


 
 

 بسم الله الرحمن الرحيم

 غزة –الجامعة الإسلامية 

 عمادة الدراسات العليا 

 كلية تكنولوجيا المعلومات

 Islamic University – Gaza 

Deanery of Post Graduate Studies 

Faculty of  Information Technology   

 

 

 

Efficient Adaptive Load Balancing 

Algorithm for Cloud Computing Under 

Bursty Workloads 

 

 
By 

Sally Fouad Issawi 

Supervised By: 

Dr. Alaa Al Halees 

 

A Thesis Submitted as Partial Fulfillment of the Requirements for the Degree of 

Master in Information Technology 

 

1436 H – March 2015 

 





i 
 

Abstract 

Cloud computing is a recent emerging technology in IT industry. It is an evolution of previous 

computing models such as grid computing. It enables a wide range of users to access a large sharing 

pool of resources over the Internet. In such complex system, there is a tremendous need for efficient 

load balancing scheme in order to satisfy peak user demands and provide high quality of services. Load 

balancing is a methodology to distribute workload across multiple nodes over the network links to 

achieve optimal utilizing of resources, minimizing data processing time and response time, and avoid 

overload. One of the challenging problems that affect the load balancing process is bursty workload. 

Burstiness occurs in workloads in which bursts of requests aggregate together during short periods of 

time and create periods of peak system utilization. This can lead to dramatically degradation in system 

performance. Several load balancing algorithms had been proposed which focus on key elements such 

as processing time, response time and processing costs. However these algorithms neglect cases of 

bursty workload. In the same time, research works which deals with the problem of bursty workload are 

quite a few. Motivated by this problem, this research comes to handle the load balancing problem in 

cloud computing under bursty workload by predicting the variation in the request rate and apply the 

suitable load balancing algorithm according to the predicted load status. In turn, the selected load 

balancing algorithm assign the received request to a virtual machine based on information supplied by a 

fuzzifier. The proposed algorithm has been tested and the experiments results showed that our 

algorithm improves the cloud system performance by decreasing the response and the data center 

processing time compared with other algorithms. The decrement is about 2ms when the instruction 

length is 250 Byte, while this improvement becomes more obvious by decreasing the response time 

about 10ms and the processing time about 5ms when the instruction length is increased to 1000 Byte. 

 

Keywords:  Cloud Computing, Load Balancing Algorithm, Burstness, Fuzzifier, CloudAnalyst, Response 

Time, Processing Time. 

  



ii 
 

 Acknowledgement  

First, I thank Allah for guiding me and taking care of me all 

the time. My life is so blessed because of his majesty. 

I would like to thank My Family especially My Parents for 

encouraging and supporting my all the time. 

Also, I would like to take this opportunity to thank all My 

Teachers and My research supervisor, Dr. Alaa Al-Halees for 

giving me the opportunity to work with him and guiding and 

helping me throughout this research and other courses.  

Very special thanks to My Teacher Dr. Mohammed Radi for 

guiding and supporting me by his experience and valuable 

advices to accomplish this research. 

I wish to express my considerable gratitude to my special 

friend and colleges, for there supports. 

Thank you all for being always there when I need you most. 

Thank you for believing in me and supporting me. 

 

  



iii 
 

Table of Contents 

Abstract .......................................................................................................................................................... i 

Acknowledgement ........................................................................................................................................ ii 

Table of Contents ......................................................................................................................................... iii 

List of Figures ............................................................................................................................................... vi 

List of Tables .............................................................................................................................................. viii 

List of Abbreviations ..................................................................................................................................... x 

Chapter 1 Introduction .............................................................................................................................. 2 

1.1 Overview ....................................................................................................................................... 2 

1.2 Statement of the Problem ............................................................................................................ 3 

1.3 Objectives...................................................................................................................................... 3 

1.3.1 Main objective ...................................................................................................................... 3 

1.3.2 Specific objectives ................................................................................................................. 3 

1.4 Significance of the thesis .............................................................................................................. 4 

1.5 Scope and limitations of the project ............................................................................................. 4 

1.6 Research Methodology ................................................................................................................. 4 

1.7 Thesis Overview ............................................................................................................................ 6 

Chapter 2 Literature Review and Related Work ........................................................................................ 8 

2.1 Cloud Computing .......................................................................................................................... 8 

2.1.1 Cloud Service Model ............................................................................................................. 8 

2.1.2 Cloud Deployment Model ..................................................................................................... 9 

2.1.3 Cloud Components .............................................................................................................. 10 

2.1.4 Virtualization ....................................................................................................................... 11 

2.1.5 Issues and Challenges of Cloud Computing ........................................................................ 11 

2.2 Load Balancing ............................................................................................................................ 12 

2.2.1 Mathematical Definition: .................................................................................................... 12 

2.2.2 Categories of Load Balancing Algorithms ........................................................................... 13 

2.2.3 Popular Load Balancing Algorithms for Cloud Computing .................................................. 14 

2.2.4 Evaluating Load Balancing Algorithm .................................................................................. 15 

2.2.5 Bursty Workload ................................................................................................................. 15 

2.3 Fuzzy Logic .................................................................................................................................. 16 



iv 
 

2.3.1 Systems Use Fuzzy Logic ..................................................................................................... 17 

2.3.2 Fuzzy System Components ................................................................................................. 17 

2.4 Related works ............................................................................................................................. 19 

2.4.1 Load Balancing in Cloud Computing Approaches: .............................................................. 19 

2.4.2 Load Balancing Approaches for Burst Workload in Cloud Computing: .............................. 20 

2.4.3 Load Balancing Approaches for Burst Workload in Other Distributed Systems: ................ 21 

2.5 Summary ..................................................................................................................................... 21 

Chapter 3 Proposed Method ................................................................................................................... 23 

3.1 Adaptive Load Balancing Algorithm ............................................................................................ 23 

3.1.1 Burst Detector ..................................................................................................................... 25 

3.1.2 Load Balancing Algorithm ................................................................................................... 25 

3.1.3 Fuzzifier ............................................................................................................................... 25 

3.2 Implementation .......................................................................................................................... 27 

3.3 Summery ..................................................................................................................................... 28 

Chapter 4 Experiments and Results ......................................................................................................... 30 

4.1 Cloudsim Simulator ..................................................................................................................... 30 

4.1.1 CloudAnalyst Simulator ....................................................................................................... 31 

4.1.2 CloudAnalyst Components: ................................................................................................. 31 

4.1.3 CloudAnalyst Metrics .......................................................................................................... 34 

4.2 Evaluation Metrics ...................................................................................................................... 35 

4.3 Experiments Part I ....................................................................................................................... 36 

4.3.1 Experiment 1: Normal Workload Using Homogeneous Hosts ............................................ 36 

4.3.2 Experiment 2: Normal Workload Using Heterogeneous Hosts .......................................... 41 

4.3.3 Experiment 3: Burst Workload ............................................................................................ 47 

4.3.4 Results Discussion Part I ...................................................................................................... 52 

4.4 Experiments Part II ...................................................................................................................... 53 

4.4.1 Experiment 4: High Workload ............................................................................................. 53 

4.4.2 Experiment 5: Low Workload .............................................................................................. 56 

4.4.3 Results Discussion Part II ..................................................................................................... 57 

4.5 Experiments Part III ..................................................................................................................... 58 

4.5.1 Experiment 6: Adaptive Algorithm without Fuzzifier.......................................................... 58 

4.5.2 Experiment 7: Adaptive Algorithm using Fuzzifier .............................................................. 60 



v 
 

4.5.3 Experiment 8: ...................................................................................................................... 63 

4.5.4 Results Discussion Part III .................................................................................................... 76 

4.6 Summary ..................................................................................................................................... 76 

Chapter 5 Conclusion and Future Works ................................................................................................. 79 

5.1 Conclusion ................................................................................................................................... 79 

5.2 Future Works .............................................................................................................................. 79 

References .................................................................................................................................................. 80 

Appendix A  CloudAnalyst Simulator Screens ............................................................................................. A2 

 

  



vi 
 

List of Figures 

Figure 1.1 Bursty Workload .......................................................................................................................... 3 

Figure 1.2 Research Methodology Steps ...................................................................................................... 5 

Figure 2.1 Services Provided by Cloud Computing ....................................................................................... 9 

Figure 2.2 Types of Cloud Computing Model ................................................................................................ 9 

Figure 2.3 Three Components Make Up Cloud Solution ............................................................................ 10 

Figure 2.4 Three Different Levels of Burstiness .......................................................................................... 16 

Figure 2.5 The General Architecture of the Fuzzy Logic System ................................................................. 17 

Figure 3.1 Adaptive Load Balancing Algorithm Flow Chart......................................................................... 24 

Figure 3.2 Base Rules for FIS ....................................................................................................................... 25 

Figure 3.3 Membership input function of Processor Speed ....................................................................... 26 

Figure 3.4 Membership input function of Assigned Load ........................................................................... 26 

Figure 3.5 Membership output function of Balanced Load ........................................................................ 26 

Figure 4.1 CloudAnalyst Archeticher .......................................................................................................... 31 

Figure 4.2 Main Components of CloudAnalyst Simulator ........................................................................... 33 

Figure 4.3 Routing of User Requests ........................................................................................................... 34 

Figure 4.4 Data Center Hourly Loading for Normal Workload (Config.1) ................................................... 38 

Figure 4.5 Response Time Chart for Normal Workload (Config.1) ............................................................. 38 

Figure 4.6 Processing Time Chart for Normal Workload (Config.1) ............................................................ 39 

Figure 4.7 Data Center Hourly Loading for Normal Workload (Config.2) ................................................... 39 

Figure 4.8 Response Time Chart for Normal Workload (Config.2) ............................................................. 40 

Figure 4.9 Processing Time Chart for Normal Workload (Config.2) ............................................................ 40 

Figure 4.10 Response Time Chart for Normal Workload ............................................................................ 41 

Figure 4.11 Processing Time Chart for Normal Workload .......................................................................... 41 

Figure 4.12 Data Center Hourly Loading for Normal Workload (Config.1) ................................................. 43 

Figure 4.13 Response Time Chart for Normal Workload (Config.1) ........................................................... 44 

Figure 4.14 Processing Time Chart for Normal Workload (Config.1).......................................................... 44 

Figure 4.15 Data Center Hourly Loading for Normal Workload (Config.2) ................................................. 45 

Figure 4.16 Response Time Chart for Normal Workload (Config.2) ........................................................... 45 

Figure 4.17 Processing Time Chart for Normal Workload (Config.2).......................................................... 45 

Figure 4.18 Response Time Chart for Normal Workload ............................................................................ 46 

Figure 4.19 Processing Time Chart for Normal Workload .......................................................................... 46 

Figure 4.20  Data Center Hourly Loading for High Burst Workload (Config.1) ........................................... 49 

Figure 4.21 Response Time Chart for Burst Workload (Config.1) ............................................................... 49 

Figure 4.22 Processing Time Chart for Burst Workload (Config.1) ............................................................. 50 

Figure 4.23 Data Center Hourly Loading for High Burst Workload (Config.2) ............................................ 50 

Figure 4.24 Response Time Chart for Burst Workload (Config.2) ............................................................... 51 

Figure 4.25 Processing Time Chart for Burst Workload (Config.2) ............................................................. 51 

Figure 4.26 Response Time Chart for Burst Workload ............................................................................... 52 

Figure 4.27 Processing Time Chart for Burst Workload .............................................................................. 52 

Figure 4.28 Data Center Hourly Loading for High Workload ...................................................................... 54 



vii 
 

Figure 4.29 Response Time Chart for High Workload ................................................................................. 55 

Figure 4.30 Processing Time Chart for High Workload ............................................................................... 55 

Figure 4.31 Data Center Hourly Loading for Low Workload ....................................................................... 56 

Figure 4.32 Response Time Chart for Low Workload ................................................................................. 57 

Figure 4.33 Processing Time Chart for Low Workload ................................................................................ 57 

Figure 4.34 Data Center Hourly Loading for Adaptive Algorithm Experment Befor Using Fuzzifier .......... 59 

Figure 4.35 Response Time Chart for Adaptive Algorithm Experment Befor Using Fuzzifier ..................... 60 

Figure 4.36 Processing Time Chart for Adaptive Algorithm Experment Befor Using Fuzzifier ................... 60 

Figure 4.37 Data Center Hourly Loading for Adaptive Algorithm Experment Using Fuzzifier .................... 61 

Figure 4.38 Response Time Chart for Adaptive Algorithm Experiment Using Fuzzifier ............................. 62 

Figure 4.39 Processing Time Chart for Adaptive Algorithm Experiment Using Fuzzifier ............................ 62 

Figure A.1 CloudAnalyst Main Screen ......................................................................................................... A2 

Figure A.2 Main Configuration Tab ............................................................................................................. A3 

Figure A.3 Data Center Configurations ....................................................................................................... A4 

Figure A.4 Advanced Tab Configurations .................................................................................................... A5 

Figure A.5 Internet Characteristics Configuration ...................................................................................... A6 

Figure A.6 Results Screen ............................................................................................................................ A7 

 

  



viii 
 

List of Tables 

Table 2.1 Fuzzy Rules for Air Condition System .......................................................................................... 18 

Table 3.1 Pseudo code for Adaptive Load Balancing Algorithm ................................................................. 27 

Table 3.2 Pseudo code for Fuzzifier ............................................................................................................ 28 

Table 4.1 Real Cloud and Simulator Comparison ........................................................................................ 30 

Table 4.2 User Base Configurations for Experment 1 (Config. 1) ............................................................... 36 

Table 4.3 User Base Configurations for Experiment 2 (Config. 2) .............................................................. 37 

Table 4.4 Data Center Configurations for Experiment 1 ............................................................................. 37 

Table 4.5 Physical Hardware Configurations for DC1 for Experiment 1 ..................................................... 37 

Table 4.6 User Base Configuration for Experment 2................................................................................... 42 

Table 4.7 User Base Configurations for Experiment 2 (Config. 2) .............................................................. 42 

Table 4.8 Data Center Configurations for Experiment 2 ............................................................................. 42 

Table 4.9 Physical Hardware Configurations for DC1 for Experiment 2 ..................................................... 43 

Table 4.10 User Base Configurations for Experiment 3 (Config.1) ............................................................. 47 

Table 4.11 User Base Configration for Experiment 3  (Config. 2) ............................................................... 48 

Table 4.12 Data Center Configurations for Experiment 3 ........................................................................... 48 

Table 4.13 Physical Hardware Configurations for DC1 for Experiment 3 ................................................... 48 

Table 4.14 Data Center Configurations for Experiment 4 ........................................................................... 53 

Table 4.15 Physical Hardware Configurations for DC1 for Experiment 4 ................................................... 53 

Table 4.16 User Base Configurations for Experiment 4 .............................................................................. 54 

Table 4.17 User Base Configurations for Experiment 5 .............................................................................. 56 

Table 4.18 Data Center Configuration for Experiment 6 ............................................................................ 58 

Table 4.19 Physical Hardware Configurations for Experiment 6 ................................................................ 58 

Table 4.20 User Base Configuration for Experiment 6 ................................................................................ 59 

Table 4.21 User Base Configuration for Experiment 7 ................................................................................ 61 

Table 4.22 Bursty Workload for Experiment 1 and 2 .................................................................................. 63 

Table 4.23 Bursty Workload for Experiment 3 and 4 .................................................................................. 63 

Table 4.24 Bursty Workload for Experiment 5 and 6 .................................................................................. 64 

Table 4.25 Bursty Workload for Experiment 7 and 8 .................................................................................. 64 

Table 4.26 Bursty Workload for Experiment 9 and 10 ................................................................................ 64 

Table 4.27 Data Center Hourly Loading for the Ten Experiments .............................................................. 65 

Table 4.28 Response Time Results for Experiment 1 and 2 ........................................................................ 66 

Table 4.29 Response Time Results for Experiment 3 and 4 ........................................................................ 66 

Table 4.30 Response Time Results for Experiment 5 and 6 ........................................................................ 66 

Table 4.31 Response Time Results for Experiment 7 and 8 ........................................................................ 67 

Table 4.32 Response Time Results for Experiment 9 and 10 ...................................................................... 67 

Table 4.33 Responce Time Charts for the Ten Experments ........................................................................ 67 

Table 4.34 Processing Time Results for Experiment 1 and 2 ...................................................................... 71 

Table 4.35 Processing Time Results for Experiment 3 and 4 ...................................................................... 71 

Table 4.36 Processing Time Results for Experiment 5 and 6 ...................................................................... 71 

Table 4.37 Processing Time Results for Experiment 7 and 8 ...................................................................... 72 



ix 
 

Table 4.38 Processing Time Results for Experiment 9 and 10 .................................................................... 72 

Table 4.39 Processing Time Charts for the Ten Experiments ..................................................................... 72 

 

  



x 
 

List of Abbreviations 

DC Data Center 

ESCE Equal Spread Current Execution 

FIS Fuzzy Inference System 

GAE Google App Engine 

IaaS Infrastructure as a Service 

IT Information Technology 

ms Mille Second 

PaaS Platform as a Service 

QoS Quality of Service 

RR Round Robin 

SaaS Software as a Service 

SLA Service Level Agreement 

TLB Throttled Load Balance Algorithm 

UB User Base 

VM Virtual Machine 



1  
 

 

 

 

Chapter 1  
Introduction 

  



2  
 

Chapter 1 Introduction 

Appling load balancing algorithm which can work efficiently under different workload cases (high, 

low, burst… etc.) is an important issue in cloud system to insure delivering high quality of service for 

cloud users. This research came to handle this important issue. In this chapter we give a brief overview 

about the area of this research. Then we highlight the problem statement and the objectives of this 

research. Also we talk about the scope and the limitation of this work. After that we will present the 

research methodology which had been followed in order to accomplish this research. Finally we will 

present the organization of the thesis.     

