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CLUSTERING AND ENTITY RESOLUTION FOR SEMI-STRUCTURED DATA

Abstract

by Chuan Zhao, Ph.D.
Washington State University

December 2011

Chair: Krishnamoorthy Sivakumar

Using a graph representation of the data, a graph-based similarity measure

to assess the similarity between data records is proposed. Both direct and indirect

similarity are considered, which comprehensively capture the relationship between

data records. Different data mining techniques and applications, including clustering

and entity resolution are explored.

First, the problem of clustering is considered for a dataset consisting of non-

numeric attributes. The K-medoid clustering algorithm is used; some postprocessing

steps are introduced to improve the quality of clustering. A set of validity indices

are proposed to assess the quality of the clustering results. To reduce computational

complexity, a sampling strategy is introduced. Effect of sampling on the values of

validity indices and clustering result is discussed. Influence of different similarity
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measures, postprocessing steps, and cluster numbers on the quality of clustering is

discussed, both analytically and experimentally. Similar enhancements to the fuzzy

K-medoid algorithm are provided. The clusters resulting from the proposed algorithm

can sometimes be interpreted as grouping objects sharing a common attribute that

was not used in the clustering algorithm. A multi-medoid K-medoid algorithm is

proposed by introducing multiple medoids in each cluster to enhance the performance

of the K-medoid algorithm. Finally, an optional node move step is introduced to

produce better clustering results based on edge-oriented evaluation measures.

The entity resolution problem, which is the process of determining whether mul-

tiple records refer to the same real world entity, is studied next. It is an important

step during data cleaning and integration. A general entity resolution framework

called ERUDITE, which includes data preprocessing (filtering), record matching, and

postprocessing (inconsistency elimination, record updating, and equivalent record

elimination), is presented. Different record matching models are explored for both

supervised and unsupervised learning methods. Two record updating algorithms are

proposed to significantly improve the entity resolution result. The entity resolution

result generally contains inconsistent decisions. New inconsistency elimination meth-

ods are proposed and their performances are compared with that of existing methods.

Experiments for both unsupervised and supervised learning on two public datasets

show the good performance of the proposed framework.
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CHAPTER 1. INTRODUCTION

The data to be mined in data mining could be in various formats: unstructured,

semi-structured and structured. Un-structured data can be of different types, like

text, video, image, etc. Semi-structured data are often in XML or other markup

language format. Structured data have the same defined format and are described

by a data model such as a database model or an entity-relationship model. Semi-

structured data can be naturally represented by a graph with nodes representing

entities and edge/link representing relationship between entities. Mining data in a

graph format can provide a number of benefits from the natural characteristics of a

graph.

In our research, the data in the datasets are semi-structured, which contain tags

or other markers to separate semantic elements and enforce hierarchies of records and

fields within them. For example, we used the IMDB movie XML data, the ENRON

E-mail data, and the Cora citation XML data.

In this chapter we will introduce our data similarity measures, clustering meth-

ods, entity resolution framework, and discuss their related work.
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1.1 Data Similarity

It is easy for a human being to check if two data records look similar. But if

you ask how similar they are, the answer is generally one of the following: “exactly

the same,” “very similar,” “kind of similar,” “not very similar,” “not similar at all,”

etc. These qualitative descriptions are not enough — we need quantitative values

to accurately measure the similarity. Similarity measure is a quantitative measure

of “closeness” between data records and plays an important role in our data mining

research. Different similarity measures can lead to very different content and quality

of the data mining result. We propose a graph-based similarity measures in which

both similarity between simple attributes (direct similarity) and similarity between

data objects (indirect similarity) are considered.

Data records are often described by their attribute values, which typically are

strings and numbers, so similarity measures usually rely on string comparison tech-

niques. Many techniques have been applied for matching attributes (fields) with string

data in the equivalent record detection context. Elmagarmid et al. [2007] concluded

the field matching techniques as follows:

• Character-Based Similarity Metrics: The character-based similarity metrics are

designed to handle typographical errors well. They include edit distance, affine

gap distance, Smith-Waterman distance, Jaro distance metric, and Q-gram dis-
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tance, etc.

• Token-Based Similarity Metrics: It is often the case that typographical con-

ventions lead to rearrangement of words (e.g., “John Smith” versus “Smith,

John”). In such cases, character-level metrics fail to capture the similarity of

the entities. Token-based metrics try to compensate for this problem. Atomic

Strings, WHIRL, and Q-Grams with tf.idf are examples of this technique.

• Phonetic Similarity Metrics: Character-level and token-based similarity metrics

focus on the string-based representation of the database records. However,

strings may be phonetically similar even if they are not similar at a character

or token level. The phonetic similarity metrics try to address such issues and

match such strings.

While multiple methods exist for detecting similarities of string-based data, the

methods for capturing similarities in numeric data are rather primitive. Typically,

the numbers are treated as strings (and compared using the metrics described above)

or simple range queries, which locate numbers with similar values (Elmagarmid et al.

[2007]).

Field (attribute) matching is the basis for measuring the similarity between

data records. The next step is to measure similarity between records with multi-

ple attributes. Commonly used methods include weighted combination of attribute
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similarities, probabilistic matching model and supervised learning. We use weighted

combination of attribute similarities for direct similarity, and use supervised proba-

bilistic matching model on both direct and indirect similarities.

We know that distance measures are known as metrics if they satisfy positivity,

symmetry and triangle inequality. But for similarities, the triangle inequality typically

does not hold; while symmetry and positivity typically do. Apparently, the word

“similar” satisfies reflectiveness and symmetry, too. But, it does not necessarily

satisfy transitivity. In other words, a is similar to b and b is similar to c do not mean

that a must be similar to c, because the common part of a and b could be different

or only share a little with the common part of b and c.

Existing similarity measures are based on two different aspects: one is topology

(graph) structure, such as data node, edge, node degree, and neighbor; the other is

data node content, for example node attribute vector. Some methods combine both

aspects, for example our method introduced in Chapter 3.

In the real world, data similarity could be a complicated thing. Let’s think

about movie similarity:

• The movie similarity could be based on users’ interest/taste and may or may

not make use of graph structure. For example: 1) Based on users ratings given

movies’ attributes: year, genre, actor, director, etc.; 2) Based on users taste:

given a user’s favorite movies, find this user’s potential other favorite movies,
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or given movies a user dislikes, find other potential movies that this user dislike

either; 3) User likes some movie may be just because he/she likes some very

unimportant actor/actress in it.

• Only based on movies’ attribute values, calculate their similarity.

• Only based on node/link structure, for example centrality.

• Based on movies’ both attribute values and graph structure.

• For each attribute of some movie, find movies similar to it, then combine these

movies to get the similar movies.

• For some given movie combine the attribute values into a single value, then find

movies with similar value.

• For two similar movies, they may have some common actors, which are common

attribute node neighbors of these two movie nodes. The weight contribution to

similarity for each common actor neighbor node should be based on two things:

one is the node degree of this actor node: the bigger the degree is, the smaller

the weight is; the other is the role this actor played in these two movies: the

more important the role is, the bigger the weight is.

• Many methods use only 2-step intermediate common neighbor nodes. It is easy

to see that n steps intermediate nodes can be used. For each step, node type
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may or may not be specified.

The existing methods for data similarity generally calculate the similarity in

following ways:

• Compare the contents of the data nodes.

• Make use of the nodes/edges connected to them: 1) the number of nodes/edges

they share; 2) adjacency matrix or incidence matrix; 3) make use of bipartite

graph, like hub/authority nodes in citation relationship: similar to pageRank

method of Google search engine; or customer/product nodes in purchase rela-

tionship: customer are similar if they purchase similar products and products

are similar if they are purchased by similar customers.

In our method, we consider attribute values for direct similarity, and graph

structure for indirect similarity. For direct similarity, we use the weighted combi-

nation of attribute similarities, and omit the weight contribution factor for different

nodes of each attribute. For indirect similarity, we consider the weight contribution

of different neighbor nodes, and we use both 2-step intermediate common neighbor

nodes and 3-step intermediate neighbor nodes on two different kinds of paths.
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1.1.1 Related Work

Cook and Holder [2007] described the similarity measure between two entity

clusters as a weighted combination of the attribute similarity and graph-based simi-

larity between them. This similarity appears similar to our similarity measures, but

they have following differences: 1) our similarity measures consider node similarity,

not cluster similarity; 2) our data representation includes attribute nodes, not just

data nodes; 3) our indirect similarity through common neighbor data nodes (see sec-

tion 3.1 and 3.2 for the definition of attribute node, data node, and neighbor data

node) does not consider the data nodes which are derived by the common attribute

nodes since they are already used for the direct similarity; the metric in Cook and

Holder [2007] can not or did not do this with the reference graph.

Blondel et al. [2004] calculated the similarity matrix for each node pair in a graph

with adjacency matrix for synonym extraction and web searching. They generalized

“hubs and authorities” method of Kleinberg [1999]. Their method is as follows: Let

GA and GB be two directed graphs with respectively nA and nB vertices. They

defined a nB × nA similarity matrix S whose real entry Sij expresses how similar

vertex j (in GA) is to vertex i (in GB): we say that Sij is their similarity score.

The similarity matrix can be obtained as the limit of the normalized even iterates of

S(k + 1) = B × S(k)× AT +BT × S(k)×A where A and B are adjacency matrices
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of the graphs and S(0) is a matrix whose entries are all equal to one. In the special

case where GA = GB = G, the matrix S is square and the score sij is the similarity

score between the vertices i and j of G.

Park and Seo [2005] developed a search system that can find XML docu-

ments that matches the structure and content of a given XML document. They

used XML tag name, tag value, and tag structures in their similarity measure.

NodeSim(e1, e2) = w1×TagSim(e1, e2)+w2×V alueSim(e1, e2), where w1+w2 = 1.

When a tag or a value is a substring of the other, the returned value of TagSim or

V alueSim is 1. Node similarity was used to calculate the document similarity used

for XML document search.

Huang and Lai [2006] proposed a node structural metric to measure the simi-

larity between nodes which made use of the number of shared edges. They used this

metric to cluster graph to simplify the graph representation. The similarity degree

between two nodes is partly determined by the number of edges between them. In

particular, the greater the number of the edges the two nodes share, the more similar

they are. At the same time, the greater the number of edges they do not share, the

less similar they are. Jaccard coefficient is able to measure the degree of overlap,

which is defined as: sim(a, b) = #(ai=bi=1)
#(ai=1)+#(bi=1)−#(ai=bi=1)

, where a and b are binary

vectors. For instance, the numerator in the equation denotes the number of an at-

tribute i (i.e., edge) occurring in both a and b. An edge-by-node matrix R (also called
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an incidence matrix) of G is defined as R = (rij)|E|×|V |, each entry of which is con-

structed by rij = 1 if node vj is incident with edge ei) or rij = 0 otherwise. If ri and

rj are ith and jth column vector of R (ri and rj are node vectors of node i and j.),

then sim(ri, rj) =
rTi rj

rTi ri+rTj rj−rTi rj
. Note that the more similar two nodes are, the less

links that connect them. The degree of similarity of two nodes connecting only one

edge, for example, will reach the maximum, i.e., 1. In the context of graph clustering,

their intention was to group two nodes with many linking edges. This means that

they attempted to find those nodes with minimal similarities among them.

Narayanan and Karp [2007] compared the protein interaction networks of two

species to detect functionally similar (conserved) protein modules between them. In

their similarity measure, sequence similarity defined node similarity. Given as input

two graphs and a node similarity function sim(), the function sim(u, v) is true when-

ever node u is similar to node v (e.g., based on sequence similarity of proteins) and

false otherwise. (a) sim(u, v) is true whenever the BLAST E-value of proteins u and

v is at most 10−7 and each protein is among the 10 best BLAST matches of the other;

(b) sim(u, v) is true whenever the BLAST E-value of u and v is less than that of 60%

of ortholog pairs in some ortholog database.

Loos et al. [2003] investigated whether a computer can recognize disease-specific

facial patterns in unrelated individuals. The graph nodes are labeled with a set of

feature vectors, the so-called jets. A jet contains local texture information and is
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calculated with a set of Gabor wavelets of different spatial sizes and orientations.

The similarity between two jets is calculated by their normalized scalar product. The

node similarity is the maximum of all jet similarities at the node.

Berg and Lässig [2006] used a simple binary approximation of node similarity:

two genes are counted as orthologous (node similarity θij = 1) if they appear as

putative orthologs in the Ensemble database, and otherwise not (θij = 0). Each node

may have several such putative orthologs.

Simsek and Jensen [2005] studied how to find a target node in a network whose

topology is known only locally. They proposed that larger the similarity between two

nodes, higher the probability of having a direct link between them. In similarity-based

navigation, nodes forward the message to the target node, given a number of attributes

on nodes and a similarity metric. Statistical relationship between node similarity and

probability of a link allow them to compute the probability that a given neighbor

links to the target node. They treated the citation graph as an undirected network,

defining node similarity using paper titles and abstracts. The title and abstract of

each paper were represented as weighted-term vectors using TFIDF (Term Frequency

- Inverse Document Frequency) weighting. Paper similarity was computed using a

standard cosine correlation measure.

Smeaton and Morrissey [1995] computed node-node similarity values using stan-

dard information retrieval techniques. Their method was based on global vector
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matching between texts but combined with locally matching structures like sentences.

In calculating the similarity between pairs of Software Product Descriptions (SPDs)

where each SPD was composed of a series of sub-nodes, the popular TFIDF weighting

formula was used. Each index term was weighted by its inverse document frequency

weight and the score between pairs of SPDs was computed by aggregating the scores

between sub-nodes in each of the SPDs being matched.

Kleinberg [1999] proposed a link-based model for the conferral of authority, and

showed how it leads to a method that consistently identifies relevant, authoritative

www pages for broad search topics. Their model was based on the relationship that

exists between the authorities for a topic and those pages that link to many related

authorities — they referred to pages of this latter type as hubs. Hubs and authorities

exhibit what could be called a mutually reinforcing relationship: a good hub is a page

that points to many good authorities; a good authority is a page that is pointed to

by many good hubs. The graph of Hubs and authorities is bipartite: one partite set

is hub nodes, the other is authority nodes. If p is highly referenced page, in the local

region of the link structure near p, the strongest authorities can potentially serve as

a broad-topic summary of the pages related to p.

Lu et al. [2001] explored the definition of similarity based on connectivity only,

and proposed several algorithms for this purpose. Their metrics took advantage of the

local neighborhoods of the nodes in the networked information space. Two variations
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of similarity estimation between two nodes were described: one was based on the

separate local neighborhoods of the nodes, and the other was based on the joint

local neighborhood expanded from both nodes at the same time. They designed two

graph-based similarity metrics. One metric was based on how strongly two papers

were connected in the citation graph. The other metric measured how similar the two

local citation communities are. The first metric was computed using a maximum flow

/ minimum cut value, using an efficient graph-theoretic algorithm, to find out the

amount of flow that can be pushed from one paper to the other. Obviously the more

flow which can be pushed from source to sink, the more paths there are between them,

which means the stronger they are connected. In the second metric, they used vectors

to compute similarity. In each local citation graph they assigned an authority weight

to every node. Then they constructed two vectors of the nodes in both local citation

graphs, the elements of which are the authority weights. The original idea behind

this scheme was that two papers are similar if their individual local citation graphs

share similar authority papers (compute the cosine distance of the two corresponding

vectors).

Penner et al. [2008] defined twinness as a measure of node similarity within lo-

cal structures in networks: two nodes are twins in subgraph H if they have identical

neighbors in H . In Schubert et al. [2005], a node v ∈ V from the first document

D = (V,E) is called similar (denoted v ∼ v′) to a node v′ ∈ V ′ from the second
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document D′ = (V ′, E ′) if we allow that v can be mapped to v′ in a node set corre-

spondence. Hence, the similarity relation ∼ is just the union of all acceptable node

set correspondences, and each one-to-on mapping that is a subset of ∼ is a possible

solution. Leicht et al. [2006] assumed that the edges in a network themselves indicate

a similarity between the vertices they connect. In their method, vertices i and j are

similar if either of them has a neighbor v that is similar to the other.

Jeh and Widom [2002] measured the structural-context similarity using bipar-

tite similarity rank. Their basic idea was that two objects are similar if they are

related to similar objects. For a node v in a graph, they denoted by I(v) and

O(v) the set of in-neighbors and out-neighbors of v, respectively. Individual in-

neighbors are denoted as Ii(v), for 1 ≤ i ≤ |I(v)|, and individual out-neighbors are

denoted as Oi(v), for 1 ≤ i ≤ |O(v)|. They defined basic SimRank as s(a, b) =

C
|I(a)||I(b)|

|I(a)|
∑

i=1

|I(b)|
∑

j=1

s(Ii(a), Ij(b)), where C is a constant between 0 and 1. If a = b

then s(a, b) is defined to be 1. If either a or b does not have any in-neighbors then

s(a, b) = 0. In the definition of bipartite SimRank such as for customers and prod-

ucts, similarity of products and similarity of customers are mutually-reinforcing no-

tions: customers are similar if they purchase similar products, and products are

similar if they are purchased by similar customers. Let s(A,B) denote the sim-

ilarity between customer A and B, and let s(c, d) denote the similarity between

items c and d. They have: s(A,B) = C1

|O(A)||O(B)|

|O(A)|
∑

i=1

|O(B)|
∑

j=1

s(Oi(A), Oj(B)), and
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s(c, d) = C2

|I(c)||I(d)|

|I(c)|
∑

i=1

|I(d)|
∑

j=1

s(Ii(c), Ij(d)), where C1 and C2 are constants. Then

they defined bipartite SimRank in homogeneous domains such as web pages and

scientific papers as: s1(a, b) = C1

|O(a)||O(b)|

|O(a)|
∑

i=1

|O(b)|
∑

j=1

s2(Oi(a), Oj(b)), and s2(a, b) =

C2

|I(a)||I(b)|

|I(a)|
∑

i=1

|I(b)|
∑

j=1

s1(Ii(a), Ij(b)). Depending on the domain and application, either

score or a combination may be used.

Lifshits [2007] discussed similarity search in bipartite graphs. For a bipartite

graph with people and movies in each partite, the person-person similarity is the

number of 2-step (person to movie then to person) chains in the graph. Person-movie

similarity is the number of 3-step chains. So to find the most similar person or movie

to a person q is to find person or movie with maximal number of 2-step or 3-step

chains to q.

Li et al. [2006] proposed a new method based on semantic pathway covering

for semantic similarity between gene ontology terms. An algorithm, COMBINE, was

presented, which considered information contents of two given nodes and those of

all nodes included in the two nodes’ pathways. The information contents of the

intersection and union of the two pathways were calculated respectively and then the

ratio of these two information contents was used as the similarity value of the two

nodes.

SNN (shared nearest neighbor) is the number of shared neighbors as long as

the two objects are on each other’s nearest neighbor lists. The underlying proximity
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measure can be any meaningful simiarity or dissimilarity measure (Tan et al. [2006]).

The Jarvis-Patrick clustering algorithm uses this SNN similarity.

1.2 Clustering

Data mining and knowledge discovery in databases often requires dividing data

into groups where similar objects are assigned to the same group. This task is often

executed by clustering. Clustering groups objects with high similarity into a single

cluster and separates objects with low similarity into different clusters. Data that

requires clustering is often unstructured or semi-structured, consisting of non-numeric

attributes (e.g., movie data, E-mail data, news articles). A movie contains a variety

of different attributes including Director, Actor, Role, etc. An E-mail has attributes

like Sender, Receiver, Subject, Date, etc. All these attributes are non-numeric (with

the exception of Date). Clustering is usually performed based on distance between

objects in the data set. When the attributes are non-numeric, there is no obvious

notion of distance between two objects. Instead, we measure the degree of similarity

between objects and consider an effective way to calculate this similarity value.

In this dissertation, we consider a graphical representationof objects and re-

lationships between them in a non-numeric dataset. Also, we use our graph-based

similarity measure to evaluate similarity between objects. We implement our clus-



16

tering algorithm using different variations of the proposed similarity measure. Our

graph representation scheme, similarity measure, and clustering method are generally

applicable to a variety of datasets.

Our motivations for clustering research are formulated as follows:

• Use our new similarity measure with a graphical data representation for clus-

tering.

• Enhance the K-medoid method based on postprocessing steps with new validity

indices.

• Improve K-medoid method with multiple medoids in one cluster.

• Cluster movies usingDirector and other important attributes of a movie. More-

over, we wanted to check the clustering results without using Director attribute

in the similarity measure for the interpretation of Director attribute.

• Develop an independent graph-based post-clustering node move method.

We propose measures to evaluate the clustering results. We present two validity

indices — Cohesion-Separation or CS for short and Representativeness of Medoid

or RoM for short — which are based on the cohesion and separation of clusters.

Furthermore, we present another validity index called Concentration of Similarity

(CoS for short) which measures how well the nodes similar to a given node are

concentrated in the same cluster.
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To reduce computations involved in calculating the validity indices, we sample

the nodes in each cluster and calculate the validity indices based on the sampled

nodes. We compare different sampling strategies based on their sampling errors and

time complexities. Inspired by our experimental results, we present two theorems

relating the validity index and cluster number which are theoretical results about

the influence of postprocessing on the value of validity indices. Based on our ex-

perimental results, the influence of different similarity measure variations, clustering

postprocessing steps, and cluster number on the quality of clustering is discussed.

We propose an improved K-medoid clustering method in which each cluster has

more than one medoid. Experimental results show that this method is effective in

some situations.

We propose an independent edge-oriented node move algorithm which can be

applied to a clustering result to improve the clustering quality for edge-oriented eval-

uation measures.

Furthermore, we improve the fuzzy K-medoid clustering method in the same

way we improve K-medoid method. Finally, we developed a cluster visualization tool

to visually display the clustering result in different forms.

Our initial results on clustering have been presented in Zhao and Sivakumar

[2009]. See Zhao and Sivakumar [2011a] for a more comprehensive presentation,

including recent results.
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1.2.1 Related Work

Clustering has been widely studied and used in many applications, especially

since the late 1960s. Classical and recent approaches include prototype-based ap-

proaches such as K-mean, FCM, and EM; hierarchical approaches such as single-link

or complete-link agglomerative clustering; graph-based approaches such as OPOS-

SUM; density-based approaches such as DBSCAN, CLIQUE, and DENCLUE; and

scalable approach such as BIRTH and CURE (Tan et al. [2006]). Most of the classi-

cal techniques are based on distances between the data objects in the original feature

space, while some techniques like OPOSSUM (Strehl and Ghosh [2000]) use similarity

measures. There is no “best” clustering algorithm that is suitable for all types of data

objects.

K-means (MacQueen [1967]) and K-medoid (Kaufman and Rousseeuw [1990])

are two well-known clustering algorithms which are the most prominent in prototype-

based clustering techniques. K-means is simple and efficient, but it has trouble

clustering data that contains outliers. Also K-means is restricted to data for which

there is a notion of a center (centroid). K-medoid is robust to outliers, and it can

be applied to a wider ranger of data since it requires only a proximity measures for a

pair of objects (Tan et al. [2006]).

