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ABSTRACT 

THE EFFECTS OF ESTROGEN AND PHYTOESTROGENS 
ON FOCAL INFARCT, PTEN, AND p-AKT 

EXPRESSION IN AGED RATS 

Karen Powell 

August 2010 

Premenopausal women have fewer and less severe strokes when compared to 

postmenopausal females and aged matched males. The most obvious factor that could 

account for the observed difference is the physiological activity of Estrogen. Numerous 

studies over the past two decades have investigated estrogens role as a neuroprotective 

agent against stroke damage. Many physiological mechanisms have been identified 

supporting neuroprotection; however, data also exist to suggest that estrogen may be 

harmful in certain situations such as those that produce high blood levels of estrogen or 

use estrogen in older models. 

The Women's Health Initiative (WHI), a large epidemiological study, found that 

stroke incidence increased in women that were at least one year post menopausal and 

given hormone replacement therapy (HRT) containing estrogen. This conflicting 

information surrounding HRT has many women turning to soy-based phytoestrogens as 

an alternative therapy. Phytoestrogens are compounds made by plants that induce some 

response traditionally associated with the steroid hormone estradiol. The long term 
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consequences of phytoestrogen consumption are presently unknown. As more 

postmenopausal women choose to consume high levels of phytoestrogens either via diet 

or supplements, the question arises as to how estrogen and phytoestrogens interact. The 

current study is the first to explore the neuroprotective potential of phytoestrogens and 

the combined effects of estrogen and phytoestrogens against permanent focal ischemia in 

a middle aged model. It also explores the ability of estrogen and phytoestrogen in 

regulating apoptotic vs. proliferative pathways in injured neuronal tissue. 

While estrogen and phytoestrogen did produce similar effects, neither was 

associated with neuroprotection. This study is important, however, because it adds 

substance to the growing body of reports that E2 does not mitigate neuronal damage due 

to primary infarct and it does not positively influence apoptotic pathways in aged female 

rats. It also provides a more realistic model for putting into context the negative effects 

documented in epidemiological studies such as the WHI, in which hypoestrogenic 

women suffered more frequent and detrimental stroke events when given estrogen 

replacement. 
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INTRODUCTION 

A brief history of phytoestrogens and animals 

Every good sheep farmer knows that one should never graze animals on pasture 

dominated by dinninup, dwalganup, and yarloop (Blood and Radostits, 1989). High 

consumption of these subterranean clovers can lead to infertility and a marked decrease 

in lambing percentages from the normal average of 80% down to 30% (Blood and 

Radostits, 1989). This phenomenon, first published in a 1946 edition of the Australian 

Veterinarian Journal by Bennets et aI., is today a standard entry in large animal veterinary 

medicine text books. It is classified as "poisoning caused by miscellaneous legumes". 

The etiology of the infertility is the high content of biologically active estrogenic 

chemicals, termed phytoestrogens (PE), found in the leguminous plants. 

The presence of estrogen-like chemicals in leguminous plants holds wide-spread 

implications for animals that ingest them. Some implications are advantageous, such as 

the example of California quail (Callipepla califomica) switching feeding preference to 

legumes high in PE to reduce fertility in times of food shortage (Leopold et aI., 1976), 

while other examples of artificial introduction of legumes in the diet have proven to be a 

disadvantage. Cheetahs have decreased fertility and increased liver disease when fed soy

based diets in captivity (Setchell et aI., 1987). A study by Thigpen et ai. (1987) showed 

that laboratory rodents fed a widely-used commercially available chow 
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had uterine weight gains similar to animals fed diets containing 6 parts per billion 

diethylstilbestrol, a pharmaceutical estrogen, suggesting that numerous scientific studies 

might have been inadvertently influenced by the presence of PE. 

What is a phytoestrogen? 

Defining a PE requires one to first consider the parallel concept of "what exactly 

is an estrogen"? The traditional dictionary and entry level anatomy class definition of an 

estrogen is any of several steroid hormones produced chiefly by the ovaries and 

responsible for promoting estrus and the development of female secondary sex 

characteristics (Merrium Webster Dictionary, 2005; Marieb and Hoehn, 2009). As we 

learn more about the wide array of physiological functions affected by estrogens, the 

definition has become increasingly more complex. We now know that estrogens have 

been found to directly or indirectly affect almost every system in the human body. They 

function at the classic receptor level to upregulate gene transcription and in many non

genomic ways. It isn't just about the female in heat anymore ... and it really never was. 

The difficulties of defining estrogens carryover to trying to accomplish the same task 

with PE. In a 2001 publication, McLachlan defined PE as compounds made by plants 

that induce some responses traditionally associated with the steroid hormone estradiol. 

But as new estrogen responses are identified, the concept of PE must also continue to 

expand. To date, numerous plant compounds are widely accepted as PE, including the 

isoflavones genestein, daidzein, and the daidzein metabolite equol, which are studied in 

this work. 
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Figure 1. The chemical structures of 17P estradiol, genistein, daidzein, and equol 
OH 

OH OH 

o o o 

17p-Estradiol Genistein Daidzein 

1 In.estinal Flora 

OH 

o 

Equol 

Figure from Zhao, L. et al. Endocrinology 2009; 150:770-783. Reprinted with permission. 

PE share a similar chemical structure (see Figure 1), specifically a phenolic group, 

with vertebrate estrogens, such as 17~-estradiol (E2). These chemicals are found in 

leguminous plants in which one function is to initiate signaling pathways between the 

plant and nearby nitrogen-fixing bacteria (reviewed by McLachlan, 2001). These signals 

serve to recruit bacteria to the plant root hairs where they induce nodule formation for 

colonization. The bacteria produce NodD proteins, which interact with the 

phytochemicals to activate transcription of the genes necessary for the classic "symbiotic 

nitrogen-fixing relation" in which the host plant supplies CO2 for the bacteria and in turn 

the bacteria transforms atmospheric nitrogen into a usable form for the plant (reviewed 

by McLachlan, 2001). This system has many similarities with the vertebrate endocrine 

system, in which chemicals are secreted, bind to receptors, and regulate transcription 

(McLachlan, 2001). The substrate on which "estrogenic" chemicals can act is highly 
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conserved across vertebrate taxa, with estrogen receptors having been found in mammals, 

birds, reptiles, and fish, and PE in particular have been acting on this substrate throughout 

much of vertebrate evolutionary history (McLachlan, 2001). 

Phytoestrogen responses that are associated with 17p-estradiol activity 

There are two types of classic estrogen receptors, estrogen receptor alpha (ERa) 

and estrogen receptor beta (ER~). Most PEs bind to both but have higher binding affinity 

for ER~ (Kuiper et aI., 1997). Both ERs are widely expressed in different tissue types; 

however, there are some notable differences in their expression patterns. Systemically, 

ERa is more prevalent in tissues traditionally associated with female reproduction 

including the endometrium and breast, while ER~ is more prevalent in other organs such 

as heart, lung, and kidney (Babiker et aI., 2002; Morani et aI., 2006). Both types of 

receptors have been identified in the brain, with ERa predominately located in the 

hypothalamus while ER~ is located in extrahypothalamic brain regions such as the 

cerebral cortex and hippocampus (Shughrue and Merchenthaler, 2001). Dubal et aI. 

(2006) demonstrated that ERa and ER~ are expressed differently after an ischemic event, 

with ERa dramatically increased in the cerebral cortex. They also found that E2 was 

unable to protect the cortex in the absence of ERa receptors, suggesting that E2-mediated 

effects occur exclusively via ERa. Schreihofer (2005) found different results for PEs. At 

physiological concentrations, genistein and daidzein stimulated both ERa- and ER~

dependant transcription in cell culture, but these compounds were more active at ER~. 

Interestingly, the PEs did not antagonize estrogen activity at physiological 

concentrations. Using hippocampal neuron cultures to study the effects of E2 and PE on 
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Alzheimer's disease and memory function in postmenopausal women, Zhao et al. (2002) 

found that PEs exerted a neuroprotective effect at the plasma membrane but not at the 

level of neuronal mitochondrial viability when exposed to glutamate. In contrast, E2 

afforded enhanced neuroprotection at both levels (Zhao et ai., 2002). E2 also promoted 

neurite outgrowth and synaptogenisis while PE did not, leading the researchers to 

conclude that while PEs exert some neuroprotective effects, PE and E2 are not functional 

equivalents (Zhao et ai., 2002). Since PEs bind both types of receptors (Kuiper et aI., 

1997), it is plausible that the presence of PE could be antagonistic to the effects of E2, as 

both would compete for the same ERa receptor. It is also plausible that through the 

action of ER~, PEs could produce a partial antagonist effect over that of E2 alone. A 

study of the combined effects of E2 and PEs will prove insightful. 

17P Estradiol and stroke: a conflicting history 

Premenopausal women have fewer and less severe strokes; a decreased risk of 

mental and cardiovascular disease; experience increased cardiac output, and increased 

systemic blood flow in the face of decreased resting vascular tone and myogenic 

responses; but suffer higher incidences of uterine and breast cancer when compared to 

postmenopausal females and aged matched males as appropriate (Prelevic et aI., 2002; 

Naftolin et aI., 2004; Grodstein and Stampfer, 1995; Iafrati et aI., 1997; Karas and 

Hodgin, 1999; Ohkura, 1994; Wise et aI., 2001; Dubal and Wise, 2001; Chen et aI., 

1999; Rau et aI., 2003; Choi et aI., 2004; Henderson 1993 and 1997; Nabulsi etaI., 1993; 

Mendelsohn and Karas, 1999). The cardiovascular and neurologic advantages afforded 

to young females diminishes with the onset of menopause (Kolominsky-Rabas et aI, 
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2001; Sacco et aI., 1998; Stegmayr et aI., 1997). The most obvious factor that could 

account for the observed difference is the physiological activity of E2. Numerous studies 

over the past two decades have investigated the role of E2 as a neuroprotective agent 

against stroke damage. The initial studies were promising. In 1988, Paganini-Hill et aI. 

published some of the first data suggesting neuroprotection in women. Since 1997, a vast 

amount of experimental literature has been published on this subject, including the 

widely-referenced 2001 Dubal and Wise paper entitled, Neuroprotective effects of 

estradiol in middle aged female rat, which demonstrates profound neuroprotective effects 

of E2 at low and high doses in both young and middle aged female rats following an 

ischemic event. Many physiological mechanisms have been identified supporting 

neuroprotection; however, data also exist to suggest that E2 may be harmful in certain 

situations. Harmful side effects seem to be consistently associated with methods that 

produce high blood levels of E2 or use E2 in older models (see below). Several 

mechanisms, including increased excitotoxicity, hyper-immune responses, and 

miscellaneous age-specific changes have been reported that may help explain this 

phenomenon. 

High levels of E2 and/or estrogen in older models have been demonstrated to 

promote neuron excitotoxicity. Brann et aI. (1993) found an increase in mRNA for N

methyl D aspartate (NMDA) glutamate receptors in the cerebral cortex of rats following 

E2 treatment. While Weiland et aI. (1992) showed that E2 upregulates NMDA binding 

sites, Foy et aI. (1999) found that E2 enhances NMDA receptor-mediated EPSPs, 

indicative of increased seizure activity, when concentrations of E2 reach 10 nmol. Gu et 
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al. (1996) described an E2-mediated increase in kainite-induced currents via activation of 

cyclic AMP pathways, suggesting that decreased E2 may correlate with decreased brain 

activity. E2 has also been reported to decrease the uptake of L-glutamate by astrocytes, 

thus contributing to excitotoxicity (Sato et al., 2003). 

High levels of E2 and/or other estrogens in older models may lead to hyper

immune responses. Nordell et al. (2003) reported that E2 given to older female rats 

exacerbated NMDA-induced brain inflammation as compared to younger counterparts. 

Sohrabji (2005) also found that E2 treatment in young animals decreased the 

inflammatory cytokine interleukin IB (Il-IB) in response to brain injury while the same 

treatment in aged females increased IL-IB secretions dramatically. Looking at systemic 

immune responses in whole blood to lipopolysaccharide (LPS) injections, they also found 

that the aged had a heightened response to LPS and that E2 replacement further increased 

TNF-a expression (Sohrabji, 2005). 

