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NETWORK ON CHIP BASED HARDWARE ACCELERATORS 

FOR COMPUTATIONAL BIOLOGY 

 
Abstract 

 

 

by Souradip Sarkar, Ph.D. 

Washington State University 

December 2010 

 

Chair: Partha Pratim Pande 

 
The focus of this thesis is the design and performance evaluation of Network on Chip 

(NoC) based multi-core hardware accelerators for computational biology. Sequence analysis 

and phylogenetic reconstruction are the two problems in this domain which have been 

addressed here. The basic characteristic of sequence analysis is that it is data intensive in 

nature whereas the kernel operation in phylogenetic reconstruction is compute intensive. Due 

to exponentially growing sequence databases, computing sequence alignment at a large-scale is 

becoming expensive. An effective approach to speed up this operation is to integrate a very 

high number of processing elements in a single chip so that the massive scales of fine-grain 

parallelism inherent in this application can be exploited efficiently. Network-on-Chip (NoC) is 

a very efficient method to achieve such large scale integration. The phylogenetic reconstruction 

application involves solving the breakpoint median problem which reduces to solving multiple 

instances of the Traveling Salesman Problem (TSP). Specifically, we (i) propose optimized 

NoC architectures for different sequence alignment algorithms that were originally designed 

for distributed memory parallel computers, (ii) a custom NoC architecture for solving the 
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breakpoint phylogeny problem (iii) provide a thorough comparative evaluation of their 

respective performance and energy dissipation. While accelerators using other hardware 

architectures such as FPGA, General Purpose Graphics Processing Unit (GPU) and the Cell 

Broadband Engine (CBE) have been previously designed for biocomputing applications, the 

NoC paradigm enables integration of a much larger number of processing elements on a single 

chip and also offers a higher degree of flexibility in placing them along the die to suit the 

underlying algorithm. The results show that our NoC-based implementations can provide 

above 102-103-fold speedup over other existing solutions. This is significant because it will 

drastically reduce the time required to perform the millions of alignment operations that are 

typical in large-scale bioinformatics projects.  
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Chapter 1 

INTRODUCTION 

1.1 Hardware Acceleration in Computation Biology 
The role of computing in molecular biology research has never been more defining. The 

interdisciplinary field of computational biology focuses on developing algorithmic techniques 

and tools for solving biological problems. The essence of the study lies in the development of 

novel statistical, and computational methods and mathematical models for better understanding 

of biological systems. Computational genomics involves study of the genomes obtained through 

genome sequencing techniques of cells. Until a decade ago, only a handful of genome sequences 

were available and thus simple software implementations yielded acceptable performance. 

However, due to recent advances in DNA sequencing technologies, sequence data for more than 

a thousand species are now available in public databases and more large-scale sequencing efforts 

are currently underway. The key to the recent advances in processing vast amounts of biological 

data is the interdisciplinary alliance between biologists and computer scientists. Biologists are 

 

Figure 1.1. Biocomputing applications benefiting from software and hardware acceleration. 
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responsible for generating the data, and envision the problem, whereas the computer scientists' 

responsibility is developing efficient algorithms, software suites and hardware solutions for 

efficient computation. The outcome from these consorted efforts are already benefiting the 

greater scientific community and opening new venues for new interdisciplinary research. Data 

processing for biocomputing applications is currently done in software, which often takes a very 

long time. For instance, aligning even a few hundred sequences using progressive multiple 

alignment tools consumes several CPU hours on state-of-the-art workstations. Large-scale 

sequence analysis, often involving up to tens of millions of sequences, has become a mainstay as 

well as one of the primary bottlenecks in the path to scientific discovery. The biocomputing 

domain also hosts a set of compute-intensive applications wherein the underlying problems are 

proven to be computationally intractable (e.g. phylogenetic tree computation, protein folding). 

These aspects collectively make biocomputing a domain that has the potential to immensely 

benefit from the incorporation of the latest advancements in circuit design and evolving 

hardware architectures. 

Figure 1.1 shows a high level outline of the current state of computing in the computational 

biology domain. These problems can broadly be classified into two classes: (i) combinatorial 

optimization problems and (ii) simulation-based approaches. In this dissertation, we focus on two 

different classes of computational genomics problems that can benefit from the advances in 

hardware acceleration techniques. Both the targeted problems belong to the class of 

combinatorial optimization. One is data intensive in nature while the other is and compute 

intensive. The problems being (i) pairwise sequence alignment and (ii) phylogenetic 

reconstruction. 

The discovery of biomolecular sequences and exploring their roles, interplay, and common 
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evolutionary history is fundamental to the study of molecular biology. The different sequences 

that fill complementary roles in the cell are: DNA, RNA and protein. The most predominant 

compute operation that is carried out in nearly all sequence analysis projects is pairwise 

sequence homology detection, which aims at measuring the similarity, differences or 

evolutionary relationships between two DNA, RNA or protein ”sequences” (represented as 

strings over a fixed alphabet). The alignments are broadly classified as global alignment, semi 

global alignment and local alignment. Global alignment is generally used to compare two protein 

sequences from a closely related gene family or two homologous genes. The semi global 

alignment can be used to align fragments of DNA from shotgun DNA reads and create a larger 

inferred sequence, useful in genome assembly. Local alignment is usually used for finding 

conserved domains among protein sequences. The most widely used methods are variations of 

the dynamic programming (DP) algorithm [1] [2] that computes a two-dimensional table, with 

rows and columns representing the character sequence of the two strings being compared. These 

methods assign scores to insertions, deletions and replacements, and compute an alignment of 

two sequences that corresponds to the least costly set of such mutations. Such an alignment may 

be thought of as minimizing the evolutionary distance or maximizing the similarity between the 

sequences under consideration. These operations are used almost on a daily basis by molecular 

biologists, and also in all genome sequencing projects of any scale. While the task of carrying 

out a single pairwise sequence comparison is in itself computationally light-weight (in 

milliseconds) on traditional machines, performing the often necessary millions or even billions 

of such comparisons could easily become prohibitive, without the use of a supercomputer or 

other specialized hardware [3]. To pace up the computation further, various heuristics attempt to 

approximate the optimal solution, so that large databases can be searched on commonly available 
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clusters. In these heuristics, the measure of similarity is implicit in the algorithms rather than 

explicitly defined as a minimal cost set of mutations. Despite all these efforts, the cost of 

computation still remains. For example, a recent analysis [3] of over 28 million metagenomic 

sequences took an aggregate of 106 CPU hours, a task that took months to complete even after 

parallelization at the coarse level using a combination of 2,300 processors and high-end memory 

systems. Our experiments show that running the multiple sequence alignment tool ClustalW [4] 

even on hundreds of sequences requires several hours on state-of-the-art workstations. Since the 

amount of biological data is expanding at such a massive rate, there is a compelling need for high 

performance computing solutions.  

Phylogenetics is the study of evolutionary relationships between organisms based on their 

underlying genetic content. Inferring phylogenetic relationships is important to biologists 

especially in biomedical research, drug design, and protein structure prediction. Accurate 

phylogenetic reconstructions involve significant effort due to the difficulties of acquiring the 

primary biological data and the computational complexity of the underlying optimization 

problems. Phylogeny is most commonly used for comparative study, where a biological question 

is answered by comparing how certain biological characters have evolved in different lineages. 

Some of the fields in which this comparative method finds application is adaptation, 

development, physiology, gene function, vaccine design, and modes of speciation. The “Tree of 

Life” is an example of an ambitious project for inferring the phylogeny linking all known life 

forms. Typical probability models of evolution used for this purpose are Jukes-Cantor (JC) and 

General Time Reversible (GTR). Unlike sequence alignment, the computational intractability of 

the problem is the primary stumbling block to advance the state of research in phylogenetic 

inference, as the underlying problems have been proven to be NP-Hard under various 
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formulations [5]. The choice amongst the main strategies – neighbor-joining, Maximum 

Parsimony (MP) and Maximum Likelihood (ML), and Markov Chain Monte Carlo (MCMC) - 

often depends on the nature of the problem at hand. The neighbor-joining methods tend to be 

polynomial time and reasonably fast from implementation perspective, but they often produce 

sub-optimal estimates of evolutionary history. The Maximum Parsimony and Maximum 

Likelihood are difficult optimization problems but they are more preferred among biologists 

(empirical and simulation results confirm). MP is an NP-hard optimization problem in which the 

tree with the minimum total number of changes is sought (Hamming Distance Steiner Tree 

problem); ML is also an NP-hard problem, which is defined in terms of an explicit parametric 

stochastic model of evolution. 

 The inherent advantage of ML over MP is the statistical consistency. This implies it is 

guaranteed to return a correct solution with high probability if the sequences are sufficiently 

long. However, likelihood analysis is even harder in practice than MP. Both these approaches 

require substantial amount of time for acceptable levels of accuracy on even moderate sized 

datasets. 

   We focus on Maximum Parsimony, which is quite efficiently implemented in software 

packages like PAUP [6], and GRAPPA [7], and quite effective at producing good MP analyses 

on fairly big datasets. Heuristics for this problem have been used to construct majority of 

published phylogenies, and so MP is a major approach to phylogeny estimation.  

One of the distance measures of particular relevance to gene rearrangement-based phylogenies 

is breakpoint distance. Given a reference set of n genes {g1,g2,…gn}, any genome can be 

represented by an ordering of the subset of genes that constitute it, as they appear from end to 

end of the genomic DNA. The breakpoint distance between any two genomes is defined as the 
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number of gene pairs that appear adjacent in one genome but not in the other. It is a measure of 

how different two genomes are by their gene ordering. Blanchette et al. pioneered the work on 

breakpoint-based phylogeny [8]. They reduced the problem of constructing an optimal 

phylogenetic tree of N genomes to one of solving numerous instances of a version of the 

Traveling Salesman Problem (TSP) where edge-weights of the input graph are bounded to a 

fixed set of integer values. Put intuitively, each instance of TSP tries to identify the gene order of 

a hypothetical ancestral genome that is the closest representative to any three given genomes. 

This problem is called the 3-median breakpoint problem and has been proved to be NP-Hard [9]. 

An algorithm called GRAPPA computes an exhaustive search across all possible trees 

(≡3*5*7*…*(2 N-5) trees), and iteratively runs multiple instances of a TSP solver for scoring 

each tree. Given the large number of trees to evaluate, phylogenetic reconstruction can easily 

become heavily compute-intensive – taking days to weeks of compute time – for even a modest 

number of taxa and genes. More importantly, over 99% of the total run-time gets typically spent 

in computing TSP instances [10]. 

Both sequence alignment and phylogenetic reconstruction are challenging because of the 

following factors: 

• Volume of Data: High throughout sequencing is rapidly growing the amount of 

genomics data, thus imposing severe pressure on existing computational infrastructure 

for processing them. The rate of data processing is lagging behind the rate of 

generation of data, and this demands faster and more efficient compute solutions. 

• Resource Costs: Cost of computation is another important issue. As the volume of 

computation increases, the cost (being a function of the number of computation steps) 
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also grows. This cost includes memory, power and time. This calls for the need of 

power efficient and high throughput computation.  

• Variance amongst data: The data sets in nature have varying degrees of variance. So, 

the computational techniques should be robust enough in converging to a solution (in a 

reasonable amount of time), even if not the most optimal.  

To address all the aforementioned issues and pace up the data processing time, several 

hardware accelerators have been proposed recently, of which general purpose homogenous 

multi-core (dual and quad core Intel and AMD processors), FPGA-based reconfigurable 

hardware platforms, Graphics Processing Unit (NVIDIA GPUs), and Cell Broadband Engine 

(CBE) are notable. All the above mentioned systems primarily rely on software and use existing 

hardware platforms to map algorithms. For large-scale deployment of a data-intensive 

application, performance and scalability are of major concerns and therefore it is desirable that 

the hardware implementation is optimized to suit the exact computation and on-chip 

communication patterns that the application code generates. In this work, we choose to explore 

performance of Network on Chip (NoC)-based hardware accelerator as it enables integration of 

exceedingly large computational and storage blocks in the same chip. It is the digital 

communication backbone which interconnects the components on a multicore System-on-Chip 

(SoC). Power and wire design constraints are further pushing the adoption of this new paradigm 

for designing larger multicore chips, which incorporates modularity and explicit parallelism.  

1.2 Contributions 
The contributions in this dissertation are as follows: 

• Design of NoC Hardware Accelerator for SA: We focus on developing NoC based 

hardware accelerators for two different space and time optimal algorithms for 
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performing sequence alignment operations. The complete work involved designing a 

custom scalable core and the interconnection fabric, which included the on-chip 

switches/routers. The switch used here is circuit-switched instead of the generic packet 

switched, as the nature of communication is very regular and happens in a lock-step 

fashion. The information exchange is also fine grain, as just a single integer needs to be 

communicated.  

