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ANALYSIS AND APPLICATION OF LATTICE VECTOR QUANTIZATION USING

MIXTURE MODELS AND BIT-PLANE CODING

Abstract

by Wisarn Patchoo, Ph.D.
Washington State University

AUGUST 2011

Chair: Thomas R. Fischer

This thesis studies lattice vector quantization (LVQ) withapplication to audio and im-

age sources. The performance of nonzero pulse amplitude quantization implicit in alge-

braic codebook code-excited linear prediction (ACELP) is examined and it is demonstrated

that the quantization used in ACELP is effective in a rate-distortion sense at the encoding

rates commonly used. A block-based Gaussian mixture model (GMM) is used to model

the marginal distribution and the block energy distribution of transform audio data. The

expectation-maximization algorithm is used to estimate the GMM parameters. A GMM-

based rate-distortion function is derived and shown to closely match the observed spherical

LVQ performance. Then, we move forward to the lattice VQ on transformed image. The

GMM is used to motivate a subband image coding algorithm based on lattice-based spher-

ical VQ and lattice-based pyramid VQ. The algorithm partitions a subband image into

blocks of various sizes, depending on their energy and complexity constraints on the enu-

meration encoding of lattice codevectors. Using the cubic lattice, the algorithm provides

performance competitive with the set partitioning in hierarchical trees (SPIHT) algorithm.
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A bit-plane coding method is developed for the encoding of binary lattice codevectors as

binary codewords, yielding an embedded bitstream. In sign-magnitude representation, only

a few least significant bit-planes are constrained due to thestructure of the lattice, while

there is no restriction on other more significant bit-planes. Simple encoding methods for

the lattice-defining bit-planes of theD4, RE8, and Barnes-Wall 16-dimensional lattices are

described. Simulation results for these lattices show thatpartial decoding of the resulting

embedded bitstream provides about the same performance as for the integer lattice. When

the entire bitstream is fully decoded, the granular gain of the lattice is realized.
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Chapter 1

Introduction

1.1 Background

Source coding, a terminology due originally to Shannon’s classic works in the development

of information theory, is a basic process performed in digital communication systems. The

purpose of source coding is to represent source samples in compact form. This can be

achieved by identifying and using structure that exists in the data to eliminate redundant or

irrelevant data. Source coding can be categorized into two classes: Lossless source coding,

in which there is no loss of information and the original source data can be reconstructed

perfectly from its compact form; and lossy source coding, which allows some difference

between original and reconstructed data. In general, lossycoding gives higher compres-

sion than lossless coding. One form of lossy coding, known asvector quantization (VQ),

is widely used in many modern applications. In this thesis, we focus on a variant of VQ

calledlattice vector quantization (LVQ).

The idea of vector quantization was put forward by Shannon’sclassic work [1] and
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further developed in [2], where he showed that for a given coding rateR and a distortion

criterionD, the least distortion between original and reconstructed source data achievable

by any quantizer is equal to a functionD(R), called thedistortion-rate function1. The

distortion-rate function is determined by the source characteristics and the distortion cri-

terion, and this optimum performance bound can be approached by coding sequences of

source data of arbitrarily large length. He called such a code asource code subject to a

fidelity criterion, but a code of this type can also be called avector quantizer, and the en-

coding process is calledvector quantization[3]. Since then, vector quantization has been

widely studied and developed for a variety of data compression applications.

A basic block diagram of vector quantization is shown in Figure 1.1. At the encoder,

source data are grouped together as vectors and each vector is then compared with codevec-

tors in a codebook to find the closest codevector with respectto a given distortion measure.

Once the best codevector is found, its index is transmitted to a decoder and the codevector

is reconstructed from a lookup table.

Early vector quantizer implementations used brute-force nearest neighbor encoding,

which compares the source vector to be quantized to every codevector in the codebook.

This type of implementation requires a large number of computations, with complexity

that grows exponentially with the vector dimension. Structured codebooks were studied

and developed in order to reduce the complexity required in VQ [4]. VQ can be designed

1The equivalent problem is the problem of minimizing rate subject to a distortion constraint. Shannon
called the solution to this equivalent problem therate-distortion function, denoted byR(D).
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Encoder Decoder

Figure 1.1: Basic block diagram of vector quantization

based on a clustering algorithm. A well-known work by Linde,Buzo, and Gray [5] is a

example of the clustering approach based VQ, which extendedLloyd’s algorithm [6] to

vector quantization. Other vector quantization methods are based on various structures that

trade off complexity for performance. Such VQ methods include lattice VQ [7], pyramid

VQ [8], tree-structured VQ [3], trellis-coded VQ [9], etc. Entropy-constrained VQ was first

studied in [10] and further developed in [11]. Recent developments in VQ combined the

quantization with prediction or transformation to gain better performance. Such methods

include code-excited linear prediction (CELP) [12], subband coding [13] , etc.

A lattice vector quantizer is a structured vector quantizerfor which the codevectors in

the codebook are formed as the scaled or translated subsets of regular lattices. The lattice

codevectors are constrained to have form
∑N

i=1 ciui, whereci is any integer and{u}i is a set

of linearly independent vectors that forms a basis of the lattice. A lattice Voronoi region is

the set of all points closer to the origin than to any other lattice vector. Figure 1.2 shows

an example of the Voronoi region of the 2-dimensional hexagonal lattice,A2, and its basis,

compared with that of the 2-dimensional integer lattice,Z2.
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Figure 1.2: Voronoi regions ofZ2 andA2 lattices and their basis vectors.

Lattice VQ has several advantages such as low-complexity, less memory requirement,

and simple implementation. There are also several algorithms for fast quantizing and en-

coding for LVQ using certain lattices [14], [15]. Lattice VQwas proposed by Gersho [16],

using a high-rate quantization approximation [17]. Since then it has been intensively stud-

ied by many researchers. Many variants of lattice VQ have been proposed. Our interest is

primarily in lattice spherical VQ (SVQ) [18] and lattice pyramid VQ (PVQ) [19]. Several

modern wide-band audio coding standards such as [20] and [21] have adopted lattice SVQ

as the core quantizer.

1.2 Dissertation Outline

The main purpose of this thesis is to study lattice quantization of audio and images. For

audio sources, we focus on analyzing and modeling the performance of lattice quantization.

First, the performance of nonzero pulse amplitude quantization implicit in algebraic code-

book code-excited linear prediction (ACELP) is analyzed and shown that it is effective in a

rate-distortion sense at a particular, commonly used encoding rate. Algebraic codevectors
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have amplitude constrained to±1 which can be considered as the points in the integer lat-

tice. Next, a mathematical model is developed to describe the performance of lattice-based

spherical VQ (LSVQ) used in discrete Fourier transform (DFT) based transform audio data

compression. A Gaussian mixture model (GMM) is used to modelboth the marginal den-

sity and the block energy density of the transform audio coefficients, and a GMM-based

rate-distortion function for LSVQ is derived. The GMM-based rate-distortion function can

be used to model or estimate the expected performance of LSVQ. The GMM-based rate

distortion function is shown to accurately model the empirical performance of aRE8 lattice

spherical VQ used in the AMR-WB+ wideband audio coding standard. Next, we consider

use of lattice VQ in subband image or wavelet transformed image compression. A subband

image coding algorithm based on LSVQ and LPVQ is proposed. The algorithm is moti-

vated by the nonlinear energy dependence apparent in the block energy density of subband

image coefficients, and by the observation that the block energy densitycan be modeled as

a mixture of memoryless Gaussian or Laplacian distributions. Finally, using Forney’s char-

acterization of binary lattices [22], we introduce the notion of “lattice-defining” bit-planes,

and develop methods for the efficient bit-plane coding of lattice codevectors, resulting in

an embedded bitstream. We show that progressive decoding ofbit-plane encoded code-

vectors from theD4, RE8, or Λ16 (Barnes-Wall) lattices provides similar performance to

the standard integer (cubic) lattice, with the lattice granular gain achieved when the entire

bit-stream is decoded.

A brief outline of the thesis is as follows. Chapter 2 discusses the non-zero pulse am-
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plitude quantization implicit in ACELP and studies the problem of optimum pulse ampli-

tude quantization. A basic block diagram of ACELP is introduced. A model for non-zero

ACELP pulse amplitudes is described, and used in rate-distortion analysis. Simulations

based on mean square error (MSE) and mean opinion score (MOS)compare the optimized

pulse quantization to standard methods. In Chapter 3, the Gaussian mixture model and

expectation-maximization (EM) algorithm are described. Arate-distortion function based

on a GM model is developed. The effectiveness of the model is evaluated by comparing the

GM-based rate-distortion function to the cubic lattice SVQperformance, and to theRE8

lattice SVQ performance used in the AMR-WB+ audio coding standard [23]. In Chapter 4,

a block-based image coding algorithm using quadtree partitioning is proposed. The empir-

ical density of the block energy of subband coefficients is shown to display the nonlinear

dependence between block subband coefficients. An alternative version of the proposed

algorthm is also discussed. Then, the performance of the proposed algorithm using the cu-

bic lattice is compared with that of the set partitioning in hierarchical tree (SPIHT) image

coding algorithm [24]. In Chapter 5, the notion of lattice-defining bit-planes is introduced.

Methods to encode the lattice-defining bit-planes for theD4, RE8, andΛ16 lattices are de-

scribed. Then, simulation results for progressive decoding of bit-plane encodedD4, RE8,

andΛ16 lattice codevectors are provided and compared with that of integer lattice code-

vectors. Using theD4 lattice, the proposed method of encoding lattice-defining bit-planes

is then used in the SPIHT algorithm, and the performance of the modified SPIHT image

coding is compared with the original SPIHT image compression.

6



1.3 Summary of Research Contribution

This thesis makes the following contributions.

1. Analysis of ACELP method of non-zero pulse position selection of algebriac code-

book search.

• The selection implies a conditionally bimodal distribution on the selected non-

zero pulse amplitudes.

• For the MSE distortion measure the simple 1-bit uniform quantization of non-

zero pulse amplitudes used in ACELP is optimum in a rate-distortion sense.

• Small gains in SNR (no more than 1 dB) are possible for the ACELP method

of nonzero pulse position selection by refined amplitude quantization, but such

increase in SNR requires a significant increase in pulse amplitude quantization

rate.

2. GMM-based rate-distortion function of LSVQ in transformaudio coding.

• A rate-distortion function based on GMM is developed and shown to accurately

model the performance of LSVQ.

• The GMM-based rate-distortion function with number of classes equal to 4 is

sufficient to adequately model the LSVQ performance.

3. Block-based image coding algorithm for subband image compression.
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• A block-adaptive lattice VQ for subband image coding is developed using LSVQ

and LPVQ. The performance of the proposed coding algorithm using the cubic

lattice is competitive with that of the SPIHT algorithm, with a little better per-

formance at low and moderate encoding rates.

4. Bit-plane coding of lattice codevectors.

• If lattice codevectors are represented in sign/magnitude form, only a few least

significant bit-planes, called lattice-defining bit-planes, are constrained to some

particular forms, which are unique for each lattice. Hence,any convenient bit-

plane coding can be used to encode the more significant bit-planes, with the

modification only required for coding lattice-defining bit-planes.

• Simple methods are described to encode lattice-defining bit-planes forD4, RE8,

andΛ16 lattices.

• Simulations show that for lattice VQ of a uniform source, standard bit-plane

coding together with the proposed methods to handle encoding of lattice-defining

bit-planes gives performance about the same as that of a cubic lattice, when the

encoded bit-stream is truncated, and the lattice granular gain is realized when

the encoded bit-stream is fully decoded.

