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ABSTRACT 

 

IDENTIFICATION AND FUNCTIONAL CHARACTERIZATION OF EFFECTORS 
FROM AN ANTHER SMUT FUNGUS, MICROBOTRYUM LYCHNIDIS-DIOICAE 

 

Venkata Swathi Kuppireddy 

 

November 14, 2018 

 

Microbotryum lychnidis-dioicae causes anther smut fungus in its host plant, Silene 

latifolia. The goal of this work is to identify and characterize the virulence determinants 

of this pathogen to better understand the molecular basis behind this host-pathogen 

interaction. This work studied for the first time the key effectors in the mechanism of 

infection by this fungal species. Using, yeast two-hybrid screens, I have identified the 

host plant interaction partners for the effector, MVLG_01732. A second effector 

MVLG_05720, interacts with other fungal proteins that appear to facilitate the fungal 

establishment and colonization during the infection. Our findings indicate that a third 

effector, MVLG_04106, could serve as a transcriptional regulator to promote infection.  

To further characterize the role of the effector, MVLG_01732, I have conducted 

heterologous expression studies in A. thaliana followed by infection assays with the 

pathogen Pseudomonas syringae. Our results indicate that this effector has a role in the 

early bolting of flowers in A. thaliana, this finding provides an important clue about the 
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role of MVLG_01732 in advancing host plant floral development, which is known to 

occur in infected S. latifolia flowers. Here, we have identified a key molecular link 

between a fungal effector and the developmental change it triggers in the host plant. 

Infection assays reveal that this effector might play a role in promoting pathogen growth. 

I have also examined the response to this effector by the host by expressing the His-

tagged effector in S. latifolia in an experiment designed to model the mechanism of 

infection in the native habitat. This is the first time that this approach of delivering the 

candidate effector protein has been carried out in planta and aimed to provide 

information about the previously unidentified interacting partners from the host. Overall, 

this dissertation body aimed to increase the number of available genetic tools to study M. 

lychnidis-dioicae and will serve as a valuable resource for future investigators along with 

furthering our understanding of the infection mechanism. 
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CHAPTER I  

AN OVERVIEW OF THE EFFECTORS 

 

During the arms race between a pathogen and its host, the host produces its defense 

response to the attack and the pathogen, to counteract defense responses, may utilize a 

wide array of strategies, one of which involves secreted proteins, called effectors. 

Effectors are secreted proteins with diverse structural and functional characteristics that 

are unique to the pathogen and promote pathogenicity. They are known to change the 

physiology of their hosts to support pathogen growth. Some of them possess enzymatic 

activity and interact with host proteins to evade the recognition by the host while others 

suppress the host defense, thereby enhancing pathogen virulence. In bacterial pathogens 

of mammalian and plant cells, the effectors are usually secreted into the cell using a type 

III secretion system, a type IV secretion system or a type VI secretion system 

(Depluverez, Devos et al. 2016).  Fungal plant pathogens also use a repertoire of secreted 

effector proteins (Petre and Kamoun 2014). Such effector proteins are often secreted via 

conventional endoplasmic reticulum-Golgi apparatus route with their N-terminal 

secretion signal. They are usually expressed only after contact with their host as their 

expression is tightly correlated with the different infection stages. Because of the 

coevolutionary arms race between the host and the pathogen, these effector proteins are 

also predicted to evolve very rapidly, resulting in high specificity for their hosts (Rouxel, 

Grandaubert et al. 2011). When recognized by a corresponding host resistance protein (R
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 protein) the effector proteins are referred to as avirulence proteins (Avr proteins) and 

those that are not recognized are known as virulence proteins (avr) (Ellis, Catanzariti et 

al. 2006). According to the gene-for-gene model, the recognition of an avirulence protein 

by a host resistance protein results in hypersensitive response triggering localized cell 

death and preventing further parasitic growth (Greenberg and Yao 2004). Effectors and 

their mode of translocation have been studied in greater detail in prokaryotes (see Table 

1-1). In the oomycetes, a fungus-like lineage of eukaryotes, effectors were classified into 

two categories: apoplastic effectors that reside in the apoplast, the space outside the 

plasma membrane in a plant cell and the second category were taken up into the host 

plant cells by a conserved motif (RXLR) and is discussed briefly below. (Brefort, 

Doehlemann et al. 2009).  

Bacterial effectors 

Many bacterial effectors mimic host proteins in order to subvert the host systems for the 

benefit of the pathogen. Effectors have been found to have some of the following 

enzymatic activities: Small ubiquitin-like modifier (SUMO), cysteine proteases, 

ubiquitin-like protease, E3 ubiquitin ligase, tyrosine phosphatases, and ADP-ribosyl 

transferases. The Type III secretion system (T3SS) is a widely used mechanism to secrete 

effectors by the bacterial pathogens that cause a wide range of diseases in plants, animals, 

and humans. Extensive research on bacterial effectors dependent on T3SS has been 

carried out with species such as Chlamydia, Salmonella, Shigella, Yersinia, 

Pseudomonas, Xanthomonas and on Escherichia coli (Table 1-2). The effectors with the 

conserved domains/motifs that were shown to have a role in virulence are found in Table 

1-3 (Dean 2011). 
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Phytobacterial effectors can suppress the ability of the host plant to detect the microbial-

associated molecular patterns (MAMP) found on such pathogens. The common MAMPs 

from bacteria include bacterial flagellin, lipopolysaccharides, the elongation factor Tu, 

cold shock proteins, and hairpin proteins that represent one of the classes of T3SS-

secreted proteins. Upon recognition of these MAMPs by the plant cell, there follows a 

MAMP-triggered immune response which can prevent infection before the bacteria gains 

access to the host plant (Tampakaki, Hatziloukas et al. 2009).  

Table 1- 1: Bacterial pathogens that utilize the T3SS 
 

Host Bacterial 

species 

Disease caused Repertoires of effectors 

proven to be secreted or 

translocated 

Plant 
host 

Pseudomonas 

syringae, 
numerous 
pathovars  

Range of plant 
diseases, e.g. tomato 
speck  

HopK1, HopY1, HopAS1, 
HopU1, HopF2, HopH1, 
HopC1, HopAT1, HopG1, 
HopD1, HopQ1, HopR1, 
HopAM1, HopN1, HopM1, 
AvrE, AvrB3, HopB1, HopX1, 
HopZ3, HopAb2, AvrPto, 
HopE1, HopV1, HopAQ1, 
HopG1, HopI1, HopA1, 
HopX1, HopO1, HopT1, 
AvrRpt2, AvrA, HopW1, 
HopD1, HopQ1,  
AvrD1, AvrB2, HopAR1 (see 
Cunnac, 2009 for 
nomenclature)  

 

Xanthomonas 
spp.  

Wide range of plant 
diseases, e.g. rice 
bacterial blight and 
citrus canker  

AvrBs1, AvrBs2, AvrBs3, 
AvrRxo1, AvrRxv,  
AvrXccC, AvrXv3, Ecf, HpaA, 
XopJ, XopX, XopB, XopC, 
XopD, XopE, XopF, XopN, 
XopO, XopP,  
XopQ  
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Ralstonia 

solancearum  
Plant wilt on many host 
species  

GALA1-7, SKWP1-6, HLK1-3, 
RipB, PopW, PopP, PopC, 
RipT, AvrA, PopB, PopA, 
RipA (many others predicted)  

 Erwinia 

amylovora  
Causes fire blight on a 
range of plant species  

DspE, HrpN, HrpW, HopPtoC, 
AvrRpt2, EopB  

 
Rhizobium spp.  

Symbiont; forms 
nodules on legumes  

NopL, NopP, NopJ, NopM, 
NopT, NopB, NopN  

 
Pantoea spp.  

Bacterial wilt on corn 
and maize  

WtsE, PthG, HsvG, HsvB  

Animal 
host 

Pseudomonas 

aeruginosa  

Opportunist 
pathogenic. Can cause 
pneumonia  

ExoU, ExoY, ExoS, ExoT  

 

 
Escherichia coli 
(EPEC and 
EHEC), 
Cirobacter 

rodentium  

Diarrhoea (EPEC) or 
haemorrhagic colitis 
(EHEC). Cattle 
commensal (EHEC)  

Tir, Map, EspF, EspB, EspZ, 
EspH, EspG, NleA, NleB, 
NleC, NleD, NleE, NleF, NleG, 
NleH, NleK, NleL, EspJ, EspK, 
EspL, EspM, EspY, EspX, 
EspO, EspW  

 

Salmonella 

enterica 
serovars  

Gastroenteritis; typhoid 
fever  

AvrA, SipA, SipB, SipC, SipD, 
SopA, SopB, SopE, SopE2, 
SptP, SlrP, SopD, SspH1, SteA, 
SteB, GogB, PipB, SifA, SifB, 
SopD, SpiC, SseF, SseG, SseI, 
SseJ, SseK, SspH, SteC, SpvB, 
SpvC  

 

Shigella spp.  
Bacillary dysentery; 
shigellosis  

IpaA, IpaB, IpaC, IpaD, IpaJ, 
IpgD, IpgB, IcsB, OspC, OspD, 
OspZ, OspB, OspF, VirA, 
OspE, OspG, IpaH family  

 

Yersinia spp.  

Bubonic plague 
(pestis); 
Gastrointestinal disease 
(enterocolitica)  

YopE, YopH, YopP/J, YopE, 
YopM, YopT, YpkA/YopO  

 Yersinia 

enterolytica 
biovar 1B  

Severe gastrointestinal 
disease  

YspA, YspL, YspP, YspF, 
YspE, YspI, YspK, YspM  
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Photorhabdus 
spp.  

Opportunistic pathogen 
(asymbiotica); insect 
pathogen 
(luminescens)  

LopT  

 

Chlamydia spp.  

Obligate intracellular 
parasites, sexually 
transmitted disease; can 
cause blindness  

CADD, CT847, tarp, IncA, 
IncG, CT229, CT813, 
Cpn0585, Cpn0909, Cpn1020  

 
Burkholderia 
spp.  

Melioidosis (B. 

pseudomallei); glanders 
(B. mallei)  

CHBP, BopE  

 

Vibrio spp.  

Gastroenteritis, wound 
infections 
(parahaemolyticus); 
secretory diarrhoea 
(cholerae)  

VopL, VopA, VPA450, VopT, 
VopF, VopS, VopQ  

 
Bordetella spp.  Whooping cough  BopC/BteA, BopN  

 
Aeromonas spp.  

Opportunistic 
pathogen; fish/humans  

AexT, AopB  

EPEC, enteropathogenic E. coli; EHEC, enterohaemorrhagic E. coli. With permission 

from (Dean 2011) 

Table 1- 2: Bacterial effectors and their domains/motifs with roles in virulence 
 

Bacterial effector  Domain or motif with a virulence role  

SipA  DEVD – caspase 3 cleavage site  

SseI  Cys178 – unknown function  

SseL  Cysteine protease site  

YopM  Leucine-rich repeats (6–15)  

ExoS  ADP-ribosyl transferase domain  
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HopF2Pto  Myristoylation motif  

AvrPto  Ser149 phosphorylation  

WtsE and AvrE1  WxxxE motif  

SifA  CAAX box  

GALA effectors  F-box  

SseJ  Lipase domain – SHD triad  

SpvB  ADP-ribosyl transferase domain  

NleA  PDZ domain  

YpkA  Kinase domain  

YopE  GAP domain  

With permission from (Dean 2011) 

Oomycete effectors 

Some of the oomycete pathogens encode effectors with a signature amino acid motif 

RXLR, that aid in the translocation of effectors into plant cells to promote virulence. 

Analysis of oomycete genomes revealed that RXLR genes are abundant in Phytophthora 

genera and in downy mildew pathogen, Hyaloperenospora arabidopsidis (Table 1-3). 

Furthermore, variants of RXLR such as GKLR or QXLR are also known to exist that are 

designated as RXLR-like effectors. However, other lineages in oomycetes possess few or 

no RXLR genes. For example, the biotrophic white blister pathogens in the Albugo genus 

contain few putative effectors with RXLR genes and the necrotrophic pathogens in the 

Pythium genus and the animal pathogens in the Saprolegnia possess no RXLR genes 

(Table 1-3). Another interesting feature about oomycete effectors is that the 

corresponding R gene in the host plant encodes nucleotide binding, leucine-rich repeat 
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(NLR) proteins. Examination of the literature suggests that RXLR effectors primarily 

work through suppression of the plant immune response by manipulating several 

hormonal signaling pathways, such as salicylic acid and jasmonic acid pathways 

(Anderson, Deb et al. 2015). 

 Table 1- 3: Distribution of RXLR motif proteins in oomycete pathogens along with 

their host dependency and pathogenicity strategy 

   

Oomycete Pathogen Host dependency & 

Pathogen Strategy 

Number of 

RXLR 

Proteins 

Albugo candida Obligate Biotroph 26 

Albugo laibachii Obligate Biotroph 48 

Phytophthora sojae Facultative Hemi-biotroph 374 

Phytophthora ramorum Facultative Hemi-biotroph 396 

Phytophthora infestans Facultative Hemi-biotroph 563 

Hyaloperonospora 

arabidopsidis 

Obligate Biotroph 134 

Pythium species Facultative Necrotroph 0 

Modified from (Anderson et al., 2015) 

Fungal pathogens and effectors 

The lifestyles of pathogenic fungi are highly varied based on how they interact with their 

host plants. Fungal lifestyles for phytopathogens may be classified as biotrophic or 

necrotrophic. Biotrophy is further subdivided into two classes- obligate and 

hemibiotrophy. Obligate biotrophs are usually nonculturable in lab conditions and are 

entirely dependent on the living host plant for growth and reproduction and obtain 

nutrients from a living tissue whereas hemibiotrophs have an initial biotrophic phase 
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followed by a necrotrophic phase and are culturable in vitro. Necrotrophic fungi upon 

infecting the host, kill the host tissue and extract the nutrients from the dead host cells 

(Selin, de Kievit et al. 2016). They also differ in the types of infection structures, called 

appressoria, that they develop during the infection. The hemibiotrophs like Magnaporthe 

oryzae and Colletotrichum species develop a dome-shaped appressorium and use turgor 

pressure to enter mechanically into the host cells. They initially develop bulged 

biotrophic invasive hyphae that later change into thin necrotrophic hyphae. However, 

necrotrophic fungi like Botrytis cinerea and Sclerotinia sclerotiorum develop 

unnoticeable appressoria and utilize plant cell wall degrading enzymes (PCWDEs) to 

penetrate the plant cells. They grow sub-cuticularly and secrete toxic components, killing 

the host epidermal cells. Biotrophic pathogens, unlike necrotrophs, must stay “under the 

radar” by overcoming the basal and pathogen-associated molecular patterns (PAMP) 

triggered defense mechanisms elicited by their host plants. They interfere with various 

metabolic activities in their hosts to achieve and maintain biotrophy. Some of them 

develop haustoria, a feeding structure, and use a combination of turgor pressure and 

PCWDEs to rupture the cell wall without killing the host cell. Once they enter the host 

tissue, their hyphae grow either intracellularly or intercellularly. For the pathogens with 

intracellular hyphal growth, the haustoria is surrounded tightly by a host plasma 

membrane, called the extrahaustorial membrane, although the composition of this 

membrane differs from the common plant plasma membrane proteins (Lo Presti, Lanver 

et al. 2015). One of the major differences between the biotrophs and necrotrophic 

pathogens arises in the targeting of particular defense signaling pathways in their host. 

Necrotrophs induce salicylic acid dependent cell death responses whereas biotrophs 
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promote different pathways like jasmonic acid pathways or ethylene responses during 

compatible interaction with their hosts. There are several ways that a biotroph could 

sneak into the host without drawing attention. Some of these strategies include: a) 

modification of the fungal cell walls to escape host recognition, b) sequestering the 

fragmented fungal cell wall components that trigger PAMP-triggered immune responses 

from the host, c) secreting apoplastic effectors that could neutralize the activity of 

antimicrobial enzymes of the host, d) secreting and translocating intracellular effectors 

into the host cell that interfere with several intracellular defense pathways of the host 

(Brefort, Doehlemann et al. 2009).  

 Effector proteins in the fungal repertoire are defined as small secreted proteins 

containing <300 amino acids that are highly upregulated during infection and bear a 

signal peptide at their N-terminus region that helps in their secretion. Most are cysteine-

rich with disulfide bonds stabilizing their tertiary structures, so they can function in the 

harsh physiological conditions in the apoplastic compartment of the plant cell (Lo Presti, 

Lanver et al. 2015). Unlike oomycetes, with a conserved domain, no domain is yet 

identified as conserved for most of the fungal effectors with the exception of powdery 

mildews. Effector proteins show signatures of positive diversifying selection because of 

the co-evolutionary race between hosts and pathogens. The roles of effectors and their 

mechanism of action differ in biotrophs vs necrotrophs, as the former requires a living 

host for its survival. The mode of entry of these fungal effectors is still not clearly 

understood. Some of them are secreted by the haustorial surface into the extracellular 

space, between haustoria and the host plasma membrane, while others attach to a receptor 

and get internalized. Although all the effectors are secreted to the apoplast, only some of 
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them remain there, e.g., cell wall degrading enzymes, while others must be translocated 

into the host cell.  

Plant resistance to pathogens 

In the case of phytopathogen systems, the defense system used by plants is different from 

the one used by mammals or other invertebrates. In general, plants contain two lines of 

defense. The primary immune strategy by a plant when exposed to a microbe or a 

pathogen is called MAMP/PAMP-triggered immunity (PTI) by which a basal response is 

initiated. In the case of fungi, the best known PAMP is chitin, a major structural 

component in the fungal cell walls, while in bacteria it is flagellin. These conserved 

molecular patterns that are usually in the extracellular space are recognized by the 

membrane-associated PAMP recognition receptors (PRR) in plant cells. There are two 

types of PRRs depending on the presence of the intracellular kinase domain. They are 

receptor-like kinase proteins (RLKs) and receptor-like proteins (RLPs). Both have the 

extracellular domain for binding to PAMPs but only RLKs contain an intracellular signal 

transducing cytoplasmic kinase domain which RLPs lack (Pandey, Rajendran et al. 

2016). The recognition of PAMPs by PRRs leads to the activation of signaling cascades 

like Mitogen-activated protein kinases (MAPK) that lead to the production of reactive 

oxygen species, accumulation of callose and formation of papilla restricting the cell wall 

breach created by pathogens, eventually preventing further colonization of the host 

(Gohre and Robatzek 2008). 

Successful pathogens evade their hosts by secreting effectors resulting in effector-

triggered susceptibility (ETS). However, plants also evolved to encode resistance R 

proteins that recognize the effectors, resulting in effector-triggered immunity (ETI), 



11 

 

activating acute disease resistance response with signs of hyper-response and cell death 

(de Jonge, Bolton et al. 2011). The pathogen’s countermove for this strategy is to either 

modify their arsenal of effectors keeping their virulence or lose and replace the old 

arsenal of effectors with a new one that can suppress ETI (Jones and Dangl 2006). The 

majority of R proteins in the cytoplasm consist of a nucleotide binding site (NBS) 

connected to a region of leucine-rich repeats or LRRs (NBS-LRRs). The second group of 

R proteins has an extracellular LRR (eLRR) domain and a short transmembrane (TM) 

domain. The first group of NBS-LRR is further divided to two subclasses based on their 

N-terminal domains that either contain a coiled-coil region (CC) or Tol/ interleukin-1 

receptor (TIR) motif (Stergiopoulos and de Wit 2009).  

Necrotrophic fungal effectors 

Necrotrophic fungi produce several toxins and cell wall hydrolyzing enzymes for 

colonization and to induce cell death in their host plants. Some of the broad range fungal 

necrotrophs include Botrytis cinerea, Alternaria brassicicola, Plectosphaerella 

cucumerina, and Sclerotinia sclerotiorum (Pandey, Rajendran et al. 2016). Their arsenal 

includes polyketide toxins, secondary metabolites, ROS, nonribosomal peptide toxins, 

necrosis- and ethylene-inducing peptide 1 (Nep1) proteins (Lo Presti, Lanver et al. 2015). 

Some of the above components are discussed in detail elsewhere  (Qutob, Kemmerling et 

al. 2006, Stergiopoulos, Collemare et al. 2013). Some host-specific necrotrophic fungi, 

produce host-selective toxins (HST) as virulence effectors that interact with the cognate 

dominant receptor gene in the host plant, in turn making the host susceptible to infection 

(Table 1-4) (Pandey, Rajendran et al. 2016). This is in contrast to the classical gene-for-
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gene interaction in which a dominant gene confers disease resistance rather than 

susceptibility (Ali and Bakkeren 2011).  

Table 1- 4: List of HST virulence effectors produced by various necrotrophic fungi 
 

Necrotrophic pathogen Host HST Receptor/target cell organelle 

Alternaria alternata f.sp. 
lycopersici 

Tomato AAL toxin Endoplasmic reticulum 

Alternaria mali Apple AM toxin Chloroplast 

Alternaria kikuchiana Japanese pear AK toxin Plasma membrane 

Alternaria fragariae Strawberry AF toxin Plasma membrane 

Alternaria citri Lemon ACT toxin 
Plasma 
membrane/plasmodesmata 

Alternaria alternata Rough lemon ACR toxin Mitochondria 

Alternaria brassicae 
Brassica 
crops 

Destruxin B Mitochondria, chloroplast 

Cochliobolus heterostrophus Corn T toxin 
URF13 protein located in 
mitochondria 

Cochliobolus carbonum Corn HC toxin Histone deacetylases 

Cochliobolus victoriae Oat Victorin Plasma membrane 

Pyrenophora tritici-repentis Wheat 
Ptr-Tox A 

Chloroplast, ToxA bp1 
Ptr- Tox B 

Periconia circinata Sorghum 
Peritoxin (PC 
toxin) 

Plasma membrane 

Phyllosticta maydis Corn PM toxin URF 13 protein of mitochondria 

Rhizoctonia solani Rice RS toxin unknown 

Parastagonospora nodorum Wheat SnToxA ToxABP1, chloroplast 

With permission from (Pandey, Rajendran et al. 2016) 



13 

 

Biotrophic fungal effectors 

Biotrophic fungi colonize the living tissue of their host plants and depend on them as 

their source of nutrients. One of the conserved features of biotrophs that grow 

intracellularly or that form haustoria is that they are enclosed by plant plasma membrane 

known as an extra- haustorial membrane. This membrane is continuous with the plant 

plasma membrane but contains a set of distinct transmembrane proteins. It is also known 

that these haustorial structures not only help in the nutrient exchange but also are the sites 

of effector delivery (O'Connell and Panstruga 2006). The mechanism of the entry of 

some of the biotrophic fungi is shown in Figure 1. In this chapter, I focused on the roles 

of effectors in various fungal biotrophic pathogens and these are discussed in detail.  

Cladosporium fulvum: C. fulvum is an ascomycete and an asexual, non-obligate 

biotrophic pathogen that causes leaf mold disease in tomato. Upon stomatal entry (Figure 

1-1), it does not produce any feeding structures like haustoria, but lives in the apoplast 

and depends on the host’s sugars and amino acids. During the incompatible interaction, 

mesophyll cells of the host plant recognize the fungus and induce a hypersensitive 

response that blocks fungal proliferation (Stergiopoulos and de Wit 2009). This 

interaction follows the gene-for-gene concept whereby for every avirulence gene in C. 

fulvum, there is a corresponding tomato resistance gene that mediates the recognition of 

the fungal pathogen. The C. fulvum resistance genes (Cf) of the host plant encodes 

leucine-rich repeat (LRR) receptor-like proteins (RLPs). They lack a domain for 

signaling and in turn interact with other partners called receptor-like kinases (RLKs) 

suggesting that the defense response is mediated through such interactions (Faulkner and 

Robatzek 2012). These LRR-RLPs interact with the respective avirulence protein and 
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carry out race specific immunity to C. fulvum, which is characterized by the 

hypersensitive response and cell death. The effectors with the well-characterized 

functions are discussed below. 

Avr2: This is one of the fungal effectors, along with Avr4, with a proven role in 

virulence. It is shown to bind to and inhibit the tomato apoplastic cysteine protease Rcr3. 

The fungal strains expressing Avr2 protein trigger a hypersensitive-response in tomato 

lines carrying the corresponding Cf-2 resistance gene. Heterologous expression of Avr2 in 

tomato and Arabidopsis enhanced disease susceptibility when challenged with other 

fungal pathogens like Botrytis cinerea and Verticillium dahliae. Gene silencing of Avr2 

compromises the virulence in tomato (van Esse, van't Klooster et al. 2008). 

Avr4 and Avr9: Avr4 protein has a chitin-binding motif, binds to chitin, and subsequently 

protects the fungal cell walls from the action of host plant chitinases (van den Burg, 

Harrison et al. 2006). These chitin binding motifs are recognized by LRRs of RLP 

proteins like Cf-4 and Cf-9, are plasma membrane destined receptors, delivered by the 

secretory pathway, and interact constitutively with another LRR-RLK, Suppressor of 

BIR1 (SOBIRI), that is constitutively endocytosed. This triggers further interaction with 

another RLK, called BR1-associated kinase 1/ Somatic embryogenesis receptor kinase 3 

(BAK1/SERK3), which is known to recycle between the plasma membrane and 

endosomes.  Upon secretion of Avr4 effector to the apoplast by C. fulvum, and 

recognition by Cf-4, the interaction of the latter occurs with BAK1/SERK3. This 

heterocomplex is recognized and triggered to vacuolar degradation by the endocytotic 

pathway. This recognition is required for the hypersensitive response and resistance of 

tomato strains against C. fulvum. Gene silencing of the respective genes, Avr4, and Avr9 
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in N. benthamiana and Solanum lycopersicum, suppresses the hypersensitive response 

and allows fungal proliferation. Live cell imaging of transiently and stably expressed 

fluorescent protein fusions in N. benthamiana suggest the plasma membrane as 

localization site for Cf-4 (Postma, Liebrand et al. 2016). 

Avr9: The founding member of the Cf proteins is Cf9. It is an LRR-RLP that mediates 

resistance to C. fulvum strains producing Avr9. SERK1 and BAK1/SERK3 are recruited 

to the Cf-9 receptor in an Avr9 responsive manner. The requirement of BAK1/SERK 3 

by both Cf-4/9 receptors suggests that they both activate similar kinds of downstream 

signaling mechanisms within the host plant (Postma, Liebrand et al. 2016). 

Ecp6: This effector, like Avr4, binds to chitin. Presence of chitin on fungal cell walls 

triggers PAMP mediated recognition in plants. Co-precipitation studies with chitin 

suggested that it is a chitin-binding lectin with the LysM domain, that inhibits the 

activation of chitin-triggered immunity in host plants. It scavenges the small chitin 

fragments that are released by the fungal cell walls during the action of plant chitinases, 

to prevent the elicitation of host immune responses (de Jonge, Peter van Esse et al. 2010). 

Gene silencing experiments of Ecp6 showed reduced virulence in C. fulvum, suggesting 

that preventing chitin recognition is an important strategy in C. fulvum infection (Bolton, 

van Esse et al. 2008).  

Blumeria graminis: Powdery mildews are a large group of ascomycete fungi. B. 

graminis f. sp. hordei (Bgh) is a barley powdery mildew fungus, an obligate biotroph that 

infects barley species. During the infection process, it develops a highly specialized 

structure called a haustorium, commonly seen only in obligate biotrophic rust fungi and 

some (hemi)-biotrophic oomycetes. It is known that haustorial surface is a major site of 
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effector delivery and nutrient acquisition by plant pathogens (Stergiopoulos and de Wit 

2009). However, the lack of a reliable transformation method for powdery mildew fungus 

and its inability to grow in culture hampers the progress in the validation of effectors. 

Host-induced gene silencing (HIGS) is a technology to study the roles of genes in vivo 

where a reporter gene construct together with an RNA interference (RNAi) construct 

targeting fungal genes are transiently expressed in single leaf epidermal cells of barley. 

The host leaves were infected with Bgh and later stained for the reporter gene activity. 

The percentage of epidermal cells expressing the reporter gene with haustoria is used as 

an index to measure fungal proliferation (Zhang, Pedersen et al. 2012). More than 25 Avr 

genes and 85 barley R genes (Ml) have been identified. These include Mlk genes and 28 

homologous genes that were mapped to Mla (for mildew A) locus from which 6 are 

highly related to CC-NBS-LRR proteins (Ridout, Skamnioti et al. 2006). The genome is 

about 120 Mb, due to a large amount of retrotransposon-derived repetitive DNA (Spanu, 

Abbott et al. 2010). The genome encodes about 248 candidate secreted effector proteins 

(CSEPs) with around 200 CSEPs that share the common motif Y/F/WxC, where the first 

amino acid could be any of the three aromatic amino acids and the last one being always 

cysteine. Moreover, the effectors with this motif are also mostly shown not to have 

cysteine residues except for a single conserved cysteine residue at the C-terminal end, 

which likely forms a disulfide bond with the N-terminal cysteine residue in the Y/F/WxC 

motif (Godfrey, Bohlenius et al. 2010). Interestingly, unlike other fungal Avr proteins, 

the mildew effector proteins lack an N-terminal secretory signal and have been suggested 

to rely on some other, as yet unknown, mechanism for secretion. The conservation of the 

Y/F/WxC motif across most of the effectors also suggests its possible role in effector 
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delivery as observed for oomycete RxLR motif. However, their cytoplasmic expression 

in transient transformation assays suggests their location of interaction as cytoplasmic in 

the host cell (Ellis, Dodds et al. 2007).  

BEC4 (Blumeria effector candidate) was shown to interact with ADP-ribosylation factor 

(ARF)-GTPase-activating protein (GAP) (ARF-GAP), a regulator of intracellular vesicle 

trafficking, in yeast two-hybrid (Y2H) screens. Bimolecular fluorescence 

complementation analysis (BiFC), when components were transiently expressed in barley 

epidermal cells, showed co-localization of the interactor with the Golgi marker, in line 

with its function, as ARF regulates vesicle budding at the Golgi apparatus and also in the 

cytoplasm, a potential site of interaction with the BEC4 effector.  However, co-

expression of both the effector and interactor could not be detected via this method. 

Knockout mutant lines of the orthologous ARF in Arabidopsis showed an increased 

susceptibility and haustorium formation with non-adapted powdery mildew pathogen, 

Erysiphe pisi and an enhanced resistance to the adapted Arabidopsis downy mildew 

oomycete pathogen, Hyaloperonospora arabidopsidis compared to control lines, 

indicating the antagonistic action of ARF in defense against adapted vs non-adapted 

pathogens. This might indicate that the orthologous ARF in Arabidopsis is the target for 

secreted effectors of the downy mildew pathogen, but the mode of action of these downy 

mildew effectors is opposite to the activity of BEC4. The authors speculate that the ARF-

GAP proteins might be common targets for both powdery mildew and downy mildew 

effectors and BEC4 might interfere with defense-associated host vesicular trafficking. 

(Schmidt, Kuhn et al. 2014). 



18 

 

AVrA10 and AvrK1: These Avr proteins belong to the large EKA family of around 1000 

paralogues in Bgh (Zhang, Pedersen et al. 2012) and they lack predicted N-terminal 

signal peptide for secretion. AVrA10 is known to interact with cognate resistance protein 

Mla10-containing barley varieties. AVrA10 was found to be a paralogue of AvrK1. 

Transient expression in single host epidermal cells indicates that these elicit host cell 

death, reduced fungal sporulation by restricting the accessibility and function as effectors 

in plants lacking Mlk1. The AvrK1 gene is located near retrotransposons and the protein 

is known to interact with Mlk1protein (Ridout, Skamnioti et al. 2006). It has been shown 

by fluorescence microscopy that most of the Mla10 protein is localized in the cytoplasm 

with minimal presence in the nucleus. Moreover, cell death and infection assays also 

demonstrated that the functional site of these effectors is the host cytoplasm. In the barley 

cell nucleus, Mla10 was found to interact with two WRKY transcription factors in the 

presence of AvrA10, suggesting that these could be the downstream targets for the 

AvrA10-Mla10 interaction (Shen, Saijo et al. 2007).  

BEC1011 and BEC1054 (Blumeria effector candidates) are part of a gene superfamily 

unique to powdery mildew fungi. Structural modeling suggests that they are similar to 

microbial RNAses and take on the ribonuclease-like fold structure not previously seen as 

an effector function; thus, they appear to represent a new class of microbial effectors. 

HIGS- based identification revealed that these proteins act as effectors and contribute to 

infection in its earliest stages. (Pliego, Nowara et al. 2013). 

CSEP0055 (Candidate for secreted effector proteins) has a three-amino acid motif – 

‘YxC’, at the N-terminus of the mature protein. Y2H screens and BiFC experiments 

confirmed its interaction with barley pathogenesis-related protein PR17c. PR17c was 
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shown to localize to the papillae in the apoplast during infection by Bgh. Downregulation 

and over-expression analysis of PR17c confirmed it to be important for providing 

resistance to the penetration of mildew fungus in barley epidermal cells. Silencing of 

CSEP0055 by HIGS has shown to reduce haustorial index (HI) indicating the role of 

CSEP0055 in fungal proliferation. Time course experiments on the transcript of 

CSEP0055 shows that this could play a role in facilitating secondary penetration events 

(Zhang, Pedersen et al. 2012). 

CSEP0105 and CSEP0162:   Silencing by HIGS showed a significant reduction in the 

haustorial index suggesting their roles in the proliferation of the fungus. Y2H screens and 

BiFC experiments confirmed the interaction partners as small heat shock proteins 

(sHsps), Hsp16.9 and Hsp 17.5, respectively. Small heat shock proteins are known to 

play important roles in refolding misfolded proteins, including defense-related proteins, 

thereby preventing irreversible protein aggregation during stress. Co-expression studies 

show the localization of these CSEPs follows the sHsps in the cytosol which suggests 

their role in interfering with the chaperone activity of sHsps. Recombinant E. coli 

expressing His-tagged-Hsp16.9 showed chaperone activity by preventing protein 

aggregation in E. coli when subjected to thermal stress, with a higher percent of soluble 

protein fraction compared to control extract from cells not expressing His-tagged-

Hsp16.9. The same experiment, when repeated in the presence of CSEP0105 was shown 

to reduce the soluble protein fraction compared to control extract not having CSEP0105. 

This suggests that CSEP0105 reduces the chaperone activity of Hsp16.9. The same 

experiments could not work on His tagged Hsp 17.5 because of the insolubility of the 
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recombinant His-tagged fusion protein when expressed in E. coli (Ahmed, Pedersen et al. 

2015). 

Melampsora lini: Rusts are basidiomycete fungi and cause diseases in many plant 

species. Rust fungi are obligate biotrophs and similar to powdery mildews, produce a 

specialized feeding structure called haustoria during the infection process that penetrates 

the plant cell wall and is surrounded by a host cell membrane (shown in Figure 1-1). But 

rust hyphae mostly proliferate within the leaf cell rather than on the leaf surface. M. lini is 

a flax rust fungus of Linum usitatissimum (flax plant). In contrast to other rust fungi, M 

lini does not need an alternate host to complete its life cycle (Lawrence, Dodds et al. 

2007). In its host, L. usitatissimum, around 30 resistance proteins were identified from 

different polymorphic loci; these recognize about 30 corresponding avirulence proteins 

(Avr) from different M. lini strains and most of the Avr proteins are expressed in 

haustoria. The studies on M. lini and its host plant also served as a model and elucidated 

the interactions between R-Avr genes based on a gene-for-gene resistance model (Flor 

1947). Most of these R proteins are members of intracellular TIR-NBS- LRR class 

(Dodds, Lawrence et al. 2001, Dodds, Lawrence et al. 2001). However, a role in 

virulence for the Avr genes of M. lini has not been demonstrated yet. 

 AvrM, AvrP4, and AvrP123: All of these are haustorially expressed secreted proteins 

(HESPs). AvrM has a conserved RxLR like motif and interacts with resistance protein M. 

It appears to translocate autonomously into host cells, but the transport mechanism has 

not yet been identified (Gan, Rafiqi et al. 2010). AvrP123 is a cysteine-rich protein with a 

Kazal serine protease inhibitor signature and interacts with resistance proteins in flax 

plants, P1, P2, and P3. AvrP4 is a Cys rich protein and interacts with P4. Agrobacterium-
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mediated transient expression of the full-length effector proteins in the resistant flax 

plants and non-host transgenic N. tobaccum containing the cognate R gene showed R 

gene-dependent cell death with appropriate specificities (Catanzariti, Dodds et al. 2006).  

AvrL567: Y2H screens identified its interacting partner as L6 receptor coded by the L6 

resistance gene. Because of the lack of transformation system for rust fungi, 

Agrobacterium-mediated transient expression studies were carried out both in the native 

host and in Nicotiana tobaccum. In both the studies, infiltration with AvrL567 or its 

resistance gene encoded L6 immune receptor alone, did not show any effects. However, 

co-expression of both, induced a necrotic response after recognition of AvrL567 by the 

resistance L6 protein, indicating the resistance gene-mediated cell death. AvrL567 is a 

HESP with a conserved ‘RxLR like’ motif, expressed in the haustorium and is found 

within the host cell. Like AvrM, it appeared to translocate autonomously into host cells 

with an unknown transport mechanism (Gan, Rafiqi et al. 2010). Furthermore, having an 

intracellular NBS-LRR class L receptor protein as interacting partner suggests its 

delivery into the host cell during the infection process (Dodds, Lawrence et al. 2004). 

Puccinia graminis: These rust fungi are heteroecious basidiomycetes, requiring two 

different hosts, wheat, and barberry, to complete its life cycle. It uses the barberry host to 

complete its sexual reproduction. It is an obligate pathogen that causes stem rust and is 

macrocyclic (Petersen 1974), having five spore stages. They are basidiospores, 

pycniospores (spermatia), aeciospores, uredinospores, and teliospores. As in Blumeria, 

genome expansion has occurred in Puccinia and genome sequencing of P. graminis tritici 

identified around 200 candidates as effector genes that are expressed in haustoria 

(Upadhyaya, Mago et al. 2014). 
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RGDBP is an RGD Binding Protein of 818 aa, that was isolated as a protein bound to 

RGD (Arginine-glycine-aspartic acid) peptide via affinity chromatography. It has a 

fibronectin domain that acts as adhesive ligands connecting the cytoskeleton and the 

extracellular matrix. VPS9 is a vacuolar protein sorting-associated protein 9 homologue 

of 744 aa, that co-eluted along with RGDBP in affinity chromatography. Y2H screens 

showed these two proteins interact with a protein encoded by a cognate resistance R gene 

called RPG1 (Reaction to Puccinia graminis 1), present in the resistant barley cultivars. 

RPG1 encodes a receptor-like kinase with two kinase domains pK1 and pK2. The pK2 

domain is catalytically active and pK1 is a pseudokinase. Application of purified RGDBP 

and VPS9 proteins on to barley leaves induced phosphorylation of RPG1 within 5 

minutes and subsequently degradation after inoculation with urediniospores, leading to a 

hypersensitive response from the host. Both phosphorylation and degradation of RPG1 

are necessary to exhibit this resistance property. The spores that were treated with RGD 

peptides failed to germinate and could not phosphorylate RPG1; this prevented the 

formation of adhesion pads with host surface and so, inability to cause disease on 

susceptible barley cultivars. So, the cooperative action of these two effectors is required 

to exhibit RPG1-mediated resistance in barley cultivars (Nirmala, Drader et al. 2011) 

PGTAUSPE-10-1 was an effector identified by Pseudomonas fluorescens T3SS-mediated 

delivery that induces genotype specific hypersensitive response (HR) on W3534 line 

wheat plants carrying the resistance gene Sr22 (stem rust resistance gene). So, it is 

suggested that the possible target protein interactor for this effector is Sr22 although there 

could be different resistance genes that might have a role in recognizing this effector and 

it still needs further analysis. It appeared that this effector is active only when delivered 
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to the cytoplasm, as the experiments driving its delivery to the plasma membrane did not 

induce HR (Upadhyaya, Mago et al. 2014). 

Uromyces fabae: U. fabae is the causative agent of rust on Vicia faba, commonly known 

as a broad bean. It is a biotrophic fungus, producing uredospores which germinate and 

grow in the direction of stomata by using pH gradient until they reach the guard cells 

(Edwards and Bowling 1986) and form the appressorium. Once it penetrates the host 

epidermis it forms haustorial mother cell through which it acquires host nutrients and also 

could potentially secrete effectors (Figure 1-1). During their life cycle, rust fungi form 

different types of spores e.g., aecio, basidio, pykno, teleuto, and urediniospores. The 

lattermost is responsible for epidemic infection (Voegele 2006). 

Rtp1: Rust transferred protein 1 (RTP1p) was the first fungal effector protein that was 

visualized directly in the cytoplasm and nucleus of host plant cells infected by Uromyces 

fabae. Immunofluorescence and electron microscopic studies identified its accumulation 

in the projections of the extra-haustorial matrix (EHM), an interface between the host 

cytoplasm and the pathogen haustorium, before getting transferred to the host cytoplasm 

(Kemen, Kemen et al. 2005). It is an amyloid-like protein and is classified as a structural 

effector that forms a filamentous structure. It is suggested that the pathogen secretes this 

effector into the host cytoplasm in late stages of the biotrophic phase, as a way to protect 

the haustorium from the defense mechanisms of the host plant (Kemen, Kemen et al. 

2013). 
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Figure 1- 1: Mechanism of entry of different biotrophic fungi.  
 

M. lini and U. fabae form Haustorial mother cell (HMC) that develop into haustoria in 

the host cells. U. maydis hyphae grow intracellularly initially. C. fulvum enters through 

the stomatal opening and grow extracellularly. 

Ustilago maydis: Smut fungi are a broad group of basidiomycete fungi with great 

advantages over rusts and mildews in terms of culturing on defined media and the ease of 

molecular transformation. Ustilago maydis, the causative agent of smut disease in maize 

is an obligate biotrophic fungal pathogen and is one of the most extensively studied plant 

pathogens at the molecular level. It initially exhibits intracellular growth (Figure 1-1) and 

switches to intercellular growth at later stages. It was the first smut fungus to have its 
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genome sequenced (Kamper, Kahmann et al. 2006). The availability of the full genome 

sequence and the standard procedures for transformation and gene disruption in U. 

maydis make it an ideal model to understand the molecular mechanisms of an obligate 

biotroph. In some pathogens, effectors are located in gene-sparse genomic regions with 

repeat-rich DNA (Raffaele and Kamoun 2012) but in some smut fungi, with a relatively 

low content of repetitive DNA, these are located as gene clusters that might have 

originated from gene duplications. Low sequence conservation in these clusters across the 

smut fungi indicates the rapid evolution within these clusters (Schirawski, Mannhaupt et 

al. 2010). U. maydis genome shows 12 gene clusters encoding around 386 secreted 

protein effectors (Mueller, Kahmann et al. 2008). Cluster deletion studies reported a 

change in the virulence phenotype of the pathogen confirming their role in the 

pathogenicity of U. maydis (Kamper, Kahmann et al. 2006). This is one of the unique 

features of the effectors in U. maydis where mutants in single effector genes or gene 

clusters show a dramatic effect on its biotrophic development, in contrast with effectors 

in oomycetes exhibiting a lot of functional redundancy.  

U. maydis has a tetrapolar mating system with two independently segregating mating 

type loci a and b (Puhalla 1968). Locus a exists in two alleles and b has more than twenty 

alleles. U. maydis has a relatively small genome of 20 Mb,  encoding approximately 

6,700 genes on 23 chromosomes (Wollenberg and Schirawski 2014). Like the virulence 

factor, Ecp6 in C. fulvum, it was found that U. maydis also encodes two proteins with a 

LysM domain, a carbohydrate-binding module that could sequester the chitin 

oligosaccharides that elicit the host immune response, although its function needs to be 

still investigated. Evidence suggests that the plant immune system initially recognizes U. 
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maydis presence and induces a nonspecific PAMP-triggered immune response, but once 

the pathogen enters the host tissue, the latter establishes a biotrophic environment by 

suppressing the defense response (Brefort, Doehlemann et al. 2009).  

