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ABSTRACT 
 

IDENTIFICATION AND CHARACTERIZATION OF GENES INVOLVED IN 
METABOLISM OF N5 MONOENE PRECURSORS TO N5 ANACARDIC ACIDS 
IN THE TRICHOMES OF PELARGONIUM × HORTORUM 
 

Richa Singhal 
November 21st 2016 

 
 
Unusual monoenoic fatty acids  (UMFA’s) and specialized metabolites called 

anacardic acids (AnAc) are produced in glandular trichomes of Pelargonium × 

hortorum (geranium).  The UMFA’s, 16:1∆11 and 18:1∆13 are precursors for the 

synthesis of unsaturated AnAc 22:1n5 and 24:1n5 that contribute to pest 

resistance in geraniums.  UMFAs and their derived AnAc metabolites not only 

provide a useful biological marker that differentiates the biosynthetic pathway for 

unusual mononenes from the common fatty acids (i.e. stearic, palmitic, oleic, 

linoleic and linolenic) but also have industrial, medical and agricultural 

applications.  Fatty acid biosynthesis enzymes like acyl carrier proteins (ACPs); 

thioesterases (TEs) and β-ketoacyl-ACP synthases (KASs) are required for 

common fatty acid as well as the UMFA biosynthesis.  Based on this, it is 

hypothesized that the specific isoforms of the fatty acid biosynthesis enzymes 

are highly expressed in trichomes and are involved specifically in metabolic 

channeling of UMFAs to anacardic acid synthesis within trichomes of geranium. 
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This hypothesis is based on the knowledge that there is a novel Δ9  myristoyl-

ACP desaturase  (MAD) that directs acyl-ACP into UMFA biosynthesis and the 

products of MAD are correlated with the dominant congeners of AnAc (22:1n5 

and 24:1n5).  Transcription of MAD as well as production of 16:1∆11 and 18:1∆13 

and AnAc 22:1n5 and AnAc 24:1n5 has been found to be highly trichome 

specific. 

 

This dissertation reports the identification of the complete nucleotide and protein 

sequences of genes for 2 ACPs, 3 FAT-As, 3 FAT-Bs, 4 KAS Is, 1 KAS II and 1 

KAS III from a geranium EST database.  Quantitative real-time PCR (qRT-PCR) 

was used to analyze tissue-specific expression patterns of the target genes, 

which indicated that ACP 1, ACP 2, KAS I-a/b, KAS Ic, FAT-A1, and FAT-A2 are 

highly expressed in trichomes. To further this research, a de novo RNA and 

micro-RNA transcriptome was generated from trichomes and bald pedicle of 

geranium, which helped in identification of several genetic components involved 

in UMFA synthesis. Bioinformatics analysis of RNA-transcriptome along with 

qRT-PCR and biochemical assays (HPLC and GC) were used to correlate the 

effect of temperature (18°C, 23°C  and 28°C) on gene expression (ACPs, KASs, 

FAT-As) and changes in production of 16:1Δ11 and 18:1Δ13 UMFAs and 22:1n5 

and 24:1n5 AnAc.  Results of this work show that expression of ACP 1, ACP 2, 

KAS I-c, KAS I-a/b were correlated with changes in UMFAs and AnAc production 

with temperature, thus indicating their potential role in UMFA metabolism.  We 

also determined that  23°C is an optimal temperature for production of UMFAs 

viii 
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and AnAcs as compared to 18°C and 28°C.  To determine and verify the function 

of ACP 1 and ACP 2, we co-expressed these genes in conjunction with a Δ9 

myristoyl-ACP (MAD) desaturase in both E. coli and tobacco. E. coli assay 

results show that expression of ACP 2 with MAD increased the production of 

UMFAs significantly, thus validating the novel role of ACP 2 in UMFA production. 

This work, in addition to the generation of a de novo transcriptome, provides a 

platform for further defining UMFA metabolism within trichomes of geranium.  
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CHAPTER 1 
 

INTRODUCTION 
 
 

Summary 
 
Fatty acids and other lipids obtained from plants are commonly utilized in 

agricultural, pharmacological, chemical and food industries.  However, the utility 

of plant lipids as chemical feedstocks can be limited due to a lack of chemical 

diversity.  Some plants are known to produce unusual fatty acids (UFAs) that 

have distinct chemical structures as compared to common fatty acids. UFAs are 

potential valuable feedstocks for the chemical industry and have a wide variety of 

applications as polymers, fuels and renewable sources of energy.  Plants that 

accumulate UFAs are often not amenable to agriculture and little is known about 

the biosynthesis of these compounds, thus limiting the utilization of this 

renewable resource.  Therefore, there is an enormous interest within plant 

biotechnology communities to identify genetic components (specialized fatty acid 

biosynthesis enzymes) involved in UFA synthesis, especially to generate 

transgenic crop plants engineered to accumulate high levels of specific UFAs.  

The focus of this dissertation is to study the biosynthesis of specific unusual 

monoenoic fatty acids (UMFAs) in trichomes (hair like structures) of Pelargonium 

× hortorum (garden geranium).  
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Introduction 
 
Plant Unusual Fatty Acids 
 
Plant lipids play a vital role in maintaining the structural organization of cells and 

organelles and are also required for storage of energy and signal transduction 

pathways1.  Stearic, palmitic, oleic, linoleic and linolenic acid are five common 

fatty acids found in plant lipids.  These common fatty acids have 16 to 18 

carbons and contain up to three non-conjugated double bonds2.  Fatty acids 

(FAs) that differ in structure from the common fatty acids can be referred to as 

“unusual fatty acids” (UFAs)2.  There are about 200 such different fatty acid 

structures produced by plants. This wide variety of UFAs occurs in plants due to 

the difference in arrangement, placement and number of double and triple bonds 

in the structure along with different length of acyl chains which can vary from 8 to 

24 carbons.  Additionally the difference is also attributed to the type of novel 

functional group attached to the fatty acid chain such as hydroxy, epoxy, 

methoxy, acetylenic, furanoids, cyclopentenyl and cyclopropyl groups 3, 4 

(Fig1.1).  Plant species that contain UFAs tend to synthesize these structures in 

specific tissues (like seed endosperm and trichomes) or at specific stages of 

development.  Examples of these plant species include, Coriander sativum ( i.e. 

petroselinic acid 18:1Δ6), Cocos nucifera (i.e. lauric acid 12:0), Ricinus communis 

(i.e. ricinoleicic acid 18:1Δ6), Crepis palaestina (i.e. vernoilc acid 18:1=O), 

Pelargonium × hortorum (i.e. 16:1Δ11 and 18:1 Δ13) and Brassica napus (i.e. erucic 

acid 22:1Δ13)5.  
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 Figure 1.1. Plant unusual fatty acid structures 

 

1.  Ricinoleic Acid (Hydroxy) 

 
 
 
 

2.  Vernolic Acid (epoxy) 

 
3.  Lauric Acid (Medium chain) 

 
 
4.  Erucic Acid (Very Long Chain) 

 
 
 
 
5.  Petroselinic Acid (Specific double bond position) 

 

 
 
 
6. Chaulmoogric Acid (cyclopentenyl group) 
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Applications 

UFAs and industrial oils share similar chemical and physical properties and 

therefore have a wide variety of applications as polymers (such as paints, 

lubricants, nylons, plastics, and cosmetics), renewable sources of energy (fuels) 

and potential petroleum replacement products5, 6.  Monounsaturated fatty acids 

like oleate (18:1Δ9) and palmitoleate (16:1Δ9) have optimal properties for biodiesel 

production because the single bond in these fatty acids helps in refining the cold-

temperature flow properties of biodiesel and also provides better ignition quality 

and fuel stability6.  Thus, UMFAs are ideal targets for biodiesel production.  

Most UFAs are excluded from membrane lipids of plant cells and are 

sequestered into oil bodies as part of storage lipids reaching up to 60% of the dry 

weight of seeds3, 6.  Some UFAs can exist in cytosolic or epidermal membranes 

(specifically long chain UFAs)7 that are used as substrates by plants for the 

production of plant specialized/secondary metabolites and other lipids that 

prevent water loss on plant surfaces by forming a hydrophobic barrier and 

additionally provide protection against plant pathogens and environmental 

stress6.  Some of these metabolites (like anacardic acids) not only protect plants 

from biotic and abiotic challenges but also have clinical applications8.  If the 

production of UFAs can be enhanced in seeds and other UFA specific tissues, 

then they can serve as a petroleum substitute and have various industrial, 

chemical and nutraceuticals appliacations 3, 8-10.  This fundamental and applied 

application of UFAs in plant biology has led to considerable interest in studying 
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the biosynthesis of UFAs and identifying specific enzymes involved in their 

production.   

 
Primary metabolism leading to biosynthesis of Unusual Fatty Acids. 
 
 
 UFAs are hypothesized to be produced through a distinct “metabolic channel” of 

the primary metabolic pathways that results in production of common fatty acids  

found in all plants11, 12.  In plants, fatty acid biosynthesis occurs in plastids 

through the activity of fatty acid synthase13.  

 

Fatty acid synthase 

There are two basic types of fatty acid synthase (FAS) complexes consisting of 

enzymes needed for fatty acid synthesis (Figure 1.2).  The type I system is found 

in mammals, lower eukaryotes and fungi.  This system has 1 or 2 separate 

domains of a large multifunctional polypeptide and integrated enzymes for fatty 

acid synthesis13. The type II system is found in bacteria and plants.  This system 

is a complex with monofunctional enzymes that are encoded by a separate 

genes13. 
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Figure 1.2.  Fatty Acid Synthase complex. A) FAS I, found in vertebrates with 
one large polypeptide (blue color).  B) FAS I, found in yeast with two separate  
polypeptides (blue and black colors).  C) FAS II, found in plants and bacteria with 
seven separate polypeptides (various colors). Acyl carrier protein (ACP), β-
ketoacyl- ACP synthase (KAS), acetyl transferase (AT), enoyl reductase (ER), 
dehydratase (HD), ketoreductase (KR) and malonyl transferase (MT). 
 
 
 
 
Enzymes and key steps of primary metabolism 
 
All of the enzymes of FAS II along with acetyl-CoA carboxylase (biotin-containing 

enzyme), carry out reactions of fatty acid synthesis (Figure 1.3).  In plants acetyl-

CoA carboxylase (ACCase) exists in two molecular forms, multiprotein 

complexes (in plastid) and multifunctional proteins (in cytosol) with expections in 

the Poaceae and Geraniaceae families 14,15.  The plastid localized AACase 

catalyzes the first committed and rate limiting step in FAS and produces malonyl-

CoA that is subsequently converted to malonyl-ACP during de novo fatty acid 

synthesis while cytosolic ACCase provides malonyl-CoA for fatty acid elongation 

and other cellular processes.  There is experimental evidence of posttranslational 

inhibition of acetyl–CoA carboxylase activity in the plastid that inhibits fatty acid 

synthesis and total oil accumulation.  This post translation inihibition occurs due 

to inefficient utilization and excess of unusual fatty acids within the endoplasmic 

MT 

KR 

HD 
ER 

AT 
KAS 

A. FAS I (Vertebrates) B. FAS I (Yeast) 
 

MT 

KR 
HD 

ER 

AT 
KAS 

C. FAS II (Bacteria, Plants) 
 

 ACP  ACP 

MT 

KR 

HD 
ER 

AT 
KAS 

 ACP 



	

	
	

	

7	

reticulum16.  To date, a novel isoform/ gene equivalent of ACCase, specific to 

unusual fatty acids has not been identified. 

 

Amongst the various enzymes of fatty acid synthase complex, acyl carrier 

proteins (ACPs) are central to the process of fatty acid synthesis since they are 

conserved carriers of acyl intermediates throughout this process of synthesis17.  

In plants ACP is a small (9kD) separate polypeptide18 that is synthesized in the 

cytoplasm and post-translationally imported into plastids17.  Plants encode 

multiple ACP genes located in the nuclear genome that are expressed in specific 

tissues. Novel isoforms of ACPs have been identified for tissue specific  

production of UUFAs9.  ACPs are indispensable metabolic cofactors and 

signaling molecules because they are not only involved in primary fatty acid 

synthesis but also in the synthesis of phospholipids, oligosaccharides, 

endotoxins and glycolipids.  Given the known functions of ACPs discussed 

above, over-expression or altering the expression of ACP in plants can help in 

manipulating and altering the fatty acid profile, nutritional quality, and quantity of 

seed oils17.  

 

Other enzymes of the fatty acid synthase complex include, ACP transacylase 

that catalyzes the transfers of acetyl group or malonyl group from CoA to ACP to 

form acetyl ACP and malonyl-ACP14 (Figure 1.3).  The elongation reactions are 

catalyzed by three types of β-ketoacyI-ACP synthase (KAS)13.  KAS III catalyzes 

the initial condensation reaction to form butyryl ACP; KAS I catalyzes the 
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condensation of C4 to C14-ACPs, whereas KAS II catalyzes the condensation of 

C14 and C16-ACPs with malonyI-ACP. KAS II is also responsible for determining 

the C16:C18 ratio in the products (Figure 1.3). The following reduction-

dehydration-reduction cycles are catalyzed by fatty acid reductases and fatty acid 

dehydrase (Figure 1.3).  For the successive addition of two carbon units to the 

growing fatty acid chain, β-ketoacyI-ACP reductase catalyzes the first reductive 

step and forms β-hydroxyacyI-ACP by reducing the keto group to a hydroxyl 

group (Figure 1.3).  β-hydroxyacyI-ACP dehydrase then catalyzes the removal of 

a water molecule, which forms an enoyl group14 (Figure 1.3).  Further, enoyI-ACP 

reductase catalyzes the second reductive step and forms a four-carbon 

compound called butyryl ACP (Figure 1.3).  This elongation reaction is repeated 

7 times to produce a palmitoyl ACP 14(16C). 

 

Finally, two types of fatty acid thioesterases catalyze the chain termination 

reaction by hydrolyzing the thioester linkage between ACP and the acyl group. 

FAT A preferentially hydrolysis unsaturated acyl-ACPs and FAT B preferentially 

hydrolysis saturated acyl-ACPs14 (Figure 1.3).  Usually, the in vivo products of 

plant fatty acid synthases are palmitoyI-ACP and stearoyI-ACP in the ratio of 

approximately (1:4)14.  However, the type of products formed by plant fatty acid 

synthase depends on the specificity of the thioesterase with the substrate.  For 

example, in some plants like California Bay and Cuphea, acyl-ACP thioesterase 

causes premature termination of the chain-lengthening cycle, which leads to 

formation of medium-chain products of fatty acids19.  After chain termination, free 
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fatty acids are exported to the cytoplasm and are activated to CoA ester by Acyl 

ACP synthetase (Figure 1.3).  These products are then processed through either 

the eukaryotic pathway or the prokaryotic pathway.  The eukaryotic pathway is 

located at the endoplasmic reticulum (ER) where acyl-CoAs are assembled for 

glycerolipids synthesis and the prokaryotic pathway the acyl-ACPs are used for 

lipid synthesis within the plastid (Figure 3.1)14, 20.   Additionally for the formation 

of unsaturated fatty acids, acyl-ACP desaturases catalyze the introduction of cis 

double bonds into the acyl-ACPs at specific positions.19,21 (Figure 1.3 and 1.4).  

Mostly Δ9 stearoyl ACP desaturase acts on a majority of C18:0 in plants and 

additional desaturases are present in a few species that produce unusual C18:1 

congeners.  Isoforms of desaturases vary in specificities for acyl chain length and 

position of double bond insertion. The Δ9 desaturases are responsible for 

synthesis of oleic acid, linoleic acid and α-linolenic acids that are major plant fatty 

acids and they represent 85% of total membrane acids 14, 21.  
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Figure 1.3. Primary Fatty acid biosynthesis leading to production of unusual fatty 
acids. ACCase (acetyl-CoA carboxylase), MT (malonyl transferase), KAS (β-
ketoacyl-ACP synthase), AT (acetyl transferase), ER (enoyl reductase), HD 
(dehydratase), FAT (fatty acid acyl-ACP thioesterase), ACS (acetyl-CoA 
synthase), FAD (fatty acid desaturase) and ER (endoplasmic reticulum). 
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involved in fatty acid synthesis (enzymes discussed above) 5.  Since these 

enzymes are variants of fatty acid synthesis enzymes, they have closely related 

catalytic functions and altered substrate specificity, which enables them to carry 

out an additional or alternative enzymatic reaction to produce UFA’s (Figure 

1.4)3.  Novel fatty acid biosynthesis enzyme isoforms have been discovered that 

are tissue-specific and involve synthesis and accumulation of UFAs11, 22, 23.  

Examples of these genes include the discovery of novel acyl carrier proteins, 

thioesterases, desaturases, acyltransferases and novel β-ketoacyl-ACP 

synthases22, 23.  Very long chain fatty acids or glycerolipids are produced via 

substrate channeling of acyl-ACPs  in the cytosol3, 11  whereas unusual 

monoenes that are produced in the plastid that can either get incoporated into 

triacylglycerol or undergo enzymatic modifications that lead to production of 

specialized metabolites in specific tissues 3, 11.  Most of the UFAs become part of 

storage lipids whereas very few readily enter plastidial or cytosolic membrane 

lipids3.  However the exact sorting mechanism of UFA’s is still unknown and may 

be different for different plant species3.  

 

Types of Unusual Fatty Acids 

Specific type of UFAsare produced by modified fatty acid reactions like 

desaturation, methylation, acetylation, hydroxylation, expoxidation and elongation 

(Figure 1.4) 
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Figure 1.4. Production of specific unusual fatty acids through enzymatic 
modifications 
 
 
 
Medium Chain fatty acid (MCFA) 

MCFA chain length ranges from 8 to 14 carbons. Synthesis of MCFA’s requires a 

dedicated acyl-ACP thioesterase that cleaves the acyl chain prematurely to 

produce C8-C14 fatty acids (Figure 1.4)24.  As an example, seeds of Umbellularia 

californica produce a thiosesterase that is specific for lauroyl-ACP and it 

terminates the chain length at 12C instead of 16C or 18C as seen in most 

plants25.  A novel thioesterase from Umbellularia californica with substrate 

preference for C12:0 was expressed in rapeseed, this led to alteration of 

enlogation pathway such that up to 40% of short chain lauric acid was produced 

in the seed oils 5, 26, 27.  The amount of laurate in the transgenic rapeseed plant 

was lower as compared to the amounts found in coconut and C. lanceolata 

because of restricted accumulation of laurate at sn-1 and sn-3 positions of 

triacylglycerol.  This was due to lack of a specific lysophosphatidic acid acyl-

glycerol-3-phosphate acyl transferase (LPAAT) enzyme, which utilizes medium 

chain fatty acid as a substrate and causes accumulation of laurate at sn-1,2 and 
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3 positions of triacylglycerol.   Thus, when a specific LPAAT from the coconut 

and a novel thioesterase from Umbellularia californica was expressed in 

rapeseed, the production of MCFA increased by an additional 40%.  Apart from 

thiosestrases, a novel KAS I has been identified in coconut, which is specific for 

MCFAs28.  These findings suggest that more than one enzyme or group of 

enzymes are needed for the production of UFAs5, 26.  

 
 
Very Long Chain Fatty acid (VLCFA) 
 
Successive rounds of elongation occur extrapastidially for production of 

VLCFA’s. The chain length for VLCFAs  is greater than 18 carbons (Figure 1.4).  

These VLCFAs can be both mono-unsaturated (e.g eruic acid) and 

polyunsaturated (e.g., arachidic acid).  Each elongation reaction cycle is 

controlled by an acyl-CoA enlongase complex involving four reactions - 

condensation of  two carbons of malonyl-CoA, followed by reduction, dehydration 

and a second reduction reaction5.  Novel fatty acid elongase enzymes involved in 

production of VLCFA have been identified in seeds of Arabidopsis and Brassica 

napus5 29.   

 

Hydroxyl (OH), Epoxy (=O), Acetylenic (−C≡C−) Fatty Acids  

Synthesis of hydroxyl, epoxy, methoxy and acetylenic fatty acids takes place on 

the endoplasmic reticulum as opposed to plastids for most UFAs.  It requires 

specialized enzymes (desaturase, epoxgenase, acetylenase, hydroxylase) that 
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are structurally related to the extraplastidial Δ12 desaturase (FAD2) family 

(Figure 1.4)30. 

 

Unusual Monoeonic fatty acid (UMFA) 

UMFAs have one double at specific positions in the fatty acid structure that are 

not commonly found in all plants.  They have a wide variety of functions in 

industry and medicine (Table 1.1).  Five distinct acyl-acyl carrier protein 

desaturase (AAD) genes have been isolated, each capable of producing distinct 

unusual monoenoic fatty acids. Additionally, four proteins - ferredoxin (Fd), acyl 

carrier protein, 3-ketoacyl-ACP synthase and thioesterase, have specific roles in 

the production of UMFA in their native plants and thus play an important role in 

understanding production of UMFAs9, 31-33.  For example, in Coriandrum sativum, 

a specialized soluble fatty acid desaturase that is closely related to Δ9 

desaturase, introduces a double bond between 4C and 5C of a 16 carbon acyl 

chain, which is then extended by a novel condensing KAS enzyme and esterified 

by a novel FAT- A enzyme to produce UMFA petroselinic acid (18:1△6)25, 33-35. 
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Table 1.1 Details of Unusual Monoeonic fatty acids  

 
Includes plant source, novel enzymes and applications3, 4, 11, 25, 36, 37 

 

Derivatives of Unusual Fatty Acids  

Derivatives of UFAs include a class of secondary/specialized metabolites 

containing phenolic lipids (polyketides), essential omega fatty acids and various 

other aliphatic compounds like cuticular lipids6, 38, 39.  Phenolic compounds 

(polyketides) are of interest since they have a wide variety of biological activities 

like antimicrobial, anti-cholesterol and anticancer and are also used in agriculture 

and animal husbandry38.  Enzymes of the type III polyketide synthases (PKS) 

superfamily (including well studied chalcone/stilbene synthases involved in 

flavonoid biosynthesis) are involved in the synthesis of these phenolic lipids36, 38.  

Type III PKS enzymes are found in plants and bacteria and recent genome and 

biochemical studies show their presence in filamentous fungi38. Products of type 

III PKSs include chalcones, pyrones, stilbenes, acridones and resorcinolic lipids 

like Cardol, Cardanol, anacardic acid, oliveotolic acid and urishiol36, 38.  The 

Unusual Monoeonic Fatty Acids Plant Novel enzyme Use/Application

Erucic (22:1ω9) Arabidopsis thaliana β-ketoacyl-ACP synthase Oil paints, precursor to 
biodiesel fuel.

Ricinoleic (18:1-OH) Ricinus Communis Diiron Hydroxylase Medicine (anti-inflammatory, 
analgesic), biodiesel and 
nylon precursor.

Vernolic (18:1=O) Crepis palaestina FAD2-related expoxygenase Paints, adhesives.

Petroselinic (18:1△6) Coriandrum sativum Δ6 desaturase, β-ketoacyl-ACP 
synthase, fatty acid acyl-ACP 
thioesterase

Surfactants, cosmetics, food 
industry.

14:1Δ9,16:1Δ11 and 18:1 Δ13 Pelargonium × hortorum Δ9 desaturase Substrates for pest resistant 
anacardic acid production. 

Palmitoleic acid (16:1Δ9)  Hippophae rhamnoides Δ9 desaturase Detergents, medicine.



	

	
	

	

16	

common biosynthetic theme of these enzymes includes the utilization of fatty 

acid CoA esters as substrates, followed by condensation reactions to generate a 

polyketide intermediate. This intermediate then undergoes subsequent 

cyclization followed by aromatization to produce phenolic lipids, (an example of 

this is illustrated in Figure 1.5)36, 38.  It has been observed that distinct PKS’s exist 

and contribute to the production of specific lipids38.  For example, distinct 

alkyresorcinol synthase uses unusual Δ9,12,15- 16:3-CoA precursors to produce a 

pentadecatrienylresorcinol intermediate, which then undergoes additional 

modifications  to produce sorgoleone40.  Similarly, type III PKS with specific 

substrate specificty can lead to formation of related compounds like, cardol, 

cardanol, urishiol anacardic acids and alkyl resorcinols (such as olivetol)36.  

Additionally, stilbene synthase, which is a divergent chalcone synthase type III 

PKS, forms a tetraketide intermediate, like chalcone synthase and then 

subsequently undergoes C2/C7 cyclization instead of C1/C6 cyclization to form 

resveratrol41.  Furthermore, in trichomes of Pelargonium × hortorum unusual 

16:1Δ11-CoA and 18:1Δ13-CoA are substrates for production of anacardic acids.  

An enzyme keto-acyl CoA synthase 2 has been identified which is structurally 

similar to Type III PKS’s and is potentially involved in a final condensation 

reaction that leads to the production of anacardic acid (unpublished), (Figure 1.5) 
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Figure 1.5. Anacardic acid - a derivative of unusual fatty acid. 
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Production of UFAs in transgenic plants 

Researchers are trying to cultivate plants that accumulate unusual fatty acids 

since enormous interest in the diversity, functions and commercial application of 

UFAs has gained momentum in recent years 4.  Such plants can reduce the cost 

of production of UFAs, which can serve as petroleum substitutes along with 

various industrial and medicinal products4.  Unfortunately plants that produce 

UFAs are not suitable for agriculture and little is known about the biosynthesis of 

UFAs, which limits their utility as a renewable resource. Thus, plant 

biotechnology research focuses on identifying  genetic components (specialized 

fatty acid biosynthesis enzymes, cofactors or enzyme complexes) for generation 

of transgenic plants that accumulate high levels of specific UUFAs. Furthermore 

it is also important to identify the site, time and level of expression of UUFA 

related genes along with an investigation of the substrate availability, level and 

enhancement4. 

 

Researchers in this area have observed that when specific fatty acid genes from 

plants that naturally accumulate UFAs are introduced into transgenic plants, the 

yield of UFAs obtained in the seed oil is very low4.  For example, expression of 

fatty acid hydroxylase 12 (obtained from castor) under a strong seed-specific 

promoter leads to very low accumulation of ricinoleic acid in transgenic plants 

(<1% transgenic tobacco and <17% in Arabidopsis as compared to 90% in 

storage glycerides of the castor plant)42, 43.  The exact reason for minimal 

accumulation of UFAs in transgenic plants is still being evaluated and there are 
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few possible explanations.  It is possible that the expression of a single gene to 

obtain a higher yield may not be sufficient in some cases and it may require an 

assembly of compatible multicomponent enzymes that are functional in a 

transgenic system or have additional secondary activities4, 11.  This hypothesis 

was supported by experimental evidence where the expression of acyl ACP 

desaturase under a strong seed-specific promoter led to the accumulation of 1-

15% in seeds of Arabidopsis as compared to 80% accumulation in the seed of 

the parent plant (Thunbergia alata, Coriandrum sativum)11.  Experiments were 

done to confirm that there was no degradation of UFAs during seed 

development, no enzyme barriers were identified that could lead to poor 

incorporation of UFA into triacylglycerol.  Even the competition with endogenous 

protein for substrates and cofactors was not the reason for limited accumulation 

of UMFAs.  It was further evaluated that even though the expression of acyl ACP 

desaturase was higher than the endogenous Δ9-18:0 ACP desaturase, its activity 

was 10-100 fold lower than the Δ9-18:0 ACP desaturase, indicating that the 

expression level of desaturase alone is not the limiting factor for accumulation of 

UMFAs11.  

 

Another  possible explanation is beta-oxidation of UFAs to acetyl-CoA that 

causes poor channeling of UFAs leading to inefficient incoporation into 

triacylglycerols, limited availability of substrate or additional activity/ interference 

from enzymes present in the host 5, 44.  This was demonstrated in an experiment 

involving production of  VLCFA erucic acid in rapeseed. The erucic acid specific 
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LPAAT gene from Limnanthes (which incorporates VLCFAs at all three sn 

positions of TAG) was expressed in rapeseed5. There wasn’t a significant 

increase in total erucic acid content (40%) in transgenic lines, suggesting that its 

production was limited by the activity of enlongase5.   To test this possibility, the 

LPAAT gene from Limnanthes along with the fatty acid elongase gene from 

Brassica napus was co-expressed in rapeseed and the resulting transgenic lines 

expressing these genes accumulated slightly more erucic acid (60%) as 

compared to lines expressing only LPAAT gene (40%).  Limited accumulation of 

erucic acid in rapeseed can be due to limited availability of the substrate or beta 

oxidation unusual VLCFA.  Evaluating the mechanism of efficient incorporation 

and stabilization of UFAsinto triacylglycerols  can help in accumulating high 

levels of UFAsin the seeds of transgenic plants.  

 

Geranium as a model system for studying UMFA synthesis 

Pelargonium × hortorum (geranium) consists of glandular trichomes that can be 

used to study the synthesis of UMFAs. Trichomes are small hair-like structures 

present on the surface of leaves, stems and pedicles of plants45.  Glandular 

trichomes are metabolically specialized cells that produce a wide array of 

specialized metabolites45. UMFAs (16:1∆11 and 18:1∆13) are present in glandular 

trichomes of geranium and are the direct precursors for production of 22:1ω5 and 

24:1ω5 anacardic acids36.  These unsaturated anacardic acids confer pest 

resistance to plants and are found to inhibit the growth of breast cancer cells 36, 

46. They also have antibacterial, antifungal and molluscicidal properties45. 
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Glandular trichomes of geranium are highly specialized for production of specific 

UMFAs - 16:1Δ11 and 18:1Δ13, which as substrates account for more than 80% of 

the anacardic acid profile45.  Furthermore, glandular trichomes are readily 

isolated as pure cell preparations, thus making them an ideal model tissue for 

exploration of the underlying genetics and biochemistry of UMFA synthesis. A 

novel Δ9 14:0-acyl carrier protein (ACP) desaturase (MAD) has already been 

identified within trichomes of Pelargonium × hortorum.  The MAD gene is 

responsible for producing myristoleic acid (14:1Δ9) that is elongated into 16:1Δ11 

and 18:1Δ13 UMFAs47.  To facilitate a more complete understanding of this 

system, the goal of this project is to identify and characterize various genetic 

componets including distinct isoforms of fatty acid biosynthesis enzymes like 

ACPs, KASs and FATs that are highly expressed in the trichomes and potentially 

involved specifically in metabolic channeling of UMFAs to anacardic acid 

synthesis within trichomes of geranium. 
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CHAPTER 2 
 
IDENTIFICATION AND EXPRESSION ANALYSIS OF FATTY ACID 
BIOSYNTHESIS GENES FROM PELARGONIUM × HORTORUM.  
 
 
Summary 

Unusual monoenoic fatty acids  (UMFA’s) and derived specialized metabolites 

called anacardic acids (AnAc) are produced in glandular trichomes of 

Pelargonium × hortorum (geranium).  The UMFA’s, 16:1∆11 and 18:1∆13 are 

precursors for the synthesis of AnAc 22:1n5 and 24:1n5 that confer pest 

resistance in geranium.  UMFAs and their AnAc metabolites provide a useful 

biological marker to differentiate the biosynthetic pathway for unusual 

mononenes from the common fatty acids and they have industrial, medical and 

agricultural applications.  Acyl carrier proteins (ACPs), β-ketoacyl-ACP synthases 

(KASs) and acyl-ACP thioesterases (FATs) are required for common fatty acids 

as well as the UMFA biosynthesis.  Thus, we hypothesized that specific 

isoforms/paralogs of these fatty acid biosynthesis enzymes will be highly 

expressed in trichomes and will be involved specifically in synthesis of UMFAs by 

an alternate metabolic channeling. Subsequently, complete sequences 

(nucleotide and amino acids) of 2 ACPs, 3 FAT-As, 3 FAT-Bs, 4 KAS Is, 1 KAS II 

and 1 KAS III were identified.  Phylogenetic analysis of these target sequences 

indicated that ACP 2, KAS Ic, KAS Ia, KAS Ib and FAT-A1 protein sequences 
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were in the same clade as that of Coriandrum sativum ACP, KAS and FAT-A 

enzymes which are associated with the biosynthesis of petroselinic acid (18:1Δ6, 

a specific UMFA).  Expression analysis of target sequences indicated that ACP 

1, ACP 2, KAS Ia/b, KAS Ic, FAT-A1, and FAT-A2 are highly expressed in 

trichomes compared to the bald pedicle, suggesting their potential role in 

trichome UMFA metabolism. 

 

Introduction 

Unusual monoenoic fatty acids (UMFAs) are characterized by presence of a 

single  double bond at specific positions in the fatty acid structure that are not 

commonly found in all plants.  UMFAs and industrial oils share similar chemical 

and physical properties due to which they have a wide variety of applications as 

polymers, fuels, nutraceuticals, medicine and renewable sources of energy4, 48.  

Production of UMFAs is typically restricted to specific tissues (seed endosperm, 

trichomes) in various plants like Thunbergia alata (16:1Δ6), Coriandrum sativum 

(18:1Δ6), Asclepia syriaca (16:1Δ9,18:1Δ11) , Arabidopsis thaliana (22:1ω5), Ricinus 

communis (18:1=O), Hedrea helix (16:1Δ6)  and Hippophae rhamnoides (22:1ω5 )3, 

9, 22, 46, 49-55.  Within these plants that produce UMFAs, novel isoforms of a limited 

number of fatty acid biosynthesis (FAS) enzymes have been identified that are 

involved in UMFA synthesis 3, 22, 33.  Examples of these FAS enzymes include 

ACPs that are conserved carrier of acyl intermediates during fatty acid 

synthesis1, 17,  KASs that are involved in condensation reactions1 and FAT-As 

that hydrolyze acyl-ACP products of fatty acids1. 
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In Pelargonium × hortorum L.H. Bailey (zonal geraniums, Figure 2.1), unusual 

monoenoic fatty acids 16:1Δ11 and 18:1Δ13 are found in specialized structures 

called glandular trichomes56.  Glandular trichomes are small hair like structures 

found on the surface of stems and leaves of the plant.  They have a base, stalk 

and globular head (gland) where the metabolites are secreted (Figure 2.2)57.  Tall 

glandular trichomes of geranium produce a specialized metabolite called 

anacardic acid which occurs in both saturated (22:0, 24:0) and unsaturated forms 

(22:1n5, 24:1n5)45.  The unsaturated anacardic acids 22:1n5 and 24:1n5 are 

unique to pest resistant geraniums where they form a sticky viscous trap which 

provides the plant with a primary defense against pests like spider mites and 

aphids 45, 58 .  The unsaturated AnAc exudate has proven efficacious against 

spider mite, larval whiteflies, colorado potato beetle and the tomato hornworm, 

thus making it a potential candidate for use in controlling agriculture pests36, 45.   

AnAc also has antibacterial, antifungal and molluscicidal properties59-65.  

Furthermore, there is experimental evidence of antitumor activities on cancer cell 

lines (liver, breast, bladder, cervical and pituitary)36, 66-74.  The UMFA’s 16:1Δ11 

and 18:1Δ13 are biosynthetic precursors to unsaturated anacardic acids 22:1n5 

and 24:1n5 (Figure 2.3)56. Therefore, studying synthesis of UMFAs in trichomes 

of geranium not only aids in defining UMFA metabolism but also helps in 

understanding production of AnAc.  
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Figure 2.1. Pelargonium × hortorum L.H.  
Bailey (zonal geranium). Plants grown in  
environmental chambers, maintained at  
20ºC with 16-hour photoperiod. 
 
 
 
To further study the biochemical pathway and identify all the genetic components 

involved in production of UMFAs and AnAc, a trichome-specific expressed 

sequence tags (EST) database was constructed for Pelargonium × hortorum 

(trichomes from the pedicles as a source material).  This EST database was 

generated from 3781 random cDNA (complementary DNA) clones and 

categorized metabolically based on homology against Gen Bank.  For all the 

target enzyme steps, more than one gene sequence is available from the EST 

database (Figure 2.4).  Since the FAS enzymes are common to both fatty acid 

synthesis and UMFA synthesis, the distinct protein types encoded by each EST 

of a target gene potentially represents separate metabolic channels for fatty 

Geranium flower 
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acids, one for glycerol lipid and cuticular lipids biosynthesis and one for UMFAs 

synthesis leading to biosynthesis of anacardic acids (Figure 2.4). 

 

 
Figure 2.2. Images of trichomes and bald pedicle  
from geranium. A) Image of pedicle with trichomes 
(before shearing the trichomes. B) Image of bald 
pedicle (after shearing the trichomes). 
 
 
For this study three key fatty acid biosynthesis enzymes, ACPs, KASs and FATs 

were evaluated. To elucidate novel functionality of ACPs, KASs and FATs we 

propose to differentiate target enzyme isoforms/paralogs/types based of tissue 

specificity.  Since the UmFAs are only produced in glandular trichomes, we 

stalk 

gland 

Trichome 
A

B Bald pedicle 
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expect expression of isoforms involved in this process to also be expressed in 

the same tissue specific pattern. This approach is supported by identification of a 

novel Δ9 14:0- myristoyl ACP desaturase (MAD), which directs acyl-ACP into 

UMFA biosynthesis and has been found to be highly trichome specific (Figure 

2.4)75.  In this study complete sequences of FAS genes have been identified 

using bioinformatics and molecular biology tools, followed by their phylogenetic 

analysis and expression analysis using quantitative real time PCR (qRT-PCR).  

 

 

 
Figure 2.3. Structures of unusual monoenoic fatty acids and  
derived anacardic acids. Each UMFA, 16:1Δ11 (A) and 18:1Δ13  
(B) is proposed to be elongated by 6 carbons and cyclized to  
form the corresponding AnAc, 22:1n5 or 24:1n5, respectively.   
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Figure 2.4.  A model for primary fatty acid synthesis leading to production of 
unusual monoenes. This model demonstrates the theory of substrate channeling 
(metabolic split) of  primary fatty acid pathway towards one leading to glycerolipid 
and very long chain fatty acid synthesis and the other leading to production of 
unusual monoenes that serves as precursors for anacardic acid synthesis. The 
box on bottom right indicates the number of contigs and singleton’s from the EST 
database for fatty acid biosynthesis enzymes. ACCase (acetyl-CoA carboxylase), 
MT (malonyl transferase), ACP (acyl carrier protein), KAS (β ketoacyl-ACP 
synthase), AT (acetyl transferase), ER (enoyl reductase), HD (dehydratase), 
AAD (acyl-ACP desaturase), ACS (acyl-CoA synthetase), MAD (myristoyl acp 
desaturase), FAT (fatty acid acyl-ACP thioesterase) KCS 2 (ketoacyl-CoA 
synthase). Enzymes marked in red are highly expressed in trichomes.  
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Material and Methods 

Plant Material  

Pelargonium × horotrum accession 88-51-10 was a kind gift from Dr. Richard 

Craig, Pennsylvania State University.  The plants were propagated through 

vegetative cuttings and grown in MetroMix 360 media.  Plants were maintained in 

environmental growth chambers at 20ºC, 16-hour photoperiod and light intensity - 

photosynthetic photon flux = 250 µmol m-2 s-1. 