• The SPIHT algorithm is modified to encode usingD4 lattice codevectors using

the idea of lattice-defining bit-plane.
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Chapter 2

Analysis of Amplitude Quantization in ACELP Excitation Coding2

Linear-prediction-based analysis-by-synthesis (LPAS) coding has been widely used in speech

coding. The most important form of LPAS coding is code-excited linear prediction (CELP)

introduced in [26], [12] which uses a predefined set of sequences as an excitation codebook.

Several standards have adapted CELP as the core algorithm for speech coding [21]-[27].

In CELP speech coding, the encoder determines the linear prediction coefficients (LPC),

quantizes the LPC parameters, and encodes them for transmission. The encoder also se-

lects the excitation sequence as the sum of two quantized excitations: an adaptive codebook

excitation and a fixed codebook excitation. The adaptive (orpitch) codebook excitation is

determined conditioned on the LPC synthesis filter. The fixedcodebook excitation is se-

lected conditioned on both the synthesis filter and the adaptive codebook excitation.

Algebraic CELP (ACELP) [28] imposes a particular structureon the fixed codebook

excitation. The codevectors are sparse with onlym non-zero pulse positions allowed in a

2Portions of this chapter were presented at the 2010 Data Compression Conference [25].
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sub-frame of lengthL. The L samples in a sub-frame are partitioned intoK interleaved

tracks of pulse positions, and them total non-zero pulse positions are partitioned intomk

non-zero pulse positions in trackk, for k = 0, 1, . . . ,K − 1, with m =
∑K−1

k=0 mk. The alge-

braic codebook is a product code of the formgc whereg is a (quantized) sub-frame gain,

andc is the sparse,L-dimensional codevector withmnon-zero amplitudes restricted to the

values±1. A suboptimum, but efficient, search algorithm is used to select the algebraic

codevector (e.g., [21]).

In [29] an enhancement layer coding method, for an 8 kbps baselayer G.729 speech

coder, is developed by refining the amplitude quantization of the base-layer ACELP pulses.

The 1.6 kb/s refinement in [29] uses 8 bits per 5 ms subframe to refine the 4 non-zero pulse

amplitudes. Vector quantization (VQ) is used to jointly quantize and encode the pulse am-

plitudes, with a total rate of 12 bits (4 bits for each ACELP sign bit and 8 bits for the VQ)

or an average of 3 bits/pulse for amplitude quantization. The additional 2 bits/pulse re-

finement amplitude quantization leads to 0.05 to 0.08 increase in perceptual evaluation of

speech quality (PESQ) mean opinion score (MOS). This relatively modest increase in MOS

suggests that 1 bit/pulse (i.e., sign bit) amplitude quantization is already quite effective in

quantization performance.

In this chapter we study the coding performance advantages possible by using the op-

timum ACELP codebook amplitudes compared to the ACELP codebook. We consider

codevector amplitude quantization and the synthesized speech quality. Our formulation

models the non-zero ACELP pulse positions as random variables with a bimodal distribu-

10



tion. Rate-distortion analysis of the quantization of suchrandom variables indicates that

at the (typical) ACELP encoding rate of 1 bits per amplitude and for the square error dis-

tortion measure, simple uniform scalar quantization is optimum. At rate larger than 1 bit

per pulse amplitude, some increase in SNR is possible, but the increase in SNR yields only

modest improvement in perceptual quality, as measured by mean opinion score.

2.1 Problem Statement

A block diagram of algebraic CELP is shown in Figure 2.1 basedon the Adaptive Multi-

rate (AMR) speech coding standard in [21], and it is used as the ACELP reference structure

in this chapter. EachN-sample frame of speech is windowed and analyzed to determine

the linear prediction filter,A(z). The coefficients ofA(z) are represented as line spectral

frequencies [30], quantized, and encoded subject to the operating bit rate, using split-

multistage vector quantization [3]. The quantized versionof A(z), denoted byÂ(z), is also

reconstructed for later processes. Then, eachN-sample frame is further divided into four

sub-frames ofL samples, (e.g.,N = 160 andL = 40 in [21]). EachL-sample sub-frame,

denoted bys, is filtered using a weighting filter formed fromA(z) to producesw, which

is used in open-loop pitch analysis to estimate the open-loop pitch lag. Then, excitation

sequence selection is performed on a sub-frame basis. The excitation sequence consists

of two parts: An adaptive (pitch) codebook vector and an algebraic codebook vector (also

called an innovation vector). The synthesized speech signal is constructed from these two

11
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Figure 2.1: Block diagram of Algebraic CELP.

excitations and quantized gains as shown in Figure 2.1(b).

To determine the excitation codevectors, first, the impulseresponse of the weighted

synthesis filter,h(n), is computed fromH(z)W(z) = A(z/γ1)Hde−emph(z)/Â(z), where a

weighting filterW(z) = A(z/γ1)Hde−emph(z), Hde−emph = 1/(1− 0.68z−1), andγ1 is a per-

ceptual weighting factor equal to 0.92. Then, a target signal for adaptive codebook search,

denoted byx1, is computed by subtracting the zero input response of the weighted synthe-
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sis filter,h(n), from the filtered signalsw. Next, an adaptive codebook search is performed.

It consists of closed loop pitch search, adaptive codebook selection, and adaptive codebook

gain computation. A closed-loop pitch search is performed around the open-loop pitch lag

to estimate the fractional pitch lag. The adaptive codebookvector and adaptive codebook

gain, denoted byv andgp, respectively, are computed based on the estimated fractional

pitch lag, and they are then used to compute the target signalfor the algebraic codebook

search. More specifically, a target signal for algebraic codebook search is obtained by

subtracting the contribution from the adaptive codebook vector weighted by the adaptive

codebook gain from the target signal used in the closed-looppitch search,x1, yielding the

L-dimensional (sub-frame) target signal,x. That is,x = x1 − gpy, wherey = v ∗ h.

The algebraic codebook is searched to minimize the mean-square error between the

weighted input speech target signal,x, and the filtered algebraic codevector. More specifi-

cally, the algebraic codebook is searched to minimize

‖x − gcHc‖2 (2.1)

whereH is a lower triangular Toeplitz matrix with diagonalh(0) and lower diagonalh(1),

h(2), . . . , h(L − 1), with h(n) the impulse response of the weighted synthesis filter,gc is

the algebraic codevector gain, andc is the algebraic codevector withm non-zero pulse po-

sitions. Minimizing over the choice of gain, yields the optimum gain asgc,opt =
xT Hc

cT HT Hc .

Substituting this gain into (1) and manipulating indicatesthat the optimum algebraic code-
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vector must maximize the ratio

Bk =
(dT ck)2

cT
k HTHck

(2.2)

whered = HT x, andck is thekth algebraic codevector [21].

In the AMR encoding, them non-zero pulse positions and their signs are found using

a non-exhaustive analysis-by-synthesis search technique. The positions of the non-zero

pulse amplitudes and their signs are encoded and transmitted to the decoder together with

the quantized codevector gain.

2.2 Excitation Pulse Modeling

Since the non-zero pulse amplitudes in the algebraic codevector are constrained to have

integer value of±1, the normalized amplitudes can be viewed as being quantized using

a 1-bit scalar quantizer. The implicit quantization of these amplitudes is investigated, as

follows. Let c be an algebraic codevector of dimensionL obtained from the ACELP alge-

braic codebook, withx the target signal for the algebraic codebook search. Assumethat

m non-zero pulses are allowed per sub-frame and they are selected according to the track

structure using the search algorithm in [21]. The sub-framemean-square error (MSE) is

then‖x − gcHc‖2, wherec is sparse (at mostm non-zero positions in theL-dimensional

codevector). If the sub-frame gain,gc, is absorbed into the codevector amplitudes, then

consider the problem of selecting the optimum non-zero pulse amplitude‖x − Hc‖2. De-

note them non-zero positions in the codevector as 0≤ i0 < i1 < · · · < im−1 < L. Since
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Figure 2.2: Probability density function of Y based on (2.3)

the remainingL − m dimensions ofc are zero, it follows thatHc = H̃ c̃, wherec̃j = ci j ,

j = 0, . . . ,m− 1 andH̃ = [hi0 hi1 · · · him−1], with H̃ an L row by m column matrix withhi j

thei thj column ofH. Minimizing ‖x − Hc‖2 =
∥

∥

∥x − H̃ c̃
∥

∥

∥

2
yields the optimum (unquantized)

non-zero pulse amplitude as ˜copt = (H̃T H̃)−1H̃T x. The empirical density of the amplitudes

of c̃opt/
∥

∥

∥c̃opt

∥

∥

∥ is shown in Figure 2.2 (for the AMR 12.2 kbps mode withm= 10 non-zero

pulses per sub-frame of 40 samples). Clearly, the density iszero mean, symmetric, and

bimodal.

A simple model for the bimodal optimum non-zero pulse amplitudesc̃opt is

Y = A+ X (2.3)

whereA is a discrete, binary random variable with equiprobable amplitude±a andX is a

zero-mean, continuous Gaussian random variable with varianceσ2
X, independent ofA. An
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alternative model might be

Y = A+ sign(A)X (2.4)

wheresign(A) is the sign of the random variableA. Figure 2.2 also shows the probability

density function ofY based on (2.3) whenX is a zero-mean Gaussian random variable,

with the parametersa andσ2
X selected to model the bimodal density of the non-zero pulse

amplitudes. Use of (2.4) allows more flexible modeling of thenon-zero pulse amplitudes,

but for the present purposes the model in (3) is adequate.

2.3 Rate-Distortion Analysis

Since (2.3) provides a reasonable model for the empirical density of the normalized opti-

mum pulse amplitudes in ˜copt, it is used as a model for rate-distortion analysis of the direct

quantization of ˜copt. Consider the problem of minimum MSE quantization ofY given by

(2.3). The Shannon lower-bound to the rate-distortion function is given by [31]

RS LB,Y(D) = h(Y) − 0.5 log2(2πeD) (2.5)

whereh(Y) is the differential entropy ofY. From (2.3) and the convexity of the logarithm

function, it follows that

h(Y) ≤ H(A) + h(X) = 1+ h(X) (2.6)
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whereH(A) is the entropy ofA, which is equal to 1 sinceA is a binary random variable

with equi-probable outcomes. Substituting (2.6) into (2.5) yields

RS LB,Y(D) ≤ 1+ h(X) − 0.5 log2(2πeD) ≤ 1+ RS LB,X(D) (2.7)

whereRS LB,X(D) is the Shannon lower-bound to the rate-distortion function of X. As a be-

comes large, equality in (2.7) is approached. For that case,RS LB,Y(D) is well-approximated

asRS LB,Y(D) ≈ 1+ RS LB,X(D). Assuming thata is large enough, solving for the distortion

then yields

DS LB,Y(R) = DS LB,X(R− 1). (2.8)

In ACELP coding, the non-zero pulse amplitudes are quantized at a rate of 1 bit/sample

as the amplitudes±1, with the codevector scaled by a quantized gain. This can bethought

of as 1 bit/dimension scalar quantization of them normalized pulse amplitudes, with the

normalization factor represented as the quantized codevector gain. From (2.8), it can be

seen that at rateR = 1, the smallest distortion to be expected for direct quantization ofY

is the variance ofX. Moreover, this distortion is achievable by using simple 1-bit scalar

quantization (with reproduction levelŝY = ±E[Y|Y > 0]). Rate-distortion theory thus indi-

cates that it is not possible to get better coding performance than this atR = 1 bit/sample.

Certainly at encoding rates larger than 1 bit/sample vector quantization ofY may provide

smaller MSE than scalar quantization. But for parametera large enough and at the en-

coding rate of 1 bit/sample, direct scalar quantization ofY is optimum in a rate-distortion
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sense. Hence, no improvement is to be expected even if one uses more elaborate quantiza-

tion methods such as vector quantization.

In extrapolating from the analysis above to ACELP coding, two qualifications should

be noted. First, in ACELP speech coding the objective is not to directly quantize the non-

zero pulse amplitudes to minimize MSE, but rather to minimize the weighted MSE in (2.1).

