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ABSTRACT  
 

APROACHES TO ARTHROPOD CONSERVATION: LANDSCAPE GENETICS, 

COMMUNITY ASSESSMENT, AND PREDICTION OF EXTINCTION RISK 

Victoria A. Prescott 
 

October 28, 2016 
 

 
Although urbanization is a leading cause of species extinction throughout the 

world, the impact of urban development on arthropods is little studied and, as a result, 

poorly understood.  I used three distinct approaches to studying arthropod conservation in 

North America.  First, I used landscape genetics techniques to study the impact of 

urbanization on gene flow among populations of Rabidosa rabida, the rabid wolf spider.  

While gene flow was not detrimentally reduced, urban development correlated with a 

reduction in migration rates among populations, and to my knowledge, this is the first 

study to document isolation by resistance in spiders.  Next, I examined how lentic and 

lotic odonate communities within the same landscape were affected by urbanization.  Due 

to the inherent differences between lentic and lotic ecosystems and between dragonflies 

and damselflies, different environmental factors contributed to the persistence of 

particular species and thus to the makeup of adult odonate communities in urban areas.  

The different responses of dragonflies, damselflies, and spiders to urban development 

suggested that dispersal abilities strongly predict resilience to altered landscapes.  Finally, 

I identified ecological correlates of an extinction risk assessment for North American
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odonates.  Two of those correlates, geographic range size and length of flight period, are 

surrogate measures of dispersal.  Both dragonfly and damselfly extinction risk 

assessments correlated with these two traits, but dragonfly assessments also correlated 

with the interactions between length of flight period and both geographic range size and 

habitat breadth.  Collectively, this research showed that not all arthropods are negatively 

affected by urban development and that even closely related taxa are not always similarly 

affected.  These differing responses were likely due to interspecific differences in 

dispersal abilities and life-history patterns, and possibly in odonates to taxonomic 

differences in flight capability and voltinism.  These results highlight the need for further 

research on identifying the mechanisms driving urban biodiversity patterns and gaining a 

better understanding of the basic ecology of invertebrates. 
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CHAPTER 1 

INTRODUCTION  

 

The world is currently suffering its sixth mass extinction (Barnosky et al. 2011), 

and this extinction event is unlike those of the past in that contemporary extinction rates 

are vastly higher.  In previous extinction events, the extinction of 75% of species 

occurred over a period of 2 million years, but currently that same percentage of species 

will be lost in just 300 years (Barnosky et al. 2011), with an average of eight species lost 

each day (Cardoso et al. 2011a).  The predominant drivers of today’s mass extinction are 

habitat degradation and loss via anthropogenic causes (Leakey and Lewin 1995) such as 

deforestation, mining, agriculture, and urbanization, with urbanization being the leading 

cause (Vale and Vale 1976; Czech et al. 2000; Marzluff 2001; McDonald et al. 2008; 

Aronson et al. 2014).  The amount of urban land cover is expected to expand by 1.2 

million km² between the years 2000 and 2030, which is a 185% increase over current 

land cover values (Seto et al. 2012). 

 Urbanization affects all aspects of both aquatic and terrestrial environments (Paul 

and Meyer 2001, Brönmark and Hansson 2002, Allan 2004, Foley et al. 2005; Grimm et 

al. 2008; Hassall 2014) and results in permanent land transformations (McKinney 2002, 

2006).  Habitat fragmentation (Fahrig 2003; Fuller et al. 2015; Haddad et al. 2015), 

exotic species (Gurevitch and Padilla 2004; Havel et al. 2015), and increased 
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temperatures (Pickett et al. 2001; Grimm et al. 2008; Somers et al. 2013) are among the 

factors that most strongly affect ecosystems in urban areas.  In addition, urbanization 

makes the landscape unsuitable for most species because it replaces native landscapes 

with novel and uniquely inhospitable ones (Unfried et al. 2013), and most native species 

cannot adapt to the altered and novel disturbance regimes that also occur in urban areas 

(Alberti 2005).  Further, not only are important habitat patches degraded in quality, the 

corridors between those patches also become degraded (Verbeylen et al. 2003; Unfried et 

al. 2013).   

A vast majority of conservation and wildlife studies focus on vertebrates 

(McIntyre 2000; Clark and May 2002; Cardoso et al. 2011a; Magle et al. 2012; D’Amen 

et al. 2013; Grodsky et al. 2015).  As a result, our current understanding of how urban 

development affects invertebrates is poor even though arthropods alone make up half of 

the species on the planet (Redak 2000) and suffer a higher rate of extinction than do 

vertebrates (Cardoso et al. 2011a).  Further, because conservation studies center on 

vertebrates, conservation management practices also cater to vertebrate conservation 

(Cardoso et al. 2011b, Barua et al. 2012) even though extinction patterns in vertebrates 

do not necessarily mirror those in invertebrates (Clausnitzer et al. 2009), and the needs of 

vertebrates drive the development and maintenance of nature reserves (D’Amen et al. 

2013).  The bias toward studying and conserving vertebrates is strong and clear.  In North 

America alone, an estimated 200,000 species of insects and arachnids are believed to 

exist, yet only half are scientifically described (Redak 2000).  This is a stark contrast 

from vertebrates, of which 45,000 species have been scientifically described and another 

5,000 are estimated undescribed (Black et al. 2002).  Additionally, only 0.5% of 
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scientifically-described arthropod species have been assessed by the IUCN Red List 

compared to 42% of vertebrates (Leather 2009; Cardoso et al. 2011b; D’Amen et al. 

