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ABSTRACT 

 

 

  

Currently, the clinical strategy to treat cancer consists of a combination of 

surgery, radiotherapy, and chemotherapy on the basis of clinical and molecular staging. 

Nanotechnology applied to biomedical sciences has paved the way for the development 

of novel strategies for early detection and more efficient treatment of diseases. Abraxane 

and Doxil are approved formulations that utilize nanoparticles carrying the drugs 

paclitaxel and doxorubicin, respectively; however, tumors are not completely eradicated 

in some patients. It is well known that inefficient vascularization may prevent optimal 

transport of oxygen, nutrients, and therapeutics to cells in solid tumors. In order to 

quantitatively evaluate therapy with Abraxane and Doxil, we apply a biocomputational 

cancer model to study nanoparticle drug release within tumor tissue. Both tumor cells and 

their microenvironment are represented in this model. Based on the specific 

characteristics of Abraxane and Doxil, we simulate drug release and diffusion at the 

tumor site. With the viable tumor region modeled as approximately 100 µm in diameter 

from blood vessels, and using IC50 data, the paclitaxel molecules of Abraxane were found 

to only penetrate 73 µm deep into the tumor, while although more efficient, doxorubicin 

molecules of Doxil only penetrate 93 µm of the tumor viable region. Therefore, we find 

that the modeling predicts that in the best case scenario, the drug concentrations delivered 

by these nanotherapies are insufficient to kill all of the tumor cells. 
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I. INTRODUCTION 

 

 

 

 Cancer is a group of diseases characterized by abnormal cell growth. In this 

process, cells divide and form new cells when the body does not need them, and existing 

cells do not undergo apoptosis when they should. These mutated cells may in turn form a 

large mass of tissue, called a tumor. There are more than 100 different types of cancer, 

and they are typically named for the organ or type of cell in which they start, i.e. breast 

cancer. Cancer is widespread and it is estimated that 1,660,290 new cases will be 

diagnosed with 580,350 deaths due to cancer in the United States in 2013 [1]. Currently, 

the clinical strategy to treat cancer consists of a combination of surgery, radiotherapy, 

and chemotherapy on the basis of clinical and molecular staging [2]. Chemotherapy is the 

treatment of cancer with one or more cytotoxic antineoplastic drugs. Traditional 

chemotherapeutic agents kill cells that divide rapidly, without distinguishing between 

healthy and cancerous cells; therefore, normal healthy cells that are proliferating at a fast 

rate are targeted and eradicated as well, hence the cytotoxicity.  

Treatment involving small molecules that are systemically injected tend to reach 

tumors at doses generally insufficient to eradicate the disease, since they tend to deposit 

non-specifically in almost any region perfused by blood [3]. However, recent 

developments in the field of nanotherapeutics have paved the way for drugs with reduced 

cytotoxicity and increased efficacy.  

Conventional drug delivery methods include oral and intravenous (i.v.) routes and 

tend to exhibit dose-limiting toxicity [4]. Metabolic pathways of the body are easily 
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accessible by drugs through oral administration (i.e. tablets) and this can result in the 

drugs reaching and killing healthy tissue [4]. Specificity is the downfall of most drugs 

administered through a traditional i.v., which results in healthy tissue being mistaken as 

cancerous and this could lead to patient side effects such as neutropenia [4].  

 Nanomedicine is an emerging field in which nanotechnology is combined with 

medicine to deliver cures for patients. Nanotherapeutics is the use of nanomedicine in 

therapy. The efficacy of conventional chemotherapeutic agents is impaired mostly by 

their suboptimal accumulation at the tumor tissue. Nanoparticles are tiny objects 

engineered in laboratories to be sufficiently small to circulate safely within the vascular 

system. As such, many biomedical researchers have set their focus on nanoparticles for 

the development of novel strategies for early detection and more efficient treatment of 

diseases. In oncology, for example, chemotherapeutic agents have been reformulated into 

liposomes and nanoparticles which demonstrate improved pharmacokinetics and 

pharmacodynamics, and reduced off-target toxicity [3]. Tumor-targeting particles are 

typically spherical, with a diameter ranging between ~50 and 300 nm [3]. These 

diameters are chosen because they are optimal for transport through the bloodstream and 

into tumor tissue. Any smaller and a sufficient particle fraction may not accumulate in the 

tumor tissue due to diffusion and accumulation in other tissue sites. Any larger and the 

particles may not be able to diffuse from the vasculature and into tumor tissue. Two such 

combinations are currently on the market and in use clinically: Abraxane and Doxil. 