Second, if there is dependence between the dimensions of ˜copt, then vector quantization or

joint entropy coding may offer improvement. However, we will demonstrate in the next

section that for 1 bit/pulse amplitude quantization, correlation between sign bits is small

and joint coding of the sign bits offers negligible improvement in coding efficiency.

2.4 Two-State Markov Chain Modeling of Sign-bit Correlation

Suppose that the algebraic codevector pulse positions are determined as in [21], and the

amplitudes represented as±1. In this section, we model the sign-bit correlation using a

two-state Markov model [31]. Then, the entropy rate for the Markov model provides an

estimate of the smallest encoding rate necessary to encode the algebraic codevector sign-bit

information.

The correlation matrix of the optimal algebraic codevectorsign-bit information is esti-

mated as

Λ =
1
N

N
∑

n=1

s̃(n)s̃T(n), (2.9)
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Figure 2.3: Two-state Markov chain model

where s̃(n) = (s̃0(n), s̃1(n), . . . , s̃m−1(n))T = sign(c̃opt(n)), c̃opt(n) is the vector of optimal

non-zero pulse amplitudes for subframen, andN is the total number of subframes.

Denote the first-order correlation of non-zero pulse position i asΛ1(i), estimated as

Λ1(i) =
1
N

N
∑

n=1

s̃i(n)s̃i+1(n), (2.10)

with backward and forward first-order correlation the same.Since there are two possible

sign values,+1 or −1, we can model the event of sign value change between adjacent

positions ofc̃opt using a two-state Markov chain. The model is shown in Figure 2.3, where

α = Pr(si+1 = −1|si = +1) is the probability that given sign value+1 at pulse positioni, the

sign value of the next pulse positioni + 1 is−1, andβ = Pr(si+1 = +1|si = −1). Averaging

over all subframes, the first-order correlation is empirically estimated to be−0.05 (for

m = 10 non-zero pulse positions per subframe and the AMR 12.2 kbps encoding mode).
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Consider the first-order correlation

Λ1(k) =
1
N

N
∑

n=1

s̃i(k)s̃i+1(k) =
1
N















N+1
∑

n=1

(1)+
N−1
∑

n=1

(−1)















=
1
N

[N+1 − N−1] = P+1 − P−1 = −0.05, (2.11)

whereP+1 andN+1 are the estimated probability and number of occurrences of the event

that the sign values of pulse positionk andk+1 are identical, andP−1 andN−1 are similarly

defined. Using the fact thatP+1 + P−1 = 1 and (2.11) yieldsP+1 = 0.475 andP−1 = 0.525.

From Figure 2.2, it is reasonable to assume that Pr(sk = −1, sk+1 = −1)= Pr(sk = +1, sk+1 =

+1), and Pr(sk = +1, sk+1 = −1) = Pr(sk = −1, sk+1 = +1). Then, solving forα andβ, we

obtainα = 0.525= β. From [31], the entropy rate of the two-state Markov model is

H∗ =
β

α + β
Hb(α) +

α

α + β
Hb(β), (2.12)

whereHb(.) is the binary entropy function. Hence, forα andβ = 0.525, the entropy rate is

H∗ = 0.99 bit/sample. Since this is almost the same as the 1 bit/sign-bit encoding rate used

in ACELP, it implies that no significant improvement in coding efficiency is feasible.

2.5 Simulation Results

In this section, we will compare ACELP using optimum (unquantized) pulse amplitude

codevectors in section 2.2 with that using original algebraic codevectors. The simula-
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tion is performed using ACELP with the 12.2 kbps mode in [21].In this mode, each

subframe of 40 samples is partitioned into 5 interleaved tracks, with two non-zero pulse

positions allowed in each track. The optimum pulse amplitudes are computed, subject to

the restriction that non-zero pulse positions must be the same as those obtained from the

ACELP algorithm. Then, the original algebraic codevectorsare replaced with the optimum

(unquantized) pulse amplitude codevectors. Two performance comparisons are presented:

weighted mean-square error as defined in (2.1); and mean opinion score (MOS) [32]. The

results are shown in Tables 2.1 and 2.2, whereMS Eopt is the average normalized MSE

when optimum unquantized codevectors amplitudes are used and MS EACELP is the average

normalized MSE using quantized ACELP fixed codevectors. Theaverage normalized MSE

is defined as

MS ENormalize=
1
N

N
∑

n=1

‖xn − gnHncn‖
2

‖xn‖
2

(2.13)

whereN is the total number of subframe.

It can be seen that using optimum (unquantized) codevector amplitudes results in smaller

MSE, but this does not have significant effect in the MOS sense. In other words, the MOS

results imply that the segment or part of speech improved by using the optimum codevec-

tor might not be influential in human hearing, and thus the speech quality perceived by the

listener might be almost the same as that using the ACELP fixedcodevector.

In [29] enhancement layer coding is studied using refinementquantization of the four

non-zero ACELP base-layer pulses, at an effective rate of 2 bits/pulse (in addition to the 1
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Table 2.1: Average normalized MSE

Speech MSEACELP MSEopt

Male1 0.72 0.61

Male2 0.55 0.50

Female1 0.44 0.36

Female2 0.41 0.21

Table 2.2: Mean opinion score

Speech MOSACELP MOSopt

Male1 3.96 3.96

Male2 3.89 3.92

Female1 3.77 3.81

Female2 4.18 4.21

bit/pulse base-layer encoding rate). The small increase in MOS reported is consistent with

the results in table 2 for the unquantized optimum non-zero amplitudes.
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Chapter 3

Gaussian Mixture Modeling of Transform Audio Coding3

3.1 Introduction

Transform coding is an effective approach to audio coding. Such transformations include

the discrete Fourier transform (DFT) [23], [36], the discrete cosine and modified discrete

cosine transforms, and subband decomposition [37]. One recent example is DFT-based

transform coded excitation (TCX) used in the adaptive multi-rate wideband audio coding

algorithm [23]. The transform coding consists of three steps. First, the data sequence is

divided into frames of sizeN and then a given transformation is performed on each frame.

The second step is quantizing the transformed sequence subject to a fixed rate per frame

constraint. The final step is encoding the quantized transformed sequence into a binary

bitstream [38].

Spherical vector quantization (SVQ) has been shown to be an efficient way to quantize

audio transform data [18], [39] and has been used in an audio coding standard [23], [36].

3Portions of this chapter were published in [33], [34], and [35].
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Figure 3.1: Empirical density of transform coefficients compared to that of memoryless
Gaussian and Laplacian random variables with the same mean and variance.

SVQ can be structured as a type of multi-rate, classified vector quantizer [40] that uses a

product code to encode lattice codevectors as binary codewords. The product code consists

of 1) a code for representing the codevector energy (squaredradius), and 2) a code for

representing a lattice codevector, conditioned on the codevector energy. The product code

partitions the lattice codevectors into concentric “shells” of codevectors. SVQ construction

is motivated by the spherical geometry of the high probability volume of a memoryless

Gaussian source probability density function [41], [42]. The lattice SVQ in [18], [39]

is relatively simple to implement and remarkably effective, with an observed operational

rate-distortion performance (for encoding audio transform data) significantly better than

the memoryless Gaussian rate-distortion function.

As shown in Figure 3.1, the audio transform coefficients are reasonably well mod-
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eled as having marginal Gaussian or Laplacian densities [39], [18]. However, memoryless

Gaussian and Laplacian rate-distortion functions [3] are poor estimators of actual SVQ per-

formance in transform audio coding, as will be shown later inthis chapter. This is due to

the strong energy dependence in transform audio coefficient data. This can be seen in Fig-

ure 3.2, which compares the empirical probability density function (pdf) of audio transform

coefficient block squared radius (the block energy) to the block squared radius of memo-

ryless Gaussian data, and Laplacian data, for block sizesL = 4, 8, 16, and 32. Clearly, for

every block size the empirical density of the transform audio block squared radius differs

significantly from that of memoryless Gaussian or Laplaciandata of the same mean and

variance. Since the correlation between coefficients is small, the empirical density is in-

dicative of non-linear (energy) dependence in the transform coefficient data.

A Gaussian mixture model (GMM) [43], [44] is used in this chapter to model vectors

of audio transform coefficients. It is shown in [45] that any continuous pdf can be approx-

imated by a Gaussian mixture density. A GM model has been successfully employed in

several areas, e.g., speech recognization [46], speech coding [47]-[48], image coding [49],

etc. In [50], a generalized Gaussian (GG) mixture model is used to model image subband

coefficients. A lattice VQ encodes lattice codevectors partitioned in “shells” matched to

the GG shape parameters [51]. The experimental results in [50] focus on a mixture of

Laplacian densities and report GG mixture modeling averagerelative mean squared error

distortion within 6 to 20 percent of empirical rate-distortion LVQ performance, with maxi-

mum relative error as large as 32 percent.
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In this chapter, we focus on modeling the performance of lattice spherical vector quan-

tization (SVQ) in transform audio coding. This is done in twosteps. First, we model the

transform audio coefficient data using a Gaussian mixture model. Then, a rate-distortion

function based on the GM model is developed and used to estimate the performance of

SVQ. GM model parameters are estimated using the Expectation-Maximization (EM) al-

gorithm [43], [44], [52] and two alternative methods to estimate model parameters are pro-

posed. As an application example of the proposed method, themodel developed is shown

to accurately describe theRE8 lattice SVQ performance used in [23].
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3.2 Gaussian Mixture Model

A K-class Gaussian mixture pdf forL-dimensional random vectorU is a parameterized

function of the form

fmix(u|Θ) =
K

∑

k=1

P(k) fU|Θ(u|θk) (3.1)

whereP(k) denotes the prior probability or the probability thatU is generated by thekth

class, and the component distribution,fU|Θ(u|θk), is a multivariate Gaussian distribution

defined as

fU|Θ(u|θk) =
1

(2π)L/2|Ck|
1/2

e{−
1
2 (x−µk)TC−1

k (x−µk)} (3.2)

whereµk andCk are the mean vector and covariance matrix of thekth class, respectively.

The mixture model’s parameters are defined as the setΘ = {P(1), . . . ,P(K), θ1, . . . , θK},

whereθk = {µk,Ck}, for k = 1, . . . ,K.

3.2.1 Gaussian Mixture Model for Audio Transform Coefficients

Let X be a real-valued sequence of lengthN to be quantized and encoded, formed from

consecutive transform coefficients. AssumingL dividesN, partitionX into N/L real-valued

vectors (blocks) of sizeL, denoted asY. The transformation is assumed to remove the linear

dependence inX, and hence also inY. Also, it is clear from Fig. 3.1 thatX has zero mean.

We further assume a stationary property in each component class. So, nowθk = {0, σ2
k}.

Therefore, aK-class,L-dimensional Gaussian mixture model in (3.1) for vectorY reduces
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to

fmix(y|Θ) =
K

∑

k=1

P(k) fY|σ2
k
(y|σ2

k) (3.3)

where fY|σ2
k
(y|σ2

k) =
1

(2πσ2
k)L/2 exp(− 1

2σ2
k

∑L
l=1 y2

l ).

An alternative way to define the mixture model for audio transform coefficients is based

on block or vector energy ofY. Let the normalized energy beZ = ǫ
σ2

X
, whereǫ =

∑L
l=1 y2

l is

the block energy (square radius) of the vectorY, andσ2
X is the variance ofX. SupposeY is

generated from thekth class. Write the block energy asZ =
σ2

k

σ2
X

ǫ
σ2

k
= wkZk, wherewk =

σ2
k

σ2
X

andZk =
ǫ
σ2

k
. The components ofY are independent and identically distributed and thusZk

is Chi-square distributed [53]. Then, the mixture model of block energyZ can be expressed

as

fmix(z|Θ) =
K

∑

k=1

P(k) fZ|σ2
k
(z|σ2

k) (3.4)

where fZ|σ2
k
(z|σ2

k) =
1

wk
f̂
(

z
wk

)

and f̂ (z) is Chi-square distributed with degree of freedomL,

defined byf̂ (z) = 1
2L/2Γ(L/2)z

L/2−1e−z/2, z≥ 0.