2013).  While urbanization has been directly linked to insect extinction (Fattorini 2011), 

it is still unknown how other arthropods, such as spiders, respond to urbanization because 

only 10% of urban animal studies focused on arthropods (Magle et al. 2012).  

Arthropods also provide numerous benefits to the planet.  Arthropods provide a 

majority of ecosystem processes (Kim 1993, Redak 2000, Leather et al. 2008, Kotz et al. 

2011), and because urbanization affects arthropods, ecosystem function is likely to also 

be affected (McIntyre 2000; McIntyre et al. 2001).  For example, urbanization is leading 

to population declines of a variety of pollinators which will result in steep declines of 

plant diversity (Vanbergen 2013).  Arthropods also provide numerous benefits to 

humans; despite a general negative perception of insects (Barua et al. 2012), they provide 

over $57 billion in global revenue to the United States annually (Losey and Vaughn 

2006).  Finally, from a purely biological standpoint, arthropods, as with all other living 

creatures, have a right to exist even without conveying any sort of benefit to humans 

(Samways 2005).   

In my dissertation, I take three distinct approaches to the study of arthropod 

conservation.  In the first chapter, I use landscape genetic techniques to study the impact 

of urbanization on gene flow among populations of the wolf spider species Rabidosa 

rabida.  Even with great advances in genetic analysis techniques and tools, very few 

studies have examined how urban land use affects the population genetics of arthropod 

species (Bond et al. 2006).  Urbanization reduces gene flow in a variety of vertebrate 

species (e.g. lizards: Delaney et al. 2010; salamanders: Noël and Lapointe 2010; frogs: 
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Hitchings and Beebee 1997, Mikulíček and Pišút 2012; birds: Delaney et al. 2010; 

Björklund et al. 2010, Unfried et al. 2013; and mammals: Epps et al. 2005, Lee et al. 

2012, Munshi-South 2012, Santonastaso et al. 2012), but the results vary in arthropod 

studies.  For example, conflicting results have emerged from studies on beetles, with one 

species being greatly affected (Keller and Largiadèr 2003) but others showing no effect 

of urbanization on gene flow (Desender et al. 2005).  Additional studies are needed to 

gain insight into the responses of arthropods to urban development.   

  In my second chapter, I examined how urbanization alters dragonfly 

communities of both lentic and lotic ecosystems.  Generally, vertebrate species richness 

tends to decrease with increasing urbanization (Ishitani et al. 2003; Urban et al. 2006; 

Pillsbury and Miller 2008; Van Nuland and Whitlow 2014; reviewed in McKinney 2008).  

Invertebrates exhibit a wide range of responses to urbanization despite the relatively low 

number of studies focused on this group.  Invertebrate responses to urbanization often 

follow the vertebrate pattern, with species richness showing a consistent decline along 

rural to urban gradients (Hansen et al. 2005; reviewed by McKinney 2008).  However, 

urbanization has neutral effects on invertebrate species richness in varied taxa (reviewed 

by Faeth et al. 2011; Jones and Leather 2012), and some studies found that invertebrate 

species richness increases in urban areas (Magura et al. 2004; Magura et al. 2010).  Even 

though species richness may not always change due to urbanization, community 

composition consistently differs between urban and rural habitats in both vertebrates and 

invertebrates (Urban et al. 2006; Pillsbury and Miller 2008; Van Nuland and Whitlow 

2014; reviewed in McKinney 2008).  Urban animal communities typically have lower 

diversity than those in less altered habitats (McKinney 2002; Shochat et al. 2006; Luck 
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and Smallbone 2010), and often widespread, non-native generalist species replace native 

species, resulting in homogenization at urban sites (McKinney and Lockwood 2001; Blair 

2004; McKinney 2006; McDonnell and Hahs 2008; Horsák et al. 2013; Hassall 2014; 

Knop 2016; but see Olden and Rooney 2006).   

In my third chapter, I identified three dragonfly traits that correlate with an 

extinction risk assessment.  Population responses to changing habitats vary across 

odonates.  Pantala flavescens, a dragonfly species that has a global migratory pattern, 

experiences gene flow on a global scale (Troast et al. 2016) while three damselfly species 

are somewhat negatively affected (Sato et al. 2008).  These contrasting responses to 

urbanization may be due to species-specific biological and life-history traits that affect 

their resiliency to disturbance in the landscape (Prevedello and Vieira 2010), but 

comparative studies focusing on how ecological traits of arthropods correlate with 

extinction risk are largely unknown (McKinney 1997; Reynolds 2003; Hutchings et al. 

2012; Jeppsson and Forslund 2014).  The differences in the biological and life-history 

traits that frequently correlate with extinction risk (McKinney 1997; Reynolds 2003; 

Hutchings et al. 2012; Jeppsson and Forslund 2014) can be identified and used to assess 

which taxa are most at risk (Foufopoulos and Ives 1998).  From there, conservation 

priorities can be established (Reynolds 2003; Jeppsson and Forslund 2014) and 

implemented (Nylin and Bergström 2009).   

By investigating how arthropods are affected by urban land use and identifying 

ecological correlates with extinction risk, my dissertation provides insight into and future 

directions for the conservation of arthropods in North America.  
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CHAPTER II 

LANDSCAPE GENETICS OF RABIDOSA RABIDA ACROSS AN URBAN 

LANDSCAPE 

 

SUMMARY 

 Urbanization is a leading cause of habitat fragmentation and isolation because the 

urban matrix is typically of poor quality for most species and increases the resistance of 

the matrix to dispersal.  This often reduces gene flow among populations.  I used 

landscape genetic techniques to investigate the impact of urban development on gene 

flow among populations of the rabid wolf spider, Rabidosa rabida.  Urbanization 

correlated with isolation by resistance and generally reduced migration rates among 

populations.  However, the proportion of genetic variation among populations and 

estimates of genetic differentiation were low, and there were high degrees of admixture, 

suggesting that urban development does not drastically reduce gene flow among 

populations.  Thus, urbanization does not greatly affect gene flow in this species.  Two 

modes of dispersal, aerial and cursorial, likely maintain gene flow among populations. 