1.1 Overview 

Nowadays most development in IT industry comes to meet the demand for utilizing more resources in 

lower costs. This technological trend has enabled the evolution of a new computing model called cloud 

computing, in which resources and services are available on Internet and can be leased and released on 

demand fashion [1]. According to The National Institute of Standards and Technology's (NIST) [2] cloud 

computing is defined as "a model for enabling ubiquitous, convenient, on-demand network access to a 

shared pool of configurable computing resources (e.g., networks, servers, storage, applications and 

services) that can be rapidly provisioned and released with minimal management effort or service 

provider interaction." 

The core idea behind cloud computing is not a new one. Cloud computing is an evolution of previous 

computing models starts from grid computing, utility computing, and finally software as a service. It 

brings together a set of existing technologies such as virtualization and utility-based pricing, and 

leverages these existing technologies to meet the technological demand for solving variety of 

technological problems and issues [1]. 

The main concern for cloud computing users is to get high quality of service with low costs. However 

there are many issues that affect the quality of the provided service such as load balancing, 

performance, security, and fault tolerance. In this research the main concern is load balancing in cloud 

computing. 

Load Balancing is a method to distribute workload across one or more servers, Virtual Machine (VM), 

network interfaces, hard drives, or other computing resources. It is used to make sure that none of your 

existing resources are idle while others are being over utilized [3]. One of the most challenging problems 

that dramatically degrade the performance of load balancing process is burstiness in workload. 

Bursty traffic refers to an uneven pattern of data transmission: sometime very high data transmission 

rate while other time it might be very low [4]. Burstiness occurs in workloads in which bursts of requests 

aggregate together during short periods of time and create periods of peak system utilization. Figure 1.1 

presents bursty wokload. 



3  
 

 

Figure 1.1 Bursty Workload 

In this work, we present a new load balancing algorithm for cloud computing environment which can 

overcome the performance degradation results from bursty workload. The proposed algorithm mainly 

depends on detecting the start and the end of the burst interval so that it can apply the suitable load 

balancing algorithm according to the status of the load. Besides that, a fuzzifier is used to decide the 

degree of balance for every Virtual Machine (VM) based on CPU speed and the assigned load so that this 

information can enhance the process of assigning the load to the suitable VM. 

1.2 Statement of the Problem 

Complex systems such as cloud systems where number of access users increased, suffer from burstness 

in workload. Bursty workload degrades the efficiency of the load balancing algorithm and thus adversely 

affects the performance of the cloud computing system. However, this problem is not well covered by 

researchers. 

1.3 Objectives 

1.3.1 Main objective 

Our main objective in this research is to propose an adaptive load balancing algorithm that works 

efficiently under both normal and bursty workloads. 

1.3.2 Specific objectives 

The specific objectives of our research are: 

 Find the best configuration that generates a bursty workload. 

 Evaluate the traditional scheduling algorithms under bursty workload. 

 Find the best load balancing algorithm that can work efficiently in normal load. 

 Find the best load balancing algorithm that can work efficiently in high load. 

 Identify the start point and the end point of burst. 

 Develop a suitable algorithm that can swap between the load balancing algorithms. 

 Build an agent using fuzzy logic which is responsible for gathering information about VMs in 

order to help the load balancing algorithm in selecting a suitable VM to handle the received 

request. 



4  
 

 Implement the proposed algorithm. 

 Evaluate the proposed algorithm using two metrics: Response Time and Processing Time. 

 Compare the proposed approach with other approaches to make evaluation. 

1.4 Significance of the thesis  

The significant of this research comes from the following main points: 

1. This research is considered as one of the few researches done on load balancing under bursty 

workload. 

2. Adapting the used load balancing process according to the status of the workload. 

3. Dealing with bursty workload case which is an important problem that causes degradation in the 

performance of the load balancing mechanism. 

4. The proposed algorithm can works well under bursty and normal workload. 

5. Enhance the performance of the cloud system under bursty workload. 

1.5 Scope and limitations of the project  

This research aims to propose an efficient adaptive load balancing algorithm which can respond to the 

change in the workload. The work is applied with some limitations and assumption such as:  

 The main concern in this research is to deal with bursty workload problem. 

 The research will focus on resource utilization and response time while other issues such as 

reducing cost and fault tolerant is not considered.  

 The proposed algorithm is a dynamic, non-distributed load balancing algorithm. 

 The performance of the proposed algorithm will be measured using CloudAnalyst simulator. 

 The proposed algorithm will be compared with Round Robin, ESCE, and Random algorithm while 

Throttled algorithm will be excluded. 

1.6 Research Methodology 

The methodology of research which had been followed in order to complete this research and achieve 

our goal presented in Figure 1.2: 



5  
 

 

Figure 1.2 Research Methodology Steps 

1) Literature Review 

Firstly, a review had been done for current techniques used for load balancing in cloud 

computing environment and how they address the burstiness problem. 

2) Study burstiness 

Hard study for burstness and its cases and consequences on the performance of distributed 

systems in general and on cloud systems in specific had been done. 

3) Understand CloudAnalyst Simulator 

CloudAnalyst had been used to simulate the cloud environment in this work. Thus, its 

architecture and classes had been studied in order to know how to make our configuration 

and add the classes of our proposed algorithm so we can test and evaluate it. 

4) Test different load balancing algorithms on CloudAnalyst. 

Different load balancing algorithms had been tested on CloudAnalyst simulator to study its 

performance under burst and non-burst cases.  

5) Develop our proposed solution  

The proposed algorithm for efficiently distributed workload and overcome burstiness 

problem had been developed. 

6) Implement the proposed algorithm 

The proposed algorithm had been implemented and tested on CloudAnalyst. 

Literature Review 

Study Burstines 

Understand CloudAnalyst Simulator 

Test Different Algorithms 

Develop our Proposed Michanism 

Implementation 

Evaluation 



6  
 

7) Evaluate and comparing results  

The evaluation of the system had been done using two metrics: response time and 

processing time. These two metrics had been used to compare the proposed algorithm with 

three popular algorithms which are: Round Robin, ESCE, and Random.  

1.7 Thesis Overview 

The rest of the thesis is organized as follow: Chapter two includes a literature review of the load 

balancing in cloud computing and the burst problem; and a survey on the current approaches which 

addressed this problem. Chapter three defines in detail the proposed approach including the tools and 

the mechanisms used in developing this approach. Chapter four includes experiments and results. 

Finally chapter five presents the conclusions and future works. 

  



7  
 

 

 
 

Chapter 2 
Literature Review and Related Works 

  



8  
 

Chapter 2 Literature Review and Related Work 

“Best performance in lower cost”, is a remarkable principle in IT industry nowadays which leads the 

evolution of computing model to Cloud Computing.  However, despite the fact that Cloud computing 

experiencing a rapid advancement both in academia and industry, the development of cloud computing 

technology is currently at its infancy, with many issues still to be addressed such as load balancing. In 

this chapter we will define cloud computing model and present its types and provisioning services levels. 

In addition we will talk about load balancing issues in cloud computing and specifically we will focus on 

burst workload problem and how it degrades the efficiency of the load balancing algorithm and affect 

the performance of the cloud system. Also we will discuss some related work done in this research area. 

2.1 Cloud Computing 
The fundamental idea of cloud computing was pronounced way back in 1960 by Professor John 

McCarthy, as; “If computers of the kind I have advocated become the computers of the future, then 

computing may someday be organized as a public utility just as the telephone system is a public utility. 

The computer utility could become the basis of a new and important industry” [5]. 

Cloud computing is a type of parallel and distributed system. It consists of a collection of interconnected 

and virtualized computers that are dynamically provisioned and presented as one or more unified 

computing resources. The services delivered to the consumer are based on service-level agreements 

(SLA) which established through negotiation between the service provider and consumers [6].The 

objective of the cloud computing is to provide secure, qualitative, scalable, quick, more responsive, on 

demand, cost-efficient and automatically provisioned services just like: computation services, storage 

services, networking etc. Although those services are geographically distributed all over the world, they 

are provided in a transparent way (location independent) [5].  

Cloud computing can help to improve business performance by making a contribution to control the 

cost of delivering IT resources to any organization. It minimizes the overhead of buying, managing and 

controlling IT resources.  The financial model applied in cloud computing is “Pay-per-Use” so the 

consumer only pay for his needs. 

2.1.1 Cloud Service Model  

The principle of cloud computing is to deliver different computing services on Internet which are 

available as subscription-based services in a pay-per-use model to consumers. These services are 

essentially categorized under three classes as hierarchy as can be seen in Figure 2.1. 



9  
 

  
Figure 2.1 Services Provided by Cloud Computing 

1. Software as a Service (SaaS): 

In this highest level, different types of applications running on cloud environment are provided 

to the customer. The user can access those applications from various devices through a thin 

client interface such as a web browser[7]. For example, Gmail is a SaaS where Google is the 

provider and we are consumers  [8]. 

2. Platform as a service (PaaS): 

This intermediate level provide a platform for developers to deploy there applications which are 

built using programming languages and tools supported by the provider[7] such as: Google App 

Engine (GAE), Microsoft Azure, IBM Smart Cloud, Amazon EC2, and salesforce.com [8]. 

3. Infrastructure as a Service (IaaS): 

The last level provides a fundamental computing resources such as processors, storage, and 

resources [7]. For example:  Storage services provided by AmazonS3, and Amazon EBS; and 

Computation services provided by AmazonEC2, and Layered tech [8]. 

2.1.2 Cloud Deployment Model 

Cloud systems can be deployed in four forms which are: private, public, community and hybrid cloud 

depending on access allowed to the users as shown in Figure 2.2. They are classified as follows: 

 

Figure 2.2 Types of Cloud Computing Model 

1. Public Cloud: 

This model allows cloud environment as openly or publically accessible. It is available from a 

third party service provider through the Internet. This deployment model is implemented for 

general users and it is managed and controlled by an organization selling cloud services. It is 

very cost effective for small and midsize business (SMBs) to deploy IT solutions [8] [9] [5]. 



11  
 

2. Private Cloud: 

This deployment model is built specifically to provide the services within an organization and is 

exclusively used by their employees at organizational level. It is managed within an organization 

and this makes it more secure than the public one. This deployment model is suitable for large 

enterprises [8] [9] [5].  

3. Hybrid Cloud: 

Hybrid cloud is an amalgamation of private and public cloud. The participating clouds interact 

together by some standard protocols. In this deployment model, the organization can deploy 

some services in their own private cloud while other services can be provided by a public cloud 

[8] [5].  

4. Community Cloud: 

This cloud model is shared and managed by number of related organizations with shared 

concerns such as security requirements, mission, and policy considerations [8] [5]. 

2.1.3 Cloud Components  

Cloud computing solution is made up of three main elements as shown in Figure 2.3: clients, data 

centers, and distributed servers. Each one of these elements plays a specific role in service provisioning 

process [10]. 

 

Figure 2.3 Three Components Make Up Cloud Solution [10] 

1. Clients 

Clients are the devices that the end users interact with to manage their information on the 

cloud. They might be computers, laptops, tablet computers, mobile phones, or PDAs [10]. 

2. Datacenter 

The datacenter is the collection of servers where the application to which you subscribe is 

housed [10].  In order to minimize the number of physical servers needed to host tremendous 

numbers of applications, virtualization technology is used. This technology allows one physical 

server to contain a large number of virtual servers. In this way, power and costs of running 

dozens of servers can be minimized [10]. 

Clients 

Intern

et 

Distributed Servers 

Datacente

r 



11  
 

3. Distributed servers 

Those servers are distributed in geographically disparate locations but they act together to 

appear to the cloud subscriber as they are all next to each other [10]. 

2.1.4 Virtualization 

Cloud paradigm offers remarkable advantages through reduction operation costs, decreasing power 

consumption, and server consolidation. One of the most important technologies that enabled these 

features is virtualization, and more particularly machine virtualization [11]. 

Machine virtualization (also known as processor virtualization) allows a single physical machine to 

emulate the behavior of multiple machines, with the possibility to host multiple and heterogeneous 

operating systems (called guest operating systems or guest OSs) on the same hardware. This means that 

several logical servers run on one physical machine so costs of deployment are reduced [11] [12]. 

There are three main characteristics make virtualization technology ideal for cloud computing [13]: 

1. Partitioning: many virtual machines are supported in a single physical machine by partitioning 

the available resources.  

2. Isolation: every virtual machine is isolated from other virtual machines so if one virtual machine 

crashes, it doesn’t affect the other virtual machines. This prevents the cloud system from being 

down.  

3. Encapsulation: cloud system provides different applications and services. Encapsulation can 

protect each application so that it doesn’t interfere with another application. 

2.1.5 Issues and Challenges of Cloud Computing 

The research on cloud computing is still at the early stage. Several new challenges keep emerging from 

industry applications, and many issues need to be properly addressed. Some of the challenging research 

issues in cloud computing is as follows: 

1. Security and Privacy 

One of the more obvious cloud concerns is how to address security and privacy issues while 

accessing data and applications by different users. Organizations have critical concerns about 

protecting its data from being vulnerable to different attacks as the data is stored,  processed 

and moved outside the control of the organization [5].  

 

2. Performance 

According to the survey of International Data Corporation (IDC), performance is the second 

biggest issue in cloud adoption after security. Performance is a competitive feature for cloud 

provider as cloud must provide improved performance when a user moves to cloud 

infrastructure. Several issues may degrade the cloud performance such as disk space, limited 

bandwidth, lower CPU speed, and memory and network connections [5].  

 

 

 



12  
 

3. Resource Management and scheduling 

Resource management is a very important issue in cloud computing, as large numbers of users 

shared the same resources. So in order to meet Quality of Service (QoS) standards and insure 

best resource utilization, proper resource management mechanisms should be used in deferent 

levels, such as management of memory, disk space, CPU’s, cores, threads, VM images, I/O 

devices etc. Resource provisioning can be defined as allocation and management of resources to 

provide desired level of services. Job scheduling is an essential process in resource provisioning 

where the order of the job execution is established in order to optimize performance 

parameters such as response time, processing time, waiting time … etc. [5]. One of the most 

important issues in job scheduling is load balancing which is our interest in this work. 

2.2 Load Balancing 
The scale up in demands make load balancing a major concern in cloud computing. It is defined as 

method to distribute workload across one or more servers, network interfaces, hard drives, or other 

computing resources. Load balancing is used to make sure that none of your existing resources are idle 

while others are being utilized [3]. Some of the main goals of load balancing as pointed out by  [14] [6] 

are: 

1. Achieve overall improvement in the system performance. 

2. Decrease the response time. 

3. Increase the system throughput. 

4. Decrease overhead on the cloud system components. 

5. Maintain system stability in emergency situations such as sudden surge of arrivals. 

6. Optimize resource utilization. 

2.2.1 Mathematical Definition: 

The mathematical model of load balancing is defined as follows: 

Let say that there are n set of Load or requests need to be scheduled given as[15, 16]:  

    {              }  (1) 

And there are K set of Virtual Machines in a Datacenter given as: 

   {              }  (2) 

The current Datacenter load is the set of load for all virtual machines in this datacenter given as: 

    {                } (3) 

We need to find a function f(L), which the set of load L can be mapped to the set of Virtual Machines V, 

making the Load VLi  of each Virtual Machine Vi be essentially equal, that is: 

                   (4) 



13  
 

Let us use τo to reflect the time needed for executing task Lo on the Virtual Machine Vi, so the time 

needed for executing all the tasks on the Virtual Machine Vi is as follows: 

    ∑                      (5) 

When k =1, that means there is only one Virtual Machine, and all the tasks should be executed serially 

on this Virtual Machine, so the time needed is the sum of all the time, which can be represented as T1 

shown below: 

    ∑               (6) 

When K > 1, that means there is more than Virtual Machine, and the tasks can be shared to multiple 

server nodes for dealing with in parallel, the time needed is represented as Tk shown below: 

                    (7) 

Thus, the goal of the load balancing is to solve the mapping f(L) to get the minimum of Tk in case of   

                  

2.2.2 Categories of Load Balancing Algorithms  

 Basically there are 2 types of load balancing algorithm depending on their implementation method: 

1) Static Algorithms 

In this type, the load is divided equivalently between nodes. This algorithm depend on Prior 

knowledge of the system it does not consider the current state of the node and this will degrade 

the performance of the system. This type of algorithms is announced as round robin algorithm 

[3, 17]. 

2) Dynamic Algorithms 

Dynamic algorithms make decisions based on current state of the system. No prior knowledge is 

needed[3].  So workloads can be distributed efficiently over nodes. Dynamic load balancing can 

be done in two ways: [18] 

• Distributed dynamic load balancing: 

In the distributed one, all nodes in the system execute the dynamic load balancing algorithm 

and the task of load balancing is shared among them. The advantage of this way is that if 

one or more nodes in the system fail, the system performance will be affected to some 

extent, but it will not cause the total load balancing process to halt. 

• Non-distributed dynamic load balancing:  

In the non-distributed one, the load balancing algorithm is executed by a single node of the 

system and the task of load balancing is dependent only on that node. Unlike distributed 

algorithm, the failure in one node will cause the total load balancing process to halt. 

In comparison between static and dynamic algorithms, static (Round Robin) algorithms are based on 

simple rule in dividing the loads among nodes but this leads to more loads conceived on servers and 

thus imbalanced traffic discovered as a result. However; dynamic algorithm predicated on query that 



14  
 

can be made frequently on servers, but sometimes prevailed traffic will prevent these queries to be 

answered, and correspondingly more added overhead can be distinguished on network [17]. 

2.2.3 Popular Load Balancing Algorithms for Cloud Computing 

1. Round Robin 

Round Robin is one of the simplest scheduling techniques. It is a static algorithm, which 

distributed the load equally to all the nodes[18].  Using this algorithm, the allocation of VMs to 

nodes is done in a cyclic manner. The scheduler starts with a node and moves on to the next 

node, after a VM is assigned to that node.  This process is repeated until all the nodes have been 

allocated at least one VM and then the scheduler returns to the first node again. As an example, 

if there are three nodes and three VMs are to be scheduled, each node would be allocated one 

VM, provided all the nodes have enough available resources to run the VMs [19]. 

Problem with this kind of algorithm is that these algorithms are not able to handle bursty 

workloads. Even these algorithms do not consider the current situation of each node of the 

system [18]. 