The model parametersP(k) andσ2
k, for k = 1, . . . ,K, can be estimated by several meth-

ods such as Expectation-Maximization (EM) algorithm [43]-[44], Markov-chain Monte

Carlo algorithm [52], and Lloy clustering procedure [54]. In this paper, the EM algorithm

is used since it is an algorithm widely used for finite mixturemodeling.

Let ym denote themth block of M total blocks and letym,l denote thel th component

of ym, for l = 1, . . . , L. From [44], the EM algorithm requires introduction of auxiliary

variables,wm,k, that represent how likely blockym is generated by thekth class, for blocks
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m = 1, . . . ,M and classesk = 1, . . . ,K. From [44] and (3.3), the expectation and maxi-

mization steps of the EM algorithm are as follows.

E-Steps

E[wm,k] =
fY|σ2

k
(ym|σ

2
k)P(k)

∑K
j=1 fY|σ2

j
(ym|σ

2
j )P( j)

(3.5)

for m= 1, . . . ,M andk = 1, . . . ,K.

M-Steps

σ2
k =

∑M
m=1 E[wm,k]( 1

L

∑L
l=1 y2

m,l)
∑M

m=1 E[wm,k]
(3.6)

for k = 1, . . . ,K, whereE[··] denotes expectation. Alternatively, letzm be the normalized

block energy ofym, for m = 1, . . . ,M. Similar to above, by observing normalized block

energy, the E-M steps for estimating the model parameters ofthe mixture model in (3.4)

are as follows.

E-Steps

E[wm,k] =
fz|σ2

k
(zm|σ

2
k)P(k)

∑K
j=1 fz|σ2

j
(zm|σ

2
j )P( j)

(3.7)

for m= 1, . . . ,M andk = 1, . . . ,K.

M-Steps
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σ2
k =

∑M
m=1 E[wm,k]zmσ

2
X

k
∑M

m=1 E[wm,k]
. (3.8)

The EM algorithm is used to estimate the mixture model parameters using transform

coefficient vectors computed from a database of two minutes of wideband audio, 20%

speech (two male and two female talkers) and 80% music (from nine different recordings).

The resulting GMM energy density is compared to the empirical density of the transform

coefficient vector energy in Figure 3.3 forK = 2, 4, 8, 16, and 32 classes. The transform

coefficient marginal density of the GMM is also compared to the empirical density in Fig-

ure 3.4. It is clear that as the number of classes increases, the mixture models from both

methods provide good approximations to both the vector energy density and the marginal

density. However, one empirical observation is that GMM parameters based on (3.7) and

(3.8) converge faster than those based on (3.5) and (3.6).

3.3 Rate Distortion Function based on Gaussian Mixture Model

For small mean-squared error (MSE) distortion,D, the rate-distortion performance of

entropy-coded quantization of a memoryless Gaussian source is

R(D) =
1
2

log2

(

2πe
12β
·
σ2

D

)

(3.9)
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Figure 3.3: The Gaussian mixture model of transform coefficient block square radius com-
pared to the empirical density (L = 8): (a) Model based on (3.5) and (3.6); (b) Model based
on (3.7) and (3.8)
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Figure 3.4: The Gaussian mixture model marginal density of transform coefficients com-
pared to the empirical density (L = 8): (a) Model based on (3.5) and (3.6); (b) Model based
on (3.7) and (3.8);
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whereσ2 is the source variance and 1≤ β ≤ (2πe/12) reflects thegranular gain, also

called thespace filling advantage[55], of the quantization method. For uniform quanti-

zation,β = 1 and (3.9) is the Gish-Pierce asymptote [56]. For vector quantization using

theE8 lattice [7], [57],β ≈ 1.16 (or 0.65 dB). Forβ = 2πe/12, (3.9) is the rate-distortion

function for the memoryless Gaussian source [31].

Now, consider aK-class Gaussian mixture source model of vector (block) length L.

Each class is modeled to have block components that are independent and identically dis-

tributed (i.i.d), as mention in Section 3.2. Using (3.9), the rate-distortion function for quan-

tization and encoding thekth class can be expressed as

Rk(D) =
1
2

log2

(

2πe
12β
·
σ2

k

D

)

(3.10)

whereσ2
k is thekth class variance andD is assumed small compared toσ2

k. One coding

strategy is to first classify a source vector and then quantize and encode that vector condi-

tioned on the class. Additional rate is necessary to specifythe block class. As we assume

an i.i.d sequence of source blocks, the minimum rate for encoding the class is the entropy,

H(k) = −
∑K

k=1 P(k) log2 P(k) bits/block, whereP(k) is the probability of classk. The aver-

33



age encoding rate for classification-based quantization and encoding is thus modeled as

RGMM(D) =
1
L

H(K) +
K

∑

k=1

P(k)
1
2

log2

(

2πe
12β
·
σ2

k

D

)

(3.11)

=
1
L

H(K) +
1
2

log2















2πe
12βD

K
∏

k=1

(σ2
k)

P(k)















. (3.12)

Define the first term in (3.12) as the classification rate,RK =
1
L H(K), and the second term

as the rate conditioned on the classification,Rclass(D).

3.4 Experimental Results

To evaluate the effectiveness of the mixture model rate-distortion function in (3.12), first we

perform spherical VQ similar to [23]. However, for simplicity, theZ8 lattice is used instead

of theRE8 lattice, and we compare the estimated encoding rate from (3.12) to the spherical

VQ performance. Then, later in this section, we use (3.12) toestimate the encoding rate of

RE8 lattice spherical VQ in the AMR-WB+ standard [23].

The rate required for lossless coding of theZ8 SVQ codevectors is determined as fol-

lows. Letv be aZ8 codevector with squared radiusr =
∑L

i=1 v2
i = ||v||

2. A product code

is used to encodev, consisting of two parts: 1) a code is used to specify the sphere of

squared radiusr, and 2) a code is used to specify the codevector on a given sphere. The
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Table 3.1:Rclass(D) corresponding to Table 3.2 (bits per sample)

SVQZ8
Rclass(D)

K=1 K=2 K=4 K=8 K=16 K=32

∆ = 0.5 4.46 3.44 3.19 3.14 3.14 3.15

∆ = 1.0 3.47 2.46 2.20 2.16 2.16 2.17

∆ = 2.0 2.54 1.53 1.28 1.28 1.27 1.29

ideal required rate can be expressed as

Ri =
1
L

[log2(1/P(r)) + log2 N(r)] bits/sample, (3.13)

whereP(r) is the probability thatv has squared radiusr andN(r) is the number ofZ8 lattice

points that lie on the sphere.N(r) can be computed off-line from the theta function for the

Z8 lattice [57]. In practice the allowed range of lattice codevector radius can be truncated,

andoverloadlattice codevectors losslessly encoded using the method ofVoronoi extension

(as in [23], [39]), or by simply partitioning the overload codevector into subblocks, and

using a separate lossless code to encode the subblocks. In the experimental results to follow,

the latter method is used, together with (3.13), to computeZ8 SVQ encoding rates.

The source data are the spectrally pre-shaped and scaled transform coefficients from the

AMR-WB+ encoding method. The transform coefficients are quantized using the scaledZ8

lattice, and the average encoding rate computed using (3.13). The squared error distortion
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Table 3.2: Estimated rate,RGMM(D) in (3.12), and empirical average encoding rate of SVQZ8

at various step sizes

K

Average rate (bits/sample)

∆ = 0.5 ∆ = 1.0 ∆ = 2.0

RGMM(D) SVQZ8 RGMM(D) SVQZ8 RGMM(D) SVQZ8

1 4.46

3.39

3.47

2.42

2.54

1.53

2 3.53 2.54 1.61

4 3.40 2.41 1.49

8 3.47 2.50 1.61

16 3.56 2.58 1.69

32 3.69 2.72 1.84

is controlled in the simulations by adjusting theZ8 lattice step size, and is computed as

D =
1

L · M

M
∑

m=1

L
∑

l=1

(ym,l − ŷm,l)
2, (3.14)

whereM is the number of data vectors,L = 8 is the vector dimension coresponding toZ8,

and ŷ is the lattice SVQ codevector fory. The distortion is thus the average squared error

from lattice SVQ, and the rate, from (3.13) is the (idealized) spherical lattice VQ encoding

rate. For a given lattice step size, the resulting simulation distortion,D, is used in (3.12) to

determine the GMM estimate of encoding rate,RGMM(D).

The simulation results are summarized in Tables 3.1-3.2, comparing the average rate

required for spherical VQ using the scaledZ8 lattice (S VQZ8) to the GMM rate-distortion

functionRGMM(D) in (3.12), withβ = 1 (corresponding toZ8 latice) and for several step sizes

(equivalent to several signal-to-noise ratios, SNR). FromTables 3.1 and 3.2, it can be seen
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that the bit rate necessary to specify the block class,RK, costs roughly 0.1 bits/dimension

in classification rate for each doubling of the number of classes in the GMM. Examining

Table 3.2 shows that for a single class (a memoryless Gaussian source model), the rate-

distortion model over-estimates the rate by a significant margin. For effective rate-distortion

modeling,K = 4 is a sufficient numbers of classes to capture the availableclassification

gain, and increasingK beyond 4 needlessly wastes rate in the modeling. This can be seen

from Table 3.1 in which the conditional class encoding rate in (3.12),Rclass(D), saturates

for K ≥ 4. Note from Fig. 3.3 that theK-class mixture modeling estimate of the empirical

block energy density continues to improve asK ranges from 1 to 32. ForK = 4 the mixture

model energy density is a rather coarse estimate of the empirical density. However, for

modeling of rate-distortion performance,K = 4 classes is adequate. The 4-class GMM

rate estimate is close to the (ideal) observedZ8 VQ encoding rate, underestimating it by no

more than 0.04 bits/sample.

The GMM rate-distortion function in (3.12) is used to estimate the average encoding

rate of theRE8 lattice VQ in the AMR-WB+ algorithm. The valueβ = 1.16 (corresponding

with RE8 lattice) is used in (3.12) [7], [57] for various distortionscorresponding to different

encoding modes of AMR-WB+ [23]. The results are shown in Tables 3.3-3.4. We note that

the encoding in [23] uses a fixed rate per frame, whereas the GMM rate-distortion function

in (3.12) does not impose this constraint. Hence, one expects the GMM rate-distortion

mode to lower bound the observedRE8 lattice VQ performance.

From Table 3.4, the rate-distortion modeling withK = 4 classes reasonably well
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Table 3.3:Rclass(D) corresponding to Table 3.4 (bits per sample)

AMR-WB+ Rclass(D)

rate (kbps) K=1 K=2 K=4 K=8 K=16 K=32

10.4 1.57 0.64 0.61 0.60 0.59 0.59

16.8 2.06 1.08 0.95 0.90 0.90 0.90

24.0 2.52 1.50 1.26 1.26 1.25 1.27

Table 3.4: Comparison betweenRGMM(D) in (3.12) and average rate usingRE8 in AMR-
WB+

K

10.4 kbps 16.8 kbps 24.0kbps

RGMM(D)
AMR

RGMM(D)
AMR

RGMM(D)
AMR

WB+ WB+ WB+

1 1.57

0.6

2.06

1.05

2.52

1.54

2 0.72 1.16 1.58

4 0.81 1.15 1.46

8 0.93 1.23 1.59

16 1.00 1.32 1.67

32 1.13 1.43 1.81

models the AMR-WB+ rate at high rate (24.0 kbps), similar to theS VQZ8 case. The

results in Table 3.3 also demonstrate again that for rate-distortion modeling in (3.12), the

number of classes,K, equal to 4 is enough to capture classfication gain of the mixture

model.

