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SCALING ACTIVITY DISCOVERY AND RECOGNITION TO LARGE,

COMPLEX DATASETS

Abstract

by Parisa Rashidi, Ph.D.
Washington State University

May 2011

Chair: Diane J. Cook

In the past decade, activity discovery and recognition has been studied by many

researchers. However there are still many challenges to be addressed before deploying

such technologies in the real world. We try to address some of those challenges in

order to achieve a more scalable solution that can be used in the real world.

First, we introduce a novel data mining method called the continuous Varied

order Sequence Mining method (DVSM). It is able to discover activity pattern se-

quences, even if those patterns are disrupted or have varied step orders. We further

extend DVSM into another data mining method called the Continuous varied Order

Multi threshold activity discovery method (COM). COM is able to handle issues such

as rare events across time and space. Furthermore, for discovering patterns in a real

time manner, we extend COM as a stream mining method called StreamCOM.
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In addition to discovering activity patterns, we propose several methods for

transferring discovered patterns from one setting to another. We propose methods for

transferring activity models of one resident to another, activity models of a physical

space to another, and activity models of multiple spaces to another. We also show a

method for selecting the most promising sources when multiple sources are available.

In order to further expedite the learning process, we also propose two novel

active learning methods to construct generic active learning queries. Our generic

queries are shorter and more intuitive and encompass many similar cases. We show

how we can achieve a higher accuracy rate with fewer queries compared to traditional

active learning methods.

All of our methods have been tested on real data collected from CASAS smart

apartments. In several cases, we also tested our algorithms on various other datasets.
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CHAPTER 1. INTRODUCTION

A man’s errors are his portals of discovery.

— James Joyce

With remarkable recent progress in computing power, networking, and sensor

technology, we are steadily moving into the world of ubiquitous computing where tech-

nology recedes into the background of our lives. Using sensor technology combined

with the power of data mining and machine learning techniques, many researchers are

now working on smart environments that can respond to the needs of the residents

in a context aware way [Cook and Das, 2004].

For example, researchers are recognizing that smart environments can be of

great value for monitoring and tracking the daily activities of individuals with memory

impairments, as the ability to consistently complete Activities of Daily Living (ADLs)

is necessary to live independently at home [Reisberg et al., 2001]. The need for

the development of such smart home technologies is underscored by the aging of

the population, the cost of formal health care, and the importance that individuals

place on remaining independent in their own homes [Rialle et al., 2008]. Today,

approximately 10% of the world’s population is over the age of 60, by 2050 this

proportion will have more than doubled. Moreover, the greatest rate of increase is
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amongst the “oldest old”, people aged 85 and over [Pollack, 2005]. Technologies such

as smart homes can effectively help such an aging generation to stay independently

at home, while lowering costs for the families and the government.

Besides assisted living, smart homes can be quite useful for providing more

comfort, security and automation for residents. Some of the efforts for realizing

such smart environments have been demonstrated in actual physical testbeds such

as CASAS [Rashidi and Cook, 2009b], MavHome project [Cook et al., 2003], Gator

Tech Smart House [Helal et al., 2005], iDorm [Doctor et al., 2005], and Aware Home

[Abowd and Mynatt, 2004]. A couple of such smart home testbeds are specified in

Table 1.1.

A smart environment typically contains many highly interactive devices, as well

as different types of sensors. The data collected from various sensors can be used by

data mining and machine learning techniques to discover residents’ frequent activity

patterns and to recognize such patterns later [Heierman and Cook, 2003, Liao et al.,

2005]. Recognizing residents’ activities allows the smart environment to respond in

a context-aware way to the users’ needs [Gopalratnam and Cook, 2007, Rashidi and

Cook, 2008, Yiping et al., 2006, Wren and Munguia-Tapia, 2006].

Our studies have been carried out as part of the CASAS Project [Rashidi and

Cook, 2009b]. We carry out our studies using various ambient sensors. Because our

study participants are uniformly reluctant to allow video data or to wear sensors, our
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Project By Environment

CASAS Washington State University Home/Lab

Aware Home Georgia Tech Home

iSpace/iDorm University of Essex Home

MARC University of Virginia Home

Gator Tech University of Florida Home

PlaceLab MIT Home

Tiger Place University of Missouri Lab

Table 1.1: Available smart home testbeds.

data collection consists of passive sensors such as motion sensors. Figure 1.1 shows

a number of sensors that have been used in our studies1. In the following sections,

we will discuss several challenges faced in activity discovery and recognition in smart

homes, and we will discuss our proposed methods to address some of these challenges.

1Courtesy of Aaron Crandall

http://ailab.eecs.wsu.edu/casas/
http://awarehome.imtc.gatech.edu/
http://cswww.essex.ac.uk/iieg/idorm2/
https://smarthouse.med.virginia.edu/
http://www.icta.ufl.edu/gt.htm
http://architecture.mit.edu/house_n/placelab.html
http://www.tigerplace.net/
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(a) Door sensor. (b) Temperature sensor.

(c) Item sensor. (d) Motion

sensor.

(e) Water sensor.

Figure 1.1: Various sensors used in our experiments.

1.1 Activity Discovery and Recognition Challenges

While smart environments offer many societal benefits, they also introduce new

and complex machine learning challenges. A typical home may be equipped with

hundreds or thousands of sensors. Because the captured data is voluminous and rich

in structure, the learning problem is a challenging one.

There is a variety of machine learning methods for discovering, modeling and

recognizing activities. Though current supervised activity recognition methods can
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recognize activities in some simplified settings, they still face many challenges. A few

such challenges include how to avoid the time consuming step of data annotation, how

to detect similar activities despite differences in the order of steps or experiencing

disruptions, and how to discover activities in real time settings. The goal of this

dissertation is to address these challenges by designing new machine learning and

data mining methods. In an effort to address some of the those challenges, we propose

several new activity discovery and recognition methods, as summarized in Table 1.2.

Method Addressed Challenges

Sequential Data Mining Data annotation, disrupted patterns

Stream Data Mining Real time settings, disrupted patterns

Activity transfer learning Scaling to more than a single environment

Active activity learning Small labeled datasets

Table 1.2: Our proposed methods and the main challenges addressed by those methods.

Figure 1.2 shows the relation between our proposed methods in more detail.

In the following sections, we provide a more detailed description of each one of the

proposed solutions.
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DVSM COM StreamCOM
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Selection

Template 
based Active 
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Active 
Learning

Proposed 
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Figure 1.2: Contributions details.

1.2 Sequential Data Mining

Despite the fact that the majority of the proposed activity recognition methods

in the literature are supervised [VG et al., 2008], using a supervised approach in the

real world can be problematic. Supervised methods assume that we are provided with

labeled training examples from a set of predefined activities (see Figure 1.3). However,

the assumption of consistent pre-defined activities might not hold in reality. Due to

physical, mental, cultural, and lifestyle differences not all individual perform the same



7

set of tasks [Wray and Laird, 2003]. Even for a specific pre-defined activity, different

individuals might perform it in vastly different ways, making it impractical to rely

on a list of pre-defined activities. As a result, data needs to be annotated for each

individual and each task. On the other hand, annotating and hand labeling data is

a very time consuming and laborious task. Despite tremendous research efforts, still

very few labeled data sets are available for the community to use. This is another

indication of the need for unsupervised approaches.
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Figure 1.3: Supervised activity recognition methods require the training dataset to be

“manually” labeled. Based on the labeled training dataset, a number of

patterns are extracted and learned. The learned patterns are later used to

recognize activities.

On the other hand, unsupervised methods require no training examples and
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no labeled data, rather they automatically look for interesting patterns in the data

(see Figure 1.4). Therefore unsupervised approaches seem to be more suitable for

activity recognition in a normal day-to-day setting. By using unsupervised learning

algorithms to discover interesting sensor event patterns, smart environment users

can better understand activities that occur in the environment. These interesting

patterns can be tracked over time and also used to perform trend detection and

anomaly detection in the same environment. As a result, insights can be gained and

behavioral baselines can be established without even relying upon labeled information

and supervised learning algorithms.

&'()*)(+,-'./0)().01234546789:;:9<=2994>?@
A?:9:25 B292 A?C:?:94 D9>42E FC B2C2

&G(.HI()'&'()*)(+J)K'.*-L+
Figure 1.4: Unsupervised activity recognition methods require no labeled training dataset.

They rather automatically extract activity patterns from the unlabeled train-

ing dataset, and use those discovered patterns to recognize activities.
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There have been a number of unsupervised activity discovery and recognition

methods introduced by researchers [Gu et al., 2009, Pei et al., 2007, Wyatt et al.,

2005, Huynh and Schiele, 2006]. Most of these methods do not discover discontinu-

ous patterns or patterns whose events may appear in varying order from occurrence

to occurrence. We note that human activities are by nature erratic and order varying,

thus a realistic approach to activity discovery and recognition needs to find discon-

tinuous patterns as well as pattern variations.

We introduce two novel unsupervised activity discovery algorithms based on

sequence mining methods to address the above issues. Our first method, called

Discontinuous Varied-order Sequential Mining method (DVSM) is able to find fre-

quent sequential patterns that may be discontinuous and might have variability in

the ordering.

As a next step, we introduced COM, which stands for a Continuous, varied

Order, Multi Threshold activity discovery method. COM not only discovers discon-

tinuous patterns and their variations, but is also able to better handle real life data

by dealing with the rare event problem. The rare event problem is the problem of

varying frequencies for activities performed in different regions of the space. COM

is able to find a higher percentage of frequent patterns, and thus achieve a higher

accuracy. By pruning irrelevant patterns based on mutual information, COM retains

only relevant variations of patterns, reducing the number of irrelevant variations.
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1.3 Stream Activity Mining

Though using our unsupervised methods is a step forward for practical activity

discovery and recognition in the real world, there are still some unanswered challenges.

Our DVSM and COM algorithms do not take into account the streaming nature of

data, nor the possibility that the patterns might change over time. In a real world

situation, we have to deal with a potentially infinite and unbounded flow of data

(see Figure 1.5). The discovered activity patterns can also change over time, and the

algorithms need to detect and respond to such changes.

Activity 
RecognitionLabeled 

Activity 
Patterns

Infinite Stream of Dafa

Automatic 
Activity 

Discovery

Figure 1.5: Stream mining methods for activity recognition can automatically detect pat-

terns in data “over time”, rather than as a one time initial step.
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In order to address this issue, we adopt the tilted-time window approach [Gi-

annella et al., 2003] to discover activity patterns over time. The tilted-time window

approach finds frequent itemsets using a set of tilted-time windows, such that the

frequency of the item is kept at a finer level for recent time frames, and at a coarser

level for older time frames. We extended our COM method into a streaming version

based on using the tilted-time window. Our proposed method, called StreamCOM,

allows us to find discontinuous varied-order patterns in “streaming” sensor data “over

time”. StreamCOM represents the first reported stream mining method for discover-

ing human activity patterns in sensor data over time.

1.4 Activity Transfer Learning

Previously we mentioned how to address some of the activity recognition chal-

lenges using unsupervised methods. Unfortunately a problem with all unsupervised

approaches is that these methods usually require a large amount of unlabeled data

in order to be able to find interesting patterns2. Collecting a large amount of data

results in a lengthy data collection phase and a prolonged deployment process.

As a remedy, we can leverage the recognition and discovery process by using

2The same applies to semi-supervised methods which assume that at least we have access to a
large pool of unlabeled data, besides a few labeled data points.
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knowledge of discovered activities in previous spaces. Traditionally, each environ-

mental situation has been treated as a separate context in which to perform learning.

This means that providing labeled data and training the learning algorithm must

occur anew with each new environment, and the new environment will not benefit

from learning performed in other similar environments.

Here we propose several methods for transferring the knowledge of learned ac-

tivities from a source space to a new target space.

Our first method transfers activity models from one resident to another resident

in the same physical space (see Figure 1.6a). We call this method Multi Resident

Transfer Learning (MRTL).

The next method transfers activities from one source physical space to another

target physical space where the residents, the space layouts, and the sensors can

be different (see Figure 1.6b). We call this method the Home to Home Transfer

Learning method (HHTL).

The third method transfers activities from multiple source physical spaces to

a new target physical space (see Figure 1.6c). We call this method Multi Home

Transfer Learning (MHTL).

Finally the last method selects the best subset of source domains from multiple

available domains (see Figure 1.6d). It provides a method for measuring the difference

between activities performed in two different spaces. It should be noted that except
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(a) Multi resident transfer learning method.

Activity 
RecognitionLabeled 

Activity 
Patterns

Small Initial Dataset Infinite Stream of Dafa

Activity 
Pattern 

Mapping

Target Home

Source Home

(b) Home to home transfer learning method.
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(c) Multi home transfer learning method.
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(d) Domain selection.

Figure 1.6: Activity transfer learning methods.



14

for the MRTL method, we assume that the space layouts, the residents, and the

sensors can be different between source and target.

1.5 Active Activity Learning

There are many occasions where we have access to a small labeled dataset, as

well as a pool of unlabeled instances. In such cases, we can take advantage of com-

bining supervised methods or activity transfer methods with active learning [Lewis

and Gale, 1994]. Active learning allows us to tailor the activity recognition process

to the target space by querying the user for a few activity labels that we are most

uncertain about (see Figure 1.7).

This approach of asking for only a few labeled instances is in contrast to super-

vised methods which require the whole dataset to be annotated beforehand, without

imposing any criteria for choosing the data instances.

We propose two novel active learning methods. In contrast to traditional active

learning methods, our methods do not query for the label of a specific instance. Rather

we build generic and more intuitive queries by aggregating many similar cases into a

single short query. Our first method uses a heuristic feature selection method. We

call our second method RIQY, standing for a Rule Induced active learning QuerY

method, as it employs rule induction for building more generic queries. Both of
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Figure 1.7: Active learning method allows the system to ask for the labels of activities

about which it is most uncertain.

our methods are able to achieve higher accuracy rates with fewer queries. We also

compare our active learning methods to a traditional uncertainty sampling approach

[Lewis and Gale, 1994].
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CHAPTER 2. RELATED WORK

Be as a tower firmly set; Shakes not its top for any blast that blows.

— Dante Alighieri

In recent years, many approaches have been proposed for activity discovery and

recognition in different settings. In the following subsections, first we will provide

a general overview of activity recognition methods. Next, we will review supervised

activity recognition methods in more detail. Then unsupervised methods and in

particular stream mining methods are explained. This discussion is followed by a

literature overview of transfer learning methods and active learning methods.

2.1 Activity Recognition

Activity recognition is the problem of recognizing human activities from low

level sensor data. The activity recognition algorithm is usually given a sequence

of sensor readings. The algorithm also might be provided with annotated sensor

events, where each sensor event is labeled with its corresponding activity label. The

sensor readings (the sensor events) are collected from various types of sensors, such

as ambient sensors, wearable sensors and more recently from personal devices and
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Timestamp Sensor ID Label

7/17/2009 09:52:25 M004 Personal Hygiene

7/17/2009 09:56:55 M030 Personal Hygiene

7/17/2009 14:12:20 M015 None

Table 2.1: Example sensor data. Here M004, M030 and M015 denote sensor IDs.

cell phones. The learning algorithm usually preprocesses data to convert it to a more

high level format. Table 2.1 shows several example sensor readings from our testbeds.

As depicted in Table 2.1, each sensor event can be part of a labeled activity,

such as the first and the second sensor events. It also can have no activity labels, such

as the third sensor event. The goal of an activity recognition algorithm is to predict

the label of a sensor event or a sequence of sensor events, e.g. “Personal Hygiene” for

M004−M030 sequence.

In the past decade, researchers have proposed many different approaches for

activity discovery and recognition. Activity discovery and recognition has also been

explored in various settings. Methods have been proposed for recognizing nurses’

activities in hospitals [Sánchez et al., 2008], recognizing quality inspection activities

during car production [Ogris et al., 2008], monitoring elderly adults’ activities [Cook

and Schmitter-Edgecombe, 2009], studying athletic performance [Ahmadi et al., 2006,
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Michahelles and Schiele, 2005], gait analysis in diseases such as Parkinson [Salarian

et al., 2004, Pentland, 2004, Lorincz et al., 2009], emergency response [Lorincz et al.,

2004] and monitoring unattended patients [Curtis et al., 2008].

Activity discovery and recognition approaches not only differ according to the

deployed environment, but also with respect to the type of activity data that is

collected, the model that is used for learning the activity patterns, and the method

that is used for annotating the sample data. In the following subsections, we will

explain each aspect in more details.

2.1.1 Activity Data

Activity data in smart environments can be captured via different mediums de-

pending on the target environment and also target activities. Activity data at home

can be collected using ambient sensors such as infrared motion sensors to track the

motion of residents around home [Rashidi and Cook, 2009b]. Additional ambient

sensors such as temperature sensors, pressure sensors, contact switch sensors, water

sensors and smart powermeters can in addition provide other type of context infor-

mation. For recognizing residents’ interaction with the key objects, some researchers

have used object sensors such as RFID tags that can be placed on key items [Tapia

et al., 2004b, Philipose et al., 2004]. Another type of sensor that is used to recognize
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activities, is wearable sensors such as accelerometers [Maurer et al., 2006, Yin et al.,

2008]. Also more recent research uses mobile phones as carryable sensors [Zheng

et al., 2010]. The advantage of wearable and mobile sensors is their ability to cap-

ture activity data in both indoor and outdoor settings. Their main disadvantage is

their obtrusiveness, because user is required to carry the sensor all the time. Besides

ambient sensors and wearable sensors, surveillance cameras and other types of image

capturing devices such as thermographic camera have been used for activity recog-

nition [Stauffer and Grimson, 2000]. However users are usually reluctant to using

cameras for capturing activity data due to their privacy concerns [B.K. Hensel and

Courtney, 2006]. Another limitation for using cameras is that activity recognition

methods based on video processing techniques can be computationally expensive.

2.1.2 Activity Models

The number of machine learning models that have been used for activity recog-

nition varies almost as greatly as the types of sensor data that have been used.

Naive Bayes classifiers have been used with promising results for activity recog-

nition [Brdiczka et al., 2005, Tapia et al., 2004b, van Kasteren and Krose, 2007].

Other researchers have employed other methods such as decision trees, Markov mod-

els, dynamic Bayes networks, and conditional random fields [Cook and Schmitter-
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Edgecombe, 2009, Liao et al., 2005, Philipose et al., 2004, Sánchez et al., 2008, Maurer

et al., 2006]. There also have been a number of works in the activity discovery area

using unsupervised methods [Gu et al., 2009, Wyatt et al., 2005, Huynh and Schiele,

2006]. We will provide a more in-depth overview of these methods in Section 2.2 and

Section 2.3.

2.1.3 Activity Annotation

Another aspect of activity recognition is the method that is used to annotate the

sample training data. Most of the researchers have published results of experiments

in which the participants are required to manually note each activity they perform at

the time they perform it [Liao et al., 2005, Tapia et al., 2004b, Philipose et al., 2004].

In other cases, the experimenters told the participants which specific activities should

be performed, so the correct activity labels were identified before the sensor data was

even collected [Cook and Schmitter-Edgecombe, 2009, Gu et al., 2009, Maurer et al.,

2006]. In one case, the experimenter manually inspected the raw sensor data in order

to annotate it with a corresponding activity label [Wren and Munguia-Tapia, 2006].

Researchers have also used methods such as experience sampling [Tapia et al., 2004a],

where subjects carry a personal digital assistant (PDA) as self-report devices.
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2.2 Supervised Methods

There have been a number of supervised methods for activity recognition. Su-

pervised methods assume that we have access to labeled data. In other words, the

learning algorithm is presented with a number of training examples, each labeled with

its corresponding activity label. In the case of activity recognition, the supervised

learning algorithm learns a mapping from a sequence of sensor events to a correspond-

ing activity label, using pre-labeled sequences as training data.

The simplest type of classifiers used for activity recognition is the Naive Bayes

classifier. Naive Bayes classifiers have been used with promising results for activity

recognition [Brdiczka et al., 2005, Tapia et al., 2004b, van Kasteren and Krose, 2007].

Naive Bayes classifiers identify the activity that corresponds with the greatest prob-

ability to the set of sensor values that were observed. Despite the fact that these

classifiers assume conditional independence of the features, the classifiers yield good

accuracy when large amounts of sample data are provided.

Other researchers, including Maurer et al. [Maurer et al., 2006], have employed

decision trees to learn logical descriptions of the activities. This approach offers the

advantage of generating rules that are understandable by the user, but it is often

brittle when high precision numeric data is collected. Also a number of researchers

have used other methods such as support vector machines [Brdiczka et al., 2009] and
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back propagation neural networks [Favela et al., 2007].

The most popular type of activity recognition method is based on using Markov

chains and hidden Markov models [Rabiner, 1990]. A Markov Model is a statistical

model of a dynamic system. It models the system using a finite set of states, each

of which is associated with a multidimensional probability distribution over a set of

parameters. The system is assumed to have a Markovian property, i.e. the current

state depends on only a finite history of previous states. Earlier approaches [Cook

and Schmitter-Edgecombe, 2009] use Markov chains to recognize activities from sensor

event traces that were segmented into non-overlapping sequences. A separate Markov

model is learned for each activity and the model that best supports a new sequence

of events is selected as the activity label for the sequence.

Similarly, a hidden Markov model (HMM) is a statistical model that is assumed

to be Markovian. However, hidden Markov models take the assumption that the un-

derlying data is generated by a stochastic unobservable process. HMMs traditionally

perform well in cases where temporal patterns need to be recognized, such as human

activity recognition [Hu et al., 2009, Cook and Schmitter-Edgecombe, 2009, Sánchez

et al., 2008]. Researchers also have used variations of hidden Markov models for hu-

man activity recognition, such as the hidden semi-Markov model [Duong et al., 2005],

relational Markov networks [Liao et al., 2005], and the hierarchical hidden Markov

model [Kawanaka et al., 2006].
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Hidden Markov models are a special case of more general dynamic Bayesian

networks (DBNs) [Ghahramani, 1998]. A DBNs explicitly represents conditional in-

dependencies in the variables, therefore it allows for a more efficient and accurate

inference and learning procedure. Brand et al. [Brand et al., 1997] have introduced a

simple DBN extension of HMMs called “the coupled hidden Markov model”, which is

used for recognition of simultaneous human actions. They also proposed a multi-layer

version to learn the model of office activity [Oliver et al., 2002]. Quantitative tempo-

ral Bayesian networks (QTBNs) as another type of DBN have been used by Colbry

et al. [Colbry, 2002] for monitoring the steps of a plan from sensor observations.

Another more flexible alterative to HMM is conditional random fields [Lafferty

et al., 2001]. As discriminative models, CRF try to find the conditional probabilities

instead of the joint probabilities. CRFs also have been used by a number of researchers

for activity recognition [Vail et al., 2007, Sminchisescu et al., 2005, Sukthankar and

Sycara, 2006].

2.3 Unsupervised Methods

Unlike supervised methods, unsupervised methods do not require any labeled

data. Instead, they try to automatically find interesting patterns in unlabeled data.

Activity discovery methods also as unsupervised methods try to find interesting ac-
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tivity patterns in sensor data.

A number of activity discovery methods have been proposed by different re-

searchers. Gu et al. [Gu et al., 2009] have used the notion of emerging patterns to

look for frequent sensor sequences that can be associated with each activity as an

aid for recognition. Heierman et al. [Heierman and Cook, 2003] propose a method

for episode discovery from activity data. Mahajan et al. [Mahajan et al., 2004] use

a finite state machine network that learns in an unsupervised mode the usual pat-

terns of activities in a scene over long periods of time. In the recognition phase,

the usual activities are accepted as normal and deviant activity patterns are flagged

as abnormal. Schiele et al. [Schiele, 2006] propose a method for detecting activity

structure using low dimensional Eigenspaces. Vahdatpour et al. [Vahdatpour et al.,

2009] address the problem of activity and event discovery in multi dimensional time

series data by proposing a method for locating multi dimensional motifs in time series.

Similarly Zhao [Zhao et al., 2010] propose a framework for discovering activity motif

features for CRF-based classification. Huynh et al. [Huynh and Schiele, 2006] use a

combination of discriminative and generative methods to achieve less supervision for

activity recognition. Barger et al. [Barger et al., 2005] use mixture models to develop

a probabilistic model of behavioral patterns. Dimitrov et al. [Dimitrov et al., 2010]

utilize background domain knowledge about the user activities and the environment

in combination with probabilistic reasoning methods in order to build possible expla-
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nation of the observed stream of sensor events. Previously, we also have proposed

a method for simultaneous discovery of frequent and periodic patterns from activity

data [Rashidi and Cook, 2009b].

Also a number of methods have been proposed based on mining activities’ def-

initions from the web. Perkowitz et al. [Perkowitz et al., 2004] mine definitions of

activities in an unsupervised manner from the web. Similarly Wyatt et al. [Wy-

att et al., 2005] view activity data as a stream of natural language terms. Activity

models are then considered as mappings from such terms to activity names, and are

extracted from text corpora such as the web. Palmes et al. [Palmes et al., 2010] also

mine the web to extract the most relevant objects according to their normalized usage

frequency. They develop an algorithm for activity recognition and two algorithms for

activity segmentation with linear time complexities.

2.3.1 Sequence Mining

A sequence s is a set of ordered items denoted by 〈s1, s2, · · · , sn〉. In our activity

recognition problems, a sequence is ordered by its timestamps. The task of discovering

all the frequent sequences can be quite challenging due to its exponential search space.

Over the past decade, a number of sequence mining methods have been pro-

posed. The first sequence mining algorithm called GSP was introduced by Agrawal



26

and Srikant [Agrawal and Srikant, 1995]. The algorithm was based on the Apriori

approach and the generation-pruning principle [Agrawal et al., 1993]. GSP makes

several passes over the database to count the support of each itemset and to generate

candidates. Next, it prunes the itemsets with a support count below the minimum

support. Another similar approach is PSP which uses a prefix-based tree and again

is based on the generation-pruning approach [Masseglia et al., 1998].

SPADE is another algorithm which only needs three passes over the database

in order to discover sequential patterns [Zaki, 2001]. Ayres et al. [Ayres et al., 2002]

proposed an algorithm called SPAM which unlike previous approaches uses a vertical

bitmap representation of database. Wang et al. [Wang and Han, 2004] propose

BIDE, an efficient algorithm for mining frequent closed sequences without candidate

maintenance. Pei et al. [Pei et al., 2007] propose a constraint-based sequential pattern

mining method. Finally, FREESPAN [Han et al., 2000] and PREFIXSPAN [Pei et al.,

2001] are among the first algorithms to consider a projection method for mining

sequential patterns.

2.3.2 Stream Mining

As mentioned in Section 2.3.1, sequential pattern mining has been studied for

more than a decade [Agrawal and Srikant, 1995] and many methods have been pro-
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posed for finding sequential patterns in data [Agrawal and Srikant, 1995, Pei et al.,

2001, Wang and Han, 2004, Masseglia et al., 1998]. Compared to the classic problem

of mining sequential patterns from a static database, mining sequential patterns over

data streams is far more challenging. In a data stream, new elements are generated

continuously and no blocking operation can be performed on the data. Despite being

more challenging, with the rapid emergence of new application domains over the past

few years the stream mining problem has also been studied in a wide range of different

application domains. A few such application domains include network traffic analy-

sis, fraud detection, Web click stream mining, power consumption measurements and

trend learning [Garofalakis et al., 2002].

For finding patterns in a data stream, approximation and using a relaxed sup-

port threshold is a key concept [Chang and Lee, 2003, Manku and Motwani, 2002].

The first approach was introduced by Manku et al. [Manku and Motwani, 2002] based

on using a landmark model and calculating the count of the patterns from the start

of the stream. Later Li et al. [fu Li et al., 2004] proposed methods for incorporating

the discovered patterns into a prefix tree. They also designed methods for regression-

based stream mining algorithms [Teng et al., 2003]. More recent approaches have

introduced methods for managing the history of items over time [Giannella et al.,

2003, Teng et al., 2003]. The main idea is that one usually is more interested in

recent changes in more detail, while older changes are preferred in coarser granularity
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in long term.

