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ABSTRACT 

Poor lung cancer survival can largely be contributed to the metastatic cells that invade 

and spread throughout the body. The tumor microenvironment (TME) is composed of multiple 

cell types, as well as non-cellular components.  The TME plays a critical role in the development 

of metastatic cancers by providing migratory cues that change the growing tumor’s properties. 

The Extracellular Matrix (ECM), a main component of the TME, has been shown to change 

composition during tumor progression, allowing cancer cells to invade tissue and survive away 

from the primary cancer site. Although the ECM is well-known to influence the fate of tumor 

progression, little is known about the molecular mechanisms that are affected by the cancer cell-

ECM interactions. It is imperative that these mechanisms are understood in order to properly 

understand and prevent lung cancer dissemination. However, common in vitro studies do not 

incorporate these interactions into everyday cell culture assays.  In our lab, we have adopted a 

model that examines decellularized human fibroblast-derived ECM as a 3D substrate for growth 

of lung adenocarcinoma cell lines. It is hypothesized that the interactions between lung cancer 

cell lines and fibroblast-derived ECM will alter phenotypes important for lung cancer 

progression. Here, we have characterized the effect of various fibroblast-derived matrices on the 

properties of various lung cancer adenocarcinoma cell lines. Such altered processes include 

morphology, growth, and migration. This work highlights the significance of the cell-ECM 

interaction and its requirement for incorporation into in vitro experiments. Implementation of a 

fibroblast-derived ECM as an in vitro technique will provide researchers with an important factor 

to manipulate to better recreate and study the TME. 
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NOMENCLATURE 

µm=micrometer 

ASNS=Asparagine Synthase 

BCA = Bicinchoninic acid 

BCAT1 = Branched-chain amino acid transaminase 1 

BME = basement membrane extract 

CAFs = Cancer-associated fibroblasts 

CREB = Cyclic-AMP responsive Element Binding 

ECM = Extracellular Matrix 

EMT = Epithelial-to-Mesenchymal transition 

FAK = Focal Adhesion Kinase 

FAP = fibroblast-activated protein 

FBS = fetal bovine serum 

GAGs = Glycosaminoglycans 

IL-8 = Interleukin – 8 

KCNMA1 = Potassium Large Conductance Calcium-Activated Channel family M 

LOX = Lysyl Oxidase 

MAPK = Mitogen-activated Protein Kinase 

MMPs = Matrix metalloproteases 

MOMP = mitochondrial outer membrane permeablization 

MRNA = messenger ribonucleic acid 

MTOR = mammalian target of Rapamycin 

NH4OH = Ammonium Hydroxide 

NSCLC = Non-small cell lung cancer 

NT5E = 5’ nucleotidase 

PSAT1 = phosphor-serine aminotransferase 1 

QPCR = quantitative polymerase chain reaction 

TBS-T = Tris-buffered saline with Tween-20 

TIMP = tissue inhibitors of metalloproteases 

TME = Tumor Microenvironment 

VEGF = Vascular Endothelial Growth Factor 
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I. Introduction 

The five-year survival rate for stage 3 lung cancer patients is only around 15% (American 

Cancer Society, 2015). This poor survival rate is largely contributed to the metastatic form of the 

disease, which allows the cancer to become a systemic burden, by infiltrating vital organs. 40%-

50% of patients with Non-small-cell lung cancers (NSCLC), which is the classification for nearly 

80% of all lung cancers, have metastatic lung cancer at diagnosis (Ihde et al., 1992).  Although 

survival rates improve with early detection, there is a great need for efficacious therapies that 

treat the metastatic form of lung cancer. There are many FDA approved therapies that are 

successful for lung cancer patients (eg. surgical resection, local radiation, and 

chemotherapeutics), but few therapies exist that are effective at specifically targeting cancer 

cells, while leaving healthy cells untouched, and even fewer that are effective against the 

metastatic cancers.  This failure to produce effective therapies is partly due to false discoveries 

that are attributed to lack of appropriate models that accurately recapitulate the in vivo 

mechanisms that drive lung cancer and its progression to metastasis (Hoelder et al., 2012). For 

instance, many cancer therapies are developed from chemicals that illicit a cancer specific 

cytotoxic response during in vitro cell culture environments, but these cell culture environments 

do not offer the full biological repertoire that is present in the human disease. This means that 

researchers are limited in the accuracy of their conclusions thus leading them down an incorrect 

path that may ultimately result in failure in the clinical setting. Although cell culture experiments 
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are a simple first-line test for new therapies, an improved in vitro model could filter out 

inefficacious treatments before large financial and temporal investments are made. 

It is now a fully accepted paradigm that neoplasms are a dynamic environment that host 

multiple cell types that influences the behavior and outcome of the cancer (Wood et al., 2014). 

Many studies are being done to determine the exact role the tumor microenvironment (TME) 

constituents, which include cancer cells, immune cells, fibroblasts, vasculature, and the 

extracellular matrix (ECM) (Schwendener et al., 2014) (Figure 1). The immune cells have been 

heavily studied for their role in carcinogenesis because they can support tumor growth and 

influence angiogenesis by secreting the necessary growth factors, which include VEGF and IL-8 

(Wood et al., 2014). Cancer-associated fibroblasts (CAFs), which are fibroblasts that reside 

within the tumor, but differ from normal resident fibroblasts, have also been shown to be pro-

tumorigenic by providing growth factors TGF-β, PDGF, and FGF, as well as cytokines such as 

IL-8, CXCL14, and IL-6 (Cirri et al., 2011).  Many novel therapies have been produced that 

target the TME. For instance, Bevacizumab is a monoclonal antibody that inhibits lung cancer 

angiogenesis by targeting VEGF (Das et al., 2012). It is clear that the best way to treat the patient 

is to treat the entire TME. 
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Figure 1- The Tumor Microenvironment 

The ECM, an essential constituent of the TME, is a meshwork of protein fibers and 

glycosanimoglycans (GAGs) that not only provides mechanical support, but also offers growth 

and migration cues through growth factors, adhesion interactions, and mechano-transduction 

(Oskarsson et al., 2013).   The ECM is generally secreted and organized by fibroblasts, but other 

cells can contribute to ECM production, such as endothelial and epithelial cells (Lu et al., 2012).  

Lately, the ECM has been heavily researched for its role in the progression of lung and breast 

carcinomas (Lu et al., 2012; Oskarsson et al., 2013; Yang et al., 2011). The balance of ECM 

deposition and ECM degradation can potentiate diseases such as fibrosis and cancer (Cox et al., 

2011). Increased production of the high elastic modulus collagen and decreased low elastic 

modulus elastin expression can stiffen local tissue, therefore altering mechano-transduction 

pathways (Butcher et al., 2009). Matrix metalloproteases (MMPs) are matrix-degrading enzymes 
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that can degrade the ECM and alter its elasticity, which can provide cells with important 

biomechanical stimulation to direct invasion into surrounding tissue and blood vessels, leading to 

metastasis (Hadler-Olsen et al., 2013). Alternately, ECM can be stiffened by increased matrix 

production and deposition of collagen via Lysyl Oxidase (LOX) signaling (Gao et al., 2010). For 

instance, ECM accumulation by increased Collagen deposition has been documented in many 

tumor cell types, including glioma, breast, and lung cancers (Huijbers et al., et al; Caccavari et 

al., 2010). This abnormal ECM function can cause changes in the mechano-transduction 

pathways that regulate growth and migration pathways. Tension-induced signaling has been 

shown to affect Mitogen-Activated Protein Kinase (MAPK) signaling pathways by p44/42 

activation in fetal lung epithelial cell lines (Copland et al., 2007).  MAPK signaling is highly 

affected in cancer that activates many downstream applications. Similarly, focal adhesions are 

the point of cell-ECM matrix interaction and are comprised of integrins that cluster together and 

bind the ECM, thus triggering downstream pathways mediated through Focal Adhesion Kinase 

(FAK) (Caccavari et al., 2010).  These downstream signaling pathways have the ability to 

modulate MMP and tissue inhibitors of metalloproteases (TIMP) that can adjust ECM synthesis 

and degradation (Caccavari et al., 2010). It is now evident that there exists a complex feedback 

mechanism between cancer cells and ECM that influences the fate of the tumor (Blaauboer et al., 

2014).  Interference of the cancer-promoting ECM-cell interactions could immobilize cancer 

cells and inhibit the deadly metastatic form of lung cancer, thus improving patient survival rates. 

Therefore, more basic research is needed to understand how lung ECM affects lung cancer cells, 

and vice versa.   
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To improve the reconstruction of the in vivo TME in vitro, cancer researchers are 

growing cancer cells in three-dimensions, rather than the commonly used 2D- tissue cultured-

treated dishes. Matrigel™, a basement membrane extract (BME) harvested from EHS mouse 

sarcoma cells, is a common semi-solid medium used to recapitulate the in vivo environment that 

affects cell morphology, proliferation, migration, and drug response ( Benton et al., 2011). There 

also exists synthetic cell scaffolds such as hyaluronic acid, gelatin, or polyethylene, but these 

synthetic gels and substrates lack the rich diversity of the stroma-associated ECM that is present 

in vivo.  Also, both Matrigel™ and synthetic matrices lack the native fibrillar architecture that 

may be required for the complex mechanisms of the cancer cell-ECM interaction.  Also, BME, 

like Matrigel™, are not tissue specific, which could make interpreting effects difficult because 

different ECM protein compositions could have different effects on the biology of the tissue-

specific cancer cell. Although suspending cancer cells in 3D protein gels better mimic the native 

tumor, it does not accurately recapitulate many tumors of the epithelium, including lung 

adenocarcinoma. Therefore, it is necessary to implement a better tissue-culture technique that 

incorporates signals from extracellular matrix proteins and structural properties. 

 Fibroblast-derived ECM could be a simple, cost-effective cell culture technique that 

recapitulates the ECM-lung cancer cell interactions that have been shown to play a vital role in 

the progression of cancer.  Fibroblasts are the principal contributors to ECM synthesis in most 

types of tissue, including the lung epithelium. Therefore, an ECM synthesized by fibroblast that 

retains its structural architecture will more accurately represent the native tumor environment. 

Edna Cukierman et al have published numerous articles describing techniques to harvest mouse 

fibroblast-derived matrices, and even characterized how these matrices affect the morphology, 
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growth, and drug response of numerous epithelial tumors cell lines, but no lung adenocarcinoma 

cells with human lung matrix were tested (Serebriiskii et al., 2008). Further, the same group 

demonstrated that overexpression of Fibroblast-activated Protein (FAP) in 3T3 cells induced 

matrix fiber alignment, which increased the growth invasiveness of pancreatic cancer cells (Lee 

et al., 2011). Still, little is known about how human lung fibroblast-derived matrices alter the 

morphology, growth, invasiveness, and biochemical properties of lung cancer cell lines.  

 In this work, we sought to better understand the effect of tissue-specific, human lung 

fibroblast-derived matrices on two lung adenocarcinoma cell lines, A549, H358, and HPL1Ds in 

ways previously untested with fibroblast-derived ECM. Techniques such as cell growth assays, 

drug response, microscopy, western blot, RNA analysis, and migration studies were used to 

characterize human fibroblast-derived ECM and how they affect lung cancer cell lines. The 

Objective of this Masters of Engineering project is to characterize the effect of human fibroblast-

derived extracellular matrix on lung cancer cell phenotypes. Also, it is a long-term goal of the 

student to understand how modulation of the fibroblast-derived extracellular matrix alters human 

lung cancers. 