At low and medium rates, however, the rate-distortion modeling in (3.12) does not

adequately predict the AMR-WB+ encoding rate. The reason is that as the rate decreases,

the frame gain (normalization factor) increases and the number of source vectors encoded

as the zero codevectors increases. Thus, the overall distortion gets larger and the small
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Table 3.5: Results of the comparison based on the modified modeling

K

10.4 kbps 16.8 kbps 24.0kbps

RGMM(D)
AMR

RGMM(D)
AMR

RGMM(D)
AMR

WB+ WB+ WB+

1 0.75

0.60

1.41

1.05

2.12

1.54

2 0.59 1.02 1.51

4 0.58 1.00 1.45

8 0.62 1.08 1.54

16 0.62 1.10 1.60

32 0.66 1.15 1.67

distortion assumption in (3.12) is not valid. Some modifications have to be made in order

to use rate-distortion modeling in (3.12) at low and medium rates.

A modification to the modeling approach is to use the GMM to model only significant

source vectors, where significant means a source vector encoded using the AMR-WB+

RE8 lattice VQ as a non-zero codevector. Using only significant source vectors, GMM

parameters are again estimated using the EM algorithm, and the average encoding rate

RGMM(D) is computed from (3.12). The total estimated rate,Rtotal(D), is then computed by

Rtotal(D) =
(R̂GMM(D) × Nnonzero) + (Rzero× Nzero)

Nnonzero+ Nzero
(3.15)

where R̂GMM(D) = RGMM(D) + 0.125 is the estimated encoding rate for significant source

vectors based on (3.12), plus an additional 0.125 bits/sample (or 1 bit/source vector) to

distinguish the codeword as not having the same prefix as the zero vector codeword.Rzero

39



is the encoding rate for zero codevectors, which for AMR-WB+ [23] is a fixed rate of 1

bit/vector (or 0.125 bits/sample).Nzero andNnonzeroare the number of zero codevectors and

nonzero codevectors, respectively.

The estimated encoding rate based on the modified GMM approach is presented in

Table 3.5. This provides a better prediction of the observedAMR-WB+ encoding rates.

Again,K = 4 is a sufficient number of classes.
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Chapter 4

Block-Adaptive Lattice Vector Quantization in Image Coding

4.1 Introduction

Subband image decomposition [58], typically using a wavelet transform [59], is an effective

method of image representation, supporting several desirable image compression proper-

ties, such as scalability, region-of-interest coding, andembedded coding for progressive

transmission [60]-[61]. An octave subband structure is commonly used (e.g., [61]-[62]).

In all except the lowest frequency subband, the subband (or,referred to interchangeably in

this chapter, wavelet) coefficients have marginal density that is well-modeled as Laplacian,

or generalized Gaussian with shape parameterα = 0.7 [59], [63]. The subband coefficients

also have small correlation [63], but they are generally notmemoryless, instead display-

ing an evident nonlinear energy dependence. This is shown inFigure 4.1, comparing the

empirical block energy density for contiguous blocks of subband coefficients, to the en-

ergy density of blocks of memoryless Laplacian or generalized Gaussian data of the same

mean and variance. The empirical block energy density is highly peaked at small energy,
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and heavy-tailed, reflective of the large number of small amplitude subband coefficients,

with the larger magnitude coefficients typically clustered, rather than distributed uniformly

throughout the subbands. Figure 4.1 uses block energy defined as||x||22 =
∑

xi∈block |xi |
2, but

similar results are obtained defining the block energy as theℓ1 norm. Efficient subband

image coding algorithms take advantage of such energy dependence, such as by using a

quad-tree data structure across [24],[60] or within subbands [64], or by using local con-

texts in bit-plane coding [62].

The image subband block energy density can be modeled as a mixture of memoryless

Gaussian or Laplacian random variables [49]-[50]. A suitable block-based lattice vector

quantizer (LVQ) can be formed using concentric spheres (motivated by the Gaussian mix-

ture model), or pyramids (motivated by the Laplacian mixture model). A spherical LVQ

using theRE8 lattice [18] is used in the AMR-WB+ audio coding standard [23]. A pyramid-

based LVQ has been used for image coding [19], [65]. Lattice-based vector quantization

offers the potential of relatively simple quantization and granular coding gain [57]. How-

ever, the mapping from lattice codevectors to binary codewords can be cumbersome, with

complexity that typically grows with the lattice dimension.

In this chapter, we propose an image coding algorithm based on lattice-based spherical

vector quantization (LSVQ) or lattice-based pyramid VQ (LPVQ), motivated by Figure 4.1.

Quadtree partitioning is used to divide regions of coefficients into blocks to be lattice vector

quantized and encoded. The block sizes are selected based onblock energy constraints. If a

block has too large energy, it is partitioned into smaller blocks. The maximum block energy
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Figure 4.1: Empirical density of wavelet block’s energy compared to that of memoryless
Laplacian and generalized Gaussian vectors with the same mean and variance.

is selected subject to complexity constraints on the enumeration of lattice codevectors as

binary codewords. Blocks of coefficients are vector quantized and encoded using a product

code based on LSVQ or LPVQ. The block partitioning is motivated by SPIHT-type algo-

rithms, [64], [66], however, instead of partitioning basedon significant and insignificant

bit-plane coefficients, the proposed method partitions based on block energy. The resulting

bitstream is not embedded, but offers the potential granular gain of the lattice.
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4.2 Block-Adaptive Lattice VQ

This section briefly describes the basic concepts of the proposed block-based image coding

using set partitioning, and introduces the notation and terminology used in this chapter. An

image is decomposed into subbands, typically using a wavelet transform. This transformed

image, or portions of it, are structured as sets of coefficients. A set is callede-limited if

its energy is less than a threshold; otherwise it is callednon-e-limited. The threshold is

generally dependent on the number of coefficients in the set (the vector dimension). The

block partitioning algorithm begins with large sets of coefficients. Sets are tested, and if

non-e-limited, are split into subsets for further testing.Sets that are e-limited are quan-

tized and encoded without further partitioning of the set. This can be done directly, or in a

progressive manner. Partitioning can be done based on spatial orientation trees [64], [67]

or quadtrees [66]. The goal of partitioning is to keep splitting off clusters of large energy

coefficients while maintaining a large set of relatively small energy coefficients which are

jointly vector quantized and encoded. By doing this, the energy clustering evident in Fig-

ure 4.1 can be exploited and the quantization and encoding can be performed efficiently. In

this work, partitioning based on quadtrees, similar to [66], is used and the testing condition

uses either theℓ2 or ℓ1 norm for set energy. More specifically, an e-limited set in this work

implies a set that can be quantized and encoded using a product code based on LSVQ or

LPVQ and hence, the vector of set coefficients lies within a bounding sphere or pyramid of

respectiveℓ2 or ℓ1 radius.
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Figure 4.2: SetS(l)
m,n
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Figure 4.3: Number of pixels for each block size

Let ci, j andĉi, j be the unquantized and corresponding quantized version of the wavelet

coefficient at coordinate (i, j) of a transformed image of sizeN × N. Denote a subset (or

block) at levell due to quadtree parititioning, and its corresponding quantized version, as

S(l)
m,n andŜ(l)

m,n, respectively, where (m, n) is the coordinate of a given coefficient inS(l)
m,n used

to refer to that subset, e.g., the coordinate of the coefficient at the block top-left corner, as

shown in Figure 4.2. Denote subsets (or subblocks) resulting from quadtree partitioning
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S(l)
m,n asO(S(l)

m,n). DefineE(Ŝ(l)
m,n, ν) =

∑

ĉ∈Ŝ(l)
m,n
|ĉi, j |

ν, whereν ∈ {1, 2}, as the energy in a block

of quantized coefficients. A set̂S(l)
m,n is said to be e-limited if

E(Ŝ(l)
m,n, ν) ≤ T(l) (4.1)

whereT(l) is a predefined threshold for partition levell, and the threshold can vary with

partition level.

The LSVQ and LPVQ use as codevectors all lattice vectors within a bounding sphere

or pyramid. Letn denote the vector dimension andΛn the lattice. We assume a binary

lattice is of the form described in [22], withΛn ⊆ Zn, whereZn is the cubic lattice of

dimensionn. Let NΛ,1(n, k) denote the number of lattice points satisfying||x||1 = k, and

let NΛ,2(n, k) denote the number of lattice points satisfying||x||22 = k, k = 0, 1, . . .. These

values are summarized as the lattice nu-function [19] and theta function [57], respectively.

A variable-length code,Cν, (e.g., a Huffman code) is used to encode the energy, with code-

word denoted bycν(||x||νν). An enumeration code,Cc, uses
⌈

log2(NΛ,ν(n, ||x||
ν
ν))

⌉

bits/vector

to encode the codevector, conditioned on the energy. Thus, the encoding bits for the quan-

tized blockŜ(l)
m,n are composed of two parts: 1) a codeword used to specify the sphere or the

pyramid,cν(||x||νν), and 2) a codeword used to specify the codevector on a given sphere or

pyramid,cc. Encoding and decoding using codesCν andCc can be implemented primarily

using look-up tables.

Figure 4.3 shows the relative distribution of blocks of various sizes resulting from the
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quadtree partitioning of wavelet transformed image based on the proposed algorithm and

the ℓ2 energy measure. Similar distributions are obtained for theℓ1 case. At low overall

encoding rate there are many large blocks and very few singleton blocks, most of the latter

from the low frequency subband. Even at large encoding rate,there are relatively few sin-

gleton blocks, and the abundance of 2× 2 and 4× 4 blocks suggest the granular gains of

theD4, E8, Λ16, or other lattices can improve the encoding signal-to-noise ratio (SNR).

4.3 Coding Algorithm

The main idea of the partitioning algorithm is simple. Largesubsets are tested according to

an energy threshold to determine whether partitioning is required. As soon as subsets have

energy within the testing threshold, they are encoded usinga product code based on LSVQ

(ν = 2) or LPVQ (ν = 1) and are removed from further consideration. Since the order in

which subsets are tested is important and needs to be maintained, a list is used to store the

testing order. Denote the list of sets asLS. Also, define the binary testing function as

EF(Ŝ(l)
m,n, ν) =







































0, if E(Ŝ(l)
m,n, ν) ≤ T(l)

1, if E(Ŝ(l)
m,n, ν) > T(l).

(4.2)

AssumeN is power of 2. The proposed encoding algorithm is presented in Algorithm 1.

The algorithm uses the functionsLVQ() to perform lattice VQ,encode() to generate the
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Algorithm 1 Block-Adaptive LVQ
Given: subband image{ci, j} and chosenν-norm
Initialize: LS = {(0, 0)}, l = 0
Start:

while LS , φ do
for all (m, n) ∈ LS except those added in currentl do

if N > 1 then
Ŝ(l)

m,n = LVQ(S(l)
m,n,N);

outputEF(Ŝ(l)
m,n, ν);

if (EF(Ŝ(l)
m,n, ν) = 1) then

addO(S(l)
m,n) to the end ofLS;

remove (m, n) from LS;
else

outputencode(Ŝ(l)
m,n,N, ν);

remove (m, n) from LS;
end if

else
Ŝ(l)

m,n = round(S(l)
m,n);

outputencodescalar(Ŝ
(l)
m,n);

remove (m, n) from LS;
end if

end for
N ← N ≫ 2;
l ← l + 1;

end while
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binary codeword representing a lattice codevector, andencodescalar() to generate the binary

codeword for a singleton block. To quantize the blockS(l)
m,n using LVQ, the vector is formed

based on raster scanning. The decoding algorithm is similarto the encoding algorithm, re-

placingoutputto input, encode() to decode(), and quantization is no longer required. In the

algorithm main loop (while loop), the block size is decreased if the block is non-e-limited.