 
RNA extraction and cDNA synthesis 
 
Pedicles were harvested from the flower clusters and transferred into 50 ml 

polypropylene tubes, placed on ice, then flash frozen in liquid nitrogen and stored 

at -80ºC until used.  Dry ice (~1g) was added to a tube containing pedicles and 

vortexed for 1 min to shear off trichomes from the surface of pedicle (Figure 

2.3)57.  The trichomes adhere to the surface of the tubes while pedicles are 

transferred to another tube for extraction of bald pedicle (Figure 2.3)57.  Total 

RNA was extracted and purified as previously described 76.  Three biological 

replicates were obtained for all samples. RNA quality and quantity was analyzed 

using both nanodrop and bioanalyzer.  RNA samples were Dnase treated using 

Ambion Turbo DNA-Free TM kit (ThermoFisher) and cDNA was synthesized using 

SuperScript® III First-Strand Synthesis System (Invitrogen). 

 

Bioinformatics Analysis 

VecScreen server from NCBI (http://www.ncbi.nlm.nih.gov/tools/vecscreen/) was 

used to eliminate the vector contamination from EST sequences and all other 
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sequencing work done for this project.  Sequences have been assembled into 

contigs and singletons. Contigs are groups of overlapping DNA reads that have 

consensus sequences and singletons are DNA reads that do not align with other 

sequences 77, 78. Each contig/singleton represents a unique gene, a splice variant 

or a gene paralog. Contig analysis of EST clones for each gene was done using 

Vector NTI, Cap3 and Geneious software.  Sequence alignment was done using 

Clustal W2 and AlignX (DNAStar suite software).  BlastX server was used to 

identify target sequences for each contig and singleton.  For sequence analysis, 

restriction digest was performed on 19 KAS clones and 22 FAT clones to identify 

the longest clone representing each contig. Missing sequence information 

obtained after molecular analysis (discussed below) was incorporated into the 

database and re-analyzed.  Each of these genes were sequenced multiple times 

to resolve sequencing errors and the complete sequences were translated in 6 

frames using EMBL-EBI six pack translator EMBOSS to identify the coding 

region. 

 

Molecular Analysis 

All restriction enzymes, PCR reagents, T4 DNA ligase, alkaline phosphastase 

used for molecular work were obtained from Roche Diagnostics, primers from 

Eurofins, pGEM®-T Easy Vector from Promega, pBluescript SK minus vector 

and DH5α E.coli  cells from Novagene. 
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For primer walking experiments, the primer design and location was selected 

based on the contig alignment and an overlap of at least 100-150 base pairs with 

the existing clone sequence was taken into consideration.  Every primer 

(Appendix 2, Table A2.1) was verified to be absent of secondary 

structures/hairpins and to ensure GC content was 40-60% (Oligonucleotide 

Properties Calculator).  Additional sequence information was obtained by sub-

cloning (Appendix 2, table A2.2) target fragments into pGEM®-T Easy Vector 

(Promega) or pBluescript followed by sequencing.  All supplemental sequencing 

was conducted at the DNA core facility, University Of Louisville.  For clones 

lacking 5' sequence information, Gene RacerR core kit with GeneRacer™ III RT 

Module (Invitrogen) was used for RACE following manufacturers instructions with 

gene specific primers (Appendix 2, Table A2.3).  The cDNA was amplified using 

touchdown PCR initiated at 94°C (2 minutes) followed by 5 cycles of 94°C (30 

seconds) and 72°C (1.5 minutes) then 5 cycles of 94°C (30 seconds) and 70°C 

(1.5 minutes) followed by 25 cycles of 94°C (30 seconds), 60°C - 68°C (30 

seconds), 68°C -  72°C (1.5 minutes) and ended with  final elongation of 68°C -  

72°C (10 minutes).  PCR amplicons were purified using the gene racer kit and 

sent for sequencing at the DNA core facility. 

 

Phylogenetic Analysis 

For phylogenetic analysis, deduced amino acid sequences for target geranium 

sequences were obtained using EMBL-EBI six pack translator EMBOSS.  NCBI 

GenBank was used to obtain target protein sequences of additional plant species 
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used to generate the tree and multiple protein sequence alignment was 

generated by Muscle (EMBL-EBI) with Phylip interleaved output79.  The 

phylogenetic trees were constructed from these alignment using RAxml (Trex- 

online)80 with the following settings:  substitution model: PROTCAT; Matrix name: 

DAYHOFF; algorithm: (d) Hill-climbing-default; number of bootstraps =1000; 

Bootstrap random seed (b) 12345 and the percent of replicates shown on the 

tree nodes. 

 

qRT-PCR assessment of candidate genes 

SYBR green and TaqMan assays were conducted in VIIA7Tm Real time PCR 

system from Applied Biosystems, software version 1.2.4.  The default ABI  

PCR conditions were used starting with 50°C (2 minutes), 95°C (10 minutes), 

followed by 95°C (15 seconds) and 60°C (1 minute) for 40 cycles with 

temperature increment gradient as 1.6°C/s.  RNA extraction and cDNA synthesis 

was accomplished as discussed above using primers designed for specific 

sequence regions (Appendix 2, Tables A2.4 and A2.5). 

 

SYBR Green Assay 

All-in-One™ qPCR Mix (GeneCopoeia), ROX reference dye at final concentration 

of 150nM, 2 µl of 1:10 dilution of cDNA and 0.2 µM of final concentration of 

primers were used for each assay.  Primers were designed manually for each 

contig of interest based on the sequence alignments of the contigs using 

Oligonucleotide Properties Calculator. Each primer length ranged from 18-30 
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bases and GC content was between 50-60%. These primers were verified to be 

absent of self-annealing, complementarity or hairpin formation.  Target amplicon 

lengths ranged between 150-300 bp.  Each primer set was tested for specificity 

using standard end point PCR and qRT-PCR with plasmid preparations of each 

gene as template (template dilutions ranging from 0.0001 ng to  

10 ng).  Standard PCR results were viewed via gel electrophoresis and qRT-PCR 

results were analyzed based on cycle threshold values to verify primer specificity. 

 
 
TaqMan assay 
 
For all PCR reactions 2 µl of 1:10 dilution of cDNA was added to 5 µl of TaqManR 

gene expression Master Mix (Life Technologies) along with 0.5 µl of gene 

expression assay (Life Technologies).  For each gene expression assay, primers 

and probe location was selected manually based on sequence alignment of each 

contig.  The selected regions were then incorporated into the program Primer 

Express™ (Perkin-Elmer, Applied Biosystems, USA) to verify the primer-probe 

design and efficiency.  The 5' end of the probe had the fluorescent reporter dye, 

6-carboxy-fluorescein (FAM) and the quencher 6-carboxy-tetramethyl-rhodamine 

(TAMRA) located at the 3' end of the probe.  Each assay was tested for 

specificity using qRT-PCR with plasmid preparations of each gene as template 

(template dilutions were 0.0001 ng to 10 ng). The qRT-PCR results were 

analyzed based on cycle threshold values to verify primer specificity. 
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Statistical Analysis 
 
The qRT-PCR data were analyzed using  paired t-tests to compare the null 

hypothesis of a 1:1 expression of  trichome to bald pedicle ratio.  One-way 

ANOVA with Tukey’s multiple comparison and correction test was used to 

compare gene-to-gene expression levels. 

 
 
 
 
Results and Discussion 
 
ACPs, KASs and FATs of Pelargonium × horturm 

Contig assembly of EST sequences indicated 3 contigs of FAT-As, 3 contigs of 

FAT-Bs, 4 contigs of KAS Is, 1 contig  KAS II, 1 singleton for KAS III and 2 

contigs of ACPs (Table 2.1).  Complete gene sequences of ACP 1, ACP 2, KAS 

Ia, KAS Ib, KAS III, FAT-A1 and FAT-A2 were obtained after contig assembly, 

primer walking and sub-cloning81.  Further sequence information was obtained 

after 5' RACE of KAS Ic, KAS II, FAT-B1, FAT-B2 and FAT-B3 82. KAS II, FAT B2 

and FAT B3 failed in 5' RACE (Table 2.1).  The sequence identity of each contig 

(appendix 6) was confirmed by BlastX homology with other plant species genes t 

that were characterized, identified and published (Table 2.1)9, 28, 29, 32, 49, 50, 83-89.  
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Table 2.1 Detailed output of EST database genes ACPs, KASs and FATs.  

 
 Blue highlights show incomplete sequences. GenBank Accessions9, 28, 29, 32, 49, 50, 83-86, 89, Blast X 
version 2.5.1+90 
 
Phylogenetic Analysis 
 
Phylogenetic trees were constructed for geranium ACPs, TEs and KASs 

compared to selected sequences of other plant species using ClustalW, Muscle 

alignment (EMBL-EBI) and Raxml Trex-online (Figures 2.5, 2.6 and 2.7)79, 80, 91-

93.  

Results show the geranium ACP 2, FAT-A1, KAS Ic, share a common 

phylogenetic node (are in the same clade) with ACP, FAT-A and KAS I 

respectively from Coriander sativum.  Importantly, these coriander genes are 

involved in production of petroselinic acid (an unusual monoene) 9, 33, 34, 94.  

These results indicate that the sequences of Pelargonium × hortorum ACP 2, 

FAT-A1, and KAS Ic could share similar function and are potentially involved in 

production of unusual monoene in trichomes of geranium.  Based on this 

Contigs EST Clones Identity % Match     Plant Complete Nucleotide Protein  GenBank Accession

TE Contig 1 03F05 (FAT-A1) FAT A 75% H.annuus Yes 1682 bp 425aa  AAL79361.1

TE Contig 2 07A05 (FAT-A2) FAT A 70% G.mangostana Yes 1599 bp 348aa AAB51524.1

TE Contig 3 03C01 (FAT-A3) FAT A 71% C.sativum Yes 1596 bp 334aa Q42712.1

TE Contig 4 40F05 (FAT-B1) FAT B 53% T.cacao Yes 1376bp 363aa XP_007013277.1

TE Contig 5 21G11(FAT-B2) FAT B 79% J.curcas No 1059bp 148aa NP_001292946.1

TE Contig 6 22A03 (FAT-B3) FAT B 68% J.curcas No 1571bp 249aa NP_001292946.1

KAS Contig 1 02B12 (KAS I-a) KAS I 78% A.thaliana Yes 1905bp 482aa AAC49118.1

KAS Contig 2 09E03 (KAS I-b) KAS I 81% A.thaliana Yes 1601bp 464aa AAC49118.1

KAS Contig 3 42C01 (KAS I-c) KAS I 82% C.nucifera Yes 1645bp 379aa  AGJ84410.1

KAS Contig 4 20H06 (KAS I-d) KAS I 61% A.hypogaea No 837bp 90aa ACJ07140.1

KAS Contig 5 01B08 (KAS II) KAS II 88% A.hypogaea No 950bp 186aa ACJ07142.1

KAS Singleton 28B11 (KAS III) KAS III 84% J.curcas Yes 1753bp 389aa NP_001292956.1

ACP Contig 1 06E07 (ACP 1) ACP 71% C.sativum Yes 640bp 85aa AAD46394.1

ACP Contig 2 30E09 (ACP 2) ACP 66% C.sativum Yes 754bp 84aa AAD46394.1
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analysis, transcription levels of these target sequences was hypothesized to be 

expressed at higher levels in trichome tissue of the geranium, reflecting a 

potential role in metabolism of UMFA found only in this tissue.  All other 

geranium target sequences aligned with fatty acid biosynthesis transcript 

sequences from plants that are not specific to synthesis of unusual fatty acids.  It 

is important to note that 1000 bootstrap replicates were used to increase the 

accuracy of the phylogentic tree along with setting 12345 as bootstrap random 

seed value to generate repeatable data with high statitsical confidence values for 

the phylogentic tree.  This method is conservative and it lead to lower percentage 

values for some genes as seen in Figure 2.5, Figure 2.6 and Figure 2.7.  
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Figure 2.5. Phylogenetic tree of acyl carrier proteins. A) Overall Raxml output. B) Raxml  
output for genes in same clade as C.sativum gene. Green Box - Pxh (Pelargonium ×  
hortorum), Red Box - Csa (Coriandrum sativum), Ahp (Arachis hypogaea), Ath  
(Arabidopsis thailana), Bna (Brassica napus), Cg (Citrus glauca), Cla (Cuphea 
lanceolata), Col (Camellia olifera), Fan (Fragaria ananassa), Han (Helianthus annuus),  
Hvu (Hydra vulgare), Oeu (Olea europaea), O.sa (Oryza sativa), Rco (Ricinus  
communis), Sol (Spinacia oleracea), Zma (Zea mays) and Nta (Nicotiana tabaccum). 
Suffix- Numerals indicates the isoform or paralog of ACPs in their respective plant  
species.  

A 

B 
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Figure 2.6. Phylogenetic tree of fatty acid thioesterases. A) Overall Raxml output.  
B) Raxml output for genes in same clade as C.sativum gene. Green Box - Pxh  
(Pelargonium × hortorum), Red Box - Csa (Coriandrum.sativum), Uc (Umbellularia  
californica), Cp (Cuphea palustris), Ath (Arabidopsis thailana), Bna (Brassica napus), Han-  
(Helianthus annuus), Oj (Oryza sativa Japonica), Jc (Jatropha curcas), Bj (Brassica 
Juneca), Br (Brassica rapa), Gm (Glycine Max), Nta- (Nicotiana tabaccum), Ch (Cuphea 
hookeriana), Vv (Vitis vinifera), Rco (Ricinus communis),Ah (Arachis hypogaea).  
Suffix - A (FAT-A), B (FAT-B). 

A 

B 
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Figure 2.7. Phylogenetic tree of  β-ketoacyl-ACP synthases. A) Overall Raxml output. 
B) Raxml output for genes in same clade as C.sativum gene. Green Box- Pxh  
(Pelargonium × hortorum), Red Box- Csa (Coriandrum sativum), Ah (Arachis 
hypogaea),Ath (Arabidopsis thailana), Bna (Brassica napus), Cw (Cuphea wrightti),  
Eg (Elaeis guineenis), Gh (Gossypium hirsutum), Gm (Glycine Max), O.sa (Oryza  
sativa,) Rco (Ricinus communis), Pf (Perilla frutescens), Sb- (Sorghum.bicolor), Han  
(Helianthus annuus), Vv (Vitis vinifera), Zma (Zea mays), Cn (Cocos nucifera), Jc 
(Jatropha.curcas), Cp (Cuphea pulcherima), Cla (Cuphea lanceolata), Ch (Cuphea 
hookeriana), Gs (Glycine suja). Suffix: Roman/Arabic Numerals correspond to KAS I,  

A 

B 
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KAS II and KAS III.  
Analysis of target fatty acid biosynthesis genes transcript levels  
 
Since unsaturated anacardic acids  (22:1n5 and 24:1n5) and their precursors 

UMFA’s 16:1Δ11 and 18:1Δ13  are restricted to glandular trichomes, transcripts of 

genes encoding fatty acid biosynthesis genes responsible for the production of 

these UMFA’s were hypothesized to be trichome specific.  Based on 

phylogenetic similarity of coriander gene transcripts involved in UMFA 

biosynthesis, Pelargonium × hortorum ACP 2, FAT-A1, KAS I-a, KAS I-b and 

KAS Ic were hypothesized to be the sequences that would be trichome specific.   

A SYBR green qRT-PCR assay was used to compare the expression patterns of 

KAS genes in trichome and bald pedicle tissue whereas a TaqMan qRT-PCR 

assay was used for ACP and FAT since distinct sequences within each class had 

high sequence similarity and thus required a probe for increased specificity.  For 

both assays ACTIN was used as reference gene (based on qPCR normalization 

results that showed similar expression levels of ACTIN in both bald pedicle and 

trichomes), Δ9 myristyl-ACP desaturase (MAD) and Δ9 stearoyl-ACP desaturase 

(SAD) were used as positive control for higher ratio of expression in trichomes 

and omega-3 desaturase (ω3) was used as positive control for higher  ratio of 

expression in bald pedicle.  The ΔΔCT method was used to analyze qRT-PCR 

data. In both assays, controls showed significant expression in their respective 

tissues as expected, indicating the reliability of these results.  The ACP 1, ACP 2, 

FAT-A1, FAT-A2, KAS I-a/b and KAS Ic sequences were found to be significantly 

higher in expression in trichome as compared to bald pedicle. KAS III shows a 

non-significant trend of higher expression in trichome (Figure 2.8 and 2.9).  
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Combined expression of KAS Ia and Ib is shown since the assay couldn’t 

differentiate between the two paralogs.     

 

 
Figure 2.8. Relative expression of trichome compared to bald  
pedicle for ACPs and FAT-As.  Δ9 Myristyl ACP desaturase  
(MAD),Δ9 stearoyl-ACP desaturase (SAD)  and omega-3  
desaturase (ω3) were used as controls.  Y-axis shows average  
fold change valuesBased on 1:1 expression of trichome to bald  
pedicle, fold change values above 1 suggest higher expression 
in trichomes and below 1 suggest higher expression in bald  
pedicle.  Bars represent the standard error of means and the  
means are represented by black numerals at the end of each bar  
with p-values of the t-test are shown for each gene.  Asterisk  
before p-value indicates significantly different expression from  
1:1 ratio. 
 

 
Figure 2.9 Relative expression of trichome compared to bald  
pedicle for KASs.  Δ9 Myristyl ACP desaturase (MAD), Δ9  
stearoyl-ACP desaturase (SAD)  and omega-3 desaturase (ω3)  
were usedas controls. Y-axis shows average fold change values.  
Based on 1:1 expression of trichome to bald pedicle, fold change  
values above 1 suggest higher expression in trichomes and below  
1 suggest higher expression in bald pedicle. Bars represent the  
standard error of means and the means are represented by black  
numerals at the end of each bar with p-values of the t-test are  
shown for each gene. Asterisk before p-value indicates  
significantly different expression from 1:1 ratio. 
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For direct expression comparison between selected specific genes, Tukeys 

multiple correction was used on one-way ANOVA. The delta Ct values of the 

TaqMan assay show that expression of MAD is significantly higher in trichome 

tissue compared to all the other genes.  Both ACP’s and FAT-A’s show high 

expression in trichomes and expression of ACP 1 versus ACP 2 and FAT-A1 

versus FAT-A2 are not different from each other in both trichome and bald 

pedicle (Figure 2.10 and 2.11).  The delta Ct values of the SYBR green assay 

show expression of KAS 1-a/b is significantly higher in trichomes than all the 

genes.  This may be due to the summed expression of two paralogs. KAS Ic 

expression is higher than KAS III in trichomes.  Within bald pedicle expression of 

KAS 1-a/b, KAS III and KAS I-c is not significantly different from one another 

(Figure 2.12 and 2.13). 

 

All the genes showing higher expression ratios of trichome to bald pedicle have 

delta Ct values that show lower expression within bald pedicle tissue compared 

to trichome tissue in both the assays (Figure 2.8 to 2.13).  Based on these results 

it may not be possible to use tissue specific expression patterns alone to predict 

which ACP, TE or KAS is the best candidate that may be involved in UMFA 

synthesis.  It is possible that all of them are involved in UMFA synthesis but this 

requires further biochemical evaluation.   
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Figure 2.10. Expression patterns of ACPs and FAT-As in the trichome tissue.  
MAD (Δ9 myristyl ACP desaturase), SAD (Δ9 stearoyl-ACP desaturase) and ω3 
(omega-3 desaturase) were used as controls. The y-axis shows delta Ct values 
with the expression level inversely proportional to delta Ct values.  The bars 
represent the standard error of means and the means are represented by black 
numerals at end of each bar.  The p-values are shown for gene comparisons 
(table) using Tukeys multiple correction on one-way ANOVA. Values <0.05 show 
significant difference in expression between two genes. 
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MAD             SAD            ω3            ACP 1           ACP 2         FAT-A1       FAT-A2		

Genes ACP1 ACP2 MAD ω3 SAD FAT-A1 FAT-A2
ACP1 N/A 0.0607 <.0001 <.0001 <.0001 <.0001 <.0001
ACP2 0.061 N/A 0.02 <.0001 <.0001 <.0001 <.0001
MAD <.0001 0.02 N/A <.0001 <.0001 <.0001 <.0001
ω3 <.0001 <.0001 <.0001 N/A <.0001 0.0015 0.013
SAD <.0001 <.0001 <.0001 <.0001 N/A 0.139 0.016
FAT-A1 <.0001 <.0001 <.0001 0.001 0.139 N/A 0.884
FAT-A2 <.0001 <.0001 <.0001 0.013 0.016 0.884 N/A

Post Hoc Analysis
pvalues for gene to gene comparions in trichome tissue at 20°C
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Figure 2.11. Expression patterns of ACPs and FAT-As in the bald pedicle tissue.  
MAD (Δ9 myristyl ACP desaturase), SAD (Δ9 stearoyl-ACP desaturase) and ω3 
(omega-3 desaturase) were used as controls. The y-axis shows delta Ct values 
with the expression level nversely proportional to delta Ct values.  The bars 
represent the standard error of means and the means are represented by black 
numerals at end of each bar.  The p-values are shown for gene comparisons 
(table) using Tukeys multiple correction on one-way ANOVA. Values <0.05 show 
significant difference in expression between two genes. 
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  MAD            SAD             ω3             ACP 1          ACP 2         FAT-A1       FAT-A2		

Genes ACP1 ACP2 MAD ω3 SAD FAT-A1 FAT-A2
ACP1 N/A 0.988 0.133 0.053 0.003 0.005 <.0001
ACP2 0.988 N/A 0.037 0.014 <.0001 0.002 <.0001
MAD 0.134 0.037 N/A 0.997 0.424 0.567 0.005
ω3 0.053 0.014 0.997 N/A 0.728 0.857 0.014
SAD 0.003 <.0001 0.424 0.728 N/A 1 0.197
FAT-A1 0.005 0.001 0.567 0.856 1 N/A 0.131
FAT-A2 <.0001 <.0001 0.005 0.013 0.196 0.131 N/A

pvalues for gene to gene comparions in bald pedicle tissue at 20°C
Post Hoc Analysis
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Figure 2.12. Expression patterns of KASs in the trichome tissue. MAD (Δ9 
myristyl ACP desaturase), SAD (Δ9 stearoyl-ACP desaturase) and ω3 (omega-3 
desaturase) were used as controls. The y-axis shows delta Ct values with the 
expression level inversely proportional to delta Ct values.  The bars represent the 
standard error of means and the means are represented by black numerals at 
end of each bar.  The p-values are shown for gene comparisons (table) using 
Tukeys multiple correction on one-way ANOVA. Values <0.05 show significant 
difference in expression between two genes. 
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     MAD             SAD                  ω3              KAS I a/b           KAS III          KAS Ic 

Genes KAS I a/b KAS III KAS I-c MAD ω3  SAD
KAS I a/b N/A <.0001 <.0001 <.0001 <.0001 <.0001
KAS III <.0001 N/A <.0001 0.062 <.0001 0.052
KAS I-c <.0001 <.0001 N/A <.0001 <.0001 <.0001
MAD <.0001 0.062 <.0001 N/A <.0001 1
ω3 <.0001 <.0001 <.0001 <.0001 N/A <.0001
SAD <.0001 0.052 <.0001 1 <.0001 N/A

Post Hoc Analysis
pValues for gene to gene comparisons in trichome tissue at 20°C
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Figure 2.13. Expression patterns of KASs in the bald pedicle tissue. MAD (Δ9 
myristyl ACP desaturase), SAD (Δ9 stearoyl-ACP desaturase) and ω3 (omega-3 
desaturase) were used as controls. The y-axis shows delta Ct values with the 
expression level inversely proportional to delta Ct values.  The bars represent the 
standard error of means and the means are represented by black numerals at 
end of each bar.  The p-values are shown for gene comparisons (table) using 
Tukeys multiple correction on one-way ANOVA. Values <0.05 show significant 
difference in expression between two genes. 
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MAD             SAD                  ω3              KAS I a/b           KAS III          KAS Ic 

Genes KASI a/b KASIII KASI-c MAD ω3  SAD
KASI a/b N/A 0.633 1 0.012 0.009 0.061
KASIII 0.633 N/A 0.715 0.162 0.128 0.571
KASI-c 1 0.715 N/A 0.016 0.012 0.078
MAD 0.012 0.162 0.015 N/A 1 0.922
ω3 0.009 0.127 0.012 1 N/A 0.867
SAD 0.061 0.57 0.077 0.922 0.867 N/A

pValues for gene to gene comparisons in bald pedicle tissue at 20°C
Post Hoc Analysis
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Conclusion 
 
Complete sequences of 2 ACP’s, 6 KAS’s and 6 FATs were identified and used 

to analyze tissue specific expression in glandular trichomes of Pelargonium × 

hortorum.  Combined results of expression analysis and phylogenetic analysis 

showed that ACP 2, KAS I-c and FAT-A1 were highly expressed in trichomes 

and aligned closely with homologs of genes from coriander that are known to be 

involved in UMFA biosynthesis. ACP 1, KAS Ia, KAS Ib and FAT-A2 did not align 

with known genes involved in UMFA biosynthesis but also showed high 

expression in trichomes.  Both phylogenetic analysis (based on sequence 

homology) and tissue specificity analysis were used as methods to characterize 

the EST genes but that may not always to be an absolute method to define or 

validate function.  It is possible that the low expression genes and the genes that 

did not align with genes of plants producing unusual monoenes may still be 

involved in production of UMFAs in geranium.  Furthermore, there are 2 ACPS, 3 

KASs and 2 FATs that were highly expressed in trichomes, so it is possible that 

they are either paralogs (gene duplicates) that have the exact same function or 

they are isoforms (splice variants) that are found at the specific stage of 

development and involved in UMFA metabolism.  To further define their potential 

role UMFA productions these genes need to be expressed in heterologous 

systems.   
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CHAPTER 3 

EFFECT OF TEMPERATURE ON PRODUCTION OF UNUSUAL MONOENES, 
ANACARDIC ACID AND FAS GENE EXPRESSION IN THE TRICHOMES OF 
PELARGONIUM × HORTORUM.  
 

Summary 

Anacardic acid (AnAc) is a collective term for congeners of 2-hydroxy-6-alkyl 

benzoic acid.  AnAc is ubiquitously produced in trichomes of all Pelargonium × 

hortorum (garden geranium) plants but specific congeners of AnAc (AnAc 22:1n5 

and AnAc 24:1n5 ) are known to impart a pest resistance phenotype to geranium.  

These specific congeners are derived from the unusual monoenoic fatty acids 

(UMFAs) 16:1Δ11 and 18:1Δ13 that are synthesized only in glandular trichomes of 

pest-resistant plants.  Thus, UMFAs and their AnAc metabolites provide useful 

biological markers that differentiate the biosynthetic pathways for unusual 

mononenes and for common fatty acids.  To elucidate the effect of temperature 

and identify the genetic factors associated with UMFA and AnAc biosynthesis, a 

de novo RNA transcriptome was generated from trichomes and bald pedicle of 

Pelargonium × hortorum obtained from plants at 18°C and 23°C.  A total of 

486398 transcripts were generated and bioinformatics analysis was used to 

identify sequences associated with temperature dependent alteration in UMFA 

and AnAc synthesis that were differentially expressed in a specific tissue or at 
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the specific temperature.  Expression data for target sequences obtained from 

the RNA transcriptome were further tested and validated using quantitative real 

time qRT-PCR (including tissues at 28°C) and biochemical analysis (HPLC-DAD 

and GC-FID) were used to evaluate production of AnAc and UMFAs.  Correlation 

analyses of qRT-PCR data and levels of UMFAs and derived AnAc indicated that 

not only is 23°C is the optimal temperature for UMFA and AnAc synthesis 

compared to 18°C and 28°C but also indicated higher temperature negatively 

affects the production of metabolites. Production of UMFAs (16:1Δ11 and 18:1Δ13) 

is positively correlated with production of AnAc (22:1n5 and 24:1n5) at all 

temperature's indicating a direct relationship between the amount of substrate 

and the metabolite at a given temperature.  Finally, expression of ACP 1, ACP 2, 

KAS I-a/b, and KAS I-c were significantly correlated with production of target 

metabolites at specific temperatures (18°C, 23°C and 28°C) further validating 

their potential involvement in UMFA metabolism.  This approach can be used to 

identify more genetic components and to study effects of environmental factors 

like light intensity and photoperiod affecting UMFA and AnAc metabolism.  

 

Introduction 

Unusual monoenoic fatty acids are important because their distinct chemical 

structures make them valuable feedstocks for the chemical industry where they 

have a wide variety of applications as polymers, fuels and renewable sources of 

energy5, 95.  Additionally, within trichomes of Pelargonium × hortorum these 

UMFAs (16:1Δ11 and 18:1Δ13)  are the direct precursor for production of 
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specialized ω5 AnAc metabolites (AnAc 22:1n5 and AnAc 24:1n5 ) that not only 

confer pest resistance to plants but also have antibacterial, antifungal and 

anticancer properties36.  Fatty acid biosynthesis enzymes are required for 

common fatty acids as well as the UMFA biosynthesis and research in this area 

of plant biology suggests that UMFAs are products of primary metabolism that 

may require distinct isoforms of fatty acid biosynthesis enzymes for their 

synthesis4.  This is based on the identification of novel FAS genes like ACPs,  β-

keto acyl-ACP synthase (KASs), acyl-ACP thioesterase (TEs)  and acyl-ACP 

desaturases (AADs) that have specific roles in the production of UMFA in their 

native plants 9, 22, 23, 32, 33, 96.  Apart from Δ9 myristyl-ACP desaturase (MAD) no 

other genetic components involved in UMFA synthesis has not be identified and 

the biosynthetic pathway leading to anacardic acid has not yet been elucidated 

completely75.  Similarly, limited information is available on the influence of abiotic 

environmental factors (like light intensity, moisture, photoperiod, humidity, 

temperature and soil quality) on gene expression correlated with primary 

metabolism and derived specialized metabolite accumulation 97-102.  Changes in 

temperature affect the viscosity of trichome exudate containing ω5 AnAc 

metabolites which alters the lipid profile and bioactivity related to pest 

resistance97.  Thus temperature is an important abiotic factor that can be used to 

correlate changes in expression of genes suspected to be involved with AnAc 

and UMFA production and it can also be used for screening and identifying genes 

involved in UMFA and AnAc metabolism. 
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To study the biochemical pathway and identify the genetic components involved 

in production of UMFAs that result in AnAc 22:1n5 and AnAc 24:1n5 

accumulation a Pelargonium × hortorum (geranium) EST (expressed sequence 

tag) database was initially used to identify target fatty acid biosynthesis cDNA 

sequences.  To expand the identification of genetic factors and to assess the 

effect of temperature, a high throughput next-generation sequencing (NGS) 

Illumina platform was employed as  both a quantitative and a qualitative 

discovery approach103-106.  NGS provides deeper sequencing information and 

better quality as compared to EST database along with gene expression 

analysis.  This approach provided complete sequence information that was either 

missing or incomplete in the EST database and it provided the capacity to study 

the Pelargonium × hortorum transcriptome in the absence of a sequenced 

genome 103, 104, 107.  Fatty acid biosynthesis gene expression data was obtained 

for ACPs, KASs and FAT-As from the de novo RNA transcriptome and data were 

validated using qRT-PCR.  HPLC-DAD and GC-FID were used to quantify AnAc 

(22:1n5 and 24:1n5) and UMFAs (16:1Δ11 and 18:1Δ13) respectively in trichomes 

harvested from plants grown at defined temperatures.  Both genetic and 

biochemical outputs were used to assess the effect of temperature on UMFA and 

AnAC biosynthesis and were correlated with changes in gene expression to 

identify the novel genes involved in UMFA metabolism.  
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Material and Methods 

Plant Material 

Pelargonium × hortorum accession 88-51-10 was a kind gift of Dr. Richard Craig, 

The Pennsylvania State University.  The plants were vegetatively propagated 

and were grown in one-gallon pots containing MetroMix 360. Plants were 

maintained in environmental growth chambers at 18ºC, 23ºC and 28ºC with a 16-

hour photoperiod and photosynthetic photon flux = 250 µmol m-2 s-1. 

 

RNA isolation and metabolite extraction 

Flower pedicles were harvested into 50 ml conical tubes on ice and then flash 

frozen in liquid nitrogen and stored at -80ºC until used.  Trichomes were sheared 

from the surface of frozen pedicles from multiple tubes as described 57, 76.  

Trichomes from 2 x 50 ml conical tubes ( trichomes were suspended in DEPC 

water) were combined in one tube for RNA isolation and metabolite extraction 

whereas three intact bald pedicles obtained after shearing trichomes were used 

for a single RNA and metabolite extraction.  Both trichome and bald pedicle 

samples were treated with 800 µl of metabolite extraction buffer 

(methanol:chloroform:water (v/v/v) = 2.5:1:0.5) and centrifuged at 300 × g for 7 

min, 4°C.  After centrifugation, the supernatant was used for metabolite 

extraction in chloroform and the pellet was used for RNA extraction using Plant 

Spectrum total RNA extraction kit (Sigma-Aldrich) according to the manufacturers 

instructions (see, Appendix 3 for details).  Three biological replicates were 

obtained from both trichomes and bald pedicles at each treatment temperature 
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(18ºC, 23ºC, and 28ºC).  RNA quality and quantity was analyzed using both 

nanodrop and bioanalyzer.  RNA samples were DNase treated using Ambion 

Turbo DNA-Free TM kit (ThermoFisher).  One µg of RNA obtained from both 

tissues at all three temperatures were used  for cDNA synthesis using 

SuperScript® III First-Strand Synthesis System (Invitrogen).  cDNAs obtained 

were used for qRT-PCR (TaqMan or SYBR green assays).  Total RNA (5 µg) 

from 3 biological replicates of trichomes and bald pedicle at 18ºC and 23ºC (12 

samples total), was sent to the University of Louisville’s Center for Genetics in 

Molecular Medicine’s (CGeMM) sequencing core facility for preparation of RNA 

transcriptome.  Metabolites obtained in the chloroform extract were used for 

HPLC-DAD and GC-FID analysis. 

 

qRT-PCR analysis of expression 

SYBR green and TaqMan assays were conducted in VIIA7Tm Real-time PCR 

system from Applied Biosystems, software version 1.2.4. The default ABI   

PCR conditions were 50°C (2 minutes), 95°C (10 minutes), followed 95°C (15 

seconds) and 60°C (1 minute) for 40 cycles with temperature increment gradient 

as 1.6°C/s.  RNA extraction and cDNA synthesis was done as detailed above 

using gene specific primers designed for either SYBR green or TaqMan assays 

(see, Appendix 2, Table A2.4 and A2.5). 

SYBR Green Assay 

All-in-One™ qPCR Mix (GeneCopoeia), ROX reference dye at final concentration 

of 150 nM, 2 µl of 1:10 dilution of cDNA and 0.2 µM primers was used for the 
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assay. Primers were designed manually for each sequence of interest based on 

the sequence alignments of the candidate genes, using Oligonucleotide 

Properties Calculator. Each primer length ranged from 18-30 bases, GC content 

between 50-60%.  These primers were verified to have no self-annealing, 

complementarity or hairpin formation.  Amplicon length ranged between 150-300 

bp for various primer sets.  Each primer set was tested for specificity using 

standard end point PCR and qRT-PCR with plasmid preparations of each gene 

as a template (template dilutions ranging from 0.0001 ng to 10 ng).  Standard 

PCR results were viewed via Gel Electrophoresis and qRT-PCR results were 

analyzed based on cycle threshold values to verify primer specificity. 

TaqMan assay  
 
PCR reactions contained 2 µl of 1:10 dilution of cDNA added to 5 µl of TaqManR 

gene expression Master Mix (Life Technologies) along with 0.5 µl of gene 

expression assay (Life Technologies).  For each gene expression assay, primers 

and probe, the location was selected manually based on sequence alignment of 

candidate genes.  The selected regions were then incorporated into the program 

Primer Express™ (Perkin-Elmer, Applied Biosystems, USA) to verify the primer-

probe design and efficiency.  The 5' end of the probe had the fluorescent reporter 

dye, 6-carboxy-fluorescein (FAM) and the quencher 6-carboxy-tetramethyl-

rhodamine (TAMRA) was located at the 3' end of the probe.  Each assay was 

tested for specificity using qRT-PCR with plasmid preparations of each gene as a 

template (template dilutions ranging from 0.0001 ng to 10 ng). The qRT-PCR 

results were analyzed based on cycle threshold values to verify primer specificity.  
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HPLC analysis   

AnAc content from the metabolite samples was estimated based on standard 

curves generated using pure AnAc 22:1n5 and AnAc 24:1n5 at 0.1, 0.25, 0.5, 1 

and 10 mg/ml respectively (Appendix 3, Figure A3.1 and Figure A3.2).  

Metabolite samples obtained from trichomes at 18ºC, 23ºC, and 28ºC (3 biological 

replicates from each) were dried under nitrogen gas then reconstituted in 

hexanes to obtain 0.5 mg/ml and 1 mg/ml sample extracts for each biological 

replicates.  Each sample (20 µl) was injected in triplet technical replications for 

each biological replicate (1 biological replicate data = 3 technical replicates at 

each concentration).  HPLC analysis was accomplished using HP Agilent HPLC 

1100 series column at 2.5 mL/min flow rate, 20µl injection volume, a solvent 

system 50% A and 50% B (solvent A – acetonitrile/acetic acid; 99/1 and solvent 

B – methanol/acetic acid; 99/1).   

 

GC analysis 

Trichome metabolite extracts for three biological replicate samples from each 

temperature treatment  (18ºC, 23ºC and 28ºC) were dried under nitrogen gas.  