 

INTRODUCTION 

Anthropogenic land uses break up large swaths of continuous habitat into smaller 

patches that isolate animal populations.  The degree of isolation is affected by several 

factors, including the number and features of traversable corridors linking habitat patches 
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and the quality of the matrix surrounding those corridors (Ricketts 2001; Prugh et al. 

2008; Prevedello and Vieira 2010).  Populations become increasingly isolated when 

corridors are narrow (Andreassen et al. 1996) or composed of degraded habitat 

(Anderson and Danielson 1997; Henein and Merriam 1990).  Isolation also increases 

when habitat patches are distant from one another and long corridors are required to 

promote connectivity.  The quality of the matrix is determined by its similarity to 

occupied patches of habitat.  The matrix habitat can be a primary determinant of 

population connectivity, with the matrix becoming increasingly inhospitable for native 

species as its characteristics diverge from inhabited areas (Öckinger and Smith 2008; 

Prevedello and Vieira 2010).     

Habitat fragmentation and isolation caused by urbanization is of particular interest 

to conservation biologists because urbanization is the leading driver of species extinction 

(Czech et al. 2000; McKinney 2006) and is expected to continue to rapidly spread across 

the world (Alig et al. 2004; UN 2014).  The urban matrix is typically of very poor quality 

for most species because it replaces native habitat (Unfried et al. 2013) with landscapes 

that typically lack or are very low in basic requirements for survival, such as appropriate 

food resources.  In addition to making survival more difficult, urban development also 

increases the resistance of the matrix, thereby making animal dispersal more difficult and 

reducing gene flow among populations (Verbeylen et al. 2003; Unfried et al. 2013).  

Isolated populations have reduced genetic diversity and increased genetic differentiation 

due to forces such as inbreeding and genetic drift.  When genetic variability is reduced, 

populations may suffer from lower survival and fitness (Reed and Frankham 2003) and 

may be unable to adequately respond to sudden changes in the environment (Hedrick 
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2011).  This is especially problematic in urban areas where natural disturbance regimes 

are altered and novel disturbances are introduced (Alberti 2005).   

Most studies that investigate the effect of isolation on gene flow among 

populations use an isolation-by-distance framework (McRae 2006), which assumes the 

genetic difference between pairs of populations positively correlates with the geographic 

distances separating them (Wright 1943; Rousset 1997).  However, using only the 

straight-line distance between populations ignores the heterogeneity of the matrix 

(Verbeylen et al. 2003) and may be particularly unsuitable for urban population genetics 

studies because of the intense resistance of the urban matrix to movement (Verbeylen et 

al. 2003).  Including analyses assessing the quality of the corridors, which has been little 

studied in urban areas (Braaker et al. 2014), and landscape resistance results in a more in-

depth understanding of how urbanization affects animal populations.  Isolation by 

resistance assesses the relationship between genetic differentiation among populations 

and the resistance of the landscape to migration based on electrical circuit theory (McRae 

2006), with differentiation expected to increase with increasing resistance. In urban areas, 

corridors are likely to be highly degraded, resulting in greater genetic differentiation 

among populations than in less disturbed areas.   

Surprisingly few studies have examined how urbanization affects population 

genetic dynamics in animals (Noël and Lapointe 2010), and those that have usually 

focused on genetic differentiation among urban populations as a function of geographic 

distance.  Furthermore, among these studies, most have focused on vertebrate taxa (e.g. 

salamanders: Noël and Lapointe 2010; frogs: Hitchings and Beebee 1997, Mikulíček and 

Pišút 2012; lizards: Delaney et al. 2010; birds: Delaney et al. 2010; Björklund et al. 
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2010, Unfried et al. 2013; and mammals: Epps et al. 2005, Lee et al. 2012,  Munshi-

South 2012, Santonastaso et al. 2012).  The general pattern emerging from these studies 

is that vertebrate populations in urban areas experience a reduction in gene flow.   

How urbanization affects the population genetics of arthropods is not well 

understood (Bond et al. 2006).  Studies of invertebrates have focused predominately on 

insects, especially those with strong flying capabilities, such as butterflies (Kronfrost and 

Fleming 2001; Takami et al. 2004), bees (Jha and Kremen 2013), and damselflies (Watts 

et al. 2004).  These studies suggest that urbanization reduces gene flow among volant 

species (but see Kronfrost and Fleming 2001).  To my knowledge, the only study to have 

tested for isolation by resistance in arthropods was done on bees (Jha and Kremen 2013). 

Studies on beetles, which are typically less mobile, have yielded conflicting results, with 

urbanization greatly reducing gene flow in one species (Keller and Largiadèr 2003) but 

not reducing it in others (Desender et al. 2005).  The effects of anthropogenic landscapes 

on gene flow in spiders have not been well studied (e.g., Schäfer et al. 2001; Stefani and 

Del-Claro 2015, Bond et al. 2006), and no study has investigated isolation by resistance 

in this taxon.   

Corridor quality and barriers in urban areas affect most ground-dwelling 

vertebrates and invertebrates (Vandergast et al. 2009; Braaker et al. 2014, Unfried et al. 