E2 produces miscellaneous age-specific changes in older models. One study 

found that E2 administration to aged non-overiectomized rats did not stimulate 

neurotrophin, a growth factor that promotes neuronal growth and repair, even though E2 

has been shown to have this effect in surgically menopaused young females (Jezierski 

and Sohrabji, 2001). Similar effects were also reported for neurotrophin receptor trkA in 

which E2 administered to young surgically menopaused animals upregulated trkA mRNA 

and subsequent number of trkA receptors while E2 administered to the aged, naturally 

menopaused animal had no effect (Gibbs, 2003; Sohrabji, 2005). Sohrabji (2005) found 
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that the blood brain barrier (BBB) is more permeable in reproductively senescent animals 

and that E2 replacement has no effect on this phenomenon in the aged except in the area 

of the hippocampus, where it decreases BBB effectiveness even more. Aged rats have a 

decrease in the number of hippocampal neurons that express ERa (Adams et aI., 2002) 

and overall ERa distribution has been shown to change from a nuclear to a more 

cytoplasmic localization in older human females (Hestiantoro and Swaab, 2004). 

Physicians are currently discouraging the use of hormone replacement therapy 

(HRT) for peri-menopausal and post-menopausal women. This recommendation is based 

largely upon the findings of the Women's Health Initiative (WHI) in which breast cancer, 

dementia, stroke, and cardiovascular morbidity and mortality increased in women that 

were chronically hypoestrogenic (at least one year post menopausal) and given a 

combination HRT of estrogen and progestin (Alving, 2004; Wassertheil-Smoller et aI., 

2003). A second phase of the WHI, utilizing estrogen only, unopposed by progesterone, 

in women that had previously had hysterectomies, found that cardiovascular risk was 

unaffected while stroke risk increased (Alving, 2004). Since unopposed estrogen has long 

been associated with uterine cancer, only women with no uterus were included in the 

study (Alving, 2004). The results of the WHI contradicts the large observational study 

known as the Nurses' Health Study in which women in the menopausal transitional phase 

were given HRT and experienced lower cardiovascular morbidity and mortality rates 

after the initial year of therapy (Grodstein, 2001). The WHI also contradicts the vast 

scientific literature available concerning the numerous benefits of E2 on an array of 

neurological functions in animal models (Wise et aI., 2001, 2005). 
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What accounts for the disparity between the Nurses' Health Study, the in vitro 

and in vivo animal studies, and the WHI? The answer may lie, at least in part, in the 

model. The WHI studied women that were aged and had undergone natural menopause, 

in many cases years before the study; however, the Nurses' Health Study examined 

women that were perimenopausal. Many of the in vivo animal studies reporting positive 

benefits were done on young females, on males, with non-physiologic levels of E2, or 

with a very acute exposure. Detrimental effects are often reported with high 

supraphysiologicallevels of E2 or when models have experienced a period of 

hypoestrogenism. A more realistic animal model of the peri and menopausal human 

would be to use aged female retired breeder rats that had experienced the hormone 

fluctuations of pregnancy, lactations, and irregular cycling common to natural aging. 

Dubal and Wise (2001) used such a model. They demonstrated decreased infarct damage 

from middle cerebral artery occlusion in 9-12 month-old female Sprague-Dawley rats 

when given E2 replacement via slow release silastic capsule. Circulating estrogen levels 

were equivalent to those of a normal estrus cycle. These results conflict with those of the 

WHI. Because the Dubal and Wise model was profoundly accepted and widely cited in 

the literature at the time of experimental design, the current study mirrors it. The current 

study is based upon estrogens being neuroprotective with the novel aspect centering on 

whether or not PE alone or in combination with estrogen were neuroprotective in a like 

fashion. 
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Phytoestrogens and stroke 

The conflicting information and the current FDA guidelines for limited and 

guarded estrogen and progestin treatment has resulted in many women receiving no HRT 

and instead turning to soy-based PE as an alternative therapy (Alving, 2004; Clarkson et 

aI., 1998 and 2001; Clarkson, 2002; Davis and Simpson, 1999; Huntley, 2004). The 

long term consequences of PE consumption are presently unknown. Soybeans contain 

mg/g amounts of isoflavones, but these levels are highly variable depending upon strain 

and growth conditions (Burow et aI., 2001; Davis and Simpson, 1999). Reports of 

correlations between high soy intake and decreased neoplastic incidence and 

cardiovascular risk have led to increased interest in the potential health benefits of soy 

(Clarkson, 2002). For example, an epidemiological study of Asian women showed a 

direct correlation between soy consumption and a reduction in breast cancer incidence 

(Lee et aI, 1991). These positive effects were negated when Asian women adopted a 

western diet (Dixon, 2004). Other studies have focused on PE as an alternative for 

postmenopausal HRT (Alving, 2004; Clarkson, 2002; Clarkson et aI., 1998 and 2001; 

Davis et aI., 1995; Huntley, 200; Newton et aI., 2002). Most PE studies focus on 

cardiovascular benefits (Anthony et aI., 1997; Clarkson, 2002; Clarkson et aI., 2001). An 

extensive literature search revealed very few published papers concerning the effects of 

PE on ischemic stroke. Most of the available literature utilizing female rats and thus, 

most pertinent to this study, is from the lab of D.A. Schreihofer. In 2005, this group 

compared the effects of a high PE diet (600 mg soy isoflavones/gram of food) with 

estrogen replacement pellet (0.25 mg 17~-estradiol) in overiectomized female rats (225-

250 grams). Rat age was not specified, but extrapolating from standard growth curves for 
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Sprague-Dawley rats supplied by Harlan Laboratories (Indianapolis, Indiana) age can be 

estimated at twelve to fifteen weeks. The animals were exposed to the diet for a total of 

two weeks. The high PE diet was designed to produce blood levels equivalent to a 

prototypical Asian diet, while the estrogen pellet was chosen to deliver estrogen levels 

equivalent to those of proestrus (80-140 pg/ml) (Scheihofer et aI., 2005). One week post 

overiectomy the animals underwent permanent middle cerebral artery occlusion 

(pMCAo) via intraluminal occlusion and were sacrificed 24 hours later. Brains were 

sectioned into 2mm slices using a brain matrix and stained with triphenyltetrazolium 

chloride (TTC). Measured E2 blood levels at the time of sacrifice were 159 pg/ml +/- 21. 

Their data showed that the animals that had been overiectomized, not provided estrogen 

replacement, and placed on an isoflavone-free diet (PE-1E2 -) suffered the largest strokes. 

The animals with estrogen replacement and on an isoflavone-free diet (PE -1E2+) had the 

least amount of stroke damage. The animals on the high PE diet (PE +1E2-) with no 

estrogen replacement had stroke damage intermediate to the other two groups. The 

PE+1E2- and PE-1E2+ groups were significantly different from the PE-1E2 - group. The 

study did not include a combination PE+1E2+ group. Through this experiment, 

Schreihofer et aI. (2005) were the first to illustrate a beneficial role for PE against focal 

ischemia; however, the authors also point out that, due to the lessened protection offered 

by PE alone, PEs may not be as effective as estrogen in reducing infarct size. In 2006, 

Burguete et aI. found that 8 week-old male rats that had been fed a high PE diet since 

weaning had a decreased infarct following transient MCAo. The remaining literature 

concerning the effects of PE on neuronal damage has been done in vitro using rat 

embryonic day 18 cortices. Results suggest that soy isoflavones can reduce cell death in 
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cultured cells exposed to glutamate toxicity (Zhao et aI., 2002) and calcium misregulation 

by thapsigargin (Linford and Dorsa, 2002). PE results were similar to those seen with 

E2. 

The claims of soy as a "natural" antineoplastic and cardioprotective agent, as well 

as an E2 replacement, has led to the availability of many over-the-counter, non-FDA 

regulated, soy based products. Soy-rich diets, especially those containing large amounts 

of tofu as are consumed in a traditional Asian diet, contain approximately 150 Ilg of 

daidzein and 250 Ilg of genistein per gram of soy protein (Dixon, 2004). Once ingested, 

the soy isofIavones genestein and daidzein are absorbed or daidzein is converted to equol 

by intestinal microbes. Equol is significantly more estrogenic than daidzein (Dixon, 

2004). Soy consumption results in measurable blood and urine concentrations of these PE 

(Dixon, 2004). As more postmenopausal women on hormone replacement therapy adopt 

a soy based diet, the question arises as to how E2 and PE interact. The current study is 

the first to explore the neuroprotective potential of PE and the combined effects of 

estrogen and PE against permanent focal ischemia in a middle aged model. 

What is PTEN and p-Akt and how are they linked? 

PTEN (the phosphatase and tensin homolog deleted from human chromosome 10) 

is a protein tyrosine phosphatase that is known as a "tumor suppressor" gene because it 

suppresses cell proliferation and promotes programmed cell death via apoptosis (Omori 

et aI., 2002). This action is desirable when cell proliferation may be unregulated, such as 

in epithelial neoplasias; however, it is unprotective and undesirable for amitotic cells 

such as neurons. In it's active form, which is the non-phosphorylated state (Choi et aI., 
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2005), PTEN acts as a phosphoinositide 3 phosphatase which negatively regulates the 

phosphoinositide 3-kinase (PI3K) pathway by catalyzing the degradation of 

phosphatidylinositol (3,4,5) triphosphate, yielding phosphatidylinositol (4,5) diphosphate 

(Waite et ai., 2005). Phosphatidylinositol (3,4,5) triphosphate is required for the 

activation of the pro-proliferative p-Akt dependant pathway (Waite et ai., 2005). Akt is a 

serine threonine protein kinase which when activated by phosphorylation (p-Akt) 

promotes cell survivability in neurons via several mechanisms, including the inhibition of 

death-inducing proteins such as glycogen synthase kinase 3 (GSK - 3) (Kim et ai., 2001 

and Alloatti et ai., 2004) and the mitogen activated protein kinase/ c-jun N terminal 

kinase (MLK3/JNK3) signaling pathways (Zhang et al. 2006). An increase in p-Akt has 

also been shown to upregulate Bcl-2 protein in neurons (Pugazhenthi et al., 2000). Bcl-2 

is antiapoptotic and prevents neurons from undergoing programmed cell death from 

ischemic injury (Wise et aI., 2001; Choi et aI., 2004; Martinou et aI., 1994). In the case 

of neuronal damage, because p-Akt prolongs cell survivability, higher levels are 

protective. 

Figure 2. The relationship between elevated PTEN and p-Akt levels on neuron 

survi vability 

t PTEN = t neuron apoptosis =1 neuron survivability 

k EN = t p-Akt = t neuron survivability 
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The active form of Akt is well accepted to be the traditional phosphorylated form 

(p-Akt). Burgering and Coffer (1995) and Franke et al.(1995) both report that 

phosphorylation of residues Thr-308 and Ser -473 are required for Akt activity. 

Surprisingly, the active form of PTEN is actually the unphosphorylated form. 

Phosphorylation of PTEN regulates its conformational changes, thereby suppressing the 

activity of PTEN by controlling the recruitment of PTEN into the PTEN-associated 

complex (Adey et aI, 2000; Vazquez et aI., 2001). Choi et al. (2005) added credibility to 

the hypothesis that p-PTEN is the inactive form, as they found that the activation of Akt 

in the post-ischemic hippocampus of adult male rats following global ischemia mirrored 

that of p-PTEN expression. Since activated PTEN inhibits activated Akt, the two forms 

should not increase together. 