For quantitative analysis of fatty acid content, internal standard 

(triheptadecanoin) was added to the dried metabolite samples.  Fatty acid methyl 

esters were generated using 1 ml boron triflouride (10% in methanol) and 300 µl 

of toluene was added to increase solubility of lipids prior to heating for 45 

minutes at 90°C. Samples were cooled and quenched with 1 ml water prior to 
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hexane extractions (3 × 2 ml).  The pooled hexane extractions of each sample 

were concentrated under N2 (g).  Resulting fatty acid methyl esters were 

analyzed by gas chromatography (GC) with an Agilent 5890 GC-FID equipped 

with a 60 m, 0.25 mm, 0.2 µm CP-Sill88 column (Chrompack). The column was 

programmed with spiltless inlet at  250°C, 21.76 psi, 10.3 ml/ml flow rate of 

helium gas. The oven was set at an initial temperature of 150°C and ramped to 

250°C at a rate of 2°C /min. The FID detectors was set at 250°C with hydrogen 

flow rate of 3 ml/min, air flow rate of 400 ml/min.  Three technical replicates (1 µl 

/injection)  for each biological replicate were used for the analysis.  Authentic GC 

standards C8-C22 ( Sigma Aldrich, Appendix 3, Table A3.1) were used as a 

external analytical standard to identify peaks in the experimental samples.  Most 

peaks within the C8-C22 were further verified by comparison of retention times to 

other single of mixtures of standards.  Identification of sample peaks was further 

confirmed by spiking samples with authentic standards.  

 

RNA transcriptome 

The Truseq Stranded total RNA with Ribo Zero Plant (RS-122-2401) kit was used 

to prepare total RNA libraries from 700 ng total RNA.  Fragmentation of total 

RNA was performed at 94°C for 30 seconds instead of 5 minutes in order to 

optimize library size for larger fragments, which produced average fragment 

lengths of 400 bp.  Libraries were confirmed on the Agilent 2100 Bioanalyzer and 

quantitated using the Illumina Library Quantification Kit, ABI Prism qPCR Mix 

from Kapa Biosystems and the ABI7900HT real-time PCR instrument.  Two times 
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151 bp paired-end sequencing was performed with the 500 high-output v2 

(300cycle) sequencing kit on the Illumina NextSeq500 instrument. 

 

Bioinformatics Analysis 

Generation of de novo transcriptome and bioinformatics analysis was 

accomplished at the KBRIN Bioinformatics Core facility.  The CGeMM DNA Core 

used Illumina TruSeqLT chemistry with 151 paired-end reads and sequenced 

twelve samples (trichome 18°C, n=3;  bald pedicle 18°C,  n=3; trichome 23°C, 

n=3;  bald pedicle 23°C, n=3) using standard adapters.  

Adapter AGATCGGAAGAGCACACGTCTGAACTCCAGTCA 

AdapterRead2 AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT 

The resulting twelve samples were barcoded and identified. Sequences were run 

using the RNASeq protocol on the CGeMM Illumina NextSeq 500 platform105.  

Each replicate was sequenced with four lanes. A total 24 paired-end of RNA 

sequencing data (48 single files) was obtained and 96 paired-end raw 

sequencing files (.fastq) were downloaded from Illumina’s Basespace website 

onto the KBRIN server (kbrin.hsb.louisville.edu).  Each of the four lanes for each 

condition was concatenated together using the unix cat command.  Quality 

control (QC) of the raw sequence data was performed using FastQC (version 

0.10.1)108 and FastQC results indicated that all the mean quality scores per 

bases are above 20.  Therefore, it was determined that minor sequence trimming 

was not needed.  De novo transcripts were assembled using the Trinity software 

package for each of the four experimental samples using the custom 
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splitSamples.pl script109.  Given a large number of sequences for this project, the 

first step was to perform in silico read normalization for each of the partitions 

independently in order to reduce the number of reads used for de novo transcript 

assembly.  Following in silico read normalization for each partition, the resulting 

*.normalized_K25_C30_pctSD200.fq files were combined using the unix cat 

command into the files ALL_R1.fastq and ALL_R2.fastq.  The resulting in silico 

normalized reads results in 48,301,282 read pairs to be used for de novo 

transcript assembly that is roughly 10% of the original data.  De novo transcript 

assembly on the normalized reads was performed using Trinity version 2.1.182 

and a total of 486,398 transcript contigs (contigs are a group of overlapping DNA 

reads that have consensus sequences 77, 78) resulted. 

To assign a putative function to individual de novo transcripts, a database of non-

redundant plant proteins was constructed based on the NCBI nr database.  For 

this process, each of the files from the nr database (nr.*.tar.gz) was downloaded 

from the NCBI ftp site ftp://ftp.ncbi.nlm.nih.gov/blast/db.  These files were then 

unpacked into a directory, resulting in approximately 150 Gb data.  The genInfo 

identifier number (GI) accessions for plant proteins were downloaded from the 

NCBI protein database (http://www.ncbi.nlm.nih.gov/protein).  First the query (all 

[filter]) AND "green plants"[porgn:__txid33090] was used to return all green plant 

proteins (5,821,183 such sequences).  The GIs for each of these sequences 

were then downloaded using the “Send To” link with the options Destination “File” 

and Format “GI List”.  The resulting file was stored as sequence.gi.txt.  The NCBI 

blast executable was then downloaded from 
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ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.2.31/ncbi-blast-2.2.31+-

win64.exe and installed.  Then the downloaded nr database was filtered for only 

the GIs in the sequence.gi.txt using the custom script getPlantSequences.pl that 

takes 10,000 sequences at a time. A total of 583 plant_<num>.faa files resulted.  

These were then concatenated together into a single file ALLPLANTSEQ.faa.  

Many of the headers contain redundant headers for the exact same sequence.  

Therefore, redundant headers were removed using the custom script 

removeDuplicateHeaders.pl. Using the non-redundant ALLPLANTSEQ.faa, a 

blastable database was constructed.  The contigs resulting from Trinity were then 

compared against the database of known plant sequences into an XML output for 

use by blast2go110.   At the completion of the blastx step, a file of the 

concatenated xml output resulted which was then parsed using a custom perl 

script in order to reformat some of the xml lines so they could be appropriately 

parsed by blast2go. Blast2go basic v3.1.3 was then downloaded from the 

blast2go website https://www.blast2go.com.  The raw fasta file 

Trinity_UPDATED_CTGNAMES_part0-48.fasta was uploaded into blast2go in 

order to add annotations under the start followed by load sequences and menu.  

Annotations from the file tp0-48_PARSED.xml were added to the blast2go 

project using the File followed by Load and Load Blast Results.  Sequences and 

annotations of sequences were then exported as fasta files within blast2go using 

the File followed by Export and Export as FASTA option with the default 

parameters set.  Using the newly obtained reference contigs with added 

annotations as a guide, the original fastq reads for each of the twelve samples 
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were aligned to the reference contigs for further differential gene expression 

analysis using the Trinity pipeline as described in 

http://trinityrnaseq.sourceforge.net/analysis/diff_expression_analysis.html.  The 

first step in the process was the alignment process using bowtie2111.   A custom 

perl script getGeneCounts.pl was created to run this process for each sample, 

which creates a directory for each sample. 

To perform differential gene expression analysis, a gene matrix file was created 

where the first column represents each gene (contigs in this case) and each row 

represents the counts for each gene in each of the twelve conditions.  A custom 

script createExpressionMatrices.pl was constructed to handle matrix construction 

using the Trinity script.  Differential gene expression was run using a custom perl 

script getDEGs.pl which uses edgeR as the method for differential gene 

expression112. Differentially expressed genes for each of five comparisons were 

parsed according to an FDR cutoff of 0.05 and a |logFC| ≥ 1.  The top 10 

differentially expressed genes from each comparison, as ranked by lowest FDR 

value, were extracted. Further analysis of the contigs was performed to 

determine their properties, similar to the analysis performed and described in Y. 

Li et. al., 2015 and M. Salem et. al., 2015 113, 114. 

To assign Gene Ontology terms to each contig, the blast results were parsed 

according to the matching GI115.  The GIs were converted to UniProt release 

2015_12 identifiers using the file idmapping.dat.example obtained from 

ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmap

ping/idmapping.dat.gz116.  After downloading the UniProt mappings, the resulting 
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file was parsed to only contain lines with a matching GenInfo Identifier (GI) using 

the parseUniprotFile.pl custom perl script resulting in the file uniprot2GI.dat.  The 

resulting xml file from the blast results was parsed, and each GI for the top 20 

hits to each contig was converted to a UniProt identifier (if applicable) using the 

file created and a custom perl script parseUniprotFile.pl.  The resulting UniProt 

identifiers were then associated with each of the respective annotated Gene 

Ontologies using the association file download 

ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/UNIPROT/gene_association.goa_unipr

ot.gz117.  A number of identifier association files were created using the 

UNIPROT and GO information, including Contigs2GO.dat which associates each 

of the reference contigs with its GO ids and Contigs2UniProt.dat which 

associates each of the reference contigs with its UniProt IDs.  Using the list of 

differentially expressed genes, a list of associated GO identifiers for each 

differentially expressed gene was created using the perl script 

createDEG_GO_Tables.pl.  For each of the five comparisons, three files result, 

one for all differentially expressed genes; one for up-regulated DEGs, and one 

for down-regulated DEGs.  A custom R script FindGOEnrichments.R was created 

which uses the Bioconductor package GOstats to find enriched GO categories 

for all comparisons118, 119. There are three files for each comparison, one for 

biological process (BP), one for molecular function (MF) and one for cellular 

component (CC).   

A blast database of the contigs was created and known nucleotide sequences for 

Pelargonium × hortorum were downloaded from the NCBI nucleotide database 
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resulting in 194 sequences.  The “Send To/ File/Format FASTA” link was 

selected with a size range of 0 to 100,000 bp in order to remove the complete 

chloroplast genome.  The known sequences (stored in the file 

NCBIsequences.fasta) were blasted against the database and 187 of the 194 

known sequences from NCBI had matches to the assembled contigs, in most 

cases, with matching inferred annotations.  Of the seven that did not match, four 

are microsatellite DNA sequences, which should not be matched since they are 

not transcribed, while three are transcribed mRNAs.  This indicates that the 

assembly and annotation are rather robust, matching 187/190 known mRNAs 

(98.4%).  

 

Identification of Target sequences from RNA seq Database 

For identification of target sequences, ACPs, KASs, TEs, PKSs (polyketide 

synthase), and KCSs (keto-acylCoA synthase) from the de novo RNA seq 

database, ncbi_blast_2.3.0+(1).dmg program was downloaded from the National 

Center for Biotechnology Information (NCBI) website. All of the ESTs sequences 

were saved individually as .fa files.  Each .fa file was ran against 486,398 contigs 

(obtained from Bioinformatics Core) using R search script (python operator 

2.7.11), Linux commands (Terminal Mac OS X program) and downloaded blast 

program. The output generated a list of contigs that match the sequence of 

interest; these contigs were then incorporated into the Vector NTI express 

(version 1.1.5) contig assembly program.  Based on contig alignment and 99-

100% sequence similarity, the sequence of interest was identified from the RNA 
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seq database.  This method helped in identification and verification of the EST 

sequences and the identification of additional isoforms/paralogs of the fatty acid 

biosynthesis genes missing from the EST database. 

 

Venn Diagrams and Heatmaps 

Pratek Genomics suite 6.6 was used to generate Venn Diagrams and Heatmaps. 

Program Settings for Venn Diagram, read count was set to  > 0 in at least 1 

condition (trichome 18°C, bald pedicle 18°C, trichome 23°C and bald pedicle 

23°C).  Heatmaps were generated using hierarchical clustering based on 

Euclidean distance as the similarity measure for genes of interest and gene’s 

associated with GOID: 0006631. 

 

Statistical Analysis 

Data for qRT-PCR were analyzed using paired t-tests to compare the null 

hypothesis of a 1:1 expression of trichome to bald pedicle ratio.  One-way 

ANOVA with Tukey's multiple comparisons and correction test was used to 

compare gene-to-gene expression levels.  All of the remaining analyses were 

done with R version 3.1.1(2014-07010).  Mixed model analyses were done with 

the lmer function of the lme4 package120, 121.  Technical replicate effects were 

modeled as random and nested within each Treatment*(biological replicate) 

combination.  The biological replicate value was modeled as a random effect and 

crossed with the fixed treatment effects.  Model residuals were found in all cases 

to satisfy the assumptions of normality and homogeneity of variance.  Tukeys 
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multiple comparison contrasts were estimated and tested with the glht function in 

the multcomp package of R with the single step method used for adjusting p-

values122.  False discovery rate p-values (FDRp) were computed with the 

p.adjust function of R. Correlation analysis was performed with the cor.test 

function of R.  Q-values were computed with the qvalue function of the 

bioconductor package using the default settings123-126.  

 

Results and Discussion 

Differential expression analysis from the de novo transcriptome assembly 

The de novo RNA transcriptome generated for Pelargonium × hortorum resulted 

in a total of 486,398 transcript contigs.  Normalized read counts for each contig 

(greater than 0) were not equally distributed in four physiological conditions used 

to generate the database (Figure 3.1).  Common sets of genes representing 49% 

of the total identified were found in all samples (tissue and temperature 

treatments) (Figure 3.1). Overall analysis of the differentially expressed genes 

(DEGs) showed 58-59% of genes are up-regulated at 23°C compared to 18°C in 

both trichomes and bald pedicles, indicating an overall temperature effect.  

Trichome genes (51-52%) were up-regulated compared to bald pedicle at both 

temperatures, indicating tissue effect (Table 3.1).  

The top 10 DEGs  identified in the RNA-SEQ database revealed an up-regulation 

of fatty acid desaturase (FAD) in trichome tissue at 23°C as compared to 

trichome tissue at 18°C and up-regulation of stearoyl-ACP desaturase (SAD), 

acyl-ACP thioesterase (TE) and 2 acyl-ACP reductases in trichomes as 
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compared to bald pedicle at 18°C (Table 3.2).  Interestingly, none of the up-

regulated FAD, SAD, TE or acyl-ACP reductases aligned with EST database 

sequences, indicating that these fatty acid genes are new isoforms or paralogs of 

fatty acid biosynthesis genes that were not identified in the EST database.  

These genes are strong candidates for studying temperature and tissue effect 

because they rank in top the 10 categories of up-regulated genes as compared 

to a total of 348 up-regulated genes in trichome 23°C versus trichome 18°C and 

9399 up-regulated genes at trichome 18°C versus bald pedicle 18°C (Table 3.1).  

No fatty acid biosynthesis genes were identified in top 10 of the down-regulated 

genes (3 different comparisons) or up-regulated at trichome 23°C versus bald 

pedicle 23°C (Table 3.2).  In order to evaluate  differential expression for specific 

fatty acid biosynthesis genes (genes of interest), they need to be extracted from 

the RNA database for further analysis.  

 
Figure 3.1.Venn diagram for the de novo RNA transcriptome  
distributed in each tissue and temperature treatment.  Normalized 
read count was set to > 0 for each condition.  The number of contigs in  
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a given condition is in parentheses.  
Table 3.1. Differentially expressed genes (DEGs) of Pelargonium × hortorum de 
novo RNA transcriptome.  

 
 
 
 
Table 3.2. Top 10 Differentially expressed genes of Pelargonium × hortorum de 
novo RNA transcriptome.  

 
 

Comparsions Number of DEGs Number up regulated Number down regulated

Trichome 23°C vs. Trichome 18°C 605 348 257

Bald pedicle 23°C vs. Bald Pedicle 18°C 445 260 185

Trichome 18°C vs. Bald Pedicle 18°C 18257 9399 8858

Trichome 23°C vs. Bald Pedicle 23°C 28274 14662 13612

Comparison Gene Description ( top 10 up regulated genes) Gene Description ( top 10 down regulated genes)

Ribosomal protein s14 vacuolar-sorting receptor 6-like

Kda class i heat shock Uncharacterized protein isoform 1

Orf114a gene product 26s protease regulatory subunit 8 homolog a

Cucumisin-like hypothetical chloroplast rf2

cyclopropane-fatty-acyl-phospholipid synthase phosphatidylinositol phosphatidylcholine transfer protein sfh9

bag family molecular chaperone regulator 6 family transposase isoform 2

fatty acid desaturase chloroplastic exocyst complex component sec10

probable anion transporter 5 serine carboxypeptidase-like

non-functional nadph-dependent codeinone reductase 2-like 19-like isoform 1

hypothetical protein CICLE_v10032920mg NA

cytochrome p450 82c4-like atp synthase cf1 alpha subunit

acyl-acp thioesterase ribosomal protein s14

probable 1-deoxy-d-xylulose-5-phosphate synthase chloroplastic photosystem ii cp47 chlorophyll apoprotein

retrotransposon ty1-copia sub-class glycosyl hydrolase superfamily protein isoform 1

7-deoxyloganetin glucosyltransferase-like cytochrome p450 82c4-like

fatty acyl- reductase 2 hypothetical protein

hypothetical protein POPTR_0001s35870g remorin-like isoform x1

ribosomal protein s12 Unknown

fatty acyl- reductase 3 calcium-binding ef-hand family

stearoyl acp desaturase 2 NA

cytochrome p450 82c4-like atp synthase cf1 alpha subunit

probable 1-deoxy-d-xylulose-5-phosphate synthase chloroplastic photosystem ii cp47 chlorophyll apoprotein

enoyl reductase calcium-binding ef-hand family

hypothetical protein POPTR_0001s35870g cytochrome p450 82c4-like

retrotransposon ty1-copia sub-class membrane family protein

cytochrome p450 remorin-like isoform x1

hypothetical chloroplast rf19 photosystem ii cp43 partial

zinc finger ccch domain-containing protein 20-like probable 1-deoxy-d-xylulose-5-phosphate synthase chloroplastic

non-ltr retroelement reverse transcriptase dna glycosylase superfamily protein isoform 1

(-)-germacrene d synthase-like hypothetical protein

Trichome ( 23°C vs. 18°C)

18°C (Trichome  vs. Bald Pedicle) 

23°C (Trichome  vs. Bald Pedicle)
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Sequences encoding isforms of ACP, KAS, FAT, MAD, PKS and KCS identified 

in the EST database were identified in the RNA-seq database using the 

bioinformatics steps outlined in material and methods.  The distribution of 

normalized read counts showed that most of the genes of interest were highly 

expressed in trichomes compared to bald pedicle with exception of FAT-B2, FAT-

B3, and KAS II (Figure 3.2 and Table 3.3). Complete sequences of FAT-B2, FAT-

B3, KAS II and KAS Id that were incomplete in the EST database were obtained 

from RNA-Seq database (Appendix 6, Table A6.1). Due to the lack of reference 

genome, a gene with multiple variants or incomplete duplicates with few base 

pair errors are included in the heat map (Figure 3.2). Only complete contigs 

representing the genes of interest are considered for differential expression 

analysis (Table 3.3).  There was an insignificant trend for an increase in fold 

change at 23°C as compared to 18°C for all the genes except KAS II and PKS I 

that showed an insignificant trend for decrease in fold change at 23°C as 

compared to 18°C  (Table 3.3).  The expression levels of these genes require 

validation via quantitative real-time PCR (qRT-PCR), which is more sensitive 

technique and targets the expression of specific gene127, 128.  Additionally, de 

novo transcriptome assembly can have low statistical power for the less 

abundant genes (genes that are not highly expressed) and their changes in 

expression thus need to be validated by qRT-PCR 106, 127, 128.  KAS III and FAT-

A3 genes identified in the EST database were not detected in the RNA 

transcriptome.  A possible explanation for this may be lower abundance of these 
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genes and de novo transcriptome has detection constraints in identifying low 

abundant genes129.  

 
Figure 3.2.Heat map for genes of interests based on normalized read counts  
(RNA-Seq). Columns correspond to trichome 18°C, trichome 23°C, bald  
pedicle 18°C and bald pedicle 23°C.  Each lane in the column corresponds  
to a biological replicate (3 replicates per sample).  Each row corresponds to the  
gene of interest. Green to red indicates a continuum of high to low expression. 
The dendrograms on top and to the right were obtained via hierarchical  
clustering of a pair-wise Euclidean distance matrix.  Genes, acyl carrier protein  
(ACP), β ketoacyl-ACP synthase (KAS), fatty acid acyl-ACP thioesterase (FAT),  
Δ9 Myristoyl ACP desaturase (MAD), polyketide synthase (PKS) and 
3-Ketoacyl-CoA Synthase (KCS).  
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Table 3.3. Fold change and FDR p values for genes of interest (RNA-seq)  

 
Genes of Interest (from the EST database) that were identified in RNA-seq database, 
base pair (bp) length, fold changes and false discovery rate (FDR) p-values for each 
comparisons, trichome versus bald pedicle at 18°C, trichome versus bald pedicle at 
23°C, trichome 23°C versus trichome 18°C. Bold Highlight - Complete sequence 
information obtained for sequences that were incomplete in the EST database. 
 

Identification of EST database genes from the RNA-SEQ transcriptome led to 

identification of additional variants of fatty acid biosynthesis genes, 3 FAT-As ,  

4 FAT-Bs, 2 KAS Is, 1PKS and 3 KCSs sequences (Table 3.4).  With de novo 

transcriptome assembly it is difficult to predict if these distinct sequences are 

isoforms or paralogs due to absence of reference genome for geranium.  Thus, 

Fold Change FDR Fold Change FDR Fold Change FDR

MAD_CTG0165429 1271 YES 5.90 3.43E-18 6.17 1.61E-18 0.15 1

ACP 1_CTG0365343 640 YES 2.88 2.40E-07 3.05 1.34E-12 0.28 1

ACP 2_CTG0430310     745 YES 3.93 1.23E-11 4.31 1.10E-18 0.02 1

FAT-A1_CTG0325235c 1682 YES 2.17 3.00E-03 2.56 1.05E-07 0.19 1

FAT-A2_CTG0077169 1599 810/1599 5.66 1.02E-18 6.05 2.90E-19 0.47 1

FAT-A3 1596 Not found NA NA NA NA NA NA

FAT-B1_CTG0451844 1376 YES 6.37 4.08E-16 6.60 4.17E-26 0.61 1

FAT-B2_CTG0255388 1327 YES 0.44 1.00 0.89 0.33 0.58 1

FAT-B3_CTG0255378 1977 YES 0.58 0.89 0.96 0.13 0.56 1

KAS Ia_CTG0236648 1905 312/1905 5.47 9.89E-19 6.18 2.91E-28 -0.01 1

KAS Ib_CTG0236657 1871 YES 5.45 1.38E-13 6.21 1.34E-26 0.04 1

KAS Ic_CTG0223573 1645 YES 4.10 4.01E-10 4.57 3.37E-19 0.29 1

KAS Id_CTG0236655_502038 YES 5.71 2.01E-18 6.27 4.01E-23 0.05 1

KAS II_CTG0403227 2348 YES 6.75 0.1 0.56 1 -1.34 1

KAS III 1753 Not Found NA NA NA NA NA NA

PKS 1_CTG0129244 1406 302/1406 2.25 1.77E-04 1.72 1.10E-04 -0.17 1

PKS 2_CTG0129269 1399 YES 2.43 3.00E-05 2.76 3.23E-10 0.32 1

KCS 1_CTG0072674 1843 YES 2.84 1.40E-05 3.45 1.12E-16 0.42 1

KCS 2_CTG0409404 1546 YES 5.91 1.56E-18 6.05 2.59E-17 0.01 1

KCS 3_CTG0150219 1775 YES 3.47 1.37E-06 4.36 7.70E-20 0.44 1

KCS 4_CTG0222066 1419 YES 2.99 7.72E-06 3.47 4.41E-13 0.52 1

KCS 5_CTG0237072 1401 YES 5.02 6.01E-14 5.44 1.06E-25 0.34 1

Trichome vs. Bald Pedicle 18°C Trichome vs. Bald Pedicle 23°C Trichome 23C° vs. Trichome 18°C

Gene Identified CompleteLength (bp)
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these sequences are indicated only as gene variants in this study82, 106, 109, 130-132.  

Most of these genes were highly expressed in trichomes at both temperatures. 

FAT-A4 shows a significant increase in expression at 23°C (FDR=0.01) whereas 

other genes show insignificant trends for trichome 23°C versus trichome 18°C 

comparison (Table 3.4).  

 

Table 3.4. Fold change and FDR p-values for fatty acid biosynthesis genes  
variants (RNA-Seq). 

 
New gene variants identified, sequence length, fold changes and FDR p-values for 
comparisons of trichome versus bald pedicle at 18°C, trichome versus bald pedicle at 
23°C and trichome 23°C versus 18°C. Significant FDR p-value for trichome 23°C versus 
trichome 18°C comparison indicated in bold.  
 
 

 

Fold Change FDR Fold Change FDR Fold Change FDR

FAT-A4_CTG0380018 3596 3.75 4.06E-07 5.66 9.65E-25 1.77 0.01

FAT-A5_CTG0380020 3632 14.69 1.05E-38 13.63 4.96E-38 -1.27 0.52

FAT-A6_CTG0077168 1376 5.08 3.74E-07 6.46 4.88E-27 0.15 1

FAT-A7_CTG0380021 2288 6.03 1.69E-19 6.21 3.31E-20 0.43 1

FAT-B4_CTG0255373 2605 1.57 0.812 2.33 0.017 0.13 1

FAT-B5_CTG0451842 3658 7.39 2.67E-12 8.38 3.97-13 0.38 1

FAT-B6_CTG0388939 1824 7.07 1.40E-20 6.70 3.21E-10 -1.51 0.18

FAT-B7_CTG0255372 1308 -1.79 0.88 1.84 0.63 1.41 1

KAS Ie_CTG0236652 1255 5.89 3.72E-19 6.11 1.18E-25 -0.15 1

KAS If_CTG0209438_3 2632
0.05 1 0.20 0.95 0.02 1

KAS II(Variant1)_CTG0178043_3 1277
4.68 0.42 0.68 0.98 0.55 1

KAS II(Variant2)_CTG0178069 1842 0.99 0.71
1.36 0.21 0.04 1

KAS II(variant3)_CTG0403242 2348 7.27 0.21 -4.40 0.71 -7.52 0.92

PKS 3_CTG0129267 2813 2.22 1.00E-03 2.21 1.20E-05 0.03 1

KSC 6_CTG0072671 2392 3.40 5.36E-03 2.74 7.50E-05 0.23 1

KCS 7_CTG0072674 1956 2.84 1.30E-05 3.45 1.11E-16 0.42 1

KCS 8_CTG0129477 1484 4.96 8.53E-14 5.43 2.10E-24 0.27 1

Trichome 23C° vs. Trichome 18°C

Gene Identified  Length(bp)

Trichome vs. Bald Pedicle 18°C Trichome vs. Bald Pedicle 23°C
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A total of 471 genes were identified from the RNA-seq database using Gene 

ontology ID: 0006631 associated with metabolic process (Figure 3.3). Unlike the 

heatmap for selected EST genes, this heat map reports genes that are highly 

expressed not only in trichomes but also in bald pedicle and it also shows 

temperature effect for few genes (Figure 3.3).  Normalized read counts for each 

contig (greater than 0) were not equally distributed in the four samples, (two 

tissues, two temperature treatments) used to generate the database (Figure 3.4).  

 

In all four samples 60% (281/471) of the genes were present whereas the 

remaining genes were found only in a specific tissue type or at specific 

temperatures combinations.  Genes that were only present in trichomes at both 

temperatures (35/471) were selected for further evaluation and their identity 

(annotation) was determined based on BLASTX search engine version 2.5.1+ 

(Table 3.5). 

 

The differential analysis of these genes did not show an effect of temperature 

(FDR=1). Nevertheless, 6 different variants of fatty acid hydroxylase (used in 

synthesis of unusual hydroxy fatty acids in some plants)133 and 2 variants of KAS 

I were identified (Table 3.5).  
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Figure3.3. Heatmap for genes with gene ontology ID: GO:0006631 associated with  
fatty acid metabolic processes. The heatmap is based on normalized read counts.  
Columns correspond to trichome 18°C, trichome 23°C, bald pedicle18°C, bald pedicle 
23°C. Each lane in the column corresponds to a biological replicate (3 replicates per  
sample).  Each row corresponds to a gene. Green to Red indicates a continuum of high to 
low expression. The dendrograms on top and to the right were obtained via hierarchical  
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clustering of a pair-wise Euclidean distance matrix.   

Figure 3.4. Venn diagram for RNA contigs within gene ontology ID: GO:0006631 
associated with fatty acid metabolic processes.  The numbers indicates contigs 
that are common between all samples (trichome at 18°C, trichome at 23°C, bald 
pedicle at 18°C and bald pedicle at 23°C), numbers indicating overlapping areas 
between the samples and numbers unique to a sample.  Normalized Read count 
is set to > 0 for each condition.  The number of contigs in a given sample is in 
parentheses. 
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Table 3.5.  Identity of 35 genes associated with fatty acid metabolic processes 
(ID:GO:0006631) found exclusively in trichomes at both temperatures. 

 
BlastX 2.5.1+ output (% Identity with other plant species).  

Fold Change FDR

CTG0013871 stearoyl-[ACP] 9-desaturase, chloroplastic 88% Solanum tuberosum 0.07 1

CTG0022266 stearoyl-ACP-desaturase 87% Theobroma cacao 0.50 1

CTG0038053 GNS1/SUR4 membrane protein 76% Cynara cardunculus var. scolymus 1.60 1

CTG0129631 Acyl-[ACP] desaturase 92% Gossypium arboreum 0.03 1

CTG0133638 3-oxoacyl-[ACP] synthase I 83% Triticum urartu 0.09 1

CTG0157307 stearoyl-ACP 9-desaturase 6 86% Ricinus communis 0.76 1

CTG0157309 Fatty acid desaturase, type 2 87% Cynara cardunculus var. scolymus 0.18 1

CTG0158156 Chloroplast J-like domain 1 68% Theobroma cacao -0.01 1

CTG0171331 Fatty acid hydroxylase 1 isoform 2 81% Theobroma cacao 0.92 1

CTG0171333 Fatty acid hydroxylase 1 isoform 2 62% Theobroma cacao -0.01 1

CTG0171335 AMP-binding, conserved site-containing protein 72% Cynara cardunculus var. scolymus 1.86 1

CTG0184753 AMP-binding, conserved site-containing protein 72% Cynara cardunculus var. scolymus -1.79 1

CTG0231144 stearoyl ACP desaturase 02 96% Pistacia chinensis 0.04 1

CTG0236653 beta-ketoacyl-[ACP] synthase I 93% Arabidopsis thaliana 0.60 1

CTG0236668 beta-ketoacyl-[ACP] synthase I 91% Arabidopsis thaliana -1.41 1

CTG0254781 stearoyl acyl carrier protein desaturase 62% Cocos nucifera 0.10 1

CTG0254795 myristyl-ACP desaturase 70% Pelargonium × hortorum 0.20 1

CTG0262387 acyl-CoA oxidase family protein 72% Populus trichocarpa -0.06 1

CTG0262392 acyl-CoA oxidase ACX3 66% Arabidopsis thaliana -0.06 1

CTG0262395 acyl-CoA oxidase 3 74% Prunus persica -0.47 1

CTG0262402 acyl-CoA oxidase 3 77% Prunus persica -0.21 1

CTG0262409 acyl-CoA oxidase family protein 79% Populus trichocarpa -0.10 1

CTG0262414 acyl-CoA oxidase, putative 82% Ricinus communis -0.49 1

CTG0262415 acyl-CoA oxidase 3 83% Prunus persica -0.09 1

CTG0273427 Fatty acid 2-hydroxylase 46% Zostera marina -0.18 1

CTG0285223 Fatty acid 2-hydroxylase 70% Glycine soja 0.80 1

CTG0285224 Fatty acid 2-hydroxylase 70% Glycine soja -0.31 1

CTG0285225 fatty acid 2-hydroxylase 2-like 76% Dorcoceras hygrometricum 1.28 1

CTG0295821 3-oxoacyl-[acyl-carrier-protein] synthase, KASI 100% Escherichia coli IS5 -1.82 1

CTG0376554 Stearoyl-ACP Desaturase 72% Salvia miltiorrhiza -0.50 1

CTG0397211 myristyl-ACP desaturase 91% Pelargonium × hortorum 1.55 1

CTG0405943 Acyl-ACP thioesterase 72% Helianthus annuus 1.05 1

CTG0430616 myristyl-ACP desaturase 73% Pelargonium × hortorum -0.08 1

CTG0442248 acyl-CoA oxidase family protein 79%  Populus trichocarpa 0.24 1

CTG0465399 beta-ketoacyl-[acyl carrier protein] synthase I 92% Arabidopsis thaliana -0.64 1

Trichome (23C° vs. 18°C)

Sequence # Blast X results for gene identiy % Match Plant
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Effect of temperature on gene expression, anacardic acid production, and 

UMFA biosynthesis. 

 

SYBR green and TaqMan assays were used to study gene expression of ACPs, 

KASs and FAT-As as described in Chapter 2. The assays were repeated for 

three different temperatures 18°C, 23°C and 28°C.  Temperature did not affect 

the higher expression for any of the tested genes (MAD, ACP 1, ACP 2, FAT-A1, 

FAT-A2, KAS I-a/b, KAS I-d and KAS III) in trichomes compared to bald pedicle 

(Figure 3.5). This observation indicates that trichome specificity is unaffecetd by 

temperature.  Within the trichome samples, expression of ACP 2 was significantly 

higher than ACP 1 at all temperatures.  This further suggests the potential of 

ACP 2 as a novel ACP paralog involved in UMFA synthesis (Figure 3.6). Both 

ACP 1 and ACP 2 showed a significantly lower expression at 28°C as compared 

to 18°C and 23°C while their expression levels was not significantly different at 

18°C and 23°C (Figure 3.6, Table 3.5).  

 

Trichome expression of FAT-A2 was significantly higher than FAT-A1 only at 

28°C, whereas expression level remained the same at 18°C and 23°C (Figure 

3.6).  Overall expression of FAT-A1 was not affected by the temperature whereas 

FAT-A2 showed significant increase in expression at 28°C compared to 18°C 

and 23°C (Figure 3.6, Table 3.5).  
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Trichome expression of KAS I-a/b was significantly higher than KAS I-c and KAS 

III at all temperatures further suggesting the potential of KAS I-a/b as a novel 

KAS paralog potentially involved in UMFA synthesis (Figure 3.6). Both KAS I-a/b 

and KAS Ic showed a significant decrease in expression at 28°C as compared to 

18°C and 23°C whereas KAS III expression was not affected by temperature 

(Figure 3.6, Table 3.5).  Expression levels of all the KASs in this study were not 

significantly different at 18°C compared to 23°C (Figure 3.6, Table 3.5).  Overall 

results suggested that temperature affects the expression of ACPs, KASs and 

TEs.  To identify specific fatty acid genes involved in UMFA synthesis, respective 

expressions patterns at distinct temperatures should be correlated with changes 

in production of UMFAs and AnAc.  
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Figure 3.5. Relative expression of selected genes in trichome compared to bald pedicle at 18°C, 
23°C and 28°C. MAD (Δ9 myristyl ACP desaturase), SAD (Δ9 stearoyl-ACP desaturase) and ω3 
(omega-3 desaturase) were used as controls in both assays.  TaqMan assay was used for ACPs 
(acyl carrier proteins) and FAT-As (fatty acid thioesterase).  SYBR green assay was used for KAS 
(β-ketoacyl-ACPsynthase).  Y-axis shows average fold change values.  Based on 1:1 expression 
of trichome to bald pedicle, fold change values above 1 suggests higher expression in trichomes 
and below 1 suggest higher expression in bald pedicle. Bars represent the standard error of 
means and the means are provided at end of each bar.  p-values of the t-test are shown for each 
gene, asterisk before p-value indicates significantly different expression from 1:1 ratio. 
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Figure 3.6. Comparison of expression between selected fatty acid biosynthesis genes 
in trichome tissues at 18°C, 23°C and 28°C.  ACPs (Acyl carrier proteins), FAT-As(fatty acid  
acyl-ACP thioesterase) and KAS (β-ketoacyl-ACP synthase).  Y-axis shows the average  
delta cycle threshold (Ct) values. Bars represent the standard error of means and the means  
arerepresented by black numerals at end of each bar. The p-values (corrected for multiple  
comparisons) in the tables next to graph show comparison between two genes. Values  
<0.05 are highly significant.  Lower delta Ct values indicate higher expression. 
 
 

-2.32 
 

-2.41 
 

-1.88 
 

-4.44 
 -4.50 

 

-3.09 
 

-7 

-5 

-3 

-1 

1 

3 

5 

7 

Tr
ic

ho
m

e 
E

xp
re

ss
io

n 
(Δ

C
t v

al
ue

) 

ACP1 

ACP2 

3.24 
3.60 

 
 

3.55 
 

3.93 3.70 
2.73 

 

-7 

-5 

-3 

-1 

1 

3 

5 

7 

Tr
ic

ho
m

e 
E

xp
re

ss
io

n 
(Δ

C
t v

al
ue

) 

FAT-A1 

FAT-A2 

-3.68 -3.35 
-2.24 

3.47 3.89 

6.03 

-2.55 

-1.19 
-0.71 

-7 

-5 

-3 

-1 

1 

3 

5 

7 

Tr
ic

ho
m

e 
E

xp
re

ss
io

n 
(Δ

C
t v

al
ue

) 

KASIa/b 

KASIII 

KASI-c 

18°C 23°C 28°C 

A

B

C

18°C 23°C 28°C 

18°C 23°C 28°C 

Comparison 18°C 23°C 28°C
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Comparison 18°C 23°C 28°C
FAT-A1 vs. FAT A2 0.27 0.6 0.0009
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Comparison 18°C 23°C 28°C
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KAS Ic vs. KAS III <0.01 <0.01 <0.01
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Table 3.6. FDR p-values for testing effect of temperature on target genes. 

  
p-values <0.05 are highly significant 
 
 
Within the trichomes the amount of AnAc 24:1n5 was significantly higher than 

AnAc 22:1n5 at all temperatures (Figure 3.7) and amount of 16:1Δ11 was 

significantly higher than 18:1Δ13 at all temperatures (Figure 3.8).  Even though 

content of 16:1Δ11   is greater than 18:1Δ13  more AnAc 24:1n5 was accumulated 

indicating a possibility of substrate preference for 18:1Δ13 by the downstream 

enzymes for production of AnAc 24:1n5. Furthermore, ratios of UMFAs (18:1Δ13 

to 16:1Δ11) showed insignificant trend for an increase at 23°C and a decrease at 

28°C whereas ratios of AnAc (24:1n5 to 22:1n5) showed insignificant trend for an 

increase at 23°C and significant trend for a increase at 28° (Figure 3.9).  

