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ABSTRACT 

 

INSIGHTS INTO THE INTRODUCTION HISTORIES OF THE NILE MONITOR (VARANUS 

NILOTICUS) AND ARGENTINE BLACK AND WHITE TEGU (SALVATOR MERIANAE) IN 

FLORIDA VIA NEXT GENERATION SEQUENCING AND POPULATION GENETIC 

ANALYSIS 

 

Jared P. Wood 

February 14, 2016 

 

This dissertation examines the population genetic dynamics of two Florida 

invasives: the Nile monitor (Varanus niloticus) and Argentine black and white 

tegu (Salvator merianae). I also provide insights into the introduction histories 

of both species. This study was developed as part of a collaborative effort with 

the Florida Wildlife Commission to expand our knowledge of these highly 

detrimental, invasive lizards. All research activities involving animals and 

animal tissues were approved by the University of Louisville’s Institutional 

Animal Care and Use Committee (IACUC Proposal #: 12024).  

I start with a brief introduction into what makes invasive species successful from 

a conservation genetics perspective, and discuss how conservation biologists can use 

genetic data to manage invasive populations. The dissertation is then divided into four 

data chapters which are designed to stand as independent manuscripts. Chapters II-III 
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have been published in Amphibia-Reptilia, and Chapter IV has been accepted by 

the Journal of Heredity. Chapters II and III describe how novel microsatellite markers 

were developed for both species via 454 pyrosequencing. We successfully developed 17 

polymorphic loci for V. niloticus and 10 polymorphic loci for S. merianae.  

Chapter IV examines the population structure, degree of connectivity, and 

introduction history of three invasive V. niloticus populations in southern Florida. The 

results of these analyses demonstrate that all three populations have limited genetic 

diversity and are highly differentiated from one another.  Our results also suggest that 

these populations resulted from independent introduction events that occurred within the 

past few decades. We conclude by advising wildlife managers to focus management 

efforts on containment of existing populations and intensification of monitoring efforts 

on potential migration corridors.  

 My final data chapter (V) focuses on the population structure, degree of 

connectivity between populations, and most likely introduction scenarios of two invasive 

S. merianae populations in Florida. The results of this study also demonstrate that S. 

merianae populations have limited genetic diversity and show significant levels of 

differentiation. Furthermore, we also found some evidence of migration between 

populations, and our introduction analyses suggest that both populations originated from 

an unknown ghost population. We recommend that managers focus on containment rather 

than eradication strategies, and increase monitoring efforts of the pet trade and potential 

migration corridors. I conclude this dissertation by summarizing my findings and 

proposing future directions in which I wish to examine this system further (chapter VI). 
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CHAPTER I 

INTRODUCTION 

 

Invasive species are estimated to be second only to human-mediated 

habitat destruction and alteration as the major cause of global extinctions 

(Clavero and Garcia-Berthou 2005; Walker and Steffen 1997). In addition to 

impacting biodiversity, invasive species are also estimated to cost the United 

States $125 billion in economic damage per year (Pimentel et al. 2000). Thus, it 

is not surprising that the management and control of invasive species is a top 

priority for many biologists.  

One major question that conservation biologists are concerned with is 

what makes invasive species successful. The initial introduction of an exotic 

species, especially in long-distance invasions, usually results from the direct or 

indirect activities of people (Sakai et al. 2001). One of the earliest documented 

vertebrate introductions can be dated back to 1538 when European settlers 

brought European pigs (Sus scrofa) to America as a food source (Hardin 2007). 

Founding populations usually consist of a small number of colonists (Allendorf 

and Lundquist 2003), and are thought to have much less genetic diversity than 

the native populations from which they are derived (Barrett and Kohn 1991). 

This reduction in genetic diversity should reduce the invasive capacity of a 

newly introduced population, thereby reducing invasion potential (Sakai et al. 
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2001). Population genetic theory predicts that populations with reduced genetic 

diversity should be at a disadvantage due to the detrimental effects of 

inbreeding, drift, and a limited ability to evolve (Fisher 1930). Inbreeding 

increases the probability that deleterious recessive mutations will be expressed 

due to increases in homozygous individuals (Lawson Handley et al. 2011). 

Therefore, inbreeding depression should reduce a population’s ability to grow 

and lower the probability that a population will persist (Nieminen et al. 2001). 

Furthermore, although introduced species are likely to be pre-adapted to some 

aspects of new environments, many aspects of the environment may be novel 

(Sakai et al. 2001). Reduced genetic diversity should reduce the ability of the 

population to respond to these novel selective pressures (Goodnight 1988). 

However, despite experiencing reductions in genetic diversity, many introduced 

species remain successful, and in many cases, even outcompete native species 

(Allendorf and Lundquist 2003). Thus, conservation geneticists face two 

paradoxes: first, if population bottlenecks are harmful, why do introduced 

species remain so successful; second, if local adaption is important, how are 

introduced species able to outcompete and replace native species (Allendorf 

and Lundquist 2003)? 

In recent years, increased attention has been placed on solving the 

invasion paradox. Multiple introductions have been proposed as one mechanism 

by which introduced species overcome the effects of limited genetic diversity. 

Multiple introductions are common in invasions (Novak and Mack 2005), and 

intraspecific hybridization (i.e. admixture) is capable of producing large amounts 
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of variation and novel genotypes (Facon et al. 2005). These novel genotypes may 

allow admixed individuals to outcompete their parental genotypes (Facon et al. 

2005). Several recent studies have reported that admixture stemming from 

multiple introductions may be driving invasion success (Facon et al. 2005; Kolbe 

et al. 2008; Lavergne and Molofsky 2007).  

A weak link between losses in molecular variation and losses in adaptive 

evolutionary potential may also play a role in explaining the invasion paradox. 

Although most studies examining the population genetics of invasive populations 

have looked at reductions in molecular diversity, Reed and Frankham (2001) 

found only a weak correlation between molecular genetic diversity and 

quantitative genetic diversity, which is more closely linked to traits associated 

with fitness. One reason for this weak link is due to the differential forces of 

selection and drift (Reed and Frankham 2001). Molecular genetic markers are 

generally neutral and dominant or epistatic and are therefore insensitive to the 

forces of selection (Dlugosch and Parker 2008). Thus, populations that have 

recently gone through a bottleneck may maintain levels of quantitative genetic 

diversity sufficient for local adaptation despite experiencing reductions in 

molecular genetic diversity due to drift (Reed and Frankham 2003). Furthermore, 

additive variation may even increase after a bottleneck due to frequency shifts at 

loci with nonadditive variation (Cheverud and Routman 1996; Turelli and Barton 

2006; Willi et al. 2006). Finally, inbred populations may actually benefit from 

increases in adaptive potential, because neutral or deleterious alleles are most 

likely to be lost in small populations (Kimura 1983; Reed and Frankham 2003).  
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Lag times are a common phenomenon associated with invasions that 

occur between colonization and subsequent rapid increases in population growth 

(Kowarik 1995). These lag times are expected if evolutionary changes are an 

important component of the invasion process (Sakai et al. 2001). It is 

hypothesized that these periods allow for admixture to occur, new traits to evolve 

that increase invasive potential, and deleterious alleles to be purged (Sakai et al. 

2001).  Thus, it may be prudent for managers to target isolated introductions for 

eradication before they have the chance to adapt to their novel environments 

(Dlugosch and Parker 2008).  

 In addition to helping conservation biologists better understand what 

makes invasive species so successful, conservation genetics can also serve more 

of an applied role in the control and eradication of invasives. Eradication efforts 

are costly, both in terms of monetary costs and time. Due to these costs, it is 

crucial for managers to place considerable effort into plans that maximize 

eradication success (Myers et al. 2000). For example, attempting to eradicate 

only a fraction of a population, or a sink population within a source-sink 

metapopulation, would result in rapid recolonization and a waste of resources 

(Hanski 1999). Although neutral genetic markers, such as microsatellites, may 

only provide limited information about adaptive potential, these markers are a 

valuable means of identifying population structure and can be indicative of the 

degree of connectivity between spatially isolated populations (Robertson and 

Gemmell 2004). Significant levels of genetic differentiation are indicative of 

limited dispersal, while negligible genetic differentiation indicates that adjacent 
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populations are highly connected (Robertson and Gemmell 2004). The 

identification of distinct population units can assist eradication attempts by 

focusing efforts on identifying units with negligible immigration (Abdelkrim et 

al. 2005). If no genetically isolated units exist, then it may be necessary to 

eradicate clusters of populations at one time (Abdelkrim et al 2005), or limiting 

further growth and expansion may be more logistically feasible than complete 

eradication.   

 The State of Florida has been heavily impacted by the introduction of 

exotic species over the last few decades. The invasion of reptiles and amphibians 

in Florida has recently been described as “aggressive” and “a runaway train” 

(Engeman et al. 2011; Krysko et al. 2011). Southern Florida is particularly 

susceptible to invasion by reptiles because it has a subtropical climate, a highly 

altered natural environment that provides suitable habitat for invasive species, 

and a robust exotic industry (Pernas et al. 2012). Thus, it is not surprising that 

Florida has more nonnative species than any other U.S state (Butterfield et al. 

1997).  

 Two nonnative lizard species of particular concern in Florida are the Nile 

monitor (Varanus niloticus) and Argentine black and white tegu (Salvator 

merianae). Both species were most likely introduced to Florida via the exotic pet 

trade, as they both could be readily found for inexpensive prices at most pet 

stores (Hardin 2007). However, both species grow to large sizes and have ill 

temperaments, and are often released by inexperienced pet owners once they 

become too difficult to care for (Enge et al. 2004). It is also believed that 
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breeders release individuals that have lost tails or incurred other injuries that 

reduced their resale value, or to start their own breeding stocks (Enge et al. 2004; 

Pernas et al. 2012). V. niloticus was first documented in the City of Cape Coral in 

1990, and new breeding populations are now established in West Palm Beach and 

Homestead, Florida (Enge et al. 2004). Salvator meriane was first observed in 

Hillsborough County in 2006 (Hardin 2007). Another breeding population is 

currently established in southern Miami-Dade County (Pernas et al. 2012). Both 

of these species are generalist predators that have the potential to impact 

Florida’s native species, including several sensitive species like the burrowing 

owl (Athene cunicularia), gopher tortoise (Gopherus polyphemus), and American 

crocodile (Crocodylus acutus) (Enge et al. 2004; Mazzotti et al. 2015).  

 Although the most likely introduction pathway for both species is the 

exotic pet trade, the population structure and degree of connectivity between 

regions in Florida is currently unknown. As discussed above, this information can 

be beneficial for managers seeking to develop efficient and cost-effective 

eradication or containment strategies, especially since the Florida Wildlife 

Commission is limited by a lack of funding and personnel (Hardin 2007).  

 In my dissertation, I develop the genetic resources (microsatellites) 

needed to analyze the genetic structure of both V. niloticus and S. meriane 

populations in Florida. In addition, I also investigate the degree of connectivity 

between populations for both species, and infer the most likely introduction 

scenarios. Finally, I use my results to make recommendations for management 

strategies aimed at eradication or containment.  
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CHAPTER II 

CHARACTERIZATON OF 17 NOVEL MICROSATELLEITE LOCI IN THE 

NILE MONITORS (VARANUS NILOTICUS) VIA 454 PYROSEQUENCING 

 

Introduction 

Invasive species are one of the greatest threats to global biodiversity 

(Wilcove et al. 1998).  Currently, the US state of Florida is home to more 

introduced species of herpetofauna than any other place on Earth—a fact that is 

largely due to Florida’s subtropical climate and thriving exotic pet industry 

(Smith and Krysko 2007). Of the introduced herpetofauna in Florida, the Nile 

monitor (Varanus niloticus) is among those with considerable invasive potential.  

Native to Africa (Luxmoore et al. 1988), V. niloticus is believed to have been 

introduced to Cape Coral, Florida circa 1990 via the pet trade (Enge et al. 2004) 

and is still popular in the exotic pet industry due to its large size (up to 2.43 m 

total length and 8.1 kg body mass; Faust 2001; Faust and Bayless 1996) and 

inexpensive retail price (Enge et al. 2004).  Of particular concern is that captive 

Nile monitors are frequently released when they outgrow their juvenile enclosures 

and/or become expensive to feed (Enge et al. 2004).  Once released, V. niloticus 

poses a direct threat to Florida’s sensitive, endemic fossorial wildlife because it is 

a highly mobile generalist predator with strong burrowing capabilities (Enge et al. 

2004). 
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Since their initial introduction to Cape Coral, new populations have been 

established approximately 185 km and 200 km away in the cities of West Palm 

Beach and Homestead, respectively (Engeman et al. 2011; Jennifer Ketterlin 

Eckles, personal communication). To prevent further spread of V. niloticus 

throughout Florida, it is essential for managers to know if these more recently 

established populations are the result of dispersal or the consequence of secondary 

human-mediated introductions.  Although the answers to these questions are 

currently unknown, microsatellites provide a cost-effective method for estimating 

levels of population differentiation and connectivity (Selkoe and Toonen 2006).  

To facilitate such endeavors, we developed 17 novel microsatellite markers from 

V. niloticus that will be used to identify how many genetically distinct groups of 

V. niloticus are in southern Florida.  

 

Methods 

DNA from a single V. niloticus captured in Cape Coral, Florida, USA 

(26°35'34.70"N, 82° 0'33.72"W) was submitted to the University of Georgia 

Genomics Facility (GGF), where this isolate was pooled with DNA from two 

other species that were differentiated by terminal barcodes (Meyer et al. 2007).  

Genomic DNA was obtained from muscle tissue using the Wizard Genomic DNA 

Purification Kit (Promega) according to the manufacturer’s instructions.  A 

library of single stranded template DNA fragments was then produced using the 

GS FLX Titanium General Library Preparation Kit (Roche).  Initial sequencing 

employed the 454 GS FLX Titanium Sequencing Kit XLR70 (Roche) run on 25% 
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of a 70 x 75 mm picotiter plate and additional sequencing employed the 454 GS 

FLX Titanium Sequencing Kit XL+ (Roche) run on 50% of a 70 x 75 mm 

picotiter plate. The GGF also performed basic data processing, such as base 

calling and filtering.   

These sequencing efforts yielded a total of 43,306,932 bp across 101,489 

reads. Of these reads, 30,254 were generated using the XLR70 kit (mean length = 

298.3 bp, std. dev. = 150.8 bp) and 71,235 were generated using the XL+ kit 

(mean length = 481.2 bp, std. dev. = 186.2 bp). MSATCOMMANDER 0.8.2 

(Faircloth, 2008) was used to scan these pyrosequencing reads for dinucleotide 

microsatellites with ≥ eight tandem repeats and tri-pentanucleotide microsatellites 

with ≥ six tandem repeats.  In total, MSATCOMMANDER identified 1040 

presumptively non-redundant potentially amplifiable loci. We then used the 

PRIMER3 interface available through MSATCOMMANDER (Rozen and 

Skaletsky 2000) to design primers via batch processing of repeat containing 454 

fragments.   

Twelve dinucleotide, four trinucleotide, and four tetranucleotide loci 

whose corresponding 454 fragments contained at least ten, nine, and seven 

tandem repeats respectively were selected for marker development.  An M13 (-

21) sequence was fused to the 5ʹ end of either the forward or reverse primer of 

each primer pair in order to facilitate fluorescent labeling with 6-FAM via the 

nested PCR approach described by Schuelke (2000).  These 20 loci were then 

screened for polymorphism and scoring reliability using DNA isolated from 

muscle tissue of 11 individuals sampled from Cape Coral, Florida.  All reactions 
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had a final volume of 25 µl and contained 20-200 ng of template, 1x GoTaq 

colorless flexi buffer, 1.5 mM MgCl2, 0.2 mM of each dNTP, 0.8 µM of non-

M13(-21)-twinned primer, 0.8 µM of 6-FAM labeled M13(-21) primer, 0.2 µM of 

M13(-21)-twinned primer, and 0.625 units of GoTaq polymerase (Promega).  

Reaction conditions were as follows: 2 min at 94° C followed by 25 cycles of (1) 

94° C for 30 s, (2) 62° C for 30 s decreasing by 0.3° C per cycle, and (3) 72° C for 

40 s, followed by eight cycles of (1) 94° C for 30 s, (2) 53° C for 30 s, and (3) 72° 

C for 40 s, followed by a final step of 30 min at 72° C.   

Genotyping reaction products were visually inspected via agarose gel 

electrophoresis and products from successful reactions were shipped to the 

Arizona State University DNA lab, where fragment analysis was performed using 

an Applied Biosystems 3730 DNA Analyzer.  Of the 20 loci that were screened, 

17 were polymorphic and straightforward to score. Thus, we genotyped additional 

individuals at these 17 loci for a total of 40 individuals from Cape Coral.  The 

locus-specific primers, melting temperatures, and summary statistics based on 40 

V. niloticus genotypes are presented in Table 1. All loci were scored manually 

using PEAK SCANNER 1.0 (Applied Biosystems).  Allelic bins were determined 

by graphically examining the rank-ordered fragment size distributions of each 

locus, so that we could identify breaks in the amplicon sizes (Guichoux et al. 

2011).  We then wrote functions in Microsoft EXCEL to bin the data from each 

locus into discrete classes that were defined by each allele’s empirically 

determined size range. 



	

Table 1. Characterization of 17 microsatellite loci developed for Varanus niloticus. Samples collected from Cape Coral, 
Florida, USA.  

Locus Repeat 
(number) 

Primer Sequence  

(5ʹ- 3ʹ) 

Size  

Range  

(bp) 

TM 

(°C) 
k N HO HE FIS 

No.  

Effective  

Alleles 

M 

GenBank  

Accession 

No. 