One effector, Cmu1, is a secreted chorismate mutase, a key enzyme at the branching 

point of the shikimate pathway that produces aromatic amino acids. Analysis of deletion 

mutants showed a reduction in the formation of large and heavy tumors, a phenotype that 

could be complemented by the introduction of an HA-tagged Cmu1 wild-type protein to 

restore the virulent phenotype. Truncated Cmu1-HA lacking secretion signal was unable 

to complement the virulence phenotype, suggesting that secretion is required for function. 

Analysis of localization showed that it could be detected inside the fungal hyphae, in the 

host cytoplasm, and along the biotrophic interface, indicating uptake by the host cell. 

However, similar experiments with Cmu1-mCherry-HA failed to show the same results 

suggesting that the addition of the mCherry fluorescent protein could have rendered the 

protein nonfunctional. By Y2H screens, it was demonstrated that Cmu1 could dimerize 

and act in conjunction with maize chorismate mutase- ZmCm2 thereby increasing the 

flow of chorismate from the plastid to the cytosol. This channels the chorismate entry 

from the salicylic acid pathway to the phenylpropanoid pathway in the cytosol. Salicylic 

acid is a major plant defense regulator and its suppression likely favors the proliferation 

of the pathogen (Djamei, Schipper et al. 2011). 

Pep1 (protein essential for penetration 1) is a secreted protein that is required for 

penetration of the U. maydis into maize epidermal cells. Pep1 mutants were unable to 

invade the host cells and not able to establish a compatible interaction. Pep1 mutants are 

arrested during the penetration of the epidermal cells and induced strong plant defense 



27 

 

response. Pep1 mutants exhibited production of ROS, papilla formation and induction of 

PR genes that are characteristics of non-host responses in incompatible plant-pathogen 

interactions. The typical upregulation of jasmonic acid levels is not shown in the Pep1 

mutants, which instead, exhibited the higher salicylic acid levels that are a signal for plant 

defense. The phenotype could be complemented by the ortholog pep1 from Ustilago 

hordei that is required for penetration in barley. This demonstrates that the Pep1 has a 

conserved function (possibly among this group of smut fungi) that is not limited to U. 

maydis and maize interaction. Immuno-colocalisation studies with HA-tagged protein 

demonstrated its presence in the apoplastic space and at sites of cell-to-cell passage 

(Doehlemann, van der Linde et al. 2009). Although Y2H screens failed to identify the 

host interactor, biochemical approaches revealed the interactor as POX12, maize 

peroxidase-12 which was highly induced in plants infected with pep1mutants. These class 

III peroxidases were known to be involved in plant responses to pathogen attack by ROS 

production, eventually leading to cell death. Pep1 inhibits the apoplastic peroxidase 

POX12 by scavenging ROS, the first layer of plant defense response, and thus 

suppressing the plant PAMP-triggered immunity (Hemetsberger, Herrberger et al. 2012). 

Pit2 (protein involved in tumors 2): Y2H screen analysis and co-immunoprecipitation 

studies identified and confirmed the Pit2 interacting partner as maize cysteine protease 

(CP2). Thus, Pit2 acts as an inhibitor of maize cysteine proteases, an activity essential for 

U. maydis virulence. It shows a concentration-dependent inhibition of CP2 suggesting its 

role as a competitive inhibitor of the CP2 enzyme. Pit2 has a 14-amino acid conserved 

motif, which when expressed as a synthetic peptide was still able to inhibit maize 

cysteine proteases (Mueller, Ziemann et al. 2013). Localization studies using mCherry-
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tagged protein showed Pit2 presence mainly at the biotrophic interface with strong 

accumulations at fungal hyphal tips and in the apoplast of the host cell. Pit2 shows a 35% 

amino acid sequence identity with its orthologue in Sporosorium reilianum, suggesting 

conserved function between these pathogens. Deletion mutants can infect and proliferate 

inside the maize plants but fail to maintain biotrophy as they failed to induce tumors and 

the mutants triggered host defense responses (Doehlemann, Reissmann et al. 2011). 

Tin2 (Tumor-inducing 2): One of the hallmarks of U. maydis infection is the production 

of red pigments called anthocyanins. Analysis of Tin2 deletion mutants showed that 

anthocyanin production was reduced and the ability of the pathogen to reach the vascular 

tissue was blocked. The compound required for lignin formation, 4-coumaric acid, also 

contributes to anthocyanin production. Tin2 presence diverts these resources away from 

lignin production to the anthocyanin pathway (Brefort Thomas, Doehlemann et al. 2009). 

Thus, the presence of Tin2 interferes with the ability of the host plant cell to lignify the 

vascular tissues during infection that would have normally blocked fungal access to the 

vascular tissues. Y2H screens identified its interacting partner as a putative cytoplasmic 

serine/ threonine kinase, ZmTTK1 (Tin2 targeting kinase 1). Tin2 functions in the cytosol 

and stabilizes its partner, ZmTTK1, by masking ubiquitin-proteosome degradation motif, 

which directly increases the synthesis of anthocyanins in the plant. Lack of Tin2 allows 

resources into the lignin pathway thereby resulting in cell wall fortification in vascular 

tissue. Although the authors predicted its localization in plant cytoplasm based on the 

location of anthocyanin production, the mCherry-tagged protein was partially 

biologically active and could not be seen inside the maize cells (Tanaka, Brefort et al. 

2014). 
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See1 (Seedling efficient effector 1): Another effector, See1, is required during tumor 

formation in the seedling leaves. Deletion mutants formed only about half of the total 

number of tumors formed in wild-type infections. Live cell imaging and TEM studies 

show that the mCherry-tagged truncated protein lacking signal peptide was localized to 

both the cytoplasm and the nuclei when the construct was transiently expressed in maize 

leaves. A C-terminal HA-tagged full-length protein upon natural delivery via U. maydis 

hyphae also revealed its translocation from the fungal hyphae to the biotrophic interface 

and eventually into plant cytoplasm and nucleus. Y2H screens identified the interacting 

partner of See1 as SGT1, an important factor in the plant host and non-host resistance. 

The interaction was confirmed by coimmunoprecipitation in Nicotiana benthamiana and 

BiFC in planta. See1 interferes with the post-translational modification of SGT1 by 

inhibiting the MAPK triggered phosphorylation of SGT1 at the Thr-150 residue. This 

could lead to blocking the host defense signaling and reprogramming the host cell cycle 

for tumor development (Redkar, Hoser et al. 2015). 

Hum3 and RSP1: Some of the secreted proteins in U. maydis are involved in the 

hydrophobic surface interactions of fungal hyphae. RSP 1 (Repetitive and secreted 

protein) encodes a repellant-like protein with repetitive structure and Hum3 encodes 

hydrophobin, a protein containing both hydrophobin domain and repetitive regions. 

Fungal hydrophobins are the secreted proteins that help in the interaction of fungal cell 

walls with air or with solid surfaces. Repellants serve a similar role although they use a 

different mechanism and have different biochemical characteristics. However, both of 

them help in the formation of hydrophobic aerial hyphae in fungi (Kershaw and Talbot 

1998). Single mutants of each type did not show any effect on mating or pathogenicity. 
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However, rsp1 hum3 double deletion mutants showed normal dikaryotic hyphae but 

complete loss of pathogenicity in planta as shown by growth arrest at early stages after 

penetration. Infected plants also showed necrotic spots at the infection site suggesting 

that these mutants are recognized differently by the host compared to wild type. Hence 

these proteins could be important for  U. maydis to evade detection by the host 

surveillance system and allow the proliferation of the fungus (Müller, Schreier et al. 

2008). 

Ustilago hordei: U. hordei, the barley covered smut fungus, is closely related to U. 

maydis although it differs in the aspect that it can infect only at the seed germination 

stage, which develops later in the meristematic region until sporulation occurs in the seed 

heads. In contrast, U. maydis can infect any above ground plant parts at any plant age. U. 

hordei also differs from U. maydis with respect to mating type loci being bipolar in 

contrast to U. maydis with a tetrapolar mating system. Also, U. hordei has a much larger 

genome with more transposable elements (TEs) (Ali, Laurie et al. 2014).  

UhAvr1is an avirulence gene that is in a transposon and repeat-rich region and the 

presence of transposon activity upstream, in the promoter region, could be responsible for 

exhibiting virulence on some of the barley cultivars. It has a matching R gene Ruh1 in 

some barley cultivars and upon recognition, Ruh1 provides complete immunity to the 

infection by hyphal restriction and necrosis in cells early in the infection. UhAvr1 

deletion mutants suggested that it is not crucial for virulence. U. maydis and S. reilianum 

both have an orthologous cluster for the UhAvr locus, Cluster 19A. This is the largest 

effector cluster, with 24 CSEPs encoded for U. maydis and 29 CSEPs encoded for S. 

reilianum  (Grewal, Rossnagel et al. 2008, Ali, Laurie et al. 2014). Given these findings, 
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it will be interesting to find the target interactor for the UhAvr1 effector that allows the 

establishment of biotrophy in the barley host plant. 

Sporisorium reilianum: S. reilianum is a head smut fungus, that also infects maize and is 

closely related to Ustilago maydis (Begerow, Stoll et al. 2006). It has a tetrapolar mating 

type system, with two loci, a and b, like U. maydis, although the a locus that encodes 

pheromone and pheromone receptor, has three alleles and b locus encoding 

homeodomain transcription factor has five known alleles (Schirawski, Heinze et al. 

2005). It infects maize and sorghum and forms spores inside the sori that eventually 

replace the inflorescence. These replacements are often accompanied with a complete or 

partial reversion of floral parts leading to abnormal phyllody formation (Semisi and Ball 

1989). Infected plants also show multiple female inflorescences at lateral nodes 

exhibiting a loss of the apical dominance. The genome of S. reilianum shows high 

synteny with U. maydis, although the sequence conservation is low and differs in the 

gene copy number. In the same line, there are also common effector candidates in both 

the organisms. 

SAD1: Deletion of cluster 19A in U. maydis resulted in the inability of the strains to 

produce anthocyanins and the mutant could not form tumors on the plants (Brefort, 

Tanaka et al. 2014). Since S. reilianum is closely related to U. maydis, when similar 

deletion studies were performed, it led to the identification of a candidate effector called 

Suppressor of Apical Dominance (SAD1), that suppresses apical dominance in infected 

maize host plants by inducing more subapical ears. S. relianum infected maize plants 

produce more female inflorescences and this phenotype is also seen in transgenic 

Arabidopsis plants expressing SAD1, which show increased number of secondary rosette-
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leaf branches with an additional phenotype of abortion of siliques at early stages of 

development (Drechsler, Schwinges et al. 2016). Hence, the role of SAD1 in changing 

the inflorescence branching is suggested. SAD1 deletion studies lead to the loss of apical 

dominance in infected maize plants and complementation studies with a fluorescently-

tagged SAD1 protein in a SAD1 deletion mutant strain restored the original phenotype 

and showed that the protein is indeed secreted from the fungal hyphae in the infected 

tissues. Heterologous expression in Arabidopsis revealed its subcellular localization in 

cytoplasm and nucleus. Y2H screens indicated many plant interacting partners and 

showed that it auto-activated the reporter genes used for Y2H. This latter finding 

suggested its role as a transcriptional regulator. The authors reported that SAD1 increased 

the transcript levels of host PIN1, an auxin transporter, and downregulates the branching 

inhibitor TB1, which could lead to the enhanced branching effect (Ghareeb, Drechsler et 

al. 2015). Further experiments suggested that SAD1 might be mediating this process 

through hormone-independent pathways as there were no additional phenotypes detected 

(Drechsler, Schwinges et al. 2016). However, the exact mechanism of suppression of 

apical dominance is not yet known and needs further investigation. 

Microbotryum violaceum sensu lato: Microbotryum violaceum sensu lato is a species 

complex, and its members are commonly called anther smuts. It was formerly named 

Ustilago violacea. The newly designated genus, Microbotryum, currently contains 111 

species (V. Robert 2005). These are basidiomycetes and are obligate pathogens of 

Caryophyllaceae (Pink family) although it can also be found infecting the anthers of 

many other dicotyledonous plants belonging to Dipsacaceae, Lamiaceae, and 

Lentibulariaceae (Bauer, Begerow et al. 2006, Kemler, Göker et al. 2006). Individual 
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species display very high host specificity, infecting different species of plants from a 

single genus. These fungi sporulate in the flowers of the infected flowers and sterilize the 

host plant (Baker 1947).  

The Lifecycle of M. violaceum: 

The life cycle of this pathogen starts when diploid teliospores from an infected flower 

land on a healthy flower through wind dispersal or by pollinators (Jennersten 1983). The 

diploid teliospores then germinate and undergo meiosis to produce yeast-like haploid 

sporidia that reproduce by budding. Sexual conjugation takes place between sporidia of 

opposite mating type (a1 and a2), under suitable conditions, such as low nutrients and 

cool temperatures. In flowers, where the nutrient availability is high, conjugation takes 

place only when flowers wither, but on cotyledons, with low nutrient availability, it 

occurs shortly after teliospore germination. Conjugation results in the formation of an 

infectious dikaryotic hypha from one of the mated cells, that is stabilized by host cues, 

allowing the fungus to produce an appressorium and penetrate the host tissue. It is 

believed that the pathogen never invades the host through stomata and the penetration is 

not mediated by turgor pressure, but instead it might be mediated by lytic enzymes 

(Schäfer, Kemler et al. 2010). The fungus grows exclusively intercellularly and 

overwinters in the meristematic tissue in perennial plants; infection becomes systemic in 

the following year, producing diseased flowers, in which the pollen has been replaced 

with fungal spores, thus rendering the male plants sterile. As mentioned above, it is 

commonly referred to as the “anther smut” (Giraud, Yockteng et al. 2008) and thus, 

“castrates” its host .Travel from the infection site to the shoot meristems is believed to be 

mediated by xylem vessels since the fungus was detected in these vessels (Schäfer, 
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Kemler et al. 2010). Karyogamy occurs in the dikaryotic hyphae resulting in the 

formation of diploid spores, thus completing the life cycle. The fungal life cycle thus 

exhibits both a saprobic haploid phase and a parasitic dikaryotic/diploid phase. The 

disease also aborts the development of female organs in female host plants. Moreover, 

the female plants develop immature male reproductive anthers, making this one of the 

most interesting cases of parasitic modification of host floral organs. Linnaeus was the 

first to notice the smut-induced anthers in the female host plants (Uchida, Matsunaga et 

al. 2003). Since the infection is propagated via pollination by insects, it may be thought 

of as a sexually transmitted disease in plants (Antonovics 2005). 

One well-characterized Microbotryum species, Microbotryum lychnidis-dioicae, was the 

first fungus to have been identified with heteromorphic sex chromosomes. The fungus 

has 14 chromosomes; of these, the a1 mating-type chromosome is approximately 3.3 Mbp 

and that for a2 is 4.0 Mbp. Electrophoretic karyotypes revealed that the mating type 

chromosomes are the largest in the genome with only one autosome with the same size 

range (Hood 2002). These chromosomes determine the mating type compatibility through 

premating pheromones/receptor factors for recognition or post-mating homeodomain 

proteins for compatibility (Billiard, Lopez-Villavicencio et al. 2011). It was identified 

that there is a higher degeneration rate in the non-recombining regions of the a1 and a2 

chromosomes when compared to autosomes. Those regions that constitute up to 90% of 

the mating type chromosomes also showed the accumulation of high proportions of TE 

elements, with gene losses in the mating-type chromosomes (Fontanillas, Hood et al. 

2015). Studies indicated that a1 mating-type chromosome encodes 614 predicted genes, 

while the a2 mating-type chromosome encodes 683, with 305 shared predicted genes 
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among the two chromosomes. The genes that are responsible for encoding transcriptional 

factors that regulate mating and fungal hyphae are present only on the a2 chromosome 

(Badouin, Hood et al. 2015). This is in line with the early research findings that reported 

that the conjugating tube for mating is initiated mainly from this mating type (Day 1976). 

Table 1- 5: Microbotryum pathogen species and their hosts 
 

Microbotryum species Host plant 

M. lagerheimii sensu lato Atocion rupestre 

M. shykoffianum Dianthus pavonius  

M. dianthorum Dianthus seguieri 

M. carthusianorum 

M. shykoffianum 

Dianthus carthusianorum 

M. superbum Dianthus gratianopolitanus 

M. dianthorum 

M. superbum 

Dianthus monspessulanus 

M. shykoffianum Dianthus neglectus 

M. carthusianorum Dianthus superbus 

M. shykoffianum Dianthus sylvestris 

M. coronariae Lychnis flos-cuculi 

M. silene-acaulis Silene acaulis 

M. aff. violaceum Silene caroliniana 

M. chloranthae-verrucosum Silene chlorantha 

M. silene-dioicae Silene dioicae 

M. violaceo-verrucosum Silene italica 

M. lychnidis-dioicae Silene latifolia 

N/A Silene lemonii 

M. bardanense Silene moorcroftiana 

N/A Silene notarisii 
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M.violaceum sensu stricto Silene nutans 

M. saponariae Silene ocymoides 

M. saponariae Silene officinalis 

M. majus Silene ottites 

M. violaceum sensu lato Silene paradoxa 

M. aff. violaceum Silene rupestris 

M. silenes-saxifraga Silene saxifraga 

M. lagerheimii 

M. silenes-inflatae 

Silene vulgaris 

M. intermedium Salvia pratensis (Mint) 

M. saponariae Saponaria ocymoides 

M. scabiosae Knautia arvensis 

M. lagerheimii sensu stricto Viscaria alpina 

 
N/A indicates no species designation is determined. Species designation is given referring 

to (Le Gac, Hood et al. 2007, Lutz, Piątek et al. 2008, Denchev, Giraud et al. 2009, 

Gibson, Petit et al. 2013, Fortuna, Snirc et al. 2016) 

 
Silene latifolia 

Silene latifolia, white campion, is the best-studied model for sexual dimorphism in plants. 

The plant genus Silene, was studied by Darwin, Mendel and several other scientists in 

ecology, evolutionary, and developmental studies (Bernasconi, Antonovics et al. 2009). 

S. latifolia has been extensively studied to address many questions related to sexual and 

mating systems, the evolution of sex chromosomes, epigenetics, speciation, disease 

ecology and evolution, and biological invasions.  It is a dioecious plant, with male and 

female flowers on different plants. The Y chromosome of S. latifolia is recently evolved 
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and provides a useful tool to study the evolutionary processes leading to the loss of 

functional genes from its Y chromosome as compared to more distantly evolved Y 

chromosome, like that of humans.  Its genome is very large and is highly enriched with 

repetitive content (Bernasconi, Antonovics et al. 2009). A study on 40,000 herbarium 

specimens collected from natural populations revealed that the Microbotryum fungi are 

mainly confined to the perennials rather than annuals. The life cycle of anther smuts 

could be responsible for their absence in annuals in nature (Gibson, Petit et al. 2013). 

Male plants (XY) produce many flowers that are short-lived, while females (XX) produce 

few flowers that remain accessible for several days on the plant (Kaltz and Shykoff 

2001). Moreover, infected flowers have been known to last longer than the uninfected 

flowers, thus leading to a prediction that the fungus may promote the strengthening of the 

flower base and filaments of the stamens in infected flowers. This is particularly 

noticeable when the flowers show a crumpled morphology as they age, but have a well 

maintained center portion and infected stamens (Uchida, Matsunaga et al. 2003). The 

mechanism of how the female flowers produce stamens after infection remains unknown. 

The male flowers have 10 mature stamens and the female flowers have five styles. This is 

believed to be caused by the three sex determination factors on the Y-chromosome- 

Gynoecium suppressing factor (GSF), Stamen promoting factor (SPF) and male fertility 

factor for maturation of anthers in the male plants (Westergaard 1958). The Y-

chromosome seems to carry genes for suppression of female development and in infected 

female plants the fungus partially substitutes for the Y-chromosomal genes that are 

absent in the female plants although this replacement is not complete as evident by the 

retention of calyx in the infected female plants (Uchida, Matsunaga et al. 2003).   
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Recent host shifts were shown by Microbotryum from Silene latifolia, white campion to 

S. vulgaris, bladder campion. Since the disease has no agricultural or economic impact, it 

serves as an ideal model to study both wild populations and the possible effects of 

inbreeding in agricultural crops. Studying this model system may also provide knowledge 

about future diseases caused by host shifts, possibly affecting humans, like HIV/AIDS 

(Antonovics, Hood et al. 2002). 

Since Microbotryum-Silene has been established as a model system for studying host 

shifts (Antonovics, Hood et al. 2002), epidemiology of diseases (Antonovics J 1997) and 

for the evolution of sexually transmitted diseases (Nunn, Gittleman et al. 2000), 

understanding the molecular mechanisms behind pathogenicity is crucial for 

understanding host shifts and how the pathogens evolve in wild populations. 

The genome sequence of M. lychnidis-dioicae and transcriptomes from its interaction 

with the host S. latifolia have been produced (Perlin, Amselem et al. 2015, Toh, Chen et 

al. 2017). The 25.2 Mbp genome of an a1 mating type strain was sequenced using 454 

technology and revealed that 14% of the genome consists of repetitive sequences with the 

accumulation of transposon elements (TEs) in mating-type chromosomes. The work 

further identified more than 300 genes linked with the a1 mating type. The analysis of the 

genome sequence highlighted the expansion of secretory lipases and significant induction 

in the transporters that may be required for the intake of necessary components from the 

host cell. Further analysis also indicated the presence of carbohydrate-active enzymes 

(CAZymes) that might be involved in host cell degradation, but also the retention of 

enzymes that break down components of pollen tubes in flowers, in line with its infection 

location. The study predicted a total of 7,364 protein-coding genes, with 279 secreted 
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proteins (SPs). Among the 279, seventy-one SPs were smaller than 250 amino acids, 

hereafter called small secreted proteins, SSPs. Forty-six SSPs were unique to 

Microbotryum with no sequence similarity with any other known proteins and 19 of the 

SSPs were significantly upregulated during infection (Perlin, Amselem et al. 2015). Thus, 

such SSPs have the characteristics of fungal effectors and are therefore worthy of further 

investigation. These results have provided the opportunity for further study of the 

putative effector proteins at the molecular level and investigation of their role(s) in 

pathogenesis.  

Overview of the dissertation 

To shed light on the mechanism of infection of Microbotryum on Silene host plants, I 

attempted to identify and characterize for the first time the effectors of this obligate 

pathogen. In this dissertation, I provide the first study to examine the function of a subset 

of such candidate proteins, i.e., the putative effectors that are involved in the 

pathogenicity of this group of fungi. The goal of this study was to deepen the knowledge 

that is currently available on the host-pathogen interactions of Microbotryum and its host 

based on a study of the genes that are expressed during the infection stage of the life 

cycle. The research on identification and initial characterization of the effectors has been 

published (Kuppireddy, Uversky et al. 2017) and is presented in Chapter 2 of this 

dissertation. I also showed experimentally that these effectors are secreted using an in 

vitro experimental model called yeast secretion trap. To identify the potential host 

interactors, I utilized yeast two-hybrid screens, and this led to the identification of three 

host targets for two M. lychnidis-dioicae effectors. The identification and characterization 
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of the effectors and their host targets will permit investigation into the molecular basis for 

the evolution of this fascinating fungal pathogen and its host adaptation. 

Molecular understanding of effectors and their interacting host partners is essential for 

unraveling plant-pathogen interactions. To further characterize the function and 

subcellular localization of the effectors and their role in the pathogenicity, I expressed 

them in a heterologous system. To our knowledge, this is also the first study to express a 

transgene of Microbotryum lychnidis-dioicae (or any other Microbotryum species) in 

Arabidopsis plants to understand the phenotypic anomalies caused by the effector and 

also, its subcellular localization. I generated the stable transgenic Arabidopsis lines, and 

the results are reported in Chapter 3. 

I have also overexpressed the fungal effectors via mutant M. lychnidis-dioicae strains in 

the native host plant, Silene latifolia, to identify novel interactors if any, and to confirm 

the current known interactors in planta by using Co-IP and mass spectrometry analysis 

(MALDI-TOF); this work is documented in Chapter 4. The aim of this study was to use 

the Microbotryum-Silene model system to investigate and functionally characterize the 

biological roles of the selected M. lychnidis-dioicae effector candidates in plants. 

In the final chapter, Chapter 5, the overall conclusions from this dissertation are provided. 

In summary, the studies presented provide novel insights into the mechanism of infection 

of Microbotryum in its host plants by studying its effectors, their subcellular localization, 

and their targets in the host cell, allowing better understanding of the mechanisms used to 

remodel the host defense mechanism for its own benefit. There is a need to characterize 

the rest of the effector proteins and I hope that this dissertation provides the experimental 
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strategies that could be expanded in the future to provide mechanistic insights into the 

interplay of this biotrophic pathogen with its host.
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CHAPTER II 

IDENTIFICATION AND INITIAL CHARACTERIZATION OF THE EFFECTORS OF 

AN ANTHER SMUT FUNGUS AND POTENTIAL HOST TARGET PROTEINS  

                   

 Overview 

 

Plant pathogenic fungi often display high levels of host specificity and biotrophic fungi; 

in particular, must manipulate their hosts to avoid detection and complete their obligate 

pathogenic lifecycles. One important strategy of such fungi is the secretion of small 

proteins that serve as effectors in this process. Microbotryum violaceum is a species 

complex whose members infect members of the Caryophyllaceae; M. lychnidis-dioicae, 

a parasite on Silene latifolia, is one of the best studied interactions. We are interested in 

identifying and characterizing effectors of the fungus and possible corresponding host 

targets. In silico analysis of the M. lychnidis-dioicae genome and transcriptomes allowed 

us to predict a pool of small secreted proteins (SSPs) with the hallmarks of effectors, 

including a lack of conserved protein family (PFAM) domains and also localized regions 

of disorder. Putative SSPs were tested for secretion using a yeast secretion trap method.  

 

1 Kuppireddy, V. S., V. N. Uversky, S. S. Toh, M. C. Tsai, W. C. Beckerson, C. Cahill, B. 
Carman and M. H. Perlin (2017). "Identification and Initial Characterization of the 
Effectors of an Anther Smut Fungus and Potential Host Target Proteins." Int J Mol Sci 
18(11). doi: 10.3390/ijms18112489.
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We then used yeast two-hybrid analyses for candidate-secreted effectors to probe a cDNA 

library from a range of growth conditions of the fungus, including infected plants. 

Roughly 50 SSPs were identified by in silico analysis. Of these, 4 were studied further 

and shown to be secreted, as well as examined for potential host interactors. One of the 

putative effectors, MVLG_01732, was found to interact with orthologues of the 

Arabidopsis thaliana calcium-dependent lipid binding protein (AtCLB) and with 

cellulose synthase interactive protein 1 (CSI1). The identification of a pool of putative 

effectors provides a resource for functional characterization of fungal proteins that 

mediate the delicate interaction between pathogen and host. The candidate targets of 

effectors, e.g., AtCLB, involved in pollen germination suggest tantalizing insights that 

could drive future studies. 

Introduction 

 

During fungal infection of plants, a number of fungi secrete small proteins that serve to 

manipulate host responses and downstream events in host development during infection. 

Often such proteins allow biotrophic fungi to evade host defenses, but they can also 

redirect development so as to specifically benefit the fungus. Such proteins have been 

termed “effectors”, and many share common characteristics among different fungi [1,2]. 

For instance, for oomycete pathogens, such as Phytophthera species, or rust species (e.g., 

Melampsora lini), small secreted proteins (SSPs) are secreted from specialized structures 

called haustoria that penetrate host plant cells to draw nutrients from their hosts. Such 

fungal effectors are SSPs that bear an N-terminal signal peptide; the effectors are usually 

unique to the pathogen. Most effectors are cysteine-rich and share no sequence similarity 

with other known proteins, thus revealing the specialized arsenal that each pathogen 
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possesses and, most likely, their association with the specificity of the pathogen for its 

host. Some effectors are translocated directly from the infection structures, i.e., haustoria 

or appressoria, into plant cells, while others interact with host cell receptors and get 

internalized into the cell [1]. Some studies suggest that secreted proteins can act as 

structural effectors that could accumulate at the host/pathogen interface and stabilize the 

fungal filaments [2]. However, the mechanism of how these effectors work in the entry 

into the plant cell or in the proliferation of the fungus inside the host has yet to be fully 

elucidated. Microbotryum lychnidis-dioicae is an obligate biotrophic basidiomycete smut 

fungus and is a member of the Microbotryum violaceum species complex that infects 

members of the Caryophyllaceae family. M. lychnidis-dioicae infects the dioecious host 

plant, Silene latifolia. The fungal life cycle begins when the fungal spores are 

disseminated by wind or pollinator species and land on a suitable host. The diploid 

teliospores then undergo meiosis to produce yeast-like haploid sporidia that reproduce by 

budding. Conjugation takes place between sporidia of opposite mating type, under 

suitable conditions, such as low nutrients and cool temperatures. Conjugation results in 

the formation of an infectious dikaryotic hypha that is stabilized by host cues, allowing 

the fungus to produce an appressorium and penetrate the host tissue. The fungus 

overwinters in the meristematic tissue; infection becomes systemic in the following year, 

producing diseased flowers, in which the pollen has been replaced with fungal spores, 

thus rendering the male plants sterile. It is thus commonly referred to as the “anther 

smut” [3]. Karyogamy occurs in the dikaryotic hyphae resulting in the formation of 

diploid spores, thus completing the life cycle. The fungal life cycle thus exhibits both a 

saprobic haploid phase and a parasitic dikaryotic/diploid phase. The disease also aborts 



45 

 

the development of female organs in female host plants. Moreover, the female plants 

develop immature male reproductive anthers, making this one of the most interesting 

cases of parasitic modification of host floral organs. Linnaeus was the first to notice the 

smut-induced anthers in the female host plants [4]. Since pollination drives disease 

transmission, anther smut is considered as a plant sexually transmitted disease (STD) [5].  

Recently, the genome sequence and transcriptomes of M. lychnidis-dioicae and its 

interaction with the host S. latifolia have been produced [6]. However, there have been no 

experimental data provided to explain how this fungus can divert the host resources for 

its own propagation and survival. Here, we provide the first study to examine the function 

of the candidate proteins, i.e., the putative effectors that might be involved in the 

pathogenicity of this group of fungi.  

Results 

 

In Silico Analyses to Identify Potential Effectors 

To provide a conservative estimate of proteins secreted by Microbotryum lychnidis-

dioicae, several bioinformatic tools were employed, and only those proteins that passed 

all measures used were retained in the list of predicted secreted proteins (Table S1, 

Appendix). Out of 7364 proteins, 279 were identified to have a signal peptide; from this 

group, 71 predicted proteins were smaller than 250 amino acids (hereafter referred to as 

small secreted proteins, SSPs). Of these, 46 appeared to be unique to M. lychnidis-dioicae 

or to the Microbotryum complex, and 60 lacked identifiable PFAM domains. Among the 

SSPs, 19 were also significantly upregulated during plant infection, suggesting that these 

may play a role during those stages of the fungal lifecycle and in pathogenicity [7].  
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Intrinsic Disorder in Predicted Small Secreted Proteins (SSPs)  

Intrinsic disorder is known to play an important role in protein-protein interactions [8–

14]; intrinsically disordered proteins (IDPs), hybrid proteins containing ordered domains, 

and intrinsically disordered protein regions (IDPRs) are common among pathogenic 

microbes [15] and play a number of roles in pathogen-host interactions [16,17]. 

Accordingly, we analyzed the overall intrinsic disorder predisposition of the 49 predicted 

secreted proteins from M. lychnidis-dioicae upregulated during infection, using a set of 

established disorder predictors from the PONDR family (PONDR® VSL2 [18], PONDR® 

VLXT [19], PONDR® VL3 [20], and PONDR® FIT [21]). We also used the ANCHOR 

algorithm [22,23] to evaluate the presence of the disorder-based protein-protein 

interaction sites, molecular recognition features (MoRFs), i.e., regions that might undergo 

the binding-induced disorder-to-order transition. Results of these analyses are 

summarized in Supplementary Materials, Table S2, Appendix. These results draw a 

picture of an impressive prevalence of intrinsic disorder in the M. lychnidis-dioicae SSPs. 

In fact, all putative effectors have regions of intrinsic disorder, and many of the effectors 

are very disordered. In particular, 11 effectors (22.4%) can be classified as mostly 

disordered, since they have >50% disordered residues; 19 effectors (38.8%) are highly 

disordered, possessing between 30 and 50% of disordered residues; 18 effectors (36.7%) 

are moderately disordered, since they have between 10 and 30% disordered residues; and 

just one protein (2.1%) has less than 10% disordered residues and therefore is mostly 

ordered. These values for disorder content are very high even for a eukaryotic organism 

and are rather atypical for groups of proteins that are not specifically selected for 

disorder. Furthermore, many effectors have disorder-based binding sites or MoRFs (i.e., 
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sites that are disordered in the unbound state and undergo disorder-to-order transition at 

interaction with the binding partners). Finally, several effectors have more than one 

MoRF, suggesting that they can be engaged in interaction with multiple partners or, being 

engaged in interaction with one partner, utilize multivalent “wrapping around”-type 

binding mode. It is likely that the exceptionally high disorder levels and the presence of 

MoRFs can simplify interactions of these pathogenic effectors with host proteins or play 

some other role in regulation of the SSP functionality.  

In line with the hypothesis that intrinsic disorder can be of functional importance for the 

SSPs from M. lychnidis-dioicae, Figure 2-1 represents in-depth analysis of the intrinsic 

disorder predisposition of four putative effector proteins that were up-regulated during 

infection and were shown to have important functions (Sections 2.3 and 2.4 for the 

detailed functional characterization of these proteins).

 

Figure 2- 1: Evaluating intrinsic disorder propensity of protein effectors  
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(A) MVLG_04106; (B) MVLG_05720; (C) MVLG_06175 and (D) MVLG_01732 by a 

series of per-residue disorder predictors. Disorder profiles generated by PONDR® VLXT, 

PONDR® VL3, PONDR® VSL2, IUPred_short, IUPred_long, and PONDR® FIT, are 

shown by black, red, green, yellow, blue, and pink lines, respectively. Dark red dashed 

line shows the mean disorder propensity calculated by averaging disorder profiles of 

individual predictors. Light pink shadow around the PONDR® FIT shows error 

distribution. In these analyses, the predicted intrinsic disorder scores above 0.5 are 

considered to correspond to the disordered residues/regions, whereas regions with the 

disorder scores between 0.2 and 0.5 are considered flexible. 

The corresponding disorder profiles were generated by the overlay of the outputs of six 

commonly used disorder predictors, PONDR® VSL2 [18], PONDR® VLXT [19], 

PONDR® VL3 [20], PONDR® FIT [21], as well as IUPred_short and IUPred_long [24]. 

Furthermore, for each of these four proteins, mean per-residue disorder probability was 

calculated by averaging disorder profiles generated by the individual predictors. The use 

of consensus for evaluation of intrinsic disorder is motivated by empirical observations 

that this approach usually increases the predictive performance compared to using a 

single predictor [25–27]. Figure 1 clearly shows that these four proteins are characterized 

by high levels of predicted disorder that range (as per the outputs of PONDR® VSL2 

analysis) from 22.4% in MVLG_01732 to 61.0% in MVLG_06175, to 64.3% in 

MVLG_05720, and to 79.4% in MVLG_04106. According to the PONDR® VSL2-based 

analysis, there are four IDPRs in MVLG_01732 (residues 1–2, 40–50, 128–142 and 150–

156) and three IDPRs in MVLG_04106 (residues 1–3, 25–37, and 39–107), whereas 
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MVLG_06175 and MVLG_05720 have two IDPRs each (residues 1–4 and 51–118 and 

residues 1–3 and 50–129, respectively). Furthermore, according to the ANCHOR 

analysis, each of these four SSPs might have at least one MoRF (residues 145–153 in 

MVLG_01732, residues 113–118 in MVLG_06175, residues 7–12 in MVLG_05720, and 

residues 3–12 in MVLG_04106). The presence of MoRFs in these proteins was also 

analyzed by MoRFCHiBi, which is a new computational approach for fast and accurate 

prediction of MoRFs in protein sequences. This analysis showed that although there is no 

MoRFCHiBi-identified MoRF in MVLG_01732, this protein has two regions with some 

potential to act as MoRFs (residues 29–39 and 139–156). Similarly, there are no 

MoRFCHiBi-identified MoRFs in MVLG_05720, which, however, have four regions with 

some potential to act as MoRFs (residues 1–14, 66–76, 97–104, and 120–129). On the 

other hand, MVLG_06175 has two MoRFs (residues 97–111 and 113–118), and almost 

the entire chain of MVLG_04106 can act as disorder-based binding region, since this 

protein has two MoRFs, residues 1–70 and 87–104, that cover almost 83% of its 

sequence.  

Yeast Secretion Trap to Verify the Secretory Nature of Predicted Effectors 

We used Yeast Secretion Trap (YST) [28], a molecular genetic approach, to confirm the 

secretory nature of a small subset of the SSP putative effector proteins (MVLG_01732, 

MVLG_04106, MVLG_05720, and MVLG_06175; Table 2-1), each of which was also 

up-regulated during infection. Three of these proteins were also Cys-rich (MVLG_04106, 

MVLG_05720, and MVLG_06175), another hallmark of effectors in a number of fungal 

species [29]. YST employs a mutant strain of yeast, SEY 6210, that has a deletion in the 

SUC2 locus encoding the enzyme, invertase. Invertase catalyzes hydrolysis of the 
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disaccharide, sucrose, to glucose and fructose, so that the yeast cell can then take up 

glucose and metabolize this sugar. Thus, the SEY 6210 mutant yeast strain is normally 

unable to grow on media where sucrose is the sole carbon source. The method uses a 

vector, pYSTO-0, bearing the coding region of Suc2 invertase without its signal peptide 

and its start codon. The protein of interest can be cloned as a translational fusion protein 

with the invertase driven by a constitutive promoter from ADH1. If the protein of interest 

is secreted, this will result in the reconstituted functional activity of the invertase and 

enable the yeast cells to grow on sucrose medium. All four predicted effectors from M. 

lychnidis-dioicae examined experimentally with the yeast secretion trap assay indeed 

appeared to be secreted, since the signal peptide of each allowed Suc2p to be secreted and 

thus provide for growth of the yeast SEY 6210 mutant on sucrose medium (Figure 2-2). 

In contrast, SEY 6210 cells transformed with the vector only were unable to grow on 

such media. 

 

Figure 2- 2: Results of secretion trap experiment with four M. lychnidis-dioicae 

predicted small secreted proteins (SSP) effectors.  
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Suc0, yeast cells transformed with vector alone on sucrose, leu drop-out medium. Undil, 

undiluted; 10× and 100× dilutions. 

Table 2- 1: Candidate SSPs chosen for further analyses. 
 

Predicted 

Protein 

Expression a Size (Amino 

Acids) 

no. of Cys Function 

MVLG_01732 144 rsem vs. 0 156 1 Candidate effector 

MVLG_04106 86 rsem vs. 0 107 6 Candidate effector 

MVLG_05720 1164 rsem vs. 0 129 12 Candidate effector 

MVLG_06175 127 rsem vs. 0 118 10 Candidate effector 

a rsem normalized counts for infected male S. latifolia vs. expression in YPD or nutrient-

limited agar [7]. 

Yeast Two-Hybrid Experiment 

Our goal was to determine the function of these fungal proteins that are predicted, and 

now confirmed, to be secreted, as well as being highly expressed, during infection. We 

employed yeast two-hybrid genetic screening to identify the possible host interactors for 

these fungal proteins. As mentioned above, we chose a small subset of the SSPs that were 

also found to be induced in expression in planta. 

MVLG_04106 Autoactivates the Reporter Genes in Yeast Two-Hybrid Assay 

We expressed MVLG_04106 lacking its signal peptide as a fusion protein to Gal4BD in 

the bait vector (pGBKT7-MVLG_04106∆SP) and tested its activity in expressing the 
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reporter genes. It was found that the yeast strain transformed with this construct activated 

all three of the reporter genes-HIS3, ADE2, and MEL1, when mated with the opposite 

mating strain containing only the control prey vector (Figure 2-3). This indicates the 

cells’ ability to grow on media lacking the essential nutrients histidine and adenine 

because of the activation of the enzymes aminoimidazole ribonucleotide carboxylase 2 

(ADE2) and imidazole glycerol phosphate dehydratase 3 (HIS3). Moreover, the cells 

were also able to express α-galactosidase, the gene product of the Melibiase 1 (MEL1) 

reporter gene that enables the yeast cells to turn blue-green in the presence of the 

chromogenic substrate X-α-gal. This was unexpected, so we generated the reciprocal set 

of constructs to further investigate possible transcriptional activation by MVLG_04106. 

In this case, a fusion protein was generated with MVLG_04106 and Gal4AD in the prey 

vector to test if the reporter genes could again be activated. Surprisingly, in this case the 

reporter genes were not activated. This suggests that MVLG_04106 could activate the 

transcription of the reporter genes only when attached to the corresponding DNA binding 

domain for those genes (i.e., Gal4BD). One possibility is that this fungal protein acts as a 

transcription factor in modulating the host gene expression during infection. In line with 

the known fact that transcription factors are typically characterized by high levels of 

intrinsic disorder [30–32], MVLG_04106 was predicted to possess 79.4% disordered 

residues (see Figure 1A) and is shown to contain long disorder-based interaction regions. 

The predicted protein contains 107 amino acid residues and is cysteine rich, with 

approximately 5% Cys residues. Further domain analysis using PROSITE did not yield 

any information, but prediction of post translational modification sites indicated 

proteolytic cleavage at residue D35, which could allow the mature protein to function as 
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a transcriptional regulator [33] (Supplemental Table S2, Appendix). Structural modelling 

using Swiss-Model yielded chorismite mutase for residues 30–65, for which there was 

22.22% similarity in the 3-dimensional structure. When we compared the amino acid 

sequence of MVLG_04106 with predicted proteins of M. silenes-dioicae [34], there was 

99.07% identity with the corresponding orthologue, whereas that for the M. violaceum 

sensu lato species [35], only had 63.04% identity. 

 

Figure 2- 3: Autoactivation of three reporter genes by MVLG_04106 on QDO/X-α-

gal + 3-AT (5 mM) plates. 
 

Undil, undiluted; 10× and 100× dilutions. QDO (Quadruple drop out media), 3-AT (3-

Amino-1,2,4-triazole), BD (DNA binding domain in pGBKT7 vector), AD (Activation 

domain in pGADT7 vector), BD-p53 (pGBKT7-53 positive control plasmid), AD-T 

(pGADT7-T positive control plasmid), and BD-4106∆SP (MVLG_04106 lacking signal 

peptide). 
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MVLG_05720 Fungal Protein Interacts with Fungal Proteins 

Yeast two-hybrid screening with MVLG_05720 yielded 614 colonies after the initial 

stringent selection on QDO medium with 5 mM 3AT, along with screening for α-

galactosidase expression on X-α-gal (as blue-green colonies). Further selection on 50 

mM 3AT to reduce leaky HIS selection yielded 129 colonies for examination via 

sequence analysis. Of the 129 sequenced clones, we recovered only fungal interactors: 99 

of the clones represented MVLG_07305, 27 of the clones were found to be 

MVLG_04206, and 3 of the clones matched MVLG_04267. Figure 1B illustrates that 

there are 64.3% disordered residues in MVLG_05720, and this protein has several 

MoRFs. It contains 129 amino acids and is highly cysteine rich with roughly 9% Cys 

residues. When the amino acid sequence of MVLG_05720 was compared to the genomes 

of M. silenes-dioicae and M. violaceum sensu lato, the corresponding orthologues 

showed 96.9% identity and 85.93% identity, respectively. 