The decoder tracks the block size from the sequence of energy-testing bits. The algorithm

makes no assumption on the lattice (or lattices) used. However, if the integer lattice is

used, lattice quantization can be done in advance, before the algorithm execution, and the

partitioning can be done directly to quantized blocks,Ŝ(l)
m,n.

A simple modification of Algorithm 1 makes the partitioning dependent on the spatial

orientation of each subband. Such a modified algorithm is presented in Algorithm 2. There

are four lists for four different types of subbands (listLS[0 − 3] is for subblocks in LL,

LH, HL, and HH subband, respectively). Each element in the list contains two block infor-

mation parameters, the coordinate (m, n) used to refer toS(l)
m,n, and an arrayL = [row,col],

which specifies the the size (row and column) ofS(l)
m,n. The main idea is unchanged. The

block of wavelet coefficients,S(l)
m,n, is tested using (4.2) but now the size of blockS(l)

m,n is

different for different subbands. As soon as the blockS(l)
m,n of sizeL has energy within the

threshold, it is encoded using either LSVQ or LPVQ, as described above. The quadtree

partitioning for non-e-limited setS(l)
m,n is done with respect to the spatial orientation of the

subband, as shown in Figure 4.4. Observe that there are always only four entries (blocks)

in LS[0] and the partitioning for each entry in this list is done differently based on which
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Algorithm 2 Block-Adaptive LVQ with spatial orientation
Given: subband image{ci, j} and chosenν-norm
Initialize: L = [N,N], LS[0] = {{(0, 0), L}}, LS[1] = {}, LS[2] = {}, LS[3] = {}, l = 0, M = N/2.
Start:

while LS , φ do
for i = 0 to 3do

if LS[i] , φ then
for each element∈ LS[i] except those added in currentl do

if L , [1, 1] then
if i = 0 or i = 3 then

L = [M,M];
Ŝ(l)

m,n = LVQ(S(l)
m,n, L);

else
if i = 1 then

L = [N,M];
Ŝ(l)

m,n = LVQ(S(l)
m,n, L);

else
L = [M,N];
Ŝ(l)

m,n = LVQ(S(l)
m,n, L);

end if
end if
outputEF(Ŝ(l)

m,n, L, ν);
if (EF(Ŝ(l)

m,n, L, ν) = 1) then
if i = 0 then

for j = 0 to 3do
addO(S(l)

m,n) to the end ofLS[ j] together with its block sizêL;
remove element {(m, n), L} from LS[0];

end for
else

addO(S(l)
m,n) to the end ofLS[i] together with its block sizêL;

remove element {(m, n), L} from LS[i];
end if

else
outputencode(Ŝ(l)

m,n, L, ν);
remove {(m, n), L} from LS[i];

end if
else

Ŝ(l)
m,n = round(S(l)

m,n);
outputencodescalar(Ŝ

(l)
m,n);

remove {(m, n), L} from LS[i];
end if

end for
end if
N ← N ≫ 2; M ← M ≫ 2; l ← l + 1;

end for
end while
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list (LS[0], . . . , LS[3]) its subblocks are added to. For all lists, the partitioning can be done

until S(l)
m,n becomes a single pixel, which then is encoded as a scalar value. The encoder

functionsencode() andencodescalar() are defined the same as in Algorithm 1 except one

more parameter is required, which is the size ofS(l)
m,n. Similar to Algorithm 1, if the integer

lattice is used, the quantization can be performed in advance before the algorithm is exe-

cuted, and the partitioning can be done directly to quantized blocks,Ŝ(l)
m,n.

4.4 Simulation Results

To evaluate the performance of the proposed algorithm, a five-level subband decomposition

is generated using a 9/7 biorthogonal filter bank [24]. For simplicity, the simulation uses

integer (cubic) lattice VQ. Both LVQ based onℓ1 (LPVQ) andℓ2 norms (LSVQ) are used.

A Huffman code is generated forCν using empirical energy probabilities for each partition

level. For Algorithm 1, the largest allowed block size is 16× 16 (N = 16) so that the

allowed possible block sizes due to partitioning are 16× 16, 8× 8, 4× 4, 2× 2, and 1× 1.

For Algorithm 2, the block size is considered as the number ofpixels in the block since the

block is not square anymore. The largest allowed block size is of 256 pixels. The allowed

possible block sizes due to partitioning are 256, 64, 16, 4, 2, and 1 pixels.

The simulation results based on Algorithm 1 are shown in Table 4.1, wherêRT andRT

are total encoding rate with and witout entropy coding raw energy-testing bits, respectively.
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LENA
PSNR 39.683 38.439 37.537 36.810 35.652 34.525 33.156 32.457 31.865 30.080

ℓ2
RT 0.949 0.724 0.593 0.504 0.388 0.303 0.222 0.190 0.166 0.109

R̂T 0.930 0.709 0.581 0.492 0.379 0.295 0.215 0.185 0.161 0.105

ℓ1
RT 0.906 0.692 0.566 0.481 0.371 0.289 0.212 0.181 0.157 0.102

R̂T 0.876 0.669 0.548 0.466 0.359 0.280 0.205 0.174 0.151 0.097

BARBARA
PSNR 35.753 34.863 34.078 32.461 30.570 28.923 27.630 26.612 25.750 24.483

ℓ2
RT 0.981 0.868 0.776 0.611 0.443 0.321 0.245 0.192 0.154 0.105

R̂T 0.949 0.840 0.751 0.592 0.430 0.312 0.238 0.187 0.149 0.101

ℓ1
RT 0.967 0.855 0.765 0.601 0.436 0.317 0.242 0.190 0.151 0.101

R̂T 0.929 0.822 0.736 0.580 0.421 0.306 0.233 0.183 0.145 0.097

GOLDHILL
PSNR 35.900 34.935 33.486 32.171 30.725 30.052 29.516 28.652 27.969 26.638

ℓ2
RT 0.974 0.807 0.591 0.430 0.288 0.233 0.195 0.144 0.112 0.066

R̂T 0.946 0.784 0.575 0.419 0.281 0.227 0.190 0.140 0.108 0.063

ℓ1
RT 0.939 0.777 0.568 0.413 0.276 0.223 0.186 0.137 0.106 0.062

R̂T 0.906 0.752 0.551 0.401 0.268 0.215 0.180 0.132 0.102 0.058

AERIAL
PSNR 34.001 31.439 29.478 27.827 26.622 25.691 24.929 24.327 22.586 21.773

ℓ2
RT 1.255 0.875 0.626 0.447 0.338 0.266 0.214 0.179 0.097 0.070

R̂T 1.214 0.847 0.607 0.435 0.329 0.258 0.207 0.173 0.094 0.067

ℓ1
RT 1.191 0.830 0.594 0.424 0.319 0.251 0.202 0.169 0.092 0.065

R̂T 1.145 0.801 0.576 0.412 0.309 0.243 0.195 0.163 0.087 0.061

Table 4.1: Encoding rate (in bpp) and PSNR (in dB) when LSVQ (ℓ2-norm) and LPVQ
(ℓ1-norm) are used with and without entropy coding of the raw energy-testing bits.
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From the table, the LPVQ performs slightly better than the LSVQ. By entropy coding the

energy-testing bits (i.e.,arithmatic coding [68]), the total encoding rate reduces about 3-5%.

So, there is a possible small gain by entropy coding those bits. Moreover, the reduction by

entropy coding the energy testing-bits in LPVQ is larger than in LSVQ which implies that

there are more statistical dependence among those bits in LPVQ than in LSVQ. Using better

lattices, based on the partitioned block sizes, allows improvements in LVQ SNR, with up

to 0.36 dB increase for theD4 lattice (and 2× 2 blocks), up to 0.65 dB increase for theE8

lattice (and 8-dimensional vectors), and up to 0.86 dB for the 16-dimensional Barnes-Wall

lattice [57]. The performance of Algorithm 1 with entropy coding the energy-testing bits is

compared with SPIHT in Figure 4.5-4.8. The performance is competitive with the SPIHT

algorithm (using adaptive arithmetic coding), with LPVQ performing a little better at low

and moderate encoding rate [69]. The simulation results based on Algorithm 2 demonstrate

there is a very small improvement (about less than 1%) in rateusing this algorithm on some

images, such as Goldhill and Lena, at moderate or high rate when LSVQ is used, as shown

in Table 4.2.
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Figure 4.5: Performance comparison forLenaimage
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Figure 4.6: Performance comparison forBarbaraimage
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Figure 4.7: Performance comparison forGoldhill image
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Figure 4.8: Performance comparison forAerial image
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Image PSNR (dB) ∆R (%)

Lena

33.16 0.32

35.65 0.80

39.68 0.40

Barbara

32.46 -0.39

35.75 -0.19

39.77 0.65

Goldhill

33.49 1.46

35.90 1.13

38.86 0.88

Table 4.2: Percent improvement in rate using Algorithm 2 with LSVQ, where∆R = (Rold
T −

Rnew
T )/Rold

T × 100.
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Chapter 5

Bit-Plane Coding of Lattice Codevectors

Bit-plane coding is an effective method of variable-length coding in image compression

[60]-[61], and provides the functionality of an embedded bit-stream. This chapter de-

scribes the bit-plane coding of lattice VQ codevectors, focusing on theD4, RE8, and

16-dimensional Barnes-Wall (denoted byΛ16) lattices [7], [57]. Using Forney’s charac-

terization of these (and other) lattices [22], it becomes apparent that if the (binary) lattice

codevectors are represented in sign-magnitude form, only afew of the least significant

magnitude bit-planes are “lattice-defining,” and the lattice imposes no restriction on the

more significant bit planes. Hence, any convenient bit-plane coding method can be used on

the more significant magnitude bit planes, with modificationonly required for coding the

lattice-defining least significant bit planes. In this chapter, we describe the lattice-defining

magnitude bit-planes, and suggest a method for losslessly encoding them. As an example,

we consider image compression using the SPIHT algorithm, but modified to use theD4

lattice.

58



5.1 Binary Lattices

A real N-dimensionallattice [22], Λ, is an infinite set of real vectors (points,N-tuples) in

realN-dimensional spaceRN that forms a commutative group under vector addition. If the

vectors of the lattice are integer-valued, it is called aninteger lattice. A sublatticeΛ′ of

Λ is a subset of points inΛ that itself is also anN-dimensional lattice. The sublatticeΛ′

induces a partitionΛ/Λ′ of Λ into |Λ/Λ′| disjoint cosetsof Λ′, where|Λ/Λ′| is theorder

of the partition. Any cosets ofΛ′ can be written asΛ′ + c, for somec ∈ Λ, andc is called

a coset representative. A coset containing0 is called thezero cosetsinceΛ′ + 0 is itself,

Λ′, and0 is always used as the coset representative for the zero coset. Let [Λ/Λ′] be any

system of coset representativesc, one for each coset. Then,Λ is the union of the|Λ/Λ′|

cosetsΛ′ + c, c ∈ [Λ/Λ′].

A binary lattice [22],[70], Λ, is defined as anN-dimensional integer lattice that has

2m
Z

N as a sublattice for some integerm. Clearly, it is also a sublattice of theN-dimensional

cubic latticeZN. After the integer lattice, the simplest lattice is theDN lattice, consisting of

all the integerN-tuples with the sum of coordinates even. A fast encoding algorithm exists

for lattice VQ using theDN lattice [57]. The2-depthof a binary lattice is the leastm for

which 2m
Z

N is a sublattice. The integer (cubic) lattice,ZN, trivially has 2-depth 1. Other

examples of binary lattices are the Schläfli lattice,D4, and the Gosset latticeE8, both with

2-depth 1, and the 16-dimensional Barnes-Wall lattice,Λ16, with 2-depth 2.