Mon1 AC(11) F: GGCAGGATGGTTGGTTTCC* 294-316 59 3 33 0.73 0.59 -0.22 2.4 0.50 KT591094 

  R: CAGTCCCAGGGCCATTAGG  60         

Mon2 AC(12) F: TGTTTCTGACTGGATCTGGC 150-174 58 3 38 0.42 0.42 0.01 1.7 1.00 KT591095 

  R: CCAACCATGCCTAAGCCTC*  59         

Mon3 GT(12) 
F: 
TGATTCCAACATTGCTCTTCTAGG
* 

43-67 60 2 33 0.42 0.37 -0.14 1.6 0.40 KT591096 

  R: CTTGCCTGGCCACTGTTTC  60         

Mon4 GT(11) F: CCTTTCAGCCAAAGGGTAGC* 83-105 60 2 40 0.48 0.45 -0.05 1.8 0.67 KT591097 

  R: CTGCCAAGAAATAGGGCTGTC  60         

Mon6 AG(11) F: 
GTTCTTGAATATTGTTCCCTGTCC* 257-279 59 1 40 0.00 0.00 N/A 1.0 N/A KT591098 

  R: TTTCAAGCCAAGGTATCAAGTG  58         

Mon8 AC(10) F: ACTTAGAATGCCCGTTCAGC 111-131 59 3 37 0.68 0.58 -0.16 2.4 0.38 KT591099 

  R: 
GCATCTTTCTTAAATCTTGGTGCC*  60         

Mon9 GT(10) F: GCTGGTGAAATGGTGCAGG* 162-182 60 3 39 0.67 0.56 -0.18 2.3 1.00 KT591100 

  R: AGGGCTCACAGGGTCAAAG  60         

Mon10 CT(10) F: CAACATCGAACTCGCTGGG 266-286 60 2 39 0.18 0.20 0.13 1.3 0.67 KT591101 

  R: TCCCTACAGGTTGCTCAGG*  59         

Mon12 GT(10) F: AGCCTGGAGGAAGGTTGTC 198-218 60 4 35 0.69 0.69 0.01 3.2 0.67 KT591102 

  R: AGCCTTTACAGAGGGCTCC*  59         
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Mon13 GGT(9) F: CCCGGCTCAGTATATCAGGG 294-321 60 2 35 0.29 0.28 0.01 1.4 0.33 KT591103 

  R: CTTCATCCTGTGCCCGTTTC*  60         

Mon14 ATC(9) F: TTGCCAACCTTCTGGCTTG 126-153 59 3 36 0.56 0.57 0.03 2.3 0.50 KT591104 

  
R: 
CTTCTGTAGCCTTGGATTAACTTG
* 

 58         

Mon15 AGG(8) F: AAACCCAGCAGGTCATCCC* 184-208 60 1 35 0.00 0.00 N/A 1.0 N/A KT591105 

  R: GCTGACAAACAGGCACTGG  60         

Mon16 AAT(9) 
F: 
AGAGCTAACAAACAGCTTATGGG
* 

77-104 60 4 35 0.66 0.55 -0.19 2.2 0.67 KT591106 

  R: TGGCAGACAGTCCTCTTGAC  60         

Mon17 AAAT(7) 
F: 
AGTTGGTCATAATCCACTGAAAG
G* 

178-206  60   3 34 0.71 0.54 -0.29 2.2 1.00 KT591107 

  R: ACCCTGATTTGCCAGGGTC   60         

Mon18 GCCT(7) F: ATGGCGAGTTCCGAGATCC 477-505  60  2 36 0.28 0.24 -0.15 1.3 1.00 KT591108 

  R: CACAAGCAGTCTTGATGGAGG*   60         

Mon19 AAAT(7) F: ATTATGGACCGAGTGCCTCC 137-165  60  2 38 0.61 0.50 -0.20 2.0 0.33 KT591109 

  R: GGGAAGCCTAGTGCAGTACC*   61         

Mon20 GCCT(7) F: CGAGCACATTCTGCAGTCG 551-579  60  2 38 0.53 0.50 -0.04 2.00 1.00 KT591110 

  R: GCCTTGGACTAGGGCTGAC*   61         

Pop. Mean     2.5 36.53 0.46 0.41 -0.10 1.88 0.67  

Pop. SE       0.2 0.57 0.06 0.05 0.03 0.14 0.07   

k: number of alleles; TM: melting temperature; N: number of individuals;  HO: observed heterozygosity; HE: expected heterozygosity; FIS: inbreeding coefficient M: k: allelic range in 
repeat units (Garza and Williamson 2001); N/A: not applicable. 

*Denotes which primer in each primer pair had an M13(-21) tag appended to its 5ʹ end (sensu Schuelke, 2000). 
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We used GENALEX 6.5 (Peakall and Smouse 2012) to calculate several 

summary statistics including: number of alleles, effective number of alleles, observed 

heterozygosity, and expected heterozygosity. We also used GENEPOP 4.3 (Rousset 

2008) to test for departures from Hardy-Weinberg proportions and genotypic equilibrium. 

GENEPOP 4.3 was also used to calculate the Weir and Cockerham (1984) estimator of 

FIS, which describes the direction and magnitude of the correlation of alleles within 

individuals within populations.  This estimator of the inbreeding coefficient is useful for 

small data sets because it does not make assumptions regarding numbers of populations 

or sample sizes (Weir and Cockerham 1984). M-ratios (Garza and Williamson 2001) 

were calculated in EXCEL using the output from GENALEX.  M is defined as k (number 

of alleles) divided by r (allele size range in number repeat units) and is a useful summary 

statistic for detecting recent reductions in population size (Garza and Williamson 2001).  

MICRO-CHECKER 2.2.3 (Van Oosterhout et al. 2004) was used to examine each locus 

for evidence of null alleles, large allele dropout, and scoring errors (Table 1). 

In order to give readers a feel for the level of sequence conservation in the 

genomic regions immediately surrounding each locus, we conducted BLASTn searches 

of NCBI’s ‘nucleotide collection (nr/nt)’ database using the 454 fragments that primers 

were designed from as queries.  These searches were performed using NCBI’s default 

settings for BLASTn and a critical E-value of 10-7—a somewhat stringent threshold 

designed to filter out alignments that only or overwhelmingly correspond to 

microsatellite repeat regions.  
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Results and Discussion 

We detected 1-4 alleles per locus (mean + SE = 2.5 + 0.2).  Mon6 and Mon15 

were both monomorphic in Cape Coral and therefore could not be subjected to tests for 

Hardy-Weinberg proportions and genotypic disequilibrium. However, we have included 

these loci in our report because preliminary genotyping in West Palm Beach and 

Homestead have shown that these loci are polymorphic in these populations. As such, 

current evidence suggests Mon6 and Mon15 will be useful for analyses of population 

differentiation. Observed and expected heterozygosities in Cape Coral ranged from 0.18 

to 0.73 (mean + SE = 0.46 + 0.06) and 0.20 to 0.59 (mean + SE = 0.41 + 0.05), 

respectively.  Upon performing Holm’s (1979) correction for multiple testing there were 

no statistically significant departures from Hardy-Weinberg equilibrium, and MICRO-

CHECKER did not detect any evidence of null alleles.  However, Mon1-Mon14 and 

Mon3-Mon8 exhibited statistical departures from genotypic equilibrium.  At present, the 

relative contributions of recent evolutionary phenomena, such as multiple introductions 

from different regions of the native range, and persistence of disequilibrium due to more 

temporally distant events and tight physical linkage are unclear.  However, if these loci 

do turn out to be in disequilibrium in other populations, difficulties associated with non-

independence can easily be avoided by dropping one of the loci from each of these 

respective pairs. Estimates of FIS (mean + SE = -0.10 + 0.03) revealed mild heterozygote 

excess—a result that may reflect modest outbreeding. It is also noteworthy that the mean 

M-ratio (mean + SE = 0.67 + 0.07) is below the critical value of 0.68 suggested by Garza 

and Williamson (2001), which likely indicates that genetic diversity in the Cape Coral 

population is still recovering from the founding event presumed to have occurred in the 
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early 1990’s. 

The results of our BLASTn searches are presented in Table 2.  These searches 

suggest that several of the loci we have identified should receive priority from 

researchers interested in extending these resources to other varanids.  Mon12 is especially 

noteworthy, as it shows a strong signal of homology with a previously identified 

microsatellite locus from V. salvator.  Mon17, Mon19, and Mon20 are also potentially of 

interest, as they all exhibit similarity to sequences from other reptilian genomes (in a 

phylogenetic sense, birds are reptiles).  
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Table 2. Results of BLASTn searches of NCBI’s ‘nucleotide collection (nr/nt)’ database 

using microsatellite containing 454 fragments as queries. 

Query Locus Best hit 
accession ID 

Best hit description Alignment 
length (bp) 

% 
identity 

Bit 
score 

E-
value 

HN7TS9H02DQAES Mon1 AC154274 Mus musculus BAC clone 
RP24-298J16 from 17, 
complete seq. 

70 84.0 73.4 5.0 x 
10-9 

HN7TS9H02ELQ4D Mon2 No significant 
hits 

N/A N/A N/A N/A N/A 

HN7TS9H02DEI2X Mon3 No significant 
hits 

N/A N/A N/A N/A N/A 

HMEZZP203GE0BW Mon4 No significant 
hits 

N/A N/A N/A N/A N/A 

HN7TS9H03GN69L Mon6 No significant 
hits 

N/A N/A N/A N/A N/A 

HMEZZP203FKADE Mon8 No significant 
hits 

N/A N/A N/A N/A N/A 

HMEZZP203GSD5W Mon9 No significant 
hits 

N/A N/A N/A N/A N/A 

HN7TS9H03GXHKZ Mon10 No significant 
hits 

N/A N/A N/A N/A N/A 

HN7TS9H03GPPOC Mon12 HQ896229 Varanus salvator  clone 
JX14 microsatellite 
sequence 

185 87.0 233.1 3.5 x 
10-54 

HN7TS9H03HA3NZ Mon13 No significant 
hits 

N/A N/A N/A N/A N/A 

HN7TS9H02EIY13 Mon14 No significant 
hits  

N/A N/A N/A N/A N/A 

HN7TS9H02DDL5H Mon15 No significant 
hits 

N/A N/A N/A N/A N/A 

HN7TS9H02DPRRL Mon16 CR394571* Zebrafish DNA seq. from 
clone CH211-180M12 in 
link. group 21  

43 100.0 78.8 8.6 x 
10-11 

HN7TS9H02C6YMJ Mon17 LK064835 Apteryx australis mantelli 
genome assem. AptMant0 
scaffold 233 

110 85.0 138.0 8.5 x 
10-25  

HN7TS9H02DG8XH Mon18 No significant 
hits 

N/A N/A N/A N/A N/A 

HN7TS9H02DDW8V Mon19 JX038444 Micrurus fulvius clone 
FQ6DGU405F3RTD 
microsatellite seq. 

79 87.0 91.5 2.1 
x10-14 

HN7TS9H02EVHLU Mon20 XM_003216189 PREDICTED: Anolis 
carolinensis follistatin, 
transcript variant X1 

127 74.0 88.0 3.5 x 
10-11 

N/A = not applicable 
* = Alignment nearly entirely corresponds to microsatellite repeat region proper and is therefore unlikely to be of biological 
significance 
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Conclusions 

Herein, we have described the development of 17 novel microsatellite loci from 

V. niloticus. The resources we have developed will be used to gain insights into the 

introduction histories of V. niloticus populations in Florida and to examine the degree to 

which these populations are connected by gene flow.  It is also possible, if not likely, that 

some of the markers we have characterized will prove useful in other varanid species. 
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CHAPTER III 

CHARACTERIZATION OF 14 NOVEL MICROSATELLITE LOCI IN THE 

ARGENTINE BLACK AND WHITE TEGU (SALVATOR MERIANAE) VIA 454 

PYROSEQUENCING 

 

 

Introduction 

After habitat destruction, invasive species are the next greatest threat to global 

biodiversity (Wilcove et al. 1998).  Florida is especially susceptible to invasion by 

nonnative herpetofauna because of its numerous ports of entry, subtropical climate, and 

disturbed habitats (Mazzotti et al. 2015; Pernas et al. 2012). The Argentine black-and-

white tegu (Salvator merianae) is one of the four largest non-native lizards currently 

breeding in Florida (Engeman et al. 2011). It is also one of the largest lizards in the New 

World, reaching sizes of up to 145 cm total length and 8 kg (Duarte Varela and Cabrera 

2000; Lopes and Abe 1999). Salvator merianae is native to South America (Luxmoore et 

al. 1988).  However, a breeding population of S. merinae was documented in portions of 

Hillsborough and Polk Counties in 2006 (Engeman et al. 2011) and the existence of this 

population has since been attributed to activities associated with the exotic pet industry 

(Engeman et al. 2011). Salvator merinae has already been documented depredating 

American alligator (Alligator mississippiensis) and red-bellied cooter (Pseudemys nelson) 

nests in Florida (Mazzotti et al. 2015). Thus, S. merianae is currently viewed as a direct 
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threat to Florida’s sensitive fossorial wildlife (e.g., sea turtles, gopher tortoise (Gopherus 

polyphemus), eastern indigo snake (Drymarchon couperi), American crocodile 

(Crocodylus acutus), Cape Sable seaside sparrow (Ammodramus maritimus mirabilis), 

and Key Largo woodrat (Neotoma floridana smalli); Mazzotti et al., 2015).   

Since S. merinae’s initial introduction to Hillsborough and Polk Counties, a new 

breeding population has been documented approximately 330 km away in southern 

Miami-Dade County (Pernas et al., 2012). It is unclear whether this recent establishment 

is the result of dispersal or the consequence of secondary human-mediated introduction. 

However, to prevent further spread of S. merianae throughout Florida, it is essential for 

managers to know how this new population became established. Microsatellite-based 

population genetic approaches have considerable potential to provide perspective on this 

question, but as of now, such genetic resources are not available for S. merinae. To 

facilitate such endeavors, we developed 14 novel microsatellite markers from S. 

merianae that will be used to examine the introduction histories of and degree of 

differentiation and connectivity between Florida’s invasive S. merinae populations. 

 

Methods 

DNA from a single S. merianae captured in Miami-Dade County, Florida, USA 

(25°26'0.70"N, 80°30'5.77"W) was submitted to the University of Georgia Genomics 

Facility (GGF), where this isolate was pooled with DNA from two other species that 

were differentiated by terminal barcodes (Meyer et al., 2007).  Genomic DNA was 

obtained from liver tissue using the Wizard Genomic DNA Purification Kit (Promega) 

according to the manufacturer’s instructions.  A library of single stranded template DNA 
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fragments was then produced using the GS FLX Titanium General Library Preparation 

Kit (Roche).  Initial sequencing employed the 454 GS FLX Titanium Sequencing Kit 

XLR70 (Roche) run on ¼ 70 x 75 mm picotiter plate, and additional sequencing 

employed the 454 GS FLX Titanium Sequencing Kit XL+ (Roche) run on ½ 70 x 75 mm 

picotiter plate. The GGF also performed basic data processing, such as base calling and 

filtering.   

These sequencing efforts yielded a total of 127,343,751 bp across 300,675 reads. 

Of these reads, 90,457 were generated using the XLR70 kit (mean length = 275.8 bp, std. 

dev. = 155.5 bp) and 210,218 were generated using the XL+ kit (mean length = 487.1 bp, 

std. dev. = 199.1 bp).  We then used MSATCOMMANDER 0.8.2 (Faircloth 2008) to 

scan these pyrosequencing reads for dinucleotide microsatellites with ≥ eight tandem 

repeats and tri-pentanucleotide microsatellites with ≥ six tandem repeats. In total, 

MSATCOMMANDER identified 3,154 presumptively non-redundant potentially 

amplifiable loci (PALs). Finally, we used PRIMER3 (Rozen and Skaletsky 2000) to 

design primers targeting these potentially amplifiable loci (PALs) via batch processing of 

repeat-containing 454 fragments. 

Twelve dinucleotide, four trinucleotide, and four tetranucleotide loci whose 

corresponding 454 fragments contained at least ten, nine, and seven tandem repeats 

respectively were manually selected for marker development.  An M13(-21) sequence 

was fused to the 5ʹ end of either the forward or reverse primer of each primer pair in 

order to facilitate fluorescent labeling with 6-FAM via the nested PCR approach 

described by Schuelke (2000).  These 20 loci were then screened for polymorphism and 

scoring reliability using DNA isolated from muscle tissue of 11 individuals sampled from 
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Miami-Dade County.  All reactions had a final volume of 25 µl and contained 2 µl of 

template (DNA concentration between 10 and 100 ng /µl), 5 µl of 5x buffer, 1.5 mM 

MgCl2, 0.2 mM of each dNTP, 0.8 µM of non-M13(-21)-twinned primer, 0.8 µM 0f 6-

FAM labeled M13(-21) primer, 0.2 µM of M13(-21)-twinned primer, and 0.625 units of 

GoTaq polymerase (Promega).  Reaction conditions were as follows: 2 min at 94° C 

followed by 25 cycles of (1) 94° C for 30 s, (2) 62° C for 30 s decreasing by 0.3° C per 

cycle, and (3) 72° C for 40 s, followed by eight cycles of (1) 94° C for 30 s, (2) 53° C for 

30 s, and (3) 72° C for 40 s, followed by a final cleanup step of 30 min at 72° C.  

Genotyping reaction products were visually inspected by gel electrophoresis by loading 5 

µl of PCR product in 2% agarose gels. Products from successful reactions were shipped 

to the Arizona State University DNA Lab, where fragment analysis was performed using 

an Applied Biosystems 3730.  Of the 20 loci that were screened, 14 were polymorphic 

and straightforward to score. Thus, we genotyped additional individuals at these 14 loci 

for a total of 40 individuals from the Miami-Dade County population.  Locus-specific 

primers, as well as their melting temperatures, size ranges, and summary statistics are 

presented in Table 1. All loci were scored manually using PEAK SCANNER 1.0 

(Applied Biosystems).  Allelic bins were determined by graphically examining the rank-

ordered fragment size distributions of each locus, so that we could identify breaks in the 

amplicon sizes (Guichoux et al. 2011).  We then wrote functions in Microsoft EXCEL to 

bin the data from each locus into discrete classes that were defined by each allele’s 

empirically determined size range.



	
	

Table 1. Characterization of 14 microsatellite loci genotyped in S. merianae. Samples collected from Miami-Dade County, 

Florida, USA.  

Locus 

Repeat 

(number) 

Primer Sequence 

(5ʹ-3ʹ) 

Size  

Range  

(bp) 

TM  

(°C) k N  HO HE FIS 

No. 

Effective 

Alleles M 

GenBank 

Accession 

No. 