 

2. Equal Spread Current Execution (ESCE) 

It is spread spectrum technique in which the load balancer spread the load of the job in hand 

into multiple virtual machines [20]. It focuses on preserving equal load to all the virtual 

machines connected with the data center. In this algorithm [21] the load balancer maintains an 

index table of VMs as well as number of requests currently assigned to the VM. When the data 

center receives a request, it scans the index table for the least loaded VM. If there are more 

than one VM has the least load then the first founded is selected. The load balancer returns the 

Id of the reserved VM to the data center. Then the load balancer updates the index table by 

increasing the allocation count of the reserved VM by one. When VM completes the assigned 

task, the load balancer decreases the allocation count of the VM by one. If there is a VM that is 

free and there is another VM that needs to be freed of the load, then the balancer distributes 

some of the tasks of that VM to the free one so as to reduce the overhead of the former VM 

[20]. 

 

3. Simple Random 

Random is a very simple algorithm. In this algorithm [22] the received task is assigned randomly 

to the available VM without any considerations of the status of the VM.  Hence, this may result 

in the selection of a VM under heavy load and the job requires a long waiting time before 

service is obtained. On the other hand random algorithm has low complexity as it does not need 

any overhead or pre-processing to select a VM. 

 

4. Throttled Load Balance Algorithm (TLB) 

In this algorithm the load balancer maintains an index table of virtual machines as well as their 

states (Available or Busy) [21].  When the data center receives a task, it makes a request to the 

load balancer to find a suitable virtual machine (VM) to perform the recommended job. The load 

balancer scans the index table from top until the first available VM is found, and then the load 



15  
 

balancer accepts the task and allocates that VM.  If there is no VM available then the load 

balancer returns -1 and the task is queued. 

In our Adaptive algorithm, based on experiments results, Round Robin will be used in low workload 

cases while Random will be used when burst occurs. For evaluation process, the performance of the 

Adaptive algorithm is compared with three algorithms: RR, ESCE and Random while TLB is excluded 

because when there is no VM available the task is not processed and it is queued in the Data Center. So 

at the end of simulation time the number of processed tasks is not equal to the Adaptive algorithm and 

the other three algorithms and this may affect the comparison results. 

2.2.4 Evaluating Load Balancing Algorithm 

There are many criteria for evaluating the performance of load balancing algorithm [23]: 

 Average response time per unit time. 

 Average waiting time per unit time. 

 Average processing time per unit time. 

 Workload(requests) to be serviced per second(Mbps) or a unit of time 

 Throughput (Req / Sec), this criterion will be recovered recovery, buffering capacity and 

processing power factors 

 Percentage of CPU utilization 

 The number of requests executed per unit time 

 The number of requests per unit time buffer 

 The number of rejected requests per unit time.  

The response time criterion considered as the most important one as it covers all other factors 

completely [23]. 

2.2.5 Bursty Workload 

One of the most challenging problems that dramatically degrade the performance of load balancing 

process is burstiness in workload. 

Bursty traffic refers to an uneven pattern of data transmission: sometime very high data transmission 

rate while other time it might be very low [4]. Burstiness occurs in workloads in which bursts of requests 

aggregate together during short periods of time and create periods of peak system utilization. Figure 2.4 

shows three different level of burstiness: strong, week, and no burstiness. 



16  
 

 

Figure 2.4 Three Different Levels of Burstiness 

This problem is often observed in systems including web based applications[24], grid services[25], 

multitier architectures [26], large storage systems [27]. It can dramatically degrade the system 

performance, make the system unavailable and lead to a total failure. Burstiness considered the most 

complex problem nowadays in cloud computing as the number of users that uses cloud services, 

increases day by day. Therefore load balancer must consider the performance of each instance under 

both bursty and non-bursty workloads for best performance. 

Adaptive algorithm is supposed to deal with different burstiness levels. 

2.3 Fuzzy Logic 
In our proposed algorithm fuzzy logic is used in order to decide the balancing degree of VM depending 

on the processor speed and the assigned load on the VM. The logic of computers in making decision is 

based on “true or false” (1 or 1) Boolean Logic. However, in real life this logic is not practically 

applicable. People use uncertainty natural language terms such as “Slightly”, ”Somewhat”, “SortOf”, “A 

Few”, “Mostly”, … etc. to express their opinion and decisions. 

In 1960s, Dr. Lotfi Zadeh of the University of California at Berkeley was working on the problem of 

computer understanding of natural language. In fact, it is not easy to translate natural language terms 

into absolute terms of 0 and 1 so Dr. Zadeh introduce the concept of partial truth which indicats that 

Truth values are between “completely true” (1) and “completely false” (0); and this is the base idea of 

Fuzzy logic [28].  

Fuzzy logic is the soft computing approach to compute based on “degrees of truth” rather than the usual 

“true or false” logic. Lotfi Zadeh says that fuzziness involves possibilities. For instance, for numbers from 

1 to 6, it’s possible that 6 is a large number, while it’s impossible that 1 or 2 are large numbers. In this 

case, a fuzzy set of possible large numbers includes 3, 4, 5, and 6 [28]. 

N
u

m
b

er
 o

f 
A

rr
iv

al
s 

N
u

m
b

er
 o

f 
A

rr
iv

al
s 

N
u

m
b

er
 o

f 
A

rr
iv

al
s 

Time Time Time 

(a) Strong Bursty (b) Week Bursty (c) Non-Bursty 



17  
 

2.3.1 Systems Use Fuzzy Logic 

Fuzzy logic methodology can be utilized in solving the problems that are complex to be analyzed 

quantitatively or are not easy to be modeled mathematically such as estimating, decision-making, and 

mechanical control systems. There are five types of systems where fuzziness is necessary or beneficial 

[28]: 

1. Complex systems which are difficult or impossible to model. 

2. Systems controlled by human experts. 

3. Systems with complex and continuous inputs and outputs. 

4. Systems that use human observation as inputs or as the basis for rules. 

5. Systems which are naturally vague, such as those in the behavioral and social sciences. 

2.3.2 Fuzzy System Components 

A general Fuzzy System mainly involves the following components as shown in Figure 2.5 [29]: 

 

Figure 2.5 The General Architecture of the Fuzzy Logic System [29] 

To clarify the concept of fuzzy system and explain the job of each component, we will take air 

conditioner system as simple example of fuzzy system. The conditioner system has two inputs: current 

room temperature and the target temperature; and one output: the result command. The linguistic 

variables for temperature input are:  

- Cold and its interval [0o - 10o] 

- Worm and its interval [11 o - 20 o] 

- Hot and its interval [21 o - 50 o].  

For target input the linguistic variables are:  

- Cold and its interval [0o - 10o],  

- Worm and its interval [11 o - 20 o],  

- Hot and its interval [21 o - 50 o].  

For output, the linguistic variables for command are:  



18  
 

- Heat and its interval [25 o - 45 o] 

- Cool and its interval [3 o - 20 o] 

- worm and its interval [21 o - 25 o] 

1. The Fuzzifier  

The Fuzzifier is the first station in the fuzzy system. It receives the input value in numerical 

(Crisp) form, and then it maps the given numerical inputs to fuzzy sets and linguistic variables 

[29]. 

According to our example let’s say that the temperature = 30o, and the target = 10o. So the 

fuzzifier will find the linguistic variables for the numerical inputs which are: temperature = hot, 

and the target = cold. 

2. The Rule Base 

Includes a set of linguistic rules designed in the form (If-Then rules) [29].  For our example the 

rule base are set in Table 2.1  

Table 2.1 Fuzzy Rules for Air Condition System 

Fuzzy Rules 

1 IF temperature is hot and target is cold THEN command is cool 
2 IF temperature is cold and target is hot THEN command is heat 
3 IF temperature is worm and target is worm THEN command is worm 

 

3. The Fuzzy Inference Engine 

It is considered the central part of the fuzzy system. In this stage, in order to produce the 

intended output, the inference engine is applied to a set of rules included in the fuzzy rule base. 

This procedure involves many steps as follows: first, it matches the linguistic variables of the 

input with the rules’ premises. Second, it activates the matched rules in order to deduce the 

resultant of each fired rule, and finally it combines all consequents by using fuzzy set union in 

order to generate the final output which is represented as fuzzy set output [29].  

In our example the inputs match the first rule so it will be fired. 

4. The defuzzifier 

As described in the previous phase, the output is produced as a linguistic variable, which is fuzzy 

and can be interpreted in different ways. Therefore, the fuzzy set output in this stage is 

converted to a crisp output, which is a numerical value [29].  

According to our example, the linguistic for command is cool while the final crisp output is 10. 

  



19  
 

2.4 Related works 
Several approaches had been proposed to handle the load balancing issues in cloud computing systems. 

All these works aimed to improve the process of distributing the workload among cloud nodes and try to 

achieve optimal resource utilization, minimum data processing time, minimum average response time, 

and avoid overload. However most of these approaches neglected the effect of burstiness on load 

balancing process which degrades the performance of the system. This section presenting some 

researches had been done in this area. The related works is organized under three classes. Firstly, 

researches which address load balancing in cloud computing. Then researches which deal with burst 

problem in load balancing in cloud computing. Finally, the researches which deal with burstness 

problem in deferent distributed systems. 

2.4.1 Load Balancing in Cloud Computing Approaches: 

Ratan and Anant in [3] proposed an ant colony optimization to initiate the service load distribution 

under cloud computing architecture. It mimics the use of the pheromone by ants to select the optimal 

path that leads to their destination.  In the same way, selecting a node to process a request is based on 

a Pheromone Table which contains a probability of each node to be selected to serve the received 

request. The node with high probability is selected and then the pheromone table is updated by 

increasing the probability of this node and decreasing other nodes probabilities. The pheromone update 

mechanism has been proved as an efficient and effective tool to balance the load. 

The researches mentioned that their technique did not consider the fault tolerance issues. In addition 

burstiness load cases are not considered in the proposed algorithm.  Neglecting these important issues 

degrade the efficiency of this algorithm. 

Sethi, et al in [30] designed a new load balancing technique using fuzzy logic based on Round Robin (RR) 

algorithm to obtain measurable improvements in resource utilization and availability of cloud-

computing environment. The proposed technique uses a fuzzifier to perform the fuzzification process 

that converts two types of input which are processor speed and the assigned load of Virtual Machine 

(VM) and one output which is a balanced load to create an inference system. The Fuzzy based Round 

Robin (FRR) load balancer compared to conventional Round Robin (RR) load balancer where the 

experimental results show that FRR minimize the data center processing time and overall response time. 

The problem with Round Robin algorithms in general that it is not able to handle bursty workloads. Even 

with the proposed enhancement on RR by using fuzzy logic burstiness cases are not considered. 

Dave and Maheta in [31] proposed new load balancing algorithm based on round robin algorithm, they 

made a modification on round robin algorithm by implementing a dynamic time Quantum based on 

algorithm execution round. The result showed an improvement in response time as compared to normal 

round robin algorithm. The drawback of this paper that authors had focused only on how to decrease the 

response time and they ignored talk about processing cost. In addition, the researchers compared their 

results with only RR algorithm which had been enhanced and improved by many researchers before. 

Singhal and Jain in [32] proposed a load balance algorithm using Fuzzy Logic, the algorithm focused on a 

public cloud. The main idea of the algorithms is to partitioning the Cloud to several cloud partition and 



21  
 

each partition having its own load balancer, and there is a main controller which manage all these 

partition. And with the idle partition status they used a fuzzy logic and in the normal partition status 

they used a global swarm optimization based load balancing strategy. The result showed enhancements 

in resource utilization and availability in cloud computing environment. The drawback of this approach is 

difficulty of testing the technique in a real environment to make sure that it has achieved good results. 

2.4.2 Load Balancing Approaches for Burst Workload in Cloud Computing: 

Jianzhe T., et al in [33] proposed a smart burstiness-aware algorithm (ARA) to balance bursty workloads 

across all computing sites, and thus to improve overall system performance. The presented algorithm 

predicts the beginning and the end of workload bursts and automatically on-the-fly shift between two 

schemes “greedy” (i.e., always select the best site) which has better response time under the case of no 

burstiness, and “random” (i.e., randomly select one) which has better response time under burstiness 

case. Both simulation and real experimental results show that this algorithm improves the performance 

of the cloud system under both bursty and non-bursty workloads. 

Although this algorithm give good results, but it does not consider an important factor in load balancing, 

which is the current utilization of available resources. 

Mehta, et al in[18] proposed a dynamic load balancing model that considers utilizing resources under 

burstiness cases. They suggest an architecture which consists of four parts: Cloud controller server, 

Node controller server, Agents, and Virtual machines. All requests will first go to the cloud controller 

server then it will be transferred to the load balancer. Finally a virtual instance is selected by the load 

balancer based on the information supplied by the monitoring agent about CPU usage, memory and 

storage space usage. 

The researchers claimed that this algorithm will ensure the optimum utilization of cloud resources, 

faster response time, and cut the economic cost for an organization. However they did not do any 

experiments or evaluations for their work. 

Naik and Patel in [34] proposed load balancing under bursty environment for Cloud Computing. They 

present a dynamic load balancing algorithm which maintains the state of all virtual machine (VM) 

resources, and based on CPU, memory and storage space utilization, selects the less utilized VM 

resource to handle the request. They used a monitoring agent to continuously monitor the CPU usage, 

memory and storage space usage, and the current and the expected load for each virtual machine. 

Based on this information a Pheromone (or probability) assigned for every VM. When a request arrivers 

to the datacenter the load balancer transfer the request to the VM which has the least Pheromone. 

Authors mentioned that their algorithm improved the performance but they did not provide any 

comparisons with other load balancing algorithms and they did not put their experiments results. 

Ghorbani, et al in [35] proposed an approach to overcome the un-utilized resource provisioning and the 

power consumption problems under bursty and fractal behavior workload. It consists of two phases for 

resource utilization provisioning called “predictive and reactive provisioning”. Firstly the forecasting 

module predicts the workload for the next control horizon, and then the controller estimates the 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ghorbani,%20M..QT.&newsearch=true


21  
 

number of necessary resources such as processing cores, for the predictable part of the incoming load. 

In order to avoid consequences of forecasting errors, the system allocates extra resources that can be 

used to serve unpredictable load. This allocation is made based on the history of the system operation.  

The proposed approach improves the resource utilization and the power consumption. On the other 

hand, if some prediction error happens beyond the estimation of the extra resources, it would be 

subject to delay in getting the resource till the system allocates available resources. 

2.4.3 Load Balancing Approaches for Burst Workload in Other Distributed Systems: 

The problem of bursty workload exists in other fields. For example, Chin, et al in [24] proposed a load 

balancing algorithm which applies to the local Domain Name Service (DNS) server for bursty web 

application traffic. The proposed load balancing algorithm is based on a performance indexing of each 

node in the server farm in order to select the most suitable nodes for the next task distribution. The 

performance indexing takes into account the current server load and the server performance metric of 

the server itself. 

Zhang, et al in [36] proposed two hybrid schedulers, Hibred-1 and Hibred-2, which addresses the 

problem of bursty workload on computing grids. The proposed schedulers are using the duplication-

invalidation method [37] which makes duplications of the received request.  The hybrid scheduling 

combines the Qlen scheduler with the Rand scheduler.  Given a global job, the Hybrid-1 scheduler uses 

the shortest queue length to locate the site for the first submission, and the remaining duplications are 

submitted to sites that are randomly selected. The Hybrid-2 scheduler uses the queue length as the 

ranking criterion to select two sites for submissions, and the remaining duplications are submitted to 

randomly select computing sites. Once the requested resources are allocated and the application’s 

resource requirement is met, the application starts to run. Hence, all resources that are allocated later 

become redundant, and should be released. 

There experiments showed that using 2 or 3 duplications can allow the hybrid schedulers to obtain the 

shortest queuing time for most global jobs. Comparing the two schedulers, Hybrid-1 has the advantage 

if strong burstiness is expected. In weak and non-bursty conditions, Hybrid-2 is preferable. 

2.5 Summary 
 In this section detailed information about cloud computing was presented. In addition, load balancing 

was defined and the bursty problem which affect the performance load balancing in cloud computing 

had been clarified. .As shown in this section most algorithms did not consider the bursty workload case. 

Even those who work on bursty case, they failed to address the performance improvements especially 

the response time and the processing time. Also some works did not give a clear evaluation for their 

proposed algorithm to prove their contribution. This led us to think about developing a load balancing 

algorithm that can work efficiently by minimizing the response and the processing time under bursty 

workload.  

 

  



22  
 

 

 

 

 

 

 

Chapter 3 
Proposed Method 

  



23  
 

Chapter 3 Proposed Method 

In this chapter we will present our proposed method for solving performance degradation caused 

by bursty workload. The main idea of the new algorithm is to apply the suitable algorithm depending on 

the requests rate received by the datacenter. Adaptive algorithm consists of three main components: 

Burst Detector, load balancing algorithms, and fuzzifier. Later in this chapter, every step will be 

discussed in details. 

3.1 Adaptive Load Balancing Algorithm 
The request rates received by the datacenter are not constant all the time. Sometimes large number of 

requests aggregated in a small period of time creating a burst. This affect the performance of the load 

balancing algorithm as it increase the processing time and the repose time of the datacenter. The 

performance of several load balancing algorithms differs according to the users’ requests rate.  For 

example some algorithms work efficiently under low workload while its performance degraded under 

high workload and vice versa. To overcome burst problem and benefit from different load balancing 

algorithms advantages we propose a new load balancing algorithm called Adaptive algorithm.   

Adaptive algorithm is a load balancing algorithm used by the datacenter to distribute the received tasks 

efficiently over the virtual machine under bursty workload by swapping between two policies depending 

on the requests rates. It consists of three main components as follows: 

1- Burst detector. 

2- Load Balancing Algorithms. 

3- Fuzzifier. 

When the datacenter receives a request, the burst detector determines the workload state (Normal or 

Burst). Depending on the burst detector decision, the datacenter will select the appropriate load 

balancing policy for that state.  After that the selected load balancing algorithm will assign the received 

task to a suitable VM depending on the information supplied by the fuzzifier. When the VM complete its 

assigned task, it informs the data center. The main steps of the adaptive algorithm are shown in Figure 

3.1. 