2013).  However, spiders may respond differently to a hostile, urban matrix because 

responses to matrix type are species-specific (Prevedello and Vieira 2010) and spiders are 

not strictly ground-dwelling. The genetic studies that have examined the impact of 

urbanization on spiders have shown that the effects vary with species.  For example, 

Stefani and Del-Carlo (2015) found no detectable levels of genetic differentiation 
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between urban and rural populations of funnel-web spiders, while Bond et al. (2006) 

found that urbanization resulted in the extinction of populations of different 

mygalomorph spider species through loss of adaptability associated with reductions in 

genetic diversity.  

Wolf spiders are wandering predators possessing two modes of dispersal that 

enable movement on different scales.  First, wolf spiders move short distances 

terrestrially (Bonte et al. 2006).  Second, wolf spiders disperse aerially via a behavior 

known as ballooning—which entails the release of silk threads that enables wind to pick 

up and carry the spider to a new location.  Typically ballooning only takes place during 

the juvenile phase (Bell et al. 2005) and the spider largely does not control the outcome 

(Bonte et al. 2007).  As such, using this method of dispersal within a highly resistant 

landscape could limit gene flow among populations because the probability of reaching a 

suitable patch may be low.  Thus, wolf spiders may be at least partially dependent on 

landscape connectivity for movement and gene flow, as is the case with ground-dwelling 

mammals (Braaker et al. 2014).  While relatively little is known about the molecular 

ecology of wolf spiders, Reed et al. (2011) examined gene flow in Rabidosa rabida 

across fragmented patches in Mississippi and found significant levels of isolation by 

distance, suggesting that anthropogenic land use affects gene flow in this species.  In this 

study, I investigated gene flow and isolation by resistance in R. rabida in the greater 

Louisville area in order to better understand how urbanization affects this species.  

 

METHODS 

Study Species 
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Rabidosa rabida (Walckenaer 1837) is a wolf spider species that predominantly 

inhabits grasslands (Brady and McKinley 1994; Reed et al. 2007a), although this species 

can also be found in disturbed, suburban habitats.  I chose to study R. rabida because it is 

abundant and easy to collect and genetic resources have been developed for this species 

(Reed et al. 2011).  While the level of dispersal exhibited by this species is not well 

understood, Reed et al. (2011) suggested that aerial dispersal via ballooning is likely to 

be the predominant mode of dispersal for this species.  With respect to terrestrial 

movement, lycosid spiders travel between 1 m (Framenau 2005) and 8 m (Bonte et al. 

2003) per day. 

 

Study Sites 

 

From August through September 2013, I collected spiders from four urban and 

three rural sites in and around Louisville, Kentucky, with sites located within Interstate 

265 classified as “urban” and those outside of I265 classified as “rural” (Figure 1, Table 

1).  I chose to use Interstate 265 as my delineation between urban and rural sites because 

it is a perimeter highway that surrounds the majority of the Louisville Metropolitan Area 

(population 763,623).  The use of Interstate 265 as a delineation line between urban and 

rural sites is supported by the quantification of the amount of urbanization around each 

site, as all urban sites are surrounded by more than 45% urban land use while all rural 

sites are surrounded by less than 22% urban land use, as determined by the National Land 

Cover Database (Homer et al. 2015; Table 1).  Distances between sites ranged from 6.94 

km to 54.17 km.   
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Collection Methods 

 

Between 15 and 28 R. rabida were collected from each site.  I collected spiders 

exclusively at night following the methods of Reed et al. (2007b).  Specifically, I located 

spiders by scanning the ground and vegetation for their eyeshine in the light of a 

headlamp.  Once captured, spiders were placed in labeled collection vials, and their GPS 

coordinates were recorded with a Garmin Dakota 10.  Spiders were then taken to the lab 

where they were euthanized via freezing at -20℃. 

 

DNA Isolation and Genotyping 

 

DNA was isolated from each spider using a slight modification of the protocol 

described by Fetzner (1999).  DNA isolates were used to genotype each spider at five 

microsatellite loci that were described by Reed et al. (2007a).  I used the nested PCR 

approach described by Schuelke (2000) to label PCR products with 6-FAM.  The forward 

or reverse primer for each locus was modified by appending a M13(-21) DNA sequence 

(TGT-AAA-ACG-GCC-AGT) to the 5’ end of one of the primers in each respective 

primer pair based on the results of a hairpin analysis performed via the Integrated DNA 

Technology (IDT) website.  

I amplified each locus with 25 μl PCRs as follows: 1x buffer, 0.2 mM dNTPs, 1.5 

mM MgCl₂, 0.2 μM M13(-21)-labeled species specific primer, 0.8 μM untwinned primer, 

0.8 μM of M13(-21) labeled with 6-FAM , 0.625 units GoTaq DNA polymerase 
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(Promega), 20-100ng DNA template.  Reaction conditions were: 94°C for two minutes 

followed by 21 cycles of (1) 94°C for 30 seconds (2) 60°C for 30 seconds (3) 72°C for 40 

seconds, followed by 8 additional cycles of (1) 94°C for 30 seconds (2) 53°C for 30 

seconds (3) 72°C for 40 seconds and a final cleanup step of 72°C for 30 minutes.  I 

shipped labeled PCR products to the Arizona State University DNA Lab where fragment 

analysis was performed using an ABI 3730.  Scoring and binning were performed using 

GENEIOUS version 9.0.4 (Biomatters).   

