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NETWORK ON CHIP BASED HARDWARE ACCELERATORS

FOR COMPUTATIONAL BIOLOGY

Abstract

by Souradip Sarkar, Ph.D.
Washington State University
December 2010

Chair: Partha Pratim Pande

The focus of this thesis is the design and performance evaluatibletafork on Chip
(NoC) based multi-core hardware accelerators for computatimolalgy. Sequence analysis
and phylogenetic reconstruction are the two problems in this domich have been
addressed here. The basic characteristic of sequence analfsid isis data intensive in
nature whereas the kernel operation in phylogenetic reconstrustammipute intensive. Due
to exponentially growing sequence databases, computing sequencecaligit a large-scale is
becoming expensive. An effective approach to speed up this operatmimnigegrate a very
high number of processing elements in a single chip so that tbsiv@acales of fine-grain
parallelism inherent in this application can be exploited efftye Network-on-Chip (NoC) is
a very efficient method to achieve such large scale integration. The phylegegetistruction
application involves solving the breakpoint median problem which reducesviogsmultiple
instances of the Traveling Salesman Problem (TSP). Spegifieed (i) propose optimized
NoC architectures for different sequence alignment algoritiwatswere originally designed

for distributed memory parallel computers, (ii)) a custom NoC tachire for solving the



breakpoint phylogeny problem (iii) provide a thorough comparativeuatiah of their
respective performance and energy dissipation. While accelerasomg other hardware
architectures such as FPGA, General Purpose Graphics ProcdssirgGPU) and the Cell
Broadband Engine (CBE) have been previously designed for biocom@apligations, the
NoC paradigm enables integration of a much larger number of pnogedsiments on a single
chip and also offers a higher degree of flexibility in placingm along the die to suit the
underlying algorithm. The results show that our NoC-based impleti@rgacan provide
above 16-10>-fold speedup over other existing solutions. This is significant beciusill
drastically reduce the time required to perform the millionslighment operations that are

typical in large-scale bioinformatics projects.
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Chapter 1
INTRODUCTION

1.1 Hardware Acceleration in Computation Biology
The role of computing in molecular biology research has neven beore defining. The

interdisciplinary field of computational biology focuses on developingrahlgnic techniques
and tools for solving biological problems. The essence of the seglynl the development of
novel statistical, and computational methods and mathematical nfodélstter understanding
of biological systems. Computational genomics involves study of thenges obtained through
genome sequencing techniques of cells. Until a decade aga balydful of genome sequences
were available and thus simple software implementations yieddegptable performance.
However, due to recent advances in DNA sequencing technologies, sgagnéor more than
a thousand species are now available in public databases and merecke sequencing efforts
are currently underway. The key to the recent advances in praggsst amounts of biological

data is the interdisciplinary alliance between biologists @mdputer scientists. Biologists are

R, o él «
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Figure 1.1Biocomputing applications benefiting from software and hardware acceterat



responsible for generating the data, and envision the problem, wheeeesntputer scientists’
responsibility is developing efficient algorithms, software suiéd hardware solutions for
efficient computation. The outcome from these consorted effortsalegady benefiting the

greater scientific community and opening new venues for newdistgrlinary research. Data
processing for biocomputing applications is currently done in softwdrieh often takes a very
long time. For instance, aligning even a few hundred sequences prsigigessive multiple

alignment tools consumes several CPU hours on state-of-the-akstatmns. Large-scale
sequence analysis, often involving up to tens of millions of sequencd®d@mrae a mainstay as
well as one of the primary bottlenecks in the path to scierdificovery. The biocomputing
domain also hosts a set of compute-intensive applications whereumdleeying problems are
proven to be computationally intractable (e.g. phylogeneticdoagputation, protein folding).

These aspects collectively make biocomputing a domain that hgsotaetial to immensely
benefit from the incorporation of the latest advancements in cidesign and evolving

hardware architectures.

Figure 1.1 shows a high level outline of the current state opating in the computational
biology domain. These problems can broadly be classified into tveseda(i) combinatorial
optimization problems and (ii) simulation-based approaches. In this dissgrtaé focus on two
different classes of computational genomics problems that cariitbieom the advances in
hardware acceleration techniques. Both the targeted problems belonhge t@lass of
combinatorial optimization. One is data intensive in nature whileother is and compute
intensive. The problems being (i) pairwise sequence alignment aphdphylogenetic
reconstruction.

The discovery of biomolecular sequences and exploring their rolesplay, and common



evolutionary history is fundamental to the study of molecular biologeg. different sequences
that fill complementary roles in the cell are: DNA, RNA andtein. The most predominant
compute operation that is carried out in nearly all sequence anaygjects ispairwise
sequence homology detectiomhich aims at measuring the similarity, differences or
evolutionary relationships between two DNA, RNA or protein "sequenfegiresented as
strings over a fixed alphabet). The alignments are broadly fi¢asasglobal alignmentsemi
global alignmentandlocal alignment Global alignment is generally used to compare two protein
sequences from a closely related gene family or two homologauss.gédhe semi global
alignment can be used to align fragments of DNA from shotgun B#¢és and create a larger
inferred sequence, useful in genome assembly. Local alignmergualy used for finding
conserved domains among protein sequences. The most widely used methaisatoas of
the dynamic programming (DP) algorithm [1] [2] that computew@dimensional table, with
rows and columns representing the character sequence of the hgs bging compared. These
methods assign scores to insertions, deletions and replacementengndecan alignment of
two sequences that corresponds to the least costly set of suclonsutdtich an alignment may
be thought of as minimizing the evolutionary distance or maximithagsimilarity between the
sequences under consideration. These operations are used almost grbasgaiby molecular
biologists, and also in all genome sequencing projects of ang. thlile the task of carrying
out a single pairwise sequence comparison is in itself computéfiolight-weight (in
milliseconds) on traditional machines, performing the often negessdions or even billions
of such comparisons could easily become prohibitive, without the uses@becomputer or
other specialized hardware [3]. To pace up the computation furthevysdreuristics attempt to

approximate the optimal solution, so that large databases canrtieesean commonly available



clusters. In these heuristics, the measure of similaritpndicit in the algorithms rather than
explicitly defined as a minimal cost set of mutations. Desgitehese efforts, the cost of
computation still remains. For example, a recent analysis [8lvef 28 million metagenomic
sequences took an aggregate df €U hours, a task that took months to complete even after
parallelization at the coarse level using a combination of 2,300 poosessl high-end memory
systems. Our experiments show that running the multiple sequegomatit tool ClustalW [4]
even on hundreds of sequences requires several hours on state-of-thekstdtions. Since the
amount of biological data is expanding at such a massive rate, there is a iocgmaeltl for high
performance computing solutions.

Phylogenetics is the study of evolutionary relationships betweeamisrgs based on their
underlying genetic content. Inferring phylogenetic relationshgpamportant to biologists
especially in biomedical research, drug design, and proteintwsuprediction. Accurate
phylogenetic reconstructions involve significant effort due todifieculties of acquiring the
primary biological data and the computational complexity of the nydg optimization
problems. Phylogeny is most commonly used for comparative studye @h®ological question
is answered by comparing how certain biological charactess éeolved in different lineages.
Some of the fields in which this comparative method finds applicattoradaptation,
development, physiology, gene function, vaccine design, and modes otispedibe “Tree of
Life” is an example of an ambitious project for inferring thelpbeny linking all known life
forms. Typical probability models of evolution used for this purposelakes-Cantor (JC) and
General Time Reversible (GTR). Unlike sequence alignment, thputational intractability of
the problem is the primary stumbling block to advance the stateseéneh in phylogenetic

inference, as the underlying problems have been proven to be NP-Hard vardmis



formulations [5]. The choice amongst the main strategies — maighining, Maximum
Parsimony (MP) and Maximum Likelihood (ML), and Markov Chain MoGelo (MCMC) -
often depends on the nature of the problem at hand. The neighbor-joining ntetmbds be
polynomial time and reasonably fast from implementation perspetiiiethey often produce
sub-optimal estimates of evolutionary history. The Maximum Pargimamd Maximum
Likelihood are difficult optimization problems but they are morefggred among biologists
(empirical and simulation results confirm). MP is an NP-hard opéition problem in which the
tree with the minimum total number of changes is sought (Hamistance Steiner Tree
problem); ML is also an NP-hard problem, which is defined in termenaéxplicit parametric
stochastic model of evolution.

The inherent advantage of ML over MP is the statistical consigteThis implies it is
guaranteed to return a correct solution with high probability if #guences are sufficiently
long. However, likelihood analysis is even harder in practice thanBdkh these approaches
require substantial amount of time for acceptable levels afracg on even moderate sized
datasets.

We focus on Maximum Parsimony, which is quite efficiently enpénted in software
packages like PAUP [6], and GRAPPA [7], and quite effective @dyming good MP analyses
on fairly big datasets. Heuristics for this problem have been tgsemnstruct majority of
published phylogenies, and so MP is a major approach to phylogeny estimation.

One of the distance measures of particular relevance to gerengganent-based phylogenies
is breakpoint distanceGiven a reference set of genes{g:,0»,...¢;}, any genome can be
represented by an ordering of the subset of genes that cengtitas they appear from end to

end of the genomic DNA. Thiereakpoint distancéetween any two genomes is defined as the



number of gene pairs that appear adjacent in one genome but not in thét agheemeasure of
how different two genomes are by their gene ordering. Bldtecké al. pioneered the work on
breakpoint-based phylogeny [8]. They reduced the problem of construatingpptimal
phylogenetic tree oN genomes to one of solving numerous instances of a version of the
Traveling Salesman Problem (TSP) where edge-weights ohthe graph are bounded to a
fixed set of integer values. Put intuitively, each instancESH tries to identify the gene order of
a hypothetical ancestral genome that is the closest re@tgertb any three given genomes.
This problem is called th&-median breakpoint probleand has been proved to be NP-Hard [9].
An algorithm called GRAPPA computes an exhaustive searchssacall possible trees
(=3*5*7*...*(2 N-5) trees), and iteratively runs multiple instances of a TS#esdbr scoring
each tree. Given the large number of trees to evaluate, phylagesainstruction can easily
become heavily compute-intensive — taking days to weeks of compute foneven a modest
number of taxa and genes. More importantly, over 99% of the total rengats typically spent
in computing TSP instances [10].
Both sequence alignment and phylogenetic reconstruction are challdmggagse of the
following factors:
e Volume of Data: High throughout sequencing is rapidly growing the amount of

genomics data, thus imposing severe pressure on existing ctiopaltanfrastructure

for processing them. The rate of data processing is laggingidbehe rate of

generation of data, and this demands faster and more efficient compute solutions

e Resource Costs. Cost of computation is another important issue. As the volume of

computation increases, the cost (being a function of the number of aiiopidteps)



also grows. This cost includes memory, power and time. This foallthe need of
power efficient and high throughput computation.

e Variance amongst data: The data sets in nature have varying degrees of variance. So,
the computational techniques should be robust enough in converging to a qahution
reasonable amount of time), even if not the most optimal.

To address all the aforementioned issues and pace up the dataipgotess, several
hardware accelerators have been proposed recently, of which gengrasepinomogenous
multi-core (dual and quad core Intel and AMD processors), FPGA-basmmhfigurable
hardware platforms, Graphics Processing Unit (NVIDIA GPUs), @ell Broadband Engine
(CBE) are notable. All the above mentioned systems primariyorelsoftware and use existing
hardware platforms to map algorithms. For large-scale depluyroé a data-intensive
application, performance and scalability are of major concernshanelfdre it is desirable that
the hardware implementation is optimized to suit the exact congoutand on-chip
communication patterns that the application code generates. In thiswerchoose to explore
performance of Network on Chip (NoC)-based hardware acomieaatit enables integration of
exceedingly large computational and storage blocks in the same chip. tite digital
communication backbone which interconnects the components on a multicem-®ysChip
(SoC). Power and wire design constraints are further pushirgptigion of this new paradigm

for designing larger multicore chips, which incorporates modularity and gxyamllelism.

1.2 Contributions
The contributions in this dissertation are as follows:

e Design of NoC Hardware Accelerator for SA: We focus on developing NoC based

hardware accelerators for two different space and time optatgdrithms for



performing sequence alignment operations. The complete work involveghidgsa
custom scalable core and the interconnection fabric, which includedrtiohip
switches/routers. The switch used here is circuit-switchedahstbEthe generic packet
switched, as the nature of communication is very regular and mappe lock-step
fashion. The information exchange is also fine grain, as just ke simtgger needs to be
communicated.

e Design of NoC Hardware Accelerator for MP: We designed the hardware
accelerator platform for solving the TSP problem using branch and lumpid first
search (DFS) approach. The entire design consisted of the dualivprocessing
engines and the switch design. The communication infrastructsreclea designed for
two different network topologies, namely flat mesh and quad-tre¢haydhave been
compared. In order to model the entire communication network, and woication
events occurring in solving a given graph, a Multi-threaded softwargrgm was
developed. We later used this statistics, for getting an dstiofighe total solution time
for a particular graph.