MVLG_06175 Interacts with a Host Protein and a Fungal Protein 

Yeast two-hybrid screening with MVLG_06175 initially yielded 1000 colonies after the 

stringent selection on QDO/X-α-gal + 3AT (5 mM) medium. Further selection to reduce 

leaky HIS selection yielded 201 colonies for examination via sequence analysis. Of the 

39 sequenced clones that we recovered, 4 of them were full length clones that encode 

CASPL2C1, 1 was a fungal protein encoded by MVLG_06379, and the rest of the 

sequenced clones were for the fungal protein encoded by MVLG_07305 mentioned 

above. The S. latifolia genomic region matching the sequence for CASPL2C1 is found on 

contig m.88187 (GenBank: FMHP01040264.1) in NCBI for the Silene latifolia genome 

assembly (taxid:37657). It also corresponded to c93454_g1 RNA detected in RNA-Seq 
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experiments [6,7]. According to Figure 1C, 61.0% of residues in MVLG_06175 are 

predicted to be intrinsically disordered and this protein can be engaged in disorder-based 

protein-protein interactions. It contains 118 amino acids and is Cys-rich (roughly 8% Cys 

residues). When the amino acid sequence of MVLG_6175 was compared to the genomes 

of M. silenes-dioicae and M. violaceum sensu lato, there was 95.76%, but only 59.83% 

identity, respectively, with the corresponding orthologues. 

MVLG_01732 Interacts with Host Proteins 

Yeast two-hybrid screening with MVLG_01732 yielded 401 colonies after the initial 

stringent selection on QDO/X-α-gal + 3AT (5 mM) medium. Further selection to reduce 

leaky HIS selection yielded 65 colonies for examination via sequence analysis. From the 

65 sequenced clones, yeast two-hybrid screening of MVLG_01732 revealed interesting 

host plant interactors. One of the interactors, represented by 52 clones, was found from 

blastp searches of the Arabidopsis thaliana genome (TAIR; 

https://www.arabidopsis.org/) as an orthologue of the AT3G61050.2 gene, which encodes 

a calcium-dependent lipid binding protein (AtCLB). AtCLB has both coiled coil regions 

and C2 domain similar to synaptotagmins, and synaptotagmins were also identified as 

hits in blastp searches of the NCBI database. Synaptotagmins are class of proteins with 

an N terminal transmembrane and two cytoplasmic C2 domains (Figure S1, Appendix). 

The S. latifolia genomic region matching the AtCLB sequence is found on contig 

m.108787 (GenBank: FMHP01019528.1) in the S. latifolia genome assembly. It also 

corresponded to c85332_g3 RNA detected in RNA-Seq experiments [6,7].  
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Figure 2- 4: Yeast two-hybrid spot test results. 
 

Yeast two-hybrid spot test results for all four proteins and positive and negative controls 

on quadruple drop-out medium (QDO)/X-α-gal + 3AT (5 mM) plates. For the spot test, 

each strain bearing the plasmid was grown in 3 ml of appropriate drop out liquid media at 

30 °C and shaken at 280 rpm for 2 days. To reconfirm the interaction, 10 ml of each 

culture (washed and resuspended in 0.9% w/v NaCl) was mixed and spotted on QDO 

plates containing X-α-gal at the indicated dilutions and incubated at 30 °C for 3–5 days. 

Undil, undiluted; 10× and 100× dilutions. 

The other interactor identified by yeast two-hybrid was cellulose synthase Interactive 

protein 1 (CSI1; Figure S2, Appendix), represented by 13 clones. The S. latifolia 

genomic region matching this sequence is found on contig m.23209 (GenBank: 
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FMHP01009449.1) in the S. latifolia genome assembly. It also corresponded to 

c93789_g3 RNA detected in RNA-Seq experiments [6,7]. Figure 2-1 (D) shows that with 

22.4% disordered residues, MVLG_01732 is the least disordered protein analyzed in this 

study. However, despite relatively low disorder content, MVLG_01732 contains MoRFs 

and, therefore, is expected to use intrinsic disorder for protein-protein interactions. The 

protein is 156 amino acids long and is not rich in Cys residues. When the amino acid 

sequence of MVLG_1732 was compared to the genome of M. silenes-dioicae, a 94.23% 

identity match was found in the corresponding orthologue, whereas only a 48.99% 

identity match was observed for the orthologue from M. violaceum sensu lato.  

Discussion 
 

In this study, we were able to predict from in silico analyses a conservative estimate of 

the secretome of M. lychnidis-dioicae. Furthermore, among this group, we identified 

candidate effectors as SSPs that were also highly expressed during plant infection. For 

the four putative effectors examined in greater detail in this study, amino acid sequence 

comparisons between M. lychnidis-dioicae and M. silenes-dioicae [34] revealed that these 

two organisms share close similarity in their predicted SSPs. In contrast, comparisons of 

most of the orthologues identified in M. violaceum sensu lato [35], the species that infects 

Silene paradoxa, had significantly lower amino acid similarities to those of the other 

species. These findings suggest that the latter organism has diverged substantially from 

the other two species, a finding supported by the phylogenetic relationships of the three 

respective fungal species [36] and the lack of cross-infectivity for M. violaceum sensu 

lato on either S. latifolia or S. dioicae; similarly, neither M. lychnidis-dioicae nor M. 

silenes-dioicae have been found to infect S. paradoxa. Of note, all SSPs were shown to 
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contain IDPRs, and the vast majority of these proteins (>61.0%) were classified as mostly 

or highly disordered. Many SSPs were also predicted to have at least one MoRF, with 

some of the putative effectors possessing multiple MoRFs that can be utilized in 

promiscuous interactions with the fungal and host proteins. To test some of these 

predictions, a subset of the SSPs predicted in silico were confirmed to be secreted by 

YST experiment. We conducted yeast two-hybrid analysis for these SSPs to identify their 

host interactors and hence to understand their role in the mechanism of the infection 

(Figure 2-4).  

Studies suggest that the proteins that undergo post translational modifications (PTMs) are 

considered to interact more with other proteins by engaging in more physical contacts 

and are known to be in the central network pathways more than non-PTM proteins. For 

example, all but four of the 49 secreted proteins we examined in detail were predicted to 

be targets for amidation. C-terminal amidation has been shown to be involved in 

membrane interactions for some proteins. In one case, an antimicrobial peptide, maximin 

H5, was able to penetrate and lyse erythrocyte membranes when amidated, but the ability 

to penetrate lipid membranes was severely reduced with deamidated peptide [37]. For the 

4 SSPs, we examined in detail by yeast two-hybrid analysis, MVLG_04106 and 

MVLG_05720, which were predicted to have amidation targets (but, not at the C-

terminus), while MVLG_06175 and MVLG_01732 each have a predicted target closer to 

the C terminus. If amidation plays a similar role for these SSPs as it does for maximin 

H5, this could indicate that these effectors penetrate host cells as part of their normal 

function. 
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MVLG_04106 Could Serve as a Transcriptional Regulator 

The finding that MVLG_04106 was able to autoactivate all the reporter genes—HIS3, 

ADE2, and MEL1—in the yeast two-hybrid screen suggests its role as a transcriptional 

regulator. However, analysis by structural modelling reveals that a portion of this protein 

is similar to chorismate mutase, a vital enzyme that catalyzes the conversion of 

chorismate to prephenate in the shikimate pathway, leading to the production of aromatic 

amino acids, phenylalanine, and tyrosine, and regulating their balance. Chorismate also 

serves as a substrate for the production of salicylic acid (SA), which is a major signaling 

defense molecule in plants. This fungal protein chorismate mutase could deviate the flow 

of available chorismate for the production of prephenate and hence channel down its 

availability for SA production. In fact, studies show that Ustilago maydis, an obligate 

biotrophic pathogen that causes corn smut, also secretes an effector called Cmu1, a 

chorismate mutase taken up by plant cells and spread to adjacent cells causing metabolic 

priming in the infected cells [38]. However, if MVLG_04106 is a chorismate mutase, this 

still begs the question of how it autoactivates the reporter genes in yeast two-hybrid 

assay. Transcriptome analysis revealed that it is highly expressed during infection but not 

under in vitro conditions, all of which suggests its role in pathogenicity. Thus, further 

investigation is required to better define its true role during infection. 

MVLG_05720 Possibly Regulated by Additional Fungal Proteins 

Three fungal proteins were identified as interactors with MVLG_05720: MVLG_07305, 

MVLG_04026, and MVLG_04267. None of the three were predicted via bioinformatic 

tools to be secreted. The differential expression data [6,7] indicated that MVLG_07305 

was downregulated in late infection stages in planta and upregulated in mated conditions 
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in vitro (while MVLG_05720 was downregulated during mating) [6]. Thus, 

MVLG_07305 may play some role in mating or in the transition to dikaryotic filaments. 

The gene is located on the mating-type chromosome, but its expression is similar in both 

a1 and a2 mating-type strains on either rich or nutrient-limited media [7]. Blastp 

predicted its function as a putative fimbrial outer membrane usher protein, containing a 

mannose binding domain. Of note, fimbrial appendages were first observed 

serendipitously on the haploid cells of an anther smut fungus [39]. They are involved in 

cell-to-cell communication and adhesion during mating before pathogenesis, as 

enzymatic and mechanical removal of these structures were shown to delay mating until 

the regeneration of fimbriae occurred [40,41].  

The second fungal interactor, MVLG_04026, followed the same expression pattern as 

that of MVLG_07305; its predicted function was as a Fibrillin-like protein. Fibrillins are 

secreted proteins that constitute the backbone of extracellular macromolecular 

microfibrils [42]. The C terminus of fibrillins can undergo multimerization as a 

consequence of intermolecular disulfide bonding with itself or other proteins soon after 

secretion [43]. However, MVLG_04026 was predicted via bioinformatic tools not to be 

secreted. Its transcription was also upregulated during mating and downregulated during 

infection.  

MVLG_04267 was not found to be differentially expressed under any of the conditions 

examined. It belongs to the DUF1212 superfamily, a class of membrane proteins with 

unknown function. Perhaps this protein plays a role in transport of MVLG_05720. If the 

MVLG_07305 and 4026 proteins are translated during mating and persist during 

infection, they may interact with MVLG_05720, to sequester it until it is needed for 
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manipulation of the host. However, the mechanism of their action remains a mystery and 

requires further investigation. 

MVLG_06175 Role in Host Entry During the Infection and in Reproduction 

From yeast two-hybrid screening, the protein product of fungal gene MVLG_06175 

interacts with a host CASP-like protein 2C1 orthologue of Spinacia oleracea 

(LOC110788005), transcript mRNA (XM_021992637.1); it also matched CASP-like 

protein 2C1, AT4G25830.1 of A. thaliana. The corresponding transcript from Silene 

expression data (Toh et al. submitted) similarly matched the same S. oleracea protein. 

CASP-like proteins (CASPLs) are homologues of Casparian strip membrane domain 

proteins (CASPs). With respect to the functions of CASPLs, previous research showed 

CASPLs might function as protein barriers on the cell membrane of the endodermis and 

form protein scaffolds for the synthesis of the Casparian strip. Some CASPLs were 

shown to be expressed in the root endodermis, peripheral root cap, root meristem zone, 

trichomes, lateral root primordia, young leaves, and the floral organ abscission zone in 

Arabidopsis thaliana [44]. This last role, in floral organs, would be an appropriate target 

for a fungal effector from an anther smut. Alternatively, since CASPLs are orthologous 

with MARVEL domain proteins associated with the function of epithelial tight junctions 

[45, CASPLs might be related to tight junction functions in plant cells as well. Thus, the 

interaction between MVLG_06175 and CASPL2C1 of Silene could indicate that 

Microbotryum alters the functions of tight junctions to enter the host tissues during 

infection. 

MVLG_06379 was also found as a fungal interactor of MVLG_06175. MVLG_06379 

contains a PFAM domain (PF03328.7) for ATP citrate lyase (ACL) beta subunit. The 
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enzyme converts cytosolic citrate into acetyl-CoA for further fatty acid synthesis, but in 

the parasitic fungi the transcription and translation of ACL appears to be associated with 

infection and reproduction. Cryptococcus neoformans increased transcriptional level of 

ACL1 within macrophages. Additionally, mutants lacking ACL1 showed higher 

susceptibility to antifungal drugs, a lower survival rate within macrophages, and defects 

in expression of virulence factors [46]. 

MVLG_01732 Role in Altering the Vesicular Traffic in the Host and Male Sterility 

In blastp analyses searching the Arabidopsis genome we found this interactor as the 

orthologue of the AT3G61050.2 gene. This encodes a calcium-dependent lipid binding 

protein (AtCLB) that has both coiled coil regions and C2 domain (see Figure S1, 

Appendix) similar to synaptotagmins. Many coiled coil proteins are involved in 

regulating gene expression as transcription factors. The motif is present in the nucleotide 

binding site leucine rich repeat (NBS-LRR) proteins of R genes. Arabidopsis encodes 

150 NBS-LRR-type proteins and they are either the coiled coil (CC) type or the TIR type 

[47]. C2 domains in animal cells are involved in signal transduction and vesicle 

trafficking, but in plant cells they are not well characterized. They could be involved in 

plant stress signal transduction as positive or negative regulators of stress signaling 

cascades (Figure S3 for predicted interaction partners of AtCLB, Appendix). AtCLB 

expression is highly detected in rosette leaves and flowers and low in roots, stems, and 

cauline leaves. Transcriptome analyses studies on pollen germination and tube growth 

shows its expression in mature pollen, hydrated pollen, and pollen tube growth, which 

suggest its role in the development of the male gametophyte [48]. Studies show that 

AtCLB acts as a DNA-binding protein and binds specifically to the promoter sequence of 
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Thalional synthase 1 (THAS1), a key enzyme in the synthesis of the triterpenoid, 

thalionol. AtCLB negatively regulates THAS1 transcription, as part of a response 

involved in drought and stress tolerance. AtCLB becomes localized on the nuclear 

membrane and can bind to ceramides, a sphingolipid present in cellular membranes that 

acts as a second messenger in cell signaling, cell differentiation, and apoptosis [45]. Since 

it is a membrane protein, its activation by membrane lipid ceramide could result in a 

proteolytic cleavage and translocate it to nucleus to activate transcription of a different 

set of genes [49]. Interestingly, analysis of the amino acid sequence showed that there are 

two proteolytic cleavages at positions 28 (after the transmembrane region (1–22)) and 

383 (close to where the C2 domain (264–361) ends and the coiled coil region (390–417) 

begins). Although this is purely speculative at this point, if the MVLG_01732 effector 

were to become intracellular, upon Ca2+ triggering due to conformational changes, the 

AtCLB protein could interact with the effector at the coiled coil region to mediate AtCLB 

activation by the membrane lipid ceramide resulting in proteolytic cleavage after the TM 

to yield mature protein and translocation to the nucleus to regulate transcription of target 

genes. 

In blastp analyses against the NCBI database, the same host interactor for MVLG_01732 

matched a portion of the C2 domain and mostly the C-terminal coiled coil region of 

synatotagmin-5 of Beta vulgaris subsp. vulgaris (LOC104905441), transcript variant X2, 

mRNA (XM_010693990.2); the corresponding transcript from Silene expression data 

(Toh et al. submitted) similarly matched the same B. vulgaris protein. Synaptotagmins 

are a family of membrane proteins concentrated on secreted vesicles, including synaptic 

vesicles. They are composed of a short uncleaved N-terminal signal peptide that overlaps 
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a transmembrane (TM) domain, a synaptotagmin-like mitochondrial and lipid-binding 

protein (SMP) domain, and two tandem cytosolic calcium binding domains (C2A and 

C2B) at the C-terminus required to bind to phospholipids or different ligands in response 

to calcium signals [50]. Ca2+ plays an important role as a second messenger in response 

to variety of stimuli like cold, drought, salt, oxidative, and biotic stress. Ca2+ binding 

confers two roles in membrane targeting process. One is to provide a bridge between C2 

domain and anionic phospholipids, and the second is to induce intra or inter domain 

conformational changes, which further triggers membrane protein interactions. 

The second host interactor for MVLG_01732 matched the C2 domain of Cellulose 

synthase interactive protein 1 (CSI1) of Spinach oleracea (Accession number: 

XP_021846375) and Beta vulgaris (Accession no: XP_010680591), orthologues of 

Arabidopsis AT2G22125.1 gene. Again, the C2 domain (Figures S1 and S2) is a Ca2+ 

binding motif originally identified in Protein Kinase C [51]. However, not all C2 domains 

are regulated by Ca2+, with some functioning in a Ca2+-independent manner and others 

having mainly a structural role. C2 domains interact with cellular membranes and mediate 

key intracellular processes like insulin secretion and neurotransmitter release in 

eukaryotic cells. It binds to a multitude of different ligands and substrates that include 

Ca2+, inositol polyphosphates, intracellular proteins, and phospholipids. 

Mutant analyses found that CSI physically interacts with microtubules and plays a crucial 

role in anther dehiscence. This is interesting because the events leading to anther 

dehiscence are coordinated with pollen differentiation, flower development, and opening 

for successful pollination. CSI 1 disruption mutants exhibited complete sterility and 

defective anther dehiscence, with crumpled pollen and defective pollen release from the 
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anther. Moreover, such mutants had morphological changes in the epidermal and 

endothecial cell length and width necessary for anther maturation, indicating the reason 

for defective dehiscence may be due to unstable microtubules. CSI mutants also exhibited 

altered sensitivity to exogenous Ca2+ levels, which indicates that there is Ca2+-mediated 

regulation in microtubule stability and anther dehiscence [52]. Of note, CSI 1 mutants 

also exhibited decreased number of ovules per gynoecium but were viable, indicating an 

additional effect of CSI in early gynoecial development. 

We hypothesize that the fungal effector MVLG_01732 modulates the function of CSI1 

by interacting with the C2 domain (suggested by our yeast two-hybrid results), thereby 

altering the stability of microtubules, resulting in delayed anther development and 

dehiscence. This could provide the fungus an opportunity to hijack anther development, 

replacing the pollen grains with its teliospores. Studies show that calcium binding 

proteins and calcium dependent signaling are involved in both the development of 

embryo sacs and during the development of pollen [53]. In both the host interactors we 

identified, the MVLG_01732 effector binding could modulate C2 domains and their 

interaction with Ca2+, triggering several signaling pathways for the benefit of the fungus.  

In sum, in silico analyses predicted a number of fungal small secreted proteins that could 

serve as effectors to modulate the plant host. For a subset of these, we identified the host 

interactors that are candidates for targets of these effectors. Recognizing that, even with 

appropriate controls, yeast two-hybrid analysis can give false positive results, we are 

planning to further verify the predicted interactions in future experiments using co-

immunoprecipitation from infected plants. There is also a need to characterize the 

function of these interactors and their roles in the plant. Future experiments to express the 
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fungal effectors in transgenic plants might recapitulate phenotypes observed during 

infection. Although the natural host, S. latifolia, currently lacks a transformation system, 

heterologous plant systems like A. thaliana are amenable for such experiments and 

should help in the characterization of these fungal proteins. Moreover, expressing the 

fungal proteins with a fluorescent marker like GFP or mCherry would help determine the 

localization of these fungal proteins inside the host. Pull down assays can also be 

conducted to identify additional host proteins, if any, that may have been missed by yeast 

two-hybrid analysis. This experimental model could then be expanded in the future to 

provide mechanistic insights into the interplay of this biotrophic pathogen with its host. 

Materials and Methods 

Plant and Fungal Growth 

Silene latifolia seeds that were used in this study were originally collected from a field 

population in Clover Hollow near Mountain Lake Biological Station, Virginia. Sterilized 

seeds were plated on sterile 0.3% phytagar (Life Technologies/Thermo Fisher, Waltham, 

MA, USA), one half strength Murashige and Skoog salts (Sigma Aldrich, St. Louis, MO, 

USA), and 0.05% MES (2-(N-morpholino) ethanesulphonic acid) buffer (Sigma-Aldrich, 

St. Louis, MO, USA). Seeds were kept at 4 °C for 5 days to encourage germination and 

then were transferred to a 20 °C growth chamber with 13 h of fluorescent light. Humidity 

was kept high initially by using dome covers and flood trays and was gradually decreased 

to lower levels. Seedlings were transplanted to bigger pots for the emerging new roots to 

provide hydration requirement when the volume of soil was not sufficient. Plants were 

grown in Sunshine MVP professional growing mix (Sun gro Horticulture Canada Ltd, cat 

no: 02392868, Agawam, MA, USA) and were watered every other day with 100-ppm 
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fertilizer (Peters Professional 15-16-17 Peat-Lite Special, Formula no: S12893, JR Peters, 

Inc. Allentown, PA, USA) [7].  

Fungal strains of M. lychnidis-dioiceae, p1A1 and p1A2, were axenically grown 

separately on nutrient rich media (yeast peptone dextrose media (YPD); 1% yeast extract, 

10% dextrose, 2% peptone, and 2% agar) at 28 °C for 5 days and nutrient-free water agar 

media for 2 days (2% water agar).  

Plant infection employed haploid M. lychnidis-dioicae p1A1 and p1A2 cells that were 

grown on nutrient rich media (YPD; 1% yeast extract, 10% dextrose, 2% peptone, and 

2% agar) at 28 °C; these were harvested and adjusted to a concentration of 1x109 

cells/mL in equal proportion before being spotted onto nutrient free media (2% agar). The 

cells were resuspended to a concentration of 1 × 106 in distilled water. Then, 5 µL of this 

was dropped onto the 12-day old S. latifolia seedlings [7]. 

In Silico Analyses 

Prediction of Small Secreted Proteins (SSPs) 

Prediction of the secretome used a pipeline of software packages (TargetP1.1, 

SignalP3.0, SignalP4.0 (http://www.cbs.dtu.dk/services/SignalP/), TMHMM2.0, 

PredGPI, Phobius, NucPred, Prosite, and WoLF PSORT) to provide a stringent 

determination of likely secretion [7] (Table S1, Appendix and Figure 2-5).  
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Figure 2- 5: Computational framework for prediction of secretome for M. lychnidis-

dioicae and selection of candidate effectors for further analyses. 
 

Detailed description of tools and cut-off criteria for secretome prediction and prediction 

of disorder are provided in Supplementary Methods. Numbers tally for proteins at each 

stage of secretome prediction are provided in tab 3 of Table S1 (Appendix). TM, trans-

membrane domain; ER, endoplasmic reticulum’ SP, secreted protein; PFAM, protein 

family; aa, amino acid; GO, gene ontology; MVLG designations refer to specific 

Microbotryum lychnidis-dioicae proteins 

Prediction of Intrinsic Disorder 

In order to analyze the residue level of disorder propensity of 49 putative effector 

proteins, four intrinsic disorder predictors were used: PONDR® VSL2 [18], PONDR® 

VLXT [19], PONDR® VL3 [20], and PONDR® FIT [21]. While evaluating the intrinsic 

disorder predisposition of four SSPs targeted for functional analysis (MVLG_01732, 
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MVLG_04106, MVLG_05720, and MVLG_06175), in addition to the members of the 

PONDR family, IUPred_short and IUPred_long were used [24]. 

Molecular recognition features (MoRFs) are short segments with increased order 

propensity located within longer disordered regions. MoRFs bind to globular protein 

domains and undergo disorder-to-order transition. These disorder-based binding sites are 

categorized into three types: α-MoRFs (form α-helices upon binding), β-MoRFs (form β-

strands), and ι-MoRFs (form irregular structures). For all 49 predicted secreted proteins 

whose transcription was upregulated during infection, the ANCHOR algorithm 

(http://anchor.enzim.hu/) was used to predict such protein binding regions that are 

disordered in isolation but can undergo disorder-to-order transition upon binding [22]. 

This computational tool finds segments within disorder regions that cannot form stable 

intra-chain interactions to fold on their own, but are likely to gain stabilizing energy by 

interacting with a globular protein partner [22]. Furthermore, the presence of MoRFs in 

MVLG_01732, MVLG_04106, MVLG_05720, and MVLG_06175 was further evaluated 

by another computational tool, MoRFchibi [54]. 

Additional Bioinformatic Analyses 

Alignment of nucleotide and/or amino acid sequences to find regions of similarity 

between such biological sequences employed Basic Local Alignment Search Tool 

(BLAST; https://blast.ncbi.nlm.nih.gov/Blast.cgi). Further domain analysis for prediction 

of post translational modification sites used ModPred [33]. Structural modelling of 

predicted proteins utilized Swiss-Model [55,56]. Results of these analyses are found in 

Table S2, Appendix. Additional analysis methods are provided in Supplementary 

Materials, Appendix and associated references [57,58,59,60]. 
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Yeast Secretion Trap (YST) Experiment 

For each candidate effector, validation of secretion employed a yeast-based secretion trap 

method [28]. Putative secretion signals for each fungal gene were cloned into the 

pYSTO-0 vector. In such analyses, if the putative signal peptide from a protein provides 

for secretion of the Suc2p invertase, S. cerevisiae cells will be able to grow on sucrose as 

a sole carbon source; inability to promote growth would indicate that the fungal protein 

of interest is not normally secreted. 

The signal peptide sequence of each fungal protein was determined by Signal P software 

and amplified by PCR. Standard PCR cycle was used with initial denaturation set at 94 

°C for 4 min and 35 cycles of 94 °C for 30 s, 60 °C for 30 s, and 72 °C for 30 s, with a 

final extension time of 5 min at 72 °C. The product was held at 4 °C at the end of the 

cycle.  

The PCR products were separated by gel electrophoresis through 1.8% agarose (Agarose 

LE; USB Corp., Cleveland, OH, USA). The fragments were excised from the gel and 

purified using the Zymo Gel DNA recovery kit (Orange, CA, USA). The purified 

fragments were subjected to restriction digestion with EcoRI and NotI enzymes. The 

digested fragment was purified and cloned into the pYST-0 vector to obtain a 

translational fusion with the invertase expressed from the ADH1 promoter and 

transformed into Escherichia coli DH5α cells. Cells were plated on LB plates with 

ampicillin (100 mg L−1) and incubated at 37 °C overnight. E. coli strain, DH5α (Bethesda 

research Laboratories, Bethesda, MD, USA), was utilized for all cloning purposes. E. coli 

strains were grown at 37 °C in Circle Grow media (MP Biomedicals, LLC, Solon, OH, 

USA) and plasmid DNA was isolated from potential clones using the alkaline lysis 
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procedure [61]. The presence of each signal peptide encoded in-frame with the SUC2 

coding region was confirmed by DNA sequencing at the Nucleic Acids Core Facility 

(Center for Genetics and Molecular Medicine, University of Louisville, Louisville, KY, 

USA). 

Invertase-deficient (suc2−) S. cerevisiae strain (SEY 6210 (MATαleu2-3, 112 ura3-52 

his-Δ200 trp1-Δ901 lys2-801 suc2− Δ9 GAL)) [62] cells were transformed with the 

constructs using the lithium acetate/single-stranded carrier DNA/PEG method [63]. 

Selection was on Synthetic Dropout medium, with SD/-Leu (Clontech, Mountain View, 

CA, USA) selection plates containing glucose as the sole carbon source. The dropout 

medium contained glucose (20 g·L−1), yeast nitrogen base (6.7 g·L−1), dropout mix minus 

leucine (2 g·L−1), agar (15 g·L−1), and water. The plates were incubated at 30 °C for 6–10 

days. The colonies were re-streaked for purification onto SD/-Leu drop out selection 

plates with sucrose as the sole carbon source to select the positive clones that were able to 

utilize sucrose by secreting invertase enzyme. Such strains were grown overnight in 3 mL 

of SD/-Leu broth with sucrose, and 10-fold dilutions were spotted onto SD/-Leu with 

glucose or sucrose as the carbon source and incubated for 5 days at 30 °C. Clones 

harboring functional signal peptides with reconstituted invertase activity were able to 

grow on sucrose as the sole carbon source. Untransformed mutant yeast strain SEY 6210 

and the same strain, transformed with empty pYST-0 vector, were used as negative 

controls. Plasmid DNA was extracted from the positive clones and used to retransform E. 

coli. The constructs were again checked for the presence of signal peptide sequence by 

DNA sequencing.  
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RNA Extraction and cDNA Library Construction 

RNA for generating the cDNA library was obtained from the axenically grown cultures 

of p1A1 and p1A2 haploid strains [7] on nutrient rich media for 5 days (YPD) at 28 °C, 

nutrient-free water agar media (2% water agar) for 2 days, and the fungal infected Silene 

latifolia tissue [7]. This latter set of RNAs was extracted from floral stem (pedicle, and 

remaining cluster and sepals), floral buds (male and female) at different stages (male: 2–6 

mm buds, 8 mm to fully opened smutted flowers; female: 3–6 mm, 7–14 mm, and 15–24 

mm). The quality of the RNA was checked by Agilent Bioanalyzer and all the samples 

indicated highly intact RNA with the RNA integrity scores of at least 7.8. The total 

samples were pooled equally based on Bioanalyzer quantification to generate a 

normalized cDNA library. The cDNA library was constructed in a Gal4 based prey 

vector, pGADT7 (Clontech, Mountain View, CA, USA,), by CD Genomics (Shirley, NY, 

USA) for yeast two-hybrid screening.  

Yeast Two Hybrid Screen 

The yeast two-hybrid system allows for an initial screening of possible protein-protein 

interactions [64,65]. A “bait” protein of interest is expressed from a yeast 

(Saccharomyces cerevisiae) expression vector as a fusion with the Gal4 DNA binding 

domain (BD). Interactors with bait are identified by screening “prey” expressed from a 

yeast vector where the fusion is with the Gal4 transcriptional activation domain (AD). 

pGBKT7 was used as a “bait” vector with the GAL4 DNA-binding domain and pGADT7 

was used as a “prey” vector with the GAL4 DNA activation domain. While neither the 

BD, nor AD alone, can activate transcription of the reporter genes used in this system, if 

two proteins physically interact (i.e., if prey Y interacts with bait X), then the BD and AD 
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are brought together, and reporter genes will be expressed. In our studies, the prey 

proteins were all expressed from normalized cDNA libraries of the different stages of M. 

lychnidis-dioicae, including in association with its host, S. latifolia. Initial selection of 

interactors involves ability to grow on increasingly more stringent auxotrophic media, 

since the yeast strains have auxotrophic mutations that require them to either be provided 

with the missing nutrients or to have a functional interaction that activates transcription 

of reporter genes whose read-out is complementation of the growth defect. Additionally, 

an α-galactosidase gene serves as a reporter, whereby color change to blue-green occurs 

via cleavage of 5-bromo-4-chloro-3-indolyl alpha-d-galactopyranoside (X-α-gal) in the 

medium. In order to avoid false positives, a number of controls were employed, including 

comparisons using (1) vectors alone/without bait or prey (i.e., pGBKT7 or pGADT7, 

respectively); (2) bait in BD vector alone; (3) prey in AD vector alone; (4) re-

transformation of yeast strains with identified interactors and bait; (5) repetition of the 

experiment with vectors, in which the bait has been fused to AD and the identified prey 

interactor has been fused to the BD, so as to avoid artifacts associated with the particular 

fusion used originally. The interaction of pGBKT7-53 (containing p53 coding sequence) 

and pGADT7-T (containing T antigen coding sequence) was used as a positive control. 

Only those candidate interactors that passed these stringent tests were considered worthy 

of further investigation. 

The coding sequences of each of the effector candidates, lacking signal peptides and stop 

codon, were PCR amplified using cDNA as template, generated from fungal infected S. 

latifolia floral buds, using the primer pairs described in Table S3, Appendix. The effector 

candidates tested in this study were MVLG_004106, MVLG_005720, MVLG_06175, 
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and MVLG_001732, for which sequences are available in the JGI Fungal Genome 

database [66]. The PCR products were cloned into the pCR 2.1 TOPO entry vector 

(Invitrogen/Thermo Fisher, Waltham, MA, USA). Escherichia coli strains, DH5α 

(Bethesda research Laboratories, Bethesda, MD, USA), were utilized for all cloning 

purposes. Plasmid DNA was isolated and the inserts were digested out of this vector with 

EcoRI and BamHI. Purified fragments were subsequently cloned into a pGBKT7 

destination vector (Clontech) where transcription of the cloned gene would be driven by 

an ADH1 promoter, producing fusion proteins at their N termini with the DNA binding 

domain of the Gal 4 transcription factor. 

S. cerevisiae strain Y187 (Library host strain) (MATα,ura3-52, his3-200, ade2-101, trp1-

901, leu2-3, 112, gal4Δ, met–, gal80Δ, URA3 : : GAL1UAS-GAL1TATA-lacZ) [67], 

containing the MEL1/lacz reporter gene, was transformed with the prey vector containing 

the cDNA library using the Frozen-EZ Yeast Transformation II kit (Zymo Research) and 

selected on SD drop out medium lacking Leucine (SD/-Leu). MELIBIASE1 (MEL1) 

reporter gene encodes α-galactosidase and enables yeast cells to turn blue-green in the 

presence of the chromogenic substrate, 5-bromo-4-chloro-3-indolyl alpha-d-

galactopyranoside (X-α-gal). Cell density of the library was calculated by tittering 10−4, 

10−5, 10−6, and 10−7 dilutions on SD/-Leu plates. 

The AH109 yeast strain (Mating partner) (MATa, trp1-901, leu2-3, 112, ura3-52, his3-

200, gal4Δ, gal80Δ, LYS2::GAL1UAS-GAL1TATA-HIS3, GAL2UAS-GAL2TATA-ADE2, 

URA3::MEL1UAS-MEL1TATA-lacZ) [68], containing HIS3, ADE2, and MEL1/lacz) 

reporter genes, was used as the host for the bait constructs. The HIS3, ADE2 reporter 

gene products enable the cells to biosynthesize required nutrients to grow on plates 
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lacking histidine and adenine. The three reporter genes are under the control of distinct 

GAL4 upstream sequences and promoter elements GAL1, GAL2, and MEL1, respectively, 

yielding strong and specific responses. In AH109, the entire HIS3 promoter (including 

both TATA boxes) was replaced by the entire GAL1 promoter, leading to tight regulation 

of the HIS3 reporter gene in this strain. The bait constructs were transformed into AH109 

by the lithium acetate/single-stranded carrier DNA/PEG method [63] and selected on SD 

drop out medium lacking Trp.  

The yeast two-hybrid screening was conducted following the Matchmaker Library 

Construction and Screening Kits User manual (Clontech). Initial screening was 

conducted on high stringent quadruple drop out media (QDO) SD/-Ade/-His/-Leu/-Trp 

plates with X-α-gal and 5 mM 3AT. Subsequently, colonies were restreaked onto 

QDO/X-α-gal plates with 5 mM 3AT initially, and then on to QDO/x-α-gal plates 

containing 50 mM 3AT to select strong interactors. 3AT was used to inhibit the leaky 

expression that reduces the effectiveness of histidine selection, and to inhibit X-α-gal to 

allow detection of the MEL1/lacz reporter. 3-AT is a competitive inhibitor of the yeast 

HIS3 protein (His3p), blocking low levels of His3p expression, and thus suppressing 

background growth on SD medium lacking His. Only the positive blue-green clones 

(indicating α-galactosidase activity) that survived on the highest 3AT levels were used 

for further screening. To estimate the mating efficiency and to calculate the total number 

of screened colonies dilution serials were prepared and 100 µL of each dilution was 

spread on SD/-Trp, SD/-leu, and DDO plates. Plasmids were isolated from the surviving 

colonies and were individually used to transform E. coli. The prey plasmids were isolated 

from E. coli, and sequenced and analyzed by BLAST screens against the NCBI database 
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[69]. The dropout medium contained Glucose (20 g·L−1), yeast nitrogen base (6.7 g·L−1), 

appropriate dropout mix (2 g·L−1), agar (15 g·L−1), and water.   

Conclusions 
 

In this paper we identified, for the first time, the interactors of the putative effectors of M. 

lychnidis-dioicae. We believe that the protein product of MVLG_04106 codes for a 

transcriptional regulator/activator of host responses to allow successful infection. The 

fungal interactors of MVLG_05720 protein product, MVLG_07305 and MVLG_04026, 

could potentially sequester this effector until it is required during infection. 

MVLG_06175 appears to interact with a CASP-like homologue and may be involved in 

cell-cell junctions. The identification of two host interactors of MVLG_01732-AtCLB 

and CSI I, which play roles in anther/pollen development and dehiscence, provides 

exciting targets for future studies, as we hypothesize this effector may be crucial in 

redirecting anther and pollen development in such a way as to benefit the reproductive 

program of the fungus. Plant infection studies with knockouts or over expression of these 

effector genes will further our understanding in characterizing the function of these key 

players in the infection. This strongly suggests the need to also characterize the remaining 

candidate effector proteins for a more complete understanding of the mechanisms of 

infection and development of this fascinating plant parasite.
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CHAPTER III 

FUNCTIONAL CHARACTERIZATION OF THE MICROBOTRYUM LYCHNIDIS-

DIOICAE EFFECTORS IN A HETEROLOGOUS HOST MODEL 

 

Overview 
 

The anther smut fungus, Microbotryum lychnidis-dioicae infects, Silene latifolia from the 

Caryophyllaceae family. It has served as a popular model to study ecology, evolutionary 

and host specificity of a pathosystem. However, the molecular mechanism of this host-

pathogen interaction is poorly understood. The obligate requirement for biotrophic life 

style and the lack of proper transformation techniques for both the pathogen and the host 

species have severely curtailed further progress at the molecular level. In this study, for 

the first time, we expressed a subset of three effector proteins from this fungus in a 

heterologous host plant model, Arabidopsis, to understand the role they may play in the 

native host. Among the three effectors studied, transgenic A. thaliana lines expressing the 

MVLG_01732 effector, which localized to the plasma membrane, showed curly leafy 

symptoms with early bolting. This phenotype is interesting because the Microbotryum 

lychnidis-dioicae infected S. latifolia flowers bolt earlier than the uninfected flowers in 

the natural populations. In addition, expression of MVLG_01732 in A. thaliana caused 

enhanced susceptibility to the infection of the plant pathogenic bacteria, Pseudomonas 

syringae.      
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Introduction 
 

Microbotryum violaceum is a fungal species complex that infects members of 

Caryophyllaceae. Within this species complex, some taxa emerged as independent 

lineages based on host specificity and evolved as separate species. Microbotryum 

lychnidis-dioicae is one such species that infects the host plant, Silene latifolia. This 

basidiomycete fungal infection results in the smutted appearance of flowers, where the 

pollen in anthers has been replaced by this castrating parasite’s spores; hence the 

common name - anther smut fungus. Recently, the genome sequence and the 

transcriptome of the fungus were determined, and these revealed insights about the role 

of small secreted effector proteins that are highly upregulated during the infection (Perlin, 

Amselem et al. 2015). Out of 7364 predicted proteins, 19 were found to be small (less 

than 250 amino acids) secreted proteins that are unique to M. lychnidis-dioicae and were 

highly upregulated during plant infection, suggesting these may play a role during those 

stages of the fungal life cycle and in pathogenicity (Perlin, Amselem et al. 2015). In our 

previous study, we have confirmed that one such effector, MVLG_01732 is secreted 

(Kuppireddy, Uversky et al. 2017). Yeast two-hybrid analysis using the cDNA library 

from different stages of growth conditions of fungus and infected plant revealed that it 

interacts with Arabidopsis thaliana orthologues found in S. latifolia, i.e., calcium-

dependent lipid binding protein (AtCLB) and with cellulose synthase interactive protein 1 

(CSI1). Identification of host target proteins of M. lychnidis-dioicae effector proteins 

provided a crucial lead to determine the effector function (Kuppireddy, Uversky et al. 

2017). We, therefore, utilized fluorescent tagged fusion proteins to localize subcellular 

locations of target proteins in order to better elucidate potential functions.  
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To serve this purpose, we generated mCherry tagged versions of fungal proteins to 

identify their sites of localization in planta through stable expression in the heterologous 

host, Arabidopsis thaliana. Heterologous model systems use the expression of a gene in a 

host organism other than its native host in the usual settings. These systems are popular 

because they are amendable to use and because of the lack of tractable experimental 

approaches to study obligate biotrophic pathogens. A. thaliana has been a genetic model 

organism for many years and it has contributed an important role in genetics and 

molecular biology, including the study of host-pathogen interactions. For recalcitrant 

fungi two methods have been used to express effectors in non-native host species. 

Agrobacterium-mediated heterologous expression has been used for stable expression of 

fungal effectors; alternatively, delivery of effectors through Pseudomonas type III 

secretion system has been used for transient expression of such effectors. Both methods 

are considered reliable methods for understanding the function of effectors (Hugo, L. et 

al. 2018).  

In this study, we conducted in planta assays using A. thaliana as a heterogenous nonhost 

model to express the fungal effector, MVLG_01732. Stable expression in A. thaliana 

expressing MVLG_01732 tagged with mCherry fluorescent protein, allowed 

determination of the subcellular localization of this effector in planta. We also report here 

the phenotypic effect when this effector is expressed in A. thaliana. Further, we 

investigated the interaction and the effect of MVLG_01732 in altering the growth of the 

pathogen, Pseudomonas syringae, in these expression lines. Our results suggest that 

MVLG_01732 localizes to the plasma membrane and promotes the growth of P. syringae 

during infection of A. thaliana.  
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Materials and Methods 
 

Plant material and Growth conditions of Arabidopsis.  

Arabidopsis thaliana ecotype Col-0 was used as wild-type background in this study 

(kindly provided by Dr. Mark Running, University of Louisville). The plants were grown 

in Sungro Horticulture propagation mix soil (Premium Horticultural Supply, Louisville, 

KY, cat no.5232601), in a growth chamber, at 22 ⁰C, with 68% relative humidity (RH), 

light intensity 120 µmol m-2 s-1 and with a 16 h / 8 h day/night cycle.  

In vitro culture of Arabidopsis was performed by plating the seeds on 1/2x MS 

(Murashige & Skoog, Phytotechnology Laboratories, Cat No: M524) media, 0.05% MES 

(2-(N-morpholino) ethanesulfonic acid, ThermoFisher, Pittsburgh, Pennsylvania, USA) 

buffer containing 0.8% agar adjusted to a pH 5.7. For the selection of transgenic plants, 

MS media with kanamycin (50 μg/ml) and 300 µg/ml Cefotaxime (Amresco) was used. 

Seeds were surface sterilized and cold-treated for 2-3 days and then transferred to a 

growth chamber for germination at 20-24 ⁰C. Seedlings were further grown for 10 days 

on plates and then transferred to soil pots filled with Sungro Horticulture propagation mix 

(Premium Horticultural Supply, Louisville, KY, cat no.5232601).  

Generation of the CaMV 35S:: MVLG binary construct.  

The effector candidates tested in this study were MVLG_004106, MVLG_005720, and 

MVLG_001732, for which sequences are available in the JGI Fungal Genome database 

(Nordberg, Cantor et al. 2014).To obtain transgenic plants expressing the coding 

sequences of each of the effector candidates either as full-length proteins or as truncated 

versions lacking the N-terminal signal peptide (∆SP), each target was PCR amplified 
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using cDNA as template; the cDNA was generated from fungal infected S. latifolia floral 

buds, using the primer pairs described in Table 3-1. For amplification by PCR, ExTaq 

polymerase was used. Standard PCR cycle was used with initial denaturation set at 94 °C 

for 4 min and 35 cycles of 94 °C for 30 s, 60 °C for 30 s, and 72 °C for 45 s, with a final 

extension time of 5 min at 72 °C. The product was held at 4 °C at the end of the cycle. 

The PCR products were separated by gel electrophoresis through 1.5% agarose (Agarose 

Unlimited USB Corp., Cleveland, OH, USA). The fragments were excised from the gel 

and purified using the Zymo Gel DNA recovery kit (Orange, CA, USA). The purified 

fragments were subjected to restriction digestion with Bam HI and Nde I enzymes and 

cloned into pRI binary vector under the control of the CaMV 35S promoter. Escherichia 

coli strains, DH5α (Bethesda Research Laboratories, Bethesda, MD, USA), were utilized 

for all cloning purposes. Cells were plated on LB agar plates with kanamycin (50 μg/ml) 

and incubated at 37 °C overnight. E. coli strains were grown at 37 °C in Circle Grow 

media (MP Biomedicals, LLC, Solon, OH, USA) and plasmid DNA was isolated from 

potential clones using the alkaline lysis procedure (Sambrook J 2001). The presence of 

each gene was confirmed by DNA sequencing at the Nucleic Acids Core Facility (Center 

for Genetics and Molecular Medicine, University of Louisville, Louisville, KY, USA). 