II. METHODS 

A. Cell Culture 

Three Human fibroblast cell lines were used in this study, IMR-90, WI-38, and HDF, were 

all purchased from ATCC. IMR-90 Cells are human lung fibroblasts harvested from a female of 

16-week gestation. WI-38 cells are also lung fibroblasts harvested from a 12-week old fetus.  

HDFs are human dermal fibroblast procured from the Patricia Soucy Laboratory. IMR90 and 
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HDF cells were both cultured in RPMI 1640 (Hyclone SH30027.01) supplemented with 10% 

FBS (Hyclone SH30070.03), 1% penicillin-streptomycin (Hyclone SV30030), and 1% L-

glutamine (Hyclone SH30034.01). WI-38 cells were cultured in MEM media (Gibco 10370-021) 

supplemented with 10% FBS, 1% penicillin-streptomycin, and 1% L-Glutamine.  

Three-epithelial cell lines, A549, H358, and HPL1D, purchased from ATCC, were used to 

seed onto Fibroblast-derived matrix. A549 and H358 cells are both lung adenocarcinoma cells 

harvested in 1972, and 1981, respectively.  HPL1D cells are normal peripheral lung epithelial 

cells and were used to compare the cancerous phenotype of A549 and H358 cell lines to normal, 

steady-state lung epithelial cells. However, HPL1D cells have been shown to form soft-agar 

colonies in our lab, suggesting they are transformed. All epithelial cells were cultured in RPMI 

1640 supplemented with 10% FBS, 1% Glutamine, and 1% penicillin-streptomycin.  

B. Extracellular Matrix Production and Decellularization 

ECM production and harvesting protocols were adapted from Cukierman et al and Soucy et 

al (Soucy et al., 2009). Fibroblasts are seeded at confluence, and cultured for 8 days while 

changing the media every two days. HDF cells are a little larger that the lung fibroblast cell lines 

so they are seeded at a lower density than WI-38 and IMR-90 cells. For example, in a 6 well 

dish, 300,000 IMR90 or WI-38 cells are seeded, but for the same size dish, 270,000 HDF cells 

were seeded. After 8 days of culture, cells are washed once with PBS (Hyclone SH30028.02), 

and then incubated at room temperature for 2 minutes in PBS with 50 mM concentration of 

ammonium Hydroxide (NH4OH) (Fischer-A669-500) with .05% Triton X-100 (Sigma T8787) 

solution. Ammonium hydroxide is used to destroy the fibroblasts by creating a hypotonic 
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solution that lyses the cells. Triton X-100 is a detergent that also aides in cell lysis while leaving 

the produced matrix undisturbed. Cells are constantly observed under the microscope at 10X to 

confirm proper removal of all fibroblast debris. After decellularization, the matrices are washed 

3 times with PBS. To prevent unwanted fibroblast DNA, which could affect downstream 

applications,  matrices are incubated at for one hour at 37°C in a 20U/mL DNAse 1(Thermo 

Scientific EN0525) concentration in sterile H2O (CellGro 25-055-CV). After DNAse 1 

treatment, matrices are washed 3 times with PBS and either stored at 4°C, or used immediately 

(Figure 2). 

 

Figure 2- Schematic of Fibroblast-derived ECM protocol 

C. Microscopy and Fluorescent Microscopy 

For light microscopy, a Zeiss AX10 inverted microscope was used at 10X and 40X. For 

Immunofluorescence, a Nikon A1R camera mounted on a Zeiss Confocal microscope was used. 

For immunofluorescence, Matrices and/or cells were fixed with 4% formaldehyde in PBS for 20 

minutes at room temperature then washed 3 times with PBS for 5 minutes each. For ECM 

staining, a succinimidyl ester (NHS ester) conjugated to an Alexa Fluor 488 dye was incubated at 

a concentration of 10 µg/mL for 30 minutes at 37°C, then washed 3 times with PBS for 5 
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minutes. The NHS ester binds to any proteins, thus staining the entire extracellular matrix. To 

ensure no leftover fibroblast DNA is present, DAPI was also added at a concentration of 1:1000 

in PBS for 10 minutes at room temperature.  To image the cytoskeleton of epithelial cells, 

Phalloidin was added at a concentration of 1:1000, while incubating with DAPI for 10 minutes at 

room temperature. After staining, the cells were imaged. The ECM stain fluoresces at 488 nm, 

while Phalloidin and DAPI fluoresce at 600 nm and 358 nm, respectfully.  

 

D. SDS PAGE and Western Blot 

Cells were lysed in CHAPS buffer (1% CHAPS in 150 nM NACL, 50 mM TRIS pH 7.5, 50 

mM EDTA) containing protease and phosphatase inhibitors for 20 minutes on ice. Lysates were 

centrifuged at 15,000 X G for 8 minutes at 4°C to pellet the insoluble material, which includes 

the extracellular matrix proteins. Protein concentration was then quantified using a bicinchoninic 

acid (BCA) assay (Thermo Scientific #23228, #1859078). Briefly, the BCA assay is a 2-step 

reaction where peptide bonds reduce the copper sulfate in reagent-A, next the reduced copper is 

chelated by the bicinchonic acid from reagent-B, forming a purple color, which can be measured 

at 562 nm by absorption on a spectrophotometer. The amount of reduced copper ions and 

therefore the absorbance at 562 nm is directly proportional to the amount of protein in the 

sample. 30 µg of total protein was loaded on a 4-12% bis-tris polyacrylamide gel (Novex). 150 

volts was applied across the gel for 60 minutes at room temperature while the gel was submerged 

in 1X running buffer (Novex NP0002) in water. After protein migration, gels were either stained 

with colloidal blue (Invitrogen LC6025) for 4 hours to stain nonspecific proteins, or 



10 
 

immunoblotting was performed. For immunoblotting, protein was transferred to a PVDF 

membrane by applying a voltage of 70 V for 60 minutes in 1X transfer buffer (Novex NP0006) 

diluted with water and methanol.  After protein transfer, membranes were washed for 15 minutes 

in 5% milk in a mixture of Tris-buffered saline and Tween 20 (TBS-T) to block non-specific 

binding by the antibody. Primary antibodies specific to human GAPDH, AKT, phosphorylated 

AKT, p38, phosphorylated p38, p44/42, phosphorylated p44/42, E-cadherin, Vimentin, mTOR, 

phosphorylated mTOR, and CDC42 (Cell Signaling™) were added at a concentration of 1:10000 

in 5% milk and incubated with the membranes overnight at 4°C.  After primary antibody 

incubation, membranes were washed 3 times in 5% milk for 5 minutes. Secondary antibody, 

conjugated to HRP, specific to target the primary rabbit antibody, was incubated with the 

membranes in 1.25% milk for 30 minutes at room temperature then washed 2 times for 5 minutes 

in 1.25% milk. Membranes were then incubated for 20 minutes in TBS-T before adding HRP 

substrate (Thermo Scientific #34095) for detection by luminescence captured on a photographic 

film.  The amount of luminescence produced by the HRP enzymatic reaction is proportional to 

the amount of protein tagged by the antibody.  

E. Cell Growth 

To determine the effect of cell-derived matrices on cell growth and proliferation, two assays 

were employed. To determine cell number, 30,000 cells were plated in a 12 well dish with a 

fibronectin coat, or fibroblast-derived ECM. Every 24 hours for 4 days, cells were washed in 

PBS, trypsinized in Trypsin (Hyclone SH30042.01) for 3 minutes at 37°C, centrifuged at 1200 

RPM for 3 minutes and suspended in 1 mL media for counting with Trypan Blue™ (Invitrogen 
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T10282) in a Countess automated cell counter m (Invitrogen).  Trypan blue is a dye used to stain 

dead cells, which does not stain live cells.  

For proliferation, 2,000 cells were seeded into a 96 well-plate, and Alamar Blue™ 

(Invitrogen 612130) was added each day for 4 days to determine proliferation. Plates were 

incubated at 37°C until a color changed was observed, then read on a spectrophotometer using an 

excitation of 560 nm and emission of 590 nm.  Briefly, Alamar Blue™ is resazurin and enters the 

cell and gets reduced by cells with an active metabolism. The reaction converts a blue resazurin 

to a purple resorufin, a fluorescent molecule. Raw fluorescent data were averaged, with the blank 

reading subtracted, and then normalized to Fibronectin. 

F. Trans-well Migration Assay 

To determine if fibroblast-derived matrices affected how epithelial cells migrate, trans-well 

chamber (Fischer 353097) assays were used. Briefly, ECM was produced on the bottom side of a 

trans-well chamber (Figure 3A-C) and A549 cells were cultured on the top side (Figure 3D). 

After 24 and 48 hours, non-migrating cells were scraped off the membrane. Migrating cells were 

then fixed in 4% paraformaldehyde and stain with hemotoxylin and eosin (Protocol 122-911). 

Membranes were then mounted on a glass slide and migrated cells were counted using ImageJ 

software analysis. N=4. 
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Figure 3- Depiction of Trans-well Assay. (3A) Seed 50,000 fibroblasts on membrane and 

allow to adhere. (3B) Properly insert chamber 28 hours seeding. (3C) After 8 days, 

decellularize. (3D) seed 15,000 A549 Cells in upper portion of chamber. (3E) allow cells 

to migrate for 24 hours. 

 

G. Microarray  

RNA was harvested using E.Z.N.A Total RNA Kit (Omega) and analyzed on a nanodrop for 

quality control. RNA must have a 260/280 absorbance ratio between 1.8 and 1.9, and a 260/230 

absorbance ratio between 1.9 and 2.2 to ensure minimal protein contamination then treated with 

DNAse to remove DNA contamination. RNA samples were then converted to cDNA, labeled, 

and hybridized on an Affymetrix PrimeView Human Array Chip with the aid of the Genomics 

Core Facility and the assistance of the student. Raw intensity scores were imported into Partek 

Genomics Suite 6.6 (6.13.0731) and normalized on a gene level using the standard RMA 

algorithm for normalization and background correction. A 2-way ANOVA was set up and a step-

up FDR corrected P-value was included for every P-value calculated. Only significant gene 

changes with a P-value of <.05 and a fold change greater than 1.5 were uploaded into 

MetaCore™ for pathway and gene otology analysis.  
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H. Real Time PCR 

New biological replicates were used to generate RNA as previously described for the 

microarray.  Complementary DNA was generated using the RNA to cDNA kit Applied 

Biosystems). This kit uses thymidine-rich primers that bind to the poly-A tail of mRNA and 

allow a polymerase to synthesize the complete complimentary strand.  Oligonucleotide 

sequences are as follows: 

Table I 

 List of Primer sequences for Quantitative PCR 

Gene Sense Antisense 

LGALS GGTCAACCCTGAAGATCACAG GTCCAATGAGTTGCAGACAATG 

PSAT1 AAGGTGTGCTGACTATGTGG TTGAGGTTCCAGGTGCTTG 

ASNS AGGAGAGTGAGAGGCTTCTG GGTGGCAGAGACAAGTAATAGG 

BCAT1 AATCCCAAGTATGTAAGAGCCTG AAGAGATGAGCCGTAATTCCC 

IL-8 ATACTCCAAACCTTTCCACCC TCTGCACCCAGTTTTCCTTG 

STAT4  CCTGAAAACCCTCTGAAGTACC ACCTTTGTCACCCCTTTCTG 

C3 AACTACATCACAGAGCTGCG AAGTCCTCAACGTTCCACAG 

C1S TTTGTAGATGTCCCTTGTAGCC AATCTCCCCAATCAGTGCAG 

MMP7 TTCCAAAGTGGTCACCTACAG AGTTCCCCATACAACTTTCCTG 

RND1 ATGTAAGCTCGTTCTGGTCG CTCTGTTCCTCTGTCTCCAAAC 

GAPDH TGCACCACCAACTGCTTAGC GGCATGGACTGTGGTCATGAG 
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Primers were designed to be between 18-22 base pairs long, have a 40%-60% GC content, 

and amplify a product between 60-120 base-pairs. Primer specificity was validated to only 

amplify one product between at 60°C. Reaction efficiency was also validated to ensure that 

fluorescence intensity doubled each cycle using a serial dilution of a known cDNA template. 