Choi et al. (2004) showed that pharmaceutical doses of E2 greatly reduced 

ischemic damage after transient MCAo in adult male Sprague-Dawley rats. Animals 

administered E2 at 4 mg/kg and 10 mg/kg intraperitioneally (ip) 24 hours prior to and 5 

minutes after reperfusion had significantly less infarct damage than did the control 

animals. Interestingly, 1 mg/kg E2 administered ip did not significantly decrease infarct 

damage over that seen in the control animals. Infarct damage paralleled measured p-Akt 

levels in the ipsilateral cortex with active Akt levels significantly increased in the groups 

receiving 4 and 10 mg/kg E2 over those receiving Img/kg E2 and control. This suggests 

that the protective effects of E2 seen in this study may be ascribed to the ability of E2 to 

upregulate Akt signaling pathways after ischemic injury. The investigators also looked at 

PTEN and p-PTEN levels, but reported the results as p-PTEN being the biologically 
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active form. Their results actually showed a disconnected relationship between active 

PTEN and p-Akt, as both increased together in a dose proportionate manner. Although 

the PTEN data are somewhat confusing, this body of work does provide evidence for E2, 

albeit at very high doses, regulating pathways that ultimately determine cell fate. This 

study raises the question of whether physiological, as opposed to pharmacological, levels 

of estrogen in female animals could also mitigate stroke damage by regulating AktiPTEN 

pathways. Studies by Omori et ai. (2002) and Choi et ai. (2005) added an additional 

factor to be unraveled. Omori et ai. (2002) found that the transient focal MCAo procedure 

itself upregulated PTEN activity over controls in the ischemic cortex. Choi et ai. (2005) 

found that the phosphorylated forms of PTEN and p-Akt were upregulated in the 

hippocampus following a transient global ischemia procedure, which leads to another 

question addressed within the present study concerning what changes are actually due to 

treatment vs. due to the MCAo procedure? In an attempt to answer this question, protein 

measurements were taken from both ipsilateral and contralateral hemispheres, the 

contralateral hemisphere providing information about the systemic treatment while the 

ipsilateral, subjected to unilateral MCAo, provides information concerning the insult in 

conjunction with the interventions. A previous study has reported that both p-PTEN and 

PTEN are upregulated in the post ischemic brain with expression occurring 

predominately in neuronal cells of the cortex, but not in astrocytes (Omori et ai., 2002). 

A different study reported that upregulation of PTEN activity occurs in astrocytes, not 

neurons, of the hippocampus after being subjected to transient ischemia (Choi et ai., 

2005) and kainic acid injection (Cho et ai., 2002). This brings into question the cell type 

responsible for PTEN upregulation in response to ischemia. 
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Several studies performed in cell cultures are relevant to the work presented in 

this dissertation. Honda et al. (2000,2001) and Wilson et al. (2002) have demonstrated 

that neuroprotection exerted by estrogen in primary culture cells is attributed to the 

ability of E2 to activate the PI3 kinase pathway. Supportive data from Waite et al. (2005) 

demonstrated a three-fold increase in PTEN levels when breast cancer cells were 

stimulated with O.lnm genestein and, as would be expected, p-Akt levels decreased. 

Although these studies utilized neoplastic breast cells in culture, they are relevant to the 

current study because they illustrate that E2 and genestein affect the PTEN/p-Akt 

pathway, albeit in an opposite manner, suggesting that E2 increases p-Akt while PE has 

the opposite effect of increasing PTEN and thus decreasing p-Akt. To add to the possible 

antagonist effects of E2 and PE, Stoica et aI., 2003 found that E2 increased p-Akt levels 

in breast cancer cell lines by 9-fold within 10 minutes: an action that was blocked by 

genestein. 

Very few studies have directly looked at the roles of PE in regulating apoptotic 

vs. proliferative pathways. In vivo studies of aging female systems utilizing a chronic 

exposure to realistic levels of both E2 and dietary PE and their effects on the regulation 

of apoptotic/proliferative pathways is merited. Such a study of the combined effects of 

physiological levels of E2 and dietary soy PE may also prove insightful. 

The anatomy of the middle cerebral artery and the expected outcomes of occlusion. 

To fully comprehend the MCAo procedure, a good understanding of the MCA 

itself is merited, as infarct studies may be adversely affected by naturally occurring 
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vascular anomalies in the anatomy of the MeA and the point at which it is actually 

occluded. The main trunk of the middle cerebral artery originates in the circle of Willis 

and proceeds dorsally (Rubino and Young, 1988). From this point the anatomy is quite 

variable. Rubino and Young (1988) attempted to define the branching patterns of the 

MeA in Sprague-Dawley rats. They found that the MeA bifurcated into two major 

branches, the frontal and parietal, in 95% of animals studied. In addition to these 

predictable branches, two minor branches were identified in a smaller percentage of 

animals. The anterioventral pyriform branch was identified in 43% of animals while the 

posterioventral temporal branch was identified in 32% of animals. Seventeen percent had 

all four branches, 31 % had the two major branches and one minor branch, 48% had only 

the two major branches and the other 5% only had a parietal branch. They found that 

when stained with Evans blue, selective occlusion of the frontal, parietal, or pyriform 

branches produced a cortical lesion that was conical in shape with deep apexes. 

Interestingly, selective occlusion of either the frontal or parietal branches resulted in 

tertiary lesions located outside the region supplied by the branch in 56% and 86%, 

respectively, of the animals studied. This study raises two critical questions concerning 

the MeAo procedure. Do the anatomical differences in arterial branching lead to 

variability in resulting infarct? Is the high percentage of tertiary lesions noted due to 

other processes, outside of primary striatal ischemia and cortex apoptosis, that are 

concurrently induced by the MeAo procedure? 

The present study attempts to standardize primary infarct damage by studying 

infarct size limited to the brain areas served by the parietal and frontal branches, thus 
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eliminating the anatomical variance of the minor branches. To standardize occlusion, the 

intraluminal suture used had a consistent preformed bulb on the end, insertion length was 

measured according to body weight, and the internal carotid artery was ligated to anchor 

the intraluminal suture and decrease collateral perfusion. 

The frontal and parietal branches of the middle cerebral artery collectively serve 

60-70% of the cortical surface of each hemisphere (Rubino and Young, 1988). The 

territory served has undefined rostral limits of "much of the frontal cortex including the 

piriform cortex", caudal limits of "part of the occipital cortex", and most everything in 

between (Rubino and Young, 1988). Due to the published descriptions of areas served by 

the two major branches of the MeA and the well-documented fact that the intraluminal 

MeAo procedure does not predictably induce damage to the hippocampus, which 

requires a four-vessel occlusion including the vertebral arteries, the area of infarct 

damage measured in this study was limited to Bregma +2.2 through Bregma -2.8. 

Bregma +2.2 lies within the frontal cortex and has a well defined piriform cortex. 

Bregma -2.8 lies within the occipital lobe with minimal hippocampus but includes 

caudoputamen, internal capsule, and anterior thalamus, which were described by Longa 

et al. (1989) as areas rendered ischemic by intraluminal MeAo. To add credence to the 

choice of using these coordinates, Rau et al. (2003) stated that this region contained the 

area that undergoes injury with MeAo. Thus, the data should reflect focal cerebral 

necrosis to the striatum directly served by the two main branches of the MeA and the 

secondary results of ischemia to the overlying cortex. The cortex, while hypoperfused, 

has the benefit of collateral circulation from the anterior and posterior cerebral arteries. 
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Because of the differences in perfusion, the cells of the cortex undergo programmed cell 

death rather than necrosis (Rau et aI., 2003). Given the area of the brain selected for 

study, one should expect to see uniform, near complete, striatal infarct across all 

experimental groups, with any variation due to treatment manifested as spared cortex. 

The current study aimed to clarify the neuroprotective potential of E2 and PE alone and 

in combination to selective neuronal injury associated with primary occlusion of the 

striatum served by the middle cerebral artery and subsequent apoptosis of overlying 

cortical neurons in middle aged females. 

Goals of the present study 

The present study was designed to test a more realistic model of the peri and 

menopausal female than many previous studies cited above by using aged female retired 

breeder rats that had experienced the hormone fluctuations of pregnancy, lactations, and 

irregular cycling common to aging. The hypothesis of this study was that physiological 

levels of 17/3- estradiol (E2) and dietary soy phytoestrogens (PEs) produce similar but 

not additive effects on primary ischemic damage and apoptotic pathway regulation by 

PTENIAkt, producing an outcome of neuroprotection in aging female systems. To test this 

hypothesis, six specific questions were addressed: 

1. Are physiological levels of E2 neuroprotective, as measured by infarct size 

after MCAo, in reproductively senescent rats? 

2. Are dietary PE neuroprotective in reproductively senescent rats? 

3. What are the combined anti-ischemic effects of E2 and PE? 
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4. Do physiological levels of E2 and/or dietary PE treatment alter PTEN and/or 

p:..Akt expression compared to controls in the MCAo model? 

5. Is PTEN/p-Akt activity altered in neurons or in astrocytes following MCAo? 

6. Does the MCAo procedure upregulate PTEN/p-Akt activity as measured by 

comparing IL hemisphere protein levels to those of the corresponding CL 

hemisphere? 

This study is important because it is the first to contribute to the understanding of 

realistic levels of PE alone and in combination with E2 to mitigate occlusive stroke 

damage in aged reproductively senescent rats. It also attempts to isolate primary 

ischemic damage from other secondary factors by limiting the area of the brain used for 

data to only the area known to be served by the middle cerebral artery in 98% of rats. In 

addition, it explores the ability of PE and E2 to regulate the PTEN/Akt pathway in a 

middle aged rodent model and attempts to identify cell type associated with PTENI Akt 

proteins. Lastly, it will provide insight into whether or not the pMCAo procedure itself 

upregulates apoptotic proteins. 
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MATERIALS AND METHODS 

Animals 

Middle aged (10-12 months, 244-339 g body weight) female non-pregnant retired 

breeder Sprague-Dawley rats ordered from Harlan (location) were maintained in a 12 

hours lightl12 hours dark photoperiod (lights on 6AM). Animals were given a two week 

acclimation period after arrival prior to any experimentation, during which time they 

were fed a PE-reduced diet provided by the laboratory of Dr. Thomas Clarkson (Wake 

Forest University) using soy protein provided by the Solae Company (St. Louis, MO), 

made by subjecting soy protein to alcohol extraction to remove isoflavones, and provided 

free access to water. All procedures were approved by the University of Louisville 

IACUC. 

Choice of model 

Since rats do not have a menstrual cycle they technically cannot be said to enter 

menopause; however, they do experience age-related changes in their four-day estrous 

cycle (Hsueh et aI., 1979; Lu et aI., 1979). At 10-12 months of age, rats enter a period of 

irregular estrus cycling followed by a period of anovulatory constant estrous that 

transitions to a persistent diestrus state at approximately 25 months of age (Lu et aI., 

1979). Ovariectomizing 10-12 month old rats allow for the control of endogenous 

circulating estrogen (E2) while offering a naturally aged model. Additionally, retired 
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breeder rats may offer a more realistic model for women that have experienced the 

extreme hormonal changes associated with pregnancy and lactation as a part of their 

reproductive history over male rats or very young female rats with acute surgically 

induced hypoestrogenism. Initially, Fisher rats were proposed for use in this study due to 

a readily available source of retired breeders; however, they are unsuitable for the 

procedure due to their cerebrovascular anatomy (Dittmar et aI., 2006). Sprague-Dawley 

rats were chosen instead to more closely parallel the Dubal and Wise (2001) and 

Scheihofer et al. (2005) studies. 

Experimental groups 

Each experimental group consisted of thirteen animals. All animals were 

bilaterally ovariectomized (ovx) under isoflurane anesthesia to eliminate endogenous E2 

production and then implanted with a silastic capsule made by filling 1.47 mm x 1.96 mm 

silastic tubing (Dow Corning) with either micro filtered sesame oil (E2- group )(Sigma) or 

189 ug/ml of 17~-estradiol (Sigma) dissolved in microfiltered sesame oil (E2+ group). 

Each capsule contained 0.6ml of oil or E2 and was sealed at each end with medical grade 

silicone sealant. Each animal received two capsules implanted subcutaneously in the 

scapular region. This dose is consistent with previous studies where it is reported to 

produce physiological circulating E2 blood levels of approximately 20 pg/ml in Sprague

Dawley rats (Dubal and Wise, 2001; Rau et aI., 2003). Immediately post ovx, 

buprenorphine (0.5 mg/kg) was administered via a subcutaneous route for analgesia. 

Rats were provided with a diet of intact soy protein (PE+ group) or a diet of soy protein 

that had been subjected to alcohol extraction of phystoestrogens (PE- group). All 
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experimental animals were on the respective diet for 1 week after ovx. Fresh food was 

provided daily along with free access to water. 

T bIlE a e xpenmenta groups. 

