main components: original rule set, non-redundancy rule set

and TCAM entries. And the architecture is shown in Figure 3.25.

r (r',bit number)

original rules

r (r',bit number)

r' (decisin chain)

non-redundancy rules

r' (decisin chain)

entry 1

TCAMs

entry N

arbiter arbiter

sorted sorted unsorted

Figure 3.25: The architecture of our update algorithm

The last part configures the non-redundancy rules into TCAM entries, which has been well

studied.

In order to reduce the TCAM entries consumption and eliminate the memory access of

r1 : F1 ∈ [0, 4] ∧ F2 ∈ [0, 9] → accept(r′1, 0), (r
′
2, 0)

r2 : F1 ∈ [0, 4] ∧ F2 ∈ [4, 9] → accept(r′2, 1)

r3 : F1 ∈ [5, 9] ∧ F2 ∈ [7, 9] → accept(r′4, 0)

r4 : F1 ∈ [5, 9] ∧ F2 ∈ [0, 2] → discard

r5 : F1 ∈ [0, 9] ∧ F2 ∈ [0, 9] → discard

Figure 3.23: Original rules with removing information
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r′1 : F1 ∈ [0, 4] ∧ F2 ∈ [0, 3] → accept(00000101)

r′2 : F1 ∈ [0, 4] ∧ F2 ∈ [4, 9] → accept(00001011)

r′3 : F1 ∈ [5, 9] ∧ F2 ∈ [0, 6] → discard(00000010)

r′4 : F1 ∈ [5, 9] ∧ F2 ∈ [7, 9] → accept(00000101)

Figure 3.24: New rules before combination

final result fetching, we only need to configure rules with “discard” decision into the TCAM entries

because there is no overlap between rules with “accept” decision and rules with “discard” decision.

In order to enable the out of order storage in TCAMs, each rule records the TCAM entry

numbers it has been stored, and the arbiter allocates and recycles TCAM entries as a Memory

Manage Unite (MMU). In order to reduce the frequency of TCAM entry update, we use a valid

mask to recycle TCAM entries, just set the corresponding bit in valid mask to “0” when we need

to recycle a TCAM entry. So we only update TCAMs when we need to add or modify TCAM

entries.

3.5.2 Experimental Results

The cost of adding a rule vary dramatically on the property of the new rule, in the best case, there

is nothing needed to be done to the TCAM component. In this situation, the new added rule is

redundant and it does not change any decision. In the second best case, we only need to modify the

valid mask. In this situation, the new rule with an “accept” decision and no TCAM entries needs

to be modified. In the normal case, we just do as discussed above. In the worst case, when the new

rule with an “accept” decision, we need to modify two rules and remove some rules in the non-

redundancy rule set, and the modified rule’s corresponding TCAM entries need to be modified,

and the removed rules’ corresponding valid mask bits should be set; when the new rule with an
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Table 3.7: The number of entries need to be updated for a new rule with an “accept” decision
Low\High
boundary

Situation(a) Situation(b) Situation(c) Situation(d)

Situation(a) 14.25 0 0 14.25
Situation(b) 0 14.25 0 0
Situation(c) 14.25 0 14.25 29
Situation(d) 0 0 0 14.25

Table 3.8: The number of entries need to be updated for a new rule with an “discard” decision
Low\High
boundary

Situation(a) Situation(b) Situation(c) Situation(d)

Situation(a) 14.25 0 0 14.25
Situation(b) 0 14.25 0 0
Situation(c) 14.25 0 14.25 14.25
Situation(d) 0 0 0 14.25

“discard” decision, we need to modify one rule and remove some rules in the non-redundancy rule

set, and the the modified rule’s corresponding TCAM entries need to be modified, and the removed

rules’ corresponding valid mask bits should be set.

For a single range, such as the destination port range, we assume every possible range has

the same possibility 1 appear in the rule set, so the rule set contains ranges [0, 1], [0, 2], . . . , [0,

2n − 1], [1, 2], [1, 3],. . . ,[2n − 2, 2n − 1] in average, where is the number of bits of this field.

The simulation result shows 14.25 TCAM entries are needed to store a single port range. Because

we observe that packet classifiers typically have at most one port range in each rule, and rules that

specify two port ranges are very rare, so we assume that each rule in the non-redundancy rule set

consumes 14.25 TCAM entries in average. The update cost of a new rule with an “accept” decision

and an “discard” decision are shown in Table 3.7 and Table 3.8 respectively. We consider all the

situations in Fig. 3.21 for new rule’s low boundary and high boundary

So in average, 15.27 TCAM entries needed to be updated by adding a new rule, which does
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not include the best and near best cases. And this number does not increase with the number of

total TCAM entries used. For example, if we have 1024 TCAM entries, only 1.5% TCAM entries

needed to be updated if needed for a new rule.

And how to locate the affected rules in the non-redundancy rule set by the new rule is

simple, we just need to locate the two (or one) rules in the non-redundancy rule set corresponding

to the high boundary and low boundary of the new rule, and the timing complexity is O(N), where

N is the number of rules in the non-redundancy rule set, which is much smaller than the number of

TCAM entries used. The timing complexity of locating affected rules in the non-redundancy rule

set is the same when removing a rule.

The TCAM entry update process of removing a rule is much more difficult to be evaluated

than adding a rule due to the number of affected rules in the non-redundancy rule set is vary

dramatically, removing of old rules is more likely to affect more rules in the non-redundancy rule

set, then more TCAM entries are needed to be modified. In the best case, no TCAM entries and

no valid mask need to be modified. In this situation, the removing rule is a redundant rule, it has

the same decision with previous rule(s) or latter rule(s). In the second best case, no TCAM entries

need to be modified and we only need to set the valid mask. In this situation, the removing rule

must be with an “discard” decision, and all the corresponding rules in the non-redundancy rule set

must followed by rules with “accept” decision. In the worst case, M − 1 TCAM entries and valid

mask need to be modified, where M is the number of TCAM entries used after removing the rule.

In average, (M − 1)/2 TCAM entries need to be modified, fortunately, removing rules is rare.

Many algorithms have been proposed to reduce the TCAM entries consumption in packet

classifiers and usually can achieve 40% to 60% compression ratio. These approaches store sorted

compressed rules in TCAM entries, so the update process needs to modify almost all used TCAM

entries. We compare our algorithm with both original method without compression and a com-
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monly used compression approach which can achieve 60% compression ratio. The comparisons of

average numbers of updated TCAM entries when adding a new rule or removing a rule are shown

in Fig. 3.26 and Fig. 3.27. When removing a rule, our algorithm consumes approximate 29% and

36% TCAM entries update compared with original approach without compression and existing

compression approach. From both figures, we can see that our algorithm performs much better

than existing approaches during the update process.

Original approach

Existing Compression
approach

Our algorithm

Original TCAM
entries consumption

          1024              2048                   4096
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   TCAM entries
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     0 15.27 15.27 15.27

Figure 3.26: Comparisons of average numbers of updated TCAM entries when adding a new rule
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Figure 3.27: Comparisons of average numbers of updated TCAM entries when removing a rule

When adding a new rule, we need to find the two affected boundary rules in the non-

redundancy rule set, and we only need to modify the rules between them. The complexity of

the search is O(2logN ), where N is the number of rules in the non-redundancy rule set. And

the complexity of compression of the non-redundancy rule set is O(N), and the complexity of

converting them into TCAM entries really depends on the property of the new rule.

3.5.3 Summary

In this section, we propose a fast TCAM update scheme which enables out of order storage in the

TCAM and reduces the TCAM entries usage. In order to optimize the update process, we need to
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reduce both TCAM entries usage and TCAM entries shift during update process. So we remove the

redundancy in the rule set, which not only reduce the TCAM entries usage but also enable the out

of order storage in the TCAM due to at most one match during all the TCAM entries. According to

our experiments using randomly selected rules from actual packet classifiers, it shows a reduction

of 70.9% in the number of TCAM entries after removing the redundancy in the rule set, and only

15.27 TCAM entries are needed to be updated by adding a new rule in average, and our algorithm

consumes approximately 29% and 36% TCAM entries update of original method and existing

compression method when removing a rule.

3.6 Comparator CAMs for Packet Classification

Approaches we proposed above do not modify the TCAM entry circuit itself to achieve

TCAM consumption reduction. In this section, we propose Comparator Content Addressable

Memory (CCAM), which is modified TCAM and can store ranges in CCAM entries besides ternary

state bits. In our algorithm, the hardware can be configured to store all kinds of port number ranges.

If a rule contains any two-direction ranges, only two CCAM entries are needed to store it, other-

wise, each rule can be stored in a single CCAM entry. Our simulations show that CCAMs consume

about 27.6% entries compared with original TCAMs. Considering the transistor consumption, our

approach saved about 66.4% transistors. Furthermore, the update process of CCAMs can be as fast

as that of TCAMs usage without any compressions.

3.6.1 Proposed Comparator CAMs Architecture
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In order to reduce the TCAM entry consumption caused by the range expansion problem

and avoid the compression of rules for fast update, we propose the Comparator Content Address-

able Memory (CCAM) architecture. We first analyze ranges in the port number fields in rules,

and group them into four categories. Based on this categorization, we propose a CAM entry con-

figurable to accommodate all four kinds of ranges. We first define two kinds of ranges in port

numbers:

• Bounded range: a range covers at least two port numbers, but it does not cover port number

0 or port number 65535. For example, range “700 : 900.”

• Half-bounded range: a range covers at least two port numbers, and it covers either port

number 0 or port number 65535. For example, range “< 1024.”

If a rule contains any bounded range, two CCAM entries are needed to store it; otherwise,

the rule can be stored in a single CCAM entry. In order to increase the throughput of packet

classification, we pipeline the whole procedure into four stages.

Unlike previous approaches designed for ranges, our approach embeds the range compara-

tors within CAM entries and provides an efficient and flexible circuit design to store different types

of ranges. In addition, our approach does not require any rule set compressions before storing them,

which is crucial for fast rule set updates.

the Comparator Content Addressable Memory (CCAM) architecture. It adds the compar-

ison fields to TCAMs to store port ranges. We store Protocol, Source IP, and Destination IP in

original TCAM cells, and store Source Port and Destination Port in CCAM cells. In the remainder

of the paper, we refer to this combination of TCAM and CCAM cells as a combined CCAM entry.

Every new combined CCAM entry gets the match result “1” if and only if the Protocol,

Source IP Address, and Destination IP Address fields of an input key match the corresponding
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fields in TCAM cells, and both the Source Port and Destination Port fields of the input key match

the corresponding ranges in CCAM cells. We use pipelining to increase the throughput and clock

speed. In our pipelined architecture, the first stage processes 72 bits (Protocol, Source IP Ad-

dress, and Destination IP Address) with the ordinary TCAM circuit, the second stage compares the

Source Port, and finally the third stage compares the Destination Port.

Below we discuss the comparison parts. The proposed comparator logic implements a “≥”

comparison as shown in Figure 3.28.

XOR
Cell 14

. . .

. . .

XOR
Cell 15

S15

XOR
Cell 13

XOR
Cell 1

XOR
Cell 0

P14 P13 P1 P0

S14 S13 S1

P2

S0

. . .
R15

R14 R13 R1R2
R0

Figure 3.28: Proposed range comparator of CCAM architectures

In a range comparison, Si denotes the ith stored bit and Qi the ith query bit. The logic
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functions in Figure 3.28 are equivalent to the following operations:

P15 = S15 ⊕Q15

Pi = Si ⊕Qi ∨ Pi+1 0 ≤ i ≤ 14

R15 = P15 ∧ S15

Ri = Ri+1 ∨ (¬Pi+1 ∧ Pi ∧ Si) 1 ≤ i ≤ 14

R0 = R1 ∨ (¬P1 ∧ P0 ∧ S0) ∨ ¬P0

where Pi represents whether there is a different value pair of stored bit and query bit in the ith

bit or higher bit. And Ri represents whether current query data is larger or equal to current stored

date regardless of the values in bits smaller than ith bit, then R0 indicates the final result of the

comparison in this entry.