Reactions were shown to be efficient between 10 ng and 50 ng concentrations of DNA. To 

qualify, efficiency must be within 85% and 105% with an R2 value greater than .98. This quality 

control confirms that no matter the differences in original starting material between the wells, 

comparison of threshold values are valid because the samples are within the linear range.  To 

calculate relative fold change compared to a fibronectin-coated dish, the 2 ΔΔC
T method. 

Equations shown below: 

𝛥𝛥𝐶𝑇 =  (𝛥𝐶𝑇(𝐸𝐶𝑀) −  𝛥𝐶𝑇(𝐹𝑁)) 

𝛥𝐶𝑇 =  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶T (𝑇𝑎𝑟𝑔𝑒𝑡 𝑔𝑒𝑛𝑒)  −  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑇 (𝐺𝐴𝑃𝐷𝐻). 

CT is the PCR cycle number where the fluorescent threshold value is reached. All PCR 

reactions were analyzed on a biorad CX96. 

I. TIME-LAPSE MICROSCOPY 

150,000 A549 cells were seeded onto either ECM-coated or Fibronectin-coated 35mm dishes 

with a coverslip insert for microscopy. 24 hours after cell seeding, dishes were inserted into a 

live-cell chamber for 24 hours and pictures were taken at 3 different fields every 10 minutes, 

until 24 hours have past. Cell migration was calculated by tracking 4-8 cells per field throughout 

the time lapse. Cell tracking was achieved by the MtrackerJ plugin, available for ImageJ 
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(Meijering et al., 2012). Average point by point velocity for all lines were calculated within 

MtrackerJ and reported with SEM. Directionality, a measure to determine linearity of migration, 

was calculated by D/d (Figure 13B). 

J. Cell Circularity 

After confocal microscopy with Phallodin and DAPI, images with scale bars were 

imported in ImageJ and converted from RGB to 32-bit and a threshold was set to create 

maximum contrast between cell borders and empty space. Built-in functions of ImageJ allowed 

for easy image segmentation for area and perimeter analysis. Circularity is a value between 0-1 

with 1 being a perfect circle (Pasqualato et al., 2013).  

 

𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 = 4𝜋 × (𝐴𝑟𝑒𝑎 ÷ 𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2) 

 

K. Subcutaneous Tumor Formation 

5x106 cells in 500 µL were mixed with either 500 µL PBS or 500 µL of PBS with 615 µg 

scraped WI38 derived ECM. 100 µL was then injected in the subcutaneous tissue of NRG mice. 

Each mouse received two injections: 100 µL of A549 cells with ECM on the left flank and 100 

µL of A549 with PBS on the right flank. Tumors were then allowed to form and after 60 days, 

mice were euthanized by CO2 and tumors were excised and fixed in 10% buffered 

formaldehyde. Fixed tissues were sent to HistoServe™ for paraffin embedding, sectioning, and 

staining. Tumor volume is measured by: 



16 
 

𝑇𝑢𝑚𝑜𝑟 𝑉𝑜𝑙𝑢𝑚𝑒 =
1

2
(𝐿𝑒𝑛𝑡ℎ 𝑥 𝑊𝑖𝑑𝑡ℎ)2 

 

Where length is the greatest longitudinal direction and width is the greatest transverse direction 

(Jensen et al., 2008). 

L. Dose Response of Chemotheraputics 

3,000 A549, H358, and HPL1D cells were seeded in on a 96 well-plate. After 24 hours, 

Cisplatin and Gemcitabine were added into the media and then incubated for 48 hours before 

measuring cell growth by Alamar Blue™. N=3. 

M. Statistical Analysis 

A two-way ANOVA with a Tukey’s Test for multiple comparisons were used to 

determine statistical significance. For in vivo data, a  unpaired t-test was performed. *, P-

value<.05 

 

III. Results and Discussion 

A. Fibroblasts and Their Derived Extracellular Matrix 

In order to derive accurate conclusions, multiple fibroblast cell lines were procured to 

produce a variety of ECM from multiple tissue types. Two human fetal lung fibroblasts cell 

lines, WI38 and IMR-90, and one human dermal fibroblast cell line, HDF, were used. All 

fibroblast cell lines exhibited the same spindle-shaped morphological features (Figure 4Ai). 
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Interestingly, all three fibroblast cell lines aligned themselves in a linear pattern, and produced a 

similar ECM, which also appeared highly linearized, suggesting there is dynamic remodeling 

after cell seeding (Figure 4Aii and 4Aiii). This linearized ECM could be important for 

maximizing physiologic relevance to the human disease in vitro, which is not available with 

solubilized ECM, such as Matrigel™.  The resultant fibroblast-derived ECM was solubilized in 

5M Guanidine-HCL and protein content was measured using a BCA assay (figure 4C). All 

fibroblast-derived matrix produced similar amounts of ECM per cm2, except HDF produces 

slightly more (P=045). WI38 ECM averaged 32.06 µg/cm2 +/- 3.961, IMR-90 ECM averaged 

32.02+/-3.299 µg/cm2, and HDF ECM averaged 34.016 +/- 3.990 µg/cm2. Results were averaged 

from three wells of fibroblast-derived matrix solubilized in the same volume. Interestingly, HDF 

produce an ECM that has significantly (p=.045) more protein than the other fibroblast-derived 

ECM (Figure 4B), thus providing suggesting that there are differences in ECM production 

between tissue-specific fibroblasts. After solubilizing, ECM protein was analyzed by SDS-PAGE 

and total protein was stained by colloidal blue (Figure 4D).  Interestingly, both WI38 and IMR-

90 derived matrices have more intense Collagen bands (140 kDa- 175 kDa) compared to HDF. 

However, HDF-derived ECM has a greater presence of a fibronectin band (260 kDa-280 kDa) 

compared to WI38 and IMR90 matrices. Collagen and Fibronectin bands are easily identified 

because they have been previously shown to be the prominent constituent of WI38 derived ECM 

(Soucy et al., 2009).  Also, there appears to be more intermediate protein bands that range 

between 175 kDa and 250 kDa that are more prominent in HDF derived ECM than WI38 and 

IMR90 ECM. However, it is not possible to conclusively determine the identity these proteins. It 

is interesting that there are differences in ECM protein expression between cell lines from two 
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distinct tissue sources. These subtle differences in protein expression might alter the phenotype 

of lung cancer cell lines, thus potentially affecting the outcome of the human disease. 

 

Figure 4-Fibroblasts and their ECM. (Ai) 5X phase contrast microscopy of fibroblasts. (Aii) 40X 

phase contrast microscopy of decellularized fibroblast-derived ECM. (Aiii) Confocal microscopy 

of fibroblast-derived ECM with NHS-ester probe. (B) ECM Quantified protein analysis 

(µg/cm2), N=3 *p<.05 (TABLE VII). (D) SDS PAGE and Colloidal Blue stain of fibroblast-

derived ECM. N=3. 

 

B. Fibroblast-derived Matrices Alter Lung Cancer Cell Morphology 

 The first experiment that was conducted once fibroblast-derived matrices were 

successfully produced was to determine how cell morphology changes when lung cancer cells 
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were grown on human lung-specific matrix, human dermal matrix, or a normal fibronectin–

coated tissue culture treated dish. Fibronectin-coated dishes were used as a control because it 

simulates both the traditional 2D cell culture environment as well as having a natural ECM 

component. After fibroblast extraction and ECM purification, A549, H358, and HPL1D cell lines 

were seeded onto the fibroblast-derived matrices or FN-coated dish, and then imaged 48 hours 

later to determine morphology. Observation by phase-contrast microscopy (Figure 5Ai) revealed 

marked differences in cell shape, especially A549 cells.  H358 and HPL1D cells exhibited a 

slight spindle-shaped morphology. A549 cells showed the biggest change in morphology, thus 

were analyzed further quantify the change (figure 5B). Phalloidin, a chemical known to have a 

high specificity for filamentous actin, was used to visualize the cytoskeleton of the cell by 

confocal microscopy. Simple geometric calculations such as area and perimeter were used to 

judge cell circularity (Figure 5C). All three fibroblast-derived matrices significantly (p<.05, 

N=10) pressured A549 cells to form a more elliptical shape, instead of a more circular shape 

(Circularity = 1), which is exhibited more on fibronectin (Figure 5C). A549 cells on fibronectin 

have an average circularity value of .38 +/- .04, while the same cells on WI38, IMR-90, and HDF 

ECM have average circularity values of .18 +/- .034 (p=.004), .18 +/- .038 (p=.0023), and .12 +/- 

.019 (p=.0002), respectfully. Cells settled between matrix fibers and elongated according to the 

direction of the fibers. However, the type of ECM did not have differential effects on cell 

morphology, suggesting that the type and content of the ECM does not induce morphological 

change in lung cancer cell lines. Changes in cell morphology can induce drastic alterations in cell 

processes such as proliferation and migration, thus influencing the fate of the cancer cells. In 

fact, it has been previously reported that cell shape can influence the metastatic capabilities of 
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some cancers (Yin et al., 2013).  Cell elongation may contribute to increased cell migration. It is 

interesting that A549 cells have the most drastic change in morphology, suggesting that this cell 

line may have altered growth and migration properties, compared to H358 and HPL1D cells.  

 

Figure 5- Fibroblast-derived ECM alter Lung Cancer Cell Line Morphology. (A) Phase contrast 

microscopy photos of A549, H358, and HPL1D cells on FN, WI38 ECM, IMR-90, and HDF 

ECM. (B) A549 cells on WI38 ECM stained with Phallodin and DAPI. (C) A549 circularity on 

FN and WI38 ECM. N=10. *, p<.05 (TABLE X) 

C. Fibroblast-derived Matrices Alter Lung cancer Cell Growth 

Next, cell growth alterations due to interaction with the various fibroblast-derived matrices 

were examined.  Even without employing assays to measure cell number and proliferation, it is 

clear by microscopy that human fibroblast-derived matrices affect cell growth, because there are 
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simply fewer cells to observe after several doubling times. To test the hypothesis that lung cancer 

cells proliferate less when cultured on fibroblast-derived ECM, Alamar Blue™ and cell-counting 

assays were used. A549, H358, and HPL1D were seeded onto 12-well plates for Trypan blue™ 

cell counting, or 96-well plates for an Alamar Blue™ assay, and recorded measurements for four 

consecutive days. Trypan blue™ is a dye that stains cells with a disrupted cell membrane, thus it 

only accumulates in dead cells. Alternately, Alamar Blue™ is a blue dye that gets reduced to a 

purple fluorescent molecule by oxidative reaction in the electron transport chain. Thus Alamar 

Blue™ reduction is directly proportional to cellular metabolism.  It is clear that both cell density 

number (Figure 6A) and subsequent Alamar Blue™ (Figure 6B) metabolism were attenuated 

when all cell lines were cultured on all matrices. Cukierman et al. showed that various human 

epithelial cancers such as breast and colon cancer cell lines grow slower when cultured on mouse 

fibroblast-derived ECM (Serebriiskii et al., 2008). It is the belief in the field that an increased 

extracellular matrix presence should enhance cancerous properties. However, this data suggests 

that fibroblast-derived ECM inhibit the growth of lung cancer cell lines. Interestingly, a recent 

publication has determined that high mechanical strain induces cell cycle entry mediated by E-

cadherin (Benham-Pyle et al., 2015). Therefore, this decreased growth could be due to the altered 

force the cells experience when cultured on fibroblast-derived matrix. Alternately, perhaps lung 

cancer cells lines grow slower on fibroblast-derived ECM because the ECM creates a barrier 

between neighboring cells, thus eliminating cell-cell interactions. Nevertheless, more studies are 

needed that determine exactly how fibroblast-derived ECM slow down the growth of lung cancer 

cell lines, compared to the same cells on a fibronectin-coated tissue culture dish.  
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Figure 6- Fibroblast-derived ECM alter Lung Cancer Cell Growth.  (A) Manual cell counting. 