 

AnAc congeners and their respective substrate UMFA’s showed significant 

higher production at 23°C compared to 18°C and 28°C and a significant 

Genes  Assay Temperature Effect 18°C vs. 23°C 18C° vs. 28°C 23°C vs. 28°C
MAD Taq-Man 0.37 0.60 1.00 0.55
SAD Taq-Man 6.00E-03 0.84 0.04 0.05
ω3 Taq-Man 4.00E-04 0.83 0.05 0.02
ACP 1 Taq-Man 6.00E-04 0.86 0.08 0.03
ACP 2 Taq-Man 3.00E-04 0.98 0.03 0.02

FAT-A1 Taq-Man 0.16 0.28 0.37 0.97

FAT-A2 Taq-Man 4.00E-03 0.76 0.03 0.04

MAD SYBR Green 6.00E-04 0.31 0.03 0.12

SAD SYBR Green 3.00E-04 0.92 0.02 0.02

ω3 SYBR Green 2.00E-04 0.89 0.03 0.01

KAS Ia/b SYBR Green 2.-0E05 0.32 3.00E-05 6.00E-04

KAS Ic SYBR Green 1.05E-06 0.06 1.79E-06 5.26E-06

KAS III SYBR Green 0.04 0.21 0.10 0.74

FDR-pvalues
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decrease in production at 28°C  compared to 18°C and 23°C (Figure 3.7 and 

Figure 3.8). This suggests that 23°C is the optimal temperature for production of 

UMFAs and AnAc as compared to 18°C and 28°C and  higher temperature 

negatively affects the production of both UMFAs and AnAc.  

 
Figure 3.7. Production of n5 anacardic acids at 18°C, 23°C and 28°C.  (A) HPLC 
analysis of anacardic acid (22:1n5 and 24:1n5) production at distinct 
temperatures.  
(B) FDR p-values for temperature effects and individual comparisons between  
all three temperatures and p-value comparison for 22:1n5 versus 24:1n5 .  p-
values <0.05 are highly significant.  
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Figure 3.7. Production of UMFAs at 18°C, 23°C and 28°C.  (A) GC analysis of 
UMFAs (16:1Δ11and 18:1Δ13) production at distinct temperatures.  (B) FDR p-
values for temperature effects and individual comparisons between all three 
temperatures and p-value comparison for UMFAs 16:1Δ11and 18:1Δ13.  p-values 
<0.05 are highly significant.  
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Figure 3.9. Ratios of n5 AnAc and UMFAs at 18°C, 23°C and 28°C. (A) Ratios of 
AnAc 24:1n5 to 22:1n5, (B) Ratios of UMFAs 18:1Δ13 to 16:1Δ11 and (C) p-values 
for individual ratio of AnAc and UMFA comparisons between all three 
temperatures.  p-values <0.05 are highly significant. 
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(Figures 3.11 and 3.12).  This suggests that both ACPs may be potentially 

involved in UMFA synthesis.  

 

Deceread expression levels from 23°C to 28°C of KAS I-a/b shows a marginally 

significant correlation and KAS Ic shows a significant correlation with both AnAc 

(22:1n5, 24:1n5) and UMFAs (16:1Δ11,18:1Δ13), (Figures 3.13 and 3.14).  The 

decreased expression level from 18°C to 23°C for both KAS I-a/b and KAS I-c 

was not significant and this change cannot be correlated with levels of both AnAc 

(22:1n5, 24:1n5) and UMFAs (16:1Δ11,18:1Δ13) at those temperatures (Figures 

3.6, 3.13 and 3.14).  KASs are condensing enzymes that add 2 carbon units to 

the growing acyl chain, so it was expected that if KASs expression decreases at 

a particular temperature then ratios of 18 to 16 carbon should also decrease at 

that temperature; however, the ratios of UMFAs (18 to 16) did not decrease at 

23°C and only showed a significant decrease at 28°C (Figure 3.9).  Based on this 

observation and for inference of  better conclusions, expression of KASs at 

different temperature would require additional biological replicates. 

 

Expression level for FAT-As was not correlated with levels of both AnAc (22:1n5, 

24:1n5) and UMFAs (16:1Δ11,18:1Δ13) at any of the temperatures indicating that 

either temperature does not affect the expression levels of FAT-As or that FAT-

A1 and FAT-A2 are not the target candidates involved in UMFA synthesis 

(Appendix 3, Table A3.2) 
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Figure 3.10. Correlations of UMFAs and anacardic acids production at distinct 
temperatures. (A) Correlations of AnAc 22:1n5, 24:1n5) and UMFAs (16:1Δ11,18:1Δ13).  
(B) Corelation R-value  for each comparison along with p-values and q-values. Mixed 
model correlation analysis was performed with the cor.test function of R to generate q-
values for each comparison. q-value significance - Not significant (ns), Marginally 
significant (.), significant (*) and highly significant (**). 
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Figure 3.11. Correlations of UMFAs and anacardic acids production with ACP 1 
expression at distinct temperatures.  (A) Correlations of AnAc 22:1n5 and 24:1n5 with 
ACP 1.  (B) Correlations of UMFAs 16:1Δ11 and 18:1Δ13 with ACP 1.  (C) Corelation R-
value for each comparison along with p-values and q-values. Mixed model correlation 
analysis was performed with the cor.test function of R to generate q-values for each 
comparison. q-value significance - Not significant (ns), Marginally significant (.), 
significant (*) and highly significant (**). 
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Figure 3.12. Correlations of UMFAs and anacardic acids production with ACP 2 
expression at distinct temperatures.  (A) Correlations of AnAc 22:1n5 and 24:1n5 with 
ACP 2.  (B) Correlations of UMFAs 16:1Δ11 and 18:1Δ13 with ACP 2.  (C) Corelation R-
value for each comparison along with p-values and q-values. Mixed model correlation 
analysis was performed with the cor.test function of R to generate q-values for each 
comparison. q-value significance - Not significant (ns), Marginally significant (.), 
significant (*) and highly significant (**). 
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Figure 3.13. Correlations of UMFAs and anacardic acids production with KAS Ia/b 
expression at distinct temperatures.  (A) Correlations of AnAc 22:1n5 and 24:1n5 with 
KAS Ia/b. (B) Correlations of UMFAs 16:1Δ11 and 18:1Δ13 with KAS Ia/b.  (C) Corelation 
R-value for each comparison along with p-values and q-values. Mixed model correlation 
analysis was performed with the cor.test function of R to generate q-values for each 
comparison. q-value significance - Not significant (ns), Marginally significant (.), 
significant (*) and highly significant (**). 
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Figure 3.14. Correlations of UMFAs and anacardic acids production with KAS Ic 
expression at distinct temperatures.  (A) Correlations of AnAc 22:1n5 and 24:1n5 with 
KAS Ic.  (B) Correlations of UMFAs 16:1Δ11 and 18:1Δ13 with KAS Ic.  (C) Corelation R-
value for each comparison along with p-values and q-values. Mixed model correlation 
analysis was performed with the cor.test function of R to generate q-values for each 
comparison. q-value significance - Not significant (ns), Marginally significant (.), 
significant (*) and highly significant (**). 
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specific paralogs of genes involved in metabolism of UMFAs and AnAc.  The 

RNA-Seq database validated existing EST database genes and also provided 

additional identification of complete sequences of EST genes and identification of 

genes that were missing from EST database.  Examples of these genes includes 

FAT-A that is highly expressed in trichomes and showed increased in expression 

at 23°C, novel reductases, hydrolases, fatty acid acyl-ACP thioesterases, β 

ketoacyl-ACP synthases, polyketide synthases, and 3-ketoacyl-CoA synthases.  

A limitation of this de novo transcriptome assembly without a reference genome 

was the lack of distinction between genes that were isoforms (that result from 

alternative splicing) or paralogs (that result from gene duplications)107, 134-136.  

This distinction is important because splice variants provide important insights 

into metabolic regulation since they can be tissue, stage or time specific during 

the plant development135. Potential  future direction would be to analyze 

transcriptome data using bioinformatics tools like IsoSVM to identify isoforms or 

paralogs135.  Moreover, the de novo RNA transcriptome generated for geranium 

is a novel platform for identification of various genetic elements like enzymes and 

transcription factors involved in trichome metabolism.  The correlation of effect of 

temperature on gene expression, UMFA and AnAc production lead to the 

conclusion that 23°C was the optimal temperature for UMFA and AnAc synthesis 

compared to 18°C and 28°C.  Increased temperature (28°C) caused significant 

reduction in gene expression and production of metabolites as expected based 

on previous work97.  Production of UMFAs (16:1Δ11 and 18:1Δ13) was positively 

correlated with production of AnAc (22:1n5 and 24:1n5) at all temperature's 
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indicating a relationship between the substrate and the metabolite at a given 

temperature. Interesting the ratios of AnAc (24:1n5/ 22:1n5) and UMFAs 

(18:1Δ13/16:1Δ11) did not show corelation at 28°C and the amount  AnAc 24:1n5 

was more than AnAc 22:1 at all three temperatures whereas the amount AnAc 

24:1n5  substrate 18:1Δ13 was less compared to 16:1Δ11 at all three temperatures. 

This indicates a possibility of substrate preference for 18:1Δ13 by the downstream 

enzymes for production of AnAc 24:1n5.  Since ACP 1, ACP 2, KAS I-a/b, and 

KAS I-c were significantly correlated with production of target metabolites, they 

are potentially involved in UMFA synthesis. Expressing them in heterologous 

plants or bacterial systems can help in further validation of their function in UMFA 

metabolism.   
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CHAPTER 4 
 

MICRO-RNA DATABASE FOR PELARGONIUM × HORTORUM. 

 

Summary 

Anacardic acids (AnAc) are produced in Pelargonium × horturum  (garden 

geranium) but specific congeners of AnAc (AnAc 22:1n5 and AnAc 24:1n5) are 

known to condition a pest-resistance phenotype in specific geranium lines.  

These congeners are derived from unusual monoenoic fatty acids (UMFAs) 

16:1∆11 and 18:1∆13 that are synthesized only in glandular trichomes of pest-

resistant geranium36, 45.  Thus, these UMFAs and their AnAc metabolites provide 

useful biochemical marker that differentiates the UMFA biosynthetic pathway 

from the common fatty acid pathway found in all plants.  This is important as the 

UMFAs and AnAc have many industrial, medicinal and agricultural applications 

and thus elucidating genetic factors that affect UMFA and AnAc biosynthesis 

warrant further study.  In this effort, an EST database and a de novo RNA 

transcriptome (Chapter 2 and Chapter 3) were used to provide information on 

genetic factors that influence primary metabolites and their derived specialized 

metabolites. This study further extends these genetic resources by creating a 

micro-RNA (miRNA) transcriptome for geranium.  The miRNA transcriptomes 

have only recently drawn research attention and are thought to be important for 



	

	
	

	

92	

regulation of gene expression.  To generate a geranium miRNA database that 

represents sequences with broad physiological roles, two distinct tissues 

(trichomes and bald pedicles) and a temperature treatment  (plants grown at 

18°C and 23°C) were utilized.  Furthermore, gene targets for  geranium miRNA 

were identified using a Plant Small RNA Target Analysis Server, which facilitated 

selection of target miRNAs for future investigation.  

 

Introduction 

Synthesis of Plant MicroRNA  

Micro-RNAs (miRNAs) are small non-protein coding single stranded RNA’s that 

regulate posttranscriptional gene expression by cleaving mRNA or inhibiting the 

translation of target genes137 (Figure 4.1).  In plants miRNA sizes range from 21-

24 nucleotides and are found to affect important biological processes like growth, 

development, metabolic pathways, and abiotic and biotic stress response138, 139.  

Plant miRNA research is fairly recent and the bulk of knowledge about their 

mechanism of action and biogenesis is focused on model plant species like 

Arabidopsis and rice (Figure 4.1).  Other details like origin, function, and 

evolution are topics of on-going research since miRNAs are characterized in only 

a limited number of plant species137.  

Micro-RNA synthesis in plants begins with transcription and splicing of MIR gene 

by RNA polymerase II  to form primary miRNA transcripts (Figure 4.1)137, 140, 141.  

The dicer- like (DLC) enzyme family identifies the primary miRNA transcripts that 

are folded into hairpin structures.  Unlike animals, plants DLC enzymes vary in 
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size and differ in number between plant species.  For example, in Arabidopsis 

there are four types of DLCs - DLC1, DLC2, DLC3 and DLC4 that generate 

miRNA of 21, 22, 23 and 24 nucleotides respectively (Figure 4.1)137.  

Figure 4.1. A simplified overview of miRNA biogenesis in plants 137, 140, 141.  
HEN1: Hua Enhancer 1, RISC: RNA-induced silencing complex. This is a  
modified figure adpopted from Budak et.al., 2015137. 
 

DLCs cleave primary miRNA to pre-miRNA and then pre-miRNA to miRNA 

duplex within the nucleus. Hua Enhancer 1 (HEN1) stabilizes miRNA by 

methylation of 3’ terminus and then exports it into the cytoplasm.  Within the 

cytoplasm mature miRNA becomes a part of RNA-induced silencing complex 

(RISC) and binds to its target based on complementarity and regulates the 

MIR GENE 

Nucleus 

Cytoplasm 

mRNA cleavage Translational Inhibition 

RNA polymerase II (Transcription and Splicing) 

Primary miRNA 
3’	

5’	

Pre-miRNA 

 miRNA duplex 

RISC assembly with mature mi-RNA 

Dicer Like (DCL) 

DCL 
type 

Length of 
mi-RNA 

DCL1 21 

DCL2 22 

DCL3 23 

DCL4 24 

Dicer Like (DCL) 

HEN1 (stabilization and export) 
HASTY? (export) 
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expression of a gene either by RNA cleavage or translational inhibition (Figure 

4.1)137.  Unlike  the case in animals, there is a high degree of sequence 

complementary between plant miRNA and their target transcript. Thus 

bioinformatics computational methods can be employed to identify targets of 

plant miRNAs142.  Target identification can help in prediction of the physiological 

roles of the miRNAs based on the limited information available from the plant 

miRNA database. This method of identification has been validated by 

experiments in a number of plant species140.  

 
Plant miRNAs regulatory functions 
 
Plant miRNA targets include transcripts that encode regulatory proteins, genes 

and transcription factors essential for signal transduction, plant development and 

metabolism140 143, 144.  Plant miRNAs play a critical role in auxin signaling, organ 

boundary formation, defining organ polarity, flowering time, growth of leaves and 

reproductive development145-150.  Interestingly miRNAs are also involved in 

trichome development151-155; examples of these include miRNA156 that 

suppresses expression of a plant specific transcription factor SQUAMOSA 

PROMOTER BINDING PROTEIN LIKE (SPL) and  increases the density of 

trichomes on plant surface in Arabidopsis156, 157.  In contrast, miRNA171 

suppresses the activity of  LOST MERISTEMS genes that promote trichome 

development, thereby decreasing the density of trichomes on stems and floral 

organs of  Arabidopsis154.   Additionally, plant miRNAs are involved in lipid 

metabolism158-160, examples of these include miRNA2102 in Panicum virgatum 

(switchgrass)  which targets fatty acid desaturase and lipid binding protein to 
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enhance biofuel production159 and in Solanum tuberosum (potato), fatty acid 

biosynthesis is regulated by  miRNA530  that targets biotin carboxylase carrier 

protein, and miRNA1442 that targets β-ketoacyl-ACP synthase I gene161.  

 

Therefore, miRNAs are important factors for studying UMFA and anacardic acid 

biosynthesis in the trichomes of geraniums.  Next generation sequencing 

(Illumina platform) was used to create a de novo  geranium mi-RNA database 

that includes two distinct tissues (trichomes and bald pedicles) as well as 

trichome tissue subjected to two temperatures (18°C and 23°C).  In total, 336 

putative miRNAs were identified and their distribution was evaluated using 

bioinformatics tools. Targets for miRNAs were predicted based on a Plant Small 

RNA Target Analysis Server. 

 

Material and Methods 

Plant Material 

Pelargonium × hortorum accession 88-51-10 was a kind gift of Dr. Richard Craig, 

The Pennsylvania State University.  Plants were vegetatively propagated and 

grown in one-gallon pots containing MetroMix 360.  Plants were maintained in 

environmental growth chambers at 18ºC or 23ºC and a 16-hour photoperiod with 

250 µmol m-2 s-1 photosynthetic photon flux.  
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RNA sample preparation  

Pedicles were harvested into 50 ml-conical tubes on ice and then flash frozen in 

liquid nitrogen and stored at -80ºC until used.  Trichomes were sheared from the 

surface of frozen pedicles from multiple tubes as described 57, 76.  RNA was 

purified as described (Appendix 3).  Plant Spectrum total RNA extraction kit 

(Sigma Aldrich, Cat # STRN10) was used to enrich miRNA samples from total 

RNA.  RNA samples were Dnase treated using Ambion Turbo DNA-Free TM kit 

(ThermoFisher Cat #AM1907) before miRNA Library preparation.  RNA quality 

and quantity were analyzed using both nanodrop and bioanalyzer.  

 

miRNA Library Preparation 

Total RNA samples (5 µg) were submitted to the University of Louisville’s Center  

for Genetics in Molecular Medicine’s (CGeMM) sequencing core facility for 

preparation of the miRNA library.  Briefly, the Truseq Small RNA kit v2 (RS-200-

0012) was used to prepare miRNA libraries from 1 µg total RNA.  Each Library 

was individually gel purified on a Novex TBE 6% gel and re-suspended in 10 µl 

10 mM Tris-Cl, pH 8.5.  Libraries were validated and quantitated by running 1 µl 

on the Agilent Technologies 2100 Bioanalyzer DNA High Sensitivity Chip.  Thirty 

six cycle single sequencing reads were generated on the Illumina NextSeq500 

instrument utilizing the 500 Mid-output v2 sequencing kit.  
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Bioinformatics Analysis 

Bioinformatics analysis was conducted utilizing the University of Louisville 

Bioinformatics core.  Three single-end raw sequencing files (.fastq) representing 

four physiological conditions (trichome 18°C, bald pedicle 18°C and trichome 

23°C) were downloaded from Illumina’s BaseSpace 

(https://basespace.illumina.com/) using the mirdeep2104, 162, 163 (Figure 4.2) 

 
 

Figure 4.2. Data analysis of pipeline using mirdeep2 for de novo miRNA 
detection. The analysis layout was obtained from Dr. Eric Rouchka 
(Bioinformatics core). 
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Bioinformatics approach for de novo miRNAs sequences. 

Each of the three single-end raw .fastq files for each replicate was concatenated 

into one single-end .fastq file using the unix cat command.  Quality control (QC) 

of the raw sequence data was performed using FastQC (version 0.10.1).  The 

FastQC results indicated that quality trimming was not necessary since the 

minimum quality value for all samples is well above Q30 (1 in 1000 error rate), 

(Appendix 4, Figure A4.1 108).  Preliminary adapter trimming was performed on 

each of the samples using a custom file adapters ToTrim.fa which contains a 

subset of the Illumina TruSeq Small RNA adapter and primer sequences 

(https://support.illumina.com/content/dam/illuminasupport/documents/documentat

ion/chemistry_documentation/experiment-design/illumina-adapter-

sequences_1000000002694-00.pdf).  Sequences were trimmed off the adapters 

with Trimmomatric v0.33 (Appendix 4, Table A4.1)164.  Peaks at 24 bp were 

selected for representing the length of plant mature miRNAs (Appendix 4, Figure 

A4.2).  Sequences were trimmed again for a size selection between 18 and 28 

nucleotides to be in line with mature miRNA sequences using the custom perl 

script trimForMiRNAsize.pl.  After size selection, roughly 20 to 25 percent of the 

original sequences remained (Appendix 4, Table A4.2 ).  The final size-trimmed 

sequences were run through fastQC and the remaining trimmed sequences were 

collapsed to remove redundant sequences using fastx_collapser.  Mirdeep2 

alignment tool was used to compare the collapsed sequence files against mature 

and hairpin miRNAs from mirBase162, 165. 
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A read matrix was constructed that included the reads identified for each of the 

38,764 known miRNAs across all species using the custom perl script 

createReadMatrix.pl.  This file was parsed to contain only those miRNAs with a 

non-zero count, reducing the overall set to 6,581 miRNAs.  These were further 

parsed to combine shared miRNAs across species.  The miR with the highest 

read mapping was used as the putative miR sequence.  Complete Pelargonium x 

hortorum miRNA sequence information is presented in Appendix 4, Table A4.2. 

 

Venn Diagrams 

Pratek Genomics suite 6.6 was used to generate a Venn Diagram with program 

settings of read count set to  > 0 in at least 1 condition (trichome 18°C, bald 

pedicle 18°C and trichome 23°C). 

 
 
Target sequence Analysis 
 
A Plant Small RNA Target Analysis Server (psRNATarget) was used to generate 

target prediction tables for pxh-miRNAs (Tables 4.1-4.5)166.  This analysis utilized 

settings for comparison selected (User-submitted small RNAs / preloaded 

transcripts), user-submitted small RNAs (miRNAs of Pelargonium × hortorum), 

preloaded transcript/selected library (Arabidopsis thaliana, unigene, DFCI Gene 

Index (AGI), version 15,released on 2010_04_08),  

(Link:ftp://occams.dfci.harvard.edu/pub/bio/tgi/data/Arabidopsis_thaliana/AGI.rele

ase_15.zip), maximum expectation/low false positive prediction  (3.0), length for 
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complementarity scoring hspsize (20), number of top target genes for each small 

RNA (200), target accessibility - allowed maximum energy to unpair the target 

site UPE (25), flanking length around target site for target accessibility analysis  

(17 bp in upstream  and 13 bp in downstream) and  range of central mismatch 

leading to translational inhibition (9-11 nt).  The output was generated based on 

the information available for miRNA from other plants database and shows 

geranium miRNA sequence, target description with recent discoveries in plant 

miRNA’s target recognition, number of miRNA/target site pairs, type of RNA 

inhibition (cleavage of ribosome or translational inhibition) and multiplicity of 

target site. 

 
Results and Discussion 
 
Pelargonium x hortorum  de novo miRNA database 
 
A total of 336 putative miRNAs were identified from trichome and bald pedicle of 

Pelargonium x hortorum (Table 4.1).  Sequences of all the miRNAs are 

presented in Appendix 4, Table A4.3.  The top two putative miRNAs (miR-166 

and miR-319) represent over half of all expressed miRNAs with normalized read 

counts 144453 and 143655 respectively.  miR-166 is implicated in root growth in 

Arabidopsis by targeting the Class III Homeodomain-Leucine Zipper (HD-ZIP III) 

transcripts167.  In addition, miR-166 is required for shoot meristem activity, leaf 

polarity, and vascular patterning of shoot and root in Arabidopsis and corn108, 168-

172.  miR-319 targets TCF transcription factors  that help to regulate cell 

proliferation173, 174.  In addition, miR319a targets TCP4, which is involved in petal 

growth and development in Arabidopsis175 
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Table 4.1.  Putative miRNAs detected in Pelargonium x hotorum. 
miR-166 miR-184-3p miR-23a-3p miR-342-3p miR-210-5p miR-169b miR-317 
miR-319 miR-5168-3p miR-8109 miR-186 miR-330 miR-190 miR-31 
miR-1128 miR-408-3p miR-25 miR-454-3p miR-339 miR-194 miR-31a-5p 
miR-396 miR-235-3p miR-24 miR-1421w-3p miR-410 miR-20 miR-322-3p 
miR-390-5p miR-92-3p miR-24a-3p miR-395 miR-429 miR-20a-5p miR-3607-3p 
miR-393 miR-8175 miR-24 miR-395a-3p miR-500-3p miR-20 miR-3963 
miR-21a-5p miR-181a miR-24a-3p miR-395 miR-5298d miR-20a-5p miR-3968 
miR-21 miR-535 miR-100 miR-395a-3p miR-532 miR-218 miR-4286 
miR-21a-5p miR-2478 miR-164 miR-4995 miR-625-3p miR-2276-3p miR-4332 
miR-21 miR-7122a miR-425-5p miR-7528 miR-744 miR-324 miR-4334-3p 
miR-894 miR-27a-3p miR-941 miR-872-5p miR-8-3p miR-335-3p miR-4505 
miR-168 miR-858 bantam miR-34a-5p miR-877 miR-340 miR-467f 
miR-159 miR-320-3p miR-146-5p miR-4171-5p miR-2355-3p miR-3535 miR-4792 
miR-165a-
5p miR-151-3p miR-378-3p miR-263 miR-276 miR-3661 miR-501-3p 
miR-827 miR-103-3p miR-28-3p miR-275 miR-2778a-5p miR-374-5p miR-502 
miR-5083 miR-107 miR-200a-3p miR-473 miR-281-5p miR-3934-5p miR-5106 
let-7f miR-22 miR-130a miR-106 miR-484 miR-5054 miR-5205b 

miR-403-3p miR-22a miR-130 miR-149-5p miR-489-3p miR-516b 
miR-548ay-
5p 

let-7 miR-22 miR-130a miR-15a miR-574 miR-530-5p miR-548a 

let-7a miR-22a miR-130 miR-23-3p miR-9 miR-550-5p 
miR-548ay-
5p 

let-7j-5p miR-477a miR-183-5p miR-384-5p miR-9-5p miR-6222-5p miR-548a 
miR-3630-
3p miR-5368 miR-301a-3p miR-399 miR-9a miR-628-3p miR-548d-5p 
miR-1448 let-7e miR-301 miR-769 miR-9 miR-654-5p miR-5735-3p 
miR-10a-5p let-7d-5p miR-301a-3p miR-8590 miR-9-5p miR-6813-5p miR-589 
miR-10 miR-167-5p miR-301 miR-252-5p miR-99 miR-7501 miR-6134 
miR-398 miR-171 miR-101 miR-29a miR-9 miR-828 miR-6167 
miR-397-5p miR-1910-5p miR-1507-3p miR-7475-5p miR-9-5p miR-840-5p miR-629-5p 
let-7 miR-221-3p miR-205 miR-1180 miR-9a miR-1127 miR-63-3p 
let-7a let-7b-5p miR-584 miR-138 miR-1246 miR-124b-3p miR-652 
miR-182 miR-1436 miR-6240 miR-140-3p miR-1863 miR-126-3p miR-653-5p 
miR-156b miR-172 miR-192 miR-1582 miR-3120 miR-126a-3p miR-660 
let-7 miR-16a-5p miR-1895 miR-1692 miR-4451 miR-126-3p miR-6752-3p 
let-7j-5p miR-16 miR-5139 miR-1839 miR-4492 miR-135-5p miR-7 
miR-156b miR-16a-5p let-7k-5p miR-279 miR-5119 miR-142-5p miR-767 
miR-156 miR-16 miR-203 miR-315 miR-5293 miR-142-5p miR-8649 
miR-92a-3p miR-423-3p miR-394 miR-34-5p miR-541-5p miR-142a-5p miR-9226 
miR-5049c miR-141 let-7c miR-3931-3p miR-5532 miR-1468-5p  
miR-26 let-7g miR-148-3p miR-4504 miR-6087 miR-15  
miR-26a miR-170-5p miR-421 miR-750 miR-6788-5p miR-153  
miR-26 miR-93 miR-482 miR-8155 miR-7158-3p miR-193-5p  
miR-26a miR-6300 miR-424-3p miR-2111-5p miR-738 miR-195  
miR-1133 miR-375 miR-486 miR-238 miR-850 miR-195a-5p  
miR-6478 miR-125 miR-81a miR-3470b miR-8523 miR-1957a  
miR-191-5p miR-157a-5p miR-128 miR-5538 miR-8716 miR-195  
miR-191-5p miR-222 miR-1260 miR-702-3p miR-8938 miR-195a-5p  
miR-191a miR-5072 miR-1511 miR-1307 miR-1120b-3p miR-199a-5p  
miR-27-3p miR-5181-3p miR-3954 miR-146-5p miR-1303 miR-2170  
miR-2916 miR-160 miR-6483 miR-146a-5p miR-133 miR-3018  
miR-30a-5p miR-6476a miR-7767-5p miR-156aa miR-169 miR-31  
let-7i-5p miR-98-5p miR-345 miR-196 miR-169aa miR-31a-5p  

Red highlight, miR-166 and miR-319 (most abundant). The list of micro-RNA is 
based on total normalized read counts, highest to lowest from top to bottom. 
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Distribution of miRNAs 
 
Normalized read counts (>0) for each miRNA was not equally distributed in the 

three physiological conditions used to generate this database (Figure 4.3).  It is 

important to note that due to lower read counts and lack of biological replicates, 

these data cannot be used for quantifying expression of these miRNAs as this 

database screens for presence or absence of miRNA in a given tissue and/or 

temperature.  In total, 110 miRNAs (33%)  were observed to be present in all 

three conditions whereas the remaining miRNAs were found only in a specific 

tissue type or at a specific temperature. Only 27 miRNAs (8%) were present 

exclusively in trichome tissue and 35 miRNAs (10%) were found exclusively in 

bald pedicle tissue while a total of 66 miRNAs (19%) were detected only in 

trichome at 18°C and 19 miRNAs (5%) that were found only in trichome at 23°C.  

Tissue specificity or temperature effects need to be verified/tested with a larger 

dataset of additional replicates. 
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Figure 4.3.  Venn diagram for micro-RNAs detected in Pelargonium × hotorum.  
The miRNA sequences were obtained from two tissues and two physiological  
conditions including trichomes at 18°C, trichomes at 23°C and bald pedicle at  
18°C.  Read count is set to > 0 for each sample. 
 

Target prediction of miRNAs 

 The high degree of sequence complimentary between plant miRNA and their 

target transcript facilities using servers like psRNATarget that employ 

computational algorithms to screen user submitted miRNAs against available 

plant miRNA database 142, 166.  The psRNATarget server was used for target 

prediction of miRNA detected in trichomes at both temperatures (Table 4.2), bald 

pedicle at 18°C (Table 4.3), trichomes at 18°C (Table 4.4) and trichomes at 23°C 

( Table 4.5).  The psRNATarget server generated details for target prediction, 

number of target sites, type of RNA inhibition (cleavage of ribosome or 
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translational  inhibition) and target multiplicity for each pxh-miRNAs detected166.  

This approach did not provide results for 31 miRNA sequences (21%).   Target 

identification helped in prediction of potential physiological roles of the geranium 

miRNAs and highlighted a few miRNAs for future investigation.  
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Table 4.2. Target description for miRNAs detected in trichomes (18°C and 23°C) 

 
Target multiplicity is 1 for all the miRNAs. miR-6300, miR-6240, miR-5139, miR-
1R260 and miR-8155 were not detected by the psRNATarget server. 
 
 
 
 
 
 
 
 
 
 
 
 

pxh-miRNA Target Site Pairs Target Description Inhibition

miR-184-3p 9 H60S ribosomal protein L26,  Botryotinia fuckeliana Cleavage

miR-1436 1 Homologue to UniRef100_Q9LT84 Cluster: UPF0496 protein, Arabidopsis thaliana Translation

miR-6476a 14 Bidirectional sugar transporter SWEET1, Arabidopsis thaliana Cleavage

miR-1895 6 Acidic ribosomal protein P3 , Corchorus olitorius Cleavage

miR-128 3 F-box family protein, Arabidopsis thaliana Cleavage

miR-1511 7 Alpha-glucan water dikinase 2 precursor,  Arabidopsis thaliana Cleavage

miR-3954 12 Cysteine/histidine-rich C1 domain-containing protein,  Arabidopsis thaliana Cleavage

miR-6483 24 Homeodomain protein 14,  Arabidopsis thaliana Cleavage

miR-7767-5p 3 Tochitinase-like protein 1, Arabidopsis thaliana Cleavage

miR-4171-5p 7 Root hair defective 3 gene,  Arabidopsis thaliana Cleavage

miR-1180 3 Caffeoyl-CoA O-methyltransferase,  Arabidopsis thaliana Cleavage

miR-138 12 Auxin-induced in root cultures protein 12-like, Camelina sativa Translation

miR-140-3p 3 Endo-beta-N-acetylglucosaminidase~gene_id:K18I23.27,  Arabidopsis thaliana Translation

miR-1582 27 BZIP transcription factor bZIP122, Glycine max (Soybean) Translation

miR-1692 14 UniRef100_Q85WY0 Cluster: ORF45d; n=1; Pinus koraiensi Cleavage

miR-1839 3 Phosphoglucosamine mutase family protein,  Arabidopsis thaliana Translation

miR-279 7 Enhanced downy mildew 2, Arabidopsis thaliana Translation

miR-315 25 Protein serine/threonine kinase gene,  Arabidopsis thaliana Cleavage

miR-34-5p 6 Selenium-binding protein-like,  Arabidopsis thaliana Cleavage

miR-3931-3p 5 transposase, Phaeodactylum tricornutum Cleavage

miR-4504 19 Alpha/beta-Hydrolases superfamily protein,   Arabidopsis thaliana Cleavage

miR-750 10 NAD(P)-binding domain-containing protein,  Arabidopsis thaliana Cleavage
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Table 4.3. Target description for miRNAs detected in bald pedicle tissue at 18°C 

 
Target multiplicity is 1 for all the miRNAs. miR-5054 was not detected by the 
psRNATarget server. 

pxh-miRNA  Target site pairs Target Description Inhibition

miR-2111-5p 18 F-box family protein, Arabidopsis lyrata Cleavage

miR-238 3 Phosphatidylinositol-4-phosphate 5-kinase , Arabidopsis thaliana Translation

miR-3470b 2 Vacuolar-sorting receptor 1 precursor , Arabidopsis thaliana Cleavage

miR-5538 13 Chloroplast 50S ribosomal protein L2, Arabidopsis thaliana Cleavage

miR-702-3p 2 Chloroplast PSI type III chlorophyll a/b-binding protein , Brassica juncea Cleavage

miR-1120b-3p 6 WD-40 repeat family protein / beige-related , Arabidopsis thaliana Cleavage

miR-1303 19 Gamma-glutamyl hydrolase, Arabidopsis thaliana Cleavage

miR-133 1  ADP, ATP carrier protein 1, Arabidopsis thaliana Cleavage

miR-169 13 Nuclear transcription factor Y subunit A-3,  Arabidopsis thaliana Cleavage

miR-190 33 Pentatricopeptide repeat-containing protein-like protein, Arabidopsis thaliana Cleavage

miR-194 13 Adenosyl-L-methionine-dependent methyltransferase, Arabidopsis thaliana Translation

miR-20 1 Jacalin-like plant lectin domain-containing protein, Arabidopsis thaliana Cleavage

miR-218 6 :Cytochrome b561/ferric reductase transmembrane, Arabidopsis thaliana Cleavage

miR-2276-3p 1 Weakly similar todomain-containing protein  MOP10, Arabidopsis thaliana Translation

miR-324 2 Similar to protein MIDASIN1, Arabidopsis thaliana Cleavage

miR-335-3p 25 Kinase interacting (KIP1-like) family protein, Arabidopsis thaliana Cleavage

miR-340 20 Transcription factor 25 (Nuclear localized protein 1), Xenopus tropicalis Cleavage

miR-3535 5 Ethylene-responsive transcription factor ERF016, Arabidopsis thaliana Cleavage

miR-3661 2 Ubiquitin-conjugating enzyme E2 -like protein, Arabidopsis thaliana Cleavage

miR-374-5p 4 Hypothetical protein ARALYDRAFT_477717, Arabidopsis lyrata Translation

miR-3934-5p 3 Protein kinase PK1, Zea mays Cleavage

miR-516b 7 nonsense-mediated mRNA decay trans-acting factors~gene, Arabidopsis thaliana                                    Cleavage

miR-530-5p 4 Laccase-2 precursor,  Arabidopsis thaliana Translation

miR-550-5p 3 Elongation factor G, chloroplast precursor, Glycine max Cleavage

miR-6222-5p 7 Transducin/WD40 domain-containing protein, Arabidopsis thaliana Cleavage

miR-628-3p 3 Cellulose synthase catalytic subunit (Ath-A), Arabidopsis thaliana Cleavage

miR-654-5p 5 Hypothetical protein PID|e327464 (gb|Z97338), Arabidopsis thaliana Cleavage

miR-6813-5p 6 Mitochondrial carrier protein, putative, Arabidopsis thaliana Cleavage

miR-7501 3 Protein arginine N-methyltransferase 1, Arabidopsis thaliana Cleavage

miR-828 12 Hypothetical protein, Arabidopsis thaliana Cleavage

miR-840-5p 5  ATP binding / alanine-tRNA ligase/ nucleic acid binding protein, Arabidopsis thaliana Translation
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Table 4.4. Target description for miRNAs detected in trichome tissue at 18°C.  

 

 
 
 

pxh-miRNA Target site pairs Target Description Inhibition

miR-34a-5p 6 LRR receptor-like serine/threonine-protein kinase ERL2 mRNA, Arabidopsis thaliana Cleavage

miR-29a 2 Protein TRF-like 7 mRNA, Arabidopsis thaliana Translation

miR-7475-5p 17 DNA-binding protein, Arabidopsis thaliana Cleavage

miR-2355-3p 13 Inorganic phosphate transporter and chloroplast precursor, Arabidopsis thaliana Cleavage

miR-276 4 Nucleoside diphosphate kinase,  Arabidopsis thaliana Cleavage

miR-2778a-5p 26 Pectinacetylesterase, Arabidopsis thaliana Cleavage

miR-281-5p 2 Flavin-containing monooxygenase, Arabidopsis thaliana Cleavage

miR-484 3 Heat shock transcription factor HSF30 homolog, Arabidopsis thaliana Cleavage

miR-489-3p 2 Disease resistance protein homolog, Arabidopsis thaliana Translation 

miR-574 1 Chromosome 1 sequence, Arabidopsis thaliana Translation 

miR-9 18 Mitochondrial precursor; n=1; Arabidopsis thaliana Translation

miR-9-5p 17 Disease resistance protein,  Arabidopsis thaliana Cleavage

miR-99 2 BHLH protein-like, Arabidopsis thaliana Cleavage

miR-124b-3p 1 Lysosome-related organelles complex 1 subunit 1 mRNA, Arabidopsis thaliana Translation 

miR-126-3p 3 12S cruciferin seed storage protein; n=3; Arabidopsis thaliana Translation 

miR-135-5p 11 AMP deaminase like protein, Arabidopsis thaliana Cleavage

miR-142-5p 10 Adenosylmethionine decarboxylase 1 beta chain,  Arabidopsis thaliana Cleavage 

miR-1468-5p 1 Putative protein (T16L4.170) mRNA, Arabidopsis thaliana Translation

miR-15 2 Uncharacterized protein mRNA, Arabidopsis thaliana Tranlastion

miR-153 8 TMV resistance protein, Arabidopsis thaliana Tranlastion

miR-195 5 AP2-like ethylene-responsive transcription factor, Arabidopsis thaliana Translation

miR-2170 21 Salicylic acid responsive calcium/calmodulin binding protein, Arabidopsis thaliana Cleavage

miR-3018 35 Ubiquitin carrier protein , Arabidopsis thaliana Cleavage 

miR-31 3 Chloroplast tRNA-Ala, tRNA-Ile, 16S rRNA, tRNA-Val, Solanum nigrum Translation

miR-322-3p 14 RNA recognition motif (RRM)-containing protein,  Arabidopsis thaliana Cleavage 

miR-3607-3p 14 Nucleobase-ascorbate transporter 11, Arabidopsis thaliana Cleavage

miR-3968 2  AP2-like ethylene-responsive transcription factor, Arabidopsis thaliana Translation

miR-4334-3p 7  Phosphatidylinositol/phosphatidylcholine transfer protein-like, Arabidopsis thaliana Cleavage
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Table 4.4 continued 

 
Target multiplicity is 1 for all the miRNAs. miR-252-5p, miR-1127, miR-193-5p,  
miR-195a-5p, miR-1957a, miR-199a-5p, miR-31a-5p, miR-317, miR-31a-5p, 
miR-31a-5p, miR-322-2p, miR-3607-3p, miR-3963, miR-3968, miR-4286, miR-
4332, miR-4505,miR-467f, miR-4792, miR-6134, miR-63-3p, miR-652 and miR-
9226 were not detected by the psRNATarget server. 
 