Chu et al. [2002] proposed an incremental multi-centroid, multi-run sampling
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scheme (IMCMRS) for k-medoid-based clustering algorithms, to overcome the in-

efficiency of k-medoid algorithms which is one of the main limitations of K-medoid

clustering algorithm. Their algorithm is based on an observation that there is a higher

probability of better medoids being selected close to the centroid of the clusters, and

based on the efficiency of the centroid-based clustering (such as K-means).

Strehl and Ghosh [2000] proposed a relationship-based technique for graph-

partitioning-based clustering of market baskets data that tries to sidestep the “curse-

of-dimensionality” issue by working in a suitable similarity space instead of the orig-

inal high-dimensional feature space.

Zhou et al. [2009] proposed a graph clustering algorithm, SA-Cluster, based on

both structural and attribute similarities through a unified distance measure. One

main difference between their method and our method is that their structural sim-

ilarity is led by neighbor nodes through edges in the original graph, while in our

method it is led by common/uncommon neighbor nodes through attribute nodes. We

compare out experimental results with their results on the same dataset.

Yin et al. [2006] measured similarity between two objects based on the similar-

ities between the objects linked with them. Although our indirect similarity measure

(presented in Section 3.4) has a similar flavor, we consider common neighbors and

uncommon neighbors separately and for common neighbors we divide them into two

categories, so that the relation between objects are more clear and comprehensive.
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Jedidi [1998] analyzed weekly box office revenues for approximately 100 success-

ful motion pictures using a finite mixture regression technique to determine regularity

in sales patterns. Based on an exponential decay model applied to market share data,

four clusters of movies, varying in opening strength and decay rate, were found.

Cohesion and separation are often used for unsupervised cluster evaluation (Tan

et al. [2006]). For Euclidean space, the traditional measure of cohesion is the sum of

the squared error (SSE), and the measure of separation is the between group sum of

squares (SSB) (Tan et al. [2006]). Some postprocessing techniques can be applied to

reduce the SSE (Tan et al. [2006]). Because the similarity measure (e.g., for movie) is

often not an Euclidean space, we use four (two for cohesion and two for separation)

related but different measures to evaluate our clustering result.

When we have externally derived class labels for the data objects, supervised

measures of cluster validity could be used. Entropy, purity, precision, recall, and F-

measure are supervised and classification-oriented measures of cluster validity. Statis-

tic and Jaccard coefficient are two of the most frequently used similarity-oriented

cluster validity measures.

See Halkidi et al. [2002a,b] for a comprehensive review of clustering validity and

methods.

Gibson et al. [2005] presented an algorithm for finding large, dense subgraphs

in massive graphs. Their algorithm was based on a recursive application of fin-
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gerprinting via shingles. Wu and Kalyanaraman [2008] presented the design and

implementation of a parallel approach to identify protein families from large-scale

metagenomic data. Given a set of peptide sequences they reduced the problem to one

of detecting arbitrarily-sized dense subgraphs from bipartite graphs. Their approach

parallelized this task on a distributed memory machine through a combination of

divide-and-conquer and combinatorial pattern matching heuristic techniques.

Newman and Girvan [2004] proposed and studied a set of algorithms for dis-

covering community structure in networks — natural divisions of network nodes into

densely connected subgroups. Their algorithms involved iterative removal of edges

from the network to split it into communities, the edges removed being identified us-

ing one of a number of possible “betweenness” measures which are recalculated after

each removal. They also proposed a measure called modularity for the strength of the

community structure found by their algorithms, which gave them an objective metric

for choosing the number of communities into which a network should be divided. We

compare out experimental results with their results on the same dataset.

Satuluri and Parthasarathy [2009] presented a multi-level algorithm for graph

clustering using flows simulation. The graph is first successively coarsened to a man-

ageable size, and a small number of iterations of flow simulation is performed on the

coarse graph. The graph is then successively refined, with flows from the previous

graph used as initializations for brief flow simulations on each of the intermediate
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graphs. When they reach the final refined graph, the algorithm is run to convergence

and the high-flow regions are clustered together, with regions without any flow form-

ing the natural boundaries of the clusters. We compare our experimental results with

their results on the same dataset.

1.3 Entity Resolution

Entity resolution is the process of determining whether multiple records refer

to the same real world entity. This problem is also known as deduplication, identity

resolution, object identification, coreference resolution, record linkage, merge-purge,

data association, etc.

Entities are described by their attributes. The values of the attributes constitute

the information of some specific entity. For example, a person has attributes like

name, data of birth, fingerprint, etc. Because the entity is a real world entity, so

the collection of its true attribute values are unique and truly existing. We may or

may not know the true attribute values of an entity. We only have the reference(s)

of the entity, which is a collection of its attribute values. We may have multiple

references for some specific real world entity with different collections of attributes

values. Because they look different, we need to determine whether they refer to the

same real world entity or not, which is what entity resolution needs to do, in the
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narrow sense.

In a broader sense, entity resolution involves more work. We may only have

unstructured data without explicit entity references yet. Or the entity references

may not have consistent format. Talburt [2010] listed five major activities for entity

resolution in a larger context:

• Entity reference extraction: Locating and collecting entity references from un-

structured information.

• Entity reference preparation: The application of profiling, standardization, data

cleaning, and other data quality techniques to structured entity references prior

to the start of the resolution process.

• Entity reference resolution: Resolving (deciding) whether two references are to

the same or different entities.

• Entity identity management: Building and maintaining a persistent record of

entity identity information over time.

• Entity relationship analysis: Exploring the network of associations among dif-

ferent but related entities.

In our research, our work mainly involves entity reference preparation and res-

olution. Our data source is in text format generally with explicitly designated entity
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attributes, so we do not need to do entity reference extraction, which often involves

feature extraction or named entity recognition work. We did some entity reference

preparation work to improve the data quality to make them more comparable.

In its simplest form, the techniques for performing entity resolution need to

establish good match criteria for any pair of records, where entity resolution can

be viewed as a classification problem: given a vector of similarity values between

the attributes of two records, classify it as “match (duplication)” or “non-match

(non-duplication).” This match criteria may involve a metric and a user-defined

threshold, which determines the point dividing matching records from non-matching

ones. Classically, as defined by Fellegi and Sunter [1969] and reported by Winkler

[2003], this criteria returns one of three responses: matches, does not match, or

needs more review. Brizan and Tansel [2006] provide a brief description of various

matching techniques reported in the literature. Elmagarmid et al. [2007] presented

a comprehensive survey of the existing techniques used for detecting nonidentical

equivalent entries in database records. Winkler also gave an overview of this problem

in Winkler [2006].

Entity resolution systems generally use four basic techniques to determine whether

two references are equivalent. They are direct matching, transitive equivalence, asso-

ciation analysis, and asserted equivalence (Talburt [2010]). We use all four techniques

in our entity resolution framework.
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Traditional entity resolution methods often exploit textual similarity between

data attributes. Some more recent methods consider relational similarities derived

from the context of data as additional information. There are some other methods

that are based on probabilistic models. Methods that are used for matching records

with multiple fields can be broadly divided into two categories (Elmagarmid et al.

[2007]): one is approaches that rely on training data to “learn” how to match the

records. This category includes some probabilistic approaches and supervised machine

learning techniques; the other is approaches that rely on domain knowledge or on

generic distance metrics to match records. This category includes approaches that

use declarative languages for matching and approaches that devise distance metrics

appropriate for the equivalent detection task.

In our research, we developed a method that combined the useful aspects of both

categories. Also, current methods seldom deal with or describe details about incon-

sistency elimination for the final classification result. Furthermore, current methods

often lack modularity or are hard to be adapted. For these reasons, we present a simple

but effective method, which is based on graph-based similarity measures and a simple

probabilistic model. We focus on both the identification part and the merging part

of the entity resolution problem. We also propose a filtering strategy (pre-processing

step) and several inconsistency elimination methods and two effective record updat-

ing algorithms (post-processing steps) to improve the computational efficiency and
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classification results. Our record updating algorithms have two other functions: one

is to find the records with “true” attributes (exemplar or canonical records); the other

is to find a good matching threshold used for unsupervised learning when determining

whether a record pair is equivalent or not. Sometimes we use the word “duplicate”

for “equivalent” in the context of entity resolution, although equivalent might be a

better term.

The ideal entity resolution result is that the matching relationship we found

among the data records is exactly the same to the true equivalence relationship, but

in practice, for any non-trivial entity resolution work, it is not realistic. Talburt [2010]

illustrated the relation between these two relationships. Let S denote the Cartesian

product of the dataset itself, which is the set of all ordered pairs of references in the

dataset. Let M stand for the set of matching pairs of references, and E stand for the

the set of true equivalent pairs of references. Then M
⋂

E is the set of true positive

results, M − E is the set of false positive results, E −M is the set of false negative

results, and S − (M
⋃

U) is the set of true negative results. Our aim is to make

M − E and E −M as small as possible.

Our method is evaluated using F1 (most commonly used form of F-measure

(Rijsbergen [1979])) and “area under precision-recall curve” (AUC). Experimental

results show our method can produce high quality entity resolution result for both

unsupervised and supervised learning. The proposed method encompasses the entire
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entity resolution process (in the narrow sense) and includes some steps that are quite

general and applicable to other entity resolution methods based on pairwise record

matching.

Our experiments thus far have been conducted on a single set of records; i.e.,

we have not yet considered entity resolution on multiple data sources. However, our

current method can be easily adapted for the multiple data sources scenario.

For large datasets and/or computationally intensive similarity measures, the

running time of an entity resolution process could be an issue. To solve this problem,

blocking or canopy (Elmagarmid et al. [2007]) methods are generally used to efficiently

select a subset of record pairs for subsequent similarity computation while other

“dissimilar” pairs are simply ignored. In our research, we present a filtering method

on the test datasets which has similar effect of canopy.

Our method differs from the classic Fellegi-Sunter Model (FSM) mainly in two

ways. First, we use different probabilistic matching method. FSM focuses on attribute

value pattern, while our method uses similarity value pattern. Second, FSM only uses

direct matching, while our method uses direct matching, transitive equivalence, and

asserted equivalence. Moreover, our indirect similarity measure is context-based,

which gives the benefit of association analysis, although we do not make collective

matching decision directly.

The main contributions of our work on entity resolution include:
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• We propose a general framework to address the entity resolution problem.

• We present a simple probabilistic classification model for supervised learning,

in which similarity pattern is used instead of attribute value pattern. Methods

to estimate the probabilities required by the classifier are also given.

• We propose two record updating algorithms to: 1) improve classification result;

2) find records with “true” attributes; 3) find good matching threshold used for

unsupervised learning.

• We present several inconsistency elimination methods to eliminate the incon-

sistencies in the matching result as well as improve the classification accuracy.

• We compare the performance of our method with that of several recent entity

resolution methods (Singla and Domingos [2006], Wick et al. [2009] and S. Ren-

dle [2006]) using F1 and AUC. For the same dataset, our method generally

outperforms others.

Our initial results on entity resolution have been presented in Zhao and Sivaku-

mar [2010]. See Zhao and Sivakumar [2011b] for a more comprehensive presentation,

including recent results.
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1.3.1 Related Work

Minton and Nanjo [2005] described the relationship between two field values by

a set of heterogeneous transformations. They estimated the probability that some

pair is a match given the types of transformations and used it as a measure of the

“distance” between two attribute values. Some of our ideas were inspired by this

work.

Chen et al. [2007] presented a graphical approach for entity resolution. It used

the analysis of the entity-relationship graph constructed for the dataset being an-

alyzed. They measured the degree of interconnectedness between various pairs of

nodes in the graph.

Dong et al. [2005] considered complex information spaces for reference reconcil-

iation problem. Their references belong to multiple related classes and each reference

may have very few attribute values. Their algorithm exploited context information,

and once they decide to merge two references, they have two mechanisms for lever-

aging this information: reconciliation propagation and reference enrichment. Their

exploration of context information and reconciliation propagation are a bit similar to

our indirect similarity concept, and the idea of their reference enrichment is a little

similar to our record updating algorithm. However, we exploit context information

in a different way and update the record (instead of joining), with some restriction.
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Whang et al. [2009] proposed an iterative blocking framework where the entity

resolution results of blocks are reflected to subsequently processed blocks. Blocks

are iteratively processed until no block contains any more matching records. In our

method, we do re-filtering after record updating but it is different from their iterative

blocking idea.

Singla and Domingos [2006] proposed an integrated solution to the entity res-

olution problem based on Markov logic. Markov logic combines first-order logic and

probabilistic graphical models by attaching weights to first-order formulas, and view-

ing them as templates for features of Markov networks. They showed how a small

number of axioms in Markov logic capture the essential features of many different

approaches to this problem, in particular non-i.i.d. (independent and identically

distributed) ones, as well as the original Fellegi-Sunter model. We compared out

experimental results with their results on the same dataset.

Bhattacharya and Getoor [2006] extended the Latent Dirichlet Allocation model

for unsupervised entity resolution and proposed a probabilistic model for collective

entity resolution for relational domains where references are connected to each other.

They did not introduce a decision variable for each potential equivalent pair of ref-

erences, but instead had an entity label for each reference. To model collaborative

relations between entities, they introduced a group label for each reference, so that

entities coming from the same collaborative group are more likely to be observed in a
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relation. They also proposed an unsupervised Gibbs sampling algorithm for collective

entity resolution.

Bhattacharya and Getoor [2007] proposed a relational clustering algorithm that

used both attribute and relational information for determining the underlying domain

entities. They investigated the impact that different relational similarity measures

have on entity resolution quality.

S. Rendle [2006] proposed a model that uses structural information given as

pairwise constraints to guide collective decisions about object identification in ad-

dition to a learned similarity measure. We compared out experimental results with

their results on the same dataset.

Bohannon et al. [2005] introduced a cost framework for the constraint repair

problem that allows for the application of techniques from record-linkage to the search

for good repairs. They proved that finding minimal-cost repairs in this model is

NP-complete in the size of the database, and introduced an approach to heuristic

repair-construction based on equivalence classes of attribute values. Following this

approach, they defined two greedy algorithms.

Bohannon et al. [2007] proposed a class of constraints, referred to as conditional

functional dependencies (CFDs), and studied their applications in data cleaning. In

contrast to traditional functional dependencies (FDs) that were developed mainly

for schema design, CFDs aim at capturing the consistency of data by incorporating
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bindings of semantically related values. They developed techniques for detecting CFD

violations in SQL as well as techniques for checking multiple constraints in a single

query.

Fuxman et al. [2005] presented ConQuer, a system for efficient and scalable

answering of SQL queries on databases that may violate a set of constraints. ConQuer

permitted users to postulate a set of key constraints together with their queries. The

system rewrote the queries to retrieve all (and only) data that is consistent with

respect to the constraints.

Cong et al. [2007] studied effective methods for improving both data consistency

and accuracy. They employed a class of conditional functional dependencies (CFDs)

proposed in Bohannon et al. [2007] to specify the consistency of the data, which are

able to capture inconsistencies and errors beyond what their traditional counterparts

can catch. To improve the consistency of the data, they proposed two algorithms: one

for automatically computing a repair D’ that satisfies a given set of CFDs, and the

other for incrementally finding a repair in response to updates to a clean database.

Chaudhuri et al. [2007] observed that there are scenarios where additional con-

straints on the data are available that can be used to evaluate the quality of dedupli-

cation. They formalized the aggregate constraints and illustrated it through various

examples. They integrated the use of constraints in deduplication by using the textual

similarity between tuples to restrict the search space of partitions.
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Christen [2008] described the Febrl (Freely Extensible Biomedical Record Link-

age) system, which is available under an open source software licence. It contains

many recently developed advanced techniques for data cleaning and standardization,

indexing (blocking), field comparison, and record pair classification, and encapsulates

them into a graphical user interface. Bilgic et al. [2005] introduced D-Dupe which is

an interactive tool that combines data mining algorithms for entity resolution with

a task-specific network visualization which displays the collaboration context for po-

tential equivalents. Raman and Hellerstein [2001] presented Potter’s Wheel, an inter-

active data cleaning system that tightly integrates transformation and discrepancy

detection. Koudas et al. [2005] presented a prototype system called SPIDER, which

supports flexible string attribute value matching in large databases. Elfeky et al.

[2002] developed an interactive record linkage toolbox named TAILOR. Users of TAI-

LOR can build their own record linkage models by tuning system parameters and by

plugging in in-house developed and public domain tools.

Arasu et al. [2009] did collective deduplication of entity references in the pres-

ence of constraints. Their framework was based on a simple declarative Datalog-style

language with precise semantics. Galhardas et al. [2001] presented a language, and

execution model and algorithms that enable users to express data cleaning efficiently.

In relational databases, accurate deduplication for records of one type is often

dependent on the decisions made for records of other types. Culotta and McCallum
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Culotta and McCallum [2005] modeled the inter-dependencies explicitly to collectively

deduplicate records of multiple types. In our method, we use a simple but effective

probabilistic model. Moreover, although we do record matching pairwise, our record

updating and equivalent elimination are executed on records collectively.

Wick et al. [2009] proposed a discriminatively-trained model that jointly per-

forms co-reference resolution and canonicalization (the process of generating a stan-

dardized representation of the referent entity), enabling features over hypothesized

entities. We compared out experimental results with their results on the same dataset.

Chaudhuri et al. [2005] observed that the distance thresholds for detecting real

equivalent entries are different for each database tuple. They proposed an efficient

algorithm for computing the required threshold for each object in the database. In

our method, we use record updating to efficiently and effectively find a good matching

threshold for unsupervised learning.

Sarawagi and Bhamidipaty [2002] presented a method which provides a covering

and challenging set of training pairs that bring out the subtlety of the deduplication

function. Our supervised learning method also does “active” learning in the sense

that some newly labeled pairs of records are sometimes added into training set after

postprocessing (see algorithm 8 in section 5.5).

Swoosh (Benjelloun et al. [2008]) developed by the Stanford SERF project is

a generic approach to entity resolution. They identified four properties which they
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thought enable much more efficient entity resolution algorithms if they are satisfied

by the match and merge functions. They developed different algorithms for differ-

ent situations about these properties. They did not study the internal details of the

functions used to compare and merge records. Rather, they view these functions as

“black-boxes” to be invoked by the entity resolution engine. In our method, we take

care of the details of comparing and merging of records, as well as focus on modular-

izing the whole entity resolution process to make it general and adaptable. In SERF,

the transitive equivalence is made by merging the attribute values of equivalent ref-

erences, while in our method, we explicitly eliminate inconsistency first, then update

attribute values of some records. In particular, we resolve the inconsistencies with

edges in both training and test set.

For more comprehensive surveys of entity resolution see Elmagarmid et al. [2007]

and Winkler [2006].

The correlation clustering problem was introduced by Bansal et al. [2002], which

shows a constant factor approximation algorithm for minimizing disagreements, based

on the principle of counting erroneous triangles (triangles with two positive labeled

edges and one negative labeled edge). Ailon et al. [2005] proposed a randomized 3-

approximation algorithm for this problem. In our method, we implement the ideas of

these two correlation clustering algorithms for inconsistency elimination and compare

the results with those of our methods.
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CHAPTER 2. DEFINITIONS

This chapter gives definition of the terms used in this dissertation. Some of

them come from Tan et al. [2006] and the Glossary part of Talburt [2010].

Attribute: A characteristic associated with an entity that can take on a defined

set of values.

Attribute Node: Each attribute value is represented as one attribute node in

our graph representation of data.

Blocking: A technique for match prospecting (finding the references that are

most likely to match a given reference when there are many references to choose from)

based on selecting all (a block of) records that share a certain attribute value.

Canopy: An clustering algorithm intended to speed up clustering operations on

large data sets. The algorithm uses a computationally simple, approximate distance

measure to efficiently divide the data into overlapping subsets (called “canopies”).

Then clustering is performed by measuring exact distances only between points that

occur in a common canopy (McCallum et al. [2000]).

Clustering: The process of cluster analysis or an entire collection of clusters.

Clusters: Useful groups of data objects.

Cluster Cohesion: An cluster validity index which is used to determine how
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closely related the objects in a cluster are, also called cluster compactness, tightness.

Cluster Separation: An cluster validity index which is used to determine how

distinct or well-separated a cluster is from other clusters, also called cluster isolation.

Data Mining: A collection of methods and techniques for finding implicit rela-

tionships in a collection of data.

Data Node: Each entity reference is represented as one data node in our graph

representation of data.

Data Quality: The degree of fitness for use of data in particular application.

Edge: In our graph representation of data, edge is used to connect data node

and attribute node. Edge includes directed edge (also called link, e.g. web page links)

and undirected edge (e.g. edge between age of person and the person).

Entity: A real world person, place, or other object that has a unique identity

that distinguishes it from all other entities of the same type.

Entity Reference: A collection of identity attribute values that describe a par-

ticular entity.

Entity Resolution: A body of knowledge and practice related to the activities

supporting a process to decide whether two entity references are equivalent or not.

Equivalent References/Records: Two entity references/records are said to be

equivalent if, and only if, they refer to the same real world entity.

F-measure: A measure of a test’s accuracy which considers both the precision
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and the recall of the test to compute the score.

F1: Most commonly used F-measure, which equals 2 times precision then times

recall divided by the sum of precision and recall.

False Negative: A term used to describe the situation where a decision process

provides a negative answer when it should have provided a positive answer.

False Positive: A term used to describe the situation where a decision process

provides a positive answer when it should have provided a negative answer.

Fellegi-Sunter Record Linkage Model: A model for determining a set of agree-

ment patterns for a direct matching entity resolution process that will keep the false

positive and false negative rates for automated equivalence decisions within pre-

defined limits, and at the same time, minimize the number of equivalence decisions

that must be made by inspection.

Filtering: A step used in our entity resolution framework which takes as input

the record pairs and outputs candidate record pairs which will be processed in the

subsequent record matching step. It efficiently selects a subset of record pairs for

subsequent similarity computation.

Inconsistency: Inconsistent decision in entity resolution.

Link: Direct edge in our graph representation of data.

Matching: An operation between two values that gives a true or false result

where true indicates that the values are identical or closely related according to some
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rule or algorithm.

Medoid: The most representative data object for a group of data objects.

Merge-purge: An entity resolution architecture in which direct matching and

transitive equivalence are successively used to resolve the references into clusters of

equivalent references.

Node: In our graph representation of data, node is used to represent entity

reference or attribute values.

Precision: The fraction of retrieved instances that are relevant, which equals

true positive divided by the sum of true positive and false positive.

Recall: The fraction of relevant instances that are retrieved, which equals true

positive divided by the sum of true positive and false negative.

Record: An entity reference.

Record Linkage/Linking: A term originally used to designate a specific problem

of determining direct matching equivalences between two lists of references assumed

to have no internal equivalences, it is now commonly used to describe any entity

resolution process based on the merge-purge architecture.

Record Update: A step used in our entity resolution framework which involves

updating of some entities’ attribute values.

Semi-Structured Data: Structured data that does not conform with the for-

mal structure of tables and data models associated with relational databases but
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nonetheless contains tags or other markers to separate semantic elements and enforce

hierarchies of records and fields within the data (Buneman [1997]).

Similarity Measure: A numerical measure of the degree to which two data ob-

jects are alike.

Similarity Metric: A similarity measure which could be converted to a distance

metric which satisfies positivity, symmetry, and triangle inequality.