24  
 

 

Figure 3.1 Adaptive Load Balancing Algorithm Flow Chart 

 

 

Cloud 

Run Burst Detector  

Is Burst? 

Run Fuzzy RR 
Run Fuzzy 

Random 

V

M 

V

M 

V

M 

V

M 

V

M 

V

M 

Assign Load to 

VM 

Receive Requests 

Yes No 

Fuzzifier 



25  
 

3.1.1 Burst Detector 

The burst detector is responsible for detecting the variation in the workload, and determines whether 

the state of the workload is burst or not using a specific threshold. When a request arrives the burst 

detector checks the rate of the requests in the last 15 minutes if it exceeds the threshold so it indicates 

that the status is burst. Depending on experiments, we found that 15 minutes is a suitable time interval 

which can give view about the requests rate and give evidence of possible burst occurrence. Depending 

on the detector decision, the datacenter will select the proper load balancing policy. 

3.1.2 Load Balancing Algorithm 

The proposed approach uses two load balancing algorithms, one can work efficiently in normal cases 

and the other one can work efficiently in burst cases. As we will see in experiments chapter, Random 

policy performs the best in low workload, and Round Robin performs the best in high workload. 

1. Random Policy: 

When the burst detector decides that the workload state is normal, the random policy will be 

applied. The fuzzifier supply the random policy with a candidate list of more balanced VMs in the 

data center, then the policy will select one of these VMs randomly and assign the received task to it. 

2.  Round Robin Policy: 

Round Robin will be used when workload state is burst. The same as random, the fuzzifier will 

provide candidate list of the most balanced VMs for Round Robin policy. Then Round Robin will use 

this list to allocate VMs in a cycle manner. 

3.1.3 Fuzzifier 

The main function of fuzzifier is to enhance the decision of the load balancing algorithm by providing a 

list of the most balanced VMs in the data center and deliver it to the load balancer to allocate one VM in 

this list. 

The fuzzifier is consisting of Fuzzy Inference System (FIS) to simulate the way of human decision making 

by using fuzzy control rules and linguistic parameters. In our wok, the FIS uses two inputs which are 

processor speed and the load in VM, and balanced load as the output. Twelve IF-THEN rules are 

proposed for FIS to be used in taking the decision. Those rules are based on previous studies such as 

[30].The IF-THEN rules are stated in Figure 3.2 below: 

 

Figure 3.2 Base Rules for FIS 



26  
 

The member functions for the two inputs (processor speed and the load in VM) and the output is 

presented in Figures 3.3, 3.4, 3.5 respectively. 

 

Figure 3.3 Membership input function of Processor Speed 

 

Figure 3.4 Membership input function of Assigned Load 

 

Figure 3.5 Membership output function of Balanced Load 



27  
 

For our FIS we use open source Java library called jFuzzyLogic [38] which offers a fully functional and 

complete implementation of a fuzzy inference system according to International Electrotechnical 

Commission (IEC) 1  standard, providing a programming interface and Eclipse plugin to easily write and 

test code for fuzzy control applications [39, 40]. 

 

3.2 Implementation 
The implementation of the Adaptive Load Balancing Algorithm is done using Java programming language 

because Cloudsim - the simulator used in experiments- is built using java. 

Table 3.1 present the pseudo code for the proposed algorithm. 

The Adaptive algorithm starts with collecting information about the CPU speed and the current load for 

every VM. That information used by the fuzzifier which decides the balanced degree for every VM. Then 

the requests rate in last 15 minutes is checked if it is higher than a threshold, this indicates that there is 

a burst so the fuzzy RR is applied. Otherwise, the fuzzy Random is applied. Table 3.1 below presents the 

pseudo code for Adaptive Algorithm. 

Table 3.1 Pseudo code for Adaptive Load Balancing Algorithm 

Algorithm 3-1     ADAPTIVE LOAD BALANCING  

Input: : requestRate  Number of  received requests in last 15 minutes 

Output: vmid  The ID of the selected VM 

1. CALL Fuzzifier() 

2. IF (requestRate > threshould) THEN vmid ← fuzzyRR() 

3. ELSE  vmid ← fuzzyRandom() 

4. RETURN vmid      //return the allocated VM ID to the Data center 

 

The Fuzzy Roiund Robin has the same concept of original Round Robin. It allocates VMs to nodes in a 

cyclic manner. The main difference between RR and Fuzzy RR is that the original RR is static because the 

selection of VM does not built on information about VM while Fuzzy RR uses FIS to detect the balanced 

level of the VM then the RR concept is applied on a set of the most balanced VMs. The Fuzzy RR selects 

the next VM from the set which contains the high balanced load VMs. If the set is empty then the 

selection process will be done on the set with medium balanced load VMs. If it is empty this means that 

the system is under very high load and the selection will be on the low balanced set. 

Fuzzy Random is applied when there is no burst. Instead of allocating VM randomly an improvement is 

done on Random algorithm to make the allocation process wiser. The same as Fuzzy RR, the FIS classify 

the VMs into three classes, high balanced, medium balanced, and low balanced. The Fuzzy Random 

                                                           
1
  The International Electrotechnical Commission (IEC) is the world’s leading organization that prepares and publishes 

International Standards for all electrical, electronic and related technologies. 



28  
 

allocates VM in the high balanced set randomly. If it is empty it will allocate one from the medium 

balanced. If it is empty it will select one from the low balanced VMs set. 

The Fuzzifier scan the VMs periodically every 1 sec, in order to classify them under three classes high 

balanced, medium balanced and low balanced. The fuzzifier take the decision based on information 

about the VM specifically processor speed and current assigned load. Depending on predefined IF-THEN 

Rules the fuzzifier decide the balance level on the VM and put it in the high balanced, medium balanced 

or low balanced set. Table 3.2 illustrates the Fuzifier Pseudo Code.  

Table 3.2 Pseudo code for Fuzzifier 

Algorithm 3-2     FUZZIFIER  

Input: processorSpeed  VM processor speed, 

              vmid VM Id,  

              assignedLoad Current load for VM. 
Output: highBalancedLoad[0…k] list of VM with high balanced load,  

                 mediumBalancedLoad[0…m] list of VM with medium balanced load,  

                 lowBalancedLoad[0…n] list of VM with low balanced load. 

1. //set input variable for fuzzy inference system 

2. setVariable("processor_speed", processorSpeed) 

3. setVariable("assigned_load", assignedLoad) 

4. // get fuzzy output result 

5. balancedLoad ← getVariable("balanced_load").getValue() 

6. IF (balancedLoad IS high) THEN 

7.     highBalancedLoad[count+1]← vmid 

8. ELSE IF (balancedLoad IS medium) THEN 

9.     mediumBalancedLoad[count+1]← vmid 

10. ELSE IF (balancedLoad IS low) THEN 

11.     highBalancedLoad[count+1]← vmid 

12. ENDIF 

 

3.3 Summery 
In this chapter the Adaptive algorithm was presented and discussed in details. The Adaptive algorithm 

has three main components:  burst detector, load balancing algorithms, fuzzifier. The burst detector is 

responsible for detecting the status of the workload if it is bursty the Fuzzy RR is applied; otherwise the 

Fuzzy Random is applied. Fuzzy RR and Fuzzy random allocate VM based on the information supplied by 

the fuzzifier which classify the VMs into three classes high balanced, medium balanced and low 

balanced. The Fuzzy Random and the Fuzzy Round Robin select one VM from the high balanced class 

(randomly or in cyclic manner) and assign the received request to it. 



29  
 

 

 

 

 

Chapter 4 
 Experiments and results 

  



31  
 

Chapter 4 Experiments and Results 

The performance of load balancing algorithms varies according to the intensity of the received 

requests. One of the problems which cause degradation in the performance of load balancing algorithm 

is bursty workload. In this chapter we will present the experiments had been done on the proposed 

method and compare it with other load balancing algorithms.  The experiments are divided into three 

parts. The first part presents a study for the performance of load balancing algorithms in normal and 

burst workload. The second part consists of experiments which helped us to choose the best algorithm 

for high load cases and the best algorithm for low load cases to be used in our proposed algorithm. The 

third part contains the experiments which test and evaluate the performance of the proposed 

algorithm.  

For every experiment, firstly we will present in details the objective, configuration and the result for 

every experiment. And then at the end of each part, we shall summarize and discuss all the experiments 

results. All experiments are done using CloudAnalyst Simulator [41], and the simulation duration is one 

day. 

4.1 Cloudsim Simulator 
The proposed algorithm should be tested in a cloud computing environment. For that purpose we have 

two choices, either use a real test beds such as Amazon EC2 or use simulation tools to simulate a cloud 

environment. In our work we prefer to use simulator for several reasons: 

1. The experiments on real cloud environment will be limited to the cloud provider configurations, 

so tests cannot examine different configurations. 

2. The conditions prevailing in the Internet-Base environment are beyond the control of the tester 

and this may affect the tests results. 

3. Applying tests on real cloud incurs payments. 

Table 4.1 presents a comparison between real cloud and simulator [42] 

Table 4.1 Real Cloud and Simulator Comparison 

Real Cloud Simulator 

Experiments cannot examine different 
configuration. 

Provide possibility to evaluate the hypothesis using 
different configurations. 

Internet environment is out of control. 
The tester can generate different Internet 
environments which serve his hypothesis. 

Experiments incur payments 
Allow repeatable and controllable experiments 

without costs 

 

There are varieties of simulators for modeling cloud computing but CloudSim is one of the best. 

CloudSim is an open source Java-based simulation toolkit developed by the GRIDS Laboratory at 

University of Melbourne[43]. It is an extensible simulation toolkit that enables modelling and simulation 



31  
 

of Cloud computing environments [44]. The CloudSim toolkit supports modeling of infrastructures 

containing Cloud Data Centers, Virtual Machines (VM), users, user workloads, and pricing models [45].  

4.1.1 CloudAnalyst Simulator 

CloudAnalyst is a tool developed at the University of Melbourne. It is a graphical simulation tool based 

on Cloudsim for modeling and analysis behavior of cloud computing environment, which supports visual 

modeling and simulation of large-scale applications that are deployed on Cloud Infrastructures [43, 45, 

46]. As depicted in Figure 4.1 CloudAnalyst is built directly on top of CloudSim toolkit, adding GUI 

feature which gives a high capability of configuration in quick and easy manner.  In this various 

configuration parameters can be set like number of users, number of request generated per user per 

hour , number of virtual machines, number of processors, amount of storage, network bandwidth and 

other necessary parameters [20]. 

 

Figure 4.1 CloudAnalyst Archeticher [20] 

The main features of CloudAnalyst are the following: [45] 

1. Easy to use Graphical User Interface (GUI). 

2. Ability to define a simulation with a high degree of configurability and flexibility. 

3. Repeatability of experiments. 

4. Graphical output which shows the results in the form of chart and tables which is easy to 

understand. 

4.1.2 CloudAnalyst Components: 

The main components of CloudAnalys simulator are: 

1. Region: CloudAnalyst divide the world into 6 regions. Those regions are the 6 main continents in 

the world. This segmentation provides a level of realistic for the large scaled simulation being 

attempted in the CloudAnalyst. Cloud entities such as User Bases and Data Centers are 

distributed over those regions[20].  

 

2. UserBase: This component models a group of users and generates traffic representing the users. 

A single User Base may represent thousands of users but is configured as a single unit and the 

traffic generated in simultaneous transmission represents the size of the user base[20].  

 



32  
 

3. Datacenter: The core hardware infrastructure services are modeled in the simulator by a 

Datacenter component. It encapsulates a set of compute hosts (servers) that can be either 

homogeneous or heterogeneous as regards to their resource configurations[42]. 

 

4. Host: This class models a physical server in Data Center. Configuration of this component 

includes the amount of memory and storage, a list of processing elements (to represent a multi-

core machine), an allocation policy for sharing the processing power among virtual machines 

(space-shared, time-shared), and policies to provisioning memory and bandwidth to the virtual 

machines [47].  

 

5. VirtualMachine: This class models an instance of a VM, whose management during its life cycle 

is the responsibility of the Host component. The Host can simultaneously instantiate multiple 

VMs and allocate cores based on predefined processor sharing policies (space-shared, time-

shared).  Vertual Machine is responsible for processing the received requests[44].  

 

6. VMProvisioner: This abstract class represents the provisioning policy for allocating VMs to 

Hosts. The chief functionality of the VMProvisioner is to select available host in a data center, 

which meets the memory, storage, and availability requirement for a VM deployment. The 

default SimpleVMProvisioner implementation provided with the CloudSim package allocates 

VMs to the first available Host that meets the aforementioned requirements[42].  

 

7. VmLoadBalancer: Data center controller uses VM load balancer to determine which VM should 

be assigned the next requests (Cloudlet) for processing [48].  

 

8. InternetCloudlet. An InternetCloudlet is a grouping of user requests. The number of requests 

bundled into a single InternetCloudlet is configurable in CloudAnalyst. The InternetCloudlet 

carries information such as the size of a request execution command, size of input and output 

files, the originator and target application id used for routing by the Internet and the number of 

requests [46].  

Figure 4.2 presents the main components of CloudAnalyst simulator 



33  
 

 

Figure 4.2 Main Components of CloudAnalyst Simulator [46] 

 All those components described above and some other components work together to simulate the 

interaction between the provider and the consumer. Let us see how those components deal with users 

requests and what is the sequence of processing those requests in Figure4.3 [48]. 



34  
 

 

Figure 4.3 Routing of User Requests [48] 

1. First of all the User Base generates an Internet Cloudlet which encapsulate the application id 

and the name of user base. 

2.  Then the REQUEST (Cloudlet) is sent to the Internet. 

3. The Internet asks the Service Broker to select a data center. 

4. The Service Broker sends information about the selected data center to the Internet. 

5. Depending on the data center geographical location the Internet adds appropriate network 

delay with the REQUEST and sends to the selected data center controller. 

6. Selected data center controller uses any one of the virtual machines load balancing policy. 

7. VmLoadBalancer assign the request to the selected VM. 

8. Selected data center sends the RESPONSE to the Internet after processing the REQUEST. 

9. The Internet sends the RESPONSE to the User Base. 

4.1.3 CloudAnalyst Metrics 

One of the most important features of CloudAnalyst is that it gives a final report for the simulation 

result. This report summarizes the results of some metrics which are used for evaluation process. Those 

metrics are listed below [23]: 

1. Overall response time: Minimum, Maximum and Average in ms. 

This metric presents the overall response time for the whole cloud system. The Average 

score present the average response time for all user bases, while the Minimum and the 

Maximum present the highest and the lowest response time between user bases. For 

evaluation process, researchers considered the average response time to compare their 

works with others.  



35  
 

2. Overall processing time in the data center: Minimum, maximum and average in ms. 

The same as response time CloudAnalyst calculate the average processing for all the 

data centers. Also it presents the highest and the lowest processing time scored 

between all the data centers. 

3. Response time per user :Minimum, maximum and average 

For every user base, the minimum, maximum and average response time is calculated 

and presented in a summery table. 

4. Minimum, maximum and average time per data center. 

For every data center, CloudAnalyst calculate the minimum, maximum and average 

processing time and present it in a summery table. 

5. Cost of execution in $ 

The final result report gives details about the cost of execution considering: 

 Virtual machine total cost.  

 Cost per VM of Data Center. 

 Cost of data in each data center. 

 Total cost in each data center. 

4.2 Evaluation Metrics 
In this research our goal is to improve the performance of cloud system. In order to evaluate the 

performance of our proposed algorithm we select the most important metrics which are: 

1. Average response time:  It can be measured as, the time interval between sending a request 

and receiving its response. It should be minimized to boost the overall performance [49]. 

2. Average processing time:  It is the amount of time actually needed to process a task. 

We measured these two metrics for our algorithm and then compare them with the response and 

processing time for three popular load balancing algorithms which are: Round Robin (RR), ESCE, and 

Random, in order to evaluate the improvement of our algorithm. 

  

http://www.webopedia.com/TERM/E/execute.html
http://www.webopedia.com/TERM/I/instruction.html


36  
 

4.3 Experiments Part I 
In this part we studded the performance of most popular load balancing algorithms: RR, ESCE, and 

Random, in two workload cases, normal and burst. The aim of this part is to examine the effect of bursty 

workload on the performance of different load balancing algorithms. 

4.3.1 Experiment 1: Normal Workload Using Homogeneous Hosts 

This experiment is done to test the performance of three popular load balancing algorithms in normal 

workload. In this experiment we will study the performance of Round Robin, Equally Spread Current 

Execution (ESCE), and Random Algorithm using two different configurations for normal workloads in 

homogeneous environment (same number of CPU in the Data Center and same CPU speed). 

4.3.1.1 Configurations 

For this experiment, two different configurations for user bases are used in order to test the 

performance of the load balancing algorithms under two different samples of normal workloads. In this 

experiment the number of processors is equal in all the physical hosts. The duration of the simulation is 

1 Day.  

4.3.1.1.1 User Base Configuration 

a. Configuration 1: 

In configuration 1 we use normal workload with two Peak Hours for every user base. The 

configurations used in this experiment are as followed: 

Table 4.2 User Base Configurations for Experment 1 (Config. 1) 

Name Region Requests 
per user per 

Hr. 

Data Size per 
req.(Bytes) 

Peak Hours 
Start(GMT) 

Peak Hours 
End(GMT) 

Avg. 
Peak 
Users 

Avg. Off-
peak 
Users 

UB1 0 12 100 13 15 400000 40000 

UB2 1 12 100 15 17 100000 10000 

UB3 2 12 100 20 22 300000 30000 

UB4 3 12 100 1 3 150000 15000 

UB5 4 12 100 21 23 50000 5000 

UB6 5 12 100 9 11 80000 8000 

 

b. Configuration 2: 

In configuration 2, we increased the Peak Hours for every user base and minimize the average of 

users in the Peak and the Off Peak periods as shown in Table 4.3.  



37  
 

Table 4.3 User Base Configurations for Experiment 2 (Config. 2) 

Name Region Requests 
per user 
per Hr. 