 

 

 
 
 

 

 
 

miR-467f 41  AP2-like ethylene-responsive transcription factor, Arabidopsis thaliana Cleavage

miR-501-3p 3 Zinc finger protein-like, Arabidopsis thaliana Cleavage

miR-502 3 Zinc finger protein-like, Arabidopsis thaliana Cleavage

miR-5106 1 ABC transporter permease protein, Azorhizobium caulinodans Cleavage

miR-5205b 2 Mitochondrial phosphate translocator, Arabidopsis thaliana Cleavage

miR-548ay-5p 44 Mitochondrial import inner membrane translocase, Arabidopsis thaliana Translation 

miR-548a 44 Ethylene-responsive transcription factor, Arabidopsis thaliana Cleavage

miR-548d-5p 41 Ethylene-responsive transcription factor, Arabidopsis thaliana Cleavage

miR-5735-3p 2  UniRef100_Q66GL9 Cluster: At3g52490; n=1; Arabidopsis thaliana Cleavage

miR-589 4 Eukaryotic Translation initiation factor 5A-3; Arabidopsis thaliana Cleavage

miR-6167 27 Chlorophyll a-b binding protein,  Arabidopsis thaliana Cleavage

miR-629-5p Protein kinase AtSIK,  Arabidopsis thaliana Cleavage

miR-653-5p 10 CEN (centroradialis)-like phosphatidylethanolamine protein, Arabidopsis thaliana Cleavage

miR-660 1 Pentatricopeptide repeat-containing protein mRNA,  Arabidopsis thaliana Translation 

miR-6752-3p 2 Dna-directed rna polymerase  II,  Asparagus officinalis Cleavage

miR-7 7 DNA binding / protein dimerization , Arabidopsis thaliana Translation

miR-767 2 Penicillin-binding protein; n=1; Mesorhizobium Translation

miR-8649 1 mutT like protein, Arabidopsis thaliana Cleavage
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Table 4.5. Target description for miRNAs detected in trichome tissue at 23°C. 

 
Target multiplicity is 1 for all the miRNAs. miR-1246, miR-4451, miR-4492, miR-
5119,miR-6087, miR-738 and miR-8523 were not detected by the psRNATarget 
server. 
 

 

Identification of potential physiological roles of geranium miRNAs 
 
Ubiquitous miRNAs  (trichomes and bald pedicle) 
 
Unlike animal miRNAs, plant miRNAs are less conserved and tend to be species 

specific141.  Yet, since the emergence of gene silencing is attributed to evolution, 

it may be possible to identify conserved RNA sequences across plant species.  

From geranium miRNAs that were identified in all three libraries (Appendix 4, 

Table A4.4), we found that pxh-miRNAs 319, 390-5p,159 ,403p, 398, 408-

3p,103-3p, 171  are conserved and found in Arabidopsis, bryophytes and other 

flowering plants137, 140, 176.  Some miRNAs in this category have experimental 

support for specific biological processes.  For example, miRNAs 166, 172, 164 

miRNA Target site pairs Target Description Inhibition

miR-263 6 Chloroplast thylakoid lumen protein, Arabidopsis thaliana Cleavage

miR-275 4 Transmembrane nine protein 6, Arabidopsis thaliana and Vitis vinifera Cleavage

miR-1863 15 Putative retroelement polyprotein, Arabidopsis thaliana Cleavage

miR-3120 2 Citrate synthase and  peroxisomal precursor, Arabidopsis thaliana Cleavage

miR-5293 46 Zinc knuckle (CCHC-type) family protein, Arabidopsis thaliana Translation

miR-541-5p 3 Myosin-like protein, Arabidopsis thaliana Cleavage

miR-5532 13 Adenylate kinase family-like protein, Solanum tuberosum Cleavage

miR-6788-5p 25 Leucoanthocyanidin dioxygenase-like protein,  Arabidopsis thaliana Cleavage

miR-7158-3p 5 Transcription factor TCP23 [Arabidopsis thaliana] Cleavage

miR-850 6 Bidirectional sugar transporter SWEET4 and nodulin MtN3 protein , Arabidopsis thaliana Cleavage

miR-8716 12 ABC1 protein kinase 6, Arabidopsis thaliana Cleavage

miR-8938 10 MATE efflux family protein, Deinococcus geothermalis Cleavage
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are involved in flower development and organ polarity137, 140, 146, 155, 157, 177-181, 

miR-319 is involved in leaf growth and development137, 152, 182, mir-393 and 160 

affects auxin signaling140, 183, miR-168,403-3p, 319 and159 are involved in 

miRNA biogenesis and metabolism137, 176, 184,185, miR 403-3p and 159 has a role 

in reproductive development 140, 176, 184 and miR 319 and 395 are specific to 

stress response137, 139.  This suggests the potential for similar functions of these 

miRNAs in geranium.  

Additionally, four potential miRNA targets were identified for studying 

UMFAs and anacardic biosynthesis. These include, miR156 which is involved in 

trichome distribution, trichome development and stress response137, 154, miR103 

and miR107 that are involved in regulation of polyphenolic compounds186, 187 and 

miR125,378-3p  that is involved in lipid metabolism160.   

 
 
miRNAs identified in specific tissue (trichomes or bald pedicle) 
 

The output generated from the psRNATarget server for miRNAs that were 

present in both types of trichome tissue, only in bald pedicle or only in trichome 

at a particular temperature facilitated selection of miRNAs for future evaluation 

(Table 4.2, 4.3, 4.4 and 4.5).   

 

For miRNAs detected only in bald pedicle tissue, potential physiological roles 

were identified for miR-335-3p - involved in lipid metabolism160, miR-828 - 

conserved in few plant species and its overexpression reduces the anthocyanin 

production in Arabidopsis 137, 188, miR-2111-5p - conserved (specially eudicots) 
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137  and miR169  - acts on nuclear transcription factor Y and is involved in viral 

stress response138, 166, 189.   All of these miRNAs might have similar function in 

geranium.  Interestingly, miR1120b has only been identified in barley making 

gernanium only the second plant reported to have this miRNA 166, 190. 

 

Within miRNA detected only in trichomes, pxh-miR-6300, 6420, 5193, 1260 and 

8155 are particularly interesting because the plant server could not identify 

targets for these miRNAs, indicating these miRNAs may be specific to geranium 

trichomes or may not yet identified in any of the plant species.  Other noteworthy 

miRNA candidates identified only in trichomes were miR-3954  which targets 

triose phosphate transporter gene required for metabolism and initiates siRNA 

biosynthesis 191-193 and miR-6483  which targets transmembrane proteins and 

regulates transport of cellular materials across the membrane 191, 192, 194.  To 

facilitate further studies of UMFA and AnAc synthesis in trichomes potential 

targets was uncovered.  For example, miR-138 and miR 4171 are involved in the 

development of root hairs (trichomes)166, 195 and miR-4504 and miR1180 regulate 

fatty acid biosynthesis enzymes166, 195.  Additionally, 66 miRNAs were identified 

only in trichome at 18°C  whereas 19 miRNAs were identified only in trichome at 

23°C, all of these are important candidates to evaluate temperature effects 

(Tables 4.4, 4.5).  An example of this is miR-5532 which is only present in 

trichome at 23°C and it is well studied in medicinal herb, Picrorhiza kurroa, for its 

regulatory effect on growth, development and secondary metabolite 

production196.  
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Conclusions and future prospects 

Although thousands of miRNAs have been identified in model plant species, they 

still remain unknown in most non-model plant species.  To date, miRNA from 

only 71 plant species has been reported141.  The observations made via the 

Pelargonium × hotorum miRNA catalogue and the sequences obtained are an 

important and novel addition to the limited plant miRNA data. The limitation of 

this study was that only three conditions without replicates were used for 

sequencing and thus further analysis on differential expression or target 

estimation could not be performed.  However, with help of bioinformatics tools 

potential target sequences and miRNAs were suggested for further evaluation. 

 

A future direction for geranium miRNA research would be using bioinformatics 

tools to identify specific miRNA targets using RNA-SEQ transcriptome database 

(Chapter 3). Furthermore, the larger sample size of transcripts from trichomes 

and bald pedicle at different temperature  can be obtained and used to correlate 

differential expression of miRNA with target transcript abundance and validate 

presence of miRNA by using experimental techniques like quantitative real time 

PCR.  Functional verification of miRNAs can be conducted via overexpression or 

knockdown/knockout expression of miRNAs.  Evaluation of functions for miRNA 

identified in Pelargonium × hotorum will be not only a valuable addition to miRNA 

plant research but also will help in expanding the understanding of miRNA 

related pathways and gene targets for non-model plants like geraniums. 
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CHAPTER 5 

CO-EXPRESSION OF PELARGONIUM × HORTORUM ACYL CARRIER 
PROTEIN WITH Δ9 14:0-ACP-DESATURASE. 
 
 
Summary 

Unusual monoenoic fatty acids  (UMFA’s) and derived specialized metabolites 

called anacardic acids (AnAc) are produced in glandular trichomes of 

Pelargonium × hortorum (geranium).  The 16:1∆11 and 18:1∆13 UMFAs are 

precursors for the synthesis of AnAc 22:1n5 ad 24:1n5 that confer pest 

resistance in geranium.  Since UMFA’s are potentially produced through a 

distinct “metabolic channel” from the common fatty acids biosynthetic pathway, 

multiple sequences with homology to fatty acid biosynthesis (FAS) enzymes that 

are highly expressed in trichomes were identified (Chapter 2). These enzymes 

included acyl carrier proteins (ACPs) that are central to the process of fatty acid 

synthesis as they are the carriers of acyl intermediate during FAS and can be 

constitutively expressed or regulated based on development and tissue 

specificity.  To identify the potential role of geranium ACPs in production of 

UMFAs, each ACP was co-expressed with myristoyl-ACP desaturase (MAD) in 

two heterologous systems.  No affects of either ACP 1 or ACP 2 co-expressed 

with MAD on UMFAs were detected in tobacco plants.  Interestingly, co-
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expression of ACP 1 with MAD in E. coli  lead to reduction in total fatty acids and  

ACP 2  lead to an overall increase in accumulation of fatty acids in E. coli .  

Neither ACPs was found to affect the specific relative proportion of 16:1∆11 or 

18:1∆13 UMFAs. 

  

Introduction 

UMFAs have various applications in the chemical and pharmacological industry 

and it is important to identify all the genetic components involved in their 

synthesis and enable their large scale cost effective production 5.  To date all the 

genetic factors (enzymes, transcription factors, micro-RNAs) essential for UMFAs 

synthesis within a given plant have not been identified and this limits their 

production and utility in transgenic plants197. Research in this area of plant 

biology suggests that UMFAs are products of primary metabolism that may 

require isoforms of fatty acid biosynthesis enzymes for their synthesis4.  This is 

based on the identification of various novel FAS genes like ACPs,  β-ketoacyl-

ACP synthase (KASs), acyl-ACP thioesterase (TEs)  and acyl-ACP desaturases 

(AADs) that have specific roles in the production of UMFA in their native  

plants 9, 22, 23, 32, 33, 96.  

  

AADs and ACPs play a vital role in UMFA synthesis.  AADs incorporate the 

double bond at specific positions needed for production of UMFAs and ACPs are 

indispensable cofactors that are carriers of acyl intermediate during FAS and 

their enzyme specificity determines the fatty acid end product.  Novel ACP 
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isoforms have been identified that are not only involved in production of UMFAs 

but also affect the activity of AADs and are involved production of UMFA9, 33, 198.  

Examples  of these include,  a novel ACP and Δ4 16:0 ACP desaturase that 

leads to production of UMFA 18:1Δ6 (petroselinic acid) in Coriandrum sativum and 

a novel ACP and  Δ6 16:0 ACP desatuarse that produces UMFA 16:1Δ6  in 

Thunbergia alata94.  

 

Within trichomes of Pelargonium × hortorum a novel Δ9 14:0-acyl carrier protein 

(ACP) desaturase (MAD) has been identified 75.  The AAD gene is responsible 

for producing myristoleic acid (14:1 Δ9) that is elongated to 16:1Δ11 and 18:1Δ13 199.  

Two acyl carrier proteins (ACP 1 and ACP 2) that are highly expressed in the 

trichomes of geranium were identified (Chapter 2)  and expression of each was 

correlated with production of UMFAs and AnAc at 18°C, 23°C and 28°C (Chapter 

3).  Due to this, both ACPs were ideal candidates for further evaluation of their 

metabolic role with geranium MAD in UMFA biosynthesis.  Both ACPs were 

individually co-expressed with MAD in E. coli and tobacco to study how 

expression affects the production of UMFAs 200, 201.   Production of 16:1Δ11 and 

18:1Δ13 or higher ratios (unsaturated to saturated) was predicted to be altered by 

one or both of the ACPs when expressed with MAD thus indicating the potential 

involvement in UMFAs synthesis and increases the production of target UMFAs. 
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Material and Methods 

General Lab Procedures 

All enzymes, antibiotics and kits used for cloning were obtained from Roche 

diagnostics or New England BioLabs.  General lab reagents, standards and 

solvents for gas chromatography were obtained from Fisher or Sigma Aldrich.  

Bacterial Expression cells lines BL21(DE3)pLysS and Rosetta™(DE3)pLysS 

were obtained from Novagen.  Agrobacterium tumefaciens LBA4404 cell line 

obtained from Takara.  All the primers designed for cloning experiments and RT-

PCR (Appendix 5, Table A5.1) were obtained from Eurofins.  

 

Cloning and Expression in E. coli 

ChloroP (http://www.cbs.dtu.dk/services/ChloroP/) , SignalIP 

(http://www.cbs.dtu.dk/services/SignalP/)  and Psort 

(http://psort.hgc.jp/form.html) 

  servers were used to predict signal peptide sequence of ACPs9. Primers were 

designed to exclude the signal peptide sequence for expression of ACPs in E. 

coli and the ATG site was incorporated at the 5' end (Figure 5.1)9, 202-204.   ACP 1 

and ACP 2 cDNAs cloned in pBluescript SK- were used as templates.  The 5'  

primer with NdeI site and 3' primer with XhoI site were used for amplification of 

these ACPs via standard end point PCR. The corresponding PCR product for 

each ACP was subsequently cloned between the NdeI (5’) and Xho1 (3’) sites of 

the pet22b vector (Novagen) to generate constructs pet22b-ACP 1 and pet22b-
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ACP 2, respectively.  Directional cloning was verified by restriction analysis and 

sequencing of the constructs. 

 

Each ACP was also cloned into the pet3d-MAD construct 75.  For these dual 

constructs, XbaI/SpeI sites, ribosome binding site and ATG were incorporated in 

5' primers and ribosome binding site, stop site and NcoI site were incorporated in 

3' primers (Appendix, Table A5.1).  A ribosome binding site was incorporated for 

both primer sets since the same T7 promoter controlled both the genes.  These 

primers were used to amplify each ACP via touchdown PCR and the PCR 

products were subsequently cloned between XbaI (5') and NcoI (3') sites of 

pet3d-MAD construct to generate dual constructs pet3d-MAD-ACP 1 and pet3d-

MAD-ACP 2, respectively.  Directional cloning was verified via restriction analysis 

and sequencing.  The changes in fatty acid profile as compared to wild type and 

production of UMFA was a proof of expression by the dual constructs. The 

expression of genes is also validated by the fact that MAD, known to produce 

UMFA, was cloned after ACP, thus ensuring transcription of ACP in cell lines in 

which the UMFA are detected. 

 

For expression of all the constructs in E. coli, two cells lines were tested 

BL21(DE3)pLysS and Rosetta™(DE3)pLysS.  Rosetta™(DE3)pLysS  was 

chosen for expression since BL21(DE3)pLysS cells containing the ACP 

constructs did not grow. MAD-pet3d construct was induced with 0.4 mM 

isopropyl β-D-thiogalactopyranoside (IPTG) at 20°C for 4 hours, 8 hours and 18 
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hours for optimizing the induction time. Leaky expression of target transgenes 

was detected in un-induced samples for all genes in the study. 

 

Three biological replicates of all the samples (Rosetta™ (DE3) pLysS, pet22b, 

pet22b-ACP 1, pet22b-ACP 2, pet3d, pet3d-MAD, pet3d-MAD-ACP 1 and pet3d-

MAD-ACP 2 ) were induced with 0.4 mM IPTG for 18 hours at 20°C with 

moderate shaking (200 rpm). Cells were pelleted, frozen at -80°C then freeze 

dried. Dried cell pellets were used to prepare methyl esters for GC analysis.  

 

 
 

 
Figure 5.1.Pelargonium × hortorum acyl carrier protein (ACP) amino acid  
sequences.  Amino acids highlighted in blue are signal peptide sequences 
determined using ChloroP, SignalIP and Psort server9, 202-204  for ACP 1 and 
ACP 2. 
 

Cloning and Expression in Tobacco 

The geranium Δ9 14:0-ACP desaturase was previously cloned into pMON25661 

(Schultz Lab, unpublished).  This construct utilized the CaMV 35S Promoter and 

included the heterologous transit peptide (Arab-SSU1A-transit) and included the 

ACP1 
MASFTANSLSLTSISCSFTPIKAPARTSSLKSVSFSINGNGFSSLRL
RQGPSRFQISCSAKPETVDKVCEIVKKQLALPEGTEVSGDSKFAAL
GADSLDTVEIVMGLEEEFGINVEEESAQNIATVQDAADLIEKLVEKK
APA 

ACP2 
MASFTPNSVSMTSISCSLRPNMAPTMISGMKSASFSINRNGFPSL
RLQQGSSRLQVLCSAKAETVDKVCEIVRKQLAIPTDTEVSGESKFA
ALGADSLDTVEIVMGLEEEFGISVEEESAQSIATVQDAADLIEKLVE
KKDA 
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E9 terminator sequence.  The MAD expression cassette including  promoter and 

termination sequences was digested from MAD-pMON25661 and cloned into the 

NotI site of the pRI201-AN (Takara) dual plant expression vector to create pRI-

MAD,   directional cloning was verified via restriction analysis and sequencing. 

Each ACP was cloned into the NdeI/SalI sites of pRI-MAD using 5’ primers with 

NdeI site and 3’ primers with SaII site (Appendix 5, Table A5.1) via touch down 

PCR.  PCR products for each ACP were subsequently cloned between NdeI (5') 

and SalI (3') sites of pRI-MAD construct to generate dual constructs pRI-MAD-

ACP 1 and pRI-MAD-ACP 1 respectively.  Directional cloning was verified via 

restriction analysis and sequencing. 

Plant expression constructs (pRI201-AN vector, pRI-MAD, pRI-MAD-ACP 1 and 

pRI-MAD-ACP 1) were transformed into Agrobacterium tumefaciens  LBA4404 

via electroporation (Settings: Bacteria- Agr, Volts- 2.2 kV, pulse - 1ms).  

Restriction analysis was used to confirm presence of the constructs in the cell 

line (this was done by transforming the Agrobacterium constructs in E. coli ).  

Wild type tobacco was transformed using the standard leaf disc transformation 

method (Figure 5.2)205 with modification as outlined in Appendix 5.  Kanamycin 

resistant shoots were selected individually and transferred into the rooting media 

with resulting plants transferred to soil (Figure 5.2). 

 

Multiple independent primary transformants were obtained for each construct and 

included pRI-MAD (n=4), pRI201-AN (n=2), pRI-MAD-ACP 1 (n=3) and pRI-

MAD-ACP 2 (n=3). Leaves of each plant were harvested, frozen at -80°C then 
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freeze dried prior to fatty acid analysis via GC.  Fatty acid content of transgenic 

seeds was also analyzed via GC .  Transgenic seeds were also sterilized (10% 

ethanol and 10% bleach) and placed on Murashige and Skoog medium 

containing 100 mg/ml Kanamycin to obtain next generation from primary 

transformants. The plants obtained from this procedure were transferred to pots. 

The leaves and seeds of the next generation plants were harvested and freeze 

dried for further analysis. 

 

Reverse Transcription PCR  

RNA was extracted from leaves of each transgenic plant using Qiagen RNeasy 

Plant Mini Extraction Kit  and RNA quality and quantity was analyzed using 

Nanodrop 2000. RNA samples were DNase treated using Ambion Turbo DNA-

Free TM kit (ThermoFisher) and cDNA was synthesized using SuperScript® III 

First-Strand Synthesis System (Invitrogen).  Primers were designed (Appendix 5, 

Table A5.1) to amplify specific genes from cDNA of each transgenic plant via 

reverse transcription PCR  to confirm the presence of transgene in the tobacco 

plants.  Wild Type cDNA was used as control to confirm the absence of 

transgenes in wild type plants.  
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Figure 5.2. Tobacco leaf disk transformation. Leaf disk transformation was 
essentially as described 205 with modifications. 
 
 

GC analysis  

For quantitative analysis, triheptadecanoin was added as internal standard to 50 

mg of dried transgenic leaves, 50 mg of transgenic seeds or to dried E. coli 

pellets.  For all samples, methyl esters were generated using 1 ml boron 

triflouride (10% in methanol) and 300 µl of toluene was added to increase 

solubility of lipids prior to heating for 45 minutes at 90°C. Samples were cooled 

then quenched with 1 ml water prior to hexane extractions.  Resulting fatty acid 

methyl esters were analyzed by gas chromatography (GC) with an Agilent 5890 
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GC-FID equipped with a 60 m, 0.25 mm, 0.2 µm CP-Sill88 column (Chrompack).  

The column was programmed with spiltless inlet at  250°C, 21.76 psi, 10.3 ml/ml 

flow rate and helium gas.  Oven was set at initial temperature 150°C with ramp to 

250°C at the rate of 2°C /min. Detectors FID were set at 250°C with hydrogen 

flow rate 3 ml/min, air flow rate 400 ml/min and helium flow rate 15 ml/min.  

Three technical replicates (1 µl /injection)  for each biological replicate were used 

for the analysis.  Authentic GC standards C8-C22 ( Sigma Aldrich, Appendix 3, 

Table A3.1) were used as a external analytical standard to identify peaks in the 

experimental samples.  Most peaks within the C8-C22 were further verified by 

comparison of retention times to other single of mixtures of standards.  

Identification of sample peaks was further confirmed by spiking samples with 

authentic standards.  

 

Statistical Analysis 

All analyses were done with R version 3.1.1 (2014-07010). Mixed model 

analyses were done with the lmer function of the lme4 package120, 121. Technical 

replicate effects were modeled as random and nested within each treatment 

multiplied by each biological replicate combination.  Biological replicate values 

were modeled as a random effect and crossed with the fixed Treatment effects.  

Model residuals were found in all cases to satisfy the assumptions of normality 

and homogeneity of variance.  Tukeys multiple comparison contrasts were 

estimated and tested with the multcomp package of R with the single step 

method used for adjusting p-values122.  False discovery rate p-values (FDRp) 
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were computed with the p.adjust function of R.  Correlation analysis was 

performed with the cor.test function of R. The  q-values were computed with the 

qvalue function of the bioconductor package using the default settings123-126. 

 

Results and Discussion 

Expression of Geranium ACP 1 and 2  in E. coli  

 The effect of expressing geranium ACP 1 and 2 on the fatty acid composition of 

E. coli was evaluated.  Since previous work indicated cell lines carrying empty 

foreign vector may alter the fatty acid profile of the bacteria 206 untransformed as 

well as empty vector controls were utilized.   The results of this experiment 

indicated changes in fatty acid profile of E. coli carrying empty vector (Figure 5.3, 

Table 5.1) and thus, all comparisons were made to untransformed as well as to 

cells transformed with empty vector.  In lines expressing ACP 1 no changes in 

the amount of saturated and unsaturated fatty acids was detected while cell lines 

expressing  ACP 2 showed highly significant increases in C12:0, C14:0, C16:0, 

16:1Δ9, 18:1Δ11 and total fatty acid content (Figure 5.3, Table 5.1).  

Both ACP 1 and 2 were found to be highly expressed in trichomes with ACP 2 

showing higher expression than ACP 1 (chapter 2).  Furthermore, ACP 2 is 

phylogenetically more similar to the Coriandrum sativum ACP (chapter 2) that is 

involved in the biosynthesis of petroselinic acid (18:1Δ6, a specific UMFA)34. 

Based on these results, the effect of simultaneous expression of ACP 1 or 2 in 

conjunction with MAD in E. coli was assessed.   
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Co-expression of geranium MAD with ACP 1 or ACP 2 in E. coli 

Expression of a Δ9 14:0-ACP desaturase (MAD) from Pelargonium × hortorum in 

E. coli results in the production of UMFAs (16:1Δ11 and 18:1Δ13) 75.  To examine 

the effect of geranium ACP 1 and 2 on production of 16:1Δ11 and 18:1Δ13, each 

was co-expressed with MAD and compared with controls (Figure 5.4, 5.5 and 

5.6).  Cell lines transformed with dual construct MAD-ACP 1 showed a significant 

decrease in production of all the saturated and unsaturated fatty acids (Figure 

5.4, 5.5, Table 5.2).  Expression of MAD-ACP 1 not only reduced the overall 

mass of both UMFAs but also decreased the overall percentage of UMFAs when 

compared to MAD alone or to MAD-ACP 2 expression lines (Figure 5.6, Table 

5.3). This is not unexpected considering ACP 1 alone (in the absense of MAD) 

also resulted in reduced FAME production in these cell lines (Figure 5.3).  

 

Cell lines transfomed with dual contruct MAD-ACP 2 showed significant 

increases in C12:0, C18:0, 16:1Δ9, 16:1Δ11 (UMFA),18:1Δ11 and the total amount 

of unusual monoenes produced as compared to MAD alone or MAD-ACP 1 

(Figure 5.4, Table 5.2). 
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Figure 5.3. Fatty acid methyl ester content of Rosetta DE3PlysS expressing 
geranium ACP cDNAs.  Average values (n=3) are indicated with error bars 
representing standard deviation of wild type (Rosetta DE3PLysS) and pet22b 
(vector alone), and lines expressing ACP 1 or ACP 2 in pet22b.   
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Table 5.1. FDR (False discovery rate) p-values for fatty acid content of E. coli 
expressing geranium ACP 1 and 2 cDNAs. 

 
FDR p-values are for one to one comparison of each treatment using two factor mixed 
model analysis. Values <0.05 show significant difference in FAMEs between cell lines. 
Rows that show FDR p-value as 0 are highly significant.  
 

 

MAD-ACP 2 also showed an increase in total UMFA but also an increase in total 

saturated fatty acids such that the ratio of unsaturated/ saturates is not different 

than MAD alone or MAD-ACP 1 and  (Figure 5.5, Table 5.2).  Furthermore the 

ratio of UMFAs to unsaturated fatty acids was slightly higher  in MAD-ACP 2 lines 

but not significantly different from MAD alone or MAD-ACP 1 (Figure 5.5,Table 

5.2). 

Additionally, the overall percentage of UMFAs for  MAD-ACP 2 compared to  

MAD-ACP 1 is significantly higher but not different than MAD alone (Figure 5.6, 

Table 5.1). This indicates that MAD-ACP 2  is not preferentially shifting the FA 

profile to increased UMFA in comparison to MAD alone, but is increasing the 

overall mass of fatty acids.   

 

ACP 1 vs.  ACP 2 Wild Type vs. ACP 1 pet22b vs. ACP 1 Wild Type vs. ACP 2 pet22b vs. ACP 2 Wild Type vs. pet22b

C12:0 0 0.01 0.25 0 0 1

C14:0 0 0 2.09E-07 0 0 0

C16:0 0 1 0.24 0 0 0.01

C16:1Δ9 0 1.32E-08 4.19E-09 0 0 0

Cyclopropane 2.20E-05 2.20E-04 6.69E-09 0.99 0.38 0.83

C18:0 0.28 1 0.99 0.74 0.38 1

C18:1Δ11 0 1 1.95E-14 0 1.11E-10 3.53E-14

Total 0 1 0.11 0 0 5.21E-03

Unsaturated/Saturated 0.02 0.0940207 1.36E-04 7.54E-04 7.70E-04 1.69E-04

FDR pvalues for comparison of each treatment

Fatty acids
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Figure 5.4. Fatty acid methyl ester content of Rosetta DE3PlysS co-expressing 
geranium MAD with ACPs cDNAs set 1.  Average values (n=3) are indicated with 
error bars representing standard deviation of wild type (Rosetta DE3PLysS) and 
pet3d (vector alone), and lines expressing MAD, MAD- ACP 1 and MAD-ACP 2.   
 

0.25

0.14

0.25

0.06

0.38

0.0

0.1

0.2

0.3

0.4

0.5

12:0

3.13

2.53

1.40

0.64

3.25

0.0

1.0

2.0

3.0

4.0

16:0

0.05

0.04 0.04

0.01

0.06

0.00

0.02

0.04

0.06

0.08

18:0

0.73

0.62
0.72

0.19

0.84

0.0

0.4

0.8

1.2

Cyclopropane

0.34

1.15

0.71

0.34

1.75

0.0

0.5

1.0

1.5

2.0

16:1Δ9

2.19

3.09 3.17

0.69

4.15

0.0

1.0

2.0

3.0

4.0

5.0

18:1Δ11

0.00 0.00

0.99

0.40

1.76

0.0

1.0

2.0

3.0

16:1Δ11

0.00 0.00

0.53

0.06

0.42

0.0

0.2

0.4

0.6

0.8

18:1Δ13

A B C

D E F

0.64

0.35

0.23

0.10

0.51

0.0

0.2

0.4

0.6

0.8

14:0

G H I

FA
M

E
 μ

g/
ce

ll 
pe

lle
t d

ry
 w

t(
m

g)
FA

M
E

 μ
g/

ce
ll 

pe
lle

t d
ry

 w
t(

m
g)

FA
M

E
 μ

g/
ce

ll 
pe

lle
t d

ry
 w

t(
m

g)



	

	
	

	

128	

 
Figure 5.5. Fatty acid methyl ester content of Rosetta DE3PlysS co-expressing 
geranium MAD with ACPs cDNAs set 2.  Average values (n=3) are indicated with 
error bars representing standard deviation of wild type (Rosetta DE3PLysS) and 
pet3d (vector alone), and lines expressing MAD, MAD- ACP 1 and MAD-ACP 2.   
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Table 5.2. FDR p-values for fatty acid content of E.coli  co-expressing geranium 
MAD with geranium ACP 1 and 2 cDNAs. 

 
FDR p-values are for one to one comparison of each treatment using two factor mixed 
model analysis. Values <0.05 show significant difference in fatty acid amount between 
two genes. Rows that show FDR p-value as 0 are highly significant.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C12:0 0 0 0.99 3.85E-09 0 0 1.60E-04 6.22E-14 0 9.63E-10

C14:0 0 0 0 1.55E-11 0 0 0 1.71E-12 0 0

C16:0 0 0 0 0 0 0 0 0.39 0 0

C16:1Δ9 0 0 1.46E-11 8.88E-16 0 0.99 0 0 0 0

C16:1Δ11 1.52E-13 0 NA NA 0 NA NA NA NA NA

Cyclopropane 1.52E-13 0 0.99 0.91 1.28E-07 4.34E-05 2.00E-03 0.84 0.28 0.87

C18:0 1.52E-13 0 0 0.12 0 0 0 0 0 5.62E-10

C18:1Δ11 1.52E-13 0 0 0.91 0 0 0 0 0 0

C18:1Δ13 0 7.68E-10 NA NA 0 NA NA NA NA NA

Total 0 7.68E-10 0 2.00E-03 0 6.54E-11 0 0 0 4.19E-07

Unsat / Sat 1.40E-06 3.50E-05 0 0 0.78 2.10E-06 1.00E-03 1.00E-07 4.00E-03 1.60E-06

Sum of UMFAs 6.28E-03 0.04 NA NA 4.70E-04 NA NA NA NA NA

UMFAs / Unsat 3.17E-01 0.84 NA NA 0.15 NA NA NA NA NA

C16:1Δ11 / C16:1Δ9 0.25 0.06 NA NA 0.53 NA NA NA NA NA

C18:1Δ13/ C18:1Δ11 9.60E-07 3.00E-03 NA NA 0.38 NA NA NA NA NA

pet3d vs. 
MAD-ACP 1

Wild type vs. 
MAD-ACP 2

pet3d vs. 
MAD-ACP 2

Wild type vs. 
pet3d

FDR p-values for comparison of each treatment

Fatty Acids
MAD vs. 
MAD-ACP 1

MAD vs. 
MAD-ACP 2

Wild type vs. 
MAD

pet3d vs. 
MAD

MAD-ACP 2 vs. 
MAD-ACP 1

Wild type vs. 
MAD-ACP 1
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Figure 5.6. UMFA methyl ester content of Rosetta DE3PlysS co-expressing  
geranium MAD and ACP 1 and 2. Y-axis represents the percentage of UMFA 
produced as compared to total fatty acid content (mean + SEM). Numerals at  
end of each bar represent the average percentage of UMFA in different  
treatments(E. coli containing MAD, MAD-ACP 1 and MAD-ACP 2). X-axis  
represents UMFAs, 16:1∆11,18:1∆13 and sum of both UMFAs. 
 
 
 
 
Table 5.3. FDR p-values for and UMFA content of E. coli  co-expressing 
geranium MAD with geranium ACP cDNAs. 

 
FDR p-values are for one to one comparison of each treatment using two factor mixed 
model analysis. Values <0.05 show significant difference in fatty acid amount between 
two genes.  
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Co-expression of Geranium MAD with ACP 1 and 2 in Tobacco 

To study the biochemical effects of geranium ACP 1 and ACP 2 in a model plant 

system, transgenic tobacco lines were generated with using expression vector 

pRI 201 AN empty vector, pRI 201-AN-MAD, pRI 201-AN-MAD-ACP 1 and pRI 

201-AN-MAD-ACP 2 . Fatty acid analysis was performed on seeds and leaves 

obtained from primary transformants (Figure 5.7 and 5.8; Table 5.4 and 5.5).  

The variation in fatty acid profiles of different treatments was not significant (in 

most cases) due to high amount of variability amongst biological replicates. 

The influence of ACP 1 or 2 expression on UMFA biosynthesis could not be 

properly assessed due absence of UMFA when MAD was expressed.  It is 

possible that UMFA were either produced at undetectable levels since these are 

primary transformants that may have low gene dosage resulting in lower 

transgene expression or  UMFAs were not produced due to loss of transgene 

expression207, 208.  Previous studies have also demonstrated limited accumulation 

of UMFAs in transgenic plants potentially due to lack of other enzyme 

components required  for UMFA production 94.  Additionally, decreased 18:1Δ9   in 

the transgenic leaves expressing MAD alone and MAD with ACP 1 or 2  and 

decreased unsaturated fatty acids of seeds expressing  MAD indicated a 

metabolic effect of MAD expression and may indicate the possibilty of beta-

oxidation as previously repeated 94 (Figure 5.7 and 5.8; Table 5.4 and 5.5). 
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Figure 5.7.Fatty acid methyl ester content of tobacco seeds co-expressing 
geranium MAD with geranium ACP cDNAs.  Average values (n=3) are indicated 
with error bars representing standard deviation of wild type (tobacoo) and 
pRI201-AN (vector alone), and transgenic plants expressing MAD, MAD- ACP 1 
and MAD-ACP 2.   
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Table 5.4. FDR p-values for fatty acid content of tobacco seeds co-expressing 
geranium MAD with geranium ACP cDNAs.  

 
FDR p-values are for one to one comparison of each treatment using two factor mixed 
model analysis. Values <0.05 show significant difference in fatty acid amount between 
two genes.  
 
 
 
 
Table 5.5. FDR p-values for fatty acid content of tobacco leaves co-expressing 
geranium MAD with geranium ACP cDNAs. 

 
FDR p-values are for one to one comparison of each treatment using two factor mixed 
model analysis. Values <0.05 show significant difference in fatty acid amount between 
two genes.  
 
 
 
 
 

C16:0 0.06 4.80E-04 0.97 0.07 0.98 0.99 0.99 0.56 0.99 0.99

C18:0 0.09 4.80E-04 0.97 0.08 0.98 0.99 0.99 0.56 0.99 0.99

C18:1Δ9 0.12 5.20E-03 0.97 0.14 0.98 0.99 0.99 0.57 0.99 0.99

C18:2 0.12 0.02 0.97 0.08 0.98 0.99 0.99 0.57 0.99 0.99

C18:3 1.00E-03 0.09 0.97 0.07 0.98 0.13 0.99 0.57 0.99 0.99

Total 0.12 0.01 0.97 0.08 0.98 0.99 0.99 0.57 0.99 0.99

MAD-ACP 2 vs. 
MAD-ACP 1

Vector vs. 
MAD-ACP 1

Wild Type vs. 
MAD-ACP 1

Vector  vs. 
MAD-ACP 2

Wild Type  vs. 
MAD-ACP 2

Wild type vs. 
vectorFatty Acids

FDR pvalues for comparison of each treatment

MAD vs. 
MAD-ACP 1

MAD vs. 
MAD-ACP 2

Vector vs. 
MAD

Wild Type vs. 
MAD

C16:0 0.48 0.89 0.99 0.14 0.99 0.17 0.99 0.79 0.99 0.13

C18:0 1.81E-05 0.92 0.99 0.037 2.95E-07 3.78E-06 0.83 0.99 0.01 0.02

C18:1Δ9c 0.75 0.34 4.40E-05 8.58E-05 0.99 0.03 0.04 0.47 0.5 0.99

C18:2 0.98 0.89 0.99 0.46 0.99 0.97 0.99 0.99 0.99 0.99

C18:3 0.75 0.89 0.99 0.02 0.99 0.97 0.96 0.99 0.77 0.3

Total 0.75 0.92 0.99 0.16 0.99 0.87 0.99 0.99 0.99 0.3

Vector  vs. 
MAD-ACP 2

Wild Type  vs. 
MAD-ACP 2

Wild type vs. 
vectorFatty Acids

FDR pvalues for comparison of each treatment

MAD vs. 
MAD-ACP 1

MAD vs. 
MAD-ACP 2

Vector vs. 
MAD

Wild Type vs. 
MAD

MAD-ACP 2 vs. 
MAD-ACP 1

Vector  vs. 
MAD-ACP 1

Wild Type  vs. 
MAD-ACP 1
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Figure 5.8. Fatty acid methyl ester content of tobacco leaves co-expressing 
geranium MAD with geranium ACP cDNAs. Average values (n=3) are indicated 
with error bars representing standard deviation of wild type (tobacoo) and 
pRI201-AN (vector alone), and transgenic plants expressing MAD, MAD- ACP 1 
and MAD-ACP 2.   
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associated to UMFA synthesis in geranium.  However, ACP 2 was expressed in 

conjunction with MAD and increased the production (mass) of UMFAs as 

compared to expression of MAD alone.  However the percentage of (UMFA/total 

lipids) of  UMFA  was not significantly different from MAD alone.  ACP 2 is highly 

expressed in trichomes of geranium and its expression is correlated with 

changes in AnAc and UMFA production at different temperatures (Chapter 2, 

Chapter 3).  ACP 2 is also phylogenetically closer to the Coriandrum sativum 

ACP that is involved in the biosynthesis of petroselinic acid 18:1Δ6, a specific 

UMFA (Chapter 2). Collectively, these results provide evidence for ACP 2 being 

a novel isoform involved in UMFA synthesis in trichomes of geranium. 