Structured Data: Data that is organized in such a way that all of the attribute

values describing a particular entity are presented in a consistent and predictable

pattern that can be programmed into a computer, e.g. database tables.

Transitive Closure: A method used in our entity resolution framework making

use of transitive relations to eliminate inconsistent decisions.

True Negative: A term used to describe the situation where a decision process

provides a correct negative answer.

True Positive: A term used to describe the situation where a decision process

provides a correct positive answer.

Unstructured Data: Data that is not structured, e.g. free-form text, images,

audio streams.
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CHAPTER 3. SIMILARITY MEASURE

Similarity measure is an assessment of “closeness” between two records and plays

an important role in our clustering and entity resolution work. Different similarity

measures can lead to very different content and quality of the data mining result. We

propose graph-based similarity measures in which both direct similarity led by simple

attributes and indirect similarity led by data records are considered.

3.1 Data representation

Data that requires mining often consists of non-numeric attributes (e.g., movie

data, Email data, news articles). Naturally, we use a graph to represent these data

objects and their relationships. Each value of each attribute is represented by a node.

An edge connects two nodes which have a direct relationship. For example, in a

database of movies, each movie record has attributes like title, name (for people in

the movie such as actor), role, etc. Thus we have a title node, name nodes, role nodes,

etc. Names and roles in one movie are connected to each other and to that movie

title node.

Unfortunately, this kind of graph representation can lead to some problems.

Consider the following scenario: Two movies m1 and m2 have a same role called r1,
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Figure 3.1: Data representations

an actor a1 played role r1 in m1 and role r2 in m2, and another actor a2 played role

r1 in m2; then the graph depicting this scenario would be as shown in Figure 3.1 (a).

In Figure 3.1 (a), ambiguity is introduced as it seems to imply that a1 also played

(role) r1 in (movie) m2. This problem could be solved in different ways, e.g., intro-

ducing duplicate nodes. We use The RElationship Generating Graph Analysis Engine

(REGGAE) (Larson [2008]) developed by Applied Technical Systems (ATS) to solve

this problem by storing context information without introducing duplicate nodes for

the same data element. REGGAE is a bipartite graph structure consisting of a data

layer and a context layer. Data layer contains only data (e.g., “Name: a”, “Role: r1”,

“Title: m1”) and the context layer stores connections between data nodes. Nodes in

the context layer may only connect to nodes in the data layer, and nodes in the data

layer may only connect to nodes in the context layer. The formal definitions of data

layer and context layer are as follows (Larson [2008]):

Data Layer: Populated with entities (cells), with each entity represented by a basic
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Type-Value construct.

Context Layer: Populated with context nodes (links), which provide contextual rela-

tionships between entities on the graph.

Figure 3.1 (b) is the REGGAE bipartite graph depicting the previous scenario.

The small circles (colored purple) are nodes in the context layer and the rest (colored

other than purple) are nodes in the data layer. A node in the data layer is called an

“entity node” and a node in the context layer is called a “link node.” We can see

that the ambiguity problem is solved through the introduction of link nodes. Figure

3.1 (c) is a bipartite isomorphic version of figure 3.1 (b).

For entity nodes of REGGAE graph, besides the nodes for attributes’ values,

we should also include one other kind of node called Data node to represent each

data object consisting of attributes. (Note that this Data node is different with the

data node we mentioned in previous page.) The attribute value’s node will be called

attribute node, which takes the form of “AttributeName: AttributeValue”, e.g., “Role:

Super man”. For Data nodes, we can use the unique ID of this data object in the

dataset as its value, such as “Movie: MovieID” or “Email: MsgID”. Note that if the

attribute’s value is a set, we should use one node for each value in the set. An edge

between an attribute node and a data (record) node (through link node) indicates

that the record has the said attribute.

Given data and their representation, one important thing is to investigate the
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similarity between data entities. Data similarity is used by many data mining tech-

niques and tasks, such as clustering and entity resolution. Similarity between data ob-

jects involve similarity between simple attributes and similarity between data records.

We now present the similarity measures, which are based on a graph structure, used

in our data mining research.

3.2 Direct similarity metric

Two (or more) data nodes a and b could share some common attribute node(s).

In Figure 3.2, data nodes (square nodes) x, y, and cc share a common attribute node

(oval node). For simplicity, link nodes are omitted. X denotes data node x and

its context including attribute nodes and neighbor data nodes (similarly for Y ). A

node’s neighbor data node is the data node which shares attribute node(s) with it.

We name similarity led by common attribute nodes as Direct similarity. We have the

following similarity measure for direct similarity between a and b:

Sd =
m
∑

i=1

wiSdi , (3.1)

where Sdi is similarity value associated with ith attribute of a and b, and wi is

the corresponding weight for ith attribute. Typically, 0 ≤ Sdi ≤ 1, wi ≥ 0 and

∑m
i=1wi = 1,m being the number of attributes considered. Calculation of Sdi depends

on the data type of the attribute. It compares the similarity between attribute i’s
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Figure 3.2: Graph explanation of similarity measures

values for two data objects. In our research, we use Jaccard coefficient (Tan et al.

[2006]) to calculate Sdi :

Sdi =
|ai

⋂

bi|
|ai|+ |bi| − |ai

⋂

bi|
, (3.2)

where ai and bi is the ith attribute of a and b. For the attribute whose value is a set,

Sdi is between 0 and 1; for the attribute whose value is a single string (we can treat

it as a set with only one item for equation (3.2)), Sdi is either 0 or 1.

In the following, we shall show that our direct similarity measure defined in

Equations (3.1) and (3.2) can be easily converted to a distance metric. We have

Sd =
m
∑

i=1

wiSdi , where i is ith attribute, so it suffices to show that each Sdi can be

converted to a metric. For simplicity, we use s to denote Sdi . We will show that
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d = 1−s satisfies the properties of Positivity, Symmetry, and Triangle Inequality and

hence is a metric. In the following, we use x to denote both attribute x and its value

set.

Positivity

(a) d(x, y) ≥ 0 for all x and y.

Proof. We know |x
⋂

y| ≤ |x| and |x
⋂

y| ≤ |y|.

d(x, y) = 1− s(x, y) = 1− |x⋂

y|
(|x|+|y|−|x

⋂

y|) =
|x|+|y|−2|x⋂

y|
|x|+|y|−|x

⋂

y|) ⇒ d(x, y) ≥ 0.

(b) d(x, y) = 0 if and only if x = y.

Proof. i. x = y ⇒ |x⋂ y| = |x| = |y| ⇒ d(x, y) = |x|+|y|−2|x
⋂

y|
|x|+|y|−|x

⋂

y|) = 0;

ii. d(x, y) = 0 ⇒ |x|+ |y| − 2|x
⋂

y| = 0 ⇒ |x| = |x
⋂

y| = |y| ⇒ x = y.

Symmetry: d(x, y) = d(y, x) for all x and y.

Proof. d(x, y) = 1− |x
⋂

y|
(|x|+|y|−|x

⋂

y|) = 1− |y
⋂

x|
(|y|+|x|−|y

⋂

x|) = d(y, x).

Triangle Inequality: d(y, z) ≤ d(x, y) + d(x, z) for all x, y, and z.

Proof. Figure 3.3 illustrates sets x, y, and z, as well as the other variables used in

our proof. We then have:
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Figure 3.3: Sets x, y, and z

s(x, y) =
r + s

a+ q + b+ p+ r + s
≤ p+ r + s

b+ p+ r + s+ q
, (3.3)

s(x, z) =
q + s

a+ r + c+ p+ q + s
≤ p+ q + s

c+ q + s+ p+ r
, (3.4)

and s(y, z) =
p+ s

b+ r + c+ q + p+ s
. (3.5)

Note that d(y, z) ≤ d(x, y) + d(x, z) ⇔ 1 − s(y, z) ≤ 1 − s(x, y) + 1 − s(x, z), so it

suffices to show that

s(y, z)− s(x, y)− s(x, z) + 1 ≥ 0. (3.6)

From equations (3.3)-(3.5) we get

s(y, z)− s(x, y)− s(x, z) + 1 ≥ p+ s

b+ r + c + q + p+ s

− p+ r + s

b+ p+ r + s+ q
− p+ q + s

c+ q + s+ p+ r
+ 1 =

A

B
,

where

B = (b+ c+ p+ q + r + s)(c+ p+ q + r + s)(b+ p+ q + r + s) ≥ 0,
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and

A = (p+ s)(c+ p+ q + r + s)(b+ p+ q + r + s)

− (p+ q + s)(b+ c+ p+ q + r + s)(b+ p+ q + r + s)

− (p+ r + s)(b+ c+ p+ q + r + s)(c+ p+ q + r + s)

+B

= b2(c + r) + c2(b+ q) + (2bc + br + cq)(p+ q + r + s)

≥ 0.

This shows (3.6), which completes the proof.

3.3 Domain-optimized direct similarity calculation

As described in section 3.2, we do field (attribute) matching for direct similar-

ity between two records. The direct similarity metric used in our entity resolution

framework is able to produce good results. However, for a particular dataset, some

domain-oriented optimizations can be made to get better field matching performance

and hence better entity resolution results.

Our experiments were conducted on two datasets: Cora and CDDB (Weis et al.

[2009]). Details about the datasets as well as the specific domain-oriented optimiza-

tions are described in chapter 7. Our domain-optimized direct similarity calculation

can get better similarity values which leads to better filtering (see section 5.3.1) and
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consequently a better entity resolution result (see Tables 7.16-7.19 and Tables 7.23).

3.4 Indirect similarity measure

Two data nodes x and y could share some common neighbor data node(s).

Nodes x and y are called neighbors if they share some attribute node(s). Two nodes,

that do not share any common attributes (non-neighbors) can still be somewhat

similar if they:

• Share some common neighbor nodes. In other words, nodes x and y may not

share any common attributes but both x and y may have common attributes

with a third node z. We consider only those common attributes between x and

z that are not common between x and y (since the direct similarity has already

accounted for them) and similarly consider only those common attributes be-

tween y and z that are not common between y and x. In short, we refer to this

as two data nodes x and y having a common neighbor data node(s) z, through

different attribute node(s).

• Have uncommon neighbor nodes. This is based on the neighbor nodes of x

exclusive or y. In short, we refer to this as two data nodes x and y having

uncommon neighbor data node(s).
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We call similarity led by common or uncommon neighbor data node as Indirect sim-

ilarity.

Indirect similarity is illustrated in Figure 3.2. Here, cc is a common neighbor

data node of x and y through the same attribute node (we will not count this in the

calculation of indirect similarity between x and y); cu is a common neighbor data

node of x and y through different attribute nodes — it will be considered in the

calculation of indirect similarity between x and y; a and b are uncommon neighbor

data node of x and y, respectively. Note that there are no direct edges connecting

two record (square) nodes or between two attribute (oval) nodes even after we omit

the link nodes.

We propose three different methods to calculate the indirect similarity between

x and y:

• General: consider weighted similarities on paths (x, cu, y) and (x, a, b, y) for all

cu, a, and b;

• Relaxed: consider weighted similarities on paths (x, cu, y), (x, a, b, y), (x, a, cu, y),

and (x, cu, b, y) for all cu, a, and b;

• Simple general and simple relaxed: unweighted; i.e., set all weights to 1.

Now let us see how to calculate the indirect similarity using the general version.

Suppose record x has m neighbor records (call set A) and record y has n neighbor
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records (call set B) with k common neighbor records through different properties (set

CU = A∩B \CC (set difference), where CC is the set of common neighbor records,

through same properties and |CC| = h); then the indirect similarity between records

x and y is formulated in equation (3.7), where A′ = A \C, B′ = B \C, and wxCUj
is

the weight for neighbor CUj of x, and so on.

Si =

k
∑

j=1

wxCUj
wyCUj

SxCUj
SyCUj

+
m−k−h
∑

j=1

n−k−h
∑

l=1

wxA′

j
wA′

jB
′

l
wyB′

l
SxA′

j
SA′

jB
′

l
SyB′

l

k
∑

j=1

wxCUj
wyCUj

+
m−k−h
∑

j=1

n−k−h
∑

l=1

wxA′

j
wA′

jB
′

l
wyB′

l

(3.7)

We define weight wxy as the number of common attributes of x and y divided

by the size of the union set of attribute of x and y. Note that the similarities S in the

right-hand side of equation (3.7) are the direct similarities between the appropriate

nodes.

For simplicity, we can also set all the weights in equation (3.7) to one so that

we have equation (3.8) which is the simple version to calculate Si:

Si =

k
∑

j=1

SxCUj
SyCUj

+
m−k−h
∑

j=1

n−k−h
∑

l=1

SxA′

j
SA′

jB
′

l
SyB′

l

k + (m− k − h)(n− k − h)
. (3.8)

Note that in equations (3.7) and (3.8), if m = k + h exclusive or n = k + h,

then |A′| = 0 or |B′| = 0, which removes part of indirect similarity through non-

common neighbor records. So we present a relaxed definition of Si. Equation (3.9)

is the relaxed version for equation (3.8) (similarly for equation (3.7)), where we set
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p = k + h.

Si =

k∑

j=1

SxCUj
SyCUj

+
m−p∑

j=1

n−p∑

l=1

SxA′

j
SA′

j
B′

l
SyB′

l
+

m−p∑

j=1

k∑

l=1

SxA′

j
SA′

j
CUl

SyCUl
+

k∑

j=1

n−p∑

l=1

SxCUj
SCUjB

′

l
SyB′

l

k + (m− p)(n− p) + (m− p)k + k(n− p)

(3.9)

Note that in equations (3.7), (3.8), and (3.9), we exclude x from B′ and y from

A′. So for the situation where x and y do not have a common record neighbor and x

and y is the only neighbor for each other, both the numerator and the denominator

will be zero. In this case, we simply set Si = 1.

3.5 Modified Version for Clustering

Compared with entity resolution which needs to find equivalent records, clus-

tering only needs to group similar records together, so we only use a simplified and

modified version of our similarity measure for clustering which is expressed in equation

(3.10):

S = wdSd + wsiSsi, (3.10)

where Sd is direct similarity, Ssi is simple indirect similarity where we only consider

common neighbor data nodes through different attribute nodes, and wd, wsi are their

corresponding (non-negative) weights with wd + wsi = 1. Typically 0 ≤ S ≤ 1.

Combine equation (3.1) and (3.10), we have:

S = wd(
m
∑

i=1

wiSdi) + wsiSsi. (3.11)
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Equation (3.11) means that we can consider the set of neighbor data nodes as an

attribute for the similarity calculation. The only difference for this attribute is that

the common neighbor data nodes for two data nodes is through different attribute

nodes, rather than simply taking the intersection. For this reason, if all the attributes

are single-value attribute, then Ssi = 0, which means we only need to consider direct

similarity.

So far we only consider nodes’ own attributes for direct similarity, while in the

real life, we have many dataset in which one node have edge(s) to other nodes. For

this situation, we have two options to modify our similarity measure: One is simply

letting the two nodes’ similarity equal to 1 or some value if they have a edge between

them; the other option is for each data node treating the set of nodes which has edge

to this node as an attribute. In our research, we choose the second option and call

this set of neighbor nodes direct neighbors. For example, if two students both have

their web home page link to IEEE’s home page, then we prefer to consider similarity

between these two students, rather than consider it between a student and IEEE.

Finally, we have our similarity measure for clustering as follows:

S = wd(

m
∑

i=1

wiSdi) + wonSon + wsiSsi, (3.12)

where “on” represents for original neighbors led by edge between nodes, and wd +

won + wsi = 1.

As defined in chapter 2, edge could be undirected or directed (i.e., link). For
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each kind of edge in the dataset, we treat the neighbor data nodes led by it as one

attribute. While for link, we treat in-neighbors and out-neighbors as two separate

attributes. A node x ’s in-neighbors are the data nodes which has link to x. A node

x’s out-neighbors are the nodes which has link from x.
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CHAPTER 4. CLUSTERING

K-medoid is a simple prototype-based clustering algorithm that uses the medoid

(the most representative one) of the objects in a cluster as the prototype of the cluster

(Kaufmann and Rousseeuw [1990]). We use K-medoid because it requires only a

proximity measure for a pair of objects, which we already have through the similarity

measure. Also, K-medoid tends to produce globular clusters in which each object

is sufficiently similar to the cluster’s medoid or to other objects in the cluster. We

enhance the basic K-medoid algorithm in several respects which will be discussed

below. We introduce a set of validity indices to direct the clustering process, and

evaluate and improve the clustering quality.

We also propose a modified K-medoid clustering method called multi-medoid

K-medoid clustering, in which each cluster has more than one medoid. It could

improve the quality of clustering result, at the price of worse time efficiency.

For the dataset with original edge, we designed a node move algorithm to effec-

tively improve the quality of clustering result for edge-oriented evaluation measures.

We also enhance the traditional fuzzy K-medoid method and propose the cor-

responding validity indices.
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4.1 K-medoid Clustering

4.1.1 Validity Indices

Cluster evaluation (validation) is an important and necessary step for any clus-

tering algorithm. Cohesion and separation are often used for unsupervised cluster

evaluation (Tan et al. [2006]). Cohesion indicates how closely nodes in one cluster are

grouped together; separation indicates how well separated clusters are between each

other. We propose three different validity indices and two of them are based on the

idea of cohesion and separation. Each index measures a different aspect of clustering

quality. Some notations used in our validity indices are formalized in Table 4.1.

Table 4.1: Notations used in validity indices

Ci ith cluster

|Ci| Size of the ith cluster

ci medoid of ith cluster

K Number of clusters

s(xi, xj) Similarity between nodes xi and xj

Before we introduce our validity indices let us look at four definitions first.

Cohesionmedoid or Cm for short is the normalized nonmedoid-to-medoid similarity
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within all the clusters:

Cm =

K
∑

i=1

(
|Ci|
∑

j=1

s(ci, xj)− 1)

K
∑

i=1

(|Ci| − 1)

. (4.1)

Here s(ci, xj) is the similarity between medoid ci and node xj . It tells us how similar

are nodes to their cluster medoid; it could be regarded as an indication of the average

“size” of each cluster in similarity space (analogous to “radius” in Euclidean space).

In general, for a fixed dataset, we want to maximize the value of Cm. Note that

we subtract 1 from the numerator and denominator of equation (4.1) for removing

the similarity between medoid and itself for each cluster (according to our similarity

measure, a node’s similarity to itself is 1).

Cohesionaverage or Ca for short is the normalized node-to-node similarity within

all the clusters:

Ca =

K
∑

i=1

(
|Ci|
∑

j=1

|Ci|
∑

l=j+1

s(xj , xl))

0.5
K
∑

i=1

(|Ci|(|Ci| − 1))

. (4.2)

It indicates how “dense” the clusters are. Again, we want to maximize the value of

Ca for a given dataset.

Separationmedoid or Sm for short is the average medoid-to-medoid similarity

between all clusters:

Sm =

K
∑

i=1

K
∑

j=i+1

s(ci, cj)

0.5K(K − 1)
. (4.3)

A small value for Sm is desirable for a good clustering.
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Separationaverage or Sa for short is the normalized node-to-node similarity be-

tween all clusters:

Sa =

K
∑

i=1

K
∑

j=i+1

|Ci|
∑

m=1

|Cj |
∑

n=1

s(xm, xn)

K
∑

i=1

K
∑

j=i+1

(|Ci||Cj|)
. (4.4)

This value should also be small for a good clustering result.

The first validity index is called Cohesion-Separation or CS for short because

it is based on Ca and Sa:

CS =
Ca

Sa
. (4.5)

For a good clustering result, we expect a large value for Ca and a small value for Sa

and hence a large value for CS.

The second validity index is called Representativeness of Medoids (RoM for

short) because it measures to what degree the medoids are representative of the

cluster nodes:

RoM = | log Ca

Cm

|+ | log Sm

Sa

|. (4.6)

If the medoid is representative of the cluster, we expect Ca and Cm to be close and

hence the ratio would be close to one. Similarly, we also expect the ratio of Sm

to Sa to be close to one. Therefore, a small value for RoM is preferred for good

representativeness of medoids.

The time complexity for calculating CS or RoM is O(n2), where n is the size of

the dataset. Clearly, Ca and Sa computationally intensive. To reduce complexity, we
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can sample the nodes in the clusters and then only use the sampled nodes to calculate

Ca and Sa. We calculate the relative error (RMSE and STDEV) due to sampling,

and the similarity of clustering results with and without sampling, which means we

compared the contents of the clusters of non-sampling version and sampling version.

In addition to the above two validity indices, we also propose another measure

called Concentration of Similarity (CoS) which measures how well the nodes similar

to a given node are concentrated in the same cluster. For each node, we calculate its

top m most similar nodes (using our similarity measure) within the same cluster —

call this set A. We compare this with set B consisting of the top m similar nodes

among all the nodes in the dataset. The average size of A ∩ B (over all the nodes)

expressed as a fraction of m is defined as CoS. Ideally, we want CoS to be as close

to 1 as possible.

Note that CoS and Cm can be used to evaluate not only the whole clustering

result but also a single cluster, while CS and RoM generally are only used for the

whole clustering result. The value of CS, RoM , or CoS is independent of the dataset

or similarity value, so they can be used as absolute validity indices to compare any

two clustering results. Furthermore, unlike RoM , CS and CoS are independent of

the clustering method.

Some commonly used validity indices can identify only the well separated hyper

sphere shaped clusters, since these indices measure the variance of the clusters around
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some representative points. However, some clusters, especially the arbitrary shaped

clusters, do not have a representative center point (Legány et al. [2006]). But for

our validity indices, introduction of CoS can be used to measure arbitrarily shaped

clusters.

The traditionalK-medoid target function/validity index is to minimize the total

sum of the distance between each data object and its medoid (Saha and Mukhopad-

hyay [2008]). It is easy to see that as the value of K increases, each data object

generally will be closer to its medoid, which would decrease the value of this target

function. So this validity index is not a good measure when K is allowed to vary. In

general, our validity index CS does not have this problem, because the denomina-

tor Sa may also increase with K (except in some special cases discussed in Theorem

4.1.2).

4.1.2 Clustering Algorithm

Our K-medoid clustering method has four steps: initialization, association, re-

initialization, and postprocessing.

Initialization: The initialization step is to find K initial medoids. Our initial-

ization method consists of three basic steps: sampling, determining first medoid, and

successively determining rest of the K−1 medoids. First, we select a small sample of
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the nodes (usually 5-10% nodes); this can be done either randomly or by picking say

one node every 20 or 10 nodes. Then, we take the median of the sample as the first

medoid. We define the median as a node with the largest sum of similarities to other

nodes in the sample. Finally, for each successive medoid, we select the node that is

most dissimilar to any of the previously selected medoids.

Association: During Association, we associate each nonmedoid node to its

most similar medoid. We break ties randomly or associate the nonmedoid node to

the smallest cluster, unless the node is most similar to the medoid of its current

cluster, in which case we do not change its cluster membership. For the dataset with

original edge, the other option to break ties is to choose the cluster with most records

having edge with it.

Re-initialization: In this step, we compute the median node (node with largest

sum of similarities to other nodes in the same cluster) for each cluster (after Associa-

tion) and assign it as the new medoid of the cluster. If the new medoid for a cluster is

a node that was used as a medoid in a previous iteration, we keep the current medoid.