The coding region for mCherry was amplified from pMF5-5h vector (kindly provided by 

Dr. Michael Feldbrugge, Universität Düsseldorf). The primers used for amplification are 

listed in Table 3-1. The PCR products were separated by gel electrophoresis through 

1.2% agarose (Agarose Unlimited USB Corp., Cleveland, OH, USA). The fragments 

were excised from the gel and purified using the Zymo Gel DNA recovery kit (Orange, 

CA, USA). The PCR product was cloned into the pCR 2.1 TOPO entry vector 
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(Invitrogen/Thermo Fisher, Waltham, MA, USA). Escherichia coli strains, DH5α 

(Bethesda Research Laboratories, Bethesda, MD, USA), were utilized for all cloning 

purposes. Cells were plated on LB plates with ampicillin (100 μg/ml) and incubated at 37 

°C overnight. E. coli strains were grown at 37 °C in Circle Grow media (MP 

Biomedicals, LLC, Solon, OH, USA) and plasmid DNA was isolated from potential 

clones using the alkaline lysis procedure (Sambrook J 2001). Plasmids that appeared to 

be larger than the TOPO vector were checked for the presence of amplicon by PCR. The 

presence of the mCherry insert was confirmed by DNA sequencing at the Nucleic Acids 

Core Facility (Center for Genetics and Molecular Medicine, University of Louisville, 

Louisville, KY, USA). The positive TOPO clone was subjected to digestion using Eco R1 

and Bam HI, the products separated on a 1.2 % agarose gel, and purified out of the gel as 

described above. The insert is expressed as a fusion protein, with mCherry fused to the C-

terminus of the effector. Each construct was confirmed again for the presence of 

mCherry, the MVLG gene and the junction region of the fusion area and kanamycin gene 

by DNA sequencing. The primers used for screening and sequencing are found in the 

following Table 3-1. 

Table 3- 1: Primers used for expressing the M. lychnidis-dioicae genes in A. thaliana 
 

Name Sequence (5’ to 3”) 

MVLG04106pRINde 5'-GCCCATATGTAGGTCTCACTCGCATCCAC-3' 

4106NdeFNoSig 5'-GCC CAT ATG GCT GAC GCG ACC AAA C-3' 
 

MVLG04106pRIBam 5'-GCAGGATCCACAACCTTCGGGCTCGGG-3' 

MVLG05720pRINde 5'-GCCCATATGTGCCCAGTTCAACATGATGC-3' 
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5720NSPpRIFNde 5'-GCCCATATGAACCCGTGGCCTCCGTC-3' 
 

MVLG05720pRIBam 5'-GCAGGATCCGTAACCCGAACGACGCATCC-3' 

6175SignalNdeF 5'-GCCCATATGATACATCGTCCTCAAGCCAG-3' 

6175SignalBamR 5'-GCAGGATCCGAGATTTAGAGGAAAGAACCAAT-3'   

1732CompletepRIF 5'-GCCCATATGATCTTTCGCCCGACTTTCA-3' 

1732noSPpRIF 5'-GCCCATATGTTGCAAGAAGCGGGCGATAC-3' 

1732SignalBamR 5'-GCAGGATCCGGCGTGGATTTTGCCGGAGA-3' 

398SignalNdeF 5'-GCCCATATGCTCCCATCGGACTTCAACG-3' 

398SignalBamR 5'-GCAGGATCCGATCGAATGCTTGGGAATGT-3' 

KMF40 5’-GCTTGGGTGGAGAGGCTATT-3’ 

KMR677 5’-CGGGTAGCCAACGCTATGTC-3’ 

mCherryFBamNew 5'-GGA TCC ATG GTG AGC AAG GGC GAG G-3' 

mCherryREcoNew 5'-GAA TTC CAA GAC CGG CAA CAG GAT T-3' 

MCherry199R 5’-ACAGGATGTCCCAGGCGAAG-3’ 

 

Transformation of Agrobacterium using electroporation. 

The mCherry: MVLG pRI expression effector was introduced by electroporation into 

Agrobacterium tumefaciens strain EHA105 and used to produce Arabidopsis transgenic 

lines. Competent cells of Agrobacterium were made following the Pikaard’s Lab protocol 

(Pikaard). Transformation of competent cells of Agrobacterium was performed in a 

BioRad micropulser electroporator with the voltage of 2.5 kV using the 25 uF capacitor 

and at 400-ohm settings (Mattanovich, Ruker et al. 1989). The competent cells were 

thawed on ice and 2 µl of the plasmid was added to the tube. The pre-chilled cuvettes 



84 

 

were placed on ice and the mixture was transferred to the cuvette using pre-chilled sterile 

tips. The pulse buttons were held for a short time until the time constant read about 4.7 

sec. Then, 1ml of LB was added to the cuvette and pippeted up and down to mix and 

transferred to a 2 ml tube. The cells were incubated at 28 °C for 2 hours before plating 

150 µl onto LB plates with kanamycin (50 μg/ml). The plates were incubated at 28 °C for 

2 days. The plasmid DNA was isolated from the potential clones (Wang 2006) and 

screened by PCR as an initial screen. One such positive clone for each construct type was 

selected for retransforming E. coli. The construct was again checked for the presence of 

the insert by PCR and restriction digestion analysis to confirm the true Agrobacterium 

clones to be used for the transformation of plants. 

Stable transformation of Arabidopsis and in vitro selection of transformant 

seedlings. 

Transgenic lines of Arabidopsis (Col-0) were generated using a modified floral dip 

transformation protocol (Zhang, Henriques et al. 2006). An Agrobacterium strain 

harboring MVLG gene-pRI expression vector was inoculated in 5 ml of LB medium 

supplemented with rifampicin, spectinomycin, and kanamycin at 50 μg/ml and grown to 

the stationary stage (OD600 approximately 2.0) at 28 °C with shaking at 250 rpm for 2 

days. Next, 3 ml of this feeder culture was used to inoculate 500 ml liquid LB and was 

grown for 16-24 hours to an OD600 of 1.5-2.0. Then, Agrobacterium cells were harvested 

from the liquid medium by centrifugation at 4 °C for 10 min at 4000 x g and washed with 

freshly made 5% sucrose. Silwet L-77 (PhytoTechnology Laboratories, Lenexa, Kansas) 

was added to a concentration of 0.02% (v/v) and mixed well before dipping the plants. 

The plants were inverted to dip the aerial parts along with rosettes to soak shorter axillary 
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inflorescences for 10 s with gentle agitation. In case the plant was too short for younger 

meristems to submerge, the suspension was dropped onto the unopened floral buds with a 

micropipette to infect them. Infected plants were kept at high humidity under a plastic 

bag overnight and then transferred to the growth chamber. The inoculation procedure was 

repeated a second time after one week. As a positive control mCherry cloned into pRI 

was used. As negative controls, pRI only vector, wild-type, and mock-inoculated plants 

and Agrobacterium strains with no pRI vector are used. The mCherry fluorescence was 

visualized in leaf cells using confocal microscopy. 

Each effector, either with the signal peptide or lacking signal peptide, was expressed as a 

fusion protein with mCherry, (except for MVLG_04106∆SP-mCherry, which, despite a 

number of attempts, was not successfully generated). As a positive control mCherry 

cloned into pRI was used. As negative controls, pRI only vector, wild-type uninfected, 

and mock-inoculated plants with cocultivation media with no bacteria and untransformed 

Agrobacterium strains with no pRI vector are used.  

Pooled seeds (T0) produced by infected plants were collected and screened for 

kanamycin (KM)-resistant seedlings. To select Arabidopsis transgenic plants, the healthy 

green colored plants were picked after 14 days and transferred to water-saturated soil. 

The T1 plants were grown and the seeds from transgenic lines were disinfected and first 

plated on sterile half strength (½ x) MS plates with 0.8% agar and with kanamycin and 

cefotaxime and then transferred to the soil. T2 Lines carrying only a single T-DNA copy 

were selected based on the Mendelian segregation of the dominant resistant marker 

segregation ratio (3:1, resistant/susceptible) on kanamycin-containing medium. 

Independent homozygous single insertion T3 lines exhibiting 100% resistance were 
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selected as homozygotes and these were used for phenotypic evaluations, subcellular 

localizations and bacterial infiltration assays. 

Statistical analysis: 

The T2 progeny of independent Arabidopsis lines, selected using kanamycin, was sown 

and germinated in KM containing MS media. 14 days after germination, the number of 

resistant and nonresistant seedlings in the segregational analysis was evaluated using the 

chi-squared test. 

Laser Scanning confocal microscopy.  

Fourteen-day-old T3 Arabidopsis seedlings grown in Petri dishes containing ½ x MS 

media with kanamycin were observed using confocal microscopy. Images were acquired 

using an Olympus Fluoview FV-1000 confocal coupled to an Olympus 1X81 inverted 

microscope, a PlanApoN 60× objective, and FV-10 ASW 2.1 software.  A single channel 

scanning configuration was set up for the acquisition of mCherry (excitation 587nm, 

emission 610nm) using a 543 nm HeNe laser. Optimal brightness for this channel was 

configured by determining the setting yielding maximal intensity without saturation.  

Each of the settings was tested against wild-type plants for the mCherry signal to ensure 

exclusion of non-specific emission.  Scanning was performed at a speed of 2 µs/pixel to 

acquire z-stacks of each visual field.  Images are presented as either single plane images 

or stacked images, as indicated in the figure 3-6 and 3-7.   
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Plant genotyping. 

Leaves of 4-week old Arabidopsis were harvested and snap frozen in liquid nitrogen. 

DNA was extracted using Plant DNAzol® reagent according to the manufacturer’s 

instructions (Thermo Fisher Scientific, Cat No: 10978021). DNA concentration and 

purity were assessed using Nanodrop 2000TM UV-Vis spectrophotometer (Thermo Fisher 

Scientific, Waltham, MA). 

 The genomic DNA extracted from transgenic A. thaliana lines was used as a template for 

PCR. Standard PCR was performed using TaKaRa Hot start ExTaq DNA polymerase 

enzyme (cat no. RR001A, Takara Bio USA, Inc). Primers amplifying the mCherry insert 

and the MVLG gene were used and the PCR products were separated in 1.3% agarose 

gels to screen the transgenic lines.  

Gene expression analysis using qRT-PCR of the T-DNA insertion lines. 

Total RNA was extracted from Arabidopsis thaliana leaves with Trizol reagent 

(Invitrogen). Turbo DNase treatment (Ambion) was performed. cDNA synthesis was 

done using oligodT primers and Superscript III cDNA synthesis kit (Invitrogen). The 

qRT-PCR reaction was performed using the primers presented in Table 3-2. 1x Power 

SYBR Green (Applied Biosystems) was used as the detector. Cycle threshold values 

were normalized to the housekeeping gene UBQ10. Quantifications of RNA expression 

levels were performed in an Applied Biosystems Step-One thermocycler using the 

following PCR conditions: 95 oC for 10 min followed by 95 oC for 15 s and 60 oC for 1 

min for 40 cycles. Melting curve analysis was performed at the end of each cycle to 

ensure the specificity of the reaction. Three different RNA isolations for wild-type and 
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mCherry plants were carried out and nine different RNA isolations from three 

independent lines were performed for MVLG_01732∆SP-mCherry plants; each cDNA 

was measured in triplicate. Results were expressed as log2 fold change relative to the 

housekeeping gene UBQ10. Primers, Gene name, and the size of the Genomic and cDNA 

amplicons are listed in Table 3-2. 

Table 3- 2: Primers used for qRT analysis 
 

Name Sequence (5’ to 3”) Source 

Ara geno F qRT (At3g18780) 5′-ACTTTCATCAGCCGTTTTGA-3′ 
 

(Czechowski, 
Stitt et al. 2005) 

Ara geno R qRT (At3g18780) 5′-ACGATTGGTTGAATATCATCAG-3′ 
 

UBQ10 F qRT (AT4G05320) 5'-GTTGGAGGATGGCAGAACTC-3' 
 

(Czechowski, 
Stitt et al. 2005) 

UBQ10 R qRT (AT4G05320) 5'-GGAGCCTGAGAACAAGATGAA-3' 
 

mCherry F qRT 5'-CACTACGACGCTGAGGTCAA-3' 
 

This Study 
 

mCherry R qRT 5'-GTGGGAGGTGATGTCCAACT-3' 
 

1732NSP F qRT 5'-TGCACAAAAATCTAACCTCA-3' 
 

This Study 
 
 1732NSP R qRT 5'-GTATCGGGTGATGGAGCAAG-3' 

5720NSP F qRT 5’-GATGCAAATGGCGGACAAGT-3’ 
 

This Study 
 

5720NSP R qRT 5’-AGGGTTCCATGAAAGCGTCA-3’ 
 

4106NSP F qRT 5’-CATCACGCATCCAGTAGCCT-3’ 
 

This Study 

4106NSP R qRT 5’-ATACAAGTCCCCCGTGCTTC-3’ 
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Protein extraction and Immunoblotting. 

Leaves of 3-week old T3 Arabidopsis transgenic plants were ground to a fine powder 

after liquid nitrogen exposure. Proteins were extracted in a buffer containing 0.1M Tris-

HCl, pH 8, 0.1% SDS, 2% β-mercaptoethanol, and 1X protease inhibitors (ICN 

Biomedicals Inc, CA). Samples were incubated on ice for 10 min; then the cell debris 

was pelleted by centrifuging twice for 10 min at 13,000 rpm at 4 °C. The supernatant was 

separated and protein concentration was quantified using the Bradford reagent (Hugo, L. 

et al. 2018). An equal amount of protein (10 µg) was loaded in each well as determined 

by Bradford assay. The extracted proteins were separated by gradient polyacrylamide gel 

(4-12%) in Tris-glycine buffer for 1 hour at 30 V and then electrotransferred to a 0.45 µm 

nitrocellulose membrane. Immunoblotting was carried out by incubating the membrane 

with diluted (1:1000) primary antibody, anti-c-Myc-mouse monoclonal antibodies (Cell 

signaling #2276) in 5% w/v nonfat dry milk/ Tris-tween-buffer saline (TTBS) buffer at 4 

⁰C with gentle shaking, overnight. After transfer, the nitrocellulose membrane was 

washed three times with 1x TTBS buffer for 5 min at room temperature. Later, the 

membrane was incubated with secondary antibody, goat-anti-mouse horseradish 

peroxidase-linked Antibody (1:2000) in 5% w/v nonfat dry milk/ TTBS buffer for 1 hour 

at room temperature. The membrane was washed three times for 5 min each with 1x 

TTBS buffer. The membrane was exposed to chemiluminescence reagent (West Pico) for 

1 min and the results were generated on X-ray film using an autoradiography cassette. 

Isolation of Arabidopsis leaf mesophyll protoplasts.  

 Four-week-old A. thaliana plant leaves were used for mesophyll protoplast preparation 

(Yoo, Cho et al. 2007). Multiple plants were pooled for protoplast isolation to generate 
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2 × 105 protoplasts for each of the sample types. Protoplast samples were visualized for 

fluorescence using a confocal microscope.  

Laser Capture Microdissection (LCM) observations of anthers. 

The flowers of Col-0 and MVLG_01732∆SP-mCherry transgenic lines were dissected to 

separate the anthers from other floral parts and mounted using Phosphate buffer solution. 

Images of the anthers were acquired with a 5x objective on a Leica LMD6500 

microscope. 

SEM observations of pollen. The anthers of Col-0 and MVLG_01732∆SP-mCherry 

transgenic lines were sputter coated with gold for 300 s. The material was examined with 

Zeiss EVO 40 scanning electron microscope (SEM) and the results were documented 

with smartSEM software at 5.0KV. 

Bacterial Infiltration assay. Pseudomonas syringae pv. tomato (pst) DC3000 strain 

(generously provided by Dr. Alan Collmer and Morgan Carter, Cornell University) was 

used for bacterial infiltration assay. Cells were grown on King’s B plates (2% proteose 

peptone, 0.2% potassium phosphate dibasic trihydrate, 1.5% agar, 1.4% (v/v) sterile 

glycerol, 0.5% (v/v) 1M MgSO4) containing rifampicin (50 µg/ml) at 28⁰C overnight. 

Cells were diluted to an OD600 of 0.001 with 10mM MgCl2 and leaf inoculated on the 

abaxial side of a 4-week old A. thaliana using a 1 ml syringe. Leaf punches (6mm) of the 

infected leaves were taken on day 0 and day 3 to quantify the bacterial count. Bacterial 

infiltration was carried out according to the protocol (Liu, Sun et al. 2015).
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Results  
 

Analysis of Arabidopsis thaliana transformants. 

Each MVLG effector gene was expressed as two different types (see Figure 3-1): 

1) MVLG-mCherry_pRI and 2) MVLG∆SP-mCherry_pRI. Despite repeated attempts, 

generating MVLG_4106∆SP-mCherry_pRI construct was not successful. Although 

constructs with MVLG_6175_pRI and MVLG_398_pRI were generated, transgenic 

Arabidopsis lines were not yet generated with them and will be used by future researchers 

to investigate their function and subcellular localization. 

 

Figure 3- 1: Schematic representation of the T-DNA construct. 
 

 LB: left border, nos: nopaline synthase, KanR: kanamycin resistance-conferring gene, 

mCherry: fluorescent tag at the C-terminus of the MVLG effector gene, MVLG: effector 

gene, 35S: cauliflower mosaic virus promoter, RB: right border  

Floral dipping generated 10 primary transformants for MVLG_01732∆SP-mCherry 

construct and 5 primary transformants for the full length fusion construct, MVLG_01732-

mCherry. Likewise, MVLG_05720∆SP-mCherry floral dip generated 35 primary 

transformants and its full length fusion construct, MVLG_05720-mCherry generated 16 

transformants.  Despite multiple attempts generating, MVLG_04106∆SP-mCherry 
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remained not successful but the full-length version of the same effector, MVLG_04106-

mCherry generated 14 primary transformants. 

Homozygous Arabidopsis transformed seedlings from the T3 generation were grown and 

gDNA was extracted. PCR was carried out to confirm the presence of the gene and the 

fluorescent marker, mCherry fragment.  

 

Figure 3- 2: PCR on A. thaliana lines expressing MVLG_01732 and mCherry. 
 

A. Transgenic lines expressing MVLG_1732 gene (full length). B. Transgenic lines 

expressing MVLG_1732∆SP gene (truncated). C. Transgenic lines expressing the 

mCherry fluorescent marker. (+): positive Agrobacterium clone that was used to 

transform A. thaliana lines. WT: Col-0 lines as negative control, L: DNA ladder, mCh: 

mCherry expressing lines as a positive control 
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Homozygous transgenic lines expressing MVLG_01732 have distinct phenotypes 

compared to wild type and other transgenic lines.  

Stable constitutive expression of 1732∆SP-mCherry showed a curly leafy phenotype and 

early bolting in the transgenic A. thaliana plants (Figure 3-3). The leaves of 1732∆SP-

mCherry expressing lines are long and narrow and have a pronounced downward curling 

towards their abaxial side when compared to wild-type leaves that are wide and flat. 
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Figure 3- 3: Phenotypic abnormalities of the transgenic plants expressing 

MVLG_1732∆SP-mCherry. 

  

(1) A, B and C are MVLG_01732∆SP-mCherry expressing transgenic lines with narrow 

leaves curled towards their abaxial side showing the early bolting (arrows indicate the 

bolts). Col-0 (WT) plant is showing normal leaves and is about to bolt. (2). Open flowers 

in A, B and C. Col-0 (WT) shows the emerging bud cluster. 

Expression of MVLG_01732 in transgenic A. thaliana. 

To determine the expression levels of the effector gene in the transgenic plants, real-time 

quantitative PCR was performed. The effector gene was not expressed in the wild-type 

Col-0 plants as the control (Figure 3-4). The transcript abundance of the effector gene, 

MVLG_01732∆SP-mCherry was at least 5.3 log2-fold higher than that of the wild type. 
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Figure 3- 4: Analysis of MVLG_01732∆SP-mCherry transcript levels. 
 

Analysis of MVLG_01732∆SP-mCherry transcript levels in three independently 

generated transgenic Arabidopsis expression lines relative to transcript abundance of the 

UBQ10 gene as determined by real-time qRT-PCR. Error bars indicate standard error of 

the mean of nine biological replicates. An asterisk indicates a statistically significant 

difference (students t-test; p < 0.01) 

 

Immunoblot analysis demonstrated expression of the intact tagged protein.  

Because of the phenotypic effects of effector gene, MVLG_01732 on the transgenic plant 

leaf morphology, protein extracts of the leaves from these plants along with those of wild 

type and mCherry-expressing lines were used as controls and were analyzed by 

immunoblot to determine the abundance of the intact tagged fusion protein (Figure 3-5). 

Anti-C-myc western blot revealed a single band signal at the expected size, ∼53 kDa 
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(Figure 3-5, MVLG_1732∆SP-mCherry) suggesting that the fusion protein remained 

intact in the plant cells. 

Figure 3- 5: Western blot of protein extractions from the transgenic lines. 

The immunoblot was probed with anti-C-myc-antibody. Sizes of proteins in the 

molecular mass markers (Kda) are shown in the left. m (mCherry), MVLG_1732∆SP-

mCherry, MVLG_1732-mCherry and WT (Col-0). 

Subcellular localization of effectors using Floral dip. To gain insight about the 

function of the effector genes, we used confocal microscopy to detect resulting sub-

cellular localization in the leaf epidermal cells of stable A. thaliana transgenic lines 

(Figure 3-6). The studies indicated MVLG_01732∆SP-mCherry tagged protein is 

localized to plasma membrane. We further generated the protoplasts from leaf epidermal 

leaves from these plants to confirm the localization. The protoplasts generated from 

mCherry plants, showed a dispersed signal in the cytoplasm along with nucleus whereas 

the protoplasts from MVLG_01732∆SP -mCherry plants, the signal was mainly 

concentrated on the plasma membrane (Figure 3-7). However, we could not find a signal 

for the full length fusion protein, MVLG_01732-mCherry (data not shown). 
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Figure 3- 6: Localization studies in the 14-day old seedlings. 
 

Confocal images of live leaf epidermal cells of 14-day old homozygous stable transgenic 

plantlets expressing mCherry or MVLG_01732∆SP-mCherry under the control of the 

CaMV 35S promoter. Left panel is the Flourescence view and the right panel is the 

merged view.   
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Figure 3- 7: Subcellular localization in protoplasts. 
 

The protoplasts were isolated from the homozygous stable A. thaliana transgenic plants 

of mCherry and MVLG_01732∆SP-mCherry along with wild type (Col-0) plants. Left 

panel is the Flourescence view and the right panel is the merged view.   

However, during Microbotryum infection, for the MVLG_01732 to localize on the 

plasma membrane of the plant host cell, it must be internalized by the host cell. One 

study has reported that the effectors bearing N-terminal RXLR motifs or functional 

variants of such motifs could bind to external phospholipids like phosphatidylinositol-3-

phosphate  (PI3P), located on lipid rafts could lead to endocytosis thereby allowing the 

effectors to interact with their host targets (Kale, Gu et al. 2010). Although the exact 

mechanism of the escape of effectors from the endosomes is currently not known, it is 

predicted that the moderate affinity of the effectors for PI3P make it possible for the 

binding on the outer surface and the dissociation inside the cell. Among the three studied 
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effectors, no obvious RXLR motifs were identified. However, variants of RXLR motifs 

that could function in the host cell entry were identified and reported in the table 3-3. 

However, the effectiveness of these RXLR variants in the cell entry need to be tested in 

vitro by experiments like leaf bombardment assays. 

Table 3- 3: RXLR-like variants in the M. lychnidis-dioicae effector proteins 
 

Effector RXLR-like motif Position of motif 

4106 RPIT 54 

5720 HKLC 55 

5720 RDYP 69 

5720 KQMQ 76 

5720 KCMR 83 

5720 HNLT 94 

1732 RLIK 32 

1732 RKIV 43 

1732 KSIP 83 

 

Since the infection target in the native host plant is the anther, we also looked for the 

morphological differences in the anthers and pollen in the transgenic plants (Figure 3-8). 

The anthers in the MVLG_01732∆SP-mCherry lines looked denser than the WT controls. 

Also, a structural difference in the morphology of anthers in these two lines was 

observed.  Anthers of MVLG_01732∆SP-mCherry looked oblong in shape whereas the 

WT anthers seemed to have a defined heart shape. To better visualize the pollen, we 
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observed the pollen samples using scanning electron microscopy. Using this more 

sensitive measure, we did not observe any distinct differences in the pollen of lines 

expressing MVLG_01732∆SP-mCherry compared to wild type or mcherry expressing 

lines (Figure 3-9). 

 

Figure 3- 8: Morphological differences in the anthers of WT (Col-0) and 

MVLG_01732∆SP-mCherry expressing plants.  
 

Anthers of the transgenic lines are oblong and denser compared to wild type anthers that 

are heart-shaped and less dense. Images acquired with a 5x objective on a Leica 

LMD6500 microscope. 
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Figure 3- 9: SEM analysis of the pollen in the WT (Col-0), mCherry, and 

MVLG_01732∆SP-mCherry lines.  
 

Top panel shows anthers and pollen from mCherry transgenic lines. Middle panel shows 

MVLG_01732∆SP-mCherry transgenic plants with anthers bearing the pollen. Bottom 

panel shows the pollen from the wild type (Col-0) plants. Images acquired with Zeiss 

EVO 40 scanning electron microscope. 
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Pseudomonas infiltration assay. To determine if the M. lychnidis-dioicae fungal protein, 

MVLG_01732 has a role in conferring either resistance or susceptibility to the host 

plants, we performed Pseudomonas infection on these lines. Bacterial infiltration assays 

were conducted on stable A. thaliana transgenic lines constitutively expressing the 

effector genes, as well as on wild type and the line expression only the mCherry. 

Infection was carried out using wild-type P. syringae pv. tomato DC3000 and bacterial 

quantification was carried out. MVLG_01732∆SP-mCherry-expressing lines were more 

susceptible than the wildtype plants and the mCherry expressing plants. However, when 

compared to mCherry expressing lines, the difference was not statistically significant. 

 

Figure 3- 10: MVLG_01732 promote the growth of Pst DC3000 growth. 
 

Pst DC3000 growth in wildtype (Col-0), mCherry-only expressing plants, and 

MVLG_01732∆SP-mCherry plants. Bacterial suspension with an OD:0.001 was syringe 

infiltrated on the abaxial side of the leaves of 4-week old plants and the bacterial growth 

was quantified on day 0 and day 3. Six replicates were included for each genotype. 
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Statistical significance was performed by Student’s t-test (P<0.01) and an asterisk 

indicates a statistically significant difference compared with the wild-type plants. cfu, 

colony forming unit. 

Discussion 
 

For many years, Microbotryum violaceum species, being obligate biotrophic pathogens, 

remained a recalcitrant fungus with lack of appropriate genetic tools to study the 

pathogen (Toh and Perlin 2016). To better understand a host-pathogen interaction, studies 

at the molecular level remained a crucial step to be taken. Previous studies predicted that 

Microbotryum lychnidis-dioicae secretes 279 proteins, of which 19 bear the hallmarks of 

effectors and could potentially serve in the virulence and pathogenicity of this fungal 

pathogen (Perlin, Amselem et al. 2015). As a first step to understand these effectors, we 

confirmed their secretory nature in vitro and identified the potential targets from the host 

for a subset of these putative effectors (Kuppireddy, Uversky et al. 2017). This allowed 

us to further our understanding of the mechanism of infection. Although the 

Microbotryum-Silene pathosystem served as an ideal model to study several concepts, 

e.g., host shifts and plant sexually transmitted diseases, additional experimental 

approaches to understand the host-pathogen interactions at the molecular level are 

needed. In the current study, we used A. thaliana as a heterologous model to understand 

the localization and the potential function of the candidate effector, MVLG_01732.  For 

these studies, we generated the stable transgenic Arabidopsis lines expressing the full-

length mCherry fusion protein and the truncated mCherry fusion protein, lacking the 

signal peptide to understand the localization and the phenotypic abnormalities caused by 

the presence of this effector. To assess whether heterologous expression of these effectors 
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could affect host plant susceptibility to pathogens, we infected the transgenic lines with 

Pseudomonas syringae,  Pst DC3000, a model pathogen for probing the disease 

susceptibility (Xin and He 2013) as A. thaliana is susceptible to this pathogen.  

In this study, stable Arabidopsis transgenic lines were generated for the effectors 

MVLG_01732-mCherry, MVLG_01732∆SP-mCherry and with the mCherry construct 

by itself as a control. For the following effectors- MVLG_05720-mCherry, 

MVLG_05720∆SP-mCherry, MVLG_04106-mCherry, currently the T3 plants are 

growing and will be a source of investigation in future. We could not generate a 

MVLG_04106∆SP-mCherry construct even after multiple attempts, suggesting that it 

could be either toxic to the bacterial cells, alternatively this failure could be due to an 

unresolved cloning issue.  

The subcellular localization studies on live leaf epidermal cells showed us that the 

truncated protein, MVLG_01732∆SP-mCherry localized to the plasma membrane 

(Figure 3-6 and Figure 3-7). The localization results are in agreement with respect to its 

host protein targets, Cellulose synthase interactive protein 1 (CSI1) and calcium-

dependent lipid binding protein (AtCLB), both membrane binding proteins identified 

from our previous study (Kuppireddy, Uversky et al. 2017).  However, we could not find 

a signal for the full-length fusion protein containing the fungal protein secretion signal, 

MVLG_01732-mCherry (Figure 3-6). We further generated the protoplasts from the 

mesophyll leaf cells for better visualization. The mCherry expressing protoplasts showed 

the cytoplasmic and nuclear localization signal, and protoplasts generated form 

MVLG_01732-mCherry plants showed plasma membrane localization (Figure 3-7).  
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 We conducted Real-time qRT experiments on the transgenic lines and confirmed the 

detection of the transcript levels in MVLG_01732∆SP-mCherry lines (Figure 3-4). 

Western blot results yielded an intact protein for the truncated fusion protein but not for 

the full-length protein (Figure 3-5). Western blot results of the full-length fusion protein 

are in agreement with the results of subcellular localization for this protein, indicating 

why we did not see a flourescence signal with the full-length fusion protein, suggesting 

that the translated protein product could be cleaved or degraded and thus rendered 

nonfunctional.  

The A. thaliana transgenic lines expressing truncated fusion protein, MVLG_01732∆SP-

mCherry showed an abnormal curly leafy phenotype toward the abaxial side of the leaf 

and exhibited early bolting when compared to wild-type and the mCherry expressing 

plants (Figure 3-5). The early bolting is particularly interesting as the fungus mainly 

resides in the flowers and the infected host plants also exhibit early bolting and flowers 

remain for prolonged periods when compared to healthy flowers (Kaltz and Shykoff 

2001). We have further conducted LCM analysis on the anthers of the transgenic lines 

and the wild type lines which suggested that the anthers of the MVLG_01732∆SP-

mCherry lines are oblong in shape and denser compared to wild type anthers that are 

heart-shaped and less dense (Figure 3-8). With this interesting result, we further 

conducted SEM analysis to see if there were morphological differences in the pollen 

structure of the MVLG_01732∆SP-mCherry lines compared to the wild type and 

mCherry lines. However, we did not find any obvious difference in the pollen 

morphology (Figure 3-9). 
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Bacterial infiltration assays with Pst DC3000 were conducted to understand if this 

effector would alter susceptibility of the A. thaliana host to this pathogen. The virulence 

was measured by the quantification of the bacterial count on day 3 (Katagiri, Thilmony et 

al. 2002). The results suggest that the MVLG_01732∆SP-mCherry lines show an 

increased susceptibility towards the Pst DC3000 pathogen compared to the wild type 

plants. We also compared the MVLG_01732∆SP-mCherry lines with the mCherry 

expressing lines and noticed a similar result, however, although the increase was not 

statistically significant (Figure 3-10). 

Further experiments with Pst DC3000 mediated effector delivery could be conducted to 

confirm the results that we obtained through in planta effector expressing lines. Bacterial 

infiltration assays and subcellular localization studies with the rest of the transgenic lines 

expressing MVLG_05720 and MVLG_04106 generated from this study would be a 

valuable resource to increase our understanding at the molecular level of the host-

pathogen interactions of this fungal pathosystem. co-immunoprecipitation assays could 

be conducted on these lines by future investigators to detect additional host interactors of 

these effectors in A. thaliana. Overall, the results from the studies described in this 

chapter would serve as a resource to guide the study the effector genes by using 

heterologous systems for the fungi that lack proper genetic tools for investigations in 

native hosts. 
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CHAPTER IV 

EXPRESSION OF MVLG_01732 HIS TAGGED EFFECTOR IN SILENE LATIFOLIA 

TO IDENTIFY NATIVE HOST INTERACTORS  

      

Introduction 
 

Microbotryum violaceum sensu lato (formerly Ustilago violacea) is a species complex, 

also called the anther smut fungus. It is a basidiomycete and an obligate pathogen of 

Caryophyllaceae (Pink family) although it can also be found infecting the anthers of 

many other dicotyledonous plants belonging to Dipsacaceae, Lamiaceae, and 

Lentibulariaceae (Bauer, Begerow et al. 2006, Kemler, Göker et al. 2006). Recently 

Microbotryum lychnidis-dioicae emerged as an independent lineage based on its host 

specificity on Silene latifolia .  

Silene latifolia (white campion) is a dioecious plant and thus male and female flowers 

emerge from separate plants. It is a well-known model to study sexual dimorphism with 

XX/XY sex-determining system and evolution of sex chromosomes (Mrackova, Nicolas 

et al. 2008). The life cycle of the fungus begins when the fungal spores are dispersed by 

pollinators and land on the healthy host. The diploid teliospores undergo meiosis to give 

rise to four haploid spores that reproduce by budding to develop into yeast-like sporidia. 

Conjugation occurs between the sporidia of opposite mating type resulting in the 

infectious dikaryotic hyphae. The appressorium of dikaryotic hyphae penetrate the 

epidermis of the host thereby travelling intercellularly (Giraud, Yockteng et al. 2008). 
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Infected male flowers form smut teliospores instead of pollen in the anthers and the 

female flowers develop stamens which bear smutted anthers like male flowers (Uchida, 

Matsunaga et al. 2003). At the early stages of flower development in the uninfected S. 

latifolia flowers, the stamen and pistil primordia can be seen, but at the later stages, 

mechanisms like cell cycle arrest and cell death are observed in the stamens of female 

flowers and pistils of male flowers causing the suppression of these flower parts. In 

contrast, for infected female flowers, the suppression of stamen is released and cell death 

and cell cycle arrest was not observed (Kawamoto, Yamanaka et al. 2017). The ovules in 

the female infected flowers are aborted and sterile. The genes that are present on the Y-

chromosome of the male flowers of S. latifolia are induced upon fungal infection 

(Uchida, Matsunaga et al. 2003).  

Recently, the genome sequence of M. lychnidis-dioicae and transcriptomes of its 

interaction with the host S. latifolia have been produced (Perlin, Amselem et al. 2015, 

Toh, Chen et al. 2017). The study predicted a total of 7,364 protein-coding genes with 

279 putative secreted proteins (SPs). Among the 279, 71 were predicted to be smaller 

than 250 amino acids and categorized as Small Secreted Proteins (SSPs). Of these, 46 

were unique to Microbotryum with no sequence similarity to any other known proteins; 

19 of the SSPs are significantly upregulated during infection (Perlin, Amselem et al. 

2015). Thus, the SSPs have the hallmarks of fungal effectors, i.e., proteins secreted by the 

fungus to manipulate its host. These findings led to further our study of the putative 

effector proteins at the molecular level and to the investigation of their role in 

pathogenesis. Our previously published research identified the targets for some of the 

candidate effectors allowing us to characterize their function (Kuppireddy, Uversky et al. 
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2017). To this end, we have expressed these effector genes in a non-host heterologous 

system to identify their sub-cellular localization that could potentially allow us to identify 

their function with respect to their targets (Chapter 3). To study any pathosystem, 

availability of tools such as genetic transformation, gene disruption approaches, and 

protein tagging, are essential techniques for molecular genetic analyses. Over the past 30 

years, transformation of Microbotryum had limited or no success, but recently a robust 

and reproducible transformation system was established in our lab by Toh et al to 

overcome this hurdle (Toh, Treves et al. 2016). Following this approach, in this study, we 

have overexpressed the previously characterized effector gene, MVLG_01732, in M. 

lychnidis-dioicae and then infected the native host S. latifolia with the recombinant 

compatible mating-partners. This would allow us to conduct co-immunoprecipitation and 

mass spectrometry analysis in future, to identify any new interactors of the 

MVLG_01732 effector and to confirm the interactors, previously identified via yeast two 

hybrid analysis. The aim of this study was to use the M. lychnidis-dioicae -S. latifolia 

model system to investigate and functionally characterize the biological roles of the 

selected M. lychnidis-dioicae effector gene, MVLG_01732 in its host system. This is also 

the first in planta study to overexpress the effector genes in M. lychnidis-dioicae to infect 

the native host plant species. 

Materials and methods 
 

Growth conditions of Silene latifolia.  

Silene latifolia seeds (generously provided by Dr. Tatiana Giraud, Université du Paris-

Sud) were plated onto water agar. The plates were placed at 4 ⁰C for 3 days for 

stratification allowing for the synchronization of the germination. After germination and 
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growth, 15-day old seedlings were transferred to 2” square pots filled with Sta-Green 

Potting Mix plus fertilizer (Lowe’s, item no. 0192430) and covered with domes to retain 

high humidity. The pots were placed in a growth chamber at 20 ⁰C with 13 h light/11 h 

dark cycle and were watered every other day. At about 30 days old, the plants were 

repotted to cone-tainers. After they reached manageable growth, they were finally 

transferred to 7-inch square pots and were watered with Bloom-booster fertilizer (Miracle 

Gro, product no.1001921) every other day. 

Generation of MVLG_01732-6x His in pPZP-MV-Hyg binary vector. The effector 

candidate tested in this study was MVLG_001732, for which sequence is available in the 

JGI Fungal Genome database (Nordberg, Cantor et al. 2014). To obtain the transgenic M. 

lychnidis-dioicae overexpressing this effector, a four-step cloning procedure was 

employed. First, PCR was used to amplify an upstream 1000 bp predicted promoter 

region, along with the entire coding sequence of this full-length protein in-frame with a 

sequence encoding poly-histidine (6x His) tag at C-terminus, using genomic DNA of M. 

lychnidis-dioicae as template; the primer pairs used are described in Table 4-1. For 

amplification by PCR, Takara Hot-Start ExTaq polymerase (Takara Bio USA, Inc.) was 

used. Standard PCR cycle was used with initial denaturation set at 94 °C for 4 min and 35 

cycles of 94 °C for 30 s, 60 °C for 30 s, and 72 °C for 3 min, with a final extension time 

of 7 min at 72 °C. The product was held at 4 °C at the end of the cycle. 

The PCR products were separated by gel electrophoresis through 1.3% agarose (Agarose 

Unlimited, Inc., Alacucha, Florida). The fragments were excised from the gel and 

purified using the Zymo Gel DNA recovery kit (Orange, CA, USA). The purified PCR 

fragment was cloned into pCR 2.1 TOPO entry vector (Invitrogen/Thermo Fisher, 
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Waltham, MA, USA). Plasmids that appeared to be larger than the TOPO vector were 

checked for the presence of amplicon by PCR. Positive TOPO entry cones are confirmed 

by PCR and then subjected to restriction digestion with BbvCI and AscI enzymes and 

cloned into pMF5-5h vector (kindly provided by Dr. Michael Feldbrugge, Universität 

Düsseldorf) under the control of T3 promoter, as a second step. For the clones that 

appeared larger than pMF5-5h vector, PCR was carried out to amplify the insert along 

with NOS terminator using Primers mentioned in Table 4-1. Thirdly, TOPO cloning was 

carried out again and positive TOPO clones were subjected to restriction digestion using 

PacI and EcoRV. The excised product was purified and finally used to clone into the 

vector, pPZP-MV-HYG (Toh et al., 2016), which provides hygromycin resistance as a 

selectable marker for successful M. lychnidis-dioicae transformation.  Escherichia coli 

strain DH5α (Bethesda Research Laboratories, Bethesda, MD, USA), was utilized as 

recipient for all cloning purposes. Cells were plated on LB plates with kanamycin (50 

μg/ml) and incubated at 37 °C overnight. E. coli cells were grown at 37 °C in Circle 

Grow media (MP Biomedicals, LLC, Solon, OH, USA) and plasmid DNA was isolated 

from potential clones using the alkaline lysis procedure (Sambrook J 2001). The presence 

of the insert along with 6x His tag was confirmed by DNA sequencing (Eurofins Inc, 

Louisville, KY, USA).  

Table 4- 1: Primers used to generate MVLG_01732-6x His pPzP-MV-Hyg construct 
 

Name Sequence (5’ to 3”) 

MVLG1732BbvCIF 5'-GCTGAGGAATGAAGGGCGTGAAAGATG -3' 
MVLG_01732AscI
Rev 

5'GGCGCGCCCTAGTGGTGATGGTGATGATGGGCG
TGGATTTTGCCGGAGA-3' 

1732PacFor 5'-TTAATTAACCTGTCCCCTCAGTTCATGT-3' 
1732EcoRVRev 5'- GATATCCTTTCATCGTGCCCAGATTT-3' 
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Transformation of Agrobacterium using electroporation. 

The MVLG_01732-6x His pPZP -MV-HYG expression construct was introduced by 

electroporation into Agrobacterium tumefaciens strain EHA105 and later used to 

transform both haploid strains of M. lychnidis-dioicae, p1A1 and p1A2 (Toh et al., 2016). 

Competent cells of A. tumefaciens were made by following the Pikaard’s Lab protocol 

(Pikaard). Transformation of competent A. tumefaciens cells was performed in a BioRad 

micropulser electroporator with voltage of 2.5 kV using the 25 uF capacitor and at 400-

ohm settings (Mattanovich, Ruker et al. 1989). The competent cells were thawed on ice 

and 2 µl of the plasmid was added to the tube. The pre-chilled cuvettes were placed on 

ice and the mixture was transferred to the cuvette by using pre-chilled sterile tips. The 

bottom and the sides of the cuvette were wiped with a Kimwipe prior to starting the pulse 

until the time constant read for 4.7 sec. Then, 1ml of LB was added to the cuvette and 

pippeted up and down to mix the cells, which were then transferred to a 2 ml tube. The 

cells were incubated at 28 °C for 2 hours before plating 150 µl on to LB plates with 

kanamycin (50 μg/ml). The plates were incubated at 28 °C for 2 days. The plasmid DNA 

was isolated from the potential clones (Wang) and screened initially by PCR. One such 

positive clone for each construct type was selected for retransforming the E. coli. The 

construct was again checked for the presence of the insert by PCR and restriction 

digestion analysis to confirm the true Agrobacterium clone and is used for the 

transformation of Microbotryum.  

Agrobacterium-mediated transformation of Microbotryum strains. 

Agrobacterium-mediated transformation of Microbotryum was carried out as published 

before in the Perlin lab (Toh, Treves et al. 2016). Transformation was carried out for both 
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compatible mating-partner strains of M. lychnidis-dioicae, p1A1 and p1A2, with 

selection on YPD + HYG/CEF plates (Yeast peptone dextrose solid media plates (YPD 

plate; 1% yeast extract, 2% peptone, 10% dextrose, 2% agar) containing 150 µg/ml 

hygromycin (Life Technologies) and 300 µg/ml Cefotaxime (Amresco)). Plates were 

incubated at 25 ⁰C and the colonies were picked and transferred to YPD + HYG/CEF 

plates. 

Genomic screening of the transformed Microbotryum colonies.  

DNA extractions for the transformants were carried using the following procedure. 