Teg1 AC (12) F: GCCAATCACAGCCAACCTC 75-99 60 4 40 0.63 0.56 -0.11 2.26 0.80 KT619111 

  R: AAGCTTGAGCAGTCCAGGG*  60         

Teg2 AC (12) F: CTGATTGCAGGCAGAGGAC 390-414 59 2 40 0.03 0.03 N/A 1.03 0.40 KT619112 

  R: ACCAGCAGCCAAGAATTCAG*  59         

Teg4 AC (12) F: TTTCCCACGCTACCGAGAC 440-464 60 2 40 0.00 0.26 1.00 1.34 1.00 KT619113 

  R: TCATCAAGATTGGGCACTACTTTC*  60         

Teg5 GT (12) F: GCTCTTAAGGGATTGACTCCAG* 280-304 59 3 36 0.42 0.60 0.32 2.48 0.60 KT619114 

  R: CATGAAGGTGCCCATGCAG  60         

Teg6 GT (11) F: AAAGTGCCACGCACGTATC* 357-379 60 2 40 0.25 0.22 -0.13 1.28 1.00 KT619115 

  R: CAAGGCATTACCTGGGAGC  59         

Teg7 AC (11) F: CAGCATCCATGAGACTTGCG 406-428 60 4 40 0.33 0.28 -0.14 1.39 0.57 KT619116 

  R: GGATGCAGCTTATACCAGCC*  59         

Teg9 AG (10) F: TTTGCAACATCCTCGGCAC 335-355 60 2 40 0.08 0.12 0.37 1.13 1.00 KT619117 

  R: ACCCAGAGTTCTCACGCAG*  60         

Teg10 AC (10) F: GAGGGCAGCAAGGTTGAAG* 281-301 59 4 39 0.59 0.53 -0.11 2.11 0.21 KT619118 

  R: GCACAGGCTGAACTCGTTG  60         

Teg12 AC (10) F: AGGTGCAACGCTGGAAATG* 143-163 60 2 38 0.08 0.08 -0.03 1.08 1.00 KT619119 

  R: GTCGCCTGCGCTTTCTATG  60         

Teg13 GTT (9) F: ATGGCCTTCCTCCCAACTC 412-439 60 2 38 0.47 0.45 -0.04 1.82 0.25 KT619120 

clkerr01
Typewritten Text
22

clkerr01
Typewritten Text



	
	

 

 R: GCACAGCGGTAATCCAAGC*  60         

Teg14 AGC (9) F: CCCTCCACGGTTTCAGAGG* 177-204 60 4 40 0.68 0.64 -0.04 2.79 0.40 KT619121 

  R: AGGAGAACTGGGCATGCTG  60         

Teg17 ATCT (7) F: ACCACGACAAGGGAATCGG* 296-324 60 2 40 0.88 0.49 -0.77 1.97 0.33 KT619122 

  R: GACTTGTGCCAGGATGCAG  60         

Teg19 ATTT (7) F: CTCTGTGTGGGCATTGCAG 330-358 60 3 38 0.32 0.53 0.41 2.11 1.00 KT619123 

  R: ACCCACCCTGAAACCTTCG*  60         

Teg20 CATT (7) F: AGATCCCTCAGTCTCATGTGG* 124-152 59 2 38 0.58 0.43 -0.33 1.76 1.00 KT619124 

  R: TCTGAGAGCCTTCTGGCTG  59         

Pop. 
Mean     2.71 39.07 

       
0.38 0.37 0.03 1.75 0.68  

Pop. SE         0.24 0.34 0.07 0.06 0.12 0.15 0.09   

k: number of alleles; TM: melting temperature; N: number of individuals;  HO: observed heterozygosity; HE: expected heterozygosity; FIS: inbreeding coefficient M: k: allelic range in repeat 
units (Garza and Williamson 2001); SE: standard error; N/A: not applicable. 

*Denotes which primer in each primer pair had an M13(-21) tag appended to its 5ʹ end (sensu Schuelke 2000). 
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We used GENALEX 6.5 (Peakall and Smouse 2012) to calculate several 

summary statistics including: number of alleles, effective number of alleles, observed 

heterozygosity, and expected heterozygosity. We used GENEPOP 4.3 (Rousset 2008) to 

test for departures from Hardy-Weinberg proportions, departures from genotypic 

equilibrium, and to calculate the Weir and Cockerham (1984) estimator of FIS.  M-ratios 

(Garza and Williamson 2001) were calculated in EXCEL using output from GENALEX. 

We also used MICRO-CHECKER 2.2.3 (Van Oosterhout et al., 2004) to examine each 

locus for evidence of null alleles, large allele dropout, and scoring errors (Table 1). 

In order to give readers a feel for the level of sequence conservation in genomic 

regions immediately surrounding each locus, we conducted BLASTn searches of NCBI’s 

‘nucleotide collection (nr/nt)’ database using the 454 fragments that primers were 

designed from as queries.  These searches were performed using NCBI’s default settings 

for BLASTn and a critical E-value of 10-7—a somewhat stringent threshold designed to 

filter out alignments that only, or overwhelmingly, correspond to microsatellite repeat 

regions.  

 

Results and Discussion 

The number of alleles (k), number of genotypes (N), observed heterozygosity 

(HO), expected heterozygosity (HE), Weir & Cockerham estimator of FIS, number of 

effective alleles, and M-ratio for each locus are given in Table 1.  In addition, Table 1 

gives the mean for each of these population genetic parameters across all 14 loci, as well 

as the standard error of the mean.  Upon performing Holm’s (1979) correction for 

multiple testing, four loci (Teg4, Teg5, Teg17, Teg19) showed significant deviations from 
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Hardy-Weinberg expectations, with Teg4, Teg5, and Teg19 exhibiting homozygote 

excess (Table 1). Therefore, it was not surprising that MICRO-CHECKER detected 

evidence of null alleles at these three loci. After correcting for multiple testing (Holm 

1979), there was also statistical evidence for genotypic disequilibrium between Teg14 

and Teg19.  The mean M-ratio across the 14 loci (mean ± SE = 0.68 ± 0.09) was very 

close to the critical value of 0.68 suggested by Garza and Williamson (2001). This result 

is not surprising given that the Miami-Dade population was recently established and is 

consistent with the notion that the founding event involved a limited number of 

individuals. 

 

Conclusions 

Herein, we have described the development of 14 novel microsatellite loci from 

S. merianae. The resources we have developed will serve to enable researchers to assess 

the degree of gene flow between the two invasive populations currently established in 

Florida and gather insights into their introduction histories. Although there is limited 

allelic richness across these 14 loci (38 alleles total), preliminary analyses are suggesting 

that differentiation between the Hillsborough-Polk and Miami-Dade populations is 

pronounced (GST = 0.170; GʹST = 0.545).  Thus, at present, it seems likely that these 

markers will provide sufficient resolution for obtaining a general understanding of S. 

merinae population genetic dynamics in Florida.  Unfortunately, our BLASTn searches 

were largely non-informative.  However, a portion of the 454 fragment that Teg19 was 

identified from, including the repeat containing region, exhibited moderate sequence 

similarity with a microsatellite-containing region of the Anolis carolinensis genome 
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(Table 2).  As such, Teg19 should receive priority among researchers seeking to extend 

these resources to populations where amplification success may be an issue, such as 

within S. merinae’s native range or in other teiid species.



27	
	

Table 2. Results of the BLASTn searches of NCBI’s ‘nucleotide collection (nr/nt)’ 

database using microsatellite-containing 454 fragments as queries. 

Query Locus Best hit  
accession ID 

Best hit 
 Description 

Alignment 
length (bp) 

% 
identity 

Bit 
score 

E-
value 

HN7TS9H02D8IL5 Teg1 No 
significant 
hits 

N/A 
 

N/A N/A N/A N/A 

HN7TS9H02DPM21 Teg2 CU634003* Zebrafish Clone 
CH1073-436C4 in 
linkage group 19 

69 88.0 84.2 2.3 x 
10-12 

HN7TS9H02EUDWN Teg4 No 
significant 
hits 

N/A 
 

N/A N/A N/A N/A 

HN7TS9H02D5S53 Teg5 AC040927* Mus musculus 
Chromosome 5 clone 
RP23-186A21 

42 100.0 77.0 3.6 x 
10-10 

HN7TS9H02D8VTH Teg6 AL844881* Mouse Chromosome 2 
clone RP23-244B19 

66 86.0 78.8 1.1 x 
10-10 

HN7TS9H02EWK6Z Teg7 AC117257* Mus musculus BAC 
clone RP24-484F21 
from Chromosome 17 

43 95.0 69.8 5.9 x 
10-8 

HN7TS9H02C2I6P Teg9 No 
significant 
hits 

N/A 
 

N/A N/A N/A N/A 

HN7TS9H02DMS22 Teg10 No 
significant 
hits 

N/A 
 

N/A N/A N/A N/A 

HMEZZP203FU4HR Teg12 AC015820* Homo sapiens 
chromosome 11 clone 
RP11-108G3 

50 90.0 68.0.0 6.5 x 
10-8 

HN7TS9H03F99SN Teg13 No 
significant 
hits 

N/A 
 

N/A N/A N/A N/A 

HN7TS9H02EJHVJ Teg14 AF279246* Xenopus laevis twisted 
gastrulation protein 
mRNA, complete cds 

43 97.0 73.4 4.0 x 
10-9 

HN7TS9H02CYF9X Teg17 BX571803 Zebrafish clone DKEY-
273G3 in linkage group 
9 

132 81.0 131.1 2.1 x 
10-26 

HN7TS9H02DIGZ3 Teg19 BK006913 Anolis carolinensis 
protocadherin gene alpha 
subcluster, partial 
sequence 

84 80.0 71.6 1.6 x 
10-8 

HMEZZP203FY8ZX Teg20 LM125528* 
 

Taenia asiatica genome 
assembly, 
TASK_scaffold0000307 

60 88.0 73.4 1.5 x 
10-9 

N/A = not applicable 

* = Alignment strongly corresponds to microsatellite repeat region proper and is therefore unlikely to be of biological 
significance 
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CHAPTER IV 

INSIGHTS INTO THE INTRODUCTION HISTORY AND POPULATION GENETIC 

DYNAMICS OF THE NILE MONITOR (VARANUS NILOTICUS) IN FLORIDA 

 

Introduction 

Invasive species are the second largest threat to global biodiversity, exceeded only 

by human-mediated habitat destruction (Wilcove et al. 1998; Mooney and Cleland 2001).  

Introduced species can disrupt ecosystem function, decrease diversity of native species, 

and detrimentally impact local and regional economies (Mack et al. 2000).  Florida is 

especially susceptible to invasion of herpetofauna because of its subtropical climate, 

number of ports of entry, extensive exotic pet industry, and exposure to hurricanes, which 

may facilitate the establishment of exotic species once released from captivity (Corn et al. 

2002; Hardin 2007).  Consequently, it is not surprising that the number of nonnative 

lizard species currently outnumbers native lizard species in Florida (Pernas et al. 2012). 

The Nile monitor (Varanus niloticus) is native to sub-Saharan Africa and was first 

observed in the southwest region of Cape Coral, Lee County, Florida in 1990 (Enge et al. 

2004; Luxmore et al. 1988).  At present, there are documented breeding populations of 

this species in Cape Coral, West Palm Beach, and on the Homestead Air Reserve Base 

(Figure 1; Table 1) (Florida Wildlife Commission 2015).  V. niloticus is of particular 

concern because it is highly mobile, capable of reaching sexual maturity at two years of 

age, has clutches of up to 60 eggs, and is capable of achieving high densities (de 
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Buffrénil 1992; de Buffrénil and Rimblot-Baly 1999).  These large lizards are typically 

found in close proximity to water and, in Florida, seem to do particularly well in 

disturbed areas near canals (Campbell 2005; Faust 2001), which have similar habitat 

characteristics to the marsh edges and mangroves they inhabit in their native range (Lenz 

1995).  Dietary studies from Africa have shown that monitors are generalist predators that 

prey upon insects, mollusks, amphibians, birds, bird eggs, reptiles, reptile eggs, and small 

to moderately sized mammals (Bennett 2002; Losos and Greene 1988).  Because Nile 

monitors are semiaquatic and adept at burrowing, it is probable that they will negatively 

impact endangered gopher tortoises (Gopherus polyphemus), American crocodiles 

(Crocodylus acutus), burrowing owls (Athene cunicularia), and other species that are 

endemic to Florida (Enge et al. 2004; Campbell 2005).   

Currently, the introduction histories of Florida’s V. niloticus populations are not 

known.  However, because Nile monitors are inexpensive and commonly available via 

the North American pet trade, their establishment is usually attributed to release by 

reptile enthusiasts who became discouraged by their large size and aggressive 

temperament, or breeders who wanted to establish local populations (Enge et al. 2004).  

Despite what is known about the ecology and natural history of V. niloticus, very little is 

known about the genetics of wild, invasive populations.  This is unfortunate because such 

information could inform management strategies that seek to eradicate these populations 

or prevent further introductions through identification of management units (Abdelkrim 

et al. 2005; Rollins et al. 2009).  Management units are an important component of 

developing realistic and cost-effective management strategies (Abdelkrim et al. 2005) 

because isolated populations are generally easier to control than populations connected 
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by dispersal.  Thus, complete eradication may be a viable option for small and 

moderately sized populations that exhibit marked genetic differentiation.  However, when 

little genetic differentiation is present across the range of invasion, indicating potentially 

connected breeding populations, control may be a more realistic goal (Rollins et al. 

2009).  With respect to documented populations of V. niloticus in Florida (Figure 1; 

Table 1), it is currently unclear whether there is dispersal between populations in 

different regions of the state.  In order to generate a better understanding of the 

introduction histories and the population genetic dynamics of V. niloticus in Florida, we 

used polymorphic microsatellite loci to conduct a variety of analyses to assess intra-

population genetic diversity, the degree of gene flow between populations, and the most 

likely introduction scenario.  
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Figure 1. Map showing the location of the sampling sites in Southern Florida and the 

position of Florida within the Southeastern US (see Table 1 for key to labels).



	
	

Table 1. Location and number of V. niloticus specimens used for genetic analyses. Site abbreviations correspond to the 

abbreviations used in Figure 1. Table 1 also shows other locations in Florida where V. niloticus sightings have been confirmed 

and the year in which first sightings were reported for all locations. Information for V. niloticus sightings in locations other 

than Cape Coral, West Palm Beach, and Homestead Air Reserve Base are approximations based on data obtained from the 

Florida EddMaps webpage (https://www.eddmaps.org/distribution/List.cfm?sub=18353).  

N/A: not available; no samples were obtained from these locations

Site Site Name County 
Confirmed 
Sightings 

Year of  
First Sighting Latitude Longitude No. of Samples 

CC Cape Coral Lee 389 1990 26°35'34.70"N 82° 0'33.72"W 40 

WPB West Palm Beach Palm Beach 80 2007 26°40'41.39"N 80° 8'48.80"W 17 

HARB Homestead Air Reserve Base Miami-Dade 47 2008 25°28'46.86"N 80°24'0.19"W 10 

BR Broward Broward 9 2007 26°10'36.77"N 80°22'43.58"W N/A 

OR Orange Orange 4 2009 28°35'10.59"N 81°15'4.56"W N/A 

AL Alachua Alachua 2 2011 29°33'40.79"N 82°19'54.77"W N/A 

PI Pinellas Pinellas 2 2014 28° 8'24.19"N 82°40'57.51"W N/A 
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Materials and methods 

Field sites, sampling, and tissue collection 

 

V. niloticus specimens were obtained from three locales in southern Florida: the City of 

Cape Coral, the C-51 canal in West Palm Beach, and the Homestead Air Reserve Base 

(Homestead; Figure 1; Table 1). In Cape Coral, V. niloticus inhabits most of the 

freshwater canals located in the southwestern region of the city, and this population is 

believed to be the largest in Florida (EddMaps: 

https://www.eddmaps.org/distribution/viewmap.cfm?sub=18353). Since 2004, one of us 

(TSC) has collected 420 specimens from this locale—a subset of which was used in this 

study. All of the tissues from this subset were obtained from lizards collected between 

2006 and 2010 from a 63.73 km2 area centered around approximately 26°35'34.70"N, 82° 

0'33.72"W. 

The purportedly largest population of V. niloticus on the Atlantic Coast of Florida 

occurs in West Palm Beach. Surprisingly, V. niloticus has only been documented along a 

22.67 km long by 67.97 m wide stretch along the C-51 Canal between Flying Cow Road 

and Interstate 95 (26°40'41.39"N, 80° 8'48.80"W). The north bank along this stretch of 

the C-51 Canal is heavily vegetated and offers cover for V. niloticus. The south bank is 

maintained by the South Florida Water Management District as an open corridor, and V. 

niloticus often uses this bank as a basking site. Seventeen specimens from West Palm 

Beach were used in our study, which were collected by Florida Wildlife Commission 

personnel between 2011 and 2013.   
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V. niloticus samples from Homestead were collected by Environmental Flight of 

Homestead Air Reserve Base and USDA-APHIS personnel between 2010 and 2012. This 

population is believed to be the smallest of the three populations in Florida. Only ten 

specimens have been collected from this site to date, and tissues from all ten were used in 

our study. 

 

DNA Isolation & PCR-based Genotyping 

 

We obtained muscle tissue samples from a total of 67 lizards (Cape Coral: N = 40; West 

Palm Beach: N = 17; Homestead: N = 10), and extracted genomic DNA using the Wizard 

Genomic DNA Purification Kit (Promega) according to the manufacture’s instructions. 

We examined 17 microsatellite loci developed from V. niloticus, nine of which have 

dinucleotide repeat motifs (Mon1, Mon2, Mon3, Mon4, Mon6, Mon8, Mon9, Mon10, 

Mon12) four of which have trinucleotide repeat motifs (Mon13, Mon14, Mon15, Mon16), 

and four of which have tetranucleotide repeat motifs (Mon17, Mon18, Mon19, Mon20; 

Wood et al. 2016).  When these loci were under development (Wood et al. 2016), we 

conducted initial screening using 11 samples from Cape Coral.  During this phase of 

marker development, five independent PCRs were performed on these 11 samples for all 

17 loci without disagreement in genotype among any of the replicate reactions for each 

respective sample by locus combination. All genotyping reactions followed the nested 

PCR approach described by Schuelke (2000), had final volumes of 25 µl and contained 2 

µl of template (DNA concentration between 10 and 100 ng /µl), 1x buffer, 1.5 mM 

MgCl2, 0.2 mM of each dNTP, 0.8 �M of non-M13(-21)-twinned primer, 0.8 �M 0f 6-
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FAM labeled M13(-21) primer, 0.2 �M of M13(-21)-twinned primer, and 0.625 units of 

GoTaq polymerase (Promega).  Reaction conditions were as follows: 2 min at 94° C 

followed by 25 cycles of 94° C for 30 s, 30 s at 63° C decreasing by –0.3°C per cycle, 

and 72° C for 40 s, followed by eight cycles of 94° C for 30 s, 53° C for 30 s, and 72° C 

for 40 s, followed by a final extension step of 30 min at 72° C.  Successful amplification 

was confirmed via electrophoresis using 2% agarose gels, and fragment analysis was 

performed using an Applied Biosystems 3730 and GENESCAN 600 as an internal sizing 

standard (Arizona State University). All loci were scored manually using PEAK 

SCANNER 1.0 (Applied Biosystems).  Allelic bins were determined by graphically 

examining the rank-ordered fragment size distributions of each locus, so that we could 

identify breaks in the amplicon sizes (Guichoux et al. 2011).  We then wrote functions in 

Microsoft EXCEL to bin the data from each locus into discrete classes that were defined 

by each allele’s empirically determined size range. 

 

Summary Statistics & Quality Control 

 

MICRO-CHECKER 2.2.3 (Van Oosterhout et al., 2004) was used to examine 

each locus for evidence of null alleles, large allele dropout, and scoring errors. We used 

GENALEX 6.5 (Peakall and Smouse, 2012) to calculate several summary statistics 

including: number of alleles, effective number of alleles, observed heterozygosity, and 

expected heterozygosity.  We also used GENEPOP 4.3 (Rousset, 2008) to test for 

departures from Hardy-Weinberg proportions and genotypic equilibrium. GENEPOP 4.3 

was also used to calculate the Weir and Cockerham (1984) estimator of FIS.  Finally, we 
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used POPGENKIT (http://cran.r-project.org/web/packages/PopGenKit/index.html) to 

construct rarefaction curves (sampling interval = 1, number of replicates = 1000) and 

determine allelic richness (AR; standardized to a sample size of 10). 