This is done to avoid oscillatory behavior where the medoid of a cluster repeatedly

switches between two nodes.

Postprocessing: When no new medoids are generated, the Association – Re-

initialization loop should be terminated. To improve the quality of clustering, we

perform additional postprocessing steps. In our K-medoid clustering method, we use



62

three different postprocessing strategies: split, merge, and move.

The general idea of a split is to split the largest or sparsest cluster. We split the

cluster which (1) is too big, say, has more than 50% of all nodes; (2) has the small-

est total/normalized nonmedoid-medoid/node-node (intra-cluster) similarity. In our

experiments, we tried different split metrics in (2) and we observed that normalized

node-node similarity was a good choice. After split, the medoid of the split cluster

is replaced by two randomly selected nodes from the respective clusters (locally), or

replaced by two nodes from the respective clusters or whole dataset (globally) which

are farthest from current medoids.

The general idea of a merge is to merge the smallest clusters or closest clusters.

We merge (1) the clusters which are too small, say, each has less than 1% of all nodes,

or just has one node; (2) the two clusters which have the largest total/normalized

medoid-medoid/node-node(inter-cluster) similarity. Because a merge often results in

a decrease in cohesion, we impose some conditions on merge. We merge the two

clusters which are: 1) the most similar (has biggest inter-cluster similarity); 2) dens-

est (has biggest intra-cluster similarity); 3) particularly close (the similarity between

them is bigger than some factor (e.g., twice) of the second biggest inter-cluster sim-

ilarity. After merge, the medoids of the merged clusters are replaced by a randomly

selected new node from the merged cluster (locally), or replaced by the node from the

merged cluster or the whole dataset (globally) which is farthest from current medoids.
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We alternate between the split and merge steps to control the number of the

clusters. A sequence of split/merge steps can be used to fine tune the total number

of clusters, since this is not always known or given. Finally, note that split/merge

postprocessing is performed after and followed by several iterations of Association –

Re-initialization steps.

The third kind of postprocessing we perform is move. We call a node lonely if

it shares no common Property node with any other nodes in its cluster. During a

move we move lonely nodes to a different cluster where it shares the most (at least

one) common Property node with other nodes in the cluster. This helps increase

the quality of the clustering by increasing the cohesion and decrease the separation

further. Note that this postprocessing step is executed only at the end of the whole

clustering process.

Termination: Different termination conditions can be used to stop the execu-

tion of the clustering process. For example, when an validity index (like CS, RoM ,

or CoS) is bigger or smaller than some threshold. Alternatively, after split and merge

are executed a given number of times, the clustering process can be stopped. In our

experiments, we stop the clustering process after five split/merge steps (splitting of

big cluster and the merging of small clusters are not counted).

Since our clustering algorithm is based on K-medoid, the computational com-

plexity for finding the medoid for each cluster is O(n2) where n is the size of the
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cluster.

The clustering algorithm is summarized in Figure 4.1 and formalized in Algo-

rithm 1.

 

Initialization 

Association 

Re-initialization 

Has new medoid? 

N 

Postprocessing 

Y 

Stop? 
Y 

N 

Output 

Figure 4.1: Flow chart for K-medoid clustering algorithm
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Algorithm 1 K-medoid clustering algorithm

Input: Dataset with size of n, and initial cluster number K
Output: K ′ clusters
1: 1) Initialization: generate K initial medoids
2: 1.1) take a small subset of all nodes as sample
3: 1.2) take the median node of the sample as the first medoid
4: 1.3) Remaining K-1 medoids are selected as the node farthest from previous

medoids
5: 1.4) set variable fixup to 1
6: 2) Association: associate each non-medoid to its most similar medoid
7: 3) Re-initialization: select median node of each cluster as medoid
8: 4) Check if there is any cluster having new medoid generated
9: 5) If the answer to 4) is yes, then go back to 2), else go to 6)
10: 6) Check if stop condition is satisfied
11: 7) If the answer to 6) is yes, then go to 9), else go to 8)
12: 8) Postprocessing: split/merge
13: if fixup == x then
14: go to 8.x)
15: end if
16: 8.1) Split the cluster with the smallest intra-cluster average node-node similarity,

then set fixup to 2 and go to 2)
17: 8.2)
18: if there is a cluster which has more than 50% of n nodes then
19: split it and go to 2)
20: else
21: set fixup to 3 and go to 8.3)
22: end if
23: 8.3) Merge the two clusters which are the most similar to each other, the densest,

and particularly close to each other, then set fixup to 4 and go to 2);
24: if there are no two clusters which satisfy these three conditions then
25: set fixup to 4 and go to 8.4)
26: end if
27: 8.4) Merge the clusters which have just one node;
28: if the new merged cluster still only has only one node then
29: merge it to the second smallest cluster, then go to 2);
30:
31: if there is no small cluster then
32: reset fixup to 1 and go to 6)
33: end if
34: end if
35: 9) Postprocessing: move. Move each lonely node to some cluster where it has

most links to other nodes
36: 10) Print out the clustering result
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4.1.3 Influence of Postprocessing on Validity Indices

We now present some theoretical results about the influence of postprocessing

on validity indices.

Lemma 4.1.1. If the dataset size is fixed, then the number of total intra-cluster pairs

is maximal when one cluster’s size is maximal and others are minimal.

Lemma 4.1.2. If the dataset size is fixed, then the number of total intra-cluster pairs

is minimal when all clusters have the same size or the nodes have the most equitable

distribution among clusters.

Here is the proof for these two lemmas:

Proof. Let xi be the size of cluster Ci, let K be the number of clusters and C be the

size of the dataset. We have
K
∑

i=1

xi = C. The number of total intra-cluster pairs is:

K
∑

i=1

xi(xi−1)
2

=

K
∑

i=1
(x2

i−xi)

2
=

K
∑

i=1
x2
i−

K
∑

i=1
xi

2
=

K
∑

i=1
x2
i−C

2
,

so the number of total intra-cluster pairs is maximal or minimal when
K
∑

i=1

x2i is maximal

or minimal.

1)
K
∑

i=1

x2i = (
K
∑

i=1

xi)
2 − ψ = C2 − ψ, so when ψ = 0,

K
∑

i=1

x2i has maximal value of C2,

and ψ = 0 means that one cluster’s size is C, and others’ is 0. Note that for actual

situation, this means that one cluster’s size is C + 1−K, and others’ is 1.

2) Let f(x) =
K
∑

i=1

x2i =
K
∑

i=1

x2i + λ(
K
∑

i=1

xi − C)
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Take gradient both sides: ▽f(x) = (2xi) + λ(1);

(2xi) + λ(1) = 0 ⇔ xi = −λ
2
, i = 1, 2, ..n

⇔ −nλ
2
= C ⇔ λ = −2C

n
⇔ xi =

C
n
;

So when xi =
C
n
, f(x) has maximum or minimum value. In our case, it is a minimum

value. If C
n

is a fraction between integers c and c + 1, then the most equitable

distribution of nodes among clusters will have size either c or c + 1, and that would

be the one with smallest sum of x2i . The reason is as follows: consider the two possible

changes (perturbations) that could be made: one is to move one node from a cluster

with size n to a cluster with size n+ 1; the other is to move one node from a cluster

with size n+ 1 to a cluster with size n. For the first situation:

(n− 1)2 + (n + 2)2 = 2n2 + 2n+ 5 > n2 + (n + 1)2 = 2n2 + 2n+ 1.

For the second situation, the nodes distribution is not changed.

�

Lemma 4.1.3. Given a clustering of a dataset of size n, let k+ 1 ≥ 2 be the number

of clusters, and x be the size of the biggest cluster. After a postprocessing (followed

by re-association) of the given clustering result, let x′ be the size of the biggest cluster

(again, assuming we have at least two clusters). If x′ <
1+

√

1+2

(

(n−x)2

k
−n+x2

)

2
, then the

total number of pairs of nodes, both belonging to the same cluster, after postprocessing

is smaller than that before postprocessing.

We make use of lemma 4.1.1 and 4.1.2 for the proof for lemma 4.1.3:
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Proof. Let m be the size of the second biggest cluster after postprocessing, and t be

average size of the clusters other than the biggest one before postprocessing (note

that kt = n− x), then according to the previous two lemmas, we have:

the minimal number of total intra-cluster pairs before postprocessing is: t(t−1)
2
k +

x(x−1)
2

;

the maximal number of total intra-cluster pairs after postprocessing is: m(m−1)
2

+

x′(x′−1)
2

.

m(m−1)
2

+ x′(x′−1)
2

<
t(t−1)

2
k + x(x−1)

2

⇔ m(m− 1) + x′(x′ − 1) < t(t− 1)k + x(x− 1)

⇐ 2x′(x′ − 1) < t(t− 1)k + x(x− 1)

⇔ 2x′2 − 2x′ − (t2k − tk + x2 − x) < 0

⇔ x′ <
1+
√

1+2(t2k−tk+x2−x)

2

⇔ x′ <
1+

√

1+2( (n−x)2

k
−n+x2)

2

�

For example, with n = 500, k = 10, and x = 100, the condition in lemma 4.1.3

is satisfied if the size of the biggest cluster after postprocessing is x′ ≤ 113.

Following is a simple sufficient condition for the condition in lemma 4.1.3: x <

√
kn2−k2n+kn−n

k−1
, k > 1 and x′ < x.

Proof. x′ <
1+
√

1+2(t2k−tk+x2−x)

2

⇐ x′ < x and x <
1+
√

1+2(t2k−tk+x2−x)

2
;
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x <
1+
√

1+2(t2k−tk+x2−x)

2
⇔ (2x− 1)2 < 1 + 2(t2k − tk + x2 − x)

⇔ x2 − x− (t2k − tk) < 0 ⇔ x <
1+
√

1+4(t2k−tk)

2
=

1+

√

1+4(
(n−x)2

k
−n+x)

2

⇔ (2x− 1)2 < 1 + 4( (n−x)2

k
− n+ x) ⇔ (k − 1)x2 + 2nx− (n2 − nk) < 0

⇔ x <
√
kn2−nk2+nk−n

k−1

�

For example, with n = 500 and k = 10, this condition is satisfied if the size of

the biggest cluster before postprocessing is x ≤ 118. Note that after a split, we often

have x′ < x.

The following Theorem (which uses Lemma 4.1.3) explains the effect of post-

processing on Ca.

Theorem 4.1.1. For a given clustering of a dataset, let n1 be the total number (over

all clusters) of pairs of nodes, both belonging to the same clusters, n2 be the total

number of pairs of nodes, each belonging to a different cluster. After a postprocessing

followed by re-association of the given clustering result, let n11 (out of the original

n1) be the number of pairs of nodes still in same cluster, n12 = n1 − n11 be the pairs

of nodes now separated into two different clusters. Furthermore, let n22 (out of the

original n2) be the number of pairs of nodes now assigned to same cluster. Let s11,

s12, s22 respectively be the average similarity value of the n11, n12, n22 pairs of nodes.

Let Ca be the Ca value of the clustering result before split and C ′
a be the Ca value after

postprocessing (followed by re-association). We then have:
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If the assumptions of Lemma 4.1.3 are satisfied, s11
s22

△
= θ > 1, and s12

s22
< δ, then

C ′
a > Ca, where δ

△
= n11n22+n12n22+θ(n11n12−n11n22)

n11n12+n12n22
> 1.

Proof. Because of split, n12 > n22, so n11n12 − n11n22 > 0 ⇒ θ(n11n12 − n11n22) >

n11n12 − n11n22

⇒ n11n22 + θ(n11n12 − n11n22) > n11n12

⇒ n11n22 + n12n22 + θ(n11n12 − n11n22) > n11n12 + n12n22

⇒ δ > 1.

s12
s22

< δ ⇒ s12
s22

(n11n12 + n12n22) < n11n22 + n12n22 + θ(n11n12 − n11n22)

⇒ s12
s22

(n11n12 + n12n22) < n11n22 + n12n22 +
s11
s22

(n11n12 − n11n22)

⇒ s12(n11n12 + n12n22) + s11n11n22 < s22n11n22 + s22n12n22 + s11n11n12

⇒ s11n11n11 + s12(n11n12 + n12n22) + s11n11n22 < s11n11n11 + s22n11n22 + s22n12n22 +

s11n11n12

⇒ (s11n11 + s12n12)(n11 + n22) < (s11n11 + s22n22)(n11 + n12)

⇒ s11n11+s12n12

n11+n12
< s11n11+s22n22

n11+n22

⇒ Ca < C ′
a.

�

This theorem shows that if s11 > s22 (which is usually true for a postpro-

cessing step) and the condition of Lemma 4.1.3 is satisfied, then postprocessing

(split/merge/move) usually results in an increase in Ca, as long as s12
s22

< δ. Note

that Ca would increase, even if s12 > s22 (which indicates a bad reassociation), since
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δ > 1. Moreover, the sufficient condition given by the sufficient condition of lemma

4.1.3 is often satisfied after a split; this explains why after a split, Ca often increases.

We now present a result about the relation between the number of clusters K,

Ca, and Sa.

Theorem 4.1.2. Given Ca and Sa for some nontrivial (1 < K < n) clustering result

with K = k1 on a dataset of size n, and for any 1 ≤ i ≤ k1, |Ci| = n
k1
; i.e., all the

clusters are of the same size. Furthermore, given C ′
a and S ′

a for a different nontrivial

clustering result with K = k2 (caused by postprocessing on the same dataset), and for

any 1 ≤ i ≤ k2, |Ci| = n
k2
; i.e., all the clusters are again of the same size. Then

S′

a

Sa
<

k2(k1−1)
k1(k2−1)

if and only if C′

a

Ca
>

k2(n−k1)
k1(n−k2)

.

Proof. Note that the sum of similarities between all pairs of nodes is a constant

for a given dataset. For a given clustering, this sum can be decomposed into two

components: (a) sum of similarities between pairs of nodes, both belonging to the

same cluster; by definition of Ca, this is Ca times the number of pairs of nodes, both

in same cluster. (b) sum of similarities between pairs of nodes, each belonging to a

different cluster; by definition of Sa, this is Sa times the number of pairs of nodes,

each in a different cluster. Apparently the sum of Ca * (number of pairs of movies in

same clusters) and Sa * (number of pairs of movies in different clusters) is a constant,
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Therefore,

n

2k1
(
n

k1
− 1)k1Ca +

n2

k21

k1

2
(k1 − 1)Sa =

n

2k2
(
n

k2
− 1)k2C

′
a +

n2

k22

k2

2
(k2 − 1)S ′

a.

Rearranging, we get

k2nCa − k1nC
′
a − k1k2(Ca − C ′

a) =

nk2Sa − nk1S
′
a − nk1k2(Sa − S ′

a). (4.7)

Now observe that

Sa

S ′
a

>
k1(k2 − 1)

k2(k1 − 1)

⇔ Sak2(k1 − 1) > S ′
ak1(k2 − 1)

⇔ k2Sa − k1S
′
a − k1k2(Sa − S ′

a) < 0

⇔ nk2Sa − nk1S
′
a − nk1k2(Sa − S ′

a) < 0

⇔ k2nCa − k1nC
′
a − k1k2(Ca − C ′

a) < 0

⇔ (k2n− k1k2)Ca < (k1n− k1k2)C
′
a

⇔ Ca

C ′
a

<
k1(n− k2)

k2(n− k1)
,

where we have used equation (4.7) in the third step. This completes the proof.

�

In particular, if k2 > k1; i.e., the number of clusters increases, then k2(k1−1)
k1(k2−1)

< 1,

and k2(n−k1)
k1(n−k2)

> 1. Therefore, if S′

a

Sa
<

k2(k1−1)
k1(k2−1)

or equivalently C′

a

Ca
>

k2(n−k1)
k1(n−k2)

, then
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Sa > S ′
a and Ca < C ′

a. In other words, an increase in Ca to some degree is accompanied

by a decrease in Sa (which ultimately increases CS), when the number of clusters

increases. This is often the case for a postprocessing split step. Some clustering

methods like OPPOSUM partition the data into roughly equal-sized clusters (Tan

et al. [2006]), and for some applications like clustering market baskets, each cluster

should contain roughly the same number of samples (Pal and Jain [2005]). Theorem

4.1.2 can be directly applied to these methods and applications.

4.2 Multi-Medoid K-medoid Clustering

K-medoid clustering uses the most central object in a cluster as the represen-

tative object in the cluster, and associate the other objects to this cluster which is

most similar to this representative object. When we use distance (e.g., in Euclidian

space) to represent the dissimilarity between two objects, K-medoid would perform

well because of the transitive property, which means if two objects are close to some

medoid, then they must be close to each other. However, when we use other similarity

measures, we can not assure this transitive property. For this reason, we proposed

an modified K-medoid clustering method: multi-medoid K-medoid clustering. In

this method, each cluster has more than one medoid to represent this cluster, which

would increase the probability of being similar for the objects associated together.
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For simplicity, we let all clusters have the same number of medoids.

The validity indices and clustering algorithm of multi-medoid K-medoid clus-

tering is similar to those of the K-medoid clustering described in previous sections.

We will focus on the difference in the following sections.

4.2.1 Validity Indices

For Cm, for each nonmedoid node, we use its average similarity to medoids as

its nonmedoid-to-medoid similarity:

Cm =

K
∑

i=1

|Ci|−n
∑

j=1

n
∑

l=1

s(cil, xj)

n
K
∑

i=1

(|Ci| − n)

, (4.8)

where n is the number of medoids in each cluster and ci1 , . . . , cin are the n medoids

of the ith cluster.

For Sm, we have the similar modification:

Sm =

K
∑

i=1

K
∑

j=i+1

n
∑

h=1

n
∑

l=1

s(cih , cjl)

0.5n2K(K − 1)
. (4.9)

Note that no matter how many medoids each cluster has, the calculation of Ca

and Sa remains the same.
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4.2.2 Clustering Algorithm

We focus on the difference compared with the algorithm specified in section

4.1.2.

Initialization: Using the method for K-medoid clustering, we get the first

medoid for each cluster. Then for each cluster, we choose some node as the next

medoid of it whose existing medoids have biggest average similarity with this node.

We are done when each cluster has n medoids.

Association: During Association, we associate each nonmedoid node to its

most similar medoid. Similar to the modification we did for Cm, we use average

similarity as nonmedoid-to-medoid similarity.

Re-initialization: In this step, we compute the top n median nodes for each

cluster (after Association) and assign them as the new medoids of the cluster.

Postprocessing and Termination: Only difference is caused by the modified

calculation method for the validity indices.

We now discuss the computational complexity of the multi-medoid K-medoid

algorithm compared to the single medoidK-medoid algorithm. For Initialization step,

for each cluster, the computations needed to calculate the medoids other than the

first one is much less than that needed to calculate the first medoid. Therefore, the

computational complexity of the initialization step for the multi-medoid K-medoid
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algorithm is similar to that of the single medoid K-medoid algorithm. For Associa-

tion step, the computational complexity is n times that of single medoid K-medoid

algorithm, where n is the number of medoids in each cluster. For Re-initialization

step, the computations are similar to that of the single medoid K-medoid algorithm,

because for both methods, to get the top one median, we need to calculate the average

similarity between each node and all the other nodes. For Postprocessing step, the

multi-medoid K-medoid algorithm requires more computations than single medoid

K-medoid algorithm, due to the calculation of Cm and Sm. A precise expression for

the increased complexity is difficult to obtain. In chapter 7, we shall present ex-

perimental results about the running time for both single medoid and multi-medoid

algorithms.

4.3 Edge-Oriented Node Move Algorithm

For the dataset with original edge, sometimes we prefer to group the data nodes

with edge between them into the same cluster, with a reasonable balance of the size

and number of the clusters. For this situation, we propose an edge-oriented node

move algorithm which can be applied after the termination step of our clustering

algorithm. Indeed, this node move algorithm can be applied to any clustering result

for this kind of dataset and preference. Our edge-oriented node move algorithm is
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described in algorithm 2.

The basic idea of this algorithm is to move records between clusters. A cluster

is a record’s moving destination if it has the most number of this records’ direct

neighbors. In each iteration, we move some records to their destination cluster which

is the destination for the most number of records, repeatedly, until there is no record

that needs to be moved — usually because some restrictions are reached. These

restrictions are used to limit the the scale of move in each iteration so as to control

the balance of the size of the clusters (avoid too big cluster). We reset the restrictions

at the beginning of each iteration.

Note that after node move, some cluster(s) could be empty, so the number of

clusters K ′ after applying this algorithm could be smaller than K.

Now let us discuss why algorithm 2 generally converges. First, there is only

one destination cluster for each iteration for the inner loop (lines 16 through 60);

therefore, after a node is moved to the destination cluster, this cluster will still have

the most direct neighbors of this node. Second, for the inner loop, each node is

moved at most one time (lines 27 through 29). Third, we use some variables (e.g.

canbeMovedIn, numMoveOut, numMoves) to control the move behavior. Fourth,

in each subsequent iteration, the number of nodes that need to be moved decreases in

general because more and more nodes have their most direct neighbors in the same

cluster. Lastly, we use variable numIteration to control the number of outer loops.
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Algorithm 2 Edge-Oriented Node Move Algorithm

Input: K clusters for dataset with original edge, number of iterations numIteration
Output: K ′ clusters
1: for each record i do
2: calculate how many direct neighbors it has in each cluster j as
numNeighborInClusterij

3: end for
4: set x = 0
5: loop
6: x = x+ 1
7: for each cluster i do
8: set canbeMovedIni = true
9: set previousIsMoveIni = false
10: set numMoveIni = numMoveOuti = 0
11: end for
12: for each record i do
13: set numMovesi = 0
14: end for
15: set numMoves = −1
16: loop
17: if numMoves==0 then
18: jump out loop
19: end if
20: calculate the average size of all non-empty clusters as avgClusterSize
21: for each cluster i do
22: set numAsDestinationi = 0
23: end for
24: set numMoves = 0
25: for each cluster i do
26: for each record p in cluster i do
27: if numMovesp == 1 then
28: skip record p
29: end if
30: set numAsDestinationj = numAsDestinationj + 1 where

j = argmaxj numNeighborInClusterpj and j 6= i and
canBeMovedInj == true, add < p, j > to destHashTablei

31: end for
32: end for
33: set dest = argmaxi numAsDestinationi
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Algorithm 2 Edge-Oriented Node Move Algorithm (continued)

34: for each cluster i do
35: if i == dest then
36: skip cluster i
37: end if
38: add all the records whose hash value in destHashTablei is dest to a
set records

39: if |records| > avgClusterSize then
40: skip cluster i
41: end if
42: for each record p in records do
43: remove p from cluster i, add p to cluster dest, update
corresponding values in numNeighborInCluster

44: set numMoves = numMoves+ 1, numMovesp = numMovesp + 1
45: end for
46: set numMoveOuti = numMoveOuti + |records|
47: if |records| > 0 then
48: set previousIsMoveIni = false
49: end if
50: if canBeMovedIni == false and numMoveIni > 0 and
(numMoveIni − numMoveOuti) < avgClusterSize then

51: set canBeMovedIni = true
52: end if
53: end for
54: if canBeMovedIndest == true and
(numMoves− numMoveOutdest) > avgClusterSize then

55: set canBeMovedIndest = false
56: end if
57: if numMoves > 0 then
58: set numMoveIndest = numMoves, previousIsMoveIndest = true,
numMoveOutdest = 0

59: end if
60: end loop
61: if x == numIteration then
62: jump out loop
63: end if
64: end loop
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Experimental results show that the number of nodes moved in each iteration of inner

loop has an oscillating characteristic with respect to an overall decreasing trend.