A range with both lower and upper bounds needs two CCAM entries to store them sepa-

rately. That means each rule should consume two CCAM entries because we do not know which

rules contain ranges before storing them. That may cause a lot of waste because many of the rules

can be stored in a single entry without any range expansion. Hence, we design our logic to be

more programmable to reduce such waste. First, we divide port ranges into four categories: exact

numbers, wild-cards (*), half-bounded ranges, and bounded ranges. Note that only those in the

last category need two CCAM entries. Then, we make the CCAM entries configurable so that they

can perform the “=”, “≥”, and “≤” operations. In addition, each CCAM entry has three different

usages: as an independent entry for a half-bounded range, and a lower bound and an upper bound

of a bounded range. Figure 3.28 shows the “≥” operation, and the “=” and “≤” operations can be
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implemented by modifying R0 as follows:

R0 = ¬P0 for =

R0 = ¬(R1 ∨ (¬P1 ∧ P0 ∧ S0)) for ≤ .

Therefore, only a small part of the logic circuit needs to be configurable. To make two

adjacent CCAM entries a pair to store a bounded range, we configure the usage type of CCAM

entries to be a lower bound and a upper bound. Usually, the rules listed above in a rule set have

higher priority than the rules listed below. Given multiple matching entries, i.e., those with all

1’s as the results, the priority encoder chooses the matching entry with the highest priority. When

storing a bounded range, we store the upper bound in the CCAM entry above the one with the

lower bound, and set the bounded range hint bit in the upper entry.

To implement this, every 16-bit comparison logic requires three extra bits: T , the hint bit,

indicating whether the current and next CCAM entries contain a bounded range, and C indicating

the operation type, 00 for “=”, 10 for “≥”, and 01 for “≤”. The logic circuit of the kth CCAM

entry output is shown in Figure 3.29.
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Figure 3.29: The output logic of CCAM entries

In Figure 3.29, R(k) is the final output of the kth entry. And we can see that the final

result is affected by not only the upper CCAM entry (T (k + 1)) but also the lower CCAM entry

(R′(k − 1)). If the upper entry is the upper bound of a bounded range (T (k + 1) = 1), the output

of this CCAM entry must be set to 0 to ensures at most one “1” output for each rule. If the current

CCAM entry is the upper bound of a bounded range (T (k) = 1), the range matches only when

both current and the lower entries match the query key. R′(k) is the inverse of the current CCAM

entry match result.

Then, among all outputs with R = 1, the priority encoder chooses the highest-priority
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matching entry, and fetches the corresponding action defined in the packet classifier.

In order to increase the throughput of packet classification, we pipeline this process as

shown in Figure 3.30.

TCAM
 (Protocol, SIP, DIP)

72-bit

CCAM1
 (Source Port)

16-bit

Header

Stage 1

Stage 2

Stage 3
CCAM2

(Destination Port)
16-bit

Priority Encoder Stage 4

Figure 3.30: Pipelined Architecture of separated fields
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3.6.2 Simulation Results

First, we compare the number of transistors consumed by an ordinary TCAM entry with that by

a proposed CCAM entry. In our approach, each CCAM cell needs 24 transistors except for the

left-most bit, which needs 18 transistors. and a TCAM cell needs 16 transistors. Each output logic

requires 60 additional transistors in CCAMs. The details are shown in Table 3.9.

Table 3.9: Number of transistors used by a TCAM entry and a CCAM entry
Type Ordinary Entry Proposed Entry

TCAM Cell 16× 104 16× 72
CCAM Cell 0 24× 30 + 18× 2
Output Logic 0 60× 2

Total 1664 2028

Although a CCAM entry consumes 1.22 times as many transistors as a TCAM entry does,

the overall number of transistors may be different because the CCAM-based approach consumes

fewer entries than TCAM-based approaches because of TCAM-based ones’ range expansion prob-

lem.

To compare the number of CAM entires between our approach and TCAM-based ones,

we used rules generated with ClassBench [78], a widely-used packet classification benchmark,

and rules from real-world rule sets. We randomly selected one thousand rules among them, and

computed the number of CAM entries used by each approach. The simulation results are shown in

Table 3.10.

From the numbers in Table 3.10, we can see that our approach consumes about 27.6%

entries of what the TCAM-based approach does. Combining this with the results in Table 3.9, we

find that our approach saves 66.4% of transistors.

Compared with other approaches also modifying TCAM entries, our approach consumes

fewer entries and achieves lower latency. For example, DRES requires 1.23 entries per rule, while
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Table 3.10: Entry consumption by TCAM and CCAM
Range Type Percentage (%) TCAM Entry # CCAM Entry #

Exact number 32.5 325 325
Wild-Card 48.4 484 484

Half-bounded 13.8 1623 138
Bounded 5.3 1389 106

Total 100 3821 1053

our approach requires only 1.05 entries per rule. The simulation on a Xilinx Virtex-5 FPGA shows

that the clock speed can also increase by forty percent.

RMB is another hardware-based approach, where ranges in Port number fields are stored

in Range Match Blocks and compared, while other fields are compared using an ordinary TCAM

chip. The results are combined together to get the final verdict. However, each cell in RMB needs

two comparison logics for every range while our approach needs only one for half-bounded ranges.

Our approach also simplifies the logic further with a minimal configurable part. Moreover, since

our approach matches all the five fields simultaneously in CCAM entries, it eliminates the latency

between chips. Besides, our approach uses only one priority encoder instead of two with RMB.

Software-based approaches typically achieve a 40% to 60% compression ratio, which is

close to what our approach does. However, the compression itself is complex and time-consuming,

making the update process slow.

3.6.3 Summary

In this paper, we proposed energy efficient Comparator Content Addressable Memories (CCAMs)

to solve the range expansion problem and reduce the rule set update delay. Our approach can

store ranges in CCAM entries besides ternary state bits. In our algorithm, the hardware can be

configured to store all kinds of port ranges. If a rule contains any bounded range, two CCAM
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entries are needed to store it; otherwise, the rule can be stored in a single CCAM entry. Simulations

show that CCAMs consume about 27.6% of what the original TCAMs do in terms of the number

of entries. As for transistor consumption, our approach saves about 66.4% of transistors compared

with TCAM-based approaches, and this reduces power consumption significantly. Furthermore,

the rule update process with CCAMs is comparable to that with TCAMs without any rule set

compression. Compared with the existing approaches optimized for ranges, our approach performs

better because of its fast update, compact circuit logic, and pipelined architecture.
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CHAPTER four

DEEP PACKET INSPECTION

4.1 Introduction

Many security applications in today’s networks are based on deep packet inspection. These appli-

cations, such as traffic monitoring, layer-7, and network intrusion detection compare the headers

and payloads of data packets to predefined databases describing potential attack traffic. These

predefined databases are populated by numerous string patterns that, when found, imply that the

packet under question is possibly malicious. The inspection is performed using exact matching

algorithms. However, the number of patterns has continued to grow in order to describe more

and more payloads. For example, Snort [79], an open-source Network Intrusion Detection Sys-

tem (NIDS), has seen its rule set double in size in the last six years from roughly 3,000 rules to

more than 5,000. On a similar note, the signature database for the open source ClamAV anti-

virus software had about 27,000 patterns in 2010 [80]. Further, the volume of network traffic is

continuing to increase such that open-source NIDSs like Bro [81] and Snort [79] expend all the

resources, both CPU time and memory, and halt immediately when they are deployed under high-

speed network environments [82]. Thus, efficiency in matching, especially for large pattern sets,

has become a major concern. These regular expressions are also used in commercial firewalls and

other networking equipments including Cisco’s IOS [83].

The most popular method to implement pattern matching is to use finite automata [84–87].

A finite automaton is built as a composite of all the patterns in the rule set and is run with the packet

payload as input. The exact automaton used is dependent on implementation considerations and
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may either be Deterministic Finite Automata (DFA) or Non-deterministic Finite Automata (NFA).

NFA offer the best efficiency in terms of memory required to store the automaton, however NFA

can have multiple transitions per state and thus may need to maintain multiple states as the au-

tomaton is traversed resulting in less efficiency in throughput. This makes NFA more suitable for

Application-Specific Integrated Circuit (ASIC) or Field-Programmable Gate Array (FPGA) imple-

mentations which can provide wide bandwidth but small amount of on-chip memory. Conversely,

DFA tend to be quite large in terms of memory, but only have a single transition between states.

Therefore, DFA are more suitable for general-purpose processors and network processors.

The remainder of the chapter is organized as follows. In Section 4.2, related work in regular

expression matching is presented. Section 4.3.1 describes our hierarchical NFA-based pattern

matching, Section 4.4.2 and Section 4.5.2 describe our hybrid regular expression matching for

deep packet inspection on multi-core architecture and DFA-based regular expression matching on

compressed traffic respectively.

4.2 Related Work

Nowadays, regular expressions are the language of choice in NIDS (network intrusion detection

systems) from commercial vendors such as 3Com’s TippingPoint X505 [88] and Cisco IPS [83], as

well as open source NIDS such as Bro [81] and Snort [89]. Those regular expressions are typically

implemented using finite automata, either NFA or DFA. Because a DFA requires at most one state

transition per input character, it is faster than a NFA in many cases, and thus has been a preferred

way to implement regular expression matching. For the thousands of complex regular expressions

as found in Snort’s rule sets, the DFA implementation consumes prohibitive amount of memory.

We divided the approaches to regular expression matching into the following three categories:
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ASIC-based Several commercial network equipment vendors, including 3Com [88] and Cisco [83]

have supplied their own NIDS and a number of smaller players have introduced pattern matching

ASICs which go inside these NIDS. ReCPU is a fast ASIC-based regular expression matching

approach [84]. In fact, many have argued that peep packet inspection should happen in ASICs.

Developing ASICs for NIDS, however, has several disadvantages; it requires a large investment

and a long development cycle, and it hard to upgrade.

FPGA-based There is a body of literature advocating FPGA-based pattern matching [90–99]. It

can provide not only fast matching cycle but also parallel matching operations. NFAs are well-

suited for FPGA-based matching because of its wide bandwidth requirement and low memory

consumption. Pre-decoded CAMs [97] and Bitwise optimized CAM [98] are FPGA-based ar-

chitectures that use character pre-decoding coupled with CAM-based patterns to accelerate the

matching speed. This type of approaches, however, is not flexible enough for general-purpose

regular expression matching. Besides, it is still expensive and power-consuming.

Software-based The software-based approaches are also called general-purpose approaches, and

they are based on general-purpose processors or network processors [85–87, 100–107]. Our work

falls into this category. DFAs are more popular in software-based approaches because they only

need one state transition per input character, which causes at most one memory access for each

character input. Therefore, they are often desirable at high network link rates. However, As we

mentioned earlier, the practical use of DFAs is limited because of their excessive memory usage.

In order to mitigate this issue, many methods have been proposed [101–105, 108]. They develop

several memory compression techniques for DFAs, focusing on reducing the number of transitions

between states, and in some cases, 99% transitions can be eliminated. Although this can reduce
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the memory consumption significantly, unfortunately it is hard to reduce the number of states in

DFAs with complex regular expressions.