 Abraxane, developed by Araxis BioScience Inc., is a formulation of paclitaxel in 

which the drug is complexed with albumin to form stable, 130 nm particles [5]. Abraxane 

is currently used in the treatment of metastatic breast cancer. Before Abraxane, paclitaxel 
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had to be formulated with Cremphor®-EL, a version of polyethoxylated castor oil, and 

studies have shown that Cremphor®-EL can cause biological events that lead to acute 

hypersensitivity reactions and neurological toxicity when co-administered with paclitaxel 

through i.v. infusion [6]. The nanoparticle formulation of Abraxane eliminates the use of 

this toxic delivery vehicle, and replaces it with albumin, a protein found naturally in the 

blood plasma of humans. This allows a higher dose of paclitaxel to be delivered by 

Abraxane, eliminates solvent-related hypersensitivity reactions, results in more rapid 

clearance from the plasma with linear pharmacokinetics, and reduces neutropenia [5]. 

Doxil is a doxorubicin HCl liposome injection indicated for the treatment of 

patients with ovarian cancer whose disease has progressed or recurred after platinum-

based chemotherapy [7]. However, studies have shown that Doxil is capable of inducing 

durable responses in metastatic breast cancer with unique pharmacokinetics and toxicity 

profiles [8]. Doxil has an average particle size of 87.3 nm [9]. Doxil reduces the 

cytotoxicity of doxorubicin by increasing the specificity and accumulation of doxorubicin 

within the tumor site. Doxil achieves this through its STEALTH® liposome drug 

encapsulation and delivery mechanism. These liposomes are microscopic vesicles with a 

phospholipid bilayer that are protected from detection by the mononuclear phagocyte 

system and have increased blood circulation time. The liposomes are formulated with 

surface-bound methoxypolyethylene glycol (MPEG), and it is this process of pegylation 

that protects the liposomes [7]. 

 In vitro and in vivo studies have shed much light upon the mechanisms of drug 

delivery and uptake by cancerous tumor masses. However, despite much research, in 

vitro studies have not revealed every detail of the mechanisms. It is well known that 
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inefficient vascularization may prevent optimal transport of oxygen, nutrients, and 

therapeutics to cancer cells in solid tumors. In order to reach the total population of tumor 

cells, the drug must diffuse through the tumor tissue in its entirety. As such, there are 

diffusion gradients created by the dense tumor cells and there is evidence that suggests 

that these gradients may significantly limit drug dissemination throughout the tumor [10]. 

Oxidative stress and a decrease in the number of proliferating cells create physiologic 

resistance due to both hypoxia and hypoglycemia. These stresses, among others, can lead 

to a selection of apoptotic resistant cells. This evidence suggests that the diffusion 

process alone can lead to the evolution of drug resistance in tumor cells, exceeding 

predictions based on individual cell phenotype [10]. The quantification, with any clinical 

accuracy, of the resistance effects of diffusion gradients has been difficult. 

Biocomputational modeling of tumor drug response has been pursued to better 

understand this complex problem. 

 Previous studies have been conducted in which mathematical modeling and 

computer simulations were used to study the retention of nanoparticles within tumor 

vessels as a function of the tumor development stage [3, 10]. It was speculated that 

tumoritropic accumulation of nanoparticles could be affected by how developed the 

neovasculature and pre-existing vasculature are surrounding the tumor and by the 

expression of vascular receptor molecules on the nanoparticle surface. The affinity of the 

nanoparticles for the vessels was found to be a function of nanoparticle size, ligand 

density, as well as vascular receptor expression. For high vascular affinities, 

nanoparticles tend to accumulate mostly at the inlet tumor vessels leaving the inner and 