Data Size 
per 

req.(Bytes) 

Peak Hours 
Start(GMT) 

Peak Hours 
End(GMT) 

Avg. 
Peak 
Users 

Avg. Off-peak 
User Base 

Configration for 
Normal Workload 

Users 

UB1 0 12 100 6 15 20000 2000 

UB2 1 12 100 15 17 10000 1000 

UB3 2 12 100 17 22 14000 1400 

UB4 3 12 100 1 6 15000 1500 

UB5 4 12 100 21 23 5000 500 

UB6 5 12 100 5 11 8000 800 

 

4.3.1.1.2 Data Center Configuration 

One Data Center is used with 50 Virtual Machines and 20 Physical HW Units all of them have the same 

number of processors and the same processor speed. Table 4.4 present the Data Center configurations 

while Table 4.5 shows the configuration of the Physical Hardware of the Data Center. 

Table 4.4 Data Center Configurations for Experiment 1 

Data Center #VMs Image Size Memory BW 

DC1 50 10000 1024 1000 

 

Table 4.5 Physical Hardware Configurations for DC1 for Experiment 1 

Num. of Physical 
HW Unit 

Memory 
(Mb) 

Storage 
(Mb) 

Available 
BW 

Number of 
Processors 

Processor 
Speed 

VM Policy 

20 2048 111111 11111 4 100 TIME_SHARED 

4.3.1.2 Results 

The configurations above have been used for each load balancing polices one by one and depending on 

that we get the following results: 

a. Result 1: 

4.3.1.2.1 Data Center Hourly Loading 

According to configuration 1 for User Base, the curve of the requests received in Data Center1 per hour 

is as shown in Figure 4.4. In this figure the peaks appear in the curve present the peak hours of the user 

bases.  



38  
 

 

Figure 4.4 Data Center Hourly Loading for Normal Workload (Config.1) 

4.3.1.2.2 Response Time 

The results from applying Configuration1 shows that Random policy has the best response time while 

the ESCE and Round Robin came next with convergent results. The response time chart for the three 

load balancing algorithms is shown in Figure 4.5. 

 

Figure 4.5 Response Time Chart for Normal Workload (Config.1) 

4.3.1.2.3 Processing Time 

The results show that Random algorithm has the best processing time compared with Round Robin and 

ESCE. Figure 4.6 explains the difference in processing time for the three algorithms. 

0

2000

4000

6000

8000

10000

Round Robin ESCE Random

R
e

sp
o

n
se

 T
im

e
 (

m
.s

) 

Response Time 



39  
 

 

Figure 4.6 Processing Time Chart for Normal Workload (Config.1) 

b. Result 2 

4.3.1.2.4 Data Center Hourly Loading 

When applying Configuration 2 of User Base, the Hourly Loading graph is as presented in Figure 4.7. As 

we can see in this figure there is not a clear peak in the curve as it was in Configuration 1. This is because 

the peak hours of the User Bases in Configuration 2 are longer than ones in Configuration 1, and there 

are overlaps between them. 

 

Figure 4.7 Data Center Hourly Loading for Normal Workload (Config.2) 

4.3.1.2.5 Response Time 

The same as Configuration 1, Random recorded the best response time while ESCE and Round Robin 

have almost the same response time records. Figure 4.8 presents the response time chart for the three 

algorithms. 

0

2000

4000

6000

8000

10000

Round Robin ESCE Random

P
ro

ce
ss

in
g 

Ti
m

e
 

Processing Time 



41  
 

 

Figure 4.8 Response Time Chart for Normal Workload (Config.2) 

4.3.1.2.6 Processing Time 

Again as it is clear in Figure 4.9 Random algorithm has the best processing time compared with Round 

Robin and ESCE.  

 

Figure 4.9 Processing Time Chart for Normal Workload (Config.2) 

4.3.1.3 Discussion 

In this experiment two loads are applied by changing the duration of Peak Hours and the average 

number of users in every User Base. All the Physical Hosts have the same number of CPU and the same 

CPU speed. The results show that in both configurations, Random algorithm has better response time 

and processing time than ECSE and Round Robin algorithms. Figure 4.10 and Figure 4.11 summarize the 

response time and the processing time results for both configurations.  

0

200

400

600

800

1000

Round Robin ECS Random

R
e

sp
o

n
se

 T
im

e
 (

m
.s

) 

Response Time 

0

200

400

600

800

Round Robin ESCE Random

P
ro

ce
ss

in
g 

Ti
m

e
 (

m
.s

) 

Processing Time 



41  
 

 

Figure 4.10 Response Time Chart for Normal Workload 

 

Figure 4.11 Processing Time Chart for Normal Workload 

4.3.2 Experiment 2: Normal Workload Using Heterogeneous Hosts 

This experiment is done to test the performance of three load balancing algorithms in normal workload. 

In this experiment we will study the performance of Round Robin, Equally Spread Current Execution 

(ESCE), and Random Algorithm in two different normal workloads and heterogeneous hosts (different 

CPU characteristics in the Data Center). 

4.3.2.1 Configurations 

In this experiment, we used the same two configurations for user bases in experiment 1 in 

heterogeneous environment. Different number of processors and different processor speeds in the 

physical hosts are used. The duration of the simulation is 1 Day.  

4.3.2.1.1 User Base Configuration 

a. Configuration 1: 

0

2000

4000

6000

8000

10000

Configration 1 Configration 2

R
e

sp
o

n
se

 T
im

e
 (

m
.s

) 

Response Time 

Round Robin

ESCE

Random

0

2000

4000

6000

8000

10000

Configration 1 Configration 2

P
ro

ce
ss

in
g 

Ti
m

e
 (

m
.s

) 

Processing Time 

Round Robin

ESCE

Random



42  
 

In configuration 1 we use normal workload with two Peak Hours for every user base. The 

configurations used in this experiment are as followed: 

Table 4.6 User Base Configuration for Experment 2 

Name Region Requests 
per user per 

Hr. 

Data Size per 
req.(Bytes) 

Peak Hours 
Start(GMT) 

Peak Hours 
End(GMT) 

Avg. 
Peak 
Users 

Avg. Off-
peak 
Users 

UB1 0 12 100 13 15 400000 40000 

UB2 1 12 100 15 17 100000 10000 

UB3 2 12 100 20 22 300000 30000 

UB4 3 12 100 1 3 150000 15000 

UB5 4 12 100 21 23 50000 5000 

UB6 5 12 100 9 11 80000 8000 

b. Configuration 2: 

In configuration 2, the Peak Hours for every user base was increased and the average of users in 

the Peak and the Off Peak periods was minimized as shown in Table 4.7. 

Table 4.7 User Base Configurations for Experiment 2 (Config. 2) 

Name Region Requests per 
user per Hr. 

Data Size per 
req.(Bytes) 

Peak Hours 
Start(GMT) 

Peak Hours 
End(GMT) 

Avg. 
Peak 
Users 

Avg. Off-
peak 
Users 

UB1 0 12 100 6 15 20000 2000 

UB2 1 12 100 15 17 10000 1000 

UB3 2 12 100 17 22 14000 1400 

UB4 3 12 100 1 6 15000 1500 

UB5 4 12 100 21 23 5000 500 

UB6 5 12 100 5 11 8000 800 

 

4.3.2.1.2 Data Center Configuration 

One Data Center is used with 50 Virtual Machines and 5 Physical HW Units. The five hosts have different 

number of processors and different processors speed. Table 4.8 present the Data Center configurations 

while Table 4.9 shows the configuration of every Physical Hardware in the Data Center. 

Table 4.8 Data Center Configurations for Experiment 2 

Data Center #VMs Image Size Memory BW 

DC1 50 10000 1024 1000 



43  
 

 

Table 4.9 Physical Hardware Configurations for DC1 for Experiment 2 

ID Memory 
(Mb) 

Storage 
(Mb) 

Available 
BW 

Number of Processors Processor Speed VM Policy 

0 2048 111111 11111 4 2000 TIME_SHARED 

1 2048 111111 11111 5 5000 TIME_SHARED 

2 2048 111111 11111 2 9000 TIME_SHARED 

3 2048 111111 11111 2 1000 TIME_SHARED 

4 2048 111111 11111 2 15000 TIME_SHARED 

 

4.3.2.2 Results 

The configurations above had been used for each load balancing polices one by one and depending on 

that we get the following results: 

a. Result 1: 

4.3.2.2.1 Data Center Hourly Loading 

According to configuration 1 for User Base, the curve of the requests received in Data Center1 per hour 

is as shown in Figure 4.12. In this figure the peaks appear in the curve present the peak hours of the user 

bases.  

 

Figure 4.12 Data Center Hourly Loading for Normal Workload (Config.1) 

4.3.2.2.2 Response Time 

The results from applying Configuration1 shows that Round Robin policy has the best response time 

while the ESCE has the worst one. The response time chart for the three load balancing algorithms is 

shown in Figure 4.13. 



44  
 

 

Figure 4.13 Response Time Chart for Normal Workload (Config.1) 

4.3.2.2.3 Processing Time 

Comparing the three algorithms, Round Robin recorded the best processing time with 198.08 ms then 

Random with 204.58 ms, and the worst one was ESCE with 214.06 ms. The chart in Figure 4.14 clarify 

the differences in processing time for the three algorithms.  

 

Figure 4.14 Processing Time Chart for Normal Workload (Config.1) 

b. Result 2: 

4.3.2.2.4 Data Center Hourly Loading 

When applying Configuration 2 of User Base, the Hourly Loading graph is as presented in Figure 4.13. As 

we can see in this figure there is not a clear peak in the curve as it was in Configuration 1. This is because 

the peak hours of the User Bases in Configuration 2 are longer than ones in Configuration 1, and there 

are overlaps between them. 

425

430

435

440

445

450

455

Round Robin ESCE Random

R
e

sp
o

n
se

 T
im

e
 (

m
.s

) 

Response Time 

190

195

200

205

210

215

220

Round Robin ESCE Random

P
ro

ce
ss

in
g 

Ti
m

e
 (

m
.s

) 

Processing Time 



45  
 

 

Figure 4.15 Data Center Hourly Loading for Normal Workload (Config.2) 

4.3.2.2.5 Response Time 

The same as Configuration 1 results, Round Robin has the best response time while ESCE has the worst 

one. But as we can see in Figure 4.16, the results are close pretty much. 

 

Figure 4.16 Response Time Chart for Normal Workload (Config.2) 

4.3.2.2.6 Processing Time 

As it is shown in the chart below, although Round Robin has the best processing time but the difference 

between the processing times for the three algorithms is very small. Figure 4.17 explains the processing 

time results for this experiment. 

 

Figure 4.17 Processing Time Chart for Normal Workload (Config.2) 

239.2

239.4

239.6

239.8

240

Round Robin ESCE Random

R
e

sp
o

n
se

 T
im

e
 (

m
.s

) 

Response Time 

11.2

11.4

11.6

11.8

12

Round Robin ESCE Random

P
ro

ce
ss

in
g 

Ti
m

e
 (

m
.s

) 

Processing Time 



46  
 

4.3.2.3 Discussion 

In this experiment the two workloads used in Experiment 1 have been used here but in heterogeneous 

environment. When the results of experiment 1 and experiment 2 are compared, we can notice that 

using different configurations for the Physical Hosts in the Data center affect the performance of the 

load balancing algorithm. The results show that Round Robin has the best performance in 

heterogeneous hosts while on the other hand Random is the best in homogenous hosts.  

Figure 4.18 and Figure 4.19 summarize the response time and the processing time results for both 

configurations in the first and second experiment. 

  
  

Figure 4.18 Response Time Chart for Normal Workload 

  
 

Figure 4.19 Processing Time Chart for Normal Workload 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Config1 Config2

R
e

sp
o

n
se

 T
im

e
 (

m
.s

) 

Response Time Exp1 

Round Robin

ESCE

Random

0

50

100

150

200

250

300

350

400

450

500

Config1 Config2

R
e

sp
o

n
se

 T
im

e
 (

m
.s

) 

Response Time Exp2 

Round Robin

ESCE

Random

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Config1 Config2

P
ro

ce
ss

in
g 

Ti
m

e
 (

m
.s

) 

Processing Time Exp1 

Round Robin

ESCE

Random

0

50

100

150

200

250

Config1 Config2

P
ro

ce
ss

in
g 

Ti
m

e
 (

m
.s

) 

Processing Time Exp2 

Round Robin

ESCE

Random



47  
 

4.3.3 Experiment 3: Burst Workload 

The main goal of this experiment is to study the impact of the bursty workload on the performance of 

Round Robin, Equally Spread Current Execution (ESCE), and Random Algorithm. 

4.3.3.1 Configurations 

In this experiment we are going to examine two level of burst, high and medium. For this goal two 

different configurations will be applied. 

4.3.3.1.1 User Base Configuration 

a. Configuration 1 High Burst: 

In this configuration we use 6 User Bases all of them in the same region to ignore the 

transmission delay between regions. Every user base has one hour of peek and the average 

number of users in this hour is 800000 users. Table 4.10 list in details User Base configuration 

Table 4.10 User Base Configurations for Experiment 3 (Config.1) 

Name Region Requests 
per user per 

Hr. 

Data Size per 
req.(Bytes) 

Peak Hours 
Start(GMT) 

Peak Hours 
End(GMT) 

Avg. 
Peak 
Users 

Avg. Off-
peak 
Users 

UB1 0 12 100 13 14 800000 40000 

UB2 0 12 100 16 17 800000 10000 

UB3 0 12 100 20 21 800000 30000 

UB4 0 12 100 1 2 800000 15000 

UB5 0 12 100 6 7 800000 50000 

UB6 0 12 100 9 10 800000 80000 

 

b. Configuration 2 Medium Burst: 

Configuration 2 presents a medium level of bursty workload. The same as Configuration 1 all 

User Bases are in the same region and every one of these user bases has one peak hour. In 

contrast, in this configuration the average number of users in peak hour = the average number 

of users off peak * 10. Table 4.11 illustrates the User Base characteristics. 

 

 

 

 

 

 



48  
 

Table 4.11 User Base Configration for Experiment 3  (Config. 2) 

Name Region Requests 
per user per 

Hr. 

Data Size per 
req.(Bytes) 

Peak Hours 
Start(GMT) 

Peak Hours 
End(GMT) 

Avg. 
Peak 
Users 

Avg. Off-
peak 
Users 

UB1 0 12 100 13 14 400000 40000 

UB2 0 12 100 9 10 100000 10000 

UB3 0 12 100 20 21 300000 30000 

UB4 0 12 100 1 2 150000 15000 

UB5 0 12 100 5 6 500000 50000 

UB6 0 12 100 17 18 800000 80000 

 

4.3.3.1.2 Data Center Configuration 

One Data Center is used with 50 Virtual Machines and 5 Physical HW Units. The five hosts are 

heterogeneous (have different number of processors and different processors speed). Table 4.12 

present the Data Center configurations while Table 4.13 shows the configuration of every Physical 

Hardware in the Data Center. 

Table 4.12 Data Center Configurations for Experiment 3 

Data Center #VMs Image Size Memory BW 

DC1 50 10000 1024 1000 

 

Table 4.13 Physical Hardware Configurations for DC1 for Experiment 3 

ID Memory 
(Mb) 

Storage 
(Mb) 

Available 
BW 

Number of Processors Processor Speed VM Policy 

0 204800 100111110 1001111 4 200 TIME_SHARED 

1 204800 100111110 1100111 5 500 TIME_SHARED 

2 204800 100111110 1110011 2 2000 TIME_SHARED 

3 204800 100111110 1100111 2 5000 TIME_SHARED 

4 204800 110111100 1110011 2 9000 TIME_SHARED 

 

 

 



49  
 

4.3.3.2 Results 

The results of the experiments are as follows: 

a. Result 1 High Burst: 

4.3.3.2.1 Data Center Hourly Loading 

As shown in Figure 4.20 there are six peaks on the curve. Every peak takes one hour. During this hour an 

intensive number of requests are received by the Data Center.  At the end of the peak hour, the 

workload returns to normal.  

 

Figure 4.20  Data Center Hourly Loading for High Burst Workload (Config.1) 

4.3.3.2.2 Response Time 

The results obtained from applying Configuration1 are clarified in Figure 4.21. From this chart we can 

see that Random algorithm recorded the worst response time while Round Robin and ESCE has better 

records. 

 

Figure 4.21 Response Time Chart for Burst Workload (Config.1) 

4.3.3.2.3 Processing Time 

In this experiment, Round Robin has the best processing time while Random has the worst one. Also we 

can notice that ESCE processing time is very close to the response time of the Round Robin algorithm. 

Figure 4.22 presents the processing time results for this experiment 

620
630
640
650
660
670
680
690

Round Robin ESCE Random

R
e

sp
o

n
se

 T
im

e
 

Response Time 



51  
 

 

Figure 4.22 Processing Time Chart for Burst Workload (Config.1) 

 

b. Result 2: 

4.3.3.2.4 Data Center Hourly Loading 

From the graph below we can see that there are six peaks on the curve with different requests rate. 

Every peak takes one hour as shown in Figure 4.23.  

 

Figure 4.23 Data Center Hourly Loading for High Burst Workload (Config.2) 

4.3.3.2.5 Response Time 

It is apparent from the chart in Figure 4.24 that the three algorithms have very close response time 

results. The difference between them does not exceed one hundred parts. 

560

580

600

620

640

Round Robin ESCE Random

P
ro

ce
ss

in
g 

Ti
m

e
 (

m
.s

) 

Processing Time 



51  
 

 

Figure 4.24 Response Time Chart for Burst Workload (Config.2) 

4.3.3.2.6 Processing Time 

The same as response time results, the processing time for the three algorithms is very close and 

Random has the best record.  Figure 4.25 presents the processing time results.  

 

Figure 4.25 Processing Time Chart for Burst Workload (Config.2) 

4.3.3.3 Discussion 

High and medium burst have been studied in this experiment. The results show that Round Robin has 

the best Response Time and processing time under high burst. However under medium burst all the 

three algorithms have almost equal response time and processing time. Figure 4.26 and Figure 4.27 

summarize the response time and processing time results for both configurations. 