 

Genetic Analysis 

 

I tested for deviations from Hardy-Weinberg equilibrium and pairwise genotypic 

disequilibrium using GenePop v4.2 (Rousset 2008) with 1000 dememorization steps, 100 

batches, and 1000 iterations per batch.   I then used GenAlEx (Peakall and Smouse 2012) 

to calculate GST and G″ST (Meirmans and Hedrick 2011) and test for isolation by distance 

via a Mantel test.  I also used GenAlEx to perform an analysis of molecular variance, 

AMOVA, (Excoffier et al. 1992) to determine how genetic variation is hierarchically 

partitioned among populations, among individuals within populations, and within 

individuals.  All P-values were estimated from 9999 permutations, and when necessary, I 

corrected for multiple testing using Holm’s (1979) procedure.   

To determine whether urban development has reduced gene flow among 

populations, I used MIGRATE v3.6 (Beerli and Felsenstein 1999, 2001; Beerli 2009) and 

BAYESASS+ v1.3 (Wilson and Rannala 2003) to compare current and historical levels 

of migration among populations, respectively.  Both programs use Markov chain Monte 
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Carlo algorithms to infer migration rates between populations; however MIGRATE 

estimates migration rates based on a coalescent model (Beerli and Felsenstein 1999) 

while BAYESASS+ uses transient linkage disequilibrium to estimate migration rates 

(Wilson and Rannala 2003).  Although, MIGRATE is not the only population genetics 

software package to use a coalescent framework (e.g. Nath and Griffiths 1993, Slatkin 

and Maddison 1989), MIGRATE differs from other methods because it estimates 

migration rates from all possible genealogies and can be used under various mutation 

models and data types (Beerli and Felsenstein 1999).  I ran MIGRATE under a Brownian 

motion model, using 1 long chain of 5,000,000 iterations, a burn-in period of 10,000 and 

50,000 recorded steps.  MIGRATE estimates the mutation-scaled migration rate (M) 

(M=m/μ, where m=immigration rate, μ=mutation rate) and the mutation-scaled effective 

population size (Θ=4𝑁𝑒𝜇, where 𝑁𝑒 is the average effective population size over 4𝑁𝑒 

generations).  Because MIGRATE and BAYESASS+ report similar but distinct 

parameters, I calculated m from the M parameter estimated via MIGRATE by 

multiplying by a range of mutation rates that bracket empirical estimates from a variety 

of systems (Li et al. 2002).   

BAYESASS+ and other methods of estimating contemporary migration rates 

have fewer assumptions than estimators of historical migration rates (e.g. BAYESASS+ 

does not assume constant population size; Wilson and Rannala 2003).  BAYESASS+ 

differs from other contemporary methods in that it does not assume that genotypes within 

a population are in Hardy-Weinberg equilibrium (Wilson and Rannala 2003).  

BAYESASS+ estimates the migration rate of the last three generations (Wilson and 

Rannala 2003), and I ran this software with 3,000,000 iterations, a burn-in period of 
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1,000,000, and a sampling number of 2,000.  As recommended by Meirmans (2014), I 

used the model with the lowest Bayesian deviance. 

 

Landscape Analysis 

 

GENELAND (Guillot et al. 2005) is an R package that conducts spatially-explicit 

genetic clustering, and I used this software to gain insight into which landscape features 

within my study area that may be acting as barriers to gene flow among populations.  I 

ran GENELAND with an uncertainty of 0.05 m, a minimum of 1 population and a 

maximum of 7 populations, 100,000 iterations, and a thinning of 100 iterations.  The 

allele frequency model option was set to correlated, the spatial model options was set to 

true, and the null allele model was set to true.  I also tested for admixture with 20,000 

iterations and a thinning of 10. 

To identify key barriers and corridors within the landscape, I implemented an 

array of software programs in ArcMap Student Edition 10.2 (ESRI 2015).  I first created 

a 106 km by 88 km² area that encompassed all sites, and then used the National Land 

Cover Database 2011 (Homer et al. 2015; NLCD) to classify the landscape 

characteristics within that area.  The NLCD catalogs the earth’s surface into 21 different 

land categories at a resolution of 30m.  The NLCD describes four urban land use 

categories, which are based on the percentage of impervious surface within that 30m 

resolution (Table 1).  Within my buffer, I found 15 different land cover classifications 

(Table 2) 
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In order to find corridors through the urban matrix and then determine the quality 

of these corridors, I quantified the amount of resistance found throughout the landscape.  

In addition to this, I also created habitat rasters to examine where the most suitable 

habitat within the landscape is located.  To produce habitat and resistance rasters, I used 

Gnarly Landscape Utilities v0.1.0 (McRae et al. 2013a).  To create the rasters, I gave 

habitat and resistance scores to each NLCD classification found in the landscape (Table 

2).  Habitat scores must range between zero and one, with one being the most suitable 

habitat (McRae et al. 2013a).  The scores given are based on published papers and my 

knowledge of the biology of R. rabida.  Because R. rabida is a grassland species, I gave 

the herbaceous classification a habitat value of one.  While spiders can be found along the 

margins of forested areas that border meadow areas, they do not inhabit forested areas.  

Therefore, forested areas were given a habitat value of zero.  The developed open 

intensity and developed low intensity land use classifications were given values of 0.8 

and 0.7, respectively, because R. rabida occurs in these types of habitat (personal 

observation).   