outer vasculature depleted of nanoparticles. For low vascular affinities, nanoparticles 
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distribute more uniformly intra-tumorally, but exhibit low accumulation doses. It was 

shown that an optimal vascular affinity could be identified through a balance between 

accumulation doses and uniform spatial distribution of the nanoparticles. The balance 

depends on the stage of tumor development (vascularity and endothelial receptor 

expression) and the nanoparticle properties (size, ligand density and ligand-receptor 

molecular affinity).  The results enabled the selection of an optimal nanoparticle 

formulation presenting high accumulation doses and uniform spatial intra-tumor 

distributions as a function of the development stage of the malignancy. It was predicted 

that a moderate nanoparticle vascular affinity provides the proper balance between 

optimal spatial distribution and absolute tumoritropic accumulation [3]. 
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II. METHODS 

 

 

 

 The mathematical model used in this study represents both the tumor cells and 

their microenvironment. The mathematical model describes viable and necrotic tumor 

tissue, and diffusion of cell substrates and nanoparticles (small molecules), implementing 

the conservation of mass and momentum (as in [11]) in a 2-D Cartesian coordinate 

system. The initial condition of the model is a tumor with diameter <50 µm, in the middle 

of a pre-existing vasculature grid as shown in Figure 1 [3]. Growth is described as a 

function of total cycling cells and necrosis from hypoxia is calculated as a function of 

oxygen using the mass conservation equations. These equations are then combined with 

the diffusion of small molecules to obtain a reaction-diffusion equation. The rate 

constants for proliferation and apoptosis are spatiotemporally heterogeneous, as they 

depend on the availability of cell nutrients and oxygen. Published experimental data was 

used to calibrate the model parameters as in [10, 12-15]. The mathematical model was 

incorporated into a C++ (programming language) executable program that was used for 

tumor growth simulations. Figure 1 was generated using this program and setting a tumor 

growth time of 18 days. The main tumor model parameters as used in this computer 

program are summarized in Appendix I from [11]. Since the computer simulation is 

conducted in 2D, some of the parameters are simplified; as such, if a 3D simulation was 

desired, these parameters, such as characteristic tumor volume would need to be modified 

to incorporate this third dimension. 3D simulation is not reviewed in full detail, as it is 

beyond the scope of this study. 
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FIGURE 1- Output Of The Mathematical Model Showing Tumor Growth At Days 6, 12, 

and 18. Viable Tissue Is Red, Hypoxic Is Blue, And Necrotic Is Brown. 

 

In order to more accurately express the spatiotemporal dynamics of solid tumor 

growth, conservation of momentum (due to tissue velocity as the tumor grows or shrinks) 

and physical transport (diffusion, advection, and convection of substances) were also 

incorporated into the model. Models of vessel growth, branching, and anastomosis [16], 

were coupled together with blood flow to model angiogenesis. The tumor vasculature 

acts as a source of oxygen, cell nutrients, and nanoparticles, and its inclusion to the model 

enables evaluation of the local effects of vascularization and blood flow on tumor cells 

and nanoparticle transport. This also expands knowledge of the micro-environment 

conditions such as hypoxia that lead to the development of intra-tumor heterogeneity [3]. 

To model tumor growth, the tumor region was denoted as Ω and its boundary as Σ 

[13]. The tumor was divided into three regions: proliferating, hypoxic, and necrotic. The 

proliferating region, denoted as ΩP, is the area in which tumor cells have sufficient 

oxygen and nutrient levels for proliferation. The hypoxic region, ΩH, is the portion of the 

tumor where oxygen and nutrient levels are sufficient for cell survival but cannot sustain 

proliferation. The necrotic region, ΩN, is the inner portion of the tumor where oxygen and 
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nutrient levels are too low to maintain cellular viability and is mostly comprised of dead 

cells. A schematic of these three regions can be seen in Figure 2. A generalized Darcy’s 

law gives the non-dimensional tumor velocity [13]: 

c Ev P E        (Equation 1) 

here µ is the cell mobility as a function of adhesion of the cells to each other and to the 

matrix, P is oncotic pressure, 
E is the haptotaxis coefficient, and E is the ECM density. 