Ternary Content Addressable Memory (TCAM) based TCAM has become a popular ap-

proach as exhibited in recent research like [80, 109, 110]. Both [109] and [110] used TCAMs

to store the transition rule table but even with transition compression approaches they still con-

sumed a large amount of TCAM and SRAM resources. The research in [80] stored states instead

of transitions in TCAMs to reduce the usage of both TCAM and SRAM, and their simulation

results showed a significant improvement because there are usually many fewer states than tran-

sitions in a DFA. Unfortunately, the computational complexity of the approach is very high. We

note that the high speed of TCAM is often offset by not only the cost of the TCAM, but also a

slow clock speed and slow memory accesses. Thus, rather than using TCAM, we see BCAM as an

attractive alternative to not only reduce cost, but to increase the clock speed. Finally, our approach

eliminates the usage of SRAM and thus removes that as a factor in pattern matching.

Actually, all the previous works focus on how to use NFA/DFA more efficiently, without

considering compressed traffic. Bremler-Barr and Koral focuses on this issue but only considers

simple fixed-length pattern matching [111]. We further explore efficient algorithms to perform

deep packet inspection on compressed traffic based on regular expressions, which are more com-

plex and commonly used in today’s Intrusion Detection Systems.

4.3 Hierarchical NFA-Based Pattern Matching for Deep Packet Inspection

Many security applications in today’s networks are based on deep packet inspection, ex-

amining not only the headers but also the payloads of data packets. Traffic monitoring, layer-7
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filtering, and network intrusion detection classify traffic by identifying predefined patterns within

packet payloads that are specific to certain classes of attacks. Pattern matching is the primary task

in deep packet inspection. The most common and efficient implementations of pattern matching

are based on Non-deterministic Finite Automata (NFA) and Deterministic Finite Automata (DFA).

In this section, we propose an efficient NFA-based pattern matching in Binary Content Addressable

Memory (BCAM) which uses multi-bit, binary search words. Our approach can process multiple

characters at a time using limited BCAM entries, providing for greater parallelism and potential

scalability through examining larger numbers of characters per cycle. Furthermore, we build a

hierarchical pattern matching architecture which filters most of the packets from full evaluation

using a small number of BCAMs and leaving only a minor percentage of packets to be checked in

the full pattern matching process. Such filtering greatly improves throughput for expected traffic

as demonstrated in our simulations. We evaluate our algorithm using patterns provided by Snort,

a popular open-source intrusion detection system. The simulation results show that our approach

outperforms existing TCAM-based and software-based approaches.

4.3.1 Proposed Approach

Ternary Content Addressable Memories (TCAM) have been widely adopted by network applica-

tions, such as routers, to improve the speed of the longest prefix matching. Deep packet inspection

systems have begun to use TCAM to perform pattern matching. TCAM matching is extremely fast

because it allows the input key to compare against all patterns in parallel and return a result in a

single clock cycle. Unfortunately, TCAM suffer from high circuit complexity which results in high

cost and increased power consumption. The increase in power consumption has become a major

concern as the cost of electricity continues to rise. Thus, Binary Content Addressable Memories

(BCAM) are offered as an alternative to TCAM solutions. BCAM require fewer transistors and
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exhibit less complex circuitry which translates into reduced power consumption. This reduction,

however, comes at the cost of the “don’t care” state that is present in TCAM that allows a compar-

ison to match either a 0 or a 1. The absence of this state is problematic in pattern matching as the

“don’t care” state is common to many patterns.

Our approach is threefold. First, we reduce the complexity of each storage cell so that

BCAM may be employed rather than TCAM. Secondly, we utilize NFA rather than DFA in order

to reduce the number of required entries stored in the BCAM. Finally, we implement a scalable,

parallel processing architecture in order to achieve high throughput. Under our approach, it be-

comes possible to implement high throughput pattern matching in BCAM and garner the benefits

of BCAM’s reduced cost and power consumption.
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Figure 4.1: NFA in (a) and DFA in (b) for the patterns {EBC,EBBC,BA,BBA,BCD,CF}. Failure
and restartable transitions are omitted for clarity in (b)

(1). Proposed Pattern Matching
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As stated earlier, most pattern matching solutions utilize NFA or DFA. We observe that for

any single pattern an input string must match every character in that pattern in order to register a

match. From this, we conclude that at any point in matching the current match state is based on

the previous match state and the current matching result. Thus, it is possible to chain matching

decisions and that an input string will not match unless the chain is followed to the final state. To

illustrate we employ the same example finite automata as in [80] utilizing a simple pattern set of:

CF, BCD, BBA, BA, EBBC, and EBC. The corresponding NFA and DFA for this set are shown

in Figure 4.1. We note that NFA use ε transitions to represent the possibility of moving to a new

state without consuming any input character. This can result in multiple active states (concurrent

traversals of the NFA) while processing an input string. It also means that if an input string fails

to match, then that active state halts. Thus, if the chain of matching characters is broken, then

traversal is restarted at the beginning of the NFA. We utilize this aspect, and the following two

properties to simplify our matching circuitry:

• Only the start state of the NFA has incoming or outgoing ε transitions.

• Each state of the NFA has only one incoming transition.

Figure 4.1(a) illustrates an NFA created under the above constraints. The DFA is shown to

the right in Figure 4.1(b), and most of the transitions are omitted for clarity here. We can see that

both the NFA and DFA have 14 states but the DFA has many more transitions. Furthermore, every

state in the NFA has only one incoming transition except for the initial state.

The final piece to our approach concerns BCAM memory. A single BCAM entry may

store some number of BCAM cells each containing a 0 or 1. A TCAM entry, however, contains a

third, “don’t care,” state that matches both 0 and 1. To support this a TCAM entry stores content

as a (value, mask) pair, where value and mask are W-bit numbers, requiring W storage cells for
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the value and an additional W storage cells for the mask. Moreover, the matching circuitry is

more complicated than that of a BCAM entry. A typical TCAM cell requires two SRAM cells

plus circuitry for the matching logic. Each SRAM cell typically requires six transistors and the

matching logic requires 4 transistors. Thus, a single TCAM cell is 2.7 times larger than the typical

SRAM cell, though different techniques used by CAM manufactures can result in different sizes

for SRAM cells [31]. Conversely, a single BCAM cell requires only a single SRAM cell and simple

matching logic. As a result, we assume that the number of transistors and power consumption of a

TCAM cell are roughly two times that of a BCAM cell.

The basic logic of the proposed approach is shown in Figure 4.2. We assume there are n

patterns and the sum of all their lengths, in characters, is N . Each BCAM entry stores the active

state of the previous BCAM (labeled Vi in Figure 4.2) as well as the next corresponding character

from the composite of all patterns (labeled Ci Figure 4.2). For the first BCAM entry, the active state

will always match due to the epsilon transition in the NFA. From the second BCAM entry on, the

active states depend on the matching result of the previous BCAM entry from the previous clock

cycle combined with the matching result of the current BCAM entry in the current clock cycle. A

complete match occurs after the final state for a pattern has successfully matched, implying that all

previous states also matched as illustrated by r1 in Figure 4.2.

The real architecture of the proposed approach is shown in Figure 4.3. There are still n

patterns and the sum of all their lengths, in characters, is N . Each BCAM entry stores a character

from the patterns, in sequence, so that all the BCAM entries are 8 bits. Registers here are used

to record the current matching result for usage in the next clock cycle, and the “AND” logics are

used to determine when both previous and current matches happen. For example, imagine that an

incoming packet matches the first pattern r1. In this example, C0 matches in the first clock cycle

and a “1” is stored in the first register. In the next clock cycle, a logical “AND” is performed
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on the result from the first clock cycle, stored in the first register, with the output of C1. That

result is stored in the second register. This continues with the result of each stage stored in its

respective register. At C3, the final character for r1 is matched, and since all successive characters

have matched, the last register (the third in this case) contains a “1” so when a logical “AND” is

applied to the match result for C3 and the previous register a “1” is returned indicating a complete

match to r1. Further, since the last stage has matched a complete pattern there is no need to store

the result in a register. Likewise, a failure to match at any stage will of course make matching the

complete pattern impossible.

V3

V2

V1

...

BCAM

Key

Vi

V0

VN-1

VN-2

VN-3

VN-4

1

1

r1

rn

...

CN-1

CN-2

CN-3

CN-4

C1

C0

C2

C3

Figure 4.2: The logic of proposed approach based on BCAM

In order to increase the throughput, we designed our approach to process multiple char-

acters at a time. In this section we process four characters at a time though the architecture can

easily be extended to process more characters at a time. The architecture of the example is shown

in Figure 4.4. In this example, we consider the pattern “ABCD” and the input string “CABCDFE”.
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Figure 4.3: The main architecture of proposed approach based on BCAM

In order to process four characters in a single clock cycle, we need to consider four beginning

points in the incoming string, so we need four sets of patterns for “ABCD” to be stored in the

BCAM entries. The dashed lines in Figure 4.4 show the comparison relationships between incom-

ing characters and BCAM entries. The four “AND” logics mean the incoming string must match

all characters in the pattern in a single clock cycle, and the “OR” logic means the pattern can ap-

pear anywhere in the incoming string. The incoming string must shift four characters every time,

but all seven characters in the incoming string must be examined. So in the example, the second set

of BCAMs store pattern “ABCD” and match the incoming string. Further, the four BCAM entries

in the same column in Figure 4.4 can be combined together to save hardware logic as they store

the same content. The combined architecture is shown in Figure 4.5 illustrating how the BCAM

entries with the same content can share data storage and utilize their own comparator logic.
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Figure 4.4: Proposed parallel processing unit for pattern matching

(2). Hierarchical Pattern Matching

In our simulations, we observe that most of the packets do not contain any matching string

patterns nor do they contain any matching substrings of the rule set. Furthermore, many of the

string patterns in the rule set contain common substrings. Based on these observations, we propose

a hierarchical architecture and use a substring set of the rule set patterns as a pre-filter of the string

pattern matching. We select all two-character substrings within all the patterns and store multi-

ple sets of the whole substrings in BCAMs of 16-bit length. Multiple packets can be checked in

parallel against the substrings, the output is “1” if current continuous two characters in the packet

payload matches any substring and “0” if no match found, only matched substrings in the packet

payload need to be checked against string patterns and the whole packet payload doesn’t need to

be checked against string patterns if there is no match in the first stage. Another benefit of this

approach is that if the length of continuous “1” in the output is n, we only need to check the

patterns of length no shorter than n, then we can divide patterns into multiple blocks to perform

pattern matching in parallel. However, this could result in poor load balancing and the short pat-

tern matching may become the bottleneck because the short patterns will be checked more often.
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Figure 4.5: Combine multiple BCAM entries with the same content

Fortunately, we can build multiple short pattern blocks to work in parallel because they consume

far fewer resources than long patterns. The hierarchical architecture is shown in Figure 4.6. We

use 32 sets of substrings in the first stage in this section.

4.3.2 Evaluation

To evaluate the proposed approach, we collected the pattern sets from Snort [79] and ClamAV [112]

which are the same as used in [80] for comparison. We build a single NFA, for each set, with

only prefix merging because we need to make sure each state in the NFA only has one incoming

transition; excepting the beginning state. We implement the NFA in NetFPGA [34], which is a

network hardware accelerator that augments network functions of a standard computer. We use the

Xilinx Virtex-II Pro FPGA on the NetFPGA and implement our algorithm on it for the simulation.