*,P<.05. (Ai) A549 on all three fibroblast-derived ECM (TABLE XI). (Aii) H358 on all three 

fibroblast-derived ECM (TABLE XII). (Aiii) HPL1D on all fibroblast-derived ECM (TABLE 

XIII). B: Alamar Blue™*,P<.05. (Bi) A549 on all three fibroblast-derived ECM. (Bii) H358 on 

all three fibroblast-derived ECM. (Biii) HPL1D on all fibroblast-derived ECM. N=3. *, P-

value<.05 (TABLE XIV-XVI) 

D. Fibroblast-Derived Matrices alter functional protein levels of lung cancer cell lines 

To perhaps understand which growth-related signaling pathways are attenuated when 

A549 cells interact with various fibroblast-derived ECM, western blot analysis was performed.  

Western blotting is a common analytical technique that uses antibodies to detect specific protein 

levels in a cell lysate. Here, A549 cells cultured on FN, WI38 ECM, IMR-90 ECM, and HDF 
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ECM were lysed, spilling out soluble protein. Antibodies specific for proteins involved in 

MAPK signaling, Epithelial-to-Mesenchymal Transition (EMT) signaling, as well other proteins 

known to be involved in cellular proliferation were utilized to help understand why A549 cells 

have restricted growth when cultured on all fibroblast-derived matrices. Interestingly, many 

proteins and phosphorylated proteins are decreased at the protein level, as detected by western 

blot (Figure 7). Phosphorylated MAPK family members such as P38 and P44/42 are decreased 

when A549 cells are cultured on all fibroblast-derived ECM (Figure 7B). MAPK initiation is 

known to activate many downstream pathways that affect cell cycle entry and cell growth (Segar 

et al., 1995). Similarly, AKT, Cyclic-AMP Response Element Binding (CREB) protein, and 

Mammalian-Target of Rapamycin (MTOR), which are all together involved in several cascades 

that regulate cell cycle, are decreased when A549 cells are cultured on all fibroblast-derived 

matrices (Figure 7A and 7B). Also, CDC42, a known cell cycle regulator, and phosphorylated 

SRC kinase, a known oncogene in lung cancers, are decreased on fibroblast-derived ECM. These 

data suggest possible effector molecules that are disrupted when A549 cells are cultured on 

fibroblast-derived ECM, thus providing key insight into the effect of the ECM on lung cancer 

cell line growth. 

 As previously stated, metastatic lung cancer is the deadliest and most aggressive form of 

the disease. EMT is a process initiated by cells in the primary tumor in order to migrate and 

become metastatic. Biomarkers of EMT are the loss of E-cadherin, and the gain on Vimentin 

expression in epithelial cancers (Xiao et al., 2010). It is hypothesized that ECM can influence 

EMT biomarkers, thus inducing cells to undergo EMT.  Interestingly, E-cadherin expression is 

greatly decreased and Vimentin expression is a slightly increased when A549 cells are cultured 
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on all fibroblast-derived matrices. These data suggest that fibroblast-derived ECM alter EMT 

markers of A549 cells, which could induce a more migratory phenotype, thus increasing 

likelihood of metastasis.  

 

Figure 7- Fibroblast-derived ECM alters Protein Levels of A549 Cells. (A) Western blot of AKT, 

pAKT, pCREB, pSRC, total SRC, and GAPDH. (B) Western blot of mTOR, Phosphorylated-

mTOR, P44/42, Phosphorylated P44/42, p38, Phosphorylated p38, CDC42, and GAPDH. (C)  

Western blot of Vimentin, E-cadherin, and GAPDH. 
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E. Fibroblast Derived Matrices Do not alter Drug Resistance of Lung Cancer Cell Lines 

Cancer cells grown in three dimensions, such as in Matrigel™, or in a spheroid-forming 

medium, experience epigenetic changes that alter cancer phenotype. Three dimensional cell 

culture gives the cell line a TME that influences its response to drug treatment. Similarly, the 

human TME helps cancer cells evade drug-induced cell death. It was hypothesized that because 

human lung fibroblast-derived ECM alter lung cancer cell line morphology and growth rates, 

then it was reasonable to assume drug response would also change. To test this, lung cancer cells 

cultured on human lung fibroblast-derived ECM were treated with various chemotherapeutic 

agents often used in the clinic to treat lung cancer patients. Interestingly, culturing A549, H358, 

and HPL1D cells on WI38 ECM did not alter the dose response of Cisplatin and Gemcitabine 

(Figure 8A-C), which are common first-line therapies for lung cancer patients. Perhaps these 

drugs are so cytotoxic that the ECM has little or no effect.  However, this model could still be 

beneficial for future drug studies. For instance, if there is an alteration in a certain drug response 

on fibroblast-derived ECM, it could provide evidence that the certain therapy is affected by the 

ECM, which could serve as an indicator of its efficacy in an in vivo setting.  
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Figure 8- Fibroblast-derived ECM do does not alter drug response to Gemcitabine and Cisplatin. 

(A) A549 on WI38 ECM. (B) H358 on WI38 ECM. (C) HPL1D on WI38 ECM. N=3. Not 

significant (p>.999). 

 

 

 

F. Fibroblast Derived Matrices Protect Lung Cancer Cells from Serum Deprivation 

Although the drug response of lung cancer cell lines is not affected by human fibroblast-

derived ECM, other experiments to test the ability of lung cancer cell lines to survive stressful 

environments when cultured on ECM, such as serum withdrawal, were explored. Serum 

deprivation induces cellular apoptosis by mitochondrial outer membrane permealibilzation 

(MOMP) in colorectal cancer cells (Braun et al., 2011). Although many cancer cells evade 

apoptosis by inhibiting MOMP, many cancer cell lines cannot survive prolonged exposure to 

serum-free media. However, little is known about how the ECM affects serum dependability. It 

is hypothesized that proteins and growth factors present in the fibroblast-derived ECM can 

sustain lung cancer cells in an otherwise nutrient-free environment. To test the effects of serum 

depletion on cells on and off fibroblast-derived ECM, cells were seeded in complete media for 

24 hours to allow cells to adhere, media was then removed and cells were washed with PBS, and 

replenished with serum-free media. Observation by phase contrast microscopy revealed that 48 

hours after the removal of serum from the media, there are more A549 cells on ECM compared 
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to a fibronectin dish, suggesting that the ECM supports cell adhesion and perhaps growth in the 

absence of serum (Figure 9D). To determine the difference between cell growth on ECM and 

fibronectin, Alamar Blue™ metabolism was followed each day. All lung cancer cell lines 

cultured on both human lung and human dermal fibroblast-derived ECM showed an increase in 

relative viable cells compared to the same cell lines grown on fibronectin plates (Figure 9A, 9B, 

and 9C). A549 survive serum deprivation the best by Alamar Blue™ (figure 9A), until day 4. 

HPL1D and H358 cells also tolerated serum withdrawal well until day 4 (Figure 9A, 9B). 

However, The ECM was not able to sustain cell viability without serum past four days. Perhaps 

this is due to degradation of the ECM and its growth factors by the lung cancer cell lines.  Also, 

A549 cells cultured on ECM did not change morphology when cultured in serum-free media 

(Figure 9B), whereas as A549 cells on Fibronectin-coated dish appeared rounded and unhealthy 

(Figure 9A). Upon western blot analysis, it was clear that fibroblast-derived ECM rescues serum 

deprivation-induced apoptosis by evading p21 expression and by upregulating BCL-xL 

expression (Figure 9F). p21, is a cyclin-dependent kinase inhibitor that is known to promote cell-

cycle arrest and apoptosis in serum-free conditions (Braun et al., 2011). Interestingly, BCL-xL, 

an anti-apoptotic protein that protects cells against apoptosis, is slightly increased when A549 

cells are cultured on fibroblast-derived ECM with and without serum (figure 9F), thus suggesting 

it plays a role in the survival of A549 cells in serum-free conditions. These results suggest that 

the ECM is capable of providing a cell-survival stimulus when the plethora of growth factors and 

nutrients available in FBS are absent. This observation might be important in understanding how 

lung adenocarcinoma cells survive in the inner-most core of a solid tumor, where nutrients, as 

well as oxygen, from the blood supply are scarce.  
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Figure 9- Fibroblast-derived ECM Protects Lung Cancer Cell Lines from Serum Deprivation. 

(A) A549, H358, and HPL1D cells on fibronectin in serum-free media for 48 hours. (B) A549, 

H358, and HPL1D cells on WI38 ECM in serum-free media for 48 hours. (C) Relative cell 

growth of A549 cells. (D) Relative cell growth of H358 cells. (E) Relative cell growth of HPL1D 

cells. (F) Western blot of serum deprived cells after 48 hours. *,p<.05 (TABLE IV-VI) 

G. Fibroblast-Derived Matrices Change mRNA levels of Various Genes in Lung Cancer 

Cells 

It is clear that human lung fibroblast-derived ECM alters many processes that influence 

behaviors like morphology, growth, and serum-deprivation survival. However, little is known 

about how fibroblast-derived ECM alters the regulation of gene transcription.  Transcription 
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regulation is an extremely important process that influences cellular phenotypes. Therefore, an 

experiment was designed to determine the effect of gene transcription when A549 and H358 

cells interact with human fibroblast-derived ECM.  A microarray was used to determine the 

difference of messenger-RNA (mRNA) copy number when lung cancer cell lines were cultured 

on fibroblast-derived ECM.  MRNA is the result of a transcribed gene, awaiting ribosome entry 

to be translated into an amino acid sequence, which is then folded to the proper native protein 

structure. Although mRNA quantity does not directly dictate functional protein quantity, it is 

directly connected with how much DNA is transcribed. To test the change in mRNA copy 

number in lung cancer on human fibroblast-derived ECM, A549 and H358 cell lines were 

cultured for 48 hours on WI-38 ECM, IMR-90 ECM, and Fibronectin-coated plastic. Briefly, 

RNA was extracted, converted to DNA, labeled, hybridized, and scanned for hybridization 

quantification. Data was then analyzed by Sabine Waigel and the UofL genomics core facility. A 

heat map was generated (Figure 10A) to show an unrefined interpretation of each gene probe 

intensity that was significant changed compared to a fibronectin-coated dish (P-value <.05 and 

fold change greater than 1.5). It is clear by examining the heat map that there are many gene 

probes that differ in expression induced by fibroblast-derived ECM. In total, 182 target 

sequences, which corresponded to 114 gene changes, were shared between both cells lines on 

both fibroblast-derived ECM compared to fibronectin. Affected Gene IDs were uploaded into 