 Unlike habitat scores, resistance scores were not capped at a value of one 

(McRae et al. 2013a), and higher values were given to land uses that greatly impede 

dispersal.  I reasoned that developed, high intensity land cover deserves a high resistance 

score because the tall grasses or shrubs that R. rabida requires are not found in 

commercial areas.  As recommended by the creators of the software, the lowest resistance 

was 1, which I assigned to the grassland category. This is necessary because Linkage 

Mapper v1.0 (McRae and Kavanagh 2011), which is used in the next step, cannot read 

resistance values of zero.  For both types of rasters created, cells were not expanded.  
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 After creating the rasters, I implemented Linkage Mapper v1.0 to identify least-

cost corridors between the sites.  Linkage Mapper uses the resistance raster created in 

Gnarly Landscape Utilities to identify important corridors among sites.  To obtain all 

pairwise resistance values, I unchecked Step 1, which only finds corridors (and 

subsequently resistance values) between adjacent populations.  Next, I identified 

important barriers within those corridors using Barrier Mapper v1.0 (McRae 2012a).  

When using Barrier Mapper, I set the minimum search radius to 90m, the maximum 

radius to 270m, and the radius step value to 90m.  This tells the software to search for 

barriers within the corridors at an initial radius of 90m, and then search again after 

increasing the radius by 90m until the radius is 270m.   The resolution of the resistance 

raster was 90m, which accordingly had to be the minimum radius.  Gnarly Landscape 

Utilities established the resolution of the resistance raster as 90m, limiting the minimum 

search radius to 90m; Barrier Mapper only identified barriers at and above the resolution 

of the resistance raster (McRae 2012a). 

Once this was done, I used Centrality Mapper v1.0 (McRae 2012b) to identify the 

most important corridors for maintaining connectivity between populations.  Centrality 

Mapper does this by implementing Circuitscape v1.0 (McRae et al. 2013b) to send a one 

amp current across the corridors and core areas and then determining the current flow 

centrality.  Next, I used Pinchpoint Mapper v1.0 (McRae 2012c) to identify areas within 

the corridors that are restricting movement.  Like Centrality Mapper, Pinchpoint Mapper 

uses Circuitscape to send electrical currents through the corridors, but it then identifies 

specific areas within the corridors experiencing pinch points (bottlenecks).  Circuitscape 

also calculates effective resistances between pairwise cores.  To determine if isolation by 
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resistance is present, I conducted a Mantel test on the G″ST pairwise values and the 

pairwise resistance values. 

 

RESULTS 

Genetic Analysis 

 

After I corrected for multiple testing, three of the five loci tested in each of the 

seven sites (a total of 35 tests), deviated from Hardy-Weinberg equilibrium: locus 3 in 

Iroquois Park and locus 1 in Rural Sites B and C.  We found no evidence for pair-wise 

genotypic disequilibrium between any pair of loci in any of the populations.  Because no 

locus presented systemic problems across a majority of populations, I conducted my 

analyses using all five loci.  Summary statistics for each population are presented in 

Table 3.   

Pairwise GST values range from -0.003 to 0.019 (Table 4), and pairwise G″ST 

values range from -0.019 to 0.103.  After correcting for multiple testing, no comparisons 

were significant (Table 5).  The global GST, which provides the average G″ST value across 

all loci, was 0.009 (p=0.014), and the global G″ST was 0.034 (p=0.012).  The AMOVA 

results presented in Table 6 show that differences among populations accounted for 4.3% 

of the variation in the data.  The Mantel test provided no evidence of isolation by 

geographic distance (r=0.085, p= 0.388).  

 GENELAND detected three spatially explicit genetic clusters based on posterior 

probabilities (Figure 2).  The posterior probabilities (Figure 2) indicate the likelihood that 

an individual belongs to a certain genetic cluster based on its geographic location.  
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Spiders from the four urban sites grouped into two clusters and spiders from the three 

rural sites belong to a third cluster (Figure 2).  With respect to the urban sites, 

GENELAND grouped the Iroquois Park and Thurman-Hutchins Park populations into 

one cluster and the E.P. “Tom” Sawyer Park and Blackacre State Nature Preserve 

populations into another cluster.  Additionally, the analysis I performed in GENELAND 

indicated that all individuals were admixed (Figure 3), further underscoring that the 

populations I sampled were not well differentiated from one another.  These results align 

with the posterior probabilities associated with cluster assignment, as no probabilities 

appeared above 0.60, indicating that the assignment of each individual to its respective 

cluster was not particularly robust.   

After assuming mutation rates to 1×10−4, 1×10−5, and 1×10−6 per generation 

per locus, MIGRATE estimated average proportions of migrants in each population as 

6.463, 0.646, and 0.065.  Mutation rates of 1×10−4 and 1×10−5 resulted in proportions 

that were > 1.0, indicating that these values are higher than the actual mutation rate in R. 

rabida.  Accordingly, I conducted analyses using a mutation rate of 1×10−6 (Table 7).  

The highest proportions of migrants were from Rural Site B and Thurman-Hutchins Park 

to Blackacre State Nature Preserve, and the lowest proportions of migrants were all from 

Horner Wildlife Refuge.  The proportion of migrants to and from each population were 

fairly uniform and varied between 0.053 and 0.105.  I calculated the proportion of non-

migrants in each population by subtracting the total proportion of migrants in each 

population from one, and proportions of non-migrants ranged from 0.540 to 0.648. 

 Current estimates of the proportion of migrants and non-migrants in each 

population as calculated by BAYESASS+ are presented in Table 8.  70% of non-migrants 
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comprised most of the populations, except Rural Site C, which contained a high 

proportion of non-migrants (.872).  Generally, the proportions of migrants from one 

population to another ranged from 0.012 to 0.049.  However, Rural Site C had the largest 

proportion of non-migrants, and the proportion of migrants from this population was high 

relative to all other populations.  Rural Site B contributed the lowest proportion of 

migrants to Blackacre State Nature Preserve and Thurman-Hutchins Park, and Thurman-

Hutchins Park and Rural Site B received the highest proportion from Rural Site C.  A 

one-tailed paired t-test comparing current versus historical proportions of migrants was 

significant (t=3.629, df=41, p=0.043), with average historical proportions being higher 

(0.065) than current mean proportion (0.046). 