The NetFPGA card has four Gigabit Ethernet ports, SRAM and DRAM chips on board, and the

NetFPGA communicates with the host PC through a Peripheral Communication Interconnect (PCI)
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Figure 4.6: Proposed hierarchical pattern matching architecture

Table 4.1: Statistics of the patterns collected from Snort and ClamAV
Pattern Set Approaches Patterns States in NFA States in DFA

Snort In [80] 6,423 - 75,256
Snort Our approach 6,423 75,256 -

ClamAV In [80] 26,987 - 1,565,874
ClamAV Our approach 26,987 1,565,874 -

bus. All the BCAM entries are 8-bit wide and each character is stored in a BCAM entry. So the

number of BCAM entries used is the number of states in the NFA, as well as total number of

characters in patterns when only counting common prefixes once.

We compare our approach with the latest and the most efficient TCAM-based pattern

matching approach “CompactDFA” [80] to the best of our knowledge. The rule sets collected

from Snort and ClamAV are shown in Table 4.1, and simulation results are shown in Table 4.2.

From the simulation results we can see our algorithm outperforms “CompactDFA” pro-

posed in [80] in almost all aspects. For power consumption by CAM, as we mentioned the power
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Table 4.2: Comparison between CompactDFA and Hierarchical NFA
Items Pattern set CompactDFA Hierarchical NFA

CAM type Both TCAM BCAM
CAM length Both 36-bits 8-bit

CAM Size (MB) Snort 0.36 0.08
CAM Size (MB) ClamAV 8.18 1.57

SRAM Size (MB) Snort 0.32 0.00
SRAM Size (MB) ClamAV 7.37 0.00

Need memory access Both Yes No
Construction speed Both Slow Fast

Pattern update speed Both Slow Fast
Platform Both TCAM chip FPGA

consumption of a TCAM cell is two times as large as a BCAM cell, our approach consumes 11.1%

and 9.6% power of “CompactDFA” based on the Snort and ClamAV pattern sets respectively.

However, the disadvantage of our approach is that it needs to be implemented on a configurable

hardware platform such as FPGA. Fortunately, our approach is small enough to be configured into

FPGAs. Further, checking four characters in a single clock cycle, allows our approach to easily

achieve a throughput of 16 Gbps.

Increasing the number of parallel processing units will increase the CAM entry consump-

tion. We illustrate how our approach scales in this increase as opposed to other approaches in

Figure 4.7. As is evident, our approach scales better due to resource sharing by parallel processing

units.

For the hierarchical approach, we focus on the first stage of substring matching. We se-

lected 5,261 unique patterns with length of at least two characters from the Snort rule set as pub-

lished by the Sourcefire Vulnerability Research team [113] for December 20, 2010. From these

5,261 patterns we identified only 333 unique substrings with length of two characters. Thus, a

single substring set for this rule set would consume only 666-bytes of BCAM, (at two bytes per
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Figure 4.7: CAM entry consumption increases as the number of parallel processing units increases.

substring pattern) which is less than 1% of the total memory the BCAM consumes for the pro-

posed pattern matching approach. We can extrapolate from these results and estimate that 32

such sets would only consume about 21% more memory than the approach as outlined in this

section. This implies that such an approach is suitable for parallel processing and further implies

that the substring matching is a valid pre-filter. In our simulation, we collected a total of 5,203

packets from attack exercises performed locally which exhibited several attacks against networks,

primarily cross-site scripting attacks. In the substring pre-filtering stage, there are a total of 51,635

matched substrings and 1,887,078 unmatched substrings in all the packets’ payload, which means

only 2.7% of the aggregate packet payload matched any substring. More interestingly, the few

matches that occurred typically happened in the same packets. In other words, only a few packets

matched and those that did matched multiple times. About 90.3% of the packets contain no sub-

string matches and do not need further checking. That means the majority of the traffic will not
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require further processing than the pre-filter. With the clock speed of 500 MHz and an optimal

balance of output from the pre-filter to pattern matching then our approach can achieve up to 128

Gbps throughput.

4.3.3 Summary

In this section, we studied more effective techniques for pattern matching in deep packet inspec-

tion. We built an efficient NFA generator based on BCAMs, which consumes fewer transistors and

which has reduced latency because of shorter BCAM entries used in our approach. As a result, our

approach demonstrates improved matching speed for every character while reducing the amount of

SRAM resources needed. Also, our approach can process multiple characters at a time while using

only a limited number of BCAM entries, which improves potential scalability scalable. Further-

more, we built a hierarchical pattern matching architecture which serves to exclude most packets

from full pattern matching leaving only a small percentage to be fully checked in the pattern match-

ing process. This hierarchical pattern matching improves throughput for the average case. In all,

our evaluation demonstrates that our approach outperforms existing similar approaches.

Our approach here may offer a key lever for improving the throughput of regular expression

matching through extracting exact-match strings from the regular expressions and preprocessing

the matching dependent on those strings.

4.4 Hybrid Regular Expression Matching for Deep Packet Inspection on Multi-core Archi-

tecture

Many network security applications in today’s networks are based on deep packet inspec-

tion, checking not only the header portion but also the payload portion of a packet. For example,
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traffic monitoring, layer-7 filtering, and network intrusion detection all require an accurate analy-

sis of packet content in search for predefined patterns to identify specific classes of applications,

viruses, attack signatures, etc. Regular expressions are often used to represent such patterns. They

are implemented using finite automata, which take the payload of a packet as an input string. How-

ever, existing approaches, both non-deterministic finite automata (NFA) and deterministic finite

automata (DFA), have limitations; NFAs have excessive time complexity while DFAs have exces-

sive space complexity. In this section, we propose an efficient algorithm for regular expression

matching to implement deep packet inspection on multi-core architecture. A regular expression

is split into NFA-friendly components and DFA-friendly components, which are then assigned to

different cores. This hybrid method combines the merits of NFA and DFA implementations, and

efficiently takes advantage of multi-core architecture. To the best of our knowledge, this is the first

effort to design an efficient deep packet inspection algorithm for multi-core platforms. We eval-

uate our algorithm using rule sets provided by Snort, a popular open-source intrusion detection

system. The evaluation results show that our approach is faster than NFA implementations while

consuming less memory than DFA implementations.

4.4.1 Regular Expression Matching and Finite Automata

A network intrusion detection system (NIDS) classifies packets using a predefined rule set to de-

termine whether packets are malicious or not by searching packet payloads for any signature in

the rule set. Because of the increasing amount of network traffic and threats, intrusion detection

systems become very resource-intensive. For instance, open-source NIDSs such as Bro [81] and

Snort [89] expend all the resources, both CPU time and memory, and halt immediately when they

are deployed under high-speed network environment [82]. Therefore, achieving high-throughput in

pattern matching and reducing memory access frequency are crucial for overall intrusion detection
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performance.

DFAs are more suitable for general-purpose processors and network processors because

there is at most one transition for each incoming character. When checking a particular packet’s

payload, only a very small subset of rules are examined, which leaves a large portion of the memory

occupied by the DFA unused. Moreover, with the complexity of regular expressions increasing,

the amount of memory required by DFAs grows exponentially. For these reasons, DFA-based

solutions do not seem to be ideal in deep packet inspection applications that require to process

packets at the line speed with the growing number of regular expressions.

According to the Moore’s Law, a trend that happened during the past decades in the semi-

conductor industry, the number of transistors in the integrated circuits (ICs) is doubling approx-

imately every two years. The physical barriers such as clock frequency and chip temperature,

however, make it impossible to follow such a law; the clock-speed increase no longer increases the

performance of the processors. An alternative is to place multiple processor cores in a single chip.

Nowadays, most processor vendors are increasing the number of cores in a single chip [114, 115].

The multi-core trend is observed not only in general-purpose processors but also in embedded pro-

cessors [116, 117], such as network processors, digital signal processors, and cores embedded in

FPGAs and GPUs. Furthermore, the number of cores in a single processor continues to increase.

The performance gain achieved by the use of a multi-core processor depends on the algorithms used

and their implementations in software. Hence, how to design efficient algorithms and implement

them to take advantage of available parallelism in multi-core processors receives more attention.

Since deep packet inspection is often a bottleneck in packet processing, exploiting parallelism in

multi-core architecture is a key to improving overall performance. In this section, we propose an

efficient algorithm for regular expression matching to implement deep packet inspection on multi-

core architecture. For simplicity, we demonstrate the implementation of our algorithm on dual-core
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architecture. The main idea in our algorithm is to classify regular expressions into two categories:

NFA-friendly and DFA-friendly. Then we assign regular expressions or subexpressions to multiple

cores according to their categories. NFA-friendly regular expressions are implemented as NFAs

and DFA-friendly ones as DFAs. The evaluation results show that our approach is faster than NFA

implementations while consuming less memory than DFA implementations.

In this section, we first examine NFA and DFA implementations for regular expression

matching, which become basis of the hybrid approach we propose in Section 4.4.2.

(1). Types of Regular Expression Components

In order to increase parallelism in regular expression matching, we first need to study types

and characteristics of regular expression components. Although the regular language itself is a

well-defined and well-understood language, there are many variants adopting additional notations

to make the language more human-friendly. In this section, we consider some of the main types

of regular expression components frequently found in Snort rule sets. In the following, we present

them in the increasing order of their complexity.

1. Exact-match strings are the simplest kind of regular expressions. They are fixed-size pat-

terns, and thus the number of states in a finite automaton (DFA or NFA) can be kept less

than the number of characters in the regular expression (string). The Aho-Corasick algo-

rithm [118] or the Boyer-Moore algorithm [119] can be used without modification, and

hashing can be used for optimial performance. However, this type of regular expressions

is not expressive enough, and cannot detect malicious packets if an attacker inserts padding

in them. So, the percentage of this kind is dropping fast.

2. Character sets and single wildcards such as “[ci-cjck]” and “.”. For this type of reg-

ular expressions, the exact-match algorithms such as the Aho-Corasick and Boyer-Moore
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algorithms or hashing schemes cannot be used directly. Instead, exhaustive enumeration

of exact-match strings should be used. These regular expressions are more expressive than

exact-match strings, but require larger finite automata with more transitions.

3. Simple character repetitions such as “c?”, “c*”, and “c+”. For this type of regular expres-

sions, exhaustive enumeration of exact-match strings are inapplicable because the length

of a matched string may be infinite. However, it can be efficiently implemented as a loop

transition in a finite automaton.

4. Bounded repetitions such as “c\{n,m\}”, “[ˆci-cj]{n,}”. For this kind of regular ex-

pressions, the number of states of a finite automata grows fast as the counting constraints

increase. However, we can introduce counters as an augmentation to finite automata to alle-

viate this problem.

5. Character sets and wildcards repetitions such as “[ˆci-cj]*”, “.*”, “[ˆ\r\n]*”. If mul-

tiple such regular expressions are implemented as a single DFA, the size of the DFA can

grow exponentially. We demonstrate it through experiments in the next part.

In practice, most regular expressions in NIDS have more than one kind of regular expres-

sion patterns mentioned above in a single regular expression.

(2). Size of Finite Automata with Complex Regular Expressions

With the evolution of network threats and evation techniques, the length and complexity

of regular expressions in rule sets are increasing fast. Building a DFA of a set of complex regular

expressions potentially results in an exponential number of DFA states and exponential build time.

To investigate the impact of the complexity of regular expressions on the size of finite automata, we

perform experiments with hundreds of real attack signatures. Furthermore, the number of this kind
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of complex regular expressions is growing fast. For the number of states explosion problem, we can

divide the regular expressions into several small sets and build several DFAs, and our experiment

shows this is an efficient method to reduce the number of states, but multiple DFAs may have active

states at the same time and work in parallel, which increase the bandwidth requirement. For the

building time explosion problem, we can build the DFA “on-the-fly” during the actual matching

instead of pre-computing the huge DFA. By this way, we only need to store DFA states that are

actually needed. However, this will cause more time to build the DFA before matching malicious

traffic in practice.