Denotation Silastic implant Diet Role 

E2-IPE- Oil (-) Soy - Negative control 

E2+IPE- E2 (+) Soy - E2 effects only 

E2-IPE+ Oil (-) Soy + Phytoestrogens effects only 

E2+/PE+ E2 (+) Soy+ Combined effects of E2 and Phytoestrogens 

Diet 

Rats were provided with a diet of 25 grams/day containing either intact soy 

protein (PE+ group) or a diet of soy protein that had been subjected to alcohol extraction 

of phystoestrogens (PE- group). Both diets were prepared by the laboratory of Dr. Tom 

Clarkson (Wake Forest University) using soy protein provided by the Solae Company 

(St. Louis, MO), which also provided analysis of isoflavone content (Table 2). The final 

diet made by the Clarkson lab consisted of 14.83% of the PE+ or PE- soy protein. The 

PE+ diet was estimated to provide an intake of 144 mg of PEI1800 calories per day. This 

dosage is equivalent to human intake when consuming a diet high in soy protein and has 

been used successfully in several studies of rats (Clarkson et aI., 1998; Clarkson et aI., 

2001; Clarkson, 2002). Animals were provided fresh food daily along with free access to 

water. 
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Table 2. Composition of soy protein in the PE- and PE+ diets as made by the Solae 
co mpany. 

Composition PE- PE+ 

Protein (%) 86.8 87.6 

Calcium (mgIlOOg) 110 183 

Ash (%) 4.23 4.17 

Fat (%) 2.25 1.91 

Moisture (%) 4.4 3.7 

Phosphorus (mg/100g) 740 807 

Potassium (mg/lOOg) 1240 644 

Sodium (mg/lOOg) 1090 824 

Genistein-containing compounds ()lg/g protein) 30 2090 

Daidzein-containing compounds ()lg/g protein) 30 900 

Glycitein-containing compounds ()lg/g protein) 10 150 

TOTAL AGL VCONE ISOFLA VONES (Jig/g protein) 40 1910 

TOTAL ISOFLAVONES (Jig/g protein) 70 3140 

Food consumption measurements 

The food utilized in this project had a consistency similar to play dough. When 

formed into a ball and placed in a wire bar rack, the animals were able to bite off pieces 

with very little waste. Food consumption was measured in a subset of experimental 

animals by recording initial weight of food provided and the weight of the food 

remaining 24 hours later to get an estimate of daily food intake. These measurements 
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were taken on an average of 8 animals per treatment group on 5 different days during the 

week post ovx and prior to ischemic event. Isoflavone intake was calculated based on 

grams of food consumed x 14.83% percent PE+ or PE- protein x total isoflavone content 

per gram of protein. 

In vivo permanent cerebral ischemia 

One week post-ovariectomy and oil or E2 treatment, all animals underwent 

permanent middle cerebral artery occlusion (MCAo). MCAo is a widely used procedure 

in rats to mimic human occlusive stroke (Longa et aI., 1989; Wise et aI., 2001; Rau et aI., 

2003; Choi et aI., 2004). Briefly, under isoflurane anesthesia, a 4/0 monofilament suture, 

coated with poly L lysine, with a standardized plastic coated tip (Doccal Company, 

Redlands, CA) was inserted into the left internal carotid artery and advanced to the 

middle cerebral artery. Insertion length was determined according to body weight and 

measured from the bifurcation of the internal and external carotid arteries. The suture 

was secured in position by placing a ligature around the internal carotid artery. This 

procedure results in complete blockage of blood flow to the striatum of the left 

hemisphere, which is served by MCA, with resulting necrotic cell death. In addition, it 

drastically reduces blood flow to the overlying cortex but because the cortex has 

collateral perfusion from branches of other cerebral arteries, it provides a model to study 

programmed cell death in cortical neurons. During the MCAo procedure body 

temperature was monitored with a rectal probe and maintained at normothermic (+/- 1°C) 

with a heating pad. Buprenorphine (0.5 mg/kg) was administered immediately post 

operatively via a subcutaneous route for analgesia. 
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Histological preparation 

Twenty-four hours after undergoing MCAo, rats were injected with 0.35 ml (total dose 

26.25 mg ketamine/1.75 mg xylazine per animal) of a 311 ketamine (100 mg/ml)/ 

xylazine (20 mg/ml) mixture 1M to induce deep anesthesia, euthanised via thoracotomy, 

and then intracardially perfused with 10 ml room temperature O.IM PBS followed by ice 

cold 4% paraformaldehyde at a flow rate of 15 mllmin for 15 minutes per rat. Prior to 

perfusion, intracardiac blood samples were drawn for analysis of E2 plasma levels and 

sent to the UVa Center for Research in Reproduction Ligand Assay and Analysis Core 

Laboratory (Charlottesville, V A) for fee for service ELISA testing. After perfusion the 

brain was collected and cryoprotected in stepwise 12.5% to 25% sucrose in O.IM PBS at 

4°C before being frozen at -80°C until subsequent Nissl staining and immunoflourescent 

antibody processing occurred. Brains were sliced on a cryostat into four series of 20 Ilm 

sections at -18°C. All sections were accounted for in order to calculate total thickness 

between sections for infarct volume measurements. 

Infarct measurements 

One series of 20llm sections was subjected to a standard Nissl stain and analyzed 

for striatal, cortical, and total infarct volumes. Infarcted areas did not take up the blue 

Nissl stain, leaving clear demarcations between infarcted and non-infarcted tissue (see 

Figure 3). Brain sections that spanned Bregma +2.2 to -2.8 were photographed on a 

Leica synchroscopy microscope and saved in tagged image file format (TIFF). This 
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region contains the area of the brain served by the middle cerebral artery, which includes 

a portion of the frontal lobe and the lateral surface of the temporal and parietal lobes that 

undergo primary injury (Rau et ai., 2003). Pictures were resized to 900 pixels and 

adjusted for contrast using Adobe Photoshop version 6.0 (Adobe Systems, San Jose, 

Calif., USA). Infarcted areas were measured using an image analysis system (Scion 

Image v4.02, Scion Corp., Frederick, MD, USA) calibrated to 76 pixels/mm for all 

pictures taken at 1.25 magnification or 60 pixels/mm for all pictures taken at 1.0 

magnification. Measurements were collected on infarcted striatum, infarcted cortex, total 

ipsilateral (IL) hemisphere, and total contralateral hemisphere (CL). Infarct volume data 

were collected in two ways, as raw measurements in mm3 and as a percent of the total IL 

hemisphere volume (%). Raw measurements allow for comparison with the results of 

Dubal and Wise (2001), which is the model study for this research. The later 

measurements were to account for infarct associated edema as described in Scheihofer et 

al (2005) and allowed for comparison of results with the most closely matched PE study 

in the literature to date. Infarct volumes were calculated by multiplying the cross

sectional infarct area of striatum or cortex by thickness from one measured section to 

another to arrive at infarct volume (mm3
), then dividing by total cross-sectional area of IL 

hemisphere to arrive at infarct volume as a % of IL hemisphere. All section measures for 

each brain were then added for total mm3 or % IL hemisphere. 
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Figure 3. Definition of terms used to describe infarct data 

Ipsilateral 
hemisphere (IL) 

cortex 

P-Akt and PTEN measurements 

Contralateral 
Hemisphere (CL) 

striatum 

Two other series of 20 ~m sections from six animals per experimental group were 

processed for double label immunofluorescence histochemistry. Sections were from 

brains that had non-infarcted cortex. Some of the original thirteen per group were not 

eligible for antibody studies due to presence of infarcted cortex in the study area. The 

antibody study area was defined as superficial lateral cortex, in line with the lateral 

ventricles, and within Bregma +0.8 to -0.92 ( Figure 4). This area of the somatosensory 

cortex was chosen for antibody study because it tended to be the variable area, either 

being totally damaged or totally spared (Figure 5). 
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Figure 4. Antibody target area 

Figure 5. No cortex damage (A) vs. cortex damage (B) in antibody target area 

Sections were blocked with normal goat serum (60 mg/rnl, Jackson 

ImmunoResearch Labs, West Grove, PA., USA) for one hour at room temperature. The 

sections were then incubated with primary antibodies overnight at 4°C in a combination 

of a rabbit monoclonal antibody against p-Akt (Ser473, Cell Signaling Technology, 

Beverly, Mass., USA, diluted 1:50), or a rabbit monoclonal antibody against PTEN 

(138G6, Cell Signaling Technology, diluted 1 :200) and either a mouse anti-glial fibrillary 

acidic protein (Gfap) monoclonal antibody (Chemicon International, Temecula, Calif., 

USA, diluted 1 :400) or mouse anti-neuronal nuclei (NeuN) monoclonal antibody 
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(Chemicon, diluted 1 :400). All antibody dilutions were made using a sterile antibody 

dilution buffer consisting of 40mls IX PBS, 0.4 mls bovine serum albumen, and 120 ul 

triton X. Sections were then incubated for 2 hours at room temperature with a mixture of 

secondary antibodies consisting of Rhodamine Red conjugated goat anti-rabbit IgG 

(Jackson ImmunoResearch Labs, diluted 1 :500) and Fluorescein (FITC) conjugated goat 

anti-mouse IgG (Jackson ImmunoResearch Labs, diluted 1:50). All incubations occurred 

within a zero light humidity chamber. Prolong antifade reagent (Molecular Probes, 

Eugene, OR) was applied to all sections prior to cover slipping. 

T bl 3 S . I 'b d t a e ena antI o ly treatmen s. 
Protein Marker Cell Type Marker Effects with Secondary Antibody 

p-Akt Gfap red proteins with green astrocytes 

PTEN Gfap red proteins with green astrocytes 

p-Akt NeuN red proteins with green neurons 

PTEN NeuN red proteins with green neurons 

Immunoflourescent staining was visualized and recorded using a Zeiss laser 

deconvolusion microscope using a 20x objective and quantified with the accompanying 

Axiovision 4.4 image analysis software. Each of the four original treatment groups (E2-

IPE-, E2-/PE+, E2+IPE-, E2+IPE+) were subjected to all four antibody combinations (p-

AktlGfap, p-AktlNeuN, PTEN/Gfap, PTENlNeuN) so that expression of each protein in 

glia vs. neurons could be assessed in each treatment group. Five images per hemisphere 

(CL and IL) from three sections per slide for six different trials were analyzed resulting in 
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2,880 pieces of data collected for this study. Data are reported as field area percent, 

which refers to the sum of the areas of all regions (mm2
) that meet defined 

immunoflourescent criteria divided by the entire field area (mm2
) x 100. The field area 

was the same for all measurements and is determined by the aperture of the 20x lens used 

for all protein data collection. In other words, this parameter measures the percent of the 

field, visible with the 20x objective, occupied by fluorescing areas within a defined range 

of brightness and size. Although sections were double labeled, when measuring Akt or 

PTEN, only red fluorescence is measured, not both markers 

Statistical analysis 

Food consumption, blood estrogen levels, and changes in body weight between 

ovx and MCAo data are presented as means (+/- SE). Total isoflavones consumed is 

presented as average mg/day (+/- SE) intake over the six day period between ovx and 

MCAo. Differences in infarct volume, p-Akt, and PTEN expression was assessed 

separately by two way analyses of variance (ANOV A) with E2 and PE exposure as 

independent factors using Sigma Stat software. In some cases, data did not pass tests of 

equal variance or normality, and so were ranked before analysis. Separate analyses on 

infarcts included striatal, cortical, and total infarct volumes, as raw measurements in 

mm3
, as % of ipsilateral hemisphere volume, and as specific subset data including only 

animals in each group that did sustain cortex damage. (+/- SE). Subset data were 

analyzed using a PROC MIXED in SAS. P- Akt and PTEN expression were analyzed 

with each co-marker (NeuN, Gfap) separately. Levels were compared from the ipsilateral 

hemisphere and from the ipsilateral minus the contralateral hemisphere, in which case 
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post-hoc multiple pairwise comparisons using the Holm-Sidak method was warranted. A 

difference of p < 0.05 was considered statistically significant. Marker effects were 

analyzed using a type 3 tests of fixed effects in SAS. Pearson product moment 

correlation coefficients were calculated for body weight at time of MCAo, E2 levels, and 

PE consumption in relationship to cortex and total infarct volume as a % of ipsilateral 

hemisphere volume (+I-SE). 
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RESULTS 

Amount of phytoestrogens consumed by PE+ groups 

Food consumption during the week immediately following ovx up to MCAo was 

found to be consistent among the groups (see Figures 6 A-D). As expected, all groups 

demonstrated a trend of increased consumption with consecutive days post ovx. Average 

food intake for day one was 6 grams (+/- O.39g) with a steady increase of 2 to 3 grams 

per day. By day six, the average intake had increased to 199 (+/-O.S7g). 
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Figure 6 A-D. Food consumption by group by day between ovx and MCAo (mean ± SE). 
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Figure 7. Food consumption across groups by day for the 7 days between ovx and MCAo 
(mean ± SE). 