4.4 Interpretation of Clustering Result with Domain Inde-

pendent Similarity Measure

In our similarity measure for clustering, generally we use all the available (re-

lated) attributes, but sometimes we do not have some attribute, and we want to see

if we can interpret the clustering result for the missed attribute. With this so-called

domain independent similarity measure, in our experiments, we tested our clustering

results for movies for the interpretation of Director attribute.

4.5 Fuzzy K-medoid Clustering

If data objects are distributed into well-separated groups, then a crisp classifica-

tion of the objects into disjoint clusters would be desirable. However, in many cases,

the objects in a dataset cannot be partitioned into well-separated clusters. Based

on this consideration, we also implemented a fuzzy clustering method on the movie

dataset. We implemented the fuzzy version of K-medoid (Tan et al. [2006], Stein and

Eissen [2002]) so that we can compare the two clustering results.
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4.5.1 Validity Indices

We used the same similarity measures for fuzzy K-medoid clustering. Also, we

used the same evaluation measures as we used in K-medoid method. However, the

calculation of cohesion and separation evaluation measures are different because of

the introduction of membership weights (degrees) for each node. Correspondingly,

they are modified as below:

Cm =

K
∑

i=1

n
∑

j=1

w
p
iiw

p
jis(mi, xj)

K
∑

i=1

n
∑

j=1

w
p
iiw

p
ji

(4.10)

Ca =

K
∑

i=1

n
∑

j=1

n
∑

l=1

w
p
jiw

p
lis(xj , xl)

K
∑

i=1

n
∑

j=1

n
∑

l=1

w
p
jiw

p
li

(4.11)

Sm =

K
∑

i=1

K
∑

j=i+1

w
p
iiw

p
jis(mi, mj)

K
∑

i=1

K
∑

j=i+1

w
p
iiw

p
ji

(4.12)

Sa =

K
∑

i=1

K
∑

j=i+1

n
∑

m=1

n
∑

n=1

w
p
miw

p
njs(xm, xn)

K
∑

i=1

K
∑

j=i+1

n
∑

m=1

n
∑

n=1

w
p
miw

p
nj

(4.13)

Some notations not listed in Table 4.1 are formalized in Table 4.2.
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Table 4.2: Notations used in evaluation measures for fuzzy K-medoid

n size of dataset

wij(i6=j) weight with which ith node belongs to cluster Cj

wii weight with which ith medoid belongs to cluster Ci

p influence of the weight, 0 < p <∞

4.5.2 Clustering Algorithm

The fuzzy K-medoid clustering method we use is similar to the K-medoid

method described in Section 4.1. It includes four steps: initialization, computation

of the fuzzy pseudo-partition (weights), re-initialization, and postprocessing.

Initialization: Similar to K-medoid method. Choose K initial medoids, as dissimi-

lar as possible to each other.

Computing fuzzy pseudo-partition: In this step, we calculate the weight of each

node for each cluster as follows:

wij =
s(xi, mj)

K
∑

l=1

s(xi, ml)

. (4.14)

In particular, for medoid, we have:

wii =
s(mi, mi)

K
∑

l=1

s(mi, ml)

=
1

K
∑

l=1

s(mi, ml)

. (4.15)
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Re-initialization: Re-compute the medoid of each cluster using the fuzzy pseudo-

partition. The new medoid of ith cluster is the one which maximizes (4.16), where

xj is any node in the dataset.

n
∑

j=1

w
p
jiw

p
iis(xj , mi) (4.16)

Postprocessing: Same as in the K-medoid clustering and includes split, merge,

and move.

The fuzzy clustering algorithm is illustrated in Figure 4.2. Because the algo-

rithm is very similar to that of K-medoid, we will not list it here.

 

Initialization 

Computing of the fuzzy pseudo-partition 

Re-initialization 

Has new medoid? 

N 

Postprocessing 

Y 

Stop? 
Y 

N 

Output 

Figure 4.2: Flow chart for fuzzy K-medoid clustering algorithm
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4.6 Visualization Tool

We have designed a cluster visualization tool to visualize the clustering content

in a two-dimension space. This tool has following features:

1. Display a particular cluster or all clusters: it can display the content of any

number of clusters on the canvas.

2. Display cluster(s) of any iteration step: it can display the clustering result at

the end of any iteration during the clustering process.

3. Node search and highlight / de-highlight: user can use node title (like movie’s

name for movie dataset) to search from the nodes in the displayed cluster(s).

Partial match is allowed. The search result node(s) will be highlighted and can

be de-highlighted.

4. Two modes of display: it can display cluster content in two modes: nonmedoid-

medoid and node-node. In nonmedoid-medoid mode, nonmedoid nodes are

connected to medoid node; in node-node mode, two nodes are connected if

their similarity value is bigger than 0.

5. Pause/resume/stop drawing of cluster: when cluster content is being drawn,

user can pause/resume or stop the drawing process.
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6. Indicate processing percentage when drawing: when cluster content is being

drawn, the processing percentage is indicated.

7. Highlight / de-highlight dominant node: for movie dataset, dominant movie is

the one which shares the most Names and Roles with other movies in the same

cluster.

8. Scatter cluster nodes on the canvas: normally the nodes are arranged on the

canvas in a regular style. User can scatter the nodes which will be displayed on

the canvas in a random way.

9. Filter: for movie dataset, it can be selected to only display the nodes whose

numbers of Name and Role are within some ranges. Note that medoid is always

displayed.

10. Zoom in/out with two different ratios: user can zoom in or out the canvas with

two different ratios: 1.1 or 2. Zooming times may be limited due to the resource

limit (like memory).

11. Navigation: the canvas provides horizontal and vertical navigation bars when

visible area is smaller than the actual size of the canvas.

12. Small canvas (thumbnail): their is a small canvas right beside the big one with

the same content as big canvas but better global view. It has navigation function



86

which means when you click on the small canvas the corresponding place will

be moved into the view of the big canvas.

13. Node/edge selection: node or edge on the canvas can be selected and highlighted

and corresponding information will be displayed to the user.

14. Statistics: it can show statistics of clusters:

• Size of each cluster before/after filtering

• Max, min, mean, stddev of number of shared Names and Roles for all pairs

of two movies in each cluster (for movie dataset)

• Dominant node in each cluster

• Dominant Name and Role in each cluster (for movie dataset, dominant

Name/Role is the Name/Role which is shared the most times in that clus-

ter)

This tool helped us better check and understand the clustering results (for

movies). For example, it can visually display the medoid movie and its connections

(relationship) with other movies in the same cluster.

Figure 4.3 is the content of one cluster displayed on the canvas. The nonmedoid-

medoid mode is used and the nodes are arranged on the canvas in a regular way.

Figure 4.4 shows that one node is selected. The node-node mode is used and

the nodes are scattered on the canvas in a random way.
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Figure 4.3: Cluster visualization tool: cluster

Figure 4.5 shows that one edge is selected. The node-node mode is used and

the nodes are scattered on the canvas in a random way.

Figure 4.6 shows that user searches the node which contains string “the.” We

can see that 3 nodes are found and highlighted with black color.
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Figure 4.4: Cluster visualization tool: node

Figure 4.7 shows the dominant node in a cluster. It is highlighted with red

color.

Figure 4.8 shows the visible area of the canvas after zoom in. Apparently the

canvas was enlarged.
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Figure 4.5: Cluster visualization tool: edge

Figure 4.9 shows the statistics window which displays corresponding information

of cluster 2 after 4th iteration.
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Figure 4.6: Cluster visualization tool: search
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Figure 4.7: Cluster visualization tool: dominant node
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Figure 4.8: Cluster visualization tool: zoom
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Figure 4.9: Cluster visualization tool: statistics
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CHAPTER 5. ENTITY RESOLUTION

5.1 Problem definition

The Fellegi-Sunter model Fellegi and Sunter [1969] formalizing the approach of

Newcombe et al. Newcombe et al. [1959] is commonly used in the literature. We

use a notation similar to that of the Fellegi-Sunter model with some differences. Our

definition of entity resolution problem is as follows:

Definition 5.1.1. Entity resolution is the process which takes one or more sets of

records D as input and outputs the set of records T with “true” attributes and the

equivalent/nonequivalent relation set R for any pair of records in D.

InD, some records are equivalent records of other records. The purpose of entity

resolution is to find the relation between any two records in D where the relation is

either “equivalent” or “nonequivalent”. Also, entity resolution needs to find the set

of records T for D with “true” attributes, which means that for a records set S (a

subset of D) in which all the records are equivalent of one another, it needs to find a

record r which is the “true” record for all the records in S. r could be some record

in S, or a record different from any record in S. In our entity resolution method, we
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always find a record in S as r.

In next section we will present our framework to solve the entity resolution

problem.

5.2 Framework

We call our method ERUDITE which stands for Entity Resolution with record

Updating and Duplicate & InconsisTency Elimination. (When we named our frame-

work we used term “duplicate” instead of “equivalent” which we use now.) As illus-

trated in Figure 5.1, ERUDITE takes D as input and outputs T and R.

In the data preprocessing step, data preparation can be used which often pre-

cedes the entity resolution process. The data preparation stage includes a parsing, a

data transformation, and a standardization step (Elmagarmid et al. [2007]). We will

discuss our data preparation steps in section 5.3.

To improve the efficiency of entity resolution, we present a method called filter-

ing which significantly reduces the number of record comparisons. By improving the

efficiency of record comparison, filtering can be executed rapidly. We treat filtering

as part of the data preprocessing step because the essential entity resolution process

is executed on the output of the filtering step. Filtering takes all record pairs as input

and outputs the candidate record pairs.
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Figure 5.1: Framework of ERUDITE
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We then perform pairwise record comparisons for all candidate record pairs. In

this step, we need to calculate the similarity (for unsupervised learning) or similarity

and probability (for supervised learning) for each candidate record pair and then

determine whether it is a equivalent record pair or not.

The classification result often has inconsistent decisions. We propose an incon-

sistency elimination step to make the inconsistent decisions consistent. After this

step, we can output the relation set R. We also present a record updating step to up-

date some records’ attributes to improve the entity resolution accuracy. This can also

find the records with “true” attributes which we call equivalent elimination. Further-

more, record updating for unsupervised learning can find a good matching threshold.

Inconsistency elimination, record updating, and equivalent elimination constitute the

postprocessing steps.

After record updating and equivalent elimination step, we can either output the

record set T or go back to the filtering step and repeat the whole precess. Generally

one repetition is enough.

To calculate the similarity for each record pair, we present similarity measures

which are based on a graph explanation.
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5.3 Preprocessing

In general, data preprocessing (preparation) improves the quality of the input

data and makes the data records more comparable. In chapter 7, we describe several

data preprocessing steps for the Cora dataset. In the following subsection we describe

Filtering, which we consider as one preprocessing step in ERUDITE. Filtering, an

important step in our entity resolution method, takes as input the record pairs and

outputs candidate record pairs, which will be processed in the subsequent record

matching step.

5.3.1 Filtering

In our method, the similarity matrix has O(N2) entries where N is the number of

records in the dataset. Moreover, our indirect similarity calculation involves common

and uncommon neighbor records for each pair of records. Therefore, the complexity of

our algorithm grows rapidly with the size of the dataset. To address this problem, we

introduce a “filtering” procedure to our entity resolution method. Filtering efficiently

selects a subset of record pairs for subsequent similarity computation, ignoring the

remaining pairs as highly dissimilar and therefore irrelevant.
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Simple Filtering

We use two simple filtering strategies: (1) using only part of the attributes that

we use for the normal calculation of direct similarity, and (2) only calculating direct

similarity and use it to compare with some filtering threshold to decide if a record

pair is a candidate record pair for further consideration. The second strategy greatly

decreases the calculation time because indirect similarity computation is much more

time consuming than direct similarity computation. By improving the efficiency of

record comparison, we can rapidly filter out the record pairs which are not likely to

be equivalent, so as to reduce the number of record comparisons.

Since the objective of filtering is to filter out most of the dissimilar pairs effi-

ciently, we should choose at most one or two characterizing attributes for the filtering

algorithm. However, we must take into account the specific characteristics of the

dataset. If a particular attribute is able to characterize records well, then we can

use this attribute individually; otherwise, we can combine two attributes. Calculat-

ing the similarity based on a single attribute may itself take some nontrivial time.

For this situation, it would be preferable to use this attribute individually. Based

on these considerations, we propose two filtering algorithms described in algorithm 3

and algorithm 4.

In algorithms 3 and 4, ap1 is record a’s p1 attribute, sp1 is the p1 attribute

similarity between records a and b, and so on. Parameters t, t1, and t2 are filter-
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Algorithm 3 Filtering algorithm: use combined attributes

Input: All record pairs, two most characterizing attributes p1 and p2
Output: Candidate record pairs

1: for each record pair (a, b) do
2: let s = 0

3: if both ap1 and bp1 are not empty and at least one of ap2 and bp2 is empty
then

4: s = sp1
5: else
6: if at least one of ap1 and bp1 is empty and both ap2 and bp2 are not empty

then
7: s = sp2
8: else
9: if all of ap1 , bp1, ap2, and bp2 are not empty then

10: s = 0.5× sp1 + 0.5× sp2
11: end if

12: end if
13: end if

14: if s ≥ t then
15: put (a, b) into candidate record pairs set

16: else
17: ignore (a, b)

18: end if

19: end for
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Algorithm 4 Filtering algorithm: use attributes individually

Input: All record pairs, two most characterizing attributes p1 and p2
Output: Candidate record pairs

1: for each record pair (a, b) do
2: if both ap1 and bp1 are not empty then

3: if sp1 ≥ t1 then

4: put (a, b) into candidate record pairs set
5: else

6: ignore (a, b)
7: end if

8: else
9: if both ap2 and bp2 are not empty then

10: if sp2 ≥ t2 then
11: put (a, b) into candidate record pairs set

12: else
13: ignore (a, b)

14: end if
15: end if

16: end if
17: end for
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ing thresholds. For unsupervised learning, we generally set t, t1, and t2 to 0.5; for

supervised learning, we set them to 0.4.

For Cora, for example, by setting t = 0.5, without domain-optimized direct

similarity calculation (see section 7.2.2), before any record updating, the above algo-

rithm reduces the total candidate record pairs from 1,762,503 to 88,064 (about 95%

of the pairs are filtered out), and the number of real equivalent pairs after filtering is

67,781 (out of a total of 72,125), which means that about 94% of the real equivalent

pairs are kept. By introducing domain-optimized direct similarity calculation, before

any record updating, the above algorithm reduces the total candidate record pairs for

Cora dataset to 104,819 (about 94% of the pairs are filtered out), and the number of

real equivalent pairs after filtering is 71,548, which means that about 99% of the real

equivalent pairs are kept.

For CDDB, by setting t = 0.5, without domain-optimized direct similarity cal-

culation, before any record updating, the above algorithm reduces the candidate

record pairs from 47653203 to 5941 (nearly 99.99% pairs are filtered out), and the

number of real equivalent pairs after filtering is 276 (out of a total of 302), which

means that about 91.4% of the real equivalent pairs are kept. Note that we do not

use domain-optimized direct similarity calculation for filtering for CDDB because

for a big dataset, filtering requires much more time with domain-optimized direct

similarity calculation, which is contradictory to the spirit of filtering.
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One common method to reduce the number of record comparisons is blocking.

Blocking typically refers to the procedure of subdividing records into a set of mutually

exclusive subsets (blocks) under the assumption that no matches occur across different

blocks. In contrast to blocking that requires hard, non-overlapping partitions, another

method uses a simple comparison metric to group records into overlapping clusters

called canopies (Elmagarmid et al. [2007]). Our simple filtering method is more

similar to the canopy method. After we filter the record pairs, it is possible that for

three records a, b, and c, pairs (a, b) and (a, c) are kept as candidate record pairs,

while pair (b, c) is filtered out. This amounts to saying that a and b are in the same

cluster, a and c are also in the same cluster, while b and c are not; these two clusters

overlap and a is in the overlapping part. The difference between our method and

canopy is that we do not generate any clusters explicitly for filtering.

Besides the simple filtering method, we also designed another filtering method

using the idea of blocking. We call it graph-based filtering.

Graph-based Filtering

We now propose a graph-based filtering procedure that uses the inherent graph

representation of the dataset and produces a set of (non-overlapping) clusters. Each

cluster consists of a collection of record nodes; only node pairs where both nodes

belong to the same cluster are considered as candidate equivalent pairs. In other

words, inter-cluster pair of nodes are filtered out. Compared to the previous filtering
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method, where the candidate pairs is one big set, the candidate pairs after our graph-

based filtering is separated into different clusters so that our entity resolution method

will be only applied to each cluster locally.

We use the REGGAE graph representation to generate the clusters. Our cluster

generation algorithm is described in algorithm 5:

Algorithm 5 Blocks generation algorithm

1: Randomly pick up a node from the non-allocated nodes as the first node of a new

cluster;

2: Add all the non-allocated neighbor nodes of the node into this cluster;

3: For all the new nodes in the cluster, add all their non-allocated neighbor nodes

as well into this cluster;

4: Repeat step 3 until there is no new node; mark all nodes in this cluster as allo-

cated;

5: Repeat step 1, 2, 3, 4 until there is no non-allocated node.

In our implementation of this algorithm, we added some constraints and post-

processing to generate the clusters of reasonable size. First, for steps 2) and 3), we

need the neighbor node to have at least n common property nodes with the current

node; Second, we do step 4) only t times; Third, we merge the cluster of size not big-

ger than s with another bigger cluster. Through experiments, we found that n = 4

and t = 1 is a good choice for both Cora and CDDB dataset. For Cora, s could be
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some value between 4 and 10. Our merging algorithm is given in algorithm 6:

Algorithm 6 Blocks merging algorithm

1: for each cluster Gi which has no more than s nodes do

2: for each cluster Gj which has more than s nodes do

3: for all the nodes ni in Gi do

4: calculate SMj =
m
∑

i=1

max(cp(ni, nk)), where m is the size of cluster Gi,

nk is the kth node in Gj , and cp(x, y) is the number of common property nodes

between node x and y

5: end for

6: end for

7: Choose cluster Gj which has the biggest SMj as the merging target for cluster

Gi

8: end for

In both filtering methods, the candidate record pairs output by the filtering

step will be determined to be equivalent or not in the record matching step which is

discussed in next section.

5.4 Record matching

We do pair-wise record comparison for all candidate record pairs. We have

different record matching methods for unsupervised learning and supervised learning.
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Indirect similarity is only used for supervised learning.

5.4.1 Unsupervised learning

In unsupervised learning, we simply compare direct similarity value of each

candidate record pair with a matching threshold. If the similarity value is greater

than or equal to the threshold, then we classify it as a equivalent pair; else we classify it

as a nonequivalent pair. Therefore, for unsupervised learning, using a good matching

threshold is important. How to get a good threshold? We can always use a simple

threshold say 0.5. However, this may not give the best result (almost impossible),

or even a good result. In our framework, our record updating algorithm used for

unsupervised learning can find a good matching threshold quickly with the help of

only a very small set of training data. When we use 1%, 10%, 50%, or 100% of

candidate record pairs as training set, our record updating algorithm always gets

almost the same threshold as determined experimentally (to maximize some criterion

like F1 measure).

The record matching method for unsupervised learning is as follows:

If there is no training data available, we use 0.5 as matching threshold. Then

we compare the similarity of each candidate record pair with matching threshold to

determine whether it is equivalent or not.
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If training data is available, even if it is very small (say 1% of all candidate record

pairs), we first use this training data to experimentally determine a threshold which

maximizes the F1 score (over the training set). We then perform record matching

followed by record updating. Using the same training data, possibly with some of the

records updated, we experimentally determine the new threshold which maximizes F1

score. We use this new threshold as matching threshold to do record matching in all

subsequent steps (as if there is no training data). Our experimental results show that

this threshold would be the best or nearly the best threshold. Detailed experimental

results are presented in chapter 7.

5.4.2 Supervised learning

Instead of using similarity between two records to determine whether they are

equivalent (as done in unsupervised learning), in supervised learning we compute

the probability that the two records are equivalent. This probability is then used

to determine possible duplication (based on a threshold on the probability). Given

both direct and indirect similarity values, we use Bayes’ theorem to calculate the

probability of being equivalent as follows:

P (D|Sd, Si) =
f(Sd, Si|D)× p(D)

f(Sd, Si)
, (5.1)
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where P (D) is the probability of being equivalent in training set. To use this equation,

we have to assume that the distribution of similarities for training set is similar to

that for test set. In equation (5.1), f(Sd, Si|D) and f(Sd, Si) are the probability

density functions (for all the equivalent pairs from training set and for all the record

pairs in training set, respectively) for direct similarity Sd and indirect similarity Si.

Note that both Sd and Si take continuous values between 0 and 1.

To obtain the probability density functions f(Sd, Si|D) and f(Sd, Si), we dis-

cretize the two-dimensional space of (Sd, Si) values into a uniform n × n grid, then

determine the probability of obtaining a similarity value pair within each grid cell,

and use an interpolation scheme to obtain the probability density function.

Formally, let ( k
n
≤ Sd <

k+1
n
, l
n

≤ Si <
l+1
n
), denote the (k, l) grid cell, for

0 ≤ k, l ≤ n− 1. When either k = n− 1 or l = n− 1 (top and right boundary of the

region), we can modify the grid cell definition to include the appropriate boundary

of the grid as well. Every point in the (Sd, Si) space belongs to exactly one grid cell.

Let pk,l =
Nk,l

N
denote the number of records Nk,l in the training set with simi-

larity values in the (k, l) grid cell, divided by the total number of records N . Similar

approach is used to compute the counts and probabilities for each grid cell among the

equivalents in the training set.

We now describe three different interpolation methods to obtain the density

function f(Sd, Si) from pk,l. The density function f(Sd, Si|D) is obtained in an anal-
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Figure 5.2: Illustration of linear interpolation method

ogous manner.

Piece-wise Constant Interpolation

In the uniform or piece-wise constant interpolation method, the probability

density function f(Sd, Si) takes a constant value within each grid cell. In other

words, f(Sd, Si) = pk,l, where (k, l) is the unique grid cell that contains the given

point (Sd, Si).

Linear Interpolation

As the name suggests, we use a linear interpolation of the pk,l values to obtain

f(Sd, Si). Consider four adjacent grid cells (k, l), (k+1, l) (k+1, l+1), and (k, l+1)

depicted in Figure 5.2 and let A, B, C, and D be their respective midpoints as

shown. Then the density function f(Sd, Si) is defined within square ABCD as follows:

f(Sd, Si) = wCpk,l+wDpk+1,l+wApk+1,l+1+wBpk,l+1, where wC = (k+1
n

−Sd)(
l+1
n
−Si),
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wD = (Sd− k
n
)( l+1

n
−Si), wA = (Sd− k

n
)(Si− l

n
), and wB = (k+1

n
−Sd)(Si− l

n
). Suitable

modifications are done along the four boundaries to ensure that the density function

is normalized (details omitted).