There also have been several methods for finding sequential patterns over data

streams, including the SPEED algorithm [Räıssi et al., 2005], methods for finding

approximate sequential patterns in Web usage [Marascu and Masseglia, 2006], a data

cubing algorithm [Han et al., 2005] and mining multidimensional sequential patterns

over data streams [Räıssi and Plantevit, 2008]. All of these approaches consider data

to be in a transactional format. However, input data stream in a smart environment

is a continuous flow of unbounded data.The sensor data has no boundaries separating

different activities or episodes from each, and it is just a continuous stream of sensor

events over time. To deal with this problem, we extend the DVSM method to group

together the co-occurring events into varied-order discontinuous activity patterns.

2.4 Transfer Learning

The process of exploiting the knowledge gained in one problem and applying

the learned knowledge to a different but related problem is called transfer learning

[Caruana, 1997, Raina et al., 2006]. It is a hallmark of human intelligence, and has

been vastly studied in the literature [Pan and Yang, 2010]. Researchers have studied

transfer learning in different computational settings such as reinforcement learning

[Asadi and Huber, 2007], genetic algorithms [Taylor et al., 2007], neural networks
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[Thrun, 1996], Bayesian models [Roy and Kaelbling, 2007] and many other methods

[Pan and Yang, 2010].

Though transfer learning has been vastly studied in the literature, it has been

applied to activity discovery and recognition in very few cases. Zhang et al. [Zheng

et al., 2009] have developed a model for mapping different types of activities to each

other (e.g. sweeping to cleaning) by learning a similarity function via a Web search.

Kasteren et. al [van Kasteren et al., 2008] describe a simple method for transferring

the transition probabilities of Markov models for two different spaces. They only

transfer the transition probabilities, and most other activity features such as the

activity’s structure and related temporal features is ignored, as they assume the

structure of HMMs is pre-defined.

Transfer learning methods can be categorized into several subcategories depend-

ing on the availability of data in the source and target space. Of particular interest for

us is the domain adaptation category which is discussed in the following subsection.

2.4.1 Domain Adaptation

Domain adaptation is a type of transfer learning which assumes that we have

access to labeled data in a source space, but no labeled data is available in a target

space. The objective of domain adaptation is to develop learning algorithms that
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can be easily transferred from one domain to another. For example in the case of

sentiment analysis, one might use reviews in the Amazon.com books category in order

to classify users’ reviews in its DVD category. In our scenario, domain adaptation

is appealing because it allows for a practical activity recognition solution in smart

environments.

Domain adaptation has been recently studied by many researchers, and var-

ious methods have been proposed. Most of the domain adaptation methods have

been proposed in the context of natural language processing problems. A number of

such methods include the structural correspondence learning (SCL) by Blitzer et al.

[Blitzer et al., 2006], feature replication (FR) by Daumé III et al. [Daumé, 2007], and

adaptive support vector machines (A-SVM) by Yang et al. [Yang et al., 2007].

Domain adaptation has also been generalized to multiple source domains, and

several multiple source domain adaptation methods have been proposed. Crammer

et al. [Crammer et al., 2008] proposed a method by assuming that the distributions

of multiple sources are the same and label change is only due to the noise. Luo et

al. [Luo et al., 2008] proposed to maximize the prediction consensus from multiple

sources. Mansour et al. [Mansour et al., 2009], propose a method of multiple source

domain adaptation by assuming that the target function is a mixture model. Duan

et al. [Duan et al., 2009] showed a method based on smoothness assumption using

support vector machines, called Domain Adaptation Machine (DAM). They assume
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that in addition to the unlabeled data, one also has access to limited labeled data

from the target domain.

In our proposed methods, we assume that we only have access to limited “unla-

beled” target data, to achieve a fast practical solution in real world. This is in contrast

to the above proposed methods which assume that we have access to ample amounts

of unlabeled data from target domain. We also assume that the source distributions

are different. One can imagine that activities performed in different environments by

different residents will not have the same distribution.

2.5 Active Learning

A variety of active learning approaches have been proposed during the past

decade [Settles, 2009, Tomanek and Olsson, 2009]. The simplest form of active learn-

ing is the uncertainty sampling method which was introduced by Lewis and Gale

[Lewis and Gale, 1994]. Uncertainty sampling first labels all the unlabeled instances

using a classifier. Then it chooses the most uncertain instance and asks the oracle for

its label. Other researchers have extended this method to multi-class classification

problems by using uncertainty measures such as the entropy measure [Hwa, 2004]. It

should be noted that the uncertainty sampling method can select the outliers, as it

ignores the underlying distribution and the outliers as isolated points can be highly
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uncertain.

Another type of active learning method is the committee based active learning

method. It constructs a committee of classifiers and selects an unlabeled example that

causes the maximum disagreement among the classifiers [Seung et al., 1992, Freund

et al., 1997, McCallum and Nigam, 1998]. Similar to the committee based method

is the co-testing method which trains two classifiers on two uncorrelated views of

data [Muslea et al., 2000]. Version space reduction methods also discard areas of the

hypothesis space that have no direct effect on the error rate [Tong and Koller, 2000].

Other query strategy approaches include maximum expected gradient length

[Settles and Craven, 2008], maximum expected error reduction [Roy and McCallum,

2001], and maximum variance reduction [Zhang and Oles, 2000].

More recently, density weighted methods have been proposed [Xu et al., 2003,

Nguyen and Smeulders, 2004, Xu et al., 2007, Settles and Craven, 2008]. Density

weighted methods balance the uncertainty of a sample with its representativeness

according to the underlying data distribution. These methods ask for the label of an

uncertain instance which is also similar to the other unlabeled instances. As density

weighted methods sample from the maximal density regions, they perform well with

minimally labeled data. They are also better able to deal with the outlier problem

[Donmez et al., 2007]. Settles and Craven [Settles and Craven, 2008] have shown that

if the proximities are pre-computed and cached, then the computational complexity
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of those methods is no different than the traditional active learning methods.

There are a number of active learning frameworks that resemble our generic

query approach. Batch mode active learning [Brinker, 2003, Guo and Schuurmans,

2008] generates queries in groups instead of a single instance at a time. However

batch mode active learning still requires the oracle to label “all” of the instances in

a batch and does not reduce the set of similar queries to a generic query.

The multiple instance active learning method also groups several instances to-

gether [Dietterich et al., 1997, Settles and Craven, 2008]. The group is labeled negative

if the oracle labels all the instances in the group as negative, but it is labeled positive

if at least one of the instances is marked positive. Again the oracle has to label all

the instances instead of a generic query.

Druck et al [Druck et al., 2008] proposed a feature labeling method where a

single feature is queried for its label. For example, in a baseball vs. hockey text

classification problem, the presence of the word “puck” is a strong indicator of hockey.

As this method is selecting one feature at a time, it can be said that it is a specific

case of our generic query method.

Du et al. [Du and Ling, 2010] also proposed a method for grouping several

instances together. It does not take into account the actual data distribution as

it groups synthetic data points together. It randomly generates a fixed number of

synthetic data points around an informative instance selected by an uncertainty sam-
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pling method. As pointed out by others [Lang, 1995], synthetic data points might not

exactly reflect the actual data distribution, and might result in adding the outliers.
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CHAPTER 3. SEQUENCE MINING

All truths are easy to understand once they are discovered; the point is to discover

them.

— Galileo Galilei

In this chapter, we will explore the use of unsupervised methods for activity

discovery. The advantage of unsupervised methods over the conventional supervised

methods is that the unsupervised methods do not need any labeled data, instead they

can automatically discover activity patterns in sensor data.

In the following subsections, first we will provide a brief introduction. Then

we will explain two of our proposed sequential data mining methods called DVSM

[Rashidi et al., 2010] and COM [Rashidi and Cook, 2010c]. We also present the results

of our experiments based on DVSM and COM in the following sections.

3.1 Introduction

As previously mentioned in Section 1, the ability to track and recognize activi-

ties in a smart environment is one of the vital functionalities of the smart environment.

For example, to function independently at home, individuals need to be able to com-
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plete Activities of Daily Living (ADLs) such as eating, dressing, cooking, and taking

medicine [Reisberg et al., 2001]. As pointed out before, the generally accepted ap-

proach for activity recognition is using a supervised machine learning method which

needs labeled examples of typical activities.

As one might imagine, a number of difficulties arise with a supervised approach.

First, there is an assumption that each individual performs most, or all, standard

activities in a consistent pre-defined manner in their home environments. This is

certainly not always the case. For example, while an individual may regularly eat

meals, they may go out to restaurants for the majority of their meals, which would

make tracking this activity challenging for a smart home. Even for a single common

activity that is performed in a monitored environment, different individuals might

perform it in vastly different ways, making the reliance on a list of pre-defined activ-

ities impractical due to the inter-subject variability. In addition, the same individual

might perform even the same activity in different ways. This calls for methods which

can also deal with intra-subject variability.

Second, tracking only pre-selected activities ignores the important insights that

other activities can provide. For example, Hayes, et al. [Hayes et al., 2007] found

that variation in the overall activity level at home was correlated with mild cognitive

impairment. This activity level was not restricted to predetermined activities but

was related to the total activity level in the monitored environment. This highlights
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the fact that it is important to recognize and monitor all activities that an individual

regularly performs in their daily environments.

Third, to track a predefined list of activities, a significant amount of training

data must be labeled and be made available to the machine learning algorithm. In-

dividuals perform activities differently due to physical, mental, cultural, and lifestyle

differences [Wray and Laird, 2003]. Therefore, sample data needs to be collected and

labeled for each individual. Unfortunately, collecting and labeling such sensor data

collected in a smart environment is an extremely time-consuming task. If the indi-

vidual is asked to participate by keeping track of their own activities over a period of

time, the process is additionally obtrusive, laborious, and prone to self-report error

[Szewcyzk et al., 2009].

We introduce two unsupervised methods for discovering and tracking activities

in a smart environment to address the above issues. The first method is called the

Discontinuous Varied-order Sequence Mining method (DVSM). It is able to find fre-

quent patterns that may be discontinuous and might have variability in the ordering,

thereby addressing the intra-subject and inter-subject variability issues. The second

method is called COM, which stands for a Continuous, varied Order, Multi Thresh-

old activity discovery method. COM not only discovers discontinuous patterns and

their variations, but is also able to better handle real life data by dealing with dif-

ferent frequencies/sensors problem. COM is able to find a higher percentage of the
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frequent patterns, and thus achieves a better discovery and recognition accuracy.

The unsupervised nature of our models provides a more automated approach for

activity recognition than is offered by previous approaches, which take a supervised

approach and annotate the available data for training. Compared to traditional meth-

ods for activity recognition which solely utilize HMMs or other models for recognizing

labeled activities, our approach first “discovers” interesting patterns of activity, and

then recognizes these discovered activities to provide a more automated approach.

3.2 DVSM

We propose DVSM as a unique mining method for discovering activity patterns

which may be discontinuous and might have variability in the ordering. As a result,

we are able to address the intra-subject variability issue. Because we discover activity

patterns that are common for each individual instead of using pre-selected activities,

we are also able to address the issue of inter-subject variability. We employ activity

clustering to group the patterns into activity definitions, where the cluster centroids

represent the activities that will be tracked and recognized. In the next step, we cre-

ate a boosted version of a hidden Markov model to represent the activities and their

variations, and to recognize those activities when they occur in the smart environ-

ment. By recognizing activities as they occur, the smart home can determine when
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the activities occur, and perform analysis on their timing to determine long-term

trends and assess activity variability. Our DVSM method requires no annotation and

no input from the participant. As a result, it represents a fully-automated approach

to performing activity tracking. The architecture of our method is shown in Fig. 3.1.

Figure 3.1: Main components of DVSM.

In the following subsections, we detail our approach. Section 3.2.1 explains the

discovery of activities using DVSM and then clustering methods. Section 3.2.2 de-

scribes how discovered activities can be recognized using the HMM model. Finally in

section 3.2.3 we will present the results of our experiments for scripted ADL activities,

scripted interleaved ADL activities, and also long-term daily resident activities.
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3.2.1 Discovering Activities

The first step of our algorithm is to identify the frequent and repeatable se-

quences of sensor events that comprise our smart environment’s notion of an activity.

Once we identify the activity and specific occurrences of the activity, we can build a

model to recognize the activity and begin to analyze the occurrences of the activity.

But how then do we discover these activities? By applying frequent sequential pattern

mining techniques we can identify contiguous, consistent sensor event sequences that

might indicate an activity of interest. As pointed out in Section 2.3.1, many meth-

ods have been proposed for mining sequential data. These methods include mining

frequent sequences [Agrawal and Srikant, 1995], constraint-based mining [Pei et al.,

2007], and episode discovery [Heierman and Cook, 2003]. One limitation of these

approaches is that they do not discover discontinuous patterns, which can appear

in daily activity data due to the erratic nature of human activities. For example,

when an individual prepares a meal, the steps do not always follow the same strict

sequence; rather, their order may be changed and be interleaved with steps that do

not consistently appear each time.

Ruotsalainen et al. [Ruotsalainen and Ala-Kleemola, 2007] introduce their Gais

algorithm for detecting interleaved patterns using genetic algorithms, but this is a

supervised learning approach that looks for matches to specific pattern templates.
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Other approaches have been proposed to mine discontinuous patterns but they have

difficulty finding hybrid continuous-discontinuous patterns [Pei et al., 2001, Zaki et al.,

1998] and have difficulty finding patterns whose order may vary from one occurrence

to another [Chen et al., 2002].

Given that we want to discover sequential patterns that may be discontinu-

ous and have variability in the ordering, another possible approach is to cluster the

sensor events. Keogh et al. [Keogh et al., 2003] claim that the clusters that result

from processing streaming time series data are essentially random. However, time

series and sequence clustering algorithms have shown to be effective in constrained

situations. For example, sequence mining algorithms have been successfully used in

bioinformatics to discover related gene sequences [Malde et al., 2003]. The limitation

of clustering algorithms for our problem is that we do not want to cluster all of the

data points, but only those that are part of an activity sequence which is likely to

occur frequently and with some degree of regularity or recognizability.

Because both sequence mining and clustering algorithms address a portion of our

problem, we combine these two methods into an activity discovery method to identify

frequent activities and cluster similar patterns together. Specifically, we apply our

own frequent sequence mining algorithm DVSM combined with a clustering algorithm

to identify sensor event sequences that likely belong together and appear with enough

frequency and regularity to comprise an activity that can be tracked and analyzed.
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Discovering frequent discontinuous sequences

Our activity discovery method performs frequent sequence mining using DVSM

to discover frequent patterns, and then groups the similar discovered patterns into

clusters. DVSM can automatically discover patterns of resident’s activities, even

if the patterns are somehow discontinuous or have different event orders across their

instances. Both situations happen quite frequently while dealing with human activity

data. For example, consider a “meal preparation activity”. Most people will not

perform this activity in exactly the same way each time, rather some of the steps or

the order of the steps might be changed (variations). Even one person will perform

this differently different times (e.g., heating up oatmeal versus making Thanksgiving

dinner). In addition the activity might be interrupted by irrelevant events such as

answering the phone (discontinuous). As a more concrete example, consider instances

{b, x, c, a}, {a, b, q}, and {a, u, b}. DVSM can extract the pattern 〈a, b〉 from those

instances despite the fact that the events are discontinuous and have varied orders.

It should be noted that our algorithm is also able to find continuous patterns by

considering them as patterns with no discontinuity.

Our approach is different from frequent itemset mining because we consider

the order of items as they occur in the data. Unlike many other sequence mining

algorithms, we report a general pattern that comprises all frequent variations of a

single pattern that occur in the input dataset D. For general pattern a we denote the
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ith variation of the pattern as ai, and we call the variation that occurs most often

among all variations of a the prevalent variation, ap. We also refer to each single

component of a pattern as an event (such as a in the pattern 〈a, b〉).

To find these discontinuous order-varying sequences from input data D, DVSM

first creates a reduced dataset Dr containing the top α most frequent events. Next,

DVSM slides a window of size 2 across Dr to find patterns of length 2. After this

first iteration, the whole dataset does not need to be scanned again. Instead, DVSM

extends the patterns discovered in the previous iteration by their prefix and suffix

events, and will match the extended pattern against the already-discovered patterns

(in the same iteration) to see if it is a variation of a previous pattern, or if it is a

new pattern [Rashidi and Cook, 2009b]. To facilitate comparisons, we save general

patterns along with their discovered variations in a hash table.

To see if two patterns should be considered as variations of the same pattern, we

use the Levenshtein (edit) distance [Levenshtein, 1966] to define a similarity measure

sim(A,B) between the two patterns. The edit distance, e(A,B), is the number of

edits (insertions, deletions, and substitutions) required to transform an event sequence

A into another event sequence B. We define the similarity measure based on the edit

distance as in Equation 3.1.

sim(A,B) = 1− (
e(A,B)

max(|A|, |B|)) (3.1)
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At the end of each iteration, we prune infrequent variations of a general pattern,

as well as infrequent general patterns. We identify general patterns as interesting if

their compression value according to Equation 3.2 is above the compression threshold

C. Similarly, a variation i of the pattern is considered as interesting if its compression

value according to Equation 3.3 is above the variation compression threshold Cv. Here

DL computes the description length of the argument, which can be computed as the

number of bits required to encode data D using an optimal encoding. Also Γ refers

to pattern continuity, as will be described shortly.

c(a) =
DL(D) ∗ Γa

DL(a) + DL(D|a)
(3.2)

c(ai) =
(DL(D|a) + DL(a)) ∗ Γai

DL(D|ai) + DL(ai)
(3.3)

We transform the compression value c to be in range of [0..1] via the so-called

softmax scaling technique [Pyle, 2005], as in Equation 3.4.

s(c) =
1

1 + exp(c)
(3.4)

Our approach to identifying interesting patterns aligns with the minimum de-

scription length principle [Rissanen, 1978] which advocates that the pattern which

best describes a dataset is the one which maximally compresses the dataset by re-

placing instances of the pattern by pointers to the pattern definition. However, since
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we allow discontinuities to occur, each instance of the pattern needs to be encoded

not only with a pointer to the pattern definition, but also with a continuity factor, Γ.

The discontinuity of a pattern instance is calculated as the number of bits required

to express how the pattern varies from the general definition.

To understand what the continuity function measures, consider a general pattern

〈a, b, c〉 as shown in Fig. 3.2. An instance of the pattern is found in the sequence

{a, b, g, e, q, y, d, c} where symbols “g e q y d” separate the pattern subsequences

{a, b} and {c}. Though this sequence may be considered as an instance of the general

pattern 〈a, b, c〉, we still need to take into account the number of events that appear

between subsequences {a, b} and {c}. In terms of calculating a pattern’s compression,

discontinuities increase the description length of the data because the way in which

the pattern is broken up needs to be encoded.M N O P Q M Q O N R S N O T U V W Q M X P M N Y OM N T U V W Q O
Figure 3.2: A small dataset containing pattern 〈a, b, c〉.

The continuity between component events, Γe, is defined for each two consec-

utive events in an instance. For each frequent event e′, we record how far apart (or

separated, denoted by se′) it is from a preceding frequent event in terms of the num-

ber of events that separate them in D (in the above example, sc = 5). Then Γe(e
′),
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the event continuity for é, is defined as in Equation 3.5.

Γe(é) =
1

se′ + 1
(3.5)

The more the separation that exists between two frequent events, the less will

be the event continuity. Based on event continuity, the instance continuity Γi reflects

how continuous its component events are. For an instance j of a variation ai, Γi(a
j
i )

will be defined as in Equation 3.6 where |aj
i | is the length of aj

i . Here k ranges over

the length of the instance.

Γi(a
j
i ) =

1

|aj
i |

|aj
i |

∑

k=1

Γe(k) (3.6)

The continuity of a variation, Γv, is then defined as the average continuity of

its instances. Γv(ai) is defined as in Equation 3.7, where nai
shows the total number

of instances for variation ai.

Γv(ai) =
1

nai

nai
∑

j=1

Γi(a
j
i ) (3.7)

The continuity, Γg, of a general pattern g, is defined as the weighted average

continuity of its variations. Γg is defined according to Equation 3.8, where the conti-

nuity for each ai is weighted by its frequency fai
and na shows the total number of

variations for general pattern a.



47

Γg(ai) =

∑na

i=1 Γv(ai) ∗ fai
∑na

i=1 fai

(3.8)

Building on this definition of continuity, we can replace Γ in Equation 3.2 and

Equation 3.3. Patterns that satisfy the compression threshold are flagged as inter-

esting, as are variations that satisfy the variation compression threshold. The rest

of the patterns and variations are pruned. Every iteration, we also prune redun-

dant non-maximal patterns; i.e., those patterns that are totally contained in another

larger pattern. This considerably reduces the number of discovered patterns. We con-

tinue extending the patterns by prefix and suffix until no more interesting patterns

are found. A post-processing step records attributes of the patterns, such as event

durations.

Clustering sequences into Groups of Activities

The second step of our algorithm is to identify pattern clusters that will repre-

sent the set of discovered activities. Though the mining stage groups together similar

variations of a pattern, this is based solely on structural similarity and common sensor

events. Therefore, similar patterns activating a different set of sensors will be consid-

ered as separate patterns, even if those patterns exhibit a high degree of similarity

in start times, duration and occurrence locations. To remedy this problem, we use

a clustering algorithm. The clustering algorithm groups patterns as a result of their

structure, start time, duration and regional similarity. In the clustering step, not only
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do we consider structural similarity as a measure of similarity, but we also take into

account the start time similarity, duration similarity and regional similarity. Using

clustering also addresses the problem of frequent pattern discovery where too many

similar patterns are generated, which makes it difficult to analyze the true underlying

major salient ideas.

Specifically, our algorithm groups the set of discovered patterns P into a set of

clusters A such that each group of patterns representing a specific activity is assigned

to one cluster. The resulting set of cluster centroids represent the activities that we

will model, recognize, and track. Though our algorithm uses a standard k-means

clustering method [Hartigan and Wong, 1979], we still need to define a method for

determining cluster centroids and for comparing activities in order to form clusters.

A number of methods have been reported in the literature for sequence clustering,

such as the CLUSEQ algorithm by Yang et al. [Yang and Wang, 2002] and the ROCK

algorithm by Noh et al. [Noh et al., 2006]. The difference between their approach

and ours is that they consider purely symbolic sequences with no features attached

to them. In contrast, sensor event sequences are not simply strings, but each entry

in the sequence also has associated features such as temporal information that need

to be considered during the discovery process.

Two methods that are commonly used for comparing the similarity of sequences

are edit distance [Levenshtein, 1966] and longest common subsequence (LCS) [Se-
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queira and Zaki, 2002] for simple sequences. In addition, Saneifar et al. [Saneifar

et al., 2008] proposed a similarity measure for more complex itemset sequences based

on the number of common items. These methods are not sufficient to address our

clustering problem. This is because while the methods do satisfy our definition of an

activity as a sequence of events, they do not process the temporal information that

is encoded in our sensor event data nor do they handle the special cases that occur

in our application such as reasoning about ordering information. As a result, we

refine these existing methods to apply them to our smart environment sensor event

sequences.

The patterns discovered by DVSM are composed of sensor events. In the clus-

tering algorithm the pattern is composed of states. States correspond to the pattern’s

events, but are enhanced to include additional information such as the type and dura-

tion of the sensor events. In addition, we can combine several states together to form

a new state (we call it an extended state). We combine all consecutive states corre-

sponding to the sensors of the same type to form an extended state. For example,

if a motion sensor in the kitchen is triggered several times in a row without another

sensor event interrupting the sequence, the series of identical motion sensor events

will be combined into one event with a longer duration. This allows our algorithm to

have a more compact representation of activities and to allow similar activities to be

more easily compared. We refer to the extended list of states for a pattern p as E(p).
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To calculate the similarity between two activities X and Y , we compute the

distance between their extended state lists E(X) and E(Y ) using our general edit

distance to account for the state information and the order mapping. In particular,

we compute the number of edit operations that are required to make activity X

the same as activity Y . The edit operations include adding a step or deleting a

step (traditional edit distance), re-ordering a step (order distance), or changing the

attributes of a step (for this application step attributes include the event duration

and event frequencies). The general edit distance eg(X,Y ) for two patterns X and

Y can be defined based on a combination of the traditional edit distance (e(X,Y )),

the order distance(eo(X,Y )), and the attribute distance (ea(X,Y )) between X and

Y , as calculated in Equation (3.9), where we refer to the additional term added to

the traditional edit distance as ∆.

Note that this similarity metric is different from the one used in the previous

section because state information such as event duration and ordering is taken into

account.

eg(X,Y ) = e(X,Y ) + eo(X,Y ) + ea(X,Y )

= e(X,Y ) + ∆(X,Y )

= e(X,Y ) +
∑

x∈E(X)
y∈E(Y ),m(x)=y

∆(x, y)

(3.9)

It should also be noted that there will be multiple possible mappings between
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the states of the two activities X and Y , and one mapping will lead to the shortest edit

distance (the optimal mapping). To find the optimal mapping for a state x ∈ E(X)

(denoted by m(x)), the value of ∆(x, y) is computed for each possible mapping of

x→ (y ∈ E(Y )); the state y is chosen to minimize ∆(x, y) as in Equation (3.10).

m(x) = argminy(∆(x, y))

= argminy(eo(x, y) + ea(x, y))

(3.10)

The attribute distance between two states x and y is calculated as the sum of

distances between individual attributes. An important attribute that can help us

determine similarity is temporal information attribute (e.g. duration). The order

distance between the two states x and y is defined as in Equation (3.11) where pos(x)

shows the index of state x in the corresponding list of states E(X).

eo(x, y) = | pos(x)

|E(X)| −
pos(y)

|E(Y )| | (3.11)

Based on the above descriptions, we can rewrite the term ∆ in (3.9) as in (3.12):

∆ =

∑

x eo(x,m(x)) + ea(x,m(x))

max(|E(X)|, |E(Y )|) (3.12)

The general edit distance gives us a measure to compare activities and also

to define cluster centroids. The cluster centroid for each cluster is defined as the

activity that has the highest degree of similarity with all the other activities in the
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same cluster, or equivalently the lowest edit distance to all the other activities in the

cluster. Each cluster representative represents a class of similar activities, forming a

compact representation of all the activities in the cluster. The activities represented

by the final set of clusters are those that are modeled and recognized by the CASAS

smart environment.

It should be noted that currently the number of clusters is provided to the

clustering algorithm. However, alternative methods can be used to determine the

number of clusters during runtime, by forming incremental clusters until no more

change can be perceived, as proposed in the literature [Sugar et al., 2003, Milligan

and Cooper, 1985, Yang and Wang, 2002, Noh et al., 2006].

3.2.2 Recognizing Activities

Once the activities are discovered for a particular individual, we want to build a

model that will recognize future executions of the activity. This will allow the smart

environment to track each activity and determine if an individual’s routine is being

maintained. As described earlier, researchers have exploited the use of probabilistic

models for activity recognition with some success for pre-defined activities. In our

approach, we make use of a hidden Markov model to recognize activities from sensor

data as they are being performed. Each model is trained to recognize the patterns
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that correspond to the cluster representatives found by our algorithm in previous

steps.

As mentioned in Section 2.2, a Markov Model (MM) is a statistical model of a

dynamic system, which models the system using a finite set of states. Because we are

processing data that is collected in real homes in which activities may be interrupted

or interleaved, this type of approach would not be as effective. For this task, we

employ a hidden Markov model. As with a Markov chain, the conditional probability

distribution of any hidden state depends only on the value of a finite number of

preceding hidden states. In other words, the observable variable at time t, namely

xt, depends only on the hidden variable yt at that time slice.