In our experiments, we implement the NFA-based algorithm and DFA-based algorithm

proposed by Ficara et al. [101]. Regular expressions are selected from Snort rule sets. Since

the goal of these experiments is to understand the effect of complex regular expressions on finite

automata, we use the last type of rules defined in the previous part, which can cause exponential

growth of the size of build time of finite automata. So, the selected regular expressions are long

and complex, containing many wildcard repetitions. Note that this type of regular expressions

exhibits an increasing trend in terms of the number of rules in NIDS. The other types are not

included becuase they can be implemented efficiently either by augmenting finite automata or by

other algorithms without finite automata. All the experimental results reported in this section were

obtained on an Intel 3.0 GHz Dual-Core machine with 4 GB main memory.

We first measure the size of NFA for different rule sets to estimate space complexity. We

choose three sets of regular expressions from Snort rule sets, calling them R1, R2, and R3. They

contain 98, 185, and 298 regular expressions, respectively. For comparison with simple regular

expressions, we alse create three rule sets, E1, E2, and E3, each of which has the same number and

average length of exact-match regular expressions as the corresponding Ri.

Table 4.3 shows the number of states and the number of transitions for each configuration.
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Table 4.3: Number of NFA states and transitions
Rule set # of states before/after compression # of transition before/after compression

E1 2746/1387 3596/1892
R1 2348/1206 15006/7220
E2 6044/3024 7124/3549
R2 5136/2631 28756/13398
E3 9554/4683 11264/5797
R3 8048/4176 41155/20014

For completeness, each column contains the number before applying the compression algorithm by

Ficara et al., as well as the number after compression. For visual comparison between the simple

regular expression sets, Ei, and the complex sets, Ri, we plot the numbers in Figures 4.8 and 4.9.

We can see from those Figure 4.8 that, in NFA, the number of states grows proportionally

to the number of regular expressions, and there is only a slight difference between the simple

regular expressions and the complex regular expressions. On the other hand, the difference between

the numbers of transitions is much larger, as shown in Figure 4.9. This result indicates that the

copmlexity of regular expressions mainly affect the number of transitions, not the number of states.

In Table 4.4, we compare the build time of NFA and DFA. The build time of NFA is ex-

pected to exhibit the linear tendency as we observed in Figures 4.8 and 4.9, because creating states

and transitions is the main task in building finite automata. The first column of Table 4.4 confirms

this. However, the second column shows a very different trend. For DFAs, while the build time of

the simple regular expressions grows linearly with the increase of the number of expressions, the

build time of the complex regular expressions grows exponentially with the increase of the number

of regular expressions. Therefore, it would be desirable to avoid DFA-only implementations for

today’s complex rule sets.

We also compare the number of states between NFA and DFA. The results are shown in

Table 4.5, and the corresponding chart is presented in Figure 4.10.
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Figure 4.8: Number of NFA states

Table 4.5 and Figure 4.10 show the exponential growth of DFA more clearly. While NFA

still demonstrates linear growth, regardless of the complexity of regular expressions, the number

of states of a DFA exceeds 200000 for R3, which has fewer than 300 rules.

Note that the last row in Table 4.5. It corresponds to a finite automaton implementing R3

with three DFAs. It is obtained by dividing R3 into three components, building a DFA for each

component, and then combining them using a NFA. The numbers of states of DFAs are 9304,

15782, and 22149, respectively. This means that we can use several small DFAs to replace a single

huge DFA to reduce the number of states. Of course, such an approach will increase the memory
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Figure 4.9: Number of NFA transitions

bandwidth requirement, resulting in more memory accesses when there is not enough bandwidth.

To summarize, we observe in the experiments that DFA is more efficient for the regular

expressions with less complexity, such as exact-match, character sets, and simple character repeti-

tions. For more complex regular expressions, however, NFA is more efficient and the cost of DFA

implementation is prohibitive. This finding leads us to a hybrid approach, which is presented in

Section 4.4.2.

4.4.2 Hybrid Approach

(1). DFA-Friendly Regular Expressions and NFA-Friendly Regular Expressions

For better utilization of multi-core architecture, we need to split regular expressions in an
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Table 4.4: Build time of NFA and DFA
Rule set Build time of NFA (sec) Build time of DFA (sec)

E1 0.36 1.98
R1 0.81 103.98
E2 1.24 4.57
R2 1.93 432.56
E3 2.08 9.05
R3 3.93 2928.92

Table 4.5: Number of states comparison between NFA and DFA
Rule set # of states in NFA # of states in DFA

E1 1381 1370
R1 1207 16673
E2 3024 3012
R2 2630 64297
E3 4781 4779
R3 4176 > 200000

R3 with 3 DFAs – 47235

efficient manner. As we observed in Section 4.4.1, a regular expression can be implemented using

multiple DFAs combined with a NFA. To apply this idea, we need to be able to tell which part of

a regular expression is better implemented as a DFA and which as a NFA. These are what we call

DFA-fridnely regular expressions and NFA-friendly expressions, explained in the following.

DFA-friendly regular expressions Regular expressions suitable to be implemented as a DFA.

Such regular expressions must keep the number of states and build time of DFAs reason-

ably small. Implementing them as a NFA would not bring any gain in terms of memory

bandwidth.

NFA-friendly regular expressions Regular expressions suitable to be implemented as a NFA.

The DFA implementation of such regular expressions will have an exponentially large num-

ber of states and build time. By implementing them as NFAs, memory consumption can be
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Figure 4.10: Number of states comparison between NFA and DFA

reduced significantly.

Actually, there is no clear boundary between these two groups of regular expressions. When

we categorize regular expressions in practise, we also need to consider many other factors such as

the actual regular expression set and payload balance between cores.

(2). Proposed Multi-Core-Based Algorithm

The hybrid approach we propose in this section is based on the following observations in

our experiments:

1. For simple regular expressions, DFA is more efficient (DFA-friendly). Such regular expres-
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sions include exact match, character sets, and simple character repetitions.

2. For complex regular expressions, NFA is more efficient (NFA-friendly). Such regular ex-

pressions include wildcards repetitions.

3. Majority of packets match only short prefixes of regular expressions.

4. In typical complex Regular expressions, a DFA-friendly expression and a NFA-friendly ex-

pression appear in an alternating manner as in “abc.*defg.*hijklmn.*opq”.

The first step in our approach is to identify all DFA-friendly components (substrings),

d1, d2, . . . , dm, from the regular expressions included in a given rule set. Each DFA-friendly sub-

string di is converted into a DFA Di, which works as a coprocessor in our implementation.

Every instance of di in the original rule set is replaced with a reference to Di. Then this

modified rule set is converted into a single NFA, which becomes the main processor, as shown in

Figure 4.11. Since all DFA-friendly substrings were removed, we expect this NFA is of reasonable

size.

DFA
(coprocessor)

DFA
(coprocessor)

NFA (Main
Processor)

DFA
(coprocessor)

... ...

Figure 4.11: Hybrid architecture of deep packet inspection on multi-core platform

For better utilization of multi-core architecture, we identify the followings as key issues in

designing the algorithm.
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1. Memory access patterns of cores are critical in multi-core architecture. Different cores may

use the same area in the main memory, and the frequency and locality of memory accesses

will affect the overall performance significantly. Thus, each core should minimize the num-

ber of accesses to shared contents in the main memory, which may cause bandwidth con-

tention and consistency problems.

2. Even with a single core, increasing locality is an important factor in reducing memory access

latency. In multi-core architecture, this becomes more crucial because higher cache miss

rates of multiple cores will aggravate bandwidth contention, resulting in poor performance.

3. To minimize idle time, the load should be evenly distributed among cores.

The architecture in Figure 4.11 addresses all of these issues. First, each processor uses its

own data (states and transitions). Second, because of the reduced memory consumption demon-

strated in Table 4.5, the overall cache hit ratio should be higher than DFA-only or NFA-only ap-

proaches. Third, although the main processor (NFA) needs more memory bandwidth, which may

decrease the overall performance, for most of the time a branch of the NFA is waiting for copro-

cessor’s responds (DFA matching), or doing repetition on the same state, or being inactive, none

of which consume memory bandwidth. Furthermore, we find that the size of the NFA in the main

processor is small enough for most rule sets that the states and transitions can reside in its own

cache. All of these contribute to reducing memory accesses by the main processor, alleviating

memory bandwidth contention. Finally, for even distribution of loads, we may classify character

sets and wildcards repetitions as DFA-friendly regular expressions.

A simple example for this approach is illustrated in Figure 4.12. Four original regular ex-

pressions are used in this example, and eight DFA-friendly substrings are identified and converted

into DFAs (left-hand side). The remaining parts of regular expressions are converted into a NFA
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(right-hand side).

ab.*cde. *fghi    (1)
jkl.*mn              (2)

opq.*rst              (3)
uvwxyz              (4)

<1>ab
<2>cde
<3>fghi
<4>jkl
<5>mn
<6>opq
<7>rst
<8>uvwxyz

<1>.*<2>.*<3>
<4>.*<5>
<6>.*<7>

Figure 4.12: An example of the hybrid approach

4.4.3 Evaluation

To evaluate the proposed hybrid approach, we build a single NFA as the main processor and build a

single DFA as the coprocessor using the 298 rules in the R3. We compare a single-DFA approach,

a single-NFA approach, and our hybrid approach in terms of memory consumption (state number)

and processing speed (clock cycles/character).

We make the following assumptions for evaluation.

• Each core can only fetch a single state or transition per memory access.

• Each core’s cache can store 2000 states or transitions.

• A cache hit and a cache miss need 2 and 30 clock cycles, respectively,
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• Five percent of branches in the NFA are active all the time and these active branches may

access memory at the same clock cycle.

• The average length of DFA-friendly substrings is about 10 times of the average length of

NFA-friendly ones.

• The average number of repetitions is 30 for each NFA-friendly substring.

Note that the last two items conform to what we observe in Snort rule sets.

Based on the assumptions above, we choose the boundary between the DFA-friendly and

NFA-friendly regular expressions for a rule set as follows. We first define the value V , the weighted

number of states in DFA and NFA as in the following equation:

V = D + αN (4.1)

where D and N are the numbers of states in DFA and NFA, respectively, and α is a parameter

that depends on the memory bandwidth or additional memory accesses needed by NFA. In our

experiments, we set α = 5. We classify regular expressions into 5 types as we presented in

Section 4.4.2. We use Types “1–2” to represent the boundary between the first two categories,

“2–3” between the second and the third, and so on. The results are shown in Figure 4.13. Since the

values of V for 0–1 and 5–0 are much larger than others, so we chose 4–5 as the boundary between

the DFA-friendly and NFA-friendly in our simulation.

The numbers of states are shown in Figure 4.14. The single-DFA has more than 200000

states, the single-NFA has 4176, and the hybrid approach has the fewest, 4093, which consists of

3110 DFA states and 983 NFA states.

The clock cycles per character is plotted in Figure 4.15. The single-DFA achieves 29.72
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Figure 4.13: V for different boundaries

cycles/character with cache hit rate 1%, the single-NFA 80.3 with hit rate 47.89%, and the hybrid

approach achieves 23.98 (= 11.99× 2) cycles/character with hit rate 64.31% for DFA and almost

100% for NFA. For fair comparison, we double the clock cycles used for each matching character.

From the evaluation results we can see that for the complex rule set, a DFA consumes too

much memory while a NFA is slow due to multiple active states accessing memory in parallel. Our

algorithm outperforms these approaches not only in memory consumption but also in processing

speed.