Mixture of Gaussians Interpolation

In the linear interpolation method the calculation of probability density for each

point uses no more than four grid points. In the Gaussian interpolation method, we

use a “mixture of Gaussians” model which uses the probabilities from all the grid

cells to calculate the probability density function. Formally,

f(Sd, Si) =

n−1
∑

k=0

n−1
∑

l=0

pk,l × g(Sd −
k + 0.5

n
, Si −

l + 0.5

n
), (5.2)

where g(x, y) is the two-dimensional Gaussian density function:

g(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (5.3)

and (k+0.5
n
, l+0.5

n
) is the center point of each grid cell. The standard deviation σ of the

Gaussian function must be chosen carefully; it is usually of the order of the grid cell

size. If σ is very small, say σ = 1
10n

, g(x, y) will be almost an impulse and provide no

smoothing. On the contrary, if σ is too big, say σ = 5
n
it may lead to over smoothing.

We choose the same σ for all grid cells, usually half the width of a grid cell.

If we only use direct similarity in equation (5.1), then p(D|Sd, Si), f(Sd, Si|D)

and f(Sd, Si) will be replaced by p(D|Sd), f(Sd|D) and f(Sd), respectively, and the

two-dimensional space with n×n grid cells will become a one-dimensional space with
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n intervals. The computation of the probability density function is similar to that

using both direct and indirect similarities.

Our experiments show that for Cora, n = 200 and piece-wise constant interpo-

lation is a good choice; for CDDB, n = 1000 and mixture of Gaussians interpolation

is a good choice.

5.4.3 Improving similarity/probability

After we calculate similarity (for unsupervised learning) or probability (for su-

pervised learning) values for all candidate record pairs, before we compare them with

matching threshold, we can improve them using a “triangle relationship.” We have

two different methods for this improvement:

Improve test set by itself : For any triplet of records (a, b, c), for unsupervised

learning, if S(a, c) < S(a, b) × S(b, c), let S(a, c) = S(a, b) × S(b, c); for supervised

learning, if P (a, c) < P (a, b)× P (b, c), let P (a, c) = P (a, b)× P (b, c).

Improve test set by training set : For any triplet of records (a, b, c), if pair (a, c)

is in test set, pairs (a, b) and (b, c) are in training set, and both (a, b) and (b, c) are

equivalent pairs, then set P (a, c) = 1.

After each candidate record pair is classified as equivalent or not, we do post-
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processing to improve the classification result and merge the equivalent records.

5.5 Postprocessing

Our postprocessing step consists of three parts: inconsistency elimination, record

updating, and equivalent elimination.

5.5.1 Inconsistency elimination

The classification result often has inconsistent decisions; e.g., records triple

{a, b, c} such that pair (a, b) and pair (a, c) are classified as equivalent whereas pair

(b, c) is not. We call this kind of triple inconsistent triangle. For an inconsistent

triangle in supervised learning, all three or less than three pairs or triangle edges may

belong to the test set. Obviously, if some of edges of an inconsistent triangle is in

training set, then we can make use of the known equivalent/nonequivalent label to

modify the wrong decision of the other part of edges in test set. If all edges are in

test set, then there are more options for possible changes to make the inconsistent

triangles consistent. Generally transitive closure can be used for this situation.
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Make Use of training set (MT)

For supervised learning, when an inconsistent triangle consists of records in

both test set and training set, (for example, in one triangle, the edge in training

set is nonequivalent, but the other two edges in test set are equivalent) we propose

algorithm 7 to correct some labels as well as eliminate inconsistencies.

Algorithm 7 Inconsistency elimination by making use of training set

Input: Classified candidate record pairs
Output: Classified candidate record pairs with inconsistency (between training set
and test set partly) eliminated
1: set all pairs in test set to changeable
2: loop
3: change = 0
4: for each record a do
5: for each record b where (a, b) is in candidate record pairs do
6: for each record c where (a, c) and (b, c) are in candidate record pairs

do
7: if one edge x of triangle (a, b, c) is in test set and the other two

edges y, z are in training set then
8: if x is nonequivalent and changeable while both y and z are

equivalent then
9: change x to equivalent and non-changeable
10: change = change+ 1
11: else
12: if x is equivalent and changeable while one of y, z is equiva-

lent and the other is nonequivalent then
13: change x to nonequivalent and non-changeable
14: change = change + 1
15: else
16: report error
17: end if
18: end if
19: else



114

Algorithm 7 Inconsistency elimination by making use of training set (continued)

20: if two edges x, y of {a, b, c} are in test set and the other edge z
is in training set then

21: if one of x, y is equivalent and the other is nonequivalent,
and z is equivalent, or if both x and y are equivalent and z is nonequivalent then

22: if one of x, y is changeable and the other is non-
changeable then

23: change the changeable one to its opposite
24: change = change+ 1
25: else
26: if both x and y are changeable then
27: change the one with probability value closer to
threshold to its opposite

28: change = change+ 1
29: else
30: report error
31: end if
32: end if
33: end if
34: end if
35: end if
36: end for
37: end for
38: end for
39: if change is the same as in the one in previous loop then
40: exit
41: end if
42: end loop

Note that in an inconsistent triangle, if one or more pairs are in the training

set we do not change its/their labels; for pais in the test set, we allow both type of

changes — equivalent to nonequivalent and nonequivalent to equivalent. Therefore,

the inconsistencies cannot always be eliminated.

Transitive closure (TC)

A common way to eliminate the inconsistency in classification result is using

transitive closure. We present algorithm 8 to eliminate the inconsistency in classifica-

tion triangles with all three edges in test set. In this algorithm, S(x, y) is the direct
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similarity value between records x and y, P (x, y) is the probability of records x and y

being equivalent, and t is current matching threshold. Our experiments showed that

each time TC can eliminate all the inconsistent triangles with all three edges in test

set.

Algorithm 8 Inconsistency elimination by using transitive closure

Input: Classified candidate record pairs
Output: Classified new candidate record pairs with inconsistency (within test set)
completely eliminated
1: loop
2: change = 0
3: for each record a do
4: for each record b where pair (a, b) is in candidate record pairs do
5: for each record c where pair (a, c) is in candidate record pairs do
6: if pair (b, c) is in candidate record pairs then
7: if pairs (a, b), (a, c) and (b, c) are in test set and two of them

are equivalent pair and the other one is nonequivalent pair then
8: change the nonequivalent one to equivalent pair
9: change = change+ 1
10: end if
11: else
12: if both (a, b) and (a, c) are equivalent pair then
13: make (b, c) a equivalent pair
14: move (b, c) into candidate record pairs
15: S(b, c) = S(c, b) = max(S(b, c), t) (for unsupervised learn-

ing) or P (b, c) = P (c, b) = t (for supervised learning)
16: change = change+ 1
17: end if
18: end if
19: end for
20: end for
21: end for
22: if change is 0 then
23: exit
24: end if
25: end loop

After applying this algorithm, the inconsistency in test set will be completely

removed, but new inconsistent triangles (with edges in both test set and training

set) could be generated. Experimental results show that there are not too many new
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inconsistent triangles so that we can apply some postprocessing (see following section)

to try to eliminate the new inconsistencies.

General inconsistency elimination (IE)

MT and TC are special inconsistency elimination methods. In MT, an incon-

sistent triangle has edges in both training set and test set. While in TC, all three

edges of an inconsistent triangle are in test set. When neither MT or TC is applied,

the number of inconsistent triangles generally is big. After applying MT and/or TC,

this number can be significantly reduced, but the inconsistency often can not be com-

pletely eliminated. If MT is applied individually, the inconsistent triangle(s) with all

the edges in test set often remains, while if TC is applied individually, the inconsis-

tent triangle(s) with edge in both training and test set often remains. If both MT

and TC are used, we have similar situation depending on the order they are applied.

Therefore, we propose two general algorithms to eliminate the inconsistencies after

we apply MT and/or TC. The first is algorithm 9.

The efficiency of algorithm 9 is not good because for each combination we must

check all the triangles involved with the global set E rather than a local group.

Therefore, we propose an alternate one which is algorithm 10.

In algorithm 10, for each group, the inconsistent triangles in it can only be

caused by the edges in it; therefore, to recount the number of inconsistent triangles

for each combination, we just need to check the triangles involved with the edges
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Algorithm 9 Inconsistency elimination algorithm

Input: Classified candidate record pairs

Output: Classified candidate record pairs with inconsistency (partly) eliminated

1: For all the inconsistent triangles, collect all their edges in test set (let’s call it

set E);

2: Separate E into groups each of size n (e.g., n = 10);

3: For each group, try all the 2n possible value combinations (each edge can take

two different values: equivalent or nonequivalent) and count the number of

inconsistent triangles for each combination;

4: For each group, choose a combination with least number of inconsistent

triangle(s).
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Algorithm 10 Improved inconsistency elimination algorithm

Input: Classified candidate record pairs

Output: Classified candidate record pairs with inconsistency (partly) eliminated

1: Get a bipartite graph which is between inconsistent triangles and edges (in test

set);

2: Get all the maximum connected subgraphs of this bipartite graph;

3: Group these subgraphs so that each group has n edges and n is as close as

possible to some value t, say 10; For the subgraph with more than t edges, we

treat it as one group;

4: For each group, if its size is bigger than t, separate it into partitions, each of size

t and for each partition try all the 2t possible value combinations; for each

partition, choose the combination with least number of inconsistent triangle(s);

if the group size is no bigger than t, try all the 2t possible value combinations,

and choose the combination with least number of inconsistent triangle(s).
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in this group. As expected, algorithm 10 is much faster than algorithm 9. Our

experiments show that its performance of inconsistency elimination is comparable to

that of algorithm 9.

Note that in algorithm 10, we can group the subgraphs with different orders:

bigger subgraph first, smaller subgraph first, or random. Experimental results show

that bigger subgraph first gets best result.

Experimental results also show that for both algorithms 9 and 10, generally all

or most of the inconsistencies can be eliminated.

Nontransitive methods (NT)

In MT, we try to eliminate inconsistent triangles with records in both test

set and training set. In TC, we use transitive closure to eliminate the inconsistent

triangles with all records in the test set. Instead of using transitive closure, we can

use a method similar to that in MT for the triangles which are inside the test set.

The general idea is as follows:

1. instead of allowing only nonequivalent to equivalent changes (as done in tran-

sitive closure), allow equivalent to nonequivalent change as well;

2. when more than one edge could be changed in a triangle, choose the one whose

probability of being equivalent is closest to the matching threshold;

3. if there is only one edge in some inconsistent triangle which can be changed,
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fix it after changing it (i.e., do not modify it in subsequent steps); otherwise do

not fix it.

Since NT can change a label both ways, it cannot always eliminate all the

inconsistencies.

Another nontransitive method is similar to TC, but instead of changing the

nonequivalent edge to equivalent, we change one of the equivalent edges to nonequiv-

alent. Again, we choose the one whose probability of being equivalent is closer to the

matching threshold. Similar to TC, this method could eliminate all the inconsisten-

cies. To distinguish these two different nontransitive methods, we call the former one

NT1, and the latter one NT2.

Combination of different methods for inconsistency elimination

The different inconsistency elimination methods — making use of training set

(MT), transitive closure (TC), and general inconsistency elimination (IE) — can

sometimes produce contradictory decision to change some classification labels. We

can combine them to get a better result. We tried seven different combinations:

none, MT, TC, MT+TC, TC+MT, MT+TC+MT, and TC+MT+TC, where “+”

means “followed by” and denotes execution order, “none” means neither MT or TC

will be applied, and each of which is followed by an IE. Experiments show that

none, TC, or TC+MT+TC always result in too many inconsistencies, while the other

four combinations do not, although TC+MT is not stable and sometimes results in
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too many inconsistencies. The latter four methods show some differences in the

number of inconsistencies or in their ability to eliminate inconsistencies. We also

tried MT+NT+IE. Detailed experimental results are presented in chapter 7.

We believe the reason different combinations have different inconsistency elim-

ination ability is that different methods/combinations lead to different types of in-

consistent triangles. From inspection of the inconsistent triangles in experiments, we

see that for MT+TC, most inconsistent triangles consist of one nonequivalent edge

in training set, and two equivalent edges in test set; whereas for MT, TC+MT and

MT+TC+MT, most of inconsistent triangles consist of two equivalent edges and one

nonequivalent edge and all of them are in test set. For MT+NT, most inconsistent

triangles consist of one equivalent edge in training set and two other edges in test

set with one equivalent and one nonequivalent. Apparently, when all edges of an

inconsistent triangle are in test set, this inconsistency is easier to eliminate.

Correlation clustering

Correlation clustering is used when the relationship between the objects is

known instead of the actual representation of the objects. For example, given a

set of record pairs each of which is classified as equivalent or nonequivalent, the task

is to cluster the records so that equivalent records are grouped together. So the

process of correlation clustering is a little similar to our nontransitive methods. If

nonequivalent records are grouped into one cluster then they are changed to be equiv-
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alent; if equivalent records are separated into two clusters then they are changed to be

nonequivalent. However, the objective of correlation clustering is different than that

of our inconsistency elimination algorithms: correlation clustering tries to minimize

the number of disagreements (the number of nonequivalent pairs inside clusters plus

the number of equivalent pairs between clusters) or maximize the number of agree-

ments (number of equivalent pairs inside clusters plus the number of nonequivalent

pairs between clusters) (Bansal et al. [2002]); on the other hand, our inconsistency

elimination algorithms try to minimize the number of inconsistent triangles. Although

the objectives are different, it appears that correlation clustering could be a good ap-

proach to inconsistency elimination for entity resolution. We implemented the ideas

from two different algorithms (Bansal et al. [2002] and Ailon et al. [2005]) for cor-

relation clustering problem respectively and compared them with our methods with

respect to the ability of inconsistency elimination for entity resolution (see chapter

7).

5.5.2 Record updating

One of the main contributions of our entity resolution framework is that we

propose two record updating algorithms to efficiently and effectively improve the

classification result and find the records with “true” attributes for both unsupervised
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and supervised learning. Also, the record updating algorithm for unsupervised learn-

ing can find a good matching threshold. The idea of our record updating algorithms

is to make the dataset to have less number of different records by updating some

records’ attributes.

We present different record updating algorithms for unsupervised learning and

supervised learning. Our record updating algorithm for unsupervised learning is

presented in algorithm 11, and our record updating algorithm for supervised learning

is described in algorithm 12.

In algorithm 11, step 1 to 7 can be repeated for several iterations, but for the

last iteration, step 7 will not be executed. Generally one time of record updating is

enough.

In algorithm 12, step 1 to 5 can be repeated for several iterations, but for the

last iteration, step 5 will not be executed. Generally one time of record updating is

enough.

We now discuss some details about these two algorithms:

1. How do we update the attributes of a record based on those of another record

(updater record): We set the attributes of the record to be updated the same as

those of the updater record. This leads to a more stable procedure as opposed

to randomly or selectively updating part of the attributes of the record.

2. For record r1, how to decide the set of records from which to select record r2:
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Algorithm 11 Record updating for unsupervised learning

Input: All records in candidate pairs

Output: Matching threshold and records with “true” attributes which has

equivalent

1: After record matching, for each record r1 in candidate pairs, find a record r2

which has biggest direct similarity s with r1; For matching threshold t, if s ≥ t,

go to step 2; else go for next record in candidate pairs;

2: For each of r1 and r2, calculate the average direct similarity sa for all the

candidate record pairs including it, then mark the one with bigger sa as updater

record of the other;

3: After all records in candidate pairs are processed in step 1 and 2, find all the

records which does not have updater record but has “updatee” record(s);

4: Sort these records into a list l with descending value of sa;

5: In l, if two records lr1 and lr2 are equivalent and lr1’s position is smaller than

that of lr2, remove lr2 and add the records of which lr2 is marked as updater

record in step 2 into the records of which lr1 is marked as updater record. After

step 5 is done, we name the records in l leading records which are the records

with “true” attributes having equivalent. Leading records and those records

which does not in any candidate record pair are the records with “true”

attributes (we also call this kind of records unique records);

6: For each leading record r, use it to update all the other records which can be

reached from r along the updater transitive relationship (updating link);

7: Redo filtering and recalculate the direct similarity for each candidate record

pair. If we do not simply use 0.5 as the matching threshold, we experimentally

determine the new threshold as a good matching threshold which maximizes F1

score with the small set of training data.
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Algorithm 12 Record updating for supervised learning

Input: All records in candidate pairs

Output: Records with “true” attributes which has equivalent

1: Let C be an empty set of clusters: C = Φ. After record matching, for each

record r1 in candidate pairs, find a record r2 which has biggest probability p of

being equivalent with r1; For some threshold t, if p ≥ t, go to Step 2; else go for

next record in candidate pairs;

2: If neither r1 or r2 is in any cluster of C, create a new cluster c, then add r1 and

r2 to c and add c to C; else if both r1 and r2 are in cluster c of C, do nothing;

else if r1 is in cluster c of C but r2 is not in any cluster of C, add r2 to c; else if

r1 is not in any cluster of C but r2 is in cluster c, add r1 to c;

3: After all records in candidate pair are processed in step 1 and 2, for each cluster

in C, find its median; Median is the record which has biggest sum of direct

similarities with other records in the same cluster. Then sort the clusters

according to the descending order of their median’s average sum of direct

similarities with other records in the same cluster. If two clusters’s medians are

equivalent, then merge the cluster with lower index in the clusters into the

cluster with higher index. For merged new cluster, median should be

recalculated. Repeating this process until there are no clusters with the

equivalent medians. Median records and those records which does not in any

candidate record pair are the records with “true” attributes. We call these

clusters updating clusters;

4: For each cluster in C, use its median to update other records in the same cluster;

5: Redo filtering and recalculate the probability for each candidate record pair.
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We can choose r2 from the set of all candidate records or from the records that

have not been chosen as r1 yet (in the current iteration). Experiments show

that for Cora, the former option is better, while for CDDB, the latter option is

better.

3. How to choose the threshold t: Simply speaking, we choose current matching

threshold for t. We choose the threshold for which we get the best F1 score

before we apply current updating. For unsupervised learning, we use 0.5 as

threshold or we get a threshold which maximizes F1 score after record updating

(with the help of a small training set). See section 5.4.1 for details.

4. For k-fold cross validation, after updating and redoing the filtering, we keep

the previous candidate record pairs in their original fold. This also makes the

updating procedure more stable.

5. How to get the final result: The record updating result converges very fast, and

generally only one round of updating is needed to reach a stable result.

6. In algorithm 11, sometimes a record could have two marked updaters, which

means this record could be reached from two different leading records. So

which leading record should be used to update this record? In practice we sort

the leading records list first with a descending order of average direct similarity

mentioned in step 2, so the leading record with a bigger average direct similarity
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will be used earlier, and we make sure that after a record is updated it will not

be updated again by other leading record (in current iteration).

We will use the leading records (for unsupervised learning) or median records

(for supervised learning) and those records which do not belong to any candidate

record pair as the record with “true” attributes. We call this equivalent elimination

which will be discussed in next section.

5.5.3 Equivalent elimination (Entity identification)

After we have determined the equivalent/nonequivalent relation for record pairs,

we merge the records to eliminate equivalent and find the “true” records.

Generally, the transitive closure could be found during inconsistency elimina-

tion which is similar to an updating link in algorithm 11 or updating cluster in

algorithm 12. Making use of transitive relationship, in our method we “eliminate”

the equivalent records and find the records with “true” attributes after record updat-

ing. We use leading records in the leading records list (for unsupervised learning) or

median records in the updating clusters (for supervised learning) as the records with

“true” attributes for its updating link/cluster and other records in the same updating

list/cluster will be regarded as their equivalents.

Also, if a record is not in any candidate record pairs, then it will be treated as
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a record with “true” attributes.

It is easy to show that our record updating algorithms can ensure that each

record which has an equivalent will be some leading node or be updated by some

leading node (proof omitted).

Our experimental results of applying ERUDITE to two public datasets will be

presented in section 7.2.
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CHAPTER 6. PREDICTION OF MOVIE RATING

Another classification problem we studied is prediction of movie rating. We

used our similarity measure for clustering on a movie dataset to predict user rating of

IMDB movies. For each movie in the dataset, we got the user rating from the IMDB

website. This was automatically done by our web information retrieval program. We

studied prediction based on two versions of the user rating: unrounded and rounded.

6.1 Rounding

The user rating from IMDB website is a real number between 1.0 and 10.0. We

rounded it to an integer between 1.0 and 5.0 as follows:

Table 6.1: IMDB movie rating rounding method

[1.0, 3.0) → 1.0

[3.0, 5.0) → 2.0

[5.0, 7.0) → 3.0

[7.0, 8.6) → 4.0

[8.6, 10.0] → 5.0
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6.2 K-Nearest-Neighbor Method

The simplest way to make prediction of the user rating is using the average

rating of all other movies’ ratings. Apparently, this method generally can not get

satisfying result. In chapter 4, when we calculate CoS, we need to find the most

similar movies for each movie first. So we use K-Nearest-Neighbor classification as

another method which is simple but can provide better results. We tried different

values for K: 5, 10, 15 and 20, and we tried different methods to combine the rating

of each neighbor movie to generate the predicted rating:

1. weighted: For the sorted similar movies list (the most similar one first), each

movie rating has a weight which is q times the weight of the next movie in the

list (exponential weighting). We tried different values for q: 1.0, 1.1, 1.2, 1.3,

1.4 and 1.5. Another weighting option is to use the similarity value of each

similar movie as the weight (round them to make sure all of them sum to 1).

2. most frequent category (majority voting): For the K neighbor movies’

categories, we choose the most frequently occurring one.

3. median: We choose the median category (since they are numbers which can

be sorted) as the predicted value.
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We use n-fold cross validation to calculate the RMSE (root mean squared error)

of classification, where n is the number of movies in the dataset. This means each

movie is used as target movie one time and used as training movie n − 1 times.

Detailed experimental results will be discussed in section 7.3.
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CHAPTER 7. EXPERIMENTAL RESULTS

In this chapter, we present our experimental results for clustering, entity resolu-

tion and movie rating prediction. In the beginning of each section, we will introduce

the dataset(s) that we used. All the experiments were run on a PC with AMD

Phenom II 2.9G CPU with 3.25G memory.

7.1 Clustering

We tested theK-medoid and fuzzy K-medoid clustering methods, with different

number of initial clusters and different set of weights for the similarity measures. In

each case, we calculated the validity indices. For the fuzzy K-medoid method, we set

p = 2 as is usually done in the literature. For K-medoid, we also tested sampling

when calculating Ca and Sa.

We tested the interpretation of our clustering result for Director attribute with-

out using it in our similarity measure. We use both attribute entropy and cluster

entropy to evaluate how good the interpretation is.

We compared our clustering method with other existing clustering methods,

especially graph clustering methods. We used the same datasets and evaluation mea-

sures that they used for the comparison.
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7.1.1 Datasets

IMDB Movies: The IMDB movie dataset (Imd) has more than 480K movies;

we generally used a subset of it. The experiments reported here were done using

the movies released from year 1991 to year 2005; we used movies with a certain

minimum number of actors, actresses etc. to obtain our test dataset of 2571 movies.