We can specify an HMM using three probability distributions: the distribution

over initial states Π = {πk}, the state transition probability distribution A = {akl},

with akl = p(yt = l|yt−1 = k) representing the probability of transitioning from state

k to state l; and the observation distribution B = {bil}, with bil = p(xt = i|yt = l)

indicating the probability that the state l would generate observation xt = i. We

can find the most likely sequence of hidden states given the observation in Equation

(3.13) and by using the Viterbi algorithm[Viterbi, 1967].

argmaxx1...xt
P (y1, ..., yt, yt+1|x1:t+1) (3.13)

Though HMMs can prove to be useful in predicting activity labels, sometimes
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they make a very slow transition from one activity to another. For example, consider a

case where a HMM is currently in some state y1 as the most likely activity, but the next

sensor event belongs to some other activity y2. It will take the HMM several sensor

events to slowly decrease the probability of activity y1 and increase the probability of

activity y2. This problem is heightened when residents act in a natural manner and

interweave multiple activities. To remedy this problem we use an event-based sliding

window that limits the history of sensor events that the model remembers at any

given time. The probability values calculated previously are flushed out whenever

the model starts processing a new window.

For activity recognition, we use a voting multi-HMM model as a boosting mech-

anism. Boosting and other ensemble learning methods attempt to combine multiple

hypotheses from a number of learning algorithms into a single hypothesis [Meir and

Rätsch, 2003, Schapire and Singer, 1999, Freund and Schapire, 1995]. While the value

of boosting for classification has been shown, research in the application of boosting to

sequence learning has been comparatively limited [International, 1999, Dimitrakakis

and Bengio, 2004]. We construct multiple HMMs and recognize activities by combin-

ing their classifications using a voting mechanism. To generate an activity label L for

a particular sensor event x, we apply the Viterbi algorithm to the sliding window of

events that ends in event x for each HMM and choose the activity that receives the

highest number of votes. For each individual HMM we let the hidden states represent
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the possible activities and we encode observable states to represent sensor values.

The multiple HMMs in the multi-HMM model represent alternative variations of the

patterns. Specifically, the first HMM represents the first variation of all patterns (one

hidden state per pattern), the second HMM represents the second variation of pat-

terns, and so on. The activity label, L(x), is calculated as in Equation (3.14) where

Pk(x, Li) shows the probability of assigning label Li to x by the k-th HMM. In this

equation n is the number of HMMs.

Lm(x) = argmaxi(

∑n

k=1 Pk(x, Li)

n
) (3.14)

As an example of our model, Fig. 3.3 shows a portion of an individual HMM

for activity data collected in one of the CASAS smart apartments. The probabilis-

tic relationships between hidden nodes and observable nodes, and the probabilistic

transitions between hidden nodes, are estimated by the relative frequency with which

these relationships occur in the sample data corresponding to the activity cluster.

Given an input sequence of sensor events, our goal is to find the most likely

sequence of hidden states, or activities, which could have generated the observed

event sequence. We use the Viterbi algorithm [Viterbi, 1967] for each HMM to iden-

tify this sequence of hidden states, one hidden state at a time, and then using the

described voting mechanism, we identify the most likely hidden state for the multi-

HMM based on input from all individual HMMs (see Fig. 3.4). The multi HMM is
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Figure 3.3: A section of an individual HMM, representing the nth variation of patterns.

The ovals represent hidden states (i.e., activities) and the rectangles represent

observable states. Values on horizontal edges represent transition probabili-

ties aij between activities and values on vertical edges represent the emission

probability bkl of the observable state given a particular current hidden state.

built automatically using the output of our discovery and clustering algorithm.

3.2.3 Experimental Results

We hypothesize that our algorithm will accurately identify activities that are

frequently performed in a smart environment. We also hypothesize that the algorithm
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Figure 3.4: A multi HMM consists of n HMMs. It uses a voting mechanism to choose the

final output.

can be used to track the occurrence of these regular activities. We validate these

hypotheses here using data collected in a physical smart environment.

Experiment Testbed

The testbed for validating our algorithms was a three-bedroom apartment lo-

cated on the Washington State University campus as part of the CASAS smart home

project. As shown in Fig. 3.5, the smart apartment testbed includes three bedrooms,
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one bathroom, a kitchen, and a living / dining room. The apartment is equipped with

motion sensors positioned on the ceiling approximately 1 meter apart throughout the

space. In addition, we have installed sensors to provide ambient temperature read-

ings, and custom-built analog sensors to provide readings for hot water, cold water,

and stove burner use. Voice over IP using the Asterisk software [Guru, 2009] captures

phone usage, contact switch sensors monitoring the open/closed status of doors and

cabinets, and pressure sensors monitor usage of key items such as the medicine con-

tainer, cooking pot, and phone book. Sensor data is captured using a sensor network

that was designed in-house and is stored in a SQL database. Our middleware uses a

jabber-based publish/subscribe protocol [Jabber, 2009] as a lightweight platform and

language-independent middleware to push data to client tools with minimal over-

head and maximal flexibility. To maintain privacy we remove participant names and

identifying information and encrypt collected data before it is transmitted over the

network.

Normal Activity Discovery Results

For our first experiment, we applied our algorithm to data that is collected

in our testbed. Specifically, we gather data for a collection of repeated specific,

scripted activities and analyze the data using our algorithm. Because the activities are

repeated a number of times, our algorithm should discover activities that correspond

to a high degree with the pre-selected activities. If it is successful in discovering
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Figure 3.5: Three-bedroom smart apartment used for our data collection. The positions

of motion sensors are indicated by circles in the figure.

these activities, this will provide evidence that our unsupervised learning method will

automatically identify, recognize, and track sensor event sequences that intuitively

represent regular activities, and that our method will identify activities of interest if

they occur frequently.

To provide physical training data, we brought 20 WSU undergraduate students

recruited from the psychology subject pool into the smart apartment, one at a time,



60

and had them perform the following five activities:

1. Telephone Use: Look up a specified number in a phone book, call the number,

and write down the cooking directions given on the recorded message.

2. Hand Washing: Wash hands in the kitchen sink.

3. Meal Preparation: Cook oatmeal on the stove according to the recorded

directions, adding brown sugar and raisins (from the kitchen cabinet) once done.

4. Eating and Medication Use: Eat the oatmeal together with a glass of water

and medicine (a piece of candy).

5. Cleaning: Clean and put away the dishes and ingredients.

The selected activities include both basic and more complex ADLs that are

found in clinical questionnaires [Reisberg et al., 2001]. Noted difficulties in these

areas can help identify individuals who may be having difficulty functioning inde-

pendently at home [Schmitter-Edgecombe et al., 2008]. As shown in Fig. 3.6, each

sensor reading is tagged with the date and time of the event, the ID of the sensor

that generated the event, and the sensor value. Notice that performing activities by

different subjects results in considerable inter-subject variability, as participants were

performing activities in vastly different ways.

To validate the effectiveness of our activity discovery algorithm, we applied our

algorithm to the sensor data collected for the normal activities. Specifically, we first
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Figure 3.6: Resident performing “hand washing” activity (left). This activity triggers

motion sensor ON/OFF events as well as water flow sensor values (right).

discover repeating sequential patterns in the sensor event data. We then cluster the

pattern instances into five clusters (the same number as the number of activities in

the scripted experiment) and determine if the discovered activities are similar to those

that are pre-defined to exist in the sensor data.

In these experiments, we set the minimum compression thresholds C and Cv

to 0.3 and 0.1, and the threshold of frequent events used α to 0.6. These are values

we found to be effective based on experimentation across multiple datasets. When

we analyzed the collected sensor events, DVSM discovered 9 general patterns with

lengths varying from 2 to 39 events, and comprising up to 10 variations for each

pattern. These results indicate that DVSM is able to find repetitive patterns in a

compact form from 100 activity sensor streams, despite the inter-subject variability.
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In the next step, we cluster the discovered activities. The resulting clusters

provide an even more compact representation of all activities by assigning a centroid

pattern for each cluster of similar activities. The attributes considered in these set of

activities were duration of states and frequency. As mentioned earlier, the number of

clusters was set to 5, equal to the number of pre-defined activities that occurred in

the data collection.

In order to determine the ability of our algorithm to find these pre-defined

activities, we compare the representatives of the automatically-discovered clusters

with the sensor event sequences that occur for the pre-defined tasks. Because our

algorithm would eventually be used to find naturally-occurring patterns for each

individual, we repeat the discovery and assessment process for each of the participant

data files, representing a total of 120 cases. We are interested in determining the

percentage of cluster representatives that match the pre-defined activity sensor events.

We consider a cluster representative as matching a pre-defined activity if it only

contains events that occur within the activity sequence and if it does not overlap

with any of the other cluster representative sequences.

We also evaluated the quality of the clusters. The purpose of the clustering algo-

rithm in this project is ultimately to provide groupings of sensor sequences that reflect

regularly-performed activities and that can be recognized. The primary performance

criteria thus applies to the entire discovery and recognition approach rather than just
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to the clustering component. However, we do evaluate the clusters themselves based

on two metrics defined below.

1. First, we compute the fraction of clusters that map to the actual defined activity

groups. If the number of actual defined activity groups is denoted by |A|, and

the number of discovered clusters where the representative’s label maps to a

distinct activity group is |S|, then our first cluster quality metric “RepQuality”

can be expressed as in Equation (3.15):

RepQuality =
|S|
|A| (3.15)

2. Second, we compute the fraction of activities in each cluster that actually belong

to the same defined activity group represented by the cluster representative (e.g.,

watching DVD). If we denote the cluster Si’s representative by mi and its actual

activity label as L(mi), and we also denote each activity in the cluster as aj, its

actual activity label as L(aj), and its discovered label as L(aj), then our second

cluster quality metric “ClusterCohesion” will be defined as in Equation (3.16):

ClusterCohesion =

∑|Si|
j=1 δ(aj)

|Si|
(3.16)
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δ =



















0 if L(aj) 6= L

1 otherwise.

To be able to apply such metrics, in our experiments we embedded the actual

labels of each sensor event. Note that these annotations do not play a role in the

discovery and recognition of the activities; rather the whole purpose of using such

annotation is to be able to measure the accuracy of our algorithms at the end, and

one can easily remove these annotations in a deployed version of the system.

In our experiment, our algorithm found cluster representatives corresponding

to the pre-defined activities for 80.0% of the cases (RepQuality). In addition, 87.5%

of the individual sensor events were assigned to the correct clusters, or to the activity

clusters that actually were responsible for generating the events (ClusterCohesion).

Some of the activities were assigned to a wrong but similar cluster. For example,

because the set of sensor events generated by the hand washing and dish cleaning

tasks are very similar, in many cases they were clustered together. A similar result

occurred for DVSM as well, where in many cases the algorithm considered these two

patterns to be variations of each other. To an extent this highlights the fact that some

ADL activities are in fact very similar and could possibly be monitored together as a

group. In addition, the large inter-subject variability made assigning an activity more

difficult, because participants were performing activities in vastly different ways with
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missed and mistaken steps, such that in some cases the clustering algorithm clustered

them into two different clusters. In a real world situation, as the discovery is usually

performed for a single individual, we anticipate the accuracy will be higher. Refining

the process of creating an initial assignment of clusters can also improve the accuracy.

Next, we used our multi-HMM model to recognize the discovered activities.

Using such a model, our multi-HMM model was able to recognize 73.8% of the original

activities and 95.2% of the activities that were discovered by our algorithm. To

provide a comparative analysis, we implemented a simpler clustering method that

uses a traditional edit distance measure instead of our general edit distance measure

to generate clusters. Using this simpler clustering method, the multi-HMM only

achieved a recognition accuracy of 61.0% for the original activities, which indicates

that considering additional information such as temporal features can improve the

accuracy.

In order to determine the effect that the clustering has on the entire activ-

ity recognition and discovery process, we perform a separate set of experiments to

discover sequences and recognize the corresponding patterns without involving the

clustering set. We randomly chose a number of activities from the DVSM patterns

to act as the Markov model hidden nodes and then we used the constructed HMMs

to recognize the activities. We expect that the resulting model will achieve a lower

recognition accuracy because the randomly-selected activities might not be good rep-
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resentatives of the whole set of activities. It is possible, for example, that half of the

hidden nodes might actually represent the same activity, such as watching a DVD,

because they are selected randomly and there is no criteria to eliminate dissimilarity,

as we applied for forming clusters. The results of the experiments confirm our hypoth-

esis, such that for the normal activity recognition the constructed HMMs were able

to recognize on average only 48.6% of the original activities over 10 runs (compared

to 73.8% when clustering was used).

These results show that the clustering step can improve the choice of activities

for hidden nodes as it provides a more distinct set of activity groups with less possible

overlaps and most dissimilarity.

Interwoven ADL Activity Discovery Results

In our second experiment, we again examine how well our algorithm can identify

activities that are performed in a pre-scripted manner in the CASAS testbed. In

this case, we complicate the situation by allowing the activities to be interwoven

together when they are performed. Because our algorithm considers the disruption of

sequences as part of its discovery process, we hypothesize that it will still be able to

discover many of these pre-selected activities. To provide physical training data for

our algorithm, we recruited 20 additional volunteer participants to perform a series

of activities in the smart apartment, one at a time. For this study, we selected 8 ADL

activities:
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1. Fill medication dispenser: Here the participant removes the items from

kitchen cupboard and fills the medication dispenser using the space on the

kitchen counter.

2. Watch DVD: The participant selects the DVD labeled ”Good Morning Amer-

ica” located on the shelf below the TV and watches it on the TV. After watching

it, the participant turns off the TV and returns the DVD to the shelf.

3. Water plants: For this activity, the participant takes the watering can from

the supply closet and lightly waters the 3 apartment plants, 2 of which are

located on the kitchen windowsill and the third is located on the living room

table. After finishing, he/she empties any extra water from the watering can

into the sink and returns the watering can to the supply closet.

4. Converse on Phone: Here the participant answers the phone when it rings

and hangs up after finishing the conversation. The conversation includes several

questions about the DVD show that the participant watched as part of activity

2.

5. Write Birthday Card: The participant writes a birthday wish inside the

birthday card and a fills out a check in a suitable amount for a birthday gift,

using the supplies located on the dining room table. He/she then places the

card and the check in an envelope and appropriately addresses the envelope.
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6. Prepare meal: The participant uses the supplies located in the kitchen cup-

board to prepare a cup of noodle soup according to the directions on the con-

tainer. He/she also fills a glass with water using the pitcher of water located on

the top shelf of the refrigerator.

7. Sweep and dust: For this task, the participant sweeps the kitchen floor and

dusts the dining and the living room using the supplies located in the kitchen

closet.

8. Select an outfit: Lastly, the participant selects an outfit from the clothes

closet to be worn on an important job interview. He/she then lays out the

selected clothes on the living room couch.

We instructed the participants to perform all of the activities by interweav-

ing them in any fashion they liked with a goal of being efficient in performing the

tasks. The order in which activities were performed and were interwoven was left to

the discretion of the participant. Because different participants interwove the tasks

differently, the resulting data set was rich and complex.

Similar to the previous experiment, we first ran DVSM on the datasets contain-

ing 160 activities, and then clustered the discovered patterns. The parameter values

were defined as in the previous experiment, with the exception that the number of

clusters was set to 8 to be equal to the new number of pre-defined activities. When it
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was applied to the collected sensor data, DVSM was able to find 11 general patterns.

Averaging over 10 runs, our algorithm found cluster representatives corresponding

to the original activities in 76.4% of the participant datasets (q1), and 88.2% of the

sensor events were assigned to the correct clusters (q2). The results of this experiment

show that despite the fact that the activities in this second set are interwoven and

include a larger number of activities, due to the discontinuous order-varied nature of

our algorithm, it is still able to discover activities that occur frequently and will likely

discover ADL activities if they are performed frequently in a smart environment.

The next step of the process is to recognize and track the discovered activities

as they occur in the smart apartment. We constructed our multi-HMM model based

on the discovered eight activities and applied the Viterbi algorithm to the remaining

data to identify when the discovered activities occurred. Using such a model, our

multi-HMM model was able to recognize 77.3% of the original activities and 94.9%

of the activities discovered by our algorithm. We also performed the experiment

without clustering, as mentioned in the previous experiment for normal activities,

which resulted in a recognition accuracy of 55.3% of the original activities (compared

to 77.3% with clustering). This again shows the importance of clustering for forming

more distinct activity groups that can be used as hidden nodes of the HMM model.

In another experiment, a simple clustering method using the traditional edit distance

resulted in a lower accuracy of 62.4% for the original activities, which again highlights
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the importance of incorporating additional context information into the construction

of the activity models.

Long Term Activity Discovery Results

The first two experiments validated that our algorithm is able to discover fre-

quent activities, including those that belong to known sets of ADL activities. A

possible use of this technology is to perform activity discovery during a time when

the resident is healthy and functionally independent, to establish a baseline of normal

daily activities. By modeling and recognizing the activities, our algorithm can then

track the activities as they are performed in the smart home. The resident or a care-

giver can look at the reported activity times to determine whether activities are being

performed as regularly as in the past. Alternatively, a variety of temporal analysis

and data mining algorithms could be applied to detect trends in the frequency and

regularity of the activities.

To demonstrate how our algorithm can be used for a combination of activity

discovery, recognition, and tracking, we applied this process to a long-term data col-

lection in our CASAS smart apartment. In this experiment, we collected 3 months

of daily activity data from the smart apartment while two residents lived there and

performed their normal daily routines. Sensor data was collected continuously, re-

sulting in 987, 176 sensor events. We applied the activity discovery algorithms to

this collected data. The parameter settings were similar to the previous experiments,
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although we modified the threshold α of frequent events used in pattern discovery in

order to investigate its impact on the number of discovered patterns.

We note that increasing the value of α results in discovering more patterns,

as a wider range of frequent events are involved, but at the same time results in

pruning more patterns too. As Fig. 3.7 shows, the number of patterns ranged from

10 (α = 10%) to 794 (α = 90%). This validates that even when the top 90% of

frequent events are captured from three months of data, our algorithm is still able to

provide a rather compact representation of the activity patterns. We also note that

the pruning process removes a large number of patterns, considerably reducing the

number of redundant patterns (see Fig. 3.8).
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Figure 3.7: Number of discovered patterns as a function of α.

Also note that the compression thresholds (C and Cv) control the way that

the “frequent continuous” patterns and the “frequent continuous variations” of pat-
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Figure 3.8: Number of pruned patterns as a function of α.

terns are discovered. We performed an experiment to observe the effect of changing

the compression threshold. The experiments were run with α set to 30% where we

changed C and Cv systematically. The lower we set the C compression threshold,

the more patterns will be discovered as this allows for the relatively “less frequent”

and “less continuous” patterns to be also included among the interesting patterns.

Similarly, the lower we set the compression threshold Cv, the more pattern variations

will be discovered (see Fig. 3.9). In our application we wanted to see how variations

of patterns can be discovered, so we set Cv to a low number.

After discovering sequential patterns in the sensor event data, we clustered the

discovered patterns into a maximum of 10, 15 and 20 clusters. Again, to investigate

the impact of the number of discovered patterns on the number of formed clusters,
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Figure 3.9: Number of discovered patterns as a function of Cv.

we examined the results of varying the α threshold. For smaller values of α, the

clusters tended to merge together, as there were less distinguishable patterns. As we

increase α and therefore the number of discovered patterns, more distinctive clusters

were formed. Once a threshold value of α was reached (α = 30%), the number of

clusters remained the same, because fewer distinguishable patterns were discovered.

These results are graphed in Fig. 3.10.

Next, we used our multi-HMM model to track the activities that had been

identified by our model. To verify the discovered activities, we presented the dis-

covered activities to the residents to see if they can recognize any of those activities

as their daily routines. For example, a shortened form of one discovered pattern is

〈M06,M07,M15,M17〉, which was interpreted by the residents as one person watch-
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Figure 3.10: Number of discovered clusters as a function of α.

ing TV from the couch, getting up for a snack, then going back to the couch. Some of

the patterns that were identified and tracked by the multi-HMM model are highlighted

in Fig. 3.11. These patterns include preparing a meal, using the bathroom, watch-

ing TV/getting snack and resting in the bedroom (after working on the computer).

These results show that DVSM can then track when the activities are performed on

a continual basis in the smart home, and can be applied to large datasets collected

over a long period of time.
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Figure 3.11: Visualization of selected discovered patterns (simplified).

3.3 COM

In Section 3.2 we introduced the DVSM method which is a sequence mining

method to find discontinuous and varied order patterns in the data. In this section

we introduce an improved version of DVSM. Though we showed that DVSM is able

to discover some interesting patterns from sensor event data streams, the method

still faces some shortcomings. DVSM works best when using scripted data or data

collected under controlled conditions. It faces some difficulty mining real life data.
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For example if the activities performed in different regions of home have different fre-

quencies, or if heterogeneous sensors are used (such as motion sensors in combination

with contact switch sensors), some of the patterns will not be discovered.

In this section, we introduce COM as an improved version of DVSM. COM

stands for the Continuous, varied Order, Multi Threshold activity discovery method.

COM not only discovers discontinuous patterns and their variations, but is also able

to better handle real life data by dealing with different frequencies/sensors problem.

It is able to find a higher percentage of the frequent patterns, and thus achieving a

better discovery and recognition accuracy. Also by pruning irrelevant patterns based

on mutual information the method retains only the relevant variations of the pat-

terns, reducing the number of irrelevant variations. COM adopts a more automated

approach by eliminating the need for the user to configure some of the parameters,

such as the percentage of the top frequent sensor events that should be used to dis-

cover the activity patterns, the support threshold for frequent events, or the number

of activities. Automating such configurations results in a more overall automated

approach. We also provide a pattern visualizer component that is able to visualize

the activity patterns and their variations in order to help the users to better identify

the variations of the patterns and as a result to detect abnormal or suspicious cases.

The remainder of this chapter is organized as follows. First we describe our

approach in more detail, including its three main stages. The first stage discovers
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activities by mining data and extracting activity models, while the second stage sum-

marizes the discovered patterns by clustering, and the third stage is responsible for

recognizing activities. We then show the results of our experiments on data obtained

from two different smart apartments.

3.3.1 COM Model Description

Similar to DVSM, our objective here is again to develop a method that can

automatically discover real life patterns of a resident’s activities, even if the patterns

are somehow discontinuous or have different event orders across their instances. After

discovering such patterns through our mining method, we will then summarize and

group the discovered patterns to provide a more concise and compact representation

using our hierarchical clustering method. Unlike the DVSM method, here we use a

clustering method that is automatically able to determine the number of clusters.

The clusters are then used to track and recognize the resident’s activities. Again we

assume that the data is not annotated and the activity boundaries are not specified,

i.e. we only have access to unlabeled sensor data.

We already briefly mentioned the problem of different frequency/sensor types

for pattern discovery that was ignored in DVSM. By not taking into account the dif-

ferences in sensor event frequencies across different regions of the space, the patterns
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that occur in less frequently used areas of the space might be ignored. For example, if

the resident spends most of his/her time in the living-room during the day and only

goes to the bedroom for sleeping, then the sensors will be triggered more frequently in

the living-room than in the bedroom. Therefore when looking for frequent patterns,

the sensor events in the bedroom might be ignored and consequently the sleep pattern

might not be discovered. The same problem happens with different types of sensors,

as usually the motion sensors are triggered much more frequently than other type

of sensors such as cabinet sensors. This problem is known among the data mining

community as the “rare item problem” and has been addressed by providing multiple

support thresholds when mining association rules or sequential patterns [Liu et al.,

1999].

To deal with the sheer volume of pattern instances that we might encounter

during pattern generation, we prune the irrelevant variations of patterns based on

mutual information [Guyon and Elisseeff, 2003]. Besides pruning irrelevant varia-

tions, we also prune the non-maximal, infrequent or highly discontinuous patterns.

In order to provide a more automated approach, we do not require the user to provide

parameters such as the number of activities. We also provide a visualizer to represent

the daily activity patterns and variations to the users/care-givers in a natural, user-

friendly way. The architecture of the system can be seen in Figure 3.12, including its

mining, clustering, recognition and visualization components.
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Figure 3.12: Main components of COM for discovering, modeling and recognizing patterns

of activities.

The input data to the system is a sequence of sensor events, where each event

e appears in the form e = 〈t, s〉 where t denotes a timestamp, and s denotes a sensor

ID. Each sensor ID is associated with its room name (e.g. kitchen) which we will

refer to as a location tag L. We define a pattern instance a as a sequence of n

sensor events a = 〈e1, e2, ..en〉. A pattern itself represents the collection of all of its

instances. An example of an activity pattern such as meal preparation is the sensor

event sequence 〈M005,M003,M001〉 where M005, M003 and M001 refer to motion

sensors that are activated in the kitchen. A variation of such a pattern may appear

as 〈M003,M002,M001〉. Note that in this discussion we use the terms activity and

pattern interchangeably. In the following section, we will provide a more detailed

description of each one of the components.
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Mining

Similar to the DVSM method, using COM we denote a general pattern a as the

pattern that encompasses all of its n variations, where each variation is denoted by

ai. To find patterns in data, first we will create a reduced dataset Dr from the input

data D. The reduced dataset only contains frequent sensor events that will be used

for constructing the patterns. In the DVSM algorithm, the user has to specify what

percentage of the top frequent events (α) should be used and then by using a global

support threshold on the frequency of sensor events, the reduced dataset is created.

As was already discussed, taking such an approach will result in ignoring the problem

of “rare sensors”. In our studies we found out that different regions of a home exhibit

different sensor frequencies, as well as do different types of sensors. Here we do not

require the user to identify α, and we use several support thresholds for different

regions of the home and for different types of sensors, all determined automatically.

Different regions of homes are identified by the provided location tags L, cor-

responding to the functional areas such as bedroom, bathroom, etc. The sensors are

also categorized depending on their types. Here we categorize the sensors into two

categories: motion sensors and key sensors. The key sensors include every sensor

except for the motions sensors, e.g. the cabinet sensors or door sensors. The key sen-

sors basically represent the interaction of the user with the environment, while motion

sensors provide a trajectory of inhabitant’s motion around the home. The type and
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the location tag of all sensors is passed on to COM as an initial configuration file.

For each region and category, the minimum acceptable frequency is automatically de-

rived as the average frequency for that specific region and category. More specifically,

fk, the minimum acceptable frequency support of the key sensors for each region,

is computed as the average frequency of key sensors in that region. Similarly, fm,

the minimum acceptable frequency support for motion sensors in a specific region, is

computed as the average frequency of motion sensors in that specific region. Figure

3.13 shows a depiction of selected sensors and the minimum acceptable frequency

supports for one of the smart homes used in our experiments. If a region contains

only motion sensors and no key sensors, we denote its fk as N/A. One can clearly see

that the motion sensors are activated more frequently in the living room than any

other area in the home, with the result that the frequency support of motion sensors

in the kitchen and bathroom is half of the frequency support in the living room. In

the kitchen, we can see that the motion sensors are activated 3 times more than key

sensors such as cabinet doors or the refrigerator door.

The patterns are then discovered as with the DVSM method. We identify

general patterns/ variations as interesting if they provide a minimum compression

value according to the Minimum Description Length principle [Rissanen, 1978]. The

compression value c for a general pattern a and its variations is defined as with the

DVSM method. Patterns with high compression values are flagged as interesting,
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Figure 3.13: The frequent sensors are selected based on the minimum acceptable regional

support, instead of a global support. Here the frequencies are normalized to

be in the range [0..1].

while patterns with low compression values are discarded (i.e., such patterns are

either infrequent or highly discontinuous). The same is applied to prune the highly

discontinuous or infrequent variations of a general pattern.

By computing the mutual information [Guyon and Elisseeff, 2003] between the
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general pattern and each of its sensor events, we are able to find the set of core

sensors for each general pattern. Finding the set of core sensors allows us to prune

the irrelevant variations of a pattern which do not contain the core sensors.

MI(s, a) = P (s, a) ∗ log
P (s, a)

P (s)P (a)
(3.17)

Every iteration, we also prune redundant non-maximal general patterns; i.e.,

those patterns that are totally contained in another larger pattern. This multi-stage

pruning process considerably reduces the number of discovered patterns, making it

more efficient in practice.

We continue extending the patterns by prefix and suffix until no more interesting

patterns are found. A post-processing step records attributes of the patterns, such as

event durations and start times.

