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BEHAVIOMETRICS FOR MULTIPLE RESIDENTS IN A

SMART ENVIRONMENT

Abstract

by Aaron S. Crandall, Ph.D.
Washington State University

May 2011

Chair: Diane J. Cook

Smart homes and ambient intelligence show great promise in the fields of medical

monitoring, energy efficiency and ubiquitous computing applications. Their ability to

adapt and react to the people relying on them positions these systems to be invaluable

tools for our aging populations. This work introduces and explores solutions for

issues surrounding real world multiple inhabitant smart home situations. Dealing

with multiple residents without requiring wireless tracking devices, while paying heed

to privacy concerns, is a difficult proposition at best.

The Center for Advanced Studies in Adaptive Systems research group has de-

veloped and tested a number of novel technologies to address the issues of multiple
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inhabitants within a smart home context using inexpensive, low profile, privacy sen-

sitive sensors. These smart home implementations, when combined with artificial

intelligence tools, are designed to provide localization, tracking, and identification

through behaviometric approaches that are useful and deployable in real world situ-

ations. They have been evaluated using unscripted living spaces with multiple resi-

dents, and their capabilities explored as a means of benefiting other modeling tools,

such as detecting the Activities of Daily Living.

Given the complex nature and diverse needs of smart home technologies, the

tools presented here are by no means definitive solutions to handling multiple resident

smart environment situations. However, they do provide a strong working base for

the continued development of smart environments with demonstrable benefits on real-

world implementations.
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CHAPTER 1. INTRODUCTION

1.1 Background

“Smart homes” represent a rapidly maturing field of study as well as a looming

business market. Its concepts are being applied to a wide range of medical, social

and ecological issues. The vague definition of “smart home” allows for numerous

implementations and variations to exist. At its core, a smart home is any living

space that involves sensors, controllers and some kind of computer-driven decision

making process. With this loose definition in hand, the research, medical and business

communities have been highly creative in leveraging this concept for their various

needs.

Smart homes, including the ambient intelligence and ubiquitous computing

fields, are an extension of home automation, a phenomenon that has existed as long

as there have been engineering-minded people with permanent homes. Any kind of

automated tool or machine within a living space can be considered home automation.

Devices such as dish washers, clothes dryers, automatic mixers, timed lawn sprin-

klers, motion-detector controlled lighting and automatic doors are all forms of home
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automation. What these kinds of devices have in common is that they are directly

managed or deterministically controlled by the humans around them. They do not

take in information about the current environment to make decisions about what

their behavior should be. The addition of a proactive and intelligent decision maker

to the aspects of home automation is what produces a smart home.

Ideally, a smart home is subtle in its operation and conforms [Mozer, 1998,

Rashidi and Cook, 2009b, Cook et al., 2003] to the residents without detrimentally

impacting their lifestyle. The system should take in information about the home

environment and attempt to build models about the activities and interests of the

residents. Designers of smart homes normally have a particular objective in mind

when choosing sensors, controllers and computer algorithms. These objectives have

included medical monitoring [Rialle et al., 2002, Maurer et al., 2004, Tolstikov et al.,

2008, Liolios et al., 2010], energy efficiency [Chemishkian, 2002, Chetty et al., 2008,

Chen et al., 2010] and measurement of social interaction within the space [Wren et al.,

2007, Ivanov et al., 2007b, Wigdor et al., 2007]. Every smart home to date has been

custom built, though the market for these systems is reaching a state where off the

shelf commercial offerings are viable. As the business sector matures, standards of

communication, sensing and control will begin to emerge to provide a more stable

long-term research framework for future smart home projects.

The area with the greatest long-term feasibility for smart home commercializa-
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tion is health care, though energy efficiency has a strong future in reducing our home’s

economic and ecological footprint. For the health care community, the ability to mon-

itor older adults in their home to support “aging in place” [Marek and Rantz, 2000,

Mynatt et al., 2004, Cook, 2006] for older adults is of significant interest. A side effect

of our medical knowledge and social dynamics is that the average age of the developed

world’s population is increasing rapidly [Keyfitz and Flieger, 1991, Tuljapurkar et al.,

2010]. Within a few decades the largest age groups in the United States will be in the

65+ years old categories [U.S. Census Bureau, 2009]. The current professional nurse

graduation rates in the US are declining [OECD, 2009] and our health infrastructure

is not growing to meet this expected wave of older adults. Promoting techniques

for people to live in their home longer, i.e. aging in place, possess the capability of

blunting the negative impacts of this older population. Smart homes are expected to

be a tool for dealing with this looming social and economic issue.

To make smart homes capable of supporting these goals, the research community

has focused on building technologies for the detection of the Activities of Daily Living

(ADLs) [Philipose et al., 2004, Fogarty et al., 2006, Logan et al., 2007, Libal et al.,

2009, Singla et al., 2009, 2010], resident tracking [Yiu and Singh, 2007, Crandall

and Cook, 2010a] (see Section 2.1 for details), resident identification [Crandall and

Cook, 2010b] (see Section 2.2 for details), medical history building [Cook, 2006], social

interaction [Chen et al., 2004, Cook et al., 2010], resident mental evaluation [Cook
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and Schmitter-Edgecombe, 2009] and many others. In the last decade, smart homes

have gone from being a small field of researchers to a large and vibrant field of private

and public development.

1.2 Problem Statement

This thesis addresses two topics that almost all real-world deployments of smart

homes must address in some way: tracking of multiple residents, and determining the

residents’ identities. With a single resident in the smart home this is a trivial problem,

but multiple residents transform it into a serious issue. As soon as a second person (or

other entity, such as a pet capable of causing sensor events) enters the smart home

space, the multi-resident issue becomes critical. At this juncture, the smart home

infrastructure must be designed to either function well in the face of several sources

of data, or to differentiate between the sources by some means. If the system ignores

the multi-resident problem, unaccounted for residents show up as noise in the data.

In most cases, this noise in the data will lower the accuracy of the model building and

interfere with operational quality. It will likely cause failure of high quality history

building, preference generation, ADL detection and many other computer generated

models. Finding a means to address the multiple-resident problem is a current and

pressing issue for the smart home field.
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1.3 Purpose of this Study

The challenges of tracking multiple residents and identifying them are intro-

duced separately in this work. A set of algorithms is introduced to address both

issues, and applied to these problems with the goal of creating tools capable of op-

erating in long-term real-world smart home applications. In choosing and designing

these tools, a number of factors were weighed in each case. This blend of theoretical

and practical considerations is a common theme in smart home research.

Various smart homes have approached the issue of tracking and attribution of

events in a wide variety of ways. One common approach is a wireless tag/device on

the resident to localize them [Hightower and Borriello, 2001c]. Alternatively, they

use a camera and image processing to find the resident’s relative position within

the room [Ge and Collins, 2008] or some kind of proximity system where the sensors

detect the physical presence of the resident [Helal et al., 2005]. These different means,

with their respective benefits and costs, are all discussed in detail in Section 2.1. In

this thesis the CASAS Technology Platform is introduced, along with a number of

algorithms that count and track multiple residents simultaneously within the smart

home space using only low profile, passive, proximity sensors.

For identification, smart homes have often used some form of wireless tag/de-

vice to garner a unique label for every resident [Mori et al., 2004], or have applied
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both active [Jain et al., 2004c] and passive [Jain et al., 2004a] biometrics. Alterna-

tively, a small number of projects have used behavior [Crandall and Cook, 2008c] to

identify individuals. Once the system is able to uniquely identify individuals, it can

then proceed to build medical and preference histories, and perform more accurate

anomaly detection to support features such as detecting medical emergencies. Again,

these different approaches have benefits and negatives that are discussed in depth in

Section 2.2. This thesis introduces a group of algorithms to identify individuals using

their behavior and behaviometrics as seen by the CASAS sensor platform.

1.4 Theoretical Framework

Because smart homes must deal with multiple residents generating events, there

will always be a need to delve into strategies for dealing with this issue. After research-

ing the state of the art in sensor platforms, real-world deployments and algorithms,

the CASAS technologies were developed with the objective of handling multiple res-

idents and a number of other smart home applications. By exploiting the fact that

people occupy different parts of the sensor network and behave in different ways at

different times, artificial intelligence techniques should be able to differentiate and

identify those individuals.

Few smart home implementations take this approach, though we have demon-
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strated that humans involved in annotating the CASAS data sets are rapidly able to

track and identify the residents of the spaces. If a human is able to intuit the locations

and identities of the current residents with only a small amount of experience, then

computational algorithms should be able to do it as well. As shown in Chapter 2,

these kinds of differentiation have been successful in other fields for tracking and be-

havior identification, so some form of their application should be effective for similar

tasks in the smart home context.

1.5 Research Hypotheses

This thesis has two hypotheses. First, it is possible that given a living space

with a number of proximity sensors to report interactions with the residents, an

algorithm can be designed to determine the number of residents, localizes them and

builds tracklets of events representing an individual’s path through the sensor space.

Second, the behavior of different people is algorithmically differentiable, leading to

the ability to identify residents via behavior alone.

Given such algorithms for tracking and identification, they could be used to

reduce the data noise induced by multiple inhabitants. The noise reduction should

demonstrably benefit other algorithms doing more complex model building, such as

ADL detection and preference history building. Altogether, this becomes a foundation
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for handling multiple inhabitants with only proximity sensors.

1.6 Importance of the Study

As described in Section 1.2, until the issues of tracking and identification are

addressed, smart homes will continue to under-perform in the face of multiple res-

idents. Given that there are many different sensor platforms and desired goals for

smart homes, the research community needs to continue building a suite of available

tools to address this problem. The approaches introduced in this work use a passive,

proximity-based sensor platform to perform tracking and identification. Application

of algorithms that require no explicit action of the residents, such as carrying wireless

devices, and are more protective of privacy than video-based solutions, fill a key niche

in the smart home field.

1.7 Scope of the Study

In this thesis we intend to evaluate both hypotheses put forth in Section 1.5.

In pursuit of this goal, a set of smart home testbeds using the CASAS technology

platform were installed in a variety of residential contexts, and occupied by diverse

residents. Data were annotated for number of residents at any given event, the

identities of the residents, and the activities being performed. A number of algorithms
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for both tracking and identification were defined, implemented and tested for these

data sets. The benefit of these algorithms at improving ADL detection was also

tested to demonstrate their ability to improve the overall capabilities of deployed

smart homes.

1.8 Summary

Smart homes and smart home technologies have a beneficial place in the future

of society. Because these technologies can be inexpensively and robustly installed into

existing homes, people will be able to derive direct benefits in their daily lives from

this research field.

This work introduces a suite of tools designed to give a means of tracking and

identifying the residents of a smart home space. There are numerous methods that

attempt this, but given the considerations of privacy, cost, and long-term robustness,

the CASAS strategy of using passive proximity sensors with appropriate artificial

intelligence algorithms has distinct advantages when being installed in private homes.

Further, these algorithms and tools have the power to advance the smart home field

as a foundation for more refined tools. Their introduction will yield improvements to

other applications, such as ADL detection and aging in place services.
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CHAPTER 2. RELATED WORK

Target localization, tracking and identification are all significant research prob-

lems. They are often a complex mixture of hardware and software solutions. The

smart home field has drawn on previous work in a number of other fields when seeking

solutions to these open issues. Given the intricate nature of smart home environments

and the diversity of the residents, the research to date is still in the early stages of

development. This chapter attempts to define the existing ecology of work in both

the smart home and related fields to demonstrate the latest in localization, tracking

and identification techniques.

Robotics localization is a vibrant and deep research field. Within this body of

work, a number of approaches have been applied to smart home needs. These have

included wireless triangulation, video processing and proximity sensing. The latest

works in tracking research are introduced in Section 2.1.

Unique human identification as applied to smart homes is a younger field than

tracking. The types of data available about the entities being identified quickly limits

the strategies that can be used to uniquely identify a given resident. Outside of

electronic tagging, the algorithms are related to the fields of biometrics, behavior

mining and behaviometrics. A survey of human identification strategies published to
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date is presented in Section 2.2.

2.1 Localization and Tracking

Several strategies have been employed to track individuals in a smart home

space. The goal of a smart home tracking system can vary between applications,

but it is most often used to associate sensor events with the resident who is most

likely causing them. For example, if one of the multiple residents is in the kitchen,

then events from the sensors nearby should be attributed to that individual and not

someone else in another part of the home. With this capability, the smart home

will be better able to build histories for individuals and perform activity or anomaly

detection. Choosing sensors and algorithms to successfully track residents is a part

of most smart home implementations.

In their survey paper [Hightower and Borriello, 2001c], Hightower & Borriello

define three categories of location-sensing techniques. The goal of their work was

to categorize all of the approaches to localization, which quickly leads to algorithms

for tracking of individuals. Their taxonomy is summarized in Figure 2.1. These

different categories are discussed in deeper detail in their earlier works [Hightower and

Borriello, 2001a,b] and their topics include physical vs. symbolic location, absolute

vs. relative positioning, location of computation, cost considerations and common
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• Triangulation can be done via lateration, which uses multiple

distance measurements between known points, or via angulation,

which measure angle or bearing relative to points with known sep-

aration.

• Scene analysis examines a view from a particular vantage point.

• Proximity measures nearness to a known set of points.

Figure 2.1: Categories of location-sensing systems.

limitations of these kinds of systems.

Each of these categories is well represented by various smart home projects as

a means of tracking within a space. During the design phases of the CASAS smart

home technologies, examples of each category were considered before finally settling

on a proximity style approach. The factors in this decision included privacy, resident

acceptance, installation lifespan (power and durability issues) and implementation

difficulty. These are all issues that every smart home platform must address at some

point.
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2.1.1 Triangulation

Triangulation [Linde, 2006] is a widely researched approach for remotely lo-

calizing a wireless transmitter. It is used in many applications such as search and

rescue [Goodrich et al., 2008], HuffDuff ship tracking [Stephenson, 1999] and satel-

lites [Schmid, 1974]. Aside from handling the variability of wireless transmissions,

once the distance from three known points has been determined the mathematics

behind triangulation are very simple, making it an attractive solution for smart home

localization.

The use of a device and base stations to perform location-sensing is well estab-

lished in smart homes or device localization. The first indoor badge-based system was

the Active Badge sensing system [Want et al., 1992]. It uses infrared transmissions

from a identification badge form factor wireless device that receivers within an office

space could use to identify the current room where the device is located. This kind

of system is limited to line of sight and is sensitive to infrared interference, common

under fluorescent lighting. To gain a more accurate location for the resident, different

approaches needed to be considered.

The Active Bat [Harter et al., 1999], the Cricket Location-Support System

[Priyantha et al., 2000] and the later work by Nishida et al. [Nishida et al., 2004]

all use ultrasound time of flight to triangulate a device’s location. The Active Bat
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system works to an accuracy of 9cm, and Nishda’s system is accurate to 5cm, while

the Cricket is only useful to 1.2m x 1.2m regions. These audio-based solutions also

suffered from noise interference. There are a number of common devices that would

impact their performance, thus making them less useful to large scale smart home

deployments. While audio systems provide a higher fidelity data source than the

Active Badge, the field at large has moved primarily to RF-based solutions.

The most common RF triangulation approaches leverage 802.11 devices. These

are widely available and use open standards to operate, giving the community more

choices and products from which to build. A very early 802.11 platform was the

RADAR project [Bahl and Padmanabhan, 2000]. The researchers at Microsoft Re-

search Laboratories™ used RF signals with multiple base stations to triangulate the

location of a 802.11 device indoors. It worked for a single floor to within three me-

ters of accuracy, and similar implementations were eventually commercialized. When

confronted with multiple building floors their approaches become non-trivial to solve

and the carried device is power intensive, leading to a relatively short operational

lifespan before recharging.

There have been many advances in using 802.11 for determining location since

the RADAR Project was published. The proliferation of wireless devices and the

reduction in power consumption has made using 802.11 based systems much more

feasible for long smart home deployments.
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The Nibble Project [Castro et al., 2001] introduced Bayesian Networks with

802.11b as a means to learn room locations within a building from a set of data points,

while LaMarca, et al. [Lamarca et al., 2005] introduce means for a wireless network

to learn the location of devices automatically given enough time. In Haeberlen’s

work [Haeberlen et al., 2004], a method of sampling rooms was used to build a model

for the space, and derived a 95% accuracy in a three floor, 1,161 m2 area. After

applying a Markov localization approach with a Gaussian fit sensor model, the system

was able to place a device within a 2.7m x 4.9m cell. In Ladd et al. [Ladd et al.,

2002b], 802.11b was used to track a device moving in an indoor space. This system

was found to have a resolution of less than 1.5m and an accuracy of 83% when

given a suitable base station layout. The authors note that these systems use a set

of training data sampled from the existing environment, and that the algorithms

assume no serious changes in the environment, including people moving about the

space. Accommodating drift is a known learning algorithm issue that few of the

tracking works address to date.

Since these earlier works were published, the field of 802.11 localization has

been very active [Ladd et al., 2004, Letchner et al., 2005, Youssef and Agrawala,

2005, Jacquet et al., 2008, Lassabe et al., 2006, Woodman and Harle, 2008, Lass-

abe et al., 2009]. Efforts have been made to deal with the continual changes in the

wireless strength map [Bolliger et al., 2009], and to accommodate the interference
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caused by the bodies of the people around the wireless devices [King et al., 2006].

There have been several strategies explored to automatically determine localization

and mapping within spaces [Ladd et al., 2002a, Krumm and Platt, 2003, Chai and

Yang, 2007, Lorincz and Welsh, 2007, Barry et al., 2009, Park et al., 2010]. Addi-

tionally, the Rice Wireless Localization Toolkit [Haeberlen et al., 2004] provides an

established platform for determining device locality within a 802.11 network. Finally,

new techniques for fusing multiple kinds of wireless protocols to determine location

have been proposed [Bolliger, 2008, Aparicio et al., 2008, 2009].

Triangulation using RF is not limited to 802.11. There have been similar works

using ZigBee [Blumenthal et al., 2007, Lihan et al., 2008, Alhmiedat and Yang, 2008,

Navarro-Alvarez and Siller, 2009], Bluetooth [Bruno and Delmastro, 2003, Cheung

et al., 2006, Bargh and de Groote, 2008, Jevring et al., 2008, Diaz et al., 2010], and

GSM [Otsason et al., 2005, Chen et al., 2006, Varshavsky et al., 2007, Bolliger, 2008].

These protocols use essentially the same approaches as the 802.11 techniques. They

vary in the devices available, range and behavior of the systems. What does not vary

is that they use an active device carried on the object being tracked. For smart home

applications this means placing a powered device on the person, or people, moving

through the smart home. Because the device itself is being tracked, if the person leaves

it behind or the power source drains, the home can no longer locate that individual.

If the home is relying heavily on the device for localization of residents, it loses a
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significant portion of its functionality once that happens. Given that people will

eventually forget, damage or fail to recharge their device there is in inherit limitation

in the use of powered devices for tracking residents within the home. To surmount

these issues, the CASAS platform chose not to use powered devices affixed to the

residents for localization and tracking.

It is also significant that using localization to properly attribute events to indi-

viduals in the smart home requires a relatively high accuracy. Elnahrawy’s work [El-

nahrawy et al., 2004], proposes that there is an inherent limit to the actual resolution

available to all wireless triangulation strategies. Most smart homes are highly un-

regulated when it comes to wireless interference, so this limitation may make all RF

solutions untenable outside of tightly controlled environments.

A popular alternative wireless solution that has been gaining significant support

are Radio Frequency Identification Devices (RFID) [Glover and Bhatt, 2006, Finken-

zeller, 2003, Want, 2006]. These technologies are designed explicitly to track people

and objects [Weinstein, 2005], giving them an advantage over many other RF systems

as a localization platform. RFID has existed since the 1970s and has become ever

more prevalent as a tracking tool. These systems give a universally unique identifier

to every RFID chip and are readily available in off the shelf products.

Notable quantities of research has been invested into using RFID as a trian-

gulation platform, not just a proximity one [Choi et al., 2009, Zhou and Shi, 2009,
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Akhlaghinia et al., 2009, Chen, 2010]. With ranges of 5½m [Buettner and Wether-

all, 2008] for passive RFID systems, most typical home indoor living spaces could

deploy these tags without encountering wireless power issues. This gives the abil-

ity for a smart home to offer long-term tracking of objects and people without the

requirement to change batteries or provide recharging capabilities for the tracking

system.

The CASAS project seriously considered deploying an RFID-based tracking

system. The price is reasonable, the devices are robust and do not require regular

power source maintenance. However, RFID does have a few long-term issues. The

first and foremost is issuance of tags for new objects in the space. For example,

if residents are using tags in their shoes [Mori et al., 2004, Kodialam et al., 2007,

Roberti, 2009] then receive new shoes, new RFID tags must be installed and the

tracking system updated for the new tag serial numbers. Similarly, with a RFID-

enabled medication reminder system [Agarawala et al., 2004], the pill storage system

has to be kept up to date as new medicines are introduced and old ones removed.

If the pharmacy or retailer provides an integrated system, it becomes much more

feasible to deploy these kinds of RFID-based tools.

RFID has been a contentious topic since its inception. There are numerous

privacy issues raised by subjects carrying unique identifiers in public [Garfinkel et al.,

2005, Garfinkel and Rosenberg, 2005, Ohkubo et al., 2005, Lee and Kim, 2006, Klasnja
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et al., 2009]. These concerns must be considered when deploying any RFID-based

tracking system, and smart homes are no exception.

2.1.2 Scene Analysis

Scene analysis tracking in smart homes is used to determine a number of as-

pects of the space. These include, but are not limited to, localizing residents and

objects. From that information, more complex models can be built to support ADL

detection [Tolstikov et al., 2008], resident identification [BenAbdelkader et al., 2002],

dangerous situations [Fleck and Strasser, 2008], social behaviors [Chen et al., 2004]

and other tools. Using video cameras for scene analysis is a well established part of

smart home research and has some powerful advantages over simpler sensor strategies.

The localization and detection of objects is primarily aimed toward providing

the context of the current resident behaviors [Krumm et al., 2000, Tabar et al., 2006,

Brdiczka et al., 2007, Tolstikov et al., 2008, Libal et al., 2009], although tracking of

residents is also a goal [Brumitt et al., 2000, Drummond et al., 2003, Snidaro et al.,

2005, Ivanov et al., 2007a, Köhler et al., 2007, Ge and Collins, 2008, Liu et al., 2009, Li

et al., 2009]. By using a scene analysis system to gather data about the current smart

home space, object interaction may be derived along with the tracking of individuals.