 

In this study, transgenic tobacco plants expressing geranium MAD along with 

ACP 1 and 2 did not lead to a production of UMFAs or show any significant 

changes in fatty acid profile.  Limited accumation of UMFAs in trangenic plants 

has been observed in literature and these results may be due to low gene 

dosage in the primary transformants or beta oxidation of fatty acids5, 94, 209.  To 

confirm these possibilites, this experiment should  be further investigated by 

evaluating the fatty acid profile of the seeds and leaves obtained from the next 

generation of primary transformants.  It is possible that selection of homozygous 

progeny from next generation may increase the gene dosage and show 

production of UMFAs and help in understanding the roles of ACPs in UMFA 

production. Alternatively, ACP function could be assessed by in vitro biochemical 
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assays analyzing substrates specificity of ACPs or using another model plant like 

Arabidopsis for transgenic assays.  
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CHAPTER 6 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Conclusions 

Unusual monoenoic fatty acids (UMFAs) are interesting to the plant 

biotechnology community due to their wide variety of applications as polymers, 

fuels, nutraceuticals, medicine and renewable sources of energy4. The research 

focus of this dissertation was to study the biosynthesis of specific UMFAs 

(16:1Δ11 and 18:1Δ13) in trichomes (hair-like structures) of Pelargonium × 

hortorum (garden geranium).  Production of these UMFAs in geranium is 

particularly interesting because they are substrates for the production of a 

secondary metabolite called anacardic acid (AnAc).  More specifically, the 

16:1Δ11 and 18:1Δ13 UMFAs are precursors to the AnAc 22:1n5 and AnAc 24:1n5 

congeners that confer pest resistance to garden geranium.  More broadly, AnAc 

are also known to have antifungal, antibacterial and anticancer activities and 

have industrial applications56.   

Geranium glandular trichomes are highly specialized for production of both 

UMFAs and AnAc and are readily isolated as pure cell preparations thus 

providing an ideal model tissue for exploration of the underlying genetics and 



	

	
	

	

138	

biochemistry of UMFA  and AnAc synthesis.  To further investigate the 

biosynthesis of 16:1Δ11 and 18:1Δ13 in geranium trichomes, novel isoforms of the 

fatty acid biosynthesis enzymes including acyl carrier protein (ACP), 3-ketoacyl-

ACP synthase (KAS) and acyl-ACP thioesterase  (TE) were isolated and 

characterized.  Expression profiles of these sequences were analyzed for the 

expected trichome specificity and for correlation of changes in 16:1Δ11 and 

18:1Δ13 as well as changes in derived AnAc 22:1n5 and 24:1n5 in relation to 

changes in temperature.   

 

Identification of FAS enzymes from geranium EST database and testing 

tissue specificity 

Using diverse molecular approaches, a total of 14 FAS enzyme sequences were 

identified.  These included 2 ACP, 3 FAT-A, 3 FAT-B, 4 KAS I, 1 KAS II and 1 

KAS III (Appendix 6, Table 6.1).  Phylogenetic analysis was used to determine 

potential similarity of these sequences to other FAS enzyme sequences known to 

be involved in UMFA biosynthesis in plants.  These results suggested that ACP 

2, KAS Ic, and FAT-A1 protein sequences were in the same clade as the 

respective enzymes ACP, KAS I and FAT-A from Coriandrum sativum that  are 

involved in the biosynthesis of the UMFA petroselinic acid (18:1Δ6).  Thus these 

cDNA sequences could potentially be trichome specific isoforms that involved in 

the synthesis of 16:1Δ11 and 18:1Δ13.  
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Since the UMFAs are only produced in glandular trichomes, expression of 

specific genes involved in this process were expected to display the same tissue-

specific pattern. This approach is supported by the identification of a highly 

trichome specific novel Δ9 14:0-acyl carrier protein (ACP) desaturase (MAD) 

gene.   The MAD gene is responsible for producing myristoleic acid (14:1Δ9) that 

is elongated into 16:1Δ11 and 18:1Δ13 UMFAs. Thus, qRT-PCR was used to 

assess trichome specific expression of target FAS sequences.  Results of qRT-

PCR indicated that ACP 1, ACP 2, KAS Ia/b, KAS Ic, FAT-A1, and FAT-A2 are 

each highly expressed in trichomes compared to the bald pedicle, further 

suggesting their potential role in trichome UMFA metabolism. 

  

Effect of temperature on production of AnAc, UMFAs and gene expression 

RNA-SEQ and qRT-PCR were used to further investigate the association of 

specific FAS enzyme expression with biosynthesis of 16:1Δ11 and 18:1Δ13 and 

derived AnAc 22:1n5 and 24:1n5 at distinct temperatures.  A de novo RNA 

transcriptome was generated from trichomes and bald pedicle tissue of geranium 

at 18°C and 23°C (3 biological replicates/tissue/condition) to assess the effect of 

temperature on gene expression and qRT-PCR was used to  independently 

analyze expression at 18°C, 23°C and 28°C.   RNA-SEQ resulted in 486398 

contigs from the transcriptome and this provided valuable insights into genes 

associated with UMFA metabolism. Examples of these include validation of 

previously identified FAS genes, identification of complete sequences of FAS 

genes and identification of new FAS enzyme sequences.  A few notable 
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examples of this RNA-Seq analysis were the identification of a new FAT-A that is 

highly expressed in trichomes and showed an increase in expression at 23°C 

and the identification of new sequences corresponding to reductases, 

hydroxylases, FAT-s, KASs, PKSs, and KCSs.  Target ACPs, KASs, and TEs 

showed a trend for an increase in expression at 23°C that was further tested and 

validated through qRT-PCR. 

 

In addition to trichome and bald pedicle samples at 18°C and 23°C, samples 

obtained at  28°C were also utilized for qRT-PCR analyses. UMFAs (16:1Δ11 and 

18:1Δ13) and AnAc (22:1n5 and 24:1n5) extracted from all the samples were 

analyzed by GC-FID and HPLC-DAD respectively.  Results from these analyses 

indicated that not only is 23°C  the optimal temperature for UMFA and AnAc 

synthesis compared to 18°C and 28°C but also indicated higher temperature 

negatively affects the production of metabolites.  Production of UMFAs (16:1Δ11 

and 18:1Δ13) was positively correlated with production of AnAc (22:1n5 and 

24:1n5) at all temperatures indicating a relationship between the substrate and 

the metabolite at a given temperature.  Interesting the ratios of AnAc (24:1n5/ 

22:1n5) and UMFAs (18:1Δ13/16:1Δ11) did not how corelation at 28°C and the 

amount  AnAc 24:1n5 was more than AnAc 22:1 at all three temperatures 

whereas the amount AnAc 24:1n5 substrate 18:1Δ13 was less compared to 

16:1Δ11 at all three temperatures. This indicates a possibility of substrate 

preference for 18:1Δ13 by the downstream enzymes for production of AnAc 

24:1n5.  Finally, expression of ACP 1, ACP 2, KAS I-a/b, and KAS I-c were 
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significantly correlated with production of target metabolites at specific 

temperatures (18°C, 23°C and 28°C), further validating their potential 

involvement in UMFA metabolism.  

 

 De novo micro-RNA database 

At the same time the de novo RNA-Seq transcriptome was assembled, a de novo 

micro-RNA database was generated from trichomes at 18°C and 23°C and bald 

pedicle at 23°C (1 replicate/ sample) to identify regulatory genetic factors 

involved in UMFA metabolism.  Detailed correlative analysis of miRNAs to 

transcriptome and metabolites changes was beyond the scope of this 

dissertation.  However, these data are the first known catalog of miRNA 

sequences in glandular trichomes and in geranium.  These sequences can 

provide a starting resource to further explore the regulatory roles of miRNA in 

geranium trichome metabolism, physiology and development.  A total of 337 

micro-RNAs were identified in the de novo micro-RNA transcriptome and their 

potential  targets were predicted using a Plant Small RNA Target Analysis Server 

(psRNA). We have also identified specific micro-RNAs that are highly expressed 

in trichomes and can be chosen as candidates for further study based on target 

predictions provided by the psRNA server. 

 

Co-expression of geranium ACPs with MAD in E. coli and tobacco 

To further elucidate potential function of ACPs in UMFA synthesis, both ACP 1 

and ACP 2 were co-expressed with MAD in E. coli and tobacco. Primary 
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transformants of tobacco (both leaves and seeds) obtained from the transgenic 

plant assay did not show production of UMFAs or any significant changes in the 

fatty acid profile of transformants as compared to wild type plants. Limited 

accumation of UMFAs in trangenic plants has been observed in literature and 

these results may be due to low gene dosage in the primary transformants or 

beta oxidation of fatty acids5, 94, 209.  To confirm these possibilites, this experiment 

should  be further investigated by evaluating the fatty acid profile of the seeds 

and leaves obtained from the next generation of primary transformants.  It is 

possible that selection of homozygous progeny from next generation may 

increase the gene dosage and show production of UMFAs and help in 

understanding the roles of ACPs in UMFA production. Another option is using a 

different model plant like Arabidopsis for trangenic assays. 

 

E. coli assay results indicated that ACP 1, when when expressed with MAD lead 

to reduction in total fatty acids and  ACP 2, when expressed with MAD, increased 

the production of UMFAs and overall fatty acid biosynthesis as compared to 

expression of MAD alone. Neither ACPs was found to affect the specific relative 

proportion of 16:1∆11 or 18:1∆13 UMFAs  ACP 2 is not only highly expressed in 

trichomes of geranium but its expression is correlated with changes in AnAc and 

UMFA production at different temperatures.  Also, ACP 2 is phylogenetically 

closer to Coriandrum sativum ACP that is involved in the biosynthesis of 

petroselinic acid (18:1Δ6, a specific UMFA). Collectively, these results provide 
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strong evidence for ACP 2 being a novel isoform involved in UMFA synthesis in 

trichomes of geranium.  

 

 

Future Considerations 

The de novo RNA and micro-RNA transcriptomes generated for geranium are 

novel platforms for identification of enzyme encoding sequences and 

transcription factors involved in trichome metabolism (UMFA and AnAc 

synthesis).  Transcriptome data can be further analyzed using bioinformatics 

tools like IsoSVM to identify isoforms versus paralogs to study the metabolic 

regulation of genes based on tissue, stage or time specific plant development. 

Temperature studies done for this research can be extended to evaluate other 

environmental factors such as light intensity, moisture, photoperiod, humidity, 

temperature and soil quality to assess the influence of environmental condition 

on production of AnAc and UMFAs. 

 

Studies invovling identification of novel trichome-specific ACP 2 that increases 

the production of UMFA when expressed with MAD can be extended to 

identifying other novel FAS enzymes involved in the same process.  To further 

this work we have designed and optimized primers for expression of FAT-As and 

KASs in both E. coli and tobacco. Additionally, primers have also been designed 

and optimized for expression of enzymes like polyketide synthases and 3-
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ketoacyl-CoA-synthases (that are potentially involved in AnAc synthesis) in 

plants.  

 

Furthermore, small-scale expression and purification of ACP 1 and ACP 2 has 

been optimized and could serve to help generate acyl-ACP substrates for 

biochemical assays or for structural studies by X-ray crystallography.  Such 

protein studies can provide valuable insights into substrate specificity, binding 

affinity, structure and enzymatic interactions of geranium ACPs and similar FAS 

enzymes, thus expanding knowledge about their role in UMFA synthesis.  The 

information obtained from the future research discussed above can potentially 

help in demonstrating the utility of metabolic shuttling of specific enzyme 

isoforms, where a single gene, in the presence or absence of additional specific 

enzymes, could produce three distinct fatty acids (14:1Δ9,16:1Δ11 and 18:1Δ13). 

Furthermore, this will also help in producing UMFAs and/or AnAc at a higher 

level in commodity and transgenic crops with associated applications in the food, 

agriculture, medicinal, chemical and energy industries.  
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 APPENDIX IA 

EXPRESSION AND PURIFICATION OF TWO PELARGONIUM ×  HORTORUM 

ACYL CARRIER PROTEIN ISOFORMS IN E. COLI. 

 

Summary 

An important co-factor in fatty acid biosynthesis is acyl carrier protein (ACP). 

ACP is a conserved carrier of acyl intermediates during fatty acid synthesis. Two 

isoforms of the ACP’s have been identified from a Pelargonium ×  hortorum 

glandular trichome EST database (see description in Chapter 2). The coding 

sequence of each isoforms was cloned in pet22b vector, expression was induced 

in Rosetta (DE3) PLySs cell line and the protein products were purified using Ni-

NTA column chromatography. These recombinant ACP isoforms can be used to 

generate acyl-ACP substrates to determine fatty acid biosynthesis protein 

specificity of substrates based on ACP isoforms.   

 

Material and Methods 

Amplification of ACP 1 and ACP 2   

Gene-specific primers with NdeI restriction site (5' primer) and XhoI restriction 

site (3' primer) were designed for each ACP isoform (Table IA.1).   ACP 1 

primers are 5' - TTC CAG ATT CAT ATG TCG GCC AAA CCA GAG ACT GTG - 
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3'   and 3' - ATG CTC TCG AGA GCA GGA GCC TTC TTC TC - 5',  ACP 2 

primers are 5'- TCG CCT CCA GGT CAT ATG TCG GCC AAA GCA GAG ACT 

GTG- 3' and 3' TCT CCA AAC TCT CGA GAG CAT CCT TCT TCT CAA C- 5'.  

 

Expression construct  

PCR products for each target template were purified using GeneClean Kit III (MP 

Biomedical, LLC) then cloned into pGem T Easy vector according to 

manufacturer's directions (Promega).  Each clone was sequenced in both 

directions and verified to be without sequence errors.  Subsequently, the NdeI 

and XhoI digested fragments were generated by restriction digest, purified and 

cloned into compatible sites of the pet22b vector.  The presence of ACP inserts 

in pet22b after cloning was identified via restriction digest. 

 

Induction assay 

For overexpression of recombinant ACP proteins in pet22b vector, constructs 

were chemically transformed in Rosetta pLysS (DE3) cell line. Three hundred µl 

of overnight culture (2 ml LB supplemented with Carbenicillin 0.1 mg/ml and 

Chloramphenicol 0.030 mg/ml) was used to inoculate  30 ml of LB supplemented 

with the same antibiotics and were grown at 37°C on a rotary platform shaker set 

at 250 rpm.  Protein expression was induced by addition of IPTG to 0.6 mM when 

cells reached an optical density of 0.5-0.8 at 600 nm.  Subsequently, expression 

was further optimized in a similar manner at lower temperatures (25°C).  After 

four hours of induction, cells (1 ml) were collected by centrifugation and cell 



	

	
	

	

162	

pellets were re-suspended in 0.3 ml of Lysis buffer (50 mM Tris-HCl, 5% Glycerol 

and 50 mM NaCl, 7.5 kU/ml Lysozyme, 0.5mM PMSF and 25 U/ml DNase, pH 7-

8).  After lysis, the cells were sonicated on ice (Ultrasonic Homogenizer – Cole 

Parmer Instrument Co.) for at least 2 times for 20 seconds with an interval of 30 

sec.  Protein preparations were made by centrifuging (3000 × g) the sample for 

20 mins at  4°C.  The supernatant was recovered as the soluble protein fraction 

and pellet was kept as the insoluble protein fraction.  Coomassie Plus Protein 

Assay (Pierce, Rockford, IL) was used to estimate protein concentrations.   

Protein was normalized in all the samples and then 30 µg of protein was loaded 

onto a 4-15% gradient Tris-HCl SDS-PAGE gel to check for the expression of the 

protein of interest. Gels were stained in methanol/water/acetic acid (30/60/10; 

v/v/v) containing Coomassie brilliant blue R250. Gels were destained in multiple 

successions of methanol/water/acetic acid (30/60/10; v/v/v) until protein bands 

were visible.  

 

Protein purification 

Cells (5 ml) were harvested after 4 hours from induced and uninduced samples 

then centrifuged (3000 × g)  and stored as pellets at -80°C until subjected to 

purification. Three buffers NPI-10, NPI-20 and NPI-500 were prepared in the lab 

as per Ni-NTA Spin Column Purification Handbook (QIAGEN).  Ni-NTA Spin 

Columns (QIAGEN) was used for purification as described in the handbook for 

Ni-NTA Spin Column Purification of 6xHis-Tagged Proteins under Native 

Conditions from E. coli cell Lysates. 
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Results and Conclusion 

ACP amplification and Induction of recombinant proteins 

PCR amplification resulted in the expected fragment size of 250 bp, these 

fragments were cloned into the expression vector and recombinant molecules 

were verified by restriction digest (Figure A1A.1).  These constructs were 

transformed into Rosetta (DE3)PLySs cell line and induced with IPTG for over-

expression of ACPs.  Both ACP proteins were observed in total protein samples 

that were induced and absent in samples that were not induced (Figure A1A.2 

and A1A.3). Both ACPs were part of the soluble fraction of the total protein 

(Figure A1A.2).  

Figure A1A.1. Cloning of ACP 1 and 2 in pet22b vector.  (A) PCR amplification 
of ACP 1 and ACP 2 from pBluescript construct.  (B) Restrict Digest for verifying 
cloning of ACP in pet22b vector. 
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Figure A1A.2.  Protein gel for ACP 2 overexpression.  (A) ACP 2 protein band 
observed approximately at 13kDa in induced total protein sample.  (B) ACP 2 
protein band observed approximately at 13kDa in induced soluble protein 
sample. 
 
 
Purification of ACP 1 and ACP 2 

Affinity column chromatography yielded 1.2 mg ACP 2 and 0.75 mg of ACP 1.  

Both ACP samples were considered to be pure since the wash fraction obtained 

before the eluting pure protein was clear and no protein was detected using a  

Bradfords assay (Figure A1A.4). The purification protocol led to recovery of  90 

% of ACP 2 and 75% of ACP 1 from the protein bound to the column. (Figure 

A1A.4)  
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 Figure A1A.3. Protein gel for ACP 1 overexpression.  Faint 
 ACP 1 protein band observed approximately at 13kDa in 
 induced total protein sample for both 37°C and 25°C 
 induction experiments. 
 
 

Based on this experiment a large scale purification of these ACP proteins can be 

conducted and pure proteins can be used in either biochemical assays or x-ray 

crystallographic studies of the geranium ACPs.  Such protein studies can provide 

valuable insights into substrate specificity, binding affinity, structure and 

enzymatic interactions of geranium ACPs and thus expanding knowledge about 

their role in UMFA synthesis. 

 

  
 

MarkerRosetta ACP-1

control control controlinduced induced induced
25°37°

14.0kDa

27.0kDa

66.4kDa

ACP11ACP11
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Figure A1A.4. Purified ACP 1 and ACP 2.  (A) ACP 2 protein recovered  
from the column.  (B) ACP 1 protein recovered from the column.  (C) Purified 
ACP 2 and ACP 1 proteins obtained after final wash.  T= Total protein  
sample, I = Insoluble fraction of protein, S = soluble fraction of protein,  
M= Marker, UB= Unbound protein, W= wash, Red Circle- pure ACP 2 protein   
And Blue Circle- pure ACP 1 protein.  

T I S M UB W ACP+2 Protein Amount
Total&Protein 9.67mg
Insoluble 0.9mg
Soluble 8.77mg
Unbound 7.44mg
Bound 1.33mg
ACP&2 1.2mg

T I S M UB W ACP+1 Protein Amount
Total 8.32mg
Insoluble 0.82mg
Soluble 6.9mg
Unbound 5.9mg
Bound 1;mg
ACP;1 0.75mg

A)#

B)!

C)!
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APPENDIX IB 

EXPRESSION OF PELARGONIUM × HORTORUM 3-KETOACYL-COA 

SYNTHASE 2 IN TOBACCO LEAVES. 

 

Summary 

A 3-ketoacyl-CoA synthase  (KCS 2) was isolated from geranium and was found 

to be highly expressed in trichomes and  thus was speculated to be potential 

condensing enzyme invovled in  anacardic acid biosynthesis. To directly 

determine function and to test its involvement in anacardic acid biosynthesis, 

KCS 2 was expressed in tobacco leaves via leaf disc transformation method. The 

primary transformants (T0 plant generation, n=3) were found to be sterile and 

thus did not produce seed to screen next generation for further analysis (Figure 

A2A.1).  Biochemical analyses of tobacco leaves (T0) via HPLC and GC did not 

show any significant change of the fatty acid content or production of anacardic 

acid like compound as compared to the wild type tobacco plants (Figure A2A.2) 

 

Material and Methods 

Gene specific primers that incorporated restriction sites for cloning into the plant 

expression vector (Appendix 5, Table A5.1) were synthesized.  The KCS 2 

coding region was amplified from the EST clone of KCS 2 in pBluescript. The 
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PCR product was subsequently cloned into the NdeI (5') and SalI (3') sites of 

pRI-201AN to generate the pRI-KCS2 plant expression construct.  Directional 

cloning was verified via restriction analysis and sequencing of the construct. 

Plant transformation method, reverse transcription PCR for testing presence of 

KCS2 in primary transfromants, GC and statistical analysis was done as 

described in Chapter 5.  HPLC analysis was done as described in Chapter 3.  

Primers used for reverse transcription are  

5'-TCCGGACGATAACGCCCAAGA-3' and 3'-AACCTTGTCCCCTTTCCTAAGC-

5'. 

 

Results 

Figure A1B.1 Transgenic tobacco plants expressing geranium KCS 2 
(A) Wild type flowers, (B) Wild type seeds, (C) KCS 2 primary transformants 
flowers and (D) KCS 2 primary transformants sterile. 
 

A B 

C D 
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Figure A1B.2.  Fatty acid methyl ester content of tobacco leaves expressing  
geranium KCS 2 cDNAs.  Average values (n=3) are indicated with error bars 
representing standard deviation of wild type (tobacoo), pRI201-AN  
(vector alone) and transgenic plants expressing KCS 2. FDR p-values for one 
to one comparison of each treatment using two factor mixed model analysis.  
p-values <0.05 show significant difference in fatty acid amount between two 
genes.  
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FDR p-values for comparison of each treatment 

Fatty Acids Vector vs.  KCS 2 Wild Type vs.  KCS 2 Wild Type vs. Vector 

C16:0 0.05 1 0.10 

C18:0 0.91 1 0.44 

C18:1Δ9c 0.91 1 0.98 

C18:2 0.91 1 0.95 

C18:3 0.35 1 0.44 

Total 0.05 1 0.13 
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APPENDIX 2  
 
Table A2.1.  Primer sequences for Thioesterase and β ketoacyl-ACP  
Synthase EST  clones used for primer walking analysis.         

            
 
 
 

EST CLONE # PRIMER SEQUENCE 
03F05 5' GGTGATGATGAACCAAGATACT
03F05 3' GCCTGTAATCTAAGGTGATGGT
07A05 5' CAGCTTGGAGTGATGTGATTGA
07A05 3' TGCTGGTTCATGTCCAGATCAG
03C01 5' ACCAAGATACCAGGCGACTTCAG
24B08 5' GACCATTGCCAGTTTGTTGCAG
38EO6 5' GGAAGAATTGGATGTAGACGCG
36C02 5' GCCTGATTGAGTAGCATTGCACG
24B07 5' GTCCCTGTAATGAGGCTGCATCT
40F05 5' ATCCAAATCATCCCGTCCAGGA
30CO1 5' CTGGTGTGCTTGTTGGAATGGGAT
03C01 5' GTACCGTGTGGAGAAGAA
03C01 5' GGATCTTCTAGCTTCGGT
21G11 5' CCACACACTGGAGGCTCTTGTTA
21G11 5' CTGACCCATATTGCCAAG
40F05 5' CTCAGGGACTGTGATCCTA
03F05 5' GTAGGAGCTAGATTGTCC
07A05 5' CACACATAGGTGGCGTTTGA

EST CLONE # PRIMER SEQUENCE 
02B12 5' ATCGACCGATTCGACGCATCA
02B12 3' ACTTCGTGTTGTTGCTTCGTAT
28B11 5' TTGGAGCTGGACTGACTTG
28B11 3' AGTGCCCAGGCTAGTCAGTAA
01B08 5' GAGAGTCATCTGCACCTGGATTCT
24F04 5' ACATCGACGGCAAAAACGACC
09EO3 5' CGGTGTTTTCTGGTGGAGTTCAGA
15G03 5' TGCCGGAGATTTGCTCTCCAA
22B11 5' ATATGACCGATTCAAGGGCCGATG
20H06 5' GCATATCTTCCTTGAAGCCCCA
02B12 3' AGAAGAAAGGCCTCCGGATT
28B11 5' ATCTGGGTTTCGCTCCAATG
28B11 5' GACGGTGATGGCCAAAGACA
28B11 5' GAATCCCATTACATTTCACC
09EO3 5' ACAAACATGGGCTCTGCATTGC
09EO3 5' CCGGTGATCTAGCTGAGGTAAATG
01B08 5' GTAGCGCTGTCTAGTTCGTTTGAG
01B08 3' TGCACATGCTACATCCACAC
20H06 5' TTCGAACACTGATGCGCATC

PRIMER desgin for Thioesterase EST clones

PRIMER desgin for β ketoacyl-ACPsynthase EST clones
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Table A2.2.  Details of sub-cloning for Thioesterase and β ketoacyl-ACP  
synthase. 

 
 
 
Table A2.3.  Primer sequences for Thioesterase and β ketoacyl-ACP  
synthase EST clones used for RACE 

 
 
. 
 
 
Table A2.4. Primer sequences for SYBR Green Assay 

 
 
 
 

GENE EST Clones Restriction Enyme Liagted to vector
TE 03F05 BamHI pBluescript SK minus
TE 24B07 BamHI pBluescript SK minus
TE 24B08 NdeI pGEM®-T Easy Vector
TE 07A05 BamHI pBluescript SK minus
TE 07A05 ApaI pBluescript SK minus
TE 38EO6 NdeI pGEM®-T Easy Vector
TE 36C02 NdeI pGEM®-T Easy Vector
KAS 24F04 EcoRI and BamHI pBluescript SK minus
KAS 28B11 SacI and BamHI pBluescript SK minus

GENE Primer Sequence
FAT-B1 3' GGA CCC AAT AAT CCC ACT GCA GCT GAC AA
FAT-B2 3' GCT GCT ACT GCC GCC TCA TCA TT
FAT-B3 3' GCG GTC CGA TCA GCG CCT ATC TCA TAA
KAS Ic 3' ACA CCG GCA TCT TCT AGA CTC TTG
KAS II 3' TGG ATG TGG CTC GGT CAT GTG ATA

Genes Primer Sequence
5' TGA AGA GAA ATA GAA GAT GGG TGT TC
3' TCG TCT GGA AGC TCT CTC GTC CTC TCC TTA
5' GCA AAG CAA TGG CTC TGA AGC TGA ATG CC
3' TGA CTT GGT CGT AGA ATC CAT CGG ACT CG
5' CAG CTT ATG GCC ATG ACG ATT CCG ATT TCG
3' AAA CTC TTG TAG GTC TTC TCC GTC AAC GGA
5' ACC TAC AAC TCA ATC ATG AAG TGT GAC GTG 
3' GGA AAT ACG AAC TCA CCA CCA TAG CAC TTG
5' CGA CAC CTA CTA CGA AAA GCT C
3' CAA CGA GGC AGT ACC GGA GAG AAT C  
5' GTG GGC ACA ATT CAG TGG TT     
3' GTC TTC AAT ACT CGT CAC G    
5' GGT TTC TCG CTC CTT CAG TTC
3' ACT AGC CTG GGC ACT CGA GAT T   

MAD

SAD

ω3

ACTIN

KAS Ia/b

KAS 1c

KAS III
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Table A2.5. Primer sequences for TaqMan assay. 

 
 
 
 

 

 

 

 

Gene Primer/Probe Sequences
5' GAAACCGAATCGCAGAGCAA
3' GGAAAGTGGTGGTGGTGGA
Probe AATGGCTCTGAAGCTGAA
5' CGCATCCCTCAGCACCTT
3' GGCCGGACTCGTCGTATTC
Probe CAGCAGATGTGGATTT
5' TTCCAGTAGTAGCATCTGCTGCTT
3' CCATTACACCAGTTACTCCAACTTTTC
Probe CATTTCCAAGGTTAATCAT
5' GCTGCGTTTCGCTTGGA
3' GCCCTGGACAGCCCAGTAG
Probe TTGGCTTGTTTGGCC
5' AGAAGAAGGCTCCTGCTTAAATTAGC
3' ACAAATTATAAGCAAGTCCACTAGGCAAA
Probe ATGGAGAAGAAGGATTTTG
5' TTAAAATAGTTTGGAGAGGCAACTG
3' ATAGAAACAGGTGAATTGTGCATGTA
Probe CCGAGACAGTATACTAC
5' TGTCTCTCGCAGCCATTTCA
3' CTGGTTGCGAGAGAGAGAAGAGAA
Probe TCGCCGAAGAACAA
5' TCGAAAACCACTCTCCATTTCTC
3' GTTTTGGAGATGGACGATTTGA
Probe CCCAAACTCACTCTCA
5' CAGGTTTAATGGTACCCCGGTT
3' CATAGGGGCCCGTGACC
Probe CCCAGAATTTATAGACCCATT

FAT-A1

FAT-A2

FAT-A3

SAD

Actin

MAD

ω3

ACP 1

ACP 2



	

	
	

	

173	

 

 
 
 
 

APPENDIX 3 
 

 
Figure 3A.1. Standard curve for 22:1n5 anacardic acid. 
 

 
Figure 3A.2. Standard curve for 24:1n5 anacardic acid. 
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Table A3.1. List of GC standards 

Fatty Acid 
Standards Chemical Name 

Retention 
Time 
(minutes) 

C8:0 Methyl octanoate 1.9 wt. % 7.89 
C10:0 Methyl decanoate 3.2 wt. % 8.31 
C12:0 Methyl dodecanoate 6.4 wt. % 9.96 
C13:0 Methyl tridecanoate 3.2 wt. % 11.12 
C14:0 Methyl myristate 3.2 wt. % 12.53 
C14:1Δ9 Methyl myristoleate 1.9 wt. % 14.01 
C15:0 Methyl pentadecanoate 1.9 wt. % 14.21 
C16:0 Methyl palmitate 13 wt. % 16.17 
C16:1 Methyl palmitoleate 6.4 wt. % 17.70 
C17:0 Methyl heptadecanoate 3.2 wt. % 18.26 
C18:0 Methyl stearate 6.5 wt. % 20.62 
C18:1Δ9t Methyl oleate 19.6 wt. % 21.68 
C18:1Δ9c Methyl elaidate 2.6 wt. % 22.24 
C18:2Δ6c Methyl linoleate 13 wt. % 24.60 
C20:0 Methyl arachidate 1.9 wt. % 25.57 
C20:1 Methyl cis-11-eicosenoate 1.9 wt. % 27.28 
C18:3Δ3 Methyl linolenate 6.4 wt. % 27.57 
C22:0 Methyl behenate 1.9 wt. % 31.61 
C22:1Δ9 Methyl cis-13-docosenoate 1.9 wt. % 33.82 
C18:1Δ11 cis vaccenic acid 22.70 
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Table A3.2. Correlation data for all the candidate genes, AnAc and UMFAs 

 
 

Comparison Name 1 Comparison Name 2 correlation pvalue FDRpvalue qvalues
AA22.mean AA24.mean 0.969 0.000 0.002 0.001
C16c1Delta11 C18c1Delta13 0.978 0.000 0.002 0.001
AA22.mean C16c1Delta11 0.925 0.001 0.010 0.003
AA22.mean C18c1Delta13 0.956 0.000 0.003 0.001
AA24.mean C16c1Delta11 0.935 0.001 0.007 0.003
AA24.mean C18c1Delta13 0.968 0.000 0.002 0.001
AA22.mean 2^(-deltaCTMADTrichm.mean) 0.563 0.146 0.206 0.071
AA22.mean 2^(-deltaCTSADTrichm.mean) 0.719 0.044 0.103 0.035
AA22.mean 2^(-deltaCTw3Trichm.mean) 0.873 0.005 0.039 0.013
AA22.mean 2^(-deltaCTACP1Trichm.mean) 0.785 0.021 0.072 0.025
AA22.mean 2^(-deltaCTACP2Trichm.mean) 0.751 0.032 0.089 0.031
AA22.mean 2^(-deltaCTFATA1Trichm.mean) 0.084 0.843 0.852 0.295
AA22.mean 2^(-deltaCTFATA2Trichm.mean) -0.750 0.032 0.089 0.031
AA22.mean 2^(-DeltaCTMAD_SybrTrichm.mean) -0.665 0.072 0.138 0.048
AA22.mean 2^(-DeltaCTSAD_SybrTrichm.mean) 0.685 0.061 0.126 0.043
AA22.mean 2^(-DeltaCTw3_SybrTrichm.mean) -0.734 0.038 0.092 0.032
AA22.mean 2^(-DeltaCTKASIab_SybrTrichm.mean) 0.658 0.076 0.138 0.048
AA22.mean 2^(-DeltaCTKASIc_SybrTrichm.mean) 0.743 0.035 0.089 0.031
AA22.mean 2^(-DeltaCTKASIII_SybrTrichm.mean) 0.141 0.738 0.793 0.274
AA24.mean 2^(-deltaCTMADTrichm.mean) 0.530 0.177 0.223 0.077
AA24.mean 2^(-deltaCTSADTrichm.mean) 0.577 0.134 0.200 0.069
AA24.mean 2^(-deltaCTw3Trichm.mean) 0.859 0.006 0.045 0.016
AA24.mean 2^(-deltaCTACP1Trichm.mean) 0.811 0.015 0.071 0.025
AA24.mean 2^(-deltaCTACP2Trichm.mean) 0.788 0.020 0.072 0.025
AA24.mean 2^(-deltaCTFATA1Trichm.mean) -0.098 0.817 0.846 0.292
AA24.mean 2^(-deltaCTFATA2Trichm.mean) -0.752 0.032 0.089 0.031
AA24.mean 2^(-DeltaCTMAD_SybrTrichm.mean) -0.645 0.084 0.147 0.051
AA24.mean 2^(-DeltaCTSAD_SybrTrichm.mean) 0.586 0.127 0.193 0.067
AA24.mean 2^(-DeltaCTw3_SybrTrichm.mean) -0.688 0.060 0.126 0.043
AA24.mean 2^(-DeltaCTKASIab_SybrTrichm.mean) 0.545 0.162 0.211 0.073
AA24.mean 2^(-DeltaCTKASIc_SybrTrichm.mean) 0.638 0.089 0.147 0.051
AA24.mean 2^(-DeltaCTKASIII_SybrTrichm.mean) 0.079 0.852 0.852 0.295
C16c1Delta11 2^(-deltaCTMADTrichm.mean) 0.347 0.400 0.464 0.161
C16c1Delta11 2^(-deltaCTSADTrichm.mean) 0.464 0.247 0.298 0.103
C16c1Delta11 2^(-deltaCTw3Trichm.mean) 0.811 0.015 0.071 0.025
C16c1Delta11 2^(-deltaCTACP1Trichm.mean) 0.843 0.008 0.055 0.019
C16c1Delta11 2^(-deltaCTACP2Trichm.mean) 0.824 0.012 0.069 0.024
C16c1Delta11 2^(-deltaCTFATA1Trichm.mean) -0.134 0.752 0.793 0.274
C16c1Delta11 2^(-deltaCTFATA2Trichm.mean) -0.713 0.047 0.105 0.036
C16c1Delta11 2^(-DeltaCTMAD_SybrTrichm.mean) -0.632 0.093 0.147 0.051
C16c1Delta11 2^(-DeltaCTSAD_SybrTrichm.mean) 0.566 0.144 0.206 0.071
C16c1Delta11 2^(-DeltaCTw3_SybrTrichm.mean) -0.674 0.067 0.133 0.046
C16c1Delta11 2^(-DeltaCTKASIab_SybrTrichm.mean) 0.556 0.152 0.206 0.071
C16c1Delta11 2^(-DeltaCTKASIc_SybrTrichm.mean) 0.631 0.093 0.147 0.051
C16c1Delta11 2^(-DeltaCTKASIII_SybrTrichm.mean) 0.158 0.709 0.776 0.268
C18c1Delta13 2^(-deltaCTMADTrichm.mean) 0.362 0.378 0.448 0.155
C18c1Delta13 2^(-deltaCTSADTrichm.mean) 0.504 0.203 0.251 0.087
C18c1Delta13 2^(-deltaCTw3Trichm.mean) 0.789 0.020 0.072 0.025
C18c1Delta13 2^(-deltaCTACP1Trichm.mean) 0.796 0.018 0.072 0.025
C18c1Delta13 2^(-deltaCTACP2Trichm.mean) 0.785 0.021 0.072 0.025
C18c1Delta13 2^(-deltaCTFATA1Trichm.mean) -0.171 0.686 0.767 0.265
C18c1Delta13 2^(-deltaCTFATA2Trichm.mean) -0.769 0.026 0.083 0.029
C18c1Delta13 2^(-DeltaCTMAD_SybrTrichm.mean) -0.662 0.074 0.138 0.048
C18c1Delta13 2^(-DeltaCTSAD_SybrTrichm.mean) 0.556 0.153 0.206 0.071
C18c1Delta13 2^(-DeltaCTw3_SybrTrichm.mean) -0.742 0.035 0.089 0.031
C18c1Delta13 2^(-DeltaCTKASIab_SybrTrichm.mean) 0.544 0.164 0.211 0.073
C18c1Delta13 2^(-DeltaCTKASIc_SybrTrichm.mean) 0.637 0.089 0.147 0.051
C18c1Delta13 2^(-DeltaCTKASIII_SybrTrichm.mean) 0.170 0.688 0.767 0.265
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                                                                 APPENDIX  4  
 

1Trichome-18C_S13 

 

4Trichome-23C_S14 

 
 

7Pedicle-18C_S15 
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                       Figure A4.1. Quality Score for untrimmed miRNAs. 
 