Clustering

Next, we group discovered patterns together to get an even more compressed

representation similar to DVSM, but using a different clustering method. Our cluster-

ing algorithm is similar to conventional hierarchal agglomerative clustering techniques

[Tan et al., 2005], however it doesn’t form the complete hierarchy. Agglomerative

clustering techniques build a hierarchy from the individual elements by progressively

merging clusters until all data ends up in one cluster. Here we do not continue the

hierarchal clustering up to the point of reaching a single cluster, rather the clustering
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continues until the similarity between the two closest clusters drops below a threshold

ζ. This gives us a set of clusters at the highest level of the hierarchy. After forming

the clusters, the The cluster centroids at the highest level are used to track and recog-

nize the resident’s activities. Using such a clustering method, the user no longer has

to provide the number of clusters in advance. We use a group-average link method

[Tan et al., 2005] to compute the proximity matrix based on the similarity measure

defined in Equation 3.18. The algorithm itself is shown in 1.

Υ(i, j) = Υt[i, j] + Υd[i, j] + ΥL[i, j] + ΥS[i, j] (3.18)

The start times are in the form of a mixture normal distribution with means

Θ = 〈θ1..θr〉 to better capture the variability in start times. An example of such

a mixture start time distribution can be seen in Figure 3.14 which represents start

times for an “eating” activity.

We can see that using a normal mixture model we are able to capture both

breakfast and lunch times as the regular meals for the inhabitant. We represent start

time θ in an angular form Φ measured in radians instead of a linear representation.

This allows for time differences to be represented correctly (2:00 am will be closer to

12:00 am than to 5:00 am). The similarity between the two start time distributions

is thus calculated using Equation 3.19.
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Algorithm 1 Clustering Method

procedure Cluster(P) ⊲ Each pattern is considered as a cluster at first

C = P

Compute Proximity Matrix, m

repeat

sim = max(m[p, q]) ∀p, q ∈ C

if sim > ζ then

merge p, q

end if

Update m

until sim > ζ

return C

end procedure
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Figure 3.14: Start Time distribution as a mixture normal distribution for one of the apart-

ments in our experiments.

Υt[i, j] = max
θ1∈Θi
θ2∈Θj

(1− |Φθ2 − Φθ1 |
2π

) (3.19)

Duration similarity is calculated as in Equation 3.20 where durations are rep-

resented in the form of a mixture normal distribution with means Γ = 〈γ1..γr〉.

Υd[i, j] = max
γ1∈Γi
γ2∈Γj

(1− |γ2 − γ1|
max(γ2, γ1)

) (3.20)

The regional and structural similarities are calculated as in Equations 3.21 and

3.22 using a Jaccard similarity measure [Tan et al., 2005]. In Equation 3.21, E refers

to the set of sensors for a pattern.
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ΥS[i, j] =
| Ei

⋂ Ej |
| Ei

⋃ Ej |
(3.21)

ΥL[i, j] =
| Li

⋂Lj |
| Li

⋃Lj |
(3.22)

After forming clusters, we used a hidden Markov Model to track activities,

similar to the approach taken by DVSM.

3.3.2 Experiments

We evaluated the performance of our COM algorithm using the data that was

collected from two different smart apartments. The layout of the apartments in-

cluding sensor placement and location tags are shown in Figure 3.15. We will refer

to apartments in Figures 3.15a and 3.15b as apartments 1 and apartment 2. The

data was collected during an approximately three month period. Each apartment

is equipped with motion sensors and contact sensors which monitor the open/closed

status of doors and cabinets. A total of 10 activities were noted for each apart-

ment. Those activities included bathing, bed-toilet transition, eating, leave/enter

home, meal preparation(cooking), personal hygiene, sleeping in bed, sleeping not in

bed (relaxing) and taking medicine. The first and second datasets include 3384 and

2602 annotated activity instances, respectively. Table 3.1 also summarizes apartment

characteristics.
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(a) Apartment 1. (b) Apartment 2.

Figure 3.15: Sensor map and location tags for each apartment. On the map, circles show

motion sensors while triangles show switch contact sensors. The hollow-

shaped motion sensors are the area motion sensors.

Dataset Num. of Residents Num. of Activities Num. of Examples

B3 1 10 3384

C 1 10 2602

Table 3.1: CASAS datasets.

To be able to evaluate the results of our algorithms, each of the datasets was

annotated with ADL activities of interest for the corresponding resident and apart-
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ment. Unlike the scripted data from DVSM, here the data is not scripted and it was

annotated for evaluation purposes.

We ran our algorithm for each one of the apartments. As mentioned before, one

major improvement of our algorithm is to use multiple support thresholds for different

regions of homes, as well as for different types of sensors. Though a single support

threshold might not pose a problem in scripted experiments, where all activities are

performed with the same frequency (e.g. 20 times as in DVSM experiments), in

real life this assumption results in missing many patterns. To show how using a

single threshold affects the accuracy of pattern discovery, we performed a number of

experiments, once using the COM algorithm and once using DVSM.

The data mining step was able to discover a considerable number of pre-defined

activities of interest. In apartment 1, it discovered 8 out of 10 activities, including

bathing, leave/enter home, meal preparation (cooking), personal hygiene, sleeping

in bed, sleeping not in bed (relaxing) and taking medicine. In apartment 2, it was

able to discover 7 out of 10 activities including bathing, bed-toilet transition, eating,

enter home, leave/enter home, meal preparation(cooking), personal hygiene, sleeping

in bed, and sleeping not in bed (relaxing). Some of the patterns that have not been

discovered are indeed quite difficult to spot and also in some cases less frequent. For

example the housekeeping activity happens every 2-4 weeks and is not associated with

any specific sensor. Also some of the similar patterns are merged together, as they
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use the same set of sensors, such as eating and relaxing activities. It should be noted

that some of the activities are discovered multiple times in form of different patterns,

as the activity might be performed in a different motion trajectory using different

sensors. Figures 3.16 and 3.17 show the number of distinct discovered activities by

both COM and DVSM algorithms in apartments 1 and 2. One can clearly see that

COM is able to discover a higher number of distinct activities.
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Figure 3.16: Percentage of distinct activities discovered in apartment 1 vs. the amount

of data.

Using externally provided annotations to verify our results, we also computed

the percentage of non-annotated discovered activities, i.e. the percentage of activities

that actually have no annotation, but have been discovered by our algorithm. For

apartment 1 the percentage of non-annotated activities with respect to the number of
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Figure 3.17: Percentage of distinct activities discovered in apartment 2 vs. the amount

of data.

total distinct activities was 7.0% and for apartment 2 it was 2.0%. The low percentage

of discovered activities that are not annotated shows that most of the discovered

patterns are indeed well aligned with those patterns identified by the human annotator

as interesting in the first place.

Figures 3.18b and 3.18e show the total number of discovered pattern instances

for both the COM and DVSM algorithms, as well as the total number of pruned

instances. It can be seen that though sometimes COM generates more pattern in-

stances and in general more patterns, it also prunes more pattern instances due to

its improved pruning capabilities, while still discovering more distinct patterns (ac-
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tivities).

In the next step, we clustered the discovered activities together using our ag-

glomerative clustering method. The similarity threshold ζ of 0.75 was found to be a

suitable value based on several runs of our experiments. By using the externally pro-

vided labels, we were also able to measure the purity of the clustered patterns with

respect to the consistency of their variations using Equation 3.23. Equation 3.23,

known in the literature as Jaccard similarity, represents a simple matching coefficient

and is used to determine the similarity between clusters and actual classes. Here |v11|

refers to the number of variations that have the same label as their general pattern,

and |v01| and |v10| refer to the number of variations that have a different label other

than their general pattern’s label. We call this number the variation consistency.

purity(Pi) =
|v11|

|v11|+ |v01|+ |v10|
(3.23)

The variation consistency for clustered patterns in apartment 1 was 0.90 in our

experiments, while for apartment 2 it was 0.76. By looking closely at the data, it was

revealed that the patterns in the second dataset are much more irregular. Therefore

most similar patterns are combined, such as taking medication and meal preparation

which usually happen at approximately the same time and the same location (in this

case, the kitchen).

Next, using the discovered patterns an HMM was automatically constructed
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(a) Number of total pattern instances in

apartment 1.
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(b) Number of pruned pattern instances in

apartment 1.
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(c) HMM Recognition vs. amount of used

data in apartment 1.
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(d) Number of total pattern instances in

apartment 2.

0 10 20 30 40 50 60 70 80 90
0

1000

2000

3000

4000

5000

6000

7000

8000

Data Used (days)

P
ru

ne
d 

P
at

te
rn

s

Pruned Patterns vs. Amount of Used Data

 

 

COM DVSM

(e) Number of pruned pattern instances in

apartment 2.
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(f) HMM Recognition vs. amount of used

data in apartment 2.

Figure 3.18: Results for apartment 1 and 2.
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to track and recognize the activities. Figures 3.18c and 3.18f show the recognition

results for the two apartments. Table 3.2 a and b show the confusion matrices for all

the activities. It can be seen from those tables that it is easier to recognize and track

activities in apartment 1 due to the greater behavioral regularity there. The results

also reveal that despite the fact that the real life activities can be sometimes hectic

and irregular, still our algorithm is able to track and monitor a considerable number

of the patterns.

The results of all stages of the algorithm as a set of patterns are represented

in an XML format to make it easier to share results across different components.

Though XML seems to be an excellent choice for data representation, it might not

be the best choice for a natural user-friendly representation. This is particularly true

when considering the fact that a pattern has many features such as temporal features,

pattern trajectories, etc. Analyzing these patterns manually becomes even becomes

more difficult when comparing different variations of a pattern and trying to figure

out their relationship. We have designed a visualizer to better help to understand the

patterns and their variations. A snapshot of our visualizer can be seen in 3.19a.

The visualizer shows the patterns on a home map, along with important sta-

tistical information such as start time, duration, and frequency shown in a separate

panel as in 3.19a. The user can go back and forth between patterns as well as vari-

ations of a pattern using the navigation buttons. The user can also see all of the
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(a) The pattern visualizer.

(b) “Meal Preparation” activity in

apartment 2.

(c) A variation of “Meal Preparation”

activity in apartment 2.

Figure 3.19: Snapshots of the visualizer.
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Hygiene Leave Cook Relax Med Eat Housekeep Sleep Bath Bed-Toilet

Hygiene 91.6% 0.0% 0.0% 7.2% 0.0% 0.0% 0.0% 0.0% 0.9% 0.0%

Leave 0.0% 88.3% 0.0% 10.5% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%

Cook 0.1% 0.0% 97.8% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Relax 0.0% 1.8% 2.2% 95.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Med 0.0% 0.2% 55.6% 0.5% 43.5% 0.0% 0.0% 0.0% 0.0% 0.0%

Eat 0.0% 0.0% 1.3% 98.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Housekeep 0.0% 0.0% 98.3% 1.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Sleep 0.3% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 99.3% 0.0% 0.0%

Bath 26.4% 0.0% 0.0% 0.5% 0.0% 0.0% 0.0% 0.0% 72.9% 0.0%

Bed-Toilet 76.6% 0.0% 0.0% 19.8% 0.0% 0.0% 0.0% 2.9% 0.4% 0.0%

(a)

Hygiene Leave Cook Relax Med Eat Housekeep Sleep Bath Bed-Toilet

Hygiene 83.9% 0.0% 3.4% 11.8% 0.0% 0.0% 0.0% 0.0% 0.6% 0.0%

Leave 0.0% 93.2% 6.0% 0.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Cook 0.4% 0.6% 94.8% 4.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Relax 0.1% 0.6% 0.2% 98.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Med 0.9% 0.4% 95.7% 2.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Eat 1.3% 0.0% 4.6% 93.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Housekeep 0.8% 0.8% 93.1% 5.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Sleep 39.4% 0.0% 42.5% 17.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Bath 23.5% 0.1% 0.7% 2.3% 0.0% 0.0% 0.0% 0.0% 73.2% 0.0%

Bed-Toilet 83.0% 0.0% 3.2% 13.1% 0.0% 0.0% 0.0% 0.0% 0.5% 0.0%

(b)

Table 3.2: Confusion matrices for apartment 1 (Table a) and apartment 2 (Table b).
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patterns or all of the variations of a pattern at the same time. In this case, each

pattern (or variation) will be visualized using a unique color-code as depicted in the

“Map Guide”. Using such a simple visualizer allows users not to deal with the sensor

information in a textual format, which might be confusing and hard to understand.

Rather it allows the users to see the patterns in a natural format and quickly diagnose

relations between different variations of a pattern.
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3.4 Summary

In order to provide robust activity recognition and tracking capabilities for smart

homes, we need to consider techniques for identifying the activities that should be

recognized and tracked. Most current approaches use supervised methods for activity

recognition. However, due to the required effort and time for annotating activity

datasets it might not be very practical in real world situations to use supervised

methods. Annotating activity data imposes a burden on annotators and residents

and often introduces a source of error in the process.

We introduced two alternative methods for tracking activities in smart environ-

ments. In our first approach we employ our DVSM algorithm to discover frequent

activities that regularly and naturally occur in a resident’s environment. These ac-

tivity patterns can be discontinuous or can have varied event orders. After pattern

discovery, models are learned to recognize these particular activity patterns. Our

second method, COM, improves DVSM further. COM not only is able to find dis-

continuous activity patterns and their variations, but it can discover those patterns

whose frequencies exhibit difference across different regions in home.

In the next chapter, we will provide an extension of our COM method. This

improved method is able to mine data in the form of a continuous unbounded stream.

As a result it addresses the problem of online activity mining.
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CHAPTER 4. STREAM MINING

O, call back yesterday, bid time return.

— William Shakespeare, King Richard II.

In this chapter, we will show a method for discovering activity patterns from

sensor data streams. Unlike our previous sequence mining methods, we no longer

assume that an unlabeled dataset is available offline, rather we assume it appears in

real time in the form of a potentially unbounded flow of sensor events. We introduce

a novel stream mining method by extending our COM method which was discussed

in Chapter 3. Our new method is called StreamCOM [Rashidi and Cook, 2010b] and

uses a tilted time window approach [Giannella et al., 2003].

In the following sections, first we will provide an overview of our method in

Section 4.1. Next, we will describe the tilted-time window in more detail in section

4.2. Our solution is explained in more details in section 4.3. We then show the results

of our experiments on data obtained from two different smart apartments in section

4.4.



100

4.1 Introduction

In Chapter 3 we presented two sequence mining methods for activity discovery

from sensor data. We also described a number of other unsupervised methods for

activity discovery in Section 2.3. None of these mining approaches take into account

the streaming nature of data, nor the possibility that the patterns might change over

time. In a real world situation, in a smart environment we have to deal with a po-

tentially infinite and unbounded flow of data. Also the discovered activity patterns

can change over time. Mining the stream of data over time not only allows us to find

new emerging patterns in the data, but it also allows us to detect changes in the pat-

terns. Detecting changes in the patterns can be beneficial for many applications. For

example a caregiver can look at the pattern trends over time and spot any suspicious

changes immediately.

In the last decade, many stream mining methods have been proposed as a result

of different emerging application domains, such as network traffic analysis, Web click

stream mining, and power consumption measurements. Most of the proposed methods

try to find frequent itemsets over data streams [Ren and Huo, 2008, Giannella et al.,

2003, fu Li et al., 2004, Manku and Motwani, 2002]. Methods have been also proposed

for finding frequent sequences over data streams [Chen et al., 2005a, Marascu and

Masseglia, 2006, Räıssi et al., 2005]. In contrast, no stream mining method has been
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proposed so far for mining human activity patterns from sensor data in the context

of smart environments.

In this section, we present a novel stream mining method called StreamCOM for

mining activity patterns from a stream. We extend the tilted-time window approach

proposed by Giannella et al. [Giannella et al., 2003], in order to discover activity

pattern sequences over time. The tilted-time window approach finds the frequent

itemsets using a set of tilted-time windows, such that the frequency of the item is kept

at a finer level for recent time frames and at a coarser level for older time frames. Such

a tilted window approach can be quite useful for human activity pattern discovery.

For example a caregiver is usually interested in the recent changes of the patient at a

finer level, and in the older patterns (e.g. from three months ago) at a coarser level.

Due to the special requirements of our application domain, we cannot directly

use the method proposed by Giannella et al. [Giannella et al., 2003]. First of all, the

time-tilted approach [Giannella et al., 2003], as well as most of the other similar stream

mining methods [Chen et al., 2005a, Marascu and Masseglia, 2006, Räıssi et al., 2005]

were designed to find sequences or itemsets in transaction-based streams. The data

obtained in smart environment is a continuous stream of unbounded sensor events

with no boundary between episodes or activities. Second, as discussed in our DVSM

and COM methods, the complex and erratic nature of human activity necessitates

that we consider an activity pattern as a sequence of events. In such a sequence,



102

the patterns might be interrupted by irrelevant events (discontinuous patterns). The

order of events in the sequence might also change from occurrence to occurrence

(varied order patterns). Third, similar to our COM method, we also need to address

the problem of varying frequencies for activities performed in different regions of the

space.

In this chapter, we extend the COM method into a streaming version based

on using a tilted-time window [Giannella et al., 2003]. Our proposed method allows

us to find discontinuous varied-order patterns in streaming non transaction sensor

data over time. Our approach represents the first reported stream mining method for

discovering human activity patterns in sensor data over time. Besides activity mining,

our StreamCOM method can be useful in other application domains, where different

variations of a pattern can reveal useful information, such as Web click mining.

4.2 Tilted-Time Window Model

In this section, we explain the tilted window model [Giannella et al., 2003] in

more detail. Figure 4.1 shows an example of a natural tilted-time window where the

frequency of the most recent item is kept with an initial precision granularity of an

hour (4 quarters), in another level of granularity in the last 24 hours and then again

at another level in the last 31 days. As new data items arrive over time, the history
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t

31 days− 24 hours− 4 qtrs−

Figure 4.1: Natural tilted-time window.

of items will be shifted back in the tilted-time window to reflect the changes. Other

variations such as logarithmic tilted-time windows have also been proposed to provide

more efficient storage [Giannella et al., 2003].

The tilted-time window model uses a relaxed threshold to find patterns accord-

ing to the following definition.

Definition 1. Let the minimum support be denoted by σ, and the maximum support

error be denoted by ǫ. An itemset I is said to be frequent if its support is no less than

σ. If support of I is less than σ, but no less than σ − ǫ, it is sub-frequent; otherwise

it is considered to be infrequent.

Using the approximation approach for frequencies allows for the sub-frequent

patterns to become frequent later, while discarding infrequent patterns. To reduce

the number of frequency records in the tilted-time windows, the old frequency records

of an itemset I are pruned. Let f̄j(I) denote the computed frequency of I in time

unit j, and let Nj denote the number of transactions received within time unit j.

Also let τ refer to the most recent time point. For some m where 1 ≤ m ≤ τ , the
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frequency records f̄1(I), ..., f̄m(I) are pruned if Equation 4.1 and Equation 4.2 hold

[Cheng et al., 2008].

∃n ≤ τ, ∀i, 1 ≤ i ≤ n, f̄i(I) < σNi (4.1)

∀l, 1 ≤ l ≤ m ≤ n,
l

∑

j=1

f̄j(I) < (σ − ǫ)
l

∑

j=1

Ni (4.2)

Equation 4.1 finds a point n in the stream such that before that point, the com-

puted frequency of the itemset I is always less than the minimum frequency required.

Equation 4.2 finds a point m, where 1 ≤ m ≤ n, such that before that point, the sum

of the computed support of I is always less than the relaxed minimum support thresh-

old. In this case the frequency records of I from 1 to m are considered as unpromising

and are pruned. This type of pruning is referred to as “tail pruning”. In our model,

we will extend the above defections and pruning techniques for discontinuous, varied

order patterns.

4.3 StreamCOM Description

In the following subsections, first we give an overview of definitions and nota-

tions, then we will describe our model in more detail.
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4.3.1 Definitions

The input data in our model is an unbounded stream of sensor events, each in

the form of e = 〈s, t〉, where s refers to a sensor ID and t refers to the timestamp when

sensor s has been activated. We define an activity instance as a sequence of n sensor

events 〈e1, e2, .., en〉. Note that in out notations an activity instance is considered as

a sequence of sensor events, not a set of unordered events.

We assume that the input data is broken into batches Bb1
a1

...Bbn
an

where each Bbi
ai

is associated with a time period [ai..bi], and ai < bi and a1 < an. The most recent

batch is denoted by Bbτ
aτ

or for short as Bτ . Each batch Bbi
ai

contains a sequence of

sensor events, whose length is denoted by |Bbi
ai
|.

As we mentioned before, we use a tilted-time window for maintaining the his-

tory of patterns over time. Instead of maintaining frequency records, we maintain

“compression” records, which will be explained in more detail in the following sec-

tions. Because the frequency of an item is not the single deciding factor, and other

factors such as the length of the pattern and its continuity also play a role, we will

use the term “interesting” pattern instead of a “frequent” pattern.

The tilted-time window used in our model is depicted in Figure 4.2. This

tilted-time window keeps historical records of a pattern during the past 4 weeks at

a finer level of week granularity. Records older than 4 weeks are only kept at a
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month granularity. Considering our application domain and its end users, a tilted-

time window provides a more natural representation than a logarithmic tilted-time

window. For example, it would be it easier for a nurse or caregiver to interpret

the pattern trend using such a natural representation. Second, as we do not expect

activity patterns to change substantially over a very short period of time, we omit

the day and hour information for the sake of a more efficient representation. For

example, in the case of monitoring dementia patients it takes weeks and months to

see some changes to develop in their daily activity patterns. Using such a schema

we only need to maintain 15 compression records (11 months + 4 weeks), instead of

365 ∗ 24 ∗ 4 records in a normal natural tilted-time window keeping day and hour

information. Note that we chose such a representation in this study for the reasons

mentioned above. However, one can adopt other tilted-window models such as the

logarithmic windows, as the choice of tilted-time window has no effect on the model

except for efficiency.

t

. Week. . . . MonthMonth Week Week Week

Figure 4.2: Our tilted-time window.

To update the tilted-time window, whenever a new batch of data arrives, we will

replace the compression values at the finest level of time granularity and shift back to
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the next level of finest time granularity. During shifting, we check if the intermediate

window is full. If so, the window is shifted back even more; otherwise the shifting

stops.

Note that all of the previous tilted-time approaches consider data to appear

in a transactional format. However, input data stream in a smart environment is

a continuous flow of unbounded data. Figure 4.3 depicts the difference between

transaction data and sensor data. As can be seen in Figure 4.3a, for transaction

data, each single transaction is associated with a set of items and is identified by a

transaction ID, making it clearly separated from the next transaction. The sensor

data has no boundaries separating different activities or episodes from each other,

and it is just a continuous stream of sensor events over time.

Approaches proposed by sensor stream mining community [Papadimitriou et al.,

2003, Loo et al., 2005] try to turn a sensor stream into a transactional dataset using

techniques such as the Apriori technique [Agrawal and Srikant, 1995] to group frequent

events together. Another method is to simply use fixed or varied clock ticks [Loo et al.,

2005]. In our scenario, using such simple techniques does not allow us to deal with

complex activity patterns that can be discontinuous, varied order, and of arbitrary

length. To deal with this problem, we extend the DVSM method to group together

co-occurring events into varied-order discontinuous activity patterns.
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1 {A,B,D, F,G,H}

2 {D,F,G,H,X}
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Figure 4.3: Transaction data vs. sensor data.

4.3.2 Mining Activity Patterns

Our goal is to develop a method that can automatically discover resident activity

patterns over time from streaming sensor data, even if the patterns are discontinuous

or have different event orders across their instances. We discover the sequential

patterns from the current data batch Bτ by using an extended version of COM that

is able to find patterns in streaming data. After finding patterns in the current data

batch Bτ , we will update the tilted-time windows, and will prune any pattern that is



109

unpromising.

To find patterns in data, first a reduced batch Br
τ is created from the current

data batch Bτ . The reduced batch contains only frequent and subfrequent sensor

events, which will be used for constructing longer patterns. A minimum support is

required to identify such frequent and subfrequent events. COM only identifies the

frequent events, but we introduce the maximum sensor support error ǫs to allow for

the subfrequent patterns to be also discovered. We will also automatically derive

multiple minimum supports values corresponding to different regions of the space.

As mentioned in Section 3.3.1, in mining real life activity patterns, the frequency

of sensor events can vary across different regions of the home or other space. This

situation also applies to streaming data. Here, by extending COM into a streaming

method we propose a solution for the problem of rare items. Our proposed solution for

solving the problem of rare items in data streams can be applied to other application

domains, such as Web click mining. For example, a web page might have a lower

chance of being visited by visitors, but we still might be interested in finding click

patterns in such pages.

We will automatically derive multiple minimum sensor support values across

space and over time. To do this, we identify different regions of the space using

location tags l, corresponding to the functional areas such as bedroom, bathroom, etc.

Different sensor types might also exhibit varying frequencies. In our experiments, we
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again categorize the sensors into two classes: motion sensors and key, or interaction-

based sensors.

For the current data batch Bτ , we compute the minimum regional support for

different categories of sensors as in Equation 4.3. Here l refers to a specific location,

c refers to the sensor’s category, and Sc refers to the set of sensors in a category c.

The symbol fT (s) refers to the frequency of a sensor s over a time period T .

σc
T (l) = 1/

|Sl
c|

∑

s∈Sl
c

fT (s) s.t. S l
c = {s | s ∈ l ∧ s ∈ Sc} (4.3)

Using the minimum regional sensor frequencies, frequent and subfrequent sen-

sors are defined as following.

Definition 2. Let s be a sensor of category c located in location l. The frequency of

s over a time period T , denoted by fT (s), is the number of times in time period T in

which s occurs. The support of s in location l and over time period T is fT (S) divided

by the total number of sensor events of the same category occurring in L during T .

Let ǫs be the maximum sensor support error. Sensor s is said to be frequent if its

support is no less than σc
T (l). It is sub-frequent if its support is less than σc

T (l), but

no less than σc
T (l)− ǫs; otherwise it is infrequent.

Only the sensor events from the frequent and subfrequent sensors will be added

to the reduced batch Br
τ , which is then used for constructing longer sequences. We

use a pattern growth method as in [Rashidi and Cook, 2009b] which grows a pattern



111

by its prefix and suffix. To account for the variations in the patterns, the concept of a

general pattern similar to DVSM and COM is introduced. During pattern growth, if

an already discovered variation matches a newly discovered of pattern, its frequency

and continuity information will be updated. If the newly discovered pattern matches

the general pattern, but does not exactly match any of the variations, it is added as

a new variation. Otherwise it will be considered as a new general pattern.

At the end of each pattern growth iteration, infrequent or highly discontinuous

patterns and variations will be discarded as uninteresting patterns. Instead of solely

using a pattern’s frequency as a measure of interest, we use a compression objective

based on the minimum description length (MDL) [Rissanen, 1978]. The compression

value of a general pattern a over a time period T is defined as in Equation 4.4. The

compression value of a variation ai of a general pattern over a time period T is defined

as in Equation 4.5. Here DL refers to the MDL description length, and Γ refers to

continuity as defined for DVSM and COM methods.

αT (a) =
DL(BT ) ∗ Γa

DL(a) + DL(BT |a)
(4.4)

βT (ai) =
(DL(BT |a) + DL(a)) ∗ Γai

DL(BT |ai) + DL(ai)
(4.5)

Variation compression measures the capability of a variation to compress a

general pattern compared to the other variations. Compression of a general pattern
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shows the overall capability of the general pattern to compress the dataset with

respect to its length and continuity. Based on using the compression values and

by using a maximum compression error, we define interesting, sub-interesting and

uninteresting patterns and variations.

Definition 3. Let the compression of a general pattern a be defined as in Equation

4.4 over a time period T . Also Let σg and ǫg denote the minimum compression and

maximum compression error. The general pattern a is said to be interesting if its

compression α is no less than σg. It is sub-interesting if its compression is less than

σg, but no less than σg − ǫg; otherwise it is uninteresting.