This approach also makes the system much easier to install initially, as the objects
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in the space do not need to have tags or devices attached as they would for wireless

tracking systems.

The trade-offs of video-based systems include privacy implications, cost of de-

vices, handling changing lighting conditions and processing time. There is a body

of work that studies how accepting people are of various smart home technologies in

their home [Fisk, 2001, Demiris et al., 2004, 2008, Gaul and Ziefle, 2009]. The re-

sults of these works reveal that many residents are not willing to have video or audio

recording devices installed in their private spaces. The added granularity of infor-

mation provided by the vision-based solutions requires significantly more computer

computation time over a triangulation or proximity solution, and the current tech-

nologies have difficulty handling severe lighting changes invariably found in homes.

If the smart home is designed have a low energy footprint and/or low cost, the ad-

ditional infrastructure required to process images from one or more cameras may be

prohibitive.

Video-based approaches were considered for the CASAS research testbeds. Hav-

ing all of the information available about the space would be similar to having a human

watching and recording the smart home all day every day. That resolution of data

carries almost everything needed to model the space, but it requires an entire set

of algorithms to interpret the information before it can be used by model building

algorithms. Without going through some kind of information reduction, many arti-
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ficial intelligence and machine learning algorithms are unable to cope with the large

volume of data available. By avoiding a scene analysis approach and working with

proximity detection, the CASAS tools were much simpler from the outset.

We also saw benefits when deploying these systems in the real world. During our

work, we have placed CASAS-style systems in multiple private homes of volunteers.

Every single family was openly pleased that there would be no cameras or audio

systems placed in their homes. Including a video camera of any sort would make the

smart home infrastructure much less palatable to many people. The researchers with

the CASAS group are happy that scene analysis approaches continue to be researched,

but privacy and acceptance of monitoring systems will always be a concern to address.

2.1.3 Proximity

The notion of using proximity to track a resident is very common in smart

home systems. It may not be explicitly stated, but whenever a project requires

that only a single resident may be present and does not use a scene analysis or

triangulation approach, it is using proximity. Whenever an event occurs, it implies

that the resident is proximal to that sensor. With only a single resident in the space,

the latest event caused implies their location and context. Examples of this situation

are common [Cook et al., 2003, Tapia et al., 2004, Logan et al., 2007]. By limiting the
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smart home to a single resident, researchers are able to bypass the complex issues of

attributing events to multiple individuals. This allows them to study other aspects of

the smart home systems without explicitly addressing these tough issues, but ignore

the implications of the single inhabitant constraints on tracking and event attribution.

There are a handful of systems that make use of proximity to track the residents

of a smart home space. The most common approach to date is the use of a “smart

floor.” With a smart floor, pressure or vibration sensors are placed under the floor’s

surface in the residence. The sensors are read and the resulting map of pressure values

may then be used to infer the location of one or more residents.

The earliest smart floor system is the ORL Active Floor [Addlesee et al., 1997].

This system was built to support a number of applications, including tracking, res-

ident identification and security systems. It was only built in a small prototype

deployment, but it did demonstrate the promise of using the floor as a means to

detect objects and people.

The Georgia Tech Smart Floor [Orr and Abowd, 2000] uses a system very similar

to the ORL Active Floor and expands on the algorithms needed to interpret the sensor

readings. Since the ORL Active Floor and the Georgia Tech Smart Floor, there has

been continued interest in leveraging smart floor technologies [Pirttikangas et al.,

2003, Mori et al., 2004, Murakita et al., 2004, Fukumoto and Shinagawa, 2005, Helal

et al., 2005, Kaddoura et al., 2005, El Zabadani, 2006, Eyole-Monono et al., 2006,
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Aipperspach et al., 2006, Yiu and Singh, 2007, Savio and Ludwig, 2007, Wen-Hau

et al., 2008, Valtonen et al., 2009]. As the field began to explore this approach,

it has had to deal with a number of issues including cost, sensor wear and complex

algorithms to determine the location of residents as they move about the space, as well

as the relocation of objects in the home. Given their success, smart floor technologies

will likely continue be investigated as a means to sense the behaviors and locations

of residents within the smart home.

A smart floor approach was considered for the CASAS research platform, but

the monetary cost of the implementation was prohibitive. Installing such a system as

a retrofit into an existing home is very difficult. More modern materials technology

has made it more feasible since this was considered in 2006 [Senanayake et al., 2007].

Additionally, the research at the time did not indicate a strong future in smart floors

for tracking of individuals. A number of newer projects have made headway with the

strategy since then.

Other proximity techniques include using RFID [Wang and Liu, 2005, Fishkin

et al., 2005, Buettner et al., 2009] or motion detectors [Aipperspach et al., 2006,

Crandall et al., 2008, Crandall and Cook, 2010a,d]. When using RFID-based tools,

residents must either carry a RFID reader or a tag with them. This requirement

introduces similar problems to the issues cited in Section 2.1.1. Alternatively, motion

detectors and other ambient sensors allow the resident the ability to live without direct
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interaction with the smart home infrastructure. This choice of proximity sensing is

privacy protecting, lower cost, passive and unobtrusive to the residents’ daily lives.

The combination of these advantages is balanced against a more difficult algorithmic

modeling environment. Since the residents are of unknown location and number, a

proximity approach with passive sensors creates a number of obstacles that must be

overcome before it can be truly useful in real-world smart home deployments. These

issues and some algorithms required to apply this kind of system are discussed further

in Chapter 4.

Particle Filter Tracking Algorithms

A vibrant area of robotics and object tracking is centered around Particle Filter

(PF) algorithms. Using Particle Filters, a number of hypothesis are generated in

a probabilistic manner that predict the current world state. Depending upon the

placement, type and number of sensors a PF-based solution may be classified as

triangulation, scene analysis or proximity. PF approaches have been shown to be

robust for a number of tracking situations, including single robot [Dellaert et al.,

1999], multiple mobile objects [Schulz et al., 2001, Khan et al., 2003] and multiple

mobile robots [Rekleitis, 2003, Rekleitis et al., 2003].

These kinds of algorithms have been successfully employed in the smart home

context for tracking of residents [Hightower and Borriello, 2004, Murakita et al.,

2004, Yu et al., 2006, Yun and Kim, 2007, Salah et al., 2008] and for forms of activity
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detection [Woodman and Harle, 2008, Pham et al., 2008, Yu et al., 2009]. The latest

CASAS resident tracking algorithm introduced in Section 4.3.3, uses a Particle Filter

to approximate the current location of the residents.

2.2 Individual Identification

Identification is the process of uniquely identifying an individual, or grouping of

people by behavior. In the smart home context, this is an invaluable part of handling

multiple residents. Without the ability to identify or classify the residents, it is very

difficult to attribute events to an individual’s history and to predict future behaviors.

There are a number of approaches and methods available to identify people with

various degrees of accuracy and specificity.

Historically, smart home research has taken one of two paths to identifying the

resident. Research environments often require that there be only a single resident at

a time [Rahal et al., 2007], side-stepping the issue for the purposes of doing research

on other problems. This approach succeeds in allowing work on areas of smart homes

such as ADL detection and medical profiling. In the end, though, this only delays

addressing the issues inherent to multiple resident situations that will eventually

impact the capabilities of smart home technologies.

The second approach is to use a carried wireless device that provides a unique
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identifier for the resident [Matsushita et al., 2000, Venkatesh, 2008]. This suffers from

the issues as discussed in Section 2.1, but does function in controlled environments and

situations where the need for the smart home features exceeds the overhead of main-

taining the carried devices. Ideally, a system that does not require a carried device,

but does allow for multiple residents would be developed. Several approaches have

been proposed and explored for unique identification [Crandall and Cook, 2008a,b,c,

2010b] and some for grouped behavior classification [Yu, 1999, Heierman III and

Cook, 2003].

2.2.1 Biometrics

Most people are familiar with direct biometrics for unique individual identifica-

tion. These include fingerprints [Galton, 1888, Cole, 2001, Woodward Jr. et al., 2003,

Jain et al., 2004c], retinal/iris scans [Sims, 1994, Woodward Jr. et al., 2003, Reid,

2003, Cense et al., 2004, Jain et al., 2004c], and DNA fingerprinting [Woodward Jr.

et al., 2003, Burke et al., 1991, Butler, 2009, Jain et al., 2004c]. There are devices

available to take measurements of individuals for all of these [Faundez-Zanuy, 2004,

Jain et al., 2004c] and, to some degree of accuracy [Phillips et al., 2000], uniquely

identify them. In a smart home system with a limited number of people there will

be few incorrect identifications using these tools. The primary difficulty with these
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approaches is that they require that the person being identified take specific actions.

For example, the subject might have to place one or more fingers on the fingerprint

scanner or look directly into the retinal scanner and remain still until it finishes taking

measurements. These kinds of forced behaviors will be burdensome in a private home

environment and likely avoided over time, leaving the home without key information

needed to properly function. Additionally, if the resident is not mentally capable of

performing the actions with any consistency, such as in the case of individuals with

dementia or the very young, these tools provide little useful information to a running

smart home system.

A more recent field being developed that allows identification of subjects without

requiring explicit actions on their part is passive biometrics. These approaches hold

more promise for smart home applications due to their position as ambient tools

instead of obvious and intrusive ones.

Examples of passive biometrics include facial recognition [Li and Jain, 2005,

Wechsler, 2006], body shape (Anthropometry) [Bertillon, 1896], voice recognition

[Rose, 2002], footstep shape [Orr and Abowd, 2000, Pirttikangas et al., 2003, Murakita

et al., 2004, Helal et al., 2005], personal weight [Jenkins, 2006, 2007, Jenkins and Ellis,

2007], height [Jenkins, 2006, Srinivasan et al., 2010], heart beat pattern [Watanabe

et al., 2009], and blood pressure [Begg and Hassan, 2006]. There are also a number

of known esoteric biometrics that could be exploited in certain environments [Wood-
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ward Jr. et al., 2003] such as: vein patterns, facial thermography, sweat pores, hand

grip, fingernail bed, body odor, ear shapes, skin luminescence, and brain wave pat-

terns. Taken individually, these characteristics are often not able to uniquely identify

an individual, but when used in conjunction with each other, and possibly augment-

ing a more direct biometric system [Jain et al., 2004a,b], they can be a strong tool

for providing a unique identification.

Some of these approaches, such as facial recognition and body shape, rely on

cameras to function. This requirement may or may not be acceptable in the private

home space. They also require a number of different sensors installed throughout the

home [Kim et al., 2006, Jenkins, 2006, Srinivasan et al., 2010], which may or may not

be feasible in the given home implementation.

Similarly, the voice recognition approach requires one or more microphones

within the home. Voice printing is a well established field, but the privacy issues with

audio recording and the ability to reliably record audio in a noisy home environment

limits its utility in smart homes.

These physical measurements have the benefit of being unique to individuals

with a high degree of probability. As people grow and change, their physical charac-

teristics change. Any smart home implementation must take this measurement drift

into account during long term usage.

Additionally, genetically identical twins will cause serious issues if the system
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is relying heavily upon physical characteristics. Handling this edge case has been

investigated to a limited extent [Jain et al., 2001], but smart home identification

technology is still in its infancy so little has been published to date for dealing with

identical twins.

2.2.2 Behavioral Biometrics

Another form of passive identification identifies an individual based upon their

behavior on the sensor network. This kind of identification approach is not as well

established as a biometrics or wireless device tagging, but a growing field dubbed

“behaviometrics” is forming around the idea of identification via behavioral biomet-

rics [Wang and Geng, 2010]. Using behavior to classify individuals into likely groups is

a skill all humans possess. It is how we determine likely threats or friends at a glance

among a crowd. Building computer algorithms to make the same kind of prediction

is a natural extension of sensor-based systems.

Old uses of behaviometrics to identify individuals such as handwriting recog-

nition [Srihari et al., 2001] and gait recognition [BenAbdelkader et al., 2002, Collins

et al., 2002, Alwan et al., 2003, BenAbdelkader et al., 2006] are now being augmented

with more advanced sensors and algorithms. This allows for a number of new methods

when attempting to recognize an individual. A new approach provided by the now-
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common interaction with computers is to identify the user of a computer system via

their interaction with the mouse [Shen et al., 2009], keyboard [Nisenson et al., 2003,

Moskovitch et al., 2009], software tools [Gamboa and Fred, 2003] or network [Gamboa

et al., 2004]. These kinds of classifiers have distinct limits due to their probabilistic

nature. They have applications in access control, intrusion detection, security systems

and medical data analysis.

There have been few papers within the smart home field to date that use beha-

viometrics to identify individuals [Rodŕıguez et al., 2008, Menon et al., 2010]. New

tools combined with the numerous data sources of a smart home system allow the op-

portunity to determine a resident’s identity via interaction with the smart home. This

is done in a manner similar to identification accomplished through behaviometrics-

based approaches applied to interaction with a computer terminal. The difference is

that the “terminal” is envisioned as the whole smart home sensor platform instead of

only a keyboard and mouse.

The CASAS project uses ubiquitous, passive and simple sensors to enroll in-

dividuals in the behaviometric system for future identification [Crandall and Cook,

2008a,b,c, 2009, Cook et al., 2010, Crandall and Cook, 2010b,c]. Given a unique his-

torical profile, a resident can then be re-identified in the future using behavior alone.

This work is discussed in more detail in Chapter 5.
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CHAPTER 3. CASAS TECHNOLOGY PLATFORM AND

TESTBEDS

The sensors, controllers, software, and infrastructure are unique to every smart

home. The CASAS project has assembled a collection of hardware and software

tools for the implementation of a smart home. Since smart homes are so dependent

upon the specifics of their implementation, the research results they produce need to

include a quality record of how the data was derived. This record needs to include

details of the hardware used, the software infrastructure, the space in which it was

installed, any pertinent details about the resident and the conditions under which the

data was gathered. This chapter attempts to provide the needed details about the

CASAS smart home implementation, in order for future researchers to have a good

sense of how and why the algorithms tested may have operated as they did.

This thesis leveraged the CASAS Technology Platform (CTP), a smart home

implementation designed to yield a comprehensive smart home system. “Comprehen-

sive” means that the whole space is monitored for the residents’ behavior. From the

moment a person enters the home, they are interacting with the CTP. This compre-

hensive approach contrasts with a number of smart home platforms wherein only a

distinct subset of the environment is “smart.” These smaller projects are valuable in
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their context, but the CTP is designed to provide a ubiquitous sensing environment

throughout the home.

The CTP leverages a variety of sensors, providing the computer monitoring the

space with a number of benefits and limitations. These sensors are listed in some

detail in Section 3.1, and important details related to their supporting infrastructure

are provided. Given that every smart home implementation uses a combination of off

the shelf products and custom built parts, this record of how the space is sensed is

very important.

The software built for the CTP is an agent-based system. Different sensor types

and various software tools are represented by one or more agents that communicate

between one another over the CASAS Lightweight Middleware (CLM). The middle-

ware communications infrastructure is covered in Section 3.2.

For long term storage of the data gathered by the sensor platform, a database-

backed architecture has been implemented. This database archives the events for

later use by researchers and annotators. Given the wide range of sensors and data

types, a simple and open style of data representation has been used to store the data.

The database and data representation are discussed further in Section 3.3.
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3.1 CASAS Sensor Platform

The sensors and infrastructure used in the CTP are designed to be simple,

robust, energy efficient, low profile and generally more socially acceptable then smart

home technologies discussed in other works [Fisk, 2001, Demiris et al., 2004, 2008,

Gaul and Ziefle, 2009]. This is a significant number of goals, but they can be achieved

through a careful selection of hardware and algorithms to interpret the available data.

Many of the devices utilized are off the shelf commercial products integrated into a

variety of data buses to be read by the server. The resulting data events are sent

over the middleware for processing and storage. By leveraging existing, well tested

devices the robustness, energy efficiency and profile of the system are often improved.

Custom sensors may be tailored to fit the needs of the smart home exactly, but the

system designer often pays the price for these in terms of engineering time and a

less robust final product. Commercial products are also often packaged well, so their

visibility profile after being installed is lower and the residents are less likely to notice

the system after they become accustomed to it. Participants who have resided in

smart home testbeds observe that it only takes a week or two to become comfortable

with the new technology in their homes.

The sensors communicate with the server through a handful of different data

paths. Most of the sensors are attached to a Dallas 1-wire bus™, which allows for
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high speed transfer of small data packets along a daisy chain of devices on a common

serial bus. To attach the sensors to the 1-wire bus, a custom board was designed

and implemented to support a contact switch or stand alone 1-wire chip. This board

was dubbed the Lentil Board and is present in the PIR motion sensors, tempera-

ture sensors and door sensors of all of the CASAS testbeds. An advantage of the

Lentil Board is that it allows for easier connection of a variety of devices without

serious modification for most applications. The board is shown in further detail in

Section 3.1.1. All of the sensors connected to the server using the 1-wire bus share a

single software agent to report their activities.

A handful of the other sensors use RS232 (serial), USB (Universal Serial Bus)

and power line signal injection to communicate with the server. These all have their

own agents to report events and provide an interface to communicate with them.

3.1.1 Lentil Board

The Lentil Board is an in-house bridge that allows simple sensors to connect

to a Dallas 1-Wire Bus. This bus allows up to hundreds of devices on wire lengths

of up to hundreds of meters. For a smart home implementation on the scale of most

private residences, this is more than sufficient. The wiring specification devised for

the Lentil Board also includes a 12v bus to provide power to higher power devices,
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such as the PIR motion detectors in the current CTP implementations.

The Lentil Board illustrated in Figure 3.1 is capable of serving as a bridge for a

PIR motion detector (shown in Figure 3.2), as a contact switch (shown in Figure 3.3)

with a Dual Addressable Switch (Dallas part #DS2406) 1-wire chip, or an ambient

temperature sensor (shown in Figure 3.8) with a Parasite-Power Digital Thermometer

(Dallas part #DS18S20). These sensors make up the bulk of the CTP implementation,

with the PIR motion detectors most common. By providing a uniform interface for

communicating with the core sensors for the smart home, the system becomes easier

to install and maintain. An added advantage is that 1-wire parts are very common on

the commercial market, so additional kinds of sensors and devices can be implemented

as long as they come in the three pin package the Lentil Board accepts.

All 1-wire devices have a universally unique 64 bit serial number encoded at

production time. This number is used by the CTP system as a unique identifier, re-

lieving the smart home installers from having to determine their own serial numbering

scheme.

For connection, Lentil Boards provide footings for two RJ11 jacks. This is a

standard United States phone jack, which allows for common phone wire and connec-

tors to be used when installing the devices in the home. This common standard makes

it easier to find parts and tools to work with the system. The result is faster training

for new people installing a system, less expensive wiring, and readily accessible tools,
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Figure 3.1: The Lentil Board itself. United States Presidential 1 included for scale.

such as crimpers and line testers.

Lentil Board A2D

A second Lentil Board was designed for use with voltage-based sensors, shown in

Figure 3.4. This board commonly uses the Quad A/D Converter (part #DS2450) and

provides four channels of analog to digital voltage signal conversion. The board has

been installed as the stove burner sensor and the water flow sensor in CASAS’ Kyoto

testbed (see Section 3.4.2). Given difficulties of analog to digital signal interpretation

and the relative rarity of sensors needing this type of bridge, the Lentil Board A2D

sees little use in the more recent CASAS testbeds.
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Figure 3.2: Lentil Board configured for integration with the PIR Motion Detector. It

mounts directly into the case without modification to the sensor’s terminal

block.

Figure 3.3: The Lentil Board configured for use with contact switches and door clo-

sure sensors.
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Figure 3.4: The Lentil Board A2D.

3.1.2 PIR Motion Detector

The PIR Motion Detector currently used by the CTP is a Visionic™ model

K-940. This device is designed for general purpose home security installations and

is somewhat “pet-immune.” Normally, these are installed on the wall providing a

lateral, human-height field of view. When installed as part of the CTP they are used

in one of two modes: as area sensors or downward facing sensors. The detectors also

have a Lentil Board, as shown in Figures 3.2 and 3.5(b), installed in them. This

provides their power and communication to the rest of the CTP.

The PIR Area sensors are normally positioned so that their field of view encom-
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passes, and is limited to, a single room. The goal of the placement is that the sensor

only fires when a resident is within that given space. The result is a sensor that

signals events about room occupation, but with no detailed information regarding

where or by how many. A stock area sensor is shown in Figure 3.5(a).

(a) A PIR area motion

detector.

(b) CTP PIR internals,

exposing Lentil Board.

(c) A downward facing PIR.

Figure 3.5: Various versions of the CTP PIR motion sensor platform.

In contrast to the Area sensors, these units are mounted on the ceiling of the

residence, with the lens facing downwards. Consequently it only sees the floor directly

below it, thereby only sensing a small part of the room and giving any events it

generates more locality. With this locality being derived from the events, the system

becomes a much stronger proximity tracking system, similar to the ones discussed in
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Figure 3.6: An example of the paper used to occlude the view of a CTP motion

detector.

Section 2.1.3. By knowing with greater detail where a resident is, more specific context

about which objects they are near is available, as well as providing the ability follow

their movements more closely. This is why the downward facing motion detectors are

the most common sensors in the CTP, as there needs to be enough of them to cover

the space adequately.

Downward facing motion detectors have three modifications from the vendor’s

intended use. The first is the Lentil Board for power and communication, as was done

with the Area sensors. The second modification is having its serial number affixed to

the front of the sensor’s case, as pictured in 3.5(c). This is the 1-wire serial number
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of the Lentil Board installed in the unit pictured. Having the serial number available

makes it easier for debugging and testing of the smart home system.

The last modification is to occlude the view of the sensor to a smaller region. By

default, the K-940 sensors have a roughly 120° lateral and a 40° vertical view. This is

much too wide for the intended CTP use of this sensor; by reducing the view down

to a much smaller aperture, a more focused view of the space can be created. To

accomplish this goal, a piece of paper is inserted behind the Fresnel Lens. This paper

is fashioned, as shown in Figure 3.6, so that when placed on the ceiling the sensor can

only “see” a roughly 1.2m x 1.2m area of the floor. The hole behind the Fresnel Lens

is visible as a dark square in the middle of the lens as shown in Figure 3.5(c). After

this is done, a field of motion detectors can be mounted, facing downwards, creating

a grid of binary presence sensors. The net result is a much finer-grained localization

of motion than a single Area sensor could yield.