• Design of NoC Hardware Accelerator for MP: We designed the hardware 

accelerator platform for solving the TSP problem using branch and bound depth first 

search (DFS) approach. The entire design consisted of the individual processing 

engines and the switch design. The communication infrastructure has been designed for 

two different network topologies, namely flat mesh and quad-tree and they have been 

compared. In order to model the entire communication network, and communication 

events occurring in solving a given graph, a Multi-threaded software program was 

developed. We later used this statistics, for getting an estimate of the total solution time 

for a particular graph. 

We have successfully demonstrated how our implementation achieved three to four 

orders of performance gain as compared to the other hardware accelerator platforms.  

1.3 Thesis Organization 
The dissertation is organized as follows. Chapter 2 describes the related work and an overview 

on the current hardware accelerators for these applications and their advantages and 

disadvantages which led us to consider NoC for the target platform. In Chapter 3, we present the 

first problem, namely sequence alignment where we formulate the problem; describe the 

corresponding algorithms and the hardware design. Subsequently, we present the experimental 
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results and compare it with the other existing solutions. In Chapter 4, we present our second 

problem, on phylogenetic reconstruction using maximum parsimony. This is followed by the 

description of the algorithm, mapping of the same in the hardware and finally we report the 

results we achieved, in comparison with the serial software solution. Chapter 5 concludes the 

dissertation with a discussion on future research directions.  
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Chapter 2 

Related Work 

2.1 Background 
Several hardware accelerators have been previously developed for PSA. These accelerators are 

based on general purpose multicores [1], FPGAs [2], [3], GPUs [4] or Cell Broadband Engine 

(CBE) [5] [6]. The general purpose multi-core and CBE processors support Multiple-Program 

Multiple-Data (MPMD) model, while GPU processors support Single-Program Multiple-Data 

(SPMD) model. In addition, the memory hierarchies for these architectures have distinct 

characteristics. In the general purpose multi-cores, the cache is entirely handled by hardware, 

whereas in CBE the system cache is completely handled by software, which implies the 

programmer has to completely map the data and explicitly load the data prior to its use. 

The CBE is a heterogeneous multi-core processor consisting of a general purpose core, which 

is the Power Core (PPE) and eight other special purpose cores called the Synergistic Processing 

Elements (SPE). The PPE is responsible for coordinating the execution on the SPEs and run the 

Operating System. The SPE cores are simple cores and their primary task is execution of a 

parallel task. Each SPE consists of 256 KB of small private unified memory. The interconnection 

fabric is called the Element Interconnect Bus which is a high bandwidth memory coherent bus 

facilitating the cores to communicate through DMA data transfers between the local and remote 

memories.  On the contrary the GPU processors consist of a large number of very basic cores and 

are typically used as accelerators to a host system. GPU is usually connected through a system 

bus (like the PCI express) to the CPU and is most useful for a certain class of parallel co-

processing applications like graphics, signal and image processing. The Compute Unified Device 

Architecture (CUDA) [7] [8] is a compiler-supported programming model that offers an 
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extended version of the C language for programming recent NVIDIA GPUs [9]. The entire 

computation is parallelized by executing the same function by N different CUDA threads.  The 

threads accesses data in different levels of the memory hierarchy, and the data organization is 

crucial for achieving the most efficient implementation. The general purpose multi-core 

processors include different levels of hardware managed cache, and though the number of cores 

is smaller compared to CBE and GPU, each core is able to exploit instruction level parallelism 

(ILP) for efficient single thread execution. The sharing of the internal cache by all cores allows 

for the efficient data transfer and synchronization between them. For these processors, parallel 

programming is relatively easy using POSIX Threads (pthreads) or OpenMP directives.  

Sequence alignment (SA) may be defined as an order preserving way of mapping characters in 

one string against characters in the other string or against gap characters. The SA problem is that 

of aligning two sequences that maximizes the score of aligning. It can be classified into global, 

semi global and local alignment. Optimal Alignment algorithm for Global Alignment using 

dynamic programming was proposed by Needleman & Wunch [10]. This involves computing a 

two dimensional recurrence based table, where the value at each individual cell is dependent on 

its three neighboring cells. Both the time and space complexity are quadratic in nature. The 

algorithm for solving the local alignment was given by Smith & Waterman [11], but in essence it 

is only a slight modification of the Needleman Wunch alignment recursion. Huang [12] proposed 

a wave front technique for sequence alignment, whereby the cells along each anti-diagonal are 

computed in each parallel time step. Aluru et al. [13] introduced another technique in which cells 

along each row can be computed in each time step using the parallel prefix technique. 

Interestingly, all the above accelerators except for the CBE implementation in [14] use the anti-

diagonal based technique for parallelizing the computation of the DP table, as it can be 



 

 14

implemented using a simpler layout of processing elements. However, unless the lengths of the 

two input sequences are approximately equal, the time complexity of the underlying parallel 

algorithm is sub-optimal. From this perspective, it is imperative to implement and study the 

effectiveness of the parallel prefix based technique, which guarantees an optimal run time as 

well.  

As for performance results, Weiguo et al. [4] report that the GPU hardware GeForce 7800 

GTX can perform up to 700 million DP cells per second, implying an overall time of 1.428 

milliseconds for aligning two sequences of length ~1K each. The GPU cores are deployed 

directly without being optimized to implement the sequence alignment algorithm. The FPGA 

implementation by Oliver et al. [3] reduces the time to 1 millisecond. The prime advantage of 

FPGA being, it allows logic blocks to be wired together, and the reconfigurable infrastructure 

which facilitates fast design time. But, the generic reconfigurable architecture also fails to exploit 

the performance feature completely. The CBE implementation by Sachdeva et al. using 16 

Synergistic Processing Units (SPUs) runs in 0.65 milliseconds [5].  The other CBE 

implementation [6], achieves a runtime of ~17 ms using 8 SPUs. Once again these SPUs are not 

optimized for bioinformatics application suites. As a reference, our own serial implementation of 

the Smith-Waterman algorithm took 100 milliseconds for aligning two 1K sequences on a 2.3 

GHz Xeon CPU. This observation is consistent with the near 100-fold speedups reported by the 

authors of the aforementioned accelerators.  

 Hardware accelerators using FPGA have been developed for implementing ClustalW [3], 

which is a popular multiple MSA program. Since the underlying problem is NP-Hard, ClustalW 

approximates a solution in polynomial time. A k-sequence MSA problem involves computing 










2

k
 PSA comparisons. This all-against-all sequence comparison is the dominant phase within 
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TABLE 2.1. DIFFERENT ALGORITHMS FOR PAIRWISE SEQUENCE ALIGNMENT 
Algorithm Time Complexity Space Complexity 

Aluru’s Parallel Prefix  O((m*n)/p)  O(m+n/p)  

Huang’s Antidiagonal  O((m+n)2/p)  O((m+n)/p)  

Rajko and Aluru O((m*n)/p)  O((m+n)/p)  

 

ClustalW, taking more than 90% of the total time. The FPGA implementation uses Xilinx Virtex 

II XC2V6000, platform accommodating 92 processing elements (PEs) with a maximum clock 

speed of 34 MHz. This gives a speed up of around 10 for the overall MSA and about 50 for PSA. 

It achieves a sustained performance (including all data transfer) of ~1 GCUPS (billion cell 

updates per second in the DP matrix). 

The sequence search tool BLAST (Basic Local Alignment Search Tool) compares 

nucleotide and protein sequences to sequence databases and calculates the statistical significance 

of the matches. It proceeds by first identifying a subset of database sequences that have short 

matching segments with the query sequence and then performing a more thorough evaluation of 

the query against each short listed candidate. The filtering step is implemented using a look-up-

table data structure, and the subsequent evaluation as a unit PSA. Sachdeva et al. [5] 

implemented BLAST on CBE, consisting of a 64 bit Power Processor Element (PPE), eight 

Synergistic Processing Elements (SPEs). It achieves a speedup of 2 compared to that 

implemented on a single Power PC processor. The FPGA BLAST [15] is implemented on 

Annapolis Microsystems WildstarII-Pro board with two Xilinx Virtex-II FPGAs. The authors 

have implemented two FPGA BLAST algorithms, namely the TREE BLAST and the SERVER 

BLAST. The notion behind the former algorithm is that, it can be performed with iterative 

merging using a tree structure. The FPGA is initialized with the query sequence and scoring 
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matrix. The indexing of the scoring arrays is done using the block RAMs (BRAMs). The 

database is streamed from the memory to the FPGA. The main component of SERVER BLAST 

is a systolic array that holds a query string while the database flows through it. This is 

implemented using a FIFO buffer in FPGA. The performance reported was comparable to that of 

the dedicated server at NCBI. The GPU implementation of the same problem also returned 

promising results. Liu et al. [4] demonstrate about 16 fold speedup over OSEARCH, which is a 

MSA tool. using nVidia GeForce 7800 GTX GPU. Mapping of the algorithm onto GPU is done 

exploiting the fact that all elements in the same anti-diagonal of the DP matrix can be computed 

independent of each other in parallel. Fragment programs are used to implement the arithmetic 

operations specified by the recurrence relation. They have reformulated the Smith-Waterman 

algorithm in terms of computer graphics primitives, in an attempt to exploit the GPU platform 

for optimum performance.  

In phylogenetics research, the primary goal is to reconstruct evolutionary trees that best 

describe the evolutionary relationship among different species, by observing and characterizing 

variations at the DNA and protein level. The “Tree of Life” is an example of an ambitious project 

for inferring the phylogeny linking all known life forms. Typical probability models of evolution 

used for this purpose are Jukes-Cantor (JC) and General Time Reversible (GTR). Unlike SA, the 

computational intractability of the problem is the primary stumbling block to advance the state of 

research in phylogenetic inference, as the underlying problems have been proven to be NP-Hard 

under various formulations [16].  

 The following discussion covers different hardware accelerators for MP and ML in the 

order of increasing problem complexity. Even though it has been shown that parsimony and 

likelihood give identical results in certain circumstances [17], but empirically biologists claim 
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more accurate results with ML Most of the work addresses ML, which is computationally the 

most intense of the strategies, involving numerous floating point computations for evaluating the 

phylogenetic likelihood function (PLF). 

 Mak and Lam [18] proposed a hybrid hardware/software system for solving the 

phylogenetic tree reconstruction using the Genetic Algorithm for Maximum Likelihood (GAML) 

approach. The genetic algorithm is implemented in software and the computationally intensive 

ML equation is implemented in hardware. This work uses a Xilinx Virtex XCV800 FPGA as the 

hardware accelerator and a Pentium 4 PC with 1 GB RAM for running the software. The 

likelihood function is evaluated in parallel in the dedicated FPGA. Their results while 

reconstructing a 4-taxa phylogenetic tree under the JC Model demonstrate an  overall speedup of 

30 over software and an ML speedup of over 300, despite the communication overhead of the 

hybrid system.  This work however does not explicitly state how the acceleration scales for 

larger taxa or more realistic complex models like GTR.  

 Alachiotis et al. explored the use of FPGA for accelerating the computation of PLF in 

[19]. A   Xilinx Virtex 5 SX240T with 1056 DSP48E slices has been used. The DSP slices have 

been used to implement double-precision floating point multipliers and adders. Due to the 

limited amount of DSP48E slices on the FPGA, several multiplexer units are deployed to 

optimally exploit the available computational resources. A Sun x4600 system equipped with 8 

dual-core AMD Opteron processors running at 2.6 GHz with 64 GB of main memory was used 

as the baseline. An average speedup of 8.3 over a single core has been demonstrated for trees 

comprising of 4 to 512 sequences on FPGA. The FPGA implementation also outperforms 

OpenMP-based parallel implementation on 16 cores in most cases, achieving speedups from 0.96 

to 7.46. The projected computational time for a full tree traversal using Felsenstein’s pruning 
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algorithm for 512 taxa is well under a millisecond, based on reported clock speed of 284.152 

MHz.  

 Bakos and Elenis [20] proposed a co-processor design for whole-genome phylogenetic 

reconstruction using a parallelized version of breakpoint median computation, which is an 

expensive component of the MP phylogenetic tree inference. The co-processor uses an FPGA-

based multi-core implementation of the combinatorial search portion of the Travelling Salesman 

Problem (TSP) algorithm while the TSP graph construction is performed in software.  The search 

tree partitioning is carried out in such a manner that each core explores the tree in a different 

order. This is done to avoid complex load-balancing and inter-core communication issues that 

occur if disjoint subtrees are assigned to different cores, because any of them might be subject to 

pruning. Their test system consists of 3.06-GHz Intel Pentium Xeon processor and a single 

XilinxVirtex-2 Pro 100 FPGA connected to the host using a PCI-X interconnects. The best 

average speedup of 1,005 over software is observed for arithmetic mean computation with 3 

cores and 20 lower bound units. The best overall reduction in execution time is by a factor of 

417. All these observations are for synthetic data sets and hence difficult to correlate with real-

life biological examples. 