We also give a similar definition for identifying interesting/sub-interesting vari-

ations of a pattern. Let the average variation compression of all variations of a general

pattern a over a time period T be defined as in Equation 4.6. Here the number of

variations of a general pattern is denoted by na.

β̃T (a) =
1

na

∗
na
∑

i=1

(DL(BT |a) + DL(a)) ∗ Γai

DL(BT |ai) + DL(ai)
(4.6)

Definition 4. Let the compression of a variation ai of a general pattern a be defined

as in Equation 4.5 over a time period T . Also Let ǫv denote the maximum variation

compression error. A variation ai is said to be interesting over a time period T if its

compression βT (ai) is no less than β̃(a)T . It is sub-interesting if its compression is

less than β̃(a)T , but no less than β̃(a)T − ǫv; otherwise it is uninteresting.
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During each pattern growth iteration, based on the above definitions, the unin-

teresting patterns and variations are pruned, specifically those patterns and variations

that are either highly discontinuous or infrequent (with respect to their length). We

also prune redundant non-maximal general patterns, specifically those patterns that

are completely contained in another larger pattern. To maintain only the very relevant

variations of a pattern, variations of a pattern that are determined to be irrelevant

based on mutual information [Guyon and Elisseeff, 2003] are discarded.

We continue extending the patterns by prefix and suffix at each iteration until

no more interesting patterns are found. We refer to the pruning process performed

during the pattern growth on the current data batch as normal pruning. Note that

this is different from the tail pruning process which is performed on the tilted-time

window to discard the unpromising patterns over time. In the following discussion

we will describe how the tilted-time window is updated after discovering patterns in

the current data batch.

4.3.3 Updating the Tilted-time Window

After discovering the patterns in the current data batch as described in the

previous subsection, the tilted-time window will be updated. Each general pattern

is associated with a tilted-time window. The tilted-time window keeps track of the
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general pattern’s history as well as its variations. Whenever a new batch arrives, after

discovering its interesting general patterns, we will replace the compressions at the

finest level of granularity with the recently computed compressions. If a variation of a

general pattern is not observed in the current batch, we will set its recent compression

to 0. If none of the variations of a general patterns are perceived in the current batch,

then the general pattern’s recent compression is also set to 0.

In order to reduce the number of maintained records and to remove unpromising

general patterns, we propose the following tail pruning mechanisms as an extension

of the original tail pruning method in [Giannella et al., 2003]. Let αj(a) denote the

computed compression of general pattern a in time unit j. Also let τ refer to the

most recent time point. For some m, where 1 ≤ m ≤ τ , the compression records

α1(a), ..., αm(a) are pruned if Equations 4.7 and 4.8 hold.

∃n ≤ τ, ∀i, 1 ≤ i ≤ n, αi(a) < σg (4.7)

∀l, 1 ≤ l ≤ m ≤ n,

l
∑

j=1

αj(a) < l ∗ (σg − ǫg) (4.8)

Equation 4.7 finds a point n in the stream such that before that point, the

computed compression of the general pattern a is always less than the minimum

compression required. Equation 4.8 computes the time unit m, where 1 ≤ m ≤ n,

such that before that point, the sum of the computed compression of a is always
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less than the relaxed minimum compression threshold. In this case the compression

records of a from 1 to m are considered as unpromising and are pruned.

We define a similar procedure for pruning the variations of a general pattern.

We prune a variation ak if the following conditions in Equations 4.9 and 4.10 hold.

∃n ≤ τ, ∀i, 1 ≤ i ≤ n, βi(ak) < β̃i(a) (4.9)

∀l, 1 ≤ l ≤ m ≤ n,
l

∑

j=1

βj(ak) < l ∗ (β̃l(a)− ǫv) (4.10)

Equation 4.9 finds a point in time where the computed compression of a vari-

ation is less than the average computed compression of all variations in that time

unit. Equation 4.10 computes the time unit m, where 1 ≤ m ≤ n, such that before

that point the sum of the computed compression of ai is always less than the relaxed

minimum support threshold. In this case the compression records of ai from 1 to m

are considered as unpromising and are pruned.

4.4 EXPERIMENTS

The performance of the system was evaluated on the data collected from two

smart apartments. The layout of the apartments including sensor placement and

location tags are similar to those for COM experiments in Section 3.3.2 and in Table
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3.1. We will refer to those apartments as apartments 1 and apartment 2. The

apartments were equipped with infrared motion sensors installed on ceilings, infrared

area sensors installed on walls, and switch contact sensors to detect open/close status

of the doors and cabinets. The data was collected during 17 weeks for apartment

1, and during 19 weeks for apartment 2. During data collection, the resident in

apartment 2 was away for approximately 20 days, once during week 12 and once

during week 17. We note that the last week of data collection in both apartments

does not include a full cycle. In our experiments, we constrain each time batch to

contain approximately one week of data. In our experiments, we set the maximum

errors ǫs, ǫg and ǫv to 0.1, as suggested in the literature. The value of σg was set to

0.75 based on several runs of experiments.

To be able to evaluate the results of our algorithms based on ground truth,

each one of the datasets was annotated with activities of interest. A total of 10

activities were noted for each apartment. Those activities included bathing, bed-toilet

transition, eating, leave home/enter home, housekeeping, meal preparation (cooking),

personal hygiene, sleeping in bed, sleeping not in bed (relaxing) and taking medicine.

Apartment 1 includes 193, 592 sensor events and 3, 384 annotated activity instances.

Apartment 2 includes 132, 550 sensor events and 2, 602 annotated activity instances.

Figures 4.4a and 4.4b show the number of recorded sensor events over time. As we

mentioned, the resident in apartment 2 was not at home during two different time
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(b) Apartment 2.

Figure 4.4: Total number of recorded sensor events over time (time unit = weeks).

periods, hence we see the gaps in Figure 4.4b where the number of sensor events is 0

for a period of time.

We ran our algorithms on both apartments’ datasets. Figures 4.5a and 4.5b

show the number of distinct patterns that are discovered over time based on using

a global support employed by DVSM versus using multiple regional support as in

our proposed method. The results again confirm our hypothesis that a COM-based

method is able to detect a higher percentage of interesting patterns using multiple

regional support values. Some of the patterns that have not been discovered are

indeed quite difficult to spot and also in some cases are less frequent. For example,

the housekeeping activity happens every 2-4 weeks and is not associated with any

specific sensor. Some of the similar patterns are merged together, as they use the

same set of sensors, such as eating and relaxing activities. It should be noted that

some of the activities are discovered multiple times in form of different patterns, as the
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Figure 4.5: Total number of distinct discovered patterns over time.

activity might be performed in a different motion trajectory using different sensors.

One also can see that the number of discovered patterns increases at the beginning

and then fluctuates over time depending on the perceived patterns in the data. The

number of discovered patterns depends on perceived patterns in current data batch

and previous batches, as well as the compression of patterns in tilted-time window

records. Therefore, some of the patterns might disappear and reappear over time

which can be a measure of how consistently the resident performs those activities.

As already mentioned, to reduce the number of discovered patterns over time,

our algorithm performs two types of pruning. The first type of pruning, called normal

pruning, prunes patterns and variations while processing the current data batch. The

second type of pruning is based on tail pruning to discard unpromising patterns and

variations stored in tilted-time window. Figures 4.6a and 4.6b show the results of

both types of pruning on the first dataset. Figures 4.6d and 4.6e show the results
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of both types of pruning on the second dataset. Figures 4.6c and 4.6f show the tail

pruning results in tilted-time window over time. Note that the gaps for apartment 2

results are due to the 20 days when resident was away.

By comparing the results of normal pruning in Figures 4.6a and 4.6d against

the number of recorded sensors in Figures 4.4a and 4.4b, one can see that the normal

pruning follows the pattern of recorded sensors. If more sensor events are available,

more patterns would be obtained, and also more patterns would be pruned. For the

tail pruning results, depicted in Figures 4.6b, 4.6e, 4.6c and 4.6f, the number of tail

pruned patterns at first increases in order to discard the many unpromising patterns

at the beginning. The trend lines in Figure 4.6b and 4.6e also confirm this. The

number of tail pruned patterns then decreases over time as the algorithm stabilizes.

To see how consistent the variations of a certain general pattern are, we used a

measure called “variation consistency” based on using the externally provided labels.

We define the variation consistency as in Equation 4.11. Here |v11| refers to the

number of variations that have the same label as their general pattern, and |v01| and

|v10| refer to the number of variations that have a different label other than their

general pattern’s label.

purity(Pi) =
|v11|

|v11|+ |v01|+ |v10|
(4.11)

Figures 4.7a and 4.7b show the average variation consistency for apartments
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Figure 4.6: Total number of tail-pruned variations over time. For the bar charts, W1-W4

refers to the week 1-4, and M1-M5 refers to month 1-5.
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1 and 2. As mentioned, for each current batch of data the irrelevant variations

are discarded using mutual information. The result confirms that that the variation

consistency increases at the beginning, and then it quickly stabilizes due to discarding

irrelevant variations for each batch.
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(a) Apartment 1 (time unit = tilted-

time frame).
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(b) Apartment 2 (time unit = weeks).

Figure 4.7: Total number of distinct discovered patterns and their variation consistency

over time.

To highlight the changes of a specific pattern over time, we show the results

of our algorithm for “taking medication” activity over time. Figure 4.8a graphs the

number of discovered variations over time for “taking medication” activity. Figure

4.8b graphs the same results in the tilted-time window over time. We can clearly

see that the number of discovered variations quickly drops due to the tail pruning

process. This shows that despite the fact that we are maintaining records over time

for all variations, many of the uninteresting, unpromising and irrelevant variations

will be pruned, making our algorithm more efficient in practice.
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(a) (Number of discovered variations

(time unit = weeks).
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(b) Number of discovered variations

(time unit = tilted-time frame).
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(c) Duration (time unit = weeks).
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(d) Variation consistency (time unit =

weeks).

Figure 4.8: Number of discovered variations, duration and consistency for “taking medi-

cation” activity pattern over time.

We also show how the average duration of the “taking medication” pattern

changes over time in Figure 4.8c. Presenting such information can be informative

to caregivers because it allows them to detect any anomalous events in the patterns.

Figure 4.8d shows the consistency of the “taking medication” variations over time.

Similar to the results obtained for the average variation consistency of all patterns,

we see that the variation consistency is increased and then stabilized quickly.



123

In summary, the results of our experiments confirm that we can find sequential

patterns from a steam of sensor data over time. It also shows that using two types

of pruning techniques allows for a large number of unpromising, uninteresting and

irrelevant patterns and variation to be discarded, in order to achieve a more efficient

solution that can be used in practice.

4.5 Summary

In this chapter we showed a method for discovering sequential patterns over time

from a stream of sensor data. Our method is based on the same concepts as COM

and DVSM. We provided an extension of the tilted-time window model for continuity-

based, varied order sequential patterns according to the special requirements of our

application domain. Not only can our proposed method be used in an activity discov-

ery and recognition system, but it also can be applied to other application domains,

such as Web click mining.

This chapter as well as the previous chapter have used unsupervised methods

in order to deal with the annotation problem in smart environments. In the next

chapter, we introduce yet another method to recognize activities when few or no

labeled activity data is available, based on transfer learning ideas.
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CHAPTER 5. TRANSFER LEARNING

You don’t understand anything until you learn it more than one way.

— Marvin Minsky

In this chapter, we introduce several novel activity recognition algorithms based

on ideas from transfer learning. Transfer learning allows us to reuse activity knowledge

from previous domains and apply to a new domain.

First we show a method called Multi Resident Transfer Learning, or for short

MRTL. MRTL can transfer activity knowledge between residents in the same physical

space. Our second method is called Home to Home Transfer Learning, or for short

HHTL. HHTL can transfer activity knowledge from a single physical space to another

target physical space. Our third method is called Multi Home Transfer Learning,

or for short MHTL. MHTL can transfer activity knowledge from multiple physical

spaces to a target physical space. Finally we present a method for selecting among a

number of available sources, in order to select the best sources for transferring.
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5.1 MRTL

In this section we introduce the Multi Resident Transfer Learning method, or

for short MRTL. MRTL is an unsupervised method to recognize and transfer learned

activities across different residents. We use DVSM to discover interesting patterns

in data in order to capture the intra-subject variability. Then we employ an activity

mapping method to map activities from a source resident to a target resident to

address the inter-subject variability and to provide a degree of similarity between two

sets of activities.

We consider each state of the activity to have arbitrary attributes, such as

duration or frequency which contribute to finding an appropriate mapping. We do not

require target activities to have the same structure as the source activities, such as an

equal number of states. Considering such general aspects, we define a flexible method

to map and measure similarity between source and target activities. In addition to

reducing the required amount of data, finding a mapping between activities allows us

to exploit gained knowledge in the source context. For example, if we have discovered

that certain types of cue detail and cue timing work best for a specific source activity

this information can be used for the mapped target activity too, depending on the

similarity degree.

In following sections, we first explain the general model, and then we describe
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each of the components in more detail. Finally we present the results of our experi-

ments.

5.1.1 Model

In our model, we hypothesize that the data collected for one resident in the

source space Φs can be used to recognize activities for that resident, and more impor-

tantly can be transferred to a target space Φt to learn activities for a different resident.

The obtained mapping and similarity measure will also allow us to eventually trans-

fer the source activity’s related knowledge, including cue timings and context. In

our current work, however, we initially constrain the problem to consider transferring

knowledge between different residents. We will also show methods for transferring

knowledge between different physical spaces, or between spaces with different sets

of sensors. In our model, the input consists of activities A from source Φs (which

we assume have already been discovered using DVSM), and a small dataset D from

target Φt. Using DVSM, we first identify interesting patterns P as sensor sequences

that usually appear together in D. Next, we cluster P into |A| clusters where |A| is

the number of activities in A. By comparing each cluster k’s representative, ck, to

each activity in A, and finding a similarity measure between them, we are able to

generate a mapping from Φs to Φt (see Figure. 5.1). Note that a source activity can
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be mapped to another target activity even if the target contains more or fewer states

than the source, and even if the target has different state attributes. In addition, the

order of states does not need to be preserved by the mapping.

Figure 5.1: MRTL architecture.

Next, we will describe our model in more detail.

Activity Mapping Method

To transfer activity pattern knowledge, the first step is to discover all the activity

patterns P in the sensor dataset D using our DVSM method. Next, we will cluster

the discovered patterns P into a set of clusters A, the size of which is equal to the

number of activities in Φs. Clustering P into |A| clusters allows us to better identify

an accurate 1-1 mapping between source and target activities, as we will compare

each cluster’s representative c with each activity a ∈ A, instead of comparing every

p ∈ P with each a ∈ A. The clustering method we are using is a standard k-means

clustering [MacQueen, 1967], however we need a method for defining representatives
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and comparing activities in order to form clusters.

Two methods for comparing similarity of sequences are “edit distance” [Leven-

shtein, 1966] and “LCS” [Sequeira and Zaki, 2002] for simple sequences of symbols.

Saneifar et al. [Saneifar et al., 2008] have proposed a similarity measure for more

complex itemset sequences based on the number of common items. Those methods

do satisfy our complex definition of an activity as a sequence of events with arbitrary

state attributes, and do not deal with general aspects of sequences such as temporal

information, order of states, etc. In our model it is possible to map a combination

of two states to one state. This can happen, for example, if the state pair’s total

duration in the source context is close to the duration of a single state in the target

context.

To calculate the similarity between two activities a and b, we need to determine

similarity between their set of states Sa and Sb, in addition to the order similarity.

Using our algorithm it is possible to combine several states during mapping, cases

where one state immediately follows another state with a sensor of the same type that

provides the same functionality. To find possible combinations of states, we define

Ext(S), the extension of a state set S, by considering possible combinations between

consecutive states with sensors of the same type to form a new state. For example,

for three consecutive sensors of the same type (a, b, c), it’s possible to consider three

new extended states, a′ = {a, b}, b′ = {b, c} and c′ = {a, b, c}. Note that additive
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attributes such as duration will be summed. We denote the union of actual and

extended states for an activity a as Πa = {Sa ∪ Ext(Sa)}.

We also need to define order similarity, to see if activities a and b have the same

relative order. We define the order similarity, so(i, j), between state i ∈ Sa and state

j ∈ Sb as in Eq. 5.1 where pos(s) shows position of state s in its corresponding activity

(for extended states, the total number of states will not be equal to |S|, therefore it

is replaced by corresponding new size).

so(i, j) = 1− |pos(i)|Sa|
− pos(j)

|Sb|
| (5.1)

To measure similarity between two activities a and b, we need to find the best

possible mappings between their states. We start with an initial mapping and then

resolve any resulting conflicts. This can happen, for example, if two separate actual

or extended states are mapped to the same state. For each state i ∈ Πa, we find the

best possible mapping state j ∈ Πb. The state similarity, ss(i, j), between two states

i and j is defined as in Eq. 5.2. Here, attribute k found in both states i and j is

denoted by ki and kj; wk is a weight applied to attribute k to indicate the importance

of k in calculating similarity (e.g. we might consider duration more important than

frequency); and m denotes the total number of attributes. In our model, we only

map sensors of the same type (e.g. motion sensors to motion sensors).
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ss(i, j) = 1− (
m

∑

k=1

wk ∗ (
ki

max(ki)
− kj

max(kj)
) ∗ so(i, j)) (5.2)

Then, the best possible mapping for state i ∈ Πa is defined as in Eq. 5.3.

map(i) = argmaxj∈Πb
{ss(i, j)} (5.3)

The cumulative similarity, sc(a, b), between a and b is defined as in Eq. 5.4.

Note that the subset of states selected from Πa and Πb for mapping will be denoted

by Υa and Υb.

sc(a, b) =
1

Υa

|Υa|
∑

i=1

ss(i,map(i)) (5.4)

To resolve any conflicts between a subset of states Sc ⊂ Πa that map to a single

state c, we will find a new mapping for each of the states s ∈ Sc. The new mappings

will be selected from Πb − {c ∪ Υb}. The state with the least new similarity will

be mapped to c, as such an assignment will cause the least amount of decrease in

the cumulative similarity. The rest of the states will be assigned according to new

mappings. If still there is any conflict, it will be resolved in an iterative manner. If

no mappings can be found for a state, it will be mapped to a null state.

The cluster representative ck for cluster k is defined as following: the number of

states for ck will be equal to the average number of states in k, the attributes for each

state will equal the average values for that state in k, and each state’s sensor type
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will be the most common type sensor type in k for that state. After the clustering is

finished, we will compare each a ∈ A to each ck, and by finding argmaxk{sc(ck, a)},

we can map activities in Φs and Φt. This mapping and similarity measure can act as

a guideline for transferring related activity knowledge.

5.1.2 MRTL Experiments

The testbed is a 3-bedroom smart apartment, located on Washington State

University campus. It is the same testbed as in experiments performed in Section

3.2.3 and in Figure 3.5. Sensor data was collected from 59 sensors including motion,

temperature, water, burner, phone usage, and the presence of key items.

We brought 23 participants into the smart apartment, one at a time. Each

participant was asked to perform a script of five iADLs, typically found in clinical

questionnaires assessing everyday functional activities; including (1) telephone us-

age, (2) hand washing, (3) meal preparation, (4) medication use, and (5) household

cleaning. Our data sets consisted of sensor event data for the series of 5 ADLs, each

repeated for about 3 times with random events injected between activities up to 50%.

Using a 10-fold cross validation approach, we assessed the ability of our algo-

rithm to accurately recognize activities for new target participants based on models

learned from a source participant.
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Our model was able to map and measure similarity between activities correctly,

despite the fact that the activities were performed in vastly different ways, including

different sensor event orders, different durations and different activity lengths (see

Figure. 5.2). It was interesting to note that longer patterns usually had a lower simi-

larity measure. This might be explained as there are more possibilities for differences

when more symbols are involved.
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(a) Similarity measures for all 5 tasks.
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(b) Similarity vs. Length

Figure 5.2: Similarity measure results.

In another experiment, we randomly changed the order of events in two sets

of datasets similar to the above datasets to simulate the effect of misplaced steps,

one dataset containing shorter patterns of 1 to 14 events, and the other containing

longer patterns of 14 to 47 events. Though for longer patterns the misplacement can

generate much more diverse patterns and therefore make it more difficult to detect

patterns, still our algorithm was able to find patterns (see Fig. 5.3).
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Figure 5.3: Accuracy vs. injected order noise for short and long patterns.

The above results confirm our hypothesis that our method is able to map activ-

ities despite inter-subject variability. The small datasets used for those experiments

(each dataset containing an activity repeated three times with 50% random activities

in between) also show how our method can use knowledge from the source space to

effectively recognize activities in the target space.

5.2 HHTL and MHTL

In this section, we explain our HHTL (Home to Home Transfer Learning) and

MHTL (Multi to Home Transfer Learning) methods. As HHTL is a specific case

of MHTL by using only a single source, we do not describe the method separately.

However, we will compare the two methods in our experiments.
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5.2.1 Introduction

Traditionally, in smart environments each environmental situation is treated as

a separate context in which to perform learning. What can propel research in cyber-

physical systems forward is the ability to leverage experience of previous environments

in new different environments. However, current activity recognition approaches do

not exploit the knowledge learned in previous spaces in order to kick start activity

recognition in a new space. This results in a delayed installation period in practice

due to the need for collecting and annotating huge amounts of data for each new

space. It also leads to redundant computational effort and excessive time investment,

and results in ignoring insights gained from previous spaces.

Using conventional unsupervised methods such as frequent or periodic data

mining methods, the long data collection period and prolonged installation process

becomes a problem in practice. Using supervised methods, a greater burden is placed

on the user of the smart environment, who must annotate sufficient data in order to

train the recognition algorithms. Hand labeling from raw sensor data is very time

consuming. Data collected in our testbeds required at least one hour of an expert’s

time to annotate a single day’s worth of sensor data. This becomes particularly prob-

lematic if we are targeting an installation in the home of an older adult who may

not be able to accurately annotate a large amount of data. Learning the model of
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each environment separately and ignoring what has been learned in other physical

settings also leads to redundant computational effort, excessive time investment, and

loss of beneficial information that can improve the recognition accuracy. Therefore,

it is beneficial to develop models that can exploit the knowledge of learned activities

by employing them in new spaces. Exploiting the transferred knowledge results in

reducing the need for data collection, reducing or eliminating the need for data an-

notation, and accelerating the learning pace. Using multiple sources and fusing their

data together can leverage the learning process even more by using a more diverse set

of activity models that can help in discovering and recognizing the target activities.

In this section, we introduce a method for transferring the knowledge of learned

activities from multiple physical smart environments to a new target physical smart

environment. In our approach, the layout of the spaces and the residents’ schedules

can be different. In addition, the type and number of sensors in two spaces might

be different. We validate our algorithms using data collected from six different smart

apartments with different layouts and different residents.

Compared to some previous preliminary work in this area such as by Kasteren et

al. [van Kasteren et al., 2008], in our approach, the activity model includes much more

information based on using structural, temporal and spatial features of the activities.

Unlike their approach, we do not manually map the sensor networks. Instead, we learn

sensor mappings based on the available data and activity models. In order to exploit
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the knowledge learned in different spaces, we transfer the activities from multiple

physical source spaces to a target physical space. First, we use a location based

data mining method to find target activities in the target data. Then the activities

from both source and target spaces are represented in a canonical form called an

“activity template” in order to allow for a more efficient mapping process. Next, we

use a semi-EM (Expectation Maximization) framework [Dempster et al., 1977] to map

source activities from each single source to the target activities. Finally, by using an

ensemble learning method based on a weighted majority vote [Dietterich, 2000] and

fusing multiple data sources we assign activity labels to the target activities.

5.2.2 Model Description

Our objective is to develop a method for transferring knowledge in the form of

activity models learned in multiple source physical spaces to a target physical space

in order to reduce data collection time, reduce or eliminate data annotation time and

exploit prior source knowledge in a new target space. We will refer to our method as

Multi Home Transfer Learning (MHTL for short). We denote N individual sources

as S1, ..SN and the single target space as T .

We assume that the physical aspects of the spaces, the number and type of

sensors, and also the residents and their schedules can be different. We also do not
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require all of the activities to exist across all spaces. In this work, the number of

available sources (N) is limited and computationally manageable, as reducing the

number of sources and source selection is beyond the scope of our work. We do

not discriminate between activities performed by different residents. Multi-resident

problems have been studied by several researchers and interested readers can refer to

related literature [Crandall and Cook, 2008]. We also assume that the activities’ steps

are contiguous, i.e. there is no interrupting event in the middle of a specific activity.

The activities are also assumed to be consistent over time, i.e. we assume that their

pattern does not change over time. In order to prevent any label mismatch between

different environments, we define a set of standard rules for annotating activity data.

All the annotations adhere to these standard rules. It is also possible to apply a

preprocessing step to achieve a unified labeling.

We hypothesize that we will be able to recognize activities in the target space T

using little to no labeled data and using only limited unlabeled data. This assumption

turns the nature of the problem into a domain adaptation problem [Pan and Yang,

2010]. In other words, labeled data is available in the source domain, but no or few

data labels are available in the target domain. This allows us to reduce several weeks

or months of data collection and annotation in the target space to only a few days’

worth of data collection. An effective way to perform this collection and annotation

with minimal queries is discussed in the next chapter.



138

Our ultimate objective is to be able to correctly recognize the activities in the

target space. By using our method, labeled target activity data becomes available that

can be consumed by conventional learning algorithms to perform activity recognition.

The labeled activities also can be used as a bootstrap method for other techniques such

as active learning techniques in order to quickly improve the recognition results over

time using limited data. In the remainder of this section we describe our notations

and also we will provide a high level description of the algorithm.

The input data is a sequence of sensor events e each in the form e = 〈t, id, l〉

where t denotes a timestamp, id denotes a sensor ID, and l refers to the activity

label, if available. Each sensor ID is associated with its room name (e.g., kitchen)

which we will refer to as a location tag. We use a standard set of location tags across

all different sources. The location tags define a simple ontology based on location of

sensors. This facilitates transfer of activity patterns between different spaces.

We define an activity as a = 〈E , l, t, d,L〉, where E is a sequence of n sensor

events 〈e1, e2, ..en〉, l is its label (if available), t and d represent the start time and

duration of the activity, and L represents the set of location tags where a has occurred.

Note that the start time and duration in general are represented as mixture normal

distributions, though initially most activities’ start times and durations consist only

of a single data point — later during activity consolidation the distribution will be

formed. As can be seen from the activity’s definition, each activity has structural
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information in the form of a sensor sequence E , temporal information in the form of

t and d, and spatial information in the form of L. These features allow us to convert

raw data into an activity model suited for mapping.

We denote the set of activities in each individual source space Sk by Ak. The

set of all source activities is denoted by A where A is the union of activities from all

individual sources, i.e. A =
⋃

kAk. We denote the set of target activities by AT . The

set of all source sensors is denoted by by R, and the set of sensors for Sk is denoted

by Rk. The set of target sensors is denoted by RT .

In order to be able to map activities from the source space to a target space, we

need to find a way to map the source sensor network to the target sensor network, as

the source sensors can have different locations and properties than the target sensors.

Therefore we need to find the mapping G(Rk) = RT . Finding a sensor mapping G

allows us to map a source activity to a target activity based on structural similarity

(sensor similarity) and based on the way that the source activity’s sensors map to

the target activity’s sensors. Based on using the sensor mappings G (the structural

mapping) as well as on available temporal and spatial features, we will find the activity

mapping function F(Ak) = AT .

To show how well a source activity (or sensor) is mapped to a target activity

(sensor), we use mapping probabilities. The mapping probability of an activity a ∈ Ak

to activity b ∈ AT is reflected in matrix Mk, where Mk[a, b] ∈ [0..1] shows the
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likelihood that activity a and b have the same label. Similarly, a second matrix

mk[p, q] ∈ [0..1] shows the probability that sensor p ∈ Rk maps to sensor q ∈ RT

based on their location and their role in activity models. Note that the mappings

need not to be one to one, as the number of sensors and the number of activities can

be different in the source and target spaces.