 

Assessment of population structure 

 

In order to determine the degree of genetic differentiation between the V. niloticus 

populations in Cape Coral, Homestead, and West Palm Beach, we used a variety of 

approaches.  First, we used GENALEX 6.5 (Peakall and Smouse 2012) to calculate GST 

values based on Nei and Chesser’s (1983) unbiased estimators of HS (i.e., the Hardy-

Weinberg expected heterozygosity averaged across subpopulations) and HT (i.e., the 

Hardy-Weinberg expected heterozygosity in the total population ignoring subdivision), 

where GST = (HT – HS)/HT.  We also used GENALEX to calculate GʺST, which is a 

modified version of Hedrick’s GʹST (a standardized G-statistic that is formulated to equal 

one when populations have non-overlapping allele sets irrespective of the level of genetic 

diversity) that corrects for the tendency GʹST to underestimate the degree of subdivision 

when only a small number of populations have been sampled (Merimans and Hedrick 

2011).  All resampling tests conducted in GENALEX were based on 9,999 permutations.  

We also used ARLEQUIN 3.5.1.2 (Excoffier and Lischer 2010) to perform an AMOVA 

that partitioned genetic variation among populations, among individuals within 

populations, and within individuals.  We further visualized the genetic patterns among the 

Florida populations by conducting a Principal Component Analysis (PCA) on individual 

genotypes using the gstudio package (Dyer 2012) in R 3.1 (R core Team 2014).  
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Finally, we used STRUCTURE 2.3.4 (Pritchard et al. 2000; Falush et al. 2003) to 

estimate the number of populations (K) and to assign individuals to populations (i.e., 

clusters).  Because one of us (SAD) is involved in ongoing work that suggests all three 

Florida populations are derived from a single evolutionary lineage in West Africa, we 

used the correlated allele frequencies model.  In addition, we allowed for the possibility 

of admixture.  We conducted 10 replicate STRUCTURE runs for K = 1-6 (burn-in period 

= 500,000, number of MCMC reps after burn-in = 500,000) and used STRUCTURE 

HARVESTER (Earl and Vonholdt 2012), CLUMPP (Jakobsson and Rosenberg 2007), 

and DISTRUCT (Rosenberg 2004) to visualize and interpret the results.    

 

Among-population gene flow 

 

To examine the possibility of post-introduction admixture among populations, we 

assessed the degree of recent gene flow with BayesAss 1.3 (Wilson and Rannala 2003).  

This method uses a coalescent approach to infer pairwise migration rates during recent 

generations.  We performed 108 iterations, with a sampling frequency of 2,000 and a 

burn-in of 107.  Convergence was assessed based on visual inspection of the likelihood 

scores as well as consistency of the results across three independent runs.  

Because small, variable sample sizes may affect migration estimates with this 

method, we also used GENECLASS2 (Piry et al. 2004) to perform assignment tests via 

Paetkau’s (1995) frequency-based criterion.  For this analysis, the default frequency for 

missing alleles was 0.01, the Monte-Carlo resampling method was that of Paetkau et al. 

(2004), the number of simulated individuals used for the probability computations was 
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10,000, and the type I error rate was 0.01.  We also used GENECLASS2 and Paetkau’s 

(1995) likelihood computations to test for the presence of first-generation migrants.  

L_home is the likelihood that an individual’s genotype originated from the population in 

which it was sampled (Piry et al. 2004). L_home/L_max is the ratio of L_home to the 

highest likelihood value observed in all sampled populations, including the population 

where the individual was sampled (Paetkau et al. 2004). This likelihood estimation is 

appropriate when all source populations are thought to have been sampled (Piry et al. 

2004). Because the populations sampled in our study correspond to the only known V. 

niloticus populations in Florida, we initially used the ‘L_home/L_max’ likelihood 

estimation (Piry et al. 2004). 

 

Effective population size and demographic changes 

 

To investigate the probability of inbreeding in the introduced V. niloticus 

populations, we estimated the effective population size (Ne) of each population with 

NeESTIMATOR 2.0 (Do et al. 2014) using the one-sample methods including the 

linkage disequilibrium method (Waples and Do 2008) and heterozygote-excess method 

(Zhdanova and Pudovkin 2008).  The linkage disequilibrium method takes advantage of 

the non-random association of alleles across loci that often develops in small populations, 

while the heterozygote-excess method is based on the observation that a small number of 

breeding individuals in a population often produces progeny with an excess of 

heterozygotes (Zhdanova and Pudovkin 2008).  These results were also compared to Ne 
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estimates provided by the approximate Bayesian computation method of the web-based 

program ONeSAMP (Tallmon et al. 2008) 

 We tested for evidence of recent population bottlenecks in the Florida populations 

by examining deviations from expected heterozygosity using the program 

BOTTLENECK 1.2.02 (Piry et al. 1999).  Deviations were assessed under the stepwise 

mutation model (SMM), infinite alleles model (IAM), and the two-phase model (TPM) 

with 70% SMM. The data were analyzed with 1,000 iterations, and the sign test, 

Wilcoxon signed-rank test, and mode-shift test implemented by BOTTLENECK were 

used to assess significance. We additionally performed the Mode-shift test in 

BOTTLENECK to examine whether the distribution of allele frequencies displayed a 

mode-shift distortion in which alleles in low-frequency classes become less abundant 

than alleles at intermediate frequencies, a characteristic sign of a recent population 

decline (Luikart et al. 1998). This is in contrast to the L-shaped distribution typically 

displayed by constant-sized populations. Finally, we calculated M-ratios (Garza and 

Williamson 2001) in EXCEL using the output from GENALEX. M-ratios are defined as 

the ratio of k (total number of alleles) to r (overall range in allele size), where low values 

are indicative of recent reductions in population size (Garza and Williamson 2001).  All 

M-ratios were assessed against a critical value of 0.68 as suggested by Garza and 

Williamson (2001) on the basis of a survey they performed of putatively stable and 

unstable animal populations from a variety of taxa (also see Peery et al. 2012). 
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Introduction scenario testing 

 

To distinguish among distinct introduction scenarios for the Florida V. niloticus 

populations, we used DIYABC 2.1.0 (Cornuet et al. 2014).  The number of possible 

scenarios was narrowed down based on occurrence records, our gene flow and population 

bottleneck results (see results section), as well as previous data showing that all three 

Florida populations originated from the same source population in West Africa (Dowell 

2015).  A total of eight introduction scenarios were considered, with all scenarios 

hypothesizing a population bottleneck following each introduction event (Figure 2).  

Scenarios 1–4 describe the Florida populations originating from three independent 

introduction events.  In scenario 1, all populations were introduced at the same time, 

while scenarios 2–4 hypothesize that the populations diverged from the ancestral source 

population at different time periods, indicating different introduction times.  Serial 

introduction scenarios 5 and 6 involve the West Palm Beach and Homestead populations 

originating from the Cape Coral population, rather than independently from the source 

population.  Lastly, scenarios 7 and 8 describe more complex serial introduction 

pathways, where the Cape Coral population originated from the source population, the 

next population originated from Cape Coral, and the third population originated from the 

second.  Because V. niloticus individuals in Cape Coral were first observed over ten years 

prior to those in the other two locations, we did not consider scenarios where the West 

Palm Beach or Homestead populations were introduced first. 
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Figure 2. Graphical representation of the competing introduction scenarios for Varanus 

niloticus examined with the software DIYABC. In each scenario, thin lines represent 

bottlenecked populations following introduction events, while thick lines represent the 

current effective population size. The abbreviations used are as follows:  NA = ancestral 

(source) effective population size; N1 = effective population size for the Cape Coral 

population; N2 = effective population size for the Homestead population; N3 = effective 

population size for the West Palm Beach population; N1–3f  = the effective number of 

founding individuals; t = time in generations.
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 For all analyses, prior distributions were uniform and defined as follows: 1 < N 

<10,000; 1 < NA < 50,000; 1 < Nf < 100; 1 < db < 20; 1< t1 < t2 < t3 < 100; where ‘N’ 

denotes the current effective population size, ‘NA’ denotes the ancestral (source) effective 

population size, ‘Nf’ denotes the effective number of founding individuals, ‘db’ denotes 

the bottleneck duration in generations, and ‘t’ the time in generations. To assess how the 

prior distributions affect the results, we performed a second analysis in which we 

modified the effective population size prior to a more realistic value (1 < N < 100), and 

kept the remaining priors the same. For the microsatellite mutation model, priors were set 

to default values which included the Generalized Stepwise Mutation model (Estoup et al. 

2002), and a uniform prior distribution for both the mean mutation rate (1E-4 to 1E-3) and 

the geometric distribution (1E-1 to 3E-1).  Summary statistics included the mean number 

of alleles, mean genic diversity, and mean size variance for both the one-sample and two-

sample statistics.  Additionally, we used the mean Garza-Williamson’s M index (one-

sample statistic) as well as pairwise FST values and the mean classification index (two-

sample statistics).  For each scenario, we simulated 1 million datasets, for a total of 8 

million.  

 To distinguish among the various introduction scenarios, we performed two 

separate analyses: (A) comparing all eight scenarios, and (B) comparing scenario 1 to the 

serial introduction scenarios (5–8).  For each analysis, the optimal scenario was selected 

based on posterior probabilities compared using the logistic regression analysis 

implemented in the program, using the 1% closest simulated data sets.  To evaluate the 

confidence in our optimal scenario, we analyzed 100 simulated pseudo-observed data sets 

(pods) for each scenario, using parameter values drawn from the same prior distribution 
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as our previous analyses.  The relative posterior probabilities of each scenario were 

calculated for every pod and then used to estimate type I and type II error rates. Posterior 

distributions of the parameters were computed for the most likely scenario, using the logit 

transformation.  Confidence in the parameter estimations was assessed by calculating 

relative bias and relative root mean square error, using 500 test data sets and the mode as 

the point estimate.  

 

Results 

Summary Statistics & Quality Control 

 

The summary statistics and genetic diversity estimates computed for the 17 loci we used 

for genotyping clearly show that all three populations of V. niloticus have limited 

diversity (Table 2).  Upon performing Holm’s (1979) correction for multiple testing via 

treating the tests associated with each population as a family of tests, there were no 

statistically significant departures from Hardy-Weinberg proportions in the Cape Coral or 

West Palm Beach populations.  However, in the Homestead population, Mon14 exhibited 

statistical evidence of homozygote excess.  Not surprisingly, MICRO-CHECKER 

detected evidence for null alleles at Mon14 in the Homestead population; however, 

MICRO-CHECKER did not detect any evidence for null alleles in the West Palm Beach 

or Cape Coral populations.  Upon correcting for multiple testing (Holm 1979; see above), 

there was no statistical evidence for genotypic disequilibrium among any of the pairs of 

loci in the Homestead or West Palm Beach populations.  However, there was statistical 

evidence for genotypic disequilibrium between Mon1-Mon14 and Mon3-Mon8 in the 
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Cape Coral Population.  Because some loci were monomorphic in some populations, but 

not others, exact tests for Hardy-Weinberg proportions and pairwise genotypic 

disequilibrium could not be computed for all loci in all populations.  As can be seen by 

examining the rarefaction curves shown in Figure 3, > 50% of the loci exhibit or 

approach asymptotic behavior in the three respective populations, meaning that most of 

the allelic variation was likely sampled despite substantial differences in sample sizes 

across populations.   

 

 

 

 

 

 

 

 

 

 



	
	

Table 2. Summary statistics and diversity estimates for the 17 microsatellite loci that were used for comprehensive 
genotyping. 
 

Locus/Pop. N No. Alleles Obs. Het. Exp. Het.  FIS 
aAR No. Effective 

Alleles 
No. Private 
Alleles 

M 

Cape Coral          
Mon1 33 3 0.727 0.588 -0.223 2.99 2.425 0 0.500 
Mon2 38 3 0.421 0.419  0.008 2.27 1.720 0 1.000 
Mon3 33 2 0.424 0.367 -0.140 2.00 1.581 0 0.400 
Mon4 40 2 0.475 0.447 -0.050 2.00 1.809 1 0.667 
Mon6 40 1 0.000 0.000  N/A 1.00 1.000 0 N/A 
Mon8 37 3 0.676 0.575 -0.163 3.00 2.350 1 0.375 
Mon9 39 3 0.667 0.558 -0.183 2.80 2.262 2 1.000 
Mon10 39 2 0.179 0.204  0.134 1.93 1.257 0 0.667 
Mon12 35 4 0.686 0.685  0.014 3.83 3.178 1 0.667 
Mon13 35 2 0.286 0.284  0.009 1.99 1.397 0 0.333 
Mon14 36 3 0.556 0.567  0.034 2.98 2.308 2 0.500 
Mon15 35 1 0.000 0.000  N/A 1.00 1.000 0 N/A 
Mon16 35 4 0.657 0.548 -0.185 3.18 2.213 1 0.667 
Mon17 34 3 0.706 0.541 -0.291 2.66 2.179 1 1.000 
Mon18 36 2 0.278 0.239 -0.148 1.98 1.314 1 1.000 
Mon19 38 2 0.605 0.500 -0.199 2.00 1.999 1 0.333 
Mon20 38 2 0.526 0.499 -0.042 2.00 1.994 1 1.000 
Pop. Mean 36.529 2.471 0.463 0.413 -0.095 2.33 1.882 0.706 0.674 
Pop. SEM 0.556 0.212 0.058 0.049  0.031 0.18 0.141 0.166 0.069 
Homestead          
Mon1 10 3 0.600 0.540 -0.059 N/A 2.174 0 0.429 
Mon2 10 3 0.700 0.565 -0.189 N/A 2.299 1 0.500 
Mon3 8 2 0.375 0.430  0.192 N/A 1.753 0 0.500 
Mon4 10 3 0.900 0.535 -0.653 N/A 2.151 2 0.429 
Mon6 10 2 0.200 0.180 -0.059 N/A 1.220 0 0.667 
Mon8 10 3 0.800 0.625 -0.231 N/A 2.667 0 0.375 
Mon9 9 3 0.556 0.648  0.200 N/A 2.842 2 0.188 
Mon10 9 4 0.556 0.574  0.091 N/A 2.348 2 1.000 
Mon12 9 5 0.889 0.636 -0.347 N/A 2.746 1 1.000 
Mon13 7 3 0.571 0.541  0.020 N/A 2.178 1 0.375 
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Mon14 10 3 0.000 0.460  1.000 N/A 1.852 0 1.000 
Mon15 9 2 0.444 0.494  0.158 N/A 1.976 0 0.667 
Mon16 9 4 0.778 0.673 -0.098 N/A 3.057 2 0.571 
Mon17 7 2 0.286 0.408  0.368 N/A 1.690 0 1.000 
Mon18 8 2 0.500 0.469  0.000 N/A 1.882 1 1.000 
Mon19 7 1 0.000 0.000  N/A N/A 1.000 0 N/A 
Mon20 10 1 0.000 0.000  N/A N/A 1.000 0 N/A 
Pop. Mean 8.941 2.706 0.480 0.457 0.026 N/A 2.049 0.706 0.647 
Pop. SEM 0.277 0.254 0.073 0.050 0.095 N/A 0.147 0.206 0.073 
W. P. Beach          
Mon1 13 5 0.923 0.728 -0.231 4.75 3.674 2 0.556 
Mon2 17 2 0.059 0.057  N/A 1.57 1.061 1 1.000 
Mon3 17 3 0.706 0.642 -0.070 3.00 2.792 0 0.600 
Mon4 17 1 0.000 0.000  N/A 1.00 1.000 0 N/A 
Mon6 14 3 0.643 0.482 -0.300 3.00 1.931 1 0.750 
Mon8 15 3 0.600 0.558 -0.041 2.98 2.261 0 0.375 
Mon9 17 1 0.000 0.000  N/A 1.00 1.000 0 N/A 
Mon10 14 3 0.286 0.500  0.458 2.72 2.000 0 1.000 
Mon12 16 4 0.563 0.549  0.007 3.61 2.216 0 0.800 
Mon13 13 3 0.923 0.660 -0.365 3.00 2.939 2 0.429 
Mon14 16 2 0.375 0.305 -0.200 2.00 1.438 0 1.000 
Mon15 14 2 0.643 0.436 -0.444 2.00 1.774 0 0.667 
Mon16 12 2 0.667 0.486 -0.333 2.00 1.946 0 0.400 
Mon17 12 2 0.333 0.444  0.290 2.00 1.800 0 1.000 
Mon18 12 3 0.833 0.601 -0.350 3.00 2.504 2 0.750 
Mon19 15 3 0.467 0.518  0.133 2.67 2.074 1 0.429 
Mon20 14 1 0.000 0.000  N/A 1.00 1.000 0 N/A 
Pop. Mean 14.58 2.529 0.472 0.410 -0.111 2.43 1.965 0.529 0.697 
Pop. SEM 0.446 0.259 0.077 0.060  0.076 0.24 0.182 0.194 0.064 

N: number of individuals, FIS: inbreeding coefficient (Weir and Cockerham 1984), aAR: allelic richness, M: M-ratios (Garza and Williamson 2001) 
aAllelic richness values are not given for Homestead, as this population was sampled to the lowest depth and AR values for Cape Coral and West Palm Beach were standardized to the 
Homestead sampling depth.  The number of decimal places for AR is fewer than in other columns because POPGENKIT only calculates AR values to two decimal places. 
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Figure 3. Rarefaction curves for the 17 microsatellite loci used for genotyping in Cape 

Coral (a), Homestead (b), and West Palm Beach (c)
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Assessment of population differentiation 

 

 We excluded Mon14 and Mon3 prior to performing analyses in GENALEX, 

ARLEQUIN, STRUCTURE, and GENECLASS2, as the approaches we implemented in 

these software packages assume independence among loci.  Mon14 was dropped in place 

of Mon1 because Mon14 exhibited evidence of null alleles in the Homestead population, 

and Mon3 was dropped in place of Mon8 because Mon8 exhibited higher levels of 

diversity in two of the three populations sampled (Table 2).  Locus-specific GST estimates 

across all three populations (i.e., ‘global’ estimates of differentiation) ranged from 0.079 

to 0.490 and were, without exception, highly statistically significant (maximum P = 

0.0013).  Similarly, all locus-specific GʺST estimates were highly statistically significant 

(maximum P = 0.0011), with values ranging from 0.286 to 0.912.  The global GST 

estimate that resulted from combining information across all loci was 0.268 (SE = 0.037, 

P = 0.0001) and the global estimate for GʺST was 0.628 (SE = 0.053, P = 0.0001).  

Similar estimates of GST and GʺST were obtained from comparisons between pairs of 

populations (Cape Coral vs. Homestead: GST = 0.210, P = 0.0001, GʺST = 0.626, P = 

0.0001; Cape Coral vs. West Palm Beach: GST = 0.240, P = 0.0001, GʺST = 0.658, P = 

0.0001; Homestead vs. West Palm Beach: GST = 0.198, P = 0.0001 GʺST = 0.601, P = 

0.0001).  Collectively, these G-statistics are indicative of pronounced genetic 

differentiation between the Cape Coral, West Palm Beach, and Homestead populations.    