Total isoflavones consumed by the PE+ groups reached 48.6 mg/day (+/- 2.59 mg) in the 

E2-/PE+ group and 51.71 mg/day (+/- 4.21 mg) in the E2+IPE+ group (see Figure 8). 

There was no significant difference between groups. 

Figure 8. Isoflavone consumption (mg/day) by PE+ groups 

34 



Circulating blood estrogens levels produced via silastic implants in E2+ groups 

Circulating plasma E2 levels were measured from blood harvested at time of 

animal sacrifice. The silastic implants produced average physiological blood 

levels of 40 pg/ml (24-67 pg/ml), which is consistent with levels of E2 during 

diestrus. The E2+IPE- and E2+/PE+ groups had very similar plasma levels of 

E2, 38.65 +/- 1.88 pg/ml and 40.48 +/- 3.66 pg/ml, respectively (see figure 9). 
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Figure 9. Plasma E2levels in E2+ groups (mean ± SE) 

Animal body weight between ovx and MCAo. 

The average weight per group was similar at the time of ovx; however, much 

variation existed within each group (see Table 4). As expected, the E2+ groups lost the 

most weight with the E2+IPE- group losing an average of 6.6% body weight between ovx 

and MCAo and the E2+/PE+ group losing an average of 6.8% body weight during the 
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same time frame. The E2-IPE+ group lost the least amount with only an average 2.6% 

reduction in body weight following ovx. 

Table 4. Changes in body weight between ovx and MCAo. 

Group Body weight at ovx (g) Body weight at MCAo (g) 

E2-IPE- 305 +/-90 292 +/-82 

E2-/PE+ 305 +/-107 297 +/- 81 

E2+IPE- 305 +/- 91 285 +/-73 

E2+/PE+ 307 +/- 60 286 +/- 51 

Infarct measurements 

Infarct volume data is presented in two forms, as raw measurements in mm3 

and as a percent of the total IL hemisphere volume. Raw measurements allow for 

comparison with the results of Dubal and Wise (2001), which is the model study for this 

research. The later measurements were to account for infarct-associated edema as 

described in Scheihofer et al (2005), and allowed for comparison of results with the most 

closely matched PE study in the literature to date. No significant effects were detected 

in striatal, cortex, or total infarct volume by two-way ANOV A using raw infarct volume 

(mm3
) or % IL hemisphere as measures. Since there was no ANOV A effect, post hoc 

multiple comparisons were not performed. Power for all analyses was low (0.05), but 

with all p values above 0.7 the risk of a Type II error is very low. While all 

measurements passed equal variance testing, only the striatal infarct data passed 
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normality testing; thus, cortex and total infarct measurements were ranked prior to 

analysis. The striatal infarct volume was essentially the same in all groups, suggesting 

that the infarct procedure was equalized between groups (see Figures 10, 12 and Table 5). 

Statistical analysis is addressed within the section specific to measurement type. 

Raw infarct data in mm3 

There was no significant difference among the ANOV A factors (E2, PE, and E2 x 

PE interaction) in striatal (E2 p= 0.78, PE p= 0.80, E2 x PE P =0.73), cortex (E2 p= 0.84, 

PE p= 0.96, E2 x PE P =0.72), or total infarct volume (E2 p= 0.99, PE p= 0.89, E2 x PE P 

=0.71), when measuring infarct in mm3 (see Figures 10, 12 and Table 5). 

120 

110 
(') 100 
E 
E 90 -(.) 80 ... 
cu -c: 70 

60 

50 
E2-/PE-

Striatal Infarct (n=13) ,-------., 
E2 p= 0.78 
PE p=0.80 
E2 x PE p= 0.73 

E2-/PE+ E2+/PE- E2+/PE+ 

Group 

Figure 10. Striatal infarct volume (mm3
) by group (mean ± SE). 
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Figure 11. Cortex infarct volume (mm3
) by group (mean ± SE). 

Note: These data failed normality testing and so were ranked before analysis. 
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Figure 12. Total infarct volume (mm3
) by group (mean ± SE). 

Note: These data failed normality testing and so were ranked before analysis. 
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T bl 5 M a e . I d ean stnata ,cortIca an I . f tota In arct measurements In mm + y group. 
Group Striatal infarct volume Cortical infarct volume Total infarct volume 

mm3 mm3 mm3 

E2-IPE- 88.00 (+/-7.99) 46.46 (+/-15.19) 134.46 (+/-21.43) 

E2-IPE+ 94.77 (+/-1 3.16) 53.15 (+-15.67) 147.92 (+/-27.72 ) 

E2+IPE- 95.08 (+/-11.99) 49.15 (+/-18.23) 144.23 (+/- 28.48 ) 

E2+IPE+ 94.00 (+/-11.54) 44.08 (+/-14.87) 138.08 (+/- 24.71) 

Infarct data as % IL hemisphere 

There was no significant difference among the ANOV A factors (E2, PE, and E2 x 

PE interaction) in striatal (E2 p= 0.92, PE p= 0.92, E2 x PE P =0.84), cortex (E2 p= 0.63, 

PE p= 0.93, E2 x PE p =0.89), or total infarct volume (E2 p= 0.69, PE p= 0.92, E2 x PE P 

=0.98), when measuring infarct as percent IL hemisphere (see Figures 13, 14, 15 and 

Table 6). 
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Figure 13. Striatal infarct volume as a % of total ipsilateral hemisphere volume by group 
(mean ± SE). 
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Figure 14. Cortex infarct volume as a % of total ipsilateral hemisphere volume by group 
(mean ± SE). 
Note: These data failed normality testing and so were ranked before analysis. 
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Figure 15. Total infarct volume (as a % of total ipsilateral herrusphere volume) by group (mean ± 
SE). 
Note: These data failed normality testing and so were ranked before analysis. 
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Table 6. Resulting mean ± SE of striatal, cortex, or total infarct volume (% IL 
h . h )f f enuspJ ere or our treatment groups. 

Group Striatal Infarct Volume Cortical infarct volume Total infarct volume 

% IL hemisphere % IL hemisphere % IL hemisphere 

E2-/PE- 31.54 (+1-1.55) 14.46 (+1-4.79) 46.00 (+1-5 .64) 

E2-IPE+ 31.31 (+1-2.56) 15.46 (+-4.51) 46.77 (+1-6 .68) 

E2+IPE- 30.85 (+1-2.47) 12.92 (+1-4.37) 43.77 (+1-5.96) 

E2+IPE+ 31.54 (+/-2.15) 12.69 (+/-4.17) 44.23 (+1-5.68) 

Due to the non-significant results across the entire treatment groups (n=13) for the 

three factors tested, two additional questions were addressed using a subset from each 

original group. The first question was whether or not the presence of cortex damage 

depended upon treatment group. The second question was, if cortex damage is present, 

does the amount of damage depend upon treatment group? The subset to be included in 

this analysis is defined in Table 7 as those animals in each group that did sustain cortex 

damage. All animals with no cortex damage were excluded from the analysis testing the 

second question. 

Table 7 . The presence of infarcted cortex measured as % IL hemisphere by treatment 
group 

Cortex E2-fPE- E2-fPE+ E2+fPE- E2+fPE+ 
Damaged? 

NO 5 6 5 5 
(zero cortex damage) 

YES 8 7 8 8 

TOTAL 13 13 13 13 
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Table 8. Resulting mean ± SE of striatal, cortex, or total infarct volume (as a % of total 

IL hemisphere volume) by group when cortex infarct is greater than zero. 

Group Striatal Infarct Volume Cortical infarct volume Total infarct volume 

(%IL) (%IL) (%IL) 

E2-IPE- 32.56 (+/-1.84) 20.89 (+/-5.75) 53.44 (+/-6.71) 

E2-/PE+ 38.00 (+/-2.08) 28.71 (+/-3.48) 66.71 (+/-4.26) 

E2+IPE- 34.88 (+/-1.94) 21.00 (+/-5.38) 55.88 (+/-6.11) 

E2+IPE+ 35.67 (+/-1.75) 18.33 (+/-4.98) 54.00 (+/-5.57) 

A logistic regression model using PROC MIXED in SAS revealed that the 

presence of cortex damage did not depend upon treatment group (p=0.84). There was 

also no significant factor effect (E2 p=0.78, PE p=0.78, E2/PE interaction p=0.41). 

Thus, to answer the first question, the presence of cortex damage does not depend 

upon treatment group. 

The second question, if cortex damage is present, does the amount of damage 

depend upon treatment group, was analyzed in the same manner. Resulting graphs are 

presented in Figures 16, 17, and 18. 
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Striatal infarct if cortex infarct >zero 
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Figure 16. Striatal infarct volume (as a % of total ipsilateral hemisphere volume) by 
group when cortex infarct is greater than zero (mean ± SE). 
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Figure 17. Cortex infarct volume (as a % of total ipsilateral hemisphere volume) by 
group when cortex infarct is greater than zero (mean ± SE). 

43 



Total infarct when cortex infarct >zero 
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Figure 18. Total infarct volume (as a % of total ipsilateral hemisphere volume) by group 
when cortex infarct is greater than zero (mean ± SE). 

The resulting p values for E2, PE, and E2 x PE interaction for striatal (E2 p= 1.00, 

PE p=0.12, E2IPE interaction p=0.38), cortex (E2 p=0.69, PE p=0.83, E2IPE 

interaction p=0.17) , and total damage (E2 p=0.37, PE p=0.35, E2/PE interaction 

p=0.44) were not significant; however, the interaction effects in the cortex did 

approach significance (p=0.17) when measuring cortex damage only. Thus, to 

answer the second question, if cortex damage is present, the amount of damage does 

not depend upon treatment group. 

The fact that both questions resulted in non-significant findings is not surprising 

when one considers that the number of animals per group sustaining cortical injury 

was nearly identical and when damage was present, it occurred very consistently 

among groups (see Table 4 and 6). 
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Table 9. Number of rats in each group by percent of cortex damage (%IL). 

Percent cortex E2-IPE- E2-IPE+ E2+IPE- E2+IPE+ 
damage 

0% 5 6 5 5 

1-25% 3 2 5 4 

26-50% 5 5 3 4 

50 -100% 0 0 0 0 

Total 13 13 13 13 

P-AktIPTEN measurements as field area percent of the IL hemisphere 

There were no significant differences in PTEN {(PTEN/Gfap E2 p=0.68, PE p=0.55, 

E2IPE interaction p=0.096) and (PTENlNeuN E2 p=0.54, PE p=0.78, E2IPE interaction 

p=0.91)} or p-Akt {(p-AktlGfap E2 p=0.47, PE p=0.94, E2IPE interaction p=0.68) and 

(p-AktlNeuN E2 p=0.94, PE p=0.88, E2IPE interaction p=0.71)} levels when comparing 

ANOVA factors for the field area percent in the IL hemisphere (see Figures 19,20,21, 

22 and Table 7). Interestingly, when double labeled with Gfap, the interaction between 

E2 x PE for PTEN approaches significance (0.09). This phenomenon is not seen when 

PTEN is double labeled with NeuN. This suggests that there may have been a marker 

effect. A type 3 test of fixed effects performed in SAS failed to demonstrate a marker 

effect for p-Akt (p=0.60) but did demonstrate a significant marker effect for PTEN 

(p=0.0045). This helps explain why the level of expression of PTEN varies with 

secondary marker. This may be due to the fact that both PTEN and p-Akt appear to 

reside within the neurons (see Figures 23, 24, 25, 26) and some immunoflourescent signal 
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could have been lost due to co-localization or physical overlap despite the red and green 

immunoflourescent pigments being measured separately. Because of the marker effect, it 

may be more realistic to evaluate protein expression when double labeled with Gfap and 

use the NeuN data for protein localization. 