Metacore™ for Gene Ontology (GO) analysis. Metacore™ GO process analysis identifies 

canonical and non-canonical pathways that are likely to be affected by a cluster of significantly 

changed genes. Top ranked potentially affected pathways include complement-mediated 

immunity, cytoskeletal remodeling, and ECM remodeling (Figure 10B).    Interestingly, 87 of 
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these significant gene changes were down-regulated, and only 27 were upregulated. Many down-

regulated genes coded for proteins that constitute the extracellular matrix, suggesting that when 

cells are in contact with adequate ECM, they decrease transcription of genes that code for ECM 

proteins such as fibrinogen alpha, fibrinogen beta, collagen type 4, collagen type5, and villin 

(Table 2). Also, MMP7, which is a protease that degrades Collagen and Fibronectin, is also 

down-regulated.  The most down-regulated gene, LGALS2 belongs to a family of galectins, 

which can serve as interacting proteins with ECM proteins and can be deregulated in some 

cancers, including lung cancer (Liu et al., 2005; Buttery et al., 2004).  Also, several genes that 

regulate the complement-mediated immunity pathway, such as C3, C1S, and bradykinin, are 

down-regulated when both lung cancer cell lines are cultured on WI38 and IMR90 ECM (Table 

2). Complement-mediated immunity pathways have been shown to be activated in lung cancer 

(Pio et al., 2014). Interestingly, Galectin expression affects also complement activation (Pio et 

al., 2013).  Up-regulated genes include NT5E, IL-8, KCNMA1, BCAT1, ASNS, stanniocalcin-2, 

and PSAT1 (Table 3). Interestingly. IL-8 is known to promote angiogenesis, thus supporting 

previous research by Patricia Soucy, suggesting a role for ECM in angiogenesis (Luppi et al., 

2007; Soucy et al., 2015; Soucy et al., 2009). NT5E, which is also known as ecto-5’-

nucleotidase, has been shown to be upregulated in lung and breast cancers where it decreases 

patient survival rates by attenuating immune responses and promoting environments for 

vascularization and metastasis ( Zhang et al., 2010; Jin et al., 2010).  KCNMA1, a gene that 

reported four probes that had significant expression changes, codes for a protein that complexes 

to form potassium and calcium ion channels (Table 3). KCNMA1 ion channels have been shown 

to be more present in metastatic breast cancer cells but little is known of its role in lung cancer 
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(Khaitan et al., 2009). The ECM is a key player in the initiation of breast cancer cells into 

metastasis. This result that KCNMA1 mRNA is increased when lung cancer cells are cultured on 

fibroblast-derived ECM might suggest that ECM can induce KCNMA1 to play a pro-

tumorigenic role in lung cancer cells. Similarly, stanniocalcin-2, a gene that had three probes 

reported from the microarray data, also plays a role calcium regulation, and is also overexpressed 

in lung cancer and impairs a poor prognosis (Na et al., 2015). ASNS, BCAT1, and PSAT1 all 

code for enzymes that regulate amino acid synthesis, thus directly affecting cell growth and 

proliferation. These microarray data reveals the complex mechanisms that the ECM can regulate 

within lung cancer cells. Thus providing strong evidence that Fibroblast-derived ECM can 

potentiate the phenotype of lung cancer cell lines.  

 

Figure 10- Fibroblast-derived ECM alters mRNA profile of A549 and H358 Cells. (A) heat map 

of common significant (fold change >1.5 and P-Value<.05). (B) Gene Ontology (GO) Processes. 
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To validate the microarray results, primers were designed to bind only to the mRNA 

region of various hits from the microarray data. Separate samples were analyzed to confirm the 

results. QPCR analysis (figure 11) revealed that indeed, mRNA that was altered on the 

microarray are also being altered in separate biological replicates. Further, the direction of the 

fold changes were shared between microarray data and qPCR, thus giving confidence in the 

highly sensitive microarray data.  

TABLE II 

COMMON RANKED DOWN-REGULATED GENES BETWEEN A549 AND H358 

CELLS ON WI38 AND IMR-90 ECM 
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TABLE III 

COMMON RANKED UP-REGULATED GENES BETWEEN A549 AND H358 

CELLS ON WI38 AND IMR-90 ECM 

 

 

Figure 11- Fold Change of mRNA by Quantitative qPCR 
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H. Fibroblast-Derived Matrices can Induce Lung Cancer Cells to Migrate 

In order to test how human fibroblast-derived ECM affects cellular migration, which is a 

critical mechanism that lung cancer cells utilize to invade and metastasize, a simple experiment 

was designed employing a trans-well chamber assay. A trans-well chamber is a tissue culture 

device that has 0.8 µm pores that allow actively migrating cells to pass through to the bottom. 

Trans-well chambers are used to model migratory and invasive properties of cells. Many cancer 

cell biologists employ such chambers to test whether migration is altered following a given 

treatment. Here, trans-well chambers were used as a substrate to grow ECM, which was then 

used to recruit lung cancer cells. It is hypothesized that human fibroblast-derived ECM could act 

as a chemoattractant that could recruit lung cancer cell lines to its side of the Trans-well 

chamber. Clearly, all fibroblast-derived ECM act as a chemoattractant for a549 cells and induce 

them to migrate across the chamber (figure 12A). Upon counting, Three times the number of 

A549 cells were migratory when fibroblast-derived ECM was present, compared to fibronectin. 

Also, it is clear visually by Hemotoxylin and Eosin staining that more A549 migrated to the 

fibroblast-derived ECM (Figure 12B). Cell migration is an important process that affects both 

wound healing and cancer progression. In cancer, local as well as distal ECM environments are 

equally as important in understanding cancer cell invasion and metastasis. Therefore, 

incorporation of fibroblast-derived ECM into trans-well migration could provide researchers 

with a better model to study cancer cell migration.   
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Figure 12- Fibroblast-derived ECM alter Cell Migration of Lung Cancer Cell Lines in a 

Trans-well Chamber. (A) Average migratory cells per field (4 fields). *, p<.05 (TABLE XIX) 

 It is clear from microscopic observation that lung cancer cell lines on fibroblast-derived 

ECM do not grow in large clusters like the same cells on fibronectin. It was postulated that cells 

grown on the 3D fibers of the ECM exhibit migration along the fibers, thus spreading the cells 

apart from each other. To test this type of migration, A549, H358 and HPL1D cells were seeded 

onto fibroblast-derived matrices and after 24 hours, and transferred into a live cell microscopy 

chamber for time lapse imaging (Figure 13). Time lapse shows that cells grown on fibroblast-

derived matrix exhibit more migration than on a fibronectin-coated dish. A549, H358, and 

HPL1D cells all migrated farther distances on fibroblast-derived ECM than on Fibronectin 

(Figure 13A). Cells were tracked for between 4 and 8 hours (Figure 13A). It is clear that A549, 

H358 and HPL1D cells migrate farther distances in 4-8 hours when cultured on fibroblast-

derived ECM. To characterize this, directionality (D/d) (Figure 13B) is calculated to determine 

the linearity of the directional migration (Figure 13C). Evidently, A549, H358, and HPL1D cell 
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lines exhibited a more directional migration on fibroblast-derived ECM compared to control. 

Also, it is clear by calculating distance traveled by time traveled that the velocity of the cells on 

fibroblast-derived ECM is greater than the same cells on fibronectin (Figure 13D).  It appears 

that when the lung cancer cell lines interact with a fiber, they travel along that fiber only, rarely 

migrating towards adjacent fibers. This result will be important for future cell migration studies, 

encouraging researchers to use ECM that are highly aligned. Cell migration properties are highly 

adopted in lung cancer cells, which allow them to invade accessible organs. These data indicate 

that the interaction between fibroblast-derived ECM and lung cancer cell lines induce a 

migratory phenotype. It is interesting that fibroblast-derived ECM alters EMT properties, thus 

suggesting that the ECM plays a role in EMT induction. Therefore, fibroblast-derived matrices 

should be used in the future to study ECM-induced EMT. 
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Figure 13- Fibroblast-derived ECM induce Directional Migration. (A) Resultant time-

lapse tracks of A549, H358, and HPL1D on WI38 ECM. (B) Depiction of Directionality= D/d. 

(C) Calculated Directionality A549 p=.033, H358 p=.0067, HPL1D p=.0002). N=7. (D) Average 

velocity of migrated cells (µm/hour) N=7. A549, H358, HPL1D p<.0001. 

 

I. Fibroblast-derived ECM increase Subcutaneous Xenograft Tumor Formation in Mice 

Previously, researchers have mixed cancer cells with Matrigel™ and implant them into 

the subcutaneous tissue of mice to study tumor development with an extracellular matrix 

component (Bao et al., 1994). To determine if fibroblast-derived matrix proteins could illicit a 

similar pro-tumorigenic response, fibroblast-derived ECM was scraped in ice cold PBS and 

mixed with cells. The same ECM-to-cell ratio of 26,000 cells/cm2 that was used in vitro was 

used in vivo. A549 cells and matrix orA549 cells without matrix were injected into the 

subcutaneous tissue of 3 month old NRG mice and let incubate for 60 days. NRG mice are a new 

breed of mice that   harbor mutations in NOD, RAG, and Interleukin-2 gamma receptor, which 

eliminates the immune system of T and B cells, thus allowing for xenografts without an immune 

response. A549 cells cultured with the scraped fibroblast-derived ECM grew larger tumors by 

calculated volume than a549 cells with PBS (figure 14). However, these data are not statically 

significant, with a p-value of 0.07 (Figure 14C) Further, tumors with ECM showed increased 

mass (Figure 14D). Although A549 cells mixed with ECM formed larger tumors, hemotoxylin 

and Eosin staining revealed little differences in the morphology of the tumors (Figure 14Ei and 

14Eii). A pathologist might be able to determine differences in the tumor sections, but little is 
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noticeable to the untrained eye. Although fibroblast-derived ECM decreased lung cancer cell line 

growth in vitro, it appears that they it enhance tumor formation in vivo. It could be that in the in 

vivo experiments, the native architecture of the fibroblast-derived ECM that is present in vitro is 

absent, thus allowing for unrestricted growth. Further, the same survival signals that the lung 

cancer cell lines exploit from the ECM in vitro when cultured in serum free conditions may be 

providing growth signals in A549 xenograft. These data are important in elucidating the role of 

ECM architecture, as well as its composition in cancer signaling. 

 

Figure 14- Fibroblast-derived ECM Increase Subcutaneous Tumor Formation of A549 

Cells in Mice. Ai: in vivo A549 with ECM Xenograft. Aii: in vivo A549 with PBS Xenograft. Bi: 

Picture of removed tumor with ECM. Bi: Picture of removed tumor with PBS. C: Calculated 

volumes of A549 xenografts with and without ECM (p=.07) D: Measured mass (g) of excised 
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tumors. Ei: 1X picture of A549 Xenograft with ECM with 20X expanded view. Eii: 1X picture 

of A549 Xenograft with PBS with 20X expanded view. N=13. *,p=.026. 

IV. Conclusions and Future Directions 

 This work shows that human fibroblast-derived extracellular matrix alters cell 

morphology, cell growth, proliferation, mRNA expression, functional protein expression, and 

migration properties of the A549, H358, and HPL1D lung cancer cell lines. It is clear that when 

cultured on human fibroblast-derived ECM, lung cancer cell lines have less activated MAPK 

protein expression as well as mTOR and cell cycle regulating pathways, which might contribute 

to their attenuated growth. Also, lung cancers have altered expression of ECM protein-coding 

and complement-mediated immunity genes, thus affecting many downstream pathways. As 

discovered by western blot, lung cancer cell lines also develop an EMT phenotype, which could 

be responsible for their increased migration. Interestingly, ECM harvested from different 

fibroblast cell lines originating from different human tissues did not have a noticeable effect in 

this work. Perhaps a less harsh decellularization technique will leave behind a more unique 

ECM, thus allowing researchers to better mimic the natural ECM. This work is significant 

because it provides further evidence that the extracellular matrix has a strong effect on the 

phenotype of lung cancer cells, which needs to be further studied to successfully treat the entire 

tumor microenvironment. 