3.1.3 Insteon Power Line Controls

To control standard United States home appliances and lighting, the CTP has

relied upon Insteon™ power line control devices. These devices are similar to the

earlier X10 devices commonly used in other smart home systems [Bucceri, 2004,

Meyer, 2005, Pacifica, 2005]. While the X10 protocol is well established and devices
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that leverage it are widely available, the protocol itself is slow. Current smart home

applications send significantly more traffic to and from controllers than earlier, simpler

X10 installations. With these additional demands, the X10 bus becomes saturated

and commands may take many seconds to be enacted. X10 is also very brittle in the

face of interference. While Insteon-based controllers are not immune to signal line

interference, they are significantly more robust than their older X10 counterparts.

The Insteon devices used are capable of acting as light switches, dimmers and in-

line power controllers. For the CTP approach they are used simply as smart switches

that report all state changes, such as a user pressing a switch to turn on a light, to the

computer listening on the network. Once these switches are installed in a testbed, the

middleware is informed of all interactions residents generate with them. Additionally,

these provide the ability for intelligent agents to control powered devices throughout

the home.

As previously stated, one advantage of using commercial off the shelf products

is their lower visibility profile compared to custom built implementations. This is

primarily because they are often very similar to the existing controls in most homes.

For example, as shown in Figure 3.7(a), the most common Insteon controller resembles

a standard US paddle switch. It has additional lights to report the current dimming

level, if available, but is otherwise externally similar to switches most people in the

US use for controlling lights and devices in the home.
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(a) Insteon light switch. (b) An Insteon in line lamp

power controller.

(c) Insteon controller with

more user options.

Figure 3.7: Some of the more common Insteon devices used by the CTP.

The other Insteon devices shown in Figures 3.7(b) and 3.7(c) are used by the

CTP as well. Example 3.7(b) is an in-line controller. There is no external switch

to turn the power on or off, so all controlling of the device plugged into this in line

module must come over the Insteon communications bus. These instructions can

come from other Insteon switches, such as the more complex six button switch shown

in Figure 3.7(c), or from a computer with a specialized controller that can interact

with the Insteon message bus directly. This kind of in line module allows for direct

computer control of lights not on existing switches, or other powered devices in the

home.
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Because it uses an existing consumer product, the CTP has experienced fewer

engineering issues in monitoring and controlling powered devices within the smart

home system. Insteon devices are Underwriters Laboratories (UL) certified, allow-

ing them to be used in homes with fewer concerns regarding fire and electrocution

than with a custom solution. The CASAS research testbeds have experienced some

interference with these systems, but the offending appliance can often be located and

isolated quickly.

Future updates to the CTP may see wireless power control systems come into

operation. ZigBee-based solutions, such as Control4™, are becoming more economical

and provide even more communication capabilities then power line solutions like

Insteon or X10.

3.1.4 Ambient Temperature Sensor

To measure the ambient temperature in a room, the Lentil Board can be con-

figured with a Dallas DS18S20 chip, as shown in Figure 3.8. This 1-wire temperature

sensor reports the surrounding temperature to within ½° C. These are most often in-

stalled on the ceilings of rooms throughout the smart home, a strategy that provides

insights into how heating and cooling systems operate, plus the impact of open doors

and windows on the environment. These chips have also been used to verify the be-
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Figure 3.8: A CTP Ambient Temperature Sensor.

havior of other sensors, e.g. the Stove Burner Sensor (Subsection 3.1.7), where the

temperature sensor above the stove corroborates the increased power used to run the

burner.

3.1.5 Magnetic Door Sensors

The CTP uses simple magnet-driven reed switches to detect the opening and

closing of doors, such as bedrooms, kitchen cabinets and refrigerators. These are

common and inexpensive home security items. They are robust and simple to use

when attached to a Lentil Board, as shown in Figure 3.9.
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Figure 3.9: A CTP Door Sensor with a reed switch attached.

Whenever the magnet moves away from the reed switch, it closes, changing the

state on the 1-wire chip. This change is then reported to the server which sends an

“OPEN” event out over the middleware for processing and storage. When the magnet

moves back into place, a “CLOSED” event is created. This simple system installed at

entrances to rooms and buildings provides a stronger source of evidence for entrances

and exits than motion detectors alone.

3.1.6 Item Presence Sensors

A simple contact switch and plate was designed to detect the presence of notable

items throughout the home. Items of most interest include medicine dispensers,
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Figure 3.10: A CTP Item Sensor with Lentil Board attached.

cookware and toiletries, though any movable small object may be used with this

device.

The item sensor uses a Lentil Board configured to read a contact switch. When

the item is placed or removed from the plate, the switch is depressed and an event cre-

ated. This simple design, shown in Figure 3.10, is primarily used for more controlled

testing of specific items within a testbed. These contact plates have been applied to

medication, cooking, cleaning and leisure items.

3.1.7 Stove Burner Power Meter

The first system to make use of the Lentil Board A2D platform was an inductive

coil used to detect current flow through a stove burner in the Kyoto testbed. This
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Figure 3.11: An example of the CTP Water Flow Sensor.

device is designed to measure the use of the stove burner. The resulting voltage

measurements are interpreted to give both a duration and power setting when the

residents are cooking.

3.1.8 Water Flow Sensor

To measure the use of the sink in the Kyoto testbed’s kitchen, a pair of water flow

sensors were installed. These commercial products from Lake Monitors™, pictured

in Figure 3.11, were placed on both hot and cold inflow pipes to the sink. As water

flows, a voltage is generated and sensed by a Lentil Board A2D to be reported to the

server. The ability to detect the use of water in kitchens, bathrooms and other spaces

is very valuable to ADL detection in smart home spaces.
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3.1.9 OneMeter Power Metering

The OneMeter™ device monitors an inductive coil to determine the current

wattage and cumulative kWh passed through a wire. These are normally installed

at the main power feed to a breaker panel as a means to monitor all of the sub-

circuits’ power use. The version used by the CTP communicates with a computer via

a serial RS232 connection, which allows the computer to poll for the current power

status. An image of the OneMeter head installed in the Kyoto testbed, as described

in Section 3.4.2, is shown in Figure 3.12.

3.1.10 Sensor Platform Summary

The CTP uses a wide variety of simple, robust sensors to give a diverse flow of

information about occurrences within the smart home. These sensors provide easy to

store and process events. This simplicity aids in modeling the space with humans and

algorithms. Incorporating a range of sensor sources allows for a variety of approaches

to sensor fusion and model building to support the gamut of smart home research

topics investigated with the CTP.
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Figure 3.12: The Kyoto testbed OneMeter installed and operational.
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3.2 CASAS Middleware

As mentioned earlier in Chapter 3, the software infrastructure used by the

CTP is an agent-based pattern. Each sensor type, middleware component and model

builder is represented by an agent. This creates a network distributed architecture

bound together by a well documented message passing language. The benefits include

isolation of components and additional modularity when adding and removing parts.

This component of the CTP is documented in depth in Kusznir’s Masters The-

sis [Kusznir, 2009] under the title “CLM as a Smart Home Middleware.” As noted

in the Definition of Terms (Appendix A), CLM stands for “CASAS Lightweight Mid-

dleware”. This section of this thesis touches on the main aspects of the system, but

leaves the details to Kusznir’s work.

The CTP middleware uses the XMPP protocol [Saint-Andre, 2004a,b] as the

messaging and presence layer. This approach means that the CTP can use any

full featured XMPP server, such as ejabberd, Wildfire or Jabberd 2, to manage the

interconnection of agents and passing of messages. These software packages are im-

plemented and tested as long-term, Internet-facing, high speed, high volume systems,

hardened for security. While they do incur greater overhead than a more dedicated

implementation using a message passing library, choosing to use these kinds of tools

has led to reduced development, maintenance and security costs.
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The agents implemented in the CLM system use XML formatted messages to

communicate with one another. The schema of these messages is laid out in Kusznir’s

Thesis, Chapter 2. Essentially, there is a standard language for passing messages

to a channel manager agent, called “Manager,” which then forwards them onto the

various agents subscribed to that channel. There is a handful of out of band messages

for specialized control systems, but the preponderance of messages move through

the Manager. The individual behavior of the agents implemented for the CLM are

detailed in Chapter 5 of Kusznir’s work.

3.2.1 Distributed Clocks and Event Timestamps

Time and clocks are an open issue with any distributed message passing system.

The CLM is no exception to this. To solve this problem, many smart home projects

synchronize the system clocks of the various computing platforms and rely on short

experiment durations to mitigate the impact of clock skew. Since the CASAS testbeds

are long running and centralized in nature, all network messages are handled by a local

network. This made it feasible to use the clock of the main server as the authoritative

source of time. As events arrive at the Manager agent, it stamps the current time on

the event before passing it along for recording and processing. If the CLM were to be

used over a wide area network or a larger scale building, this issue of time and causal
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Table 3.1: Data provided by every event, including system and control messages,

passed through the CLM for storage.

Field Notes

date ISO 8601 format (yyyy-mm-dd)

time ISO 8601 time format (hh:mm:ss.subsec)

serial Unique text identifier for sensor reporting

message Value of sensor event

by Text identifier of CLM agent reporting the event

category CLM event category of event {entity, state, control, system}

ordering of events would need to be re-examined.

3.3 CASAS Database and Data Representation

The data gathered from the sensor platforms discussed in Section 3.1 and passed

through the CLM introduced in Section 3.2 come primarily in a standard format. The

fields in the XML schema provided are shown in Table 3.1.

All events passed by the CTP from the sensor platform are stored in a database.

These data are retained for future data mining and history building tools, as well as
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Table 3.2: Schema for the data source table to store information about the active

sensors within a CTP deployment.

Column Type Modifiers Notes

dsid integer primary key Auto-generated key field

serial text Serial number of sensor

location text Assigned location of sensor

type text Type of sensor

validation of continued operation of a testbed. While the current implementation is

an SQL database, any kind of structured repository would do.

For the work done in this thesis, the database has only two pertinent tables.

These tables reflect the format of all events in the standard format laid out for the

XML messages as discussed in Section 3.2. The schema of the tables is shown in

Tables 3.2 and 3.3.

These simple tables contain all of the various types of sensor information and

system status messages derived from the CLM. The design choice to use an SQL

system and text fields to contain the message from the sensor provides flexibility for

discrete events, but limits the ability for this system to hold large data blobs, such

as those from video or audio recorders. The CASAS testbeds do not record video or
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Table 3.3: Schema for the event table, which stores every discrete event reported by

the sensor platform.

Column Type Modifiers Notes

eventid integer primary key Auto-generated key field

message text Message (value) of event from sensor

dsid integer Foreign key to data source dsid field of sen-

sor that reported this given event

stamp timestamp Full ISO 8601 timestamp of when event was

stamped by the Manager agent

by text Name of agent within the CLM that sent the

event

category text Type of event {entity, state, control or sys-

tem} [Kusznir, 2009]
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audio as smart home data sources, so this limitation is acceptable for the needs of

this work.

There are more tables in the complete database schema. These relate to op-

timization, book keeping and other storage for later processed information. They

are not discussed in the interest of brevity, as they have no bearing on the tools

introduced here.

3.4 CASAS Testbeds

The CTP has been deployed at six testbeds to date. Each testbed was given a

unique code name. The current list of deployments is summarized in Table 3.4.

Each of these facilities has had the CTP infrastructure installed and operated

for at least several months. The designs of the different spaces have incrementally

improved ADL detection and resident activity prompting to aid older adults with

dementia issues. Subsets of the data gathered from these spaces are available from

the CASAS shared data set web site [CASAS, 2010].

For this work, data from the Tokyo and Kyoto testbeds were extracted, anno-

tated and used. To ensure clarity of implementation, a description of these sites is

included. The nature of the space, residents and sensors is important for evaluation

of the algorithms proposed for both tracking and identification.
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Table 3.4: Summary of CTP testbeds deployed to date, in order of deployment.

Site Name Brief Description

Tokyo University campus lab for testing and office space example. (Still

running.)

Kyoto Two resident university housing apartment and gerontology research

facility. (Still running.)

Tulum University family apartment with full time residents.

Cairo Two resident (plus cat) older adult private home.

Milan Single resident (plus dog) older adult private home with prompting

systems.

Aruba Single resident older adult private home with prompting systems.
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3.4.1 Tokyo Testbed Description

The Tokyo testbed is the primary testing facility for the CASAS researchers. It

is an office style workplace in one of the EECS buildings at WSU. The space includes

a variety of different sub-spaces and is utilized by a number of students. For this

work, the data chosen from Tokyo are either collected specifically because they derive

from known individuals for identification algorithm testing, or are annotated with the

number of current occupants for training and evaluation of the tracking algorithms.

Tokyo Testbed Layout

A map of the Tokyo testbed is shown in Figure 3.13. The two rooms together

comprise a total area of 9.7m x 12.2m. The ceiling is a uniform 3m high, and made of

a dropped tile T-bar system as shown in Figure 3.14. Throughout the space, sensors

are either attached to the metal T-bar surface between the tiles or affixed to the walls.

The inner room in the lower left is an office, storage space and workbenches for

engineering projects. Though it is used for a number of different activities, this space

is rarely inhabited by more than two people. A picture of the workbenches is shown

in Figure 3.15.

The main space of the Tokyo testbed is trisected. The largest segment features

tall cubicle walls with desks and work spaces as shown in Figure 3.16. On the op-

posite side of the center space has a conference table (Figure 3.17) and sitting space
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Figure 3.13: Layout of the Tokyo testbed, including sensor placement.
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Figure 3.14: Example of the Tokyo testbed ceiling and sensor installation.
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Figure 3.15: The inner room of the Tokyo smart home testbed.
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Figure 3.16: The Tokyo testbed student cubicles.

(Figure 3.18).

To aid in activity tracking and to improve control possibilities, the Tokyo testbed

is equipped with track lighting instead of the normal fluorescent room lighting. The

track lighting is aligned with the shape of the various rooms and cubicles such that

every region has an independent lighting system. Each of these tracks has a switch

to actuate it, labeled “L” in Figure 3.13. Examples of the track lighting can be seen
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Figure 3.17: The Tokyo conference table.

in Figure 3.16, showing how the tracks are orientated to the cubicles. The switches

to control these lights are all Insteon™ brand devices, discussed in Section 3.1.3.

In addition, each desk has a desk lamp controlled by a local switch. This

provides individuals the ability to control their personal space’s illumination to their

own needs. All of the lights in the space are variable and can be dimmed to suit

individual tastes.
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Figure 3.18: The Tokyo sitting space.
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Tokyo Sensors

In addition to the light switches recording data from the room’s lighting, as

discussed in Section 3.4.1, there are other specialized sensors throughout the space.

The most prominent are the standard CTP downward facing motion detectors as

shown in detail in Section 3.1.2. These sensors are placed on the ceiling of the Tokyo

testbed roughly every 1.2m, as seen in Figure 3.14. The objective of this sensor

placement is to provide an unoccluded view of the residents with enough resolution

to capture their current location and number.

Except in the large open area in the middle of the space, the motion detectors

are installed to conform to the shape of the cubicle desk placement and conference

table. In Figure 3.13, motion detectors 4–6, 10–13, 19–20 and 33–37 show this non-

uniform pattern. Additionally, every door in the space has a detector placed very

near the wall, directly centered above the door. This placement limits the view of the

sensors so they only generate events when people are passing through the doors and

not just standing near them.

After significant experience working with and annotating the resulting data from

the CASAS testbeds, it has been often remarked that good sensor placement around

doorways is key in understanding the movement of residents throughout the space.

Placing motion detectors carefully so that they can only view one side of a doorway

gives strong indicators of a resident’s current position when around the portal.
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Other sensors within the space include ambient temperature sensors from Sec-

tion 3.1.4 and door open/close sensors from Section 3.1.5. The temperature sensors

are placed to detect three stages of air movement within the rooms. One sensor is

placed near the air diffuser to measure the incoming air temperature. Another is

placed in the middle of the room to gather the ambient temperature, and a third

at the outflow vent. With this system in place, a history of the heating and cooling

within the room is captured.

Door sensors are installed on each door in the testbed. The sensor on the door

to the hallway is shown in Figure 3.13 as number 51, while the inner room sensor is

number 50. In the Tokyo testbed the inner room door is almost always open, and the

door to the outside is propped open when students are present. Consequently, they

provide limited information about the current state of residents’ coming and going.

Tokyo Residents

The behavior of the Tokyo residents is varied and sporadic. They are primarily

adults, either graduate students, postdoctoral residents or undergraduate student

workers. Some use their desks consistently, while others only intermittently at best.

The duration of the gathered data set spans multiple years so some of the students

arrive and eventually graduate entirely within the data’s time span. In addition to the

normal residents, the space hosts events such as lab tours, meetings, and guests. These

large influxes of unknown people make for very noisy data periods. Altogether, the
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Tokyo testbed residents pose a very complex environment for tracking, identification,

and ADL and anomaly detection.

Tokyo Summary

The CASAS Tokyo smart home testbed is the longest running CASAS CTP

installation. It has evolved in small ways from its initial installation into a consistent

and functional smart home implementation. This kind of testbed provides quality

data in an office-like environment with a variable number and type of residents. While

it is not as interesting for ADL research as the other CASAS sites, it has proven very

useful for tracking, identification and preference building projects.

3.4.2 Kyoto Testbed Description

The Kyoto testbed is the primary research facility for the CASAS projects.

This three bedroom apartment shown in Figure 3.19, as part of the WSU University

Housing system, is ordinarily the home of two undergraduate students. Kyoto is

designed to be a sensor-rich space designed for capturing as many ADLs and behaviors

as possible.

Since its initial installation in 2007 this smart home testbed has undergone a

series of improvements. These have primarily been software updates, but over time

new sensors and interactive technologies have been deployed. These have focused on
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Figure 3.19: Labeled room map of the CASAS Kyoto testbed.
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supporting the CASAS research objectives, such as early onset dementia evaluation

and aging in place tools, although Kyoto is also used for studies regarding the as-

sociating of activities with energy consumption [Chen et al., 2010, Chen and Cook,

2010]. This testbed has proven highly successful [Singla et al., 2010] at gathering rich

and well-documented data sets, some of which are available publicly [CASAS, 2010].

Kyoto Testbed Layout

The Kyoto testbed, also known as the “smart apartment” in many CASAS

works, is representative of many American living spaces. Each resident has their

own room with a bed, desk and closet. There is a shared bathroom, living room and

kitchen. This resemblance to many typical homes makes the results from the research

done here more applicable than partial smart home implementations or work done

with specialized facilities.

The basic Kyoto sensor layout, shown in Figure 3.20, follows after the design

of the Tokyo testbed. The primary sensor type is the downward facing PIR Motion

Sensor (Section 3.1.2). These are installed on the 2.4m high ceilings with a field of

view that covers roughly a 1.2m x 1.2m section of the floor. Similarly to Tokyo, they

are installed roughly every 1.2m to provide continuous coverage of the space. This

sensor distribution is designed to provide enough resolution for human annotators

and algorithms to localize and track the residents.

The rest of the sensors are installed on an “as needed” basis. Many of them
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Figure 3.20: Sensor layout for the CASAS Kyoto testbed.
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have very specific uses to aid the artificial intelligence algorithms in their operation

or to give human annotators information about the activities being performed.

Kyoto Sensors

The Kyoto motion detectors are installed throughout the apartment, barring

the Storage/Control room upstairs. This room is kept nearly sensor-free so that

controlled studies can be performed without the controllers introducing more events

than need be into the resulting data set. There is a single area motion sensor installed

in the room to give annotators a sense of occupancy, but no more.

The light switches throughout the residence have been replaced with Insteon

brand switches (Section 3.1.3). These generate events that correspond with light con-

trol decisions and preferences of the occupants. They also give the system the ability

to automate lighting for power conservation and predicting resident preferences.

Nearly every door in the apartment has a magnetic closure sensor (Section 3.1.5).

Additionally, some of the cabinets in the kitchen, the microwave and the refrigerator

are monitored in this manner. The kitchen sink has water flow sensors (Section 3.1.8)

to monitor water usage. This extra information about door and kitchen behavior is

informative regarding which activities are being performed in the room.

The right front burner on the range is metered for power consumption using the

Lentil Board A2D sensor from Section 3.1.7. This power monitoring is interpreted by

many of the ADL algorithms applied to the data sets to detect cooking, as well as



72

what kinds of cooking are being performed.

There are a number of item presence sensors installed in the kitchen and living

room (Section 3.1.6). These contact-switch based plates are primarily used for con-

trolled activity studies. When key items, such as medicine bottles, television remotes

and cooking utensils are removed and returned, the system yields additional context

for the current activities of the occupant.

In this space the whole home instantaneous wattage is metered. By placing an

inductive coil around the main breaker, the OneMeter power meter (Section 3.1.9)

monitors and reports the wattage used by the home. Even something as small as

opening the refrigerator door creates a noticeable wattage change. In this example

the change caused by the incandescent light in the refrigerator space turning on, but

many other activities use devices that change the power footprint of the home. Long

term power fluctuations on a daily, weekly and annual basis provide indications of

the behaviors of the residents and surrounding environment.

Examples of the Kyoto sensor installations are shown in Figure 3.21 and Fig-

ure 3.22. Because this space does not have a dropped T-bar ceiling like Tokyo, the

wires become very visible. The later CASAS installations in private homes use wire

colored to match the surface and are cut to stretch between the sensors with very

little slack. These small details make the resulting sensor installation much more

attractive to the residents.
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Figure 3.21: Sensors installed in the foyer of the Kyoto testbed.
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Figure 3.22: Sensors installed on the living room ceiling of the Kyoto testbed.
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All of the sensors are wired back to a central location. This location is a closet

under the stairs as shown in Figure 3.23. To aid in the mounting of the server, power

systems and other communications devices a plywood board was affixed to the wall.

The various devices and systems are readily attached to this solid mounting base.

Kyoto Residents

The residents monitored in the Kyoto testbed fall into two categories: full-time

and transient. The full-time residents are students who have volunteered to live in

the testbed. They live, work and study there as university students. The facility is

designated as undergraduates-only by the WSU Housing Department, so all of the

full-time residents have been undergraduates to date.