It should also be noted that PTEN and p-Akt levels could only be measured on brains 

with non-damaged cortex in the target area as unviable tissue would most likely contain 

only denatured proteins. This eliminated the inclusion of the most damaged brains and 

thus biased data towards not finding a difference. 
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Figure 19. Field area percent of PTEN with Gfap in the IL hemisphere (mean ± SE). 
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Figure 20. Field area percent of PTEN with NeuN in the ll..., hemisphere (mean ± SE). 

8 

- 7 r::: 
Q) 
() .... 
Q) 6 c.. 
IV 
Q) .... 5 c:( 

"C 
1i 4 
LL 

3 

p-Akt/Gfap IL Hemisphere 
E2 p=0.47 
PE p=0.94 
E2IPE p= 0.68 

E2-/PE- E2-/PE+ E2+/PE- E2+/PE+ 

Group 

Figure 21. Field area percent of p-Akt with Gfap in the ll..., hemisphere (mean ± SE). 
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Figure 22. Field area percent of p-Akt with NeuN in the IL hemisphere (mean ± SE). 

Table 10. Field area percents of p-AktlPTEN with Gfap/ NeuN in the IL hemisphere 
+S 

PTEN/Gfap 6.83 (+/-0.34) 5.14 (+/-0.68) 5.28 (+/-0.69) 6.09 (+/-0.99) 

PTENlNeuN 5.65 (+/-0.54) 5.98 (+/-1.10) 5.22 (+/-0.77) 5.37 (+/-0.81) 

p-AktlGfap 5.03 (+/-0.65) 5.33 (+/-0.70) 6.05 (+/- 1.31) 5.61 (+/- 0.79) 

p-AktlNeuN 5.34 (+/-0.62) 5.18 (+/-0.39) 5.05 (+/-0.64) 5.38 (+/-0.84) 

Cell type associated with p-AktIPTEN 

PTEN and p--Akt expression occurred predominantly in the neurons, instead of 

the astrocytes, of the ischemic cortex following focal pMCAo. These proteins are 

clearly expressed within the somas of neurons (Figures 24, 26) and not co-expressed with 

the glial marker (Figures 23, 25). 
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Figure 23. Immunoflourescent antibody treatment for p-Akt (red) /Gfap (green) in cortex 
neurons at high magnification (lOOx oil) 

Figure 24. Immunoflourescent antibody treatment for p-Akt (red) lNeuN (green) in 
cortex neurons at high magnification (lOOx oil) 
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Figure 25. Immunoflourescent antibody treatment for PTEN (red) / Gfap (green) in 
cortex neurons at low magnification (20x) 

Figure 26. Immunoflourescent antibody treatment for PTEN (red) lNeuN (green) in 
cortex neurons at low magnification (20x) 
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Effects of MCAo procedure on P-Aktl PTEN regulation 

P-Akt and PTEN levels were compared between hemispheres (IL-CL) to 

determine if ischemia upregulated PTEN and/or p-Akt. If the procedure itself was 

upregulating proteins, all data included in Figures 27, 28, 29, 30 and Table 8 would be 

positive, indicating higher IL measurements than CL measurements. The field area 

percent for the CL hemisphere was subtracted from the IL hemisphere (IL-CL) in order to 

determine if the injury itself upregulated p-Akt and/or PTEN in aged models. This 

phenomenon has been reported in adult female rats following global ischemia (Cai et aI., 

2009) and in adult male rats following transient MCAo (Omori et aI., 2002 and Choi et 

aI., 2004) but, until this work, had not yet been explored in aged female rats following 

pMCAo. Most resulting values were close to zero, indicating no procedure-specific 

effects on expression. 

When analyzing PTEN/Gfap the ANOV A factors of E2 and PE did not 

demonstrate a significant difference (p=0.61 and p= 0.26 respectfully) but had low power 

(E2 = 0.05 and PE = 0.08). A statistically significant difference was found for the E2 x 

PE interaction (p=O.O 19) with a resulting power of 0.61. Post -hoc multiple pairwise 

comparisons of the interaction factors showed that the E2-IPE- group differed from the 

E2+IPE- group and the E2-IPE+ group, which did not differ from each other. The 

E2+IPE+ group was intermediate to the others and did not differ significantly from either. 

This suggests that having a single type of estrogen present prevents a difference in PTEN 

levels between hemispheres. With standard error all but the E2-IPE- group are very close 

to zero. The positive value of the E2-/PE- group suggests an upregulation of PTEN in the 
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IL hemisphere in this model. These data failed normality testing and so were ranked 

before analysis. 
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Figure 27. Field area percent of PTEN with Gfap in the IL hemisphere minus the CL 
hemisphere (mean ± SE). 
Note: These data failed normality testing and so were ranked before analysis . 

The ANOV A factors of E2 (p=0.68), PE (p=0.07), and the E2 x PE interaction (p=0.82) 

for PTENlNeuN did not demonstrate significant difference . The PE did approach 

significance and had a 0.3 power of performance. 

52 



PTENlNeuN 
E2 p=0.68 

1.50 
PE p=0.07 
E2IPE p= 0.82 - 1.00 c:: 

41 
u 0.50 ... 
41 
Q. 
co 0.00 
41 ... « -0.50 
"C 
Qi 

-1 .00 u: 
-1 .50 

E2-/PE- E2-/PE+ E2+/PE- E2+/PE+ 

Group 

Figure 28. Field area percent of PTEN with NeuN in the IL hemisphere minus the CL 
hemisphere (mean ± SE). 

The ANOV A factors of E2 (p=0.29), PE (p=O. 46), and the E2 x PE interaction 

(p=0.07) for p-AkUGfap did not demonstrate significant difference with respective 

power of analyses of 0.06,0.05, and 0.31. 
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Figure 29. Field area percent of p-Akt with Gfap in the IL hemisphere minus the CL 
hemisphere (mean ± SE). 
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The ANOV A factors of E2 (p=0.49), PE (p=0.17), and the E2 x PE interaction 

(p=O. 71) for p-Akt/NeuN did not demonstrate significant difference. Power for all 

analyses was low (0.05). 
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Figure 30. Field area percent of p-Akt with NeuN in the IL hemisphere minus the CL 
hemisphere (mean ± SE). 

Table 11 . Field area percents of p-AktJPTEN with Gfap/ NeuN in the IL hemisphere 
. h CL h . h ( SE) mmus t e enusPJ ere mean + 

Protein/marker E2-/PE- E2-/PE+ E2+/PE- E2+/PE+ 

IL-CL (%) IL-CL (%) IL-CL (%) IL-CL (%) 

PTEN/Gfap 1.65 (+/-0.52)* -0.52 (+/-1.05) 0.52 (+/-0.10) 0.83 (+/- 0.37) 

PTENlNeuN 0.41 (+/-0.28) -0.47 (+/-0.51) 0.49 (+/-0.48) -0.21 (+/-0.34) 

p-AktlGfap -0.75 (+/-0.69) -0.14 (+/- 0.48) 0.85 (+/-0.42) -0.57 (+/-0.54 ) 

p-AktlNeuN 0.37 (+/-0.37) 0.1 0 (+/- 0.52) 0.22 (+/-0.40) -0.58 (+/-0.47) 

*- significant difference from other groups for same measure 
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Eliminating extraneous variables that could have contributed to non-significant 

infarct and p-AktIPTEN data. 

Since a wide range of body weights existed within groups at the time of MCAo, a 

correlation analysis was merited to determine if this could have been a contributing factor 

to the results. Figures 31 and 32 reveals no correlation between body weight at the time 

of MCAo and resulting infarct volume. Resulting Pearson correlation value was -0.19 for 

cortex infarct and -0.26 for total infarct, indicating no correlation between the two 

parameters. 
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Figure 31. Correlation between body weight at time of MCAo and resulting cortex 
infarct volume. 
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Figure 32. Correlation between body weight at time of MCAo and resulting total infarct 
volume. 

To determine if varying levels of PE consumption introduced variability into the 

infarct volume data set, Pearson correlations were performed (see Figures 33 and 34). 

Values were 0.04 and -0.02, respectively, indicating no correlation of the two parameters 

with infarct volume. 
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Figure 33. Correlation between mg isoflavones and resulting cortex infarct volume. 

56 



- 100 
G.I ... _ G.I 

U o£: 80 ... c.. co 1/1 60 -c: .-.- E 
- G.I 
S o£: 

40 
0 .... ... - 20 • 
~ 0 

0 -
30 40 

PE + Groups 
Day 6 

• • 

• 
• •• 

• 
• 

50 

• 

R = -0.02 

• • 
60 

• 

lsoflavones consumed (mgs) 

Figure 34. Correlation between mg isoflavones and resulting total infarct volume. 
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To determine if varying E2 levels introduced variability into the infarct volume 

data set, Pearson correlations were performed (see Figures 35 and 36). R values were 

0.01 for cortex infarct volumes and 0.08 for total infarct volumes indicating no 

correlation between circulating estrogen levels at time of sacrifice and resulting cortex or 

total infarct volume. 
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Figure 35. Correlation between E2levels and resulting cortex infarct volume. 
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CONCLUSIONS 

This body of work was performed to provide insight into six specific questions as 

follows. 

1. Are physiological levels of E2 neuroprotective, as measured by infarct size after 

MCAo, in reproductively senescent rats? 

2. Are dietary PE neuroprotective in reproductively senescent rats? 

3. What are the combined anti-ischemic effects of E2 and PE? 

4. Do physiological levels of E2 and/or dietary PE treatment alter PTEN and/or p

Akt expression compared to controls in the MCAo model? 

5. Is PTEN/p-Akt activity altered in neurons or in astrocytes following MCAo? 

6. Does the MCAo procedure upregulate PTEN/p-Akt activity as measured by 

comparing IL hemisphere protein levels to those of the corresponding CL 

hemisphere? 

Throughout this section, findings for each question will be discussed and placed in 

context with the overall hypothesis of this study. 

59 



Are physiological levels of E2 neuroprotective in reproductively senescent rats? 

The present study demonstrated that physiological levels of E2 delivered via 

silastic capsule to aged female Sprague-Dawley rats does not result in neuroprotection 

against pMCAo. No statistically significant differences in infarct volumes of striatum, 

cortex, and total infarct measured as mm3 and % of total IL hemisphere were detected 

due to treatment. These results were very surprising, as the current study was designed 

based upon the established evidence (Dubal and Wise, 2001; Rau et aI., 2003; and Wise 

et aI., 2001) that E2 reduces ischemic infarct size, with the intentions of comparing the 

ability of PE to mimic E2. A vast amount of literature exists that attests to the 

neuroprotective effects of E2 against cerebral ischemia in rats, much of which is 

mentioned in the introduction of this thesis. The apparent disparity of results may be due 

in part to the numerous variables between infarct studies. When one examines the stroke 

research as reported in the literature, it doesn't take long to determine that there are many 

variations in actual experimental design. A focal infarct, mimicking stroke, can be 

induced by electrocoagulation (Bingham et aI., 2005; Carswell et aI., 2004; Farr et aI., 

2006), irradiation (Strom et aI., 2009 ), chemically (Selvamani and Sohrabji, 2008), or by 

using an intraluminal monofilament suture (Choi et aI., 2004; Dubal and Wise, 2001; Rau 

et aI., 2003). The suture can be inserted into the right or left middle cerebral artery 

(MCA) with the left option reported as producing larger injury (Gao and Zhang, 2008). 

The intraluminal suture can be left in place for a permanent MCAo (Dubal and Wise, 

2001; Bingham et aI., 2005; Rau et aI., 2003) or removed after a specified time to 

produce a transient MCAo (Burguete et aI., 2006; Choi et aI., 2004; Omori et aI., 2002; 

Santizo et aI., 2002). The MCA can also be exposed transcranially by removing a piece 
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of the zygomatic bone and the artery can be occluded with a microclip producing a 

transient MCAo (Theodorsson and Theodorsson, 2005). Permanent and transient MCAos 

produce two very different pathological scenarios as the transient option incorporates 

reperfusion injury. An additional method for inducing brain injury is the four vessel 

occlusion method (Harukuni et aI, 2001). This induces not focal ischemia, but global 

ischemia and models cardiac arrest instead of a stroke event. It involves complete 

hypoperfusion to the entire brain for a short duration followed by reperfusion. Animal 

models vary, including several species but mainly using mice and rats. Male and female 

rodents of all ages ranging from pups (Strom et aI., 2009) to 18 months of age (Strom et 

aI., 2009) are used, with the majority being young adults, defined as 2-4 month old 

females (Dubal and Wise, 2001; Farr et aI., 2006; Zhang et aI., 2009). A study by 

Wappler et aI., 2010 found that the age of the model is a factor that worsens the neuronal 

cell loss and behavioral functions of aged gerbils following transient brain ischemia. 