The ECM is modeled as a non-diffusible matrix of macromolecules such as collagen and 

fibronectin. The growth of the tumor is associated with the rate of volume change by 

assuming that the density of cells is constant in the proliferating region, 
c pv   . The 

non-dimensional net proliferation rate, 
p , is 

p A    in ΩP with σ as the 

concentration of oxygen and cell nutrients and A as the natural apoptosis rate. 
p NG    

in ΩN, where GN is the non-dimensional rate of volume loss in the necrotic regions, with 

the assumption that fluid is removed and cellular debris is constantly degraded. 

 

FIGURE 2- Generalized Schematic Of A Tumor, Showing The Proliferating ΩP, Hypoxic 

ΩH, And Necrotic ΩN Cell Regions. 

 

 An angiogenesis model was included based on McDougall et al. (2006) [17] and 

coupled with the tumor growth model for tumor-induced angiogenesis. The angiogenesis 
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model accounts for blood flow through the vascular network, non-Newtonian effects, 

vascular leakage and vascular network remodeling due to wall shear stress and 

mechanical stresses generated by the developing tumor. A fundamental assumption of the 

model is that endothelial cells are stimulated to migrate based on chemotaxis due to 

tumor angiogenic factors (TAF) released by tumor hypoxic tissue, and haptotaxis due to 

gradients of extra-cellular matrix (ECM) along with random motility. The conservation of 

endothelial cells is described in a non-dimensional equation from [13]: 

( ) ( ( ) ) ( )T E

sprout sprout

n
D n T n T n E

t
 


     


  (Equation 2) 

where n is the non-dimensional endothelial cell density per unit area, and T and E are the 

TAF and ECM concentrations, respectively. The diffusion coefficient D represents 

random migration and is assumed constant. The chemotactic migration is described by

T

sprout , while the haptotactic migration is described by 
E

sprout . In [13], a discretized and 

stochastic form of Equation 2 is given which details the displacement of individual 

endothelial cells at the tips of growing vascular sprouts. The blood flow was modeled by 

setting an inflow and outflow pressure [3]. As the tumor grows due to cell proliferation, it 

remodels the surrounding blood vessels. Some cells within the tumor become hypoxic 

after being pushed away from vessels by proliferating cells and in turn secrete angiogenic 

factors. These angiogenic factors lead to the creation of new vessels that eventually tie 

into the pre-existing vascular network and supply blood to these hypoxic cells. 

 When modeling the transport of small molecules s such as oxygen (s=σ), the 

assumption was made that the timescale for cell proliferation is much larger (~1 day) than 

the timescale for the diffusion of small molecules (~1 minute or less). This allowed the 

use of quasi-steady reaction-diffusion equations describing the transport of s in a model 
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[11] following previous work [13]. It is assumed that the pre-existing vasculature and the 

neo-vasculature supply small molecules at rates 
s

pre and s

neo , respectively. It is also 

assumed that the small molecules diffuse into normal and cancerous tissue with a 

constant diffusion coefficient Ds, are taken up by normal cells (with rate s

tissue ) and tumor 

cells (with rate s

tumor in the proliferating region and 
sq in the hypoxic region), and decay 

(with rate s

N ) in the necrotic region. The equations are: 

0 ( ) ( ) ( , t, , )s

s vesselD s s s s    x 1  (Equation 3) 

 

 

 ( )

 

s

tissue

s
ps tumor

Hs

s
NN

outside

in

inq s

in












 


 

   (Equation 4) 

where sq is generally a smooth interpolating function that matches s

tumor  between the 

proliferating and hypoxic tumor regions, and s

N  between the hypoxic and necrotic tumor 

regions; position in space is described by x; t is time and 1 is the characteristic function 

of the vessels (i.e. vessel1 equals 1 at the location of the vessels and 0 otherwise) [3]. For the 

special case of oxygen (s=σ), the reader is referred to [3]. 

 The computation of vessel radii is based on [11, 13, 17-19]. The initial value of all 

vessel radii is set to 6 microns as in [13]. The variation of the radius ∆R depends on the 

wall shear stress, the intravascular pressure, and the blood flow carrying the hematocrit. 