 
  Table A4.1. Description of TruSeq small RNA adapter and primer sequences                             

Name Sequence 

RNA 5’ 
Adapter 

GTTCAGAGTTCTACAGTCCGACGATC 
GATCGTCGGACTGTAGAACTCTGAAC 

RNA 3’ 
Adapter 

TGGAATTCTCGGGTGCCAAGG 
CCTTGGCACCCGAGAATTCCA 

RNA RT 
Primer 

AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAGTCCGA 
TCGGACTGTAGAACTCTGAACGTGTAGATCTCGGTGGTCGCCGTATCATT 

RNA PCR 
Primer 13 

CAAGCAGAAGACGGCATACGAGATTTGACTGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA 
TGGAATTCTCGGGTGCCAAGGAACTCCAGTCACAGTCAAATCTCGTATGCCGTCTTCTGCTTG 

RNA PCR 
Primer 14 

CAAGCAGAAGACGGCATACGAGATGGAACTGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA 
TGGAATTCTCGGGTGCCAAGGAACTCCAGTCACAGTTCCATCTCGTATGCCGTCTTCTGCTTG 

RNA PCR 
Primer 15 

CAAGCAGAAGACGGCATACGAGATTGACATGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA 
TGGAATTCTCGGGTGCCAAGGAACTCCAGTCACATGTCAATCTCGTATGCCGTCTTCTGCTTG 
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     Table A4.2.  Summary of sequence analysis reads. 

Sample Raw 
Reads 

After Primer/ 
Adapter 
Trimming 

After Size 
Trimming 

1Trichome-
18C_S13 

12,894,586 10,947,284 3,723,972 

4Trichome-
23C_S14  

13,838,346 13,047,087 5,302,277 

7Pedicle-18C_S15 15,824,800 7,857,527 3,912,781 
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1Trichome-18C_S13 Adapter Trimmed 

 

1Trichome-18C_S13 Trimmed By Size 

 

4Trichome-23C_S14 Adapter Trimmed 

 

4Trichome-23C_S14 Trimmed By Size 

 
 

7Pedicle-18C_S15 Adapter Trimmed 

 

7Pedicle-18C_S15 Trimmed By Size 

 
            Figure A4.2. Sequence length distribution for trimmed sequences 
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Table A4.3: Pelargonium × hortorum miRNA sequences. 

 
 
 
 

>pxh-miR-425-5p >pxh-miR-319 >pxh-miR-2276-3p
AUGACACGAUCACUCCCGUUGA UUGGACUGAAGGGAGCUCCCU UCUGCAAGUGUCAGAGGCGAGG
>pxh-miR-1246 >pxh-miR-183-5p >pxh-miR-501-3p
AAUGGAUUUUUGGAGCAGG UAUGGCACUGGUAGAAUUCACUGA AAUGCACCUGGGCAAGGAUUCA
>pxh-miR-9 >pxh-miR-34a-5p >pxh-miR-6476a
UCUUUGGUUAUCUAGCUGUAUGA AGGCAGUGUAGUUAGCUGAUUGC UCAGUGGAGAUGAAACAUGA
>pxh-miR-1307 >pxh-miR-128 >pxh-miR-29a
ACUCGGCGUGGCGUCGGUCGUG UCACAGUGAACCGGUCUCUUUU CUAGCACCAUCUGAAAUCGGUU
>pxh-miR-1260 >pxh-miR-345 >pxh-miR-584
AUCCCACCGCUGCCACCA GCUGACUCCUAGUCCAGGGCUCG UUAUGGUUUGCCUGGGACUGA
>pxh-miR-335-3p >pxh-miR-34-5p >pxh-miR-21a-5p
UUUUUCAUUAUUGCUCCUGACC UGGCAGUGUGGUUAGCUGGUUG UAGCUUAUCAGACUGAUGUUGA
>pxh-miR-238 >pxh-miR-7501 >pxh-miR-15
UUUGUACUCCGAUGCCAUUCAGA AUAUCUGAUUCUGACACGAAAAAA UAGCAGCACAUCAUGGUUUACA
>pxh-miR-170-5p >pxh-miR-5532 >pxh-miR-489-3p
UAUUGGCCUGGUUCACUCAGA AUGGAAUAUAUGACAAAGGUGG GUGACAUCACAUAUACGGCAGC
>pxh-miR-190 >pxh-miR-92a-3p >pxh-miR-103-3p
UGAUAUGUUUGAUAUAUUAGG UAUUGCACUUGUCCCGGCCUGU AGCAGCAUUGUACAGGGCUAUG
>pxh-miR-8716 >pxh-miR-156b >pxh-miR-532
AUGUGUCAAAAUGUGAGGCUGUCA UGACAGAAGAGAGUGAGCAC CAUGCCUUGAGUGUAGGACCGU
>pxh-miR-410 >pxh-miR-195 >pxh-miR-2478
AAUAUAACACAGAUGGCCUGU UAGCAGCACAGAAAUAUUGGCA GUAUCCCACUUCUGACACCA
>pxh-miR-828 >pxh-miR-146-5p >pxh-miR-1895
UCUUGCUCAAAUGAGUAUUCCA UGAGAACUGAAUUCCAUAGGCU CCCCCGAGGAGGACGAGGAGGA
>pxh-miR-93 >pxh-miR-172 >pxh-miR-1448
AAAGUGCUGUUCGUGCAGGUAG UGAGAAUCUUGAUGAUGCUGCAU CUUUCCAACGCCUCCCAUAC
>pxh-miR-281-5p >pxh-miR-702-3p >pxh-let-7g
AAGAGAGCUUAUCCGUAGACAG UGCCCACCCUUUACCCCACUCCA UGAGGUAGUAGUUUGUACAGUU
>pxh-miR-15a >pxh-miR-5083 >pxh-miR-397-5p
UAGCAGCACAUAAUGGUUUGUG AGACUACAAUUAUCUGAUCA UCAUUGAGUGCAGCGUUGAUG
>pxh-miR-877 >pxh-miR-31 >pxh-miR-454-3p
GUAGAGGAGAUGGCGCAGGG AGGCAAGAUGCUGGCAUAGCU UAGUGCAAUAUUGCUUAUAGGGU
>pxh-miR-541-5p >pxh-miR-589 >pxh-miR-744
AAGGGAUUCUGAUGUUGGUCACACU UGAGAACCACGUCUGCUCUGA UGCGGGGCUAGGGCUAACAGCA
>pxh-miR-516b >pxh-miR-378-3p >pxh-miR-20
AUCUGGAGGUAAGAAGCACUUU ACUGGACUUGGAGUCAGAAGGC UAAAGUGCUUAUAGUGCAGGUA
>pxh-miR-374-5p >pxh-miR-8-3p >pxh-miR-199a-5p
AUAUAAUACAACCUGCUAAGUG UAAUACUGUCAGGUAAAGAUGUC CCCAGUGUUCAGACUAGCUGUUC
>pxh-miR-827 >pxh-miR-738 >pxh-miR-142-5p
UUAGAUGACCAUCAACAAACA GCUACGGCCCGCGUCGGGA CAUAAAGUAGAAAGCACUAC
>pxh-miR-125 >pxh-miR-4171-5p >pxh-miR-3931-3p
UCCCUGAGACCCUAACUUGUGA UGACUCUCUUAAGGAAGCCA UACUUUGAGUCGGUACGAAUCA
>pxh-miR-301a-3p >pxh-miR-92-3p >pxh-let-7b-5p
CAGUGCAAUAGUAUUGUCAAAGC UAUUGCACUCGUCCCGGCCUGA UGAGGUAGUAGGUUGUGUGGU
>pxh-miR-6478 >pxh-miR-3120 >pxh-miR-20a-5p
CCGACCUUAGCUCAGUUGGUG CACAGCAAGUGUAGACAGGCA UAAAGUGCUUAUAGUGCAGGUA
>pxh-miR-6134 >pxh-miR-5181-3p >pxh-miR-182
UGAGGUAGUAGGAUGUAGA CACUUAUUUUGGACCGGAGGG UUUGGCAAUGGUAGAACUCACACU
>pxh-miR-138 >pxh-miR-548d-5p >pxh-miR-4792
AGCUGGUGUUGUGAAUCAGGC AAAAGUAAUUGUGGUUUUUGCC CGGUGAGCGCUCGCUGGC
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>pxh-miR-30a-5p >pxh-miR-484 >pxh-miR-941
UGUAAACAUCCUCGACUGGAAG UCAGGCUCAGUCCCCUCCCGAU CACCCGGCUGUGUGCACAUGUGC
>pxh-miR-130a >pxh-miR-398 >pxh-miR-167-5p
CAGUGCAAUGUUAAAAGGGCAU UGUGUUCUCAGGUCGCCCCUG UGAAGCUGCCAGCAUGAUCUU
>pxh-miR-275 >pxh-miR-9226 >pxh-miR-5298d
UCAGGUACCUGAAGUAGCGCGCG UCAAGUCCCUGUUCGGGCGCCG UGGAGAUGAUAUGAAGAUGAAAAA
>pxh-miR-550-5p >pxh-miR-28-3p >pxh-miR-429
AGUGCCUGAGGGAGUAAGAGCCC CACUAGAUUGUGAGCUCCUGGA UAAUACUGUCUGGUAAAACCG
>pxh-miR-157a-5p >pxh-miR-171 >pxh-miR-8109
UUGACAGAAGAUAGAGAGCAC UGAUUGAGCCGUGCCAAUAUC GCGCCGCGUGCCGGCCGCGGG
>pxh-miR-169 >pxh-miR-5139 >pxh-miR-625-3p
UAGCCAAGGAUGACUUGCCUA AAACCUGGCUCUGAUACCA GACUAUAGAACUUUCCCCCUCA
>pxh-miR-424-3p >pxh-miR-654-5p >pxh-miR-156aa
CAAAACGUGAGGCGCUGCUAU AAAGGUGGUGGGCUGCGGAGCAUG AUUGGAGUGAAGGGAGCU
>pxh-miR-23-3p >pxh-miR-2111-5p >pxh-miR-156
AUCACAUUGCCAGGGAUUACC UAAUCUGCAUCCUGAGGUUUA CUGACAGAAGAGAGUGAGCAC
>pxh-miR-203 >pxh-miR-653-5p >pxh-miR-423-3p
GUGAAAUGUUUAGGACCACUAG GUGUUGAAACAAUCUCUACUG AAGCUCGGUCUGAGGCCCCUCAGU
>pxh-miR-1128 >pxh-miR-9-5p >pxh-miR-252-5p
UACUACUCCCUCCGUCCCAAA UCUUUGGUUAUCUAGCUGUA CUAAGUAGUAGUGCCGCAGGUAA
>pxh-miR-16a-5p >pxh-miR-5106 >pxh-miR-322-3p
UAGCAGCACGUAAAUAUUGGCG AGGUCUGUAGCUCAGUUGGCAGA AAACAUGAAGCGCUGCAACAC
>pxh-miR-1507-3p >pxh-let-7e >pxh-miR-124b-3p
CCUCGUUCCAUACAUCAUCUAG UGAGGUAGGAGGUUGUAUAGU UAAGGCACGCGGUGAAUGCUGA
>pxh-miR-5168-3p >pxh-miR-135-5p >pxh-miR-27-3p
UCGGACCAGGCUUCAAUCCCU UAUGGCUUUUUAUUCCUAUGUGA UUCACAGUGGCUAAGUUCUGC
>pxh-miR-3607-3p >pxh-miR-192 >pxh-miR-153
ACUGUAAACGCUUUCUGAUG CUGACCUAUGAAUUGACAGCCAG UUGCAUAGUCACAAAAGUGAUG
>pxh-let-7f >pxh-miR-221-3p >pxh-miR-24
UGAGGUAGUAGAUUGUAUAGU AGCUACAUUGUCUGCUGGGUUU UGGCUCAGUUCAGCAGGAACAG
>pxh-miR-218 >pxh-miR-340 >pxh-miR-186
UUGUGCUUGAUCUAACCAUGU UUAUAAAGCAAUGAGACUGAUU CAAAGAAUUCUCCUUUUGGGCU
>pxh-miR-165a-5p >pxh-miR-395 >pxh-miR-840-5p
GAAUGUUGUCUGGAUCGAGG CUGAAGUGUUUGGGGGAACUC ACACUAAAGGACCUAAACUAAC
>pxh-miR-3968 >pxh-miR-160 >pxh-miR-858
CGAAUCCCACUCCAGACACCA UGCCUGGCUCCCUGUAUGCCA UCUCGUUGUCUGUUCGACCUU
>pxh-miR-6483 >pxh-miR-4332 >pxh-miR-8649
UAUUGUAGAAAUUUUCAGGAUC CACGGCCGCCGCCGGGCGCC ACACUGUGGAAGUGGAUCUCUCUC
>pxh-miR-21 >pxh-miR-181a >pxh-miR-7767-5p
UAGCUUAUCAGACUGAUGUUGA AACAUUCAACGCUGUCGGUGA CCCCAAGCUGAGAGCUCUCCC
>pxh-miR-63-3p >pxh-miR-500-3p >pxh-let-7
UAUGACACUGAAGCGAGUUGGAAA AUGCACCUGGGCAAGGAUUCU UGAGGUAGUAGGUUGUAUAGUU
>pxh-miR-2778a-5p >pxh-miR-629-5p >pxh-miR-101
GUUUUUUUGCAUAUCCUGCA UGGGUUUACGUUGGGAGAACU UACAGUACUGUGAUAACUGAAG
>pxh-miR-200a-3p >pxh-miR-8155 >pxh-miR-660
UAACACUGUCUGGUAACGAUGU UAACCUGGCUCUGAUACCA UACCCAUUGCAUAUCGGAGUUG
>pxh-miR-2916 >pxh-miR-3934-5p >pxh-miR-3018
UGGGGACUCGAAGACGAUCAUAU UCAGGUGUGGAAACUGAGGCAG AAAGAAUAGAAAAUCGAAGGUG
>pxh-miR-235-3p >pxh-miR-396 >pxh-miR-8175
UAUUGCACUCGUCCCGGCCUGA UUCCACAGCUUUCUUGAACUU GAUCCCCGGCAACGGCGCCA
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>pxh-miR-4505 >pxh-miR-769 >pxh-miR-4451
AGGCUGGGCUGGGACGGA UGAGACCUCUGGGUUCUGAGC UGGUAGAGCUGAGGACA
>pxh-miR-6813-5p >pxh-miR-141 >pxh-miR-100
CAGGGGCUGGGGUUUCAGGUUCU UAACACUGUCUGGUAAAGAUGG AACCCGUAGAUCCGAACUUGUG
>pxh-miR-26 >pxh-miR-24a-3p >pxh-miR-2170
UUCAAGUAAUCCAGGAUAGGCU UGGCUCAGUUCAGCAGGAACAG ACAGUGAAAUUUUGUAGAGA
>pxh-miR-477a >pxh-miR-393 >pxh-miR-6167
ACUCUCCCUCAAGGGCUUCUG UCCAAAGGGAUCGCAUUGAUCU UACCCAGGUGGAAGCUUUGA
>pxh-miR-148-3p >pxh-miR-193-5p >pxh-miR-403-3p
UCAGUGCACUACAGAACUUUGU UGGGUCUUUGCGGGCGAGAUG UUAGAUUCACGCACAAACUCG
>pxh-miR-3954 >pxh-miR-159 >pxh-let-7d-5p
UGGACAGAGAAAUCACGGUCA UUUGGAUUGAAGGGAGCUCUA AGAGGUAGUAGGUUGCAUAGU
>pxh-miR-5205b >pxh-miR-548ay-5p >pxh-miR-149-5p
CUUAUAAUUAGGGACGGAGGGAGU AAAAGUAAUUGUGGUUUUUGC UCUGGCUCCGUGUCUUCACUCCC
>pxh-miR-1436 >pxh-miR-107 >pxh-miR-5072
ACAUUAUGGGACGGAGGGAGU AGCAGCAUUGUACAGGGCUAUGA CGAUUCCCCAGCGGAGUCGCCA
>pxh-miR-140-3p >pxh-miR-486 >pxh-miR-4286
UACCACAGGGUAGAACCACGG UCCUGUACUGAGCUGCCCCGAG ACCCCACUCCUGGUACC
>pxh-miR-191-5p >pxh-miR-5538 >pxh-miR-7158-3p
CAACGGAAUCCCAAAAGCAGCUG ACUGAACUCAAUCACUUGCUGC CUGAACUAGAGAUUGGGCCCA
>pxh-miR-330 >pxh-miR-142a-5p >pxh-miR-5368
GCAAAGCACACGGCCUGCAGAGA CAUAAAGUAGAAAGCACUACU GGACAGUCUCAGGUAGACA
>pxh-miR-23a-3p >pxh-miR-1839 >pxh-miR-324
AUCACAUUGCCAGGGAUUUCC AAGGUAGAUAGAACAGGUCUUGUU CGCAUCCCCUAGGGCAUUGGUGU
>pxh-miR-168 >pxh-miR-6788-5p >pxh-miR-1582
UCGCUUGGUGCAGGUCGGGA CUGGGAGAAGAGUGGUGAAGA GAAAGAGAGCCAGAACACAG
>pxh-miR-4504 >pxh-miR-394 >pxh-miR-6240
UGUGACAAUAGAGAUGAACAUG UUGGCAUUCUGUCCACCUCC CCAAAGCAUCGCGAAGGCCCACGGCG
>pxh-miR-1910-5p >pxh-miR-421 >pxh-miR-16
CCAGUCCUGUGCCUGCCGCCU AUCAACAGACAUUAAUUGGGCGC UAGCAGCACGUAAAUAUUGGCG
>pxh-miR-195a-5p >pxh-miR-6300 >pxh-miR-5119
UAGCAGCACAGAAAUAUUGGC GUCGUUGUAGUAUAGUGG CAUCUCAUCCUGGGGCUGG
>pxh-miR-1692 >pxh-miR-10a-5p >pxh-miR-5735-3p
UGUAGCUCAGUUGGUAGAGU UACCCUGUAGAACCGAAUUUGU UGGACAACAGGAUAAUGGCGU
>pxh-let-7a >pxh-miR-7475-5p >pxh-miR-5049c
UGAGGUAGUAGGUUGUAUAGUU CCGCCGCCGCCGCGCCCUCC AGACAAUUAUUUUGGGACGGAGG
>pxh-miR-130 >pxh-miR-22 >pxh-miR-1468-5p
CAGUGCAAUGUUAAAAGGGCAUUGG AAGCUGCCAGUUGAAGAACUGU CUCCGUUUGCCUGUUUCGCUG
>pxh-miR-263 >pxh-miR-652 >pxh-miR-1863
AAUGGCACUGGAAGAAUUCACGG AAUGGCGCCACUAGGGUUGUG AGCUCUGAUACCAUGUUAGAUU
>pxh-miR-7 >pxh-miR-7528 >pxh-miR-126a-3p
UGGAAGACUAGUGAUUUUAUUGUU CCGAAAUGCUAAUCUGAAGCUU UCGUACCGUGAGUAAUAAUGCG
>pxh-miR-8938 >pxh-miR-339 >pxh-miR-548a
UUGCGUUCUGGCGGCUGCUGCUUCCUGAGCGCCUCGACGACAGAGCCG AAAAGUAAUUGUGGUUUUUGC
>pxh-miR-166 >pxh-miR-196 >pxh-miR-10
UCGGACCAGGCUUCAUUCCCC UAGGUAGUUUCAUGUUGUUGGG UACCCUGUAGAUCCGAAUUUGU
>pxh-miR-1303 >pxh-miR-3630-3p >pxh-miR-375
UUUAGAGACGGGGUCUUGCUCU UUUGGGAAUCUCUCUGAUGCAC UUUUGUUCGUUCGGCUCGCGUGA
>pxh-miR-1421w-3p >pxh-miR-342-3p >pxh-miR-81a
UGCAUAGUGGGUGAUCUUCUU UCUCACACAGAAAUCGCACCCGUC UGAGAUCAUUGUGAAAGCUAUU
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>pxh-miR-390-5p >pxh-miR-31a-5p >pxh-miR-151-3p
AAGCUCAGGAGGGAUAGCGCC AGGCAAGAUGCUGGCAUAGCUG CUAGACUGAAGCUCCUUGAGG
>pxh-miR-98-5p >pxh-miR-750 >pxh-let-7k-5p
UGAGGUAGUAAGUUGUAUUGU CCAGAUCUAACUCUUCCAGCUC UGAGGUAGUAGAUUGAAUAGUU
>pxh-miR-222 >pxh-miR-301 >pxh-miR-279
AGCUACAUCUGGCUACUGGGUCUC CAGUGCAAUAGUAUUGUCAAAGCA UGACUAGAUCCACACUCAUCC
>pxh-miR-7122a >pxh-miR-106 >pxh-miR-9a
UUAUACAGAGAAAUCACGGUCG UACCGCACUGUGGGUACUUGCUGCU UCUUUGGUUAUCUAGCUGUAUGA
>pxh-miR-210-5p >pxh-miR-767 >pxh-miR-126-3p
CUGUGCGUGUGACAGCGGCUGA UGCACCAUGGUUGUCUGAGCA UCGUACCGUGAGUAAUAAUGCG
>pxh-miR-169b >pxh-miR-146a-5p >pxh-miR-384-5p
UAGCCAAGGAUGACUUGCCUG UGAGAACUGAAUUCCAUAGGC UUGGCAUUCUGUCCACCUCC
>pxh-miR-1957a >pxh-miR-315 >pxh-miR-473
CAGUGGUAGAGCAUAUGAC UUUUGAUUGUUGCUCAGAAGGC ACUCUCCCUCAAGGGCUUCGC
>pxh-miR-850 >pxh-miR-3470b >pxh-miR-482
UAAGAUCCGGACUACAACAAAG UCACUCUGUAGACCAGGCUGG UCUUUCCUACUCCUCCCAUUCC
>pxh-miR-4334-3p >pxh-miR-6222-5p >pxh-bantam
UCCCUGUCCUCCAGGAGCUC CCUGUUUGGAUCAGCCAAGGC UGAGAUCAUUGUGAAAGCUGAUU
>pxh-miR-1511 >pxh-miR-1127 >pxh-miR-184-3p
AACCAGGCUCUGAUACCAUG AACUACUCCCUCCGUCCGAUA ACUGGACGGAGAACUGAUAAGGGC
>pxh-miR-2355-3p >pxh-miR-133 >pxh-miR-872-5p
AUUGUCCUUGCUGUUUGGAGAU UUGGUCCCCUUCAACCAGCUGU AAGGUUACUUGUUAGUUCAGG
>pxh-miR-4492 >pxh-let-7i-5p >pxh-miR-3661
GGGGCUGGGCGCGCGCC UGAGGUAGUAGUUUGUGCUGUU UGACCUGGGACUCGGACAGCUG
>pxh-miR-8523 >pxh-miR-1120b-3p >pxh-miR-8590
GAAAGAUGGUUAUCGUUU UUCUUAUAUUGUGGGACAGAG AUUCCGAUUUGUAGAAAAAAAAAU
>pxh-miR-164 >pxh-miR-1180 >pxh-miR-894
UGGAGAAGCAGGGCACGUGCA UUUCCGGCUCGCGUGGGUGUG CGUUUCACGUCGGGUUCACC
>pxh-miR-535 >pxh-miR-3963 >pxh-miR-317
UGACAACGAGAGAGAGCACGC UGUAUCCCACUUCUGACAC UGAACACAGCUGGUGGUAUCUCAGU
>pxh-miR-574 >pxh-miR-6752-3p >pxh-miR-205
CACGCUCAUGCACACACCCACA UCCCUGCCCCCAUACUCCCAG UCCUUCAUUCCACCGGAGUCUG
>pxh-miR-5054 >pxh-miR-6087 >pxh-miR-169aa
UCCCCACGGUCGGCGCCA UGAGGCGGGGGGGCGAGC UAGCCAAGGAUGACUUGCCUG
>pxh-miR-408-3p >pxh-miR-628-3p >pxh-let-7j-5p
AUGCACUGCCUCUUCCCUGGC UCUAGUAAGAGUGGCAGUCGA UGAGGUAGUAGGUUGUAUAGUU
>pxh-miR-1133 >pxh-miR-320-3p >pxh-miR-26a
CAUAUACUCCCUCCGUCCGAAA AAAAGCUGGGUUGAGAGGGCGA UUCAAGUAAUCCAGGAUAGGCU
>pxh-miR-25 >pxh-miR-5293 >pxh-miR-22a
CAUUGCACUUGUCUCGGUCUGA GAUGAAGAAGUGGAAGGAAGAAGA AAGCUGCCAGUUGAAGAACUGU
>pxh-miR-502 >pxh-miR-99 >pxh-miR-27a-3p
AAUGCACCUGGGCAAGGAUUCA AACCCGUAGAUCCGAUCUUGU UUCACAGUGGCUAAGUUCCGC
>pxh-miR-530-5p >pxh-miR-194 >pxh-let-7c
UGCAUUUGCACCUGCACCUA UGUAACAGCAACUCCAUGUGGA UGAGGUAGUAGGUUGUAUGGUU
>pxh-miR-4995 >pxh-miR-395a-3p >pxh-miR-3535
AGGCAGUGGCUUGGUUAAGGG UGAAGUGUUUGGGGGAACUC UGGAUAUGAUGACUGAUUACCUGAGA
>pxh-miR-276 >pxh-miR-191a
UAGGAACUUCAUACCAUGCUC CAACGGAAUCCCAAAAGCAGCUG
>pxh-miR-399 >pxh-miR-467f
UGCCAAAGGAGAGUUGCCCUA AUAUACACACACACACCUACA
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Table A4.4. Normalized read counts for miRNA found in all three conditions.  

 

miRNA Trichome 18°CTrichome 23°C Bald Pedicle 23°C TOTAL
pxh-miR-166 75254.24 138785.63 144453.31 358493.18
pxh-miR-319 53559.32 89219.33 143655.23 286433.88
pxh-miR-1128 11525.42 29739.78 16759.78 58024.98
pxh-miR-396 10169.49 23543.99 22346.37 56059.85
pxh-miR-390-5p 12881.36 22304.83 19154.03 54340.22
pxh-miR-393 10847.46 17348.20 12769.35 40965.01
pxh-miR-21a-5p 16271.19 7434.94 15961.69 39667.82
pxh-miR-21 16271.19 7434.94 15961.69 39667.82
pxh-miR-21a-5p 14915.25 7434.94 16759.78 39109.98
pxh-miR-21 14915.25 7434.94 16759.78 39109.98
pxh-miR-894 12203.39 19826.52 6384.68 38414.58
pxh-miR-168 8813.56 9913.26 15163.61 33890.43
pxh-miR-159 9491.53 12391.57 11971.27 33854.37
pxh-miR-165a-5p 6779.66 14869.89 11971.27 33620.82
pxh-miR-827 8813.56 19826.52 4788.51 33428.58
pxh-miR-5083 10169.49 19826.52 2394.25 32390.26
pxh-let-7f 11525.42 8674.10 10375.10 30574.63
pxh-miR-403-3p 4745.76 13630.73 11971.27 30347.76
pxh-let-7 12881.36 6195.79 10375.10 29452.24
pxh-let-7a 12881.36 6195.79 10375.10 29452.24
pxh-let-7j-5p 12881.36 6195.79 10375.10 29452.24
pxh-miR-3630-3p 8813.56 17348.20 2394.25 28556.02
pxh-miR-1448 4745.76 9913.26 12769.35 27428.38
pxh-miR-10a-5p 6101.69 3717.47 16759.78 26578.94
pxh-miR-10 7457.63 1239.16 17557.86 26254.65
pxh-miR-398 11525.42 7434.94 7182.76 26143.13
pxh-miR-397-5p 7457.63 11152.42 7182.76 25792.80
pxh-let-7 11525.42 4956.63 7980.85 24462.90
pxh-let-7a 11525.42 4956.63 7980.85 24462.90
pxh-miR-182 9491.53 4956.63 9577.02 24025.17
pxh-miR-156b 8135.59 8674.10 7182.76 23992.46
pxh-let-7 11525.42 4956.63 7182.76 23664.81
pxh-let-7j-5p 11525.42 4956.63 7182.76 23664.81
pxh-miR-156b 8135.59 8674.10 6384.68 23194.37
pxh-miR-156 8135.59 8674.10 6384.68 23194.37
pxh-miR-92a-3p 9491.53 6195.79 7182.76 22870.07
pxh-miR-5049c 4067.80 13630.73 4788.51 22487.04
pxh-miR-26 9491.53 4956.63 7980.85 22429.00
pxh-miR-26a 9491.53 4956.63 7980.85 22429.00
pxh-miR-26 9491.53 4956.63 7980.85 22429.00
pxh-miR-26a 9491.53 4956.63 7980.85 22429.00
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miRNA Trichome 18°CTrichome 23°C Bald Pedicle 23°C TOTAL
pxh-miR-1133 2711.86 13630.73 5586.59 21929.19
pxh-miR-6478 8135.59 11152.42 2394.25 21682.26
pxh-miR-191-5p 10847.46 3717.47 4788.51 19353.44
pxh-miR-191-5p 10847.46 3717.47 4788.51 19353.44
pxh-miR-191a 10847.46 3717.47 4788.51 19353.44
pxh-miR-27-3p 7457.63 7434.94 3990.42 18882.99
pxh-miR-2916 4067.80 9913.26 4788.51 18769.56
pxh-miR-30a-5p 6101.69 6195.79 6384.68 18682.16
pxh-let-7i-5p 8135.59 2478.31 6384.68 16998.58
pxh-miR-5168-3p 1355.93 4956.63 10375.10 16687.66
pxh-miR-408-3p 6779.66 7434.94 2394.25 16608.86
pxh-miR-235-3p 6779.66 4956.63 4788.51 16524.80
pxh-miR-92-3p 6779.66 4956.63 4788.51 16524.80
pxh-miR-8175 7457.63 7434.94 1596.17 16488.74
pxh-miR-181a 9491.53 3717.47 3192.34 16401.34
pxh-miR-535 1355.93 4956.63 9577.02 15889.58
pxh-miR-2478 5423.73 8674.10 798.08 14895.92
pxh-miR-7122a 2033.90 8674.10 3192.34 13900.34
pxh-miR-27a-3p 6101.69 2478.31 3990.42 12570.43
pxh-miR-858 2711.86 6195.79 3192.34 12099.99
pxh-miR-320-3p 3389.83 4956.63 3192.34 11538.80
pxh-miR-151-3p 4067.80 2478.31 4788.51 11334.62
pxh-miR-103-3p 5423.73 2478.31 3192.34 11094.38
pxh-miR-107 5423.73 2478.31 3192.34 11094.38
pxh-miR-22 7457.63 1239.16 1596.17 10292.95
pxh-miR-22a 7457.63 1239.16 1596.17 10292.95
pxh-miR-22 7457.63 1239.16 1596.17 10292.95
pxh-miR-22a 7457.63 1239.16 1596.17 10292.95
pxh-miR-477a 2711.86 2478.31 4788.51 9978.69
pxh-miR-5368 5423.73 3717.47 798.08 9939.29
pxh-let-7e 3389.83 2478.31 3990.42 9858.57
pxh-let-7d-5p 5423.73 1239.16 3192.34 9855.22
pxh-miR-167-5p 2711.86 6195.79 798.08 9705.74
pxh-miR-171 2033.90 4956.63 2394.25 9384.78
pxh-miR-1910-5p 2033.90 4956.63 2394.25 9384.78
pxh-miR-221-3p 2711.86 4956.63 1596.17 9264.66
pxh-let-7b-5p 4067.80 2478.31 2394.25 8940.37
pxh-miR-172 2033.90 2478.31 3990.42 8502.64
pxh-miR-16a-5p 4745.76 1239.16 2394.25 8379.17
pxh-miR-16 4745.76 1239.16 2394.25 8379.17
pxh-miR-16a-5p 4745.76 1239.16 2394.25 8379.17
pxh-miR-16 4745.76 1239.16 2394.25 8379.17
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miRNA Trichome 18°CTrichome 23°C Bald Pedicle 23°C TOTAL
pxh-miR-423-3p 4067.80 2478.31 1596.17 8142.28
pxh-miR-141 2033.90 1239.16 4788.51 8061.56
pxh-miR-170-5p 2033.90 4956.63 798.08 7788.61
pxh-miR-93 4067.80 1239.16 2394.25 7701.21
pxh-miR-375 2711.86 2478.31 2394.25 7584.43
pxh-miR-125 3389.83 2478.31 1596.17 7464.31
pxh-miR-157a-5p 2033.90 3717.47 1596.17 7347.54
pxh-miR-222 2711.86 3717.47 798.08 7227.42
pxh-miR-5072 1355.93 4956.63 798.08 7110.65
pxh-miR-5181-3p 1355.93 4956.63 798.08 7110.65
pxh-miR-160 1355.93 2478.31 3192.34 7026.59
pxh-miR-98-5p 4067.80 1239.16 1596.17 6903.12
pxh-miR-23a-3p 2711.86 2478.31 1596.17 6786.35
pxh-miR-8109 2033.90 3717.47 798.08 6549.46
pxh-miR-25 2711.86 1239.16 2394.25 6345.28
pxh-miR-24 3389.83 1239.16 1596.17 6225.16
pxh-miR-24a-3p 3389.83 1239.16 1596.17 6225.16
pxh-miR-24 3389.83 1239.16 1596.17 6225.16
pxh-miR-24a-3p 3389.83 1239.16 1596.17 6225.16
pxh-miR-100 4067.80 1239.16 798.08 6105.04
pxh-miR-164 1355.93 1239.16 3192.34 5787.43
pxh-miR-425-5p 2033.90 1239.16 2394.25 5667.31
pxh-miR-941 1355.93 2478.31 1596.17 5430.42
pxh-bantam 2033.90 2478.31 798.08 5310.30
pxh-miR-146-5p 2033.90 1239.16 1596.17 4869.22
pxh-miR-28-3p 2711.86 1239.16 798.08 4749.11
pxh-miR-183-5p 1355.93 1239.16 1596.17 4191.26
pxh-miR-301a-3p 1355.93 1239.16 1596.17 4191.26
pxh-miR-301 1355.93 1239.16 1596.17 4191.26
pxh-miR-301a-3p 1355.93 1239.16 1596.17 4191.26
pxh-miR-301 1355.93 1239.16 1596.17 4191.26
pxh-miR-101 2033.90 1239.16 798.08 4071.14
pxh-miR-1507-3p 677.97 2478.31 798.08 3954.37
pxh-miR-205 677.97 2478.31 798.08 3954.37
pxh-miR-584 677.97 2478.31 798.08 3954.37
pxh-miR-482 677.97 1239.16 1596.17 3513.29
pxh-miR-424-3p 1355.93 1239.16 798.08 3393.17
pxh-miR-486 1355.93 1239.16 798.08 3393.17
pxh-miR-81a 1355.93 1239.16 798.08 3393.17
pxh-miR-1421w-3p 677.97 1239.16 798.08 2715.21
pxh-miR-395 677.97 1239.16 798.08 2715.21
pxh-miR-395a-3p 677.97 1239.16 798.08 2715.21
pxh-miR-395 677.97 1239.16 798.08 2715.21
pxh-miR-395a-3p 677.97 1239.16 798.08 2715.21
pxh-miR-4995 677.97 1239.16 798.08 2715.21
pxh-miR-7528 677.97 1239.16 798.08 2715.21
pxh-miR-872-5p 677.97 1239.16 798.08 2715.21
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APPENDIX 5 
 
 

Table A5.1. Primer Sequences for E. coli and Tobacco Assay 
End Enzyme 

 Site 
Primer Sequence Description 

5' NdeI GCA TCG ACA TAT GTC GGC CAA ACC 
AGA GAC TGT G                        

ACP 1 in 
pet22b 

3' XhoI CAT GTC TCG AGA GCA GGA GCC TTC 
TTC TC                                         

5' NdeI GCA TGA TCA TAT GTC GGC CAA AGC 
AGA GAC TGT G                           

ACP 2 in 
pet22b 

3' XhoI ACG ATC TCG AGA GCA TCC TTC TTC 
TCA AC                                              

5' SpeI AGG GCC ACT AGT GAA GGA GAT TTC 
TAT GTC GGC CAA ACC 
 

ACP 1 in  
pet3d-MAD 

3' NcoI CAA AAT CCA TGG TCT CCA CTC CTT 
CTA ATT TAA GCA GG 
 

5' XbaI CAA GGG TCT AGA CGG AAG GAG GTT 
CTC ATG TCG GCC AAA GC 
 

ACP 2 in 
pet3d-MAD 

3' NcoI TGT CTC CCA TGG TTG CCT CTC CTT 
CCT ATT TTA AGC ATC C 
 

5' NdeI CAG ATC TCT CAT ATG GCT TCG TTC 
AC 

ACP 1 in 
pRI201AN-
MAD 3' SalI TCC ATC CGT CGA CAT TTA AGC AGG 

AGC CTT 
5' NdeI CCA ATC TAC ATA TGG CTT CCT TTA C ACP 2 in 

pRI201AN-
MAD 

3' SalI CCT CTC CGT CGA CTT TTA AGC ATC 
CTT CTT 

5' N/A GCC ACG ACG GGC GTT CCT T RT-PCR 
pRI201-AN 
Kanamycin 

3' N/A GAG TAC GTG CTC GCT CGA T RT-PCR 
pRI201-AN 
Kanamycin 

5' N/A TGA GAG CCC GTG GGC AGT TT RT-PCR 
pRI201-AN 
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MAD 
3' N/A GGC GAT GGT ACC GCA TAT TT RT-PCR 

pRI201-AN 
MAD 

5' N/A  TAG CTC TTC CAG AGG GAA RT-PCR 
pRI201-AN 
ACP 1 

3' N/A CTT TCC TCT TCC ACG TTT RT-PCR 
pRI201-AN 
ACP 1 

5' N/A  GGC TAT TCC AAC TGA TAC RT-PCR 
pRI201-AN 
ACP 2 

3' N/A  CTT TCC TCT TCG ACA CTA RT-PCR 
pRI201-AN 
ACP 2 
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APPENDIX 6 
 