We have successfully demonstrated how our implementation achieesd tthfour

orders of performance gain as compared to the other hardware accelatédompl

1.3 Thesis Organization
The dissertation is organized as follows. Chapter 2 describesl#éibedrwork and an overview

on the current hardware accelerators for these applications aird atiheantages and
disadvantages which led us to consider NoC for the target platfoi@napter 3, we present the
first problem, namely sequence alignment where we formulateptbblem; describe the

corresponding algorithms and the hardware design. Subsequentlyesentpthe experimental



results and compare it with the other existing solutions. In Chdptee present our second
problem, on phylogenetic reconstruction using maximum parsimony.iJHalowed by the
description of the algorithm, mapping of the same in the hardaadefinally we report the
results we achieved, in comparison with the serial software @oluihapter 5 concludes the

dissertation with a discussion on future research directions.



1.4 Reference
[1] T.F. Smith and M.S. Waterman, "ldentification of common molecular subsequences”,

Journal of Molecular Biology, 1981, 147: pp. 195-197

[2] R. Ho, K. W. Mai, M.A. Horowitz, “The Future of Wires”, Proceedings of the |P#H.
89 Issue: 4, April 2001 pp. 490-504.

[3] S. Yooseph et al., “The Sorcerer Il Global Ocean Sampling Expedition: Expanding the
Universe of Protein Families”, Public Library of Science Biology, 2007,
5(3):€16d0i:10.1371/ journal. pbio. 0050016.

[4] J. Thompson et al., “CLUSTALW: improving the sensitivity of progressive multiple
sequence alignment through sequence weighting, position-specific gapesearad
weight matrix choice”, Nucleic Acids Research, 1994, 22: pp. 4673—-4680.

[5] B. Chor and T. Tuller, “Maximum Likelihood of Evolutionary Trees: Hardness and
Approximation,” Bioinformatics, 2005, 21(1) pp. 97-106.

[6] http://paup.csit.fsu.edu/

[7] Moret, B.M.E., Wyman, S., Bader, D.A., Warnow, T., and Yan, M., "A new
implementation and detailed study of breakpoint analyBigt. 6th Pacific Symp. on
Biocomputing (PSB 2001iawaii, World Scientific Pub., 2001, pp. 583-594.

[8] M. Blanchette, G. Bourque, and D. Sankoff, “Breakpoint phylogenies,” Genome
Informatics Workshop, Tokyo: University Academy Press, 1997, pp. 25-34.

[9] I. Pe'er and R. Shamir, “The median problems for breakpoints are NP-complete,” Elec

Collog. on Comput. Complexity, 1998, pp. 71.

10



[10] J. Bakos and P. Elenis, “A Special-Purpose Architecture for Solving the Breakpoint
Median Problem,” IEEE Transactions on Very Large Scale Integratider8gsvol. 16,

2008, pp. 1666-1676.

11



Chapter 2
Related Work

2.1 Background
Several hardware accelerators have been previously devdlmpB&A. These accelerators are

based on general purpose multicores [1], FPGAs [2], [3], GPUs [@kbrBroadband Engine
(CBE) [5] [6]. The general purpose multi-core and CBE processgsost Multiple-Program

Multiple-Data (MPMD) model, while GPU processors support SingtegRm Multiple-Data

(SPMD) model. In addition, the memory hierarchies for these aothres have distinct
characteristics. In the general purpose multi-cores, the cadmiisly handled by hardware,
whereas in CBE the system cache is completely handled bwaseft which implies the

programmer has to completely map the data and explicitly load the dataptsouse.

The CBE is a heterogeneous multi-core processor consistingesfeaad) purpose core, which
is the Power Core (PPE) and eight other special purpose ctlesbtha Synergistic Processing
Elements (SPE). The PPE is responsible for coordinating the exeouatthe SPEs and run the
Operating System. The SPE cores are simple cores and timearyrttask is execution of a
parallel task. Each SPE consists of 256 KB of small private unified memuogynierconnection
fabric is called thé&lement Interconnect Bushich is a high bandwidth memory coherent bus
facilitating the cores to communicate through DMA data tran$feteeen the local and remote
memories. On the contrary the GPU processors consist of a large number @sweobes and
are typically used as accelerators to a host system. GR&ualy connected through a system
bus (like the PCI express) to the CPU and is most useful fartairc class of parallel co-
processing applications like graphics, signal and image processinGonhmeute Unified Device

Architecture (CUDA) [7] [8] is a compiler-supported programmingdel that offers an
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extended version of the C language for programming recent NVIBIRAJs [9]. The entire
computation is parallelized by executing the same function byffsrelnt CUDA threads. The
threads accesses data in different levels of the memargrtty, and the data organization is
crucial for achieving the most efficient implementation. The gdneurpose multi-core
processors include different levels of hardware managed cachéyaagth tthe number of cores
is smaller compared to CBE and GPU, each core is able to exswiiction level parallelism
(ILP) for efficient single thread execution. The sharing ofititernal cache by all cores allows
for the efficient data transfer and synchronization between.tRemthese processors, parallel
programming is relatively easy using POSIX Threads (pthreads) or OpendtBveis.

Sequence alignment (SA) may be defined as an order preservingf weapping characters in
one string against characters in the other string or againshgagcters. The SA problem is that
of aligning two sequences that maximizes the score of aligiti can be classified into global,
semi global and local alignment. Optimal Alignment algorithm &obal Alignment using
dynamic programming was proposed by Needleman & Wunch [10]. ividves computing a
two dimensional recurrence based table, where the value atnefiddual cell is dependent on
its three neighboring cells. Both the time and space complar#tyquadratic in nature. The
algorithm for solving the local alignment was given by SmitiW&terman [11], but in essence it
is only a slight modification of the Needleman Wunch alignmentrsemu Huang [12] proposed
a wave front technique for sequence alignment, whereby the aamtig ahch anti-diagonal are
computed in each parallel time step. Aluru et al. [13] introduced anettienique in which cells
along each row can be computed in each time step using the parafid technique.
Interestingly, all the above accelerators except folBE implementation in [14] use the anti-

diagonal based technique for parallelizing the computation of theablR, tas it can be
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implemented using a simpler layout of processing elements. Howevess the lengths of the
two input sequences are approximately equal, the time compleitye underlying parallel
algorithm is sub-optimal. From this perspective, it is impeeato implement and study the
effectiveness of the parallel prefix based technique, whichagtees an optimal run time as
well.

As for performance results, Weiguo et al. [4] report that tR& Gardware GeForce 7800
GTX can perform up to 700 million DP cells per second, implyingpeerall time of 1.428
milliseconds for aligning two sequences of length ~1K each. GR& cores are deployed
directly without being optimized to implement the sequence akgnmmalgorithm. The FPGA
implementation by Oliveet al. [3] reduces the time to 1 millisecond. The prime advantage of
FPGA being, it allows logic blocks to be wired together, and tbhenfegurable infrastructure
which facilitates fast design time. But, the generic reconfiguraigl@itecture also fails to exploit
the performance feature completely. The CBE implementatioisdnhdevaet al. using 16
Synergistic Processing Units (SPUs) runs in 0.65 milliseconds [3]he other CBE
implementation [6], achieves a runtime of ~17 ms using 8 SPUs. &yaoe these SPUs are not
optimized for bioinformatics application suites. As a referencepan serial implementation of
the Smith-Waterman algorithm took 100 milliseconds for aligning 1Wosequences on a 2.3
GHz Xeon CPU. This observation is consistent with the near 100{ekdsps reported by the
authors of the aforementioned accelerators.

Hardware accelerators using FPGA have been developed for ienglagnClustalW [3],
which is a popular multiple MSA program. Since the underlying proldeNP-Hard, ClustalwW

approximates a solution in polynomial time.kAsequence MSA problem involves computing

k . . L .
(2} PSA comparisons. This all-against-all sequence comparison gothmant phase within
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TABLE 2.1.DIFFERENTALGORITHMS FORPAIRWISE SEQUENCE ALIGNMENT

Algorithm Time Complexity Space Complexity
Aluru’s Parallel Prefix O((m*n)/p) O(m+n/p)

Huang’s Antidiagonal O((m+ny/p) O((m+n)/p)

Rajko and Aluru O((m*n)/p) O((m+n)/p)

Clustalw, taking more than 90% of the total time. The FPGA implegation uses Xilinx Virtex
[l XC2V6000, platform accommodating 92 processing elements (PEs)amdibaximum clock
speed of 34 MHz. This gives a speed up of around 10 for the overall MS#hant50 for PSA.
It achieves a sustained performance (including all data transfe~-1 GCUPS (billion cell
updates per second in the DP matrix).

The sequence search tool BLAST (Basic Local Alignment $edaol) compares
nucleotide and protein sequences to sequence databases and cafmukttsstical significance
of the matches. It proceeds by first identifying a subsetathbase sequences that have short
matching segments with the query sequence and then performing dhoxugh evaluation of
the query against each short listed candidate. The filteringsieplemented using a look-up-
table data structure, and the subsequent evaluation as a unit PShevgaect al. [5]
implemented BLAST on CBE, consisting of a 64 bit Power Processondat (PPE), eight
Synergistic Processing Elements (SPEs). It achieves a sped#d@p compared to that
implemented on a single Power PC processor. The FPGA BLAST i$ implemented on
Annapolis Microsystems Wildstarll-Pro board with two Xilinx téix-Il FPGAs. The authors
have implemented two FPGA BLAST algorithms, namely the TBEBST and the SERVER
BLAST. The notion behind the former algorithm is that, it can bdopwed with iterative

merging using a tree structure. The FPGA is initialized wh#h query sequence and scoring
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matrix. The indexing of the scoring arrays is done using the blockIREBRAMS). The
database is streamed from the memory to the FPGA. The waipooent of SERVER BLAST
is a systolic array that holds a query string while the damlflows through it. This is
implemented using a FIFO buffer in FPGA. The performance repors comparable to that of
the dedicated server at NCBI. The GPU implementation of thes gaoblem also returned
promising results. Liu et al. [4] demonstrate about 16 fold speedup GEARCH, which is a
MSA tool. usingnVidia GeForce 7800 GTX GRWIapping of the algorithm onto GPU is done
exploiting the fact that all elements in the same anti-diagointde DP matrix can be computed
independent of each other in parallel. Fragment programs are useplémant the arithmetic
operations specified by the recurrence relation. They have reftaduthe Smith-Waterman
algorithm in terms of computer graphics primitives, in an atteim@xploit the GPU platform
for optimum performance.

In phylogenetics research, the primary goal is to reconstugitutionary trees that best
describe the evolutionary relationship among different speciesbssrving and characterizing
variations at the DNA and protein level. The “Tree of Life” is an exarmmpbln ambitious project
for inferring the phylogeny linking all known life forms. Typigrobability models of evolution
used for this purpose are Jukes-Cantor (JC) and General Time iRevi@I R). Unlike SA, the
computational intractability of the problem is the primary stumbling block tormdvihe state of
research in phylogenetic inference, as the underlying problawesldeen proven to be NP-Hard
under various formulations [16].

The following discussion covers different hardware acceler&ors!P and ML in the
order of increasing problem complexity. Even though it has been showpaisamony and

likelihood give identical results in certain circumstances [17{,dmpirically biologists claim
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more accurate results with ML Most of the work addresses MLgtwisi computationally the
most intense of the strategies, involving numerous floating point cotlqmador evaluating the
phylogenetic likelihood function (PLF).

Mak and Lam [18] proposed a hybrid hardware/software systemsdiving the
phylogenetic tree reconstruction using the Genetic AlgoritmMiaximum Likelihood (GAML)
approach. The genetic algorithm is implemented in softwaregrendomputationally intensive
ML equation is implemented in hardware. This work uses a Xilinex XCV800 FPGA as the
hardware accelerator and a Pentium 4 PC with 1 GB RAM for mgnthe software. The
likelihood function is evaluated in parallel in the dedicated FPGHAeirTresults while
reconstructing a 4-taxa phylogenetic tree under the JC IMiedeonstrate an overall speedup of
30 over software and an ML speedup of over 300, despite the communmatibread of the
hybrid system. This work however does not explicitly state Hoavacceleration scales for
larger taxa or more realistic complex models like GTR.

Alachiotis et al. explored the use of FPGA for acceleratmegcomputation of PLF in
[19]. A Xilinx Virtex 5 SX240T with 1056 DSP48E slices has beerdu$be DSP slices have
been used to implement double-precision floating point multipliers aaliters. Due to the
limited amount of DSP48E slices on the FPGA, several multiplexés are deployed to
optimally exploit the available computational resources. A Sun x46§t@myequipped with 8
dual-core AMD Opteron processors running at 2.6 GHz with 64 GB of mamory was used
as the baseline. An average speedup of 8.3 over a single coreehadelpeonstrated for trees
comprising of 4 to 512 sequences on FPGA. The FPGA implementation alserfouhs
OpenMP-based parallel implementation on 16 cores in most casesjragigeedups from 0.96

to 7.46. The projected computational time for a full tree traversialg Felsenstein’s pruning
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algorithm for 512 taxa is well under a millisecond, based on mgpalock speed of 284.152
MHz.