MHTL’s activity discovery and knowledge transfer is performed in several stages

(see Figure 5.4). First we process the labeled data from the source space and mine

the available unlabeled data from the target space in order to extract the activity

models in each space. In the source space, for each individual source Sk we extract

the activity models Ak by converting each contiguous sequence of sensor events with

the same label to its activity model. To reduce the number of activities and to find

a canonical mapping, we consolidate similar activities in Ak together to represent

an “activity template”. To avoid mapping irrelevant sensors, we use a filter feature

selection method based on mutual information [Guyon and Elisseeff, 2003] to discard

the irrelevant sensors for each activity template. In the target space we mine the

data to find unlabeled activity patterns based on using location closure. Target

activities are then consolidated using an incremental clustering method [Can, 1993].

If any labeled data is available in the target space, it can be used to refine the target

activity models.

In the next step, we map the source activity templates to the target activity
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Figure 5.4: Main components of MHTL for transferring activities from multiple source

spaces to a target space.

templates. MTHL begins by computing the activity templates’ initial mapping prob-

abilities based on structural, temporal and spatial similarities. The sensors’ initial

mapping probabilities are assigned based on a spatial similarity measure. After ini-

tialization, we compute the mapping probabilities in an iterative manner using an

Expectation Maximization-like framework [Dempster et al., 1977], which we refer to

as a semi-EM process. First, we adjust the sensor mapping probabilities based on the

activity mapping probabilities. Next, we adjust the activity mapping probabilities

based on the updated sensor mapping probabilities. This continues until no more

changes are perceived or until a user-defined number of iterations is reached.

The final step involves assigning labels to target activities. We assign an activity
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label to each target activity b based on the obtained activity mapping probabilities

M . To map activity labels we use an ensemble method based on a weighted majority

voting. Each space Sk casts a vote for the label of the target activity b. The voted label

is selected the same as the label of a source activity a that maximizes the mapping

probability Mk for b. Each vote is weighted by the overall similarity between the

source space Sk and the target space T , as will be described later. At the end, the

label with the maximum weighted votes is considered as the label of the activity b.

Note that in this method all the sources contribute to the label mapping process in

order to generate a final activity label for each target activity. We provide a more

detailed description of these steps in the next sections.

Activity Model Extraction

The first step of the multi-stage MHTL algorithm is to extract the activity

models from input data in both source and target spaces. For each single source space

Sk we convert each contiguous sequence of sensor events with the same label to an

activity a. This results in finding the set of activities Ak for each one of the individual

source spaces Sk. The start time of the activity is the timestamp of its first sensor

event, while its duration is the difference between its last and first timestamps. Due

to the prohibitively large number of extracted activities and possible similarity among

them, we combine similar activities together as an “activity template”. Representing

a set of similar activities as an activity template allows for a more efficient canonical
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mapping from source to target, as only a few activity templates will be mapped from

source to target instead of mapping a large number of similar activities with only

minor differences. The activity template for a set of activities is itself an activity,

formed by merging activities’ sensors, durations, and start times where the merged

start times and durations form a mixture normal distribution.

The temporal mixture model allows us to capture and model variations of the

same activity that occur at different times. For example, consider the “eating” activ-

ity which usually happens three times a day, once in the morning as breakfast, once

at noon as lunch, and once at night as dinner. Using a mixture model for the start

time we are able to capture all three variations by using a single activity model. The

method for obtaining the mixture model is demonstrated in Algorithm 2. The input

to algorithm 2 is the set of all timestamps for an activity a and the time interval

granule in hours denoted by r. Using this method allows for a variable number of

distributions to be discovered. A similar method is used for obtaining duration dis-

tributions where the number of duration distributions equals the number of obtained

start time distributions for that activity.

During activity consolidation, all the source activities that have the same label

will be merged into one single activity template. Note that as each activity template

is itself an activity, we use the terms activity and activity template interchangeably.

The next step after similar activities are consolidated is to perform sensor se-
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Algorithm 2 The Start Time Mixture Model

procedure FindMixtureModel(a, r)

for all timestamps t belonging to a do

Find t′ ∈ [1..24
r
] s.t. t ∈ [t′ − r

2
.. t′ + r

2
] ⊲ Find the right interval

c[t′] = c[t′] + 1 ⊲ Increase its count

end for

c̃ = r∗
∑

c

24

for all c[t′] > c̃ do ⊲ If frequency > Average

Make t′ a centroid ⊲ Form initial centroids

end for

for all timestamps t do ⊲ Find final centroids

Assign t to closest centroid

Recompute centroids

end for

end procedure
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lection for each activity template a by preserving only relevant sensors. Performing

sensor selection on each activity template allows for an even more compact repre-

sentation and a more accurate mapping, as it allows us to map only the relevant

sensors and to avoid mapping the irrelevant sensors as noise. Our sensor selection

method is a filter feature selection method based on mutual information [Guyon and

Elisseeff, 2003]. For each activity template a and each sensor s we define their mutual

information I(s, a) as in Equation 5.5. This value measures their mutual dependence

and shows how relevant sensor s is in predicting the activity’s label. Here P (s, a) is

the joint probability distribution of s and a, while P (s) and P (a) are the marginal

probability distributions, all computed from the sensor and activity occurrences in

the data. A high mutual information value indicates the sensor is relevant for the

activity template. We simply consider sensors with a mutual information above the

midpoint (0.5) as relevant, otherwise they will be discarded.

I(s, a) = P (s, a) ∗ log
P (s, a)

P (s)P (a)
(5.5)

To find activity patterns in unlabeled target data, we perform a data mining

step on the input data. First we partition the input data into activities. A sensor

event e1 = 〈t1, id1, l1〉 and its successor sensor event e2 = 〈t2, id2, l2〉 are part of

the same activity if L1 = L2, i.e. if both sensors are in the same location. Such a

local partitioning allows us to have a baseline for finding individual activities. This
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approach is based on the intuition that occurrences of the same activity usually

happen within the same location (such as preparing meals in the kitchen, grooming

in the bathroom, etc.), and more complex activities occurring in different locations can

be composed of those basic activities. Notice that as we only have access to limited

input data (perhaps a few days or even a few hours), we cannot use conventional

activity discovery methods such as frequent or periodic sequence mining methods to

find activity patterns in the data. Therefore, exploiting the spatial closure can be a

way to overcome this problem.

After partitioning data into initial activities, we consolidate those activities by

grouping together similar activities into an activity template. To combine activities

together, we use an incremental clustering method [Can, 1993], such that each activity

is assigned to the most similar centroid if their similarity is above threshold ς, and

then the centroid is recomputed. Otherwise the activity forms a separate cluster.

The centroid is itself represented as an activity template. At the end all the activities

in one cluster are consolidated together and the sensor selection is carried out. For

two activities a and b, their similarity Υ(a, b) is defined similar to what we defined in

Equation 3.18.

Mapping Sensors and Activities

The next step after the activity models for the source and target space have been

identified is to map the source activity templates to the target activity templates.
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First we initialize the sensor and activity mapping matrices, mk and Mk, for each

source and target pair (Sk, T ). The initial values of the sensor mapping matrix mk[p, q]

for two sensors p ∈ Rk and q ∈ RT is defined as 1.0 if they have the same location

tag, and as 0 if they have different location tags. The initial value of Mk[a, b] for

two activities a ∈ Ak and b ∈ AT is obtained based on exploiting related spatial

and temporal information and also prior activity label information (if available), as

in Equation 5.6. Note that in Equation 5.6 the first case applies to the few labeled

target activities, while for the majority of the target activities the second case is

applied.

Mk[a, b] =



















1.0 if la = lb

Υ(a, b) otherwise

(5.6)

For computing subsequent mapping probabilities, we use an EM-like framework

[Dempster et al., 1977] by estimating the mapping probabilities in an iterative manner.

First, the sensor mapping probabilities are computed; and in the next step the activ-

ity mapping probabilities are maximized based on the sensor probabilities. Though

this model doesn’t exactly reflect an EM algorithm, due to its iterative manner and

likelihood estimation in two steps, we refer to it as a semi-EM framework.

To compute sensor mapping probabilities mk[p, q] for sensors p ∈ Rk and q ∈

RT , we rely on activities in which p and q appear, as in Equation 5.7. The learning
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rate α refers to how fast we want to converge on the new values, while mn
k [p, q] and

mn+1
k [p, q] refer to the current and updated values of mk[p, q] in iterations n and n+1,

respectively.

mn+1
k [p, q] = mn

k [p, q]− α ∗∆mk[p, q] (5.7)

∆mk[p, q] = mn
k [p, q]− 1

|Xp||Yq|
∑

a∈Xp

∑

b∈Yq

Mk[a, b] (5.8)

Xp = {a ∈ Ak|p ∈ Ea}

Yq = {a ∈ AT |q ∈ Ea}
(5.9)

In Equation 5.8, Xp and Yq give us all the activities in which sensors p and q

appear. This means that those activities which do not include a given sensor will not

contribute to that sensor’s mapping probability.

In the next step, to adjust the mapping probability between each two activities,

we use Equation 5.10 to account for the updated sensor mappings. Here Mn
k [a, b] and

Mn+1
k [a, b] refer to the current and updated values of Mk[a, b] in iteration n and n+1,

respectively.

Mn+1
k [a, b] = Mn

k [a, b]− α ∗∆Mk[a, b] (5.10)
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∆Mk[a, b] = Mn
k [a, b]− 1

|Ea|
∑

p∈Ea

arg max
q∈Eb

{mk[p, q]} (5.11)

The above procedure for computing sensor mapping and activity mapping prob-

abilities is repeated until no more changes are perceived or until a pre-defined number

of iterations is reached. Next, the labels are assigned to the target activities based

on the obtained probability mapping matrices.

Label Assignment

In order to assign labels to the target activities, we use a voting ensemble method

[Dietterich, 2000] based on the activity models Ak for each space Sk. Combining data

from different sources to improve the accuracy and to have access to complimentary

information is known as data fusion or as a form of ensemble learning [Jacobs et al.,

1991]. Ensemble learning is a strategic way to combine multiple models, such as

different classifiers or hypotheses to solve a computational problem. In our problem,

using multiple sources allows us to fuse data from different sources and to form differ-

ent activity models, therefore being able to model target activities using knowledge

gleamed from a more diverse set of source activities. Note that for the HHTL method,

instead of a voting method, we use the suggested label from the single source directly.

In order to be able to successfully apply the ensemble learning technique, an

ensemble system needs classifiers whose decision boundaries are adequately different

from each other. The most popular method is to use different training datasets to train
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individual classifiers. The diversity condition of ensemble learning in our problem is

achieved by using different training sets from N different physical source spaces,

resulting in N different hypotheses. We build a classifier based on each individual

hypothesis hk and then by combining the predicted labels of all classifiers for a certain

target activity we are able to make a decision about the activity’s final label.

Each hypothesis hk is constructed based on using the activity templates Ak

for space Sk plus the activity and sensor mapping probabilities Mk and mk. We

represent each hypothesis as hk = {F(Ak),G(Rk)} where F and G denote the activity

and sensor mapping functions. For a single space Sk, Equations 5.12, 5.13 and 5.14

provide us with the activity mapping function F , sensor mapping function G and the

assigned label lb for each activity b ∈ AT . As can be seen in Equation 5.14, the target

activity’s label is selected to be the same as the label of a source activity a ∈ Sk that

maximizes the mapping probability Mk for a.

F(a) = max
b

(Mk[a, b]) (5.12)

G(p) = max
q

(mk[p, q]) (5.13)

lb = la s.t. Mk[a, b] = max
z

(Mk[z, b]) (5.14)

In order to combine the assigned labels for each b using different hypotheses,
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Algorithm 3 The weighted majority vote algorithm for label assignment

procedure AssignLabel(A, M , m, b)

for all Sk do

l← la s.t. Mk[a, b] = maxz(Mk[z, b]) ⊲ Vote

add l to the set of voted labels

Sim(Sk, T )←
∑

a∈Ak

Mk[a,F(a)] ⊲ Find overall similarity

W [l] = W [l] + Sim(Sk,T )
|Ak|

⊲ Increase label’s weight

end for

lb ← maxl W [l] ⊲ Find the final label

return lb ⊲ Assigned label is lb

end procedure
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we use the weighted majority voting algorithm as in Algorithm 3. The input of this

algorithm is the source activities A, the activity mapping probabilities M , the sensor

mapping probabilities m, and activity b ∈ AT . The output of the algorithm is the

label of b as lb. For each source space Sk we find the label of b by using Equation 5.14.

Each predicted label l is associated with a weight W [l], which is the total similarity

between the source Sk and T . The total similarity between Sk and T is calculated as

in Equation 5.15 by summing over the best mapping from Sk to T for each a ∈ Sk.

Obviously a label can be voted for by different hypotheses and its weight will be

increased as a result.

Sim(Sk, T ) =
∑

a∈Ak

Mk[a,F(a)] (5.15)

At the end, the label with the greatest number of weighted votes is selected as

the label of the activity b. After obtaining the labels of all target activities, we can

use the obtained labels to train a conventional activity recognition algorithm. We

also can use the labels in conjunction with other techniques such as active learning

in order to further improve the results.
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5.2.3 Experiments

We evaluated the performance of our MHTL algorithm using the data collected

from six different smart apartments. The layout of the apartments, including sensor

placement and location tags, are shown in Figure 5.5. We will refer to the apartments

in Figures 5.5a through 5.5f as apartments 1 to 6. The data was collected during a

three month period for apartments 1, 2, and 3, and during a two month period for

apartments 4, 5 and 6. Each apartment is equipped with motion sensors, and most of

the apartments are also equipped with contact sensors which monitor the open/closed

status of doors and cabinets. Apartment 5 is also equipped with light sensors and

some item sensors to sense the presence of key items. As can be seen in Figure 5.5

the apartments have different layouts. For example, apartments 3, 4 and 6 have two

bedrooms, while apartments 1 and 2 have one bedroom. In addition, some functional

spaces might not be available in all five apartments, such as the workspace, laundry

room or the music room. All the sensor data is captured and stored in a SQL database,

using a publish/subscribe protocol middleware.

The residents also have quite different schedules, as can be seen from the activity

distribution diagrams shown in Figures 5.6a through 5.6f. For example, in apartment

1 housekeeping is performed each Friday, while in apartment 2 this is performed once

a month, and in the third apartment the housekeeping activity is replaced by a work
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(a) Apartment 1. (b) Apartment 2.

(c) Apartment 3. (d) Apartment 4.

(e) Apartment 5. (f) Apartment 6.

Figure 5.5: Figures (a-e) show sensor map and location tags for each apartment. Circles:

motion sensors, triangles: contact sensors, stars: light sensors, hollow-shaped

sensors: area motion sensor.
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activity. Also the activity level in each apartment is different, as can be seen clearly

by comparing activity distribution diagrams for apartments 4 and 6 versus other

apartments. The activity level is dependent on the activity level of the residents as

well as the number of sensors that monitor the activities. The three first apartments

were single resident apartments, while for apartment 4 the residents included a man,

a woman, and a cat. Apartments 5 and 6 included two residents. All the data was

collected while residents were performing their normal daily activities during a 2-3

month period.

Each of the datasets was annotated with activities of interest for the correspond-

ing resident and apartment. A total of 11 activities were noted for apartments 1, 2

and 3. Those activities included bathing, bed-toilet transition, eating, enter home,

housekeeping (for the third apartment this is replaced by “work”), leave home, meal

preparation, personal hygiene, sleeping in bed, sleeping not in bed (relaxing) and

taking medicine. For apartment 4, 7 activities were noted including bed-toilet tran-

sition, taking medicine, eating, leaving home, laundry, sleeping in bed and working.

Apartment 5 included the 7 activities working, sleeping in bed, bed-toilet transition,

personal hygiene, meal preparation, housekeeping, sleeping not in bed (relaxing).

Apartment 6 activities included the 5 activities meal preparation, sleeping in bed,

eating, leaving home and entering home. As can be seen from activity labels in

various spaces, we have defined standard rules for annotating activity data. The
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Figure 5.6: Figures (a-e) show residents’ activity per a 24 hour for 2-3 month of data. The

boxes show the approximate boundary of “eating” activity for apartments 1,

4 and 6.
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annotators are required to adhere to those rules to prevent any label mismatch be-

tween different environments. One can expect that in a real world situation either

such standardization is enforced, or a preprocessing step is done to achieve a unified

labeling.

We ran our algorithm for each one of the apartments as the target space, re-

sulting in six different transfer learning problems. In each setting, all the apartments

except for the target apartment were used as the source apartments. In each setting,

we used all the available source labeled data, 1 to 7 days of target unlabeled data,

and 0 to 1 days of target labeled data.

The first step, activity extraction, resulted in a considerable reduction in the

number of source activities. In particular 3384, 2602, 1032, 428, 492, and 643 activity

instances from apartments 1 − 6 were represented by as few as 11, 10, 9, 7, 7, and

5 activity templates. The reason that we have obtained fewer templates than the 11

predefined activities in the second and third apartment is that the “eating” activity

was done rather in an erratic way and in different locations, therefore our sensor

selection algorithm did not choose any specific sensor for that activity, and as a result

the activity was eliminated. The same applied for “taking medicines” in apartment

3. This shows how our algorithm can avoid mapping very irregular activities. It is

also possible to obtain a more regular form of such activities by using object sensors

such as RFID tags on items.
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Our results also show how the algorithm condensed the activity instances into a

compressed representation, as we approximately obtained the 11 predefined activities

for the first three apartments and exactly 7, 7 and 5 activities for the last three apart-

ments. During activity extraction, the number of sensors included for each activity

template was reduced from an average of 76.85 sensors to 4.04 sensors, as the algo-

rithm removed the irrelevant sensors and preserved only the relevant sensors. This

shows that for each activity a few key sensors can be used to identify the activity,

e.g. taking medicine can be identified by the cabinet sensor where the medicines are

kept. The algorithm was able to successfully find the mixture normal distributions

for temporal features. Figure 5.7 shows the obtained distributions for the “Eating”

activity in apartments 1, 4, and 6. It can be seen from the distributions that apart-

ment 1 resident has a regular schedule for eating (three times a day). The residents

in apartment 4 seem to have a more irregular schedule, usually missing dinner, while

apartment 6’s residents seem to have a very regular schedule only for breakfast. Com-

paring the discovered mixture models to the activity distribution diagrams in Figure

5.5 confirms the correctness of our results (“Eating” activity is surrounded by boxes

in Figures 5.6a, 5.6d and 5.6f).

In the target space, data was mined to extract the activity templates. For

example, using three days of unlabeled target data and no labeled target data, we

discovered 8, 7, 7, 5, 5 and 5 activity templates for apartments 1 through 6. The
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(a) Apartment 1.
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(b) Apartment 4.
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(c) Apartment 6.

Figure 5.7: Start time’s mixture normal distribution for the “eating” activity. Here the

time interval granule r was set to 6 hours.
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similarity threshold ς in those experiments was set to the midpoint 0.5. The reason

that fewer activity templates are discovered compared to the predefined activities is

because some similar activities might be merged into one activity, such as relaxing and

eating which happen at similar times and similar places. In addition, some activities

cannot be easily discovered based only on a few days of data. One example is the

housekeeping activity which happens quite rarely compared to other activities; and

even if it happens to be in the data, because of its erratic nature and occurring all

over the home, it is not very easy to discover.

In the next step the source activities were mapped to the target activities. In

order to be able to evaluate the mapping accuracy of our algorithm, we embedded the

actual labels of target activities in data. This label is not used during training, rather

it is only used at the end to verify the correctness of the results. Mapping accuracy

is defined as the number of activities in the target space whose transferred label

matches the correct expert-supplied label. Figure 5.8a shows the mapping accuracy

for different amounts of unlabeled target data and no labeled target data, in several

different settings. Figure 5.8b shows a comparison between mapping accuracy based

on using multiple sources vs. average mapping accuracy using a single source, using

3 days of unlabeled target data. Figure 5.8c shows the individual single mapping

accuracies for apartment 1 versus its ensemble mapping accuracy. It can be seen that

on average the ensemble method can beat the single source method. The mapping
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Figure 5.8: Mapping accuracies and recognition rates.
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accuracies vary from space to space, depending on the consistency of activities in

target space, as well as the similarity between the source and target spaces, the

amount of data available in the source space used to create the activity model, the

dimension of the space that has been shifted (new environment, new sensors, or new

person). It should be noted that some activities might not be present in all spaces,

such as working or housekeeping. The same applies for lack of certain spaces in

different apartments, such as laundry room or workspace. We noted that transfer

between apartments that have a more similar layout and functional structure is more

satisfactory.

We tested two of our own activity recognition algorithms on the transferred la-

beled data. The first algorithm is a nearest neighborhood (1NN) algorithm based on

the similarity measure in Equation 3.18. The second algorithm represents activities

and sensor events with a hidden Markov model and learns the activities using the

Viterbi algorithm. The models performed almost the same with the nearest neigh-

borhood algorithm sometimes slightly outperforming HMM due to its use of temporal

and spatial features. Though HMM is considered as a temporal method, it should

be noted that it considers temporal information in the sense of “order of states”, not

“start time” or “duration” of states. The HMM does not take into account how much

time has been spent in a specific state, or when did a transition occur to another

state. Using the embedded labels we define the recognition rate as the percentage of
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sensor events predicted with the correct label. Figure 5.8d shows the recognition rate

of individual activities in apartment 1 using 3 days of unlabeled target data. Figure

5.8e shows 1NN’s recognition rate for apartment 1 as the target apartment using 0

and 1 day of labeled target data. Figure 5.8f shows 1NN and HMM recognition rates

for apartment 1 as the target apartment.

Our results show that despite using little to no labeled target data, and having

different layouts, schedules and different activities, both algorithms still achieve a

reasonable recognition rate in a target space using data from a source space. It

should be noted that in some cases, transferring from a source space to a target space

might not provide the best results. This happens when the source and target are not

very similar. In such cases, one can apply a source selection method to select the best

subset of sources among a set of available sources.

5.3 Domain Selection

In this section, we introduce a method for selecting the best promising sources

among a number of available sources and then adapting the activity models from

those sources. Our method employs ideas from domain adaptation and domain se-

lection solution proposed by NLP community. We show how by selecting domains

in a multiple source problem, we can achieve even higher accuracy rates. Also for
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domain adaptation, in previous methods we relied on directly mapping the sensors

and activities from a source domain to a target domain. Here, we take a slightly

different approach by using common features across our different domains.

5.3.1 Introduction

In previous sections, we have shown a method of transferring activity knowledge

from a source environment to a target environment based on an EM framework.

There we assumed that the number of sources is limited and that all of the sources

are equally similar. In this section, we generalize the problem in the context of multi

source domain adaptation, and we propose a novel method of combining hypotheses

from different source environments. Here we assume that not all the sources are

equally similar. We explore a method of measuring the distance between a source

and a target environment, called H distance. Based on such a measure, we propose a

method for selecting the most promising sources from a collection of available sources.

This allows us to achieve a high accuracy rate, while maintaining efficiency. It also

allows us to avoid the negative transfer effect [Rosenstein et al., 2005]. The negative

transfer effect refers to a case where adapting from a source domain might indeed

result in performance degradation. It happens if the source and target domains not

very similar. To the best of our knowledge, this is the first work to address activity
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recognition as a multi source domain adaptation problem, and to provide a method

for measuring the distance between activities performed in different environments.

Our method is based on multiple source domain adaptation [Pan and Yang,

2010, Blitzer et al., 2006, Belkin et al., 2006, Blitzer et al., 2007, Gupta and Sarawagi,

2008, Duan et al., 2009]. Proposed by the machine learning community, domain

adaptation essentially tries to adapt an algorithm that has been trained on a source

domain to a target domain. This problem arises in many applications, such as natural

language processing, speech processing, computer vision and many other applications.

For example, one might train an algorithm on documents collected from a financial

domain, but test it on documents collected from a medical domain [Belkin et al.,

2006]. A more complex variant of the problem, multi source domain adaptation, tries

to combine information from multiple source domains to make predictions about a

target domain [Duan et al., 2009, Crammer et al., 2008, Luo et al., 2008].

Adopting the domain adaptation formulation, we assume that we have access

to relatively large amounts of labeled data from multiple source smart environments

(e.g. home A and B), and limited “unlabeled” data is available from a new target

smart environment (e.g home C). Our objective is to recognize activities in a target

environment based on the source environments’ knowledge. This allows us to skip

the laborious and invasive step of activity annotation in a target environment, while

achieving an accelerated deployment. Using multiple sources increases the generaliza-
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tion capability of our algorithm and increases the chance that an activity is correctly

recognized in a target environment, as we showed in previous sections. In addition,

selecting the most promising sources among multiple sources allows us to achieve a

tradeoff between efficiency and accuracy, while avoiding the negative transfer effect as

much as possible. Our bootstrap domain adaptation technique can be combined with

other techniques such as active learning [Lewis and Gale, 1994] in order to achieve

even higher accuracies, by tailoring the solution to the target environment over time.

The remainder of this section is organized as follows. First we provide the

definitions and notations in Section 5.3.2, followed by explainingH distance in Section

5.3.2. The proposed model is described in Section 5.3.2. We then show the results of

our experiments on eight different datasets obtained from different smart apartments

in Section 5.3.3.

5.3.2 Model

In the following subsections, first we will give an overview of definitions and

notations. Next, we will describe our model in more detail.

Definitions

The input data to our system is a sequence of sensor events. Each sensor event

is timestamped with a timestamp τ , and is associated with a sensor ID. The sensor ID
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uniquely identifies the sensor that has been triggered. Also, in case of annotated data,

each sensor event is associated with an activity label l. An activity label identifies the

activity which this sensor event is part of, such as “meal preparation” or “sleeping”.

Such activity labels usually are provided manually by a human annotator for each new

environment. As mentioned previously, obtaining such annotations is very laborious

and time consuming. Note that we assume that we only have access to a few days of

unlabeled data in the target environment, while relatively large amounts of labeled

data might be available from source environments. This is in contrast to most domain

adaptation methods which assume that we have access to ample amounts of unlabeled

data from target domain.

We also assume that the source distributions are different. One can imagine

that activities performed in different environments by different residents will not have

the same distribution. Figure 5.9 confirms our conjecture. It shows the start time

distribution of activities over a 24 hour period for two different datasets used in our

experiments. One can clearly see that though the distributions show some similarity,

however they are not identical.

One of the main approaches for adapting a source domain to a target domain is

instance transfer [Pan and Yang, 2010]. It tries to re-weight the data instances accord-

ing to their distribution in the target domain. Instead of weighting each individual

instance, we weight the decisions made by different source domains, according to the
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Figure 5.9: Start time distribution of activities in B1 (blue) vs. M (red) datasets.

source and target domains’ distribution similarity for a particular activity. Another

commonly used approach in domain adaptation is “feature representation change”

[Pan and Yang, 2010], which tries to find a common representation of features in

source and target domains. We use a common simple representation of features in

the source and target domains in order to be able to generalize between activities

performed in various environments.

We define a domain D as a pair consisting of two components: a feature space

X and a marginal probability distribution P (X ). Each x ∈ X can be associated

with a label y ∈ Y and is written as (x, y). Here Y refers to the set of labels. For

example, features X can be defined as sensor events and their timestamps, P (X )
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can be defined as the activation probability of sensors during different time intervals,

and Y will correspond to the set of activity labels, (e.g., {sleeping, bathing, meal

preparation}).

For a domain D, we have a label function f(X ) : X → Y serving as ground

truth. For each domain we can also infer a hypothesis function h(X ) : X → Y that

approximates f and can be learned from data. Note that f(X ) is available only in

domains with labeled data. In our model, f corresponds to the annotations provided

by human annotators as the ground truth. If no such annotations are provided, then

we usually seek to learn a hypothesis h to approximate f . From a probabilistic point

of view, h(x) can be written as P (y|x), for x ∈ X and y ∈ Y .