 

Table A6.1.  Sequences of fatty acid genes of Pelargonium × hortorum. 
Gene 

designation 
Complete nucleotide sequence (5' to 3') 

PxhACP 1 cctcgtgccgcacaccctttgtgatctccgccccaaatctcttctcttgcgcctccttctccaccaatatctcagatctct
acaatggcttcgttcacagctaattctctttccctcacctccatctcctgctctttcacacctatcaaggcacctgccag
gacctccagtcttaaatctgtttcattctccatcaacgggaatggcttttcatctcttaggttacgacaagggccatctc
gcttccagatttcttgttcggccaaaccagagactgtggacaaggtgtgtgaaattgtgaagaagcaattagctctt
ccagagggaactgaagtctcaggagattcaaagtttgctgcacttggagctgattctctcgacacggttgagattgt
gatgggacttgaggaggaattcgggataaacgtggaagaggaaagtgctcagaacattgccaccgttcaagat
gctgcagatctgattgagaagctggtggagaagaaggctcctgcttaaattagcatggatggagaagaaggattt
tgattaaatttgcctagtggacttgcttataatttgtttttgttgttccctacatgtttaactggaacaaccctgccctgtgga
tttttagcttagc 

PxhACP 2 ctttgtgctctccgcccccatctctctctcctcctcttccccaccatctcagatttctctcctctcctctcctctctgctccaat
ccaatctatcaatggcttcctttactcccaattctgtttctatgacctccatctcctgttccttgaggccgaacatggccc
ctaccatgatctctggtatgaaatcagcatccttctccattaacaggaatggctttccatctcttaggttacaacaagg
gtcatctcgcctccaggttctctgttcggccaaagcagagactgtggacaaggtgtgtgaaatagtgaggaagca
attggctattccaactgatactgaggtctcaggagagtcaaagtttgctgcacttggagctgattctcttgacacggtt
gagatagtgatgggacttgaggaagaatttgggattagtgtcgaagaggaaagtgctcagagtattgccaccgtt
caagatgctgctgatctgattgagaagctcgttgagaagaaggatgcttaaaatagtttggagaggcaactgtcc
gagacagtatactactatgaactttgattagtatctatattacatgcacaattcacctgtttctattggaggcatggcatt
gcggcattctcttgttgtttctttatatacctagacgaatttctgtgccatgtttaatttaatttttatggtgagttgggatttag
cacaaaagaaaaaaaaaaaaaaaaaaaaaaaaaggggg 

PxhFAT-A1 cccctttgatgtctggaaagaaagtttcgattttgatccaaagagtcacacccaaccacgtaatttcagaccaaacc
cagtggcatttttgcctcctctgacccttttatcgtcttcctcggtcccatcgagtccctcctcgtcaattcccattcctctat
aacaccaccaaaacccatgtgaattgtgatgtctctcgcagccatttcagctctcactcttgcttgacctcgccgaag
aacaaccactctattctcttctctctctcgcaaccagaaatgttgaagctttcttgcaatgccacggactgtcagattc
aagccctagctcaatgcagatctattgttaggcctcgccgccggaacggcgtcttttgctgctcgccggtttctcggg
cggctccaattgtgtctgtggtgtcggaccggacggtggaagttgttggcggcggcggttcggggagtttggcgga
ccggctcagattggggagcttgaccgataatgggttgtcgtacacggaaaagtttattgtgaggtgttacgaggtcg
ggattaacaagactgccactgtggagaccattgccaatttgcttcaggaagttggatgtaaccatgctcagagcgtt
ggattttcaacagatgggtttgcaacaaccctcacgatgagaaagttgcatctcatatgggttactgctcgcatgca
cattgaaatatacaaataccctgcttggagtgacgtgattgaaatagagacatggtgtcaaagtgaaggaagaat
cggaactagacgtgattggattctgaaggactatggtactggtcaagttattgggagggctacaagcaagtgggt
gatgatgaaccaagatactaggcgacttcagaaagttaatgatgatgtcagagatgagtatttggttttctgtccac
gagaaccaagattagcatttccagagaagaacaatagcagcttaaggaaaatatcaaagctcgaggatcctgc
tcagtattccaggctgggacttatgcctagaagagctgatctggacatgaaccagcatgttaacaatgttgcatata
ttggatgggttctggagagcatgccccaagaaatcattgacactcatgaactacaaaccatcaccttagattacag
gcgggaatgccaacaagacgacatagtagattccctgactggcgtcgaacaaggcgagggcagtaaagcgct
ttccaatcttcaaggagcaaacgggtatgctggagctgcaccagataagaaaaaagaccgccttcagtttttgcat
ctattgagattggcaggcgacgggcttgaaataaacagggggcgcactgagtggagaaaaaagccagctaga
taagaaaaaaggcgacgaaagcgtagttgtttcttccaacgtttcttgcttgcttgtagttttgagagattttcttcgtttat
tttccttagaaagggtttttgctctgtattgatgtgcgtagtaggagctagattgtccatttatttaaagcctctttgatcatc
tgttgtgaaacttgaagtcactggtctttggaagattgtacttgaaagtaccaatccctcaaactcagatcactcatttg
ttgtactattaatttttctctttaagctaaatttgcgctgcagccgcgggggggatcca 

PxhFAT-A2 gcgccatgaatgttttcctatttaagctcgaaaaccactctccatttctctcccaaactcactctcacttcaaatcgtcc
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atctccaaaaccctaaatgttgaacctttcgtgcaatgctactcaatctctagccctaaatgtctcttattcctctcgccg
acgccgacgaaacggtgtcgttttttgctctccggtttctcgggccgggccggttctgtcggtcgagtcggaccgggt
gagatcggggagaatggcggaggatgggttgtcgtttacggagaagtttgtcgtgaggagctatgaggtcggaat
taacaaaactgccactgttgagaccattgccagtttgttgcaggaaactggatgtaaccacgtacaaagcacggg
actttcaaccgatgggttcgggacaacccccatcatgaggaaactgcatctcatatgggtaacttctcgcatgcac
atcgaaatatacaaatacccagcttggagtgatgtgattgaaatagagacgtgggcccaaggtgaaggaagaa
ttggatgtagacgcgattggattatgaaagagtatggttctggtcaagttatcgggagagcttcaagcaagtgggtg
aggatgaaccaagataccaggcgacttcagaaaattaatgatgatatcagggacgaggtttcggttttctctccaa
gagagttaagattagcatttccagaggcgaacaatagcagtttaaggaaaataccgaagctagaagatcccgct
caatattctagactgggacttatgcctagaagagctgatctggacatgaaccagcacgttaacaatgtcgcctatat
tggatgggttctagagggcttgcctcaagaagtcatcgacacccacgaattacaaaccatcaccttagattacag
acgggaatgcaaacaggatgacatggtcgattccctcaccagccccgaactagccaagaataatggtacaac
agtttcagctcttctcggatccaatgggtctgcttcggctgcaagagataagaaacaaaaccgtcttcagtttttgca
cttactgagacaatcaggcgatgggcttgaaataaacagagggcgtaccgtgtggagaagaaaacccgcaag
ataacgctctcgaacctcgttagtttgtatttttatgagtaacatgtgttttctatacatattacgttctccattgtatctacttc
gatcacgtgtcaggttgagaagtgagtcaagtcgttgtgcgttacgaggatatgtgggagaagtgacagaggctc
gattgaataactgtcagttccttgtattcaaactccgtatggatagttcaaatgttgtattttagtttttgccctctaggcac
acataggtggcgtttgattgcatggatatgaaagtggattggatttcgaaatctattatattgtctaatccaatgtttgat
gacaacgattgattggatttcgaaatccattatgtggtttttatccatcatatgatggataaaataatccaagggtacc
ctcttgtattacgatggattggatatagaatcagatcttattcaagggaccagtgc 

PxhFAT-A3 aaggggggtttctgttttccccagggaaaggggtggcacaggtttaatggtaccccggtttccagccgacttgtaaa
ggcgcccagaatttatagacccattggggaaatgggtcacgggcccctatgttgacctttcgtgcatgctactcaat
ctctagccctaaatgtctcttattcctctcgccgacgccgacgaaacggtgtcgtttttttgctctccggtttctcgggcc
gggccggttctgtcggtcgagtcggaccgggtgagatcggggagaatggcggaggatgggttgtcgtttacgga
gaagtttgtcgtgaggagctatgaggtcggaattaacaaaactgccactgttgagaccattgccagtttgttgcagg
aaactggatgtaaccacgtacaaagcacgggactttcaaccgatgggttcgggacaacccccatcatgaggaa
actgcatctcatatgggtaacttctcgcatgcacatcgaaatatacaaatacccagcttggagtgatgtgattgaaat
agagacgtgggcccaaggtgaaggaagaattggatgtagacgcgattggattatgaaagagtatggttctggtc
aagttatcgggagagcttcaagcaagtgggtgaggatgaaccaagataccaggcgacttcagaaaattaatga
tgatatcagggacgaggtttcggttttctctccaagagagttaagattagcatttccagaggcgaacaatagcagttt
aaggaaaataccgaagctagaagatcccgctcaatattctagactgggacttatgcctagaagagctgatctgg
acatgaaccagcacgttaacaatgtcgcctatattggatgggttctagagggcttgcctcaagaagtcatcgacac
ccacgaattacaaaccatcaccttagattacagacgggaatgcaaacaggatgacatggtcgattccctcacca
gccccgaactagccaagaataatggtacaacagtttcagctcttctcggatccaatgggtctgcttcggctgcaag
agataagaaacaaaaccgtcttcagtttttgcacttactgagacaatcaggcgatgggcttgaaataaacagagg
gcgtaccgtgtggagaagaaaacccgcaagataacgctctcgaacctcgttagtttgtatttttatgagtaacatgt
gttttctatacatattacgttctccattgtatctacttcgatcacgtgtcaggttgagaagtgagtcaagtcgttgtgcgtt
acgaggatatgtgggagaagtgacagaggctcgattgaataactgtcagttccttgtattcaaactccgtatggata
gttcaaatgttgtattttagtttttgccctctaggcacacataggtggcgtttgattgcatggatatgaaagtggattgga
tttcgaaatctattatattgtctaatccaatgtttgatgacaacgattgattggatttcgaaatccattatgtggtttttatcc
atcatatgatggataaaataatccaagggtaccctcttgtattacgatggattggatc 

PxhFAT-B1 ggtaatattccttcttcttctaaaaaatataggtattgttatatcatggcagattgtcagctgcagtgggattattgggtcc
attgtctaatgataaacaattcatcaagttatttgggggaataagtcgcaaaaacttatatactaggcggcgtctagt
ttgtacaaaagttaagattcatggtgatctaacagagaagaagcagagtgagataaaagtgttggcaagaaag
attgatccatttaaaggaaagttggttcagggtgggattgttttcaaccaatacttctcaattagatcataccaggttga
caacgaggccaaagcttccatttgggccataatgaatattttacaggactcagcacttaaccacagtaggactac
gggactattggctaatggttttgggtcatcaccagagatgaccaaaaggaagttggtatgggttgttcacacaaca
catattgtggtggacaactatccttcatggggcgatgttgttcaggtagacaaatggttttgtgcatcacaaaagagc
agtactttgcgttctgattggcttctctctgatcctaacacaggaaaacctttggttcgagcaagcactaagttagtgat
gatgaacacggagacaagaaagttttccaagttaataaaagaagtcagagaggagttacagccttatctcagg
gactgtgatcctatcataaatgccaagaaacgaattcaacaacatgatgatcaggtggacgttcacacaacagat
aattacatscgaacgggtttaattcctggacgggatgatttggatgtgaataaccatgtcaacaatgccaaatacat
tgcatggattctagagagtgctccgtgctcgattatggagagctatcagctttcacgtgtgacattggaatacaaaa
aggagtgtggtatagatagtgtggtgcagtctgtaaccagagttgttggaaacgaaagcaatgacaatggcgaa
gagattgaaatgcaacacttgcttcgtctagagacgggccaagaagttgcaaggggaagaaccacatggaag
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cttaaacgacaaaaagatgttataagtttctttctgccacagaatcgaggatgatggagacttgaacctaagacct
cacacgaaaaaacttaaacgacaaaaaggtgttaaaagtttctttccgccacagaatctgacatggtcgtgcaaa
cattcgaagatgatgaagccccaagttatagaatacacgtgaaatttttgctagcaatgaactcaattgtcaaatca
gacaaatcttagtgatgatttgttacttatttcaataaaaagcaggtaaaaacgacaataattaaatcacaaaagg
gg 

PxhFAT-B2 aaatgtacattgtctttcccaaagttaaatcaaattctcacctggaatatatcatcctagacagctaaggtaaggtaa
aggtttgtaagaagaagaagaaatcaactcaataaagatattagagggagagatggagatggggacgaaga
gtatacagcaagggcttaattacaatgggtttataacttgtcatctttctcctgaggaagacaaattagaaggaatat
acttatattataaataaataaataaaagaagaaacatatataataaattcaagaaagcaagtccgattttttctaca
caagcatgtgacagcaacgagactttatgccagctgagaaagagcttacggatattaagcactttctgctggaatc
tgacccatattgccaaggttagcttttttgggcctccactgagttcttcccctcacaatttcagcaccttcctcgagtcga
agcaggtgctggcactcaacaccaactggactccctatatagccaatacctgctgtgtcagagtcagacacggc
agtcagggactgcagcacactgtccttcccacactccctcctatactccaaagtcattgaacaaagttcgtgactct
ccaagataggcaatggtgcactctgcgagtatcagcattccggttaacaaaagatatgatatagcgacgcaaga
tatcatattaccacaagtactcaatatacaaaaacggatgttaacaaatacaattcacaagttcagatggttaagtg
ctgtaaagttccagtccagtccaatggttataaaattagaaggaaataaatgggaccatgcaggtcatagacaga
tatgcacataaacaaactgcagagtataagttgaaacctttagtgcataactaaaataacagttgaactggaaat
ataagtgaagttttcaaattgaccccagactattagaagatagcactagaaagtgagtattaaagaacaacttgc
aacatgtacatgcatctttatcctgtttaaaacttttacttgtcaaagtaacatcatcttagtacaccacaactacaactt
agttataaatgaaaccatattgaatgtagatttgttatccacccactttttttataggagaatagaagattcgcatatta
ggagctaatctaaaaaataagagcagttcactccagtcgaaatattgatccggtcaaagcaataaactgaaatgt
gatccgagaagaaggaattatgaggccagaaaatttacctcaagaatccacccaatgtacttgacattgttaaca
tgctgattgacatccaaatcactccatcgaggctgcaaataaaatttatatatcttagtggtcgcaaaaaaggtgtg
cagtagttttttttccaacacttgagagcgttgacttacagataatcctttgcggacataatctgcagtgttgtcgtcaag
tttaggtagttttctgctatcctcatccacaacaggggcagcatccaaaaaatgaggctctatttcccctcgaacttctt
ctggcattttggataatctccttgtctctttattcatcattacccacacactgcacccacaaaaccatgaagaacacg
ataagttcttctgataaaacaaaacagttgaagaataaaagacctaaagccataaagcatattttgaaggaaata
aatctgtctgcttaaaaactcataaaagaaataaaatttaaacaaataaaaaactcaaccattgcgatacattgct
cctacaattatggaaaaagcactaaaaaatgagaattcagtttgtgtaaaatcagatgagctagtttcattccttcca
tacgacacagacgctaatgcgaaatttattttagcaacaaaataggttctatttaatcattaaaacataatttctacct
ggaggctcttgttaaagtttcaccagttttacaatcacgaagaagccaatcacggcgcataccattctttccagatg
cactaacccaagtgtctacttgaacaacatcacccctgaaacacagataattcagctcattaatctcaaatgattag
tttacaacactctaaacaaactcacaactaaagtggttcttgcaaacaagtgaggccataataagtacttattcaat
aatttaaataaaggtaaacctaacacagataacatcagctgtattgtcaggtcaatagaagggagaaatataca
cattaaagtttgtggcttaccaagttgggtaacgatctactaaaacctgcatcctagtaacaacccatattaagttcttt
ttgtacatttctggggttgcaccaaagccatcaccaagaagcccagcagtcttaacatggttaagagccgtttcctg
cagccaaaaataacaacattcaagtaagttagttaagaaaagacatatttttattaatatcgttgaaggagcacca
aacaaaactttgcatgctaataaaatctcatgggcacctacaaagaaagagaggacattaaataacttatcatac
ctgcaaatggttcattaacgtctctatagatgcggtccgatcagcgcctatctcataagacctaattgagaagttttgt
cggaaaacaagaccatcctgaacaattcttcctataccaaaaggatccacaagcatgtcaggtcgctttgttttcca
ttcaagcatcatccactgcttctctgcagccaagaatattgtggtgatagcagcaagaagcatgctccaatcaggc
aattggttaataaatgtcctgggggcatgagttgttggcatgtcatcttcacccctcacgccatcaattgttgccaccc
caacttttgtaccattaatcttaggcggagcttgggcacttgtcttgacctgcaacttagctggttttgatttaattcctcc
aaaatttgcagacccaccaccaagtttggtggcctttgaaccagaatctgagggcgtggaagctacaggaaag
aatgatgaggcggcagtagcagcaaccatgatgatattgaactgtcaagtcagtcaggctgccaactgaacag
ctgtatccgtaaaatgctctacccttgaacagcaacagagaagaaagtagtgaaaacagctcaacaaatgcga
gaatatcgtttgttctttttttccagcaactgcttccagtcagagggacagtatcgtcaatttggatcccagaaacccct
attttccggtaagtgctagggtttgcgatctcctccaagcaaaattctcgttccaactttccaaacagaaattaaataa
aattaatggtttaattaaatagaaaaaaagagggacgcaacagagagaggagaagagagtaattagggcca
gcggtttgagtg 

PxhFAT-B3 aaatgtacattgtctttcccaaagttaaatcaaattctcacctggaatatatcatcctagacagctaaggtaaggtaa
aggtttgtaagaagaagaagaaatcaactcaataaagatattagagggagagatggagatggggacgaaga
gtatacagcaagggcttaattacaatgggtttataacttgtcatctttctcctgaggaagacaaattagaaggaatat
acttatattataaataaataaataaaagaagaaacatatataataaattcaagaaagcaagtccgattttttctaca
caagcatgtgacagcaacgagactttatgccagctgagaaagagcttacggatattaagcactttctgctggaatc
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tgacccatattgccaaggttagcttttttgggcctccactgagttcttcccctcacaatttcagcaccttcctcgagtcga
agcaggtgctggcactcaacaccaactggactccctatatagccaatacctgctgtgtcagagtcagacacggc
agtcagggactgcagcacactgtccttcccacactccctcctatactccaaagtcattgaacaaagttcgtgactct
ccaagataggcaatggtgcactctgcgagtatcagcattccggttaacaaaagatatgatatagcgacgcaaga
tatcatattaccacaagtactcaatatacaaaaacggatgttaacaaatacaattcacaagttcagatggttaagtg
ctgtaaagttccagtccagtccaatggttataaaattagaaggaaataaatgggaccatgcaggtcatagacaga
tatgcacataaacaaactgcagagtataagttgaaacctttagtgcataactaaaataacagttgaactggaaat
ataagtgaagttttcaaattgaccccagactattagaagatagcactagaaagtgagtattaaagaacaacttgc
aacatgtacatgcatctttatcctgtttaaaacttttacttgtcaaagtaacatcatcttagtacaccacaactacaactt
agttataaatgaaaccatattgaatgtagatttgttatccacccactttttttataggagaatagaagattcgcatatta
ggagctaatctaaaaaataagagcagttcactccagtcgaaatattgatccggtcaaagcaataaactgaaatgt
gatccgagaagaaggaattatgaggccagaaaatttacctcaagaatccacccaatgtacttgacattgttaaca
tgctgattgacatccaaatcactccatcgaggagataatcctttgcggacataatctgcagtgttgtcgtcaagtttag
gtagttttctgctatcctcatccacaacaggggcagcatccaaaaaatgaggctctatttcccctcgaacttcttctgg
cattttggataatctccttgtctctttattcatcattacccacacactggaggctcttgttaaagtttcaccagttttacaatc
acgaagaagccaatcacggcgcataccattctttccagatgcactaacccaagtgtctacttgaacaacatcacc
ccaagttgggtaacgatctactaaaacctgcatcctagtaacaacccatattaagttctttttgtacatttctggggttg
caccaaagccatcaccaagaagcccagcagtcttaacatggttaagagccgtttcctgcaaatggttcattaacgt
ctctatagatgcggtccgatcagcgcctatctcataagacctaattgagaagttttgtcggaaaacaagaccatcct
gaacaattcttcctataccaaaaggatccacaagcatgtcaggtcgctttgttttccattcaagcatcatccactgctt
ctctgcagccaagaatattgtggtgatagcagcaagaagcatgctccaatcaggcaattggttaataaatgtcctg
ggggcatgagttgttggcatgtcatcttcacccctcacgccatcaattgttgccaccccaacttttgtaccattaatctt
aggcggagcttgggcacttgtcttgacctgcaacttagctggttttgatttaattcctccaaaatttgcagacccacca
ccaagtttggtggcctttgaaccagaatctgagggcgtggaagctacaggaaagaatgatgaggcggcagtag
cagcaaccatgatgatattgaactgtcaagtcagtcaggctgccaactgaacagctgtatccgtaaaatgctctac
ccttgaacagcaacagagaagaaagtagtgaaaacagctcaacaaatgcgagaatatcgtttgttctttttttcca
gcaactgcttccagtcagagggacagtatcgtcaatttggatcccagaaacccctattttccggtaagtgctagggt
ttgcgatctcctccaagcaaaattctcgttccaactttccaaacagaaattaaataaaattaatggtttaattaaatag
aaaaaaagagggacgcaacagagagaggagaagagagtaattagggccagcggtttgagtg 

PxhKAS Ia ggtcgtaatttttttaaattgactcaccgagttcactctatatttatccgagtcatgcaatcaccaactctctggccatctc
cgatcgattcgcttcgcaaatcgccgccaaatgcggcgattctccggaaaatccggaggcctttcttctccgcccg
agccgcctctaccgccgtctcggccccgaagcgcgagaccgatccgaagaagcgcgtggtgatcaccggcat
gggcctcgtctccgtcttcggcaccgacgtcgacacctactacgaaaagctcctcgccggcgagagcgggatca
gcttgatcgaccgattcgacgcatcaaaatttccgaccagattcggcggccagattcgcgggtttagcgccggag
gctacatcgacggcgaaaacgaccggcgactcgacgattctctccggtactgcctcgttgccgggaagagagc
gattgaagatgccgatcctgccggagatttgctctccaagattgataaagagagagctggtgtgcttgttggaatgg
gattgggtggtcccacagtgctttctggtggagttcagaaaatgatagagaagggtcacaaacaagtatctcccttt
tttgttccatttactttaacaaacatgggctctgcattgcttggtattgaacttgatttcagaggtcctaattattcaatctct
gcggcttgtgctacatccaatttttgcttctactctgctgccaatcacatccgccgcggtgaggctgatttgatgattgc 
tggagggactgaggcgatgatagttccgtttggattgggaggctttgctgcgtgtagggcactgtctcagagaaat
gatgatcctcggacggcttcaaggccgtgggacaaagatcgagatgggtttgttatgggtgaaggtgctggagta
ttggtaatggaaagcttggaacatgcaatgaagcgaggtgcaccaattgttgctgagtatttgggaggtgcggtga
actgtgatgctcatcatatgaccgatccaagggccgatgggcttggcgtctctaactgcattaaactttgtcttgcaa
atgctggcgtgtcacctgaagaggttaattacataaatgcacatgctacttccactcttgccggtgatctagctgagg
taaatgctatcaaaaaggtattcaagaacacatccgggatcaagatcaacgcaacaaagtctatgatcgggcat
agtctcggtgctgctgggggtttggaagccattgccacagtgaaagctataaacacaggctggcttcatcctacca
taaatcaatttaatctggagcctgaagtcgaattcgacactgttgcaaatacgaagcaacaacacgaagtaaatg
ttgccatttcaaactcgttcggatttggcggacacaactctgtcgtggcgttttctgctttcaagccctaatcacgagaa
ggtttgagttcgttccatccttttcatggtcactgcatatctttcttgaagccccattgtacttttactgtataataatcgcgt
catgttggccaagtggcttaggcgcttatacctttagaatcattgtcatcaattgaactatcggtacatttagatcttattc
aatatcgagtttttgtagcgtttaggaatcatcgtagggcgaagctttgcacgccacgagattgagttgttgagtttac
acttagtttcagggcagttttgaaatagaagatgaaagctatgcgccctattgtgtaagcctatgtttggacccgaaa
tagaagggtcttttgtgtcaaaattgttttgtgggttatagtcttttctgatatgttgtaacattattattgtacttgtaacttgta
agctattagaaatttttatatatggtagaacaaaaaa 

PxhKAS Ib gctcaccgagttcactctctatttatccgagtcatgcaatcaccaactctccggccatctccgatcgattctccggaa
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aatccggaggcctttcttctccgtccgagccgcctccaccgccgtctcggccccgaagcgcgagaccgatccga
agaagcgcgtggtgatcaccggcatgggcctcgtctccgtcttcggcaccgacgtcgacacctactacgaaaag
ctcctcgccggcgagagcgggatcagcttgatcgaccgattcgacgcatcaaaatttccgaccagattcggcgg
ccagattcgcgggtttagcgccggaggctacatcgacggcaaaaacgaccggcgactcgacgattctctccggt
actgcctcgtcgccgggaagagagcgattgaagatgccgatcctgccggtgatttgctctccaagattgataaag
agagagctggtgtgcttgttggaatgggatttggtggtcccacggtgttttctggtggagttcagaaactgatagaga
agggtcacaaacaagtatctcccttttttgttccattttctataacaaacatgggctctgcattgcttggtattgaacttga
tttcagaggtcctaattattcaatctctgcggcttgtgctacatccaatttttgcttctactctgctgccaatcacatccgc
cgcggtgaggctgatttgatgattgctggagggactgaggcaatgatagttccgattggattgggaagctttgctgc
gtgtagggcactgtctcagagaaatgatgatcctcggacggcttcaaggccgtgggacaaagatcgagatggg
cttgttatgggtgaaggtgctggagtattggtaatggaaagcttggaacatgcaatgaagcgaggtgcaccaattg
ttgctgagtatttgggaggtgcggtgaactgtgatgctcatcatatgaccgatccaagggccgatgggcttggcgtc
tctaactgcattaaactttgtcttgcaaatgctggcgtgtcacctgaagaggttaattacataaatgcacatgctacttc
cactcttgccggtgatctagctgaggtaaatgctatcaaaaaggtattcaagaacacatccgggatcaagatcaa
cgcaacaaagtctatgatcgggcatagtctcggtgctgctgggggtttggaagccattgccacagtgaaagctata
aacacaggctggcttcatcctaccataaatcaatttaatctggagcctgaagtcgaattcgacactgttgcaaatac
gaagcaacagcacgaagtaaatgttgccatttcaaactcgttcggatttggcggacccaactctgtcgtggcgtttt
ctgctttcaagccctaatcacgaagatgtttgagttcgttccatccttttcatggttactgcatatcttccttgaagcccca
ttgtacttttgttgtataataatcgcgtcatgttggccaagcggcttaggcgcttatacctttagaatcattgttatcaattg
aactatctggmcatttagatcttattcaaaaaaaaaaaaaaaaaaaaagagccagtc 

PxhKAS Ic tccatactgaggcttcaccgcttgggggattagagccatctctgagttcccttcaaacttccaggcttcggaaaatgt
aagagccaatccagggccaaatgagttctcccaactggtttttgctcttaagcaagaaatcggatcccaagaagc
gagtagttatactgggatggggcttgtttcagtttttggcaatgacaattgatgtattctatgagaaactttctgagtgga
gacagcgggattagcctaattgacagggtttgatgcttcaagcttttctgtcccggtttggcggacagattcggggttt
ttcttcgaaaggctacattgatgggaagaatgatcgccgccttgatgattgctggaggtactgtttggttgctggtaag
agggctcttgaagatggcaaccttggacctcaagtgcttgaaactatggacagaacaaaaattggagtgcttgtg
ggaactggcatgggaggcttaacagctttcagcagtggagttgaatctctaatccaaaagggatacaagaagat
atctccatttttcattccttattccataaccaatatgggttctgcattgttggccattgacactggcttaatggggcctaatt
actccatttcaacagcttgtgcaactgcaaattactgcttttacgcagctgcgaatcacattcgaagaggcgaagct
gatatcatggtagttggagggactgaggcagcaatcatgcctactggggttggtgggttcatagcatgccgggctc
tatctcaaagaaacgccgaaccccatagagcttcaaggccttgggacaaaaaccgcgatggctttgtcatggga
gaaggcgctggagttctgataatggagagcttggagagtgcaatgaagagaggagccaatatagttgctgagt
wtttgggaggtgctgtaacctgtgatgctcatcacatgactgatcctcgctcagacggccttgagwcgtttgcaactt
gcataaccaagagtctagaagatgccggtgtttcccccgaagaggtgaactatgtgaattgccatgccacatcaa
ccttagcaggggattkggctgaggttaatgcaatcaaaaaggttttcaaggacacttctgagatgaagatgaatg
gaactaagtctatgattggacatggccttggagctgctggtgggttggaagctatcgcaaccattaaagcaatcaa
cactggttggctgcacccaacaatcaaccaagatgatctggagccttcagttacaattgacacagtcccaaatgtg
aagaagaggcatgaagttaatgttgctatctctaactcatttggctttggtgggcacaattcagtggttgtctttgctcct
tttacaccctaagaagaacttgtgacaaaagtactcttctttttttgcattactgttactaaaatcattgattttgtgataat
agaatgaacatgatagagataatgtgtctatcagtatcatgtttgctcgtgacgagtattgaagacaatgtacctcctt
taacctgtttcattatacgtcaacaccacgcgtgttgtaagcaaattcagagctctattgattaataaaatttctatgcta
ttttgttccctcgtgcc 

PxhKAS Id ctaagtgtaaactcaacaactcaatctcgtggcgtgcaaacttcgcccttcgatgattcctaaacgctacaaaaact
cgatattgaataagatctaaatgtccagatagttcaattgataacaatgattctaaaggtataagcgcctaagccgc
ttggccaacatgacgcgattattatacaacaaaagtacaatggggcttcaaggaagatatgcagtaaccatgaa
aaggatggaacgaactcaaaccttctcgtgattagggcttgaaagcagaaaacgccacgacagagttgtgtcc
gccaaatccgaacgagtttgaaatggcaacatttacttcgtgctgttgcttcgtatttgcaacagtgtcgaattcgactt
caggctccagattaaattgatttatggtaggatgaagccagcctgtgtttatagctttcactgtggcaatggcttccaa
acccccagcagcaccgagactatgcccgatcatagactttgttgcgttgatcttgatcccggatgtgttcttgaatac
ctttttgatagcatttacctcagctagatcaccggcaagagtggaagtagcatgtgcatttatgtaattaacctcttcag
gtgacacgccagcatttgcaagacaaagtttaatgcagttagagacgccaagcccatcggcccttggatcggtc
atatgatgagcatcacagttcaccgcacctcccaaatactcagcaacaattggtgcacctcgcttcattgcatgttc
caagctttccattaccaatactccagcaccttcacccataacaaacccatctcgatctttgtcccacggccttgaag
ccgtccgaggatcatcatttctctgagacagtgccctacacgcagcaaagcctcccaatccaatcggaactatcat
cgcctcagtccctccagcaatcatcaaatcagtctcaccgcggcggatgtgtttggcagcagagtggaagcaaa
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agttggatgtagcacaagccgtagagattgaataattaggacctctgaaatcaagttcaataccaagcaatgcag
agcccatgtttgttaaagaaaatggaacaaaaaagggagatacttgtttgtgacccttctctatcactttctgaactcc
accagaaaacaccgtcggaccacccaatcccattccaacaagcacaccagctctctctttatcaatcttggagag
caaatctccggcaggatcggcatcttcaat 

PxhKAS II cctcactttaatgctgtctctttttggcaatggtgttttttatatttataaatatcttgtgttatcaatttttgtgttgaaatgataa
aatagcaaggacataatttatactccaaatttgtaagcgtgaagtttctcaattgtcaggaatgctagctcttgtactct
ttgacttggttcttctgtaatcgtttggttgtaagatggatattttgatttcaatatagaattccggatcaaactttctgcaag
agttcattggttcattaacacggggacggagtgagtttgggattggtgccgaaccaagtactaaacatttggcgtct
atcgacatcaaccattcaggctcttctcagcagtgaagtattgtccggataccctcgcaagcgctattcagatcact
gcaaatatgcccacccaatgtttacaagttaaaactattcttgttcatatgttttgaagaatatgtaacttgaggattatg
attgcaaaattgaaacaaattcattgtctgaagcgtgattaccattctctacttgtacatcatgaaaaagaaaaaac
aagagatagtacaatgataacaagaacatcaacaaggccaaattctacaatatttgttaatgtgatgtcacaaaa
aagacaagacagtgttttaatacatggaaatggaagtcatgctcgctttctcttcatgtccagaccataggagcaca
tcaacagatccgccgccgtatgcaaggccgcaagcgcattataatatagggtagcaaatgactactccccttggc
tacaatactaccattacacaggttggagtagcttgcaaaatctattctacttgtaaggaacaaatataattgatgagtt
gtgtccgccaaacccaaatgaattagacagcgccaccttgatgtctattctttcttttttagggccaaccaacagattt
gtatccacacccgcgtctggattttccaggttgatatttgggtgaacccaccctgttcgtattgcctgtactgtcgcaac
tgcttccacggcacccgatgctcctagtagatgaccgatcatggattttgtagagttcactcttagctccggattctgg
ccaaaacatttaacgagggctcgatactctttaaggtctccagatagtgtggatgtagcatgtgcatttatgtaattta
catcttcctttgatactcctgcctgagccaacgctttttcaatgcagagaataacaccaagcccatctggatgtggct
cggtcatgtgataagcatcgcatgtgaaacttccaccaagaaattctgcataaatatttgcacctctcctcttagcat
gctctaattcttccaaaagcagaactccagctccttcacccataacaaatccatcacggttctgataaattacaaac
aaaaagttcaaagtaaataacacacatgaaacagaaaaaaggaacaaaaccaatattacagtttgattttctgc
cttgaataaacacatttacatgataaaaggaggaaagggtgaaaagaaagcacaagaaattgtaataacatta
cactatcccaagggcgtgatgctttggtcgggtcactgttcctttgtgaaagagccctgcatgcaacaaaacctccc
aaacctgcacccaaaattatgccaacttcattgcacatcaagttgactcatccttaaggaaatgtatataccagaa
agaaagggataccaataggtataattgctgcatctgagccaccacaaagcattacatcctgcattttcgaacagttt
tagaatacacatagcacgaaatgtaataaatttgaagtttaactatttgtttcagcaatattaataaagaattcaataa
aaatatacaagaaaccactacaaattgcttggcttacgagcattaatgcaaaatacttacagcttcacctcgaatg
atatggtttgcagcattcagtatacaaaagttgccagtagcacaagcagtggaaattgagtaatttgggcccatcc
atcccagatccattgcaagcatggcagaacccatatttgtggtcgcaaaaggtacacagaagggattcattttcct
atatgagatccttaaggcttcaattgcatcatgaaaaaccttcatgccacccatagctgaaccaatcaagacacca
catttagttttatctaattcatccatcacatctccagtaatcccaccatctgccaaggctttctttccagcagtaagcatg
taaagcatgaatttatccatcctcttggaaagttttggtgcaacccatccatcagtcgagaaagatttgatctctccag
caatcctc 

PxhKAS III gcacgagggattttttcttcggaccctcctaggaaaaagcagcctctgattcgctctgtctcaggcctctgctcttcatt
gatttttatattcatttcctgaatccaaaatggtgtctagacgctcttgtttccgtcattttcttgttcctccacacagtcgctg
agcaagcgagcgagctttgttgtgcgttgtcgctttcgtttcgaggatacaaaatcacatgtgctcggaatttgggag
cttgcttcgtgtttagccagtgagtgttgtagtagaagttggagttaattaatggccagtgcatctgggtttctcgctcctt
cagttccgagcctccggagctcgattgggtcttctgggtccgttttccgatctgggtttcgctccaatgttggagcttgc
aaatgggtcgtctgctctggagtcagtgaaggcgcgactggggttgcgcaatctcgagtgcccaggctagtcagt
aaggggtgcaagttagttggatgtggctcggcaacaccaacacttcagatttcgaatgacgatcttgcaaaatac
gttgaaaccaacgatgaatggatatctgtacgcactggcattcgtaatagacgagtacttacaggaaaagatagc 
ttgacaagtttagcagcagaggcagcgagaaaagcgcttgacatggcacaagttgatcctgatgacctggactt
agtcttgatgtgtacatctactccggaggatcttttcggcagtgctcctcagatccaaaaagcactcggctgcaaag
gacaaccgttgtcctatgatatcacagctgcatgtagcggatttgtattgggtctagtctcggccgcctgtcatattag
gggaggcgggttcaaaaacgttctagttattggggctgatgcgctttctcgatacgttgattggaccgatagaggga
cttgcattctctttggagatgctgctggtgccgtcgtagtacaggcctgtgatagcgaagacgatggcttatttgcttttg
atttgcacagcgacggtgatggccaaagacacttaaatgcgagtatgagagaaactgaaacaaataaagagg
gctctaatggttcagttttagacttccctcctaggcgctcctcgtattcttgcatccatatgaacgggaacgaggtttttc
gctttgcttgccggtgtgttcctcagtcaattgaagctgcactcgacaaggccggcctcacctcctctaatatcgattg
gttactcctccatcaggcgaatcagaggatcctcgatgcagtttccacccggttggaagtcccgaaagaaagggt
gatatcaaatttggcaaattacggcaacacgagcgctgcatcgattccattggcactcgacgaagctgtccggag 
cgggaaggtgaaggcggggcagaccatcgcgactgccggttttggagctggactgacttggggctctgctattct
cagatggggatgaaactgtcctttcactaccatcaatggccaaaacagcagagaaaaagaagagaagaaga
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atgtgtttttgtccaatccttgtttcatgtgtattttccaagatacttgtttgtgttattttctttgaatcccattacatttcaccttta
acaatcacaataaatctctattctttttcattgttctcatgacttaaaacacatgtattcttcattatattacaagtgaagta
ggtttcaatctttcaaaaagcgasycgcccagtc 
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