Bakos and Elenis [20] proposed a co-processor design for whole-genologepleyic
reconstruction using a parallelized version of breakpoint median camoputavhich is an
expensive component of the MP phylogenetic tree inference. The cespor uses an FPGA-
based multi-core implementation of the combinatorial search portitredfravelling Salesman
Problem (TSP) algorithm while the TSP graph construction i®peed in software. The search
tree partitioning is carried out in such a manner that each gpteres the tree in a different
order. This is done to avoid complex load-balancing and inter-core cowatianiissues that
occur if disjoint subtrees are assigned to different cores, beaaysof them might be subject to
pruning. Their test system consists of 3.06-GHz Intel Pentium Xeocessor and a single
XilinxVirtex-2 Pro 100 FPGA connected to the host using a PCiérconnects. The best
average speedup of 1,005 over software is observed for arithmedit coenputation with 3
cores and 20 lower bound units. The best overall reduction in executionstioyea factor of
417. All these observations are for synthetic data sets and hemcaltdid correlate with real-
life biological examples.

We focus on MP where the objective problem is to find the witle the shortest
breakpoint length and the leaf nodes labelled by the genomes. The entireortistruction
involves iteratively evaluating the median problem for a 3 tiessd. That boils down to solving
multiple instances of the TSP (as median problem reduces to TSP).

In this work, we are going to show how an NoC-based implementati®sAf offers
significant improvement (in terms of speed) over other hardwaeacelerators because of its

custom made architecture and interconnection topology. The results oyidgpsuch a system

18



achieved two to three orders of magnitude better performance comoam@tier existing
hardware accelerators. NoCs also provide the freedom to design @erdrent with different
network topologies and their suitability to different algorithmettings. For Phylogenetic
reconstruction, we have developed an NoC hardware acceleratogsthigiproblem using the
MP approach, and we had optimized the design further from the pevspettioth time and

power. The details of the design and the future plan are covered exhaustivieapterGl.
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Chapter 3
Pairwise Sequence Alignment (PSA)

The focus of this chapter is one of the combinatorial optimizdiased bioinformatics
problems, namely the sequence alignment. In the following subsectionsjlinvexplain the
problem, the different algorithms for solving it, and the detailesigieand implementation of
the NoC-based hardware accelerator. We conclude this chaptetheiiperformance benefits of
using such a design approach over existing solutions.
3.1 Algorithmsfor Sequence Alignment
Sequence alignment is a way of measuring the similarity destwtwo sequences.
Algorithmically, comparing two sequences (or strings) is modedsd a combinatorial
optimization problem. Characters of one sequence are “alignentisagharacters of the other in
an order-preserving manner, and only a selected set of operatopsraitted at each aligning
position: (i) “match” one character with another, (i) “misniét¢or substitute) one character
with another, and (iii) align one character with an empty (cdigegp” and denoted by “-“)
symbol on the other string. Through a scoring scheme, a positive soassigned for
similarities (match) and negative scores are assigned feratiffes (mismatches and gaps). The
task of computing an optimal alignment is therefore a task ofifgeigt an alignment with the
maximum possible overall score.

Computing an optimal PSA is a well-studied problem [1] [2] [3]. W/lthere are several
variants of the problem, the complexities of the underlying DynaRrimgramming (DP)
algorithms are identical. Given two sequencesrsd s of lengths m and n respectively, an

optimal PSA can be computed sequentially using dynamic progragnmi O(mnjtime and
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Figure. 3.1. Example of computing the global alignment between two sequences using
Needleman & Wunsch algorithm [3]. The arrows show the optimal path. The following
scoring scheme was used: matchscore=1, mismatch penalty=1, gap penalty=1

O(m+ n)space. This is achieved by computin(m+ 1) x (n+ 1) -sized table T, such that T[i,j]
contains the optimal score for aligning the prefixg4.s] against g1..j]. For example, the

global alignmenritscore of aligning prefixes[4..i] and s[1..j] is given by:

Tli-1j-1+o(sil, s[]])
T, jl=max T[i -1 j]-g (1)
Th,j-1-9

where g>0 corresponds to the gap penalty o()do the score for substituting[i$ with s,[j] or

vice versa. As can be noted, the value at T[i,jetels on the cells T[i-1,j-1], T[i-1,j], and TI[i,}-
1]. Sequentially, this dependency constraint cambé during computation through a “forward
pass” of the table in which the table is computed ow at a time starting from the first row,
and within each row computing column by columntstgrfrom the first column. At the end of

the forward pass, the optimal score is availabl€[iet,n]. The next step is a “backward pass” in
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which an optimal path (or equivalently, an optimignment) that led to the optimal score is
retraced from T[m,n] to T[0,0]. Figure 3.1 illuskea an example DP table along with its optimal
path.

3.1.1. Parallélization: There are two main challenges in parallelizingdjrithms for PSA: i)
meeting the dependency constraint without affectivey parallel speedup during forward pass;
and ii) computing the optimal retrace without stgrthe entire DP table during forward pass. To
meet these challenges, several coarse-grain gdaalgterithms have been previously developed
[4] [5] [6] [7] [8]. These algorithms offer varyindegrees of computational complexities and
ease of implementation. The algorithm by Huangdéyelops on ideas proposed by Edmiston
[5] by using the anti-diagonal approach during farev and backward passes. The guiding
observation is that the cells along the same aageshal of the DP table are not interdependent

and therefore can be computed in parallel. If potlesh the number of processors, then this

2
m+n m+ n
algorithm requiresO[%Jtime and O( ]space. Aluru et al. [4] devised an

alternative strategy that overcomes the dependeoggtraint by reformulating the problem of

computing the scores within a row in parallel usihg parallel prefix operation. This algorithm
. mxn .. n . O(n) . .
requiresO T time andQ m+6 space, assuming r . The algorithm by Rajko and

Aluru [25] uses a combination of these ideas tovarat a more complex albeit time- and space-

mxn
p

optimal solution — i.eo( jtime ando(m

| j

For mapping onto the NoC architecture, we basedcbioice on the following factors: i)
parallel run time and space complexities, (ii) tiglaease of adoption to the on-chip framework,

and (iii) the potential to fully benefit from thenehip communication network. Based on these
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factors, we selected the algorithms by Aluru e{4land Huang [6] for implementations in this
work. While it will be ideal to also evaluate thptimal algorithm by Rajko and Aluru [7], it is
highly complex for implementation. It is to be ndtéhat none of the previously proposed
hardware accelerators implemented the paralleixpagiproach.

In what follows, we briefly outline the main idedshind these two algorithms. For
convenience, we will refer to the algorithm by Aluet al. as the “PP algorithm” (for parallel
prefix), and the algorithm by Huang as the “AD aitfon” (for anti-diagonal).

We implemented three of the most popular variahth® alignment problem — global [2], local
[1], and semi-global [9]. To best reflect practiegplication, we implemented the affine gap
penalty function model [3], in which the gap pewdilinction grows linearly with the length of
the gap in an alignment. Algorithmically, this ish&eved by computing three DP tables, (T

and T;) instead of one DP table. However, the underlyingtime and memory complexities for
computing alignments based on the affine gap madekxactly the same as that of the single-
table constant gap model. The actual time and mgmasts in practice are expected to only
increase by a factor of 3. Because of this algomithequivalence and for ease of exposition, we
will describe the parallel algorithms below for thiegle-table constant gap model, even though
we implemented the more generic affine gap model.

3.1.2. The PP approach: The PP algorithm partitions the input sequencmt® p pieces such
that each PE receives roughly n/p characters @srsin Figure 3.2). The other input sequence
s, is made available to all the PEs one charactartimbe. Throughout, we will assume p to be a
power of 2 although the algorithm can be easily®eaed to arbitrary processor sizes through a

virtual padding scheme. Tt(m+1)x(n+1)-sized table T computation is divided into p royghl

equal parts, such that PE is assigned the responsibility of computing tfebiock of
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Figure. 3.2. Computation of the DP table in pataing p processors in the parallel pr
approach.

O(n/ p)columns. The forward pass in table computatiorcgeds iteratively, row by row, such
that at any given iteration i, all the PEs partitg@in computing row i in parallel. We identify
each iterative step as one “time step”. Within eemh, the algorithm reduces the problem of

computing the recurrence in (1) to the problemarhputing the following recurrence

. Jwil o+ g
X[I] _{ﬂj—l]} @,

where O0< ] <Nand w{j is obtained by local computation (withowny need for

Processors - PE

log(p) 1 2 3 4 5 6 7 8

Time Step

\J

Figure. 3.3. Communication pattern generated bythalgorithm.
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communication). Computing this recurrence is edaivato the problem of finding n+1 prefix
maximums, which can be easily accomplished usiadPth operation as follows: Since each row
is partitioned into roughlO(n/ p)blocks and assigned to p PEs, the prefix maximusansbe
computed by first computing p local maximums itO(n/ p)computation step, and then using
O( log p) communication steps to update their local prefixximams into global prefix

maximums. More specifically, at communication stefffor O<k<(log p)), PE exchanges its
most-recent global maximum with P&uich that j=i+2and the K least significant bits in the
binary representations of i and j are 0 and 1 @spmy. For example, in a 4 processor system
and at k=0, PEexchanges with REand Pk exchanges with REat k=1, Pk exchanges with
PE,, and PE exchanges with PEThe time steps of the inter-PE communication sadgerfor 8
PEs is shown in Figure 3.3. Consequently, each steye can be completed by performing: (i) an
O(n/ p)local computation, and (ii) aO( logp) parallel prefix communication. After the last
row is fully computed, the PEs reverse their corapon by progressing from last row to top row

and retrace an optimal alignment path that yielthedoptimal score at cell T[m,n]. However,

this would require that the entire table be stoneglying arO(mr) aggregate space complexity.

O£m+ nJ
To allow retracing an optimal alignmentinjt \ P / space, each PE stores all the entries in

the last column of its block of n/p columns, andrthuses this information to retrace. This step

can be achieved i/ P) computation time an O(P) communication time. In the interest of

space, we omit the details of analysis and praofd, refer the reader to the original paper [4]. It
has been proved that the algorithm has an ovesafipatation complexity 0 (MY P)and a

communication complexity cO(mlogp) on a distributed memory parallel computer [4].
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3.1.3. The AD algorithm: This requires that both the input sequencesrsl s are made
available to all the PEs. For the forward pass,dlgerithm proceeds iteratively by computing
one anti-diagonal of DP table at each “time stegliere an “anti-diagonal” is defined as the

subset of cells [i,j] which have the same i+j valker an(m+1)x(n+1) DP table, there are a

total of m+n+1 anti-diagonals with values 0, 1,,2n+n, and the algorithm computes tHeanti-
diagonal at time step t (as shown in Figure 3.4).tl#e cells within an anti-diagonal can be
computed in parallel because the value at any] Tepends on the values already computed and
available from previous two time steps. The nexsfion is to identify the PE that will work on
each cell of an anti-diagonal. It turns out tha #ssignment of PEs to cells does not matter for
the overall complexity as long as the number of ®RBsing on an anti-diagonal is maximized.
Therefore, in this work, we adopt two differentaségies, for the different cell computations by

the processors. First that will assigngR& the cells in the anti-diagonal that have thenfdi,j]

<§:QQ ,\.\@:Q\ ,\i‘;‘» ,\-é‘:Qe S <§0Q'v
& & 58 & N
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(a) (b)
Figure. 3.4. Antidiagonal table computation. (apf&tgy 1, (b) Strategy 2. The numbers
within the cells represents the PE responsibledonputing it.
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such that (i mod p) = k. This is shown in Figuré @&). The second strategy is shown in Fig 3.4
(b), where the interprocessor communication ihentreduced. This way of processor allocation
also results in reduction of the computation tiathe internal cells do not have to wait for the
communication results from neighbouring cells. T$ignificantly improves the amortized total
time, even though the participation from all thegassors is not uniform at different instances
(in comparison with the previous strategy). We &el@ this cyclic allocation scheme because the
communication pattern that emerges from such aingetis a simple neighbourhood
communication — i.e., the data that Rteeds to compute a cell (i,)) are present eithémninv
itself or in Pk.; (as shown in Figure 3.4).

For the backward pass, the main challenge is ¢onstruct an optimal path in the
absence of the entire DP table stored at the ertheoforward pass, as otherwise the space
complexity will be®(mn). The algorithm by Huang uses a variation efltirschberg technique
for space reduction [10], by identifying the cel)j’} in the middle anti-diagonal through which
an optimal path must have passed. Once such aiscétlund, the problem space can be
recursively subdivided into reconstructing the patim the left top and right bottom sides of

@",J). In this work we developed another variahiat directly uses the Hirschberg technique. In

this scheme, the special cell (,)) is definedle (Wzl j) through which an optimal path is
guaranteed to pass. We achieve this by propagatingossible “candidate” cells during the
forward pass such that the candidate that propagatthe last cell (m+X)(n+1) is the winner.

Once such an (1’,)’) is found, the original problehretracing the DP table from (m+1,n+1) back
to (0,0) reduces to two disjoint sub-problemsetyace from (m+1,n+1) backdm/21 j); and ii)

retrace frorrdm/21 Dpack to (0,0). These two sub-problems can be sakgaty recursion. To

maintain parallel efficiency during these recurssteps, we partition the processor space into
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swich (@)

Figure. 3.5(a) Mapping of the PP algorithm into asM. (b) Mapping of the AD algorithm into a
Mesh with an embedded ring.

two subsets such that the number of PEs in eadesigproportional to the number of cells for

flmser

computation in the corresponding recursive ste AB approach also requir_ P Jtime

O[m+ nJ
and \ P Jspace.