The AMOVA also suggested a high degree of genetic structure (Table 3).  In 

addition, the AMOVA yielded a negative variance component, which, in turn, resulted in 

a negative estimate of FIS (Table 3).  While slightly negative variance components may 
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occur when the actual value of an estimated parameter is zero, the directionality of the FIS 

estimate obtained via AMOVA is generally consistent with the population-specific, 

locus-by-locus estimates of FIS obtained from GENEPOP (Table 2).  In addition, the 

substantive, albeit lesser, magnitude of the within-population variance component 

relative to the among-population and within-individual variance components (Table 3) 

suggests that the negative within-population variance component may reflect the mild 

heterozygote excess observed in all three populations, which can occur in small 

populations and following population bottleneck events (Falconer 1989; Maruyama and 

Fuerst 1985; Rasmussen 1979; Robertson 1965).   
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Table 3. AMOVA results 

Source of Variation Degrees of 
Freedom 

Sum of 
Squares 

Variance 
Component 

Fixation Index P-valuea 

Among populations 2 117.386 1.52326 FST = 0.38053 0.00000b 

Among individuals 64 118.726 -0.62469 FIS = -0.25191 1.00000c 

Within individuals 67 208.000 3.10448 FIT = 0.22447 0.04040d 
Total 133 444.112 4.00304 N/A N/A 

 
aAll significance tests performed in ARLEQUIN are based on 10,100 permutations.  bP(permuted FST ≥ to 
observed FST).  cP(permuted FIS ≥ observed FIS), dP(permuted FIT ≤ observed FIT).   
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The genetic relationships among Florida’s Nile monitor populations were 

visualized via PCA, with the first two principal components accounting for 32.04% of the 

variation in the data (Figure 4).  Each population formed a discrete cluster, with no 

overlap among individuals.  The general conclusion that all three populations exhibit 

pronounced differentiation was reinforced by the analyses we performed in 

STRUCTURE.  As shown in Figure 5, the optimal value of K is three.  Moreover, 

STRUCTURE recovered our sampling scheme by unambiguously assigning all 10 

Homestead, all 17 West Palm Beach, and all 40 Cape Coral individuals to the three 

respective clusters (Figure 6).  Collectively, these results reinforce the view that the three 

documented V. niloticus populations in Florida are the result of separate introduction 

events. 
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Figure 4. Principal component analysis (PCA) of Varanus niloticus individuals from the 

three Florida populations. 
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Figure 5. Results of ten replicate STRUCTURE runs for K = 1-6.  Black circles represent 

means of the log probability of the data given K (Ln P(D)) ± one standard deviation. 
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Figure 6. Results of the analysis performed in STRUCTURE when K = 3.  Bars represent 

average cluster membership across 10 replicate runs that were aligned using CLUMPP.  
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Among-population gene flow 

 

The overall pattern of pronounced genetic differentiation that we inferred from 

the analyses described above was corroborated by our assessments of gene flow.  The 

results of BayesAss (Table 4) suggest that the proportion of migrants among all pairwise 

comparisons is very low compared to the degree of self-recruitment.  Each population 

exhibited signatures of genetic isolation, showing high proportions of the genetic 

contribution (97–99%)	originating from within the same population.  
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Table 4. Bayesian assessment of migration within and among Florida populations of 

Varanus niloticus. Columns represent migration sources, rows represent migration sinks, 

and bold values along the diagonal indicate the proportion of non-migrants. The 

confidence interval for each estimate is shown in parentheses. 

Population Homestead West Palm Cape Coral 
Homestead 0.972 (0.904–0.999) 0.014 (0.000–

0.059) 
0.014 (0.000–
0.065) 

West Palm 0.009 (0.000–0.040) 0.982 (0.938–
0.999) 

0.009 (0.000–
0.038) 

Cape Coral 0.004 (0.000–0.018) 0.004 (0.000–
0.018) 

0.992 (0.972–
0.999) 
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The assignment-based analyses, performed in GENECLASS2, correctly assigned 

all 67 individuals to the locales from which they were sampled (Figure 7).  Consequently, 

the ‘L_home/L_max’ statistics (see above) provided no evidence of first-generation 

migrants between any of the populations we sampled (all –log(L_home/L_max) = 

0.0000, minimum P-value across all 67 samples = 0.5000).  However, one individual 

from Homestead (PHomestead = 0.0013), one individual from West Palm Beach (PWPB = 

0.0036), and one individual from Cape Coral (PCC = 0.0086) were below the threshold of 

the assignment analysis (α = 0.01), raising the possibility that these individuals were 

introduced to these populations from unknown sources.  We therefore repeated the 

migrant detection analysis in GENECLASS2 using the L_home likelihood estimation, 

which produces a more appropriate test statistic when all potential sources of migrants 

have not been sampled (Piry et al. 2004).  Interestingly, the results of these tests suggest 

that the Homestead individual (-log(L_home) = 14.08, P = 0.0031), the West Palm Beach 

individual (-log(L_home) = 8.215, P = 0.0032), and the Cape Coral individual (-

log(L_home) = 9.5470, P = 0.0081) are all first generation immigrants from unknown 

sources.  



	
	

 

Figure 7. Stacked bar plots depicting the results of the assignment analysis performed in GENECLASS2.  Each 

individual is represented by a bar that is presented over a label indicating the population in which that individual was 

sampled.  For each individual, GENECLASS2 calculates the probability of that individual’s multilocus genotype being 
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derived from Cape Coral (light gray), West Palm Beach (dark gray), and Homestead (black).  Thus, each bar can 

consist of as many as three colors, with the height of each color indicating the relative strength of assignment to each of 

the three populations. The bars do not appear stacked because the relative strength of correct assignment (the likelihood 

that an individual originated from the population in which it was sampled) is extraordinarily high in all cases.
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Effective population size and demographic changes 

 

Across methods, the Ne for all Florida V. niloticus populations was estimated to be 

very low, ranging from 3.2–21.2 (Table 5).  In general, the estimated Ne for the Cape 

Coral population was slightly higher than the Homestead and West Palm Beach 

populations.  

 BOTTLENECK detected significant heterozygosity excess in all Florida V. 

niloticus populations, indicating recent population declines (Table 6). Although 

admixture following separate introductions from differing source populations may also 

increase heterozygosity levels in introduced populations (Kolbe et al. 2007), the low 

overall genetic diversity of the introduced V. niloticus populations, in addition to the tight 

genetic clustering observed in the PCA, suggests that each population was derived from a 

single introduction event. Therefore, this excess of heterozygotes, relative to Hardy-

Weinberg proportions, detected for each population likely resulted from reduced 

population sizes. The Wilcoxon test and Standardized Differences test all produced 

significant P-values across mutation models for every population (with the exception of 

the Standardized Differences test for Homestead under SMM).  Additionally, the Sign 

test showed significant values for all populations under the IAM, and for the West Palm 

Beach and Cape Coral populations under the TPM.  The Mode-shift test detected a 

distorted allele frequency distribution, indicative of population decline, in all Florida V. 

niloticus populations.  Lastly, the calculated M-ratios for both the Homestead and Cape 

Coral populations were below, albeit within one SEM, of the critical value of 0.68, which 

is suggestive of population bottlenecks.  
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Table 5. Estimated effective population size (Ne) for Florida Varanus niloticus 

populations. The 95% confidence interval for each estimate is shown in parentheses and 

the symbol ∞ indicates that the program was unable to estimate Ne from the data. The 

linkage disequilibrium and heterozygosity excess methods were implemented in 

NeESTIMATOR, and the approximate Bayesian computation method was implemented 

in ONeSAMP.  

Population Linkage 
Disequilibrium  

Heterozygosity 
Excess 

Approximate Bayesian 
Computation  

Homestead 7.2 (2.8–20.1) ∞ (4.4–∞) 13.8 (10.6–21.9) 
West Palm 3.2 (2.1–9.0) 6.8 (2.9–∞) 12.1 (9.2–17.6) 
Cape Coral 21.2 (9.5–66.2) 6.7 (4.1–24.1) 18.0 (13.2–26.8) 

 

 

Table 6. Probability values for tests of bottleneck effects in Florida Varanus niloticus 

populations under the infinite alleles model (IAM), two-phase model (TPM), and 

stepwise mutation model (SMM). For the Wilcoxon test, probabilities for the one-tailed 

tests of heterozygote excess are shown. M-ratios were compared to the critical value of 

0.68 to determine significance. Bold values denote significant P-values.  

Population Mutation 
Model 

Sign 
Test 

Standardized 
Differences 
Test 

Wilcoxon 
Test 

Mode-
shift 

M-ratio 
(SEM) 

Homestead IAM < 0.01 < 0.01 < 0.01 Shifted 0.647 
TPM 0.15  0.019 < 0.01 (0.073)* 
SMM 0.15  0.11 < 0.01  

West Palm IAM < 0.01 < 0.01 < 0.01 Shifted 0.697 
TPM 0.016 < 0.01 < 0.01 (0.064)* 
SMM 0.073 0.049 0.029  

Cape Coral IAM < 0.01 < 0.01 < 0.01 Shifted 0.674 
TPM < 0.01 < 0.01 < 0.01 (0.069)* 
SMM 0.096 < 0.01 < 0.01  

*Mean standard error (SEM) overlaps with critical M-value.  
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Introduction scenario testing 

 

Introduction scenario testing revealed that hypothesizing independent 

introductions events (scenarios 1–4) produced higher posterior probabilities than 

hypotheses postulating other scenarios (Figure 8A, Table 7).  Scenario 1, in which all 

three Florida populations originated independently from the source population around the 

same time, showed the highest likelihood (Figure 2).  This was followed closely by 

scenario 2, in which the West Palm Beach and Homestead populations were introduced 

more recently than the Cape Coral population.  

 When analyzing all scenarios together (analysis A), the most likely scenario 

(scenario 1) showed relatively high error rates, indicating that it could not be 

unambiguously differentiated from the other independent introduction scenarios, which 

differed only by the timing of introduction (2–4; Table 7).  However, when comparing 

scenario 1 only to the serial introduction scenarios (analysis B), the posterior probability 

and error rates significantly improved (Figure 8B; Table 7).  This indicates that the 

hypothesis of independent introduction events for the three V. niloticus population in 

Florida is supported over the serial introduction scenarios.   
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Figure 8.  Logistic regression plots showing the posterior probability of (a) all eight 

Varanus niloticus introduction scenarios examined in the DIYABC analysis and (b) 

scenarios 1, 5, 6, 7, and 8. (c) Posterior distributions of parameters estimated from 

scenario 1, the most likely introduction scenario. 



	
	

Table 7. Confidence in scenario selection by DIYABC for the introduction of Varanus niloticus into Florida. Analysis A compares all 8 

scenarios, and analysis B compares scenarios 1, 5, 6, 7, and 8. See Figure 2 for a visual representation of the introduction scenarios.  

Scenario Analysis Posterior 
probability 

95% Credibility 
interval 

Type I 
error 

Type II 
error 

* 1 – Independent introductions; Timing: 
Homestead (t1) = West Palm (t1) = Cape Coral 
(t1) 

A 0.2768 0.2602, 0.2935 0.58 0.097 
B 0.7399 0.7316, 0.7482 0.03 0.013 

2 – Independent introductions; Timing: 
Homestead (t1) = West Palm (t1) < Cape Coral 
(t2) 

A 0.2620 0.2453, 0.2788 0.76 0.054 
B N/A N/A N/A N/A 

3 – Independent introductions; Timing: West 
Palm (t1) < Homestead (t2) < Cape Coral (t3) 

A 0.2020 0.1882, 0.2158 0.56 0.081 
B N/A N/A N/A N/A 

4 – Independent introductions; Timing: 
Homestead (t1) = West Palm (t2) < Cape Coral 
(t3) 

A 0.1889 0.1760, 0.2019 0.58 0.091 
B N/A N/A N/A N/A 

5 – Serial introduction; Timing: Homestead 
from Cape Coral (t1)   < West Palm from Cape 
Coral (t2) < Cape Coral introduced (t3) 

A 0.0014 0.0000, 0.0137 0.28 0.049 
B 0.0181 0.0162, 0.0201 0.38 0.063 

6 – Serial introduction; Timing: West Palm 
from Cape Coral (t1)    < Homestead from Cape 
Coral (t2) < Cape Coral introduced (t3) 

A 0.0093 0.0000, 0.0214 0.20 0.057 
B 0.0525 0.0484, 0.0565 0.23 0.12 

7 – Serial introduction; Timing: West Palm 
from Homestead (t1)    < Homestead from Cape 
Coral (t2) < Cape Coral introduced (t3) 

A 0.0402 0.0273, 0.0532 0.24 0.043 
B 0.1178 0.1119, 0.1237 0.28 0.050 

8 – Serial introduction; Timing: Homestead 
from West Palm (t1)    < West Palm from Cape 
Coral (t2) < Cape Coral introduced (t3) 

A 0.0193 0.0073, 0.0313 0.27 0.037 
B 0.0717 0.0674, 0.0760 0.29 0.063 

* Most likely scenario - parameters presented for this scenario
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Parameters estimated for scenario 1 showed that the effective number of founding 

individuals ranged from 12.8 to 21.5 (Figure 8C; Table 8); however, lack of a clear peak 

for the current Ne prevented accurate estimation of this parameter.  The Ne for the source 

population was estimated to be around 5,850 individuals and the timing of the 

introductions likely occurred around 9.7 generations (approximately 19 years) ago.  The 

posterior distributions for these parameters are shown in Figure 8C. The bias indices for 

each of the parameters are close to 0 (Table 8) indicating that the estimated parameters 

are robust. For all analyses, both sets of priors produced consistent outcomes, and the 

results of the second analysis (with prior distribution 1 < N < 100) are presented in Tables 

9-10.  
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Table 8. Posterior distribution statistics and bias estimates for parameters inferred from 

Scenario 1 of the approximate Bayesian computation analysis using the first prior set (1 < 

N < 10,000). N1f = Number of founders for Cape Coral population; N2f = Number of 

founders for Homestead population; N3f = Number of founders for West Palm Beach 

population; NA = Ancestral effective population size; t1 = timing of introductions.  

 N1f N2f N3f NA t1 
Mean 19.0 28.2 19.3 9,310 31.4 
Median 15.6 24.5 15.8 8,070 24.0 
Mode 12.8 21.5 14.4 5,850 9.71 
95% HPD 6.68–46.2 8.75–64.4 5.98–48.7 2,710–

20,100 
6.31–81.2 

Mean Relative Bias: 
Mean 0.787 (2.885) 1.017 

(1.296) 
0.804 
(2.603) 

2.603 
(3.265) 

2.606 
(4.048) 

Median 0.626 (2.886) 0.943 
(1.294) 

0.630 
(2.595) 

2.370 
(3.268) 

1.965 
(4.054) 

Mode 0.5620 0.9507 0.5048 1.5803 0.4655 
Median Relative Bias: 
Mean 0.771 (2.885) 1.003 

(1.296) 
0.776 
(2.603) 

2.608 
(3.265) 

2.623 
(4.048) 

Median 0.607 (2.923) 0.921 
(1.272) 

0.610 
(2.571) 

2.349 
(3.266) 

1.963 
(4.100) 

Mode 0.537 0.932 0.477 1.406 0.403 
Square root of mean square error: 
Mean 0.823 (2.885) 1.061 

(1.296) 
0.848 
(2.603) 

2.731 
(3.265) 

2.671 
(4.048) 

Median 0.667 (2.887) 1.002 
(1.294) 

0.683 
(2.595) 

2.537 
(3.268) 

2.085 
(4.054) 

Mode 0.612 1.022 0.580 1.868 0.684 
 

 

 

 

 



	
	

Table 9. Confidence in scenario selection by DIYABC for the introduction of Varanus niloticus into Florida using the 

secondary prior distribution of 1 < N < 100. Analysis A compares all 8 scenarios, and analysis B compares scenarios 1, 5, 6, 7, 

and 8. See Figure 2 for a visual representation of the introduction scenarios.  

Scenario Analysis Posterior 
probability 

95% Credibility 
interval 

Type I 
error 

Type II 
error 

* 1 – Independent introductions; 
Timing: Homestead (t1) = West Palm 
(t1) = Cape Coral (t1) 

A 0.1935 0.1792, 0.2078 0.32 0.87 
B 0.4289 0.3988,0.4591 0.09 0.13 

2 – Independent introductions; 
Timing: Homestead (t1) = West Palm 
(t1) < Cape Coral (t2) 

A 0.1914 0.1776, 0.2053 0.82 0.27 
B N/A N/A N/A N/A 

3 – Independent introductions; 
Timing: West Palm (t1) < Homestead 
(t2) < Cape Coral (t3) 

A 0.1335 0.1221, 0.1449 0.5 0.55 
B N/A N/A N/A N/A 

4 – Independent introductions; 
Timing: Homestead (t1) = West Palm 
(t2) < Cape Coral (t3) 

A 0.2068 0.1921, 0.2215 0.42 0.32 
B N/A N/A N/A N/A 

5 – Serial introduction; Timing: 
Homestead from Cape Coral (t1)   < 
West Palm from Cape Coral (t2) < 
Cape Coral introduced (t3) 

A 0.0114 0.0012, 0.0215 0.18 0.30 
B 0.0269 0.0118, 0.0420 0.18 0.26 

6 – Serial introduction; Timing: West 
Palm from Cape Coral (t1)    < 
Homestead from Cape Coral (t2) < 
Cape Coral introduced (t3) 

A 0.0287 0.0190, 0.0384 0.18 0.24 
B 0.0628 0.0477, 0.0779 0.12 0.24 

7 – Serial introduction; Timing: West 
Palm from Homestead (t1)    < 
Homestead from Cape Coral (t2) < 
Cape Coral introduced (t3) 

A 0.1372 0.1223, 0.1520 0.53 0.47 
B 0.2833 0.2576, 0.3090 0.48 0.38 

A 0.0975 0.0859, 0.1091 0.54 0.47 
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8 – Serial introduction; Timing: 
Homestead from West Palm (t1)    < 
West Palm from Cape Coral (t2) < 
Cape Coral introduced (t3) 

B 0.1980 0.1796, 0.2164 0.5 0.36 

* Most likely scenario - parameters presented for this scenario 
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Table 10. Posterior distribution statistics and bias estimates for parameters inferred from 

Scenario 1 of the approximate Bayesian computation analysis using the secondary prior 

set (1 < N < 100). N1f = Number of founders for Cape Coral population; N2f = Number of 

founders for Homestead population; N3f = Number of founders for West Palm Beach 

population; NA = Ancestral effective population size; t1 = timing of introductions. 