4.4.4 Summary

In this section, we studied techniques used in deep packet inspection, in particular regular expres-

sion matching with growing complexity. We built efficient NFA/DFA generators and investigated

the impact of the complexity of regular expressions using rule sets from actual NIDS. We demon-
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Figure 4.14: Memory consumption

strated that a singe NFA or a singe DFA performs poorly given a large set of complex regular ex-

pressions. Because multi-core processors are expected to dominate, there will be great demand on

fast deep packet inspection algorithms that can utilize multi-core architecture for complex regular

expressions. Thus, we proposed a hybrid algorithm that combines both NFA and DFA. It divides

a complex regular expression and configures them into multiple cores to take advantage of avail-

able parallelism provided by multi-core processors. The evaluation results show that the hybrid

approach outperforms the single DFA and single NFA approaches. With the advent of processors

with more embedded cores, achieving maximum parallelism not only in deep packet inspection

but in general packet processing will be crucial to success of network security applications. We

plan to expand this work to general traffic monitoring systems with pipelining architecture.
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Figure 4.15: Evaluation on Processing Speed

4.5 DFA-based Regular Expression Matching on Compressed Traffic

Regular expressions are implemented using finite automata, which take the payload of a

packet as an input string. However, existing approaches, including non-deterministic finite au-

tomata (NFA) and deterministic finite automata (DFA), do not deal with compressed traffic, which

becomes more and more popular in HTTP applications. In this section, we propose an efficient

algorithm for regular expression matching to implement deep packet inspection on compressed

traffic. Based on the observations of DFA, we design a scheme to skip most of the matching pro-

cess in the compressed parts of traffic. To the best of our knowledge, this is the first effort to design

an efficient regular expression matching on compressed traffic. We evaluate our algorithm using
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rule sets provided by Snort, a popular open-source intrusion detection system. The evaluation

results show that our approach can reduce the number of state accesses in a DFA significantly.

4.5.1 Regular Expression Matching, Finite Automata, and Compressed Traffic

A network intrusion detection system (NIDS) classifies packets using a predefined rule set to de-

termine whether packets are malicious or not by searching packet payloads for any signature in

the rule set. Because of the increasing amount of network traffic and threats, intrusion detection

systems become very resource-intensive. For instance, open-source NIDSs such as Bro [81] and

Snort [89] expend all the resources, both CPU time and memory, and halt immediately when they

are deployed under high-speed network environment [82]. Therefore, achieving high-throughput

in regular expression matching and reducing memory access frequency are crucial for overall intru-

sion detection performance. In deep packet inspection, the regular expression matching becomes

the bottleneck in the network applications and exhausts the CPU and memory resources, and the

decompression procedure further degrades the overall performance. Therefore, to reduce the fre-

quency of state accesses (memory accesses) is the major challenge, and our goal is to skip as many

input characters as possible to avoid unnecessary memory accesses.

As we mentioned earlier, a finite automaton is either non-deterministic or deterministic; a

non-deterministic finite automaton (NFA) may have multiple state transitions per character in the

payload, which means there may be multiple active states at the same time. This possibility makes

it very difficult to record previous state sequence, and thus an NFA not suitable for checking the

compressed traffic. On the other hand, a DFA only has one active state all the time, which makes its

state sequence easily to be recorded and reused. Therefore, we choose a DFA to represent regular

expressions instead of NFA for compressed traffic.

The LZ77 [120] compression algorithm is commonly used in today’s Internet traffic, and

153



the basic idea of the LZ77 compression algorithm is that when a series of continuous characters (a

substring) has already appeared in the near past, a pair of numbers may be used to represent this

repeated substring. The pair of numbers is also called a length-distance pair, which represents the

distance in bytes of the two substrings and the length in bytes of the repeated substring. We also

call such a pair of numbers a pointer, and the compressed substring its pointer area. For exam-

ple, the plaintext abcdefgabcde will be compressed into abcdefg(7,5). When performing

regular expression matching on such compressed traffic, the naı̈ve approach is to decompress the

traffic first and then perform regular expression matching on the plain text as usual. However, this

process is costly because the deep packet inspection itself consumes a lot of CPU time and mem-

ory resources. In this section, we propose an efficient algorithm to perform regular expression

matching directly on compressed traffic, exploiting the properties of the compression algorithm

and DFA.

4.5.2 Our Approach

There have been many efforts to reduce memory consumption in DFA implementations. Kumar et

al. developed the Delayed-input DFA (D2FA) [87], which reduces space requirements by reducing

the transitions based on the observation that many states have similar sets of outgoing transitions.

In D2FA, such transitions are grouped and represented by a single default one. In this way, their al-

gorithm achieves a reduction of memory consumption by more than 95%. However, the drawback

of this approach is that it may need to process multiple states for a single input character, which

increases overall memory bandwidth. Later, Ficara et al. proposed Delta Finite Automata [101]. It

is based on the same observation as D2FA, but only requires a single transition per input character.

We revisit this from another viewpoint. The fact that redundant transitions usually occupy

more than 95% of total transitions implies, given an input character, it is very likely that the next
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state is the same state, regardless of the current state. The algorithm we describe below is based on

this observation to to perform regular expression matching on compressed traffic.

To clarify this property of DFA, we analyze the same example brought by Becchi et al. [121].

In Figure 4.16, we show the NFA and DFA accepting regular expressions a+ bc, bcd+, and cde on

the alphabet Σ = {a, b, c, d, e}, constructed in the standard way [122]. Transitions leading to state

0 are omitted for brevity. The big arrows represent transitions leading to the current state.

0

1

a
2 3/1b c

4 5 6/2b c d

7 9/3e
c

a

0

1

a

2 3/1b c

4 5 6/2b c d

8 10/3e

c

d

a:1-10

c:1,3,5-10

b:2-10

*

(b)

(a)

d

8d

9d

d 7/2 d
e

Figure 4.16: (a) NFA and (b) DFA for regular expressions a+ bc, bcd+, and cde
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We show two examples of skipping the entire pointer area and skipping a part of the pointer

area in Figure 4.17. The terminologies used in the figure are defined below.

• C-Trf: Compressed traffic including pointers

• D-Trf: Decompressed traffic without pointers

• State: State number in the DFA

• Status: The status of state in the DFA, unmatch (u) or match (m)

Example 1:

C-Trf: e  b  c  d  a  e  c  b{6, 6}c
D-Trf: e  b  c  d  a  e  c  b c d a e c b  c

State: 0  4  5  6  1  0  8  4 -  -  -  -  - 4 5
Status: u  u  u m u  u  u  u - m -  -  -  - u

Example 2:

C-Trf: e  b  c  d  e  a  b  c{6, 6}c
D-Trf: e  b  c  d  e  a  b  c c d e a b c  c
State: 0  4  5  6 10 1  2  3  8  9 10-  - 45

Status: u  u  u m mu  u  u -  -m-  -  -u

Figure 4.17: Skipping the entire pointer area in Example 1, and skipping a part of the pointer area
in Example 2

In the DFA in Figure 4.16(b), we can see that for a given input character, the possible next

states are very limited, as shown in Table 4.6; for the same input character, it is likely to reach the

same state, even from different current states.

Most of the time, the active state is the start state, which is usually state 0, or states reach-

able from the start state with a single input character. In Figure 4.16(b), states 0, 1, 4 and 8 are
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Table 4.6: States comparison between NFA and DFA
Input character Next state ratio between these states

a 1 1
b 2, 4 1:10
c 3, 5, 8 1:1:9
d 6, 7, 9 2:2:1
e 10 1

such states. In our experiment, for more than 70% of time (1361 out of 1835) the active state is

one of these states. That is because traffic seldom matches attack signatures in practice. There are

257 such states including state 0, because there are 256 symbols represented by 8 bits, and they

create 28 = 256 states as the next states from state 0. If the destination state is in this set of states,

the same input character will lead all states to the same state. In other words, the next state is de-

terministic and it does not matter what the current state is. We call the part of DFA including these

states the Deterministic Area. Note that 95% of transitions lead to this area as we discussed above.

In the example shown in Figure 4.16(b), there are a total of 56 transitions, and 46 of them lead

to states in the Deterministic Area, which means the probability of going into the Deterministic

Area is about 82% on average in this example. With such a high probability for the current state

to be in the Deterministic Area, the probability of entering the Deterministic Area in the next step

is even higher in practice. We call the rest of DFA the Non-deterministic Area. Note that for the

same input character, it is possible to reach the same state from the different current states, even in

the Non-deterministic Area, e.g., 3 → 6 and 5 → 6. With more attack traffic, there will be more

matches, and there will be more activities in the Non-deterministic Area, because it is likely to go

deeper in the DFA. The Deterministic Area and Non-deterministic Area in a DFA are formally

defined as follows:

• Deterministic Area: The starting state (state 0) and the states reachable from the starting
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state through a single transition.

• Non-deterministic Area: States that are not in the Deterministic Area.

If we need to check the pointer area for a long substring and cannot skip these characters,

there must be at least two paths in the DFA that accept the same input substring. We call these

two paths a path pair. With the adoption of today’s DFA compression techniques, however, the

number of path pairs is decreasing significantly. In other words, each path is more likely to be

unique, because the redundant parts have been combined or reduced. This fact helps us to skip

more characters in compressed areas.

For example, in the DFA in Figure 4.16(b), the worst case is caused by such a path pair,

2 ⇒ 3 ⇒ 6 ⇒ 10 and 0 ⇒ 8 ⇒ 9 ⇒ 10, for the same input string bcd, which is shown in

Figure 4.18. In this example, we need to check the entire pointer area again.

C-Trf:e   c   d   e   a   b{5, 3}c
D-Trf: e   c   d   e   a   b c d e   c
State: 0   8   9  10  1   2   3   6 10 8

Status: u   u   u m u   u m  m m  u

Figure 4.18: The worst case in Figure 4.16 caused by a path pair

Since path pairs may adversely affect our algorithm, we propose a method to reduce the

number of path pairs by combing them. In the same example shown in Figure 4.16(b), we combine

the two sets of path pairs, and the results are shown in Figure 4.19.

We use tokens to represent different paths. A token is created when the label of the transi-

tion includes a dash, as shown in Figure 4.19, and it remains while the current transition label has

an underscore. An existing token is removed if the transition does not have an underscore. There

may be multiple tokens at the same time. The state 8 or state 9 can be a match state if at least
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0

1

a-
1

4b-2

10/3e

c

a:1, 4, 8-10

c:1, 9-10

b:4, 8-10

d
b-2_1

c_
1_

2

9/2_28/1_1

Figure 4.19: The compressed DFA for the example in Figure 4.16(b)

one of the current tokens matches the token in the state (token 1 and token 2 in state 8 and state

9, respectively). Therefore, after the compression, there remains no path pair in our example, and

thus all characters excluding the first one in the pointer area can be skipped. The worst case shown

in Figure 4.18 is shown in Figure 4.20 after the path pair compression.

C-Trf:e    c    d    e    a    b {5, 3} c
D-Trf: e    c    d    e    a    b c d e    c
State: 0    8    9   10   1    4 8 - - 8

Status: u    u    u m u u m m m u
Token:-  -  - - 1 1,2 1,2 2 -  -

Figure 4.20: The worst case in Figure 4.18 after path pairs compression

4.5.3 Evaluation

In our experiment, the deeper we check the pointer area, the more chances we have to reach the

same state as the previous substring, as indicated by the trend in Figure 4.21. 0 on the x-axis means
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the whole pointer area is skipped. We can see that after checking seven characters in the pointer

area, we may skip the rest of the pointer area with the probability greater than 90%.