 We focus on MP where the objective problem is to find the tree with the shortest 

breakpoint length and the leaf nodes labelled by the genomes. The entire tree construction 

involves iteratively evaluating the median problem for a 3 leaf tree. That boils down to solving 

multiple instances of the TSP (as median problem reduces to TSP). 

 In this work, we are going to show how an NoC-based implementation of PSA, offers 

significant improvement (in terms of speed) over other hardware accelerators because of its 

custom made architecture and interconnection topology. The results of deploying such a system 
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achieved two to three orders of magnitude better performance compared to other existing 

hardware accelerators. NoCs also provide the freedom to design and experiment with different 

network topologies and their suitability to different algorithmic settings. For Phylogenetic 

reconstruction, we have developed an NoC hardware accelerator solving the problem using the 

MP approach, and we had optimized the design further from the perspective of both time and 

power. The details of the design and the future plan are covered exhaustively in Chapter 4.  
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Chapter 3 

Pairwise Sequence Alignment (PSA) 

The focus of this chapter is one of the combinatorial optimization-based bioinformatics 

problems, namely the sequence alignment. In the following subsections, we will explain the 

problem, the different algorithms for solving it, and the detailed design and implementation of 

the NoC-based hardware accelerator. We conclude this chapter with the performance benefits of 

using such a design approach over existing solutions. 

3.1 Algorithms for Sequence Alignment 

Sequence alignment is a way of measuring the similarity between two sequences. 

Algorithmically, comparing two sequences (or strings) is modeled as a combinatorial 

optimization problem. Characters of one sequence are “aligned” against characters of the other in 

an order-preserving manner, and only a selected set of operations are permitted at each aligning 

position: (i) “match” one character with another, (ii) “mismatch” (or substitute) one character 

with another, and (iii) align one character with an empty (called “gap” and denoted by “-“) 

symbol on the other string. Through a scoring scheme, a positive score is assigned for 

similarities (match) and negative scores are assigned for differences (mismatches and gaps). The 

task of computing an optimal alignment is therefore a task of identifying an alignment with the 

maximum possible overall score. 

Computing an optimal PSA is a well-studied problem [1] [2] [3]. While there are several 

variants of the problem, the complexities of the underlying Dynamic Programming (DP) 

algorithms are identical. Given two sequences s1 and s2 of lengths m and n respectively, an 

optimal PSA can be computed sequentially using dynamic programming in O(mn)time and 
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Figure. 3.1. Example of computing the global alignment between two sequences using 
Needleman & Wunsch algorithm [3]. The arrows show the optimal path. The following 

scoring scheme was used: matchscore=1, mismatch penalty=1, gap penalty=1.  

 

n)+O(m space. This is achieved by computing a )+(n)+(m 11 × -sized table T, such that T[i,j] 

contains the optimal score for aligning the prefixes s1[1..i] against s2[1..j]. For example, the 

global alignment1 score of aligning prefixes s1[1..i] and s2[1..j] is given by: 
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where g>0 corresponds to the gap penalty and σ()  to the score for substituting s1[i] with s2[j] or 

vice versa. As can be noted, the value at T[i,j] depends on the cells T[i-1,j-1], T[i-1,j], and T[i,j-

1]. Sequentially, this dependency constraint can be met during computation through a “forward 

pass” of the table in which the table is computed one row at a time starting from the first row, 

and within each row computing column by column starting from the first column. At the end of 

the forward pass, the optimal score is available at T[m,n]. The next step is a “backward pass” in 
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which an optimal path (or equivalently, an optimal alignment) that led to the optimal score is 

retraced from T[m,n] to T[0,0]. Figure 3.1 illustrates an example DP table along with its optimal 

path. 

3.1.1. Parallelization: There are two main challenges in parallelizing DP algorithms for PSA: i) 

meeting the dependency constraint without affecting the parallel speedup during forward pass; 

and ii) computing the optimal retrace without storing the entire DP table during forward pass. To 

meet these challenges, several coarse-grain parallel algorithms have been previously developed 

[4] [5] [6] [7] [8]. These algorithms offer varying degrees of computational complexities and 

ease of implementation. The algorithm by Huang [6] develops on ideas proposed by Edmiston 

[5] by using the anti-diagonal approach during forward and backward passes. The guiding 

observation is that the cells along the same anti-diagonal of the DP table are not interdependent 

and therefore can be computed in parallel. If p denotes the number of processors, then this 

algorithm requires 
( )


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time and 
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O space. Aluru et al. [4] devised an 

alternative strategy that overcomes the dependency constraint by reformulating the problem of 

computing the scores within a row in parallel using the parallel prefix operation. This algorithm 

requires 

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O time and 
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+mO space, assuming m= )(nO . The algorithm by Rajko and 

Aluru [25] uses a combination of these ideas to arrive at a more complex albeit time- and space- 

optimal solution – i.e., 
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O space.  

For mapping onto the NoC architecture, we based our choice on the following factors: i) 

parallel run time and space complexities, (ii) relative ease of adoption to the on-chip framework, 

and (iii) the potential to fully benefit from the on-chip communication network. Based on these 
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factors, we selected the algorithms by Aluru et al. [4] and Huang [6] for implementations in this 

work.  While it will be ideal to also evaluate the optimal algorithm by Rajko and Aluru [7], it is 

highly complex for implementation. It is to be noted that none of the previously proposed 

hardware accelerators implemented the parallel prefix approach. 

In what follows, we briefly outline the main ideas behind these two algorithms. For 

convenience, we will refer to the algorithm by Aluru et al. as the “PP algorithm” (for parallel 

prefix), and the algorithm by Huang as the “AD algorithm” (for anti-diagonal).  

We implemented three of the most popular variants of the alignment problem – global [2], local 

[1], and semi-global [9]. To best reflect practical application, we implemented the affine gap 

penalty function model [3], in which the gap penalty function grows linearly with the length of 

the gap in an alignment. Algorithmically, this is achieved by computing three DP tables (T1, T2 

and T3) instead of one DP table. However, the underlying run-time and memory complexities for 

computing alignments based on the affine gap model are exactly the same as that of the single-

table constant gap model. The actual time and memory costs in practice are expected to only 

increase by a factor of 3. Because of this algorithmic equivalence and for ease of exposition, we 

will describe the parallel algorithms below for the single-table constant gap model, even though 

we implemented the more generic affine gap model. 

3.1.2. The PP approach: The PP algorithm partitions the input sequence s2 into p pieces such 

that each PE receives roughly n/p characters (as shown in Figure 3.2). The other input sequence 

s1 is made available to all the PEs one character at a time. Throughout, we will assume p to be a 

power of 2 although the algorithm can be easily extended to arbitrary processor sizes through a 

virtual padding scheme. The )+(n)+(m 11 × -sized table T computation is divided into p roughly 

equal parts, such that PE pi is assigned the responsibility of computing the ith block of 
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Figure. 3.2. Computation of the DP table in parallel using p processors in the parallel prefix 
approach.  

 

Figure. 3.3. Communication pattern generated by the PP algorithm. 

 

p)O(n/ columns. The forward pass in table computation proceeds iteratively, row by row, such 

that at any given iteration i, all the PEs participate in computing row i in parallel. We identify 

each iterative step as one “time step”. Within each row, the algorithm reduces the problem of 

computing the recurrence in (1) to the problem of computing the following recurrence  
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1
   (2), 

where nj ≤≤0 and w[j] is obtained by local computation (without any need for 
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communication). Computing this recurrence is equivalent to the problem of finding n+1 prefix 

maximums, which can be easily accomplished using the PP operation as follows: Since each row 

is partitioned into roughly p)O(n/ blocks and assigned to p PEs, the prefix maximums can be 

computed by first computing p local maximums in an p)O(n/ computation step, and then using 

p)O( log communication steps to update their local prefix maximums into global prefix 

maximums. More specifically, at communication step k (for 0≤k<(log p)), PEi exchanges its 

most-recent global maximum with PEj such that j=i+2k and  the kth least significant bits in the 

binary representations of i and j are 0 and 1 respectively. For example, in a 4 processor system 

and at k=0, PE0 exchanges with PE1, and PE2 exchanges with PE3; at k=1, PE0 exchanges with 

PE2, and PE1 exchanges with PE3. The time steps of the inter-PE communication scenario for 8 

PEs is shown in Figure 3.3. Consequently, each time step can be completed by performing: (i) an 

p)O(n/ local computation, and (ii) an p)O( log  parallel prefix communication. After the last 

row is fully computed, the PEs reverse their computation by progressing from last row to top row 

and retrace an optimal alignment path that yielded the optimal score at cell T[m,n]. However, 

this would require that the entire table be stored, implying an )(mnO aggregate space complexity. 

To allow retracing an optimal alignment in just 







 +
p

nm
O

 space, each PE stores all the entries in 

the last column of its block of n/p columns, and then uses this information to retrace. This step 

can be achieved in )/( pnO  computation time and )( pO communication time. In the interest of 

space, we omit the details of analysis and proofs, and refer the reader to the original paper [4].  It 

has been proved that the algorithm has an overall computation complexity of )/( pmnO and a 

communication complexity of p)O(mlog  on a distributed memory parallel computer [4]. 
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3.1.3. The AD algorithm: This requires that both the input sequences s1 and s2 are made 

available to all the PEs. For the forward pass, the algorithm proceeds iteratively by computing 

one anti-diagonal of DP table at each “time step”, where an “anti-diagonal” is defined as the 

subset of cells [i,j] which have the same i+j value. For an )+(n)+(m 11 × DP table, there are a 

total of m+n+1 anti-diagonals with values 0, 1, 2,.., m+n, and the algorithm computes the tth anti-

diagonal at time step t (as shown in Figure 3.4). All the cells within an anti-diagonal can be 

computed in parallel because the value at any T[i,j] depends on the values already computed and 

available from previous two time steps. The next question is to identify the PE that will work on 

each cell of an anti-diagonal. It turns out that the assignment of PEs to cells does not matter for 

the overall complexity as long as the number of PEs working on an anti-diagonal is maximized. 

Therefore, in this work, we adopt two different strategies, for the different cell computations by 

the processors. First that will assign PEk to the cells in the anti-diagonal that have the form [i,j] 
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(a)                                                                                   (b) 
Figure. 3.4. Antidiagonal table computation. (a) Strategy 1, (b) Strategy 2. The numbers 

within the cells represents the PE responsible for computing it. 
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such that (i mod p) = k. This is shown in Figure 3.4 (a). The second strategy is shown in Fig 3.4 

(b), where the interprocessor communication is further reduced. This way of processor allocation 

also results in reduction of the computation time, as the internal cells do not have to wait for the 

communication results from neighbouring cells. This significantly improves the amortized total 

time, even though the participation from all the processors is not uniform at different instances 

(in comparison with the previous strategy). We selected this cyclic allocation scheme because the 

communication pattern that emerges from such a setting is a simple neighbourhood 

communication – i.e., the data that PEk needs to compute a cell (i,j) are present either within 

itself or in PEk-1 (as shown in Figure 3.4).  

 For the backward pass, the main challenge is to reconstruct an optimal path in the 

absence of the entire DP table stored at the end of the forward pass, as otherwise the space 

complexity will be Θ(mn). The algorithm by Huang uses a variation of the Hirschberg technique 

for space reduction [10], by identifying the cell (i’,j’) in the middle anti-diagonal through which 

an optimal path must have passed. Once such a cell is found, the problem space can be 

recursively subdivided into reconstructing the paths on the left top and right bottom sides of 

(i’,j’). In this work we developed another variant that directly uses the Hirschberg technique. In 

this scheme, the special cell (i’,j’) is defined to be  ( )jm ,2  through which an optimal path is 

guaranteed to pass. We achieve this by propagating all possible “candidate” cells during the 

forward pass such that the candidate that propagates to the last cell (m+1)× (n+1) is the winner. 

Once such an (i’,j’) is found, the original problem of retracing the DP table from (m+1,n+1) back 

to (0,0) reduces to two disjoint sub-problems: i) retrace from (m+1,n+1) back to  ),2( jm ; and ii) 

retrace from   ),2( jm back to (0,0). These two sub-problems can be solved using recursion. To 

maintain parallel efficiency during these recursive steps, we partition the processor space into 
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Figure. 3.5(a) Mapping of the PP algorithm into a Mesh. (b) Mapping of the AD algorithm into a 

Mesh with an embedded ring. 
 

two subsets such that the number of PEs in each subset is proportional to the number of cells for 

computation in the corresponding recursive step. The AD approach also requires 
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3.2. NoC Implementation 

3.2.1 Mapping the Sequence Alignment Algorithms to NoC  

Instead of depending on FPGAs or any other existing processing platforms, we designed tiny 

PEs operating on a particular segment of the table T as explained in Section 3, and integrating 

them using an NoC.  