335.3

335.35

335.4

335.45

335.5

Round Robin ESCE RandomR
e

sp
o

n
se

 T
im

e
 (

m
.s

) 

Response Time 

277.6

277.65

277.7

277.75

277.8

277.85

277.9

Round Robin ESCE Random

P
ro

ce
ss

in
g 

Ti
m

e
 (

m
.s

) 

Processing Time 



52  
 

 

Figure 4.26 Response Time Chart for Burst Workload 

 

Figure 4.27 Processing Time Chart for Burst Workload 

4.3.4 Results Discussion Part I 

Comparing the results of experiments 1, 2 and 3, it can be noticed that the burst affect the performance 

of the load balancing algorithms. In normal workload Random came in second place and its performance 

results were close to the RR results which came in the first place. On the other hand, under high burst 

the performance of Random algorithm degraded badly and made it came in the third place with large 

difference between its performance and the better algorithms’ performance. In contrast, ESCE algorithm 

has the worst response time in normal workload but its performance become better in burst. 

0

100

200

300

400

500

600

700

800

High Burst Medium Burst

R
e

sp
o

n
se

 T
im

e
 (

m
.s

) 

Response Time 

Round Robin

ESCE

Random

0

100

200

300

400

500

600

700

High Burst Medium Burst

P
ro

ce
ss

in
g 

Ti
m

e
 (

m
.s

) 

Processing Time 

Round Robin

ESCE

Random



53  
 

4.4 Experiments Part II 
This part of experiments is done in order to decide the two algorithms which will be used in our 

proposed algorithm for burst and non-burst cases. In burst cases the workload is high otherwise the 

workload is low. So we need to make experiments to find which one of the three algorithms (RR, ESCE, 

and Random) has the best performance when the workload is high and which one has the best 

performance when the workload is low.  

The data center is configured with heterogeneous hosts. One Data Center is used with 50 Virtual 

Machines and 5 Physical HW Units. Table 4.14 and Table 4.15 illustrate in details the configuration of the 

Data Center and its Physical Hardware Hosts. 

Table 4.14 Data Center Configurations for Experiment 4 

Data Center #VMs Image Size Memory BW 

DC1 50 10000 1024 1000 
 

Table 4.15 Physical Hardware Configurations for DC1 for Experiment 4 

ID Memory 
(Mb) 

Storage 
(Mb) 

Available 
BW 

Number of Processors Processor Speed VM Policy 

0 204800 100111110 1001111 4 2000 TIME_SHARED 

1 204800 100111110 1100111 5 5000 TIME_SHARED 

2 204800 100111110 1110011 2 9000 TIME_SHARED 

3 204800 100111110 1100111 2 1000 TIME_SHARED 

4 204800 110111100 1110011 2 15000 TIME_SHARED 

 

4.4.1 Experiment 4: High Workload 

The aim of this experiment is to find which of the following algorithms: Round Robin, Equally Spread 

Current Execution (ESCE), and Random Algorithm have the best response time in high workload. The 

best algorithm will be used in our proposed algorithm in burst case. 

4.4.1.1 Configurations 

4.4.1.1.1 User Base Configuration 

The User Base in this experiment should be configured to generate high load. To achieve this goal, six 

User Bases are used located in the same region. Every User Base has two peak hours, and average of 

users in peak period is equal to off peak period. Table 4.16 presents User Base configuration.  



54  
 

Table 4.16 User Base Configurations for Experiment 4 

Name Region Requests 
per user per 

Hr. 

Data Size per 
req.(Bytes) 

Peak Hours 
Start(GMT) 

Peak Hours 
End(GMT) 

Avg. 
Peak 
Users 

Avg. Off-
peak 
Users 

UB1 0 12 100 13 15 400000 400000 

UB2 0 12 100 15 17 100000 100000 

UB3 0 12 100 20 22 300000 300000 

UB4 0 12 100 1 3 150000 150000 

UB5 0 12 100 21 23 500000 500000 

UB6 0 12 100 9 11 800000 800000 

 

4.4.1.2 Results 

4.4.1.2.1 Data Center Hourly Loading 

From the graph in Figure 4.28, it can be seen that requests exceeded 20,000,000 requests per hour. This 

put the data center under high workload. 

 

Figure 4.28 Data Center Hourly Loading for High Workload 

4.4.1.2.2 Response Time 

Simulation results shows that Round Robin has the best response time under high workload while the 

Random has the worst one.  Figure 4.29 clarify the different in response time for Round Robin, ESCE, and 

Random algorithm. 



55  
 

 

Figure 4.29 Response Time Chart for High Workload 

4.4.1.2.3 Processing Time 

The processing time results were as shown in the chart in Figure 4.30. The Random algorithm has the 

worst processing time while the Round Robin has the best one. 

 

Figure 4.30 Processing Time Chart for High Workload 

4.4.1.3 Discussion 

In this experiment we try to put the Data Center under high load to study the performance of Load 

Balancing algorithms in such case. It is apparent from the results that the response time and the 

processing time of the Round Robin algorithm is the best one under high workload. According to these 

results the Round Robin will be used in our proposed algorithm. 

  

860

865

870

875

880

885

890

Round Robin ESCE Random

R
e

sp
o

n
se

 T
im

e
 (

m
.s

) 

Response Time 

860

865

870

875

880

885

890

Round Robin ESCE Random

P
ro

ce
ss

in
g 

Ti
m

e
 (

m
.s

) 

Processing Time 



56  
 

4.4.2 Experiment 5: Low Workload 

The main objective of this experiment is to find which of the three load balancing algorithms: Round 

Robin, ESCE, and Random algorithm have the best performance in low workload. The best one will be 

used in our proposed algorithm in non-burst case. 

4.4.2.1 Configurations 

4.4.2.1.1 User Base Configuration 

In this experiment we need to put the Data center under low workload. For that purpose we use the 

same user base configuration in the high workload experiment but the average users is less than the 

average users in the high load experiment by about 1/10. User base configuration is shown in Table 

4.17. 

Table 4.17 User Base Configurations for Experiment 5 

Name Region Requests per 
user per Hr. 

Data Size per 
req.(Bytes) 

Peak Hours 
Start(GMT) 

Peak Hours 
End(GMT) 

Avg. 
Peak 
Users 

Avg. Off-
peak 
Users 

UB1 0 12 100 13 15 40000 40000 

UB2 0 12 100 15 17 10000 10000 

UB3 0 12 100 20 22 30000 30000 

UB4 0 12 100 1 3 15000 15000 

UB5 0 12 100 21 23 50000 50000 

UB6 0 12 100 9 11 80000 80000 

 

4.4.2.2 Results 

4.4.2.2.1 Data Center Hourly Loading 

Figure 4.31 shows the hourly loading on the data center. The number of requests is about 2,000,000 

requests per hour 

 

Figure 4.31 Data Center Hourly Loading for Low Workload 



57  
 

4.4.2.2.2 Response Time 

Simulation results shows that Random has the best response time under low workload compared with 

RR an ESCE. The Figure 4.32 presents the response time for the three algorithms. 

 

Figure 4.32 Response Time Chart for Low Workload 

4.4.2.2.3 Processing Time 

Under low workload, Random has the best processing time. Round Robin and ESCE has very close 

processing times but ESCE is the worst. Figure 4.33 explains the processing time results for this 

experiment.  

 

Figure 4.33 Processing Time Chart for Low Workload 

4.4.2.3 Discussion 

In this experiment we aimed to find the best performance algorithm under low workload. The 

simulation results show that Random algorithm works efficiently in low workload more than the other 

two algorithms. This leads as to select it to be used in our proposed algorithm. 

4.4.3 Results Discussion Part II 

Based on the results of this part, we decided to use Round Robin for burst cases as it has the best 

performance when the load is high and Random Algorithm for non-burst cases because it recorded the 

best performance when the load is low. 

118

120

122

124

126

128

130

Round Robin ECS Random

R
e

sp
o

n
se

 T
im

e
 (

m
.s

) 

Response Time 

68

70

72

74

76

78

Round Robin ECS Random

P
ro

ce
ss

in
g 

Ti
m

e
 (

m
.s

) 

Processing Time 



58  
 

4.5 Experiments Part III 
In this part the Adaptive Algorithm is going to be tested and evaluated by comparing its performance 

with other load balancing algorithms and under different levels of burstness. 

For this part of experiments, one Data Center is used with 50 Virtual Machines and 5 Physical HW Units. 

The five hosts are heterogeneous. Table 4.18 and Table 2.19 illustrate in details the configuration of the 

Data Center and its Physical Hardware Hosts 

Table 4.18 Data Center Configuration for Experiment 6 

Data Center #VMs Image Size Memory BW 

DC1 50 10000 1024 1000 

 

Table 4.19 Physical Hardware Configurations for Experiment 6 

ID Memory 
(Mb) 

Storage 
(Mb) 

Available 
BW 

Number of Processors Processor Speed VM Policy 

0 204800 100111110 1001111 4 2000 TIME_SHARED 

1 204800 100111110 1100111 5 5000 TIME_SHARED 

2 204800 100111110 1110011 2 9000 TIME_SHARED 

3 204800 100111110 1100111 2 1000 TIME_SHARED 

4 204800 110111100 1110011 2 15000 TIME_SHARED 

 

4.5.1 Experiment 6: Adaptive Algorithm without Fuzzifier 

In this experiment we will test the performance of the proposed algorithm before using the fuzzifier 

under bursty workload. The response time and the processing time of the adaptive algorithm will be 

compared with response time and the processing time of the Round Robin, ESCE, and Random 

Algorithms. 

4.5.1.1 Configurations 

4.5.1.1.1 User Base Configuration 

The User Base in this experiment should be configured to generate bursty workload. We use the same 

configuration in Experiment 3. As presented in table below there will be 6 User Bases and every user 

base has one peak hour so intensive requests will be sent to the data center during this hour, making a 

burst.  The average number of users in peak is equal to the average number of users in off peak * 10. 

Table 4.20 shows User Base configuration. 



59  
 

Table 4.20 User Base Configuration for Experiment 6 

Name Region Requests 
per user per 

Hr. 

Data Size per 
req.(Bytes) 

Peak Hours 
Start(GMT) 

Peak Hours 
End(GMT) 

Avg. 
Peak 
Users 

Avg. Off-
peak 
Users 

UB1 0 12 100 13 14 400000 40000 

UB2 0 12 100 9 10 100000 10000 

UB3 0 12 100 20 21 300000 30000 

UB4 0 12 100 1 2 150000 15000 

UB5 0 12 100 5 6 500000 50000 

UB6 0 12 100 17 18 800000 80000 

 

4.5.1.2 Results 

4.5.1.2.1 Data Center Hourly Loading 

Figure 4.34 shows the hourly loading on the data center in this experiment. 

 

Figure 4.34 Data Center Hourly Loading for Adaptive Algorithm Experment Befor Using Fuzzifier 

4.5.1.2.2 Response Time 

The results shows that Adaptive algorithm improve the performance of the cloud system as it recorded 

the best response in this experiment. The chart in Figure 4.35 shows the improvement of adaptive 

algorithm on response time over the other algorithms  



61  
 

 

Figure 4.35 Response Time Chart for Adaptive Algorithm Experment Befor Using Fuzzifier 

4.5.1.2.3 Processing Time 

In addition to improving the response time, Adaptive algorithm also improves the processing time. The 

processing time results are presented in Figure 4.36. 

 

Figure 4.36 Processing Time Chart for Adaptive Algorithm Experment Befor Using Fuzzifier 

4.5.1.3 Discussion 

In this experiment our proposed algorithm is tested under bursty workload and compared with other 

algorithms. The simulation results showed that our algorithm recorded the best response time and 

processing time compared with other algorithms. 

4.5.2 Experiment 7: Adaptive Algorithm using Fuzzifier 

In this experiment we will test the performance of the proposed algorithm using the Fuzzifier. The 

response time and the processing time of the adaptive algorithm will be compared with response time 

and the processing time of the RR and Random Algorithms. 

4.5.2.1 Configurations 

4.5.2.1.1 User Base Configuration 

We use the same configuration in Experiment 6. Table 4.21 shows User Base configuration. 

331

332

333

334

335

336

Round Robin ECS Random Adaptive

R
e

sp
o

n
se

 T
im

e
 (

m
.s

) 

Response Time 

274

275

276

277

278

279

280

Round Robin ECS Random Adaptive

P
ro

ce
ss

in
g 

Ti
m

e
 (

m
.s

) 

Processing Time 



61  
 

Table 4.21 User Base Configuration for Experiment 7 

Name Region Requests 
per user per 

Hr. 

Data Size per 
req.(Bytes) 

Peak Hours 
Start(GMT) 

Peak Hours 
End(GMT) 

Avg. 
Peak 
Users 

Avg. Off-
peak 
Users 

UB1 0 12 100 13 14 400000 40000 

UB2 0 12 100 9 10 100000 10000 

UB3 0 12 100 20 21 300000 30000 

UB4 0 12 100 1 2 150000 15000 

UB5 0 12 100 5 6 500000 50000 

UB6 0 12 100 17 18 800000 80000 

 

4.5.2.2 Results 

4.5.2.2.1 Data Center Hourly Loading 

Figure 4.37 shows the hourly loading on the data center in this experiment. 

 

Figure 4.37 Data Center Hourly Loading for Adaptive Algorithm Experment Using Fuzzifier 

4.5.2.2.2 Response Time 

The results show that using fuzzifier improves the performance of Adaptive algorithm as the response 

time become better. The chart in Figure 4.38 shows the improvement of adaptive algorithm using 

fuzzifier on response time over the other algorithms  



62  
 

 

Figure 4.38 Response Time Chart for Adaptive Algorithm Experiment Using Fuzzifier 

4.5.2.2.3 Processing Time 

Using fuzzifier improves the processing time of the Adaptive algorithm. As we can see in Figure 4.39 the 

Adaptive algorithm using fuzzifier recorded the best response time. 

 

Figure 4.39 Processing Time Chart for Adaptive Algorithm Experiment Using Fuzzifier 

4.5.2.3 Discussion 

In this experiment we add a fuzzifier in our proposed algorithm. Again we tested the adaptive algorithm 

under burst workload and compared it with other algorithms. The simulation results showed that using 

fuzzifier improves the performance of Adaptive algorithm. 

331
331.5

332
332.5

333
333.5

334
334.5

335
335.5

336

R
e

sp
o

n
se

 T
im

e
 (

m
.s

) 

Response Time 

274
274.5

275
275.5

276
276.5

277
277.5

278
278.5

279
279.5

Round Robin ECS Random Adaptive Adaptive +
Agent

P
ro

ce
ss

in
g 

Ti
m

e
 (

m
.s

) 

Processing Time 



63  
 

4.5.3 Experiment 8: 

In this experiment we will test the performance of the Adaptive algorithm in different burst levels. In 

addition we will study the effect of the instruction length on the performance of Adaptive algorithm by 

comparing the response time and the processing time with RR and Random Algorithms. 

4.5.3.1 Configurations 

4.5.3.1.1 User Base Configuration 

In order to test the performance of Adaptive algorithm in different burst cases, ten different workloads 

should be configured and tested separately. This can be achieved by changing: num. of UBs, Peak Hours, 

Avg. Peak Users, and Avg. Off Peak Users. Tables form 4.22 to 4.26 show configurations for ten different 

Bursty Workloads. 

Table 4.22 Bursty Workload for Experiment 1 and 2 

 Experiment 1 Experiment 2 

 Peak 
Hours 

Start(GMT) 

Peak 
Hours 

End(GMT) 

Avg. 
Peak 
Users 

Avg. 
Off-
peak 
Users 

Peak 
Hours 

Start(GMT) 

Peak 
Hours 

End(GMT) 

Avg. 
Peak 
Users 

Avg. 
Off-
peak 
Users 

UB 1 13 14 400000 40000 1 2 400000 40000 

UB 2 9 10 200000 20000 4 5 200000 20000 

UB 3 20 21 300000 30000 6 7 300000 30000 

UB 4 1 2 200000 20000 8 9 200000 20000 

UB 5 5 6 500000 50000 11 12 500000 50000 

UB 6 17 18 800000 80000 17 18 800000 80000 

 

Table 4.23 Bursty Workload for Experiment 3 and 4 

 Experiment 3 Experiment 4 

 Peak 
Hours 

Start(GMT) 

Peak 
Hours 

End(GMT) 

Avg. 
Peak 
Users 

Avg. 
Off-
peak 
Users 

Peak 
Hours 

Start(GMT) 

Peak 
Hours 

End(GMT) 

Avg. 
Peak 
Users 

Avg. 
Off-
peak 
Users 

UB 1 1 2 100000 10000 3 4 100000 10000 

UB 2 4 5 200000 20000 6 7 200000 20000 

UB 3 6 7 700000 70000 9 10 700000 70000 

UB 4 9 10 400000 40000 15 16 400000 40000 

UB 5 13 14 500000 50000 18 19 500000 50000 

UB 6 20 21 800000 80000 21 22 800000 80000 

 



64  
 

Table 4.24 Bursty Workload for Experiment 5 and 6 

 Experiment 5 Experiment 6 

 Peak 
Hours 

Start(GMT) 

Peak 
Hours 

End(GMT) 

Avg. 
Peak 
Users 

Avg. 
Off-
peak 
Users 

Peak 
Hours 

Start(GMT) 

Peak 
Hours 

End(GMT) 

Avg. 
Peak 
Users 

Avg. 
Off-
peak 
Users 

UB 1 1 2 100000 10000 1 2 300000 30000 

UB 2 4 5 200000 20000 4 5 200000 20000 

UB 3 6 7 150000 15000 6 7 500000 50000 

UB 4 9 10 250000 25000 9 10 400000 40000 

UB 5 13 14 100000 10000 13 14 700000 70000 

UB 6 20 21 200000 20000 20 21 500000 50000 

 

Table 4.25 Bursty Workload for Experiment 7 and 8 

 Experiment 7 Experiment 8 

 Peak 
Hours 

Start(GMT) 

Peak 
Hours 

End(GMT) 

Avg. 
Peak 
Users 

Avg. 
Off-
peak 
Users 

Peak 
Hours 

Start(GMT) 

Peak 
Hours 

End(GMT) 

Avg. 
Peak 
Users 

Avg. 
Off-
peak 
Users 

UB 1 13 14 400000 4000 13 14 800000 40000 

UB 2 6 7 200000 2000 9 10 800000 10000 

UB 3 20 21 300000 3000 20 21 800000 30000 

UB 4 1 2 150000 1500 1 2 800000 15000 

UB 5 15 16 500000 5000 5 6 800000 50000 

UB 6 20 21 800000 8000 17 18 800000 80000 

 

Table 4.26 Bursty Workload for Experiment 9 and 10 

 Experiment 9 Experiment 10 

 Peak 
Hours 

Start(GMT) 

Peak 
Hours 

End(GMT) 

Avg. 
Peak 
Users 

Avg. 
Off-
peak 
Users 

Peak 
Hours 

Start(GMT) 

Peak 
Hours 

End(GMT) 

Avg. 
Peak 
Users 

Avg. 
Off-
peak 
Users 

UB 1 13 14 400000 40000 13 14 400000 40000 

UB 2 9 10 100000 20000 9 10 100000 10000 

UB 3 20 21 300000 30000 20 21 300000 30000 

UB 4 1 2 150000 15000 3 4 150000 15000 

UB 5 5 6 500000 50000 - - - - 

UB 6 17 18 800000 80000 - - - - 

UB 7 11 12 300000 30000 - - - - 

UB 8 3 4 250000 25000 - - - - 



65  
 

4.5.3.2 Results 

4.5.3.2.1 Data Center Hourly Loading 

Table 4.27 shows the hourly loading on the data center for the ten experiments. 