Unlike most domain adaptation problems, here we do not adopt the covariate

shift assumption [Pan and Yang, 2010]. The covariate shift assumption, adopted

in most domain adaptation problems, states that the labeling rule, i.e. P (Y|X ), is

identical in source and target domains. Instead of the covariate shift assumption, we

assume that there might exist some hypothesis that works reasonably well on both

domains. It is also possible that a hypothesis from a particular source domain might

not work well on the target domain, causing the negative transfer effect.

Casting our problem as a multiple source domain adaptation problem, we con-

sider m environments as source domains, referred to as Ds for s = 1 .. m. We also

consider a target environment Dt. In our scenario, the source domains refer to those
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smart environments in which we previously have collected data and annotated it. The

target domain is a new smart environment in which we intend to deploy an activity

recognition system, and in which we only have collected a few days worth of unla-

beled data. In other words, we are provided with fs(X ), while ft(X ) is unknown.

Our objective is to combine hypotheses h1(X )..hm(X ) in order to infer ht(X ).

Model Overview

In order to recognize activities in a target smart environment, we combine hy-

potheses from multiple source smart environments. First, we take a small sample from

each one of the source datasets. The size of the sample is chosen to approximately

match the size of the target dataset in order to avoid the effects of an unbalanced

dataset [Searle, 1987].

Next, we calculate the pairwise similarity between each sample source dataset

and target dataset, for each particular activity. We use a distance measure called

H distance. It computes the distribution difference based on finite samples of data

[Kifer et al., 2004]. The overall similarity of the two domains is defined as their

average similarity with respect to all of their common activities.

In order to avoid the negative transfer effect, we select the most promising

sources based on the computed average similarity. This allows us to select only the

sources that have a similarity above the average. Next, we combine the hypotheses

from various selected sources using a weighted combination. The weights correspond
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Figure 5.10: Domain Selection and Adaptation Architecture.

to the product of hypothesis’ confidence by the similarity of the predicted act in the

source and target domains.

Figure 5.10 shows the architecture of our model. In the next subsections, we

will explain the details of our model.

Measuring Domain Distance

In order to be able to select the most promising domains among a list of available

domains, we need to quantify the difference between the source and target environ-

ments. Selecting the most promising sources instead of using all the sources in a brute

force manner allows us to avoid the negative transfer effect. The negative transfer ef-

fect refers to a case where the performance might actually degrade due to the transfer
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[Rosenstein et al., 2005].

A number of measures have been developed for determining distance between

two distributions. One such measure is Jensen-Shannon divergence (JSD) [Lin, 1991].

However it requires estimating the distribution forms and only works with discrete

distributions. The same is true for Kullback Leibler divergence (KL) [Kullback and

Leibler, 1951] which requires us to know the exact form of distributions. Other

commonly used distances such as L1 or Lp norms are either too sensitive or too

insensitive, as pointed out by Batu et al. [Batu et al., 2000]. In addition, in a

distribution-free setting such as our scenario, we cannot obtain accurate estimates of

common measures of divergence such as L1 or KL divergence from finite samples.

We use a classifier induced divergence measure called H distance. Proposed by

Kifer et al. [Kifer et al., 2004], it allows us to measure the divergence between two

distributions. Kifer et al. [Kifer et al., 2004] showed that if the hypothesis space is

of finite complexity, we can measure the divergence from finite unlabeled samples of

data. The more different the two domains are, the more divergent the distributions

would be. Blitzer et al [Blitzer et al., 2006] used a variant of H distance as a criterion

for adaptability between unlabeled domains. Here, we use it as a distance measure

in order to combine hypotheses from various domains, and to discard less promising

sources to avoid the negative transfer effect.

There are several reasons for using H distance. The key advantage is that while
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two domains can differ in arbitrary ways, H distance gives us the difference only

affecting the classification accuracy. Also, unlike other distribution distance measures

such as JSD or KL divergence, it’s possible to compute it from finite unlabeled samples

of two distributions. More importantly, one can use the well known machine learning

methods to estimate the distance.

Let A be a family of subsets of ℜk corresponding to the characteristic functions

of classifiers. Then the H distance between two probability distributions D and D́

is defined as in Equation 5.16. Here sup refers to supremum and |.| refers to the

absolute value.

dH(D, D́) = 2 ∗ sup
A∈A
|PrD(A)− PrD́(A)| (5.16)

Ben-David et al. [Ben-david et al., 2007] showed that computing H distance for

a finite sample is exactly the problem of minimizing the empirical risk of a classifier

that discriminates between instances drawn from D and D́. In other words, we should

label all the data points in the source domain as 0, and all the data points in the target

domain as 1, regardless of their actual class labels. Then we can train a classifier to

discriminate between the two domains, separating data points with a label of 0 from

those data points with a label of 1. The more similar are the data points in the source

and target domains, the more difficult it would be to separate the source and target

data points, and therefore the higher would be the empirical risk.
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Based on this conclusion, we re-write Equation 5.16 as Equation 5.17. Here

ǫh is the empirical error when discriminating between source domain Ds and target

domain Dt based on some hypothesis h ∈ Hs. Here Hs is the hypothesis space of

source domain.

dH(Ds,Dt) = 2 ∗ (1− arg min
hj∈Hs

(ǫhj
)) (5.17)

We compute such a distance measure for each pair of source and target domains,

and for each activity y ∈ Y belonging to the target environment. This allows us to

obtain a clear picture of domain similarity based on various activities.

Model Details

As pointed out earlier, various methods have been proposed for facilitating

domain adaptation, including change of feature representation [Pan and Yang, 2010].

Change of representation is basically a transformation function g : X → Z such that

P (z) =
∑

x∈X

g(x)=z

P (x) ∀z ∈ Z. (5.18)

Equation 5.18 states that the transformation function should preserve the prob-

ability distributions of features. In our model, we have to transform the original raw

features into new features. The sensor IDs are unique to each specific environment

and might carry different meanings in each environment. For example, id1 in one
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home might refer to an infrared motion sensor in the bedroom for detecting sleep

activity. The same sensor ID id1 in another home might refer to a cabinet sensor

in the kitchen. We use the simple mapping S → L(S) where S refers to the set of

sensor IDs, and L refers to the location where a sensor is located (e.g. bedroom, or

medicine cabinet). Obviously such a mapping preserves the probability distribution

of features, as the activation probability of the sensors will sum up for a location. We

maintain a unified list of locations across different environments.

We use an N-gram model to represent the sequential nature of data [Manning

and Schtze, 1999]. N-gram models have been used extensively by the natural language

processing community to represent the sequential data in a simplified and efficient

manner. An N-gram model for our sensor data shows the currently activated sensor,

in addition to N − 1 previously activated sensors, providing history context. We also

use the start time of the activations as another feature to provide temporal context.

The source domains D1 through Dm provide us with m hypotheses h1 .. hm.

First we select n ≤ m hypotheses based on the overall similarity between our target

and each one of the sources. We then combine n hypotheses in order to infer a

hypothesis ht for the target domain.

To combine hypotheses h1 .. hn, we weight the hypotheses by their correspond-

ing pairwise activity similarities with the target domain, multiplied by the hypothesis

confidence. Here we adopt the smoothness assumption [Belkin et al., 2006], which



176

states that two nearby (similar) patterns in a high density area (high confidence)

should share similar decision values. Therefore we can assign a certain label to a par-

ticular activity in the target domain, if the two domains are similar in terms of that

particular activity, and also if our confidence is high about the predicted label of that

activity. For our domain adaptation problem, we assume that the target function ht

shares values with similar domains.

In order to use H distance in our activity recognition system, we need to adapt

it to our scenario. Not only is it important to measure the overall similarity between

source and target environments, but also it’s important to know how many similar

activities exist and what is their individual similarity value. For example, “eating”

and “cooking” can be similar in the two domains (similar structure, similar start

times), but “sleeping” might be different. This indicates that our source domain

might be a good candidate for recognizing “eating” and “cooking” activities in the

target domain, but not for “sleeping” activity.

We denote the distance between two domains Ds and Dt based on activity y as

dy
H(Ds,Dt). It’s similar to computing the generic H distance, with the exception all

the data points with a label other than y will be ignored during calculation. Note that

such a distance measure is not symmetric. Consequently the activity based similarity

measure is defined as in Equation 5.19.
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Φy(s, t) = 1− dy
H(Ds,Dt) (5.19)

In order to determine similarity between a source and target domain based on

individual activities, we need to identify the target activities. As we assume that the

target data is unlabeled, we have no way of telling which activity a certain sensor

event belongs to. To solve this problem, we utilize a two-stage algorithm. First, we

build an ensemble classifier using source datasets to assign a label to the target data

points. Next, we will compute the individual activity based source-target similarity,

and will select the promising sources. Then we will adjust the target points labels

according to the source-target activity similarity.

The base classifier in our algorithms is a kernel based naive Bayes classifier

[Pérez et al., 2009]. A naive Bayes classifier is a classifier based on Bayes theorem

that works surprisingly well on N-gram data [Hand and Yu, 2001]. The naive Bayes

classifier predicates the class of an instance, y∗, as in Equation 5.20.

y∗ = max
yj

P (yj)
∏

i

P (xi|yj) (5.20)

In a kernel naive Bayes classifier, the conditional probability P (xi|yj) is com-

puted via kernel density estimation of class yj, as in Equation 5.21. This allows us to

estimate the distribution of non-categorical values, such as the start time of activities.

Here N is total number of data points.
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P (x|yj) =
N

∑

i

Kj(x, xi) (5.21)

In Equation 5.21, Kj(x, xi) is a kernel function. We used the widely adopted

Gaussian function as a kernel (Equation 5.22). Also we used Laplace smoothing to

prevent high influence of zero probabilities [Zadrozny and Elkan, 2001].

Kj(x, xi) =
1√
2πσ

e−
(x−xi)

2

2σ2 (5.22)

After finding the individual activity similarities Φy(s, t) as in Equation 5.19, the

overall similarity between a given source and target can be defined as in Equation 5.23.

Here Yt shows the subset of all activity labels that appear in the target environment,

and |Yt| refers to the cardinality of Yt.

Φ(s, t) =
1

|Yt|
∗

∑

y∈Yt

Φy(s, t) (5.23)

In the next step, we select the most promising sources. To select the top n

sources, given n, we choose n sources with the highest similarity value Φ(s, t).

If n is not given, then we need to find a suitable value for n. To select the

most promising sources out of m sources, we consider the overall source-target simi-

larity Φ(s, t), in addition to the total number of selected sources. This is reflected in

Equation 5.24. The sources with Ψ above a threshold θΨ will be selected.
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Ψ(si) =
Φ(Dsi

,Dt)
m
∑

s=1

Φ(Ds,Dt)
∗

√

1− n

m
(5.24)

The first term in Equation 5.24 limits our choice of source domains to those with

a similarity Φ above the average similarity. The second terms imposes a restriction

on the number of selected source domains. This allows for a more efficient method,

while achieving the desired accuracy.

Next, we combine the hypotheses from n selected sources. We assume that the

confidence of a classifier i for a predicted label y is given by hi(y|x). Therefore, we

can write the hypothesis combination rule as in Equation 5.25.

ht(x) =
n

∑

i=1

arg max
y

hi(y|x) ∗ Φy(si, t) (5.25)

It should be noted that as we are using an ensemble of source datasets to decide

on a target dataset, we should consider the conditions for constructing an ensemble.

Dietterich [Dietterich, 2000] points out that an ensemble of classifiers should be diverse

and accurate. An accurate classifier is one that has an error rate better than random

guessing, i.e. better than 0.5. Two classifiers are diverse if they make different errors

on new data points. The diversity condition is reached as we are using sources from

different domains. The accuracy condition is achieved by ensuring that an individual

source has an accuracy of more than 0.5 when tested on its own dataset in our

experiments.
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5.3.3 EXPERIMENTS

To evaluate our algorithm, we tested our algorithms on 8 different datasets

collected from 6 smart apartments. The layout of the apartments, along with their

sensor layouts are shown in Figure 5.11. We refer to those 8 datasets as B1, B2, B3,

K1, K2, M, T1 and T2. Datasets K1, K2 were collected from the same apartment, but

within different time periods, housing different pairs of residents, and were annotated

with different activities. The same is true for T1 and T2. It should be noted that

all datasets are collected during a normal day to day life of the residents. A more

detailed description of datasets can be found in Table 5.1.

Dataset B1 B2 B3 K1 K2 M T1 T2

Environment B1 B2 B3 K K M T T

Num. of Residents 1 1 1 2 3 1+ pet 2 2

Num. of Sensors 32 32 32 71 72 32 20 20

Num. of Instances 5714 4320 3361 497 844 1513 1431 166

Dataset Size (Days) 126 234 177 61 38 88 120 10

Table 5.1: Characteristics of each dataset.

The sensors in our smart environments consist of various ambient sensors, such
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(a) Apartment B1. (b) Apartment B2. (c) Apartment B3.

(d) Apartment K. (e) Apartment M. (f) Apartment T.

Figure 5.11: Apartment layouts. Circle: motions sensor/area sensor. Triangle: item

sensor/door sensor. Star: light sensor.

as infrared motion sensors, oven sensors, switch contacts on doors and cabinets, and

light sensors. The data has been collected using our publish/subscribe middleware

and is stored in a SQL database.

To be able to evaluate the results of our algorithms based on a ground truth,

we annotated the datasets with activities of interest. We considered 10 different
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activities. However, as one would expect in a real world setting, not all activities are

common between different environments. The list of activities for each dataset can

be viewed in Table 5.2. One should note that not only the activities are different in

the different datasets, but also their distributions are different.

B1 B2 B3 K1 K2 M T1 T2

Hygiene X X X X X X X

Leave Home X X X X X X

Cook X X X X X X X X

Relax X X X X X X X

Take Med X X X

Eat X X X X X X

Sleep X X X X X X X

Bathing X X X X X X

Bed to toilet X X X X X X

Work X X X X X

Table 5.2: Annotated activities in each dataset.

To test our algorithm, we considered 8 different problem settings. In each set-
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ting, 7 datasets were considered as source environments, while the remaining dataset

was considered as the target environment.

After running our algorithm in a 10 fold cross validation manner, we found the

midpoint threshold θΨ = 0.5 to be a suitable value for our experiments. The cross

validation results also found the 3-Gram model to best represent the data, and higher

gram values did not significantly change our results. The target dataset included 3

days of unlabeled data. The samples from sources datasets were also chosen to include

approximately 3 days of data. The unified list of locations included bathroom, shower,

bedroom, kitchen, living room, work area, med cabinet, and entrance. All experiments

were carried out in a 10 fold cross validation manner.

Figure 5.12 shows the average individual activity similarities versus their recog-

nition rates in a target environment M. It can be clearly seen that the activity recog-

nition rate closely follows the activity similarity.

Figure 5.13 shows source-target activity similarities in various settings. Note

that the results confirm our intuition about the dataset similarities. For example,

one can clearly see that the most similar dataset for apartment B2 is B1, as they

have a similar number of residents and contain common activities. Their floorplan

is also quite similar, as they were located in the same building complex. The next

most similar dataset is B3 which again has a very similar list of activities. As it

is located in the same building complex, it also has a similar floorplan. However
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Figure 5.12: Activity similarity vs. recognition rate for dataset M.

it is a two bedroom apartment, having a workspace in the second bedroom and an

additional work activity. For datasets T1 and T2, though they were collected from

the same apartment, however they have different set of activities, therefore showing

lower similarities. These results show how various latent factors can be important

for finding similarity between two environments, and how our algorithm is able to

infer such a similarity value using its knowledge about the way that the activities are

performed in different environments.

Figure 5.14 shows the overall activity recognition rates based on choosing the

top n sources. We also performed experiments based on randomly selecting the top n

sources (averaged over 10 runs), using a simple linear combination rule (no weights).
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Figure 5.13: Pairwise similarity between various source and each target.
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One can clearly see that our domain selection algorithm outperforms the random

selection algorithm. It should be noted that the results of our algorithm are based

on using only a small sample of source and target datasets and it is possible that the

chosen samples are not representative of the entire dataset, leading to lower recogni-

tion rates in some cases. Still, despite the fact that we are relying only on a small

unlabeled target dataset, and despite the fact that the apartment layouts, sensors

and residents are different, we were still able to achieve very reasonable recognition

rates.

In Figure 5.14 one can also see the effect of negative transfer. We can see that

adding more data sources does not necessarily increase the recognition accuracy in

the target environment. We used our source selection algorithm for choosing the best

number of sources. Using our method, 95% of the maximum achievable accuracy was

achieved using only 4.5 sources on average. The average accuracy was 74.88%. This

shows how our algorithm can approximate the best number of promising sources,

balancing efficiency and accuracy.

The detailed accuracies based on choosing the best number of sources are shown

in Table 5.3. Table 5.3 shows accuracy results for a similar supervised method that

uses 100% of the “labeled” target dataset for training. In contrast our method uses

about 8.7% of the target dataset on average. It can be seen that though our method

uses only a small fraction of target dataset which is also unlabeled, it surprisingly
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(a) Apartment B1.
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(b) Apartment B2.
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(c) Apartment B3.
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(d) Apartment K1.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Top Selected Sources

R
ec

og
ni

tio
n 

A
cc

ur
ac

y

Recognition Accuracy vs.
Number of Top Selected Sources

 

 

Domain Selection
Random Selection

(e) Apartment K2.
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(f) Apartment M.
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(g) Apartment T1.
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(h) Apartment T2.

Figure 5.14: Activity recognition accuracies for different numbers of source domains.
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works well. In some cases, such as for the K2 dataset, our algorithm even outperforms

the supervised method. These experiments show how our method can be useful in

a real world situation where supervised methods are expensive and impractical due

to the time constraints and annotation costs. One can also combine our bootstrap

method with active learning methods to achieve even higher accuracy in a target

environment.

Dataset B1 B2 B3 K1 K2 M T1 T2 Avg.

Supervised. 0.86 0.86 0.9 0.63 0.79 0.73 0.88 0.76 0.80

Domain Selection 0.79 0.83 0.75 0.69 0.74 0.68 0.78 0.73 0.75

Table 5.3: Domain selection recognition rates.
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5.4 Summary

In this chapter, we introduced a number of methods based on transfer learning

concepts. These methods can be used to transfer activity models between different

residents as well as between different physical spaces. We also described a method for

selecting the most promising sources among a number of available sources. Those ac-

tivity transfer methods allow us to reuse activity models in another domain, therefore

eliminating or reducing the annotation time and effort and expediting the deployment

process.

In the next chapter, we will introduce two novel active learning methods which

can be used to optimize the annotation time and effort, by posing targeted queries to

a human annotator.
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CHAPTER 6. ACTIVE LEARNING

Judge a man by his questions rather than by his answers.

— Voltaire

In this chapter, we introduce two novel active learning methods to reduce the

annotation time and effort. We test our algorithms on data collected from our smart

apartments. In addition to CASAS datasets, we also test these algorithms on several

real world datasets from the UCI repository to show how our method can be used in

general.

6.1 Introduction

In recent years, a variety of active learning methods have been proposed [Settles,

2009, Tomanek and Olsson, 2009] and it has been used in various application domains

such as drug discovery [Warmuth et al., 2003], text classification [McCallum and

Nigam, 1998], media retrieval [Chen et al., 2005b] and medical image classification

[Hoi et al., 2006]. Active learning is primarily used when little labeled data is available,

but unlabeled data is abundant. Its goal is to minimize the human annotation efforts

via posing targeted queries to an oracle, instead of labeling the whole dataset. Active
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learning methods usually select an informative unlabeled instance and ask the oracle

for the label of the instance. The oracle, typically a human oracle, provides the

correct label of the instance and then the newly labeled instance is added to the

training dataset.

Despite enormous progress in the active learning field in recent years, there

are still some shortcomings that need to be addressed. Traditional active learning

methods usually ask for the label of a specific unlabeled instance. Though this might

result in some accuracy improvement, it might not be very easy for an oracle to label

a very specific case. This can be especially true if the query contains many features,

and if those features represent high precision numeric data. Some features might also

be irrelevant for a certain query and eliminating those features can result in a shorter

and more readable query. This can also prevent the oracle’s confusion.

For example in the real world, a medical domain expert prefers to be presented

with a generic diabetes query which (1) embodies similar patient cases together, (2)

only includes relevant symptoms and (3) involves range values instead of very specific

exact values for the lab test results. Such a query will be shorter, less confusing and

more intuitive. In addition, the domain expert will be able to answer more queries

in less time and the learning algorithm can achieve higher accuracy rates by posing

fewer queries.

We present two novel methods for constructing generic active learning queries.
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The first method is based on feature selection while the second method called is

based on rule induction. We refer to our first method as “template based query

active learning”. We call our second method RIQY, standing for Rule Induced active

learning QuerY method. Both methods follow the same steps for choosing the most

informative instance and its similar cases by exploiting the underlying distribution.

Their difference is how they construct a general query from the most informative

instance and its similar cases. In both cases, the generic query not only is shorter

and more readable, but it also condenses multiple similar cases into a single query.

In our template based method, we select an informative instance as well as its

nearest neighbors (most similar) and farthest enemies (most dissimilar). By finding

the set of relevant features that separate the enemies and neighbors of an informative

instance, we are able to construct a template query. The template query is composed

of relevant features which can takes on point and range values. We test it on 6 real

world datasets from the UCI repository, as well as several CASAS datasets.

Our RIQY method again exploits the underlying density distribution to find

the most informative instance as well as its most similar cases. Then by using a rule

induction classifier to infer rules for separating those similar cases from the rest of

data, we construct a generic query. We again evaluate our algorithm on two different

sets of data. The first set of data consists of various real world datasets from the UCI

repository [Frank and Asuncion, 2010], as well as several CASAS datasets. Our RIQY
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method is also relatively easy to implement as it employs the well known machine

learning components.

The remainder of this chapter is organized as follows. First we will present a

motivational example in Section 6.2, followed by an overview in Section 6.3. In Section

6.4, we explain our approach for selecting the most informative instance. Then we

explain the query construction details of template based method in Section 6.5, and

the RIQY method in Section 6.6. We then present the results of our experiments in

Section 6.7.

6.2 Motivational Example

We show by an example how our methods can pose shorter and more meaning-

ful queries to the oracle and how such queries can aggregate multiple similar cases

together. Figure 6.1 also better highlights the differences between a traditional ac-

tive learning method versus one of our methods, RIQY. Note that our template based

method also follows a similar process, only instead of rule induction it uses a heuristic

feature selection method.

For example consider a heart disease dataset. We assume that it has 20+

features and the classification task is to predict whether a patient has heart disease

or not. Consider the following example query:
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Learning 
Algorithm

?

Select 
Informative

Instance

Informative 
Instance

Label

Oracle

(a) Traditional active learning.

Learning 
Algorithm

?

Select 
Informative 
Instance + 

Similar CasesRule 
Induction

Rule Based Query Label
Oracle

(b) Our RIQY active learning method.

Figure 6.1: Traditional active learning methods versus our RIQY active learning method.

“What is the class label if (sex= female) and (age =39) and (chest pain type =

3) and (serum cholesterol = 150.2 mg/dL) and (fasting blood sugar = 150 mg/dL)

... and (electrocardiographic result = 1) and (maximum heart rate achieved = 126)

and (exercise induced angina = 90) and (heart old peak = 2.3) and (number of major

vessels colored by fluoroscopy = 3)?”

Note that for the sake of brevity here we only show a sample of the total set

of features. In reality all of the features would be included in the query that is

presented to the oracle. From this example query, one can clearly see how such a long

and overly specific query with so many features can be difficult to be answered by a

domain expert. A similar case would also require another query to be posed to the

oracle, without taking advantage of the previous cases. In addition, many features
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might be indeed irrelevant to the query at hand.

Although one can apply a feature selection method as a preprocessing step

here, but it should be noted that it would discard the features in a global manner. In

contrast, we are looking at the problem of discarding a “locally” irrelevant feature for

a number of similar instances. For example, “exercise induced angina” feature might

be relevant for the whole dataset, but it might not very discriminating for a group of

patients whose “age > 65”.

In the real world, a domain expert usually expects queries in a shorter and

more intuitive form, with range values instead of exact values and with similar cases

aggregated together as a generic case. One such example is:

“What is the class label if (age > 65) and (chest pain type = 3) and (serum

cholesterol > 240 mg/dL) ?”

In the following sections, we show how we can construct such generic queries as

a form of rule induction.

6.3 Preliminary

Our input data is an n-dimensional feature vector which is denoted by x =

〈x1, x2, · · · , xn〉. Each labeled instance x is assigned a class yj ∈ y. The function

that measures the informativeness of an instance x is denoted by Φ(x) and the most
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informative instance is denoted by x∗. We assume that each dataset is composed of

a small labeled dataset L, a large unlabeled dataset U and a test dataset T which is

set aside for the evaluation purposes only.

We also assume that the oracle is able to answer our queries and to provide

us with a label l and a confidence value c. There is a proximity matrix M that

shows the similarity between each two data points in our dataset. The proximity

matrix is used to identify the nearest neighbors of x∗. All the proximities are cached

and pre-computed as mixed Euclidean distances. For a more efficient nearest neighbor

search, one can employ methods such as kd-tree [Panigrahy, 2008] or locality sensitive

hashing (LSH) [Gionis et al., 1999]. If the original dataset contains a large number

of features, one can perform conventional feature selection methods to obtain a more

representative dataset. But as we mentioned before, a preprocessing feature selection

step is quite different than the local feature selection process during rule induction,

as the locally relevant features can vary from query to query.

In summary our methods work as following. First we train a classifier C on

a small labeled dataset L to identify the potential informative instances. This step

is similar to most of the traditional active learning methods. Our informativeness

measure is a variation of density weighted method that also takes into account the

dissimilarity to the previously labeled data in order to achieve a more efficient method.

After identifying the most informative instance, we select its nearest neighbors
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as well as its enemies. The nearest neighbors and the enemies are combined together

into a single dataset. The nearest neighbors are assigned a label of 0, while the

enemies are assigned a label of 1, regardless of their original labels. By separating the

nearest neighbors from the enemies using either a rule induction classifier (RIQY) or

feature selection (template based), we can obtain the essential discriminating features.

Next, we present the induced rules to the oracle and update the labeled dataset. This

is repeated until a maximum number of queries is posed or until a specified accuracy

improvement is achieved.

Figure 6.2 shows the main components of our RIQY method. The template

based method is similar, except that the rule induction step is replaced by heuristic

feature selection.

Learning 
Algorithm

Select 
Informative 

Instance

Select 
Neighbors 

and Enemies

Induce Rule 
based on 

Neighbors and 
Enemies 

Oracle
Update

Data

Label Rule

Figure 6.2: The main components of our method.
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6.4 Choosing An Informative Instance

The first step in our method is to select the most informative instance x∗ among

the pool of unlabeled instances. As mentioned before, we use a variation of a density

weighted method to measure the informativeness of an instance x. Our measure

considers the similarity of x to the other unlabeled instances, as well as its dissimilarity

to the previously labeled instances. Considering similarity to the other unlabeled

instances allows us to select an instance that is representative of many other similar

cases. Considering its dissimilarity to the previously labeled instances allows us to

avoid querying similar instances repetitively, thus leading to a more effective method.

Equation 6.1 shows our method for selecting the most informative instance x∗.

x∗ = arg max
x

[

(1− α) ∗ Φ(x) + α ∗
|L| ∗

|U|
∑

u=1

M [x, xu]

|U| ∗
|L|
∑

l=1

M [x, xl]

]

(6.1)

In Equation 6.1, parameter α balances the contribution of density versus the

base informativeness measure Φ(x). Here the second term shows the contribution

of density with respect to both labeled and unlabeled data. The first term, Φ(x),

refers to a base informativeness measure. The base informativeness measure here is

an entropy measure as in Equation 6.2. This measure can be replaced by any other

base informativeness measure. Here yi ranges over all possible label values.
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Φ(x) = −
∑

i

Pθ(yi|x) log Pθ(yi|x) (6.2)

After an informative instance has been selected, a generic query is constructed

based on the informative instance and its similar instances.

6.5 Template Based Active Learning

After selecting the most informative instance, we construct a template query.