The reader is referred to [3] for a full discussion of vessel radius adaptation.  

Vascular accumulation of blood-borne nanoparticles is mediated by the regulation 

of dislodging hydrodynamics forces and adhesive interactions that occur at the particle-

cell boundary. A probability of adhesion Pa can be introduced to quantify the strength and 
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likelihood of firm adhesive interactions between a nanoparticle decorated with ligand 

molecules and a cell membrane expressing specific receptor molecules [3]. Pa depends on 

the nanoparticle properties (size, shape, surface density of ligands) and local vascular 

biophysical conditions (wall shear rate, surface density of receptors). For spherical 

particles, the number n of particles with diameter d adhering within a blood vessel with 

shear rate S can be written as [3]: 

  1 2
0 exp 1n d Sdn

      
 

  (Equation 5) 

where no is the number of particles exposed to the vessel walls and the parameters , 

and are, respectively, proportional to i) the surface density of receptors on the 

endothelial cells (mr) and ligands on the particle (ml), and the ligand-receptor affinity 

under zero external force (KA0) (mr ml KA0); ii) the characteristic length scale of the 

ligand-receptor bond (), and the viscosity of water () (/(kBTmr)); and iii) the 

inverse of the surface density of receptors [3]. The coefficients 1 (~ 0.45) and 2 (~ 1.57) 

are derived from the best fit of Equation (5) with the experimental data shown in Boso 

and colleagues [20]. For typical values of mr = 1012 #/m-2; ml = 1014 #/m-2 and KA 

0 = 10-14 m2, the parameter = O(1012) m-2 [21, 22]. For lower ligand-receptor affinities, 

is correspondingly lower. For typical values of mr = 1012 #/m-2, = 10-10 m-1 and = 10-3 

Pa s-1, the parameter = O(10-4) m-2 s. The parameter = O(104) m-2. A uniform 

concentration of NPs in the blood is assumed, with the maximum normalized to 1. Due to 

heterogeneities in the vascular flow, a heterogeneous spatio-temporal distribution of the 

particles within the tumor vasculature is also expected [3]. 
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III. RESULTS 

 

 

 

The goal of this study was to calculate the amount of drug molecules released by 

Abraxane and Doxil nanoparticles that are present at the tumor site after injection, and 

then use this data to estimate the diffusion of the active drug molecules through the tumor 

tissue.  

In order to achieve this goal, a particle fraction estimation of nanoparticles at the 

tumor site was obtained using data from Huo et al. In their study, Huo et al. reported the 

number of 100 nm gold nanoparticles per MCF-7 (a metastatic breast cancer cell line) 

tumor spheroid after 3 hours, 5.6E08 [23]. Here it is assumed that the Abraxane and Doxil 

nanoparticles will behave similarly to the gold nanoparticles based on their shared feature 

of spherical shape with 100 nm diameter, and that as a best case scenario they diffuse 

uniformly through the tumor tissue. Tumor spheroids are cell cultures grown in vitro 

which represent avascular tissue regions (areas without blood vessels) [24]. In this study, 

these spheroids were used to model the tumor tissue around a tumor blood vessel. The 

total number of injected particles was estimated using the fact that 200 µL of particle 

solution was injected with a final concentration of 1 nmol/L. The volume of solution was 

multiplied by the concentration to obtain nanomoles of particles, and then this value was 

converted to moles and multiplied by Avogadro’s number to obtain the total injected 

particles, 1.2044E11. Huo et al. also provided bright field images of tumor spheroids, and 

these images were used to obtain an approximate diameter of 400 µm for tumor nodules 
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[23]. Assuming spherical geometry, we used this spheroid data to estimate the volume of 

tissue around a tumor blood vessel using Equation 6. 