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0 1 2 3 4 5 6 7
Depth in DFA

73%

65%

78%
82%

85%
88% 89%

91%

Figure 4.21: The probability to enter the same state as the previous substring

We select five sets of traffic with different compression ratios, between 10% and 90%, and

build DFAs using three different regular expression sets, R1, R2, and R3, with 100, 200, and 400

regular expressions, respectively, collected from the Snort rule set. We simulate the numbers of

DFA state accesses in the original approach and the numbers of DFA state accesses in the proposed

approach. The results with 100 regular expressions are shown in Table 4.7. The percentages of

DFA state accesses saved by our approach are plotted in Figure 4.22.

From the evaluation results, we can see that our approach effectively reduces the number

of state accesses, and the percentage of such savings depend mainly on the compression ratio, not

on the number of regular expressions used. Besides, out approach does not introduce any false
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Table 4.7: Percentages of DFA state accesses saved with different compression ratios
Compression ratio 10% 30% 50% 70% 90%
Number of original
DFA state accesses 1364 1473 1753 1835 1583

Number of our DFA
state accesses in R1

1240 1083 1015 795 469

Number of our DFA
state accesses in R1

1241 1092 1029 804 505

Number of our DFA
state accesses in R1

1244 1093 1011 815 503

positive or false negative in matching.

4.5.4 Summary

In this section, we proposed an efficient regular expression matching in deep packet inspection for

compressed traffic. We first analyzed the properties of NFA and DFA, and chose DFA because it

maintains at most one active state. Based on the observation that for the same input character there

is a high probability that the next state will be the same state regardless of the current state, we

built an efficient DFA generator that combines some states and transitions to improve this property

further. Our algorithm records the previous active state sequence and matching sequence. This

information allows us to skip some compressed parts of the traffic when the active state is repeated.

The simulation results show that our approach effectively skips most of the compressed parts in the

traffic and reduces the frequency of DFA state accesses in proportion to the traffic’s compression

ratio. Although DFA is not suitable for a large number of complex regular expressions [106], our

approach can be easily extended to be used in separate, multiple small DFAs, which will make our

approach more scalable.
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Figure 4.22: Percentages of DFA state accesses saved
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CHAPTER five

PACKET PROCESSING ENGINE

5.1 Introduction

How to design efficient algorithms to promote these three components’ performance is my one

goal, and my another goal is to combine these components into a single integrated device, which

can reduce processing time and resource usage by working in parallel or sharing some resources.

In today’s router, these three procedures are usually implemented as different components, which

make the delay of total packet processing too slow to meet high-speed network’s requirement, be-

cause all these procedures must be performed one by one. So if I can parallel them or overlap them

efficiently in time or share some hardware resources in location, then I can improve the overall per-

formance dramatically. Furthermore, these three tasks overlaps with each other sometimes, which

means some redundant parts of these tasks can be removed. For example, some packets should

be dropped by the packet classification do not need to be processed by IP route lookup and deep

packet inspection, then how to eliminate these meaningless processing efficiently is also impor-

tant. So I also propose a new integrated architecture which combines these three parts efficiently

or prove that combining the three components is not good enough based on today’s techniques.

A major challenge of integrating these components is the hardware limitation in limited

space and power/cooling budget. There are two directions to eliminate these problems: first, share

hardware resource between different components to meet the limitation, second, we only integrate

important parts of different components as a fast path to process most of the tasks, then we can

not only improve the overall throughput but also release the burden of remaining processes. So we
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work towards both directions.

5.2 Proposed Combined Architecture

My combined approach are plotted in Figure 5.1.

5-tuple

Packet
Classificaiton

Routing
Lookup

Pattern
Matching

Destination IP address

Packet Payload

Packet Buffer

Perform Pattern Matching

Perform RE Matching
       in software

Output
  Port

FPGA

Figure 5.1: The top architecture of combined three components in a FPGA

Each packet is processed by packet classification unit first, as we discussed in previous

chapters, we reduce the redundancy in the packet classifier and do not need to store rules with

drop decision into TCAMs, so a packet does not need further process if it does not match any

rule in the packet classifier. Otherwise, the packet will be processed by routing lookup unit and

pattern matching unite simultaneously. If there is any match in the pattern matching, further regular

expression matching will be performed in the software approach proposed. Rules stored in the
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TCAM contain a destination IP address field, and each rule matches one or more IP prefixes in the

routing table. If a rule only match a single output port in the routing table, then we can include the

corresponding output port of the IP prefix in the rule decision, and we can get the corresponding

output port directly from the packet classifier. If a rule matches more than one output ports, then

the packet should be checked by the routing table lookup process. Because there is no overlap

between any two rules in the packet classifier, we can store rules with the same decision together

and the combined architecture is shown in Figure 5.2.

Packet Classification in TCAM

5-tuple

Port 0

Port N-1

Perform
Routing Lookup

...


Port 1

...


Figure 5.2: The architecture of packet classification including output port numbers

After combining rules in the packet classifier with IP prefixes in the routing table, we can

remove some useless IP prefixes from the routing table. If a rule in the packet classifier matches

more than one output ports in the routing table, these IP prefixes in the routing table must be
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stored in TCAM, otherwise, the IP prefixes do not need to be stored in the TCAM. Fortunately,

there are usually a small number of unique destination IP addresses, for example, there are only 15

unique destination IP addresses in Table 3.3. Note that we can not remove some rules in the packet

classifier by our combining approach because rules in the packet classifier have more tuples than

IP prefixes in the routing table.

In the worst case, the packet processing process will not be simplified much, and the latency

will be the sum of packet classification, pattern matching and regular expression matching, which

only skip the routing table lookup process. However, benign packets are more likely to go through

the fast path only including the packet classification and pattern matching. So this will release the

congestion in the nodes.

As a case study, Table 3.3 in Chapter 3 presents the analysis of the complete set of the

8214 Snort rules [70], and there are only 15 distinguish destination IP addresses. We also analyze

the destination IP addresses in the latest Snort rules published in August 2011, and the results are

shown in Table 5.1. We can see that there are only 13 unique destination IP addresses. Note that in

the 174 “any”, 8 of them only check the packet payload, 163 of them are used to check DNS service

in TCP port 53 such as “BLACKLIST DNS request” with “discard” decision, and the remainder

three are used to check overflow attempt in port 68, 69 and 5190 with “discard” decision.

We use the rules generated from [72]. In [72], 12 real packet classification rule sets are an-

alyzed, Table 5.2 shows the unique address prefix lengths and most of the destination IP addresses

belong to class C address prefixes (24-bit network address).

The problem is that if there is a rule with destination IP address field “any” and with the

decision “accept”, then no rules in the routing table can be removed from the TCAM. Fortunately,

this seldom happens in the rule sets because of three reasons. First, some rule sets do not contain

IP address with value “any” at all. Second, most rules with destination IP address field “any” also
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Table 5.1: Analysis of destination IP address in Snort rules
Number IP Addresses Number Percentage (%)

1 $HOME NET 3888 63.60
2 $EXTERNAL NET 1871 30.61
3 any 174 2.85
4 $SMTP SERVERS 70 1.15
5 $SQL SERVERS 55 0.90
6 $HTTP SERVERS 40 0.65
7 $DNS SERVERS 4 0.07
8 255.255.255.255 4 0.07
9 224.0.0.0/4 3 0.05

10 224.0.0.1 1 0.44
11 224.0.0.251 1 0.02
12 85.17.3.250 1 0.02
13 212.26.42.47 1 0.02
- total 6113 100

Table 5.2: Number of unique address prefix lengths for source address (SA), destination address
(DA), and source/destination address pairs (SA/DA).

Set Size SA DA SA/DA
acl1 733 6 20 31
acl2 623 13 13 50
acl3 2400 22 12 89
acl4 3061 22 15 98
acl5 4557 11 3 31
fw1 283 12 6 22
fw2 68 4 3 8
fw3 184 9 3 13
fw4 264 5 6 12
fw5 160 10 4 17
ipc1 1702 15 13 93
ipc2 192 4 2 5
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Table 5.3: IP prefix reduction results with 4,906 original IP prefixes
Rule set Number of rules IP prefix IP reduction Save (%)
RuleSet1 500 4,906 4,815 98.14
RuleSet2 1000 4,906 4,801 97.86
RuleSet3 1500 4,906 4,534 92.42
RuleSet4 2000 4,906 4,465 91.01

Table 5.4: IP prefix reduction results with 9,812 original IP prefixes
Set Number of rules IP prefix IP reduction Save (%)

RuleSet1 500 9,812 9,729 99.15
RuleSet2 1000 9,812 9,708 98.94
RuleSet3 1500 9,812 9,179 93.55
RuleSet4 2000 9,812 9,035 92.08

combined with the decision “discard”. Last, after redundancy removal, most of the “any” will be

replaced. In [72], we can see that some real rule sets do not contain any destination IP address with

value “any”, and others contain a small percent of value “any” in the destination IP address field.

Another important factor that affects the number of rules can be removed from the routing

table is the length of destination IP addresses. The IP addresses belong to class C address prefixes

are more likely to cover less IP prefixes in the routing table than the IP addresses belong to class A

address prefixes. In [72], we can see that most of the destination IP address prefixes are 32-bit. We

generate four rule sets with different number of rules, when combing with different number of IP

prefixes, the IP prefix reduction results are shown in Table 5.3, Table 5.4 and Table 5.5 respectively.

And the comparison of IP prefix reduction is shown in Figure 5.3. We can see that we can save

most of the IP prefixes in the routing lookup tables.

We select IP prefixes do not need to be stored in the TCAM in the routing table using

Algorithm 9. We compare the IP prefixes with rules’ destination IP prefixes. If an IP prefix

overlaps with one or multiple rules and all these rules have the same decision “discard”, then this
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Table 5.5: IP prefix reduction results with 19,624 original IP prefixes
Set Number of rules IP prefix IP reduction Save (%)

RuleSet1 500 19,624 19,465 99.19
RuleSet2 1000 19,624 19,432 99.02
RuleSet3 1500 19,624 18,617 94.87
RuleSet4 2000 19,624 18,297 93.24

IP prefix does not need to be stored in the TCAM. If an IP prefix overlaps with one or multiple

rules and all these rules have the same decision other than “discard” and the same output port, then

this IP prefix does not need to be stored in the TCAM and the output port can be stored with these

rules together. If an IP prefix does not match any previous condition, the the IP prefix needs to be

stored in the TCAM.

We can not guarantee the maximum number of IP prefixes do not need to be stored in the

TCAM with Algorithm 9. If two IP prefixes with different output ports overlap with a single rule’s

destination IP address and the rule’s decision is not “discard”, then these two IP prefixes compete

for this rule. When multiple IP prefixes compete for some rules, we have multiple choices and they

might result in different number of IP prefixes reduced. For example, there are three IP addresses

and two rules in Figure 5.4, and the line between the IP prefixes and rules show the overlapping

relationship between them and we can see the competition between the first IP prefix and the third

IP prefix and the competition between the second IP prefix and the third IP prefix. So we have two

choices, first, we remove the first and the second IP prefixes, second, we remove the third IP prefix.

Obviously, we prefer the first choice. Usually shorter prefix has more chance to overlap with other

prefixes because of its larger range, so we give longer IP prefix higher priority to be reduced, but

this can not guarantee the maximum number of IP prefixes can be reduced.