3.2. NoC I mplementation

3.2.1 Mapping the Sequence Alignment Algorithmsto NoC

Instead of depending on FPGAs or any other exigtirmgessing platforms, we designed tiny
PEs operating on a particular segment of the talds explained in Section 3, and integrating
them using an NoC.

(8 The PP implementation: The communication is always point-to-point and ®ies are
required to exchange a single integer number antloeiy. As an example, the inter-processor
communication steps for a system with 8 PEs are/shio Figure 3.3. Consequently, instead of
building a full blown packet switched network, anpier circuit-switched NoC is designed. The

total time required to complete a sequence alignmparation depends on the computation time
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taken by each PE and the communication time neaml@xchange data among the PEs. The
algorithm is structured such that at every time,steere is ¢O(n/ p)local computation phase
followed by a communication phase. The communicatiarries out a parallel prefix operation
in O(logp) stages, but the overall communication time w#pend on the architecture of the

NoC and placement of the PEs. Therefore, it is mamb to place the PEs in the NoC in such a
way so as to reduce both the latency and energypdison in communication. While there are
multiple NoC architectures [11], the hypercubicdlogy is best suited for the parallel prefix
operation. But a physical realization of the NoGinsted by the layout dimension of the chip,
which is predominantly 2D in practice. For a systeime of p, if we construct a lgu
dimensional hypercube then the number of hops leetvaay two PE is always 1. But as shown
in Figure 3.5(a), if we embed a lpgdimensional hypercube into a D-dimensional meshch

is more realistic from an implementation perspegtithen the number of hops in th& i

communication step is given by (3).
_ %

where i can range from 1 to lgm Hence, the maximum communication latency (in pemnof
hops) between any two PEs is given by (4)

log, p—lJ

2
e = 2 @

Given that there are exacl[logz p—\ time steps within one parallel prefix operatidme total

communication time T (in hops) of the parallel ptefperation is given by (5).

©)
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---------

Comm. step 1— — - Comm. step 3 ——
Comm. step 2-------

(a) (b)
Figure. 3.6. (a) The communication pattern for &kl pass in PP (b) The communication
pattern for backward pass in AD.

3
: : : (=)p-2
For 2D, the above series and hence T evalua(z*/zX P-2) jf log p is even, ani 2

otherwise. Given that there aO(logp)time steps, the above results yield an averdge o

O(p/log p) number of hops per time step for both the cases.
It is not practical to implement any arbitrarilygher dimensional hypercube. For example, a
system with 64 PEs would necessitate constructibra 06D hypercube. Therefore, for
investigation, we designed a 2D mesh-based NoCalwying out sequence alignment. When the
communication pattern shown in Figure 3.3 is mapjed 2D mesh-based NoC, even a data
exchange between two hypercubic neighbors maysesstral hops. But a well-defined property
of the communication pattern in parallel prefix @aithm is that PEs do not communicate
arbitrarily. As an example, in a system with 16 REthe placement of Figure 3.5(a) is followed
then the worst case communication latency arisake wbmmunicating between PEs separated
by two hops. With increasing system size this woeste communication latency will be more.
For a system with 64 PEs the worst case latenaycmmmunication step will be four hops.

As explained above, the forward pass is followea fnackward pass operation. This step
is implemented using p-1 neighbor PE communicatxchanges, as the PEs regenerate the path
from cell [m,n] to [0,0]. We modeled this commurtioa pattern as a Z space filling curve as

shown in Figure 3.6(a).
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Figure. 3.7. Establishment of communication linksilitating Bypass during parallel prefix.

(b) The AD implementation: In the AD approach, the forward pass requires oaly
neighborhood PE communication pattern, as explamé&egction 3. More specifically, the three
values required to compute TJi,j] are availablenfrthe previous two anti-diagonals, and because
of the cyclic allocation strategy that we used &prPEs onto the anti-diagonals (see Figure 3.4),
these cells are either present in the same PEeoprévious PE. The exception is the first PE
which will depend on the last PE due to the cyallocation. Therefore, it suffices to use a ring
topology. In our implementation, we achieve this dambedding a ring into the mesh, and
following the Moore space filing curve, which ismslar to the Hilbert curve [12] for PE
numbering. The placement of Pisshown in Figure 3.5(b).

This interconnection enables single cycle commuincaamong the neighboring nodes. At
every time step, each PE works on one anti-diagoh#éie DP table. If the length of an anti-
diagonal is greater than the number of PEs, thercéfis are computed in multiple stages. The
number of such stages is given by:

Stagesper Anti Diagonals= AverageAnti— Dlagonallengthzﬂ
# PEs 2p (6)

where M<Nwithout loss of generality. The communication stefjodlow each of the

computation steps at each cell. This implies theg total number of data exchanges is

proportional t'(m+1)x(n+1)_ Note that this result is unlike the PP approathe
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Figure. 3.8. Generic switch architecture for bohdnd AD approaches.

communication volume is independent of the numb&ts during the forward pass.
In our backward pass implementation we partitf@grocessors into two sub-groups and
the number of processors in each of the sub-grdaepsnds on the number of cells in the two

partitions. The processor grouping requires a hlmastdoperation as shown in Figure 3.6(b) to

propagate the new partitioning cell-coordinateltdhee PEs, which take(,)(log p) time (where

p is the number of PES).

3.2.2 NoC Switch Design

Due to the deterministic pattern of communicatiorcase of both the PP and AD techniques, we
designed simple pass transistor-based switch HJag8¢<o forward the data from one PE to the
other, instead of designing network routers foagammunication.

In the PP approach, data exchanges between twadjaoent hypercubic neighboring PEs
give rise to higher communication delay. To redtieedelay, instead of building a multi-hop or
pipelined communication link between two non-adjadeEs, the switch boxes are designed to

establish a direct communication path (unpipelinoedingle-hop) between the PEs [33]. As an
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example, for the mesh shown in Figure 3.5(a), &iquéar communication step requires that PE
communicates with PE5 and simultaneously B&nmmunicates with REIn this situation the
switchbox connected to 2 should be conFigureuresuch a way that a direct communication
link is established between 1 and 5 as shown iar€i§.7. The architecture of a switch is shown
in Figure 3.8. Commensurate with all the time stiepthe parallel prefix operation (shown in
Figure 3.3) the switch is designed to establiskeatipath between any two communicating

neighbors in the vertical and horizontal directioRer a system with 16 PES th@munication

steps within the parallel prefix operation are shown in Figure 3.9. In ‘Time Step 1’ of parallel prefix, the
neighboring processing elements communicate (like 1-2, 3-4, 5-6 etc.). For example, to exchange data between

PE, and PE,, the following pass-transistors will be on: Miphl and Mh1 of the switch connected to PE,, and

Miphl of the switch connected to PE,. The same switch set-up facilitates data transfer amongst PE,-PE;, PE-
PEs...PEsPEs. In the subsequent time steps, other switchedvadan the communication are
configured accordingly (by turning on suitable paassistors in the switches). With increasing
system size the number of ports in the switchesis¢e increase to facilitate single-hop or
unpipelined communication. On the contrary, the bernof ports in the multi-hop scenario does
not increase as the message ripples through teemadiate switches. During the backward
phase, the data transfer is serial and hence nomedlification is required in the existing

communication infrastructure.

36



(a)Time Step 1 (b)Time Step 2 [cyTime Step 3 {d) Time Step 4

Figure. 3.9. Different time steps in communicatitaming parallel prefix (PP). The shaded
arrows represent the different simultaneous comaatioins taking place for each parallel
prefix step.

For the AD technique, during the forward phase onsighbouring PEsS communicate
simultaneously. The backward pass requires brotidgasf information, which is implemented
as shown in Figure 3.6 (b). To achieve the simelbais communication amongst multiple non-

adjacent PEs during this phase, the bypass stratabg PP implementation is adopted here too.

3.3 Experimental Results

3.3.1. Input data: Given that the complexities of the PSA algorithdiscussed above depend
only on the lengths of the sequences being compamd not on the sequences content), we
used two arbitrary DNA sequences with lengths 1€l2aracters each in all our experiments. In
practice, the length 1024 represents the lengtgerdor sequences that can be experimentally
generated (or “sequenced”) using a traditional 8aegquencer [26]. These sequences constitute
a typical input in genome sequencing projects, wl@emassive number of pair-wise alignments
are computed over millions of such sequences. Hewewve also note that there are DNA
sequences of a vast length ranges in public daabafrom tens to hundreds of characters (e.qg.,
short reads from new generation sequencing), tastinuds of characters (genes), to tens of
thousands to millions and even billions of chanac{éully assembled whole genomes). Even
though we selected 1024 for our input tests, ou€ Naplementations can be used to any of
these length ranges as long as the sequencesfiton-chip memory. Fixing the input size in all

the experiments allowed us to conduct a fair coatpag evaluation of the different NoC

37



Time Requirements for String Length 1024 Energy Dissipation Profile for String Length 1024
L50E-05 5.00E-05 -

@ Un-pipelined

@ Un-pipelined 300 % 0
M Pipelined increase 4.00E-05 | Pipelined 0.84 %
200 % more
o 100805 1149,  increase 3.00E-05 1
e 7.43 % more
P 2.00E-05
5.00E-06 -
1.00E-05
0.00E+00 . , . . 0.00E+00 fAE-—ﬁl:.—ﬁ
8 16 32 64 128

8 16 32 64 128
Number of PEs Number of PEs

Time (s
Energy (J)

Figure. 3.10. (a) Time requirements comparisorPier(b) Energy dissipation profiles for PP.

architectural topologies in our implementations.

3.3.2. Experimental setup: We present here experimental results of our Noflamentations
for the two algorithms described in Section 3: B AD. We studied the timing requirements
and the energy dissipation for both the cases. Ehalacter of a string was represented using 3
bits. This is because the alphabet size of DNA aeces typically used in practice is 5
({a,c,g,t,n}). In all our implementations, the PBeed to exchange only integer data among
them. Each integer number used during the commtimicevas represented by 16 bits. Each PE
was designed to perform the required character agsgn, which is the primary unit operation
in string alignment. The PEs were implemented i Rid then synthesized using the 90 nm
standard cell library from CMP (http://cmp.imag.fiThe PEs communicate with each other with
the help of switches. The switches mainly consfspass transistor logic and were designed
using Cadence Spectra tools. We considered twostygfe NoC implementations: (i) a
“Pipelined communication scheme, where all the non-adja¢dfts communicate in multiple
hops step by step; and (ii) an “Unpipelihembmmunication scheme, where the non-adjacent
hypercubic neighboring PEs communicate in a sihgle with the help of bypass. Performances
of both the schemes were compared in terms of graerd timing. The energy dissipation and

the total time required in the sequence alignmgmration depend on the PEs and the
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communication infrastructure. The energy dissipatiand delay of the communication
infrastructure in turn depend on two components,shitch blocks and the inter-switch wires.
The energy dissipation and delay of the switch kdowas determined using the CADENCE
Spectra tool. The clock frequency of opertation W&&67GHz. The delay and energy dissipation
of the inter-switch wires depend on their capackanwvhich was calculated by taking into

account each inter-switch wire’s specific layouttbg following expression

Cinterswith = Cuire *Wiiqy +N-M- (CG + CJ) (7)

where Gire represents the capacitance per unit length ofwiine, w.,; is the wire length
between two communicating switches, n is the nundberepeaters, m represents the size of
those repeaters with respect to minimum-size dsyiaed lastly, € and G represent the gate
and junction capacitance, respectively, of a mimmaize inverter. The energy dissipation and

delay incurred by each PE are obtained using Sysdpssign Vision.

3.3.3. Pipelined vs. Unpipelined I mplementation

As a first step we compare and contrast the pedoom of the NoC for the pipelined and the
unpipelined implementations. We conduct this anglgsly for the PP implementation. For the
AD implementation, only neighborhood PEs commuisdin a ring topology) and therefore, all
data transfers will be inherently single-hop, npdss strategy is needed.

Figures. 3.10 (a) and (b) show the timing and eneligsipation profile of the NoC with
varying system size. As can be expected from Figur@(a), the pipelined implementation takes
much longer time to complete than the unpipelimeglémentation. The total time has two parts:
communication time and computation time. With s in system size, the communication
time increases because there will be more numbdimad steps within each parallel prefix

operation in both the multi-hop and single-hop scexs. However, the computation time of each

39



PE decreases due to reduction in the substringtHerBut in the pipeline scenario the
communication time dominates over the computatiore tsignificantly (as an example, 14:1
ratio for a system size of 64). This is true fa timpipelined case as well, but the ratio is smalle
(6:1 for the same system). As a result, in thelpipd case the rate of increase of overall time
with increasing system size is much higher thanctireesponding unpipelined implementation.
Contrary to the timing characteristics, the unpipe case dissipates more energy (as shown in
Figure 3.10b). This can be attributed to variowsdis: (i) the increase in the interconnect length
traversed in one communication cycle, (ii) buffateng the path, and (iii) increase in switch
complexity.