(a) The PP implementation: The communication is always point-to-point and the PEs are 

required to exchange a single integer number among them. As an example, the inter-processor 

communication steps for a system with 8 PEs are shown in Figure 3.3.  Consequently, instead of 

building a full blown packet switched network, a simpler circuit-switched NoC is designed. The 

total time required to complete a sequence alignment operation depends on the computation time 
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taken by each PE and the communication time needed to exchange data among the PEs. The 

algorithm is structured such that at every time step, there is a p)O(n/ local computation phase 

followed by a communication phase. The communication carries out a parallel prefix operation 

in p)O( log stages, but the overall communication time will depend on the architecture of the 

NoC and placement of the PEs. Therefore, it is important to place the PEs in the NoC in such a 

way so as to reduce both the latency and energy dissipation in communication. While there are 

multiple NoC architectures [11], the hypercubic topology is best suited for the parallel prefix 

operation. But a physical realization of the NoC is limited by the layout dimension of the chip, 

which is predominantly 2D in practice. For a system size of p, if we construct a log2p-

dimensional hypercube then the number of hops between any two PE is always 1. But as shown 

in Figure 3.5(a), if we embed a log2p-dimensional hypercube into a D-dimensional mesh, which 

is more realistic from an implementation perspective, then the number of hops in the ith 

communication step is given by (3).  






 −

= D

i

i
L

1

2    (3), 

where i can range from 1 to log2p. Hence, the maximum communication latency (in number of 

hops) between any two PEs is given by (4)     








 −
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p

L
1log

max

2

2     (4) 

Given that there are exactly  p
2

log  time steps within one parallel prefix operation, the total 

communication time T (in hops) of the parallel prefix operation is given by (5). 

∑
=
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Figure. 3.6. (a) The communication pattern for backward pass in PP (b) The communication 

pattern for backward pass in AD. 
 

For 2D, the above series and hence T evaluate to )222( −× p  if log p is even, and 
)2)

2

3
(( −p

 

otherwise. Given that there are p)O( log time steps, the above results yield an average of 

)log( ppO  number of hops per time step for both the cases. 

It is not practical to implement any arbitrarily higher dimensional hypercube. For example, a 

system with 64 PEs would necessitate construction of a 6D hypercube. Therefore, for 

investigation, we designed a 2D mesh-based NoC for carrying out sequence alignment. When the 

communication pattern shown in Figure 3.3 is mapped to a 2D mesh-based NoC, even a data 

exchange between two hypercubic neighbors may cost several hops. But a well-defined property 

of the communication pattern in parallel prefix algorithm is that PEs do not communicate 

arbitrarily. As an example, in a system with 16 PEs, if the placement of Figure 3.5(a) is followed 

then the worst case communication latency arises while communicating between PEs separated 

by two hops. With increasing system size this worst case communication latency will be more. 

For a system with 64 PEs the worst case latency in a communication step will be four hops.  

As explained above, the forward pass is followed by a backward pass operation. This step 

is implemented using p-1 neighbor PE communication exchanges, as the PEs regenerate the path 

from cell [m,n] to [0,0]. We modeled this communication pattern as a Z space filling curve as 

shown in Figure 3.6(a).  
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Figure. 3.7. Establishment of communication links facilitating Bypass during parallel prefix. 
 

 (b) The AD implementation: In the AD approach, the forward pass requires only a 

neighborhood PE communication pattern, as explained in Section 3. More specifically, the three 

values required to compute T[i,j] are available from the previous two anti-diagonals, and because 

of the cyclic allocation strategy that we used to map PEs onto the anti-diagonals (see Figure 3.4), 

these cells are either present in the same PE or the previous PE. The exception is the first PE 

which will depend on the last PE due to the cyclic allocation. Therefore, it suffices to use a ring 

topology. In our implementation, we achieve this by embedding a ring into the mesh, and 

following the Moore space filing curve, which is similar to the Hilbert curve [12] for PE 

numbering. The placement of PEs is shown in Figure 3.5(b).   

This interconnection enables single cycle communication among the neighboring nodes. At 

every time step, each PE works on one anti-diagonal of the DP table. If the length of an anti-

diagonal is greater than the number of PEs, then the cells are computed in multiple stages. The 

number of such stages is given by: 

p

m

PEs

lengthDiagonalAntiAverage
DiagonalsAntiperStages

2#
≈

−
=

  (6),                    

where nm≤ without loss of generality. The communication steps follow each of the 

computation steps at each cell. This implies that the total number of data exchanges is 

proportional to( ) )1(1 +×+ nm . Note that this result is unlike the PP approach; the 
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Figure. 3.8. Generic switch architecture for both PP and AD approaches. 

 

communication volume is independent of the number of PEs during the forward pass.  

 In our backward pass implementation we partition the processors into two sub-groups and 

the number of processors in each of the sub-groups depends on the number of cells in the two 

partitions. The processor grouping requires a broadcast operation as shown in Figure 3.6(b) to 

propagate the new partitioning cell-coordinate to all the PEs, which takes 
( )pO log

 time (where 

p is the number of PEs).  

3.2.2 NoC Switch Design 

Due to the deterministic pattern of communication in case of both the PP and AD techniques, we 

designed simple pass transistor-based switch boxes [13] to forward the data from one PE to the 

other, instead of designing network routers for data communication. 

In the PP approach, data exchanges between two non-adjacent hypercubic neighboring PEs 

give rise to higher communication delay. To reduce the delay, instead of building a multi-hop or 

pipelined communication link between two non-adjacent PEs, the switch boxes are designed to 

establish a direct communication path (unpipelined or single-hop) between the PEs [33]. As an 
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example, for the mesh shown in Figure 3.5(a), a particular communication step requires that PE1 

communicates with PE5 and simultaneously PE2 communicates with PE6. In this situation the 

switchbox connected to 2 should be conFigureured in such a way that a direct communication 

link is established between 1 and 5 as shown in Figure 3.7. The architecture of a switch is shown 

in Figure 3.8. Commensurate with all the time steps in the parallel prefix operation (shown in 

Figure 3.3) the switch is designed to establish direct path between any two communicating 

neighbors in the vertical and horizontal directions. For a system with 16 PEs the communication 

steps within the parallel prefix operation are shown in Figure 3.9. In ‘Time Step 1’ of parallel prefix, the 

neighboring processing elements communicate (like 1-2, 3-4, 5-6 etc.). For example, to exchange data between 

PE1 and PE2, the following pass-transistors will be on: Miph1 and Mh1 of the switch connected to PE1, and 

Miph1 of the switch connected to PE2. The same switch set-up facilitates data transfer amongst PE3-PE4, PE5-

PE6…PE15-PE16. In the subsequent time steps, other switches involved in the communication are 

configured accordingly (by turning on suitable pass transistors in the switches). With increasing 

system size the number of ports in the switches needs to increase to facilitate single-hop or 

unpipelined communication. On the contrary, the number of ports in the multi-hop scenario does 

not increase as the message ripples through the intermediate switches. During the backward 

phase, the data transfer is serial and hence no new modification is required in the existing 

communication infrastructure. 
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Figure. 3.9. Different time steps in communication during parallel prefix (PP). The shaded 
arrows represent the different simultaneous communications taking place for each parallel 

prefix step. 
 

For the AD technique, during the forward phase only neighbouring PEs communicate 

simultaneously. The backward pass requires broadcasting of information, which is implemented 

as shown in Figure 3.6 (b). To achieve the simultaneous communication amongst multiple non-

adjacent PEs during this phase, the bypass strategy of the PP implementation is adopted here too. 

3.3 Experimental Results 

3.3.1. Input data: Given that the complexities of the PSA algorithms discussed above depend 

only on the lengths of the sequences being compared (and not on the sequences content), we 

used two arbitrary DNA sequences with lengths 1024 characters each in all our experiments. In 

practice, the length 1024 represents the length range for sequences that can be experimentally 

generated (or “sequenced”) using a traditional Sanger sequencer [26]. These sequences constitute 

a typical input in genome sequencing projects, where a massive number of pair-wise alignments 

are computed over millions of such sequences. However, we also note that there are DNA 

sequences of a vast length ranges in public databases – from tens to hundreds of characters (e.g., 

short reads from new generation sequencing), to thousands of characters (genes), to tens of 

thousands to millions and even billions of characters (fully assembled whole genomes). Even 

though we selected 1024 for our input tests, our NoC implementations can be used to any of 

these length ranges as long as the sequences fit in an on-chip memory. Fixing the input size in all 

the experiments allowed us to conduct a fair comparative evaluation of the different NoC 
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Time Requirements for String Length 1024
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Figure. 3.10. (a) Time requirements comparison for PP (b) Energy dissipation profiles for PP.            
 

architectural topologies in our implementations.  

3.3.2. Experimental setup: We present here experimental results of our NoC implementations 

for the two algorithms described in Section 3: PP and AD. We studied the timing requirements 

and the energy dissipation for both the cases. Each character of a string was represented using 3 

bits. This is because the alphabet size of DNA sequences typically used in practice is 5 

({a,c,g,t,n}). In all our implementations, the PEs need to exchange only integer data among 

them. Each integer number used during the communication was represented by 16 bits. Each PE 

was designed to perform the required character comparison, which is the primary unit operation 

in string alignment. The PEs were implemented in RTL and then synthesized using the 90 nm 

standard cell library from CMP (http://cmp.imag.fr/). The PEs communicate with each other with 

the help of switches. The switches mainly consist of pass transistor logic and were designed 

using Cadence Spectra tools. We considered two types of NoC implementations: (i) a 

“Pipelined” communication scheme, where all the non-adjacent PEs communicate in multiple 

hops step by step; and (ii) an “Unpipelined” communication scheme, where the non-adjacent 

hypercubic neighboring PEs communicate in a single hop with the help of bypass. Performances 

of both the schemes were compared in terms of energy and timing.  The energy dissipation and 

the total time required in the sequence alignment operation depend on the PEs and the 



 

 39

communication infrastructure. The energy dissipation and delay of the communication 

infrastructure in turn depend on two components, the switch blocks and the inter-switch wires. 

The energy dissipation and delay of the switch blocks was determined using the CADENCE 

Spectra tool. The clock frequency of opertation was 1.667GHz. The delay and energy dissipation 

of the inter-switch wires depend on their capacitance, which was calculated by taking into 

account each inter-switch wire’s specific layout by the following expression   

( )JGi+iwire C+Cmn+wC=C ⋅⋅⋅ 1,hinterswitc     (7) 

where Cwire represents the capacitance per unit length of the wire, wi+1,i is the wire length 

between two communicating switches, n is the number of repeaters, m represents the size of 

those repeaters with respect to minimum-size devices, and lastly, CG and CJ represent the gate 

and junction capacitance, respectively, of a minimum size inverter. The energy dissipation and 

delay incurred by each PE are obtained using Synopsys Design Vision. 

3.3.3. Pipelined vs. Unpipelined Implementation 

As a first step we compare and contrast the performance of the NoC for the pipelined and the 

unpipelined implementations. We conduct this analysis only for the PP implementation. For the 

AD implementation, only neighborhood PEs communicates (in a ring topology) and therefore, all 

data transfers will be inherently single-hop, no bypass strategy is needed.  

Figures. 3.10 (a) and (b) show the timing and energy dissipation profile of the NoC with 

varying system size. As can be expected from Figure 3.10(a), the pipelined implementation takes 

much longer time to complete than the unpipelined implementation. The total time has two parts: 

communication time and computation time. With increase in system size, the communication 

time increases because there will be more number of time steps within each parallel prefix 

operation in both the multi-hop and single-hop scenarios. However, the computation time of each 
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PE decreases due to reduction in the substring length. But in the pipeline scenario the 

communication time dominates over the computation time significantly (as an example, 14:1 

ratio for a system size of 64). This is true for the unpipelined case as well, but the ratio is smaller 

(6:1 for the same system). As a result, in the pipelined case the rate of increase of overall time 

with increasing system size is much higher than the corresponding unpipelined implementation. 

Contrary to the timing characteristics, the unpipelined case dissipates more energy (as shown in 

Figure 3.10b). This can be attributed to various factors: (i) the increase in the interconnect length 

traversed in one communication cycle, (ii) buffers along the path, and (iii) increase in switch 

complexity. 

It can be observed from Figure 3.10, that the unpipelined implementation provides significantly 

more savings in time compared to the pipelined one, while resulting in very little penalty in 

energy consumption for all system size. As an example, for a system size of 128 PEs the 

unpipelined implementation achieves more than 300% improvement in time while consuming 

only 0.84% more energy. This result indicates the value added by the bypass strategy. As a result 

of this analysis, we adopted the unpipelined strategy in the final implementation of PP, and all 

the corresponding results presented henceforth are for the unpipelined implementation.  
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Energy Dissipation Profile for PP Approach
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Energy-Time Product for PP Approach
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                                                                                           (c)  
Figure. 3.11. (a) System energy profile (b) Timing requirements (c) The E-T product for PP approach. 

3.3.4. Energy and Timing Characteristics of the PP Approach  

Figure 3.11 shows the energy and timing characteristics of our NoC implementation of the PP 

approach. Figure 3.11(a) shows the energy dissipation profile with varying the number of PEs for 

the PP operation. The two contributing factors are the communication and computation energy. 