The full-time residents have changed as the years progressed. Each academic

year and for each summer, a new pair of residents is chosen to live in the smart

apartment. This turnover of residents provides a wider variety of behaviors that can

be monitored and analyzed using a single sensor installation. Both women and men

have resided there in turn. For the publicly available data sets and research papers

published using the Kyoto smart apartment data, the genders of the residents are

normally listed.

The transient residents represent a number of groups. An element they all have

in common is that they only enter during the daytime, and rarely stay more than four

hours in a session. These people might be maintaining the facility, controlling the
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Figure 3.23: Central wiring board and server location for the Kyoto testbed.
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experiments, participating in the experiments, be guests of the residents, or Housing

Department maintenance workers. Depending upon the nature of the data set and

research, these transient residents are either filtered out or kept as required.

Kyoto Summary

The CASAS Kyoto testbed, also known as the “smart apartment,” is a long

running and highly valuable source of smart home research. It has the benefits of the

CTP platform for non-invasive privacy-preserving sensor systems plus long running

full-time residents. Using the comprehensive nature of the CTP to monitor numerous

activities in the space has supported the ADL, identification and energy research done

by the CASAS group to date. The ability to do both controlled aging in place studies

while also deriving “real-world” data sets has proved to be invaluable for the smart

home community at large.

3.4.3 Other CASAS Sites Overview

The other four CASAS testbeds to date did not contribute data to this work,

so they are only summarized here. They all share the same CTP infrastructure, but

represent a range of spaces, residents and design objectives. In the next subsections,

an overview of each testbed is given in order of their construction.
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Tulum Overview

The Tulum testbed is another WSU Housing facility, similar to Kyoto. It is

a two bedroom apartment that houses graduate student families. This facility was

designed to be a space comparable to Kyoto and supported a number of works on ADL

transfer learning [Rashidi and Cook, 2009a, Cook, 2010, Rashidi and Cook, 2010a,b].

It has many of the same features, but a different layout, as shown in Figure 3.24(a).

The sensors were limited to area, downward facing motion detectors, temperature

and power metering.

Two adult couples are represented in the data sets gathered from this facility.

Each pair lived in the smart home for over six months and their activities were

annotated. Neither couple had any pets, and all were healthy young adults. After a

year and a half of operation, the facility was terminated.

Cairo Overview

Cairo was the first private home installation performed with the CTP. It con-

sisted of a split level home, with two older adults and their pet house cat. The site

had only temperature, area, and downward facing motion sensors, placed as shown

in Figure 3.24(b).

The objective of Cairo was to begin gathering full time real-world data on

older adults in their personal environment. The husband of the couple had early
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onset dementia, while the wife was measured as a healthy older adult. As the study

progressed, they were consulted about their activities and impressions of the smart

home around them. After roughly eight weeks of data gathering, the installation was

shut down and removed.

Milan Overview

Following the successful Cairo testbed, another home with an impaired older

adult was sought out. The facility shown in Figure 3.24(b) is a two bedroom, single

floor condominium. The only residents were an older woman with mild dementia and

her pet dog.

With Cairo, an interactive console was installed in addition to the door, temper-

ature, area and downward facing motion detectors. This console was built to interpret

the current activities in the space and provide reminders for the resident on a handful

of activities. After several weeks of operation without the console, it was enabled

to prompt the resident to perform activities. She would then be prompted to give

feedback about whether she performed the activity, intended to do it later or not at

all. The objective of this new system was to begin learning about how smart homes

can help people with dementia issues through reminders and interaction [Cook, 2010].

After about four weeks without the prompting and four weeks with the prompting,

the testbed was shut down and removed.
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Aruba Overview

Aruba is the latest CASAS in-home testbed to date. It is a single floor family

residence with a single older adult normally present. The site has door, temperature,

area and downward facing motion detectors, as shown in Figure 3.24(d).

The resident has somewhat severe sleep apnea, so the sensor layout is focused on

detecting sleep on the couch in the living room and the chairs in the office in addition

to ADL detection. There are plans to ultimately prompt for some select activities,

and possibly provide a wake up call if the resident sleeps in an inappropriate manner,

but these have not been implemented to date. Aruba is still in operation, with a

planned ending date in early 2011.

3.5 CASAS Environment Summary

The CASAS Environment is comprised of several elements. The first element

is the CASAS Technology Platform, which provides a number of modular tools for

sensing, communicating between agents, storing data and controlling smart home

spaces. The CTP is designed to conform to the space where it is installed, as different

residences and residents require unique suites of sensors and devices. Additionally,

the open nature of the middleware for communication lends itself to a very wide

variety of sensor types. This leads the CTP to being quickly adaptable if new devices
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need to be integrated for specialized needs.

The second element is a variety of testbeds for generating high quality data sets.

As the CASAS research group continues to delve into the issues surrounding smart

home implementations, it has become clear that creating a diverse set of environments

to gather data has proven invaluable. Few smart home groups enjoy such a wide array

of data sources for analysis.

The final element is the residents. By working through the university and

among members of the community, the CASAS testbeds have derived data from a

wide variety of people. Varying in age, gender, ability and behavior, these residents

exemplify the need for a smart home to be broadly adaptable.

The CASAS Environment is a high quality, long running research platform. Its

resulting publications and applications attest to the applicability of this system to

ongoing research and ultimate real world commercialization.
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(a) Tulum (b) Cairo

(c) Milan (d) Aruba

(e) Layout Sensors Key

Figure 3.24: Other CASAS testbed sites used for smart home evaluation.
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CHAPTER 4. RESIDENT TRACKING APPROACHES

The first hypothesis stated in Section 1.5 noted that there is a need for local-

ization and tracking in the smart home context. The tracking tools introduced here

are designed to split the single stream of events produced by the sensor platform into

several sub-streams, thus demonstrating support for our hypothesis. They exploit

physical locality, timing and historical data to determine the number and location of

residents.

Each of the sub-streams created by this attribution of events represents a single

source of events, such as an individual human or a pet. In many ways this process

is similar in behavior to the algorithms used for identification in Chapter 5. The

difference here is that instead of labeling the event with a resident’s name, it attributes

the stream of events to an anonymous entity. After the events are divided into groups

representing individuals, other algorithms can then use the separated streams for

other objectives.

4.1 Tracking Introduction

Using the CTP and data from two of the CASAS research testbeds, several

algorithms have been designed and implemented to localize and track residents. The
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algorithms leverage the physical layout of the sensors to build rule-based or probabilis-

tic models to determine the current locations of the residents. Given those locations,

each currently received event can be attributed to one of the people in the space,

thereby dividing the stream of events among the current inhabitants.

The tools introduced for tracking in this thesis are all forms of proximity lo-

calization as introduced in Section 2.1.3. They use the proximal locations of sensors

to derive the location of residents. Utilizing this kind of system, residents need not

carry a tracking device, and the sensors themselves can be very simple. These are

both key goals of the CASAS smart home architecture described in Section 1.6.

When approaching tracking in the smart home context, it was determined that

some terminology had to be defined. The researchers use the term “entity” within

the models to represent an individual. This is because not every entity in the model

represents a person. They are most often humans, but the studies have included

smart home installations with cats, dogs and even robots that can trigger sensor

events. Using the term entity allows for a wider appreciation of how complex living

spaces can be.

The three algorithms introduced in this thesis are similar in many ways, but

they do represent several different sources of decision making to allow for a contrast

of approaches. The first algorithm is a rule-based tool. It uses a set of simple

rules combined with a graph of all possible routes between sensor locations to track



85

individuals. This tool is dubbed “GR/ED,” which stands for Graph and Rule based

Entity Detector. The initial results for the GR/ED were promising, but the tool

began to perform poorly in more complex social situations, as well as in imperfect

sensor network environments. The GR/ED is introduced and explored in more depth

in Section 4.3.1.

As a means to exploit available historical data to create a better algorithm,

a second strategy based on Bayesian Updating was evaluated. Utilizing a corpus of

training data annotated with the number of residents, a probabilistic transition matrix

is built and applied to update the world model. This tool is dubbed the “BUG/ED,”

which stands for the Bayesian Updating Graph based Entity Detector. By leveraging

a probabilistic model, the system is able to handle more issues within the sensor

network and perform somewhat better than the GR/ED in the face of more complex

resident behaviors. The BUG/ED is discussed in more detail in Section 4.3.2.

The last algorithm is dubbed the “PF/ED,” which stands for the Particle Filter

based Entity Detector. This tool draws upon the established field of using Particle

Filters to track objects in robotics, as shown in Section 2.1.3. The PF/ED was created

to be a Monte Carlo algorithm in contrast to the BUG/ED’s Bayesian approach.

These two tools were tested on a data set specifically built to test the tracking of

residents, and not just the ability to judge occupancy. The PF/ED is examined in

more detail in Section 4.3.3.
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Each of the algorithms and their method of evaluation is introduced in the next

sections. They were tested with data sets from the Tokyo and Kyoto CASAS testbeds.

The KyotoOccu and TokyoOccu occupancy data sets are used to test the ability of

an algorithm to determine the current number of residents in the space. Some ap-

plications of smart environment technologies may only require the current occupancy

of the space to tailor environmental systems, such as lighting and heating [Fountain

et al., 1994].

In the Tracking data set drawn from the Kyoto testbed, there are always one

or two residents and the accuracy for an algorithm is based around the ability for

a tool to determine the actual path of a resident. These detailed paths are useful

for improving individualized preference building [Rashidi and Cook, 2008], anomaly

detection [Jakkula and Cook, 2008, Jakkula et al., 2009] and uses of the smart envi-

ronment.

As a final demonstration of the benefits of applying a tracking tool to separate

the event stream, the BUG/ED tool is used to boost the ADL detection capabilities

of a näıve Bayes classifier with a ADL-annotated data set from the Kyoto testbed.

This test is discussed in Section 4.5.
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4.2 Tracking Research Layout

The algorithms built and tested for the tracking of residents draw upon data

from two of the CASAS testbeds. These data are from the Tokyo and Kyoto sites.

These two sites provided a large corpus of available data sets from numerous residents

coming and going at all hours.

4.2.1 Research Design

This work uses an observational study method tor evaluating the first hypothesis

introduced in Section 1.5. The hypothesis states that using data from the CTP while

exploiting physical and temporal information contained in the data, individuals may

be tracked through the smart home space.

To gather data for testing, several CTP testbeds were installed and operated

over a number of months. The data gathered were annotated by humans with the

current number of residents in the space, or their identities and complete paths. The

case series generated during these data gathering periods provides a suite of data

for testing of the algorithms. The various algorithms were then tested against the

different data sets to determine their ability to properly count residents in the cases

of the TokyoOccu and KyotoOccu occupancy data sets and to track residents in the

case of the Tracking data set. The residents were not intervened with while they lived
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in the smart home spaces and no attempts were made to adjust their behavior over

time.

4.2.2 Occupancy Data Sets

To test the algorithms’ ability to determine the number of residents, two corpora

of data were created. A subset of the stored events for both the Tokyo and Kyoto

testbeds, as described in Sections 3.4.1 and 3.4.2, was taken and annotated by humans

as summarized in Table 4.1. The human annotators were taught to observe the events

as they were replayed using a visualization tool [Thomas and Crandall, 2011] and to

log the current number of residents in the testbed. This value representing the current

occupancy could then be used to determine how accurate the tracking tools were at

judging occupancy, and in the case of the BUG/ED it was also used to train the

transition probability matrix.

The data gathered by the CTP for the occupancy data sets is represented by

the following features:

1. Date

2. Time
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Table 4.1: Summary of data sets used for validation of occupancy discovery.

Data Set Residents Length Num Events

TokyoOccu 0..9 59 days 209,966

KyotoOccu 0..6 21 days 231,044

3. Sensor location1

4. Event message

5. Annotated count of residents

The first four fields are generated automatically by the CASAS middleware at

the time of the event’s creation. The annotated count field is the number of people

in the testbed at the time the event occurred. Sample data collected by the CTP and

annotated for the Occupancy data sets is shown in Table 4.2.

The TokyoOccu data set represents sensor events that were generated while

faculty, students, and staff performed daily working routines in the lab over a course

of 59 days. To train the algorithm, the data was manually inspected by a human

1Some older CASAS data sets use the sensor serial number instead of a device-independent
location value.
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annotator and every event was annotated with the current number of residents in the

space. In total this made for 209,966 motion sensor events. The number of residents

ranged from zero to more than nine.

Once the testbed had more than six to seven people in it, the annotators noted

that there was little available information to identify what was happening in the space.

This was anecdotal evidence about the limited resolution of the testbed. Adding more

sensors should increase this maximum detectable occupancy, though this approach

has not been evaluated to date.

The KyotoOccu data was was taken from 21 days of the Kyoto testbed. This

made for 231,044 motion sensor events. Again, the sample data was inspected by a

person and annotated with the number of people currently in the space. In this set,

the number of residents ranged from zero to five and the annotators noted a marked

decrease in their ability to interpret individuals’ movements as the occupancy reached

about four residents.

4.2.3 Tracking Data Set

The data set built to evaluate the ability for an algorithm to track the residents

was drawn from the Kyoto testbed, as described in Section 3.4.2. The data chosen

were times when there was only one or two residents present and every individual
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Table 4.2: Subset of data used for occupancy algorithm testing.

Date Time Location Message Entity Count

2007-12-21 14:44:41.0764 L017 ON 2

2007-12-21 14:44:36.8230 L017 OFF 2

2007-12-24 14:44:50.2819 L007 ON 3

2007-12-24 14:44:52.6889 L007 OFF 2

event was attributed to a unique, but anonymous individual. In this way the actual

path of a resident may be traced through the space and compared to the output of

an algorithm attempting to track entities based only upon the sensor events. This

Tracking data set was again created by a human annotator inspecting the events as

shown in Table 4.3.

The data for this set from the CTP was augmented by a resident identifier as

follows:

1. Date

2. Time

3. Sensor location

4. Event message
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Table 4.3: Summary of data sets used for validation of tracking algorithms.

Tracking data set

Length 96 hours

Num Events 20,519

Single Resident Events 8,581

Multiple Resident Events 11,938

5. Resident count

6. Anonymous resident identifier

The first four fields are generated automatically by the CASAS middleware at

the time of the event’s creation. The annotated fields are the number of people in the

testbed at the time the event occurred and the identity of the resident who caused

the event. Sample data as collected by the CTP is shown in Table 4.4.

In this sample data, the resident “A” moves from locations M009 to M016 to

M015 while resident “B” moves from M023 to M001. The goal of a tracking algorithm

is to determine this solely from the first four fields of the data set.

The “OFF” events in the Tracking data set are not attributed to residents. This

is a subtle difference in the nature of “ON” verses “OFF” events. With an ON, it is

known that an entity caused the event by moving in the view of the motion detector.
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Table 4.4: Subset of data used for tracking algorithm testing.

Date Time Location Message Entity Count ResidentID

2009-06-08 13:48:49.033446 M009 ON 2 A

2009-06-08 13:48:50.002373 M023 ON 2 B

2009-06-08 13:48:51.042953 M009 OFF 2

2009-06-08 13:48:52.024474 M001 ON 2 B

2009-06-08 13:48:54.048006 M016 ON 2 A

2009-06-08 13:48:55.015058 M015 ON 2 A

2009-06-08 13:48:55.056504 M008 ON 2 B

Comparatively, an OFF indicates an extended absence of any motion. This means

that there is no entity available to cause the OFF. These events are kept because the

change in the sensor state is important to understanding what is happening in the

space and is used by the GR/ED and PF/ED algorithms in maintaining their internal

models.
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4.2.4 Assumptions of the Study

The algorithms used to provide tracking and occupancy of residents involve

several notable assumptions. The first is that the testbeds used are good exemplars

for future smart home implementations. These systems will have a variety of sensor

sources, layouts and uses which the CASAS approaches will mirror in some ways, but

not others. Given the lack of normalization across smart home systems and testbeds

throughout the world, this is a common issue that all research in this field.

The second assumption is that the participants’ behavior was not severely im-

pacted by awareness of their residence in a smart home. For the purposes of tracking

individuals, this is not likely to be an issue. Residents should be able to act freely

and still be tracked by these kinds of tools.

All of these tools assume that there is a large number of sensors throughout the

smart home space. Since the tools rely on evidence of multiple residents from events

received from physically separated spaces, there must be sufficient sensors available

to make that separation possible. If the density, and by extension, the resolution of

the sensors drops, their accuracy will drop accordingly.
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4.2.5 Limitations of the Study

The primary limitation of this study is that the tools provide only an approxi-

mation of what is happening in the space. Compared to a system with near-perfect

accuracy provided by wireless tracking devices or numerous cameras, these proba-

bilistic models may not be sufficient for some uses.

This study does not evaluate these tools in smart homes with a dearth of sensors.

In a room with only a single motion detector, the only evidence the system would

provide would be the fact of occupancy when the single sensor fires. Testing the

approaches introduced in this work requires a number of sensors viewing different

parts of the space to track residents as they move about. It is this division of the space

that provides information about where activity is taking place, as well as whether

there are multiple residents moving about. An open question in the smart home

community deals with required sensor density for various smart home goals. This

work on tracking does not address this open question, though its implications are

felt when attempting to handle larger numbers of residents within a single smart

environment.
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4.2.6 Research Design Summary

To evaluate our hypothesis that entities can be counted and tracked in a smart

home context with only passive, low-profile sensors, this study melds a number of

projects. The first is the installation of the CASAS Technology Platform into a num-

ber of testbeds for the purposes of gathering data sets. The second is the annotation

of that data with the current occupancy and paths of residents within the smart home

space. The last is the implementation and evaluation of algorithms designed to in-

terpret the data to determine the number and location(s) of the residents throughout

the space. Taken together, this work builds a privacy-protecting probabilistic smart

home system that provides tracking capabilities to support numerous smart home

goals in a multi-resident environment.

The next sections introduce the tracking algorithms in detail. The results,

evaluation, and comparison of each tool are discussed in Section 4.4.

4.3 Occupancy and Tracking Algorithms

To test the hypothesis that locality and temporal features can be used to count

and track individuals in a smart home space, three algorithms were developed. The

algorithms are:
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1. GR/ED: A graph and rule-based tool

2. BUG/ED: A Bayesian-based tool

3. PF/ED: A sequential Monte Carlo method (Particle Filter)-based tool

These tools each have a set of prerequisites and benefits when used to count

or track the current residents in a smart home space. In sum, their needs and im-

plementation details are discussed in sections 4.3.1, 4.3.2 and 4.3.3. The resulting

classification accuracies on the three data sets, the algorithms’ behaviors and further

discussion are available in Section 5.4.

4.3.1 Graph and Rule-based Entity Detector: GR/ED

The GR/ED algorithm was designed to use the order of events to incrementally

track individuals in the CASAS testbed. The core idea is that entities will most likely

trip sensors as they cross from one place to another, and multiple entities will often

have one or more sensors between them as they go about their day.

The “graph” part of the tool represents the physical locations of the sensors

within the testbed. The two graphs derived from the CASAS testbeds used in this

work are shown in Figures 4.1 and 4.22. These graphs are made up of only the

2The edge cutting across the Kyoto graph from M026 to M027 is connecting the sensor
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downward facing PIR motion detectors, which are laid out to cover most of the

floor space. A graph that represents a given space has vertexes representing the

sensors themselves and edges that represent the possible paths between those sensor

locations. Since the sensors are placed to fully cover the space, people moving about

often generate an obvious and complete chain of events from one place to another.

The rule-based part of GR/ED is a simple set of logical rules for creating,

destroying and moving entities within the model. These are all triggered by sensor

events or a lack of events over a period of sufficient length.

The first rule is for building a new entity in the model. With this rule, if an

“ON” event occurs at a location with no adjacent entities, a new entity is created.

This theoretically means that this event was caused by a heretofore unseen entity. It

could have either just entered the space, or have been shadowing another one of the

residents and only just then been separated enough to have been visible as a separate

entity.

The second rule is for destroying entities. An entity is destroyed (removed)

from the model under two circumstances. The first circumstance occurs when it has

been determined that the entity has left the monitored sensor space. In the case of a

CASAS system, this occurs whenever an entity moves onto the sensor most adjacent

at the bottom of the stairs with the one at the top leading to the second story of the apartment.
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Figure 4.1: Graph of sensor locations for the Tokyo testbed.
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to an exit. Since there are no sensors available that determine whether someone has

moved through the doorways, thereby exiting the space, it has to be assumed that

moving next to the door represents an exit.

The second way an entity can be destroyed is when it fails to generate any new

events for an extended period of time. This is to address a limitation of the sensors

used for the data gathering. Since the PIR sensors do not provide data if an entity

does not move then it becomes difficult to determine if it is still in a given location,

or if it has moved away without triggering events. This kind of situation can occur

either by a flaw in the sensor coverage where a person moves in a path that the

graph does not represent, or if two entities move to the same location, followed by

moving together across the space. Since the sensors do not provide a magnitude as

to the “size” of an entity, it is easy for multiple people to move as a group and leave

inaccurate entities in the model that no longer exist in the real world.

To remedy this, a timeout on entities has been imposed. If an entity does not

generate events for a period longer than the timeout, then they are assumed missing

and removed from the model. After experimentally trying a wide range of values with

the Tokyo data set, it was determined that a timeout between 300 to 600 seconds is

optimal, and 300 seconds was used for this work.

The final rules for the GR/ED tool have to do with movement. The first rule

for movement is that when an ON event occurs and an entity is at a neighbor in the
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Figure 4.2: Graph of sensor locations for the Kyoto testbed.
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graph, then that entity moves to the location that generated the event. Only one

entity may have that event attributed to them, so if more than one entity is adjacent

in the graph to the new event, then the event is attributed the one that moved most

recently. This rule that the most recent mover has priority helps the algorithm deal

with groups of entities moving in smaller areas.

As the GR/ED operated, it was noted that people could easily fool the GR/ED

by walking back and forth. The PIR sensors used are from a commodity home

security product line and were not designed for smart home applications. Because

home security hardware operates relatively slowly, the sensors stay in the ON state for

anywhere from one to five seconds before turning back off once movement stops. Due

to this very long time frame of being in the ON state, people can easily walk in the

pattern shown in Figure 4.3 and confuse the GR/ED algorithm. With the behavior

illustrated, the algorithm would move the person’s virtual entity to the node on the

left, but the sensor in the middle would stay on long enough that they would then

move to the sensor on the right without causing a ON event on the middle sensor.