 

Landscape Analysis 

 

Figure 4 displays the habitat raster showing that the urban landscape had less 

suitable habitat than rural areas, and Figure 5 displays the corridors (least-cost paths) 

between all sites found by Linkage Mapper as well as Pinchpoint Mapper’s current flows 

within those pathways.  Table 9 shows the least-cost path lengths and effective resistance 

of those pathways.  The mean least-cost path length is 30.89 km (SD=17.56 km).  The 

longest corridor is 52.56 km, which connects Iroquois Park and Rural Site C, while the 

shortest corridor is 7.90 km, between E.P. “Tom” Sawyer Park and Horner Wildlife 

Refuge.   

The average pairwise resistance score (e.g. the average resistance for all linkages) 

was 52,749 (SD=32,384.8).  The link between Iroquois Park and Horner Wildlife Refuge 
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had the highest resistance score, 120,186.1.  Linkages associated with Iroquois Park 

contained the top five resistance scores.  The link between Rural Site B and Rural Site C 

had the lowest score, 12,587.  I failed to identify any corridors free of strong barriers, as 

Pinchpoint Mapper identified pinch points in all corridors, even those with low 

resistances and in rural areas.  As mentioned above, these spiders are grassland habitat 

specialists, and a forested landscape may therefore create natural pinch points within the 

corridors.  While a Mantel test did not detect a significant association between the 

geographic and genetic distance matrices (r=0.085; p= 0.388), there was a significant 

association between the resistance and genetic distance matrices (r = 0.599; p=0.046; 

Figure 6).  

 

DISCUSSION 
 

The results of this research suggest that urbanization correlates with isolation by 

resistance and has generally reduced gene flow among R. rabida populations.  Historical 

rates of gene flow appear somewhat higher than contemporary rates, and a positive 

association exists between genetic distance and landscape resistance—a predictor 

variable correlated with the degree of urbanization.  Nevertheless, according to 

BAYESASS+ immigrants constitute at least 12% of every population.  Thus, despite the 

inhibitory effects urbanization may have on gene flow in R. rabida, substantial 

connectivity among the populations appears to still exist.  Low GST estimates, a low 

proportion of variation being attributable to differences among populations (AMOVA), 

high degrees of admixture among spatially explicit clusters, and a high proportion of 

migrants in each population from Rural Site C support this conclusion.  Rabidosa rabida 
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often occurs in suburban gardens and homes (pers. obs.), so clearly they can persist in 

these partially degraded areas.  Collectively, these results suggest that the two modes of 

dispersal found in this species, cursorial and aerial, keep the levels of genetic 

differentiation among the populations low. 

 Given the low GST estimates, gene flow among the populations is occurring and is 

likely maintained via a source-sink model.  The populations of R. rabida are well 

connected, suggesting a source population is present (Furrer and Pasinelli 2016), and the 

results of this research suggest that the population at Rural Site C is the source 

population.  Current estimates of migration rates indicate that Rural Site C contributes a 

large proportion of migrants to all assessed populations, and immigration rates exceed 

emigration rates at this site.  Source populations typically possess these characteristics 

(Watkinson and Sutherland 1995; Manier and Arnold 2005; Schaub et al. 2010).  

However, further analyses are needed to definitively assess this pattern.  The fine-scale 

genetic clustering detected by GENELAND does not match migration rate estimates or 

any GST estimates.  For example, while GENELAND clustered the two urban populations 

together, these two populations receive more migrants from other populations than from 

each other, and the G″ST value between these two populations was the highest value 

documented.  These conflicting results were possibly to due to the low number of 

individuals sampled as well as the low number of microsatellite markers used in the 

analyses.   

 Significant isolation by resistance occurred among the sampled populations, 

showing the difficulty for this species of crossing both forested landscapes (Reed et al. 

2007b) and urban areas.  Interestingly, in contrast to this study, Reed et al. (2011) found 
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significant levels of isolation by distance.  Differences in the amounts of forested areas 

and urban development between populations may lead to the different conclusions of the 

two studies.  Further, the isolation by resistance may mask any detectable isolation by 

distance.  Not only do the migration rates suggest that long-distance dispersal occurs even 

at current levels of urbanization, but also other studies show that resistance in the 

landscape affects the detection of any isolation by distance.  For example, high levels of 

resistance between two very closely spaced populations of striped field mice in Poland 

masked the detection of isolation by distance (Gortat et al. 2014).  The possibility also 

exists that the sample size is too low to detect any isolation by distance, as correlations 

between genetic distance and geographic distance are more likely to be significant with 

more loci being tested (Landguth et al. 2012).   

 The high levels of gene flow found in this study suggest that dispersal allows this 

species to persist in urban environments.  Cursorial dispersal allows spiders to move short 

distances, and while cursorial dispersal is only effective in matrices with low resistance 

(Bonte and Maelfait 2001), R. rabida may find enough small areas of suitable habitat to 

continue to traverse the urban matrix.  Spiders express cursorial behaviors more often 

when inhabiting low-quality habitats (Kreiter and Wise 2001, Bonte et al. 2004, Rykken 

et al. 2011), but the results of this study suggest that aerial dispersal predominately 

maintains gene flow given the distances between the sites and the resistance of the 

landscape. 