The increase in the communication energy with system size is attributed to the increase in total 

number of communication steps. On the contrary, the computation energy reduces very slowly. 

With doubling the system size, the work performed by each PE reduces by half. Hence the 

energy per PE also reduces. It is observed that with doubling system size (halving the string 

length handled by each PE) the factor of energy reduction per PE is slightly more than two. 
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Consequently the total computation energy has a slow decreasing trend with doubling system 

size. Overall, the net energy trend is dominated by the communication energy.  

The timing characteristics of our PP implementation are shown in Figure 3.11 (b). For a 

system with p PEs, each parallel prefix operation involves p)O( log communication steps. As 

there are m rows, where m denotes the length of string s1, the total communication time for the 

entire alignment operation is p)O(mlog . Consequently with increasing number of PEs, the 

communication time increases. At the same time with increasing system size, the number of 

columns in the DP table, and hence the overall workload handled by each PE decreases. In fact, 

the computation time of each PE almost halves with doubling the system size until the input size 

becomes too small for the system size. This explains the observed trend of the computation time 

in Figure 3.11 (b). Consequently the total time needed to perform the alignment operation, which 

is the sum of the computation and the communication time first decreases and reaches a valley, 

but beyond a certain number of PEs, it again starts increasing. In all our experiments, we 

observed that more than 90% of the overall time was spent on the forward pass of the algorithm.  

To determine the optimum number of PEs we consider the variation of the energy-time product 

with respect to system size. From Figure 3.11(c) it can be observed that for comparing two 

strings of length 1024, for the PP algorithm the optimum number of PEs turns out to be 16.  

3.3.5. Energy and Timing Characteristics of the AD Approach  
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Figure 3.12 shows the energy and timing characteristics of our NoC implementation of the AD 

approach using the fist strategy (refer section on AD algorithm). Figure 3.12(a) shows the energy 

characteristics.  In the first case of AD approach, the total number of communication steps during 

forward pass isO(mn), irrespective of the system size, where m and n are the lengths of the two 

strings. This is because there is a data exchange at every cell of the DP table. Consequently the 

communication energy in the forward pass remains unchanged with increase in the system size. 

However, during the backward pass, the communication energy increases with the system size 

due to the broadcast operation. This explains the slow rise in the total communication energy 

shown in Figure 3.12(a). 

Energy Dissipation Profile for AD Approach
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       (c)  
Figure 3.12. (a) System energy profile (b) Timing requirements (c) The E-T product plot for AD 

approach. 
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The computation energy is given by:  

Comp. EnergyAD=E p× PE× Comp.cycles          (8) 

where Ep is the energy of a single processor per computation cycle. As the system size doubles, 

the number of total computation cycles per processor halves. Therefore, the product of these two 

factors is an invariant for a given input size. Reduction in Ep with increase in system size can be 

explained as follows: At any given time step, all the PEs are working on one anti-diagonal 

Consecutive parallel steps involve a certain number of computation stages performed by each PE 

as given in (6), which is inversely proportional to the system size. As a result if the number of 

PEs increases, the number of stages per anti-diagonal computation reduces. Consequently the 

number of times each PE is activated reduces, contributing to lower overall computation energy. 

This is confirmed in the results shown in Figure 3.12(a). Consequently, the total energy first 

reduces (following the decrease in computation energy) and then increases as communication 

energy starts to dominate, as shown in Figure 3.12(a).  

Both communication and computation time complexities of the AD approach are 






 ×
p

n)(m
O

2

. 

Since in our experiments, m=n, this is equivalent of 






 ×
p

n)(m
O . Therefore, as the system size 

doubles, the overall time halves as shown in Figure 3.12(b). Figure 3.12(c) shows the energy-

time product for the AD approach, and as can be observed the optimum number of PEs is 128.  
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 For the second strategy, the total number of distinct boundary communications were 

reduced, which is given by: 

2)1( SpionsCommunicat ×−=           (9) 

where S2 is the length of one of the sequences and p is the number of processors in the network 

on chips. This explains the savings in the communication energy and consequently the total 

energy as shown in Figure 3.13 (a). The valley point in the energy curve is attained in case of the 

64 PE system, and from the break-up of the total energy into the constituent components, it 

becomes evident that with the second way of allocating processors has computation energy as the 
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Figure. 3.13.(a) Total Time (b) Energy dissipation profiles for AD – Strategy 2.            
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dominating factor. The Figure 3.14, clearly demonstrates the energy dissipation for the two 

different strategies, In terms of time, the total time is dominated by the share of computation, 

rather than communication. This explains the steady decrease in the total time on deploying 

larger number of processing elements for the same amount of workload. In comparison to the 

first strategy, the significant reduction in total time is also a result of independent computation of 

the cells by each processor, and communication for only the boundary cells.  

 

Table 3.1 presents a comparative performance evaluation between the PP and AD algorithms in 

terms of energy dissipation and timing. It is evident that the PP approach out-performs the AD 

both in terms of time and energy when the system size is less than or equal to 64. But, as we 

increase the number of processors beyond 64, the sharp rise in the communication energy in PP 

attributes to rise in its total energy. Thus, for large system sizes AD approach outperforms PP in 

terms of energy dissipation, though it still takes more time. Among the AD strategies, the second 

approach is most suitable both in terms of energy and in terms of time, it is almost at par with the 

PP approach. For large system sizes (beyond 64), definitely this beats the PP in energy aspect as 
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Figure. 3.14. Energy dissipation profiles for the two different AD strategies.            
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well.  

3.3.6. Impact of varying string sizes 

Initially, in our analysis the lengths of the two strings were maintained equal. Here, we study the 

effect of comparing two strings of different lengths. Figure 3.15 shows the impact of varying the 

string sizes on the timing and energy dissipation for the PP implementation. In order to allow a 

fair comparison, we varied the string sizes but keeping the total work (i.e., number of cells in the 

DP table) same. We considered four different combinations for s1 and s2. As the number of rows 

is decreased and/or the number of columns increased, the total time and energy both decrease. 

TABLE 3.1 
COMPARATIVE EVALUATION OF PP AND AD SCHEMES FOR 1KX1K DATA 

System 
Size 

Energy (J) Time (s) 

PP AD 1 AD 2 PP AD 1 AD 2 

8 5.57E-06 46.4E-06 30.3E-06 7.24E-06 91.3E-06 7.42E-06 

16 7.01E-06 42.6E-06 26.7E-06 5.15E-06 47.4E-06 5.42E-06 

32 10.7E-06 39.8E-06 24.1E-06 4.41E-06 25.7E-06 4.78E-06 

64 20.3E-06 38.9E-06 23.7E-06 4.30E-06 15.3E-06 4.82E-06 

128 47.2E-06 43.2E-06 29.0E-06 4.61E-06 10.4E-06 5.20E-06 
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(a) (b) 
Figure. 3.15.(a) System energy profile (b) Timing requirements plot obtained by varying the lengths of 
the strings using the PP implementation. The rows correspond to the characters in s1 and the columns 

correspond to the characters in s2. 
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This can be explained by the decrease in the number of communication steps with decreasing 

number of rows, though the total amount of computation still remains the same. For the AD 

approach, the computation is always along the antidiagonal and the communication is only with 

the neighboring PE. Hence, there is no change in either time or energy when the string lengths 

were varied keeping the area of the DP table the same.  

Next, we increase the number of bits from 3 to 4 for representing each of the characters of the 

DNA sequence to accommodate standard ambiguous character encoding.  Tables 3.2 and 3.3 

show the timing and energy statistics, respectively, using the PP implementation. It can be 

observed that the total time and the total energy increase only marginally from the 3-bit to 4-bit 

representation.  

3.3.7. Parallel Prefix Implementation on Protein Sequence data 
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Figure. 3.16. Energy dissipation profile and Timing requirements for AA 

data 
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TABLE 3.2 
TIMING COMPARISON FOR 1KX1K DATA 

Number of 
PEs 

3 bit (s) 4 bit (s) 

64 4.30E-06 5.27E-06 
32 4.41E-06 5.92E-06 
16 5.15E-06 6.09E-06 

 
TABLE 3.3 

ENERGY COMPARISON FOR 1KX1K DATA 
Number of 

PEs 
3 bit (J) 4 bit (J) 

64 20.3E-06 21.9E-06 
32 10.7E-06 11.4E-06 
16 7.01E-06 7.50E-06 

 

We also undertook another case study with protein sequences, which contain one of 20 amino 

acid residues at each character position. In Figure 3.16, we present the energy and timing results 

on amino acid sequences of length 256×256 (to reflect the average length of a protein sequence). 

We adopted the PP algorithm (5 bit representation for each protein character), and used the PAM 

substitution matrix [14] for assigning the score. The trend is very similar to that for the DNA 

sequences of length 256×256 except for an increase in time and energy. The energy increase has 

been a result of the increase in computation energy due to table look-up. There is no change in 

the communication energy. The increase in time is also due to the increase in computation time. 

The same trend as DNA sequence matching is expected while implementing using AD algorithm.  

TABLE 3.4 
SPEEDUP OF VARIOUS ACCELERATORS OVER OUR SERIAL IMPLEMENTATION 

 
Intel 

2.3GHz 
Xeon CPU 

GPU  CBE  CBE  FPGA  

OUR NoC 
IMPLEMENTATION 

PP AD 

Time (ms) 100 1.43 0.65 17.5 1 0.00439 0.01054 

Speedup over 
serial 

implementation 
1 

69.9
3 

153.8
5 

5.7 100 
22779.0

4 
9487.667 
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TABLE 3.5 
SPEEDUP OVER EXISTING HARDWARE ACCELERATORS 

Other  Accelerators FPGA 

[10] 

CBE 

[12] 

CBE 

[13] 

GPU 

[11] 

Our 

Implementation 

PP 227.79 148 3986.3 325.74 

AD 94.87 61.67 1660.3 135.67 

 
 To assess the real benefit that can be realized using our NoC implementation we 

compared our run-times against other hardware accelerator implementations and our own serial 

implementation on a 2.3GHz Xeon CPU. The results are tabulated in Tables 3.4 and 3.5. The 

time needed to transfer the sequences from main memory and writing back the resultant path 

back to the main memory depends on the adopted interface mechanism. If the NoC-based chip is 

used as a co-processor on the same mother board as the main processor then the total time was 

about 0.096 us. This number is derived using a bus-width of 128 and a bus speed of 1333MHz. 

On the other hand if the PCI express 3.0 is chosen as the interfacing standard then the timing 

requirement is higher, which is around 2 us. The co-processor based implementation overhead is 

included in the timing data for our NoC implementation presented in Tables 3.4 and 3.5. As can 

be observed, our PP-based NoC implementation provides between 150 to 4000 fold speedup over 

other existing accelerators and more than well over 104-speedup over the serial implementation. 

If the PCI-based interface is used then also our implementation achieves between 100 to 2700 

fold speed up over the existing accelerators. 

 

3.4. Long Range link insertion 
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In PP scheme, the number of multi-stage communications is directly proportional to the 

number of processing elements and also to the length of one the sequences being compared. 

Even applying the bypass strategy, use of traditional metal wires gives rise to significant timing 

and power penalties. Consequently, the need for efficient long range links which can achieve the 

communication in a single cycle arises. This will help to  reduce the power and improve the 

latency of communication. In this section, we evaluate performance of on-chip wireless links 

used as the long-range communication medium to improve the performance of the proposed NoC 

architecture. This exercise was undertaken specifically for solving the PP-based approach as the 

AD method involves neighborhood communication. Using carbon nanotube (CNT) antennas, it 

is possible to create on-chip wireless communication links [15, 16].  

The design of the network on chip has been done in a way that we consider the 

neighboring communication (one-hop) to be performed by wired links, as they perform best for 

short range scenarios. For the longer communication (2 or more hops), the wireless links have 

been considered. So, every node in the network has a wireless transceiver along with the existing 

wired platform. In [17], it has been shown using CNT antennas 24 different frequency channels 

can be created. Thus, 24 frequencies can simultaneously support different wireless links in a way 

that a single frequency channel would be used only once per time step to avoid interference. So 

for system sizes greater than 24, a ‘long range wireless communication step’ has been sub-

divided into multiple steps using time division multiple access for the channels. We had 

considered only 16 different channels for designing our point-to-point communication scheme. 

This has been done in accordance with the power of two scaling. In Figure 3.17, it has been 

shown why we require four different time sub-steps for accomplishing each of the final four time 

steps, of the total of six step (refer Figure 3.9) all-to-all communication for a 64 PE system. By 
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Figure 3.17. Communication sub-step allocation for the 64 PE system.            
 

similar reasoning, for a 128 PE system, we require eight sub-steps. This multiple communication 

sub-steps can be attributed to the rapid increase in the total time (Figure 3.16 (a)) for large 

system sizes. 