Microbotryum transformants were grown in 4 ml of liquid YPD + HYG/CEF media 

overnight. Cultures were pelleted by centrifugation at 14000 rpm for 1 min and the 

supernatants discarded. The pellet was washed with 1 ml of water, pelleted and 

resuspended in 0.5 ml of lysis buffer (0.5M NaCl,0.01M EDTA at pH 8.0, 0.2M Tris-Cl 

at PH 7.5, 1% SDS) and 0.3 g of sterile 0.5 mm glass beads were added and quick spun. 

To this mixture, 250 µl PCI (25:24:1 v/v phenol:chloroform:isoamyl alcohol ) was added 

and vortexed for 5 min. The cells were centrifuged at 14000 rpm for 3 min. Using wide 

bore tips, the upper phase was collected to a clean tube. Again 0.25 ml PCI was added 

and centrifuged as before. The upper phase was collected to a clean 1.6 ml conical tube 

and 1 ml of ice cold 100% ethanol was added and centrifuged for 5 min. Next, the wash 

step was repeated with 70% ice cold ethanol twice and the supernatant was discarded. 

The DNA pellet was vaccum-aspirated and dried on a heat block at 55 ⁰C for 10 min and 

resuspended in 40 µl TE (pH 8.0). DNA concentration and purity were assessed using 

Nanodrop 2000TM UV-Vis spectrophotometer (Thermo Fisher Scientific, Waltham, MA) 
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PCR Screenings. The genomic DNA extracted was used as template for PCR. Standard 

PCR was performed using Takara Hot-Start ExTaq polymerase enzyme (Takara Bio 

USA). The transformants were screened for the hygromycin resistance conferring gene, 

the His-tagged MVLG_01732 insert and the house keeping gene, mepA, the latter used to 

confirm the identity of the M. lychnidis-dioicae cells. PCR products were separated via 

electrophoresis through 1% agarose gels to screen the transformants for those producing 

the band of the same size as controls. The PCR fragment was excised and purified. The 

presence of the overexpressor MVLG_01732 gene, 6x His tag coding region, along with 

the 1000 bp upstream promoter was confirmed by DNA sequencing (Eurofins Inc, 

Louisville, KY, USA). Primers used for this screening and sequencing are found in Table 

4-2. 

Table 4- 2: Primers used for sequencing MVLG_01732-6x His pPzP-MV-Hyg 
 

Name Sequence (5’ to 3”) Source 

HygF Swathi 5'-AAAAGTTCGACAGCGTCTCC-3' This Study 

HygR Swathi 5'-ATTTGTGTACGCCCGACAGT-3' This Study 

1732PacFor 5'-TTAATTAACCTGTCCCCTCAGTTCATGT-3' This Study 

1732EcoRVRev 5'- GATATCCTTTCATCGTGCCCAGATTT-3' This Study 

NosSeq 5'-ATCTCATAAATAACGTCATGC-3' This Study 

mepA 5’(4) CTTTTGCGTAGGAAGAATGC This Study 

mepA 3’(2) ACGGTGCCGAGGATGATTTGGA This Study 
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Infection of Silene latifolia.  

Freshly grown M. lychnidis-dioicae transformant strains of both mating types were 

scraped from YPD containing hygromycin and cefotaxime (YPD+HYG/CEF) plates. The 

optical density was adjusted to A600 to 1.0 and equal concentrations of mating types are 

mixed in a microcentrifuge tube. The inoculation treatments were performed on each 

seed that was plated on nutrient free water agar plates (2% agar). The plates were allowed 

to dry in the hood and then incubated at 14 ⁰C for 48 hours. After 48 h the plates were 

transferred to a growth chamber. The infection was repeated after 5 days to increase the 

success rate of infection. The germinated seedlings after three weeks were planted in pots 

and watered every other day. Once the vegetative growth was significant, they were 

transferred to 7-inch pots and used Bloom booster fertilizer once in a week. 

Protein Extraction and Western blotting. 

Silene latifolia flowers and the buds from different stages were collected and ground to a 

fine powder under liquid nitrogen. Proteins were extracted in a SDS-based buffer 

containing 0.1M Tris-HCl, pH 8, 0.1% SDS, 2% β-mercaptoethanol, and 1X protease 

inhibitors (ICN Biomedicals Inc, CA). In parallel, protein samples were also extracted by 

NP-40-based lysis buffer (10% Glycerol, 50mM HEPES (4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid), 100mM KCl, 2mM EDTA, 0.1% NP-40, 2mM 

DTT,10mM NaF, 0.25mM NaVO3, 1x protease inhibitor). Samples were sonicated in a 

water bath for 5 min at room temperature and kept on ice for 5 min. The lysate was 

loaded in a 1-ml syringe and sheared using a 23G needle. The samples were incubated on 

ice for 10 min and then the cell debris was pelleted by centrifugation for 30 min at 13000 

rpm at 4 °C. The supernatant was separated into a separate tube and protein quantified 
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using the Bradford reagent (Hugo, L. et al. 2018). Equal amounts of protein (50 µg) were 

loaded into each well of a gradient polyacrylamide gel (4-12%) in 1x transfer buffer 

(Nupage) with 20% methanol buffer for 1 hour at 30 V and then electro transferred to a 

0.45 µm nitrocellulose membrane. Immunoblotting was carried out by incubating the 

membrane with diluted (1:1000) primary antibody, mouse-anti-His monoclonal 

antibodies (Invitrogen #37-2900) in 5% BSA/ Tris-tween-buffer saline (TTBS) buffer at 

4 ⁰C, with gentle shaking, overnight. After transfer, the nitrocellulose membrane was 

washed three times with 1x TTBS buffer for 5 min at room temperature. Later, the 

membrane was incubated with secondary antibody, goat-anti-mouse horse radish 

peroxidase-linked Antibody (Santa Cruz #sc-2005) in 5% w/v nonfat dry milk/ TTBS 

buffer (1:2000) for 1 hour at room temperature. The membrane was washed three times 

for 5 min each with 1xTTBS buffer. The membrane was exposed to chemiluminescence 

reagent (west Pico) for 5 sec and the results were generated using an autoradiography 

cassette. 

Results 
 

Cloning into pPZP-MV-Hyg binary plasmid.  

Initially, a two-step TOPO cloning procedure was employed for generating 

MVLG_01732-6x His- pPZP-MV-Hyg clone. First, the PCR product was amplified using 

primers containing the BbvCI and AscI sites and TOPO cloning was done. The 1689 bp 

insert was retrieved by using BbvCI and AscI restriction enzymes and cloned into pMF5-

5h vector. From this clone, PCR was performed with primers having PacI and EcoRV 

sites to amplify the 2630 bp insert along with the NOS terminator region from the pMF5-

5h vector and recloned into the TOPO pCR2.1 vector. This TOPO clone was finally 
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digested with PacI and EcoRV and used for pPZP-Mv-Hyg cloning. Bona fide constructs 

were transformed into A. tumefaciens. 

 

Figure 4- 1: Schematic representation of the MVLG_01732-6xHis-T-DNA construct. 
 

LB: left border, 1732P: native promoter of MVLG_01732, MVLG_01732+6His: 

Histidine tag at the C-terminus of the MVLG_01732 effector gene, nos: nopaline 

synthase terminator, HygP: promoter for Hyg gene, HygR: Hygromycin resistance-

conferring gene, RB: right border.  

Plasmid minipreps from A. tumefaciens transformants was carried out and PCR was 

performed on 8 such plasmid extractions, including bacterial plasmid, MVLG_01732-

6xHis pZP-MV-HYG as a positive control. All such transformants that were tested were 

positive for the construct (Figure 4-2). 
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Figure 4- 2: PCR on eight A. tumefaciens transformants bearing MVLG_01732-

6xHis pZP-Mv-Hyg. 
 

Lanes 12-1 through 12-9 were the A. tumefaciens putative transformants. 12 (+) was the 

positive control from the original E. coli clone that was used to transform A. tumefaciens. 

Standard, HiLo linear DNA molecular weight marker (Minnesota Molecular). 

As an additional confirmation, one positive Agrobacterium clone (12-5) was used to re-

transform E. coli cells. PacI and EcoRV digestion of plasmid from E. coli released the 

band of correct size confirming the presence of the MVLG_01732-6xHis insert (Figure 

4-3). 
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Figure 4- 3: Restriction digestion of plasmids from the E. coli re-transformed with a 

positive construct from Agrobacterium. 
 

Lane 1. Uncut pZP-MV-HYG plasmid; lane 2. E. coli clone carrying MVLG_01732-

6xHis pZP-MV-HYG construct; lane 3. HiLo DNA molecular weight marker; lane 4. 

Additional E. coli clone carrying MVLG_01732-6xHis pPZP-MV-HYG construct 

Transformation of M. lychnidis-dioicae strains. 

Transformation of Microbotryum strains, p1A1 and p1A2 was carried out using pPZP-

MV-HYG, MVLG_01732-6xHis pPZP-MV-HYG binary plasmids. In the initial 

experiment, transformation of MVLG_01732-6xHis pPZP-MV-HYG in p1A1 yielded no 

colonies. A second experiment was performed to generate p1A1 transformants. Among 
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the two dilutions used, that using equal numbers of Microbotryum and Agrobacterium 

cells (M7:A7) was more effective in yielding Microbotryum transformants. 

Table 4- 3: Number of Microbotryum colonies obtained for each transformation 

experiment 
 

Experiment 

Number 

Category M. 

lychnidis-

dioicae 

A. 

tumefaciens 

strain 

Colonies 

as per 

dilution 

M6:A7     

M7:A7 

Total Number 

of 

Transformants 

1 pPZP-MV-

HYG 

p1A1 Agro-3 1 1 2 

p1A2 Agro -3 0 3 3 

1732.pPZP-

MV-HYG 

p1A1 Agro 12-5 0 0 0 

p1A2 Agro 12-5 0 1 1 

2 1732.pPZP-

MV-HYG 

p1A1 Agro 12-5 0 7 7 

p1A2 Agro 12-5 1 4 5 

 

Genomic screening of the transformed Microbotryum colonies.  

Genomic DNA was extracted from the Microbotryum transformants and PCR was used to 

screen for MVLG_01732-6xHis target (Figure 4-4) and Hyg target (Figure 4-5) (hereafter 

indicated as 1732p1A1 and 1732p1A2). 5µl of the PCR product was loaded onto the 

agarose gel in each lane, as indicated in Figure 4-4 and Figure 4-5 to verify the size and 

the remainder of the PCR sample was purified and sequenced. 
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Figure 4- 4: Electrophoresis of MVLG_01732-6xHis PCR products.  
 

Lane 1, MVLG_01732-6xHis p1A1-1; lane 2, MVLG_01732-6xHis p1A2-1; lane 3, 

MVLG_01732-6xHis pPZP-MV-HYG bacterial plasmid as a positive control for PCR; 

lane 4, HiLo DNA molecular weight ladder lane 5, MVLG_01732-6xHis p1A1-2; lane 6, 

MVLG_01732-6xHis p1A2-2. 
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Figure 4- 5: Electrophoresis of HYG PCR products. 
 

Lane 1, MVLG_p1A1-pMV (Vector only); lane 2, MVLG_p1A2-pMV (Vector only); 

lane 3, pPZP-MV-Hyg bacterial plasmid as a positive control; lane 4, DNA ladder; lane 

5, MVLG_01732-6xHis p1A1-1; lane 6, MVLG_01732-6xHis p1A2-1; lane 7, empty 

lane; lane 8, MVLG_p1A1; lane 9, MVLG_p1A2; lane 10, No DNA control. Lanes 7-10 

are negative controls. 

Infection of Silene latifolia.  

Infection of S. latifolia was carried out in three different batches. Some of the plants were 

infected twice to increase the success rate of infection and this is indicated in the 

following table 4-4. An infected Silene plant expressing MVLG_01732-6xHis fungal 

protein is shown in the Figure 4-6. The same plant bearing uninfected and infected 

flowers can be seen in the picture. The plants were also infected with Microbotryum 

strains carrying pPZP-MV-HYG (vector only) and pPZP-MV-HYG-GFP as control 

infections. 
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Table 4- 4: Number of plants infected along with the dose of infection 
 

Batch No Dose of 

infection 

Strains used Number of 

plants sown 

1-A 1x infection p1A1 only x 1732p1A2 

pp1A1 x p1A2 

pp1A1 -MV-HYG x p1A2-MV-HYG 

pp1A1 GFP x p1A2-MV-HYG 

Wild Type controls 

3 

3 

2 

3 

3 

1-B 2x infection 1732p1A1 x 1732p1A2 

pp1A1 x p1A2 

pp1A1 -MV-HYG x p1A2-MV-HYG 

pp1A1 GFP x p1A2-MV-HYG 

4 

3 

3 

3 

2 2x infection 1732p1A1 x 1732p1A2 

p1A1 x p1A2 

p1A1 -MV-HYG x p1A2-MV-HYG 

p1A1 GFP x p1A2-MV-HYG 

Wild Type controls 

15 

5 

6 

4 

2 

3 2x infection 1732p1A1 x 1732p1A2 

p1A1 x p1A2 

Wild Type controls 

30 

2 

2 
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Figure 4- 6: Infected Silene latifolia plant expressing MVLG_01732-6xHis tagged 

protein.  
 

Red arrow indicates the infected flower with the characteristic smutted appearance and 

the yellow arrow indicates the uninfected healthy flower coming from the same plant. 

Western blotting. 

Western blot analysis from proteins extracted from the different stages of flower buds 

from the 1732p1A1 x 1732p1A2, p1A1 x p1A2 and the p1A1-MV -HYG x p1A2-MV -

HYG revealed a band with histidine antibody only in 1732p1A1 x 1732p1A2 protein 

sample extracted by using SDS method at the expected size of 18.15 Kda (Figure 4-7 (A), 

lane 1, arrow indicates the band). However, the NP-40-based protein extraction method 

of the same sample did not yield a band of the correct size (Figure 4-7 (A), lane 2). The 

membranes were stained with Ponceau S initially, to confirm the blotting efficiency as 

shown in Figure 4-7 (B). 
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Figure 4- 7: Western blot analysis and Ponceau S staining of proteins 

  
A. Western blots using anti-His antibody. B. Ponceau S staining of proteins after 

electroblotting of SDS-PAGE gels onto nitrocellulose membranes. Protein standard 

Molecular weight marker in Kda (Novex®), Lane 1, 1732p1A1 x 1732p1A2 (SDS 

buffer, arrow indicates the band), Lane 2, 1732p1A1 x 1732p1A2 (NP-40 buffer), Lane 3, 

p1A1-MV -HYG x p1A2-MV -HYG (SDS buffer), Lane 4, p1A1-MV -HYG x p1A2-

MV -HYG (NP-40 buffer), Lane 5, p1A1 x p1A2. Lane 3, 4, and 5 serve as negative 

controls. Red arrow in Panel A indicates the His-tagged MVLG_01732. 
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Discussion 
 

Host-pathogen interactions have been intensely studied over the past several decades. 

Small secreted proteins are effectors that are produced and secreted by pathogens and act 

as the main components in manipulating the host cell biology by rewiring the host 

immunity or by supporting pathogen growth and colonization (Sanchez-Vallet, Fouche et 

al. 2018). Microbotryum violaceum is a fungal species complex that has served as a 

popular model system in ecology, evolutionary biology and host speciation studies 

(Kemler, Göker et al. 2006, Le Gac, Hood et al. 2007, De Vienne, Refregier et al. 2009, 

Büker, Petit et al. 2013). It is an obligate parasite that infects more than 100 plant species 

from Caryophyllaceae family (Thrall, Biere et al. 1993).  The best studied species in this 

group is Microbotryum lychnidis-dioicae that infects Silene latifolia. Gaining valuable 

insights from the genomic sequence and initial transcriptomics (Perlin et al., 2015; Toh et 

al. 2017, 2018), we published the first data on a subset of the candidate effectors from M. 

lychnidis-dioicae that might have a role in the virulence (Chapter 2 of this dissertation) 

(Kuppireddy, Uversky et al. 2017). We then conducted heterologous expression screens 

in A. thaliana expressing the fungal candidate effectors and observed that the plants 

expressing MVLG_01732 effector bolted and flowered earlier than the wild type plants, 

as well as exhibiting leaves that curled towards their abaxial side. Moreover, when 

challenged with a plant pathogen Pseudomonas syringae, the transgenic plants expressing 

MVLG_01732 effector tended to be more susceptible to the infection compared to the 

wild type plants (Chapter 3). These observations encouraged us to focus our efforts on 

this particular effector to characterize its function in its native host. To that end, we 

generated the His-tagged MVLG_01732 M. lychnidis-dioicae overexpression strains for 
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infection experiments in the native host, Silene latifolia to identify potential additional 

host plant interactors, if any, and to confirm the previously-identified interactors, AtCLB 

and CSI1. Based on the previous research conducted in Dr. Perlin’s lab for generating the 

Microbotryum strain expressing GFP (Toh, Treves et al. 2016), this study further took the 

next step by expressing the fungal transgene in the infected S. latifolia host plants via M. 

lychnidis-dioicae overexpressor strains. To date, this is the first study to extract the 

fungal transgene protein product from infected S. latifolia, introduced through modified 

overexpressor M. lychnidis-dioicae strain (Figure 4-7, A). Considering the limited genetic 

toolset for this fungus, this serves as a crucial step to further progress on the effectors of 

this fungus that will ultimately lead to the in-depth understanding of pathogenicity for 

this fungus.  

However, the mechanism whereby fungal protein MVLG_01732 gets internalized into 

the host plant cell requires further investigation. Specific host targeting cells that are 

unique to Microbotryum could also play a role in the uptake of these effectors into the 

host cytoplasm. So far, effector translocation and uptake by the host cells remains a 

mystery for fungal effectors. The unique amino acid sequences of many fungal effectors 

make it difficult to hypothesize how these effector proteins might end up in the site of 

action to contribute to the virulence of this pathogen during infection. One study reported 

that the necrotrophic fungal pathogen, Pyrenophora tritici-repentis, secretes a small 

protein toxin, Tox A, into the apoplast of the cell that can independently cross the plasma 

membrane from the extracellular space (Manning and Ciuffetti 2005). At this point, we 

have no evidence that this can occur with MVLG_01732 effector and such a possibility 

would be interesting to investigate. 
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Expression of His-tagged MVLG_01732 effector did not yield any observable altered 

phenotypic effects on the host plant other than the early bolting of the infected flowers 

(Figure 4-6), it will be interesting to investigate the effect in planta of other candidate 

effectors through this method. Future experiments on these His-tagged effectors 

expressed in infected plants by Co-IP and mass spectrometry analysis of the host 

interactors will provide a valuable knowledge on the host targets and will broaden our 

existing knowledge of the functions of these effectors. Currently, experiments to generate 

deletion mutants of Microbotryum strains for the candidate effectors using CRISPR/CAS 

system are in progress. We are currently at an exciting stage in unravelling the mysteries 

behind this fungal infection.
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CHAPTER V  

CONCLUSIONS AND FUTURE DIRECTIONS 

 

The infection mechanism of anther smut fungus, Microbotryum lychnidis-dioicae on its 

host plant Silene latifolia has remained an unresolved mystery for several centuries. Part 

of the reason was due to the lack of appropriate genetic tools to manipulate both the 

pathogen and its host. This dissertation aimed to identify and characterize the key 

virulence determinants that play a role in the pathogenicity of this fungus. For this study, 

I selected for study a subset of small secreted proteins (SSPs) that are unique to this 

species (or even possibly, to this genus) and known to be highly upregulated during the 

infection. Next, I confirmed that they are secreted in vitro by using the yeast secretion 

trap assay. Identifying the kinds of target host partners of an effector, often helps in 

deducing the function of the effector. To that end, I identified the host interaction partners 

for several candidate effectors, with particular emphasis on MVLG_01732, shown to 

interact with the host AtCLB and CSI1 orthologues using yeast two hybrid screen 

approaches. My results also indicate that MVLG_05720 effector interacts with fungal 

proteins and might play a role in cell-cell communication, mating and the initial 

colonization of the pathogen. The protein product of MVLG_04106 could function as a 

transcriptional regulator that could modulate host immune response for the benefit of the 

pathogen. 



130 

 

Intrinsic disorder among the proteins is known to play a major role in protein-

protein interactions and ultimately in the host pathogen interaction. Therefore, we 

analyzed the intrinsic disorder regions among all the 49 secreted proteins that are 

upregulated during this infection process. MVLG_04106 is characterized by high levels 

of predicted disorder, with 79.4%, showing the highest level among the four effectors 

selected for further investigation in this dissertation (Kuppireddy, Uversky et al. 2017). 

Moreover, the long-disordered regions (>50 residues) that were found in a number of 

bacterial effectors also may facilitate their delivery, help to avoid the host immune 

surveillance, and resemble to the host proteins (Marín, Uversky et al. 2013). The longest 

disordered region in MVLG_4106 is of 69 residues suggesting that it could act like the 

bacterial effectors in the mode of translocation. The MoRF analysis by MoRFCHiB 

predicted that almost the entire chain of MVLG_04106 can act as a disorder-based 

binding region as this protein has two MoRFs, residues 1–70 and 87–104, that cover 

almost 83% of its sequence (Kuppireddy, Uversky et al. 2017). Interestingly, disordered 

regions are also known to be associated with various types of post-translational 

modification sites (Kurotani, Tokmakov et al. 2014). It is surprising that all three 

predicted post-translational modifications of MVLG_4106, were from the same predicted 

disordered regions (Kuppireddy, Uversky et al. 2017).  

The biological role of MVLG_04106 remains elusive. Future studies targeting 

proteomic and metabolomic profiling of wild type and overexpression and pull-down 

assays in the host plant, S. latifolia could offer clues to identify the interacting partners, if 

any, in the host and thereby, the role of this effector in pathogenicity. 
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Heterologous expression of the candidate effector, MVLG_01732, in A. thaliana 

provided a key link tying the floral development of the host with this effector. The 

localization was found to be on the plasma membrane, thereby corroborating its predicted 

interaction with the target partner CSI1 which is found to have a role in pollen 

development and anther dehiscence. Our infection studies with the P. syringae indicated 

that the effector also plays a role in making the plant susceptible to the infection. 

Finally, I took one last crucial step by functionally characterizing the 

MVLG_01732 effector in planta in the native host by expressing a tagged version of the 

protein, for both immunodetection and subsequent CoIP. I demonstrated the expression 

of the protein product in planta. Future Co-IP and mass spectrometry results would 

provide invaluable data on the host target partners and to unify the overall function of this 

effector. 

In the future, the approaches employed in this study coupled with RNAi mediated 

gene silencing assays such as VIGS and the usage of type III secretion assays to deliver 

Microbotryum effectors to the plant cells could be used to demonstrate the function of the 

other candidate effectors. These approaches will provide an in-depth understanding of 

this plant-fungal interaction and also provide general insight about the molecular arsenal 

employed by the other obligate fungal pathogens.  
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APPENDIX 

 

Supplemental data for Chapter 2 

Prediction of secreted proteins 

Prediction of secreted proteins was performed using a combination of online tools: 

TargetP1.1, SignalP3.0(Bendtsen, Nielsen et al. 2004)(Bendtsen, Nielsen et al. 

2004)(Bendtsen, Nielsen et al. 2004)(Bendtsen, Nielsen et al. 2004)(Bendtsen, Nielsen et 

al. 2004)(Bendtsen, Nielsen et al. 2004)(Bendtsen, Nielsen et al. 2004)(Bendtsen, Nielsen 

et al. 2004)(Bendtsen, Nielsen, von Heijne, & Brunak, 2004)(Bendtsen, Nielsen, von 

Heijne, & Brunak, 2004)(Bendtsen, Nielsen, von Heijne, & Brunak, 2004)(Bendtsen, 

Nielsen, von Heijne, & Brunak, 2004)(Bendtsen, Nielsen, von Heijne, & Brunak, 

2004)(Bendtsen, Nielsen, von Heijne, & Brunak, 2004), SignalP4.0, TMHMM2.0, 

PredGPI, Phobius, NucPred, Prosite and WoLF PSORT. 

The initial absolute cutoffs for excluding non-secreted proteins are listed in the following 
table. 

 

Criteria for secretome discovery. 

Tools Cutoff for non-SP Remain in pool of probable secretome 

TMHMM >2 TMs ≤2 TMs 
Phobius >2TMs ≤2 TMs 
Prosite ER retention signal: 00014 - 
PredGPI Specificity of >99.5% using 

the General Model 
Specificity of <99.5, where 99.0-99.5 is 
characterized as lowly probably for GPI 
linkage 

NucPred Threshold>0.8 Threshold<0.8 
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The following guidelines were then used in determining whether the protein was secreted 

or not. Out of the 6 tests for indicating SP localization, at least 4 tests should be positive 

for SP in order to remain in the probable SP pool.  

Further guidelines for secretome discovery on the remaining pool of probable secretome. 

Tools Guideline for SP 

TargetP Predicted localization to “SP” 
SignalP3.0 NN D-score>0.43 
SignalP3.0 HMM Sprob>0.8 
SignalP4.0 D-score>0.45 
WoLF Psort “Extr” listed as major neighbor 
Phobius “Y” for SP 

Where there are ambiguous predictions, TMHMM and Phobius have to agree on the 

existence of 1-2 TM(s) on the protein to exclude it from the probable secretome pool. In 

addition, if a protein is predicted with “lowly probable” GPI linkage, but has TM 

predicted by TMHMM and/or Phobius around the same region, they serve as 

corroborating evidence for anchorage to the membrane. 

Where there were contractions or insufficient evidence for determining secretome status, 

BLASTp and Pfam domains is used to establish probable orthologs, followed by 

referencing the UniProtKB and FunSecKB database for confirmation of localization of 

the orthologs, where available.  

Analysis of intrinsic disorder predisposition and presence of functional sites in 

proteins encoded by 49 MVLG genes 

For each protein, we present: 

1) MVLG ID and disorder content evaluated by PONDR VSL2 (Peng, Radivojac 

et al. 2006).  
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2) Amino acid sequence. Position of secretion signal peptide found by SignalP4.1 

(Petersen, Brunak et al. 2011) are shown by red bold font. 

3) Results of intrinsic disorder predisposition analysis by four predictors of 

PONDR family, PONDR® VSL2 (Peng, Radivojac et al. 2006), PONDR® 

VLXT (Romero, Obradovic et al. 2001), PONDR® VL3 (Peng, Vucetic et al. 

2005), and PONDR® FIT (Xue, Dunbrack et al. 2010). 

4) PONDR® VSL2 disorder prediction statistics including location of predicted 

disordered regions. 

5) Results of evaluation of the presence and localization of disorder-based 

binding sites conducted using the ANCHOR algorithm (Dosztanyi, Meszaros 

et al. 2009, Meszaros, Simon et al. 2009). 

6) Presence of possible post-translational modification sites found by ModPred 

(Pejaver, Hsu et al. 2014). Prediction results with High Confidence are listed.   

7) Presence of possible functions found by PROSITE (de Castro, Sigrist et al. 

2006, Sigrist, de Castro et al. 2013).  

8) Molecular models built using SWISS-MODEL [(Biasini, Bienert et al. 2014), 

(Arnold 2006)]. 
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Table S1. List of Predicted Secreted Proteins (see separate Excel File) 

 

Table S2. Mostly disordered proteins (>50% disordered residues by PONDR® VSL2 

analysis; percent disordered indicated in parentheses after the protein name) 

 

> MVLG_01284T0 (94.01%)- 217aa 

MLMLKSLSVLIVAASAAHALQSPAAASNLGERGLTDGTTGLLDNLPGLPGLGD
LLGGGGKTTTGKVKRELDDFVSDTNSATPVKSPPGTDSALNDVTSDHNVLPQDA
GLESLIPGLHKRQDEDEVDQDEDDVDSNSGLDAGAEVDADFDLVRRGYRKASE
VKFKVNEPKPATFVKKSKKHPKTADKEHGKKHDGVHKKPDEEHKKHDEVPKK
HHPVA 

 

PONDR: 

 

 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 217   Number Disordered Regions: 2 
Number residues disordered: 204  Longest Disordered Region: 199 
Overall percent disordered: 94.01  Average Prediction Score: 0.7951 
Predicted disorder segment [1]-[5]  Average Strength= 0.6332 
Predicted disorder segment [19]-[217] Average Strength= 0.8290 
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ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

1 41         56         16         

2 68         78         11         

3 91         118         28         

4 136         178         43         

5 209         217         9         

Filtered Regions 

 From  To  Length 

1 1         14         14         

2 192         192         1         

 

ModPred and PROSITE: 

ModPred: Sumoylation (K5), Amidation (G37, F73, P86, D128, F148, E160, E208), 

ADP-ribosylation (R68), Phosphorylation (T81), Proteolytic cleavage (D133, R152, 

K162, T172, H192, D193).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

Name Title Identity Method Oligo State Ligands  

5bs7.1.F  Protein SPT2 homolog 26.83 X-ray, 3.3Å 
hetero-
oligomer 

None  
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Name Title Identity Method Oligo State Ligands  

5g1k.1.B  

THIOL DISULFIDE 
INTERCHANGE PROTEIN 
DSBG 

30.30 X-ray, 2.0Å homo-dimer None  

1ywf.1.A  

PHOSPHOTYROSINE 
PROTEIN PHOSPHATASE 
PTPB 

23.08 X-ray, 1.7Å monomer None  

 

Model #1: Residues 43-68 of MVLG_01284T0 with 1ywf.1.A (23.08 % sequence 
identity) as a template 

 

Model #2: Residues 138-153 of MVLG_01284T0 with 5bs7.1.F (26.83 % sequence 
identity) as a template 

 

Model #3: Residues 21-35 of MVLG_01284T0 with 5g1k.1.B (30.30 % sequence 
identity) as a template 
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> MVLG_00385T0 (90.32%) 

MHIHFFTVLSASALLALSHAAPTPGGPSSVHNVSPKYGPDSKCFHYYFDHLDEY
KPKYGCQDYEQYKCSYADAYYVKKKAEQDKKEAECKKQDYDFKKHTWHYTS
VKNSFEEEKKKYNALLKQYNLETTRYEEHKKNYEAFKRAREEENRKNEETKKY
CEKVFEEVKEYFKPKQSYHIDGHQNSHGGGNLKGDGKGFAGKKDEDGEKEGGH
GGVKNVGGKDGGKGRAKDGKDGKLDDKDEHDGKDGHDGKASKIHGKKDEKC
HDEKKDFSSGGNPKSGW 

 

PONDR: 

 

 

================================PONDR VSL2 
STATISTICS=============================== 

Predicted residues: 279   Number Disordered Regions: 3 

Number residues disordered: 252  Longest Disordered Region: 227 

Overall percent disordered: 90.32  Average Prediction Score: 0.7983 

Predicted disorder segment [1]-[2]  Average Strength= 0.5224 

Predicted disorder segment [19]-[41]  Average Strength= 0.6797 

Predicted disorder segment [53]-[279] Average Strength= 0.8639 
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ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

1 119         125         7         

2 158         180         23         

3 250         257         8         

4 267         279         13         

 

ModPred and PROSITE: 

ModPred:Proteolytic cleavage (Y75, K228, D229, D232, D242, D248, K267), Amidation 

(Q92), Carboxylation (E127, E133, E146, E147, E154, E160, E164, E165), Amidation 

(R145, Y176, L190), Acetylation (K195, K200, K220, K224), ADP-ribosylation (R226).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

 

Name Title Identity Method Oligo State Ligands  

3etz.1.A Adhesin A 20.63 X-ray, 2.0Å monomer None  

2dod.1.A 

Transcription elongation 
regulator 1 

11.67 NMR monomer None  
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Model #1: Residues 104-169 of MVLG_00385T0 with 3etz.1.A (20.63 % sequence 
identity) as a template 

 

Model #2: Residues 107-168 of MVLG_00385T0 with 2dod.1.A (11.67 % sequence 
identity) as a template 

 

>MVLG_06764T0 (80.27%)- 603 aa 

MKLIRSARGAFLGAIGLSCLAVRLVRAQAGDEGNSYYADDTNSWIKFDGSWK
EVVSDQFHQYTSMLTSDKGATATFKFIGESFKILGISDQANFSVTVDGQDADVPS
VSSDPDKTSALFSQTQLRPGTQHTVILEVISSGNLSFDAVVIGGGPASKAALCPVK
GHQPCTSVNFQSIPKAHQSKPSTDRGGLFTTSLLHAGIKLKLRKPDPDPSTPKDNS
GDKSGNPLRHPKGAVGRKQKVDNTDKQDEKMGKDDVDQDGGKHQHQNEGKG
APKDQPTNDSADKEYDPGMKIGKTSEHHSKEDPAGADTTKSEKAGLEGHELKPS
KQNKPDSPKTENPAPDDPKEPKETSAPHNQTDGAGGDSGLLEGLLGGAVGSSGS
NEHESHHGGDHREGDSASQTPKKSSLIPAIVKLVGSDGGHKPSKSKASSKPTDAG
TLGNSSDPHKPSSSDHSTTLVGLSRPLGDGTGEEHHSNSKDSGIEQPEPKTLVDIK
GGGDKHPDDPAADKPPPTPKKLVSIKGGPTDTGLQAGIDLPKIVLPGSPATKLPD
GQDVLGKKNVTGPSKDPGGKDHDQDHPIVPVVIKFSDSHDDPGSVATVVTVSQE
PVPKP 
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PONDR:  

 

 

 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 603   Number Disordered Regions: 6 
Number residues disordered: 484  Longest Disordered Region: 432 
Overall percent disordered: 80.27  Average Prediction Score: 0.7831 
Predicted disorder segment [1]-[5]  Average Strength= 0.6747 
Predicted disorder segment [30]-[37]  Average Strength= 0.5884 
Predicted disorder segment [66]-[70]  Average Strength= 0.5322 
Predicted disorder segment [96]-[126] Average Strength= 0.6613 
Predicted disorder segment [168]-[170] Average Strength= 0.5116 
Predicted disorder segment [172]-[603] Average Strength= 0.9337 
 

ANCHOR: 

 

Predicted Disordered Binding Regions 

 From  To  Length 

1 141         149         9         

2 156         165         10         
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3 168         176         9         

4 189         207         19         

5 223         242         20         

6 249         271         23         

7 278         326         49         

8 350         420         71         

9 424         440         17         

10 446         464         19         

11 471         494         24         

12 507         555         49         

13 568         597         30         

Filtered Regions 

 From  To  Length 

1 134         138         5         

 

ModPred and PROSITE: 

ModPred: Sumoylation (K2), Amidation (I79, K410, T591), Phosphorylation (T214, 

Y285, S331, T398, T507, S537), Proteolytic cleavage (K231, D253, D393, K410, D547), 

ADP-ribosylation (R458), Ubiquitination (K494), Hydroxylation (P505, P506).  

PROSITE: PROKAR_LIPOPROTEIN (Prokaryotic membrane lipoprotein lipid 

attachment site profile, 1-19, PROSITE entry PS51257). Signal (1-18), N-palmitoyl 

cysteine (19), S-diacylglycerol cysteine (19) 

In prokaryotes, membrane lipoproteins are synthesized with a precursor signal peptide, 

which is cleaved by a specific lipoprotein signal peptidase (signal peptidase II). The 
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peptidase recognizes a conserved sequence and cuts upstream of a cysteine residue to 

which a glyceride-fatty acid lipid is attached. 

PROSITE: TONB_DEPENDENT_REC_1 (TonB-dependent receptor proteins signature 

1, 1-101, PROSITE entry PS00430) 

In Escherichia coli, the tonB protein interacts with outer membrane receptor proteins that 

carry out high-affinity binding and energy-dependent uptake of specific substrates into 

the periplasmic space. These substrates are either poorly permeable through the porin 

channels or are encountered at very low concentrations. In the absence of tonB these 

receptors bind their substrates but do not carry out active transport. The tonB protein also 

interacts with some colicins. 

Structural modelling: 

 

Name Title Identity Method Oligo State Ligands 

2wab.1.A  ENDOGLUCANASE E 24.04 X-ray, 1.9Å monomer None 

5x7o.1.A 

Glycoside hydrolase family 
31 alpha-glucosidase 

14.63 X-ray, 2.0Å 
homo-
dimer 

2 x NI, 6 x 
CA, 9 x MG, 

4 x MES 

1fv3.1.A  

TETANUS TOXIN 
HEAVY CHAIN 

16.25 X-ray, 2.3Å monomer None 

2vyu.1.A  

CHOLINE BINDING 
PROTEIN F 

24.59 X-ray, 2.5Å monomer None 

3ron.1.A  

Type-1Aa cytolytic delta-
endotoxin 

17.95 X-ray, 2.2Å monomer None 
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Model #1: Residues 42-152 of MVLG_06764T0 with 2wab.1.A (24.04 % sequence 
identity) as a template 

 

Model #2: Residues 69-154 of MVLG_06764T0 with 5x7o.1.A (19.05 % sequence 
identity) as a template 
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Model #3: Residues 71-151 of MVLG_06764T0 with 1fv3.1.A (16.25 % sequence 
identity) as a template 

 

Model #4: Residues 65-103 of MVLG_06764T0 with 3ron.1.A (17.95 % sequence 
identity) as a template 

 

 

Model #5: Residues 29-61 of MVLG_06764T0 with 2vyu.1.A (24.59 % sequence 
identity) as a template 
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>MVLG_00398T0 (80.00%)- 205 aa 

MPSMRSLTSFAFSALVAVSSSAPTVSSMPSLIERHDSPLSPPSLPPPPSPSVKSSLP
TFSPPPPTYENQTMCINYYFEHLPEYKDLYDCTVYDATKSFYDARYYQKKAIEKL
EEEAQCAKDQADFADRVNQFAQAELAYAAEQKRFEWASKKFEHEKASLETSKK
AFQALINQKVLEASQAMEIKHTCEKVFSEHTNEYIPKHSI 

 

PONDR:  

 

 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 205   Number Disordered Regions: 4 
Number residues disordered: 164  Longest Disordered Region: 78 
Overall percent disordered: 80.00  Average Prediction Score: 0.6783 
Predicted disorder segment [1]-[71]  Average Strength= 0.9207 
Predicted disorder segment [108]-[185] Average Strength= 0.6637 
Predicted disorder segment [189]-[192] Average Strength= 0.5114 
Predicted disorder segment [195]-[205] Average Strength= 0.6655 
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ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

1 7         18         12         

Filtered Regions 

 From  To  Length 

1 71         79         9         

2 86         89         4         

 

ModPred and PROSITE: 

 

ModPred: Phosphorylation (S37, S40, S49), Hydroxylation (P47), O-linked glycosylation 

(T58), Amidation (Y199).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

 

Name Title Identity Method Oligo State Ligands  

2ap3.1.A  conserved hypothetical protein 20.00 X-ray, 1.6Å monomer None  

4bne.1.A  

PROTEIN KINASE C AND 
CASEIN KINASE 
SUBSTRATE IN NEURONS 
PROTEIN 2 

18.33 X-ray, 2.6Å homo-dimer None  

5cx2.1.B Coronin 26.83 X-ray, 2.2Å 
hetero-
oligomer 

None  
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Model #1: Residues 106-199 of MVLG_00398T0 with 2ap3.1.A (19.78 % sequence 
identity) as a template  

 

 

 

Model #2: Residues 125-187 of MVLG_00398T0 with 4bne.1.A (20.00 % sequence 
identity) as a template  

 

 

 

Model #3: Residues 142-182 of MVLG_00398T0 with 5cx2.1.B (26.83 % sequence 
identity) as a template  
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> MVLG_04106T0 (79.44%)- 107aa 

MKYSLVFVALVVIATRIVSALAADATKQASTSEVDYPYFPEEHAATVSQGPPTR
PITHPVASTLNESLVNCKAEKCTTCKGEARGTCIEQCASWMAHQASQPEPEGC 

 

PONDR: 

 

 

 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 107   Number Disordered Regions: 3 
Number residues disordered: 85  Longest Disordered Region: 69 
Overall percent disordered: 79.44  Average Prediction Score: 0.5594 
Predicted disorder segment [1]-[3]  Average Strength= 0.5938 
Predicted disorder segment [25]-[37]  Average Strength= 0.5667 
Predicted disorder segment [39]-[107] Average Strength= 0.6827 
 

ANCHOR:  

Predicted Disordered Binding Regions 

 From  To  Length 

None 

Filtered Regions 
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 From  To  Length 

1 3         14         12         

 

ModPred and PROSITE: 

ModPred: Post translational modification sites include proteolytic cleavage (D35), 

sulfation (Y36), Amidation (S48).  

No identified domain recognition sites (PROSITE) 

Structural modelling: 

 

Name Title Identity Method Oligo State Ligands  

1csm.1.A 

CHORISMATE 
MUTASE 

22.22 X-ray, 2.2Å homo-dimer 2 x TRP  

 

 

Model: Residues 30-65 of MVLG_04106T0 with 1csm.1.A (22.22% sequence identity) 
as a template 
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> MVLG_05720T0 (64.34%)- 129aa 

MMRSLIKLLVLFTAVSVALANPWPPSVQDSCNWLKAWCTDCQTSFCGNITSHK
QHKLCFKTHCESHHPRDYPRPCKQMQMADKCMRSCQWKRSHNLTLSWNPFIN
HDKCRHCCDMQGGPTEKRMRRSGY 

 

PONDR: 

 

 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 129   Number Disordered Regions: 2 
Number residues disordered: 83  Longest Disordered Region: 80 
Overall percent disordered: 64.34  Average Prediction Score: 0.5194 
Predicted disorder segment [1]-[3]  Average Strength= 0.6671 
Predicted disorder segment [50]-[129] Average Strength= 0.6944 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

None 

Filtered Regions 

 From  To  Length 
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1 7         12         6         

 

ModPred and PROSITE: 

ModPred: SUMOylation (k7), Amidation (A14), Hydroxylation (P119), Proteolytic 

cleavage (R123, R126, S127)  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

No templates were found matching target sequence  

 

> MVLG_06175T0 (61.02%)- 118aa 

MWTSSIVQAALLFAVIVLYSSPVVAWAFCPFGKTAEHMAICSSLCRMRCYDPN
SGTSNSTCRNACTGQYHVSRSLNAADQCMQQCDRFTKDKKKQGEGKLEHKRCL
HKCTDWFFPLNL 

 

PONDR: 
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================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 118   Number Disordered Regions: 2 
Number residues disordered: 72  Longest Disordered Region: 68 
Overall percent disordered: 61.02  Average Prediction Score: 0.4819 
Predicted disorder segment [1]-[4]  Average Strength= 0.7216 
Predicted disorder segment [51]-[118] Average Strength= 0.6969 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

None 

Filtered Regions 

 From  To  Length 

1 113         118         6         

 

ModPred and PROSITE: 

ModPred: Amidation (A10, S59, Y69), GPI anchor amidation (N53). 