It can be observed from Figure 3.10, that the wripipd implementation provides significantly
more savings in time compared to the pipelined evtgle resulting in very little penalty in
energy consumption for all system size. As an exemipr a system size of 128 PEs the
unpipelined implementation achieves more than 30@%rovement in time while consuming
only 0.84% more energy. This result indicates thieer added by the bypass strategy. As a result
of this analysis, we adopted the unpipelined gjsata the final implementation of PP, and all

the corresponding results presented hencefortfoatke unpipelined implementation.
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3.3.4. Energy and Timing Characteristics of the PP Approach

Figure 3.11 shows the energy and timing charatiesisf our NoC implementation of the PP
approach. Figure 3.11(a) shows the energy diseipatiofile with varying the number of PEs for
the PP operation. The two contributing factors taeecommunication and computation energy.
The increase in the communication energy with syst&ze is attributed to the increase in total
number of communication steps. On the contrary,cthraputation energy reduces very slowly.
With doubling the system size, the work performgdeach PE reduces by half. Hence the
energy per PE also reduces. It is observed thdt doubling system size (halving the string

length handled by each PE) the factor of energuattah per PE is slightly more than two.

Energy Dissipation Profile for PP Approach Timing characteristics for PP approach
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Figure. 3.11. (a) System energy profile (b) Timiaquirements (c) The E-T product for PP approach.
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Consequently the total computation energy has & dlecreasing trend with doubling system
size. Overall, the net energy trend is dominatethbycommunication energy.

The timing characteristics of our PP implementatoa shown in Figure 3.11 (b). For a
system with p PEs, each parallel prefix operatiovoives O(logp) communication steps. As
there are m rows, where m denotes the length oigsty, the total communication time for the
entire alignment operation O(mogp). Consequently with increasing number of PE® th
communication time increases. At the same time wwitheasing system size, the number of
columns in the DP table, and hence the overall lwackhandled by each PE decreases. In fact,
the computation time of each PE almost halves datlbling the system size until the input size
becomes too small for the system size. This expldia observed trend of the computation time
in Figure 3.11 (b). Consequently the total timedeekto perform the alignment operation, which
is the sum of the computation and the communicdtiae first decreases and reaches a valley,
but beyond a certain number of PEs, it again stadeeasing. In all our experiments, we
observed that more than 90% of the overall time sp&st on the forward pass of the algorithm.

To determine the optimum number of PEs we considevariation of the energy-time product
with respect to system size. From Figure 3.11(®)aih be observed that for comparing two

strings of length 1024, for the PP algorithm théropm number of PEs turns out to be 16.

3.3.5. Energy and Timing Characteristics of the AD Approach
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Figure 3.12 shows the energy and timing charatiesisf our NoC implementation of the AD

approach using the fist strategy (refer sectioAbralgorithm). Figure 3.12(a) shows the energy

characteristics. Ithe first case of AD approach, the total numberashmunication steps during

forward pass O(mn), irrespective of the system size, where m ancerttae lengths of the two

strings. This is because there is a data exchangeesy cell of the DP table. Consequently the

communication energy in the forward pass remairchamged with increase in the system size.

However, during the backward pass, the communicatimergy increases with the system size

due to the broadcast operation. This explains kb gse in the total communication energy

shown in Figure 3.12(a).
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Figure 3.12. (a) System energy profile (b) Timieguirements (c) The E-T product plot for AD

approach.
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The computation energy is given by:

Comr. Energy,,=E ;x PEx Comg. cycles (8)

whereE; is the energy of a single processor per computatyele. As the system size doubles,
the number of total computation cycles per proaekatves. Therefore, the product of these two
factors is an invariant for a given input size. &ettbn in E with increase in system size can be
explained as follows: At any given time step, &l tPEs are working on one anti-diagonal
Consecutive parallel steps involve a certain nunesbepmputation stages performed by each PE
as given in (6), which is inversely proportionalthe system size. As a result if the number of
PEs increases, the number of stages per anti-chhgomputation reduces. Consequently the
number of times each PE is activated reduces, ibatitrg to lower overall computation energy.

This is confirmed in the results shown in Figur&28a). Consequently, the total energy first
reduces (following the decrease in computation ggneand then increases as communication

energy starts to dominate, as shown in Figure 8)12(

2
Both communication and computation time complegitéthe AD approach eO((m>< n) j :
p

(mxn)

Since in our experiments, m=n, this is equivaleﬁo( J Therefore, as the system size

doubles, the overall time halves as shown in Figui2(b). Figure 3.12(c) shows the energy-

time product for the AD approach, and as can berobd the optimum number of PEs is 128.
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Figure. 3.13.(a) Total Time (b) Energy dissipatovafiles for AD — Strategy 2.

For the second strategy, the total number of rdistboundary communications were
reduced, which is given by:
Communicabns= (p-1)x S, 9
where$; is the length of one of the sequences aiglthe number of processors in the network
on chips. This explains the savings in the commaiitno energy and consequently the total
energy as shown in Figure 3.13 (a). The valleytpaoithe energy curve is attained in case of the
64 PE system, and from the break-up of the totargninto the constituent components, it

becomes evident that with the second way of allegairocessors has computation energy as the
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Figure.3.14. Energy dissipation profiles for the two éifint AD strategies.
dominating factor. The Figure 3.14, clearly demiaiss the energy dissipation for the two
different strategies, In terms of time, the totale is dominated by the share of computation,
rather than communication. This explains the stedelyrease in the total time on deploying
larger number of processing elements for the sammauat of workload. In comparison to the
first strategy, the significant reduction in totiahe is also a result of independent computation of

the cells by each processor, and communicatioorityrthe boundary cells.

Table 3.1 presents a comparative performance ei@uaetween the PP and AD algorithms in
terms of energy dissipation and timing. It is ewid&hat the PP approach out-performs the AD
both in terms of time and energy when the systera isi less than or equal to 64. But, as we
increase the number of processors beyond 64, trp sise in the communication energy in PP
attributes to rise in its total energy. Thus, fange system sizes AD approach outperforms PP in
terms of energy dissipation, though it still takegre time. Among the AD strategies, the second
approach is most suitable both in terms of enenglyia terms of time, it is almost at par with the

PP approach. For large system sizes (beyond 6#)jtdly this beats the PP in energy aspect as
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TABLE 3.1
COMPARATIVE EVALUATION OF PPAND AD sCcHEMES FORLKX1K DATA

System | Energy (J) Time (s)

Size PP AD 1 AD 2 PP AD 1 AD 2

8 5.57E-06 46.4E-06 30.3E-06 7.24E-06 91.3E-06 7.42E-06
16 7.01E-06 42 .6E-06 26.7E-06 5.15E-06 47.4E-06 5.42E-06
32 10.7E-06 | 39.8E-06| o4 1k.0p| 441E-06 | 25.7E-06 | -8 06
64 20.3E-06 | 38.9E-06| 53 -k.0g| 4.30E-06 | 15.3E-06 | 4 gor.06
128 47.2E-06 | 43.2E-06| g o 0| 4.61E-06 | 10.4E-06 | & 20E.06
well.

3.3.6. Impact of varying string sizes

Initially, in our analysis the lengths of the twinirsgs were maintained equal. Here, we study the
effect of comparing two strings of different lengitirigure 3.15 shows the impact of varying the
string sizes on the timing and energy dissipatmmtlie PP implementation. In order to allow a
fair comparison, we varied the string sizes bupkegthe total work (i.e., number of cells in the

DP table) same. We considered four different comtimns for g and s As the number of rows

is decreased and/or the number of columns incredisedotal time and energy both decrease.

Energy (J)
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Figure. 3.15.(a) System energy profile (b) Timieguirements plot obtained by varying the lengths of
the strings using the PP implementation. The raweespond to the characters irasd the columns
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Energy Dissipation Profile and Timing characteristics for
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Figure. 3.16. Energy dissipation profile and Timmeguirements for AA
data

This can be explained by the decrease in the nuwibeommunication steps with decreasing
number of rows, though the total amount of companastill remains the same. For the AD
approach, the computation is always along the iaggchal and the communication is only with
the neighboring PE. Hence, there is no changetieretime or energy when the string lengths
were varied keeping the area of the DP table threesa

Next, we increase the number of bits from 3 tordrépresenting each of the characters of the
DNA sequence to accommodate standard ambiguousatbarencoding. Tables 3.2 and 3.3
show the timing and energy statistics, respectjiveng the PP implementation. It can be
observed that the total time and the total enemggease only marginally from the 3-bit to 4-bit

representation.

3.3.7. Parallel Prefix Implementation on Protein Sequence data
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TABLE 3.2

TIMING COMPARISON FORLKX1K DATA

Number of 3 bit (s) 4 bit (s)
PEs
64 4.30E-06 5.27E-06
32 4.41E-06 5.92E-06
16 5.15E-06 6.09E-06
TABLE 3.3
ENERGY COMPARISON FORLKX1K DATA
Number of 3 bit (J) 4 bit (J)
PEs
64 20.3E-06 21.9E-06
32 10.7E-06 11.4E-06
16 7.01E-06 7.50E-06

We also undertook another case study with protequances, which contain one of 20 amino
acid residues at each character position. In Figuké, we present the energy and timing results
on amino acid sequences of length 2366 (to reflect the average length of a proteirusage).
We adopted the PP algorithm (5 bit representatioreéch protein character), and used the PAM
substitution matrix [14] for assigning the scoréeTrend is very similar to that for the DNA
sequences of length 26856 except for an increase in time and energy.efeegy increase has
been a result of the increase in computation enéugyto table look-up. There is no change in
the communication energy. The increase in timdsis due to the increase in computation time.

The same trend as DNA sequence matching is expettiéelimplementing using AD algorithm.

TABLE 3.4
SPEEDUP OFVARIOUSACCELERATORS OVER OUR SERIAL IMPLEMENTATION
- OUR NoC
2.3GHz GPU CBE CBE FPGA IMPLEMENTATION
Xeon CPU PP AD
Time (ms) 100 1.43 0.65 17.5 1 0.00439 0.010%4
Speedup ovel
serial 1 69.9] 1538 5.7 100 221779.0 9487.667

. . 3 5 4
implementation
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TABLE 3.E
SPEEDUROVEREXISTING HARDWARE ACCELERATORS

Other Accelerators FPGA CBE CBE GPU
[10] [12] [13] [11]
Our PP 227.79 148 3986.3 325.74

Implementation

AD 94.87 61.67 1660.3  135.67

To assess the real benefit that can be realizety usur NoC implementation we
compared our run-times against other hardware e@tel implementations and our own serial
implementation on a 2.3GHz Xeon CPU. The resukstabulated in Tables 3.4 and 3.5. The
time needed to transfer the sequences from mainomyeand writing back the resultant path
back to the main memory depends on the adoptedaogemechanism. If the NoC-based chip is
used as a co-processor on the same mother bo#né asin processor then the total time was
about 0.096 us. This number is derived using awid#: of 128 and a bus speed of 1333MHz.
On the other hand if the PCI express 3.0 is chasethe interfacing standard then the timing
requirement is higher, which is around 2 us. Themzessor based implementation overhead is
included in the timing data for our NoC implemeitiatpresented in Tables 3.4 and 3.5. As can
be observed, our PP-based NoC implementation prs\ndtween 150 to 4000 fold speedup over
other existing accelerators and more than well a@&speedup over the serial implementation.
If the PCl-based interface is used then also oglementation achieves between 100 to 2700

fold speed up over the existing accelerators.

3.4. Long Rangelink insertion
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In PP scheme, the number of multi-stage commumwiestis directly proportional to the
number of processing elements and also to the Heofyjbne the sequences being compared.
Even applying the bypass strategy, use of traditiametal wires gives rise to significant timing
and power penalties. Consequently, the need faiezit long range links which can achieve the
communication in a single cycle arises. This wélthto reduce the power and improve the
latency of communication. In this section, we easduperformance of on-chip wireless links
used as the long-range communication medium toawgpthe performance of the proposed NoC
architecture. This exercise was undertaken spatifiéor solving the PP-based approach as the
AD method involves neighborhood communication. dstarbon nanotube (CNT) antennas, it
is possible to create on-chip wireless communiadtitks [15, 16].

The design of the network on chip has been dona way that we consider the
neighboring communication (one-hop) to be perforgdvired links, as they perform best for
short range scenarios. For the longer communicgfoor more hops), the wireless links have
been considered. So, every node in the networla léseless transceiver along with the existing
wired platform. In [17], it has been shown usingTCahtennas 24 different frequency channels
can be created. Thus, 24 frequencies can simuliahesupport different wireless links in a way
that a single frequency channel would be used onte per time step to avoid interference. So
for system sizes greater than 24, a ‘long rangeless communication step’ has been sub-
divided into multiple steps using time division tiple access for the channels. We had
considered only 16 different channels for desigrong point-to-point communication scheme.
This has been done in accordance with the powéwaefscaling. In Figure 3.17, it has been
shown why we require four different time sub-stepsaccomplishing each of the final four time

steps, of the total of six step (refer Figure Z2®}to-all communication for a 64 PE system. By
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16 16

Sub-step 1 | Sub-step 4

16 16

Sub-step 2 Sub-step 3

Figure 3.17. Communication sub-step allocatiorttier64 PE system.

similar reasoning, for a 128 PE system, we recgight sub-steps. This multiple communication
sub-steps can be attributed to the rapid increashd total time (Figure 3.16 (a)) for large
system sizes.