This would leave their old virtual entity on the left, and create a new one from the

new event ON event from the right most sensor. At this juncture the model is out

of synchronization with the ground truth and the false entity remaining on the left

would have to time out before the GR/ED would be correct again. To remedy this

failing, the Open List of sensors was proposed.
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M1 M2 M3

Person

First Move

Second Move

Figure 4.3: Example of a movement pattern that would break the initial GR/ED

algorithm.

With the Open List, an entity has a set of locations that define their present

location instead of only a single one. For every ON event sent by the sensors, there is

always an OFF to match it. When an entity is attributed an ON event, that sensor

location is placed in their Open List. Once that sensor finally sends an OFF event, the

location is removed from their Open List. Now that this list is available, an entity’s

location is not merely their current vertex in the graph, but the whole of the Open

List. If an ON event occurs that is adjacent to any location in this list, it will be

attributed to the entity. This technique remedied most problem instances of people

walking back and forth. In the previous example, the entity’s Open List would be

both the center and left sensors. So when they next trip the right sensor they are still
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considered “adjacent,” due to the middle sensor being in their Open List, and would

properly be attributed that new event from the right sensor.

Each entity in the model has a list of locations that it has visited in the past.

The ordered list of these locations may be used to build a tracklet for the resident.

Alternatively, the current number of entities in the GR/ED model is the estimated

occupancy of the space.

Summary

The resulting GR/ED algorithm is efficient and operated in near real time, mak-

ing it feasible for real-world smart home implementations. As an added advantage, it

requires no annotated training data to operate, merely the graph of possible routes

between sensor locations. This allows the GR/ED to be deployed and launched once

the layout of the sensors is known, without having to wait for any form of annotated

training data to be made available.

4.3.2 Bayesian Updating-based Entity Detector: BUG/ED

After reviewing various existing artificial intelligence algorithms used for similar

classification problems, it was determined that a Bayesian Updating-based algorithm

might be a good choice as a successor to the GR/ED tool. Bayesian Updating is a

probabilistic strategy where new evidence is used to probabilistically update the world
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model. The Bayesian Updating Graph Entity Detector, dubbed the “BUG/ED,” is

proposed here. This algorithm takes the current model of the smart home space with

respect to the current resident locations, and combines it with new evidence in the

form of a sensor events, to build the most likely world model for the latest state.

The incremental attribution of events to the entities contained in the BUG/ED’s

world model represents the tracklets the residents have followed. This behavior is

similar in many ways to the GR/ED, but instead of a simple unweighted, undirected

graph it uses a transition matrix of probabilities of an entity moving from one location

to another. The algorithm relies upon Bayes’ Rule as shown in equation 4.1 to

determine which entity should be moved given a sensor event. The matrix can also

be augmented with other sources of evidence, though the algorithm here was only

provided sensor to sensor transition likelihoods.

P (A|B) =
P (B|A)P (A)

P (B)
(4.1)

The biggest advantage of the BUG/ED over the GR/ED is in the handling of

failures in the sensor network coverage. Often a person will bypass a sensor in the

graph, causing an immediate failure of the GR/ED tool. This situation causes the

GR/ED to create a new entity in the model, and abandon the old one improperly.

With the BUG/ED, the transition matrix will often have a likelihood of transition

between those two physically distant sensors and will often properly move its entity,
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even if the person it represents skips sensors occasionally. This ability alone increased

the robustness of the algorithm in day to day operation.

Training the BUG/ED probability matrix

With Bayesian Updating, there must be some corpus of information for the

algorithm to use in estimating the conditional and joint probabilities. Obtaining or

generating that corpus is up to the implementation and domain. The data annotated

by humans for the Tokyo and Kyoto testbeds specifying the number of current resi-

dents was used to train the BUG/ED transition matrix. This training process is done

before operation of the BUG/ED can begin and resembles the GR/ED algorithm with

a very important addition.

Since the annotated data has the true count of residents, the training algorithm

can make use of that key data for determining when residents entered and left the

space. The training algorithm takes the events from the training data one at a time

and incrementally builds a model of the residents’ locations and transitions between

sensor locations, much like the GR/ED. The key difference is that it uses the resident

count from the training data to decide when to create, destroy or move entities.

The training algorithm also makes use of the same graph utilized by the GR/ED

tool, but only for counting hop count between sensor locations. This graph has one

addition for the BUG/ED algorithm, a virtual sensor location called “OUTSIDE.”

This OUTSIDE location represents all of the universe not monitored by the smart



107

home sensors. It is directly connected via an edge in the graph to any sensor at an

exit to the smart home, such as sensors next to the front and back doors. Entities are

also moved from OUTSIDE when they are created, and to OUTSIDE when removed.

The graph is used in determining which entity is closest to the OUTSIDE location,

or which entity is closest to an event that just occurred.

The training algorithm will either create, destroy or move entities by looking

at whether the resident count went up, down or stayed the same between events. If

the count goes up, a new entity is created at that location by moving them from the

virtual location OUTSIDE to the location of the event. If the count goes down, the

entity closest to the exit is immediately moved to the virtual location OUTSIDE. If

the count stays the same, the closest entity to the event on the graph is moved there.

Every time an entity is created, destroyed or moved, that transition from one

location to another is added to a matrix. The matrix represents the number of times

entities transitioned between locations, and is the source of probabilities during the

operation of the BUG/ED algorithm on new data. The length of wall clock time an

entity resides at a given sensor location is also kept. This set of time lengths is used

to determine dynamic timeouts for entities, which will be discussed in greater depth

later.
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Noise reduction in the BUG/ED probability matrix

Both the annotated data and the training algorithm for the BUG/ED matrix

is not perfect. Inspection of the results shows several instances where the state of

the model was such that taking the closest entity was inappropriate. This situation

would increase the likelihood of transition between two locations improperly, but

having a large enough training set mitigates the potential of these errors to impact

the performance of the BUG/ED.

In some of the training data the human annotators were also incorrect in their

resident count. Since that value is key to the training phase, these inaccurate training

files would also impact the overall accuracy of the system.

To overcome these aberrant transitions between sensor locations caused by train-

ing flaws, a flooring filter was applied to the transition probability matrix. Any tran-

sition likelihood below the filter would be changed to the lowest probability. Setting

this flooring value was observed to have a profound effect on the behavior of the sys-

tem. If too many inappropriate connections were retained, and the floor were set too

low, then the BUG/ED would have too little evidence to create new entities as people

entered the space. Alternatively, if the floor were set too high then too many entities

would end up being created. For each data set, the value to floor was experimentally

derived. In future work, a proper outlier detection algorithm for each sensor location

should replace this flat number.
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An additional noise reduction tool was implemented to remove training data

that was too complex for good use, as noted anecdotally by the human annotators

in Section 4.2.2. This noise reduction came in the form of a maximum resident

occupancy limit on the training data. As the number of residents increased within

a space, it because more and more difficult to determine how many were actually

present. This limit is determined by the sensor density and resident mobility. It

was noted by the annotators that once more than five or six people were in the

Tokyo testbed, it became nearly impossible to localize all of the residents. At that

juncture, the annotators watched the entrance for people entering and leaving more

than individual events anywhere in the space. Since the training algorithm to build

the BUG/ED transition matrix is a simple one, a ceiling value on the number of

occupants in the space was implemented. If the training data exceeded that number,

it was thrown out. Between removing very unlikely connections and not using training

data with too many residents, the BUG/ED tool started to perform more accurately

in day to day use, and the overall utility of the system improved.

Dynamic Timeouts in the BUG/ED

In the GR/ED tool, a flat timeout for entities was enforced. This was set at

300 seconds, a figure experimentally derived by running the GR/ED tool on the data

repeatedly with different timeout values. The overall accuracy at determining the

number of residents was compared for each timeout. The best value of 300 seconds
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was taken for future work with the tool. This flat timeout of 300 seconds is the

default used by the BUG/ED as well, though it is supplanted by the dynamic timeout

algorithm described below.

It was noted by the residents that the GR/ED would timeout most often when

people sat and worked in a location for a period without moving enough to cause

sensor events. Because the training algorithm for the BUG/ED is stateful and re-

members an entity’s location indefinitely until they move, it could be used to find

a more appropriate timeout for every sensor location. It was hypothesized that by

making a dynamic timeout system that utilizes the training data, the BUG/ED would

be improved when handling situations where entities remain still for long periods of

time.

As the BUG/ED transition probability matrix is being trained, the length of

total time an entity spends on a given sensor is kept. Once the data has all been used

for training, these lists of times are used to calculate a customized timeout value for

each sensor location. The mean plus three standard deviations of the time lengths in

a sensor’s list was used for the timeout value at every given location.

Manual inspection of the customized timeouts largely conformed to the expected

pattern. Areas such as hallways and kitchens had shorter timeout values, while desks,

beds and couches ended up with longer timeouts. This was not always true, but the

flaws in the timeout calculations were results of flaws in the simple training rules used
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to build the transition probability matrix, and not the timeout calculation algorithm.

BUG/ED Bayesian Updating

During operation of the BUG/ED a model of the current entity locations is

maintained. This model is modified by motion events with an “ON” message arriving.

The only two things that may occur are either an existing entity is moved to the

location of the event, or a new entity is created.

The likelihood that an entity e of all existing entities E has moved to the sensor

location sk of the sensor that fired from the entity’s old location esk−1
is calculated

using Bayes’ Rule in equation 4.2.

arg maxe∈E P (e|sk) =
P (sk|esk−1

) P (e)

P (sk)
(4.2)

The value of P (sk|esk−1
) is taken from the probability transition matrix. This

is the likelihood that the entity transitions from their current location to where the

latest sensor event is located based upon the historical training data. If the transition

never occurred in the training data, then it was given a very small minimum value

based on the smalled existing value in the transition matrix.

The factor P (e) is considered the same for all entities, as they all have an

equal likelihood of moving at any given time. This value could be modified with

information about the likely direction, speed or likelihood of movement based on

training information and become a serious factor in future versions of the BUG/ED.
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The last value in the denominator of P (sk) is the same for all entities as it is

the probability that the given sensor fired. Since this is a constant for all entities

being compared, it is only a scaling factor.

Of the existing entities, the one with the highest likelihood (Pmove) of making

the transition to the sensor that fired is chosen to move in the model. This likelihood

is compared to a threshold of the probability to create a new entity in the model

instead of moving an existing one (Pcreate). If (Pmove < Pcreate), then a new entity

is initialized at sk and the number of active entities in the model increases by one.

Otherwise, the most likely entity to move has its tracklet of events increased by adding

the most recent event and its location is updated to sk.

At this juncture the BUG/ED has an updated model from the old model with

the new evidence from the latest event. These updates reflect the most likely series

of events based on the historical training data.

Summary

The BUG/ED tool is a modification to the Bayesian Updating approach to

model building. This algorithm has a means to address the complexities and subtleties

of the physical sensor placement that the GR/ED tool cannot accomplish with its

simple graph and rule-based solution. Overcoming the vagaries of smart home sensor

installations will be an ongoing issue for commercial installations, so approaches like

the BUG/ED will continue to be required for managing the uncertainties of the real
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world.

4.3.3 Particle Filter-based Entity Detector: PF/ED

The PF/ED tool was designed as an alternative approach to the Bayesian Up-

dating strategy of the BUG/ED. With this new algorithm, a sequential Monte Carlo

method (Particle Filter) is initialized for each entity in the model. These filters are

then updated according to the Action Model representing a person, and scored based

on the current sensor evidence.

In a particle filter, a filter is defined as a set of possible hypotheses. Each

hypothesis, called a particle or sample, represents a single possible state for the target

entity. For example, a common approach to determining the state of a robot would

be to represent its coordinates, orientation and velocity.

Particles have their estimated state values changed at every cycle of the algo-

rithm according to an Action Model that represents a distribution the target’s likely

movement. For example, a history of training data may be used to build a distribu-

tion of likely distances and turns for a robot. Alternatively, a recording of movement

data about humans may be used to constrain the Action Model to be a good repre-

sentation of what is likely to happen. At every update of the filter, each variable in

the state is modified by drawing a random number based on its distribution. This

random selection identifies Particle Filters as a Monte Carlo method. The Action
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Model may be as complex or as simple as needed for the application.

Each particle is paired with a weighted value demonstrating how likely it is.

This weight is influenced by any evidence available about the ground truth, often

coming in the form of sensors. After the particles of the filter are updated using the

Action Model, their weights are re-evaluated using new information from the Sensor

Model. This Sensor Model is an algorithm determined by which sensor(s) are being

used to determine what most likely happened after the target being tracked changed

its state. These sensors may be range finders, motion detectors, cameras or anything

else available to the algorithm. For example, a particle that places the target closer to

the reading from a range finder would be given a higher weight than one that differs

greatly. Like the Action Model, the Sensor Model may be as simple or as complex as

needed for the given application.

If a particle’s weight becomes too low, it will likely be removed from the filter

when resampling occurs, as it is doing a poor job of estimating the target’s likely state

according to the Sensor Model. Resampling is the process of replacing the current

set of particles in the filter with a new set. The new set is most commonly chosen

using a by particle weight, weighted random selection from the old set of particles.

Many of the most likely (heavily weighted) particles will be copied multiple times by

this process, which will re-center the filter around the most likely state of the target.

Resampling may occur with every run of the filter, or when the Effective Sample Size
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(ESS) of the filter falls below a certain threshold.

When the estimated state of the target is to be logged or used by another tool,

the current particles in the filter are used to calculate a centroid value. There are

a number of ways to determine the current estimated centroid for the target. A

common method is to take the weighted mean of all of the particles, though using

the particle with the heaviest weight or a subset of the particles are other options.

Once the centroid of the filter has been calculated, that value is returned as the most

likely current state of the target.

Particle filters are widely used for tracking and state estimation needs in robotics

and sensor systems. Their flexible Action and Sensor Models allows them to adapt

to complex problems, both with and without a corpus of training data.

PF/ED Core Algorithm

The incremental updating nature of a particle filter is well suited to the CASAS

environment, as data comes in the form of discrete events. The algorithm runs to

update the model of the space similar to the GR/ED and BUG/ED algorithms by

running once after every new sensor event. After every PIR motion detector “ON”

event received, the PF/ED algorithm operates as follows:

1. Find physically closest filter to “ON” event through Euclidean distance

* If this filter’s centroid is too “far” from the event, initialize a new filter at
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the event’s location, leading to more entities represented within the model

2. Update the particles of filter according to the Action Model

3. Determine the sensed state of the environment

4. Update weights of particles based on the Sensor Model

5. Normalize particle weights

6. Resample particles if the Effective Sample Size falls under the threshold

Each of the PF/ED’s filters are made of n = 1000 particles. Every particle is

a double of only a Cartesian pair: < x, y >. This algorithm does not estimate an

entity’s velocity or direction. Future versions will likely try to include these values to

improve upon the current simplistic Action Model.

The centroid of the filter, which represents the most likely coordinates (<

centroidx, centroidy >) of the resident, is calculated as a weighted mean of the all

n current particles within the filter. This weighted mean is derived by taking the

sum of the coordinates < px, py > of each particle p multiplied with the weight of the

particle pw, according to equations 4.3a and 4.3b. The resulting coordinates repre-

sent the entity’s location as estimated by the filter. This analog approach operates

in contrast to the GR/ED and BUG/ED solutions where entities exist solely at the

location of the sensors themselves and never in-between.
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centroidx =
n∑

i=1

pix ∗ piw (4.3a)

centroidy =
n∑

i=1

piy ∗ piw (4.3b)

The Action Model used for the PF/ED algorithm is a random walk. The par-

ticles are moved from their current < x, y > coordinates on both x and y axes by a

random distance according to equation 4.4, where k is the event number in the data

series, range = 0.3m, and Randnormal(mean, stddev) randomly generates a number

using a normal distribution with the given mean and standard deviation. This sim-

plistic model could be replaced to improve the capabilities of the PF/ED by taking

into account recent activity or historical training data in future versions.

xk = xk−1 + (range ∗Randnormal(0, 1)) (4.4a)

yk = yk−1 + (range ∗Randnormal(0, 1)) (4.4b)

For many applications, the process of calculating results from the sensors is

complex. This might include processing of video data, audio streams or a large set of

range finder measurements. Due to the simple sensors and the uniform size of their

viewing range in the CASAS testbeds, the sensor state of the particle filter is merely

determining the < x, y > coordinates of the sensor that fired. With those coordinates

in hand, the Sensor Model specifies that the entity is within 0.6m of the center of
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the sensor. All particles that fall within this square are given more weight than those

that fall farther away.

The weight of each particle p at event k is updated by determining if its new

location is within the viewing range of the sensor s that fired according to equation 4.5.

This algorithm means that particles that now fall within the sensor firing retain 90%

of their old weight, while all others merely retain 10%, thereby drawing the centroid

of the filter towards the area covered by the sensor.

wk =


wk−1 ∗ 0.90 if px = sx ± 0.6 and py = sy ± 0.6

wk−1 ∗ 0.10 otherwise

(4.5)

After the filter weights w1, ..., wn are updated by the Sensor Model, they are

then normalized according to equation 4.6. This process prevents the weights from

becoming too small and diverging in scale over sequential updates of the filter.

winew =
wiold
n∑

i=1

wi

(4.6)

Lastly, the particles in the filter are resampled if the Effective Sample Size (ESS)

falls under the threshold of threshold = 0.80 ∗ n. The ESS for the current particle

population is calculated using equation 4.7.
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ESS =
1

n∑
i=1

w2
i

(4.7)

After the update and possible resampling are finished, the PF/ED algorithm

waits until another sensor event is presented. The current implementation does not

handle residents exiting the space, though it does handle people entering. Future

updates will seek solutions to better handle the entrance and exit of residents.

Summary

The PF/ED’s Monte Carlo-based algorithm was developed as a contrast to

the Bayesian Updating approach of the BUG/ED. Using a tool that only requires

the layout of the sensors and no training history would be more suitable for use in

smart environments. The process of building a corpus of data to train the BUG/ED

is currently a labor intensive one, and makes it difficult to deploy quickly in new

installations. The PF/ED should be able to function from the moment the last sensor

is installed with no additional configuration. This short installation-to-operation time

frame is invaluable for commercial applications.

The current PF/ED is limited by the simplistic Action Model it uses. A more

advanced Action Model will have a strong influence over the capabilities of the al-

gorithm. Future updates to this model should include entity motion or temporal

information which will improve the overall algorithm in the face of complex resident

behaviors or sensor failure.
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4.3.4 Occupancy and Tracking Algorithms Summary

Each tool built and evaluated in this work for the localization and tracking

of smart home residents has benefits and negatives. Their primary benefit is the

ability to operate in a smart home environment without a carried wireless device to

track the resident, like those introduced in Section 2.1.1. They also protect privacy

by eliminating the need for cameras or other video-based solutions such as the ones

discussed in Section 2.1.2. They yield multiple streams of events, each of which

represent an entity. These streams are individually less noisy than the complete

stream provided directly by the sensor platform.

In exchange for these benefits, these tools only provide a probabilistic model of

the space. This limitation needs to be balanced against the issues of carried devices

and privacy concerns.

4.4 Tracking Algorithms’ Results

The tracking algorithms in Section 4.3 were evaluated with the data sets intro-

duced in Section 4.2.2. The TokyoOccu, KyotoOccu and Tracking data sets used were

sometimes highly complex, with many residents and significant movement throughout

the space. These tests and results are shown and discussed in this section.

Additionally, the ability for the BUG/ED tracking tool to boost ADL detection
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was tested with a Kyoto activity detection data set. This test was done to demonstrate

the efficacy of the tracking tools at reducing the noise in the data stream and provide

benefits to other smart home modeling tools. The process and results of this boosting

test are shown in Section 4.5.

4.4.1 Testing the GR/ED

The GR/ED tool was tested for its accuracy at counting the current number

of residents using both the TokyoOccu and KyotoOccu data sets. It was evaluated

using 10-fold cross validation, divided by days. Once the data sets were run through

the tool, the resultant guesses were compared to the human annotated ground truth.

The results could then be inspected for the total number of events correct, as well as

total length of time correct.

4.4.2 Results for GR/ED vs. Weighted Random on Occupancy

The TokyoOccu results were somewhat promising. GR/ED was very accurate

with zero and one residents, as was expected, but rapidly fell to a lower accuracy as

the number of residents increased. In Figure 4.5, the accuracy by number of events

on the TokyoOccu data set is shown. Note that as the resident count increased, the

accuracy declined. Since the GR/ED tool cannot tell the difference between a single
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or multiple residents at a given location, while the annotators can, it is often too

low in its estimations. Additionally, it can be too high if an entity in the model is a

false positive until it times out. Overall, the GR/ED algorithm achieved an overall

accuracy of 72.2% with a standard deviation of 25.21% by the counting of events

and an accuracy of 88.9% with a standard deviation of 12.8% for the total time

represented by the data set. This is significantly better (p < 0.05) than a Weighted

Random algorithm with a mean of 14.1% and a standard deviation of 0.2, but deeper

inspection of the results shows a subtle difference in the operation of the GR/ED

tool.

In Figure 4.5, the GR/ED is not significantly better than the Weighted Random

algorithm for zero residents. This indicates that the GR/ED is not a good tool for

determining when there are no people in the home. It does a significantly better job

at one or more residents, but it has trouble detecting the exit of the last entity at the

very least.

The KyotoOccu data set truly highlighted the flaws in the GR/ED algorithm.

This testbed yielded notably more sensor error than the TokyoOccu data. Subjects

were often able to move past sensors without causing events. With the GR/ED so

reliant upon a fixed graph and no residents skipping sensors, the poor sensor coverage

in Kyoto quickly led to many false entities being created in the model and a marked

reduction in accuracy. Overall, the GR/ED had an accuracy of 16% measured by
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number of correctly-labeled events and 45% for total correctly-labeled time on the

KyotoOccu data set. These low accuracies made it not different from a Weighted

Random algorithm which was 14% accurate with a standard deviation of 0.2, so

further evaluation of the GR/ED with the KyotoOccu data set was abandoned.

The GR/ED tool has the advantage over the BUG/ED of not requiring any

training data. It requires only the graph representing the physical sensor layout

itself. If the sensor locations can be determined at installation time, or automatically

through some means, this tool can be quickly used with a new smart home installation.

Depending upon the needs of the other tools within the system, it may be sufficient

for the given smart home application.