 In future work, scientists will attempt to alter the influence of the extracellular matrix on 

lung cancer cells. For instance, the age of an organism significantly increases the probability of 

cancer and it is known that cancer vulnerability can be influenced by the extracellular matrix. 
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Fibroblast-derived matrix procured from old and young fibroblasts could differentially regulate 

the growth and migration properties of lung cancer cells. Also, future researchers could 

successfully overexpress oncogenes or knock down tumor suppressors in human lung or dermal 

fibroblasts and determine their matrix components and subsequent effect on lung cancer cell 

lines. Further, to expand research in different focus groups, future researchers could examine 

how the ECM affects leukemia cells with regards to homing and drug resistance.  This future 

work could provide valuable knowledge of the feedback mechanism that exists between cancer 

and its extracellular matrix. 

V. Appendix 

TABLE IV 

A549 SERUM DEPRIVATION STATISTICAL ANALYSIS 

A549 Serum deprivation     

Number of families 4    

Number of comparisons per 

family 

6    

Alpha 0.05    

     
Tukey's multiple 

comparisons test 

Mean 

Diff. 

95% CI of diff. Summary Adjusted P 

Value 

     

Row 1     

FN vs. IMR90 ECM 0 -0.09736 to 

0.09736 

ns > 0.9999 

FN vs. WI38 ECM 1.99E-

08 

-0.09736 to 

0.09736 

ns > 0.9999 

FN vs. HDF ECM 0 -0.09736 to 

0.09736 

ns > 0.9999 

IMR90 ECM vs. WI38 ECM 1.99E-

08 

-0.09736 to 

0.09736 

ns > 0.9999 

IMR90 ECM vs. HDF ECM 0 -0.09736 to 

0.09736 

ns > 0.9999 

WI38 ECM vs. HDF ECM -2E-08 -0.09736 to 

0.09736 

ns > 0.9999 
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Row 2     

FN vs. IMR90 ECM -0.566 -0.6634 to -

0.4687 

**** < 0.0001 

FN vs. WI38 ECM -0.4437 -0.5411 to -

0.3463 

**** < 0.0001 

FN vs. HDF ECM -0.5542 -0.6516 to -

0.4569 

**** < 0.0001 

IMR90 ECM vs. WI38 ECM 0.1223 0.02496 to 

0.2197 

** 0.0093 

IMR90 ECM vs. HDF ECM 0.01178 -0.08558 to 

0.1091 

ns 0.9876 

WI38 ECM vs. HDF ECM -0.1105 -0.2079 to -

0.01318 

* 0.0211 

     

Row 3     

FN vs. IMR90 ECM -0.3626 -0.4600 to -

0.2653 

**** < 0.0001 

FN vs. WI38 ECM -0.3496 -0.4470 to -

0.2523 

**** < 0.0001 

FN vs. HDF ECM -0.3315 -0.4289 to -

0.2342 

**** < 0.0001 

IMR90 ECM vs. WI38 ECM 0.01299 -0.08437 to 

0.1103 

ns 0.9835 

IMR90 ECM vs. HDF ECM 0.03112 -0.06624 to 

0.1285 

ns 0.8222 

WI38 ECM vs. HDF ECM 0.01813 -0.07923 to 

0.1155 

ns 0.9574 

     

Row 4     

FN vs. IMR90 ECM -0.1861 -0.2834 to -

0.08870 

**** < 0.0001 

FN vs. WI38 ECM -0.159 -0.2563 to -

0.06161 

*** 0.0006 

FN vs. HDF ECM -

0.08953 

-0.1869 to 

0.007827 

ns 0.0805 

IMR90 ECM vs. WI38 ECM 0.02709 -0.07027 to 

0.1244 

ns 0.8744 

IMR90 ECM vs. HDF ECM 0.09652 -0.0008332 to 

0.1939 

ns 0.0527 

WI38 ECM vs. HDF ECM 0.06944 -0.02792 to 

0.1668 

ns 0.2351 
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TABLE V 

H358 SERUM DEPRIVATION STATISTICAL ANALYSIS 

H358 Serum Deprivation     

Number of families 4    

Number of comparisons per 

family 

6    

Alpha 0.05    

     

Tukey's multiple comparisons 

test 

Mean 

Diff. 

95% CI of diff. Significant? Adjusted P 

Value 

     

Row 1     

FN vs. IMR90 ECM -2E-08 -0.2692 to 0.2692 No > 0.9999 

FN vs. WI38 ECM -2E-08 -0.2692 to 0.2692 No > 0.9999 

FN vs. HDF ECM 2E-08 -0.2692 to 0.2692 No > 0.9999 

IMR90 ECM vs. WI38 ECM 0 -0.2692 to 0.2692 No > 0.9999 

IMR90 ECM vs. HDF ECM 4E-08 -0.2692 to 0.2692 No > 0.9999 

WI38 ECM vs. HDF ECM 4E-08 -0.2692 to 0.2692 No > 0.9999 

     

Row 2     

FN vs. IMR90 ECM -0.3225 -0.5918 to -

0.05327 

Yes 0.0139 

FN vs. WI38 ECM -0.271 -0.5402 to -

0.001707 

Yes 0.0481 

FN vs. HDF ECM -0.5012 -0.7705 to -0.2320 Yes < 0.0001 

IMR90 ECM vs. WI38 ECM 0.05156 -0.2177 to 0.3208 No 0.954 

IMR90 ECM vs. HDF ECM -0.1787 -0.4480 to 

0.09053 

No 0.2927 

WI38 ECM vs. HDF ECM -0.2303 -0.4995 to 

0.03897 

No 0.1153 

     

Row 3     

FN vs. IMR90 ECM -0.3275 -0.5967 to -

0.05824 

Yes 0.0122 

FN vs. WI38 ECM -0.2891 -0.5584 to -

0.01988 

Yes 0.0315 

FN vs. HDF ECM -0.2195 -0.4887 to 

0.04979 

No 0.1427 

IMR90 ECM vs. WI38 ECM 0.03836 -0.2309 to 0.3076 No 0.9801 

IMR90 ECM vs. HDF ECM 0.108 -0.1612 to 0.3773 No 0.6998 
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WI38 ECM vs. HDF ECM 0.06967 -0.1996 to 0.3389 No 0.8959 

     

Row 4     

FN vs. IMR90 ECM -0.0809 -0.3501 to 0.1883 No 0.8473 

FN vs. WI38 ECM -0.1447 -0.4140 to 0.1245 No 0.4748 

FN vs. HDF ECM -0.2083 -0.4776 to 

0.06093 

No 0.176 

IMR90 ECM vs. WI38 ECM -0.0638 -0.3331 to 0.2054 No 0.9174 

IMR90 ECM vs. HDF ECM -0.1274 -0.3966 to 0.1418 No 0.5807 

WI38 ECM vs. HDF ECM -0.0636 -0.3328 to 0.2057 No 0.9183 

 

 

TABLE VI 

HPL1D SERUM DEPRIVATION STATISTICAL ANALYSIS 

HPL1D Serum Deprivation     

Number of families 4    

Number of comparisons per 

family 

6    

Alpha 0.05    

     

Tukey's multiple 

comparisons test 

Mean 

Diff. 

95% CI of diff. Significant? Adjusted P 

Value 

     

Row 1     

FN vs. IMR90 ECM -2E-08 -0.1039 to 

0.1039 

No > 0.9999 

FN vs. WI38 ECM -2E-08 -0.1039 to 

0.1039 

No > 0.9999 

FN vs. HDF ECM -2E-08 -0.1039 to 

0.1039 

No > 0.9999 

IMR90 ECM vs. WI38 ECM 0 -0.1039 to 

0.1039 

No > 0.9999 

IMR90 ECM vs. HDF ECM 0 -0.1039 to 

0.1039 

No > 0.9999 

WI38 ECM vs. HDF ECM 0 -0.1039 to 

0.1039 

No > 0.9999 

     

Row 2     

FN vs. IMR90 ECM -0.1468 -0.2508 to - Yes 0.003 
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0.04287 

FN vs. WI38 ECM -0.1686 -0.2726 to -

0.06466 

Yes 0.0006 

FN vs. HDF ECM -0.2119 -0.3159 to -

0.1080 

Yes < 0.0001 

IMR90 ECM vs. WI38 ECM -0.0218 -0.1257 to 

0.08215 

No 0.9408 

IMR90 ECM vs. HDF ECM -0.06514 -0.1691 to 

0.03881 

No 0.3414 

WI38 ECM vs. HDF ECM -0.04334 -0.1473 to 

0.06061 

No 0.6743 

     

Row 3     

FN vs. IMR90 ECM -0.3222 -0.4261 to -

0.2182 

Yes < 0.0001 

FN vs. WI38 ECM -0.3179 -0.4218 to -

0.2139 

Yes < 0.0001 

FN vs. HDF ECM -0.3933 -0.4973 to -

0.2894 

Yes < 0.0001 

IMR90 ECM vs. WI38 ECM 0.004302 -0.09964 to 

0.1082 

No 0.9995 

IMR90 ECM vs. HDF ECM -0.07113 -0.1751 to 

0.03282 

No 0.2678 

WI38 ECM vs. HDF ECM -0.07543 -0.1794 to 

0.02852 

No 0.2219 

     

Row 4     

FN vs. IMR90 ECM -0.1735 -0.2774 to -

0.06951 

Yes 0.0004 

FN vs. WI38 ECM -0.2279 -0.3319 to -

0.1240 

Yes < 0.0001 

FN vs. HDF ECM -0.1141 -0.2181 to -

0.01020 

Yes 0.027 

IMR90 ECM vs. WI38 ECM -0.05446 -0.1584 to 

0.04949 

No 0.4968 

IMR90 ECM vs. HDF ECM 0.05931 -0.04463 to 

0.1633 

No 0.423 

WI38 ECM vs. HDF ECM 0.1138 0.009828 to 

0.2177 

Yes 0.0276 

 

TABLE VII 

ECM PROTEIN STATISTICAL ANALYSIS 



46 
 

ECM Protein     

Number of families 1    

Number of comparisons per 

family 

3    

Alpha 0.05    

     

Tukey's multiple 

comparisons test 

Mean 

Diff. 

95% CI of diff. Summary Adjusted P 

Value 

     

WI38 ECM vs. IMR-90 

ECM 

0.04534 -1.902 to 1.992 ns 0.9972 

WI38 ECM vs. HDF ECM -1.953 -3.900 to -

0.005657 

* 0.0495 

IMR-90 ECM vs. HDF ECM -1.998 -3.945 to -

0.05100 

*   

             

0.0453 

 

 

TABLE VIII 

TIME-LAPSE STATISTICAL ANALYSIS 

Time-lapse Migration Velocity     

Number of families 1 

   Number of comparisons per family 15 

   Alpha 0.05 

   

     

Tukey's multiple comparisons test 

Mean 

Diff. 95% CI of diff. Summary 

Adjusted 

P Value 

     A549 FN vs. A549 WI38 -26.64 -35.96 to -17.32 **** < 0.0001 

A549 FN vs. H358 FN 1.734 -7.590 to 11.06 ns 0.993 

A549 FN vs. HPL1D FN -3.643 -12.97 to 5.680 ns 0.8454 

A549 WI38 vs. H358 FN 28.37 19.05 to 37.70 **** < 0.0001 

A549 WI38 vs. H358 WI38 3.07 -6.254 to 12.39 ns 0.918 

A549 WI38 vs. HPL1D FN 23 13.67 to 32.32 **** < 0.0001 

A549 WI38 vs. HPL1D WI38 0.2967 -9.027 to 9.620 ns > 0.9999 

H358 FN vs. H358 WI38 -25.3 -34.63 to -15.98 **** < 0.0001 

H358 FN vs. HPL1D FN -5.377 -14.70 to 3.947 ns 0.5187 

H358 WI38 vs. HPL1D WI38 -2.773 -12.10 to 6.550 ns 0.9453 
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HPL1D FN vs. HPL1D WI38 -22.7 -32.02 to -13.38 **** < 0.0001 

     

     

     

     

     

 

 

 

 

 

 

TABLE IX 

DIRECTIONALITY STATISTICAL ANALYSIS 

Directionality       

Number of families 1     

Number of comparisons 

per family 

15     

Alpha 0.05     

      

Tukey's multiple 

comparisons test 

Mean 

Diff. 