 N1f N2f N3f NA t1 
Mean 48.6 53.8 47.3 7,160 46.5 
Median 45.8 52.7 43.6 5,740 45.3 
Mode 20.2 33.8 18.1 2,740 44.0 
95% HPD 11.1–93.6 14.2–95.1 9.96–93.1 1,880–

16,900 
20.5–76.9 

Mean Relative Bias: 
Mean 1.28  (1.522) 0.688  

(0.486) 
1.558  
(1.808) 

2.135  
(8.140) 

0.365  
(0.147) 

Median 1.101  
(1.521) 

0.703  
(0.482) 

1.361  
(1.808) 

1.505  
(8.136) 

0.372  
(0.147) 

Mode -0.293 1.238 -0.203 0.373 0.374 
Median Relative Bias: 
Mean 1.281  

(1.522) 
0.690  
(0.486) 

1.557  
(1.808) 

2.037  
(8.138) 

0.376  
(0.147) 

Median 1.109 
(1.500) 

0.712  
(0.470) 

1.363  
(1.833) 

1.401  
(8.136) 

0.385  
(0.136) 

Mode -0.349 1.796 -0.259 0.260 0.364 
Square root of mean square error: 
Mean 1.289  

(1.522) 
0.695  
(0.486) 

1.567  
(1.808) 

2.422  
(8.140) 

0.391  
(0.147) 

Median 1.126  
(1.521) 

0.714  
(0.482) 

1.380  
(1.808) 

1.801  
(8.136) 

0.404  
(0.147) 

Mode 0.397 1.522 0.377 0.751 0.435 
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Discussion 

Conceptual framework and intra-population patterns 

 

The fact that invasion is a common biological phenomenon was once considered 

to be a genetic paradox (e.g., Allendorf and Lundquist 2003; Frankham 2005; Lawson 

Handley et al. 2011).  The first reason for this is that rates of adaptive evolution depend 

critically on additive genetic variation (Fisher 1958).  Hence, recently founded 

populations with reduced genetic variation are expected to have limited capacities for 

adaptive evolution, as they struggle to become established in novel environments 

(Allendorf and Lundquist 2003).  The second reason for an ostensible genetic paradox 

stems from the dynamics of small populations, in which loss of genetic diversity due to 

drift and elevated inbreeding (Frankham et al. 2010) is expected to act against would be 

invaders during the earliest phases of their establishment.  Over the past decade, much 

progress has been made in understanding the genetic dynamics associated with invasion 

(reviewed by Lawson Handley et al. 2011).  Importantly, a number of studies have shown 

that phenomena such as multiple introductions followed by admixture (e.g., Kolbe et al. 

2004; 2008; Facon et al. 2008) and a lack of correlation between molecular and 

quantitative genetic diversity (e.g., Reed and Frankham 2001; Dlugosch and Parker 2008) 

may resolve the ‘genetic paradox of invasion biology’.  Indeed, invasion is now typically 

conceptualized as a multistage process that entails a lag phase, during which adaptations 

that facilitate invasiveness arise, followed by rapid range expansion (Keller and Taylor 

2008).  As such, catching potentially problematic populations early during the invasion 

process is of critical importance from a management perspective.        
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Although definitive conclusions about reductions to genetic diversity would 

require comparisons to populations in the native range (sensu Dlugosch and Parker 

2008), our results do suggest that V. niloticus populations in Southern Florida are in the 

process of recovering from recent bottlenecks. Assessments of heterozygosity excess 

(BOTTLENECK) and allele distributions (M-ratio) both provided evidence of recent 

population declines in all three Florida V. niloticus populations. The view that these 

populations are still recovering from founder effects is additionally supported by our 

estimates of genetic richness (mean number of alleles per locus between two and three in 

all three populations), which are low when compared to estimates from microsatellite 

surveys of native, non-threatened varanid populations (Fitch et al. 2005; Fu et al. 2011) 

as well as native V. niloticus populations under harvest pressures (Dowell et al. 2015).  

Furthermore, the current Ne estimated for all three Florida populations was low compared 

to assessments of native V. niloticus populations (Dowell et al. 2015).  Nevertheless, 

because none of the Florida populations of V. niloticus are inbred (see below) and most 

loci had more than one allele present at appreciable frequencies, heterozygosity-based 

measures of diversity were more substantial (0.410 < mean He < 0.460 in all three 

populations).  Indeed, the degree of similarity in genetic richness and diversity among the 

three Florida populations (see Table 2) is rather remarkable given that these populations 

are generally assumed to be quite different in size (Cape Coral >> West Palm Beach >> 

Homestead) and time since establishment (by ca. 1990, 2000, and 2004 respectively; 

Enge et al. 2004; Campbell 2005).  Perhaps most surprising is that the large, 

comparatively old, and deeply sampled Cape Coral population had the lowest diversity 

among the three populations, raising the possibility that this population was established 
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by a smaller and/or less diverse group of founders than the Homestead and West Palm 

Beach populations (see below).   

A recent study by Dowell et al. (2015) examined the fine-scale genetic patterns of 

V. niloticus populations in West Africa under varying levels of exploitation pressure, and 

represents the only population-level assessment of native V. niloticus populations. For the 

four discrete populations that were inferred from microsatellite data, both genetic 

diversity and effective population size estimates were larger than for the introduced 

populations examined here, displaying He values between 0.328 – 0.429, and Ne estimates 

ranging from 10.9 – 1,327.27, depending on the population and method of analysis 

(Dowell et al. 2015). However, this study does not provide information on unharvested 

populations, and thus the results may not be representative of native V. niloticus 

populations across their full distributions. Additionally, because the previous study 

utilized different microsatellite markers than our present investigation, we were unable to 

make direct comparisons between these parameters. 

 

Genetic structure and introduction scenario  

 

We assessed the degree of genetic structure among the Cape Coral, Homestead, 

and West Palm Beach populations via several independent analyses that are based on a 

variety of conceptual and computational frameworks.  In all cases, the results suggest 

there is marked genetic differentiation among South Florida’s documented V. niloticus 

populations.  Interestingly, the pair-wise G statistics that we calculated revealed that all 

three populations exhibit similar levels of differentiation (see above), lending credence to 
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the preliminary results of ongoing work suggesting that Florida’s documented Nile 

monitor populations are all derived from a single evolutionary lineage in West Africa 

(Dowell et al. unpublished data).  One of the approaches to assignment that we used 

(GENECLASS2) explicitly failed to detect migrants among the three populations and the 

other approaches explicitly indicated that there is little evidence for admixture.   

Approximate Bayesian computation (ABC) has been widely used to differentiate 

complex models (reviewed in Beaumont 2010), including large numbers of complex 

introduction scenarios for invasive species (Auger-Rozenberg et al. 2012; Benazzo et al. 

2015; Boissin et al. 2012; Boubou et al. 2012; Konečný et al. 2013).  Upon introduction, 

populations may undergo stochastic processes, such as genetic drift and admixture, 

producing complicated genetic signatures that are undetectable by most genetic analysis 

methods (Guillemaud et al. 2010).  The model-based approaches underlying ABC 

analyses are superior to other methods, including maximum-likelihood, for identifying 

complex demographic scenarios (Beaumont 2010; Guillemaud et al. 2010). While our 

introduction scenario analysis could not differentiate among hypotheses differing in the 

timing of introduction events, we found strong support for independent introductions over 

serial introduction hypotheses.  The inferred timing of introduction (approximately 19 

years ago) roughly corresponds to when the first V. niloticus individuals were observed in 

Florida. Additionally, this analysis suggests that the Cape Coral population was founded 

by fewer individuals than the other populations, which is reflected in the lower genetic 

diversity estimates for Cape Coral (see above). Collectively, these results strongly 

support the view that the V. niloticus populations in Cape Coral, Homestead, and West 
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Palm Beach resulted from independent introduction events and that these populations are 

not connected by substantive gene flow.   

Although these findings are encouraging in terms of management plans aimed at 

control and/or eradication, the possibility of additional populations and/or releases raised 

by our analysis in GENECLASS2 is cause for concern.  While it is true that none of the 

P-values associated with the -log(L_home) tests for first generation migrants would pass 

a multiple-testing correction that adjusted across all individuals (0.05/67 ~ 0.0007 and 

minimum P = 0.0031), numerous unverified sightings of V. niloticus have been reported 

in five counties that have no confirmed breeding populations (Florida Wildlife 

Commission 2015). As such, the identification of putative migrants from unknown 

sources in all three populations is not particularly surprising.   

Conclusion and management recommendations 

In this paper, we present data that are consistent with the idea that Southern 

Florida’s V. niloticus populations are still in the relatively early stages of the invasion 

process.  All three populations that we sampled exhibit limited genetic diversity and show 

signs of drift-mutation disequilibrium.  In addition, anecdotal information on area 

occupied and yield as a function of trapping effort suggest that the West Palm Beach and 

Homestead populations are still relatively small.  Our data also strongly suggest that V. 

niloticus has been introduced to Southern Florida on at least three separate occasions, as 

the Cape Coral, Homestead, and West Palm Beach populations are all well differentiated 

from one another genetically.  Given the roles that multiple introductions, admixture, and 

heterosis may play in the invasion process (Facon et al. 2008; 2010), this result is 

simultaneously encouraging and cause for concern.  In contrast to our findings, multiple 
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introduction events followed by admixture have made many invasive brown anole 

(Anolis sagrei) populations in Florida more diverse than the native Cuban populations 

from which they are derived (Kolbe et al. 2004).  Moreover, analyses of seven additional 

invasive Anolis species in Florida and the Dominican Republic led Kolbe et al. (2007) to 

hypothesize that admixture between independently introduced individuals of varied 

genetic background may be a common mechanism by which genetic variation in invasive 

populations becomes elevated after the initial bottlenecks associated with founding 

events.  Thus, it is imperative that wildlife managers focus on containment strategies 

aimed at preventing inter-regional admixture, which could enhance the invasiveness of V. 

niloticus in Florida.  Given Florida’s extensive network of canals, the high mobility of V. 

niloticus, and the number of confirmed sightings (Figure 1; Table 1) in regions removed 

from the three documented populations examined in this study, it is possible, if not likely, 

that intra-regional dispersal is already occurring. Indeed, the existence of 

metapopulations and hierarchical population structure is a potential explanation of the 

genetic evidence we present for migrants from unknown sources. As such, concerted 

follow-ups on credible sightings are warranted.  

It is noteworthy to mention that V. niloticus has been listed as a conditional 

species by the Florida Wildlife Commission since 2010. Therefore, only breeders, public 

exhibitioners, researchers, and nuisance trappers that have obtained a permit, for which 

they must maintain records for each animal they possess, can keep and/or transport V. 

niloticus (http://myfwc.com/wildlifehabitats/nonnatives/regulations/snakes-and-lizards/). 

Consequently, it is unlikely that the pet trade is still contributing to ongoing introductions 

in Florida. At present, treating the regions around Cape Coral, West Palm Beach, and 
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Homestead as separate management units appears to be a sensible management strategy.  

However, the situation should continue to be monitored for evidence of gene flow and 

admixture.   
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CHAPTER V 

INSIGHTS INTO THE INTRODUCTION HISTORY AND POPULATION GENETIC 

DYNAMICS OF THE ARGENTINE BLACK AND WHITE TEGU (SALVATOR 

MERIANAE) IN FLORIDA 

 

 

Introduction 

The second greatest threat to global biodiversity is the spread of invasive species 

(Wilcove et al. 1998). Invasive species can negatively impact native species either 

directly through competition, predation, and disease or indirectly through alteration of 

ecosystem structure and function (Klug et al. 2015; Mooney and Cleland 2001) The 

spread of invasive species has accelerated over the last few centuries due to increases in 

international trade and transport (Abdelkrim et al. 2005; Di Castri 1989; Mack et al. 

2000), and port-rich coastal regions have frequently served as points of entry.  Florida is 

especially susceptible to the proliferation of invasive reptiles largely due to three factors: 

(1) a subtropical climate; (2) the presence of altered habitats (ponds, canals, levees) that 

provide suitable migration corridors for invasive species; and (3) an extensive exotic pet 

industry that imports and/or produces potentially invasive organisms (Mazzotti et al. 

2015; Smith 2006). Consequently, in Florida, there are more nonnative lizards than native 

lizard species (Krysko et al. 2011; Pernas et al. 2012).  One of the nonnative species that 

is of particular concern is the Argentine black and white tegu (Salvator merianae) (Klug 
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et al. 2015). S. merianae was first observed in Hillsborough County, Florida in 2006 on 

the Balm Boyette Nature Preserve (Enge 2007). Purportedly, individuals to be observed 

were introduced by a dealer that illegally released specimens with broken tails or other 

defects that diminished their market value (Enge 2007). In addition to the Hillsborough 

population, there is also a self-perpetuating S. merianae population approximately 300 

km away in Miami-Dade County near Florida City (Pernas et al. 2012).  

Salvator merianae is a large lizard with a broad, omnivorous diet that consists of 

vegetation, fruit, seeds, snails, arthropods, fish, birds, bird eggs, small mammals, 

amphibians, reptiles, reptile eggs, and carrion (Galetti et al. 2009; Kiefer and Sazima 

2002; Mercolli and Yanosky 1994). Due to S. merianae’s propensity for depredating 

nests, this species poses a direct threat to Florida’s sensitive, ground-nesting species such 

as American crocodiles (Crocodylus acutus), Eastern indigo snakes (Drymarchon 

couperi), Cape Sable seaside sparrow (Ammodramus maritimus mirabilis), and gopher 

tortoises (Gopherus polyphemus) (Mazzotti et al. 2015).  S. merianae is native to 

southeastern Brazil, Uruguay, eastern Paraguay, and northern Argentina (Luxmoore et al. 

1988). Within their native range S. merianae occupy open habitats such as forest 

clearings, secondary forests, and other disturbed areas across a broad range of tropical, 

subtropical, and temperate climates (Cardozo et al. 2012; Chamut et al. 2012; Embert et 

al. 2010; Fitzgerald 1994; Winck and Cechin 2008). S. merianae also exhibits dormancy 

in response to winter temperatures and periods of drought (Abe 1983). Based on these 

distributional and ecological characteristics, Lanfri et al. (2013) suggested that S. 

merianae could spread as far north as West Virginia.  
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 Preventing the spread of harmful species, such as S. merianae, is necessary for 

effective management planning.  However, the control of invasive species is often 

hindered by a lack of information about the history and origins of the population in 

question and the level of connectivity between groups of individuals (Rollins et al. 2009). 

It is generally assumed that isolated populations are easier to eradicate than populations 

that are connected by migration and gene flow, because connected populations may 

require simultaneous eradication to prevent recolonization by migrants from neighboring 

areas (Abdelkrim et al. 2005; Rollins et al. 2009). As such, when populations are 

connected, management strategies focused on containment may be most feasible (Rollins 

et al. 2009).  

 Currently, the introduction histories of Florida’s S. merianae populations are not 

known. Furthermore, it is unclear whether there is migration between the Hillsborough 

and Miami-Dade populations. Examination of genetic structure across the range of an 

introduced species can provide insight into these issues and enable wildlife managers to 

avoid arbitrary decisions and/or labor intensive field methods such as radio telemetry 

(Abdelkrim et al. 2009). To this end, we used microsatellite markers to examine intra-

population genetic diversity, genetic structure, and possible introduction scenarios in 

Florida’s documented S. merianae populations. 
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Materials and Methods 

Field sites, sampling, and tissue collection 

 

Salvator merianae specimens were collected from Hillsborough and Miami-Dade 

counties, Florida (Figure 1). In Hillsborough County, S. merianae specimens are 

primarily found in ruderal habitats near Balm Boyette Scrub Preserve located between the 

cities of Riverview and Lithia. At the time of this study, 38 specimens had been collected 

from this locale—all of which were used in this study. These samples were collected 

between 2012 and 2013 by one of us (TSC) from a 43.5 km2 area centered around 

approximately 27°47’55”N, 82°11’56”W.  

 In Miami-Dade County, S. merianae are primarily found in the southeastern 

portion of the County near Florida City (25°23’02”N, 80°30’44”W). To date, nearly 600 

specimens (Klug et al. 2015) have been removed from this area — a subset (N = 40) of 

which was used in this study. S. merianae specimens in Miami-Dade County are 

primarily removed from disturbed areas such as ditches, canal levees, and historical 

wetlands that are comprised of late successional grasslands that are being replaced by 

shrubs and grasslands (Klug et al. 2015). The S. merianae specimens from Miami-Dade 

County that were used in this study were captured between 2009 and 2011. The Florida 

Wildlife Commission provided these samples.   
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Figure 1. Map showing the location of the sampling sites of S. merianae in Southern 

Florida and the position of Florida within the Southeastern US. 

.  
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DNA isolation and PCR-based genotyping 

 

We extracted Genomic DNA from muscle and liver samples obtained from a total 

of 78 tegus (Hillsborough: N = 38; Miami-Dade County: N = 40) using the Wizard 

Genomic DNA Purification Kit (Promega) according to the manufacture’s instructions. 

We examined 14 microsatellite loci developed using S. merianae samples from the 

Miami-Dade population (Wood et al. 2015).  All PCRs had a final volume of 25 µl and 

contained 2 µl of template (DNA concentration between 10 and 100 ng /µl), 1x buffer, 

1.5 mM MgCl2, 0.2 mM of each dNTP, 0.8 µM of non-M13(-21)-twinned primer, 0.8 µM 

0f 6-FAM labeled M13(-21) primer, 0.2 µM of M13(-21)-twinned primer, and 0.625 

units of GoTaq polymerase (Promega).  Reaction conditions were as follows: 2 min at 

94° C followed by 25 cycles of 94° C for 30 s, 30 s at 62° C decreasing by –0.3°C per 

cycle, and 72° C for 40 s, followed by eight cycles of 94° C for 30 s, 53° C for 30 s, and 

72° C for 40 s, followed by a final cleanup step of 30 min at 72° C.  Agarose gel 

electrophoresis (2% gels) was used to confirm successful amplification, and fragment 

analysis was performed at the Arizona State University DNA Lab using an Applied 

Biosystems 3730.   PEAK SCANNER 1.0 (Applied Biosystems) was used to manually 

score all loci.  In order to identify breaks in the amplicon sizes, allelic bins were 

determined by graphically examining the rank-ordered fragment size distributions of each 

locus (Guichoux et al. 2011).  Finally, Microsoft EXCEL was used to bin the data from 

each locus into discrete classes that were defined by each allele’s empirically determined 

size range. 
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Summary statistics and quality control 

 

We used MICRO-CHECKER 2.2.3 (Van Oosterhout et al., 2004) to examine each 

locus for evidence of null alleles, large allele dropout, and scoring errors. GENALEX 6.5 

(Peakall and Smouse, 2012) was used to calculate summary statistics including number 

of alleles, effective number of alleles, observed heterozygosity, and expected 

heterozygosity.  GENEPOP 4.3 (Rousset, 2008) was also used to test for departures from 

Hardy-Weinberg proportions and genotypic equilibrium. Finally, GENEPOP 4.3 was 

used to calculate the Weir and Cockerham (1984) estimator of FIS.   

 

Assessment of population structure 

 

Several approaches were used to determine the degree of genetic differentiation 

between the S. meriane populations in Hillsborough and Miami-Dade Counties.  