Because the graph used by the GR/ED is so rigid and its performance so poor in

the face of lacking sensor coverage, it was determined that a more probabilistic model

might be a better solution. Instead of relying on a human hand-built set of equal

connections between locations, perhaps a graph of likely connections derived from

the annotated data might serve better. This hypothesis led to exploring a Bayesian

Updating algorithm and the creation of the BUG/ED tool.
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4.4.3 Testing the BUG/ED vs. GR/ED

The BUG/ED was tested using the same two data sets as the GR/ED tool for

determining the occupancy of the smart environment. Because the BUG/ED requires

training data, a 3-fold cross validation system was implemented. In this case, 2/3 of

the available days were used to train the transition matrix, and the last 1/3 were held

aside for testing. The days were randomly selected and the model was reset to no

residents with each new day of testing, as one day of testing was not always followed

by the proper consecutive day.

The overall accuracy value was calculated by counting the number of events

where the BUG/ED was correct in identifying the current number of residents when

compared to the human-annotated ground truth. The magnitude of the difference

between the true value and the current guess by the tool was also calculated to give

a sense of how far off the model was from the ground truth. Some error is to be

expected since this is a probabilistic model. Depending upon the final intended use

of the tools, an approximation might be sufficient for the smart home system’s needs.

4.4.4 Results of the BUG/ED vs. GR/ED for Occupancy

As hoped, the BUG/ED performed better than the GR/ED tool on these data

sets. It was noted by researchers watching the BUG/ED operate in real time that
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it felt more “stable.” Indeed, the BUG/ED failed less often in the face of skipping

sensors and timed out less often when people stayed in one place for an extended

period of time. These results were quantified by higher accuracy rates and measurable

benefits to the ADL detection tools.

The BUG/ED tool’s overall accuracy improved over that of the GR/ED on both

occupancy data sets. Overall, the BUG/ED classified 44% of the events correctly,

accounting for 85% of the total time on the TokyoOccu data set. It improved over

the GR/ED tool when more entities occupied the space, though not significantly so.

In Figure 4.6, zero and one residents are noticeably higher than the GR/ED results

for the same data, but they are no different for more than that.

Where the BUG/ED significantly improved over the GR/ED tool was in detect-

ing the final exits of residents from the space. This is visible in the 94% accuracy for

zero residents, compared to the GR/ED’s 77%. Both tools operated better than an

random guess with more residents, but only the BUG/ED outperformed the weighted

random at zero residents.

With a deeper analysis of the occupancy detection behavior of the BUG/ED

on the Tokyo data set, a variety of details are exposed. Within Figure 4.7, subfig-

ure 4.7(a) shows the accuracy of the BUG/ED within a number of residents. If the

goal of the tracking tool is to estimate occupancy, then the BUG/ED will often be

within one resident, and almost certainly two or three.
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In Figure 4.7(b) the behavior of the results indicate that the BUG/ED overes-

timates on average when Tokyo has up to four residents, then underestimates with

more. This over/under behavior is broken down is in Figures 4.7(c) and 4.7(d).

Whether the BUG/ED overestimates or underestimates can be tuned by how the

transition probability matrix is calculated and what filters are applied to the training

data. Since these are probabilistic models of the space there will always be some inac-

curacy. Knowing how to tune the tool to suit the needs of the smart home application

is important.

The saddle shown in the Under Correct curves from Figure 4.7(d) corroborates

the anecdotal evidence from the annotators about the resolution of the sensors in

the Tokyo space. Once the number of residents exceeded four or five, the annotators

reported significantly more trouble tracking individuals and resorted to watching the

doorway for entrances and exits. The ability for the BUG/ED properly track every

resident without occlusion, and eventually improperly removing entities from the

model due to timeouts, occurs at the same occupancy levels. Adding more sensors,

providing new types of sensors or changing the algorithm for determining occupancy

would notably change the behavior of these kinds of tools.

Where the BUG/ED truly performed markedly better was with the KyotoOccu

data set. While the GR/ED tool routinely failed as people traversed the space, the

BUG/ED correctly track them would much more often. Figure 4.8 shows that in the
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most common state, an occupancy of two residents, the tool performs perfectly accu-

rately just over 60% of the time. Overall, the BUG/ED classified 59% of the events

and 67% of the total time for the Kyoto data set correctly. This was significantly (p

< 0.05) better than the GR/ED tool on this data set.

These improvements in behavior and accuracy attest to the advantage of using

a probabilistic model for decision making in this kind of tracking system. There are

simply too many uncertainties with sensor placement, resident behavior, and system

configuration to expect a purely rule based system to operate well.

4.4.5 Testing the BUG/ED vs. PF/ED on the Tracking Data Set

Both the BUG/ED and PF/ED tools were tested with the Tracking data set.

They were given the task of determining the actual paths of the residents, as opposed

to the earlier metrics in the TokyoOccu and KyotoOccu data sets where only the

current quantity of residents was known. The BUG/ED tool was trained using a

3-fold cross validation, while the PF/ED used a probabilistic action model to update

the particles. Both tools were run 30 times to calculate a significant accuracy mean

and variance. The accuracy on this data set was determined by counting the number

of resident sensor-to-sensor transitions the tool properly matched.
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Table 4.5: Overall accuracy for BUG/ED and PF/ED algorithms on the Tracking

data set.

Algorithm Accuracy STDDEV (σ)

BUG/ED 92.0% ** 0.5

PF/ED 84.3% 0.2

4.4.6 Results on the Tracking Data Set

The results from the Tracking data set fall into four evaluations. The first is

overall accuracy on all events, including both single and multiple occupancy of the

smart home. These are summarized in Table 4.5 and shown in Figure 4.9.

For both single and multiple resident situations the BUG/ED algorithm sig-

nificantly (p < 0.01) outperforms the PF/ED algorithm. This is likely due to the

simplistic Action Model adopted by the PF/ED. With an Action Model for a res-

ident that either uses an existing corpus of training data or one that incorporates

more temporal information this gap in accuracy would likely close.

The second evaluation is on only the subset of the Tracking data set where a

single resident was present. These results are summarized in Table 4.6 and shown

in Figure 4.10. Again, the BUG/ED outperforms the PF/ED algorithm, though the



132

Table 4.6: Single resident accuracy for BUG/ED and PF/ED algorithms on the

Tracking data set.

Algorithm Accuracy STDDEV (σ)

BUG/ED 97.5% ** 0.2

PF/ED 93.8% 0.3

results are much closer then in the overall case.

The third evaluation is for only the multiple resident subset of the Tracking

data set. These results are summarized in Table 4.7 and shown in Figure 4.11. Here,

the BUG/ED strongly outperforms the PF/ED algorithm, though this overall score

obscures the behavior of the two tools as the residents come physically closer to one

another. This last evaluation of the accuracy of the tools over the separation of the

residents shows that the PF/ED algorithm performs significantly better (p < 0.05)

over the BUG/ED at a distance of zero or one sensor separating the residents. The

accuracy across the resident separation is shown in Figure 4.12 and summarized in

Table 4.8. Given the overall lower accuracy of the PF/ED tool, this strength at very

short separation between residents shows promise if the Action Model and weighting

algorithms are improved.
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Table 4.7: Multiple resident accuracy for BUG/ED and PF/ED algorithms on the

Tracking data set.

Algorithm Accuracy STDDEV (σ)

BUG/ED 89.8% ** 0.7

PF/ED 80.1% 0.3

4.5 Tracking Noise Reduction for ADL Boosting

Many of the applications for smart environments that have been explored, e.g.

health monitoring, health assistance, context-aware services, and automation, rely

upon identifying the activities that residents are performing. Activity recognition

is not an untapped area of research and the number of algorithms that have been

used to build activity models varies almost as greatly as the types of sensor data

that have been employed for this task. Some of the most commonly-used approaches

are näıve Bayes classifiers, decision trees, Markov models, and conditional random

fields [Maurer et al., 2004, Tapia et al., 2004, Cook and Schmitter-Edgecombe, 2009,

Liao et al., 2005].

While activity recognition accuracy has become more reliable in recent years,

most existing approaches are applied to situations in which a single resident is in the
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Table 4.8: Multiple resident accuracy for BUG/ED and PF/ED algorithms on the

Tracking data set.

BUG/ED PF/ED

Separation Accuracy STDDEV (σ) Accuracy STDDEV (σ)

0 72.4% 2.4 83.1% * 1.3

1 70.5% 1.1 76.1% * 0.7

2 84.8% ** 0.8 79.3% 0.6

3 90.8% ** 1.0 79.8% 0.9

4 93.3% ** 1.1 79.1% 0.8

5 93.1% ** 2.6 71.0% 0.2

6 96.9% ** 0.4 82.8% 0.6

7 96.7% ** 0.4 81.8% 0.8

8 99.0% ** 0.2 80.2% 1.5

9 98.0% ** 0.3 85.2% 0.9

10 97.7% ** 0.4 89.2% 1.0

11 97.9% ** 0.5 90.4% 0.9

12 97.5% 0.7 95.9% 0.8

13 98.7% 0.4 98.4% 0.4

14 96.7% 1.2 98.3% 0.7
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Table 4.9: Attributes of the three tested Kyoto ADL data sets.

Set Name #Months #Residents #Activities

Set 1 2 2 12

Set 2 2 2 13

Set 3 5 2 25

space performing activities. Recognition accuracy notably degrades when multiple

residents are in the same space. We hypothesize that this accuracy can be improved

if the data is separated into multiple streams, one for each resident, or if each event

is labeled with the corresponding resident identifier.

To validate this hypothesis, we applied the BUG/ED algorithm to data collected

in the Kyoto apartment while two residents lived there and performed normal daily

routines. The data used for this experiment actually represents different time frames,

different residents, and different activities than was used to train the BUG/ED tran-

sition probability matrix. Attributes that describe these three data sets are shown in

Table 4.9.

To demonstrate that the BUG/ED strategy is useful in further smart home tools,

it was used to annotate these three new sets of Kyoto data. That data was then used

to train and test näıve Bayesian ADL detector. The results with and without the
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Table 4.10: Before and after ADL detection accuracies when adding BUG/ED track-

ing information to Kyoto data.

Set Name Without BUG/ED With BUG/ED

Set 1 42% 40%

Set 2 63% 88%

Set 3 54% 63%

Overall 56% 67%

BUG/ED tracking information were compared and summarized in Table 4.10.

These three data sets are annotated for 11 different ADLs in an unscripted

environment. There are two residents, though one or even more than two might be

present at any given time. The data sets cover nearly a full calendar year in total,

and run all day every day. The overall improvement to complex ADL detection was

just over 10%.

4.6 Localization and Tracking Summary

Any real-world smart home implementations need to address the reality of multi-

inhabitant situations. This can be done through tracking devices, scene analysis
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and/or proximity sensor analysis. There are numerous trade-offs with sensor com-

plexity, installation costs, and privacy issues involved with choosing the best solution

for a given implementation.

Historically, the smart home community has either pushed aside the multi-

inhabitant problem or leveraged wireless tracking and scene analysis, but there exists

a need for stronger privacy-sensitive solutions. The algorithms introduced in this

work leverage passive, low profile privacy-protecting sensors to provide the benefits

of a localization and tracking system. These do have limitations in the number of

residents they can handle, and require more installed devices than other solutions.

Both of those issues need to be considered when making the best choices for a given

smart home application. The GR/ED, BUG/ED and PF/ED tools introduced in

this work are significantly better than a purely random guess and run efficiently on

commodity hardware, advantages that make them a solid choice for localization and

tracking to boost other smart home applications such as ADL detection.
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CHAPTER 5. RESIDENT IDENTIFICATION

APPROACHES

The second half of this thesis is centered around the utilization of behaviometrics

to identify the current residents of a smart home. As shown in the chapter on related

works, behaviometrics have been used to identify individuals via direct interaction

with computers via keyboards and mice. The hypothesis regarding identification of

residents from Section 1.5 applies this concept to the passive interaction residents

have with the smart home sensors surrounding them. This chapter provides several

algorithms and evidence to support using this kind of approach to identify individuals

in a smart home space without the need for wireless tags or cameras.

5.1 Identification Introduction

Using the CTP and two of the CASAS research testbeds, three algorithms have

been designed and implemented to identify residents. These algorithms all demon-

strate a form of behaviometrics, introduced in Section 2.2.2, and primarily leverage

the PIR motion detectors as their data sources. They all have the goal of using a

resident’s history of sensor events as training data to re-identify those individuals in
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the future. Additionally, the algorithms possess the ability to incorporate temporal

and biometric sensor sources for more accurate identification.

The goal of the three algorithms described in the following sections is to let

the data speak for itself. Rather than a hand-built tool for a unique smart home or

resident the project’s goal was to construct a general suite of approaches to the identi-

fication of entities on any kind of sensor network. The algorithms evaluated here were

tested within the smart home domain, but have applicability in other environments

such as web tracking or security systems. They are all based on well-established

classifiers that have been applied with success to other smart home problems. Their

varied algorithmic behaviors differentiate between residents in different ways. These

algorithm differences are discussed and contrasted in Section 5.4.

Each of the algorithms and how they were evaluated is introduced in the next

sections. A variety of data sets from two of CASAS testbeds, Tokyo and Kyoto,

provided a number of different residents and occupancy situations to expose and

contrast the behaviors of the algorithms.

5.2 Identification Research Layout

The algorithms built and tested for identification of residents draw upon data

from CASAS testbeds, Tokyo and Kyoto. Results were assembled into a group of data
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sets, each with different facets that the algorithms can leverage to perform proper

classification.

This approach to identifying residents builds upon our assumption that we

need not wirelessly tag individuals in order to identify them, nor must we track

them through the space. Instead, each resident proves unique in terms of the actions

they perform in the space, and these differences will be evident in the resulting data

generated by the sensors installed around them. As a result, if we have accumulated

enough historical data that associates sensor event information with the resident that

triggered the event, we can learn a mapping from sensor event features linked to a

resident ID and use this mapping to identify the resident with future sensor events.

Once the ID of the resident is determined for a sensor event, we can answer additional

questions such as which residents are currently in the space, what is the total number

of individuals in the space, and what are the activities that the residents are currently

performing.

Since the goal of these algorithms is to properly attribute an event to a known

resident, every data set is annotated with the identity of the person who caused each

event. This data can then be used to train supervised learning tools to classify future

events. While the three classifier algorithms make use of the same data to accomplish

the learning goal, they employ very different strategies for identifying a mapping

between the four features of a sensor event and the resident ID.
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5.2.1 Research Design

This work uses an observational study method to evaluate the hypothesis that

behaviometrics can classify individuals based on data provided by the CTP. Several

CTP testbeds were installed and operated over a number of months to gather data for

testing. During that time the residents’ behaviors were recorded and annotated with

their identity. The case series generated during these data gathering periods provides

a suite of data for testing of the algorithms. The various algorithms were then tested

against the different data sets to determine their ability to properly attribute each

given event to a resident.

The CASAS team did not intervene with the residents while they lived in the

smart home spaces and no attempts were made to adjust their behavior over time.

The residents were consulted about their behaviors to ensure an accurate final ground

truth during the data annotation period. The sole exception was for the first data

set gathered in Tokyo that enforced single occupancy for identification purposes.

5.2.2 Identification Data Sets

There were three data sets used to evaluate the identification algorithms. They

are summarized in Table 5.1 and come from both the Tokyo and Kyoto CTP-based

testbeds, as described in Sections 3.4.1 and 3.4.2. These data sets had multiple
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residents reside in the space and were annotated by humans to provide a ground

truth for the annotated classification of the residents.

The data gathered by the CTP for the identification data sets is represented by

the following features:

1. Date

2. Time

3. Sensor Location3

4. Event message

5. Annotated class

The first four fields are generated automatically by the CASAS middleware at

the time of the event’s creation. The annotated class field is the target feature for

our learning problem and contains the resident ID to which the other fields can be

mapped. Sample data collected from a CASAS testbed is shown in Table 5.2.

The first data set, labeled Workplace, was gathered over the course of three

weeks in the Tokyo smart workplace environment. During this time there were only

3Some older CASAS data sets use the sensor serial number instead of a device-independent
location value.
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Table 5.1: Summary of data sets used for validation of identification algorithms.

Data Set Alias(es) Residents Length Num Events

Workplace 3 10 days 6,000

B&B Apartment 2 5 days 20,000

TwoR Activity Tracking 2 56 days 136,504

three residents working in the space, and they were asked to log their presence by

pushing a unique button on a pin pad when they entered and left the space. In order

to generate training data for the learning algorithms, this first database was filtered

to only use sensor events during the times when only a single resident was in the

environment. In this way, it was ensured that each sensor event would be correctly

labeled with the corresponding resident ID. Over 6,000 unique sensor events were

captured, annotated, and used as data for our evaluation. Table 5.2 shows a portion

of the data that was captured during this time.

For the second data set, labeled B&B4, we collected sensor data from the Kyoto

smart apartment while two residents lived there. This data set assesses the ability of

4This data set is referred to as the Apartment data set in [Crandall and Cook, 2009], and the
B&B data set in [Crandall and Cook, 2010b, CASAS, 2010].
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Table 5.2: Example of data used for classifier training.

Date Time Location Message ID

2007-12-21 16:41:41.0764 L017 ON Res1

2007-12-21 16:44:36.8230 L017 OFF Res1

2007-12-24 08:13:50.2819 L007 ON Res2

2007-12-24 14:31:30.6889 L007 OFF Res2

our algorithms to identify residents even when they occupy the space simultaneously,

a more challenging situation than the one presented by the Workplace data set.

Each resident occupied a separate bedroom, but regularly shared the common space

downstairs. Unlike the previous data set, we made no constraints on resident activities

and did not ask them to log their presence. Instead, our team annotated the sensor

data after it was collected and confirmed the annotation with the residents to ensure

accuracy of the labels. The result was a corpus of over 20,000 unique sensor events

collected over a 5 day period.

The third and final data set, labeled the TwoR5, contains sensor events collected

5This data set is referred to as the Activity Tracking data set in [Crandall and Cook, 2009], and
the TwoR data set in [Crandall and Cook, 2010b, CASAS, 2010].



151

over a period of eight weeks while two residents (different than those in the B&B

data set) lived in the Kyoto smart apartment. As with the B&B data set, this was

collected to evaluate the mapping of sensor events to specific residents. However, we

also used this data set to test ADL detection with other algorithms. To demonstrate

the benefits of first determining the resident ID for an event on ADL detection, we

performed this activity recognition first without resident identifier information and

then second when the data is enhanced by adding the automatically-labeled resident

identifier to each sensor event. In this manner, we determined how well residents may

be recognized and the degree to which this information aids in other multi-resident

tasks such as activity recognition.

Between these three different data sets taken from two different testbeds and

with a total of seven unique individuals, the tools proposed in this thesis are well tested

smart home algorithms. The different sensor layouts and behaviors of the residents

allow the algorithms to exhibit many capabilities when presented with complex data.

5.2.3 Assumptions of the Study

The algorithms used to do identification of residents make three notable as-

sumptions.

1. That the testbeds used are good exemplars for future smart home implementa-
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tions. Future systems will be constructed from an unknown variety of sensors,

layouts and objectives that the CASAS implementations will mirror in some

ways, but not others. Due to the lack of standardization across smart home

systems and testbeds across the world, this is a common issue that all research

in this field needs to address.

2. The participants’ behavior was not significantly impacted by their awareness of

residing in a smart home. Even given some deviation in their behavior caused by

knowledge of the smart home around them, each individual would still behave

in a pattern unique among the group of residents. It is assumed that each

is still behaving in a personally uniform, but individually unique manner for

identification purposes.

3. The events captured in the three data sets are representative of the people

who were monitored. If their behavior were outside the norm during the data

gathering window, then these tools would not be as functional on an ongoing

basis if deployed in a real-world system.

5.2.4 Limitations of the Study

The algorithms introduced for identification of residents have two notable limi-

tations. First is that if two people act very similarly, then the tools will have difficulty
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differentiating between them, as they only classify behavior, not the actual person

causing the events.

Second, if a resident’s behavior changes, then these tools will need to accommo-

date that new pattern of behavior, as they do not incorporate the ability to handle

drift in the data sources. For long-term real-world smart home implementations, this

shortcoming would need to be addressed.

5.2.5 Research Design Summary

This thesis combines a number of experiments for evaluation of our hypothesis

that individuals can be identified through behaviometrics in a smart home context.

The first component of this evaluation was the installation of the CASAS Technology

Platform into a number of testbeds for the purposes of gathering data sets. The

second element was the annotation of that data by tagging individual events with the

unique person who caused that event. The last was the implementation and evaluation

of machine learning algorithms designed to differentiate between the residents based

upon their behavior alone. Taken together, this project constructed and evaluated

a novel application of machine learning tools for the identification of smart home

residents without an explicit identification device for each individual.

The next sections introduce each algorithm in detail. The results, evaluation,
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and comparison of each tool are discussed in Section 5.4.

5.3 Identification Algorithms

Three algorithms were developed to test the hypothesis that behaviometrics can

be used to identify individuals in a smart home space. They are all based on well

established machine learning algorithms and applied here to the smart home domain.

The three algorithms are:

1. NB/ID: A näıve Bayesian-based tool

2. MM/ID: A Markov Model-based tool

3. HMM/ID: A Hidden Markov Model-based tool

Each of these tools has requirements for operation and provides unique benefits

when used to identify the current residents in a smart home space. Their needs and

implementation details are discussed in Sections 5.3.1, 5.3.2 and 5.3.3. The resulting

classification accuracies of the three data sets, the algorithms’ behaviors, and further

discussion are available in Section 5.4.
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5.3.1 Näıve Bayes: NB/ID

The first algorithm built and tested for identification was based around a näıve

Bayes classifier. In our study this tool was designated the Näıve Bayes / IDentifier

(NB/ID). This classifier leverages Bayes’ Rule to use the current event received to

guess at the identity of the individual. Näıve Bayes classifiers have been used to

good effect in other smart home contexts [Tapia et al., 2004, van Kasteren and Krose,

2007]. The location, message and time features from individual events were exploited

to determine the resident’s identity.

A näıve Bayes classifier uses the relative frequency of data points, their feature

descriptors, and their labels to learn a mapping from a data point description to a

classification label. The resident label, r, is calculated as shown in equation 5.1.

arg maxr∈R P (r|D) =
P (D|r)P (r)

P (D)
(5.1)

In this calculation, D represents the feature values derived from the event to

be classified. The denominator will be the same for all values of r, so we calculate

only the numerator values. The numerator is made of P (r), which is estimated by

the proportion of cases for which the resident label occurs overall and P (D|r) which

is calculated as the probability of the feature value combination for the particular

observed resident id, or Πi P (di|r) .
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Table 5.3: Näıve Bayes alternative time-based feature formats.