The Fig 3.16 represents the total energy and gmaguirements for PP approach using
the wireline and the wireless schemes. For largstem sizes wired network infrastructure
performs better, but there is significant energyirggs upon using the wireless communication
fabric (Figure 3.16(b)). When considering the Egddglay metric, we notice that the hybrid

wireless network on chip clearly emerged as thenairfas shown in Fig 3.17).
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Figure 3.18.(a) Total Time (b) Energy dissipatioafiies for PP upon insertion of wireless links.
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3.5. Summary

The above results go well beyond demonstratingpia@adigm-shifting potential of NoC
architectures over bioinformatics applications. leaample, the analysis of over 28 million
metagenomic sequences that took months to comalfete parallelization at the coarse level
[18], can be completed in a matter of days usingNmC based hardware accelerator. The NoC
architecture can not only provide such high perfomoe improvements but also, more
importantly, enable solving much larger problermantiwas ever possible before under practical
experimental settings. The widespread adoptiorhisf design approach depends on both the

design time and cost, and also the amortized ¢dbedotal number of such systems required.
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Chapter 4

NoC Architecturefor Phylogenetic Reconstruction
In this chapter, we undertake design and performan@luation of NoC architectures for

phylogenetic reconstruction. We consider the MaximBarsimony (MP)-based phylogeny,
which depends on finding the breakpoint median,nvigen a set of species. The breakpoint
median reduces to one of solving multiple instarafethe Traveling Salesman Problem (TSP),
which is a classical NP-complete problem in grapdoty. In the following subsections, we first
explain the problem, the algorithmic details, faltd by the design and implementation of a
multi-threaded software program for modeling thenomunication events, and then the network
on chip based platform for solving TSP.

4.1 Algorithm for Traveling Salesman Problem
In this section, we present the core computatiepssbf the branch-and-bound heuristic to solve

TSP [1] that we used in our implementation. Theutnig a directed graplt; = (V,E) with m

vertices and a non-negative cost associated with ealge. Them vertices of this graph
correspond to then reference genes and its edges have a bounded weightinteger cost
between 0 and 3, or an edge with cosfrepresenting nonexistent edges) [2]. The outp |

least cost cyclic tour that traverses all vertieractly once.
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Figure 4.1. An example showing (a) an input grapth @) the exhaustive search tree

corresponding to the input graph. If the tree impaoted in the Ddp First Search Order, th

evaluation of the path that leads to a low costl{sas ul-u2-u6-u7-u8) first may help in

pruning the computation of a higher cost path (aghl1-u9-ul3-ul4-ulb). This idea is
exploited in the branch-and-bound technique

Given this input grapl®, the solution space can be represented by a cwatemputation
tree. An example is shown in Figure 4.1. The trae & total ofm-1)! potential paths to be
explored before identifying the optimal TSP toweEy tree-edgéu,v) from a parent node to a
child nodev corresponds to a graph ed@§ < E, and every path from the root to a leaf node
encodes a completed TSP tour with cost equal tsuheof the edge weights along its path. An
optimal TSP tour represents a least-cost path.a@arithm dynamically generates and explores
this conceptual search-space tree in the deptistarch (DFS) order.

Initially, a global variable calledbest_costs initialized to«; this variable is dynamically
updated to keep track of the least cost over aR T&rs examined so far at any stage of the
algorithm. At every step, the algorithm evaluates next eligible tree-edge in the DFS order as
explained below and also shown in Figure 4.2.

At any given step, consider the newly included-gdge to be from nodeto nodev, and the

cost of the corresponding graph edig¢ to bec;. Letc*(v) denote the cost of the least cost TSP

60



tour passing through node There are two possibilities for

If vis a leaf, therc*(v) is set equal to the net cost of the path from thet node tov.
Subsequently, i€*(v)<best_costhenbest_cosis updated ta@*(v).

If vis an internal node in the search tree, a lowen@idar c*(v) is computed using a matrix
reduction operatiarf the lower bound computetb€(v)) is observed to be greater than or equal
to best_costfurther exploration of the subtree unddrecomes unnecessary and so the subtree is
pruned and the computation returns to the pared¢ nootherwise, the DFS is continued under
V's subtree.

Lower bound calculation. We use the method shown in [1] for lower bound cotaon at
each tree-edge. Am x mmatrix called thereduction matrix(R) is maintained throughout
execution. Initially, the matrix at the root nodeset equal to the cost matrix definedet any
step of the DFSbc(v)is calculated as follows:

1) All entries in rowi and columrj of Ris set tox;

Nomore

Loadadjacency Picknext edgein edges .
matrix of graph. DFSandcompute mmmmmmmp  Touris complete.
# lowerbound cost. Stop.
Compute firstL levels l
serially. Lower v Prune subtree rooted
bound cost atthatnode and
> Best cost returnto DFS parent.
sofar
Obtain list of subtrees N
to be computed.
Add edge to vertex
list.
l Total path
Leafnode —) cost <
- reached Bestcost
Athreadpicksup a sofar
subtreethathas not y
been computed. ‘o Wiite new bestcost.

Figure 4.2. Flow diagram explaining branch-domind algorithm for solving breakpoint med
problem
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2) R[j,1] is also set too;

3) All rows and columns that contain at least ona-mfinity value arereducedas follows:
() Given rowi, computeminy = min{R[i,jj} for all 1<j<m; (b) Then for alll<j<m, R{[i,|]] =
R[i,j]-min;; (c) Similarly, given columf, computemin, = min{R[i,j]} for all 1<i<m; (d) Then for
all 1<i<m, R[i,j] = R[i,j]-min; As this is done, all subtracted values (i.e.,rtheimum values)
are accumulated into another variadtgCost

4) Subsequently, the lower bound is givenlbg(v) = Ibc(u)+R]i,j]+adjCost.
4.2. Network on Chip Design
The problem of MP phylogenetic reconstruction usiimgnch-and-bound heuristics naturally
lends itself to parallelization using a divide-acmhquer approach by subdividing the solution-
space tree into independent subtrees. A PE compuotesubtree at a time and considers pruning
based on the best cost available from its peersthdss requires a good combination of
parallelism and inter-core communication, NoC pdesi an ideal platform owing to its inherent
parallel architecture, customizability of its card its efficient communication infrastructure.
We designed and implemented the PEs and the onednipnunication network for this NoC.
Two types of communication infrastructure were expill. One is a regular mesh network. The
other is a hierarchical four-way tree or quad-tidee remainder of this section details the design
of the PE, switches and the communication fabric.
4.1 PE Design

The PE has a pipelined architecture optimized twllgathe computation along an edge as per
the algorithm described in Sec. 3. Since the PEesaout the most computationally intensive
part of the whole operation, our attempt has beeoptimize its architecture to ensure that the

number of clock cycles required scales nicely wittteasing graph size (number of vertiaa,
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The PE has an integer datapath because breakpegiamcomputation for MP phylogenetic
reconstruction consists entirely of integer opereti The principal components of the PE are a
reduceblock and peripheral control logic, each of whigldescribed in detail below. We use the
short-formlg k to denotelog,k. The datapath consists of the following fields qumber of
verticesw: maximum edge weight).

a. X—the parent nodeusedg mbits

b. y — the child nodevf usedg mbits

c. LBC-the lower bound codgbg(u)) estimate at an edge; this requilgesn + Ig w + 1bits

d. EPC- the exact path cogb¢(u)+R[i,j]) determined so far; také&gm + Ig w + 1bits

e. TSP- the TSP adjacency matriR)( flattened. Its representation takelg w bits.

f. VLST- the current list of vertices traverseaf‘(lg m) + 1 bits are required to store this

field.

g. CC-the candidate children at every stage; takbgs
As is evident, the datapath complexity of the handwisO(nf). In our approach, breakpoint
distances can range from 0 to 3, which is the rarigbe valid weights we used. We used the
weight 4 to denote a non-existent edgexorA different range of weights just changes the
number of bits fow. A block diagram of the PE is shown in Figure &£8bsequent references to
the sub-blocks in parentheses (@.gp, etc.) in this sub-section refer to this figure.
4.1.1. Reduction block. This block p) carries out the matrix reduction operation détiin
Sec. Based on the algorithm, the run-time of theramon is a function of the matrix size, i.e.,
O(mf). This operation consumes the maximum fractioheftotal time required for an edge
computation. Hence, a significant amount of timsased by suitably optimizing its design. Our

implementation achieve®(m) cycle time by using micro-level parallelism insitlee reduce
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Figure 4.3. Internal architecture of processingnelet (PE) for edge reduction.

block. This has the effect of drastically reducthg total time as well as providing better time-
scalability with increasing input graph sine,

The matrix is reduced using the new values afdy in stage2(seePeripheral control logic
below for details on the operations upto this stagel the adjacency coatljCostis obtained.
Figure 4.4 shows the architecture @duce block. The flattened TSP matrix is initially
reorganized into rows and columns in the compodenbted asnatrix. There arem rows andn
columns with each entry taking ug w bits. The register bankinval of width m*(Ilg w) is
initialized with a bit pattern representinginity (3'b100 as mentioned earlier).cAunteris used
as a state machine controller. There isresized bank of comparators that compare one element
from every row or column in every cycle. Minimumlw calculation for all rows and the same
for all columns taken cycles each. Additional three cycles are requitgdsubtraction of the
minimum values, for calculation of the finatjCostand for control operations for each case

(row and column blocks). The entire reduction openatakes2*(m+3) cycles to complete under
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the current implementation.

4.1.2. Peripheral control logic. The peripheral control logic is used for vertelesgon, cost
comparison and data management. The register loarikd first stage istagel which has the
same width as the datapath. The input control piaker initially switches to select the current
vertex data. Th€C field is computedq) from VLSTin m cycles in the worst case.

In the second stage, the candidate child usdoby scanningy] CC of stagel Again, this
requiresm clock cycles in the worst case. Using this candidhild,VLSTis updated (B) for the
child node in the graph. If it is not a leaf nod9, (the candidate child becomes the next child
node, while the current nodg ¢f stage) becomes the parent noxlef stage2 During the same
stage, the data pertaining to the best case obtaoefar is fetched intgtagel The input
multiplexer now selects the lowest cost daglalfal best cogtavailable to the PE at this time. At
this stageT SPof stagelgets the original TSP matrix.

The current value of the exact cost of thé patind so farEPC s updated by adding to it the
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Figure 4.4. Internal architecture of reduction klQe) for linear-time matrix reduction.

65



edge cost fronx to y in the original adjacency matrix. This is checleghinstglobal best cost
andreduceoperation is started only EPC is lower. The sum c&djCost(obtained fronreduce
operation) anEPC yields the lower bound codtBC, which is again compared with the best
cost found so far. [IEPC or LBC is larger than the currebest costthe tree is pruned (E), the
current child is aborted and the path through arothild is explored. The data @tagez2is
reloaded back tetagelwith the old value ok and a new calculation for the candidate child. If
LBC is smaller and we have not reached a leaf nodejalmperation (DFS) continues with the
new set of data. If we have hit a leaf node with.B& lower than the best cost globally found so
far, this value (newglobal best cotis sent to the switch to be communicated witrepfEs in
the network.

4.1.3 Memory. There are two logical divisions in on-chip memerglobal andlocal. However,

all memory is physically distributed across all PEse global memory in a PE stores the TSP
matrix that represents the subtree assigned toPBafThelocal memory is implemented as a
stack. During DFS, the new vertex data (path ogstex list) is pushed into the stack (Figure
4.3). The stack is full only when the leaf nodegached. If there is pruning (before the leaf node
is reached), the stack is popped. Every PE masiaedlocal memory stack.

A list of all subtrees to be computed is rnteimed in memory. Once each PE completes one
subtree reduction, it picks up the next availahlbt®e and removes it from the list. This is
achieved by maintaining a global array of flags amdutually exclusive semaphore.

4.2 Network Design
We explored two different kinds of network architee — a mesh, shown in Figure 4.5 (a) and a
qguad-tree, shown in Figure 4.5 (b). With increasggtem sizeN), the number of inter-switch

links in a mesh increases faster than that in al-tre. The expected volume of inter-PE
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communication in our application is relatively lokence, having fewer links in our network can
lead to potential savings in area and power withhmeurring a risk of network congestion.

The diameter of a mesh architecture increase®(slll) whereN is the sytem size or the
number of nodes (PEs). The same for a quad-treedses a®(logN). As thebest costis
written to all PEs except for the originating Pig tmode of communication for our application
involves some form of broadcast. Hence, the wasedop count is a linear function of the
diameter. It should be remembered that all linksraot of the same length in a quad-tree, where
links higher up the tree are longer and have gredgtay. Table 1 shows an estimate of the
number of clock cycles required per write in therst@ase in 65 nm CMOS technology with a
clock period of 400 ps. A quad-tree has an advantagr a mesh in terms of communication
latency forN>16. However, the key advantage of a quad-tree sdrom power savings because

the number of links and switches is drasticallyuesl. These comparisons are provided in Sec.

11 12 15 16

C]rigersie @ 1 swion Dtz swic

Figure 4.5. (a) Mesh NoC architecture (b) Quad-tde€ architecture.