No identified domain recognition sites (PROSITE) 

Structural modelling: 

 

Name Title Identity Method Oligo State Ligands  

2v79.1.B  

DNA REPLICATION 
PROTEIN DNAD 

20.59 X-ray, 2.0Å 
homo-
tetramer 

6 x NA, 22 x 
CL 

 

2ahx.1.A 

Receptor tyrosine-protein 
kinase erbB-4 

27.08 X-ray, 2.4Å monomer 
5 x NAG, 3 

x NDG  
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Model #1: Residues 40-87 of MVLG_06175T0 with 2ahx.1.A (27.08% sequence 
identity) as a template  

 

 

 

Model #2: Residues 66-88 of MVLG_06175T0 with 2v79.1.B (20.59% sequence 
identity) as a template  

 

 

Overlap of models 1 and 2 for MVLG_06175T0  
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> MVLG_01591T0 (59.82%)- 448 aa 

MRSLQLLSVLVTTCLPAAFAEIIDNTDAKKVITESGADISGNYTIQNAEGDYMH
FQRDGTPGNSHVSLSFVPQYSTVEVVSRTIYGASGRMHGRFTGVSLSGANKCAA
TQFNSNEGRDYDVVAYGCTFNRNHTGAKMIFNVLPCGNTEDALSLAQKIRGVSK
KEDFKFKKANPKSSPSRKSSGKSGAHRNTPHRPQSDLSSSGQPGRHHVGGYRGK
RHSGHGRRRGGHGGHGGHGHEGGNHHGGGHGHKGGNHHGGGHGHKGGNHH
GGGHPQHHHVRSLCTGNSLACQRRRHYLAKRDSRSQMLVSPQGPSPQGPSPQGP
VSPSGTPKQSASGASGGAGSAAGDHGPGPQSTAKKTQDGAVSQQASKDPNPASE
ADKSNSEIADHLRKNLMSGKAQTVCIVGQDHLSDMQTAGLTGKETVGAGGVPG
LMYDLFDASNDAFWLTMTRVN 

PONDR: 

 

 
================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 448    Number Disordered Regions: 7 
Number residues disordered: 268   Longest Disordered Region: 240 
Overall percent disordered: 59.82   Average Prediction Score: 
0.6601 
Predicted disorder segment [1]-[5]   Average Strength= 0.7239 
Predicted disorder segment [33]-[33]   Average Strength= 0.5020 
Predicted disorder segment [57]-[63]   Average Strength= 0.5857 
Predicted disorder segment [114]-[114]  Average Strength= 0.5102 
Predicted disorder segment [155]-[394]  Average Strength= 0.9325 
Predicted disorder segment [410]-[420]  Average Strength= 0.5355 
Predicted disorder segment [446]-[448]  Average Strength= 0.6314 
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ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

1 136         144         9         

2 151         174         24         

3 181         311         131         

4 318         349         32         

5 352         367         16         

6 378         407         30         

7 426         441         16         

Filtered Regions 

 From  To  Length 

1 122         126         5         

 

ModPred and PROSITE: 

ModPred: Amidation (M53, G59, N104, R290, K354, M429, T445), Proteolytic cleavage 

(Y119, D120, K180, K184, R189, Q302, M303), Acetylation (K162, K216), Sumoylation 

(K167), Phosphorylation (S176, S322), Methylation (R225).  

PROSITE: No identified domain recognition sites. 

 

Structural modelling: 

 

Name Title Identity Method Oligo State Ligands  

4y3k.1.A  Serpin A12 17.14 X-ray, 2.2Å monomer None  
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Name Title Identity Method Oligo State Ligands  

4k07.1.A 

Amyloidogenic immunoglobulin 
light chain protein AL-103 

5.71 X-ray, 2.8Å 
homo-
dimer 

None  

 

 

Model #1: Residues 29-63 of MVLG_01591T0 with 4k07.1.A (5.71% sequence identity) 
as a template  

 

 

Model #2: Residues 274-308 of MVLG_01591T0 with 4y3k.1.A (17.14% sequence 
identity) as a template  
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> MVLG_04168T0 (58.93%)- 319 aa 

MHLVTVLPFALVAFLGSTGVQALIKTANATLEALYLVEYDTKAYGTPETGAVK
HFGTNFHQACVAAAIQKIPIMHCRVADIPFNPLIIPQDGTWDNHGPVTDLMDLAM
NNTLFLGNARIVSGPDGKPYAPAYPPPTKPTPETRDADAASHVPDSTGLVPGTTL
PGPSTIPGPGTTPPGPGTTLPGPSTIPGPGTTPPGPGTTLPGPSTIPGPGTTPGPGTTL
PGPSTIPGPSTIPGPGTTPPGPGPTLPGPGPTLVPVSRPTTPLTGGHGRKGRKHRNG
RKGGFKRVQVTVDDTVDDFLMNGQVQPPDSVDTLLGGIAF 

 

PONDR: 

 

 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 319   Number Disordered Regions: 5 
Number residues disordered: 188  Longest Disordered Region: 175 
Overall percent disordered: 58.93  Average Prediction Score: 0.6365 
Predicted disorder segment [1]-[2]  Average Strength= 0.6015 
Predicted disorder segment [45]-[50]  Average Strength= 0.5467 
Predicted disorder segment [120]-[294] Average Strength= 0.9317 
Predicted disorder segment [306]-[307] Average Strength= 0.5051 
Predicted disorder segment [317]-[319] Average Strength= 0.5479 
 

 

ANCHOR:  
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Predicted Disordered Binding Regions 

 From  To  Length 

1 105         121         17         

2 144         171         28         

3 180         193         14         

4 198         238         41         

5 246         273         28         

6 277         306         30         

7 309         319         11         

 

 

ModPred and PROSITE: 

ModPred: Proteolytic cleavage (R118, S121, R143, G156, R277, R280, K281, K285, 

R286, D311), Hydroxylation (P133, P134, P135, P237, P244), Amidation (P134, P204, 

P257), Phosphorylation (T139, T175, T195, T240, T263), O-linked glycosylation (S167, 

S187, S207, T215), ADP-ribosylation (R260).  

 

PROSITE: No identified domain recognition sites. 

 

Structural modelling: 

 

Name Title Identity Method Oligo State Ligands  

1z5z.2.A 

Helicase of the snf2/rad54 
family 

11.11 X-ray, 2.0Å monomer None  
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Model: Residues 253-307 of MVLG_04168T0 with 1z5z.2.A (11.11% sequence identity) 
as a template  

 

> MVLG_02288T0 (55.25%)- 324 aa 

MRFLTSQITLCLLVLVTSTLAFHVANLFPDLSVDAHRTVPSSNRRHHRCLAHSV
RHNHHKKCRHSRKTGLKHFDQEKSAHTHGHLAHRNRRKKPAIKRLGKKRPVSH
VDPNHKRPEHDQSNPPTILTGPTLQQPEPSGVHVSKTPAGKTAPERQIPDGKDQV
SEIQALALEEINAFRALHNAPPLQTSPELVQNAVVWTSKCHYGHTRGAFTGEYGE
IIARTSGSWGNNMSKAIELWTVDEENDFNPRKPQTTHFTQAVWKSSRLLGCASS
DKCNDPADNSTTVTGDDIPPDEHNSVLYICRFLPAGNLNDKDVDIIMLKGFAD 

PONDR: 
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================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 324    Number Disordered Regions: 7 
Number residues disordered: 179   Longest Disordered Region: 131 
Overall percent disordered: 55.25   Average Prediction Score: 
0.5690 
Predicted disorder segment [1]-[3]   Average Strength= 0.6941 
Predicted disorder segment [35]-[165]  Average Strength= 0.8695 
Predicted disorder segment [184]-[188]  Average Strength= 0.5446 
Predicted disorder segment [226]-[226]  Average Strength= 0.5008 
Predicted disorder segment [244]-[250]  Average Strength= 0.5636 
Predicted disorder segment [265]-[292]  Average Strength= 0.6244 
Predicted disorder segment [321]-[324]  Average Strength= 0.6675 
 

ANCHOR: 

 

Predicted Disordered Binding Regions 

 From  To  Length 

1 46         112         67         

2 122         147         26         

3 161         180         20         

4 192         205         14         

5 232         237         6         

6 259         268         10         

7 297         305         9         

Filtered Regions 

 From  To  Length 

1 10         27         18         

2 218         218         1         

3 318         319         2         
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ModPred and PROSITE: 

ModPred: Amidation (A21), Proteolytic cleavage (D34, H36, R37, H52, R88, R98), 

Acetylation (K71, K97).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

 

Name Title Identity Method Oligo State Ligands  

5jys.1.A  Protein PRY1 25.81 X-ray, 1.9Å monomer 1 x MG  

2giz.1.A Natrin-1 26.62 X-ray, 1.7Å monomer None  

4kt0.1.I 

Photosystem I 
reaction center 
subunit XII 

30.77 X-ray, 2.8Å 
hetero-
oligomer 

4 x LHG, 3 x SF4, 90 
x CLA, 2 x PQN, 2 x 
LMU, 2 x CL0, 17 x 

BCR, 1 x LMG 

 

 

 

 

Model #1: Residues 163-321 of MVLG_02288T0 with 2giz.1.A (26.62% sequence 
identity) as a template  
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Model #2: Residues 162-320 of MVLG_02288T0 with 5jys.1.A (25.81% sequence 
identity) as a template  

 

 

 

 

 

 

 

 

Model #3: Residues 3-26 of MVLG_02288T0 with 4kt0.1.I (30.77% sequence identity) 
as a template  
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> MVLG_00566T0 (55.00%)- 80 aa 

MRTCSIVFALGTLLTLSLTQVVVAAPKAADSTDFTKGMSCNSCVKTCNQKHL
ATGSADMEAGTSLVDCMDSCISVYNCES 

 

PONDR: 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 80   Number Disordered Regions: 3 
Number residues disordered: 44  Longest Disordered Region: 37 
Overall percent disordered: 55.00  Average Prediction Score: 0.4306 
Predicted disorder segment [1]-[2]  Average Strength= 0.5504 
Predicted disorder segment [29]-[65]  Average Strength= 0.5601 
Predicted disorder segment [76]-[80]  Average Strength= 0.6607 
 

ANCHOR:  

Predicted Disordered Binding Regions 

 From  To  Length 

None 

 

 

ModPred and PROSITE: 

ModPred: Proteolytic cleavage (D33), Carboxylation (E79).  
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PROSITE: No identified domain recognition sites. 

 

Structural modelling: 

 

Name Title Identity Method Oligo State Ligands  

5d6s.1.A 

Epoxyqueuosine 
reductase 

15.15 X-ray, 2.6Å monomer 
2 x SF4, 1 x 

B12  

 

Model: Residues 21-53 of MVLG_00566T0 with 5d6s.1.A (15.15% sequence identity) as 
a template  
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Highly disordered proteins (30-50% disordered residues by PONDR® VSL2 

analysis) 

> MVLG_05122T0 (43.93%)- 173 aa 

MLFKVSAALVLAGLSLGASALPSMSTESRAQPSPSSNKSPYGRTGYIDSPADRK
TTTYKVGDKIHFVYTSAPATYFVDVSLMLANGSQSFQLANRLTGSSMISNDANA
RAYFRMPENLKTIATELLAASQDEHSGAMKNNNCILAYLIAKETQNGQYGLVGN
LETKQAIAISM 

 

PONDR: 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 173   Number Disordered Regions: 4 
Number residues disordered: 76  Longest Disordered Region: 56 
Overall percent disordered: 43.93  Average Prediction Score: 0.4965 
Predicted disorder segment [1]-[56]  Average Strength= 0.7669 
Predicted disorder segment [100]-[106] Average Strength= 0.5439 
Predicted disorder segment [129]-[136] Average Strength= 0.6229 
Predicted disorder segment [169]-[173] Average Strength= 0.7406 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

1 142         147         6         
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Filtered Regions 

 From  To  Length 

1 1         16         16         

2 75         81         7         

  

ModPred and PROSITE: 

ModPred: Proteolytic cleavage (E27), Phosphorylation (S49), GPI anchor amidation 

(N104), Amidation (Y157).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

Name Title Identity Method Oligo State Ligands  

2o2o.1.A 

SH3-domain kinase-binding protein 
1 

15.91 NMR monomer None  

 

Model: Residues 35-78 of MVLG_05122T0 with 2o2o.1A (15.91 % sequence identity) 
as a template 
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> MVLG_03398T0 (43.07%)- 202 aa 

MLTLPLLVASLGFCHSVVGSRHKNQDAHQVQGSTGKEPLIDADKMYLIRVNPQ
ITGLQSACTFLSDRCEKYVKRGPNVKQLDVSCSSAGQAVTSTSPYLWASCFETGT
NEKDGRARDVSFNAFAGSDHAIVFLRGDEVFREVEIDEDLLKTESKKWKPTVNH
QPQNRSPRQAGHRQINHETTGPKTHSGHNGDRPKRHKQET 

 

PONDR: 

 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 202   Number Disordered Regions: 5 
Number residues disordered: 87  Longest Disordered Region: 55 
Overall percent disordered: 43.07  Average Prediction Score: 0.5044 
Predicted disorder segment [1]-[3]  Average Strength= 0.5705 
Predicted disorder segment [20]-[37]  Average Strength= 0.6548 
Predicted disorder segment [89]-[91]  Average Strength= 0.5176 
Predicted disorder segment [108]-[115] Average Strength= 0.5787 
Predicted disorder segment [148]-[202] Average Strength= 0.8722 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

1 98         103         6         
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2 120         146         27         

3 172         179         8         

Filtered Regions 

 From  To  Length 

1 6         13         8         

2 148         149         2         

 

ModPred and PROSITE: 

ModPred: Proteolytic cleavage (R116, D117, N121).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

 

Name Title Identity Method Oligo State Ligands  

2myn.1.A  Glutaredoxin arsenate reductase 17.91 NMR monomer None  

1ybx.1.A Conserved hypothetical protein 19.44 X-ray, 1.8Å homo-dimer None  
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Model #1: Residues 35-78 of MVLG_03398T0 with 2myn.1.A (17.91 % sequence 
identity) as a template 

 

Model #2: Residues 117-152 of MVLG_03398T0 with 1ybx.1.A (19.44 % sequence 
identity) as a template 
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> MVLG_05716T0 (41.84%)- 141 aa 

MMYSSLFIFAFTVVGAIVNAKMAKVATNSQTTSLGPVAGVEKFHQPYWKNGT
AAPAACVAVSQACFECLSKCYQHHNQWGFGNKTDCYYGQCNNTRETRYKESC
AIENNAKTCSDGLPKAQQTGGPMLENCCKQANGTSLY 

 

PONDR: 

 

 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 141   Number Disordered Regions: 3 
Number residues disordered: 59  Longest Disordered Region: 47 
Overall percent disordered: 41.84  Average Prediction Score: 0.4194 
Predicted disorder segment [1]-[3]  Average Strength= 0.6057 
Predicted disorder segment [25]-[33]  Average Strength= 0.5559 
Predicted disorder segment [95]-[141] Average Strength= 0.6970 
 

ANCHOR: 

 

Predicted Disordered Binding Regions 

 From  To  Length 

None 
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ModPred and PROSITE: 

ModPred: Disulphide linkage (C87, C92), Carboxylation (E102).  

PROSITE: No identified domain recognition sites. 

 

Structural modelling: 

Name Title Identity Method Oligo State Ligands  

1mm9.1.A Streptavidin 15.56 X-ray, 1.7Å homo-tetramer 8 x MRD  

 

 

Model: Residues 79-125 of MVLG_05716T0 with 1mm9.1.A (15.56 % sequence 
identity) as a template 

 

> MVLG_04806T0 (40.65%)—647 aa 

MPDLSWFHSALLLSCLGTLALSQPINLTTYHLYDSSHAAQGLVHPDALRGELV
QTPSALLNALGLRDAELFVWASPKGTRGTSQVAIMQMETHEKQKVLNMQRFSQ
LLAAVKCKPSQVTIQFVTKAAFEAASQLWSAVNSDRIWHLQLFTSWKGCYTDG
GNLKPFHLTEVSFDSEKLAATLTGNETDWKTAAHTFIMSSGEHFDETPPTADGSS
RPLLTRSSIFTKAGKEFAKEFKSVAKSIDKVENKFLKKIRKELHATLANKHKVLRI
AFDKSYTGTKTFSTPGKAASLNGSVTCTGCGPTGSLVLHTVIKVTLGEEPTVKLT
MKPQNLGVSLGLAMSAKSDFPESFGIETPLLEQTIPAAGFKIPEIASVGLVASLGY
GISVSNFKGNLNVAKNVSVSIPDGAKLNLLVNPSNDEQSKLGGSWAPVAQSTPM
HISGFGSGEFAVGLGISLSLKMEVLSFEITPAKITLSGPSIGFEFGVSSKECGPYTSV
GSSHDPTYYITPKLGFSLSVGSDLNVDSGTWGLGIPIPDSGGPNVNSSHGTGGSGG
GGGGTNPPYPSSTHTNPDQKDSSQPAVKTRSVNKRHNHDPIGASKISISASKTLYE
QSFRLHSPICFMSGLHQRRPLSNHGRKDEPDGGTRRLSNSSE 
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PONDR: 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 647   Number Disordered Regions: 14 
Number residues disordered: 263  Longest Disordered Region: 94 
Overall percent disordered: 40.65  Average Prediction Score: 0.4942 
Predicted disorder segment [1]-[5]  Average Strength= 0.7473 
Predicted disorder segment [36]-[36]  Average Strength= 0.5165 
Predicted disorder segment [92]-[98]  Average Strength= 0.5592 
Predicted disorder segment [174]-[174] Average Strength= 0.5079 
Predicted disorder segment [186]-[188] Average Strength= 0.5043 
Predicted disorder segment [192]-[192] Average Strength= 0.5019 
Predicted disorder segment [195]-[255] Average Strength= 0.6964 
Predicted disorder segment [278]-[291] Average Strength= 0.5958 
Predicted disorder segment [321]-[322] Average Strength= 0.5085 
Predicted disorder segment [341]-[347] Average Strength= 0.5378 
Predicted disorder segment [412]-[424] Average Strength= 0.5981 
Predicted disorder segment [482]-[499] Average Strength= 0.5869 
Predicted disorder segment [514]-[607] Average Strength= 0.8037 
Predicted disorder segment [612]-[647] Average Strength= 0.8180 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

1 503         531         29         
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2 573         584         12         

3 587         626         40         

Filtered Regions 

 From  To  Length 

1 268         270         3         

2 642         642         1         

3 644         647         4         

 

ModPred and PROSITE: 

ModPred: Proteolytic cleavage (R49, D570, R579), Amidation (T82, T119, L217, I351, 

S461, S521, K583), ADP-ribosylation (R215, R579), Acetylation (K233, K244, K248), 

O-linked glycosylation (S533, S547), Phosphorylation (S643, S645, S646).  

PROSITE: No identified domain recognition sites. 

 

Structural modelling: 

No templates were found matching target sequence. 

 

> MVLG_03092T0 (40.02%)- 812 aa 

MKFSNSIIACALLASGWADLARTHGVDAGGGSIGVSLPPTTPSDPSCTGSNEWF
SPYRSTFEAHERGENLDQLKQPGSIDDSEYLLNPNFSINNCQTTRYYYLDIHETRA
APDGFEREMFLFNGRINGPLIEANQGDTIVVYVHNYLDIGTTVHWHGLAQNGSG
WADGPLGVTQCPIPPGTTFIYKYTLSRFDQCGTYWYHAHRLAHYSDGLVAPLVI
HCPNDPLKRGDLYDIDQVVVVRDHYHPLSTRIISALLVNGSFQGSSATPSPNAGLI
NGRGRYNCSFAPEGSVCTDDAPLTEFEFPKGSRVRLRLINPSAHAQFLVSVDEHP
LNVVEADDTPVWQTTVHRIPINVGQRYSAILNTADNNEGDSFWMRADINTACFG
ANFTDLNPEVKAIIRIGPASSSPSSSVSSSASSENGSNPPSQGASNGSSDSSGDHSSS
GNPSDLQQSSNNNGTSGDAPDGSDQSDNSGDGNASGDGRGDWGNQEDSDGSG
DSGDQQGSQRGSRWKRAAGLRKRNGNNNDNNDNNDNNDNNDSNDNNDNND
NNDNNNSGSNTNTNQNLPTSTDWSDAVNGSCHDLAESTLVPRVPFNPPGASISH
EFRATILTTPSGAFGFAANNVSFESFVDDPFLFRVNRGDDIPLGLSASIVLDDKSLA
HDIVINNANPIDHPFHLHGVQMHLIARGAGSVSADNISSVALNLNNPIRRDTISVT
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GNTFAIVRVVADNAGVWAIHCHILPHQVTGLMGVVVIRPDLIRKMEIPQHARDL
CTLGSSLSSAQGQDPQPNIEPGRRIRRSINPLLPSKDFIRKRVLLNQD 

 

PONDR: 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 812   Number Disordered Regions: 9 
Number residues disordered: 325  Longest Disordered Region: 189 
Overall percent disordered: 40.02  Average Prediction Score: 0.4951 
Predicted disorder segment [1]-[4]  Average Strength= 0.7432 
Predicted disorder segment [27]-[81]  Average Strength= 0.6519 
Predicted disorder segment [112]-[113] Average Strength= 0.5300 
Predicted disorder segment [260]-[274] Average Strength= 0.6220 
Predicted disorder segment [366]-[367] Average Strength= 0.5105 
Predicted disorder segment [392]-[580] Average Strength= 0.9414 
Predicted disorder segment [590]-[594] Average Strength= 0.5136 
Predicted disorder segment [686]-[690] Average Strength= 0.5364 
Predicted disorder segment [765]-[812] Average Strength= 0.8098 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

1 98         103         6         

2 371         403         33         



191 

 

3 440         452         13         

4 459         465         7         

5 471         488         18         

6 498         516         19         

7 563         588         26         

8 801         809         9         

Filtered Regions 

 From  To  Length 

1 6         17         12         

 

ModPred and PROSITE: 

ModPred: Amidation (S4, H346, E579, V586, L797), Proteolytic cleavage (R22, Q235, 

R509, R791), Sumoylation (K394), Phosphorylation (S405), GPI anchor amidation 

(N418), ADP-ribosylation (R514) 

PROSITE: Multicopper_oxidase1 (725-745, PROSITE entry PS00079), 

Multicopper_oxidase2 (730-741, PROSITE entry PS00080). 

Structural modelling: 

Name Title Identity Method Oligo State Ligands  

3sqr.1.A laccase 31.29 X-ray, 1.7Å monomer 
5 x NAG, 3 x CU, 

1 x MAN  

3gyr.1.A  

Phenoxazinone 
synthase 

17.43 X-ray, 2.3Å 
homo-
hexamer 

6 x C2O, 18 x CU  
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Model #1: Residues 83-787 of MVLG_03092T0 with 3sqr.1.A (31.29 % sequence 
identity) as a template 

 

 

 

Model #2: Residues 70-756 of MVLG_03092T0 with 3gyr.1.A (17.43 % sequence 
identity) as a template 
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> MVLG_01652T0 (38.13%)- 237 aa 

MFRTLYRLACLSLVPALLQAAPAPVDSSLGQGVSALKTRGSQSCRRVAQCTQA
APRNAVQTCNGGKCGFACKSGYTWKDKKCQAASSGQATSGGTLLAAVSGHMV
DAQLASNGITGFRAQSNGWNTNAIASWFRTDSIQDSTNGHSWCYNEYDDSLPGF
APDVSVMLANFGGSNVRAGQAYCGLEAEVVTADGRTVNLIIMDGFDSKWVRTP
ASIDVIYNAFGLLHGSTTNDKNTVESGVKWRLTGRRDSRYTFNSS 

 

PONDR: 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 257   Number Disordered Regions: 4 
Number residues disordered: 98  Longest Disordered Region: 74 
Overall percent disordered: 38.13  Average Prediction Score: 0.4307 
Predicted disorder segment [22]-[95]  Average Strength= 0.6931 
Predicted disorder segment [138]-[142] Average Strength= 0.5438 
Predicted disorder segment [229]-[236] Average Strength= 0.6128 
Predicted disorder segment [248]-[257] Average Strength= 0.7063 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

None 

Filtered Regions 
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 From  To  Length 

1 1         8         8         

 

ModPred and PROSITE: 

ModPred: Amidation (A9, G32, F222), Pyrrolidone carboxylic acid (Q19), Disulphide 

linkage (C67, C148), O-linked glycosylation (S92), Proteolytic cleavage (D136).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

 

Name Title Identity Method Oligo State Ligands  

2hcz.1.A 

Beta-expansin 
1a 

19.82 X-ray, 2.8Å monomer None  

1k4r.1.A  

MAJOR 
ENVELOPE 
PROTEIN E 

17.65 EM, 24.0Å 
homo-
trimer 

None  
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Model #1: Residues 123-244 of MVLG_01652T0 with 2hcz.1.A (19.82 % sequence 
identity) as a template 

 

Model #2: Residues 130-191 of MVLG_01652T0 with 1k4r.1.A (17.65 % sequence 
identity) as a template 

 

> MVLG_02018T0 (37.58%)- 165 aa 

MLLLWLRVAALALAATGGPVSASPLKALDNALSSLNSTGPASKLTPIPTPPTISL
LSKSKTYYPGDTVFFKWDRAAPTMQSADLFIAYSGPLATVPICVTRDMLLQPDR
GSMVLHSAYVIPWKELLGQKRATVEGFIYFVYSPTHYRFDTGVTGGKSDSFTIQH
R 

 

PONDR: 

 

 

================================PONDR VSL2 
STATISTICS================================ 
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Predicted residues: 165   Number Disordered Regions: 3 
Number residues disordered: 62  Longest Disordered Region: 44 
Overall percent disordered: 37.58  Average Prediction Score: 0.3924 
Predicted disorder segment [18]-[61]  Average Strength= 0.7153 
Predicted disorder segment [108]-[109] Average Strength= 0.5065 
Predicted disorder segment [150]-[165] Average Strength= 0.6979 
 

ANCHOR:  

Predicted Disordered Binding Regions 

 From  To  Length 

None 

Filtered Regions 

 From  To  Length 

1 1         8         8         

 

ModPred and PROSITE: 

ModPred: O-linked glycosylation (T49), Amidation (V140).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

Name Title Coverage Identity Method Oligo State Ligands  

2cp5.1.A  Restin 

Created 
with 
Raphaël 
2.2.0 

23.44 NMR monomer None  

1bcp.1.D  

PERTUSSIS 
TOXIN 

Created 
with 
Raphaël 
2.2.0 

35.19 X-ray, 2.7Å 
hetero-
oligomer 

1 x ATP  

2jgx.1.A 

COMPLEMENT 
FACTOR H 

Created 
with 
Raphaël 
2.2.0 

9.80 NMR monomer None  
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Name Title Coverage Identity Method Oligo State Ligands  

1tnr.1.A 

TUMOR 
NECROSIS 
FACTOR BETA 

Created 
with 
Raphaël 
2.2.0 

28.57 X-ray, 2.8Å 
hetero-
oligomer 

None  

 

Model #1: Residues 123-244 of MVLG_02018T0 with 2cp5.1.A (23.44 % sequence 
identity) as a template 

 

Model #2: Residues 123-244 of MVLG_02018T0 with 1bcp.1.D (35.19 % sequence 
identity) as a template 
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Model #3: Residues 123-244 of MVLG_02018T0 with 2jgx.1.A (9.80 % sequence 
identity) as a template 

 

Model #4: Residues 123-244 of MVLG_02018T0 with 1tnr.1.A (28.57 % sequence 
identity) as a template 

 

> MVLG_01824T0 (34.74%)- 639 aa 

MVYTRPCRARAAVFASIVLCLIVVVVPTSVLALETAIVAPPDGNSSKGPDTETIP
TLAGADDGETLFQLNSTEMSPEEPLLEEPHWLPLLKRARRRKPPSEDAWSGETTT
RIIGKLGIGAMQAIQSSDDELLVRHRAAFGAKLRPRILTQDITETSLIGSSSLSNDP
YLGIGRKCDFCAGGTFLSNGDIISVGGQPSEHTELGKPGFAEDGFTGLRIFQPTSH
RLLDNPKKVHIQSARWYASVVRVTDGSALIMGGSKKGQYNNDPKVDNPTMEFF
PSKGPQFYSKFLQDALDSNLFPLAFLLSGSGNIFVVANHVAMIYDWKHNREHRV
KGVPGGIVATYPGSGTAVLLPLTIKNNWISEVLICGGVFNTVNLTNPGFNVRADE
PVSDQCARTSFPRGNSMSGWEVEHMLSPRIMGDPVITPDGQVLIVGGAKTGTAG
YGNAIGMDAAVPNLVPTLYNPDAPRGQRFSEEFPPAKIERMYHSTSLLTTEGSVL
TMGSSPNPRILTRLTYKSRFEVELIAPPYMTKKRPAILNYPQQIKYNGRYTLTMSN
PMGCDNVRVVLIDGGYATHALHMNQRSVELLVTSSNQSTITFQSPHDGTIWPPG
PAFLWITVCEGKIPSKGHKIMVGDGSNPPNYKAPF 
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PONDR: 

 

 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 639    Number Disordered Regions: 12 
Number residues disordered: 222   Longest Disordered Region: 69 
Overall percent disordered: 34.74   Average Prediction Score: 
0.4069 
Predicted disorder segment [1]-[5]   Average Strength= 0.6753 
Predicted disorder segment [40]-[108]  Average Strength= 0.7657 
Predicted disorder segment [156]-[165]  Average Strength= 0.5868 
Predicted disorder segment [193]-[206]  Average Strength= 0.5926 
Predicted disorder segment [227]-[229]  Average Strength= 0.5466 
Predicted disorder segment [256]-[281]  Average Strength= 0.6077 
Predicted disorder segment [328]-[331]  Average Strength= 0.5577 
Predicted disorder segment [386]-[390]  Average Strength= 0.5129 
Predicted disorder segment [393]-[406]  Average Strength= 0.5531 
Predicted disorder segment [463]-[504]  Average Strength= 0.5905 
Predicted disorder segment [584]-[593]  Average Strength= 0.5737 
Predicted disorder segment [620]-[639]  Average Strength= 0.6653 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 
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1 85         90         6         

2 113         121         9         

3 173         183         11         

4 606         614         9         

Filtered Regions 

 From  To  Length 

1 14         27         14         

2 66         69         4         

3 363         366         4         

4 427         430         4         

5 510         511         2         

6 560         560         1         

 

ModPred and PROSITE: 

ModPred: Amidation (A12, F276, Y635), Proteolytic cleavage (R92, R95, R136, R329, 

K331, R464, R467), Ubiquitination (K323), Methylation (R464).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

 

Name Title Identity Method Oligo State Ligands  

5lxz.1.A Secreted protein 21.57 X-ray, 1.5Å monomer 2 x CU  
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Model: Residues 99-627 of MVLG_01824T0 with 5lxz.1.A (21.57 % sequence identity) 
as a template 

 

> MVLG_00243T0 (33.33%)- 528 aa 

MSRMNTRAVLALVLVASLQALASPITGITFAAGPEQALAVRAPAPAAAATARS
RVQQLGADRYVRLATLHTRDDEHLLEARLLNHVMIEPGLAIRAADESESEDTEE
AETDDEAEFEETVEEVIERRGNSRVFATSARPILAGMRPPHVIPNPKDPDFGKLTA
TPVRTTTTTASAKSTATTTPRATTAPSTTMTTTTTTTTTTTSTRDAAAASIPTGLG
CFPSNVKSIPTGVNYTATDLASSWWCADSSEYAFIGFSYSVDECQSPSTLLASFTR
MRKQFGARDVRLYGACDATWFNDALVDAAASANLDVYHLIWFGFDGDDQRKS
RYSAFVKTMRTNPKAPFVFKNVAIGSEPLYDGVLSATNLVTEIFSMKSKMAPYG
TKATFSEMPYGLQINNGAPSTMAAADFVEGNVLPFFDSQATTGANAWGVVSWS
LSYFASLAPGKIIRMTQTGWPSDQSVWKANTPTAVSSILSQASYYALLDSKCSWF
NANGGIGWFAHIYSDDSLPGWGLLNNGNLKFPFAPKSSC  

 

PONDR: 
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================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 528    Number Disordered Regions: 7 
Number residues disordered: 176   Longest Disordered Region: 133 
Overall percent disordered: 33.33   Average Prediction Score: 
0.4540 
Predicted disorder segment [1]-[5]   Average Strength= 0.7728 
Predicted disorder segment [40]-[57]   Average Strength= 0.5946 
Predicted disorder segment [74]-[76]   Average Strength= 0.5057 
Predicted disorder segment [88]-[220]  Average Strength= 0.8449 
Predicted disorder segment [323]-[328]  Average Strength= 0.5981 
Predicted disorder segment [378]-[381]  Average Strength= 0.5212 
Predicted disorder segment [522]-[528]  Average Strength= 0.7649 
 

ANCHOR: 

 

Predicted Disordered Binding Regions 

 From  To  Length 

1 79         96         18         

2 116         151         36         

3 155         166         12         

4 214         221         8         
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ModPred and PROSITE: 

ModPred: Amidation (A8, G359, W454, G496, Y502), Proteolytic cleavage (R62, K160, 

R283, R286, D322, K326, Y329, S330, D407), Carboxylation (E99, E106, E107, E109, 

E113,E117, E118, E121, E122), O-linked glycosylation (T169, T170, T171, T178, T180, 

T182, T186, S190, T196, T197, T198, T199, T200, T201, T202, T203, T204, T205, 

T206), Hydroxylation (P189), N-linked glycosylation (N397).  

PROSITE: No identified domain recognition sites. 

 

Structural modelling: 

 

Name Title Identity Method Oligo State Ligands  

4wtr.1.A  beta-1,3-glucanosyltransferase 20.54 X-ray, 2.3Å monomer 
4 x 

BGC 
 

3pz9.1.A 

Mannan endo-1,4-beta-
mannosidase. Glycosyl 
Hydrolase family 5 

16.02 
X-ray, 1.4Å monomer None  
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Model #1: Residues 250-528 of MVLG_00243T0 with 4wtr.1.A (20.54 % sequence 
identity) as a template 

 

Model #2: Residues 251-458 of MVLG_00243T0 with 3pz9.1.A (16.02 % sequence 
identity) as a template 



205 

 

> MVLG_02872T0 (33.33%)- 441 aa 

MFFRASTVFTSLLLVAPALAEAPSPDKRGFKLELHSRASHNPQHAGKAPKSGH
AQPYAKRLKHGPAHPRRGGAKAHQGHPPFLAATKAGSRQSFANLANVENIDWS
VEVTFGSPPQRVPLFLSMGSSLSSVADQNIKSDAKTRYNPSKSLTARNMTKAQV
DPNTGVTFITYKDKISIGGFEVSDQTFAVMTSTPNGDPLERVYDSPVPWAGALAL
GRTSKGTPSLSFLENLIRSKVIDNAVCGISLTVEGGALFFGGIDSHSFKGKIVWSPV
ETHYMEGFWTIKTGGWGWKGKVATGTAGLLQFAPENTYTYISAILGNKLFAGIK
HHVDSKTQRYLLPCNSNASDTIGFFIHNRMFPVPIPDLILFPSDSDPTMCHTALLQ
VTNKHILDDYTVVMGALHMRSFYTILSYEKEHGGPAIGLAESSIKVMGGDPGPG
GHSEK 

 

PONDR: 

 

 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 441    Number Disordered Regions: 7 
Number residues disordered: 147   Longest Disordered Region: 71 
Overall percent disordered: 33.33   Average Prediction Score: 
0.4227 
Predicted disorder segment [1]-[3]   Average Strength= 0.5550 
Predicted disorder segment [19]-[89]   Average Strength= 0.8052 
Predicted disorder segment [124]-[159]  Average Strength= 0.6611 
Predicted disorder segment [195]-[199]  Average Strength= 0.5464 
Predicted disorder segment [218]-[223]  Average Strength= 0.5458 
Predicted disorder segment [414]-[420]  Average Strength= 0.5277 
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Predicted disorder segment [423]-[441]  Average Strength= 0.7575 
 

ANCHOR: 

 

Predicted Disordered Binding Regions 

 From  To  Length 

1 29         38         10         

2 50         65         16         

3 73         108         36         

4 118         128         11         

5 169         175         7         

Filtered Regions 

 From  To  Length 

1 1         19         19         

 

ModPred and PROSITE: 

ModPred: Amidation (A16, D139, P271, P362), Proteolytic cleavage (K31, H35, D204), 

Acetylation (K59), Ubiquitination (K74), Methylation (K427) 

PROSITE: Peptidase_A1 domain (105-422, PROSITE entry PS51767), Disulphide 

bridge (340-376) 

Eukaryotic Aspartyl proteases (Aps) form peptidase family A1. 

Known eukaryotic Aps in Fungi: 
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 Fungal proteases such as aspergillopepsin A (EC 3.4.23.18), candidapepsin (EC 

3.4.23.24), mucoropepsin (EC 3.4.23.23) (mucor rennin), endothiapepsin (EC 

3.4.23.22), polyporopepsin (EC 3.4.23.29), and rhizopuspepsin (EC 3.4.23.21). 

 Yeast saccharopepsin (EC 3.4.23.25) (proteinase A) (gene PEP4). PEP4 is 

implicated in posttranslational regulation of vacuolar hydrolases. 

 Yeast barrierpepsin (EC 3.4.23.35) (gene BAR1); a protease that cleaves α-factor 

and thus acts as an antagonist of the mating pheromone. 

 Fission yeast sxa1 which is involved in degrading or processing the mating 

pheromones. 

Structural modelling: 

Name Title Identity Method Oligo State Ligands  

2psg.1.A  PEPSINOGEN 22.58 X-ray, 1.8Å homo-dimer None  

3zkm.1.A BETA-SECRETASE 2 24.17 X-ray, 1.8Å hetero-oligomer None  
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Model #1: Residues 29-425 of MVLG_02872T0 with 2psg.1.A (22.58 % sequence 
identity) as a template 

 

Model #2: Residues 96-428 of MVLG_02872T0 with 3zkm.1.A (24.17 % sequence 
identity) as a template 
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> MVLG_05120T0 (32.92%) 

MLLKLTFTLALTLVSLGVSASQSNDTVEGRAMSPSSTKSTVTSPAYGKALKTD
EAFSFVYYPAEGDRQDSFFQITKLSLKAVEKDQFPTFDFANDLSSAQTEPVSVDF
RLPPLEYFNANTVKTAKTGDSIEAMLEISEQNFQKQVQTINVPLTITLHAHSQ 

 

PONDR: 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 161    Number Disordered Regions: 4 
Number residues disordered: 53   Longest Disordered Region: 36 
Overall percent disordered: 32.92   Average Prediction Score: 
0.4757 
Predicted disorder segment [1]-[3]   Average Strength= 0.5702 
Predicted disorder segment [17]-[52]   Average Strength= 0.6993 
Predicted disorder segment [95]-[103]  Average Strength= 0.5370 
Predicted disorder segment [157]-[161]  Average Strength= 0.7201 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

None 

Filtered Regions 

 From  To  Length 
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1 1         13         13         

  

ModPred and PROSITE: 

ModPred: Amidation (A20, Y115), Proteolytic cleavage (E28, R30, F56, D69, D107), 

Phosphorylation (S33), ADP-ribosylation (R109).  

PROSITE: No identified domain recognition sites. 

> MVLG_00885T0 (32.89%)- 76 aa 

MRFSLAFFAVPFLVGQVVASVSDWSAKNGSFKCTSNEAGKGGKCMVCVHSNL
DIFNTSLSQACGNCGEFCTSNVHA 

 

PONDR: 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 76    Number Disordered Regions: 3 
Number residues disordered: 25   Longest Disordered Region: 17 
Overall percent disordered: 32.89   Average Prediction Score: 
0.3704 
Predicted disorder segment [1]-[3]   Average Strength= 0.5726 
Predicted disorder segment [25]-[41]   Average Strength= 0.5583 
Predicted disorder segment [72]-[76]   Average Strength= 0.6922 
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ANCHOR:  

Predicted Disordered Binding Regions 

 From  To  Length 

None 

  

ModPred and PROSITE:  

ModPred: Amidation (A6, L52).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

No templates were found matching target sequence. 

 

> MVLG_00677T0 (32.03%)- 215 aa 

MRASVILPLCLGLLSYCASAAPSLEPPFTYQIPSPERIAELAQPYLINPENYSKTV
YYRHEPRDHISSYVMYAFQSMTNTSKWASAVVRHTYGHPKKDSNFEPTTTDIAL
SMPHIIPAPIPEGTPEGEGQPVQVEYVRNRNVYRKVFLWHQPRSAVLGLEEKLQL
GTLIDLGNIDPTTQPVMREYSEDMAKELGEGCPVSGAMFERHMKDVQMYQ 

 

PONDR: 
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================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 215    Number Disordered Regions: 8 
Number residues disordered: 69   Longest Disordered Region: 15 
Overall percent disordered: 32.09   Average Prediction Score: 
0.4189 
Predicted disorder segment [1]-[3]   Average Strength= 0.6180 
Predicted disorder segment [24]-[27]   Average Strength= 0.5074 
Predicted disorder segment [62]-[64]   Average Strength= 0.5218 
Predicted disorder segment [93]-[107]  Average Strength= 0.5807 
Predicted disorder segment [118]-[131]  Average Strength= 0.6365 
Predicted disorder segment [182]-[196]  Average Strength= 0.5799 
Predicted disorder segment [200]-[200]  Average Strength= 0.5007 
Predicted disorder segment [202]-[215]  Average Strength= 0.6257 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

1 142         150         9         

2 163         171         9         

Filtered Regions 

 From  To  Length 

1 10         13         4         

2 70         74         5         

 

ModPred and PROSITE: 

ModPred: Proteolytic cleavage (E135), ubiquitination (K191).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

 



213 

 

Name Title Identity Method Oligo State Ligands 

4x3i.1.A Activity-regulated 
cytoskeleton-associated 
protein 

27.91 X-ray, 1.8Å monomer 1 x ALA-THR-
ARG-ASN-PHE-

SER-GLY 

2d9d.1.A BAG family molecular 
chaperone regulator 5 

23.68 NMR monomer None 

1rl2.1.A PROTEIN 
(RIBOSOMAL 
PROTEIN L2) 

20.00 X-ray, 2.3Å monomer None 

 
1m6x.1.I 

Flp recombinase 33.33 X-ray, 2.8Å homo-
tetramer 

None 

 

 

Model #1: Residues 60-102 of MVLG_00677T0 with 4x3i.1.A (27.91% sequence 
identity) as a template  
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Model #2: Residues 155-193 of MVLG_00677T0 with 2d9d.1.A (23.68% sequence 
identity) as a template  

 

Model #3: Residues 128-172 of MVLG_00677T0 with 1rl2.1.A (20.00% sequence 
identity) as a template  
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Model #4: Residues 58-99 of MVLG_00677T0 with 1m6x.1.I (33.33% sequence 
identity) as a template  

 

> MVLG_02682T0 (31.70%)- 511 aa 

MVQVHHRPTGIKRLFCWVLVLQLASLSAFAALDTAKREACQVFTNSPDLSKC
PVDTIYVSARDPKAKFKSIQQAINYLKATTANTPATILIGSGVYQEQLVVDGFASI
TLLGQTTSPRSSYAHNTVDINHNRVLQKSDGYQNWLTSTLLVNGCADFKAYNL
NLRQTAPVGIALAVAVMSSSGSFYACAIEGYQDTLFLGPNKTRGYLYGCYVSGV
VDFIYGWATLVVKDSQIMLLGEGTAYVAWRGAETTTSGAYFFGSTFDAAQNSF
GKIYPRTVAVGRAWNDKARIVILDCYLGSMIVPGIFAPWSYNPKDTRLSNEVFFG
EYNSQGPGSEAKSKIVDSRTGKVDVDHLLHVLDTKSAAPYYSLSTIFGQDILWID
GNFNVKAVSLASGGVGGSSTPGALAAAPALAASLPPPAPSAGKGTPLTKQDPKK
PTQDPKKTEHNPTKQKSKHHSHPKRKKKATSTKPQVDSGAGASSNHVSGGRPNL
ASLPKKRGHGSGGHPHHHHHHHHHG 

 

PONDR: 
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================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 511    Number Disordered Regions: 6 
Number residues disordered: 162   Longest Disordered Region: 122 
Overall percent disordered: 31.70   Average Prediction Score: 
0.4298 
Predicted disorder segment [1]-[6]   Average Strength= 0.8039 
Predicted disorder segment [65]-[68]   Average Strength= 0.5361 
Predicted disorder segment [114]-[124]  Average Strength= 0.6219 
Predicted disorder segment [325]-[342]  Average Strength= 0.6352 
Predicted disorder segment [344]-[344]  Average Strength= 0.5044 
Predicted disorder segment [390]-[511]  Average Strength= 0.9446 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

1 400         415         16         

2 444         511         68         

Filtered Regions 

 From  To  Length 

1 368         389         22         

2 422         426         5         
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ModPred and PROSITE: 

ModPred: Amidation (N45, L111, Y363, Y364), N-linked glycosylation (N151), O-

linked glycosylation (S252), Proteolytic cleavage (D340, K421, D469), Hydroxylation 

(P414, P415), ADP-ribosylation (R483), Methylation (K491).  