Common characteristics of most studies are that females are overiectomized and 

supplemented with some form of E2 replacement; however, the time from overiectomy to 

MCAo procedure varies greatly as does the administration route and resulting dose of E2 

produced. Common ways to deliver E2 include commercially available pellets (Toung et 

aI. 2004; Rusa et aI, 1999; Schreihofer et aI., 2005; Theodorsson and Theodorsson, 2005; 

Vergouwen et aI., 2000), injections (Pelligrino et aI, 1998; Choi et al. 2005; Park et aI., 

2005; Raval et aI., 2007), silastic capsules (Dubal et aI. 1998; Dubal and Wise, 2001), 

and recently minipumps (Zhang et aI., 2009). The timing of E2 replacement ranges from 

immediately (Dubal et aI. 1998; Dubal and Wise, 2001) to 10 weeks post overiectomy 

(Zhang et aI., 2009) and doses vary by over a thousand fold as some are administered in 
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microgram/kg body weight concentrations (Dubal and Wise, 2001~ Rau et aI., 2003) 

while other are given in milligram/kg body weight concentrations (Carswell et aI., 2004; 

Choi et aI. 2005). 

Strom et aI. (2009) recently published a review of E2 effects on rat cerebral 

ischemia. They attempted to only include studies sharing a set criterion including rat 

models that have undergone ischemic injury with E2 administration as the only variable 

between groups. A placebo group and direct measurement of brain damage also had to 

be included in the design. Their search revealed sixty-six studies meeting these criteria. 

Of the sixty-six, fifty-six concluded that E2 was neuroprotective but surprisingly four 

articles reported no difference between placebo and E2 treatments (Farr et aI., 2006; 

Goodrow et aI., 2005; Santizo et aI., 2002; Vergouwen et aI., 2000) and six articles 

reported detrimental effects with E2 (Bingham et aI., 2005; Carswell et aI., 2004; Gordon 

et aI., 2005; Harukuni et aI., 2001; Theodorsson and Theodorsson, 2005; Y ong et aI., 

2005). Neuroprotection from E2 was mainly seen in studies involving young female rats 

that had undergone surgically induced, thus instant, menopause with immediate low level 

E2 replacement (Dubal and Wise, 2001 and Stom et aI., 2010). In contrast, detrimental 

effects were most often seen following the use of high pharmaceutical doses of E2 or 

commercial pellets that have been found to produce a "supraphysiological burst" of E2 

when first administered (Singh et aI., 2008 and Strom et aI., 2010), or following 

prolonged E2 deprivation. Interestingly, a recent article by Lebesgue et aI. (2010) 

showed that E2, administered intracerebroventricularly, immediately post tMCAo, was 

neuroprotective in middle aged rats that were chronically E2 deprived. This suggests that 
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the ability to respond to E2 is maintained both in aged and hypoestrogenic animals and 

that the problem may arise from the logistics of a systemic delivery system. 

Since this study found no significant neuroprotection by E2, a closer examination 

of similarities between it and those studies reported in the literature as finding no effect 

or a negative effect is merited. Farr et al. (2006), found no significant differences in 

infarct volume, functional recovery in behavioral tests, or gross synaptogenesis between 

placebo and E2 treatment groups when overiectomized 12 week old female rats were 

subjected to focal ischemia via intracranial electrocoagulation of MCA. A key point of 

this study was that rats experienced a two week E2 deprivation prior to MCA. They 

received E2 through a pellet. Harukuni et al. (2001) found that five minutes of ischemia 

produced by four-vessel occlusion resulted in equivalent neuronal damage in 12 week old 

overiectomized, overiectomized plus E2, or intact females. Ten minutes of ischemia 

produced significantly worse injuries in the overiectomized +E2 group and intact group 

over the animals that were overiectomized and not supplemented with E2. They also 

demonstrated a highly significant correlation between increased cell loss and E2 level, 

with higher levels of E2 (within physiological range:s 30 pg/ml) being associated with 

increased neuronal cell death. Gordon et al. (2005) overiectomized two month old female 

rats and immediately implanted them with either an E2 or placebo pellet. Two weeks 

later all underwent pMCAO via intraluminal suture and were sacrificed twenty-four 

hours later. Brains were cut into 6[!m sections, stained, and resulting infarct measured 

from 12.5 mm anterior to 0.05 mm posterior of the interauralline. The E2 group 

experienced infarcts that were 118 % greater than placebo (area of brain measured not 
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listed). They also measured a byproduct of lipid peroxidation, 4 hydroxynonenol (4 

HNE), which damages proteins in neurons and glial cells. They found almost none of this 

compound in the contralateral hemisphere of study animals but found it significantly 

increased in E2-treated infarcted cortex. The volume of cortex tissue with increased 4 

HNE extended beyond the primary infarct suggesting that mechanisms of damage extend 

beyond primary infarct area and more than one mechanism of damage is initiated by 

MCAo. Also, the ratio of 4 HNE positive cells to infarcted cells was greater in the E2 

group than placebo, suggesting that E2 could be causing an overexaggerated response to 

the injury. Carswell et al. (2004) found that overiectomized four month old female rats 

provided immediate E2 replacement via pellets in two concentrations, 0.025 and 0.25 mg 

per animal, suffered increased infarcts that were dose dependant following pMCAo by 

electrocoagulation. Rats with the lower dose pellet averaged 65% larger infarcts than 

placebo and those with the higher dose had a 96% larger infarct than placebo. Similarly, 

Bingham et al. (2005) followed this up by using the same experimental design, except in 

twelve week old female rats, and found that both low and high dose treatment groups 

experienced significantly more damage than placebo. A study by Theodorrson and 

Theodorrson (2005), found that infarct damage was doubled in the E2 treatment group vs. 

placebo when the brain was measured from bregma +4 through -4 in 12-14 week old 

female rats that were overiectomized with immediate E2 replacement by pellet. 

Selvamani and Sohrabji (2008) compared damage from a chemical-induced MCA 

occlusion model in middle aged (9-11 month) retired breeders and 6 to 7 month old 

active breeder Sprague-Dawley rats. This procedure caused a gradual constriction of the 

MCA lasting around 16 hours followed by reperfusion. All animals had previously been 
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overiectomized with immediate E2 replacement via pellet. They found that both cortical 

and striatal lesions were significantly greater in older females compared to younger 

females. These were also significantly worse in the middle aged group with E2 versus 

the middle aged control groups. These results suggest that E2 exacerbated the lesions 

over placebo in middle aged animals. Zhang et aI. (2009) found that three month old 

female Sprague-Dawley rats overiectomized with immediate E2 supplement via a 

subcutaneous minipump had significantly lower infarct volumes, decreased NADPH 

oxidase activity, and superoxide levels, in specific regions of the hippocampus than 

placebo when subjected to global ischemia. However, when deprived of E2 for 10 weeks 

and implanted with pump one week before being subjected to global ischemia, all 

protection was lost. While cell survivability reached 50% (extrapolated from graph) in 

the animals receiving immediate E2 treatment, it dropped to 10% (extrapolated from 

graph) in animals deprived of E2 ten out of eleven weeks prior to ischemic event. In this 

instance there was no difference between placebo and the long term E2-deprived group 

treated with delayed E2 replacement. 

These studies suggest that E2 loses its ability to protect neurons against ischemic 

damage after long term deprivation (2 weeks-lO weeks of hypoestrogenism) and in older 

animals, which are likely to have experienced periods of E2 deprivation as a normal 

aging process. Delivery of E2 via a slow release pump doesn't negate neuroprotection 

associated with E2 after a 10 week deprivation (Zhang et aI., 2009). Such findings are in 

agreement with studies such as the WHI in which many participating women were 

several years beyond menopause (Alving, 2004). Negative effects are also commonly 
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seen with very high replacement doses of E2 after prolonged deprivation; however, this 

study did not use such doses. Relevant findings to this study are that older animals 

provided physiological levels of E2 via slow release replacement have been found to be 

at no advantage over controls and in some instances suffer worse damage. 

Additional effects of 17-P Estradiol that may confound infarct measurements 

Several articles published after this study was designed and implemented cite both 

protective and damaging effects of E2 that are not directly associated with a primary 

response to infarct but yet may very well influence measured infarct volumes in ancillary 

ways. These findings are relevant to explaining discrepancies between the results of the 

current study to those of the model study by Dubal and Wise (2001). For example, 

Brown et al. (2008) found that low dose E2 administered via silastic capsule 

downregulated nitric oxide production resulting from induced NOS2 gene expression in 

mice following permanent MCAo in both sham and injured cortex, suggesting that one 

mechanism by which E2 can exert neuroprotection is by downregulating critical 

components of the inflammatory response. Along the same lines, Park et al. (2005) 

found that, compared to age matched ovx females, young 2-3 month old intact females 

and ovx females with E2 replacement expressed lower levels of inducible nitric oxide 

synthase (iNOS), ICAM 1 ( a leukocyte adhesion molecule) and NADPH subunit 

gp91 phox (presumed free radical producer), suggesting less inflammation. Crosby et al. 

(2007) found that activated caspase 12 was significantly increased in infarcted areas in 

E2 treated animals compared to controls. Caspase 12 is deregulated by endoplasmic 

reticulum stress and leads to increased apoptotic cell death. A corresponding increase in 
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terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end

labeling (tunnel) staining in infarcted areas was also found, indicating increased DNA 

fragmentation. These studies all support the ability of E2 to regulate various components 

of inflammation following ischemic insult. In some instances E2 appears to be anti

inflammatory while in others it actually increases inflammatory responses and apoptosis. 

All above mentioned studies were performed in young animals. A very recent study by 

Traub et aI., 2009 demonstrated neuroprotection from E2 delivered via a commercial 

pellet in aged rats that were subjected to transient global ischemia eight weeks post ovx. 

This discrepancy may be due in part to the mechanisms underlying neuronal death 

following focal and global ischemia models as well as, the differences in E2 action in the 

areas of the brain primarily damaged by the two procedures (Traub et aI., 2009). Acute 

inflammation may play more of a role in damaged from focal ischemia than global 

ischemia (Traub et aI., 2009 and Suzuki et aI., 2007). The secondary effects of E2-

mediated inflammatory changes on aged, E2-deprived brains following focal permanent 

MCAo is still to be determined but are most likely real and present. 

Comparing this study to the widely-referenced Dubal and Wise 2001 paper 

. When comparing the model of ischemia studied in this project to all studies 

currently in the literature, not many exist with enough similarities for outright 

comparison. In fact, a thorough review of the literature revealed only one study that 

utilized silastic capsules for E2 delivery and performed permanent MCAo via 

intraluminal occlusion on middle aged rats. That study is the widely-referenced 2001 

Dubal and Wise paper entitled Neuroprotective effects of estradiol in middle agedfemale 

67 



rats, the very one upon which this study was based, which demonstrates neuroprotective 

effects of E2 at low and high doses in both young and middle aged female rats. Both 

studies used 9-12 month old females that were overiectomized and immediately 

implanted with silastic capsules containing either a total concentration of 180 ug/ml 17~

estradiol (Sigma St. Louis, MO) or vehicle (sesame oil, Sigma). One week post 

ovariectomy and implant treatment, all rats underwent permanent MeAo via the 

intraluminal suture method (Longa et al. 1989). Unlike the Dubal and Wise study, this 

study used a commercially available suture with preformed bulb for MeAo in an attempt 

to decrease the variability introduced by forming the bulb via melting the tip of the suture 

(Gordon et al., 2005). Dubal and Wise (2001) do not reference creating such a bulb on 

the end of the intraluminal suture, but they do describe using a fire tipped suture in mice 

in a later paper (Dubal et al., 2006). In the present study, suture insertion length was 

measured from the bifurcation of the carotid artery and determined by animal weight. 