Algorithm 4 shows further details of our model. The stopping criteria can be con-

sidered as either reaching a user defined number of iterations or reaching a specific

accuracy improvement.

Lines 3-4 build a classifier C using L. The classifier is then used to classify the

unlabeled instances in U . Line 5 finds the informative instance x∗ using Equation 6.1.

Line 6 computes the nearest neighbors and farthest enemies of x∗ using the proximity

matrix M . We consider the neighborhood size as a fixed fraction ǫ of the unlabeled

dataset size. The unlabeled dataset gets smaller over time, therefore the neighborhood

size shrinks over time which helps us to get more focused queries as more labeled data

is provided. Line 7 computes features’ relevancy based on classifying neighbors and

enemies of x∗. To emphasis the fact that the neighbors are assigned a positive label

and the enemies are assigned a negative label, we denote them by N+ and E−. Line

8 forms the template query as outlined in Algorithm 5. After posing the query to the
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Algorithm 4 Template Based Active Learning

1: procedure FindTemplateQuery(L, U , M)

2: while stopping criteria is not met do

3: Train a classifier C using L

4: Use C to compute p(y|x) ∀x ∈ U

5: Find x∗ using Equation 6.1

6: Find N and E for x∗

7: r = features’ relevance based on N+
⋃ E−

8: c, l ← formQuery(f , r, N )

9: for all xj ∈ N do

10: Update wj as in Equation 6.3

11: if wj > θ then

12: Add xj to L with label l

13: end if

14: end for

15: end while

16: end procedure
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oracle, lines 9-14 update the neighbors’ weight w according to Equation 6.3.

wj = c ∗ 1

|N |

|N |
∑

k

M [j, k] (6.3)

An instance’s weight increases proportionately with its similarity to the query

neighborhood and the oracle’s confidence about query’s label. At the end, the unla-

beled instances with a weight above the threshold θ are added to the training dataset

L.

When forming a query Q, we adopt an approach similar to the one proposed

by [Du and Ling, 2010] in which we assign each feature fi to one of the three feature

relevancy categories depending on its relevance weight ri. The feature can be highly

relevant, weakly relevant or irrelevant as in Equation 6.4.

fi is







































Highly Relevant if ri ∈ [rn + 2d, rx]

Weakly Relevant if ri ∈ [rn + d, rn + 2d)

Irrelevant otherwise

(6.4)

Here rn and rx denote the minimum and maximum relevance values and d

denotes (rx − rn)/3.

After assigning each feature to its proper relevance category, we need to decide

about the feature values in our template query Q. In Algorithm 5, lines 3-12 compute

the feature values and augment Q with the assigned feature values. For highly relevant
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Algorithm 5 Form Template Query

1: procedure formQuery(f , r, N )

2: Q = ∅

3: for all fi ∈ f do

4: if fi is highly relevant then

5: set fi as in Equation 6.5

6: Q = Q
⋃

fi

7: end if

8: if fi is weakly relevant then

9: set fi to its range in N

10: Q = Q
⋃

fi

11: end if

12: end for

13: c, l← askQuery(Q)

14: end procedure
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features, we will set the value to one specific value. Weakly relevant features can be

generalized with several values. The irrelevant features can be generalized with any

values (can be displayed as ∗ or don’t care values), therefore we simply omit them

from our queries. For highly relevant features if fi is a numeric feature, then its value

is set to the mean value of N , otherwise it is set to its mode (see Equation 6.5).

fi =























1
|N |

∑

x∈N

fi if fi numeric

mode(fi) if fi nominal

(6.5)

For weakly relevant features, we use the actual range of values according to

N . The template query is the union of highly relevant and weakly relevant features.

Note that we simply discard the irrelevant features from our query. After constructing

template query Q, it is posed to the oracle to obtain a label l and a confidence value

c. Then as described in Algorithm 4, the unlabeled neighbor instances are updated

and are moved to the labeled dataset L.

6.6 RIQY

In this section we explain our RIQY method in more detail. Similar to the tem-

plate based method, after an informative instance has been selected, a RIQY generic

query is constructed based on the informative instance and its similar instances. Al-
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gorithm 6 outlines further details of our RIQY method.

Lines 3 − 4 trains a classifier C based on the available training data L, and

computes the class probabilities for each unlabeled instance x ∈ U . In line 5, based

on the obtained class probabilities and the underlying distribution, we select the most

informative instance x∗ according to Equation 6.1.

Next, we find x∗ similar instances and form a generic query based on those

instances. We first select the nearest neighbors of x∗ in line 6. The size of the

neighborhood (or the enemy vicinity) is a fixed fraction ǫ of the unlabeled dataset U .

In other words, |Nx∗| = |U| ∗ ǫ. To get the enemies set Ex∗ , we sample from U −Nx∗ .

The size of the enemies set is the same as the neighbors set, i.e. |Ex∗| = |U| ∗ ǫ. We

chose them to be of the same size to avoid any class imbalance problems. As over

time the unlabeled dataset gets smaller and as more labeled data becomes available,

the neighborhood size as well as the enemy vicinity becomes smaller. This allows us

to pose more focused queries over time.

Next in line 8, we combine the nearest neighbors Nx∗ and the enemies Ex∗ into

a single set ∆. Each instance of the nearest neighbors is assigned a label of 0 in ∆,

while each instance belonging to the enemies is assigned a label of 1 in ∆, regardless

of their original labels. We denote the re-labeled sets by N+
x∗ and E−x∗ .

Then a rule induction classifier such as C4.5 [Quinlan, 1993] is used to generate

a number of rules R from ∆ in line 9. Through separation of the nearest neighbors
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Algorithm 6 RIQY Active Learning method

1: procedure FindRuleBasedQuery(L, U , M)

2: while stopping criteria is not met do

3: Train a classifier C using L

4: Use C to compute p(y|x) ∀x ∈ U

5: Find x∗ using Equation 6.1

6: Find Nx∗

7: Sample {U −Nx∗} to get Ex∗

8: ∆ = N+
x∗

⋃ E−x∗

9: Form rule set R from ∆

10: Select Ŕ from R based on γ and a

11: c, l ← askOracle(Ŕ)

12: for all xj ∈ ∆ do

13: if xj is covered by some rk ∈ Ŕ then

14: Update wj as in Equation 6.6

15: if wj > θ then

16: Add xj to L with label lk

17: end if

18: end if

19: end for

20: end while

21: end procedure
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of x∗ from its enemies by using a rule induction classifier, we can obtain the essential

features for discriminating x∗ and its similar cases from the rest of data in form of

rules. Note that each rule r ∈ R is accompanied by its coverage value γ and its

accuracy a. The coverage value shows how many instances are covered by a certain

rule and the accuracy shows the discriminative power of a rule for distinguishing

between positive and negative instances. We select the rules with a minimum accuracy

amin in order to avoid adding the incorrect instances. The rules are then sorted

according to their coverage values and the top N rules with the highest coverage

value are selected as Ŕ in line 10. Note that normally we set N to 1 to present one

rule a time to the oracle. But it is also possible to present several rules at a time in

a batch mode.

Line 11 poses the rule set Ŕ to the oracle and receives the corresponding labels

li and confidences ci for each rule ri ∈ Ŕ. Lines 12-19 update each unlabeled instance

xj ∈ ∆ that is covered by some rule rk ∈ Ŕ, according to Equation 6.6.

wj = ck ∗
1

|Xrk
|

|Xrk
|

∑

k

M [j, k] (6.6)

Here wj shows the weight of instance xj in our dataset. The set of all instances

that are covered by a certain rule rk is denoted by Xrk
. The instance’s weight in-

creases proportionately with its similarity to the query neighborhood and the oracle’s

confidence about query’s label.
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At the end, those instances covered by some rule and with a weight above

the weight threshold θ are added to the labeled dataset L. This process continues

until we reach the stopping criteria. The stopping criteria can be either reaching a

maximum number of queries or reaching a certain minimum classification accuracy

improvement.

6.7 Experiments

In the following subsections, we show the results of our RIQY and template

based algorithms on two different sets of data.

6.7.1 Template Based Method Experiments

In order to evaluate our algorithm, we tested our algorithm on a number of real

world datasets. We used 6 datastes from the UCI repository [Frank and Asuncion,

2010] and 6 datasets from CASAS repository. The UCI datasets include the Aus-

tralian credit approval dataset, ionosphere dataset, wine dataset, tic tac toe dataset,

dermatology dataset and mines vs. rocks dataset. The dermatology and wine datasets

are multi-class problems, while the rest of the datasets are binary classification prob-

lems.

The CASAS datasets include B3, C, K4, M, T1 and T2 datasets. The annotated
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activities in those datasets are shown in Table 6.1.

B3 C K4 M T1 T2

Hygiene X X X

Leave Home X X X X X X

Cook X X X X X

Relax X X X X X

Take Med X X X

Eat X X X X X X

Sleep X X X X

Bathing X X

Bed to toilet X X X X

Work X X X X

Table 6.1: The annotated activities in each dataset.

All the activity datasets represent multi-class classification problems. Each

activity instance is represented by features composed of sensor locations and activity

duration. Further information about these datasets is shown in Table 6.2.

For each dataset, we split the dataset into 3 disjoint datasets: a training dataset



209

Dataset Num. of Features Num. of Activities Num. of Examples

B3 15 10 3361

C 10 6 511

K4 14 9 746

M 13 9 2270

T1 10 4 1431

T2 11 4 163

Table 6.2: CASAS datasets.

L (1%− 2% of data), a test dataset T (25% of data) and a validation dataset U (the

rest of the data). The feature selection method selects the individual features using

information gain criteria. Based on our cross validation results, we found the following

values for our parameters: θ = 0.5, α = 0.5, ǫ = 0.2 for the UCI datasets and ǫ = 0.01

for CASAS datasets.

In order to simulate the probability estimation of a human oracle based on a

template query, we consider the instances that are covered by the query. The label of

the query is then the majority label and the confidence is computed as the proportion

of the majority instances. It should be noted that the datasets might contain noisy
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instances which can be confusing for the oracle and can occasionally lead to a lower

confidence.

As an example of our template queries, we chose a sample query based on the

wine dataset. The query is as following:

“What is the alcohol type if the color-intensity is [3.52 .. 4.70] and hue is 1 in

average and OD280 is [3.59 .. 4.00] ?”

Note that the number of features is reduced by 76% as a result of aggregating

17 instances. This can possibly account for 17 potential queries in traditional active

learning methods. This simple example clearly shows how our approach can lead to

shorter and more intuitive queries, while at the same time aggregating many similar

instances together into a single query.

Figure 6.3 shows the average accuracy of our method on UCI datasets and Figure

6.4 shows the average accuracy of our method on CASAS datasets. We compare

our method to a traditional active learning method based on uncertainty sampling.

From those results, we can clearly see that our method outperforms the traditional

uncertainty sampling method. Its performance can be attributed to its use of density

distribution information and avoiding querying the outliers. It should be noted that

the accuracy of a generic active learning method can depend on some other factors

too. For example, if a dataset has mostly nominal values such as the credit approval

dataset, then applying our template based active learning method might not lead to
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significant improvement over the traditional pool based method. The reason is that

in such datasets the range of values is quite limited, therefore the queries can not be

generalized beyond a certain limit.

Dataset Features Reduction Oracle Confidence Added Examples

Credit 83.0% 74.9% 55.8

Ionosphere 64.7% 71.5% 22.5

Wine 53.8% 88.2% 11.3

Dermatology 61.7% 84.7% 23

Tic Tac 81.1%% 95.3% 63.7

Mines 63.3% 75.5% 12.2

Table 6.3: Some statistics based on template based active learning.

Table 6.3 shows the average feature reduction, average oracle’s confidence and

average number of added instances to the labeled dataset for each dataset. For a

traditional active learning method the number of added instances is always 1. For

random synthesis method, this number is always fixed (it is user defined, here we set

it as the initial ǫ ∗ |U|). From those results and specially from the feature reduction

results, we can clearly see how our method results in shorter queries.

Figure 6.5 shows the number of added instances over 10 queries for an example
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(a) Australian credit approval dataset.
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(b) Ionosphere dataset.
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(c) Wine dataset.
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(d) Tic Tac Toe dataset.
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(e) Dermatology dataset.
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(f) Mines vs. Rocks dataset.

Figure 6.3: Accuracy for different UCI datasets vs. number of queries.
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(a) B3 dataset.
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(b) C dataset.
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(c) K4 dataset.
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(d) M dataset.
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(e) T1 dataset.
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(f) T2 dataset.

Figure 6.4: Accuracy for different CASAS datasets vs. number of queries.
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dataset (wine dataset). As mentioned before, the neighborhood size is shrank over

time to get more focused queries. It should be noted that not all instances in the

neighborhood will be added to the dataset. Depending on the oracle’s confidence and

the similarity of the instance to the rest of instances, an instance might or might not

be added to the labeled dataset. Depending on the size of dataset, the number of

added instances will be different.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

Number of Queries

N
um

be
r 

of
 A

dd
ed

 In
st

an
ce

s

Number of Added Instances vs.
Number of Queries

Figure 6.5: Number of added instances over 10 queries for the wine dataset.

Overall our results demonstrate how can we successfully construct a template

query by exploiting the underlying density distribution and the similarity between a

group of unlabeled instances. It also shows how our method can construct shorter

and more intuitive queries, while also leading to higher accuracies.
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6.7.2 RIQY Method Experiments

We perform a number of experiments on two sets of real world data in order

to evaluate our RIQY active learning algorithm. The data in our experiments con-

sists of 6 real world datasets from the the UCI machine learning repository [Frank

and Asuncion, 2010] and 6 human activity recognition datasets from the CASAS

repository.

The first set of data includes 6 real world datasets from the UCI repository

[Frank and Asuncion, 2010]. These datasets include the Germany credit approval

dataset, the Wisconsin breast cancer dataset, the heart disease dataset, the wine

dataset, the ionosphere dataset and the chess dataset. All the datasets are binary

classification problems, except for the wine dataset. Further details of those datasets

is shown in Table 6.4.

The activity recognition datasets consists of data collected from 6 different smart

apartments, similar to our experiments in previous section. We again refer to those

datasets as B3, C, K4, M, T1 and T2.

We split each dataset into three disjoint parts: a small labeled dataset L (about

1%-2% of data), a test dataset T (about 25% of data) and an unlabeled dataset U (the

rest of data). All the results are averaged over 3 runs in order to reduce the experiment

variation. The initial classification step is performed using a support vector machine
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Dataset Num. of Features Attributes Type Num. of Examples

Credit approval 20 Numeric-Nominal 1000

Ionosphere 34 Numeric 351

Wine 13 Numeric 178

Heart Disease 13 Numeric-Nominal 270

Breast Cancer 9 Nominal 699

Chess 36 Nominal 3196

Table 6.4: UCI datasets.

from the LibSVM library [Chang and Lin, 2001]. Using a cross validation method,

we found the following values for our parameters: α = 0.5, θ = 0.5, amin = 0.85

and ǫ = 0.2 for the UCI dataset and ǫ = 0.01 for CASAS datasets. A C4.5 decision

tree from the RapidMiner tool was used for constructing rules [Mierswa et al., 2006].

We set the minimal information gain to 0.1. We confined the depth of the tree to

a maximum of 10 attributes to prevent very long queries, though in most cases the

generated query is shorter.

To simulate the effect of a human oracle in determining the label of a specific

rule, we consider all the instances that are covered by a specific rule. The label of
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the rule is then reported as the majority label and the confidence is reported as the

majority fraction. It should be noted that our datasets as real world datasets contain

noisy examples, which can lead to lower confidences. Similarly, the noisy examples

can also confuse a domain expert in the real world. Though by infusing many similar

cases together into a generic query, the effect of noisy examples is reduced, still in

some cases this might lead to a lower confidence.

After performing the initial preprocessing steps such as proximity computation,

we ran our algorithm on both sets of UCI and CASAS datasets.

First we show two example queries from the wine dataset and the B3 activity

dataset. In the B3 query, the actual sensor numbers have been replaced by their

location.

Wine query “What is the alcohol type if alcohol percentage is 12–14 and Proantho-

cyanidins is 0.4–1.2 and color intensity is 1.2–7.1?”

B3 query “What is the activity label if duration is 5–101 minutes and 78%–100%

of the sensors are work area sensors and 1%–2% of the activated sensors are

bedroom sensors?”

The first query reduces the number of features by 76.9% and it aggregates a

total of 13 instances. The second query reduces the number of features by 80% and

it aggregates a total of 113 instances. One can clearly see how our method results in
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shorter and more intuitive queries.

Next, we computed the classification accuracy of our method. We set the num-

ber of selected rules N to 1. In order to compare our method to a traditional active

learning method, we also performed the same experiments using an uncertainty sam-

pling method. The results of our experiments on UCI datasets can be seen in Figure

6.6. Similarly, the results on the WSU datasets are shown in Figure 6.7. We can

see that our method outperforms the uncertainty sampling method in most cases by

reaching higher accuracy rates with fewer queries. This can be attributed to utilizing

the actual underlying distribution of data and avoiding querying the outliers.

It should be noted that the results of applying our RIQY method might vary

from dataset to dataset, depending on the type of data and whether it can be general-

ized easily or not. Also the noisy instances and the regularity of the dataset can play

a role in determining the classification accuracy. For example, dataset T2 represents

a smart apartment where the residents did not have a regular schedule. Therefore,

the algorithm is not able to take much advantage of the similarities between various

instances of the same activity. Despite all these, we still can see that in most cases

our method offers a higher accuracy rate by using fewer and shorter queries.

Table 6.5 and Table 6.6 show the average feature reduction, the average oracle

confidence and the average number of added instances for the UCI and WSU datasets.

Note that the average number of added instances is 1 for the uncertainty sampling
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(a) Heart disease dataset.
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(b) Ionosphere dataset.
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(c) Wine dataset.
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(d) German credit approval dataset.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Queries

A
cc

ur
ac

y

Accuracy vs.
Number of Queries

 

 

Uncertainty Sampling
RIQY

(e) Wisconsin breast cancer dataset.
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(f) Chess dataset.

Figure 6.6: Accuracy for different UCI datasets vs. the number of queries.
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(a) B3 dataset.
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(b) C dataset.
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(c) K4 dataset.
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(d) M dataset.
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(e) T1 dataset.
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(f) T2 dataset.

Figure 6.7: Accuracy for different CASAS datasets vs. the number of queries.
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method. From these tables we can see how in average the number of features is

reduced by our RIQY method. This makes it possible to pose shorter queries.

Dataset Features Reduction Oracle Confidence Added Instances

Credit 84.5% 74.4% 51

Ionosphere 90.8% 76.4% 23

Wine 77.6% 75.0% 10

Heart 76.9% 77.6% 14

Cancer 68.8%% 94.5% 34

Chess 88.6% 88.0% 200

Table 6.5: Some statistics based on our RIQY active learning method for UCI datasets.

In another experiment, we explored the effect of increasing the number of posed

rules (N) to the oracle. Figure 6.8 shows the results of our experiment on two example

datasets: the Wisconsin breast cancer dataset and the T2 dataset. We can see that

increasing the number of posed rules to the oracle can lead to higher accuracy rates.

Note that as we add the rules in the order of descending coverage, posing the last rule

might not have the same effect as posing the first rule. Also though increasing the

number of posed rules to the oracle increases the total number of queries, however

many irrelevant features are not included in each rule. Therefore despite posing more
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Dataset Features Reduction Oracle Confidence Added Instances

B3 88.0% 64.6% 66

C 85.0% 74.9% 12

K4 86.0% 71.1% 16

M 81.0% 64.9% 44

T1 73.6%% 88.9% 40

T2 90.3% 46.4% 2

Table 6.6: Some statistics based on our RIQY active learning method for CASAS datasets.

queries, the total number of features to be handled by the oracle is still small.
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(a) Wisconsin breast cancer dataset.
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(b) T2 dataset.

Figure 6.8: Accuracy vs. number of posed rules.
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In summary, the above results show how we can construct more generic active

learning queries based on rule induction. Our results confirm that such a method can

lead to higher classification accuracy rates with fewer and shorter queries.
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6.8 Summary

In this chapter, we showed two methods for constructing more generic active

learning queries based on rule induction and heuristic feature selection. Our methods

are able to construct shorter and more intuitive queries that are easier for a human

oracle to answer, allowing us to better utilize our human resources. Our methods also

allow the learning algorithm to achieve a higher accuracy rate using fewer queries.
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CHAPTER 7. CONCLUSION

In this dissertation, we highlight challenges that face current activity discovery

and recognition methods. These challenges make it difficult and sometimes even

impractical for smart environment technologies to be deployed in real world situations.

In order to address these challenges and to achieve a more scalable solution, we

proposed a number of novel data mining and machine learning methods.

It should be noted that though we have studied our algorithms in the context of

activity recognition in smart environments, these methods are not limited to activity

recognition problems. One can use our proposed methods in a variety of different

machine learning and data mining problems. As an example, in case of our active

learning algorithms, we showed how our methods can be useful for other real world

problems from the UCI data repository.

Our sequence mining methods, DVSM [Rashidi et al., 2010] and COM [Rashidi

and Cook, 2010c], are the first data mining methods to deal with discontinuous and

varied order events across a non-transactional dataset. Non-transactional datasets

pose more challenges compared to transactional datasets, as they do not have a clear

boundary between episodes or transactions.

Our stream data mining method, StreamCOM [Rashidi and Cook, 2010b], is
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the first stream data mining method to handle a non-transactional data stream at

multiple granularity. It also exploits the discontinuous and varied order model of

COM mining method, which can be quite useful for mining complex data streams.

Our transfer learning solution composes of several novel algorithm for trans-

ferring activity models across different residents or different physical spaces [Rashidi

and Cook, 2009a, 2010a,d,e]. Also our domain selection method is the first proposed

method for selecting the most promising smart homes for activity transfer.

Finally, we showed two novel active learning methods, template based active

learning and RIQY, which can construct more generic and intuitive queries with

promising results. We showed how our active learning methods can be applied to a

variety of real world problems, besides activity recognition.

7.1 Suggestions For Future Work

As previously mentioned, our sequence and stream mining algorithms have the

potential to be applied to wide range of applications such as web click stream analysis

or DNA sequence analysis. Ultimately, we hope that our model can be used in a fully

functional system deployed in a real home. A great extension to the system can be

an anomaly detection component to detect anomalies in observed data over time.

For our transfer learning methods, it should be noted that we made a number of
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simplifying assumptions to deal with the complex nature of activities in the real world.

In this work, we ignored the complications that might arise when multiple residents

are present. Besides, some activities are not always consistent and show a change of

pattern over time (e.g. dinner time shifted). This can cause a low recognition rate

after some time. A future goals can be to address multi-resident issues by using entity

detection methods [Crandall and Cook, 2008]. As part of the future work, one also

can detect changes in patterns over time. Another direction is to extend our method

to be able to transfer activities across spaces with different functionalities.

Our active learning methods can be extended to handle more sophisticated

data types, such as graphs and sequences. One also can explore the effects of a noisy

oracle and to propose methods for preventing the resulting accuracy degradation. It

would be also interesting to perform actual user studies with human oracles to further

explore the advantages of using our method over similar traditional active learning

methods.
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Ron Meir and Gunnar Rätsch. An introduction to boosting and leveraging. Advanced

Lectures on Machine Learning, pages 118–183, 2003.

Florian Michahelles and Bernt Schiele. Sensing and monitoring professional skiers.

IEEE Pervasive Computing, 4(3):40–46, 2005. ISSN 1536-1268.

Ingo Mierswa, Michael Wurst, Ralf Klinkenberg, Martin Scholz, and Timm Euler.

Yale: Rapid prototyping for complex data mining tasks. In Lyle Ungar, Mark

Craven, Dimitrios Gunopulos, and Tina Eliassi-Rad, editors, KDD ’06: Proceed-

ings of the 12th ACM SIGKDD international conference on Knowledge discovery



246

and data mining, pages 935–940, New York, NY, USA, August 2006. ACM.

ISBN 1-59593-339-5. doi: http://doi.acm.org/10.1145/1150402.1150531. URL

http://rapid-i.com/component/option,com_docman/task,doc_download/gid,25/Itemid,62/.

G. W. Milligan and M. C. Cooper. An examination of procedures for determining

the number of clusters in a data set. Psychometrika, 1985.

Ion Muslea, Steven Minton, and Craig A. Knoblock. Selective sampling

with redundant views. In 17th National Conference on Artificial Intelli-

gence and 12th Conference on Innovative Applications of Artificial Intelligence,

AAAI 2000, pages 621–626. AAAI Press, 2000. ISBN 0-262-51112-6. URL

http://portal.acm.org/citation.cfm?id=647288.721119.

Hieu T. Nguyen and Arnold Smeulders. Active learning using preclustering. In

International Conference on Machine Learning, pages 79–89, 2004.

Sang-Kyun Noh, Yong-Min Kim, DongKook Kim, and Bong-Nam Noh. Computa-

tional Science and Its Applications, volume 3981 2006 of Lecture Notes in Computer

Science, chapter Network Anomaly Detection Based on Clustering of Sequence Pat-

terns, pages 349–358. Springer Berlin Heidelberg, May 2006.

Georg Ogris, Thomas Stiefmeier, Paul Lukowicz, and Gerhard Troster. Using a com-

plex multi-modal on-body sensor system for activity spotting. In IEEE Interna-

tional Symposium on Wearable Computers, pages 55–62, 2008.

http://rapid-i.com/component/option,com_docman/task,doc_download/gid,25/Itemid,62/
http://portal.acm.org/citation.cfm?id=647288.721119


247

Nuria Oliver, Eric Horvitz, and Ashutosh Garg. Layered representations for human

activity recognition. In Proceedings of the 4th IEEE International Conference on

Multimodal Interfaces, ICMI ’02, pages 3–, Washington, DC, USA, 2002. IEEE

Computer Society. ISBN 0-7695-1834-6. doi: http://dx.doi.org/10.1109/ICMI.

2002.1166960. URL http://dx.doi.org/10.1109/ICMI.2002.1166960.

Paulito Palmes, Hung Keng Pung, Tao Gu, Wenwei Xue, and Shaxun

Chen. Object relevance weight pattern mining for activity recognition

and segmentation. Pervasive Mob. Comput., 6:43–57, February 2010.

ISSN 1574-1192. doi: http://dx.doi.org/10.1016/j.pmcj.2009.10.004. URL

http://dx.doi.org/10.1016/j.pmcj.2009.10.004.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions

on Knowledge and Data Engineering, 22:1345–1359, 2010.

Rina Panigrahy. An improved algorithm finding nearest neighbor us-

ing kd-trees. In Proceedings of the 8th Latin American conference

on Theoretical informatics, LATIN’08, pages 387–398, Berlin, Heidelberg,

2008. Springer-Verlag. ISBN 3-540-78772-0, 978-3-540-78772-3. URL

http://portal.acm.org/citation.cfm?id=1792918.1792952.

Spiros Papadimitriou, Anthony Brockwell, and Christos Faloutsos. Adaptive, hands-

http://dx.doi.org/10.1109/ICMI.2002.1166960
http://dx.doi.org/10.1016/j.pmcj.2009.10.004
http://portal.acm.org/citation.cfm?id=1792918.1792952


248

off stream mining. In VLDB ’2003: Proceedings of the 29th international conference

on Very large data bases, pages 560–571. VLDB Endowment, 2003.

Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umesh-

war Dayal, and Meichun Hsu. Prefixspan: Mining sequential patterns by prefix-

projected growth. In Proceedings of the 17th International Conference on Data

Engineering, pages 215–224, Washington, DC, USA, 2001. IEEE Computer Soci-

ety.

Jian Pei, Jiawei Han, and Wei Wang. Constraint-based sequential pattern mining:

the pattern-growth methods. Journal of Intelligent Information Systems, 28(2):

133–160, 2007. ISSN 0925-9902.

Alex Sandy Pentland. Healthwear: Medical technology becomes wearable. Computer,

37(5):42–49, 2004. ISSN 0018-9162.
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