PROSITE: No identified domain recognition sites.  

Structural modelling: 

Name Title Identity Method Oligo State Ligands 

1xg2.1.A Pectinesterase 1 21.12 X-ray, 1.9Å 
hetero-
oligomer 

None 

4pmh.1.A Pectinesterase 22.18 X-ray, 1.8Å monomer None 

4pew.1.A  

Putative secreted 
protein 

17.53 X-ray, 1.5Å monomer 1 x MG 

4xr6.1.A Tail spike protein 12.24 X-ray, 1.8Å homo-trimer 
6 x GLC, 3 x GLA, 3 
x RAM, 6 x NAG, 3 x 
NDG 

4xop.1.A Tail spike protein 10.34 X-ray, 1.6Å homo-trimer 
6 x GLC, 3 x GLA, 3 
x RAM, 6 x NAG, 3 x 
NDG 
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Model #1: Residues 54-387 of MVLG_02682T0 with 1xg2.1.A (21.12% sequence 
identity) as a template  

 

Model #2: Residues 41-332 of MVLG_02682T0 with 4pmh.1.A (22.18% sequence 
identity) as a template  



219 

 

 

Model #3: Residues 52-305 of MVLG_02682T0 with 4pew.1.A (17.53% sequence 
identity) as a template  

 

Model #4: Residues 71-284 of MVLG_02682T0 with 4xr6.1.A (12.24% sequence 
identity) as a template 
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Model #5: Residues 153-215 of MVLG_02682T0 with 4xop.1.A (10.34% sequence 
identity) as a template  

 

> MVLG_03747T0 (31.36%)- 456 aa 

MKIILAALPLSLAALAGAHKHSSGHSSHRYRHHRASGVLQASSGTTTCIVDESG
VGQDSTPKIMDAFTKCQKNAKIVLNGNYLVKSLLYTPMLYNVEIELTGTLTYSD
DIAYWSKPTTDTHGDGSYELYYQNVTTFFFLQGEKIWLHGSPTSKTSKAEKQSTF
NGNGQKWWDQFVKDKKAGNLHGIESTEYARPILLTIGNAKNVRVEYINFLNGPF
WNIFITHSKQVTMSNINIDAVSKSDSLPYNTDGVDTYNSDDVTLLDFNVNNADD
CVSLKPNSTNVEVGRVNCNGSHGISVGSLGQYVDSYDIVENVYIHDISMSNAQA
GARIKAWPDRNGTAKDAGGGSGYVKNITFQNFVNKNVDEPLLITSCYMNSNEY
CTKFPSKMTVSDVHYINVTGTSSGKYKDVVALLDCSKECTGITAIGTHLSLPTPST
PPVYNCHNVDSEKQLDFHCTEL 

 

PONDR: 
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================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 456    Number Disordered Regions: 10 
Number residues disordered: 143   Longest Disordered Region: 51 
Overall percent disordered: 31.36   Average Prediction Score: 
0.3970 
Predicted disorder segment [1]-[9]   Average Strength= 0.6124 
Predicted disorder segment [11]-[61]   Average Strength= 0.6787 
Predicted disorder segment [116]-[124]  Average Strength= 0.6396 
Predicted disorder segment [149]-[164]  Average Strength= 0.6972 
Predicted disorder segment [237]-[257]  Average Strength= 0.5645 
Predicted disorder segment [275]-[280]  Average Strength= 0.5112 
Predicted disorder segment [336]-[345]  Average Strength= 0.6419 
Predicted disorder segment [401]-[401]  Average Strength= 0.5162 
Predicted disorder segment [429]-[436]  Average Strength= 0.5581 
Predicted disorder segment [445]-[456]  Average Strength= 0.5574 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

1 307         314         8         

Filtered Regions 

 From  To  Length 

1 1         13         13         

2 136         139         4         
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3 213         213         1         

4 215         218         4         

 

ModPred and PROSITE: 

ModPred: Proteolytic cleavage (R34, K340), Ubiquitination (K340), Amidation (K415). 

PROSITE: POLYGALACTURONASE (Polygalacturonase active site, 286-299, 

PROSITE entry PS00502) 

Polygalacturonase (EC 3.2.1.15) (PG) (pectinase) catalyzes the random hydrolysis of 1,4-

α-D-galactosiduronic linkages in pectate and other galacturonans. In plant bacterial 

pathogens such as Erwinia carotovora or Pseudomonas solanacearum and fungal 

pathogens such as Aspergillus niger, polygalacturonase is involved in maceration and 

soft-rotting of plant tissue. 

Structural modelling: 

Name Title Identity Method Oligo State Ligands 

4c2l.1.A ENDO-
XYLOGALACTURONAN 
HYDROLASE A 

37.40 X-ray, 1.8Å monomer 1 x NAG-
NAG, 1 

x NAG, 1 
x MAN 

3lmw.1.A Iota-carrageenase, CgiA 14.05 X-ray, 2.6Å monomer 1 x NI, 1 
x CA 

4xr6.1.A Tail spike protein 17.69 X-ray, 1.8Å homo-
trimer 

6 x GLC, 3 
x GLA, 3 
x RAM, 6 
x NAG, 3 

x NDG 
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Name Title Identity Method Oligo State Ligands 

 
3lmw.1.A 

Iota-carrageenase, CgiA 10.56 X-ray, 2.6Å monomer 1 x NI, 1 
x CA 

5gai.1.Z Tail fiber protein 17.82 EM hetero-
oligomer 

None 

 

Model #1: Residues 46-455 of MVLG_03747T0 with 4c2l.1.A (37.40% sequence 
identity) as a template  
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Model #2: Residues 24-401 of MVLG_03747T0 with 4xr6.1.A (17.69% sequence 
identity) as a template  

 

 

Model #3: Residues 46-422 of MVLG_03747T0 with 3lmw.1.A (14.05% sequence 
identity) as a template  

 

 

Model #4: Residues 199-397 of MVLG_03747T0 with 3lmw.1.A (10.56% sequence 
identity) as a template  
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Model #5: Residues 226-362 of MVLG_03747T0 with 5gai.1.Z (17.82% sequence 
identity) as a template  

 

 

> MVLG_05737T0 (31.08%)- 473 aa 

MMTPLSTLVVAAATLSSLLQVAATQAATTAPMLSSYFPAYTEGATVAWNQTK
LAMYFVDITTKDGFEIGPNQPLDGIKKFTSQAYANGAKPMVTLGSWNGSLYFSK
QLSTPEGRTKLASQLQNYLYYKEFKGVDVSWLYPAQQGIGCNTVSPKDTDNFLK
FLKTLRGWLGMGYLISIAAPPGGFLTGNGTEHVKDYSEWATVLDHINVMTYDYT
GPWSSKTGPLSPMHSCASGGGVTAAVKYWTSSGFPAEKIFISIPSYAISFTLKSSTL
EKTYMTDGDGGTFNYSSLIYQSFSSIPKGEAADSNEPTTDGCGVVTANYTGQWH
YTSLIKEGLLAHDGSKGLKGYARYMDGCSQTPFLFNPTNKHFIAYEDAASASIKA
GFARDNGLKGVTVFTSEGFDDTVYDAIVTDLNRPKKELESGGATGKSDTPQAQA
GGKTTKPSTPPPSSKQPQDMPKKASHGAGILGKMNLRAR 

 

PONDR: 
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================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 473    Number Disordered Regions: 11 
Number residues disordered: 147   Longest Disordered Region: 62 
Overall percent disordered: 31.08   Average Prediction Score: 
0.4255 
Predicted disorder segment [1]-[12]   Average Strength= 0.6728 
Predicted disorder segment [14]-[15]   Average Strength= 0.5140 
Predicted disorder segment [17]-[17]   Average Strength= 0.5080 
Predicted disorder segment [107]-[117]  Average Strength= 0.5893 
Predicted disorder segment [154]-[154]  Average Strength= 0.5021 
Predicted disorder segment [187]-[192]  Average Strength= 0.5213 
Predicted disorder segment [218]-[233]  Average Strength= 0.6169 
Predicted disorder segment [269]-[282]  Average Strength= 0.5254 
Predicted disorder segment [296]-[310]  Average Strength= 0.6447 
Predicted disorder segment [338]-[344]  Average Strength= 0.5982 
Predicted disorder segment [412]-[473]  Average Strength= 0.9104 
 

ANCHOR:  

Predicted Disordered Binding Regions 

 From  To  Length 

1 399         411         13         

2 455         473         19         

Filtered Regions 
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 From  To  Length 

1 290         290         1         

2 393         394         2         

 

ModPred and PROSITE: 

ModPred: Acetylation (K160, K467), Amidation (Y196, S197, V240, Y275, Y370, 

Y404), Ubiquitination (K220, K467), Proteolytic cleavage (D405, T409, D410, E419), 

Phosphorylation (T429, T443), Hydroxylation (P446), ADP-ribosylation (R471).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

 

Name Title Identity Method Oligo State Ligands 

4txg.1.A Chitinase 22.56 X-ray, 1.8Å monomer 11 x CS 
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Model #1: Residues 28-413 of MVLG_057377T0 with 4txg.1.A (22.56% sequence 
identity) as a template  

 

> MVLG_01520T0 (31.00%)- 958 aa 

MRVGNSLAVLAAAAAIVPAAFAQKTQVFGRYIIVYPESNKEGKALHARDHLSN
LRAKSGVEPLEVVQEYHMPGVLVGQSVNAPGVTKEQLEKMPGVKAVYPVFDYS
FAAVQQQKEEPPSQSFQQHHNHRKVKESGAAPPHLELRDQQFLGQKNMPNTTG
GFSPHRMTSIDILHKRGFFGQGVKSCFIEGHTQYTHPLLGKRGCFGSKNCAIQFGA
DLVGTDPNHPQPGPDPHADCDVRSTHILGQMVAPENRFDFVGAIPQAEIGWYSIF
PCGGGGATGDIIIGAFLKAADDGCKVISNSLISSVGWNDNDLGPITLNKLAEEKG
VFAVSAWGVSRDEGLFYPAGPATGTEGVGAAYVDLNQYPFAYTLTFENGEATL
PYISVYPIPYDDSFEVYFLSTSSTDTAATGCDDLPHDTPDLTNRAVVVQRASCGFE
TQMANVRKFGARVLLVVNYPASVGWPAPYFDGIAPSVPFPVGMIHSDGAKLLE
YYRKNSNGLKLNFKDRTLIHPVNADTGGKISFYSSYGPDNSLTTGPTFGVPANQI
AGIRPNGSVGTIDATSSPITNAIATLVLGARKNDNLKPDELRSLLATTAKPISIHPR
ADGEPLETTTLAGSGLVNALRAVEAQTLVTPFSFKINDTAHVQKEQQLTLKNMG
HASITYTFDSTAAQTKMTYDGGAKQDIVPSSLPTVLQEAEAKVSFDKTSITIEAGQ
TATVKVTITPPQLTAREKDYFPVYSGFINIHASNKQEFHVSYFGLAADIVDMPIID
VSTSFASAFRSGLPQGLTYPYLLDNSPNSVKVPTQLTTFDRSIGVGVFIRFAQATR
HVTVDVIAGNSTFKGTLPSHEGRNHRRSLNAADENHLVARRLARQSRADPNQLY
TDVQVLGRIYEKKNQARDDKGSPDALVVFKGSMHKDLSMDGQASDLPDGMPY
RVLVRALKTTADPSLEASWESWVSPPVQFKS 

PONDR: 
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================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 958    Number Disordered Regions: 21 
Number residues disordered: 297   Longest Disordered Region: 60 
Overall percent disordered: 31.00   Average Prediction Score: 
0.3976 
Predicted disorder segment [1]-[5]   Average Strength= 0.7563 
Predicted disorder segment [39]-[47]   Average Strength= 0.6197 
Predicted disorder segment [50]-[58]   Average Strength= 0.5426 
Predicted disorder segment [85]-[93]   Average Strength= 0.5318 
Predicted disorder segment [104]-[163]  Average Strength= 0.7643 
Predicted disorder segment [219]-[235]  Average Strength= 0.6649 
Predicted disorder segment [349]-[351]  Average Strength= 0.5175 
Predicted disorder segment [401]-[417]  Average Strength= 0.5639 
Predicted disorder segment [524]-[530]  Average Strength= 0.5664 
Predicted disorder segment [551]-[558]  Average Strength= 0.5182 
Predicted disorder segment [574]-[607]  Average Strength= 0.5686 
Predicted disorder segment [643]-[646]  Average Strength= 0.5319 
Predicted disorder segment [668]-[679]  Average Strength= 0.5201 
Predicted disorder segment [689]-[699]  Average Strength= 0.5432 
Predicted disorder segment [792]-[796]  Average Strength= 0.5282 
Predicted disorder segment [835]-[857]  Average Strength= 0.6365 
Predicted disorder segment [859]-[873]  Average Strength= 0.5794 
Predicted disorder segment [887]-[900]  Average Strength= 0.5821 
Predicted disorder segment [906]-[924]  Average Strength= 0.6381 
Predicted disorder segment [938]-[946]  Average Strength= 0.5367 
Predicted disorder segment [952]-[958]  Average Strength= 0.7087 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

1 96         110         15         

2 140         150         11         

3 166         187         22         

4 204         214         11         

5 565         570         6         

6 615         621         7         
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7 627         634         8         

8 875         885         11         

9 900         908         9         

10 927         933         7         

Filtered Regions 

 From  To  Length 

1 266         269         4         

2 586         588         3         

3 812         815         4         

4 859         860         2         

 

ModPred and PROSITE: 

ModPred: Amidation (A12, I259, F392), Proteolytic cleavage(R30, Y31, D216, D254, 

W332, L340, Y395, R584, Y733, D923, R928), Ubiquitination (K40, K57), ADP-

ribosylation (R546), O-linked glycosylation (T716), Phosphorylation (S897).  

 

PROSITE: No identified domain recognition sites. 

 

Structural modelling: 

 

Name Title Identity Method Oligo State Ligands 

3eif.1.A  C5a peptidase 19.82 X-ray, 1.9Å monomer 1 x CA, 1 x MLA 

4yn3.1.A  Cucumisin 19.24 X-ray, 2.0Å monomer 1 x MAN, 1 
x BMA, 4 

x NAG, 1 x FUC 
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Name Title Identity Method Oligo State Ligands 

4i0w.1.B  Protease CspB 14.39 X-ray, 1.6Å hetero-
oligomer 

None 

3lxu.1.A Tripeptidyl-peptidase 
2 

15.80 X-ray, 3.1Å homo-dimer None 

1r6v.1.A  subtilisin-like serine 
protease 

19.59 X-ray, 1.7Å monomer 1 x CA 

1y9z.1.A  alkaline serine 
protease 

20.21 X-ray, 1.4Å monomer 2 x CA, 1 x PMS 

4mzd.1.A Nisin leader peptide-
processing serine 
protease NisP 

18.84 X-ray, 1.1Å monomer None 

 

Model #1: Residues 163-766 of MVLG_01520T0 with 3eif.1.A (19.82% sequence 
identity) as a template  
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Model #2: Residues 144-754 of MVLG_01520T0 with 4yn3.1.A (19.24% sequence 
identity) as a template  

 

 

Model #3: Residues 167-629 of MVLG_01520T0 with 4i0w.1.B (14.39% sequence 
identity) as a template  
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Model #4: Residues 19-626 of MVLG_01520T0 with 1r6v.1.A (19.59% sequence 
identity) as a template  

 

Model #5: Residues 177-755 of MVLG_01520T0 with 3lxu.1.A (15.80% sequence 
identity) as a template  
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Model #6: Residues 168-629 of MVLG_01520T0 with 1y9z.1.A (20.21% sequence 
identity) as a template  

 

Model #7: Residues 145-627 of MVLG_01520T0 with 4mzd.1.A (18.84% sequence 
identity) as a template  
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> MVLG_04107T0 (30.00%)- 100 aa 

MKYSLVFVTLVLMAAINVSAIPADLTKPTSTSSEVDKVHDPKKYAPPAVISFISK
ANATVARQTKDCCNYCLKRRRDGVKLNSCYAICLWSSGKWTTKCP 

PONDR: 

 

 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 100    Number Disordered Regions: 3 
Number residues disordered: 30   Longest Disordered Region: 23 
Overall percent disordered: 30.00   Average Prediction Score: 
0.3768 
Predicted disorder segment [1]-[2]   Average Strength= 0.6372 
Predicted disorder segment [25]-[47]   Average Strength= 0.6721 
Predicted disorder segment [96]-[100]  Average Strength= 0.6643 
  

ANCHOR: 

 

Predicted Disordered Binding Regions 

 From  To  Length 

None 

Filtered Regions 
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 From  To  Length 

1 6         12         7         

 

ModPred and PROSITE: 

ModPred: Proteolytic cleavage (D36, R76, D77), Disulphide linkage (C67, C71, C99), 

Amidation (Y70), Hydroxylation (P100).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

 

Name Title Identity Method Oligo State Ligands 

3hwe.1.A  

Neutrophil gelatinase-
associated lipocalin 

15.22 X-ray, 2.8Å monomer 2 x RKS 

5ool.1.2 

39S ribosomal protein 
L36, mitochondrial 

16.22 EM 
hetero-
oligomer 

1 x PNS, 12 x 
MG, 3 x ZN 

2yeu.2.B  DR2231 23.53 X-ray, 2.0Å homo-dimer 2 x GD 
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Model #1: Residues 16-56 of MVLG_04107T0 with 2yeu.2.B (23.53% sequence 
identity) as a template  

 

Model #2: Residues 21-46 of MVLG_04107T0 with 3hwe.1.A (15.22% sequence 
identity) as a template  

  

Model #3: Residues 58-80 of MVLG_04107T0 with 5ool.1.2 (16.22% sequence identity) 
as a template  
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Moderately disordered proteins (10-30% disordered residues by PONDR® VSL2 

analysis) 

> MVLG_02763T0 (29.30%)- 976 aa 

MLVGKVSLVILWTATMALASPSRRGNHKSTTGKRSSFGSGRYLVKLSTQTDM
KGSKVPVEQHRQDCNDQIKNLSSDFFGAIKVHNTFNFAYQCSMSVEAMEGFSPI
DLADYLGVTGVDVIKVVVHGRGLSFPMPPPVSKLQPKEGFATPWRKNHHPLLLS
PSVYRNNSFAPHVESEVHLMHNLGLLGDSNVSVCLVDTGVDYTNRRLGEGFGK
GFKIVLGHDFVGNDGKHPGPSPYTNCTDHGTHVTGIVGANFDPDFKFSGAAPEV
TLGHYRAFACTGQSTEDTIAAALLRAHADGCKVITLSLGGPSAWEDGLVADAAS
HVTNQGSLVVSSAGNFGTQGLFYGDVPGELPEVLGTAATDLREYPVGYLLDFVD
HSFQPIPYFAVYPVKINETLDVCYIPPSITDDPKCNLSTIVLPKGDLKNSLLVLELG
QCPHSLVAKWAVANKLRVAMVSFKPEDAQSPLNYYSNHFARGIDYFLIVPHSW
VETLIRYYTASRGKLQVSFAAGKRAPVEALANHESGGNMAFYSSYGPTATLEGF
GNTLAAPGTNILSTVTVAQGGVGVMSGTSMACPLAAGIAALLFSHRKADNLTPR
QVKSLMATTAQPVRISQKPKDAFATVVQQGAGIVSAYRAYIAKTLIEPHSIALGD
LEHFKNSHSITLKNTNKFAVTYTLSSTSSQTVTTYDKSASIDINPSGIPRPGIAGAA
TVAFTPRSLRIPPGQSATFTATFTLPNFSKIDFFRVPVVSGWLLIDSAGDPVPTYRI
AYAGVAAGLQIMPVLDSTDVASQSYGIKGLRHPFIMVGNSLDPDALPSTAADVL
SDPNKVTSVSRKDGIFVFLRFAMATPYVQVDLVDANTTFIPTIPSNNNLHLAENN
SLTGDLRKRPHNPPLFDSVSIVGTAATANELTRDPTDFSHGSGADTSFINFNGMV
AVKHPDDPATTSVDKGRPYRLLIRARRMNSNPEFSASYDSWLSPPFQFLD 

PONDR: 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 976    Number Disordered Regions: 23 
Number residues disordered: 286   Longest Disordered Region: 44 
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Overall percent disordered: 29.30   Average Prediction Score: 
0.3690 
Predicted disorder segment [1]-[2]   Average Strength= 0.5861 
Predicted disorder segment [20]-[63]   Average Strength= 0.6953 
Predicted disorder segment [66]-[69]   Average Strength= 0.5239 
Predicted disorder segment [133]-[162]  Average Strength= 0.5575 
Predicted disorder segment [166]-[170]  Average Strength= 0.5125 
Predicted disorder segment [172]-[176]  Average Strength= 0.5355 
Predicted disorder segment [225]-[240]  Average Strength= 0.6081 
Predicted disorder segment [326]-[328]  Average Strength= 0.5265 
Predicted disorder segment [456]-[464]  Average Strength= 0.5943 
Predicted disorder segment [513]-[523]  Average Strength= 0.5317 
Predicted disorder segment [589]-[591]  Average Strength= 0.5126 
Predicted disorder segment [608]-[612]  Average Strength= 0.5391 
Predicted disorder segment [654]-[660]  Average Strength= 0.5248 
Predicted disorder segment [670]-[707]  Average Strength= 0.6281 
Predicted disorder segment [714]-[720]  Average Strength= 0.5272 
Predicted disorder segment [805]-[812]  Average Strength= 0.5269 
Predicted disorder segment [815]-[824]  Average Strength= 0.5722 
Predicted disorder segment [865]-[891]  Average Strength= 0.5827 
Predicted disorder segment [899]-[916]  Average Strength= 0.5697 
Predicted disorder segment [929]-[941]  Average Strength= 0.5631 
Predicted disorder segment [954]-[966]  Average Strength= 0.6000 
Predicted disorder segment [968]-[968]  Average Strength= 0.5005 
Predicted disorder segment [970]-[976]  Average Strength= 0.6613 
 

ANCHOR: 

 

Predicted Disordered Binding Regions 

 From  To  Length 

1 889         894         6         

2 918         926         9         

Filtered Regions 

 From  To  Length 

1 1         16         16         

2 42         43         2         

3 216         219         4         



240 

 

4 832         839         8         

5 946         949         4         

6 974         976         3         

 

ModPred and PROSITE: 

ModPred: Amidation (A19, F131, N392, F652, F709, R953), Proteolytic cleavage (R34, 

R41, D110, D222, Y527, R715, D781, K828, D888, D965), Acetylation (K213), 

Ubiquitination (K229, K456), Sumoylation (K259), O-linked glycosylation (S694), ADP-

ribosylation (R698) 

PROSITE: Subtilase_ASP (193-204, PROSITE entry PS00136), Subtilase_HIS (242-

252, PROSITE Entry PS00137), Subtilase_SER (566-576, PROSITE PS00138) 

Structural modelling: 

 

Name Title Identity Method Oligo State Ligands 

3eif.1.A  C5a peptidase 22.10 X-ray, 1.9Å monomer 
1 x CA, 1 x 
MLA 

4i0w.1.B  Protease CspB 20.42 X-ray, 1.6Å 
hetero-
oligomer 

None 

3lxu.1.A Tripeptidyl-peptidase 2 18.67 X-ray, 3.1Å homo-dimer None 

1r6v.1.A  

subtilisin-like serine 
protease 

22.94 X-ray, 1.7Å monomer 1 x CA 

1y9z.1.A  alkaline serine protease 20.58 X-ray, 1.4Å monomer 
2 x CA, 1 x 
PMS 

4mzd.1.A 

Nisin leader peptide-
processing serine protease 
NisP 

21.30 X-ray, 1.1Å monomer None 
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Model #1: Residues 172-780 of MVLG_02763T0 with 3eif.1.A (22.10% sequence 
identity) as a template  

 

Model #2: Residues 172-639 of MVLG_02763T0 with 4i0w.1.B (20.42% sequence 
identity) as a template  
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Model #3: Residues 34-637 of MVLG_02763T0 with 1r6v.1.A (22.94% sequence 
identity) as a template  

 

Model #4: Residues 185-770 of MVLG_02763T0 with 3lxu.1.A (18.67% sequence 
identity) as a template  
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Model #5: Residues 177-639 of MVLG_02763T0 with 1y9z.1.A (20.58% sequence 
identity) as a template  

 

Model #6: Residues 144-638 of MVLG_02763T0 with 4mzd.1.A (21.30% sequence 
identity) as a template  
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> MVLG_03994T0 (28.32%)- 618 aa 

MRKAFSFFALLYATSWARAQVLRPHPLHDSISSSDQIHPRGLEDYFLDKKRLSA
ALDLLDEEHIMWSGDETPAGDFPVATMHFETHSKEKVLNMQRFSRLISGVSCGV
GRIYITFKSRVAFDYAAQAWDWVHLHPEHVFTLLAHWRDCMNPDGHFIPFHFK
KAVPEASTLTITLEGIEVAWEEAGHTFTLHVGSGLREGEELQNTATKELEVPSHFT
EVAHPLPAPNAGPLLEERFHIGHLNFKLPDPSVSRSKGYSVHLDHKYNGEMVSK
HHLGQNGYEATSHCINCGSSGRIDISFRLRIKWFDIKEMGIYATAFNVGARLQWD
LSLKANTIASLDFGGNIFEFPLPGLGLEIHKIFKLGLIASVGWGIGCRNYTGHLEMS
HGIQFRIQDGAEAHIDLVKGIGGNGHWRPQVWSAPLHIEGKVKANPAASAGSTV
GFEMELFKTTLAAGLRISAPSAVFLVKLNDANKGPCGQRLHRRSIQVDAILLAYL
GMSGGLNGAFAGSEPIGKRGLIDGGVHTSKNNQTRRERLLDMSWMEPNFTEEEF
REFLESNDVDVSAHAAHLNSSKHSLHPRRLGLFANLPIYHHSWPLIKELCIPIGPH
VPLQKRSHPRDLLIGP 

PONDR: 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 618    Number Disordered Regions: 12 
Number residues disordered: 175   Longest Disordered Region: 38 
Overall percent disordered: 28.32   Average Prediction Score: 
0.3560 
Predicted disorder segment [1]-[3]   Average Strength= 0.7133 
Predicted disorder segment [26]-[39]   Average Strength= 0.6514 
Predicted disorder segment [85]-[91]   Average Strength= 0.5943 
Predicted disorder segment [195]-[232]  Average Strength= 0.6078 
Predicted disorder segment [245]-[259]  Average Strength= 0.5904 
Predicted disorder segment [262]-[272]  Average Strength= 0.5630 
Predicted disorder segment [274]-[279]  Average Strength= 0.5489 
Predicted disorder segment [424]-[434]  Average Strength= 0.5695 
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Predicted disorder segment [471]-[473]  Average Strength= 0.5258 
Predicted disorder segment [519]-[533]  Average Strength= 0.5848 
Predicted disorder segment [536]-[573]  Average Strength= 0.6425 
Predicted disorder segment [605]-[618]  Average Strength= 0.6718 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

None 

Filtered Regions 

 From  To  Length 

1 236         240         5         

2 486         492         7         

3 579         579         1         

 

ModPred and PROSITE: 

ModPred: Sumoylation (K3), Amidation (A4, L353, Y376, N407, Y491, Y585), 

Proteolytic cleavage (D29, R530, R608), Ubiquitination (K263, K271, K426, K568).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

Name Title Identity Method Oligo State Ligands 

1p1g.1.A  PROTEIN (MACROPHAGE 
MIGRATION INHIBITORY 
FACTOR) 

10.29 X-ray, 2.5Å homo-
trimer 

None 

3iq2.1.A Sorting nexin-7 28.00 X-ray, 1.7Å monomer 1 x GOL, 6 
x SO4 
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Model #1: Residues 53-121 of MVLG_03994T0 with 1p1g.1.A (10.29% sequence 
identity) as a template  

 

Model #2: Residues 536-556 of MVLG_03994T0 with 3iq2.1.A (28.00% sequence 
identity) as a template  

 

>MVLG_01159T0 (27.49%)- 502 aa 

MHGNYLRLLLGSILICQVIAKWYKYDTGDHRIPRRHRGVDLRGRHHASGVLG
GDFSSNIETANQTIQIDELRQTTDTKGENEDLQVSDQEGNGSSFDESDKASNGRIII
SGPPRYVNPAVREKYLRIDMRSKGFTLDEEPFRVVGINIYWLCNDENVLGVKPG
TPTQKRRIREALAAAVAMGANTVRVGSCGISLGYADALQPDQHHRAAPRSPAM
DIHDYAIYAAGRYGLKIILPLMDNYDYYHGGKYTVLKWLGISAEHNGANFFTDP
RAIAFFKSYIEFVLNRKNPYTMRTYGEDPVVSIIEDGNEFGAYKGSEGYPPLAFTD
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EIAAQVKKFAPQALFMDGTDGFFNLTAHLQAPGLRSKAVDIVTDHPYPRDIPLLQ
MQAFLARISGKAFILGEMDWVPSAPSRNPPSRLVEPSLSAYLNVLDRYPNIGVLA
WSLFVHTDDCRDWVRHHDGYEMYYPLPQDTAEKQANVLTLVQWFYARTGRE
VPSLLPYQTCPQEEF 

 

PONDR: 

 

 
================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 502    Number Disordered Regions: 9 
Number residues disordered: 138   Longest Disordered Region: 65 
Overall percent disordered: 27.49   Average Prediction Score: 
0.3579 
Predicted disorder segment [1]-[5]   Average Strength= 0.7244 
Predicted disorder segment [29]-[45]   Average Strength= 0.5999 
Predicted disorder segment [48]-[112]  Average Strength= 0.7189 
Predicted disorder segment [161]-[170]  Average Strength= 0.5798 
Predicted disorder segment [201]-[215]  Average Strength= 0.6589 
Predicted disorder segment [312]-[314]  Average Strength= 0.5251 
Predicted disorder segment [404]-[416]  Average Strength= 0.6889 
Predicted disorder segment [465]-[468]  Average Strength= 0.5394 
Predicted disorder segment [497]-[502]  Average Strength= 0.7601 
 

ANCHOR:  

Predicted Disordered Binding Regions 

 From  To  Length 
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None 

Filtered Regions 

 From  To  Length 

1 9         23         15         

2 55         55         1         

3 107         111         5         

4 144         153         10         

 

ModPred and PROSITE: 

ModPred: Amidation (A8, V55, L723, Y752, D770, D955, Y1022), Proteolytic cleavage 

(R62, K160, R283, R286, D322, K326, Y329, S330, D407, R562, R565, D568, T897, 

P931), Carboxylation (E99, E106, E107, E109, E113, E117, E118, E121, E122), O-

linked glycosylation (T169, T170, T171T178, T180, T182, T186, S190, T192, T196, 

T197, T198, T199, T200, T201, T202, T203, T204, T205, T206), Hydroxylation (P189), 

Nlinked glycosylation (N397), Phosphorylation (T692), Disulphide linkage (C1025).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

 

Name Title Identity Method Oligo State Ligands 

1uuq.1.A 

MANNOSYL-
OLIGOSACCHARIDE 
GLUCOSIDASE 

16.91 X-ray, 1.5Å monomer None 

4xzw.1.A endo-glucanase chimera C10 16.92 X-ray, 1.5Å monomer 
2 x O4B, 
1 x CA 
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Model #1: Residues 122-485 of MVLG_01159T0 with 1uuq.1.A (16.91% sequence 
identity) as a template  

 

Model #2: Residues 116-445 of MVLG_01159T0 with 4xzw.1.A (16.92% sequence 
identity) as a template  
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>MVLG_07010T0 (27.04%)- 159 aa 

MLFKLPVVLAMALLTLGASASERFTVTSLRRRDKPGDYPQDRGSVKSPAEGQQ
LKVGTLFPFRFNPISVGDLVDTLDVEVFLKIKSLNYSRRLVTNLMSPGGNKPIVQN
FIVMHPKGSIVKRGTIMPGTIEVFEQQNGTKANGNGKYFLNQAVGVTFQF 

 

PONDR: 

 

 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 159    Number Disordered Regions: 3 
Number residues disordered: 43   Longest Disordered Region: 32 
Overall percent disordered: 27.04   Average Prediction Score: 
0.3847 
Predicted disorder segment [22]-[53]   Average Strength= 0.6694 
Predicted disorder segment [136]-[143]  Average Strength= 0.5874 
Predicted disorder segment [157]-[159]  Average Strength= 0.5780 
 

ANCHOR: 

 

Predicted Disordered Binding Regions 

 From  To  Length 
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None 

 

ModPred and PROSITE:  

ModPred: Proteolytic cleavage (R23, T27, S28, R30, R32, R42, K46), ADP-ribosylation 

(R122), Acetylation (K146), Amidation (Y147).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

Name Title Identity Method Oligo State Ligands 

5i4q.1.A Contact-dependent 
inhibitor A 

22.45 X-ray, 2.3Å hetero-
oligomer 

2 x SO4, 2 
x CL 

 

Model #1: Residues 81-129 of MVLG_07010T0 with 5i4q.1.A (22.45% sequence 
identity) as a template  

 

> MVLG_01192T0 (23.84%)- 495 aa 

MLRSYLLLVSILVHDAAASWYEAASRLDDTVQPWNRSCPRRVRAQAELLRGV
WRDSNGDRISFDLRKRNLEQDFDFVEPAPDFLGLPPLGTAVSSARSARNFAVRPR
ATGGQGTDYLGTAPINSSASAVDTIQPEASIIIDGPPASFQGSGSYLEVDPSGTGLT
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LDGEPFRPVGPRLCNDESLSCLPRGYYTDKSRIREALAAAVAMGANTIRINSCGIS
TGFPQAVQPSLHTYGTDEQLDIHDYVIYAAGEYGLKVILPLTDNYDYYHGGKYT
FLRWLNVPTDNAGAQFFTDRQVRRAFKRYIKFLLTRVNQYNGLAYGEDPTIAIIE
DGNEFGAYMGKEGFPPLSFTEDIAKYVKSLAPQALLMDGTDGFYNYTTKAVAP
GVTSPYVDIVTDHAYPRNIALLKRQVDIAHSNGKVFLIGEMDWTPNNGGADFGA
YLNLLYNYKSVGVMAWSLFTHDTPCSSYVIHDDAYSIYYPNGGQHLTLILLQSS
GAEGF 

 

PONDR: 

 

 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 495    Number Disordered Regions: 8 
Number residues disordered: 118   Longest Disordered Region: 88 
Overall percent disordered: 23.84   Average Prediction Score: 
0.3486 
Predicted disorder segment [1]-[3]   Average Strength= 0.6444 
Predicted disorder segment [56]-[62]   Average Strength= 0.5107 
Predicted disorder segment [66]-[70]   Average Strength= 0.5060 
Predicted disorder segment [83]-[86]   Average Strength= 0.5228 
Predicted disorder segment [89]-[176]  Average Strength= 0.6229 
Predicted disorder segment [179]-[180]  Average Strength= 0.5117 
Predicted disorder segment [236]-[238]  Average Strength= 0.5279 
Predicted disorder segment [490]-[495]  Average Strength= 0.8299 
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ANCHOR: 

 

Predicted Disordered Binding Regions 

 From  To  Length 

None 

Filtered Regions 

 From  To  Length 

1 136         140         5 

 

ModPred and PROSITE:  

ModPred: Amidation (A16, M450, Y471, Y475, Q488), Pyrrolidone carboxylic acid 

(Q45), Proteolytic cleavage (R97, W452), Methylation (K256, K301).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

 

Name Title Identity Method Oligo State Ligands 

1rh9.1.A  endo-beta-mannanase 24.92 X-ray, 1.5Å monomer None 

2zun.1.A 

458aa long hypothetical endo-1,4-
beta-glucanase 

17.99 X-ray, 2.0Å monomer 2 x CBI 

4cu6.1.A  BETA-GALACTOSIDASE 19.29 X-ray, 2.7Å monomer None 
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Model #1: Residues 153-491 of MVLG_01192T0 with 1rh9.1.A (24.92% sequence 
identity) as a template  

 

Model #2: Residues 151-457 of MVLG_01192T0 with 2zun.1.A (17.99% sequence 
identity) as a template  
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Model #3: Residues 152-457 of MVLG_01192T0 with 4cu6.1.A (19.29% sequence 
identity) as a template  

 

> MVLG_05108T0 (23.69%)- 363 aa 

MLCKLSLVLILASSFWVALATPPAACTIVSSTDIPKVQKCKVITIMAFIMPAGQT
LMLDVQAGTTINQLGDIIFEHRGPWRGPLMSIYGDSITYNGNNKKLYCNGQMYW
DGMGVTGTTKPGPALSLLITGTVSDLIIHNSPLNAVVVEANGKTLLSNIFVNNTD
GDRMGGHNTDGFNVVQKTRDLTISGCTVINQDDCISITSGQGITISQNTCKNGHGI
SIGSIKSNEHVSQVTISQNHVENSQQGYRIKTYSGATRGSVDNITFHGNTGNGLTH
YGVVVEQDYTESGPKGPSFATNGVLISNIRFVGPITTLSMAGDKAQKVYVLCGV
NSCIGDWDWSSLKFTRGGSLGSITRAPIRGLTA 

PONDR: 
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================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 363    Number Disordered Regions: 7 
Number residues disordered: 86   Longest Disordered Region: 48 
Overall percent disordered: 23.69   Average Prediction Score: 
0.3541 
Predicted disorder segment [116]-[121]  Average Strength= 0.5558 
Predicted disorder segment [164]-[173]  Average Strength= 0.5941 
Predicted disorder segment [199]-[200]  Average Strength= 0.5054 
Predicted disorder segment [202]-[249]  Average Strength= 0.6874 
Predicted disorder segment [285]-[294]  Average Strength= 0.6248 
Predicted disorder segment [347]-[349]  Average Strength= 0.5044 
Predicted disorder segment [358]-[363]  Average Strength= 0.6849 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

None 

Filtered Regions 

 From  To  Length 

1 327         329         3         

 

ModPred and PROSITE:  

ModPred: Disulphide linkage (C103), Amidation (Y248, Y325).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

Name Title 
Identit

y 
Method 

Oligo 

State 

Ligand

s 

1czf.1.A POLYGALACTURONASE II 40.48 
X-ray, 
1.7Å 

monomer 
3 x ZN, 
1 x 
NAG 

1k5c.1.A  

ENDOPOLYGALACTURONAS
E 

41.72 
X-ray, 
1.0Å 

monomer 
2 x 
NAG 
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Name Title 
Identit

y 
Method 

Oligo 

State 

Ligand

s 

3lmw.1.
A 

Iota-carrageenase, CgiA 10.14 
X-ray, 
2.6Å 

monomer 
1 x NI, 
1 x CA 

4xqi.1.A Tail spike protein 13.82 
X-ray, 
1.8Å 

homo-
trimer 

3 x 
GLC, 3 
x GLA, 
3 x 
RAM, 3 
x NAG, 
3 x 
NDG 

5gai.1.Y  Tail fiber protein 17.27 EM 
hetero-
oligomer 

None 

4xor.1.A Tail spike protein 12.07 
X-ray, 
1.5Å 

homo-
trimer 

3 x 
GLC, 3 
x GLA, 
3 x 
RAM, 6 
x NAG, 
3 x 
NDG 
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Model #1: Residues 26-360 of MVLG_05108T0 with 1k5c.1.A (41.72% sequence 
identity) as a template  

 

Model #2: Residues 26-347 of MVLG_05108T0 with 1czf.1.A (40.48% sequence 
identity) as a template  

 

Model #3: Residues 13-314 of MVLG_05108T0 with 4xqi.1.A (13.82% sequence 
identity) as a template  
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Model #4: Residues 14-330 of MVLG_05108T0 with 3lmw.1.A (10.14% sequence 
identity) as a template  

 

Model #5: Residues 142-274 of MVLG_05108T0 with 4xor.1.A (12.07% sequence 
identity) as a template  
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Model #6: Residues 151-313 of MVLG_05108T0 with 5gai.1.Y (17.27% sequence 
identity) as a template  

 

> MVLG_04797T0 (23.60%)- 428 aa 

MPKAAIFNVATVRVLVTFVTLLVFVSPLAAADAVDHPKLRVKGGLGRAGAPA
EVIASAAASVTGSNSKSYPRGYSAVIAFGASYMDNAHKRSKKYATSFRDQQEYP
FSDRGRYTNGPVAVEYMVKPSTNPALRPFQIDPPVLFDFAYGGSVIKNNLTGTAG
PHNIPDLGREIKQYLEQLDDEIIDPGRGRVLHVIHTGTNPISQMWLHALTANITHA
KTRRSIGKQVTQMAKYIRYLATHDSLRDNVVAADYLIVGLPPLGIVPNLYFNYIA
AFPNHTAAQRDAALEYAGELVDLFNVELEAFTSSLKAYVKPGSRILYYDLANLF
KTIYRFPRIYGITAPVTQACWSSSTRVLCKDPEHHLYIDTLHPTTSAHKIWASRMN
RLVNKVARQADAKTLETTVEDDPTTDDHPSSKTDDEPSSSPGDLRC 

 

PONDR: 
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================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 428    Number Disordered Regions: 8 
Number residues disordered: 101   Longest Disordered Region: 42 
Overall percent disordered: 23.60   Average Prediction Score: 
0.3703 
Predicted disorder segment [1]-[4]   Average Strength= 0.7574 
Predicted disorder segment [41]-[45]   Average Strength= 0.5111 
Predicted disorder segment [53]-[53]   Average Strength= 0.5008 
Predicted disorder segment [56]-[56]   Average Strength= 0.5064 
Predicted disorder segment [58]-[73]   Average Strength= 0.6098 
Predicted disorder segment [86]-[110]  Average Strength= 0.5725 
Predicted disorder segment [219]-[225]  Average Strength= 0.5442 
Predicted disorder segment [387]-[428]  Average Strength= 0.8670 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

1 140         150         11         

2 383         389         7         

Filtered Regions 

 From  To  Length 
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1 424         428         5  

 

ModPred and PROSITE:  

ModPred: Ubiquitination (K3), Amidation (A4, S26, A373, A389, K414), Methylation 

(K68), Proteolytic cleavage (R100), Phosphorylation (S422).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

Name Title Identity Method Oligo State Ligands 

3kvn.1.A Esterase estA 21.58 X-ray, 2.5Å monomer None 

1zmb.1.A Acetylxylan esterase related 
enzyme 

9.52 X-ray, 2.6Å homo-
dimer 

None 

 

Model #1: Residues 71-399 of MVLG_04797T0 with 3kvn.1.A (21.58% sequence 
identity) as a template  
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Model #2: Residues 293-389 of MVLG_04797T0 with 1zmb.1.A (9.52% sequence 
identity) as a template  

 

> MVLG_03707T0 (22.86%)- 433 aa 

MLSHSTSRRFLRSWGAFLCLPWNPLALVLAATIPTSHSLLTNSGLDSRTLGKV
RERLDLVARDVWVSGTQTEAYLELDQPQLTVFNPYVFNPFTPKSSRDRVILESSF
PNSSNRIVLNWLERLGPDDEQFAVIKGGAAGDPASLGYAWMIAQATTTDEGTQE
RLERMIEAEVEWLLEKVPRTMDGAISHRKEVTQLWSDFIYMVPPFLAARGIATSN
HSLLLESYRQIKLYRSHLQDTSTHLWRHVRYGTWEDPSLWATGNAWAAAGITR
VLATLTNSFHTAMYWEEIRDLALWANEIVEAGFARVKKDGLLPNHLDDPYDFSD
SASSALLASTVFRLHQLGMIRKPSTTLAKAEKIRSKINDKIDPKTGWLRGCVNPLS
WYQRTDQSPEAQAFVILLEAAWRDSRMISERNSIASKEKVFGGQGTHTRRRDR 

PONDR: 
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================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 433    Number Disordered Regions: 9 
Number residues disordered: 99   Longest Disordered Region: 26 
Overall percent disordered: 22.86   Average Prediction Score: 
0.3405 
Predicted disorder segment [1]-[8]   Average Strength= 0.7855 
Predicted disorder segment [39]-[50]   Average Strength= 0.5846 
Predicted disorder segment [94]-[111]  Average Strength= 0.5440 
Predicted disorder segment [156]-[164]  Average Strength= 0.5907 
Predicted disorder segment [237]-[238]  Average Strength= 0.5152 
Predicted disorder segment [318]-[328]  Average Strength= 0.6108 
Predicted disorder segment [351]-[362]  Average Strength= 0.5418 
Predicted disorder segment [364]-[364]  Average Strength= 0.5008 
Predicted disorder segment [408]-[433]  Average Strength= 0.6937 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

1 393         401         9         

Filtered Regions 

 From  To  Length 

1 148         148         1         

2 375         377         3         
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ModPred and PROSITE:  

ModPred: Proteolytic cleavage (R9, R12, D321, R431, R433), Sumoylation (K178), 

Sulfation (Y320).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

Name Title Identity Method Oligo State Ligands 

4mmi.1.A Heparinase III protein 10.34 X-ray, 2.4Å monomer 2 x CA 

3qwt.1.A Putative GH105 family 
protein 

24.18 X-ray, 2.2Å homo-
octamer 

None 

 

Model #1: Residues 150-402 of MVLG_03707T0 with 3qwt.1.A (24.18% sequence 
identity) as a template  
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Model #2: Residues 45-378 of MVLG_03707T0 with 4mmi.1.A (10.34% sequence 
identity) as a template  

 

> MVLG_01732T0 (22.44%)- 156 aa 

MLLKLTITLIVALLVLNVSALQEAGDTKAEFRLIKRAAAQKSNLTQPTENASFL
LHHPIPFELNYDPKIVYAVDVELLSEHDKSIPLAVQMAGDHTGAISTTFSTPYFAE
NSVKYRNVTLRVTEWSLPSHNTAPKKKSSTIDRKIVCRNFSGKIHA 

 

PONDR: 
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================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 156    Number Disordered Regions: 4 
Number residues disordered: 35   Longest Disordered Region: 15 
Overall percent disordered: 22.44   Average Prediction Score: 
0.3764 
Predicted disorder segment [1]-[2]   Average Strength= 0.5863 
Predicted disorder segment [40]-[50]   Average Strength= 0.5999 
Predicted disorder segment [128]-[142]  Average Strength= 0.6503 
Predicted disorder segment [150]-[156]  Average Strength= 0.6757 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

1 145         153         9         

 

ModPred and PROSITE:  

ModPred: Amidation (Y115). 