Type # Feature Type Example

1 Plain M001#ON

2 Hour-of-Day M001#ON#16

3 Day-of-Week M001#ON#Friday

4 Part-of-Week M001#ON#Weekday

5 Part-of-Day M001#ON#Afternoon

NB/ID Data Features

For a given event, the resident ID is set by the annotation process, but the

feature representing that event can be derived in a variety of ways. We could attempt

to use only location and message information as input to the learning problem, as

shown in Table 5.3 row #1, but this leaves out valuable temporal information about

the resident behaviors. The remaining features, date and time, are more difficult to

use. Both of these features have a very large number of possible values, so we were

required to consider effective methods for abstracting date and time information.

The different feature choices that could be considered for these values, as shown

in Table 5.3, divide the data in different ways and capture resident behaviors with

varying degrees of fidelity.
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The “Plain” feature set provides a good baseline to compare with more com-

plex parsings. The more complex parsings, such as Part of Week (e.g. Weekday or

Weekend) capture more information about the given behavior, and can furnish the

classifier with more information for correct future classifications. Depending on the

facets of the data set, different feature types will cause the classifier to perform better

or worse.

The different feature choices available (e.g. Plain vs Hour-of-Day, etc.) divide

the data up in different ways. Each method captures the behaviors or the residents

with varying degrees of accuracy, depending on the feature types chosen and the

behavior of the individuals in the data set.

The purely statistical nature of a näıve Bayes classifier has the virtue of being

fast for use in prediction engines, but lacks the ability to handle context within the

event stream that could be advantageous in discerning subtle differences in behaviors.

We test the accuracy of each of these time representations when we evaluate the

NB/ID algorithm.

Summary

The statistical calculations of a näıve Bayes classifier offer the benefit of fast

learning, but lack an effective approach to reasoning about context in an event stream.

In order to capture this context we also consider other approaches to learning resident

IDs, as described in the next sections.



158

5.3.2 Markov Model: MM/ID

In our second approach to resident identification we classify resident behaviors

using Markov Models. A Markov Model (MM) is a statistical model of a dynamic

system. A MM models the system using a finite set of states, each of which is

associated with a multidimensional probability distribution over a set of parameters.

The system is assumed to be a Markov process, so the current state depends on a

finite history of previous states (in our case, the current state depends only on the

previous state). Transitions between states are governed by transition probabilities.

For any given state a set of observations can be generated according to the associated

probability distribution.

Because our goal is to identify the activity that corresponds to a sequence of

observed sensor events, we generate one Markov Model unique to each resident that we

are observing. We use the training data to learn the transition probabilities between

states for the corresponding activity model and to learn probability distributions for

the feature values of each state in the model.

To label a sequence of sensor event observations with the corresponding resident

ID, we compute r, the likelihood that the resident represented by the model cause the

event, as argmaxr∈R P (r|e1..t) = P (e1..t|r)P (r). P (r) is estimated as before, while

P (e1..t|r) is the result of computing the sum, over all states, S, in model r, of the
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likelihood of being in each state after processing a sequence of sensor events e1..t that

leads up to the current time, t. The likelihood of being in state s ∈ S is updated

after each sensor event (ej) is processed using the formula found in equation 5.2.

P (Sj|e1..j) = P (ej|Sj)
∑
Sj−1

P (Sj|sj−1)P (sj−1|e1..j−1) (5.2)

The probability is updated based on the probability of transitioning from any

previous state to the current state (the first term of the summation) and the prob-

ability of being in the previous state given the sensor event sequence that led up to

event ej.

MM/ID Event Window Size

As with the näıve Bayes classifier, there are decisions to make regarding the

presentation of the data that influence the performance of the Markov Model. The

primary decision is the event sequence size to provide to the model. As described in

Section 5.3.2, a series of events is provided as input to the model in order to output a

resident identifier for the most recent event at time t. Because the series size should

be the same for each calculation, we do not provide events starting at the beginning

of the data collection for each label we generate. Instead, we provide a fixed number

of events, or event window size, that occurs immediately prior to and include event

t. During the evaluation of the MM/ID tool, this windows size is manipulated to

determine which sizes are “good” ones for the given data set.
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Summary

A Markov Model-based solution was selected for our second approach because

this representation encapsulates additional contextual information. As a result, the

context of the sensor event is used when labeling the event with a resident ID. By

adding transitions between states in the model, the spatial and temporal relationships

between sensor events are captured. Thus, by taking more of both the physical and

the temporal information into account, we hypothesize that our algorithms will label

events more accurately even when the number of residents increases.

5.3.3 Hidden Markov Model: HMM/ID

In Section 5.3.2, the MM/ID classifier was introduced that used Markov Models

with no hidden nodes. As a result, we had to learn a separate model for each resident

and run them all in parallel to determine the current resident’s identity. To simplify

the system by using a single model, we next designed a Hidden Markov Model-based

algorithm. With this algorithm, a single model is used to encapsulate all of the

residents and the sensor events they trigger. This HMM/ID tool was used to evaluate

a Hidden Markov Model’s ability to properly attribute events to residents.

Using the hidden Markov model, hidden nodes represent system states that are

abstract and cannot be directly observed. In contrast, observable nodes represent
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Figure 5.1: HMM architecture of hidden states, transitions and observations.

system states that can be directly observed. Vertical transition probabilities between

hidden and observed nodes are learned from training data, as are horizontal transition

probabilities between hidden nodes.

In our model, as shown in Figure 5.1, each hidden node represents a single

resident. The observable nodes are associated with probability distributions over

feature values including the motion sensor ID and the sensor message. We can then

use the Viterbi algorithm [Viterbi, 1967] to calculate the most likely sequence of

hidden states that corresponds to the observed sensor sequence. This sequence of

hidden states provides us with the highest-likelihood resident IDs that correspond to

each sensor event in the sequence.
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In the HMM/ID structure, the states Y represents the residents from the train-

ing corpus. The start probabilities of each state i is kept in πi while the transition

probabilities ai,j are the likelihood of transitioning from resident i to resident j be-

tween events. If the testing corpus of sensors events is x0, ..., xT , then the state

sequence y0, ..., yT is the most likely attribution of these events to the residents rep-

resented by the states. This mapping is given by the recurrence relations in equa-

tions 5.3a and 5.3b. The result of Vt,k is the probability of the most probable series

of resident attributions for the first t+ 1 events in the testing corpus.

V0,k = P (x0|k) · πk (5.3a)

Vt,k = P (xt|k) ·maxy∈Y (ay,kVt−1,y) (5.3b)

As a concrete example of how the HMM/ID algorithm is set up, refer to Ap-

pendix B. This small example shows a model built with two residents and three

sensors along with a concrete source code example. The trained parameters are taken

from the B&B data set with the list of shown sensors pared down for brevity. When

the determine resident() function is called, the result is the series of entities that

most likely caused the series of events given. The output of the HMM/ID is a state

sequence y0, ..., yT of residents that map to the series of events x0, ..., xT provided to

be classified.

This algorithm no longer requires the fixed event window like the MM/ID. The
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events are taken one at a time without modification or manipulation, leaving the

capabilities of the system entirely up to the ability of the algorithm and not choices

made during pre-processing stages. The trade-off is that the tool often requires more

than one event to transition between residents. It relies on some context-dependent

amount of evidence for the HMM to transition from one hidden state (resident ID) to

another. This sometimes leads to a delay in proper identification during operation,

and is a source of error in the results. The behavior of the HMM for both transition

lag error and confusion error are both discussed in Section 5.4.

Summary

Hidden Markov Models are robust in the face of noisy data and used for a num-

ber of smart home applications. The HMM/ID tool developed for classifying residents

is based on a classic HMM approach and eliminates a number of shortcomings to the

NB/ID and MM/ID tools developed earlier. This more complex algorithm reacts to

the data in such a way that introduces multiple sources of error that are discussed in

depth in Section 5.4.

5.3.4 Identification Algorithms Summary

Each of the tools built and evaluated for identification of smart home residents

has benefits and negatives. The core algorithms were chosen because of their history
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of robustness and successful application within the smart home domain, though not

for use as identification classifiers. Their different behaviors and capabilities give

insights into what kinds of patterns can be exploited to identify individuals based

upon behavior alone.

5.4 Identification Algorithms’ Results

The identification algorithms introduced in Section 5.3 were evaluated with the

data sets introduced in Section 5.2.2. The B&B and TwoR data sets are more complex

in nature and provide a better overall evaluation of any identification tools than the

Workplace data set. All of these tests and results are shown and discussed in this

section.

Additionally, the ability for the identification results to boost ADL detection

were tested with the TwoR data set. This test was done to demonstrate the ability

for identification to provide additional features that may improve other models in

the smart home context. The process and results of this boosting test are shown in

Section 5.5.
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5.4.1 Workplace Data Set Results

Results for using behaviometrics to identify residents in the Workplace data

set have been published in several venues [Crandall and Cook, 2008c,b, Crandall

et al., 2008, Crandall and Cook, 2009, 2010c]. It has been used to evaluate the

NB/ID, MM/ID and HMM/ID tools. This is the simplest multi-resident data set

available from the CASAS project, as it never involves simultaneous multi-resident

occupancy of the space. Despite this shortcoming, it can be used to demonstrate

that each resident has differentiable behavior and that diverse algorithms leverage

these differences through various approaches without the complexity of true multi-

inhabitant data.

Workplace with NB/ID

The Workplace data set was randomly split into training and testing sets, with

10% of each class set aside for testing. The classifier was trained on the 90% and run

against the testing set. Each class was given an accuracy rate and a false positive

rate. This process was repeated for each of our feature types for comparison of their

various capabilities.

Figure 5.2 shows the classification accuracy of the NB/ID classifier for the three

residents present in the Workplace data set. In order to keep actual participant names

anonymous, we label the three residents John, Abe, and Charlie. In Figure 5.2 we
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Figure 5.2: NB/ID Workplace data set accuracies and false positive rates with Plain

features across all residents.

graph not only the classification accuracy for each target value, but also the false

positive rate.

Note that the classification accuracy is quite high for the John values, but so is

the false positive rate. This behavior is caused by our John participant being respon-

sible for most (roughly 62%) of the sensor events in the training data. As a result,

the a priori probability that any sensor event should be mapped to John is quite high

and the NB/ID algorithm incorrectly attributes Abe and Charlie events to John inap-

propriately. On the other hand, while Charlie has a much lower correct classification
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rate, he also has a lower false positive rate. If the intelligent environment algorithms

can take confidence values into account, this information about false positives can be

leveraged accordingly.

In order to reduce these classification errors, more descriptive temporal features

were generated from the data and time information contained in the data set. In

particular, these are the various possible time features of each sensor event, as shown

in Table 5.3. The classifier may use time of day or day of week information to

differentiate between the behaviors of the various individuals. For example, John

always arrived early in the day, while Abe was often in the space late into the evening.

Discovery of the best features to use may be accomplished by balancing the overall

correct rate and false positive rate against one another across all of the residents in

the training set.

The choice of feature descriptors to use is quite important and has a dramatic

effect on the classification accuracy results. Looking at the accuracy rate as effected

by the feature type chosen in Figure 5.3 shows that using Hour-of-Day significantly

(p < 0.05) increases the identification accuracy over the Plain feature.

An instance of the effects of time-based features on an individual’s classification

accuracy is shown in Figure 5.4. John has a very high accuracy rate across all feature

types due to a high a priori weight. The NB/ID tool will often guess John, which leads

to attributing too many events to his class. This gives him a very high false positive
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Figure 5.3: NB/ID Workplace data set accuracy for different temporal features. The

error bars show two standard deviations.



169

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Plain Hour-of-Day Day-of-Week Part-of-Day Part-of-Week

P
er

ce
n

ta
g

e

Feature Type

John Accuracy and False Positives by Feature Type

Correct Rate False Positives

Figure 5.4: John accuracy and false positive rate by temporal feature.

rate with the Plain feature format, as shown in Figure 5.2. By adding the Hour-of-Day

feature (Table 5.3, row 2), John’s accuracy does not improve significantly, but his false

positive rate drops dramatically, as shown in Figure 5.4. This significant drop (p <

0.05) from 34% to 9% is a marked improvement. Those events that were erroneously

attributed to John are now being properly attributed to Abe and Charlie. Use of the

other time-based features results in some improvements to John’s classification, but

none of the others is as useful as adding the Hour-of-Day feature.

In contrast to John, Charlie’s behavior responds differently to the choice of

feature type. To demonstrate the improvements in accuracy rate, refer to Figure 5.5.
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Figure 5.5: Charlie accuracy and false positive rate by temporal feature.

Charlie’s initial 31% accuracy with simple features was shown to significantly (p <

0.05) jump to 87% by again using the Hour-of-Day feature type.

After further inspection of the data, this improvement is derived from the fact

that Charlie’s activities do not overlap as much with Abe or John during the day.

This improvement comes at a cost, though. In exchange for a dramatic improvement

to classification, Charlie’s rate of false positives goes up from 3% to 6%, as shown in

Figure 5.5. This kind of trade off needs to be taken into account by any system of

deciding which features to use for the current classifier.
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Time Delta Enhanced NB/ID Classification

Adding more features to our data over and above Hour-of-Day did improve

the resident classification accuracy, though the improvements were not a great as

anticipated. We hypothesize that one reason for the remaining inaccuracies is the type

of sensor events we are classifying. Many motion sensor events occur when individuals

are moving through the space to reach a destination, and are not particularly unique

to the residents in the space. On the other hand, when a resident is in a single location

for a significant amount of time, that location is important to the individual resident.

They are likely performing an activity of interest in that location, and as a result the

corresponding motion sensor data should be used for resident classification.

To validate our hypothesis, the data set was culled of all extra sensor events

where the same sensor generated multiple consecutive readings and only the first event

in the series was kept. The multiple readings were likely due to small movements

occurring repeatedly within the one small area of the workplace. Replacing the set

of readings with one representative motion sensor event allowed the sensor event to

represent the entire activity taking place at that location.

With this reduced set of events, the Time Deltas, or time elapsed between the

remaining events, were calculated. The chart shown in Figure 5.6 gives a count of

how long an individual spent at any one motion sensor location before moving to a

new location. The mean time spent on any sensor was 8.78 seconds, with a standard
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Figure 5.6: Workplace Count by Time Deltas.

deviation of 50.8 seconds. With a graph of this shape, the initial hypothesis of being

able to garner additional information for training was borne out.

Next we removed from our data set any motion sensor events whose durations

fell below the mean time delta value, thereby leaving the longer deltas. With an even

more reduced set in hand, the data splitting, training and testing were all done the

same way as before with the full data set.

The resulting classifier only used a handful of the available sensors throughout

the living space, but the accuracy and false positive rates improved dramatically. This

is attributed to the fact that motion sensors in shared spaces or walkways will mostly
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Figure 5.7: Workplace overall accuracy with Time Deltas.

have very small time deltas associated with them. Since these sensors are also the ones

contributing to the false positive rates in the full set classification, removing these

sensor events will improve the overall performance of the classifier. Note that with

this filtered-data approach, sensor events with short durations will not be assigned a

mapping to a specific resident. However, by combining this tool with one that tracks

inhabitants through the space from Chapter 4, only a handful of sensor events need

to be classified as long the tools maintain a record of who is moving where.

With the Time Delta filtered data set, the NB/ID had correct classification rates

over 98%. Again, there was some difference in performance with different feature
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choices, as shown in Figure 5.7. Once again, the Hour-of-Day performed the best, as

it seems to give the NB/ID classifier information that could be used to differentiate

between resident behaviors within this particular set of data.

Workplace with MM/ID

The Workplace data set was also used to evaluate the MM/ID tool. These

evaluations were published in fewer venues [Crandall and Cook, 2008c, 2009] than

the NB/ID tool, primarily because the later HMM/ID tool eclipsed the capabilities

of MM/ID as the data sets became more complex.

As with the NB/ID classifier, there are decisions to make that influence the

performance of the MM/ID classifier. The primary decision is the event sequence

size to provide to the algorithm. As described in Section 5.3.2, a series of events is

provided as input to the model in order to output a resident identifier for the most

recent event at time t. Because the series size should be the same for each calculation,

we do not provide events starting at the beginning of the data collection for each label

we generate. Instead, we provide a fixed number of events, or event window size, that

occur immediately prior to and include event t.

Figure 5.8 shows the classification results from alternative window sizes. As the

figure shows, the window size does have an effect on classification accuracy. Because

a window size of 25 performs best for the Workplace data set we use it for the

remainder of our experiments. In general, the algorithm can experimentally derive
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Figure 5.8: MM/ID Workplace data set overall accuracy.

the most suitable window size for a given data set.

The most direct comparison between the MM/ID and NB/ID algorithms is to

compare accuracies using the “Plain” feature type (see Table 5.3) for the NB/ID

classifier and the 25-event window size for the Markov Model. In this case the NB/ID

algorithm results in 76% classification accuracy, in comparison with 84% classification

accuracy resulting from using the MM/ID. The improved accuracy for the Markov

Model is most likely due to the implicit spatial and temporal relationships that are

encoded in the states and transition probabilities of the Markovian structure.

On the other hand, the Time Delta filtering steps are not applied to the test of
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the MM/ID algorithm. All of the events are kept for use with the Markov Model be-

cause even the shorter events thrown out by the Time Delta filtering provide valuable

contextual information for the model. Removing these events renders the classifier

unusable, as there is too little evidence to process from the Workplace data set.

Workplace with HMM/ID

As published in [Crandall and Cook, 2009], the HMM/ID algorithm was eval-

uated with the Workplace data set. The resulting classifier performance was 92.4%.

This approach outperforms the earlier Markov Model approach. However, while the

model represents temporal sequence information, the length of individual events is

not captured. This temporal information contains valuable insights into the type of

activity or behavior in the data.

To address this issue, we add a time value to the feature list associated with

each observable state. The time value corresponds to the amount of time, in millisec-

onds, that elapsed since the previous sensor event. Because the possible number of

time values is inordinately large, we discretized the time values into three equal-size

ranges. Testing the HMM/ID with time values on the Workplace data, we see an

improved classification accuracy of 95.3%. This solution yields the best results of

the Markov Model related classifiers presented here and represents an approach that

should effectively scale to large numbers of residents.
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Table 5.4: Summary of the best identification tools on the Workplace data set.

Classifier Notes Accuracy

NB/ID

Plain Feature 80%

With Hour-of-Day Feature 96%

Time Delta Filter & Hour-of-Day Feature 98%

MM/ID Best Time Window 84%

HMM/ID
Simple 92.4%

Discretized Time Values 95.3%

Workplace Results Summary

The different algorithms introduced here approach the Workplace data set dif-

ferently. They use frequency, length and locality of behavior to correctly attribute

events to residents. While the NB/ID tool gets the highest overall accuracy with the

Time Delta filtering, as shown in Table 5.4, it does rely on residents having sensors in

spaces unique to them in order to operate so well. The HMM/ID tool demonstrates

more flexibility by requiring much less data manipulation than the Time Delta ap-

proach and using all of the available data to make proper classifications. In the face

of more residents and subtle behaviors, the HMM/ID shows a greater capability to

handle the data directly from the sensor platform and still operate accurately.
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5.4.2 B&B Data Set Results

The B&B data set involves two simultaneous residents inhabiting the Kyoto

testbed. It is a relatively short data set at 5 days, but does have the benefit of

being occupied nearly the full 120 hours of its duration. The different identification

algorithms performed in notably different ways than when provided the Workplace

data set. These differences are exposed by the interleaved resident tags and the

cumulative evidence for an individual’s identity effecting the behavior of the NB/ID

and HMM/ID models.

B&B Evaluation

The NB/ID and HMM/ID classifiers were tested using 30-fold cross validation.

Each classifier was trained on 29 out of 30 groups and tested on the remaining one.

The results from all thirty permutations were averaged together for an overall ac-

curacy, and their variance calculated for significance values. Additional statistics

showing the behavior of the classifiers and the data sets were gathered for insight into

the capabilities of the tools.

Rather than repeat all of our experiments performed on the Workplace data

set, effort was concentrated on comparing the NB/ID classifier and the HMM/ID

models for the B&B data set using parameter settings as described for the earlier

experiments in Section 5.4.1. The results are shown in Figures 5.9 and 5.10, with the
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Figure 5.9: NB/ID accuracy on the B&B data set for various temporal features. The

error bars show two standard deviations.
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Table 5.5: NB/ID B&B data set results. The Hour-of-Day feature is significant over

the Plain feature.

Feature Type Accuracy STDDEV (σ)

Plain 95% 1.4

Hour-of-Day * 99% 0.4

Day-of-Week 97% 1.0

Part-of-Day 98% 0.7

Part-of-Week 95% 1.0

Table 5.6: HMM/ID B&B data set results.

Feature Type Accuracy STDDEV (σ)

No Time Features 91.8% 8.3

Discretized Time Features 91.9% 8.4

source values laid out in Tables 5.5 and 5.6. As can be seen, both the NB/ID and

HMM/ID achieve very high classification accuracies on this two-resident, parallel-

activity data. The two algorithms tested performed statistically equally on this data

set. We hypothesize that having only two classes for the näıve Bayes to choose from

benefits it inordinately over the three residents of the Workplace data set.
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Figure 5.10: HMM/ID accuracy on the B&B data set leveraging both time and no

time features. The error bars show two standard deviations.
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The NB/ID classifier demonstrates a very similar behavior for both the Work-

place and B&B data for the various temporal feature types. We found that once

again using the Hour-of-Day gives the best results, and is a significant (p < 0.05)

improvement over the Plain feature. Surprisingly, the inclusion of the discretized

time values in the HMM/ID demonstrates no benefit for the the B&B data set as

it does for Workplace. This provides evidence to support our hypothesis that both

temporal and spatial information have different values for different environments and

residents. Continued efforts to discover the most valuable combination of features for

identifying individuals needs to be pursued.

B&B Summary

The ability of our models to perform well in this unscripted, full-time, multi-

resident environment is encouraging. These kinds of classifiers should be able to

provide better tools for discerning an individual’s activity history, even in complex

multi-resident environments.