If a rule set contains one or multiple rules cover all or many IP prefixes in the routing table,

such as a rule with destination IP address field “any” and with the decision “accept”, then no rules
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Algorithm 10 IP Prefixes do not need to be stored in TCAM
Input : A non-overlapping rule set R: r1, r2, . . . , rn and a set of non-redundant IP prefix P :
p1, p2, . . . , pn in order of descending prefix length
Output: A set of prefixes Q: q1, q2, . . . , qn
for Each IP prefix pj in the IP prefix set P do

for Each rule ri in the rule set R do
if pj is a prefix of Destination IP in ri or Destination IP in ri is a prefix of pj then

Record ri
end if

end for
if All the recorded rules with the same decision “discard” then

Clear all records
Mark pj

else
if All the recorded rules with the same decision and they are either appended with the same
output port as pj’s or has not been appended with any output port then

Appended recorded rules with pj’s output port
Clear all records
Mark pj

end if
end if

end for
return all the marked prefixes in P
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99
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4,906            9,812          19,624

Figure 5.3: IP prefix reduction results with different numbers of original IP prefixes

in the routing table can be removed from the TCAM. In this situation, we can store all the covered

IP prefixes in the TCAMs, and we can also use other two approaches. First, we perform routing

table lookup in the software because we have showed that there are usually very limited number

of such rules. Second, we store IP prefixes covered by such rules in another TCAM block. In

both approaches, the routing table lookup process works as a hierarchical architecture: most of the

packets do not need to go through the IP routing lookup TCAMs because they are encoded in the

rules, some packets need to go through the fast IP routing lookup TCAM because only a small

number of IP prefixes are stored in the fast IP routing lookup TCAM, and the remainder packets

need to go through the slow IP routing lookup pathes, such as software or large TCAM.
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IP Prefix      Output Port

10101*              port 0
1011**              port 1
101***              port 2

Destination IP   Decision

1011**              accept
10101*              accept

Figure 5.4: An example of multiple choices of reducing IP prefixes when combing IP prefixes and
rules

Table 5.6: Hardware resource critical path reduction by using our approaches with 4,906 IP prefixes

Rule Set
Number
of rules

Slices reduction
4-input LUTs

reduction
BRAM

reduction
Flip Flops
reduction

Critical path
reduction

RuleSet1 500 76.4% 51.2% 89.9% 41.3% 18.5%
RuleSet2 1000 74.7% 51.6% 88.2% 46.9% 18.9%
RuleSet3 1500 73.0% 53.2% 87.9% 44.0% 19.7%
RuleSet4 2000 78.3% 55.1% 88.4% 46.2% 20.8%

5.3 Evaluation

We implement our approach on NetFPGA [34], in order to compare with simple integration ap-

proach which consumes more hardware resource, we do simulation on Xilinx Virtex-5 TX240T

FPGA. We pipeline our design to increase throughput by dividing it into three stages: TCAM

match for packet classification, retrieving result in packet classification, IP routing lookup and

pattern matching. We use 6423 patterns in Snort. With different number of packet classification

rules and IP prefixes, the hardware resources and throughput are shown in Table 5.6, Table 5.7 and

Table 5.8. We can see we can reduce hardware resource significantly and also reduce the critical

path by our approaches.
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Table 5.7: Hardware resource critical path reduction by using our approaches with 9,812 IP prefixes

Rule Set
Number
of rules

Slices reduction
4-input LUTs

reduction
BRAM

reduction
Flip Flops
reduction

Critical path
reduction

RuleSet1 500 78.5% 52.8% 92.8% 42.8% 18.5%
RuleSet2 1000 76.2% 53.4% 91.4% 48.6% 18.9%
RuleSet3 1500 74.9% 55.9% 90.3% 45.2% 19.7%
RuleSet4 2000 81.5% 57.0% 93.1% 49.8% 20.8%

Table 5.8: Hardware resource critical path reduction by using our approaches with 19,624 IP
prefixes

Rule Set
Number
of rules

Slices reduction
4-input LUTs

reduction
BRAM

reduction
Flip Flops
reduction

Critical path
reduction

RuleSet1 500 79.5% 53.9% 93.0% 42.8% 18.5%
RuleSet2 1000 77.8% 54.0% 91.7% 48.6% 18.9%
RuleSet3 1500 75.7% 56.9% 90.9% 45.2% 19.7%
RuleSet4 2000 83.0% 58.2% 93.2% 49.8% 20.8%

5.4 Discussion

We did not compare the throughput our integrated architecture with other approaches because of

the following reasons: first, no such existing integrated architecture we can compare with. Sec-

ond, there are too many factors can affect the throughput of the integrated architecture such as the

number of IP prefixes, the number of rules, the number of regular expression and the properties

of them as we discussed, and the properties of incoming traffic also affect the throughput signifi-

cantly. Third, it is not comparable between naive integrated architectures. Even though for naive

integrated architectures, there are very different strategies such as software-based approaches and

hardware-based approaches, for example, the hardware-based integrated architecture can achieve

very high throughput but consumes much more hardware resources. In our integrated architecture,

the bottleneck is the deep packet inspection component for regular traffic and the throughput is the

throughput of the deep packet inspection component and this is also the throughput for the worst
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case. In some special cases, the packet classification component could become the bottleneck of

the system, such as most packets in the traffic is blocked by the packet classification component.

We showed the integration of three major packet processing components and there are still

other tasks in the packet processing [123,124], such as CRC calculation [125,126], we can process

these components using similar approaches.

5.5 Summary

In this section, we present the integration approach of three major components: IP routing lookup,

packet classification and deep packet inspection. Our goal is to reduce hardware consumption

by sharing some hardware resources, and our main approach focuses on how to share hardware

resource between IP routing lookup and packet classification because both of them check packet

header. We first remove redundancy in the packet classification based on the approach we have

presented, and then remove IP prefixes only covered by rules with decision “discard”, and also

remove a IP prefix if such prefix is covered by rules with the same decision and not appended

by a different output port, then append these rules with corresponding output port. Our simula-

tion showed that this approach can reduce more than 90% IP prefixes needed to be stored in the

TCAMs. And the simulation on the integration architecture showed that our approaches can reduce

significant hardware resources especially TCAM entries, and also increase the overall throughput.
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CHAPTER six

CONCLUSION

In this thesis, an important issue is discussed: how to design efficient packet processing

devices. There are three important issues needed to be designed efficiently to support today’s high

speed network: IP route lookup packet classification and deep packet inspection. And these three

procedures are usually implemented as different components, which make packet processing too

slow to meet high-speed network’s requirements. We focus on these issues and design efficient

hardware-based solutions. We first design individual components and then propose a new inte-

grated architecture which combines these three parts efficiently. Our approaches first remove the

redundancy in individual components and then remove the redundancy between them.

In the IP routing lookup chapter, we first present a hybrid approach to IP route lookup using

Binary CAMs to save memory usage and improve the throughput of longest prefix matching pro-

cess. We treat prefixes with different lengths separately in parallel, and use different types of CAMs

to take advantage of their characteristics. The simulation results show that our approach saves

57.6% of transistors, reducing the area and power consumption significantly. Then we present a

novel approach to IP route lookup using TCAMs to save memory usage, increase update speed and

improve the throughput of longest prefix matching process. We discussed three important issues

still have not been well studied in TCAM-based IP route lookup including large RAM usage and

long memory accesses, slow update process of routing table and unscalable problem. Based on the

observation that all of them result from the sorted storage in TCAM entries, we store IP prefixes

can be stored out of order in the first group and the remaining ones in the second group, and deal

with them separately. The simulation results show that our approach solve these problems effi-
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ciently: the usage of RAM has been reduced, the throughput has been increased and the update

process speed also has been increased significantly compared with the traditional ways. Further-

more, the clock speed can also be increased because the memory access latency is reduced and the

priority encoders are simplified. Our main contribution of this section is to present an approach to

solve multiple major problems in TCAM-based applications, not only try to solve one problem but

usually worsen the others.

In the packet classification design chapter, we first propose a tree-based overlapping re-

moval algorithm to remove redundant rules and combine overlaying rules to build new rule sets

in packet classifiers, and then remove a set of rules with the same decision based on the non-

overlapping rule set. Based on the non-overlapping new rules, we can further reduce the TCAM

consumption by range extension approach. Our experiments show a reduction of 85.4% in the

number of TCAM entries after performing the two steps. We also propose a fast TCAM update

scheme which enables out of order storage in the TCAM and reduces the TCAM entries usage. We

also propose an approach to modify the TCAM entry itself. We propose energy efficient Compara-

tor Content Addressable Memories (CCAMs) to solve the range expansion problem and reduce the

rule set update delay. Our approach can store ranges in CCAM entries besides ternary state bits.

In our algorithm, the hardware can be configured to store all kinds of port ranges. Simulations

show that CCAMs consume about 27.6% of what the original TCAMs do in terms of the number

of entries. As for transistor consumption, our approach saves about 66.4% of transistors compared

with TCAM-based approaches.

In the deep packet inspection chapter, we first present an effective technique for pattern

matching in deep packet inspection. We build a hierarchical pattern matching architecture which

serves to exclude most packets from full pattern matching leaving only a small percentage to be

fully checked in the pattern matching process. Our approach here may offer a key lever for im-
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proving the throughput of regular expression matching through extracting exact-match strings from

the regular expressions and preprocessing the matching dependent on those strings. We also an-

alyze techniques used in deep packet inspection, in particular regular expression matching with

growing complexity. We build efficient NFA/DFA generators and investigated the impact of the

complexity of regular expressions using rule sets from actual NIDS. We demonstrate that a singe

NFA or a singe DFA performs poorly given a large set of complex regular expressions. Because

multi-core processors are expected to dominate, there will be great demand on fast deep packet in-

spection algorithms that can utilize multi-core architecture for complex regular expressions. Thus,

we propose a hybrid algorithm that combines both NFA and DFA. It divides a complex regular

expression and configures them into multiple cores to take advantage of available parallelism pro-

vided by multi-core processors. The evaluation results show that the hybrid approach outperforms

the single DFA and single NFA approaches. We finally propose an efficient regular expression

matching in deep packet inspection for compressed traffic. The simulation results show that our

approach effectively skips most of the compressed parts in the traffic and reduces the frequency of

DFA state accesses in proportion to the traffic’s compression ratio. Although DFA is not suitable

for a large number of complex regular expressions [106], our approach can be easily extended to

be used in separate, multiple small DFAs, which will make our approach more scalable.

In the integrated architecture chapter, we present the integration approach of three major

components: IP routing lookup, packet classification and deep packet inspection. Our goal is to

reduce hardware consumption by sharing some hardware resources, and our main approach focuses

on how to share hardware resource between IP routing lookup and packet classification because

both of them check packet header. We first remove redundancy in the packet classification based on

the approach we have presented, and then remove IP prefixes only covered by rules with decision

“discard”, and also remove a IP prefix if such prefix is covered by rules with the same decision
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and not appended by a different output port, then append these rules with corresponding output

port. Our simulation showed that this approach can reduce more than 90% IP prefixes needed

to be stored in the TCAMs. And the simulation on the integration architecture showed that our

approaches can reduce significant hardware resources especially TCAM entries, and also increase

the overall throughput.

Our approaches are mainly based on TCAMs and focus on how to reduce the TCAM entry

consumption based on given data. Some may argue that the price of TCAM is dropping and we do

not need to compress data before storing it into TCAM in the future, but we believe the approaches

we presented in the thesis is still important in that situation for the following reasons. First, the

usage of TCAMs is limited mainly by its cost, so the TCAMs will be much more widely used

if its price is competitive, and how to reduce the TCAM entry is also important because of the

huge amount of TCAM usage. Second, the number of data and the length of data is also increase,

such as the number of IP prefixes we showed and the shift from IPv4 to IPv6, so the amount of

TCAM required by a single device is also increasing fast. Third, the power consumption is another

important disadvantage of TCAMs and this problem will not be mitigated and how to reduce the

TCAM usage is also important. Last but not least, some disadvantages of TCAM we discussed

will not be mitigated with the dropping price, such as the slow update and slow and large priority

encoder, and our approaches can solve these problems efficiently.
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