Table 4.27 Data Center Hourly Loading for the Ten Experiments 

Experiment 1 Experiment 2 

 
 

Experiment 3 Experiment 4 

  

Experiment 5 Experiment 6 

  

Experiment 7 Experiment 8 

  

Experiment 9 Experiment 10 

  



66  
 

 

4.5.3.2.2 Response Time 

The results show that Adaptive algorithm has the best response time in almost all the ten burst 

workload except Experiment 7 and 8. Tables from 4.28 to 4.32 illustrate a comparison between RR, 

ESCE, Random, and Adaptive algorithm for the ten workloads when the instruction length is 250,500 and 

100 Byte. 

Table 4.28 Response Time Results for Experiment 1 and 2 

 Experiment 1 Experiment 2 

 Inst. 250 Inst. 500 Inst. 1000 Inst. 250 Inst. 500 Inst. 1000 

Round Robin 328.88 616.43 1192.74 327.9 614.59 1189.18 

ESCE 328.98 615.13 1193.31 328.01 615.1 1191.16 

Random 329.12 616.91 1192.21 327.82 614.19 1190.74 

Adaptive1800000 326.69 621.05 1183.51 325.33 608.36 1182.36 

Adaptive1900000 326.36 621.56 1182.05 325.26 608.6 1182.75 

Adaptive2000000 326.84 621.05 1181.68 325.72 608.56 1183.37 

 

 

Table 4.29 Response Time Results for Experiment 3 and 4 

 Experiment 3 Experiment 4 

 Inst. 250 Inst. 500 Inst. 1000 Inst. 250 Inst. 500 Inst. 1000 

Round Robin 374.64 708.78 1375.91 367.52 694.38 1348.31 

ESCE 374.84 709.04 1378.87 367.62 694.86 1351.02 

Random 376.01 712.22 1382.93 368.28 699.3 1356.25 

Adaptive1800000 372.41 710.66 1369.2 365.55 689.88 1346.98 

Adaptive1900000 373.03 706.19 1368.61 364.76 689.33 1346.48 

Adaptive2000000 373.29 707.79 1369.85 365.52 689.91 1347 

 

Table 4.30 Response Time Results for Experiment 5 and 6 

 Experiment 5 Experiment 6 

 Inst. 250 Inst. 500 Inst. 1000 Inst. 250 Inst. 500 Inst. 1000 

Round Robin 149.28 254.32 463.51 316.69 592.01 1142.51 

ESCE 149.6 254.81 464.46 316.8 592.5 1144 

Random 146.08 247.12 447.85 315.91 589.71 1146.48 

Adaptive1800000 146.21 247.88 447.08 317.95 588.84 1137.3 

Adaptive1900000 146.3 247.48 250.63 314.46 593.55 1131.89 

Adaptive2000000 146.2 246.49 448.83 314.67 593.97 1134.09 

 



67  
 

Table 4.31 Response Time Results for Experiment 7 and 8 

 Experiment 7 Experiment 8 

 Inst. 250 Inst. 500 Inst. 1000 Inst. 250 Inst. 500 Inst. 1000 

Round Robin 652.04 1264.15 2489.25 660.92 1284.56 2535.39 

ESCE 652.17 1264.57 2489.94 661.02 1285.39 2536.09 

Random 663.23 1284.32 2539.46 673.52 1312.76 2597.73 

Adaptive1800000 655.08 1270.26 2518.17 661.89 1288.09 2567.23 

Adaptive1900000 653.54 1269.24 2513.49 661.87 1288.68 2569.41 

Adaptive2000000 654.52 1267.28 2514.3 663.55 1289.43 2568.16 

 

Table 4.32 Response Time Results for Experiment 9 and 10 

 Experiment 9 Experiment 10 

 Inst. 250 Inst. 500 Inst. 1000 Inst. 250 Inst. 500 Inst. 1000 

Round Robin 311.26 580.86 1120.76 214.38 385.8 727.28 

ESCE 311.36 581.31 1121.23 214.5 385.98 727.59 

Random 311.53 579.84 1120.6 210.35 378.94 715.53 

Adaptive1800000 312.14 583.27 1127.34 210.7 377.99 711.22 

Adaptive1900000 309.13 576.65 1117.1 211.7 379.23 712.81 

Adaptive2000000 309.63 584.77 1116.57 211.23 377.12 714.4 

 

 

The following charts in Table 4.33 clarify the variations of the performance for the Adaptive algorithm 

and other algorithms. 

 

Table 4.33 Responce Time Charts for the Ten Experments 

Experiment 1 

Inst. 250 Inst. 500 Inst. 1000 

   

324
325
326
327
328
329
330

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

610
612
614
616
618
620
622
624

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

1175

1180

1185

1190

1195

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0



68  
 

Experiment 2 

Inst. 250 Inst. 500 Inst. 1000 

   

Experiment 3 

Inst. 250 Inst. 500 Inst. 1000 

   

Experiment 4 

Inst. 250 Inst. 500 Inst. 1000 

   

323
324
325
326
327
328
329

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

604
606
608
610
612
614
616

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

1176
1178
1180
1182
1184
1186
1188
1190
1192

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

370
371
372
373
374
375
376
377

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

702
704
706
708
710
712
714

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

1360

1365

1370

1375

1380

1385

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

363
364
365
366
367
368
369

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

684
686
688
690
692
694
696
698
700
702

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

1340
1342
1344
1346
1348
1350
1352
1354
1356
1358

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0



69  
 

Experiment 5 

Inst. 250 Inst. 500 Inst. 1000 

   

Experiment 6 

Inst. 250 Inst. 500 Inst. 1000 

   

Experiment 7 

Inst. 250 Inst. 500 Inst. 1000 

   

144
145
146
147
148
149
150

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

242
244
246
248
250
252
254
256

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

0

100

200

300

400

500

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

312
313
314
315
316
317
318
319

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

586

588

590

592

594

596

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

1120
1125
1130
1135
1140
1145
1150

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

645

650

655

660

665

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

1250
1255
1260
1265
1270
1275
1280
1285
1290

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

2460
2470
2480
2490
2500
2510
2520
2530
2540
2550

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0



71  
 

Experiment 8 

Inst. 250 Inst. 500 Inst. 1000 

   

Experiment 9 

Inst. 250 Inst. 500 Inst. 1000 

   

Experiment 10 

Inst. 250 Inst. 500 Inst. 1000 

   

 

650

655

660

665

670

675
R

R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

1270

1280

1290

1300

1310

1320

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

2500
2520
2540
2560
2580
2600
2620

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

307
308
309
310
311
312
313

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

572
574
576
578
580
582
584
586

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

1110

1115

1120

1125

1130

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

208
209
210
211
212
213
214
215

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

372
374
376
378
380
382
384
386
388

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

700
705
710
715
720
725
730

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0



71  
 

4.5.3.2.3 Processing Time 

As we can see in Tables from 4.34 to 4.38 the Adaptive algorithm improved the processing time under 

bursty workload. 

Table 4.34 Processing Time Results for Experiment 1 and 2 

 Experiment 1  Experiment 2 

 Inst. 250 Inst. 500 Inst. 1000 Inst. 250 Inst. 500 Inst. 1000 

Round Robin 271.67 558.88 1134.73 270.69 557.04 1131.17 

ESCE 271.78 559.64 1135.29 270.81 557.56 1133.16 

Random 273.85 559.36 1135.89 272.60 558.71 1134.48 

Adaptive1800000 270.19 564.39 1126.10 268.81 551.6 1125.00 

Adaptive1900000 269.86 564.88 1124.64 268.75 551.83 1125.37 

Adaptive2000000 270.33 564.58 1124.29 269.19 551.79 1125.99 

 

 

Table 4.35 Processing Time Results for Experiment 3 and 4 

 Experiment 3 Experiment 4 

 Inst. 250 Inst. 500 Inst. 1000 Inst. 250 Inst. 500 Inst. 1000 

Round Robin 316.41 650.16 1316.68 309.42 635.89 1289.13 

ESCE 316.62 650.42 1319.63 309.53 636.38 1291.83 

Random 319.91 655.84 1325.62 312.31 643.09 1299.15 

Adaptive1800000 314.91 652.94 1310.65 308.28 632.26 1288.55 

Adaptive1900000 315.67 648.55 1310.16 307.49 631.73 1288.06 

Adaptive2000000 315.94 650.15 1311.42 308.23 632.33 1288.58 

 

 

Table 4.36 Processing Time Results for Experiment 5 and 6 

 Experiment 5 Experiment 6 

 Inst. 250 Inst. 500 Inst. 1000 Inst. 250 Inst. 500 Inst. 1000 

Round Robin 96.51 201.42 410.55 259.80 535.09 1085.52 

ESCE 96.84 201.92 411.51 259.93 535.58 1087.01 

Random 94.15 195.19 395.62 261.04 534.84 1091.23 

Adaptive1800000 94.03 195.71 394.68 261.96 532.75 1081.03 

Adaptive1900000 94.32 195.49 398.34 258.34 537.53 1075.60 

Adaptive2000000 94.24 194.56 396.59 258.56 537.96 1077.79 

 

 



72  
 

Table 4.37 Processing Time Results for Experiment 7 and 8 

 Experiment 7 Experiment 8 

 Inst. 250 Inst. 500 Inst. 1000 Inst. 250 Inst. 500 Inst. 1000 

Round Robin 584.43 1193.23 2411.96 597.82 1222.01 2473.83 

ESCE 584.58 1193.68 2412.67 597.93 1222.85 2474.54 

Random 599.64 1217.32 2465.47 613.63 1253.49 2539.39 

Adaptive1800000 588.61 1200.44 2441.65 599.76 1226.55 2506.68 

Adaptive1900000 587.30 1199.64 2437.18 599.73 1227.68 2508.89 

Adaptive2000000 588.36 1197.74 2438.04 601.41 1227.86 2507.62 

 

Table 4.38 Processing Time Results for Experiment 9 and 10 

 Experiment 9 Experiment 10 

 Inst. 250 Inst. 500 Inst. 1000 Inst. 250 Inst. 500 Inst. 1000 

Round Robin 254.23 523.29 1062.33 159.63 330.68 671.59 

ESCE 254.33 523.74 1062.80 159.77 330.87 671.90 

Random 256.36 524.25 1063.77 156.99 325.28 660.93 

Adaptive1800000 255.73 526.38 1069.44 156.53 323.55 656.02 

Adaptive1900000 252.73 519.80 1059.22 157.51 324.76 657.62 

Adaptive2000000 253.25 528.01 1058.70 157.03 322.67 659.19 

 

 

The following Table 4.39 presents processing time graphs for the ten burst workload.  

Table 4.39 Processing Time Charts for the Ten Experiments 

Experiment 1 

Inst. 250 Inst. 500 Inst. 1000 

   

267
268
269
270
271
272
273
274
275

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

554
556
558
560
562
564
566

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

1115

1120

1125

1130

1135

1140

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0



73  
 

Experiment 2 

Inst. 250 Inst. 500 Inst. 1000 

   

Experiment 3 

Inst. 250 Inst. 500 Inst. 1000 

   

Experiment 4 

Inst. 250 Inst. 500 Inst. 1000 

   

266
267
268
269
270
271
272
273

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

548
550
552
554
556
558
560

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

1120
1122
1124
1126
1128
1130
1132
1134
1136

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

312
313
314
315
316
317
318
319
320
321

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

644
646
648
650
652
654
656
658

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

1300
1305
1310
1315
1320
1325
1330

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

305
306
307
308
309
310
311
312
313

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

625

630

635

640

645

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

1280

1285

1290

1295

1300

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0



74  
 

Experiment 5 

Inst. 250 Inst. 500 Inst. 1000 

   

Experiment 6 

Inst. 250 Inst. 500 Inst. 1000 

   

Experiment 7 

Inst. 250 Inst. 500 Inst. 1000 

   

92

93

94

95

96

97

98

190
192
194
196
198
200
202
204

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

385
390
395
400
405
410
415

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

256
257
258
259
260
261
262
263

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

530

532

534

536

538

540

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

1065
1070
1075
1080
1085
1090
1095

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

575
580
585
590
595
600
605

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

1180
1185
1190
1195
1200
1205
1210
1215
1220

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

2380

2400

2420

2440

2460

2480

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0



75  
 

Experiment 8 

Inst. 250 Inst. 500 Inst. 1000 

   

Experiment 9 

Inst. 250 Inst. 500 Inst. 1000 

   

Experiment 10 

Inst. 250 Inst. 500 Inst. 1000 

   

 

585
590
595
600
605
610
615

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

1200
1210
1220
1230
1240
1250
1260

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

2440
2460
2480
2500
2520
2540
2560

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

250
251
252
253
254
255
256
257

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

514
516
518
520
522
524
526
528
530

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

1050

1055

1060

1065

1070

1075

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

154
155
156
157
158
159
160
161

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

318
320
322
324
326
328
330
332

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0

645
650
655
660
665
670
675

R
R

ES
C

E

R
an

d
o

m

A
D

_
1

8
0

0
0

0
0

A
D

_
1

9
0

0
0

0
0

A
D

_
2

0
0

0
0

0
0



76  
 

4.5.3.3 Discussion  

In this experiment Adaptive algorithm has been tested under different levels of bursty workload. The 

results showed that Adaptive algorithm improved the response and processing time for the cloud 

system under bursty workload except experiment 7 and 8. Our explanation for this exception is that the 

load most the time is very low (Experiment 7) or very high (Experiment 8) so the threshold used in the 

experiments is not suitable for those cases. In addition in these experiments we repeated the 

experiment for every workload using three lengths of executed instruction (250, 500, and 1000). The 

results showed that the differences in performance increased between adaptive and other algorithms. 

This is because the instruction takes much more time to be processed by the VM so the VM will be busy 

in this time and the waiting queue will become longer so the response time and the processing time will 

be increased for RR, ESCE and Random. On the other hand using fuzzifier in Adaptive algorithm 

improved the performance because it helps the Fuzzy RR and the Fuzzy Random to select VM which has 

low load and high speed so it can finish the task in shorter time.  

4.5.4 Results Discussion Part III 

In this part adaptive algorithm had been tested under bursty workload. Firstly we test the Adaptive 

algorithm without using fuzzy. The results showed that adaptive algorithm improved the response and 

the processing time. Secondly the experiment was repeated by using fuzzy with Adaptive algorithm. The 

results showed that the fuzzifier had improved the response time of Adaptive algorithm by 1ms. This 

small improvement is because the length of the instruction is small so the waiting queue for VM would 

not be dramatically apparent. To prove our hypothesis, Adaptive algorithm had been tested under ten 

different bursty workloads and using three different instruction length 250, 500, 1000 Byte. The results 

showed that when the instruction length is 250 the response time is decreased by 2 ms. When the 

instruction length is increased to be 1000 Byte, the response time decreased by about 10 ms. As it is 

observed from the experiments results the Adaptive algorithm improved the performance of the cloud 

system by decreasing the response time and the processing time and this improvement become 

obviously when the instruction length increased. 

4.6 Summary 
In this chapter the experiments were presents and discussed in details. The experiments were done 

using CloudAnalyst simulator. The simulation duration was configured to be 1 day. The results ware 

compared with three of the most popular load balancing algorithms which are: RR, ESCE, and Random. 

The experiments were done on three parts. Firstly, we tried to understand the variations in the 

performance and the differences between RR, ESCE, and Random algorithms in normal and bursty 

workload. The results showed that the bursty workload degrade the performance of load balancing 

algorithms. 

In the second part RR, ESCE, and Random algorithms were tested under high and low workload. The 

main objective from these experiments was to find the best algorithm in high workload and the best one 

in low workload to be used in the Adaptive algorithm. The results guide us to use RR in bursty cases and 

Random in normal cases. 



77  
 

Finally, the third part of experiments was performed to test and evaluate the performance of the 

Adaptive algorithm in different levels of bursty workload. In every experiments RR, ESCE, Random, and 

Adaptive algorithm where tested by using three different instruction length (250 Byte, 500 Byte, 1000 

Byte). Overall, results indicated that the Adaptive algorithm improved the performance of the cloud 

system and this improvement became much more obvious when the instruction length increased. The 

improvement in the response time ranged from 2ms (when the instruction length is 250) to 10 ms 

(when the instruction length is 1000) while in the processing time it ranges from 2ms to 5 ms.  



78  
 

 

 

 

Chapter 5 

Conclusion and Future Works 

  



79  
 

Chapter 5 Conclusion and Future Works 

5.1 Conclusion 
In this thesis, a load balancing algorithm which handles the problem of bursty workload has been 

introduced. The proposed algorithm called Adaptive Load Balancing Algorithm and is based mainly on 

swapping between two different algorithms (RR and Random) according to the workload status. 