34

3
V r     (Equation 6) 

Subsequently, the volume of the necrotic region of the spheroid was calculated using the 

assumption that the viable portion of a tumor is only approximately 100 µm in diameter 

[10]. This viable region stems from experiments with spheroids that show that spheroids 

develop a layer, approximately 100 µm thick, of viable cells around a core of necrotic 

cells [25]. The necrotic region volume was then subtracted to obtain a viable tumor 

region volume, ~0.02 mm3. The total number of particles and the number of particles per 

spheroid were then divided by this viable volume to obtain particles per mm3. The 

number of particles per spheroid per volume was then divided by the total number of 

particles per volume to obtain the estimated tumor particle fraction used in this study, 

2.8%. This particle fraction was then used to calculate the number of molecules of drug 

per tumor as described below. 

In order to estimate the diffusion gradient of the drug molecules away from the 

nanoparticles and through the tumor tissue, a Bessel equation of the zeroth kind was used.  

0 0( ) ( ) ( )
m

m mW r J k r J r
R


    (Equation 7) 

Equation 7 represents solutions of the Bessel equation that vanish at r = R. The 

parameters used were as follows: r is the distance away from the nanoparticle (0-100 

µm), m is an integer constant that was set to 1 for the purpose of this study, R = diffusion 

penetration length from (Frieboes 2009) and is equal to 100 µm, J0 denotes the Bessel 

function of the zeroth kind, αm denotes zeros of J0 and α1 was given as 2.405, and Wm(r) 
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is equal to the amount of drug present. [26] Figure 3 below shows the data that was 

obtained using r = 0-100 µm with a step of 10 µm. 

 

FIGURE 3- Bessel Function Of The Zeroth Kind For r = 10-100 µm. 

 

 We modeled the diffusion of the drug molecules (paclitaxel and doxorubicin) 

through the tumor tissue as a gradient originating from a single nanoparticle (Abraxane 

and Doxil). The particle fraction per tumor area was combined with the Bessel function 

data to create gradient “bands” of drug diffusion within the tumor tissue as can be seen in 

Figure 4.  
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FIGURE 4- Schematic Of The Drug Diffusion Gradient Within Tumor Tissue 

Originating From A Single Drug Nanoparticle From High Concentration (Dark Color, 

Center) To Lowest (White At Periphery). 

 

To do this, it was of interest to calculate the number of molecules of paclitaxel 

and doxorubicin per individual nanoparticle unit for Abraxane and Doxil, respectively. 

For both nanoparticles, it was assumed that the volume of plasma (Vp) in the human body 

is equal to approximately 3L. For Abraxane, two more assumptions had to be made. First, 

it was assumed that a person is 1.8 m2 in area. This value, multiplied by recommended 

dosage of 260 mg/m2, resulted in the amount of Abraxane per person- 468 mg/person [5]. 

From [27], Abraxane nanoparticles are 76% paclitaxel and multiplying this by the 

amount of Abraxane per person, there was found to be 356 mg paclitaxel per person. 

Consequently, the 112 mg left out of the 468mg is the amount of albumin per person. 

Using Avogadro’s number and the molecular weights of albumin and paclitaxel, it was 

calculated that there is 1.02E18 molecules of Albumin per person and 2.51E20 molecules 

of paclitaxel per person. The ratio of these values was found to be 246.4 molecules of 
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paclitaxel per molecule of Albumin. It was assumed that there is 1 Albumin molecule per 

Abraxane particle based on light scattering data from [5]. Consequently, Abraxis 

Bioscience believes that Abraxane particles dissociate into individual albumin molecules 

that then circulate with paclitaxel still attached [5]. Using Vp of 3L and a Cmax of 591 

ng/mL, it was calculated that 1.25E18 molecules of paclitaxel are present in the 

bloodstream after Abraxane injection [5]. Dividing this number by the number of 

molecules of paclitaxel per nanoparticle, 5.07E15 nanoparticles of Abraxane present in 

the bloodstream was obtained. Given the vascularized nature of tumors, we then used this 

value as an approximation of the number of nanoparticles at the tumor site after injection. 

 Calculations for the number of molecules of Doxil present after injection into the 

bloodstream were similar to that of Abraxane. Using a Cmax of 20.7 mg/L and Vp of 3L, it 

was calculated that there is 62.1 mg of Doxil in the bloodstream upon injection [8]. 