Forney [22] shows that a family of Barnes-Wall lattices and its principal sublattices can
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be generated by iteratively applying a simple constructioncalled thesquaring construction

to a one-dimensional partition chain of integer lattices· · · /Z/Z/2Z/2Z/4Z/4Z/ · · · . He

also points out the close relationship between this family of lattices and the family of Reed-

Muller (RM) codes [71] and develops explicit formulas expressing the lattice in terms of

simpler lattices and the appropriate RM code. From [22], denote the lattice constructed

by the iterated squaring construction asΛ(r, n), wherer ∈ Z and the lattice dimension is

N = 2n+1. Λ(r, n) = ZN for r ≥ n, andΛ(r, n) = R−rΛ(0, n) for r ≤ 0, whereR is the

rotation operator, which operates separately on each pair of lattice dimensions by rotating

by 45◦ and scaling by 21/2. For example,R =
[ 1 1

1 −1

]

, for N = 2, andR =

[

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

]

, for

N = 4. Note thatR2 = 2I , whereI is the identity operator. By general properties of the

square construction, Forney shows thatΛ(r, n) can be generated using the formula below

Λ(r, n) =











































2(n−r)/2
Z

2N +
∑

r+1 ≤ r ′ ≤ n, n−r ′ odd

RM(r ′, n+ 1)2(r ′−r−1)/2, n− r even

2(n−r+1)/2
Z

2N +
∑

r+1 ≤ r ′ ≤ n, n−r ′ even

RM(r ′, n+ 1)2(r ′−r−1)/2, n− r odd,

(5.1)
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where RM(r ′, n+ 1) is a Reed-Muller code of orderr ′ and lengthN = 2n+1. Whenr = 0,

Λ(0, n) is theN-dimensional Barnes-Wall lattice. For example,

D4 = Λ(0, 1) = 2Z4 + (4, 3, 2), (5.2)

E8 = Λ(0, 2) = 2Z4 + (8, 4, 4), (5.3)

Λ16 = Λ(0, 3) = 2D16 + (16, 5, 8), (5.4)

where (4, 3, 2), (8, 4, 4), and (16, 5, 8) are (n, k, d) RM codes with block lengthn, k informa-

tion bits, and minimum Hamming distanced. Also, for rotated lattices the above formulas

become

RΛ(r, n) =











































2(n−r+1)/2
Z

2N +
∑

r ≤ r ′ ≤ n, n−r ′ even

RM(r ′, n+ 1)2(r ′−r−1)/2, n− r odd

2(n−r)/2
Z

2N +
∑

r ≤ r ′ ≤ n, n−r ′ odd

RM(r ′, n+ 1)2(r ′−r−1)/2, n− r even.

(5.5)

For example,

RD4 = Λ(−1, 1) = 2Z4 + (4, 1, 4), (5.6)

RE8 = Λ(−1, 2) = 4Z8 + 2(8, 7, 2)+ (8, 1, 8). (5.7)

The expressions in (5.1)-(5.7) suggest a simple algorithm for lattice VQ encoding. For

example, from the expression forΛ16, assume input vectorx, lattice codevectory, and let
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ci , i = 1, · · · , 32, be the binary codewords in the (16, 5, 8) RM code. ThenΛ16 VQ encoding

can be accomplished using the following algorithm.

0) Let y = VQ2D16(x) denote lattice VQ using the 2D16 lattice.

1) For i = 1 to 32, formyi = ci + VQ2D16(x − ci).

2) Find i∗ = argmini ||x − yi ||
2.

3) TheΛ16 codevector closest tox is yi∗ .

Hence,Λ16 lattice VQ (LVQ) can be accomplished using 32 2D16 lattice VQ operations.

TheRE8 lattice used in wideband speech coding standards [23], [36]is also implemented

based on this concept by, from (5.7), using just two 2D8 LVQ operations.

5.2 Sign/Magnitude Bit-plane Coding of Binary Lattices

Denotex = (x1, . . . , xN) as a lattice codevector andb = (bs, bK, . . . , b1)T as a binary (col-

umn) vector used to represent eachxi in sign/magnitude form, wherebs is the sign bit and

(bK , . . . , b1)T are magnitude bits, withb1 denoting the least significant bit andbK the most

significant bit. LetB(x) be the binary array of bits used to represent a lattice codevectorx.
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More specifically,

B(x) =









































































bs,1 bs,2 · · · b2,N

bK,1 bK,2 · · · bK,N

...
...
. . .

...

b1,1 b1,2 · · · b1,N









































































.

Also, denoteb j = (b j,1, . . . , b j,N) as a binary vector corresponding to thej th bit-plane (row

(K+2− j) of B(x)), with Hamming weight ofb j denoted bywt(b j) .

Forney’s representation describes a binary lattice as a union of a scaled integer lattice

offset by a sum of scaled binary codevectors from certain RM codes. For example, theRE8

lattice in (5.7) is made up of the union of 256 cosets of 4Z8, with coset representatives of

the form 2c1,i + c2, j, i = 1, · · · , 128; j = 1, 2, wherec1,i are binary codewords in the (8, 7, 2)

RM code andc2, j are codewords in the (8, 1, 8) RM code. In sign-magnitude representa-

tion, the number of bit-planes that are lattice-defining thus corresponds to the 2-depth of

the lattice. The latticesD4 andE8 have 2-depth 1, and so have only the least significant

magnitude bit-plane,b1, as lattice defining. The latticesRE8 andΛ16 have 2-depth 2, and

so have both bit planesb1 andb2 as lattice-defining. The lattice imposes no restriction on

the higher-level magnitude bit-planes.

Now, suppose that a large set of source samples is lattice vector encoded, and that the

lattice codevectors are then represented in sign-magnitude form. If the lattice has 2-depth

L, then all magnitude bit-planes above levelL are unrestricted by the lattice structure, and

hence any bit-plane coding algorithm can be used for compression (for example, using the
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method in SPIHT [24] or JPEG2000 [61]). The bit-plane codingencodes one bit-plane

at a time, from the most significant magnitude bit-plane downto the least significant bit-

plane. All coefficients are initially classified asinsignificant. As soon as the first “1” in the

magnitude bits of a coefficient is encoded, the sign-bit is then immediately encoded and the

coefficient is classified assignificant. Significant coefficients already have their sign-bit en-

coded in the bit-stream, and so if an additional 1 occurs in the lower level bit-planes, there

is no need to encode the sign-bit again. When the bit-plane coding reaches theLth bit-plane

(the most significant lattice-defining bit-plane), then possible bit patterns are restricted due

to the lattice structure, and the bit-plane coding method should be suitably modified. Such

a bit-plane coding method will yield an embedded bit-stream. If the bit-stream is truncated,

a truncated representation of the lattice codevector can then be generated. Since a lattice

affects the granular fidelity of the quantization, intuitivelyone expects that if the bit-stream

is truncated at a bit-plane above the 2-depth of the lattice,then the truncated codevector

representation should be little different from that of a truncated integer lattice representa-

tion, provided that the integer lattice has the same point density.

Assume that sign-bit,bs, is encoded as 1 for negative components and as 0 for positive

components, Methods to losslessly encode the lattice-defining bit-planes forD4, RE8, and

Λ16 are as follows.

D4 : The D4 lattice is a subset of theZ4 lattice, with the restriction that for any code-

vectorx ∈ D4, the sum of all components is even,
∑4

i=1 xi = even. This implies that in
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sign-magnitude bit representation, (
∑4

i=1 b1,i)mod2 = 0 and the least significant magnitude

bit-plane,b1, is thus lattice-defining (consistent with 2-depth of one for the D4 lattice).

There is no restriction on higher level magnitude bit-planes. There are exactly 23 least sig-

nificant bit-plane 4-dimensional vectors,b1, and henceb1 can be encoded using only 3 bits.

RE8 : From (5.7), it is clear thatRE8 codevectors have just two possible bit patterns for

b1, which are0 and1 corresponding to coset 2D8 and 2D8 + 1, respectively. Also, using

(5.7) it can be shown that for any codevectorsx ∈ RE8, 1) whenb1 = 0, wt(b2) is even;

2) whenb1 = 1 andwt(bs) is odd,wt(b2) is odd; and 3) whenb1 = 1 andwt(bs) is even,

wt(b2) is even. There are no restrictions on other bit-planes. Theb1 andb2 bit-planes can

be encoded as follows

a. Send 1 bit forb1. This determines ifx ∈ 2D8 or x ∈ {2D8 + 1}.

b. If x ∈ 2D8, then encodeb2 using 7 bits (followed by any necessary sign-bits for any

components ofx that become significant in bit-planeb2).

c. If x ∈ {2D8 + 1}, then first encode sign-bits not already encoded inbs (sinceb1 = 1,

a sign-bit is necessary for every component ofx). From the fully encoded sign bit-

plane, determinewt(bs). If wt(bs) is even, thenb2 must have even weight, and there

are 128 possible even-weight bit patterns. Ifwt(bs) is odd, thenb2 must also have

odd weight, and there are 128 possible odd-weight bit patterns. Conditioned on the

weight ofbs, b2 can be encoded using 7 bits.
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A total of 8 bits can be used to encode theb1 andb2 bit-planes.

Λ16 : From (5.4), there are 25 possibleb1 bit patterns, each corresponding to a codeword

of the (16, 5, 8) RM code. To consider possible bit patterns ofb2, let n1 be the number of

positions of negative components ofx that are coincident with the position of the 1’s ofb1.

It can be shown that 1) whenn1 is even,wt(b2) is even; and 2) whenn1 is odd,wt(b2) is also

odd. Using these facts, the lattice-defining bit-planesb1 andb2 can be encoded as follows.

a. Encodeb1 using 5 bits. This determines ifx ∈ 2D16 or a coset{2D16 + c}, where

c , 0.

b. If x ∈ 2D16, thenc = 0, and encodeb2 using 15 bits for the 215 possible even-weight

bit patterns. Follow this with any necessary sign-bits (forany components ofx that

become significant in bit-planeb2).

c. If x ∈ {2D16 + c}, wherec , 0, then first encode any sign-bits not already encoded

corresponding to 1’s inc. This allows the decoder to determinen1, and hence whether

the weight ofb2 is even or odd. There are exactly 215 possible bit-patterns for each

case and thus theb2 bit-plane can be encoded using 15 bits. Follow the encoding

of b2 with any necessary sign-bits for the remaining components of x that become

significant in bit-planeb2.

Theb1 andb2 bit-planes of aΛ16 codevector can be encoded using 20 bits.

Comment: The D4 bit-plane encoding is easily generalized to theDn lattice for arbitrary
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dimensionn. TheDn lattice has 2-depth 1, and theb1 bit-plane is lattice-defining. There are

2n−1 even-weight allowedb1 bit-patterns in theDn lattice and these can be encoded using

n− 1 bits.

5.3 Performance Comparison for Uniform Source

An embedded bit-stream can be decoded at any truncation point, and the decoded coef-

ficients formed from a truncated sign-magnitude bit representation. In the following, we

assume a large number of source samples have been quantized,and that bit-plane coding is

used to construct the embedded bit-stream. The numerical results presented correspond to

bit-stream truncation at the end of bit-planes. The performance of progressive decoding of

bit-plane encoded 2D4, RE8, andΛ16 lattice codevectors is shown in Figure 5.1-5.3 com-

pared with that of 2Zn lattice VQ, which is used as the reference. The 2D4 lattice is used

instead of theD4 for a convenient comparison since the point density of 2D4 and the refer-

ence lattice, 2Z4, are not too much different. The uniform source vectors of varianceσ2 are

generated and used as the input to the lattice VQ, followed bybit-plane coding. The encod-

ing rates are calculated from the number of encoded bits in the bit-stream at the end of each

bit-plane. Ordinary bit-plane coding without entropy coding is performed for all bit-planes,

except the lattice-defining bit-planes. The lattice-defining bit-planes are encoded using the

the methods described in section 5.2. The truncation pointsfor progressive bit-plane de-

coding are at the end of the bit-planes, and the truncated lattice codevectors are generated
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to minimize the average squared error with respect to the undecoded lower bit-planes. For

example, for theRE8 lattice if the encoded bit-stream is truncated at the end of 4th bit-plane

(b4), then the reproduction of each component ofRE8 codevectors is ˆxi + ∆4/2− 1, where

∆4 = 23 and x̂i is the decoded value based on the truncated bit-plane representation. This

comes from the fact that with decoded output valuen at the end ofb4 bit-plane, when other

lower bit-planes are used, possible decoded value might ben, n+ 1, . . . , n+ ∆ − 1.