Dubal and Wise (2001) do not mention exact length of suture inserted. They do reference 

inserting the suture until resistance is felt. 

A major deviation from the Dubal and Wise study is the amount of brain tissue 

that was measured for infarct. Dubal and Wise sectioned the entire brain (bregma +4.2 

through -3.8) into lmm sections using a brain matrix while this study sectioned the brains 

into 20l1m sections and calculated total infarct from bregma +2.2 through -2.8 only. The 

rationale for using this area is two-fold: it reduces the variability introduced by the 

anatomical differences in the branching pattern of the MeA, as 95% of animals have the 

frontal and parietal branches that serve this area, thus providing a better measurement of 
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primary infarct damage with subsequent apoptosis of the cortex. In turn, it should 

decrease the contributions of inflammation and other E2-mediated confounds by 

eliminating brain tissue adjacent to but not part of the primary infarct territory. 

Following permanent MCAo, cells of the striatal core undergo necrotic cell death 

primarily as a result of hypoxia-induced glutamate excitotoxicity (Storm-Mathisen et aI., 

1992; Zerangue and Kavanaugh, 1996; Danbolt, 2001). The overlying cortex is less 

severely damaged due to collateral circulation and thus is subjected to cell death via 

apoptotic rather than necrotic pathways. Because apoptotic cell death is the outcome of 

intracellular events occurring inside a single cell and does not involve the release of 

chemicals into the interstitial area, primary apoptosis doesn't significantly contribute to 

the expansion of the infarct beyond the affected area (Crosby et aI, 2007). Thus any 

cortex damage resulting from primary infarct-induced apoptosis should not be outside of 

the primary area of damage, although it is realized that other factors may be at work 

within this area of cortex. While it is impossible to tease out all the processes that are 

occurring within the primary affected cortex, one thing seems certain: any damage that is 

measured outside the area of the MCA territory cannot be attributed to primary infarct or 

infarct-induced apoptosis and must be mediated by other pathways and processes. Thus, a 

whole brain measurement could be misleading, as it accounts for numerous effects. The 

current study attempted, as much as possible, to tease out primary damage from other 

secondary contributors by limiting the measured area to that part of the brain served by 

the MCA in 95% of animals and the corresponding overlying cortex. This difference in 

amount of brain measured may contribute to the stark difference in reported outcomes 

between the current study and that of Dubal and Wise (2001). Interestingly, bregma +2.2 
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through -2.8 is the area later used and described by the same lab group (Rau et aI., 2003) 

as the region that contains the area that undergoes injury with MCAo. 

T bl 12 C a e f d d . ompanson 0 present stu y eSlgn to D bid W· 2001 u a an Ise, 

Parameter Present Study Dubal and Wise, 2001 

Animal model 9-12 month old female Sprague- 9-12 month old female Sprague-

Dawley rats (retired breeders) Dawley rats 

Overiectomized Yes Yes 

Implants Silas tic capsule loaded with 180 Silastic capsule loaded with 180 

/-lg/ml E2 or sesame oil vehicle /-lg/ml E2 or sesame oil vehicle 

Permanent 

MCAoand Yes Yes 

scarified 24 hours 

post 

Left or Right Left Right 

MCAo 

Suture size 4/0 Suture with preformed bulb 3/0 monofilament suture with 

on end heat tipped bulb 

Suture insertion Measured from bifurcation of Inserted until resistance met 

length common carotid according to 

animal weight 

E2 blood levels 40 pg/ml 20 pg/ml 
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Histological Brains were sectioned on a Brains were sectioned into 

preparation cryostat into 20 pm slices and 1 mm coronal sections using a 

stained with Nissl stain. brain matrix and stained with 

TTC 

Length measured Bregma +2.2 to -2.8 = 5 mm Bregma +4.2 to -3.8 = 8 mm 

T bl 13 C a e f ompanson 0 resu ts 0 f d present stu y to D bId W' 2001 u a an Ise, 

Infarct Dubaland Present Study Dubaland Present study 
Measurement Wise oil Oil results Wise low E2 lowE2 

results* results* results 

Striatum infarct 75mm j 
88mm

j 
70mm

j 
95mm

j 

Cortex infarct 100 mm
j 

46mm
j 

40mm
j 

49mm
j 

Total infarct 250mm
j 

134 mmJ 140 mm
j 144 mm j 

*- extrapolated from graph 

The low E2 results are essentially the same between the two studies. The largest 

difference is in the oil treatment cortex and thus total infarct volume. The average 

volume of the total ipsilateral hemisphere within the measured area of bregma +2.2 to -

2.8 in this study was 279 mm3
. To reach a total infarct volume of 250 mm3 would require 

an average 90% infarct throughout the entire measured area. Thus the differences seen in 

the oil treatment infarct volume may be attributed to secondary neuronal death occurring 
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in brain areas rostral and caudal to the primary area served by the MCA and captured via 

the extended measurement area utilized by Dubal and Wise (2001). 

Are dietary phytoestrogens neuroprotective in reproductively senescent rats? 

The present study demonstrated that dietary levels of PE equivalent to a prototypical 

Asian diet fed to aged female Sprague-Dawley rats did not result in neuroprotection 

against pMCAo. Infarct volumes of striatum, cortex, and total infarct did not differ from 

control groups. This contrasts the findings of Schreihofer et al. (2005) in which similar 

PE diets were found to be neuroprotective following pMCAo in young (age extrapolated 

from weight) female Sprague-Dawley rats. In the same study, isoflavones were found 

to be less effective than estrogen in reducing infarct size after MCAo in young rats. 

In light of those findings, it is not surprising that, given that no significant E2 effect was found in 

the present study, PE treatment was not found to be protective. No other references were 

found that examined the effects of dietary PEs against ischemic injury in an aged animal 

model. A few studies exist that have studied the possible mechanisms for the PE-based 

neuroprotection reported in young animals. Lovekamp-Swam et al. (2007) tested 

several parameters found to be affected by estrogens in stroke recovery (Rau et al.,2003). 

They found that in female rats (age not specified) subjected to transient MCAo, PE 

decreased DNA fragmentation, reduced caspase 3 activity, and increased the expression 

of antiapoptotic genes in the ischemic area. The remaining literature concerning the 

effects of PE on neuronal damage has been done in vitro using rat embryonic day 18 

cortices. Results suggest that soy isoflavones can reduce cell death in cultured cells 

exposed to glutamate toxicity and oxygen glucose deprivation (Scheihofer and Redmond, 
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2009). PE results were similar to those seen with E2. The present study hypothesized 

similar results as those obtained by Schreihofer et al. (2005). While the methods were 

essentially the same, accountable differences include animal age, reproductive status, and 

estrogen levels. Recent literature attests to these variables being major factors in the 

ability of estrogen or estrogen-like compounds to negate ischemic injury. 

What are the combined anti-ischemic effects of E2 and PE? 

There were no apparent agonistic or antagonistic effects of PE on E2 or vice versa 

on infarct size, as the combination was statistically no different from either treatment 

alone or from control. This was the first study to examine the combined effects in an 

aged model following pMCAo. 

Do physiological levels of E2, dietary PEs, or ischemia alter PTEN and/or Akt 

expression? 

No change was seen in PTEN or p-Akt levels following E2, PE, or a combination 

with one exception: PTEN when double labeled with Gfap did demonstrate a significant 

difference in levels between the IL and CL hemispheres in the E2-/PE- group when 

compared to groups that received either E2 or PE but not both. It has yet to be 

determined, however, if this differs significantly from zero. This parallels the non

protective infarct results of this study but is in contrast to studies cited in the introduction 

of this paper, as well as several recent publications. Cai et al. (2009) found p-Akt to be 

significantly upregulated in the cortex 24 hours after ischemic event; however, PTEN 

was not significantly upregulated over sham until 3 days post procedure (Cai et al., 
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2009). When Scheihofer and Redmond (2009) used a PI3 kinase inhibitor, all 

neuroprotection imparted to embryonic 18 day old neuron cultures against oxygen 

glucose deprivation by genestein, daidzein, and equol was lost, suggesting that PEs 

mediate neuroprotection, at least in part, via the Akt pathway. A recent study by 

Anastasius et aI. (2009) showed that human breast cancer cells, which were positive for 

estrogen receptors, had a diminished response to estrogen after a long-term genestein 

exposure (10 weeks). Genestein levels within the range of those measured in humans on 

high soy diets significantly inhibited E2-stimulated growth and downregulated the Akt 

signaling pathway, a dominant growth stimulatory pathway in human breast cancers 

(Anastasius et aI., 2009). While E2 has been shown to activate the Akt signaling 

pathway, at least in part via ERa (Lee et aI., 2005), physiological doses of genestein 

decreased Akt pathways in the absence of any change in ERa expression (Anastasius et 

aI., 2009), suggesting that genestein could be mediating the Akt signaling pathway via a 

different mechanism than does E2. Alternatives include binding to ER~, or extranuclear 

receptors, or inhibiting tyrosine kinase, the last of which is a known action of genestein at 

high doses (Akiyama and Ogawara, 1991). These papers indicate that the interplay 

between E2 and PEs in regulating Akt pathways may be, at least in part, non-genomic. 

However interesting the interactions may be, the results of this paper allude to the fact 

that any control over the PTEN/Akt pathway seen in young animals or in cell cultures by 

low level E2 and/or dietary PEs is lost in aging brains subjected to infarct. We also found 

no differences in PTEN or Akt measurements between IL and CL hemispheres, 

indicating that the procedure itself did not upregulate these proteins as was reported by 

Omori et al. (2002). 
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Is PTENIAkt expression altered in neurons or astrocytes following MCAo? 

PTEN/Akt activity occurred predominantly in the neurons, instead of the 

astrocytes, of the ischemic cortex following focal pMCAo. In fact, when double labeled 

with Gfap, the proteins were visible in a pattern resembling the shape of the somas of 

neurons and clearly outside of astrocytes. This is in agreement with Omori et ai. (2002) 

and Cai et aI., 2009, in which PTEN levels were found to be elevated in cortical neurons 

following tMCAo. It contrast the findings of Choi. et al (2005), in which PTEN and Akt 

proteins were found in astrocytes of the hippocampus following transient four vessel 

occlusion. Since PTEN immunoreactivity has been found to be high in both cortex and 

hippocampus of normal rat brains (Cai et aI., 2009), the difference in tissues studied is 

not likely to account for this discrepancy. 

Conclusion 

The hypothesis of this study was that Physiological levels of 17 fJ-estradiol (E2) 

and dietary soy phytoestrogens (PE) produce similar but not additive effects on primary 

ischemic damage and apoptotic pathway regulation by PTENIAkt, producing an outcome 

of neuroprotection in aging female systems. While E2 and PE did produce similar 

effects, neither was associated with neuroprotection, thus, the hypothesis is rejected. This 

study is important, however, because it adds substance to the growing body of reports 

that E2 does not mitigate neuronal damage due to primary infarct and it does not 

positively influence PTEN/Akt apoptotic pathways in aged female rats. It also provides a 

more realistic model for putting into context the negative effects documented in 
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epidemiological studies such as the WHI, in which hypoestrogenic women suffered more 

frequent and detrimental stroke events when given E2 replacement. The complex 

effects of E2 on the brain is yet to be determined. However enough multiple effects and 

numerous neurological processes have been identified to declare it a complex set of 

interactions. Which specific mechanisms predominate in a given study may largely 

depend upon type and severity of injury, treatment paradigm, and age of model. 

Evidence is mounting in support of the case that E2 levels seem to determine which 

pathways are activated, while reproductive age and hypoestrogenic status seem to 

determine how the model can respond at the classic receptor level, in mediating 

inflammation, in regulating various apoptotic pathways, and/or via non-genomic 

pathways, many of which are still not identified at present. Despite literature support for 

the neuroprotective effects of E2 and PE, data from this study supports a lack or loss of 

neuroprotection in middle aged females when treated with physiological levels of E2 via 

slow release capsule and/or normal dietary levels of PE. This study is the first to 

demonstrate non-neuroprotection against ischemic insult when supplementing E2 by slow 

release capsule immediately post ovx. To date there have been no published findings in 

which low levels of slowly released E2 via silastic capsules have been associated with 

either a negative or no significant effect in middle aged females after permanent MeAo 

induced by the intraluminal filament method. 
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