 The Fig 3.16 represents the total energy and timing requirements for PP approach using 

the wireline and the wireless schemes. For larger system sizes wired network infrastructure 

performs better, but there is significant energy savings upon using the wireless communication 

fabric (Figure 3.16(b)). When considering the Energy-Delay metric, we notice that the hybrid 

wireless network on chip clearly emerged as the winner (as shown in Fig 3.17). 
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Figure 3.18.(a) Total Time (b) Energy dissipation profiles for PP upon insertion of wireless links.           
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Figure 3.19. Energy Delay Product on using wireless network infrastructure            
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3.5. Summary  

The above results go well beyond demonstrating the paradigm-shifting potential of NoC 

architectures over bioinformatics applications. For example, the analysis of over 28 million 

metagenomic sequences that took months to complete after parallelization at the coarse level 

[18], can be completed in a matter of days using our NoC based hardware accelerator. The NoC 

architecture can not only provide such high performance improvements but also, more 

importantly, enable solving much larger problems than was ever possible before under practical 

experimental settings. The widespread adoption of this design approach depends on both the 

design time and cost, and also the amortized cost of the total number of such systems required. 
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Chapter 4 

NoC Architecture for Phylogenetic Reconstruction  
In this chapter, we undertake design and performance evaluation of NoC architectures for 

phylogenetic reconstruction. We consider the Maximum Parsimony (MP)-based phylogeny, 

which depends on finding the breakpoint median, when given a set of species. The breakpoint 

median reduces to one of solving multiple instances of the Traveling Salesman Problem (TSP), 

which is a classical NP-complete problem in graph theory. In the following subsections, we first 

explain the problem, the algorithmic details, followed by the design and implementation of a 

multi-threaded software program for modeling the communication events, and then the network 

on chip based platform for solving TSP.  

4.1 Algorithm for Traveling Salesman Problem  
In this section, we present the core computation steps of the branch-and-bound heuristic to solve 

TSP [1] that we used in our implementation. The input is a directed graph, G = (V,E) with m 

vertices and a non-negative cost associated with each edge. The m vertices of this graph 

correspond to the m reference genes and its edges have a bounded weight – an integer cost 

between 0 and 3, or an edge with cost ∞ (representing nonexistent edges) [2]. The output is a 

least cost cyclic tour that traverses all vertices exactly once.  
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                         (b)                                                                            (a) 

Figure 4.1. An example showing (a) an input graph and (b) the exhaustive search tree 

corresponding to the input graph. If the tree is computed in the Depth First Search Order, then 

evaluation of the path that leads to a low cost (such as u1-u2-u6-u7-u8) first may help in 

pruning the computation of a higher cost path (such as u1-u9-u13-u14-u15). This idea is 

exploited in the branch-and-bound technique. 

Given this input graph G, the solution space can be represented by a conceptual computation 

tree. An example is shown in Figure 4.1. The tree has a total of (m-1)! potential paths to be 

explored before identifying the optimal TSP tour. Every tree-edge (u,v) from a parent node u to a 

child node v corresponds to a graph edge (i,j) ∈ E, and every path from the root to a leaf node 

encodes a completed TSP tour with cost equal to the sum of the edge weights along its path. An 

optimal TSP tour represents a least-cost path. Our algorithm dynamically generates and explores 

this conceptual search-space tree in the depth-first-search (DFS) order. 

Initially, a global variable called best_cost is initialized to ∞; this variable is dynamically 

updated to keep track of the least cost over all TSP tours examined so far at any stage of the 

algorithm. At every step, the algorithm evaluates the next eligible tree-edge in the DFS order as 

explained below and also shown in Figure 4.2. 

At any given step, consider the newly included tree-edge to be from node u to node v, and the 

cost of the corresponding graph edge (i,j) to be cij. Let c*(v) denote the cost of the least cost TSP 
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Figure 4.2. Flow diagram explaining branch-and-bound algorithm for solving breakpoint median 

problem 

tour passing through node v.  There are two possibilities for v:  

If v is a leaf, then c*(v) is set equal to the net cost of the path from the root node to v. 

Subsequently, if c*(v)<best_cost then best_cost is updated to c*(v).  

If v is an internal node in the search tree, a lower bound for c*(v) is computed using a matrix 

reduction operation. If the lower bound computed (lbc(v)) is observed to be greater than or equal 

to best_cost, further exploration of the subtree under v becomes unnecessary and so the subtree is 

pruned and the computation returns to the parent node u; otherwise, the DFS is continued under 

v’s subtree. 

Lower bound calculation. We use the method shown in [1] for lower bound computation at 

each tree-edge. An m x m matrix called the reduction matrix (R) is maintained throughout 

execution. Initially, the matrix at the root node is set equal to the cost matrix defined by E. At any 

step of the DFS, lbc(v) is calculated as follows:  

1) All entries in row i and column j of R is set to ∞; 
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2) R[j,1] is also set to ∞; 

3) All rows and columns that contain at least one non-infinity value are reduced as follows:  

(a) Given row i, compute mini = min{R[i,j]} for all 1≤j≤m;  (b) Then for all 1≤j≤m, R[i,j] = 

R[i,j]-min i; (c) Similarly, given column j, compute minj = min{R[i,j]} for all 1≤i≤m; (d) Then for 

all 1≤i≤m, R[i,j] = R[i,j]-min j  As this is done, all subtracted values (i.e., the minimum values) 

are accumulated into another variable adjCost.  

4) Subsequently, the lower bound is given by: lbc(v) = lbc(u)+R[i,j]+adjCost. 
 

4.2. Network on Chip Design  

The problem of MP phylogenetic reconstruction using branch-and-bound heuristics naturally 

lends itself to parallelization using a divide-and-conquer approach by subdividing the solution-

space tree into independent subtrees. A PE computes one subtree at a time and considers pruning 

based on the best cost available from its peers. As this requires a good combination of 

parallelism and inter-core communication, NoC provides an ideal platform owing to its inherent 

parallel architecture, customizability of its core and its efficient communication infrastructure. 

We designed and implemented the PEs and the on-chip communication network for this NoC. 

Two types of communication infrastructure were explored. One is a regular mesh network. The 

other is a hierarchical four-way tree or quad-tree. The remainder of this section details the design 

of the PE, switches and the communication fabric. 

4.1 PE Design 

The PE has a pipelined architecture optimized to handle the computation along an edge as per 

the algorithm described in Sec. 3. Since the PE carries out the most computationally intensive 

part of the whole operation, our attempt has been to optimize its architecture to ensure that the 

number of clock cycles required scales nicely with increasing graph size (number of vertices, m). 
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The PE has an integer datapath because breakpoint median computation for MP phylogenetic 

reconstruction consists entirely of integer operations. The principal components of the PE are a 

reduce block and peripheral control logic, each of which is described in detail below. We use the 

short-form lg k to denote log2k. The datapath consists of the following fields (m: number of 

vertices, w: maximum edge weight). 

a. x – the parent node (u) uses lg m bits 

b. y  –  the child node (v) uses lg m bits  

c. LBC – the lower bound cost (lbc(u)) estimate at an edge; this requires lg m + lg w + 1 bits 

d. EPC – the exact path cost (lbc(u)+R[i,j] ) determined so far; takes lg m + lg w + 1 bits 

e. TSP – the TSP adjacency matrix (R), flattened. Its representation takes m2*lg w bits. 

f. VLST – the current list of vertices traversed; m*(lg m) + 1 bits are required to store this 

field. 

g. CC – the candidate children at every stage; takes m bits 

As is evident, the datapath complexity of the hardware is O(m2). In our approach, breakpoint 

distances can range from 0 to 3, which is the range of the valid weights we used. We used the 

weight 4 to denote a non-existent edge or ∞. A different range of weights just changes the 

number of bits for w. A block diagram of the PE is shown in Figure 4.3. Subsequent references to 

the sub-blocks in parentheses (e.g. ρ, φ, etc.) in this sub-section refer to this figure. 

4.1.1. Reduction block. This block (ρ) carries out the matrix reduction operation described in 

Sec. Based on the algorithm, the run-time of the operation is a function of the matrix size, i.e., 

O(m2).  This operation consumes the maximum fraction of the total time required for an edge 

computation. Hence, a significant amount of time is saved by suitably optimizing its design. Our 

implementation achieves O(m) cycle time by using micro-level parallelism inside the reduce 
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Figure 4.3. Internal architecture of processing element (PE) for edge reduction. 

block. This has the effect of drastically reducing the total time as well as providing better time-

scalability with increasing input graph size, m.  

    The matrix is reduced using the new values of x and y in stage2 (see Peripheral control logic 

below for details on the operations upto this stage) and the adjacency cost adjCost is obtained. 

Figure 4.4 shows the architecture of reduce block. The flattened TSP matrix is initially 

reorganized into rows and columns in the component denoted as matrix. There are m rows and m 

columns with each entry taking up lg w bits. The register bank minval of width m*(lg w) is 

initialized with a bit pattern representing infinity (3’b100 as mentioned earlier). A counter is used 

as a state machine controller. There is an m-sized bank of comparators that compare one element 

from every row or column in every cycle. Minimum value calculation for all rows and the same 

for all columns take m cycles each. Additional three cycles are required for subtraction of the 

minimum values, for calculation of the final adjCost and for control operations for each case 

(row and column blocks). The entire reduction operation takes 2*(m+3) cycles to complete under 
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Figure 4.4. Internal architecture of reduction block (ρ) for linear-time matrix reduction. 

the current implementation. 

4.1.2. Peripheral control logic. The peripheral control logic is used for vertex selection, cost 

comparison and data management. The register bank for the first stage is stage1, which has the 

same width as the datapath. The input control multiplexer initially switches to select the current 

vertex data. The CC field is computed (φ) from VLST in m cycles in the worst case. 

     In the second stage, the candidate child is found by scanning (γ) CC of stage1. Again, this 

requires m clock cycles in the worst case. Using this candidate child, VLST is updated (B) for the 

child node in the graph. If it is not a leaf node (A), the candidate child becomes the next child 

node, while the current node (y of stage1) becomes the parent node x of stage2. During the same 

stage, the data pertaining to the best case obtained so far is fetched into stage1. The input 

multiplexer now selects the lowest cost data (global best cost) available to the PE at this time. At 

this stage, TSP of stage1 gets the original TSP matrix. 

     The current value of the exact cost of the path found so far, EPC is updated by adding to it the 
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edge cost from x to y in the original adjacency matrix. This is checked against global best cost 

and reduce operation is started only if EPC is lower. The sum of adjCost (obtained from reduce 

operation) and EPC yields the lower bound cost, LBC, which is again compared with the best 

cost found so far. If EPC or LBC is larger than the current best cost, the tree is pruned (E), the 

current child is aborted and the path through another child is explored. The data on stage2 is 

reloaded back to stage1 with the old value of x and a new calculation for the candidate child. If 

LBC is smaller and we have not reached a leaf node, normal operation (DFS) continues with the 

new set of data. If we have hit a leaf node with an LBC lower than the best cost globally found so 

far, this value (new global best cost) is sent to the switch to be communicated with other PEs in 

the network. 

4.1.3 Memory. There are two logical divisions in on-chip memory – global and local. However, 

all memory is physically distributed across all PEs. The global memory in a PE stores the TSP 

matrix that represents the subtree assigned to that PE. The local memory is implemented as a 

stack. During DFS, the new vertex data (path cost, vertex list) is pushed into the stack (Figure 

4.3). The stack is full only when the leaf node is reached. If there is pruning (before the leaf node 

is reached), the stack is popped. Every PE has a m-sized local memory stack.  

      A list of all subtrees to be computed is maintained in memory. Once each PE completes one 

subtree reduction, it picks up the next available subtree and removes it from the list. This is 

achieved by maintaining a global array of flags and a mutually exclusive semaphore.  

4.2 Network Design 

We explored two different kinds of network architecture – a mesh, shown in Figure 4.5 (a) and a 

quad-tree, shown in Figure 4.5 (b). With increasing system size (N), the number of inter-switch 

links in a mesh increases faster than that in a quad-tree. The expected volume of inter-PE 
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       (a)                                                                        (b) 

 

Figure 4.5. (a) Mesh NoC architecture (b) Quad-tree NoC architecture. 

communication in our application is relatively low. Hence, having fewer links in our network can 

lead to potential savings in area and power without incurring a risk of network congestion. 

 The diameter of a mesh architecture increases as O(√N) where N is the sytem size or the 

number of nodes (PEs). The same for a quad-tree increases as O(log4N). As the best cost is 

written to all PEs except for the originating PE, the mode of communication for our application 

involves some form of broadcast. Hence, the worst-case hop count is a linear function of the 

diameter. It should be remembered that all links are not of the same length in a quad-tree, where 

links higher up the tree are longer and have greater delay. Table 1 shows an estimate of the 

number of clock cycles required per write in the worst case in 65 nm CMOS technology with a 

clock period of 400 ps. A quad-tree has an advantage over a mesh in terms of communication 

latency for N>16. However, the key advantage of a quad-tree comes from power savings because 

the number of links and switches is drastically reduced. These comparisons are provided in Sec. 