From the figures, it can be seen that at low encoding rates (when truncation points are

at the end of higher bit-planes) the progressive decoding performance of the 2D4, RE8 and

Λ16 lattices provides about the same SNR as the progressive decoding of the reference 2Zn

lattice. As bit-plane decoding is performed further down tolower bit-planes, the perfor-

mance drops a little compared with the 2Zn lattice, with the maximum SNR drop occurring

at the end of the bit-plane before decoding the lattice-defining bit-planes. SNR drops of

about 0.05 dB, 0.6 dB, and 0.3 dB, for the 2D4, RE8, andΛ16 lattices, respectively, are

observed. After the lattice-defining bit-planes are decoded, the granular gain of the lattice

is realized. Note that in Figure 5.1, since the point densityof 2D4 is half that of 2Z4, the

final rate of 2D4 lattice VQ encoding is less than that of 2Z4 by 0.25 bits/sample. Similarly,

in Figure 5.3Λ16 has point density 16 times denser than that of 2Z
16 so that the final rate

of Λ16 lattice VQ encoding is 0.25 bits/sample more compared with that of 2Z16. When all

bit-planes are decoded, the granular gain of the lattice is realized.
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Figure 5.1: SNR comparison between 2D4 and 2Z4
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Figure 5.2: SNR comparison betweenRE8 and 2Z8
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Figure 5.3: SNR comparison betweenΛ16 and 2Z16

5.4 SPIHT Image Coding with Lattice VQ

As discussed in section 5.2, in sign-magnitude representation of lattice codevectors, there

is no restriction on all magnitude bit-planes above the lattice-defining bitplanes, and hence

any bit-plane coding algorithm can be used to encode those bit-planes. In this section,

we will investigate the coding performance of the SPIHT algorithm [24] usingD4 lattice

codevectors. The coding scheme is shown in Figure 5.4.

Vectors,x, are formed consistent with the quadtree data structure used in the SPIHT

encoding algorithm. That is, four neighboring pixels in thesame subband are grouped

together as a vector (see Figure 5.5). Each vectorx is quantized using aD4 lattice quantizer.

The quantized version ofx, denoted bŷx, is then encoded using the SPIHT bit-plane coding

algorithm, with a small modification as follows. For all bit-planes except theb1 bit-plane
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(the lattice-defining bit-plane ofD4), the encoding algorithm is exactly the same as [24].

Each pixel is tested for significance (sorting pass) with respect to the threshold 2n, for

n = nmax, nmax − 1, . . . , 1, wherenmax is the largest magnitude bit-plane. For significant

pixels, the refinement-bits are output when the encoding moves further down to each lower

bit-plane (refinement pass). When the algorithm reaches theb1 bit-plane, the significance

test needs a little modification. LetD(i, j) and O(i, j) be the set of all descendants of

node (i, j), and the set of immediate descendants of node (i, j), respectively. Also, denote

L(i, j) = D(i, j) − O(i, j). SPIHT [24] uses three ordered lists: A list of significant pixels

(LSP), a list of insignificant pixels (LIP), and a list of insignificant sets (LIS). For entries

in the LIS, there are two types: type A if it representsD(i, j), and type B if it represents

L(i, j). The modified sorting pass of SPIHT forb1 bit-plane is described in Algorithm 3,

where x̂(i, j) is the quantizedD4 codevector that has coordinate (i, j) as its component.

Also, define

Sn(κ) =







































1, if max(i, j)∈κ ‖ci, j‖ ≥ 2n

0, otherwise,

(5.8)

whereci, j is the quantized wavelet coefficient at coordinate (i, j).

From the Algorithm 3, it can be observed that

• The pixels inO(i, j) in the Algorithm 3 are matched with the way that 4-dimensional

vectors are formed.

• Since theb1 bit-plane is the last bit-plane, there is no need to update the LSP and LIP.
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Algorithm 3 Modified Sorting Pass of SPIHT forb1 bit-plane

for each entry (i, j) in LIP do
if b1 of x̂(i, j) is not encoded yetthen

encodeb1 of x̂(i, j) using 3 bits and output those bits followed by the sign of the
components of̂x(i, j) that are significant atb1 bit-plane;

end if
end for
for each entry (i, j) in LIS do

if entry is type Athen
outputSn(D(i, j));
if Sn(D(i, j)) = 1 then

encodeb1 of O(i, j) using 3 bits and output those bits followed by the sign of
each components ofO(i, j) that are significant atb1 bit-plane;
if L(i, j) , φ then

move (i, j) to the end of the LIS as type B;
else

remove (i, j) from the LIS.
end if

end if
end if
if entry is type Bthen

outputSn(L(i, j));
if Sn(L(i, j)) = 1 then

add each (k, l) ∈ O(i, j) to the end of the LIS as type A;
remove (i, j) from the LIS.

end if
end if

end for
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• EncodeO(i, j) using 3 bits, corresponding to the encoding method for the lattice-

defining bit-plane of theD4 lattice , as described in Section 5.2.

• If any pixel in O(i, j) is significant at theb1 bit-plane, then theb1 bit of all other

pixels inO(i, j) is also encoded.

• In sorting pass of entry (i, j) in LIP, b1 bit-plane encoded in this step might include

b1 bits of some pixels of̂x(i, j) that are already significant. If that happens,b1 bit of

those significant pixels are not encoded again in refinement pass.

Although b1 bits of some significant pixels might already be encoded together with the

pixels in LIP, the refinement pass is still required for the case that all pixels in the samêx

are already significant at bit-planes above theb1 bit-plane. For refinement pass, instead of

outputting theb1 bit for each pixel, theb1 bit-plane is encoded using 3 bits, as described in

Section 5.2. The other steps in the SPIHT algorithm are unchanged.

The simulation results using SPIHT withD4 codevectors are shown in Figures 5.6 -

5.9 and compared with ordinary SPIHT. It can be seen that the PSNR of SPIHT withD4

codevectors is about the same as that of ordinary SPIHT when bit-planes above the lattice-

defining bit-plane are decoded, with a little drop in SNR (roughly < 0.3 dB) occurring at

the end ofb2 bit-plane. This is consistent with the results in Section 5.3 for the bit-plane

coding of a uniform source. When theb1 bit-plane is decoded, the PSNR curve of SPIHT

usingD4 codevectors moves above the curve for ordinary SPIHT. When the b1 bit-plane

is completely decoded, the PSNR of SPIHT usingD4 codevectors is larger than ordinary
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Chapter 6

Conclusion

In Chapter 2, the amplitude quantization implicit in algebraic or fixed excitation codebook

search of ACELP is studied. We consider the potential improvement in coding performance

possible by better quantization in the fixed codebook portion of the encoding algorithm. For

the ACELP method of non-zero pulse position selection, it isconcluded that small gains

in SNR (no more than about 1 dB) are possible by refined amplitude quantization, but this

increase in SNR requires significant increase in pulse amplitude quantization rate (as in

[29]) and, even using ideal, unquantized, pulse amplitudes, results in very modest increase

in perceptual speech quality, as measured by the PESQ [32] method of evaluating mean

opinion score. Further, the ACELP method of pulse position selection implies a condi-

tionally bimodal distribution on the selected non-zero pulse amplitudes, and for the MSE

distortion measure the simple 1-bit uniform quantization of these amplitudes used in the

ACELP algorithm is essentially optimum.

In Chapter 3, an accurate model of the SVQ performance in transform audio coding us-
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ing Gaussian mixture models is developed. The Gaussian mixture model is used to model

vectors of transform audio data and the EM algorithm is used to estimate GMM param-

eters. Two alternative methods are used to determine the mixture model parameters. A

rate-distortion function based on GMM is developed and usedto estimate the actual av-

erage encoding rate of SVQ. The effectiveness of the model is evaluated by comparing

the estimated rate from the model with the average encoding rate ofZ8 lattice SVQ and

with the RE8 lattice VQ used in the AMR-WB+ standard. The simulation results show

that the estimated rate from the model with four classes reasonably well models SVQ per-

formance, especially at high rate (small distortion). At low and medium rates, a modified

model partitions source vectors into insignificant (encoded as zero codevector) and signif-

icant (encoded as non-zero codevector) classes. The GMM rate-distortion function is used

only to estimate the encoding rate for nonzero source vectors since the encoding rate for

zero source vector is fixed and pre-defined. With the modification, the model accurately

estimates SVQ performance for low, medium, and high encoding rates. The results also

indicate that GMM rate-distortion modeling withK = 4 classes is sufficient to capture the

available classification gain of the mixture model for transform audio coding.

In Chapter 4, we propose an algorithm based on LPVQ and LSVQ for image coding.

The proposed algorithm partitions the subband (or wavelet)image into blocks of various

sizes by comparingℓ1 or ℓ2 block energy, respectively, with the thresholds defined accord-

ing to complexity constraints on enumeration encoding of lattice points. We show that

based on the proposed algorithm the energy clustering can beexploited effectively. Coding
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blocks or sets of coefficients using LVQ also allows the possible improvement in SNRby

using better covering lattices, such asD4 or E8. From the simulation, the proposed algo-

rithm provides a better performance compared to the SPIHT algorithm without arithmetic

coding, and is competitive with SPIHT using arithmetic coding, with slightly better perfor-

mance at low or moderate encoding rates for LPVQ.

In Chapter 5, we describe the bit-plane coding of lattice VQ codevectors, focusing

on theD4, RE8, andΛ16 lattices. By using Forney’s representation of the lattices, it can

be seen that in sign-magnitude form some least-significant bit-planes are constrainted to

have some specified bit patterns due to the structure of the lattices, while there are no re-

strictions on other more significant bit-planes. Those least significant bit-planes are called

“lattice-defining” bit-planes. Hence, lattice codevectors can be bit-plane encoded using any

convenient bit-plane coding method for the more significantbit-planes, with modification

required only for the lattice-defining bit-planes. Three simple methods for bit-plane coding

on the lattice-defining bit-planes ofD4, RE8, andΛ16 are presented. Using standard bit-

plane coding together with the proposed method to handle thelattice-defining bit-planes,

simulations for a uniform source demonstrate that the bit-plane coding of lattice codevec-

tors can provide about the same performance as that of the integer lattice if the bit-stream is

truncated. When the entire bit-stream is decoded, the granular gain of the lattice is realized.

The SPIHT algorithm image coding usingD4 lattice codevectors is investigated. The

modifications necessary for the sorting and refinement passes of the SPIHT algorithm for

encoding theb1 bit-plane of theD4 codevectors are discussed. The simulation results show
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that when a truncated bit-stream corresponding to bit-planes above the lattice-defining bit-

planes is decoded, the performance of the SPIHT algorithm using D4 codevectors is about

the same as that of ordinary SPIHT, with a small drop in PSNR asthe bit-plane decoding

moves further down to the end ofb2 bit-plane. When theb1 bit-plane is decoded, the per-

formance of the SPIHT algorithm usingD4 codevectors gradually moves close to ordinary

SPIHT, and when theb1 bit-plane is completely decoded, the granular gain of theD4 lattice

is realized.
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