Its attributes include Title, Name, Position (Actor, Director, etc.), and Role. In

our experiments, we used two kinds of attributes set: One is Director, OtherPeople,

Role; The other is Director, Actor-Role, OtherPeople. OtherPeople includes all the

people in that movie except Roles which actors/actresses played. Actor-Role means

actor-role pairs. For indirect similarity, we use neighbor movies.

Enron Emails: We used a subset of Enron email dataset Enr which has 1000

emails. Its attributes include from, to, message, date. For indirect similarity, we use

neighbor emails.

Political Blogs: It is a directed network of hyperlinks between 1490 weblogs

on US politics (Pol). We use its Value attribute which indicates political leaning

(0: left or liberal, 1: right or conservative) and the hyperlinks. Because Value is a

single-value attribute, indirect similarity is not applicable in this case. The in-link

and out-link were considered as two attributes in the similarity measure. The node

move algorithm was applied on the clustering result.
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Cora Paper Citation Network: It is a paper citation network from Cor with

about 17604 papers. The citations for each paper (direct neighbors) were used as the

only attribute in the similarity measure. The node move algorithm was applied on

the clustering result.

Epinions Social Network: It is who-trust-whom online social network of a

general consumer review site Epinions.com. Members of the site can decide whether

to “trust” each other. All the trust relationships interact and form the Web of Trust

which was then combined with review ratings to determine which reviews are shown

to the user (Epi). There were 75877 nodes and 405739 edges in the dataset we used.

The direct neighbors of each member were used as the only attribute in the similarity

measure. The node move algorithm was applied on the clustering result.

Dolphin Social Network: It is an undirected social network of frequent asso-

ciations between 62 dolphins in a community living off Doubtful Sound, New Zealand

(Dol). The direct neighbors of each dolphin were used as the only attribute in the

similarity measure. The node move algorithm was applied on the clustering result.

Condensed Matter Collaboration Network: It is a weighted network of

coauthorships between scientists posting preprints on the Condensed Matter E-Print

Archive between Jan 1, 1995 and December 31, 1999 (Con). There are 16726 authors

in this network. The direct neighbors of each author were used as the only attribute

in the similarity measure. The node move algorithm was applied on the clustering
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result.

7.1.2 Results of K-medoid Clustering

For IMDB movie dataset, for direct similarity, we used the following properties:

Director, Actor, Actress, Role, Producer, Editor, Writer, Composer, and Cinematog-

rapher. For simplicity, we group Actor, Actress, Producer, Editor, Writer, Composer

and Cinematographer together into one property called OtherPeople. Thus we have

three properties determining direct similarity, which together with the indirect simi-

larity based on common neighbor movie, gives us four components in our similarity

measure: Director, OtherPeople, Role, and NeighborMovie. We tried six different

weight compositions for them: 1-0-0-0, 0-1-0-0, 0-0-1-0, 0-0-0-1, 0-0.9-0-0.1 and 0.1-

0.8-0-0.1. Note that we consider director as a separate component since he/she plays

a very important role in the style of a movie.

Figures 7.1 – 7.3 depict our validity indices — CS, RoM , and CoS, respectively

— for different initial cluster numbers and similarity measures.

In Table 7.1, we summarize the CoS measure by averaging the CoS value over

all iterations. We do this separately for the medoid nodes and all nodes, since we

expect a higher value of CoS for the medoid nodes (which are usually at the “cluster

center”). In the left four columns of the table, we average CoS over all similarity
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Figure 7.1: Initial cluster number vs. similarity measure vs. CS

 
5 initial clusters

0

0.5

1

1.5

2

2.5

3

3.5

1 4 7 10 13 16 19 22 25 28 31 34 37
Iteration

R
oM

1-0-0-0
0-1-0-0
0-0-1-0
0-0-0-1
0-0.9-0-0.1
0.1-0.8-0-0.1

10 initial clusters

0

0.5

1

1.5

2

2.5

3

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Iteration

R
oM

1-0-0-0
0-1-0-0
0-0-1-0
0-0-0-1
0-0.9-0-0.1
0.1-0.8-0-0.1

20 initial clusters

0

0.5

1

1.5

2

2.5

3

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

Iteration

R
om

1-0-0-0
0-1-0-0
0-0-1-0
0-0-0-1
0-0.9-0-0.1
0.1-0.8-0-0.1

50 initial clusters

0

0.5

1

1.5

2

2.5

1 4 7 10 13 16 19 22 25 28 31 34 37
Iteration

R
oM

1-0-0-0
0-1-0-0
0-0-1-0
0-0-0-1
0-0.9-0-0.1
0.1-0.8-0-0.1

 

Figure 7.2: Initial cluster number vs. similarity measure vs. RoM
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Figure 7.3: Initial cluster number vs. similarity measure vs. CoS

measure weights combinations and report this for different initial number of clusters,

whereas in the right six columns of the table, we average CoS over all initial number

of clusters and report this for different similarity measure weights combinations. In

the former case, we leave out the weight combination 1-0-0-0 while averaging for all

nodes, since it has a much lower CoS value as seen from the fifth column of the table.

We also calculated the average for the maximum (over all iterations) CoS value.

For example, the CoS average (over all variations of similarity measures) maximum

value for K-medoid method is 0.90, 0.88, 0.88, 0.80, for 5, 10, 20, and 50 initial

cluster numbers, respectively. The average maximum CoS value can be used as a

reasonable stopping criterion for the clustering process. In addition, we calculated
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the weak CoS value for each case; this represents the fraction of the top 5 (within

same cluster) similar nodes to a given node that belong to the top 10 (within the

entire dataset) similar nodes. Naturally, weak CoS must be greater than strong CoS

(which are reported in Table 7.1) but less than 1. The weak CoS values were 12%

to 43% larger than strong CoS values for all nodes; for the medoids, the increment

was 4% to 25% over the corresponding strong CoS values. It is evident from table

7.1 that CoS has a bias towards smaller number of clusters. Moreover, we can see

from the right three columns that indirect similarity helps improve CoS value. Fuzzy

version of the K-medoid algorithm performs similar to the K-medoid algorithm, in

terms of CoS value.

Table 7.1: Average CoS values

Initial cluster number Variation of similarity metric 
 

5 10 20 50 
1-0-
0-0 

0-1-
0-0 

0-0-
1-0 

0-0-
0-1 

0-0.9-
0-0.1 

0.1-0.8-
0-0.1 

All nodes 0.76 0.76 0.76 0.71 0.25 0.67 0.63 0.81 0.82 0.81 
K-m 

Medoids 0.88 0.82 0.82 0.69 0.71 0.89 0.68 0.72 0.90 0.92 

All nodes 0.75 0.71 0.72 0.67 0.23 0.67 0.51 0.79 0.79 0.81 
Fuzzy 

Medoids 0.87 0.84 0.80 0.71 0.70 0.88 0.69 0.70 0.93 0.93 

 

We studied the influence of postprocessing steps on the final number of clusters.

Recall that postprocessing includes split and merge steps and each results in a change

in the number of clusters. Figure 7.4 shows the variation of cluster number with

iteration for different similarity measure weights combination in K-medoid clustering.

Four different initial number of clusters — 5, 10, 20, and 50 — were used.
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Figure 7.4: Cluster numbers vs. Iteration for different similarity measures and initial

cluster numbers: K-medoid clustering

Figure 7.5 illustrates Theorem 4.1.2: when C′

a

Ca
≥ k2(n−k1)

k1(n−k2)
(dark blue point (in

line 1) is higher than red point (in line 2)) — iteration 1, 3, 6 and 9 — we have

S′

a

Sa
≤ k2(k1−1)

k1(k2−1)
(yellow point (in line 3) is lower than light blue point (in line 4)). Initial

cluster number is 5 and similarity measure is 1-0-0-0 (for this measure clusters or

roughly of equal size).

Figure 7.6 compares the clustering quality (with respect to CS and RoM) by

treating Actor and Role in pairs with those obtained by treating them individually.

Different subsets of the original dataset were used; their sizes are as indicated in the

legend.
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Figure 7.5: Illustration of Theorem 4.1.2
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Figure 7.6: Effect of Actor-Role pairs on cluster validity indices

Figure 7.7 shows clustering results for Enron dataset. Initial cluster number

is 5. Similarity measure is weighted combination for From&To, Message, Date, and

CommonEmail.

To reduce computational complexity, we use a small sample of the nodes in

each cluster to compute the cohesion Ca and separation Sa. In each case, we select

a fraction (expressed as a sampling percentage) of the nodes from each cluster, using

different sampling strategies. In one strategy we simply perform a uniform random
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Figure 7.7: Clustering result for Enron dataset

sampling over each cluster (designated “random”). Our second sampling strategy

was based on the similarity space for each cluster. For each cluster, we first choose

either the medoid or a border node (node in cluster most dissimilar to medoid) as

starting node (we designate this strategy as “medoid” or “border”, respectively). We

then select nodes based on its similarity with the starting node (uniform sampling

in similarity space). Finally, we used a “mixture” strategy where we pick up the

medoid, a border node and one other node as starting node and take the average over

the three results. Figure 7.8 shows the relative root-mean-squared-error (RMSE) of

Ca and Sa due to sampling. We present results for ten initial clusters and similarity

measure weights 0-1-0-0; results are similar for other measures / cluster numbers. For

each sampling percentage we report the average and standard deviation over ten runs

(top and bottom row, respectively, of Figure 7.8).

We compute the similarity between the clustering result obtained with and

without sampling based on the overlap between corresponding clusters. Figure 7.9
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Figure 7.8: Sampling percentage vs. sampling strategy vs. sampling error

shows the similarity for ten initial clusters and similarity measure weights 0-1-0-0.
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Figure 7.9: Sampling percentage vs. sampling strategy vs. clustering similarity

In our experiments, we observed that clustering time for 50% sampling is 30-60%
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of that for 100% sampling (i.e. no sampling).

Discussion

For index CS, we can see from Figure 7.1 that it increases with iteration for

weights 0-1-0-0 and 0-0-1-0; it also increases with initial cluster number for the same

weights, especially for 0-1-0-0. We generally use the clustering result from the itera-

tion which has the best CS value; therefore from the perspective of peak CS value,

weights 0.1-0.8-0-0.1 is the best for 5 and 10 initial clusters, whereas weight 0-1-0-0

is the best for higher number of initial clusters. From Figure 7.2, the index RoM

is small for weights 0-1-0-0, 0-0-1-0, and 0-0-0-1, which means that the medoids are

good cluster representatives. We also note that overall RoM decreases with iteration,

except for 20 initial clusters. From Figure 7.3, we note that CoS is better when we use

common neighbor movies in the similarity measure (last component non-zero). Sim-

ilar results were obtained with 20 or 50 initial clusters. This indicates that inclusion

of indirect similarity improves the similarity concentration quality (CoS measure) of

the clustering. We can see that both CS and CoS reach a high value (e.g., 10 for CS

and 0.8 for Cos), which indicates a good clustering quality.

In Figure 7.4 we observe that the number of clusters increases with postpro-

cessing for 5 initial clusters and for some similarity measures with 10 initial clusters.

Number of clusters increases first and then decreases for the case of 20 initial clusters

and for some similarity measures with 10 initial clusters. For 50 initial clusters, we
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see a decrease in the number of clusters for all cases (except one). Basically, we can

see that 10∼20 would be a proper number of clusters for this dataset. Similar trend

was observed for fuzzy K-medoid clustering which is not presented here.

Figure 7.6 shows that the clustering quality improves significantly by considering

Actor and Role in pairs.

Figure 7.7 shows that common neighbor record component in similarity measure

helps a lot for CS for Enron dataset.

Overall, sampling error decreases with sampling percentage, which is to be

expected. According to Figure 7.8, “random” and “border” sampling strategy is

better for Ca, whereas for Sa medoid sampling strategy is better. Although the

mixture strategy looks the best for all the cases, we generally cannot use it because

it is an average over three strategies and hence has added complexity. We present it

here mainly for comparison. From Figure 7.9, overall clustering similarity decreases

with sampling percentage, as expected. The similarity is quite high for all strategies.

7.1.3 Results of Multi-Medoid K-medoid Clustering and Interpreta-
tion for Director Attribute

We present the results for these two in one section because we also want to

see whether multi-medoid K-medoid clustering can get better interpretation of the

clustering result with domain independent similarity measure. For this section, the
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dataset we used is the IMDB movies directed by top 10 directors (ranked by the

number of movies they directed) in year 1987 to 2006. Only the movie whose sum

of numbers of director, other people and roles is no less than 10 were considered.

It has 1576 movies. Because Director could not be used in the similarity measure,

1-0-0-0 weights combination was not used. Besides CS and RoM , we used several

more evaluation measures to evaluate how good the interpretation for Director is.

Note that the “true label” for each record (Director name) is known.

Cluster Entropy: Boley [1998] introduced an information entropy approach

to evaluate the quality of a set of clusters according to the original class labels of the

data points (He et al. [2003]). For each cluster ci, a cluster entropy Eci is computed

as

Eci = −
∑

j

n(lj , ci)

n(ci)
log

n(lj, ci)

n(ci)
, (7.1)

where n(lj , ci) is the number of the samples in cluster ci with a predefined label lj

and n(ci) =
∑

j

n(lj, ci) is the number of samples in cluster ci. We let log 0 = 0 in

equation (7.1). The overall cluster entropy Ec is then given by a weighted sum of

individual cluster entropies as

Ec =
1

∑

i

n(ci)

∑

i

n(ci)Eci. (7.2)

The cluster entropy reflects the quality of individual clusters in terms of homo-

geneity of the data points in a cluster (a smaller value indicates a higher homogeneity,
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and 0 means perfect). A drawback of cluster entropy is that it has a bias towards

bigger number of clusters. To counter this deficiency, He et al. [2003] used another

entropy measure called class entropy to measure how data points of the same class

are represented by the various clusters created.

Class Entropy: For each class lj, a class entropy Elj is computed as

Elj = −
∑

i

n(lj , ci)

n(lj)
log

n(lj , ci)

n(lj)
, (7.3)

where n(lj, ci) is the number of samples in cluster ci with a predefined label lj and

n(lj) =
∑

i

n(lj , ci) is the number of the samples with class label lj . The overall class

entropy El is then given by a weighted sum of individual class entropies as

El =
1

∑

j

n(lj)

∑

j

n(lj)Elj . (7.4)

Opposite to cluster entropy, class entropy has a bias towards less number of clusters.

Overall Entropy: To overcome the drawbacks of cluster entropy and class

entropy, He et al. [2003] defined a combined overall entropy measure:

Ecl = αEc + (1− α)El, (7.5)

where α ∈ [0, 1] is the weight that balances the two measures. In our experiments,

we set α = 0.5.

Cluster Purity : The purity of a cluster represents the fraction of the cluster

corresponding to the largest class of data points assigned to that cluster. Thus, the
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purity of the cluster ci is defined as

Pci =
1

n(ci)
max

j
n(lj, ci). (7.6)

The overall cluster purity Pc is then given by a weighted sum of individual cluster

purities as

Pc =
1

∑

i

n(ci)

∑

i

n(ci)Pci. (7.7)

Class Purity: Similar to class entropy, we define a measure called class purity

as

Plj =
1

n(lj)
max

i
n(lj , ci). (7.8)

The overall class purity Pl is then given by a weighted sum of individual class purities

as

Pl =
1

∑

j

n(lj)

∑

j

n(lj)Plj . (7.9)

Overall Purity: Cluster purity and class purity have drawbacks similar to

cluster entropy and class entropy, respectively. Similar to overall entropy, we define

a combined overall purity measure:

Pcl = αPc + (1− α)Pl, (7.10)

where α ∈ [0, 1] is the weight that balances the two measures. In our experiments,

we set α = 0.5.
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Note that entropy takes non-negative values, while purity takes values between

0 and 1 (inclusive). For entropy, we prefer smaller values, while for purity, we prefer

bigger values.

Figure 7.10 shows the different entropies and purities vs. different weights com-

binations in similarity measure vs. number of medoid in each cluster.

In figure 7.10, “1-entropy” means it is entropy for the clustering result using

K-medoid clustering, and “10-entropy” means it is entropy for the clustering result

using multi-medoid K-medoid clustering (similarly for purity). “even” means it is the

result for evenly distributed clustering. figure 7.10 shows that we got much better

results than those with “even” distribution, except for 0-0-1-0 similarity measure, in

which only Role was used for the calculation of similarities. It makes sense because it

is not feasible to separate movies only based on roles. Figure 7.10 also shows that in

most cases multi-medoid K-medoid (10 medoids in each cluster) performs better than

K-medoid. Moreover, when each cluster has one medoid, indirect similarity improves

cluster entropy, and also improves both class entropy and class purity greatly.

Another way we could evaluate the interpretation of our clustering result for

Director attribute is to compare the validity indices values between our clustering

results and “perfect” clusterings. The so-called “perfect” clustering means each clus-

ter only contains the movies directed by some director. We used top 10 directors, so

we had 10 clusters for “perfect” clustering. Note that the “perfect” clustering does
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Figure 7.10: Entropy/Purity vs. similarity measures vs. number of medoid in each cluster

not necessarily have the best validity indices values unless using 1-0-0-0 similarity

measure. But if we get a clustering whose validity indices values are close to those of

“perfect” clustering, it could mean that this clustering has a good interpretation for
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Table 7.2: Clustering result compared with “perfect” clustering for movies from year 1987

to 2006

0-1-0-0 0-0-1-0 0-0-0-1

perfect our perfect our perfect our

m1 m10 m1 m10 m1 m10 m1 m10 m1 m10 m1 m10

CS 39.63 39.63 13.27 22.90 22.07 22.07 98.68 72.69 4.90 4.90 2.87 3.02

RoM 0.54 0.65 0.30 0.30 1.99 2.02 2.44 1.56 0.61 0.57 0.40 0.35

Director.

Table 7.2 compares the perfect clustering with our clustering results for different

similarity measures and number of medoid in each cluster, in terms of validity indices.

“m1” means that each cluster has one medoid, and “m10” means that each cluster

has 10 medoids.

Table 7.3 shows the same thing as table 7.2, except that it only used IMDB

movies from year 1991 to 1995. It has 458 movies.

Table 7.2 and 7.3 show that in terms of validity indices, our clustering results are

not very close to the perfect clustering. One positive result is that in most cases multi-

medoid K-medoid gets better results than K-medoid in terms of validity indices. In

table 7.3, multi-medoid method is better or not worse for all the results.

Figure 7.11 shows the validity indices values for different number of medoids
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Table 7.3: Clustering result compared with “perfect” clustering for movies fromo year

1991 to 1995

0-1-0-0 0-0-1-0 0-0-0-1

perfect our perfect our perfect our

m1 m10 m1 m10 m1 m10 m1 m10 m1 m10 m1 m10

CS 4.37 4.37 2.53 3.34 19.62 19.62 4.48 1868.56 1.43 1.43 0.89 1.03

RoM 0.87 0.73 0.41 0.12 3.00 1.96 3.30 1.75 0.62 0.60 0.33 0.20

in each cluster and different similarity measures. We can see that for each similarity

measure, overall, CS value increases and RoM value decreases as the number of

medoids in each cluster increases, which is favored. For similarity measure 0-0-1-0

and 0-0-0-1, we have similar trends for CS and RoM , but not as good as other similar

measures.

Table 7.4 compares the running time of our K-medoid algorithm on IMDB

movie dataset, for different number of medoid in each cluster. In the table, #medoid

refers to the number of medoid in each cluster.
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Figure 7.11: Validity indices vs. similarity measures vs. number of medoid in each cluster

7.1.4 Results of Comparison with Other Existing Graph-Based Clus-
tering Methods

Our clustering algorithms are designed to cluster unstructured or semi-structured

data with categorical attributes. Although the k-mediod based algorithm itself is not

graph-based, our similarity measure used in the k-mediod method has a graph-based

explanation. Experimental results indicate that our K-medoid clustering algorithm

also works well on graph style datasets, combined with our node move algorithm.
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Table 7.4: Running time (second) of our K-medoid algorithm vs. number of medoid in

each cluster

#Medoid 1 2 3 4 5 6 7 8 9 10

Time 10 11 11 14 17 17 13 26 26 30

To compare with other existing graph clustering methods, we introduce three more

evaluation measures here.

Density Zhou et al. [2009]: It is the ratio of the number of intro-cluster (orig-

inal) edges to the number of all edges. It is defined as

density({ci}ki=1) =
1

|E|

k
∑

i=1

|(vp, vq)|vp, vq ∈ ci, (vp, vq) ∈ E|, (7.11)

where ci means ith cluster, and E is edge set.

Normalized Cut Satuluri and Parthasarathy [2009]: The normalized cut (N-

Cut) of a cluster c in the graph G is defined as

Ncut(c) =

∑

vi∈c,vj /∈cA(i, j)
∑

vi∈c degree(vi)
, (7.12)

where A is the adjacency matrix of the graph, degree(vi) is number of direct neighbors

of node vi. The normalized cut of a cluster is simply the number of edges that cut

across this cluster and the rest of the graph, normalized by the total degree of all the

nodes in the cluster. The average normalized cut of a clustering C is the average of

the normalized cuts of each of the constituent clusters, and lies between 0 and 1 —
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smaller the average normalized cut, better is the clustering result. Average N-Cut

score allows us to compare clustering results with different numbers of clusters.

AverageNcut(C) =
k

∑

i=1

Ncut(ci). (7.13)

Modularity Newman and Girvan [2004]: Modularity is defined as

Q = Tr e− ||e2||, (7.14)

where e is a k×k symmetric matrix e whose element eij is the fraction of all edges in

the network that link vertices in community i to vertices in community j (the network

is divided to k communities). Tr e =
∑

i eii is the trace of this matrix which gives the

fraction of edges in the network that connect vertices in the same community. ||x||

indicates the sum of the elements of the matrix x. Modularity measures the fraction

of the edges in the network that connect vertices of the same type (i.e., within-

community edges) minus the expected value of the same quantity in a network with

the same community divisions but random connections between the vertices. If the

number of within-community edges is no better than random, we will get value 0.

Values approaching 1, which is the maximum, indicate strong community structure.

In practice, values for such networks typically fall in the range from about 0.3 to 0.7.

Higher values are rare.

Table 7.5 compares our clustering result with the result in Zhou et al. [2009] for

political blogs dataset. “# Cluster” means number of clusters. “m.” means our node
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Table 7.5: Clustering result compared with SA-Cluster in Zhou et al. [2009] for political

blogs

# Cluster 3 5 7 9

Method

Our method

Zhou

Our method

Zhou

Our method

Zhou

Our method

Zhou

w/o m. w/ m. w/o m. w/ m. w/o m. w/ m. w/o m. w/ m.

Density 0.86 0.90 0.85 0.86 0.90 0.90 0.86 0.90 0.81 0.85 0.90 0.59

Entropy 0 0.03 0.69 0 0.03 0.07 0 0.03 0.07 0 0.03 0.09

move algorithm. We used 0.5-0.25-0.25-0 as our similarity measure, in which the four

components are Value, In-link, Our-link, and indirect similarity. As we mentioned

before, Value is a single-value attribute, so indirect similarity is not applicable.