5. 
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Figure 4.6. Internal architecture of switch for (a) mesh and  

(b) quad-tree. 

4.3 Switch Design 

Different switches are designed for each of the two network architectures explored. The switch 

and the PEs run on the same system clock. Since we have a pipelined (switch-to-switch) 

communication technique, a globally synchronous NoC does not pose a problem with scalability.  

4.3.1. Mesh. A typical switch that is used on a mesh is shown in Figure 4.6 (a). Input buffers 

InN, InE, InS, InW receive data from four neighboring switches and input buffer InLoc receives 

data from the associated PE. There is a dedicated buffer (BufOut) that provides data to the 

network as well as to the associated PE. 

Each set of input/output data consists of the fields (a) Path Cost, (b) Vertex List and (c) 

Transmission control bits. At every cycle, one of four transmission decisions are taken by the 

Decision Making Unit (DMU) and the data is written into an internal buffer (local). The same is 

transmitted out in the next cycle through BufOut. The transmission control bits are as follows. 

NOTX: No valid transmission 

NORETX: No retransmission 

DOTX: New best cost from local PE; transmit 

TRWL: New best cost from other PE; transmit and update local PE 

Figure 4.7 shows a timing diagram for a typical situation. It is to be noted that a switch 
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Figure 4.7. Timing diagram showing typical scenarios encountered in a mesh switch. 

receives data from each of its neighboring switches in every cycle but the transmission control 

bits determine whether the data is valid for consideration or not. The data is considered if the 

control bits are DOTX or TRWL but not if they are NOTX or NORETX. 

4.3.2 Quad-tree. There are different levels of switches for this network architecture. The leaf 

level switches (refer to Figure 4.5(b)) are denoted L1, the next higher level L2 and so on. An L1 

switch consists of five buffered input/output ports (BufIn/BufOut), four catering to the four leaf 

PEs and the fifth to the parent switch.  For an L2 switch and upwards, four children ports cater to 

lower level switches and the parent port caters to the higher level switch. The top level switch 

has only four downlinks but no uplink. Each set of input/output data consists of the fields (a) 

Path Cost, (b) Vertex List and (c) Update control bit (UCB). The switch architecture is shown in 

Figure 4.6(b). 

UCB is a flag to indicate whether the status of the data is valid (UPDT) or invalid (NOUP). The 

receiving parent or child switch infers “no transmission” if UCB is set to NOUP. In every cycle, 

the switch takes a decision based on the following algorithm.  
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     Let C1, C2, C3 and C4 be the four (children) downlinks and P be the (parent) uplink and let 

us define the set L = {C1, C2, C3, C4, P}. Let us suppose the best (lowest) cost, PCi for a 

decision cycle comes from Li ∈ i.e., LjijPCPC ji ∈≠∀< , . Then, we have 

LkPCkBufOut i ∈∀←][  

NOUPiUCB ←][  LjijUPDTjUCB ∈≠∀← ,][  

4.4 Communication Protocol 

In the mesh architecture, every switch communicates with its immediate neighbor and gets data 

in every cycle from at most four neighboring switches. Based on the decision mechanism 

described in the previous sub-section, the switch places data on BufOut with appropriate control 

bits. The neighboring switches get this value in their input buffers in the next cycle. Hence, at 

every cycle, data is sent in all four directions.  

     In the quad-tree, every switch communicates with its four children and one parent in every 

clock cycle. It receives data from its parent and/or one or more of its children and takes a 

decision on the lowest cost available to it thus far. Once found, this data is placed on four output 

buffers, except the direction it came from along with appropriate UCB. For the best-cost data to 

propagate to the entire network, it has to go through a maximum of H hops where H is given by 

 NH 4log*2=    (1) 

Note that H/2 is the height of the tree. One important fact to keep in mind is that each hop 

does not consume the same number of clock cycles as the wire length varies at different levels. 

The need for inter-PE communication arises when a particular PE checks against the global 

best cost obtained so far and finds out that its local best-cost is lower than the global best-cost. At 

this stage, the PE should broadcast its newly obtained value to the whole network. One way to 

implement this is to use flooding. However, this could lead to an unnecessary network 
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congestion thereby affecting scalability. Therefore, we devised an improved alternative strategy 

where a PE conditionally broadcasts valid data only if 

a. Its local best-cost is worse than the global best-cost but it has not yet participated in the 

broadcast of this global cost, or 

b. Its local best-cost is better than the global best-cost (currently available to the rest of the 

network) and it has not been previously transmitted. 

The above scheme ensures elimination of redundant communication, thus reducing 

communication overhead and power consumption without compromising on the correctness of 

the answer. 

4.5. Experimental Results 

4.5.1 Experimental Setup 

In order to completely model the performance of the network on chip based platform, first a 

multithreaded software suite was developed using pthread library in C. The prime objective was 

to model the communication events occurring during the entire solution for the TSP. Also, the 

number of reductions performed by each individual thread was noted, along with the successful 

write updates to the global best score. The power dissipation by a single processing element is 

directly proportional to the number of reductions performed by it, and the number of reads and 

writes of the global best cost location gives an estimate of the network traffic event and the 

interconnect power. The load balancing issue was addressed by first reducing the top few levels 

serially, and then from the list of unsolved subtrees, the individual subtrees were picked up by 

the available threads. The number of levels reduced serially was set such that the list of available 

subtrees (in that level) is much larger than the total number of threads. This is clearly shown in 

Figure 4.8. 
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Figure 4.8. Diagram showing the number of subtrees generated by “cutting” the solution-space 

tree at different levels. 

  

The performance evaluation of the NoC was carried out from the timing and power perspectives 

during phylogenetic reconstruction with varying data sets. Different parameters associated with 

the NoC are as follows. The system size, N, is the number of PEs in the NoC. N was set to 4, 16 

and 64 for evaluating the performance of the NoC with scaling of system size. The number of 

vertices in the input graph is denoted by m, which determines the width of the datapath. In 

practice, this value should be set to the number of genes shared by the input genomes. For 

example, chloroplast genomes of potato, tomato and wheat share 110 genes; hence m=110 in this 

case. In our experiments, we used two types of input data: (a) multiple sets of synthetic genomes 

with m=110 used for exhaustive system-wide parametric study; and (b) two sets of real input 

genomes (as explained in Sec. 5.3). Note that the value of m affects the size of the datapath and 

the memory requirements in the PE as per the discussion in Sec. 4. Since we have dealt with 

three-median breakpoints, breakpoint distance can vary between 0 and 3. Without loss of 
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(a)                                                                                          (b)   

Figure 4.9. Total execution time in hardware for (a) SynData_73, SynData_50 and SynData_27 and (b) 

SynData_10 and SynData_04 

generality, the maximum weight w has been taken to be 4 to indicate ∞ or a non-existent edge. 

As with m, this choice affects the datapath size but to a lesser degree. 

The PEs and the switches in the NoC were implemented by synthesizing Verilog RTL using 

Synopsys Design Compiler and 65 nm library [3]. The pipelined design could sustain a clock 

frequency of 2.5 GHz in the PEs and switches. This was verified with m=110 and higher. Power 

numbers for PEs and switches have been reported from Synopsys Power Compiler using the 

same library [3]. Interconnect characteristics were determined using Cadence Spectre. Wire 

capacitance information extracted from layout was used to determine delay and energy 

dissipation of interconnects. Both mesh and quad-tree architectures were considered for 

performance evaluation. 

GRAPPA [4] was used as the software benchmark. It is a standard and widely used serial 

program for MP phylogenetic analysis. GRAPPA was run on a quad-core 2.40 GHz Intel Xeon 

E5530 processor with 16 GB of RAM. The run-time measured through GRAPPA served as the 

basis in speedup calculations. Specifically, speedups reported are calculated as the ratio of 

GRAPPA run-time over the total execution time on an N-PE NoC. 

5.2 Performance on synthetic data 

Five synthetic data sets were generated and used as input. Each input consisted of three genomes 
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Figure 4.10. (a) Absolute speedup over serial GRAPPA  (b) Variation of speedup with skew of input data 

on quad-tree NoC with N=16. 

with 110 genes each such that m=110. Each data set was generated to have a different common 

subsequence length and hence different divergence. Pairwise divergence (δ) is given by 

subtracting the length of the longest common subsequence from m. We have three values of δ for 

each input. The standard deviation of the pairwise divergences (σδ) was normalized by dividing it 

by the mean (µδ) and used as the divergence metric, ∆ (=σδ/µδ). This metric serves as a measure 

of the skew among the three genomes and is made to vary across the entire range of possible 

values, thereby covering the entire range of the possible input spectrum. Low values of ∆ 

indicate that the genomes are equally far apart irrespective of the actual magnitude of the 

breakpoint distance. A high value of ∆ indicates that two genomes are closer to each other than 

they are to the third. Five synthetic sets of three genomes each were generated such that the 

values of ∆ in these inputs are 0.731, 0.498, 0.274, 0.103 and 0.039 respectively; these inputs 

were labeled SynData_73, SynData_50, SynData_27, SynData_10 and SynData_04, 

respectively. It is also to be noted that the δ values and µδ increase as we move from SynData_73 

to SynData_04. 

5.2.1 Timing Performance. Figures. 4.9(a) and 4.9(b) show the total execution times for NoCs 

with system sizes (N) 4, 16 and 64 for all the synthetic inputs. The total execution time includes 
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the total computation and communication cycles spent in the NoC and the time required to load 

the data on the NoC using PCI-X. It is interesting to note that the absolute run-times are heavily 

dependent on the input data and the absolute divergences. Since the execution times are a 

function of the bottleneck number of reductions carried out by the PEs (see Sec. 5.4), the 

execution times for SynData_10 and SynData_04 are orders of magnitude higher than those for 

the other three inputs. This is because of their larger absolute divergences and hence larger 

number of reductions performed by each PE. There is not much difference in the run-times on 

mesh and quad-tree. This is because quad-tree helps reduce only the write latency (as shown in 

Table 1), which contributes a small fraction to the total execution time in this case.  

    Figure 4.10 (a) shows the speedup over GRAPPA using a quad-tree for these inputs. Since 

speedup is the ratio of GRAPPA’s serial run-time to the execution time on our design, the trends 

in speedup and execution time are not identical across different inputs. For example, even though 

execution time increases from SynData_10 to SynData_04 for all system sizes, speedup is also 

observed to increase because GRAPPA’s run time increases by a larger factor. Speedup is also 

dependent on ∆, which indicates that our design is able to accelerate median computation of 

genomes that are almost equally far apart (e.g., SynData_04) significantly more compared to the 

case where two of the genomes are very close to each other (e.g., SynData_73). This observation 

is more clearly demonstrated in Figure 4.10 (b), where the speedup on a quad-tree NoC with 

N=16 is plotted against values of ∆. The best speedups of 1,241 (N=4), 3,598 (N=16) and 8,430 

(N=64) are consistently obtained with SynData_04. Our results compare favorably with the 

overall speedup of 417 or the application speedup of 1005 achieved by accelerating GRAPPA in 

[5]. 

      Note that the synthetic data encompass almost the full range of possible inputs, with ∆ 
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Figure 4.11. Full chip power consumption across various inputs, network architectures and system 

sizes 

 

varying from 0.039 to 0.731. Biological inputs can lie on either end of the spectrum or anywhere 

in between. In particular, as we mention again in Sec. 5.3, the two real genomic inputs that we 

use have ∆ values of 0.866 and 0.1092. It is also interesting to note that we achieve significantly 

higher speedups in the cases of genomes displaying greater absolute divergence (SynData_10 

and SynData_04). These are also the cases where even highly optimized software 

implementations such as GRAPPA take very long times to complete. Our design provides better 

speedup when there is a greater requirement and hence will be of more practical value. 

5.2.2 Energy Performance. Several measures were used to evaluate the energy performance of 

the NoC. The average full chip power consumption for mesh and quad-tree NoCs for N=4, 16 

and 64 is shown in Figure 4.11. It will again be noticed that power consumption is a function of 

the input data, especially for N=64. There is a slight advantage of quad-tree over mesh in terms 

of power efficiency. For example, a quad-tree NoC-based chip consumes up to 5% less power 

than that based on a mesh NoC. Note that the PEs in both configurations have the same power 

consumption and the savings come entirely from the communication architecture. Higher levels 

of network activity would lead to greater power savings in the quad-tree. However, since the 

execution time varies widely across inputs, only power consumption provides a partial picture. A 
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   (a)                                                                                         (b)    

Figure 4.12. Full chip energy consumption across different inputs 

 
more accurate rubric is the total energy consumption, shown in Figure. 4.12(a) and 4.12(b). 