67



A
f: To child
node
| InN_|
B ' o BufOut[C1]
) Bufin[C1]
L w )
i c . w L by [$)
p [ BufOut }wd—H—s o E—t
p — ” : o > * % % g 9 ,‘ >
y @ 2| 7o child
= Tochid | |G Bufin[P] @l 1 ode
E |nLOC node BufOut[P]
T N P ¢ — T B "
) . ufln[C3]
. . | | - S | . BufOut[C3]
<
i To parent node \ ; To child node
L v
@ (b)

Figure 4.6. Internal architecture of switch for g@@sh and
(b) quad-tree.

4.3 Switch Design

Different switches are designed for each of the metwork architectures explored. The switch
and the PEs run on the same system clock. Sincénave a pipelined (switch-to-switch)
communication technique, a globally synchronous Mo€s not pose a problem with scalability.
4.3.1. Mesh. A typical switch that is used on a mesh is shown in FiguBe(d). Input buffers
InN, InE, InS, InW receive data from four neighboring switches armiirbufferinLoc receives
data from the associated PE. There is a dedicatéidrBufOu) that provides data to the
network as well as to the associated PE.

Each set of input/output data consists of the $igla) Path Cost, (b) Vertex List and (c)
Transmission control bits. At every cycle, one oiirf transmission decisions are taken by the
Decision Making Unit (DMU) and the data is writterio an internal bufferi¢cal). The same is
transmitted out in the next cycle throughfOut The transmission control bits are as follows.

NOTX No valid transmission

NORETX No retransmission

DOTX New best cost from local PE; transmit

TRWL New best cost from other PE; transmit and uphbai@ PE

Figure 4.7 shows a timing diagram for a typicaliaion. It is to be noted that a switch
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receives data from each of its neighboring switdhesvery cycle but the transmission control
bits determine whether the data is valid for comsition or not. The data is considered if the
control bits arddOTXor TRWLbut not if they ar&NOTXor NORETX

4.3.2 Quad-tree. There are different levels of switches for thiswmk architecture. The leaf
level switches (refer to Figure 4.5(b)) are dendtgédthe next higher level L2 and so on. An L1
switch consists of five buffered input/output paiafin/BufOuj, four catering to the four leaf
PEs and the fifth to the parent switch. For arswitch and upwards, four children ports cater to
lower level switches and the parent port caterthéohigher level switch. The top level switch
has only four downlinks but no uplink. Each setirgdut/output data consists of the fields (a)
Path Cost, (b) Vertex List and (c) Update contib(UCB). The switch architecture is shown in
Figure 4.6(b).

UCBiis a flag to indicate whether the status of thia davalid JPDT) or invalid NOUP). The
receiving parent or child switch infers “no transeion” if UCB is set toNOUP. In every cycle,

the switch takes a decision based on the followalggrithm.

X X XXX
InX \\* >K *
InLoc k ~_ * *

|— . I
local X InX X\ Inloc X
I I I
BufOut X X {TRWL, local} XDOTX, local}

Transmit TRW— DOTX NORETX
Control Bits

InX is min. InLoc is min. local is min.

-+

Figure 4.7. Timing diagram showing typical scenaeoacountered in a mesh switch.
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LetC1, C2, C3 andC4 be the four (children) downlinks amtdbe the (parent) uplink and let
us define the sdt = {C1, C2, C3, C4, P}Let us suppose the best (lowest) c&%E, for a

decision cycle comes froi ¢ L i.e., PG <PC,Vj =i, jeL.Then, we have

BufOufk] «~ PCVk e L
UCHi] « NOUP UCH j] «UPDTVj #i,jeL
4.4 Communication Protocol

In the mesh architecture, every switch communicaiés its immediate neighbor and gets data
in every cycle from at most four neighboring swésh Based on the decision mechanism
described in the previous sub-section, the switabgs data oBufOutwith appropriate control
bits. The neighboring switches get this value wirtinput buffers in the next cycle. Hence, at
every cycle, data is sent in all four directions.

In the quad-tree, every switch communicatet ws four children and one parent in every
clock cycle. It receives data from its parent andibe or more of its children and takes a
decision on the lowest cost available to it thus@nce found, this data is placed on four output
buffers, except the direction it came from alonghvappropriateJCB. For the best-cost data to
propagate to the entire network, it has to go thhoa maximum oH hops wheré is given by

H =2*[log, N | (1)
Note thatH/2 is theheightof the tree. One important fact to keep in mindhat each hop
does not consume the same number of clock cycléeagire length varies at different levels.
The need for inter-PE communication arises whemréiqular PE checks against tgkbal
best cosbbtained so far and finds out that its local lwest is lower than the global best-cost. At
this stage, the PE should broadcast its newly oéthvalue to the whole network. One way to

implement this is to use flooding. However, thisuldolead to an unnecessary network
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congestion thereby affecting scalability. Therefave devised an improved alternative strategy
where a PEonditionally broadcastsalid data only if
a. lts local best-cost is worse than the global best-but it hasot yet participatedn the
broadcast of this global cost, or
b. Its local best-costs better than thglobal best-costcurrently available to the rest of the
network)andit hasnot been previously transmitted
The above scheme ensures elimination of redundawhmunication, thus reducing
communication overhead and power consumption witkcompromising on the correctness of

the answer.

4.5. Experimental Results

45.1 Experimental Setup

In order to completely model the performance of tleéwork on chip based platform, first a

multithreaded software suite was developed usihgepd library in C. The prime objective was

to model the communication events occurring duthmg entire solution for the TSP. Also, the

number of reductions performed by each individha¢ad was noted, along with the successful
write updates to the global best score. The powssightion by a single processing element is
directly proportional to the number of reductioressfprmed by it, and the number of reads and
writes of the global best cost location gives atimege of the network traffic event and the

interconnect power. The load balancing issue waseaded by first reducing the top few levels
serially, and then from the list of unsolved substethe individual subtrees were picked up by
the available threads. The number of levels redseedlly was set such that the list of available
subtrees (in that level) is much larger than thal toumber of threads. This is clearly shown in

Figure 4.8.
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Level 0

Level 2

Level 3 (m-1)*(m-2)*(m-3)

Figure 4.8. Diagram showing the number of subtgeggerated by “cutting” the solution-space
tree at different levels.

The performance evaluation of the NoC was carrigdrom the timing and power perspectives
during phylogenetic reconstruction with varyingalaets. Different parameters associated with
the NoC are as follows. The system sideis the number of PEs in the No€was set to 4, 16
and 64 for evaluating the performance of the No@ wcaling of system size. The number of
vertices in the input graph is denoted fay which determines the width of the datapath. In
practice, this value should be set to the numbegerfes shared by the input genomes. For
example, chloroplast genomes of potato, tomatondreht share 110 genes; hensel10 in this
case. In our experiments, we used two types oftidata: (a) multiple sets of synthetic genomes
with m=110 used for exhaustive system-wide parametridystand (b) two sets of real input
genomes (as explained in Sec. 5.3). Note thataheevofm affects the size of the datapath and
the memory requirements in the PE as per the dismusn Sec. 4. Since we have dealt with

three-median breakpoints, breakpoint distance cay between 0 and 3. Without loss of
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generality, the maximum weight has been taken to be 4 to indicat@r a non-existent edge.
As with m, this choice affects the datapath size but teseledegree.

The PEs and the switches in the NoC were implerdeloyesynthesizing Verilog RTL using
Synopsys Design Compiler and 65 nm library [3]. Thiyeelined design could sustain a clock
frequency of 2.5 GHz in the PEs and switches. Wais verified withm=110 and higher. Power
numbers for PEs and switches have been reported Synopsys Power Compiler using the
same library [3]. Interconnect characteristics wdetermined using Cadence Spectre. Wire
capacitance information extracted from layout waeduto determine delay and energy
dissipation of interconnects. Both mesh and quee-tarchitectures were considered for
performance evaluation.

GRAPPA [4] was used as the software benchmarls H standard and widely used serial
program for MP phylogenetic analysis. GRAPPA was on a quad-core 2.40 GHz Intel Xeon
E5530 processor with 16 GB of RAM. The run-time swad through GRAPPA served as the
basis in speedup calculations. Specifically, sppedeported are calculated as the ratio of
GRAPPA run-time over the total execution time orNaRE NoC.

5.2 Performance on synthetic data

Five synthetic data sets were generated and usegwts Each input consisted of three genomes
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with 110 genes each such timat110. Each data set was generated to have a diffeoenmon
subsequence length and hence different divergeRe@wise divergenced) is given by
subtracting the length of the longest common sulsace fromm. We have three values &ffor
each input. The standard deviation of the pairgigsergencesd;) was normalized by dividing it
by the mean|(;) and used as the divergence metfi=os/|15). This metric serves as a measure
of the skew among the three genomes and is madaryoacross the entire range of possible
values, thereby covering the entire range of thssipte input spectrum. Low values df
indicate that the genomes are equally far apagspective of the actual magnitude of the
breakpoint distance. A high value gfindicates that two genomes are closer to eaclr tthe
they are to the third. Five synthetic sets of thyeeomes each were generated such that the
values of4 in these inputs are 0.731, 0.498, 0.274, 0.1030a089 respectively; these inputs
were labeled SynData 73 SynData 50 SynData 27 SynData 10 and SynData 04
respectively. It is also to be noted that dhealues andli; increase as we move frolBynData_73

to SynData_04

5.2.1 Timing Performance. Figures. 4.9(a) and 4.9(b) show the total exenuiimes for NoCs

with system sized\) 4, 16 and 64 for all the synthetic inputs. Thialtexecution time includes
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Figure 4.10. (a) Absolute speedup over serial GRARP) Variation of speedup with skew of input data
on quad-tree NoC witN=16.



the total computation and communication cycles spethe NoC and the time required to load
the data on the NoC using PCI-X. It is interestingnote that the absolute run-times are heavily
dependent on the input data and the absolute @nees. Since the execution times are a
function of the bottleneck number of reductionsriear out by the PEs (see Sec. 5.4), the
execution times foBynData_10andSynData_04are orders of magnitude higher than those for
the other three inputs. This is because of thegelaabsolute divergences and hence larger
number of reductions performed by each PE. Ther®isnuch difference in the run-times on
mesh and quad-tree. This is because quad-tree teelpse only the write latency (as shown in
Table 1), which contributes a small fraction to tbil execution time in this case.

Figure 4.10 (a) shows the speedup over GRAPIgua quad-tree for these inputs. Since
speedup is the ratio of GRAPPAs serial run-timehte execution time on our design, the trends
in speedup and execution time are not identicasscdifferent inputs. For example, even though
execution time increases froBynData_1ao SynData_04or all system sizes, speedup is also
observed to increase because GRAPPASs run timeases by a larger factor. Speedup is also
dependent onf, which indicates that our design is able to acatdemedian computation of
genomes that are almost equally far apart (8ynPata_03 significantly more compared to the
case where two of the genomes are very close toaher (e.g.SynData_73R This observation
is more clearly demonstrated in Figure 4.10 (b)emshthe speedup on a quad-tree NoC with
N=16 is plotted against values 4f The best speedups of 1,24=4), 3,598 N=16) and 8,430
(N=64) are consistently obtained wiynData_04 Our results compare favorably with the
overall speedup of 417 or the application speedu®85 achieved by accelerating GRAPPA in
[5].

Note that the synthetic data encompass altmestiull range of possible inputs, with
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Figure 4.11. Full chip power consumption acrossouarinputs, network architectures and system
sizes

varying from 0.039 to 0.731. Biological inputs danon either end of the spectrum or anywhere
in between. In particular, as we mention againec.%.3, the two real genomic inputs that we
use havet values of 0.866 and 0.1092. It is also interestingote that we achieve significantly
higher speedups in the cases of genomes displayeajer absolute divergenc8yfData_10
and SynData_ O These are also the cases where even highly izptim software
implementations such as GRAPPA take very long titnesomplete. Our design provides better
speedup when there is a greater requirement arae gt be of more practical value.

5.2.2 Energy Performance. Several measures were used to evaluate the eperfpymance of
the NoC. The average full chip power consumptiannmi@sh and quad-tree NoCs fté=4, 16
and 64 is shown in Figure 4.11. It will again beiced that power consumption is a function of
the input data, especially ft=64. There is a slight advantage of quad-tree owesh in terms

of power efficiency. For example, a quad-tree N@Sdul chip consumes up to 5% less power
than that based on a mesh NoC. Note that the P&stimconfigurations have the same power
consumption and the savings come entirely fromctimamunication architecture. Higher levels
of network activity would lead to greater power isgg in the quad-tree. However, since the

execution time varies widely across inputs, onlw@oconsumption provides a partial picture. A
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Figure4.12. Full chip energy consumption across diffeneptits

Total energy consumption (Joule)

To

more accurate rubric is the total energy consumptstown in Figure. 4.12(a) and 4.12(b).
Although these figures show the advantage of quesl-bver mesh in terms of energy
performance, comparing only the communication gnegnsumptions in Figure. 4.13(a) and
4.13(b) further highlights this. Quad-tree consifiteoutperforms mesh by consuming around
75% less communication energy. Both average fulb gjower and total energy are input-
dependent and generally show a marked increaseimgtease in system siz&l)( The most
interesting observation on energy efficiency, hogvggan be seen from Figure. 4.14 (a) and 4.14
(b) that show the variation of the energy-delaydpicd (EDP) with system sizeéN) across all
inputs. EDP is observed ttecreasawith increasing system size for most inputs. Thisecause
the increase in energy consumption is compensatadebrun-time reduction, thereby showing
that parallelization is indeed energy-efficienthis case.