From table 7.5, we can see that, before node move algorithm was applied, we

got perfect entropy values for all results with different numbers of clusters. For

density, except when number of clusters is 5, our method outperformed SA-Cluster.

After applying node move algorithm, our method got better results for density on

all numbers of clusters. For entropy, although the values got a little bit worse, our

results were still much better than those of SA-Cluster.

Table 7.6 compares our clustering result with the result in Satuluri and Parthasarathy

[2009] for Cora paper citation network dataset. “# c” means number of clusters.

“max |c|” means the size of biggest cluster.

The average N-Cut evaluation measure prefers smaller number of clusters and
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Table 7.6: Clustering result compared with MLR-MCL in Satuluri and Parthasarathy

[2009] for Cora paper citation network

Our method MLR-MCL Our method MLR-MCL

# c max |c| # c max |c| # c max |c| # c max |c|

628 559 670 783 670 119 670 258

Avg. N-Cut 0.35 0.35 0.38 0.41

bigger clusters. So when we compare with other methods, we need to consider these

factors. The left set of columns in table 7.6 shows that we got the same average

N-Cut value with their method with a smaller number of clusters but smaller size of

the biggest cluster. The right set of columns shows that, with the same number of

clusters, we got better result even if the size of the biggest cluster is smaller.

Table 7.7 compares our clustering result with the result in Satuluri and Parthasarathy

[2009] for Epinions social network dataset. This table shows that we got better result

even with bigger number of clusters.

Table 7.8 compares our clustering result with the result in Newman and Girvan

[2004] for dolphin social network dataset. “random” means random clustering which

randomly puts data records in each cluster to generate equal-sized clusters, and 0.51

is one of the best Modularity values obtained. This table shows that the method

in Newman and Girvan [2004] got better result than our method for dolphin social
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Table 7.7: Clustering result compared with MLR-MCL in Satuluri and Parthasarathy

[2009] for Epinions social network

Our method MLR-MCL

# Cluster 1388 1641 1632

Avg. N-Cut 0.37 0.44 0.45

Table 7.8: Clustering result compared with Newman and Girvan [2004] for dolphin social

network

Method
Our method

Newman and Girvan [2004]
K-medoid + node move random + node move

# Cluster 3 4 5

Modularity 0.42 0.51 0.52

network dataset.

Table 7.9 compares our clustering result with the result in Newman and Girvan

[2004] for condensed matter collaboration network dataset. We used a much larger

set of data and got better modularity result.

Table 7.10 shows the running time of our K-medoid algorithm and node move

algorithm on political weblog dataset.

Table 7.11 displays the running time of node move step on several datasets.
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Table 7.9: Clustering result compared with Newman and Girvan [2004] for condensed

matter collaboration network

Our method Newman and Girvan [2004]

# cluster dataset size # cluster dataset size

225 16726 13 145

Modularity 0.79 0.72

Table 7.10: Running time (second) of our K-medoid algorithm and node move algorithm

on political blogs dataset

Number of cluster 3 5 7 9

Time for clustering 19 21 22 18

Time for node move < 1 < 1 < 1 < 1

Table 7.11: Running time (second) of our node move algorithm on different datasets

Dataset Cora Epinions Dolphin Condensed matter

Initial number of cluster 750 5000 10 225

Time for node move 36 96 < 1 12
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7.2 Entity Resolution

Two publicly available datasets are used to test our proposed entity resolution

methods. Our experiments were performed on these two sets of records separately, i.e.,

the records in each dataset constitutes input D of our method. We use precision-recall

curve and F1 to evaluate our experimental results. Area under the precision-recall

curve (AUC) is a single metric calculated from the precision-recall curve. We also

use the traditional F1 which is two times the ratio of the product of precision and

recall to the sum of precision and recall. All experimental results are for all record

pairs rather than only candidate record pairs. If some record pair is not a candidate

record pair, then it will be automatically classified as nonequivalent.

7.2.1 Datasets

We use two public datasets named Cora and CDDB in our experiments.

Cora: The Cora dataset includes bibliographical information about scientific

publications. We downloaded it from Weis et al. [2009]. It contains 1878 citations

which refer to 139 different research papers. It is an enlarged version of the dataset

provided by McCallum [2005], which has 1295 citations referring to 122 papers. The

Cora dataset has five attributes: Title, Author, Venue, Volume and Date. We cleaned

it up in the preprocessing step by removing some punctuation marks including back-
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slash, comma, period, colon, semicolon, etc. Also, we split the authors of each citation

(if necessary) so as to represent each author as an Author attribute value for that

citation record.

CDDB: The CDDB dataset includes 9763 (music) CDs randomly extracted

from freeDB. We downloaded this from Weis et al. [2009] as well. Unlike the Cora

dataset which has lots of equivalents, 9763 CDs in CDDB dataset refer to 9388 unique

CDs which means that duplications are just a small fraction out of all the records. The

CDDB dataset has seven attributes: Artist, Title, Category, Genre, Year, CDextra

and Tracktitle. Similar to Cora, we split the artists of each CD (if necessary) so as

to represent each artist as an Artist attribute value for that CD record.

7.2.2 Filtering and Domain-Optimized Direct Similarity Calculation

for Cora and CDDB

For Filtering, for Cora we choose Title and Author as p1 and p2, and use algo-

rithm 4, because Title or Author each can distinguish a citation record well, and a

citation generally has long title and many attributes. For CDDB we choose Artist and

Title as p1 and p2, and use algorithm 3, because after inspection of the dataset, we

feel that neither Artist or Title can distinguish a CD record well, and a CD generally

has few artists and a short title.

The domain-specific optimizations we made for Cora dataset are as follows:
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• For a candidate record pair (i, j), if record i’s title contains some part of record

j’s author, we move this part from i’s title to i’s author, and vice versa. Sim-

ilarly, if record i’s author contains some part of record j’s title, we move this

part for i’s author to i’s title, and vice versa;

• Replace abbreviation with its full word: For example, for venue name, we replace

“PROC” with “PROCEEDINGS”, “PHYS” with “PHYSICS”, and “1ST” with

“FIRST”; for date, we replace “jan” with “JANUARY”;

• For two strings which are not the same and one is a substring of the other, give

them some fixed similarity value (0.5 in our experiments);

• If one of the author names in a record pair is a one-character string or contains

“et al” the similarity value of the pair is increased.

• For a candidate record pair (i, j), if some attribute(s) is missing, we adjust the

weights in equation (3.1). For example, if some attribute p is missing, then its

weight wp is set to zero, and the weights of other attributes are proportionately

increased.

• If two records have the same authors and venue name but empty title, give

them a high direct similarity value (2
3
in our experiments);

• If two records have the same title and venue name but empty author, set direct
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similarity to 1;

• If two records have very similar title and venue name but empty author, and if

their direct similarity is low, adjust it to a high value, (0.9 in our experiments).

The first two items are made in data preprocessing step. Because data preprocessing

is commonly used for many data mining step, we will not discuss it in detail here.

The domain-specific optimizations we made for CDDB dataset are as follows:

• For two strings which are not the same and one string is a substring of the

other, we set their similarity to some fixed value (0.75 in our experiments);

• For two strings which are not the same, contain some common substring, but

neither one is a substring of the other, we set their similarity to some fixed value

(0.5 in our experiments);

• For a candidate record pair (i, j), if some attribute(s) is missing, we adjust the

weights in equation (3.1). For example, if some attribute p is missing, then its

weight wp is set to zero, and the weights of other attributes are proportionately

increased.

• If two CD’s Tracktitle attribute is not empty but their Tracktitle field similarity

is 0, set their direct similarity is set to 0.
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Figure 7.12: Unsupervised learning: Influence of matching thresholds on F1 (left: Cora,

right: CDDB)

7.2.3 Unsupervised Learning

For unsupervised learning, we only calculate direct similarity for record match-

ing. Figure 7.12 shows the entity resolution results with different matching thresholds.

In the following, “RU” means record updating. For Cora, the best matching threshold

is around 0.6, and for CDDB, the best matching threshold is around 0.5. Also, we

can see that record updating generally improves or does not hurt F1 score, especially

when matching threshold is smaller than the best value.

Figure 7.13 shows the number of unique records (with “true” attributes which

has equivalent) with different matching thresholds. For Cora, the actual number of

unique records which has equivalent is 120, and this number for CDDB is 221. From

the figure, we can see that the best matching threshold to get the actual value is

about 0.55 for Cora and 0.65 for CDDB. Interestingly, this number increases with
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Figure 7.13: Unsupervised learning: Influence of matching thresholds on number of

unique records with equivalent(s) (left: Cora, right: CDDB)

threshold for Cora, whereas it decreases with threshold for CDDB.

Table 7.12 shows we can use record updating to get best or quasi-best matching

threshold with respect to F1. 0.1% means that we use 0.1% of all the candidate

record pairs as training set to find the best matching threshold which maximizes the

F1 score, and so on. Note that we only have about 6000 candidate record pairs for

CDDB, so when we use 0.1% for Cora, we use 0.5% for CDDB. From this figure, we

can see that after one record updating step, matching threshold stabilizes at 0.65 for

Cora, and 0.49 for CDDB, no matter how small or large the training set is.

Table 7.13 shows the unsupervised learning results for both Cora and CDDB

with the matching threshold obtained from record updating (with the help of a train-

ing set which is 1% of all the candidate record pairs). In the following, “#” refers to

the number of unique records which has equivalent and “t” is the matching threshold.
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Table 7.12: Unsupervised learning: Using record updating to get best threshold

Sample size

Cora CDDB

Before RU After RU Before RU After RU

Threshold F1 Threshold F1 Threshold F1 Threshold F1

0.1%/0.5% 0.40 0.8757 0.65 0.8868 0.40 0.5956 0.49 0.6641

1% 0.40 0.8757 0.65 0.8868 0.40 0.5956 0.49 0.6641

10% 0.45 0.8807 0.65 0.8911 0.49 0.7993 0.49 0.7993

50% 0.60 0.8965 0.65 0.9114 0.49 0.7993 0.49 0.7993

100% 0.60 0.8965 0.65 0.9114 0.49 0.7993 0.49 0.7993

Table 7.13: Unsupervised learning results with best matching threshold

Step
Cora (t: 0.65) CDDB (t: 0.49)

F1 # F1 #

Before RU 0.9108 N/A 0.7993 N/A

After RU 0.9178 150 0.7993 188
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Combining Figures 7.12 and 7.13 with Tables 7.12 and 7.13, we can see that

record updating does get best or at least quasi-best matching threshold for both

datasets. Comparing Tables 7.12 and table 7.13, we see that we usually get a better

(or no worse) result by using some training data and record updating to get a matching

threshold followed by unsupervised learning without the help of training data using

the threshold, than by using the training data all along, especially when training set

is small.

For unsupervised learning, when we use domain-optimized direct similarity cal-

culation and use the same thresholds for filtering algorithm, we usually do not get

better results for Cora; but for CDDB, the F1 score improved by 1%-3%.

For unsupervised learning, in postprocessing, we only apply transitive closure

(TC) to eliminate the inconsistent triangles in the classification result. MT can not be

applied and IE is not necessary because no inconsistent triangles will be left after TC.

Table 7.14 shows unsupervised learning results without applying TC. The matching

threshold was obtained from record updating with the help of a training set which is

1% of all the candidate record pairs.

Table 7.15 shows the running time for unsupervised learning for both Cora and

CDDB. In the table, “Pre” means preprocessing, “RM” represents record matching,

“IE” is inconsistency elimination, and “RU” stands for record updating.
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Table 7.14: Unsupervised learning results without TC

Step
Cora (t: 0.45) CDDB (t: 0.46)

F1 # F1 #

Before RU 0.8837 N/A 0.8007 N/A

After RU 0.8835 116 0.7960 211

Table 7.15: Unsupervised learning: running time

Pre RM IE RU

Cora 3 1 13 0.1

CDDB 34 8 2 0.1
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Table 7.16: Supervised learning: 5-fold cross validation with/without domain-optimized

direct similarity calculation, using direct similarity only

Step

Cora CDDB

w/o optimization w/ optimization w/o optimization w/ optimization

F1 AUC # F1 AUC # F1 AUC # F1 AUC #

Before RU 0.9909 0.9805 N/A 0.9965 0.9916 N/A 0.7246 0.5940 N/A 0.8271 0.7128 N/A

After RU 0.9946 0.9911 132 0.9969 0.9944 119 0.7306 0.6152 213 0.7937 0.6351 201

7.2.4 Supervised learning

Table 7.16 shows the supervised learning results with 5-fold cross validation for

both datasets. It compares the results with and without domain-optimized direct

similarity calculation. Only direct similarity is used to calculate probability of being

equivalent. All results are average of three runs (same for Tables 7.16 – 7.19). For

inconsistency elimination, unless otherwise specified, MT+TC+MT+IE is used.

Table 7.17 also shows the supervised learning results with 5-fold cross valida-

tion for both datasets, but both direct and indirect similarity are used to calculate

probability of being equivalent.

Table 7.18 shows the supervised learning results with 3-fold cross validation

for both datasets. Only direct similarity is used. From Tables 7.16 and 7.18, we

can see that for both datasets F1 and AUC improves after record updating. Also,
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Table 7.17: Supervised learning: 5-fold cross validation with/without domain-optimized

direct similarity calculation, using both direct and indirect similarity

Step

Cora CDDB

w/o optimization w/ optimization w/o optimization w/ optimization

F1 AUC # F1 AUC # F1 AUC # F1 AUC #

Before RU 0.9910 0.9720 N/A 0.9967 0.9786 N/A 0.9281 0.8721 N/A 0.9569 0.9195 N/A

After RU 0.9940 0.9872 116 0.9968 0.9908 96 0.9313 0.9129 211 0.9607 0.9242 207

Table 7.18: Supervised learning: 3-fold cross validation with/without domain-optimized

direct similarity calculation, using direct similarity only

Step

Cora CDDB

w/o optimization w/ optimization w/o optimization w/ optimization

F1 AUC # F1 AUC # F1 AUC # F1 AUC #

Before RU 0.9906 0.9774 N/A 0.9959 0.9885 N/A 0.7568 0.6485 N/A 0.7884 0.7105 N/A

After RU 0.9944 0.9891 134 0.9963 0.9923 117 0.7941 0.6673 219 0.7987 0.6471 203

domain-optimized direct similarity calculation helps.

Table 7.19 shows the supervised learning results with 3-fold cross validation for

both datasets, but both direct and indirect similarity are used. From Tables 7.17 and

7.19 we can see that using indirect similarity often helps improve the classification

result, especially for CDDB. We believe the fact that CDDB has much smaller fraction

of equivalents causes its worse entity resolution results compared with Cora but bigger

improvement with the help of indirect similarity.
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Table 7.19: Supervised learning: 3-fold cross validation with/without domain-optimized

direct similarity calculation, using both direct and indirect similarity

Step

Cora CDDB

w/o optimization w/ optimization w/o optimization w/ optimization

F1 AUC # F1 AUC # F1 AUC # F1 AUC #

Before RU 0.9900 0.9478 N/A 0.9953 0.9490 N/A 0.9376 0.8909 N/A 0.9584 0.9232 N/A

After RU 0.9925 0.9818 119 0.9956 0.9878 89 0.9418 0.9107 209 0.9614 0.9294 207

Table 7.20 compares the inconsistency elimination effect of different combina-

tions of inconsistency elimination methods. We only use Cora for this comparison

because generally there are no (or very few) inconsistencies in the classification result

for CDDB. Value before/after “/” is the result before/after applying IE. “#” means

the number of inconsistent triangles. “# r” means the number of unique records

which has equivalent. All results are the average of three runs. Only direct similarity

is used. We use algorithm 10 for IE and set t = 5. First, we can see that inconsistency

elimination step improves classification accuracy, as well as generally eliminates all

or most of the inconsistencies. Second, after record updating, the number of incon-

sistent triangles drops considerably. Third, all combinations show good inconsistency

elimination ability except MT+TC+IE (see explanation in section 5.5.1). Fourth,

MT+TC+MT+IE has the least number of inconsistencies and gets best classification

accuracy. Finally, all combinations get good number of record with “true” attributes
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Table 7.20: Supervised learning: inconsistency elimination

Step
Before RU After RU

F1 # F1 # # r

None .9754 254641 .9780 185422 119

MT+IE .9959 266/15 .9964 0/0 117

MT+TC+IE .9962 3/3 .9967 0/0 120

TC+MT+IE .9915 164/24.3 .9951 33/0 116

MT+TC+MT+IE .9965 10/0 .9969 1/0 119

which has equivalent.

Table 7.21 compares our methods using transitive closure and nontransitive

ideas, with methods using the idea of correlation clustering. All results are the average

of three runs. This table shows that TC outperforms other methods. Like TC,

NT without being followed by MT will lead to inconsistencies which are hard to be

eliminated completely. We set δ = 0.14 for the algorithm in Bansal et al. [2002].

Table 7.22 shows inconsistency elimination effect and time complexity with dif-

ferent group size for MT+TC+MT+IE, where group size is t in algorithm 10. All

results are average of five runs. We can see that the ability of inconsistency elimina-

tion decreases slowly as group size decreases, and the time needed to eliminate one

inconsistent triangle decreases significantly as group size decreases. This table also
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explains why we choose 5 as the group size in our experiments.

Table 7.23 compares the results of our method with those reported in the liter-

ature. These comparisons are all done on the Cora dataset since that is the dataset

used in the literature. 25% means that randomly taking 25% record pairs as training

set for each fold (totally 4 folds). Value before/after “/” is the result before/after

applying domain-optimized direct similarity calculation. This table shows that our

method outperforms comparable results in the literature.

Table 7.24 shows the running time for supervised learning (5-fold cross vali-

dation) for both Cora and CDDB. In the table, “CC1” stands for the correlation

clustering method in Bansal et al. [2002], and “CC2” stands for the correlation clus-

Table 7.21: Supervised learning: inconsistency elimination with different methods

Step
Before RU After RU

F1 # F1 # # r

MT+TC+IE .9962 3/3 .9967 0/0 120

MT+NT1+IE .9947 137/78 .9963 8/8 126

MT+NT2+IE .9952 51/26 .9961 36/23 119

MT+CC Bansal et al. [2002] .9886 3984 .9926 4798 126

MT+CC Ailon et al. [2005] .8790 1730227 .9654 1817095 114
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Table 7.22: Supervised learning: Cora, inconsistency elimination vs. group size

Group size 10 5 4 3

Percentage 100% 100% 98.74% 96.01%

Time (s) 2.52 0.2 0.12 0.08

Table 7.23: Supervised learning: Cora, compare with other methods

Methods 5-fold (AUC) 3-fold (F1) 25% (F1)

Our method 0.991/0.994 0.994/0.996 0.982/0.988

Other method 0.988 (Singla and Domingos [2006]) 0.947 (Wick et al. [2009]) 0.92 (S. Rendle [2006])

tering method in Ailon et al. [2005]. Only direct similarity is used for record matching

for Cora. Both direct and indirect similarity are used for record matching for CDDB.

7.3 Prediction of Movie Rating

The experiments reported here were done using the IMDB movies released from

year 1991 to year 1995. By setting different thresholds and selecting movies with

number of actors/actresses greater than the threshold, we obtained two datasets: one

with a larger threshold with 512 movies and the other with a smaller threshold and
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Table 7.24: Supervised learning: running time (second)

Pre RM MT TC IE NT1 NT2 CC1 CC2 RU

Cora 3 12 11 4 3 4 2 11 3 0.2

CDDB 34 25 0.3 0.2 0.2 0.2 0.2 69 7.5 0.1

5533 movies.

Figure 7.14 is the classification result when we use the original user ratings

(without rounding). 5, 10, 15 and 20 refer to the value of K in K-Nearest-Neighbor

method.
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Figure 7.14: Nonrounding classification result
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Figure 7.15 is the classification result when we use the rounded user ratings.

512, Rounding, Abstract Value

0.8

0.85

0.9

0.95

1

average q1.3 similarity
as weight

most
frequent
category

median

Method

R
M

S
E

5
10
15
20

512, Rounding, Ratio to Average

0.8
0.85

0.9
0.95

1
1.05

1.1

average q1.3 similarity
as weight

most
frequent
category

median

Method
R

at
io

5
10
15
20

 
5533, Rounding, Abstract value

0.7

0.75

0.8

0.85

0.9

average q1.1 similarity
as weight

most
frequent
category

median

Method

R
M

S
E

5
10
15
20

  

5533, Rounding, Ratio to Average

0.8

0.85

0.9

0.95

1

average q1.1 similarity
as weight

most
frequent
category

median

Method

R
at

io

5
10
15
20

 

Figure 7.15: Rounding classification result

We can see that most of times “similarity as weight” method provides the best

result compared with other methods.
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CHAPTER 8. CONCLUSION

The work in this dissertation focuses on three data mining research areas: data

similarity, clustering, and entity resolution.

Data similarity measures how similar two data objects are. Based on our graph

representation of data, we present a systematic data similarity measure in which

direct similarity and indirect similarity are integrated in one graph explanation. We

use this similarity measure in our clustering and entity resolution research.

Clustering techniques have been researched for a long time and have played

an important role in many research and application fields. Our work on clustering

focussed mainly on improving the clustering result. We explored different techniques:

new similarity measure, new validity indices, improved clustering algorithm, new

postprocessing method and algorithm. For clustering algorithm, we chose a classical

clustering algorithm (K-medoid) as the basis of our clustering algorithm. We devel-

oped a post-clustering node move algorithm which showed great promise according to

the experimental results on many different datasets. One other promising enhance-

ment was to introduce multiple medoids into each cluster. We also experimentally

investigated the interpretation of clustering result for an attribute which is not used

in the similarity measure for clustering.
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Entity resolution is closely related to data cleaning and data quality. We used

similarity measure, direct record matching, and probabilistic model, together with

some postprocessing steps in our entity resolution framework ERUDITE. Our method

belongs to the traditional “merge-purge” method. The postprocessing steps mainly

included record updating and inconsistency elimination, which can significantly im-

prove the entity resolution result. Record updating played several different roles in

our method. One interesting thing was that it can generate a good matching thresh-

old for unsupervised learning. Our entity resolution method performs well on two

different kinds of datasets: Cora has a lot of equivalent records, but CDDB has few

equivalent records. We use similarity pattern instead of attribute value pattern in

our probabilistic record matching model. Our inconsistency elimination can eliminate

inconsistencies for different situations, especially for the inconsistencies with edge in

both training and test set.

There are some open problems or questions remaining in our research. In our

data similarity measure, direct similarity and indirect similarity can be explained on

one graph explanation, but they could be integrated into a better unified form. K-

medoid generally is not very fast — although we used sampling to address this issue,

the speed of the algorithm would still be a problem for very large dataset. Moreover,

when we used indirect similarity for clustering, the postprocessing steps often lead to

oscillatory (nonconvergent) clustering results.
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Our entity resolution work was conducted on single dataset, although it is not

hard to adapt our method to multi-dataset scenario, for which schema matching may

need to be applied first. The entity resolution results for CDDB (with much fewer

equivalent records) are not as good as the results for Cora, which still has room for

improvement. Although we use filtering to greatly decrease the size of the candidate

record pairs set, the efficiency of pairwise record matching would still be a problem

for very large datasets.
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