PROSITE: No identified domain recognition sites. 

Structural modelling: 

Name Title Identity Method Oligo State Ligands  

2lzr.1.A 

Sec-independent protein 
translocase protein TatA 

20.59 NMR monomer None  

5cwb.1.A  Designed helical repeat protein 28.21 X-ray, 1.5Å monomer None  

5bwd.1.A 

benzylsuccinate synthase 
alpha chain 

17.65 X-ray, 2.0Å 
hetero-
oligomer 

1 x 
FUM 

 

2jn8.1.A Putative cytoplasmic protein 39.29 NMR monomer None  
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Model #1: Residues 4-37 of MVLG_01732T0 with 2lzs.1.E (20.59 % sequence identity) 
as a template  

 

 

 

Model #2: Residues 18-51 of MVLG_01732T0 with 5cwb.1.A (28.21 % sequence 
identity) as a template 
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Model #3: Residues 110-143 of MVLG_01732T0 with 5bwd.1.A (17.65 % sequence 
identity) as a template  

 

 

Model #4: Residues 81-110 of MVLG_01732T0 with 2jn8.1.A (36.67 % sequence 
identity) as a template  

 

> MVLG_01191T0 (21.19%)- 505 aa 

MRYSRQLWFGLGLLSQLVTAVTPEVYNNGDCTSSRRFRGLAHTNALMRHSAD
TFDAPRGVPLLALSAPNQMSKIVGLGKRSPAVPAGVSVSVRANVEVGGQSGLQP
CADDCDHPQPPPSEEPIVISGPGTLPRSDSYLTLDDARTGLLLDDEPFRPVGINIYW
LCNDENIEGRPKGYPTDKTRVREALAAAVAMGANTVRIGSCGTSLGFHDAIQPD
LHHYADDDGMDIHDYAIWAAGRYDLKVILTLTDNYDYYHGGKYTILRWLGEPT
DDAGARFFADERPIQVYLRYAKWVLGRVNRYNNIAYGEDPTVSIIETGNELGAY
MGKEGYPPLNWTDRVAQRIKQLAPLALVMDGTDGIYNWSTKATAPGLLSPHIDI
VTDHPYPRDINLFRTQAQLAKSANKVFLLGEMNWLPTGATNANLSDYLEVLDK
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YPSVGVLVWSLFTHDSQCSEYVLHNDSYSIYYPDGPNTPEEKQNIWSLVQWFYR
VTDRAVPAVLPVQACPQEVF 

PONDR: 

 

 
================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 505    Number Disordered Regions: 7 
Number residues disordered: 107   Longest Disordered Region: 69 
Overall percent disordered: 21.19   Average Prediction Score: 
0.3548 
Predicted disorder segment [1]-[4]   Average Strength= 0.6816 
Predicted disorder segment [52]-[54]   Average Strength= 0.5082 
Predicted disorder segment [71]-[139]  Average Strength= 0.7406 
Predicted disorder segment [172]-[182]  Average Strength= 0.5923 
Predicted disorder segment [222]-[226]  Average Strength= 0.6133 
Predicted disorder segment [464]-[473]  Average Strength= 0.6476 
Predicted disorder segment [501]-[505]  Average Strength= 0.7122 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

1 88         94         7         

2 103         108         6         

3 136         144         9         
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4 157         166         10         

Filtered Regions 

 From  To  Length 

1 61         65         5         

2 146         148         3         

 

ModPred and PROSITE:  

ModPred: Amidation (A20, P82, D337, P492), Proteolytic cleavage (R36, R38, R58, 

R276), ADP-ribosylation (R80, R133), O-linked glycosylation (S126).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

Name Title Identity Method Oligo State Ligands 

1uuq.1.A MANNOSYL-
OLIGOSACCHARIDE 
GLUCOSIDASE 

19.59 X-ray, 1.5Å monomer None 

5byw.1.A  Endoglucanase H 28.21 X-ray, 1.5Å monomer None 
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Model #1: Residues 135-488 of MVLG_01191T0 with 1uuq.1.A (19.59 % sequence 
identity) as a template 

 

Model #2: Residues 137-467 of MVLG_01191T0 with 5byw.1.A (15.33 % sequence 
identity) as a template 

 

> MVLG_05525T0 (20.63%)- 126 aa 

MCRSSNMARPGMLILALITTVAPIAIALTHVENACAKEAVLHNDLSDGAKCKS
ITDLGCVCSESTGDAFLRSLGDYVKDGRGRCREQYFANIQAYACAYCLFKDLVP
PQSCGKASVSTVPTESDVQ 

PONDR: 

 

================================PONDR VSL2 
STATISTICS================================ 



273 

 

Predicted residues: 126    Number Disordered Regions: 3 
Number residues disordered: 26   Longest Disordered Region: 16 
Overall percent disordered: 20.63   Average Prediction Score: 
0.3398 
Predicted disorder segment [1]-[7]   Average Strength= 0.7662 
Predicted disorder segment [47]-[49]   Average Strength= 0.5157 
Predicted disorder segment [111]-[126]  Average Strength= 0.6798 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

None 

 

ModPred and PROSITE:  

ModPred: GPI anchor amidation (N6).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

Name Title Identity Method Oligo State Ligands  

5hiu.1.A GTPase activator-like protein 10.53 X-ray, 2.5Å monomer None  
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Model #1: Residues 64-101 of MVLG_05525T0 with 5hiu.1.A (10.53 % sequence 
identity) as a template  

 

> MVLG_02331T0 (19.73%)- 679 aa 

MWACFSASLVTVTCAALASAHDPFSRSTIRHSRRYSLLPDTYILETECPDASILA
EASPRTSGANMDSLVTEVLAAFPDARPRHVYDSALFCGLSVELGADSPHTQLLRI
QRLKSVSPVRSIQLGVRTAGSSDTPFQAEASLNVVPRTEARGESDYLSSHVMLEV
DKMHEMGLFGSRETLACVIDSGIDLMHPLLGNGCFGSNCKVVTGYDFVGDDGH
SPKRSPQTSCSDHGTHIAGILAADKFKAFGFSGVAPNASLGVYRVFSCKGAASSD
TFLKAMLMAADDGCRVLSLSFGKALGWDQDDGDDPFRKVVSRLATRGVFIAAA
SGNDASQGLMFAQTPADLAGILAVGSVEPVAAPRGFKLSFEHNRYPSMTYLALR
PVNHSQTFQIHFHSIRRAKDTSCDPLLPRSSNFTNSVVVLQKGACGTKLIHFFVRH
GARVVIAHDNGDPEQAQNWRRTAYAVHSQEGLEWLLKWPTSAVHTLLDHYLD
SLGDLQVNFRSKDPVPQDELIDRVAGGLVSEYTEFGPAATLDTLAAHVSAPGSSI
LSTFPLNKGGYGVASGTSMATPMAAGVATLLISHRKDDHLTPAQIRSLMITTAGP
VATKLNSVHPLTTVMQQGGGLVSAHRAYHAMTLIWPYALALYDTPRHVKDHV
VTLTNTHKSVVTYSFNSVPSQTLAMYNKV 
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PONDR: 

 

 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 679    Number Disordered Regions: 13 
Number residues disordered: 134   Longest Disordered Region: 36 
Overall percent disordered: 19.73   Average Prediction Score: 
0.3656 
Predicted disorder segment [22]-[38]   Average Strength= 0.5801 
Predicted disorder segment [48]-[66]   Average Strength= 0.5721 
Predicted disorder segment [122]-[157]  Average Strength= 0.5821 
Predicted disorder segment [165]-[165]  Average Strength= 0.5088 
Predicted disorder segment [214]-[231]  Average Strength= 0.6758 
Predicted disorder segment [303]-[307]  Average Strength= 0.5114 
Predicted disorder segment [399]-[407]  Average Strength= 0.5154 
Predicted disorder segment [446]-[453]  Average Strength= 0.6192 
Predicted disorder segment [499]-[504]  Average Strength= 0.5225 
Predicted disorder segment [539]-[540]  Average Strength= 0.5076 
Predicted disorder segment [558]-[564]  Average Strength= 0.5195 
Predicted disorder segment [582]-[582]  Average Strength= 0.5082 
Predicted disorder segment [675]-[679]  Average Strength= 0.6825 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 
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1 88         95         8         

Filtered Regions 

 From  To  Length 

1 429         432         4         

 

ModPred and PROSITE:  

ModPred: Proteolytic cleavage (Y35, Y210, D211, R310), O-linked glycosylation (S62, 

S227), Phosphorylation (S117), N-linked glycosylation (N197), Amidation (S664) 

PROSITE: Subtilase_ASP (181-192, PROSITE entry PS00136), Subtilase_HIS (231-

241, PROSITE Entry PS00137), Subtilase_SER (559-569, PROSITE entry PS00138) 

Subtilases are an extensive family of serine proteases whose catalytic activity is provided 

by a charge relay system similar to that of the trypsin family of serine proteases but 

which evolved by independent convergent evolution. Subtilase family currently includes 

the following proteases in Fungi: 

 Alkaline extracellular protease (AEP) from Yarrowia lipolytica (gene xpr2). 

 Alkaline proteinase from Cephalosporium acremonium (gene alp). 

 Cerevisin (EC 3.4.21.48) (vacuolar protease B) from yeast (gene PRB1). 

 Cuticle-degrading protease (pr1) from Metarhizium anisopliae. 

 KEX-1 protease from Kluyveromyces lactis. 

 Kexin (EC 3.4.21.61) from yeast (gene KEX-2). 

 Oryzin (EC 3.4.21.63) (alkaline proteinase) from Aspergillus (gene alp). 

 Proteinase K (EC 3.4.21.64) from Tritirachium album (gene proK). 

 Proteinase R from Tritirachium album (gene proR). 
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 Proteinase T from Tritirachium album (gene proT). 

 Subtilisin-like protease III from yeast (gene YSP3). 

 Thermomycolin (EC 3.4.21.65) from Malbranchea sulfurea. 

Structural modelling: 

Name Title Identity Method Oligo State Ligands  

3eif.1.A  C5a peptidase 23.48 X-ray, 1.9Å monomer 1 x CA, 1 x MLA  

4i0w.1.B  Protease CspB 18.69 X-ray, 1.6Å 
hetero-
oligomer 

None  

1r6v.1.A  

subtilisin-like 
serine protease 

24.16 X-ray, 1.7Å monomer 1 x CA  

1y9z.1.A  

alkaline serine 
protease 

23.16 X-ray, 1.4Å monomer 2 x CA, 1 x PMS  

3i74.1.A 

Subtilisin-like 
protease 

32.94 X-ray, 2.6Å homo-dimer 

1 x NAG-NAG, 1 x 
NAG-FUC, 2 x ACE-
PHE-GLU-LYS-ALV-
0QE 
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Model #1: Residues 160-667 of MVLG_02331T0 with 3eif.1.A (23.48 % sequence 
identity) as a template  

 

Model #2: Residues 160-632 of MVLG_02331T0 with 4i0w.1.B (18.69% sequence 
identity) as a template  
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Model #3: Residues 34-630 of MVLG_02331T0 with 1r6v.1.A (24.16% sequence 
identity) as a template  

 

Model #4: Residues 163-633 of MVLG_02331T0 with 1y9z.1.A (23.16% sequence 
identity) as a template  
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Model #5: Residues 231-625 of MVLG_02331T0 with 3i74.1.A (32.94% sequence 
identity) as a template  

 

> MVLG_02184T0 (19.34%)- 641 aa 

MLIGDLLLPCAFAALGRLVLASPLPLSEFETELHRHKTSPGHPEKGSVFHSAYK
PLWEAHRRGQQLETLKKVTYDHEDYRLSSDFEITDIPTERNYYFDVSEVTAAPDG
VTRKMFLVNARVNGELIEANEGDTIKLHVRNWLRVGTGIHFHGIPQAHVNYFDG
PVGVVTCPIASKSEFTFSFKLVNVCGTYFWHGHRSTQSVDGINGPVVVHCRNDT
LKKGADFDREQVVMVTDNYHELSSVIMEKLRSSAGVYGSTSTPTPKSGLIQGRG
DFDCKNRTNILKGHSCKKQSIYSEIAVPAGSLTRLRFINAGMHAFWRISVDEHEM
KLIEVDDTPIDAVGMPRIPINAGQRFSAVLDTRSDKAGSSFWMRSFAATQCFRAP
LNGFNPETLAIVRVVDPYASTSSSSGQQKFPTSKPFTHDLVELCEDPATSILRPRV
AENTADTADQVDYFNATYILAPEGGRFYMNGISFEAYAYDPLLFRAIRGESIANR
SATVIMSETTGEGGRARVHDIIVNNPGGGAHPFHLHGPRSYIVGGGDGTISKETW
ATMTPMTQNPTRRDVFTVPPNSYIVIRIVADLVGVHAFHCHVSPHTSVGMAGAL
VVRPDLIRQIQLPQESIDMCKASHYDSGFSEETPESARRR 

 

PONDR: 
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================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 641    Number Disordered Regions: 13 
Number residues disordered: 124   Longest Disordered Region: 28 
Overall percent disordered: 19.34   Average Prediction Score: 
0.3630 
Predicted disorder segment [27]-[54]   Average Strength= 0.6757 
Predicted disorder segment [200]-[203]  Average Strength= 0.5562 
Predicted disorder segment [220]-[221]  Average Strength= 0.5163 
Predicted disorder segment [251]-[268]  Average Strength= 0.6264 
Predicted disorder segment [289]-[289]  Average Strength= 0.5192 
Predicted disorder segment [358]-[364]  Average Strength= 0.5156 
Predicted disorder segment [399]-[418]  Average Strength= 0.6553 
Predicted disorder segment [441]-[441]  Average Strength= 0.5179 
Predicted disorder segment [499]-[506]  Average Strength= 0.5902 
Predicted disorder segment [523]-[524]  Average Strength= 0.5158 
Predicted disorder segment [552]-[559]  Average Strength= 0.5641 
Predicted disorder segment [592]-[592]  Average Strength= 0.5069 
Predicted disorder segment [619]-[641]  Average Strength= 0.7449 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

None 

Filtered Regions 
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 From  To  Length 

1 5         18         14         

2 474         477         4         

3 479         479         1         

4 570         586         17         

 

ModPred and PROSITE:  

ModPred: Amidation (A14, F316, S405, R507, I571), Proteolytic cleavage (Q200, 

R394, R560, D561, D627, F630, R641), O-linked glycosylation (S256), 

Phosphorylation (T259), ADP-ribosylation (R270) 

PROSITE: Multicopper oxidase2 (586-597, PROSITE entry PS00080) 

Multicopper oxidases [1,2] are enzymes that possess three spectroscopically 

different copper centers. These centers are called: type 1 (or blue), type 2 (or normal) 

and type 3 (or coupled binuclear). Consensus pattern: H-C-H-x(3)-H-x(3)-[AG]-

[LM] 

The first 2 H's are copper type 3 binding residues; The C, the third H, and L or M are 

copper type 1 ligands. The enzymes that belong to this family are: 

 Laccase (EC 1.10.3.2) (urishiol oxidase), an enzyme found in fungi and 

plants, which oxidizes many different types of phenols and diamines. 

 In addition to the above enzyme there are a number of proteins which, on the 

basis of sequence similarities, can be said to belong to this family. These 

proteins are: 



283 

 

 Copper resistance protein A (copA) from a plasmid in Pseudomonas 

syringae. This protein seems to be involved in the resistance of the microbial 

host to copper. 

 Yeast FET3, which is required for ferrous iron uptake. 

 Yeast hypothetical protein YFL041w and SpAC1F7.08, the fission yeast 

homolog. 

 

Structural modelling: 

 

Name Title Identity Method Oligo State Ligands  

3v9e.1.A  Laccase 27.48 X-ray, 1.7Å monomer 
5 x NAG, 3 x 
CU, 1 x MAN 

 

1aso.1.A  

ASCORBATE 
OXIDASE 

27.23 X-ray, 2.2Å 
homo-
dimer 

2 x NAG, 9 x 
CU, 2 x OH 

 

5mew.1.A  Laccase 2 28.06 X-ray, 1.3Å monomer 
4 x NAG, 4 x 
CU, 2 x OXY 
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Model #1: Residues 50-629 of MVLG_02184T0 with 3v9e.1.A (27.48% sequence 
identity) as a template  

 

Model #2: Residues 95-631 of MVLG_02184T0 with 5mew.1.A (28.06% sequence 
identity) as a template  

 

Model #3: Residues 94-598 of MVLG_02184T0 with 1aso.1.A (27.23% sequence 
identity) as a template  
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> MVLG_07060T0 (18.95%)- 496 aa 

MMWSTLLVPITAALAATAVHAATNHAAVGAHSSLDHNKGSQNVAKGDISKG
NTFQVISHPDFPNHKLRIKESQLCGDKEKIYSGFLDIAEHTHLFFAFAESRDKPDE
DSVLLWLNGGPGCSSMAGFLLENGPCLVTNGGNSSTFNPYSWNSNANMIFLDSP
VKVGFSNARKPVDTSRKTAEDIYAFMQLFYQVFPRFAMLDFILAGESYAGMYIP
QVASVIVQKNKLVDGASSNTIYVPLVSMAIGNGFVEIVSALSAEVDFACGKGVH
KAIYNSSTCDALYPQIPICSRSVATCRQNLTRQNCQQAELDCFVLGAPFDNTGLN
PYDVTKKCDRSPSKDGPLCYKEASWLPIYLNRPDIRAKLGVHAKAKPFEECSDSV
HTAFLLSGDWVVNTPAVLSDLLEAGIKLLLYVGVNDFICNYLGVRNWTTAMKW
SGQDQYSKAPFHEFRMPNGTVVGLTKSYGPLTYLEVKDAGHMVPRDKPDEALE
MIKTWIRGDQF 

 

PONDR: 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 496    Number Disordered Regions: 9 
Number residues disordered: 94   Longest Disordered Region: 29 
Overall percent disordered: 18.95   Average Prediction Score: 
0.3250 
Predicted disorder segment [24]-[52]   Average Strength= 0.6341 
Predicted disorder segment [101]-[107]  Average Strength= 0.6034 
Predicted disorder segment [138]-[147]  Average Strength= 0.5319 
Predicted disorder segment [170]-[178]  Average Strength= 0.6156 
Predicted disorder segment [329]-[340]  Average Strength= 0.6186 
Predicted disorder segment [370]-[375]  Average Strength= 0.5888 
Predicted disorder segment [434]-[441]  Average Strength= 0.5633 



286 

 

Predicted disorder segment [475]-[482]  Average Strength= 0.6040 
Predicted disorder segment [493]-[496]  Average Strength= 0.6175 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

None 

Filtered Regions 

 From  To  Length 

1 1         3         3         

2 6         8         3         

3 94         96         3         

 

ModPred and PROSITE:  

ModPred: Proteolytic cleavage (H31, D108, S109, L111, W113, K362, H473), 

Amidation (Y465) 

PROSITE: CARBOXYPEPT_SER_SER (Serine carboxypeptidases, serine active site, 

204-211, PROSITE entry PS00131), CARBOXYPEPT_SER_HIS (Serine 

carboxypeptidases, histidine active site, 463-480, PROSITE entry PS00560) 

All known carboxypeptidases are either metallo carboxypeptidases or serine 

carboxypeptidases (EC 3.4.16.5 and EC 3.4.16.6). The catalytic activity of the serine 

carboxypeptidases, is provided by a charge relay system involving an aspartic acid 

residue hydrogen-bonded to a histidine, which is itself hydrogen-bonded to a serine. 

Fungal Proteins known to be serine carboxypeptidases are: 
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 Yeast carboxypeptidase Y (YSCY) (gene PRC1), a vacuolar protease involved in 

degrading small peptides. 

 Yeast KEX1 protease, involved in killer toxin and α-factor precursor processing. 

 Fission yeast sxa2, a probable carboxypeptidase involved in degrading or 

processing mating pheromones. 

 Penicillium janthinellum carboxypeptidase S1 

 Aspergullus niger carboxypeptidase pepF. 

 Aspergullus satoi carboxypeptidase cpdS. 

 Yeast hypothetical protein YBR139w. 

 

Structural modelling: 

Name Title Identity Method Oligo State Ligands 

1ysc.1.A  SERINE 
CARBOXYPEPTIDASE 

37.35 X-ray, 2.8Å monomer 3 x NDG 

1gxs.1.B  P-(S)-
HYDROXYMANDELONITRILE 
LYASE CHAIN B 

23.97 X-ray, 2.3Å hetero-
oligomer 

2 x BEZ, 2 
x NAG, 2 

x DKA 
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Model #1: Residues 72-495 of MVLG_07060T0 with 1ysc.1.A (37.35% sequence 
identity) as a template  

 

 

Model #2: Residues 341-496 of MVLG_07060T0 with 1gxs.1.B (23.97% sequence 
identity) as a template  

> MVLG_01474T0 (16.32%)- 380 aa 

MLSKLRNVSVAAALLFAGLAIAAPAPVSNSSLEARHGKQNLLTPKVMIISMFAP
ERAVWIKPMKLVHNVSVVGLSPLYPYVACNNEYDVCIMTTGEAEINAAASMMA
LALSPLFCLQHTYFLIAGIGGVNPYAGTLGSAAFARFAVQVALEYELDARQIPSN
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WTTGYWMQNTAGPGQLSATKDLYGTELFEVNTNLLAKAYSAAKGVTLNDSTT
AQAYRQKFDYAPANQPPQVILGDVATSDVYYAGTLLSESFGNYTALLTNGTGKY
TTTAQEDNATLESMVRATKAGLLDYARVIILRTCSDFDRAPPGKVTAYDAFFAN
QGGFELALQNLYIAGKPVVDMILKDWSTFKNGVQPQSKGNGSYYGDDLGTLRS
GPALA 

 

PONDR: 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 380    Number Disordered Regions: 7 
Number residues disordered: 62   Longest Disordered Region: 27 
Overall percent disordered: 16.32   Average Prediction Score: 
0.2960 
Predicted disorder segment [1]-[5]   Average Strength= 0.6035 
Predicted disorder segment [27]-[38]   Average Strength= 0.6006 
Predicted disorder segment [99]-[99]   Average Strength= 0.5068 
Predicted disorder segment [176]-[179]  Average Strength= 0.5212 
Predicted disorder segment [267]-[278]  Average Strength= 0.5886 
Predicted disorder segment [309]-[309]  Average Strength= 0.5085 
Predicted disorder segment [354]-[380]  Average Strength= 0.6394 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

None 
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ModPred and PROSITE:  

ModPred: GPI anchor amidation (N29), Amidation (A227, Q232, Y366), Proteolytic 

cleavage (R374).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

 

Name Title Identity Method Oligo State Ligands 

1zos.1.A 5'-methylthioadenosine / S-
adenosylhomocysteine 
nucleosidase 

18.78 X-ray, 1.6Å homo-
dimer 

2 x MTM 

4g89.1.B  5'-methylthioadenosine/S-
adenosylhomocysteine 
nucleosidase 

17.65 X-ray, 2.1Å homo-
dimer 

1 x SAH, 1 
x ADE 

 

Model #1: Residues 45-349 of MVLG_01474T0 with 1zos.1.A (18.78% sequence 
identity) as a template  
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Model #2: Residues 44-311 of MVLG_01474T0 with 4g89.1.B (17.65% sequence 
identity) as a template  

 

> MVLG_00784T0 (15.81%)- 215 aa 

MLVSFKPFGLVWLCMSVFVSATFGRVTKDPKTPIVKGPKAPVVKEPKTPLVFQ
ECKKYTYSKDIGKLFKRKGVEGKATFFINGYNYGCIYNKENVNALRARYHEGHA
DLVNLSSVQIVKQVELLETAVERILGVRLGMFIAPYDSIDEKAAKVIRDKGYKIVR
WSLDSGDTTFYLGRPQSSVNLIRKWIKKASGKSGIGLFDEVGFIFLTCHGSE 

PONDR: 
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================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 215    Number Disordered Regions: 5 
Number residues disordered: 34   Longest Disordered Region: 25 
Overall percent disordered: 15.81   Average Prediction Score: 
0.3172 
Predicted disorder segment [1]-[3]   Average Strength= 0.5966 
Predicted disorder segment [28]-[52]   Average Strength= 0.6149 
Predicted disorder segment [192]-[192]  Average Strength= 0.5020 
Predicted disorder segment [194]-[194]  Average Strength= 0.5114 
Predicted disorder segment [212]-[215]  Average Strength= 0.7071 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

None 

 

ModPred and PROSITE:  

ModPred: Sumoylation (K6), Proteolytic cleavage (T22, F23, R25), Acetylation (K62, 

K66), Methylation (K69), Amidation (I89, V95, Y102), Ubiquitination (K92), Pupylation 

(K152).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

 

Name Title Identity Method Oligo State Ligands 

2iw0.1.A CHITIN DEACETYLASE 26.88 X-ray, 1.8Å monomer 1 x ZN 

3qbu.1.A Putative uncharacterized protein 
16.81 X-ray, 2.6Å 

homo-
tetramer 

4 x ZN 
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Name Title Identity Method Oligo State Ligands 

3l6u.1.A 

ABC-TYPE SUGAR 
TRANSPORT SYSTEM 
PERIPLASMIC COMPONENT 

17.39 X-ray, 1.9Å homo-dimer None 

2eqo.1.A  

TNF receptor-associated factor 
3-interacting protein 1 

13.21 NMR monomer None 

        
Model #1: Residues 37-203 of MVLG_00784T0 with 2iw0.1.A (26.88% sequence 
identity) as a template  
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Model #2: Residues 48-173 of MVLG_00784T0 with 3qbu.1.A (16.81% sequence 
identity) as a template  

 

Model #3: Residues 61-191 of MVLG_00784T0 with 3l6u.1.A (17.39% sequence 
identity) as a template  

 

Model #4: Residues 121-173 of MVLG_00784T0 with 2eqo.1.A (13.21% sequence 
identity) as a template  
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> MVLG_06541T0 (15.48%)- 84 aa 

MRFSLIVLATLLVGFAAAAPVLQSDIFKDTQKADRAQNLVHRLMVRVSTVYSQ
CTHNCEDEYARYKIGPYELIACKKGCQSDAI 

 

PONDR: 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 84    Number Disordered Regions: 2 
Number residues disordered: 13   Longest Disordered Region: 7 
Overall percent disordered: 15.48   Average Prediction Score: 
0.2829 
Predicted disorder segment [29]-[35]   Average Strength= 0.5466 
Predicted disorder segment [80]-[84]   Average Strength= 0.6944 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

None 

 

ModPred and PROSITE:  

ModPred: Amidation (Y70).  
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PROSITE: No identified domain recognition sites. 

Structural modelling: 

Name Title Identity Method Oligo State Ligands 

2m7g.1.A Geopilin domain 1 protein 21.62 NMR monomer None 

2lqx.1.A Trypsin inhibitor BWI-2c 32.35 NMR monomer None 

2l03.1.A Ly-6/neurotoxin-like protein 1 22.58 NMR monomer None 

 

 

 

Model #1: Residues 6-44 of MVLG_06541T0 with 2m7g.1.A (21.62% sequence identity) 
as a template  
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Model #2: Residues 29-64 of MVLG_06541T0 with 2lqx.1.A (32.35% sequence identity) 
as a template  

 

Model #3: Residues 48-82 of MVLG_06541T0 with 2l03.1.A (22.58% sequence identity) 
as a template  

 

 > MVLG_01897T0 (14.81%)- 385 aa 

MLLSTTLLASLLVAVSAKKGLLAAYYPASQVDAAIDWNVTDIGYYMAAVTAK
NGLAFPAGKPGLADFVLRAHAHKKKAVLSIGGPEGSQYFSSLVRTETARAKFVE
QILEVGRKYNTDGVDISWQFPTVHGNPKNEIDPKDSANLLKLLKDLRRSRPKEW
LSAAVSPNGIFAPSGTTTLSNYQDFAEVVDAFNVMAYHYVGAWNEWTGPDSPS
HQCGTGRSVTTDIERFIKAGFVANKIMLGIPSFGKAFTLHNNTLRTSVVYGDQQV
PKKYQIRIRQRYETYNGADNTFVKLKAQGILKGEDGLTAGRGYKRHYDHCSRTP
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FLFNPGTKSFITYLDARSASYRAQIAVQQEYLGVFVSSIGLDNLAFNAIDKALKTP
IDGFATD 

 

PONDR: 

 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 385    Number Disordered Regions: 8 
Number residues disordered: 57   Longest Disordered Region: 13 
Overall percent disordered: 14.81   Average Prediction Score: 
0.3237 
Predicted disorder segment [1]-[5]   Average Strength= 0.6648 
Predicted disorder segment [78]-[79]   Average Strength= 0.5072 
Predicted disorder segment [85]-[88]   Average Strength= 0.5170 
Predicted disorder segment [132]-[143]  Average Strength= 0.6103 
Predicted disorder segment [148]-[160]  Average Strength= 0.5425 
Predicted disorder segment [208]-[220]  Average Strength= 0.6601 
Predicted disorder segment [308]-[309]  Average Strength= 0.5091 
Predicted disorder segment [380]-[385]  Average Strength= 0.7677 
 

ANCHOR: 

 

Predicted Disordered Binding Regions 

 From  To  Length 
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None 

Filtered Regions 

 From  To  Length 

1 194         198         5         

 

ModPred and PROSITE:  

ModPred: Amidation (A9, P209, Y283, S340, Y353), Ubiquitination (K52), Proteolytic 

cleavage (D66, R154, R220), Acetylation (K248, K300), Pupylation (K376).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

Name Title Identity Method Oligo State Ligands 

4txg.1.A Chitinase 21.02 X-ray, 1.8Å monomer 11 x CS 

 

Model #1: Residues 17-377 of MVLG_01897T0 with 4txg.1.A (21.02% sequence 
identity) as a template  
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> MVLG_06973T0 (12.58%)- 604 aa 

MWALGGIAGSVLWICAVNGQGSSYAPRRVRCPTDGPLVKSTGSPLAGNQFLES
REATYQAARWNKVLEPLYLKYLGNGQDTGYSTAQIATIVKHEPRIGTACSGGGL
RASLYCAGTLSALDSRSRSHAAPVLQLSAYMTGLSGGSWAITSLATSNLGPTSIY
DIVLGKNGAPGWKLDLNLNFPSIKHLIPFNANIIRDLHEKNRAHFSVTLIDYWGRL
LGHHFLPGTTRASFFSQLAPNDNGLLFDAINSTSKFKEFEMPYPIVTTTSRVRPWD
QFKVVHDYIPAINTVFEISPYSFGSFDPSLSAHIPTEYMGSYVEQTQTGVARTCVN
GFDSASFIMGCSAGLFTAIESMLQPDMKTFRRLLSLIHRVSKEEKLDILTSKVPNT
FYGYNSGLMGSRRFESAENKNLYLTDGGMNGENIPLAPLLVKARRLDTIFAIDAS
QDTKMSWPNGVSLHRTWERINRTANGYSDFPPVPSKPYDFLMGGLTRRPVFFGC
NVKDARVDKPGNYPILIYLPNAPVPHSGYSTNTKTSQMEYSISDTEAFLNTVQAN
AMKGYPGGDAVVDREYKTALKCATVDRARQRGNMARSAICQIQMQRYCWPPL
KA 

 

PONDR: 

 

 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 604    Number Disordered Regions: 12 
Number residues disordered: 76   Longest Disordered Region: 17 
Overall percent disordered: 12.58   Average Prediction Score: 
0.3269 
Predicted disorder segment [1]-[3]   Average Strength= 0.5765 
Predicted disorder segment [23]-[25]   Average Strength= 0.5060 
Predicted disorder segment [35]-[44]   Average Strength= 0.5536 
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Predicted disorder segment [119]-[130]  Average Strength= 0.6016 
Predicted disorder segment [253]-[254]  Average Strength= 0.5118 
Predicted disorder segment [299]-[303]  Average Strength= 0.5561 
Predicted disorder segment [373]-[374]  Average Strength= 0.5188 
Predicted disorder segment [396]-[406]  Average Strength= 0.5331 
Predicted disorder segment [471]-[474]  Average Strength= 0.5104 
Predicted disorder segment [520]-[536]  Average Strength= 0.6177 
Predicted disorder segment [580]-[582]  Average Strength= 0.5206 
Predicted disorder segment [601]-[604]  Average Strength= 0.6225 
 

ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

1 491         496         6         

Filtered Regions 

 From  To  Length 

1 11         15         5         

2 70         72         3         

3 510         514         5         

 

ModPred and PROSITE:  

ModPred: Amidation (K39, E373), Acetylation (K73), Sumoylation (K255) 

PROSITE: PLA2C (PLA2c domain profile, 30-604, PROSITE entry PS51210) 

The PLA2c domain is the catalytic lipase domain in cytosolic phospholipase A2 (cPLA2) 

(EC 3.1.1.4) and lysophospholipase or phospholipase B (PLB) (EC 3.1.1.5) of vertebrates 

and fungi. It catalyzes the carboxylic ester hydrolysis of glycerophospholipids or 

lysophospholipids. The mammalian cPLA2 group IVA enzymes cleave intracellular 

phospholipid membranes to produce lipid mediators, which also play a role in 

inflammatory diseases such as asthma and arthritis. This enzyme contains a N-terminal 

calcium-binding C2 domain that presents the catalytic domain to the membrane. Fungal 
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secreted lysophospholipase/ PLB can possess three different enzymatic activities, the 

hydrolase activity of phospholipase, lysophospholipase and a lysophospholipase 

transacylase activity. 

Some fungal proteins known to contain a PLA2c domain: 

 Fungal lysophospholipases/PLB, which are considered to be important for 

virulence of pathogenic fungi. 

 Yeast sporulation-specific protein 1 (SPO1), which is required for meiosis. 

Structural modelling: 

 

Name Title Identity Method Oligo State Ligands 

5iz5.1.A Cytosolic phospholipase A2 delta 19.26 X-ray, 2.2Å monomer None 

 

Model #1: Residues 31-577 of MVLG_06973T0 with 5iz5.1.A (19.26% sequence 
identity) as a template  
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Mostly ordered proteins (<10% disordered residues by PONDR® VSL2 analysis) 

 

 

> MVLG_01005T0 (9.67%)-  331 aa 

MHYTRLCLLCAALSNAPILLSARPQITMSADLSLECFIATTGLLSSPFARCADAS
GFLAALDAKIGLADALSDWLNNFCKDTCPDDARAKAWSGLEGGCADELAREIA
LPSVLLGTGHLRSSATAVQCPFRFDNFVESNPILNARSTAVVANYDVLKRSACTG
SVSRQSYCFVEFVKDLEEANKRNFTMSVDLLSPTCAELNAVPRSKLCTLCNQML
FEMMVKLLSRPIDRVTLTDHARQACGLAFASLSALQADFPLRPVGGQFDQAVAR
YTAAAIKDLDQHNSTPSTPTTSSAYSSRTLSRRSTFALDTVVKAVAPTAAATILLY
GWVQ 

 

PONDR: 

 

================================PONDR VSL2 
STATISTICS================================ 
Predicted residues: 331    Number Disordered Regions: 1 
Number residues disordered: 32   Longest Disordered Region: 31 
Overall percent disordered: 9.67   Average Prediction Score: 
0.3224 
Predicted disorder segment [275]-[305]  Average Strength= 0.7347 
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ANCHOR: 

Predicted Disordered Binding Regions 

 From  To  Length 

None 

Filtered Regions 

 From  To  Length 

1 325         331         7         

 

ModPred and PROSITE:  

ModPred: Pupylation (K177, K278), ADP-ribosylation (R206), N-linked glycosylation 

(N284), O-linked glycosylation (S293), Proteolytic cleavage (R304), Amidation (Y327), 

Pyrrolidone carboxylic acid (Q331).  

PROSITE: No identified domain recognition sites. 

Structural modelling: 

 

Name Title Identity Method Oligo State Ligands 

3gxv.1.A Replicative DNA helicase 22.50 X-ray, 2.2Å 
hetero-
oligomer 

None 

5n9j.1.D 

Mediator of RNA polymerase II 
transcription subunit 21 

25.71 X-ray, 3.4Å 
hetero-
oligomer 

None 

3ajb.1.B  

Peroxisomal biogenesis factor 
19 

22.22 X-ray, 2.5Å 
hetero-
oligomer 

None 
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Model #1: Residues 202-241 of MVLG_01005T0 with 3gxv.1.A (22.50% sequence 
identity) as a template  

 

Model #2: Residues 230-264 of MVLG_01005T0 with 5n9j.1.D (25.71% sequence 
identity) as a template  

 

Model #3: Residues 266-291 of MVLG_01005T0 with 3ajb.1.B (22.22% sequence 
identity) as a template 
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Table S3. Primers used for PCR and sequencing 

 

 

 

Primer Sequence (5'→3') Usage 

MVLG_04106F GCC GAA TTC GCT GAC GCG ACC AAA CAG 
GCC TCC 

Yeast two hybrid 

MVLG_04106R GAC GGA TCC TCA ACA ACC TTC GGG CTC 
GGG TTG 

Yeast two hybrid 

MVLG_05720F GCC GAA TTC AAC CCG TGG CCT CCG TCG 
GTT CAA 

Yeast two hybrid 

MVLG_05720R GAC GGA TCC CTA GTA ACC CGA ACG ACG 
CAT CCT 

Yeast two hybrid 

MVLG_06175F GCC GAA TTC TTT TGT CCC TTT GGA AAA 
ACG GCG 

Yeast two hybrid 

MVLG_06175R GAC GGA TCC TTA GAG ATT TAG AGG AAA 
GAA CCA 

Yeast two hybrid 

MVLG_01732F GCC GAA TTC TTG CAA GAA GCG GGC GAT 
ACC AAG 

Yeast two hybrid 

MVLG_01732R GAC GGA TCC CTA GGC GTG GAT TTT GCC 
GGA GAA 

Yeast two hybrid 

T7 Sequencing 
primer 

AATACGACTCACTATAGGGCG 
 

Yeast two hybrid 

MVLG_04106F GCC GAA TTC ATG AAG TAC TCG CTC GTC 
TTT GTC 

Yeast secretion 
trap 

MVLG_04106R GCG GCC GCC GGC GAG AGC CGA GAC GAT 
GCG CGT G 

Yeast secretion 
trap 

MVLG_05720F GCC GAA TTC ATG ATG CGT TCC CTC ATC 
AAG TTG 

Yeast secretion 
trap 

MVLG_05720R GCG GCC GCC CGC AAG AGC CAC ACT GAC 
GGC GGT G  

Yeast secretion 
trap 

MVLG_06175F GCC GAA TTC ATG TGG ACC TCT TCG ATC 
GTC CAA 

Yeast secretion 
trap 

MVLG_06175R GCG GCC GCC AGC CCA CGC CAC GAC AGG 
GCT CGA G  

Yeast secretion 
trap 

MVLG_01732F GCC GAA TTC ATG CTG TTA AAG CTT ACC 
ATC ACC 

Yeast secretion 
trap 

MVLG_01732R GCG GCC GCC TGC CGA AAC ATT GAG GAC 
GAG TAA G 

Yeast secretion 
trap 

Sequencing 
primer 

TCCTCGTCATTGTTCTCGTTCC Yeast secretion 
trap 
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Figure S1. Structure of Protein: Domain structures of the Cellulose Synthase 

Interactive 1 protein from Silene latifolia drawn based on SMART searches 

(http://smart.embl-heidelberg.de/). The length of the protein and the positions of 

ARM and C2 domains are scaled below.  

 

 

Arm repeats (50-92, 93-133, 225-266, 268-317, 481-521, 523-563, 1182-1223, 1351-
1391, 1519-1560, 1684-1725, 1767-1808, 1810-1850), C2 domain (1984-2080) 

 

 

Figure S2. Structure of Protein: Domain structures of AtCLB protein from Silene 

latifolia drawn based on SMART searches (http://smart.embl-heidelberg.de/). The 

length of the protein and the positions of TM, C2 domains are scaled below. 

 

 

 

 

 

 

  

 

TM- Transmembrane region (2-21), C2 domain (264-361), CC-Coiled coil (390-417), 
The regions highlighted in pink are low compositional complexity regions. 
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Figure S3. Predicted functional partners using STRING for the predicted 

MVLG_01732 host target, AtCLB , Arabidopsis thaliana gene At3G61050.1, network 

and interactions with other proteins.   
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Functional enrichments in the network 
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NTMC2T4- FUNCTIONS IN: lipid binding; INVOLVED IN: biological_process 

unknown; LOCATED IN: plasma membrane; EXPRESSED IN: male gametophyte, 

cultured cell, callus, pollen tube; EXPRESSED DURING: M germinated pollen stage; 

CONTAINS InterPro DOMAIN/s: C2 membrane targeting protein (InterPro:IPR018029), 

C2 calcium/lipid-binding domain, CaLB (InterPro:IPR008973), C2 region 

(InterPro:IPR020477), C2 calcium-dependent membrane targeting (InterPro:IPR000008); 

BEST Arabidopsis thaliana protein match is: Calcium-dependent lipid-binding (CaLB 
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domain) family protein (TAIR:AT3G61030.1). /db_xref="Araport:AT3G61050" , 

/db_xref="GeneID:825277",  /db_xref="TAIR:AT3G61050" (Berardini, Reiser et al. 

2015). 
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