Although these figures show the advantage of quad-tree over mesh in terms of energy 

performance, comparing only the communication energy consumptions in Figure. 4.13(a) and 

4.13(b) further highlights this. Quad-tree consistently outperforms mesh by consuming around 

75% less communication energy. Both average full chip power and total energy are input-

dependent and generally show a marked increase with increase in system size (N). The most 

interesting observation on energy efficiency, however, can be seen from Figure. 4.14 (a) and 4.14 

(b) that show the variation of the energy-delay product (EDP) with system size (N) across all 

inputs. EDP is observed to decrease with increasing system size for most inputs. This is because 

the increase in energy consumption is compensated by the run-time reduction, thereby showing 

that parallelization is indeed energy-efficient in this case. 

5.3 Performance on real genomic data 

Two real genomic inputs were used to evaluate the performance on biological data. Genomic 

data were downloaded from the National Center for Biotechnology Information’s organellar 

genome repository [6]. One input (PoToWh) consisted of the chloroplast genomes of Solanum 

tuberosum (potato, 141 genes), Solanum lycopersicum (tomato, 130 genes) and Triticum 
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   (a)                                                                                         (b)    

Figure 4.13. Communication energy expended across different inputs 

 

aestivum (bread wheat, 137 genes). The other input (AlAnFe) consisted of chloroplast genomes 

of Chlamydomonas reinhardtii (a unicellular green alga, 109 genes), Brachypodium distachyon 

(purple false brome grass, an angiosperm, 133 genes) and Adiantum capillus-veneris (black 

maidenhair fern, 130 genes). These genomes were preprocessed with Mauve [7] in order to 

determine the common genes. The values of ∆ for the inputs are 0.866 for PoToWh and 0.1092 

for AlAnFe. This is indicative of the fact that PoToWh represents a skewed data set, with potato 

and tomato being much closer to one another than they are to wheat. This is expected, as 

evolutionarily potato and tomato are closely related and belong to the same genus. On the other 

hand, AlAnFe represents a uniformly divergent scenario. The speedups obtained with these 

inputs for N=4, 16 and 64 are shown in Figure 4.9.(a) and (b) shows the speedup correlation with 

synthetic data having similar values of ∆. 

    As mentioned in Sec. 5.1, speedup is calculated as serial GRAPPA run-time divided by the 

total execution time on the NoC. As explained later in Sec. 5.4, the total execution time on NoC 

is proportional to the bottleneck number of reductions. For example with N=16, the bottleneck 

number of reductions for PoToWh is 6,286 and that for AlAnFe is 46,958. The total execution 
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times on a quad-tree NoC are 1.14 ms and 8.46 ms respectively and have the same ratio. In 

comparison, the GRAPPA run-times are 5.55 ms and 9.22 s respectively. Next, we turn our 

attention to the variation of speedup with increasing N. It can be seen from Figure 4.9 (a) that the 

speedup on PoToWh increases from 1.77 to 12.98 as we increase N from 4 to 64. For AlAnFe, the 

speedup increases from 643.99 to 2,261.99. Table 2 shows the mean, standard deviation and the 

maximum (bottleneck) number of reductions per PE for PoToWh and AlAnFe. It is evident that 

speedup is inversely proportional to the maximum number of reductions per PE. Speedup also 

varies inversely as the average number of reductions when load is balanced among PEs. Finally, 

in order to investigate the reason behind the widely different speedups obtained with PoToWh 

and AlAnFe, we plot histograms (Figure. 4.14(a) and 4.14(b)) of the number of reductions per 

subtree for each of the inputs. The larger skew (∆) for PoToWh is evident from a comparison of 

the two histograms. Due to the higher skew in PoToWh, the best cost is obtained quickly and 

most subtrees are pruned at the initial stage of the operation, leading to few (< 10) reductions per 

subtree. The lower skew in AlAnFe leads to a more gradual update of the best cost and subtrees 

are pruned to a lesser degree. Since the reduction load is shared by several subtrees in the latter 

case, parallelization provides greater speedup. 
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   (a)                                                                                         (b) 

Figure 4.14. Variation of energy-delay product across inputs 

 

TABLE 4.1. REDUCTION STATISTICS FOR POTOWH AND ALANFE 

 N = 4  N = 64  

 

Average 

reductions 

per PE  

Standard 

deviation of 

reductions 

per PE  

Max 

reductions 

per PE  

Average 

reductions 

per PE  

Standard 

deviation of 

reductions 

per PE  

Max 

reductions 

per PE  

PoToWh  15672.75  1847.57  17430  1942.73  194.73  2342  

AlAnFe  69222  8558.69  79516  19496.84  1700.02  22614  

5.4 Performance tradeoffs 

The PE that finishes its share of reduction computations last limits the performance of the entire 

chip. The determining factor for this is the load distribution among PEs, which is dependent on 

input data. In our scheme, each PE picks a subtree dynamically from a common pool of available 

uncomputed subtrees, once it has finished computing its own subtree. This can happen either 

when the PE has finshed computing the subtree exhaustively or when it has pruned it. This 

results in each subtree contributing to a different number of reductions and each PE computing a 

different number of subtrees. 



 

 81

 

   (a)                                                                                         (b) 

Figure 4.15. Histogram of number of number of reductions per subtree for (a) PoToWh and (b) AlAnFe 

 

 Experiments showed that the load distribution among PEs was more even when the 

number of subtrees in the common pool was much higher than the number of PEs. For a graph 

with m vertices, the solution-space tree with the starting node as root (level 0) has (m-1) nodes at 

level 1, (m-1)*(m-2) nodes at level 2, (m-1)*(m-2)*(m-3) nodes at level 3 and so on (Figure 4.7). 

So it appears that “cutting” the tree at a lower level generates more subtrees, helping to balance 

load and thereby ensure maximum achievable parallel speedup. Now, there is an overhead 

involved in loading the entire set of subtrees to the chip using an interface like PCI-X. This 

increases with the amount of data that needs to be transferred, which increases with the number 

of subtrees.  There is also a constant time overhead incurred when each PE picks a subtree at run-

time. These overheads become prohibitively high when the number of subtrees is large and they 

mask the gains achieved in computation speedup. We resolved this tradeoff by chossing to “cut” 

the tree at level 2, which generated 109*108 subtrees and yet kept the overhead to a manageable 

amount. Note that 109*108 is much larger than the largest system size (number of PEs, N=64) 

we experimented with, which led to a balanced load distribution. 
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3.5. Summary  

 In this chapter we have proposed and implemented a network on chip based hardware 

accelerator for solving the TSP, which is the main computation kernel for MP-phylogenetic 

reconstruction. We have demonstrated significant improvements in the performance as compared 

to the currently existing solutions In terms of the communication network infrastructure, we had 

considered mesh and quad-tree topologies, and showed how quad-tree performs better in terms 

of energy dissipation. 

 As part of this work, we had designed an architecture of the reduce block, which solves 

O(N2) computation in O(N) time, using micro-level parallelism. It can be concluded that in 

future, such a NoC based platform can be adopted for energy and time efficient computation of 

scientific problems, which are NP complete. 
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Chapter 5 

Conclusions and Future Work 
In this chapter, we summarize the contributions made in this dissertation and point to the 

possible future investigations emanating from this research endeavor. 

5.1 Conclusions 
The advent of modern multi-core chips has opened up possibilities of designing very efficient 

hardware accelerators for various bio and scientific computing problems. The primary challenges 

in this direction being efficient partitioning of the computational workload, scalability of the 

solution, power dissipation and performance.  The major contribution of this thesis is the 

design and performance evaluation of multi-core-based hardware accelerators for a suite of 

biocomputing applications. Both the problems addressed in this dissertation belong to the class 

of combinatorial optimization, but sequence alignment is intrinsically data intensive in nature, 

whereas the breakpoint median in phylogenetic reconstruction is compute intensive. For 

sequence alignment work, we implemented a novel network on chip based solution, where both 

the architecture of the processing elements and interconnect infrastructure has been tailored 

pertaining to the target application. Two different space and time optimal algorithms have been 

considered in this respect, both inherently being fine grain parallel. Due to the fine grain nature 

of the computation, only a single integer is communicated at every communication stage. This 

necessitates intelligent redesign of the traditional NoC switch.  The proposed switch architecture 

is simple yet effective, reducing the energy dissipation significantly. The entire communication 

event, which is an all-to-all event, was divided into multiple steps, some of which involved 

multi-hop communication. Unless long range links are introduced, the multi-hop communication 

consumes multiple clock cycles. It becomes prohibitive in terms of performance as 
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communication events become the bottleneck.  They occur very frequently and are directly 

proportional to the length of one of the strings. To achieve performance improvement, first long 

range links were introduced, which reduced the time considerably but the power dissipation 

increased a little.  

  In the phylogenetic reconstruction work, the principal bottleneck has been memory, as 

the recursive depth-first-search procedure requires saving a complete matrix at every stage of the 

computational search space. The alternate solution is re-computation of the cost metric at every 

stage, which would incur significant penalty in time. The currently designed architecture handles 

only genomes of maximum length 128, as it uses the stack implementation for storing the 

matrices. In its current state, the design  has been done not in terms of the accommodating large 

genomes, but rather addressing the problem of studying larger number of smaller genomes. This 

is currently a more challenging problem for biologists as study of bacteria and virus (with 

smaller number of genes but large number of taxa ) is becoming unmanageable, as these 

organisms perform mutation and cross-over operations very frequently.  

5.2 Future Directions 
This research can be extended not just in the direction of porting new scientific applications 

and reducing the power dissipation and offering better performance compared to the existing 

solutions, but in exploring efficient architectural innovations towards even higher levels of 

integration and superior performance. The research pertaining to this thesis can be carried 

forward in the following directions: 

5.2.1 Sequence Analysis 
Our research has also laid out a design template for the future development of new 

acceleration models for other related applications in bioinformatics. For instance, the BLAST 
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algorithm [1], which is an approximation method for computing sequence alignments, is a 

popular tool for detecting performing sequence database searches. Owing to large sequence 

database sizes, accelerating BLAST search operations is performance-critical. Nevertheless, the 

underlying algorithm in BLAST also uses the Smith-Waterman algorithm, while also 

implementing a prefiltering process prior to computing alignment using a string look-up table 

data structure. Consequently, an off-shoot of our research could be that NoC can be explored as a 

viable means for acceleration for BLAST as well. Before such a project is undertaken, however, 

a feasibility study should be conducted to assess both the quality degradation that is possible due 

to approximation, along with the performance impact due to implementing additional string data 

structures. 

5.2.2 Prototyping 
The study undertaken in this thesis is principally simulation based, where a software driver 

has been used for providing the event statistics and hardware has been designed and synthesized 

using Synopsys Design Vision. To reinforce the findings of this work, real prototyping is an 

inevitable direction. The recent multi-core platforms such as Intel single chip cloud computer 

comprising of 48 cores [2], and Tilera NoC are two such network on chip based real platforms 

where the applications can be prototyped. The single ship cloud incorporates technologies 

intended to scale multi-core processors to 100 cores and beyond, such as an on-chip network, 

advanced power management technologies and support for “message-passing.” Architecturally, 

the chip resembles a cloud of computers integrated into silicon. The novel many-core 

architecture includes innovations for scalability in terms of energy-efficiency including improved 

core-core communication and techniques that enable software to dynamically configure voltage 

and frequency to attain power consumptions from 125 W to as low as 25 W.  
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The Tilera platform consists of an array of 16 to 100 general-purpose processor cores, where 

each core is 64-bit VLIW processor tiles. There is a three-way pipeline with up to three 

instructions per cycle. Amongst the many other salient features, it claims a power efficient inter-

tile communication and also idle tiles can be put to low power sleep mode.  

Once our applications are efficiently ported to these platforms, it can truly unveil the 

potential of NoC based solutions compared to the other existing hardware platforms. For 

complete study, exhaustive experimentation in this direction is need. 

5.2.3 Maximum likelihood & Bayesian Inference  
The other probabilistic strategies used by biologists for phylogenetic reconstruction are 

Maximum Likelihood (ML) are Bayesian Inference. Research in the direction of hardware 

acceleration can be extended by considering these as target applications.  

5.2.4 Hardware multithreading  
For the sequence alignment case, in both the parallel prefix and anti-diagonal algorithms, 

there is a computation phase followed by a communication phase. The performance can be 

further improved if these interleaved operations are executed using multiple hardware threads. 

This would eliminate any idle state, where either the computation or the communication 

resources are waiting for the other phase to finish. This can be considered as a simple latency 

hiding strategy, which can significantly improve the amortized speedup. The challenge in this 

approach is the increase in the complexity of the processing element, which significantly 

increases the area overhead. 

5.3 Summary 
NoC has emerged as an enabling solution for integration of huge number of embedded cores 

on a single die. As many hardware NoC platforms are now becoming a reality; the scientific 
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computing domain, especially computational biology can completely leverage the potential of 

this novel technique by efficiently partitioning the problem, and mapping it to these platforms. 

We have demonstrated about how custom designing a NoC can achieve several orders of 

performance improvement over other existing hardware acceleration schemes. 
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