Converting this value to grams, dividing by the molecular weight of doxorubicin (543.5 

g/mol), and then multiplying by Avogadro’s number yields 6.88E19 molecules of 

doxorubicin in the bloodstream. Next, given the fact that there are approximately 12.5 

thousand molecules of doxorubicin per Doxil nanoparticle, it is calculated that there are 

5.50E15 nanoparticles of Doxil present in the bloodstream after injection at a dosage of 

45 mg/m2 [28]. As shown before for Abraxane, this number was then used as an 

approximation of the number of nanoparticles at the tumor site after injection. 

Once obtained, the number of nanoparticles of Abraxane and Doxil were 

multiplied by the number of molecules of paclitaxel and doxorubicin, respectively, per 

nanoparticle to obtain 1.25E18 molecules of paclitaxel and 6.88E19 molecules of 

doxorubicin within the tumor tissue after injection. These values were then multiplied by 
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the 0.0279 particle fraction per tumor to obtain 3.4854E16 molecules paclitaxel per tumor 

and 1.9181E18 molecules of doxorubicin per tumor. After that, the values were multiplied 

by the Bessel data for each gradient band, then divided by Avogadro’s number and 

multiplied by the respective molecular weight for each drug to obtain Figures 5, and 6 

which describe grams of drug per tumor as a function of distance from the particles. 

 

FIGURE 5- Drug Per Tumor Versus Distance From Particle For Active Drug In 

Abraxane (Paclitaxel). 
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FIGURE 6- Drug Per Tumor Versus Distance From Particle For Active Drug In Doxil 

(Doxorubicin). 

 

In addition, the 50% inhibitory concentration (IC50), or the concentration of drug 

needed to induce apoptosis in 50% of a given cell population, was found in the literature 

for both paclitaxel and doxorubicin when used for the in vitro treatment of MCF-7 breast 

cancer cells. The values were found to be 7.2 nM/L and 100 nM/L for paclitaxel [29] and 

doxorubicin [30], respectively.  These values were used to approximate the penetration 

length of the drugs into the tumor, since they represent a best case scenario of drug 

performance. For the approximation, the values were converted to grams of drug in the 

plasma and then fitted to their respective curves in Figures 5 and 6 to obtain the 

penetration lengths (72 µm for paclitaxel and 93 µm for doxorubicin) found in Table I. 
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TABLE I  

DRUG CONCENTRATION (GRAMS) VERSUS DISTANCE FROM PARTICLE 

Drug Grams Drug in Plasma Penetration Length (μm) 

Doxorubicin 1.6306E-04 93 

Paclitaxel 1.8444E-05 72 
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IV. DISCUSSION 

 

 

 

 Nanomedicine has greatly improved the chances of successfully killing cancer 

and increasing the lifespan of cancer patients; however, as seen in Table I, current 

nanoparticle delivery systems are still not 100% efficient. Abraxane particles only 

achieve 50% cell apoptosis in about 72% of the tumor, and although more efficient, Doxil 

particles only achieve that value in 93% of the tumor. Substantial portions of tumor tissue 

are predicted to survive when these drugs are used, even in the best case scenario of 

optimal drug action as occurs in vitro. We assume uniform distribution of the particles 

within the tumor tissue, so that overlapping of drug diffusing from adjacent particles is 

minimal; even without this assumption of homogeneity, it is reasonable to assume that at 

the tissue scale the effect of overlapping drug release would be balanced by areas where 

drug concentration is minimized, leading to heterogeneous drug concentration and hence 

sub-optimal tumor dosing as is predicted by modeling [2] and experiments in vivo [31]. 

 In vitro analysis of nanoparticle transport within tumor spheroids was conducted 

by Gao et al. using pharynx FaDu cells. In this study, near-neutral zwitterionic 

hydrogenated soy phosphatidylcholine (HSPC) liposomes sterically stabilized with 

pegylation were prepared and characterized. The liposomes were found to have a similar 

diameter (approximately 110 nm) to the nanoparticles modeled in this study and the 

spheroids used also had a similar diameter of 325 µm [32]. After 2 hours of tumor 

treatment with the nanoparticles, they found that the HSPC particles only penetrated 

approximately 40 µm from the tumor periphery into the center [32]. The results of their 
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study agree with ours in that there is limited penetration by nanoparticles of 

approximately 100 nanometers in diameter. Further, due to this penetration barrier, 

substantial portions of tumors are not being killed during cancer treatment.  