5.4.3 TwoR Data Set Results

The TwoR data set provides the largest corpus of data of the three identification

data sets. It has the most complex behaviors and social interactions as well. Like

the B&B data set, the NB/ID and HMM/ID tools were evaluated for accuracy. Ad-
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ditionally, a more in-depth look at the behavior of the HMM/ID is discussed. Given

the interleaved and social nature of the residents, the TwoR data exposes the various

sources of error for the HMM/ID algorithm.

TwoR Evaluation

As with the evaluation of the classifiers with the B&B data set in Section 5.4.2,

the classifiers were tested using 30-fold cross validation. Additionally, their results

were compared to a Weighted Random algorithm as a base case. Each classifier was

trained on 29 out of 30 groups and tested on the remaining one. The results from

all 30 run permutations were averaged together for an overall accuracy, and their

variance calculated for significance values. Additional statistics showing the behavior

of the classifiers and the data sets were gathered for insights into the capabilities of

the tools.

Both algorithms performed well on the TwoR and B&B data sets and were

significantly (p < 0.01) better than a Weighted Random algorithm introduced as

a base case for comparison. The overall accuracy of the algorithms are shown in

Figure 5.11 and the numerical values are shown in Table 5.7. The HMM/ID performed

slightly better than the NB/ID, though not significantly so.

Given the complexity of the data with multiple residents and no given structure

to their behavior, the highly accurate results from both algorithms attest to their

robustness. The NB/ID accuracy improved notably from the Workplace data set
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Table 5.7: Overall Accuracies for both NB/ID and HMM/ID on the more complex

interleaved resident data sets.

Data Set B&B TwoR

Algorithm Accuracy STDDEV (σ) Accuracy STDDEV (σ)

NB/ID 95.7% 1.4 91.1% 0.5

HMM/ID 91.8% 8.3 88.7% 5.4

Weighted Random 53.3% 3.6 49.8% 1.3

results. This was likely due to the residents having more personal space and time

when compared to the simpler laboratory setting used previously.

Overall, the HMM/ID results are very promising. The initial hypothesis that

drawing on additional contextual information across a series of events would allow an

algorithm to better differentiate between individuals seems to be supported by the

overall accuracy results.

The behavior of the HMM/ID is more complex than the NB/ID when analyzing

the actual pattern of classification. As the events arrive, it takes the HMM zero

or more additional events to determine to whom the new events belong. For an
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Table 5.8: Example HMM/ID transition behavior pattern.

Event Number Annotated Class Chosen Class Result

1 R1 R1 SUCCESS

2 R1 R1 SUCCESS

3 R2 R1 FAIL

4 R2 R2 SUCCESS

5 R2 R2 SUCCESS

example of this behavior, Table 5.8 shows a small snippet of events as classified

by the HMM/ID. The left column is the event number, the second represents then

annotated resident value for the event, the third the algorithm determined, and the

final column being the success or fail results for the given event. This snippet has

a transition from R1 to R2 at event #3. The HMM delays until event #4 before it

has enough evidence to change states and begins attributing events correctly. This

situation, where the events change from one resident to another, has been termed a

resident “transition” and is an important feature of HMM/ID algorithm behavior.

By the overall accuracy metric, this example is has a score of 4/5, or 80% ac-
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curacy. What is most interesting about this series is that the events arriving at the

computer are initially from R1, then change to R2 at some point, but the HMM/ID

algorithm takes extra events to properly transition as well. In contrast, the NB/ID

algorithm takes every event in isolation, so there is no previous context to consider.

With the HMM/ID algorithm, there is now a possibility of a transition window as

the evidence that the new events are from a different person accumulates. The con-

cern is that this transition window would significantly impact the effectiveness of the

HMM/ID as a tool for identification.

To determine how much this transition error is effecting the HMM/ID, several

statistics were gathered from the final tests. The first was the total number of occur-

rences in the event stream where the annotated resident value switches from one to

another. This is an indication of the data complexity. If the number of transitions

increases it indicates more simultaneous occupancy of the space, which can be more

difficult for the HMM/ID to accurately classify.

The hypothesized inverse relationship between the rate of transitions in the data

set and the final accuracy was not borne out by the results, as shown in Figure 5.12.

The transition rate line was expected to trend upward, opposite the overall accuracy

across the data sets used to test the classifier. Instead it is found to trend with the

accuracy, with slopes of −0.038 and −0.046 respectively. On further inspection, it

is not merely the number of transitions that effects the overall accuracy, but also
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Figure 5.12: HMM/ID’s overall accuracy for each data set, with the data sets compar-
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the location within the smart home of the residents during those transitions. If the

entities’ behaviors are physically close to one another, there is less evidence in the

emission probabilities that the HMM should change its hidden state, and thereby

transition correctly in its classifications.

Essentially, this is a similar algorithmic behavior to that exposed by the NB/ID’s

Delta Filtering. If the residents in the space are using shared spaces, the emission

probabilities are lower and cause the HMM to be less reactive to transitions between

residents. In the B&B data set, the residents spent notably less time sharing com-

munal spaces than was found in the TwoR data set.

As a measure of how much the delay in transition impacts the behavior of

the algorithm, some additional analysis about the length of the delay was gathered.

The relevant data is the average number of events after a transition before the HMM

properly changes to accurately classify the resident. To find this value, the results were

processed for the length of the delay in the transition on each data set. Figures 5.13

and 5.14 show the total occurrences of delay lengths (zero or more), grouped by length

until proper classification for each data set.

The first column in Figures 5.13 and 5.14 represents the count of transitions in

each data set where the HMM changes state properly on the very first event after a

transition. In these cases the HMM properly transitions from one resident to another

with only the very first event as evidence. The rest of the columns are instances
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Figure 5.13: HMM delay lengths before proper classification after a transition be-

tween residents in the B&B data set.
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Figure 5.14: HMM delay lengths before proper classification after a transition be-

tween residents in the TwoR data set.
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Table 5.9: HMM average transition delay length for both B&B and TwoR data sets.

An average of zero would represent perfect transition accuracy.

Data Set Average delay (in events) Standard Deviation (σ)

B&B 0.19 0.80

TwoR 0.38 2.17

where there are one or more events improperly classified before the HMM transitions

properly. This delay in the HMM after transitions in the data is a notable portion of

the HMM’s overall error.

Table 5.9 shows the average length of the delay in the HMM transition for each

data set. An average of zero would mean that it has no delay whatsoever on the

given data set, leading to perfect classification during transitions. The lower average

delay for the B&B data set is consistent with the overall higher accuracy. This

indicates that the HMM was able to use the evidence to accurately transition between

residents based upon their behavior in the sensor space. The TwoR residents were

notably more social than the B&B residents, and spent more time near one another

in communal spaces during their stay in the testbed. Because they spent more time

in close proximity, the resolution of the sensor network had more trouble providing
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Table 5.10: HMM/ID non-transition error rates.

Data Set Error

B&B 3.2%

TwoR 6.1%

evidence for the HMM to determine who was whom during the close interactions,

causing the overall accuracy to suffer.

The other sign the the TwoR residents were more often interacting during the

time of this data gathering is the longer lengths of the HMM’s transition delay. With

the B&B data set, there were very few instances where the HMM was not able to

properly transition within one or two events. This indicates that the residents were

most often physically separated in the testbed space. The very long delay lengths

induced by the TwoR were observed to be when the two residents were performing

activities like cooking or homework together. In those cases, the lack of physical

separation meant that the HMM was unable to differentiate between the residents for

quite some time.

Another source of error in classification occurs when the HMM outright chooses

the incorrect class, but there was no actual transition to another resident. In this



194

case the algorithm is truly confused, and this error type is more akin to the type of

error in the NB/ID. The total error rate for this kind of mis-identification is summed

up in Table 5.10. The higher rate for the TwoR data set indicates that these two

individuals had more behavior that was similar to one another than the two people

in the B&B data set, which again contributes to the lower overall accuracy on the

TwoR set.

TwoR Results Summary

Containing a much larger selection of behaviors over a longer time than the

previous data sets, the TwoR data set represents a valuable tool for evaluating

behaviometric-based identification algorithms. The residents are closer in behav-

ior to one another than those found in the B&B data set and it has the advantage

of being an interleaved multi-resident data set, unlike Workplace. These additional

hurdles provide opportunity for future identification algorithms to improve on those

presented here.

5.5 Identification ADL Boosting

As a final demonstration of the usefulness of these identification algorithms,

their ability to aid the performance of other types of smart environment tasks needed

to be evaluated. Specifically, we apply the NB/ID classifier to the TwoR data set
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Figure 5.15: NB/ID TwoR data set accuracy for different temporal features. The

error bars show two standard deviations.

to map sensor events to resident IDs. Given this additional feature, we then use a

separate näıve Bayes classifier to identify which of 14 possible activities the residents

are currently performing. We evaluate the performance of activity recognition with

and without the learned resident identification to determine the extent to which the

resident ID actually improves performance of our activity recognition algorithm.

Figure 5.15 summarizes the results of the NB/ID classifier as applied to the

sensor events collected in the smart apartment as part of the TwoR data collection.

The resident identification accuracy is very similar to the accuracy for the B&B
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data set, peaking at 93.7% accuracy when the Hour-of-Day feature is used, which is

significantly (p < 0.05) better than just the Plain feature.

Finally, we used a näıve Bayes classifier to perform activity recognition on this

data set. We use the classifier to map a sequence of sensor events to one of 14 possible

activity labels:

1. Resident1 going from bed to bathroom

2. Resident2 going from bed to bathroom

3. Resident1 preparing/eating breakfast

4. Resident1 preparing/eating breakfast

5. Watching TV (either resident)

6. Cleaning bathtub (either resident)

7. Resident1 working at the computer

8. Resident2 working at the computer

9. Resident1 sleeping

10. Resident2 sleeping

11. Preparing/eating lunch (either resident)
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Figure 5.16: Activity recognition accuracy with and without learned resident IDs.

12. Preparing/eating dinner (either resident)

13. Cleaning (either resident)

14. Studying at the dining room table (either resident)

The näıve Bayes classifier initially achieved an accuracy of 80.8% on this data

set. This is a good result as compared to other published ADL detection tools,

especially given the number of activities that we need to discriminate and the fact

that residents are performing activities in an interwoven and parallel fashion.

To determine how activity recognition can benefit from learned resident infor-



198

mation, we next enhance the TwoR data set by adding an extra field to each sensor

event containing the resident ID that is automatically generated by the NB/ID clas-

sifier. We test our activity recognition algorithm again on this enhanced data set,

and this time achieve an accuracy of 89.2%. The results of these two experiments are

graphed in Figure 5.16 and clearly demonstrate that learned resident labels enhance

the accuracy of other smart environment tasks such as activity recognition.

5.6 Identification Summary

The three algorithms introduced and explored in this chapter demonstrate the

ability of behaviometrics to algorithmically identify smart home residents. They each

leverage different aspects of the smart home data and react differently to various

quantities and behaviors of residents. They are all demonstrably better than random

guesses and provide additional insights into the workings of the smart home system.

The HMM/ID algorithm has managed to reduce the kind of error that the

NB/ID was generating from about 6.5% to 3.2% on the B&B data and from 10.7%

to 6.1% on the TwoR data, but introduced an additional delay in identification in

instances where the residents are in relative proximity to each other. The reduction

in general confusion indicates that our original hypothesis about additional context

being valuable to identification holds true. The HMM/ID is able to take into account
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a series of events to more accurately identify a given individual based on their be-

havior alone. These improvements in evidence will reduce both the general confusion

and shorten the delay in events the HMM/ID algorithm needs to transition between

individuals in multi-resident situations.

It was demonstrated by the NB/ID temporal features and the HMM/ID dis-

cretized time values, that results on all three data sets where incorporating additional

features about the data, such as temporal length or time of occurrence for events,

can improve the accuracy of identification. The HMM/ID tool also provides insights

into the reasons for error and the behavior of the residents. With the NB/ID it was

difficult to tell why it made a good or bad choice at run time. By analyzing the series

of classifications by the HMM/ID next to a visualization of the data, the researchers

could determine what behaviors were easy or difficult for the HMM/ID to classify. It

was then possible to algorithmically detect the reasons for success or failure within

the final results. The opaque nature of the NB/ID made similar deep analysis much

more troublesome.

The approach of using simple, passive, low resolution sensing environments with

the algorithms introduced in this work generated results similar to those using other

identification strategies. Controlled facial recognition approaches can see accuracies

in the mid to high 90’s [Pentland and Choudhury, 2000, Zhao et al., 2003, Li and

Jain, 2005], height recognition in doorways may be 95+% [Srinivasan et al., 2010] and
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footstep and stride recognition has shown results around 87% accurate [Pirttikangas

et al., 2003, Rodŕıguez et al., 2008]. Even RFID-based systems have some error in

determining the identity of the RFID tag in real world implementations This can lead

to RFID accuracy rates of only 60-70% Fritz et al. [2010], though repeated readings

will likely overcome a single erronous transmission. Depending upon the intended use

and environment, these different approaches may have more or less utility for a given

smart home installation. In the long run, some combination or available strategies

will likely become the most successful behaviometric identification methods.

While this study did not have data sets with large numbers of residents, the

classifiers are expected to scale in a variety of different ways. The HMM/ID tool

should scale against the number of residents better than the NB/ID by exploiting the

context available in the data to make fine differentiations between individuals. It also

requires less data feature tuning to make high quality classifications in these complex

environments, which is beneficial to its ability to be deployed in real-world situations.

Overall, the HMM/ID behavior was easier for the users of the tool to compre-

hend. This observation was corroborated by the lower general confusion in classifi-

cation when there were no transitions between residents occurring. From experience

and empirically, the HMM/ID was notably more consistent than the NB/ID when a

single resident was present and had more comprehensible behavior even in complex

situations.
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By applying these kinds of tools to the smart home data and generating a

resident ID feature, ADL detection is boosted in complex, real world environments.

Any modeling tools that improve the ability of smart homes to be functional and

usable are important. Using algorithmic approaches to detect identity is a necessity

for large scale deployments of smart home technologies that cannot have wireless

devices affixed to every resident for identification purposes. The tools introduced and

evaluated in this thesis initiate inquiry into these issues for the smart home research

community.
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SUMMARY AND CONCLUSIONS

This work laid out and evaluated a number of algorithms to address open is-

sues in the smart home domain. The smart home research community possesses

a scarcity of approaches for handling multiple residents that do not utilize carried

wireless devices or installing cameras. Given that residents often have trouble main-

taining devices in the long term, and that there are significant privacy issues with

video recording in private homes, there exists a need for innovative solutions to track-

ing and identification. The CASAS approach of using passive, low-profile and privacy

protecting sensors to implement smart home technologies opens the door for address-

ing the multiple resident problem without wireless or video-based solutions.

This work introduced the GR/ED, BUG/ED, and PF/ED tracking algorithms

to detect, localize, and track multiple residents throughout the smart environment.

These tools leveraged data from the CASAS Technology Platform for attributing

events to discrete individuals as they traversed the space. The resultant added in-

formation demonstrably boosts the accuracy of other CASAS tools, such as ADL

detection. The tracking tools were significantly better than random guessing and

improved a näıve Bayes-based ADL detection tool by a large margin. Unfortunately,

the complete system has trouble detecting the current number of residents. This
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limitation needs to be investigated from both the hardware and software ends of

the smart home system to improve the ability for the smart home to determine how

many residents are currently in the environment. Overall though, with these tools on

hand a smart home system is better equipped to handle multiple residents while still

accurately modeling ADLs, energy efficiency and resident behaviors.

In the second part of this work, the NB/ID, MM/ID and HMM/ID algorithms

were introduced to uniquely identify the residents in the smart home. These behavio-

metric tools rely on behavior alone to identify the current residents in the space. This

identification information means that the smart home is better equipped to build per-

sonalized histories, do individually tailored preference prediction, and improve ADL

detection capabilities.

The field of smart homes is growing rapidly. The cost and complexity of the

technology is dropping to a price point that makes it feasible to deploy in private

homes. With the rapidly aging populations across the world, techniques to inex-

pensively support aging in place care programs will become imperative. The tools

introduced and evaluated here are just one part of the puzzle, but addressing multiple

resident issues is a keystone of making these technologies ready for the real world.
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Suggestions for Future Research

Dealing with the multiple resident problem is in its infancy. The works intro-

duced here are examples of the various approaches that could be used to overcome

this important issue, but they are not the end of the process. In general, Smart

homes are so diverse in their construction and organization that there will be many

challenges to finding definitive and generalized solutions.

Tracking is a well established field of robotics, but if the robot does not carry

a wireless device then many of the established tracking solutions are not applicable.

Such is the case with smart homes, so algorithms and sensors need to be developed

that track the resident via environmental sensors. The Passive Infra-Red motion

detector is a workhorse of the smart home field, but it provides too little information

for many applications and has acute limitations for detailed resident localization.

This became obvious as the tracking algorithms were unable to reliably determine

the number of residents, though they could track with a high degree of accuracy.

New techniques for providing more complex sensor readings from PIR sensors need

to be explored. With high fidelity data from the sensors available, the algorithms for

tracking and identification should be significantly more effective.

There is also a place to expand upon the body of devices that identify residents

passively in a smart home. The latest works using height sensors in doorways are
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a good start, but more work using sensors around door frames as a “checkpoint” to

identify a resident, then combining those results with a passive tracking solution will

likely be a very good way to uniquely identify residents. Externalizing the process

of determining entrances and exits to inform the tracking systems may be a better

approach than an all in one algorithm. This combination of passive biometrics, be-

haviometrics and tracking would likely be more effective than solutions that run in

isolation.

Smart homes provide a rich field of opportunities for research. The combination

of people, technology and places makes for infinite combinations of situations to be

addressed and evaluated.
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A Definition of Terms

Acronyms (Table A.1) and terms (Table A.2) used in this work of special note.

Table A.1: Thesis-specific acronym definitions

Acronym Definition

CASAS Center for Advanced Studies in Adaptive Systems

CLM The CASAS Lightweight Middleware. The suite of

tools and message definitions used to pass data be-

tween agents in the CASAS Environment [Kusznir

and Cook, 2010].

CTP The CASAS Technology Platform. The full set of

devices and software used by the CASAS researchers

to implement a smart home.

EECS School of Electrical Engineering and Computer Sci-

ence at Washington State University

WSU Washington State University

XMPP Extensible Messaging and Presence Protocol
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Table A.2: Thesis-specific term definitions

Term Definition

Activities of Daily Living Activities of Daily Living (ADLs) is a term

used in health care to refer to daily self-care

activities within an individual’s place of res-

idence, in outdoor environments, or both.

ambient intelligence Ambient intelligence (AmI) refers to elec-

tronic environments that are sensitive and

responsive to the presence of people.

entity Any person, place or thing that causes events

within the smart home. Most commonly a

resident, but could also be a pet, robot or

device.

localization The process of determining the current coor-

dinates of a given object.

medical monitoring The process of monitoring a resident to de-

rive their current and historical physical or

mental state.

Continued on next page
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Table A.2 – continued from previous page

Term Definition

resident A human who is currently within the smart

home space.

smart home Any living space outfitted with sensors that

tries to build models of the activities within

the space. It may also have controllers to

allow the results of the model building to di-

rectly feed back by altering the space in some

way. For example, it may turn on a light as

a resident enters a room.

testbed A single smart home installation used to

gather data and test the algorithms devel-

oped by the researchers.

trace The series of events attributed to an entity.

This is similar to a tracklet, but may be more

ambiguous in the face of multiple entities in

the space [Crandall and Cook, 2009].

Continued on next page
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Table A.2 – continued from previous page

Term Definition

tracklet A tracklet is the estimate of a target state

or a track that is equivalent to an estimate

based upon only a few measurements [Drum-

mond et al., 2003].

ubiquitous computing Ubiquitous computing (ubicomp) is a post-

desktop model of human and computer inter-

action in which information processing has

been thoroughly integrated into everyday ob-

jects and activities.
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B Hidden Markov Model Viterbi Algorithm Concrete Ex-
ample

e n t i t i e s = ( ’ Res0 ’ , ’ Res1 ’ )

events = ( ’M001 ’ , ’M002 ’ , ’M003 ’ )

s t a r t p r o b a b i l i t y = { ’ Res0 ’ : 0 . 69 , ’ Res1 ’ : 0 .31}

t r a n s i t i o n p r o b a b i l i t y = {

’ Res0 ’ : { ’ Res0 ’ : 0 . 90 , ’ Res1 ’ : 0 . 10} ,

’ Res1 ’ : { ’ Res0 ’ : 0 . 22 , ’ Res1 ’ : 0 . 77} ,

}

em i s s i o n p r obab i l i t y = {

’ Res0 ’ : { ’M001 ’ : 0 . 1 , ’M002 ’ : 0 . 4 , ’M003 ’ : 0 . 5} ,

’ Res1 ’ : { ’M001 ’ : 0 . 6 , ’M002 ’ : 0 . 3 , ’M003 ’ : 0 . 1} ,

}

de f d e t e rm ine r e s i d en t ( ) :

r e turn v i t e r b i ( events ,

e n t i t i e s ,

s t a r t p r o b ab i l i t y ,

t r a n s i t i o n p r o b ab i l i t y ,

em i s s i o n p r obab i l i t y )
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de f v i t e r b i ( evs , e n t i t i e s , s t a r t p , t rans p , emit p ) :

V = [ { } ]

path = {}

#∗∗ I n i t i a l i z e base ca s e s ( t == 0) ∗∗#

fo r en in e n t i t i e s :

V [ 0 ] [ en ] = s t a r t p [ en ] ∗ emit p [ en ] [ evs [ 0 ] ]

path [ en ] = [ en ]

#∗∗ Run Vi t e rb i f o r t > 0 ∗∗#

fo r t in range (1 , l en ( evs ) ) :

V. append ({} )

n path = {}

f o r en in e n t i t i e s :

( prob , s t a t e ) =

max ( [ (V[ t −1] [ en0 ] ∗ t rans p [ en0 ] [ en ]

∗ emit p [ en ] [ evs [ t ] ] , en0 ) f o r en0 in e n t i t i e s ] )

V[ t ] [ en ] = prob

n path [ en ] = path [ s t a t e ] + [ en ]

path = n path

( prob , s t a t e ) =

max ( [ (V[ l en ( evs ) − 1 ] [ en ] , en ) f o r en in e n t i t i e s ] )

r e turn ( prob , path [ s t a t e ] )
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An indoor location method based on a fusion map using Bluetooth and WLAN

technologies. In Juan Corchado, Sara Rodŕıguez, James Llinas, and José Molina,
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