Adaptive Algorithm consists of 3 main parts: burst detector, load balancing algorithms, fuzzifier. When 

the data center receives a request, the burst detector decides the state of the workload (Normal or 

Burst).  Depending on the detector decision, if the workload state is burst so the RR will be applied, 

otherwise the Fuzzy Random will be applied. The main role of the fuzzifier is to prepare a candidate set 

of the most balanced VMs based on CPU speed and current load on the VM. This set is used by Fuzzy RR 

and Fuzzy Random to select the VM to handle the received request. 

To test our algorithm CloudAnalyst simulator had been used. Several experiments had been done on 

different workload patterns. For evaluation, two metrics had been chosen: processing time, and 

response time. The results had been compared with three popular load balancing algorithms: RR, ESCE, 

and Random. 

The experiments in this work divided into three parts. In the first part experiments were done in order 

to study the performance of the RR, ESCE, and Random algorithms in bursty and normal workloads. The 

results showed that the burstness affect the performance of the load balancing algorithms. The second 

part of experiments had been done to decide which the two algorithms that will be used are in Adaptive 

algorithm. Based on the results of this part the RR is used when the workload is bursty and the Random 

is used when the load is normal. In the third part the Adaptive algorithm was tested under different 

bursty levels. The results showed that Adaptive algorithm decreased the response and the processing 

time. The decreasing in response time and processing time is about 2 ms when the instruction length 

was 250 Byte and the decreasing became more obviously with 10 ms for response time and 5 ms for 

processing time when the instruction length was 1000 Byte. 

5.2 Future Works 
For future works several suggestions may be done in order to enhance Adaptive Algorithm: 

1. A prediction algorithm may be used to predict the workload and decide the proper threshold. 

2. Measure the resource utilization such as CPU, and Memory. 

3. Power consumption is a very important issue, so we need to test this metric and improve the 

algorithm to minimize the consumption of the power. 

4. Test the proposed algorithm on a real cloud. 

  



81  
 

References 

1. Zhang, Q., Cheng, L., and Boutaba, R., Cloud computing: state-of-the-art and research 
challenges. Journal of Internet Services and Applications,  1(1): pp. 7-18,(2010). 

2. Peter Mell, T.G., The NIST Definition of Cloud Computing, (2009). 
3. Ratan, M. and Anant, J., Ant colony Optimization: A Solution of Load Balancing in Cloud. 

International Journal of Web & Semantic Technology (IJWesT),  3(2): pp. 33-50,(2012). 
4. Dong, J., Network Dictionary. Javvin Technologies Inc, (2007). 
5. Sajid, M. and Raza, Z. Cloud Computing: Issues & Challenges. in International Conference on 

Cloud. pp. 35-41, (2013). 
6. Uma, J., Ramasamy, V., and Kaleeswaran, A., Load Balancing Algorithms in Cloud Computing 

Environment - A Methodical Comparison. International Journal of Advanced Research in 
Computer Engineering & Technology (IJARCET),  3(2): pp. 272-275,(2014). 

7. Sarna, D.E.Y., Implementing and Developing Cloud Computing Applications. CRC Press, (2011). 
8. Nandgaonkar, S.V. and Raut, A.B., A Comprehensive Study on Cloud Computing. International 

Journal of Computer Science and Mobile Computing,  3(4): pp. 733 – 738,(2014). 
9. Devasena, L.C., Impact Study Of Cloud Computing On Business Development. Operations 

Research and Applications: An International Journal (ORAJ),  1(1): pp. 1-7,(2014). 
10. Velte, A.T., Velte, T.J., and Elsenpeter, R., Cloud Computing A Practical Approach. TATA 

McGRAW-HILL, (2010). 
11. Marisol, G.V., Cucinotta, T., and Lu, C., Challenges in real-time virtualization and predictable 

cloud computing. Journal of Systems Architecture (ELSEVIER): pp. 1-15,(2014). 
12. Kaleeswari and Juliet, N., Dynamic Resource Allocation by Using Elastic Compute Cloud Service. 

International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET),  
3(5): pp. 12375-12379,(2014). 

13. Sareen, P., Cloud Computing: Types, Architecture, Applications, Concerns, Virtualization and Role 
of IT Governance in Cloud. International Journal of Advanced Research in Computer Science and 
Software Engineering,  3(3): pp. 533-538,(2013). 

14. Alakeel, A.M., A Guide to Dynamic Load Balancing in Distributed Computer Systems. 
International Journal of Computer Science and Network Security (IJCSNS),  10(6): pp. 153-
160,(2010). 

15. Jena, S. and Ahmad, Z., Response Time Minimization of Different Load Balancing Algorithms in 
Cloud Computing. International Journal of Computer Applications,  69(17): pp. 22-27,(2013). 

16. Wu, K., Chen, L., Ye, S., and Li, Y., A Load Balancing Algorithm based on the Variation Trend of 
Entropy in Homogeneous Cluster. International Journal of Grid and Distributed Computing,  7(2): 
pp. 11-20,(2014). 

17. Chaczko, Z., Mahadevan, V., Aslanzadeh, S., and Mcdermid, C. Availability and Load Balancing in 
Cloud Computing. Singapore: International Conference on Computer and Software Modeling, 
(2011). 

18. Mehta, R., Yask, P., and Harshal, T., Architecture For Distributing Load Dynamically In Cloud 
Using Server Performance Analysis Under Bursty Workloads.  1(9),(2012). 

19. Subramanian S, N.K.G., Kiran Kumar M, Sreesh P, and G R Karpagam, An Adaptive Algorithm For 
Dynamic Priority Based Virtual Machine Scheduling In Cloud. International Journal of Computer 
Science Issues,  9(6),(2012). 

20. Mohapatra, S., Rekha, K.S., and Mohanty, S., A Comparison of Four Popular Heuristics for Load 
Balancing of Virtual Machines in Cloud Computing. International Journal of Computer 
Applications,  68,(2013). 



81  
 

21. Sharma, T. and Banga, V., Efficient and Enhanced Algorithm in Cloud Computing.  3(1),(2013). 
22. Mohialdeen, I.A., Comparative Study Of Scheduling Algorithms In Cloud Computing Environment. 

Journal of Computer Science,  2(9): pp. 252-263,(2013). 
23. Khanghahi, N. and Ravanmehr, R., Cloud Computing Performance Evaluation: Issues And 

Challenges. International Journal on Cloud Computing: Services and Architecture (IJCCSA),  3(5): 
pp. 29-41,(2013). 

24. Chin, M.L., Tan, C., and Bandan, M.I., Efficient DNS based Load Balancing for Bursty Web 
Application Traffic.  1,(2012). 

25. Li, H. and Muskulus, M., Analysis and Modeling of Job Arrivals in a Production Grid.  34(4): pp. 
59-70,(2007). 

26. Mia, N., Zhangb, Q., Riskac, A., Riskac, E., and Riedel, E., Performance impacts of autocorrelated 
flows in multi-tiered systems. 

27. Riska, A. and Riedel, E. Long-Range Dependence at the Disk Drive Level. in Third International 
Conference on the Quantitative Evaluation of Systems - (QEST'06). IEEE, (2006). 

28. McNeill, F.M. and Thro, E., Fuzzy Logic A Practical Approach. United Kingdom: Academic Press 
Limited. 279, (1994). 

29. Helmy, T., Al-Jamimi, H., Ahmed, B., and Loqman, H., Fuzzy Logic–Based Scheme for Load 
Balancing in Grid Services. A Journal of Software Engineering and Applications: pp. 149-
156,(2012). 

30. Sethi, S., Anupama, S., and Jena, K., S, Efficient load Balancing in Cloud Computing using Fuzzy 
Logic. IOSR Journal of Engineering (IOSRJEN),  2(7): pp. PP 65-71,(2012). 

31. Dave, S. and Maheta, P., Utilizing Round Robin Concept for Load Balancing Algorithm at Virtual 
Machine Level in Cloud Environment. International Journal of Computer Applications,  
49(4),(2014). 

32. Singhal, U. and Jain, S., A New Fuzzy Logic and GSO based Load balancing Mechanism for Public 
Cloud. International Journal of Grid Distribution Computing,  7(5): pp. 97-110,(2014). 

33. Tai, J., Zhang, J., Li, J., Meleis, W., and Mi, N. ARA: Adaptive Resource Allocation for Cloud 
Computing Environments under Bursty Workloads. in IEEE International Performance Computing 
and Communications Conference. IEEE International Performance Computing and 
Communications Conference, (2011). 

34. Naik, N. and Patel, A., Load Balancing Under Bursty Environment For Cloud Computing. 
International Journal of Engineering Research & Technology (IJERT),  2(6),(2013). 

35. Ghorbani, M., Wang, Y., Xue, Y., Pedram, M., and Bogdan, P. Prediction and Control of Bursty 
Cloud Workloads: A Fractal Framework. in Hardware/Software Codesign and System Synthesis 
(CODES+ISSS), 2014 International Conference on New Delhi IEEE pp. 1 - 9 (2014). 

36. Zhang, J., Mi, N., Tai, J., and Meleis, W. Decentralized Scheduling of Bursty Workload on 
Computing Grids. IEEE, (2011). 

37. Zhang, J. and Meleis, W. Adaptive Grid Computing For Mpi Applications. in Parallel and 
Distributed Computing and Systems. (2009). 

38. jFuzzyLogic.  [cited 2015; Available from: http://jfuzzylogic.sourceforge.net/html/index.html. 
39. Cingolani, P. and Jesús, A.-F., jFuzzyLogic: a Java Library to Design Fuzzy Logic Controllers 

According to the Standard for Fuzzy Control Programming. International Journal of 
Computational Intelligence Systems,  6(1): pp. 61–75,(2013). 

40. Cingolani, P. and Jesus, A.-F. jFuzzyLogic: a robust and flexible Fuzzy-Logic inference system 
language implementation. in Fuzzy Systems (FUZZ-IEEE). IEEE International Conference on. IEEE, 
(2012). 

41. cloudsim.  [cited 2014; Available from: http://www.cloudbus.org/cloudsim/. 

http://jfuzzylogic.sourceforge.net/html/index.html
http://www.cloudbus.org/cloudsim/


82  
 

42. Calheiros, R.N., Ranjan, R., De Rose, C.A.F., and Buyya, R., CloudSim: A Novel Framework for 
Modeling and Simulation of Cloud Computing Infrastructures and Services. pp. 1-9, (2009). 

43. Pakize, S.R., Khademi, S.M., and Gandomi, A., Comparison Of CloudSim, CloudAnalyst And 
CloudReports Simulator in Cloud Computing. International Journal of Computer Science And 
Network Solutions,  2: pp. 19-27,(2014). 

44. Buyya, R., Ranjan, R., and Calheiros, R.N. Modeling and Simulation of Scalable Cloud Computing 
Environments and the CloudSim Toolkit: Challenges and Opportunities. in International 
Conference on High Performance Computing and Simulation. Proceedings of the 2009 
International Conference on High Performance Computing and Simulation, HPCS 2009, (2009). 

45. Wickremasinghe Bhathiya, N., C.R., and Rajkumar, B. CloudAnalyst: A CloudSim-based Visual 
Modeller for Analysing Cloud Computing Environments and Applications. . in International 
Conference on Advanced Information Networking and Applications (AINA). IEEE Computer 
Society, pp. 446-452, (2010). 

46. Wickremasinghe, B., CloudAnalyst: A CloudSim-based Tool for Modelling and Analysis of Large 
Scale Cloud Computing Environments, (2009). 

47. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., and Buyya, R., CloudSim: a toolkit for 
modeling and simulation of cloud computing environments and evaluation of resource 
provisioning algorithms. Software: Practice and Experience,  41(1): pp. 23-50,(2011). 

48. Mishra, R.K. and Bhukya, S.N., Service Broker Algorithm for Cloud-Analyst. International Journal 
of Computer Science and Information Technologies,  5 (3): pp. 3957-3962,(2014). 

49. Raghava, S. and Singh, D., Comparative Study on Load Balancing Techniques in Cloud Computing. 
Open Journal Of Mobile Computing And Cloud Computing,  1(1): pp. 18-25,(2014). 



1 A  
 

 

 

 

Appendix A  

CloudAnalyst Simulator Screens 

  



2 A  
 

Appendix A  CloudAnalyst Simulator Screens  

A.1. CloudAnalyst Main Screen 

When CloudAnalyst starts, the main screen appears with a map of the world on the center of the screen. 

As can be seen in Figure A.1 CloudAnalyst divides the world in to 6 regions located in the 6 main 

continents. Those regions are used in distributing DCs and UBs during configuration process. 

 

Figure A.1 CloudAnalyst Main Screen 

On the left side of the screen there is a Control Panel with the following 4 options: 

1. Configure Simulation:  Opens the Configure Simulation Screen 
2. Define Internet Characteristics:  Opens Internet Characteristics Screen 
3. Run Simulation: Starts the simulation 
4. Exit. 

 

A.2. Configure Simulation Screen 

Configure Simulation screen has three tabs: 

1. Main Configuration Tab 



3 A  
 

 

Figure A.2 Main Configuration Tab 

The configuration options on the main tab as shown in Figure A.2 are: 

1. Simulation time: the duration of the simulation which can be given in minutes, hours or days 

2. User Bases Table: This is a table listing out all the user bases in the simulation. Each user base 

has following configurable fields, represented by a single row in the table. 

a. Name 

b. Region 

c. Requests per user per hour 

d. Data size per request 

e. Peak hours 

f. Average users during peak hours 

g. Average users during off-peak hours 

The Add and Remove buttons next to the table can be used to add or remove user bases from the 

configuration. 

3. Application Deployment Configuration: This table lists how many virtual machines are allocated 

for the application in each data center from the Data Centers tab, along with the details of a 

virtual machine. The fields are: 

a. Data Center: This is a drop down listing the names of data centers created in the Data 

Center tab. 

b. Number of VMs: How many VMs to be allocated to the application from the selected data 

center 

c. Image Size: a single VM image size in bytes 

d. Memory: amount of memory available to a single VM 

e. BW: amount of bandwidth available to a single VM 



4 A  
 

4. Service Broker Policy: This drop down allows you to select the brokerage policy between data 

centers that decide which data center should receive traffic from which user base. The available 

policies are: 

a. Closest data center: The data center with the least network latency (disregarding network 

bandwidth) from a particular user base is sent all the requests from that user base. 

b. Optimize response time:  This policy attempts to balance the load between data centers 

when one data center gets over loaded. 

The “Save Configuration” button allows you to save the configuration created as a file. Simulation files 

are saved with a ( .sim) extension. Similarly using the “Load Configuration” button you can load a 

previously saved simulation configuration. 

2. Data Center Tab 

The data center tab allows you to define the configuration of a data center as shown in Figure A.3. The 

table at the top lists the data centers and using the Add/Remove buttons you can add or remove data 

centers to the configuration. The parameter fields are: 

1. Name 

2. Region 

3. Architecture – Architecture of the servers used in the data center. e.g. X86 

4. Operating System – e.g. Linux 

5. Virtual Machine Monitor (VMM) 

6. Cost per VM Hour 

7.  Cost per 1Mb Memory Hour 

8. Storage cost per Gb 

9. Data Transfer cost per Gb (both in and out) 

10.  Number of servers 

 

Figure 0.3 Data Center Configurations 



5 A  
 

When you select a data center from this table a second table will appear below it with the details of the 

server machines in the data center. The parameters for each machine can be given according to the 

available fields. 

1. Machine Id 

2. Memory 

3. Storage 

4. Available network bandwidth 

5. Number of processors 

6. Processor speed (MIPS) 

7. VM allocation policy (time shared/space shared) 

 

3. Advanced Tab 

The advanced tab contains some important parameters that apply to the entire simulation as shown in 

Figure A.4. 

 
Figure A.4 Advanced Tab Configurations 

1. User Grouping Factor (in User Bases) – This parameter tells the simulator how many users 

should be treated as a single bundle for traffic generation. The number given here will be used 

as the number of requests represented by a single InternetCloudlet. In the ideal scenario this 

parameter should be 1, with each individual user represented independently. But that will 

increase the simulation time unrealistically. 

2. Request Grouping Factor (in Data Centers) – This parameter tells the simulator how many 

requests should be treated as a single unit for processing. i.e. this many requests are bundled 

together and assigned to a single VM as a unit. Again, ideally this should be equal to 1. But it 

could also be viewed as the number of simultaneous threads a single application instance (VM) 

can handle. 



6 A  
 

3. Executable instruction length (in bytes) – This is the main parameter that affects the execution 

length of a request. This is the same GridletLength parameter used in GridSim. 

4. Load balancing policy – the load balancing policy used by all data centers in allocating requests 

to virtual machines. Available policies are: 

a. Round-robin 

b.  Equally Spread Current Execution Load – The load balancer keeps track of how many 

Cloudlets are currently being processed by each VM and tries to even out the active load. 

c. Throttled – The load balancer throttles the number of requests assigned to a single VM. 

 

A.3. Internet Characteristics Screen 

The Internet Characteristics screen can be used to set the Internet latency and bandwidth parameters. It 

presents two matrices for these two categories as seen in Figure A.5. 

 

Figure A.5 Internet Characteristics Configuration 

A.4. Results Screen 

Once the simulation is completed the main response times will be displayed on the simulation panel 

next to each user base. The detailed results can be viewed by clicking the “View Detailed Results” button 

that appears at the right hand bottom corner of the screen after the simulation has completed. 

The results screen as shown Figure A.6 will list out the data collected from the simulation. This includes: 



7 A  
 

 
Figure A.6 Results Screen 

1. Overall response time summary (for all the user bases) 

2. Response time by user base in tabular format 

3. Response time by user base in graphical format broken down into the 24 hours of the day 

4. Request servicing time by each data center in tabular format 

5. Request servicing time by data center in graphical format broken down into 24 hours of the day 

6.  Data center loading (number of requests serviced) in graphical format broken down in to 24 

hours of the day 

7. Cost details 

 