GENALEX 6.5 (Peakall and Smouse 2012) was used to calculate GST values based on 

Nei and Chesser’s (1983) unbiased estimators of HS and HT and to calculate Hedrick’s 

further standardized GST (GʺST; Meirmans and Hedrick 2011).  All resampling tests 

conducted in GENALEX were based on 9,999 permutations.  We also performed an 

AMOVA that partitioned genetic variation among populations, among individuals within 

populations, and within individuals using ARLEQUIN 3.5.1.2 (Excoffier and Lischer 

2010).   

STRUCTURE 2.3.4 (Pritchard et al. 2000; Falush et al. 2003) was used to 

estimate the number of populations (K) and to assign individuals to populations (i.e., 
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clusters).  We also used STRUCTURE HARVESTER (Earl et al. 2012) to compute the 

optimal K based on ΔK (Evanno et al. 2005). We used the correlated allele frequencies 

model to allow for the possibility that both populations originated from a common source 

and allowed for the possibility of admixture.  We conducted 10 replicate STRUCTURE 

runs for K = 1-6 with a burn-in period of 500,000, followed by 500,000 MCMC steps. 

CLUMPP (Jakobsson and Rosenberg 2007) was used to align cluster assignment across 

replicate runs and STRUCTURE PLOT (Ramasamy 2014) was used to visualize and 

interpret the results of the summarization across runs produced by CLUMPP.    

 Because introduced populations may not exhibit Hardy-Weinberg or linkage 

equilibrium, the major assumptions of STRUCTURE (Pritchard et al. 2000), it is also 

important to examine the genetic partitioning of these populations using alternate 

approaches. Therefore, we performed a Principal Component Analysis (PCA) on raw 

genotypes with the gstudio package (Dyer 2012) in R 3.1 (R Core Team 2014) and 

plotted the results with ggplot2 (Wickham 2009).  

 

Among-population gene flow 

 

We assessed the degree of recent gene flow between the Hillsborough and Miami-

Dade populations with BAYESASS 1.3 (Wilson and Rannala 2003). This method infers 

pairwise migrations rates during recent generations by utilizing a coalescent-based 

approach. We performed 108 iterations, sampling every 2,000 iterations, with a burn-in of 

107. To determine if the runs had reached convergence, we plotted likelihood scores over 

time and examined the consistency of results across independent runs.  
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In addition, we used GENECLASS2 (Piry et al. 2004) to perform assignment tests 

via Paetkau’s (1995) frequency-based criterion.  We used a default frequency of 0.01 for 

missing alleles and the Monte-Carlo resampling method described by Paetkau et al. 

(2004).  Probability computations were based on 10,000 simulated individuals, and the 

type I error rate was 0.01.  GENECLASS2 and Paetkau’s (1995) frequency-based 

criterion were also used to test for the presence of first-generation migrants.  Since the 

Hillsborough and Miami-Dade populations represent the only known S. merianae 

populations in Florida, we used the ‘L_home/L_max’ test statistic because it is most 

appropriate when all source populations have been sampled (Piry et al. 2004). 

 

Effective population size and demographic history 

 

To further examine the possibility of inbreeding within the introduced S. 

merianae populations, we estimated their effective population sizes (Ne) with 

NeESTIMATOR 2.0 (Do et al. 2014). These estimates were inferred using the linkage 

disequilibrium (LD) method, which is based on the frequent occurrence of non-random 

associations of alleles across independent loci in small populations (Waples and Do 

2008). For comparison, we additionally estimated Ne using the heterozygote excess 

method, which is based on the observation that a small number of breeding individuals in 

a population frequently results in an excess of heterozygotes in the next generation 

(Zhdanova and Pudovkin 2008), as well as the molecular coancestry method, based on 

allele sharing (Nomura 2008).  
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We tested for evidence of recent population declines using the program 

BOTTLENECK 1.2.02 (Piry et al. 1999). This method assesses deviations from expected 

heterozygosity, indicative of population decline (heterozygote excess) and expansion 

(heterozygote deficiency), as well as examines the distribution of allele frequencies, 

which are typically skewed following bottleneck events (Piry et al. 1999). We tested for 

deviations under the stepwise mutation model (SMM), infinite alleles model (IAM), and 

the two-phase model (TPM) with 70% SMM. We performed 1,000,000 iterations and 

tested for significance with the sign test, standardized differences test, Wilcoxon signed-

rank test, and mode-shift test, all implemented by BOTTLENECK. We additionally 

tested for genetic signatures of population expansion by performing a within-locus k test 

and an interlocus g test with the program KGTESTS (Bilgin 2007). The k test is based on 

the observation that the typical allele distribution at a locus has several modes in a 

constant-sized population due to a small number of historic splitting events in the 

genealogy (Reich and Goldstein 1998, Reich et al. 1999). Conversely, an expanding 

population shows a more peaked allele distribution with a single mode due to many 

recent splitting events occurring near the time of the expansion (Reich and Goldstein 

1998, Reich et al. 1999). Furthermore, expanding populations typically show lower levels 

of variance in the widths of allele distributions across loci than do constant-sized 

populations (Reich and Goldstein 1998). Therefore, the g test measures the variance in 

the allele distribution at each locus as well as the variance of these variances across loci 

to determine if a population shows evidence of expansion (Reich et al. 1999). Finally, we 

calculated M-ratios (Garza and Williamson 2001) in EXCEL using the output from 

GENALEX. M-ratios are defined as the ratio of k (total number of alleles) to r (overall 
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range in allele size in number of repeat units). These ratios can be indicative of recent 

bottlenecks when they are less than the critical value of 0.68 defined by Garza and 

Williamson (2001).   

 

Introduction scenario testing 

 

To infer the introduction history of the Florida S. merianae populations, we tested 

six competing scenarios with DIYABC 2.1.0 (Cornuet et al. 2014). These scenarios test 

various hypotheses of the S. merianae introduction, including two independent 

introduction events from South America (scenario 1) and serial introduction pathways, 

where the second introduced population originated from the first introduced population, 

rather than separately from the native source population (scenarios 2 and 3). Additionally, 

we tested for the possibility of a ‘ghost’ population, i.e. a population that is contributing 

to the introduced populations but has yet to be genetically sampled. Scenario 4 describes 

a situation where a single introduction event occurred resulting in an undetected 

population, and the two sampled populations subsequently emerged from this original 

population. Lastly, scenarios 5 and 6 hypothesize a combination of independent 

introductions and the presence of an unsampled population.   

For all analyses, we used uniform prior distributions defined as follows: : 1 < N 

<10,000; 1 < NG <10,000; 1 < NA < 50,000; 1 < Nf < 100; 1 < db < 20; 1< t1 < t2 < t3 < 

100; where ‘N’ denotes the current effective population size, ‘NA’ denotes the ancestral 

(source) effective population size, ‘NG’ denotes the unsampled (ghost) effective 

population size, ‘Nf’ denotes the effective number of founding individuals, ‘db’ denotes 
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the bottleneck duration in generations, and ‘t’ the time in generations. Priors for the 

microsatellite mutation model were set to default values, including the Generalized 

Stepwise Mutation model (Estoup et al. 2002), and a uniform prior distribution for both 

the mean mutation rate (1E-4 to 1E-3) and the geometric distribution (1E-1 to 3E-1). 

Summary statistics included the mean number of alleles, mean genic diversity, and mean 

size variance for both the one-sample and two-sample statistics. Additionally, we used 

the mean Garza-Williamson’s M index (one-sample statistic) as well as pairwise FST 

values and the mean classification index (two-sample statistics). We simulated 1 million 

datasets for each scenario, for a total of 6 million, and evaluated the scenario and 

parameters priors by performing a PCA, as implemented in the program. 

We determined the optimal scenario based on posterior probabilities compared 

using the logistic regression analysis implemented in DIYABC, using the 1% closest 

simulated data sets. For comparison, we additionally performed a pre-processing step 

(Linear Discriminant Analysis) on the summary statistics prior to computing the logistic 

regression. To further evaluate the power of our ABC method in distinguishing among 

the various competing scenarios, we analyzed 100 simulated pseudo-observed data sets 

(pods) for each scenario, using parameter values drawn from the same prior distribution 

as our previous analyses. The relative posterior probabilities of each scenario, estimated 

for each pod, were then used to calculate the likelihood of excluding the focal scenario 

when it is actually the true scenario (type I error rate), as well as the likelihood of 

selecting the focal scenario when it is not the true scenario (type II error rate).  

We computed the posterior distributions of the parameters under the most likely 

scenario, using the logit transformation on the 1% closest simulated data sets. Confidence 
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in the parameter estimations was assessed by calculating relative bias and relative root 

mean square error, based on 5,000 pods drawn from the posterior distributions.  

 

Results 

Summary statistics and quality control 

 

In total, we genotyped 78 individuals at 14 microsatellite loci. While all 14 loci 

were polymorphic, the summary statistics presented in Table 1 suggest that the 

Hillsborough and Miami-Dade populations both have limited genetic diversity. Upon 

performing Holm’s (1979) correction for multiple testing via treating the tests associated 

with each population as a family of tests, we detected significant departures from Hardy-

Weinberg proportions for Teg4, Teg5, Teg14, Teg17, and Teg19. In addition, Teg4, Teg5, 

and Teg19 exhibited homozygote excess. Not surprisingly, MICRO-CHECKER detected 

evidence of null alleles for Teg4, Teg5, and Teg19. Upon performing Holm’s (1979) 

correction for multiple testing, there was evidence for genotypic disequilibrium between 

Teg14-Teg19 in the Miami-Dade population.  Due to the aforementioned quality control 

issues, we removed Teg4, Teg5, Teg17, and Teg19 from all further analyses. Thus, all 

analyses performed in GENALEX, ARLEQUIN, STRUCTURE, BAYESASS, 

GENECLASS2, NeESTIMATOR, KGTESTS, ONeSAMP, BOTTLENECK, and 

DIYABC were based on the 10 remaining loci.    

 

 

 



	
	

Table 1. Summary statistics and diversity estimates for the 14 loci that were used for genotyping. 
 

Locus/Pop. N k HO HE FIS 
No. Effective 

Alleles 
No. Private 

 Alleles M 
Hillsborough         
Teg1 27 4 0.74 0.66 -0.10 2.96 0 0.80 
Teg2 34 3 0.62 0.49 -0.25 1.96 1 0.60 
Teg4 37 3 0.00 0.10 1.00*† 1.12 2 0.60 
Teg5 27 4 0.52 0.70 0.28† 3.32 1 0.50 
Teg6 33 2 0.55 0.49 -0.10 1.96 1 0.67 
Teg7 32 4 0.53 0.61 0.15 2.58 0 0.57 
Teg9 30 3 0.63 0.64 0.03 2.78 1 0.50 
Teg10 31 3 0.61 0.66 0.09 2.98 0 0.16 
Teg12 33 3 0.61 0.63 0.05 2.71 1 0.75 
Teg13 35 2 0.63 0.50 -0.24 2.00 1 0.29 
Teg14 34 5 0.68 0.59 -0.13* 2.45 2 0.50 
Teg17 34 2 0.88 0.49 -0.78* 1.97 0 0.33 
Teg19 32 1 0.00 0.00 N/A 1.00 0 1.00 
Teg20 27 4 0.67 0.63 -0.04 2.71 2 1.00 
Pop. Mean 31.86 3.07 0.55 0.51 0.00 2.32 0.86 0.59 
Pop. SEM 0.84 0.29 0.07 0.06 0.11 0.18 0.21 0.07 
Miami-Dade         
Teg1 40 4 0.63 0.56 -0.11 2.26 0 0.80 

Teg2 40 2 0.03 0.02 N/A 1.03 0 0.40 
Teg4 40 2 0.00 0.26 1.00*† 1.34 1 1.00 
Teg5 36 3 0.42 0.60 0.31*† 2.48 0 0.60 
Teg6 40 2 0.25 0.22 -0.13 1.28 1 1.00 
Teg7 40 4 0.33 0.28 -0.14 1.39 0 0.57 
Teg9 40 2 0.08 0.12 0.37 1.13 0 1.00 
Teg10 39 4 0.59 0.53 -0.11 2.11 1 0.21 
Teg12 38 2 0.08 0.08 -0.03 1.08 0 1.00 
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Teg13 38 2 0.47 0.45 -0.04 1.82 1 0.25 
Teg14 40 4 0.68 0.64 -0.04 2.79 1 0.40 
Teg17 40 2 0.88 0.49 -0.77* 1.97 0 0.33 
Teg19 38 3 0.32 0.52 0.41*† 2.10 2 1.00 
Teg20 38 2 0.58 0.43 -0.33 1.76 0 1.00 
Pop. Mean 39.07 2.71 0.38 0.37 0.03 1.75 0.50 0.68 

Pop. SEM 0.34 0.24 0.07 0.05 0.12 0.15 0.17 0.09 
*	Significantly	deviated	from	Hardy-Weinberg	equilibrium;	† Evidence	of	null	alleles	
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Assessment of population differentiation 

 

Locus-specific GST estimates ranged from 0.028 to 0.312 and were statistically 

significant (maximum P = 0.011, minimum P = 0.001).  Locus-specific estimates GʺST 

were also statistically significant (maximum P = 0.009, minimum P = 0.001), with values 

ranging from 0.119 to 0.893. The global GST estimate that resulted from averaging 

information across all loci was 0.170 (SE = 0.025, P = 0.0001). Similarly, the global 

estimate for GʺST was 0.545 (SE = 0.060, P = 0.0001).   The AMOVA results computed 

in ARLEQUIN are also indicative of a high degree of genetic differentiation between the 

Hillsborough and Miami-Date populations (Table 2) and suggested moderate 

heterozygote excess (i.e., produced a negative FIS estimate).  While this may seem 

contrary to the Weir and Cockerham estimators of FIS in Table 1, when the locus with 

consistently high FIS estimates is excluded (Teg4; FIS = 1 in Hillsborough and Miami-

Dade), the means of the Weir and Cockerham estimators are -0.0867 and -0.0508 for 

Hillsborough and Miami-Dade respectively. 
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Table 2. AMOVA results. 

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Variance 
Component 

Fixation Index P-valuea 

Among 
populations 

1 67.85 0.85 FST = 0.32 0.00b 

Among 
individuals 

76 111.62 -0.36 FIS = -0.20 1.00c 

Within individuals 78 171.00  2.19 FIT = 0.18 0.22d 

Total 155 350.47 2.68 N/A N/A 
aAll significance tests performed in ARLEQUIN are based on 10,100 permutations.  bP(permuted FST ≥ to 
observed FST).  cP(permuted FIS ≥ observed FIS), dP(permuted FIT ≤ observed FIT).   
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In the PCA generated from the raw genotypic data, the first two principle 

components accounted for 35.57% of the overall genetic variation (Figure 2). The plot 

(Figure 2) produced separate clusters for the Hillsborough and Miami-Dade S. merianae 

populations, with only two intermediate individuals. In addition, one member of the 

Hillsborough population showed a large discrepancy in principal component 2 and did 

not cluster with the remaining individuals. As shown in Figure 3, STRUCTURE also 

inferred two clusters; however, one individual assigned to the Miami-Dade cluster had a 

substantial proportion of its genome derived from the Hillsborough cluster (Figure 4). 

Conversely, a second individual that was assigned to the Hillsborough cluster had a 

substantial proportion of its genome derived from the Miami-Dade cluster (Figure 4). 
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Figure 2. Principal component analysis based on raw genotypes of introduced Salvator 

merianae populations in Florida. 
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Figure 3. Results of the analysis performed in STRUCTURE when K = 2.  Bars 

represent average cluster membership across 10 replicate runs that were aligned 

using CLUMPP.  
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A 

 

B 

 

Figure 4. Evanno et al. (2005) plots for detecting the number of K groups that best fit the 

data. (A) Mean log likelihood (Ln P(D)) plus or minus one standard deviation over 10 

replicate runs. (B) The modal value of delta K (ΔK) is the true K or the uppermost level of 

structure.  
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Among-population gene flow 

 

Although the analysis performed in STRUCTURE provided evidence of 

admixture (Figure 3), our analysis of recent migration rates in BAYESASS suggests that 

gene flow between Hillsborough and Miami-Dade is rare (Table 3), as 98-99% of both 

populations’ genetic contribution originated from within the same population.   
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Table 3. Bayesian assessment of migration within and among Florida populations of 

Salvator merianae. Columns represent migration sources, rows represent migration sinks, 

and values along the diagonal indicate the proportion of non-migrants. The confidence 

interval for each estimate is shown in parentheses. 

Population Hillsborough Miami-Dade 
Hillsborough 0.989 (0.963–1.000) 0.011 (0.000–0.037) 
Miami-Dade 0.015 (0.002–0.040) 0.985 (0.960–0.998) 
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The assignment analyses, performed in GENECLASS2, correctly assigned 77 of 

78 individuals to the locales from which they were sampled (Figure 5). One individual 

sampled in Miami-Dade County was assigned to the Hillsborough population. Not 

surprisingly, GENECLASS2 found evidence that this individual from the Miami-Dade 

population was a first-generation migrant from Hillsborough (log(L_home/L_max) = 

2.295, P = 0.0001). Because the analyses we performed in DIABC suggested the 

presence of a ‘ghost population’ (see below) we, repeated the migrant detection analysis 

in GENECLASS2 using the L_home likelihood estimation, which produces a more 

appropriate test statistic when there are populations that have not been sampled (Piry et 

al. 2004). The results of this analysis suggested that that same Miami-Dade individual (-

log(L_home) = 10.721, P = 0.0001) and an individual from Hillsborough County (-

log(L_home) = 11.663, P = 0.0001) were both first-generation migrants.   



	
	

 

Figure 5. Stacked bar plots depicting the results of the assignment analysis performed in GENECLASS2.  Each individual is 

represented by a bar that is presented over a label indicating the population in which that individual was sampled.  For each 

individual, GENECLASS2 calculates the probability of that individual’s multilocus genotype being derived from Hillsborough 

(black) and Miami-Dade (light gray).  Thus, each bar can consist of as many as two colors, with the height of each color 

indicating the relative strength of assignment to each of the three populations.
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Effective population size and demographic history 

 

The Ne estimated for the introduced S. merianae populations varied considerably 

across methods (Table 4). The linkage disequilibrium method estimated the Miami-Dade 

population to have a larger Ne than the Hillsborough population, while the molecular 

coancestry method produced the opposite pattern, and the heterozygote excess method 

showed both populations to be similar in size.  

The analyses performed in BOTTLENECK suggested that the Hillsborough S. 

merianae population has undergone a recent population bottleneck (Table 5). However, 

the opposite was true for the Miami-Dade population—heterozygosity excess was not 

detected for any of the tests or mutation models. Additionally, we found no evidence of 

population expansion for either population based on the k test (Hillsborough: P = 0.93; 

Miami-Dade: P = 0.15) and the g test (Hillsborough: g = 1.89; Miami-Dade: g = 2.88). 