5.3 Performance on real genomic data

Two real genomic inputs were used to evaluate #répnance on biological data. Genomic
data were downloaded from the National Center fmtdghnology Information’s organellar
genome repository [6]. One inplREToWh consisted of the chloroplast genomesSofanum

tuberosum (potato, 141 genes)Solanum lycopersicunftomato, 130 genes) and@riticum

77



Total communication energy required

m SynData_73 SynData_50 SynData_27

N=4 (Mesh) N=4(Quad- N=16 (Mesh) N=16 (Quad- N=64 (Mesh) N=64 (Quad-
tree) tree) tree) N=4 (Mesh) N=4(Quad- N=16 (Mesh) N=16 (Quad- N=64 (Mesh) N=64 (Quad-
tree) tree) tree)

System size of NoC (N)

(a) (b)

Figure 4.13. Communication energy expended aciiffeseit inputs

9E-04 12 | 2
8.E-04 " SynData_10 2
7.E-04 3 |
6E-04 3 0 SynData_04 o
2 b1
_BE-04 > N ©
S4E-04 5 6 2
° N <
23E-04 — c3T ©
83 4 — o 8
: I 2 ~ .
2E-04 32 3 28 8 S 2 =
1.E-04 T B ™ 5 2 — @ S o © g o
[ l £ hat o a9 S = =
0.E+00 £ (=] o °© o (S]
3
=
(=]
'_

System size of NoC (N)

aestivum(bread wheat, 137 genes). The other inglAIlFe consisted of chloroplast genomes
of Chlamydomonas reinhardt{e unicellular green alga, 109 gend&achypodium distachyon
(purple false brome grass, an angiosperm, 133 pemrabAdiantum capillus-venerigblack
maidenhair fern, 130 genes). These genomes wepopessed with Mauve [7] in order to
determine the common genes. The valueg fur the inputs are 0.866 fétoToWhand 0.1092
for AlAnFe This is indicative of the fact th&®oToWhrepresents a skewed data set, with potato
and tomato being much closer to one another thagy #me to wheat. This is expected, as
evolutionarily potato and tomato are closely ralaa@d belong to the same genus. On the other
hand, AlAnFe represents a uniformly divergent scenario. Theedppes obtained with these
inputs forN=4, 16 and 64 are shown in Figure 4.9.(a) andl{b)vs the speedup correlation with
synthetic data having similar valuesbf

As mentioned in Sec. 5.1, speedup is calculatederial GRAPPA run-time divided by the
total execution time on the NoC. As explained lateBec. 5.4, the total execution time on NoC
is proportional to the bottleneck number of redutsi For example withi=16, the bottleneck

number of reductions fdPoToWhis 6,286 and that foAlAnFeis 46,958. The total execution
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times on a quad-tree NoC are 1.14 ms and 8.46 spectvely and have the same ratio. In
comparison, the GRAPPA run-times are 5.55 ms a@#@ 9.respectively. Next, we turn our
attention to the variation of speedup with increg§l. It can be seen from Figure 4.9 (a) that the
speedup ooToWhincreases from 1.77 to 12.98 as we incréagem 4 to 64. FOAIAnFe the
speedup increases from 643.99 to 2,261.99. Tableo®s the mean, standard deviation and the
maximum (bottleneck) number of reductions per PEPloToWhandAlAnFe It is evident that
speedup is inversely proportional to the maximurmiper of reductions per PE. Speedup also
varies inversely as the average number of redwstidren load is balanced among PEs. Finally,
in order to investigate the reason behind the widiéferent speedups obtained wioToWh
and AlAnFe we plot histograms (Figure. 4.14(a) and 4.14¢h))he number of reductions per
subtree for each of the inputs. The larger skéwfgr PoToWhis evident from a comparison of
the two histograms. Due to the higher skewPoToWh the best cost is obtained quickly and
most subtrees are pruned at the initial stageebbfieration, leading to few (< 10) reductions per
subtree. The lower skew BWAnFeleads to a more gradual update of the best castaltrees
are pruned to a lesser degree. Since the reddct@ohis shared by several subtrees in the latter

case, parallelization provides greater speedup.
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TABLE 4.1.REDUCTION STATISTICS FORPOTOWH AND ALANFE

N=4 N =64
Standard Standard
Average o M ax Average o M ax
_ deviation of ) ] deviation of _
reductions ] reductions | reductions , reductions
reductions reductions
per PE per PE per PE per PE
per PE per PE
PoToWh 15672.75 1847.57 17430 1942.73 194.71 2342
AlAnFe 69222 8558.69 79516 19496.84 1700.0 2261
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Figure4.14. Variation of energy-delay product across iapu

5.4 Performance tradeoffs

The PE that finishes its share of reduction contpurta last limits the performance of the entire
chip. The determining factor for this is the loastiibution among PEs, which is dependent on
input data. In our scheme, each PE picks a sulijre@mically from a common pool of available

uncomputed subtrees, once it has finished computsngwn subtree. This can happen either

when the PE has finshed computing the subtree sklialy or when it has pruned it. This

results in each subtree contributing to a differannhber of reductions and each PE computing a

different number of subtrees.
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Experiments showed that the load distribution agn®ks was more even when the
number of subtrees in the common pool was muchehigitan the number of PEs. For a graph
with m vertices, the solution-space tree with the stgmiode as root (level 0) hs-1)nodes at
level 1,(m-1)*(m-2)nodes at level Zm-1)*(m-2)*(m-3)nodes at level 3 and so on (Figure 4.7).
So it appears that “cutting” the tree at a loweelegenerates more subtrees, helping to balance
load and thereby ensure maximum achievable parsfieedup. Now, there is an overhead
involved in loading the entire set of subtreeshte thip using an interface like PCI-X. This
increases with the amount of data that needs toabeferred, which increases with the number
of subtrees. There is also a constant time ovdrimearred when each PE picks a subtree at run-
time. These overheads become prohibitively highnathe number of subtrees is large and they
mask the gains achieved in computation speedupe¥dved this tradeoff by chossing to “cut”
the tree at level 2, which generated 109*108 sebtesnd yet kept the overhead to a manageable
amount. Note that 109*108 is much larger than #ngdst system size (number of PEs64)

we experimented with, which led to a balanced ldiattibution.
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3.5. Summary

In this chapter we have proposed and implementedtwork on chip based hardware
accelerator for solving the TSP, which is the meamputation kernel for MP-phylogenetic
reconstruction. We have demonstrated significapravements in the performance as compared
to the currently existing solutions In terms of twnmunication network infrastructure, we had
considered mesh and quad-tree topologies, and shbaw quad-tree performs better in terms
of energy dissipation.

As part of this work, we had designed an architecof the reduce block, which solves
O(N?) computation inO(N) time, using micro-level parallelism. It can be coled that in
future, such a NoC based platform can be adoptedrfergy and time efficient computation of

scientific problems, which are NP complete.
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Chapter 5

Conclusions and Future Work
In this chapter, we summarize the contributions enedthis dissertation and point to the

possible future investigations emanating from tbgearch endeavor.

5.1 Conclusions
The advent of modern multi-core chips has openeggoggibilities of designing very efficient

hardware accelerators for various bio and scientdmputing problems. The primary challenges
in this direction being efficient partitioning oié¢ computational workload, scalability of the
solution, power dissipation and performance. Thegomcontribution of this thesis is the
design and performance evaluation of multi-coreedabardware accelerators for a suite of
biocomputing applications. Both the problems adsidsn this dissertation belong to the class
of combinatorial optimization, but sequence aligntmie intrinsically data intensive in nature,
whereas the breakpoint median in phylogenetic r&coction is compute intensive. For
sequence alignment work, we implemented a novelar&ton chip based solution, where both
the architecture of the processing elements aretcomnect infrastructure has been tailored
pertaining to the target application. Two differeptice and time optimal algorithms have been
considered in this respect, both inherently being §rain parallel. Due to the fine grain nature
of the computation, only a single integer is comicated at every communication stage. This
necessitates intelligent redesign of the traditicdeC switch. The proposed switch architecture
is simple yet effective, reducing the energy diasgm significantly. The entire communication
event, which is an all-to-all event, was dividedoimultiple steps, some of which involved
multi-hop communication. Unless long range links iatroduced, the multi-hop communication

consumes multiple clock cycles. It becomes proiibitin terms of performance as
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communication events become the bottleneck. Tremyrovery frequently and are directly
proportional to the length of one of the strings.achieve performance improvement, first long
range links were introduced, which reduced the touoasiderably but the power dissipation
increased a little.

In the phylogenetic reconstruction work, the pipal bottleneck has been memory, as
the recursive depth-first-search procedure req@iae@sg a complete matrix at every stage of the
computational search space. The alternate soligioe-computation of the cost metric at every
stage, which would incur significant penalty in énThe currently designed architecture handles
only genomes of maximum length 128, as it usessthek implementation for storing the
matrices. In its current state, the design has bleae not in terms of the accommodating large
genomes, but rather addressing the problem of istgdgrger number of smaller genomes. This
is currently a more challenging problem for biokigi as study of bacteria and virus (with
smaller number of genes but large number of taxa BPecoming unmanageable, as these

organisms perform mutation and cross-over opersiieny frequently.

5.2 Future Directions
This research can be extended not just in thetdreof porting new scientific applications

and reducing the power dissipation and offeringdbgberformance compared to the existing
solutions, but in exploring efficient architecturanovations towards even higher levels of
integration and superior performance. The reseaetaining to this thesis can be carried

forward in the following directions:
5.2.1 Sequence Analysis

Our research has also laid out a design templatethi® future development of new

acceleration models for other related applicationbioinformatics. For instance, the BLAST
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algorithm [1], which is an approximation method foemputing sequence alignments, is a
popular tool for detecting performing sequence lolsga searches. Owing to large sequence
database sizes, accelerating BLAST search opesaisoperformance-critical. Nevertheless, the
underlying algorithm in BLAST also uses the Smitlaé&fman algorithm, while also
implementing a prefiltering process prior to compgtalignment using a string look-up table
data structure. Consequently, an off-shoot of esearch could be that NoC can be explored as a
viable means for acceleration for BLAST as wellfde such a project is undertaken, however,
a feasibility study should be conducted to asse#is the quality degradation that is possible due
to approximation, along with the performance imphet to implementing additional string data

structures.

5.2.2 Prototyping
The study undertaken in this thesis is principaliypulation based, where a software driver

has been used for providing the event statistidshamdware has been designed and synthesized
using Synopsys Design Vision. To reinforce the ifigd of this work, real prototyping is an
inevitable direction. The recent multi-core plather such as Intel single chip cloud computer
comprising of 48 cores [2], and Tilera NoC are tsuzh network on chip based real platforms
where the applications can be prototyped. The sirgylip cloud incorporates technologies
intended to scale multi-core processors to 100scarel beyond, such as an on-chip network,
advanced power management technologies and sujppdrhessage-passing.” Architecturally,
the chip resembles a cloud of computers integrated silicon. The novel many-core
architecture includes innovations for scalabilityteérms of energy-efficiency including improved
core-core communication and techniques that ersdftevare to dynamically configure voltage

and frequency to attain power consumptions from\W2f@® as low as 25 W.
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The Tilera platform consists of an array of 16 @ Heneral-purpose processor cores, where
each core is 64-bit VLIW processor tiles. Thereaighree-way pipeline with up to three
instructions per cycle. Amongst the many otheresalfeatures, it claims a power efficient inter-
tile communication and also idle tiles can be pubtv power sleep mode.

Once our applications are efficiently ported tostheplatforms, it can truly unveil the
potential of NoC based solutions compared to theeroexisting hardware platforms. For

complete study, exhaustive experimentation indiresction is need.

5.2.3 Maximum likelihood & Bayesian Inference
The other probabilistic strategies used by bioksgi®r phylogenetic reconstruction are

Maximum Likelihood (ML) are Bayesian Inference. Baxch in the direction of hardware

acceleration can be extended by considering tret@get applications.

5.2.4 Hardware multithreading
For the sequence alignment case, in both the phpaifix and anti-diagonal algorithms,

there is a computation phase followed by a comnatioic phase. The performance can be
further improved if these interleaved operatiorns @xecuted using multiple hardware threads.
This would eliminate any idle state, where eithee ttomputation or the communication
resources are waiting for the other phase to finigtis can be considered as a simple latency
hiding strategy, which can significantly improveethmortized speedup. The challenge in this
approach is the increase in the complexity of thecgssing element, which significantly

increases the area overhead.
5.3 Summary

NoC has emerged as an enabling solution for intiegraf huge number of embedded cores

on a single die. As many hardware NoC platformsrene becoming a reality; the scientific
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computing domain, especially computational biolagyy completely leverage the potential of
this novel technique by efficiently partitioningetiproblem, and mapping it to these platforms.
We have demonstrated about how custom designingp@ &an achieve several orders of

performance improvement over other existing hardveaceleration schemes.
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