95% CI of 

diff. 

Significant

? 

Summar

y 

Adjusted P 

Value 

      

A549 FN vs. A549 WI38 -0.3031 -0.5907 to -

0.01558 

Yes * 0.0336 

A549 FN vs. H358 FN 0.03643 -0.2511 to 

0.3240 

No ns 0.9989 

A549 FN vs. H358 WI38 -0.3244 -0.6120 to -

0.03687 

Yes * 0.019 

A549 FN vs. HPL1D FN 0.1072 -0.1804 to 

0.3947 

No ns 0.8735 

A549 FN vs. HPL1D 

WI38 

-0.3624 -0.6499 to -

0.07483 

Yes ** 0.0064 

A549 WI38 vs. H358 FN 0.3396 0.05201 to 

0.6271 

Yes * 0.0124 

A549 WI38 vs. H358 

WI38 

-0.02129 -0.3088 to 

0.2663 

No ns > 0.9999 

A549 WI38 vs. HPL1D 0.4103 0.1227 to Yes ** 0.0015 
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FN 0.6978 

A549 WI38 vs. HPL1D 

WI38 

-0.05925 -0.3468 to 

0.2283 

No ns 0.9893 

H358 FN vs. H358 WI38 -0.3609 -0.6484 to -

0.07330 

Yes ** 0.0067 

H358 FN vs. HPL1D FN 0.07072 -0.2168 to 

0.3583 

No ns 0.9765 

H358 FN vs. HPL1D 

WI38 

-0.3988 -0.6864 to -

0.1113 

Yes ** 0.0021 

H358 WI38 vs. HPL1D 

FN 

0.4316 0.1440 to 

0.7191 

Yes *** 0.0008 

H358 WI38 vs. HPL1D 

WI38 

-0.03796 -0.3255 to 

0.2496 

No ns 0.9987 

HPL1D FN vs. HPL1D 

WI38 

-0.4695 -0.7571 to -

0.1820 

Yes *** 0.0002 

 

 

 

 

 

 

 

 

 

 

TABLE X 

CIRCULARITY STATISTICAL ANALYSIS 

Cell Circularity      

Number of families 1     

Number of comparisons per 

family 

6     

Alpha 0.05     

      

Tukey's multiple 

comparisons test 

Mean 

Diff. 

95% CI of 

diff. 

Significant

? 

Summar

y 

Adjusted P 

Value 

      

A549 FN vs. A549 WI38 0.196 0.05046 to 

0.3414 

Yes ** 0.0043 

A549 FN vs. A549 IMR-90 0.2074 0.06186 to 

0.3528 

Yes ** 0.0023 
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A549 FN vs. A549 HDF 0.2528 0.1073 to 

0.3982 

Yes *** 0.0002 

 

TABLE XI 

A549 CELL COUNTING STATISTICAL ANALYSIS 

A549 Count     

Within each row, compare columns (simple effects within rows) 

     

Number of families 4    

Number of comparisons per 

family 

6    

Alpha 0.05    

     

Tukey's multiple comparisons 

test 

Mean 

Diff. 

95% CI of diff. Significant? Adjusted P 

Value 

     

Row 1     

FN vs. IMR90 ECM 2667 -43697 to 

49030 

No 0.9986 

FN vs. WI38 ECM 6000 -40364 to 

52364 

No 0.9849 

FN vs. HDF 1000 -45364 to 

47364 

No > 0.9999 

IMR90 ECM vs. WI38 ECM 3333 -43030 to 

49697 

No 0.9973 

IMR90 ECM vs. HDF -1667 -48030 to 

44697 

No 0.9997 

WI38 ECM vs. HDF -5000 -51364 to 

41364 

No 0.9911 

     

Row 2     

FN vs. IMR90 ECM 15667 -30697 to 

62030 

No 0.7967 

FN vs. WI38 ECM 21333 -25030 to 

67697 

No 0.6026 

FN vs. HDF 14667 -31697 to 

61030 

No 0.8266 

IMR90 ECM vs. WI38 ECM 5667 -40697 to 

52030 

No 0.9872 

IMR90 ECM vs. HDF -1000 -47364 to 

45364 

No > 0.9999 
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WI38 ECM vs. HDF -6667 -53030 to 

39697 

No 0.9796 

     

Row 3     

FN vs. IMR90 ECM 51667 5303 to 98030 Yes 0.0243 

FN vs. WI38 ECM 60000 13636 to 

106364 

Yes 0.0071 

FN vs. HDF 50000 3636 to 96364 Yes 0.0306 

IMR90 ECM vs. WI38 ECM 8333 -38030 to 

54697 

No 0.9614 

IMR90 ECM vs. HDF -1667 -48030 to 

44697 

No 0.9997 

WI38 ECM vs. HDF -10000 -56364 to 

36364 

No 0.9361 

     

Row 4     

FN vs. IMR90 ECM 143333 96970 to 

189697 

Yes < 0.0001 

FN vs. WI38 ECM 136667 90303 to 

183030 

Yes < 0.0001 

FN vs. HDF 165000 118636 to 

211364 

Yes < 0.0001 

IMR90 ECM vs. WI38 ECM -6667 -53030 to 

39697 

No 0.9796 

IMR90 ECM vs. HDF 21667 -24697 to 

68030 

No 0.5905 

WI38 ECM vs. HDF 28333 -18030 to 

74697 

No 0.3631 

 

TABLE XII 

H358 CELL COUNTING STATISTICAL ANALYSIS 

H358 Count     

Number of families 4    

Number of comparisons per 

family 

6    

Alpha 0.05    

  95% CI of diff. Significant? Adjusted P 

Value 

Tukey's multiple 

comparisons test 

Mean Diff.   
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Row 1  -97833 to 105833 No 0.9996 

FN vs. IMR90 ECM 4000 -99833 to 103833 No > 0.9999 

FN vs. WI38 ECM 2000 -96833 to 106833 No 0.9991 

FN vs. HDF 5000 -103833 to 99833 No > 0.9999 

IMR90 ECM vs. WI38 ECM -2000 -100833 to 

102833 

No > 0.9999 

IMR90 ECM vs. HDF 1000 -98833 to 104833 No 0.9998 

WI38 ECM vs. HDF 3000    

     

Row 2  -85333 to 118333 No 0.9712 

FN vs. IMR90 ECM 16500 -90833 to 112833 No 0.9911 

FN vs. WI38 ECM 11000 -92333 to 111333 No 0.9942 

FN vs. HDF 9500 -107333 to 96333 No 0.9989 

IMR90 ECM vs. WI38 ECM -5500 -108833 to 94833 No 0.9977 

IMR90 ECM vs. HDF -7000 -103333 to 

100333 

No > 0.9999 

WI38 ECM vs. HDF -1500    

     

Row 3  -56062 to 147604 No 0.6204 

FN vs. IMR90 ECM 45771 -70062 to 133604 No 0.8324 

FN vs. WI38 ECM 31771 -85062 to 118604 No 0.9699 

FN vs. HDF 16771 -115833 to 87833 No 0.982 

IMR90 ECM vs. WI38 ECM -14000 -130833 to 72833 No 0.8667 

IMR90 ECM vs. HDF -29000 -116833 to 86833 No 0.9781 

WI38 ECM vs. HDF -15000    

     

Row 4  93167 to 296833 Yes < 0.0001 

FN vs. IMR90 ECM 195000 83167 to 286833 Yes 0.0001 

FN vs. WI38 ECM 185000 53167 to 256833 Yes 0.0013 

FN vs. HDF 155000 -111833 to 91833 No 0.9933 

IMR90 ECM vs. WI38 ECM -10000 -141833 to 61833 No 0.7133 

IMR90 ECM vs. HDF -40000 -131833 to 71833 No 0.8547 

 

TABLE XIII 

HPL1D CELL COUNTING STATISTICAL ANALYSIS 

HPL1D Count      

Number of families 4     

Number of comparisons per 

family 

6     

Alpha 0.05     
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Tukey's multiple 

comparisons test 

Mean 

Diff. 

95% CI of 

diff. 

Significant

? 

Summar

y 

Adjusted P 

Value 

      

Row 1      

FN vs. IMR90 ECM -500 -20871 to 

19871 

No ns 0.9999 

FN vs. WI38 ECM 4000 -16371 to 

24371 

No ns 0.9506 

FN vs. HDF -1000 -21371 to 

19371 

No ns 0.9991 

IMR90 ECM vs. WI38 ECM 4500 -15871 to 

24871 

No ns 0.9318 

IMR90 ECM vs. HDF -500 -20871 to 

19871 

No ns 0.9999 

WI38 ECM vs. HDF -5000 -25371 to 

15371 

No ns 0.9094 

      

Row 2      

FN vs. IMR90 ECM 8000 -12371 to 

28371 

No ns 0.7135 

FN vs. WI38 ECM 9000 -11371 to 

29371 

No ns 0.6331 

FN vs. HDF 2000 -18371 to 

22371 

No ns 0.9933 

IMR90 ECM vs. WI38 ECM 1000 -19371 to 

21371 

No ns 0.9991 

IMR90 ECM vs. HDF -6000 -26371 to 

14371 

No ns 0.8548 

WI38 ECM vs. HDF -7000 -27371 to 

13371 

No ns 0.7885 

      

Row 3      

FN vs. IMR90 ECM 67000 46629 to 

87371 

Yes **** < 0.0001 

FN vs. WI38 ECM 55500 35129 to 

75871 

Yes **** < 0.0001 

FN vs. HDF 57500 37129 to 

77871 

Yes **** < 0.0001 

IMR90 ECM vs. WI38 ECM -11500 -31871 to 

8871 

No ns 0.4323 

IMR90 ECM vs. HDF -9500 -29871 to No ns 0.5921 
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10871 

WI38 ECM vs. HDF 2000 -18371 to 

22371 

No ns 0.9933 

      

Row 4      

FN vs. IMR90 ECM 160000 139629 to 

180371 

Yes **** < 0.0001 

FN vs. WI38 ECM 115000 94629 to 

135371 

Yes **** < 0.0001 

FN vs. HDF 120000 99629 to 

140371 

Yes **** < 0.0001 

IMR90 ECM vs. WI38 ECM -45000 -65371 to -

24629 

Yes **** < 0.0001 

IMR90 ECM vs. HDF -40000 -60371 to -

19629 

Yes **** < 0.0001 

WI38 ECM vs. HDF 5000 -15371 to 

25371 

No ns 0.9094 

 

TABLE XIV 

A549 ALAMAR BLUE STATISTICAL ANALYSIS 

A549 Alamar blue     

Within each row, compare columns (simple effects within rows)  

     

Number of families 4    

Number of comparisons per 

family 

6    

Alpha 0.05    

     

Tukey's multiple 

comparisons test 

Mean 

Diff. 