Lastly, the calculated M-ratios for both Hillsborough and Miami-Dade populations were 

both equal to or below the critical value of 0.68 (Table 1). It is noteworthy to mention 

that the M-ratio for the Hillsborough population was lower than for the Miami-Dade 

population (0.59 < 0.68), indicating that the Hillsborough population has undergone a 

more intense bottleneck event.  
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Table 4. Estimated effective population size (Ne) for Florida Salvator merianae 

populations, estimated using the linkage disequilibrium (LD), heterozygote excess, and 

molecular coancestry methods in NeEstimator. For the first two methods, the lowest 

allele frequency used was set to 0.02. The 95% confidence interval for each estimate is 

shown in parentheses and the symbol ∞ indicates that the program was unable to estimate 

Ne from the data. 

Population  LD Heterozygote Excess Molecular 
Coancestry 

Hillsborough 10.8 (5.2–23.3) ∞ (4.9–∞) 22.0 (0–110.4) 
Miami-Dade ∞ (47.1–∞) 9.9 (4.4–∞) 3.0 (1.6–4.8) 

 

 

 

 

Table 5. Probability values for tests of bottleneck effects in Florida Salvator merianae 

populations under the infinite alleles model (IAM), two-phase model (TPM), and 

stepwise mutation model (SMM). For the Wilcoxon test, probabilities for the one-tailed 

tests of heterozygote excess are shown. Bold values denote significant P-values.  

Population Mutation 
Model Sign Test 

Standardized 
Differences 
Test 

Wilcoxon 
Test Mode-shift 

Hillsborough IAM 0.001 < 0.001 < 0.001 Shifted 
TPM 0.024 < 0.001 < 0.001 
SMM 0.031 0.008 0.004 

Miami-Dade IAM 0.304 0.219 0.246 Normal L-
shaped 
distribution 

TPM 0.391 0.475 0.461 
SMM 0.141 0.118 0.813 
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Inference of introduction history 

 

The scenario testing revealed that both the Hillsborough and Miami-Dade S. 

merianae populations most likely originated via introductions from a “ghost” population 

(Scenario 4; Figure 6). This introduction scenario had the highest posterior probability 

(Table 6), and was supported over other hypotheses, including independent introductions 

from the native ancestral population and serial introduction pathways. Power analyses 

revealed that the type I errors (i.e. false positives) were low, indicating a low probability 

of falsely rejecting a scenario that was actually true (Table 6). However, the type II errors 

(i.e. false negatives) were higher (0.28–0.44), suggesting a higher probability of falsely 

selecting an untrue scenario. Further examination of the selected scenario via posterior 

model checking with all available summary statistics showed that none of the proportions 

(simulated < observed) fell outside the 0.05–0.95 range. Therefore, we concluded that 

scenario 4 correctly explained the observed dataset, based on Cornuet et al. (2010).  

Finally, we inferred the posterior distributions of demographic parameters based 

on scenario 4. The effective number of founders for each of these populations, including 

the un-sampled population, ranged from 19 to 57 (based on the mode), and appeared to 

be robust, producing small bias indices (Table 7).  



105	
	

 

Figure 6. Graphical representation of the competing introduction scenarios for Salvator merianae 

compared with the software DIYABC. In each scenario, thin lines represent bottlenecked 

populations following introduction events, while thick lines represent the current effective 

population size. The abbreviations used are as follows:  NA = ancestral (source) effective 

population size; N1 = effective population size for the Hillsborough population; N2 = effective 

population size for the Miami-Dade population; NG = effective population size for unsampled 

(ghost) population; Nf  = the effective number of founding individuals; t = time in generations.
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Table 6. Confidence in scenario selection by DIYABC for the introduction of Salvator 

merianae into Florida. The bold scenario number indicates most likely introduction 

history. 

Scenario Posterior 
probability 

95% 
Credibility 
interval 

Type I 
error 

Type II 
error 

1 – Independent introductions 
 

0.0156 0.0111,0.0200 0.126 0.41 

2 – Serial introduction  
(Miami-Dade → Hillsborough) 
 

0.1531 0.1363,0.1699 0.048 0.28 

3 – Serial introduction  
(Hillsborough → Miami-Dade) 
 

0.1023 0.0936,0.1110 0.036 0.37 

4 – Unsampled population as source 
for Hillsborough and Miami-Dade 
 

0.6615 0.6431,0.6799 0.090 0.29 

5 – Unsampled population as source 
for Hillsborough; Independent 
introduction for Miami-Dade 
 

0.0218 0.0174,0.0262 0.080 0.48 

6 – Unsampled population as source 
for Miami-Dade; Independent 
introduction for Hillsborough 

0.0457 0.0371,0.0544 0.074 0.44 
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Table 7. Posterior distribution statistics and bias estimates for Salvator merianae 

parameters inferred from Scenario 4 of the Approximate Bayesian Computation. N1f = 

Number of founders for Hillsborough population; N2f = Number of founders for Miami-

Dade population; NGf = Number of founders for unsampled ghost population; NA = 

Ancestral effective population size.  

 N1f N2f NGf NA 
Mean 57.2 32.0 37.8 32,300 
Median 56.8 24.9 33.6 27,100 
Mode 57.2 18.8 24.9 12,700 
95% HPD 24.5; 92.5 8.82; 85.2 9.24; 8.26 6,750; 75,300 

Mean relative bias: 
Mean 0.0480 0.335 0.365 0.3510 
Median 0.0204 0.0335 0.2296 0.1519 
Mode -0.0198 -0.2553 0.0395 -0.2505 

Relative root mean square error: 
Mean 0.473 0.947 1.213 1.097 
Median 0.462 0.673 1.140 0.925 
Mode 0.482 0.562 1.281 0.745 
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Discussion 

Conceptual framework and genetic diversity 

 

Population genetic theory predicts that small, isolated populations have limited 

capacity for adaptive evolution due to reduced levels of additive genetic variation (Fisher 

1958; Frankham and Ralls 1998). In addition, loss of genetic variation is expected to 

increase the extinction risk of small populations by limiting population growth through 

the effects of inbreeding depression and drift (Allendorf and Lundquist 2003; Dlugosch 

and Parker 2007). However, despite recent founder effects, population viability for 

invaders often remains high, and in many cases, invasive species outcompete their native 

counterparts (Allendorf and Lundquist 2003). This phenomenon was once considered to 

be a genetic paradox (Allendorf and Lundquist 2003; Frankham 2005; Handley et al. 

2011). In recent years, new evidence has been generated that may solve this “paradox.”  

Multiple introductions followed by admixture may be one mechanism by which genetic 

variation rebounds to increase an invasive population’s adaptive capacity (Kolbe et al. 

2004; 2008; Facon et al. 2008). Additionally, most studies that examine the dynamics of 

founder events use neutral molecular markers that are irrelevant to adaptive potential 

(Reed and Frankham 2003). Although these molecular measures have been used as 

surrogates for quantitative variation, Reed and Frankham (2001) showed that they are 

poorly linked to ecologically important quantitative traits. Invasion is now often 

conceptualized as a multistage process that includes a lag phase, during which mutation 

and/or admixture produce(s) novel phenotypes that improve invasiveness (Reznick and 

Ghalambor 2001), followed by rapid range expansion (Keller and Taylor 2008). 
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Therefore, it is critical for managers to identify potentially problematic populations 

during the early phases of invasion, as this is when control efforts are most likely to be 

successful (Frankham 2005).  

 Our tests for genetic signatures associated with recent genetic bottlenecks 

revealed that only the Hillsborough S. merianae population showed unequivocal evidence 

of a recent founder effect. This result is surprising considering that both populations were 

likely founded by a small number of individuals and our introduction scenario analyses 

suggested that the Miami-Dade population founded from fewer individuals than the 

Hillsborough population.  Overall, the most likely explanation of these results is that our 

failure to detect a bottleneck in the Miami-Dade populations is a Type II statistical error. 

This lack of power associated with bottleneck tests has been described by Peery et al. 

(2012), who found limited power to detect 10- to 1000-fold population declines with 

heterozygosity-excess tests and 10-fold declines with M-ratios. Therefore, we used allelic 

diversity as an additional measure of bottleneck detection. During a sudden bottleneck 

event, individuals are expected to lose allelic diversity at a higher rate than 

heterozygosity (Luikart and Cornuet 1998). Unsurprisingly, both S. merianae populations 

had low levels of allelic diversity (range: 2 - 4), while heterozygosity estimates remained 

substantial (mean He: 0.44). Although definitive conclusions about reductions in genetic 

diversity would require comparisons to populations in the native range of S. merianae, 

these estimates are consistent with low levels of allelic diversity estimates reported for 

other invasive reptiles in Florida (Short and Petren 2001; Wood et al. In Press). 

Furthermore, Ne estimates were comparable to assessments of Ne in V. niloticus—another 

ecologically similar large, lizard that is invasive to Florida (Wood et al. In Press). 
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Additionally, estimates of Ne for S. merianae were also substantially lower than Ne 

estimates observed in invasive populations of Boa constrictor imperator on Cozumel 

Island (Vazquez-Dominguez et al. 2012).  

 

Gene flow and introduction scenarios 

 

We used several independent analyses to analyze the degree of genetic structure 

between the Hillsborough and Miami-Dade populations of S. merianae. Although most of 

our results suggested that there is marked genetic differentiation between the two 

populations, STRUTURE and PCA detected evidence that two S. merianae specimens 

(tegu 24 collected in Hillsborough County and tegu 42 collected in Miami-Dade County) 

had admixed genotypes. Our PCA analysis also showed that one member of the 

Hillsborough population did not cluster with any of the individuals from the Miami-Dade 

or Hillsborough populations, indicating that this individual could have originated from an 

unknown source population. Furthermore, tegu 42 was assigned to the Hillsborough 

population by GENECLASS2. The L_home tests for first generation migrants performed 

in GENECLASS2 also detected evidence that two individuals, one from each population, 

are migrants. This result is troubling given that we only sampled ~40 individuals in each 

population and found evidence of gene flow in both.  However, it is worth noting that 

BAYESASS suggested that gene flow between these two populations is limited.  

Our introduction scenario analyses found that both of the S. merianae populations 

likely resulted from an undetected ‘ghost’ population. This result can be interpreted two 

different ways. One explanation is that a separate undetected population of S. merianae 
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exists in Florida, and served as a source for the Hillsborough and Miami-Dade 

populations. This type of introduction scenario has been termed the ‘invasive bridgehead 

effect’, whereby secondary invasions stem from a successfully established population 

(Estoup and Guillemaud 2010). In terms of evolutionary shifts conferring advantages in 

the non-native habitat, the invasive bridgehead scenario is more parsimonious than 

scenarios involving independent introductions (and thus independent evolutionary 

changes) from the native source population (Estoup and Guillemaud 2010). This 

introduction scenario has been documented in the widespread Asian lady beetle 

(Harmonia axyridis) (Lombaert et al. 2010); however, few other examples have been 

confirmed.  

The alternative, and possibly more plausible, explanation is that both S. merianae 

populations independently originated from the same captive-bred population. In the 

United States, S. merianae is one of the most commonly bred tegu species (Bartlett and 

Bartlett 1996). Additionally, the number of reported S. merianae imported into the United 

States is relatively low, compared to other reptiles in the pet trade, with an average of 500 

live individuals per year (http://trade.cites.org/). However, there has been a noticeable 

decline in imports during recent years, with only around 100 live S. merianae individuals 

imported in 2013 (http://trade.cites.org/). This trend could be a reflection of the 

predominance of captive-bred individuals in the pet market, which might suggest a higher 

likelihood of the introduced individuals resulting from a captive population. Future 

studies comparing the genetic patterns of native and captive-bred S. merianae populations 

to those in Florida could further distinguish between these two scenarios. 
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Conclusion and management recommendation  

 

Our findings have important implications for tegu control strategies in Florida. 

Collectively, our results suggest that both S. merianae populations in Florida are still in 

the early stages of the invasion process, and according to our g and k tests, are not 

expanding. In addition, our results show a high degree of differentiation between the 

Miami-Dade and Hillsborough populations. Based on these findings, we propose that the 

two Florida populations be viewed as two separate management units. Given the current 

low level of gene flow between populations, the likelihood that recolonization would 

serve as an obstacle to successful eradication attempts is low. However, even under 

moderate to high levels of harvest in their native range, S. merianae populations appear to 

be quite resilient (Fitzgerald 1994). Therefore, we recommend that managers focus on 

containment rather than eradication strategies, thereby reducing the chances of further 

range expansion and inter-regional admixture, which could enhance the future 

invasiveness of S. merianae. It is also noteworthy to mention that we found direct 

evidence of migration between populations. Given Florida’s extensive network of canals 

and levees and the mobility of tegus, it is possible that individuals could migrate between 

populations (Klug et al. 2015). According to Florida EddMaps 

(http://www.eddmaps.org/florida/distribution/viewmap.cfm?sub=18346), verified S. 

merianae specimens have already been documented via photograph near the cities of Port 

Charlotte, Naples, and Port St. Lucie—the Naples and Port St. Lucie specimens both 

being over 150 km from the nearest breeding population. In addition to the possibility of 

direct dispersal between populations, there may be passive dispersal, potentially by a 
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community of breeding enthusiasts that transport tegus between Hillsborough and Miami-

Dade Counties. As such, we also emphasize the importance of concerted follow-ups on 

credible sightings. Finally, our results strongly suggest that Florida’s S. merianae 

populations both originated from a common, unsampled source population. Although, it 

is possible that an unknown wild breeding population exists in Florida, it is more likely 

that this unknown source is a captive population. Therefore, it is imperative that the 

Florida Wildlife Commission continues to closely monitor the exotic pet trade, as it 

seems to be primarily responsible for the introduction and establishment of S. merianae, 

and may still be a contributing factor.  
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CHAPTER VI 

SUMMARY AND FUTURE DIRECTIONS 

Summary 

 

 To my knowledge, my dissertation is the first study that has examined the 

population genetics of large, predatory, invasive lizards. In my second chapter, I discuss 

the development of 17 polymorphic microsatellite loci for V. niloticus using 454 

pyrosequencing. These microsatellite markers are the first to be developed for V. niloticus 

and will be be useful for the continued monitoring of V. niloticus populations in Florida. 

These markers should also be beneficial to scientists studying native V. niloticus 

populations. Moreover, our BLASTn search found evidence that many of the loci we 

developed have the potential to cross-amplify in other varanid species. In the third 

chapter, I discuss the development of 14 polymorphic microsatellite loci for the tegu 

species, S. merianae. These microsatellite markers are the first to be developed for S. 

merianae. Efforts are already underway to test their usefulness in Brazilian S. merianae 

populations. In chapter four, I discuss a diverse approach to using genetic techniques to 

examine the population genetics of three V. niloticus populations in southern Florida and 

to infer the most likely introduction scenario. Our findings reveal that all three 

populations have limited genetic diversity, indicating that these populations were all 

founded from a small number of colonists. Furthermore, our findings showed that all 

three populations are highly differentiated from one another, and that each population 
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originated from independent introduction events. However, despite a strong degree of 

genetic differentiation among populations, we did detect limited evidence for an 

unknown source population in Florida as well as some possible migration. In chapter 

five, we found similarly low levels of genetic diversity in invasive S. merianae 

populations. Although we only found limited evidence for gene flow among V. niloticus 

populations, our analyses revealed strong evidence for migration between the two tegu 

populations in Florida. Unexpectedly, our scenario testing revealed that both S. merianae 

populations most likely originated from a common unknown source population. This 

result can most likely be attributed to both tegu populations originating from the same 

captive stock.  

 

Future directions 

 

 As discussed in the first chapter, the success of invasive species despite the 

typical significant reductions in their genetic diversity is a genetic paradox. Recent 

studies suggest that multiple introductions and admixture most likely play a crucial role 

in invasive populations overcoming the detrimental effects of inbreeding depression and 

drift (Facon et al. 2008; Keller and Taylor 2010; Kolbe et al. 2004). We, however, 

detected no significant evidence for admixture in either monitor or tegu populations. 

Therefore, we cannot conclude that multiple introductions have contributed to the success 

of invasive monitors and tegus in Florida. Although we are not implying that multiple 

introductions and admixture are irrelevant to invasion success, our data do support the 

hypothesis that they are are not an indispensable force for successful invasion (Dlugosch 
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and Parker 2008; Rollins et al. 2013). Some other invasions have succeeded with low 

numbers of founders or low genetic diversity. For example, invasive American bullfrogs 

(Rana catesbeiana) successfully invaded Europe despite having a founding population 

that consisted of only six individuals (Ficetola et al. 2008). Similarly, allelic diversity 

estimates were low (mean number of alleles = 4) for boa constrictors (Boa constrictor) in 

their successful invasion of Puerto Rico (Reynolds et al. 2013). Furthermore, both of 

these studies also reported moderate to substantial levels of heterozygosity, supporting 

the idea that allelic diversity decreases faster than heterozygosity during a population 

bottleneck (Allendorf 1986). Collectively, these patterns are congruent with the 

hypothesis that molecular genetic markers are poor predictors of losses in quantitative 

variation, which are more closely linked to ecologically important traits (Reed and 

Frankham 2001). Moreover, any increase in adaptive potential that results from increased 

genetic variation may only be essential in extreme ecological conditions (Allendorf and 

Lundquist 2003). Accordingly, it is likely that V. niloticus and S. merianae populations 

do not suffer from a competitive disadvantage due to reduced molecular variation, since 

Florida’s environment is optimal for both species and both lack natural predators and 

competitors (Allendorf and Lundquist 2003; Callaway & Aschehoug 2000).  

Very few studies have examined the relationship between quantitative genetic 

variation and invasion success. Koskinen et al. (2002) found that despite losing 50% of 

molecular variation during an initial introduction, life-history traits for grayling fish 

(Thymallus thymallus) showed no decline in additive variation. Lindholm et al. (2005) 

also found no evidence for substantial losses in additive variation despite the presence of 

a strong genetic bottleneck in the invasion of Australia by guppies (Poecilia reticulata). 
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A greater number of studies have examined how quantitative genetic variation is affected 

by bottlenecks, but most of these have been conducted in laboratory settings on insects 

and plants (Reviewed in Saccheri et al. 2001). Since invasions by large predators are 

becoming increasingly common, future studies are needed to further our understanding of 

how molecular and quantitative genetic variation influence the invasion success of highly 

impactful species. Furthermore, it would be interesting to see if differing degrees of 

molecular and quantitative genetic variation between invasive V. niloticus and S. 

merianae populations and native populations affect life history traits related to fitness 

such as population size, growth rates, body size, fecundity, and survival (Reed and 

Frankham 2003).  

In conclusion, we recommend that Florida wildlife managers concentrate control 

strategies on containment rather than eradication. Given the resiliency of both of these 

species to harvesting pressures (de Buffrénil abd Rimblot-Baly 1999: Fitzgerald 1994), it 

is unlikely that complete eradication is feasible. Furthermore, even if only a few females 

remain during eradications, a very high risk of a new invasion exists given the ability of 

both lizard species to overcome substantial population bottlenecks. Finally, we suggest 

that managers monitor potential migration corridors. Although admixture may not play a 

critical role in the immediate colonization and expansion of invasive V. niloticus and S. 

meriane populations in Florida, admixture may increase long-term invasive potential.  
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