In a study by Lankelma et al., ten patients were treated with locally advanced 

breast cancer with doxorubicin i.v. Through tumor biopsy and fluorescence methods, they 

found that doxorubicin gradients occurred in tumor islets with high concentrations in the 

periphery and low concentrations in the center of the islets [33]. Two hours post 

injection, Lankelma et al. found that doxorubicin only penetrated a maximum of 

approximately 40 µm into the tumor islet core. Our results show that nanoparticle 

delivery of doxorubicin significantly increases tumor penetration in vivo, yet there are 

still portions of tumors that are not eradicated. 

Primeau et al. extended the work of Lankelma et al. to reinforce the notion that 

chemotherapy with DNA-binding drugs such as doxorubicin is limited by poor 

penetration through tumor tissue [34]. They studied the diffusion of doxorubicin from 

blood vessels in mice. They prepared their tumors using mouse mammary sarcoma 

EMT6 and the mouse mammary adenocarcinoma 16C. Using fluorescent imaging, they 

found that doxorubicin concentrations seemed to be highly localized around tumor blood 

vessels [34]. Primeau et al. report a characteristic penetration length (away from blood 

vessels and into the tumor) of 50 µm for doxorubicin, beyond which their results suggest 

that viable cells exist and do not receive enough drug to cause toxicity [34]. While this 

experiment was not conducted using human cells, it gives good insight into the diffusion 

of doxorubicin in vivo. 
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These results and our study confirm that the diffusion of doxorubicin and other 

small molecules is hampered in tumor tissue. For cancer treatment, 100% efficiency must 

be achieved to guarantee long-term patient survival. By modeling drug diffusion based on 

particle penetration into tumors, this work creates a quantitative approach that could be 

used to predict tumor viability based on penetration depth of drug particles, and thus help 

to improve treatment outcome. 

 For instance, direct patient benefit from therapy with these drugs could be 

calculated. If one had a sample of the patient’s tumor cells, an IC50 assessment for each 

drug could be performed. Then one could follow the aforementioned methods to calculate 

the grams of drug per tumor that would arise from these IC50 values that could be plotted 

on Figures 5 and 6, respectively, to approximate a drug penetration length. An example 

of these calculations can be found in Appendix II. This penetration length, whether low 

or high, would indicate whether Abraxane or Doxil would be an effective method of 

cancer treatment for this particular patient. 
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V. APPENDIX I 

 

 

 

 

FIGURE 7- Parameters Used In Computer Model from [11]. 
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VI. APPENDIX II 

 

 

 

Sample IC50 Calculation 

 

1. First, an IC50 assessment is performed on a patient’s cells after a tumor biopsy 

using doxorubicin. 

The assessment yields an IC50 equal to 80 nM/L. 

2. Then, this value must be converted to moles of drug in the blood plasma using   

VP = 3L. 

E E(8.0 -08mol/L) 3L 2.40 -07   mol Doxorubicin in Plasma 

3. This value is then converted to grams of drug in the plasma. 

E E(2.40 -07mol) (543.51926g/mol) 1.30 -04   grams Doxorubicin in the plasma 

4. Finally, this value is plotted on Figure 6, Drug Concentration vs. Distance From 

Particle for Doxorubicin, to find the estimated drug penetration length of the drug 

into the tumor tissue from a nanoparticle. 
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Figure 8- Penetration Length Estimation For Doxorubicin. 

For this particular example, the penetration length would be equal to approximately 96 

µm. 

 

5. With this value, we can estimate that doxorubicin could eradicate almost 50% of the 

tumor tissue for the patient and may thus be a good drug option for the patient’s 

chemotherapy treatment.  Note, we say as much as since the estimated penetration 

length is for the best case scenario of drug treatment in vitro. 
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