95% CI of diff. Significant? Adjusted P 

Value 

     

Row 1     

FN vs. IMR90 ECM 1.987E-08 -0.03641 to 

0.03641 

No > 0.9999 

FN vs. WI38 ECM -1.987E-

08 

-0.03641 to 

0.03641 

No > 0.9999 

FN vs. HDF ECM 1.987E-08 -0.03641 to 

0.03641 

No > 0.9999 

IMR90 ECM vs. WI38 ECM -3.974E-

08 

-0.03641 to 

0.03641 

No > 0.9999 

IMR90 ECM vs. HDF ECM 0 -0.03641 to No > 0.9999 
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0.03641 

WI38 ECM vs. HDF ECM 3.974E-08 -0.03641 to 

0.03641 

No > 0.9999 

     

Row 2     

FN vs. IMR90 ECM 0.09386 0.05745 to 0.1303 Yes < 0.0001 

FN vs. WI38 ECM 0.02694 -0.009478 to 

0.06335 

No 0.2077 

FN vs. HDF ECM 0.06571 0.02929 to 0.1021 Yes 0.0002 

IMR90 ECM vs. WI38 ECM -0.06693 -0.1033 to -

0.03051 

Yes 0.0001 

IMR90 ECM vs. HDF ECM -0.02816 -0.06457 to 

0.008258 

No 0.1765 

WI38 ECM vs. HDF ECM 0.03877 0.002359 to 

0.07519 

Yes 0.0334 

     

Row 3     

FN vs. IMR90 ECM 0.2109 0.1745 to 0.2474 Yes < 0.0001 

FN vs. WI38 ECM 0.1547 0.1183 to 0.1911 Yes < 0.0001 

FN vs. HDF ECM 0.2077 0.1713 to 0.2441 Yes < 0.0001 

IMR90 ECM vs. WI38 ECM -0.05628 -0.09270 to -

0.01987 

Yes 0.0011 

IMR90 ECM vs. HDF ECM -0.003285 -0.03970 to 

0.03313 

No 0.9948 

WI38 ECM vs. HDF ECM 0.053 0.01659 to 

0.08941 

Yes 0.0022 

     

Row 4     

FN vs. IMR90 ECM 0.2113 0.1749 to 0.2477 Yes < 0.0001 

FN vs. WI38 ECM 0.1586 0.1222 to 0.1950 Yes < 0.0001 

FN vs. HDF ECM 0.1954 0.1590 to 0.2318 Yes < 0.0001 

IMR90 ECM vs. WI38 ECM -0.05269 -0.08910 to -

0.01627 

Yes 0.0024 

IMR90 ECM vs. HDF ECM -0.01586 -0.05228 to 

0.02055 

No 0.6434 

WI38 ECM vs. HDF ECM 0.03682 0.0004103 to 

0.07324 

Yes 0.0467 

 

 

TABLE XV 
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H358 ALAMAR BLUE STATISTICAL ANALYSIS 

H358 Alamar Blue     

Within each row, compare columns (simple effects within rows)  

     

Number of families 4    

Number of comparisons per 

family 

6    

Alpha 0.05    

     

Tukey's multiple 

comparisons test 

Mean 

Diff. 

95% CI of diff. Significant? Adjusted P 

Value 

     

Row 1     

FN vs. IMR90 ECM -1.987E-

08 

-0.06557 to 

0.06557 

No > 0.9999 

FN vs. WI38 ECM -1.987E-

08 

-0.06557 to 

0.06557 

No > 0.9999 

FN vs. HDF ECM -1.987E-

08 

-0.06557 to 

0.06557 

No > 0.9999 

IMR90 ECM vs. WI38 ECM 0 -0.06557 to 

0.06557 

No > 0.9999 

IMR90 ECM vs. HDF ECM 0 -0.06557 to 

0.06557 

No > 0.9999 

WI38 ECM vs. HDF ECM 0 -0.06557 to 

0.06557 

No > 0.9999 

     

Row 2     

FN vs. IMR90 ECM 0.08628 0.02071 to 

0.1518 

Yes 0.0061 

FN vs. WI38 ECM 0.1088 0.04320 to 

0.1743 

Yes 0.0005 

FN vs. HDF ECM 0.1004 0.03486 to 

0.1660 

Yes 0.0013 

IMR90 ECM vs. WI38 ECM 0.0225 -0.04307 to 

0.08807 

No 0.7893 

IMR90 ECM vs. HDF ECM 0.01415 -0.05142 to 

0.07972 

No 0.9359 

WI38 ECM vs. HDF ECM -0.008342 -0.07391 to 

0.05723 

No 0.9857 

     

Row 3     

FN vs. IMR90 ECM 0.2414 0.1759 to Yes < 0.0001 
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0.3070 

FN vs. WI38 ECM 0.2667 0.2011 to 

0.3322 

Yes < 0.0001 

FN vs. HDF ECM 0.2455 0.1800 to 

0.3111 

Yes < 0.0001 

IMR90 ECM vs. WI38 ECM 0.02523 -0.04034 to 

0.09080 

No 0.726 

IMR90 ECM vs. HDF ECM 0.004093 -0.06148 to 

0.06966 

No 0.9982 

WI38 ECM vs. HDF ECM -0.02114 -0.08671 to 

0.04443 

No 0.8185 

     

Row 4     

FN vs. IMR90 ECM 0.294 0.2284 to 

0.3596 

Yes < 0.0001 

FN vs. WI38 ECM 0.3383 0.2727 to 

0.4038 

Yes < 0.0001 

FN vs. HDF ECM 0.3398 0.2742 to 

0.4054 

Yes < 0.0001 

IMR90 ECM vs. WI38 ECM 0.04428 -0.02129 to 

0.1098 

No 0.2785 

IMR90 ECM vs. HDF ECM 0.0458 -0.01977 to 

0.1114 

No 0.2514 

WI38 ECM vs. HDF ECM 0.001515 -0.06405 to 

0.06708 

No > 0.9999 

 

 

 

 

 

TABLE XVI 

HPL1D ALAMAR BLUE STATISTICAL ANALYSIS 

HPL1D Alamar Blue     

Within each row, compare columns (simple effects within rows)  

     

Number of families 4    

Number of comparisons per 

family 

6    

Alpha 0.05    

     

Tukey's multiple Mean 95% CI of diff. Significant? Adjusted P 
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comparisons test Diff. Value 

     

Row 1     

FN vs. IMR90 ECM -1.987E-

08 

-0.05237 to 

0.05237 

No > 0.9999 

FN vs. WI38 ECM 0 -0.05237 to 

0.05237 

No > 0.9999 

FN vs. HDF ECM 2.782E-07 -0.05237 to 

0.05237 

No > 0.9999 

IMR90 ECM vs. WI38 ECM 1.987E-08 -0.05237 to 

0.05237 

No > 0.9999 

IMR90 ECM vs. HDF ECM 2.98E-07 -0.05237 to 

0.05237 

No > 0.9999 

WI38 ECM vs. HDF ECM 2.782E-07 -0.05237 to 

0.05237 

No > 0.9999 

     

Row 2     

FN vs. IMR90 ECM 0.08531 0.03293 to 0.1377 Yes 0.0006 

FN vs. WI38 ECM 0.1229 0.07049 to 0.1752 Yes < 0.0001 

FN vs. HDF ECM 0.0195 -0.03287 to 

0.07187 

No 0.7455 

IMR90 ECM vs. WI38 ECM 0.03755 -0.01482 to 

0.08993 

No 0.231 

IMR90 ECM vs. HDF ECM -0.06581 -0.1182 to -

0.01343 

Yes 0.0093 

WI38 ECM vs. HDF ECM -0.1034 -0.1557 to -

0.05099 

Yes < 0.0001 

     

Row 3     

FN vs. IMR90 ECM 0.3145 0.2621 to 0.3669 Yes < 0.0001 

FN vs. WI38 ECM 0.2348 0.1824 to 0.2872 Yes < 0.0001 

FN vs. HDF ECM 0.1816 0.1292 to 0.2340 Yes < 0.0001 

IMR90 ECM vs. WI38 ECM -0.07967 -0.1320 to -

0.02730 

Yes 0.0014 

IMR90 ECM vs. HDF ECM -0.1329 -0.1853 to -

0.08051 

Yes < 0.0001 

WI38 ECM vs. HDF ECM -0.05321 -0.1056 to -

0.0008385 

Yes 0.0453 

     

Row 4     

FN vs. IMR90 ECM 0.3231 0.2708 to 0.3755 Yes < 0.0001 

FN vs. WI38 ECM 0.2765 0.2242 to 0.3289 Yes < 0.0001 
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FN vs. HDF ECM 0.2025 0.1501 to 0.2549 Yes < 0.0001 

IMR90 ECM vs. WI38 ECM -0.04661 -0.09898 to 

0.005764 

No 0.0952 

IMR90 ECM vs. HDF ECM -0.1206 -0.1730 to -

0.06827 

Yes < 0.0001 

WI38 ECM vs. HDF ECM -0.07403 -0.1264 to -

0.02166 

Yes 0.003 

 

TABLE XVII 

XENOGRAFT VOLUME STATISTICAL ANALYSIS 

Xenograft Tumor Volume Data 1 

  

Column B A549 +PBS 

vs. vs. 

Column A A549+ECM 

  

Unpaired t test  

P value 0.0718 

P value summary ns 

Significantly different? (P < 0.05) No 

One- or two-tailed P value? Two-tailed 

t, df t=1.884 df=24 

  

How big is the difference?  

Mean ± SEM of column A 334.3 ± 48.20, n=13 

Mean ± SEM of column B 223.3 ± 33.88, n=13 

Difference between means -111.0 ± 58.92 

95% confidence interval -232.6 to 10.62 

R squared 0.1288 

  

F test to compare variances  

F,DFn, Dfd 2.024, 12, 12 

P value 0.2364 

P value summary ns 

Significantly different? (P < 0.05) No 

 

TABLE XVIII 

XENOGRAFT WEIGHT STATISTICAL ANALYSIS 

Xenograft Weights Data 1 
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Column B A549+PBS 

vs. vs. 

Column A A549+ECM 

  

Unpaired t test  

P value 0.0261 

P value summary * 

Significantly different? (P < 

0.05) 

Yes 

One- or two-tailed P value? Two-tailed 

t, df t=2.372 df=24 

  

How big is the difference?  

Mean ± SEM of column A 0.2346 ± 0.03717, n=13 

Mean ± SEM of column B 0.1362 ± 0.01849, n=13 

Difference between means -0.09846 ± 0.04151 

95% confidence interval -0.1841 to -0.01278 

R squared 0.1899 

  

F test to compare variances  

F,DFn, Dfd 4.043, 12, 12 

P value 0.0223 

P value summary * 

Significantly different? (P < 

0.05) 

Yes 

 

TABLE XIX 

XENOGRAFT WEIGHT STATISTICAL ANALYSIS 

Trans-well Migration      

Number of families 1     

Number of comparisons per 

family 

6     

Alpha 0.05     

  95% CI of 

diff. 

Significant Summary Adjusted P 

Value 

Tukey's multiple 

comparisons test 

Mean Diff.    

A549 FN vs. A549 IMR90  -173.8 to -

88.15 

Yes ** 0.0021 

A549 FN vs. A549 WI38 -131 -222.1 to - Yes ** 0.0081 
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69.90 

A549 FN vs. A549 HDF -146 -162.9 to -

101.6 

Yes *** 0.0008 
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