 Aerial dispersal greatly contributes to maintaining gene flow across the landscape 

in spiders.  Reed et al. (2011) suggested that when gene flow via cursorial dispersal fails, 

aerial dispersal becomes important for R. rabida.  Although relatively little research has 
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addressed the effects of aerial dispersal on gene flow, aerial dispersal maintained high 

gene flow levels among isolated populations of Argiope trifasciata (Ramirez and 

Haakonsen 2001), and colonization across the Hawaiian Islands by spiders correlated 

with wind patterns (Gillespie et al. 2012).  Currently, research on the impact of disturbed, 

fragmented landscapes on spider ballooning behavior suggests that habitat generalists and 

specialists have different responses; habitat specialists less often display aerial behaviors 

(Bonte et al. 2003, 2004, Entling et al. 2011), especially in small isolated populations 

(Bonte et al. 2006).  Further, Entling et al. (2011) concluded that generalist spiderlings 

from disturbed habitats more often aerially dispersed than those from undisturbed 

habitats.  The low estimated levels of genetic differentiation align with the view that R. 

rabida spiderlings frequently balloon in urban areas and that aerial dispersal plays an 

important role in maintaining connectivity across spatial scales that are large relative to 

the daily movements of adult R. rabida.  In addition, aerial dispersal potentially explains 

how the Iroquois Park population is not more genetically differentiated from the other 

populations.  Pinchpoint Mapper found a high level of resistance within the northern 

corridor that connects the Iroquois Park population to other populations (Figure 5), and 

only ballooning would allow spiderlings to successfully cross this inhospitable landscape. 

Intraspecific variations in dispersal behavior between R. rabida in Northern 

Mississippi and R. rabida in the Louisville area could explain the contrast between the 

results of this study and the conclusions of Reed et al. (2011).  Populations of R. rabida 

located 10 km apart exhibited no gene flow in Mississippi (Reed et al. 2011), whereas the 

Louisville populations were separated by much greater distances and still sustained gene 

flow.  For example, the GST value between the Iroquois Park and Rural Site C 
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populations, located 54 km apart, was 0.009.  Intraspecific variations in dispersal 

behaviors are frequent in nature and often reflect differences in the composition and 

structure of the landscape (Stevens et al. 2010; Matthysen 2012).  Variations in dispersal 

behaviors have been documented in a variety of taxa including black flies (Fonesca and 

Hart 1996), toads (Constible et al. 2010), sea-snakes (Lane and Shine 2011), and spiders 

(Bonte et al. 2006).  Louisville and Northern Mississippi are located in different 

geographic locations and also have different climatic conditions.  Thus, the possibility 

exists that the populations in Louisville have different dispersal behaviors from 

populations in Mississippi.  This study demonstrated how combining traditional 

population genetic analyses with geospatial analyses further contributes to the 

understanding of how altered landscapes and resistance within the landscape affect gene 

flow in cursorial spiders.  Future studies need to investigate the differential responses of 

R. rabida and other spiders to urban development across the United States and identify 

the mechanisms that are driving these responses.  
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Table 1. List of sites and their respective development category, geographic coordinates, habitat size, and name abbreviations.  

Sites located within Interstate 265 are considered urban, while those located outside the interstate are rural. 

Site Development Category Coordinates Size (m²) Abbreviation 

Iroquois Park Urban 38°09'42"N  085°47'15"W 64533.54 IP 

Thurman-Hutchins Park Urban 38°16'54"N  085°41'26"W 24872.95 TH 

Blackacre State Nature Preserve Urban 38°11'34"N 085°31'30"W 104755.6 BA 

E.P. "Tom" Sawyer Park Urban 38°17'08"N 085°33'36"W 9266.528 TSP 

Horner Wildlife Refuge Rural 38°20'35"N 085°31'44"W 1582.946 HNR 

Rural Site B Rural 38°23'13"N 085°25'39"W 2077.007 RSB 

Rural Site C Rural 38°26'48"N 085°16'44"W 22198.66 RSC 

 
Table 2. Land cover classifications found within my 106km x 88km area with respective habitat and resistance values.  Land 

cover classifications are determined by the National Land Cover Database. 

Land Cover Classification Habitat Value Resistance 

Open Water 0 50 

Developed, Open Space 0.8 1 

Developed, Low Intensity 0.7 2 

Developed, Medium Intensity 0 60 

Developed, High Intensity 0 85 

Barren Land 0 2 

Deciduous Forest 0 70 

Evergreen Forest 0 50 

Mixed Forest 0.1 25 

Shrub/Scrub 0.7 2 

Herbaceous 1 1 

Hay/Pasture 0.9 1 

Cultivated Crops 0.5 1 

Woody Wetlands 0 40 

Emergent Herbaceous Wetlands 0.1 30 
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Table 3.  Summary statistics for each locus in each population and mean (standard error) across all loci in a population.  N: 

number of individuals sampled, NA: number of alleles, NEA: number of effective alleles, HO: observed heterozygosity, HE: 

expected heterozygosity, FIS: inbreeding coefficient (Weir and Cockerham 1984), M-Ratio: M-ratio (Garza and Williamson 

2001). * indicates significant deviations from Hardy-Weinberg Equilibrium    

Population Locus N NA NEA HO HE FIS M-Ratio 

IP 1 22 12 7.118 0.864 0.860 0.019 0.706 

 2 26 5 2.198 0.269 0.545 0.508 0.625 

 3 23 7 3.574 0.652 0.720 0.117 0.875 

 4 26 3 1.362 0.154 0.266 0.437 0.750 

 5 24 19 14.961 0.875 0.933 0.084 0.613 

  24.200 (0.800) 9.200 (2.871) 5.843 (2.482) 0.563 (0.150) 0.665 (0.120) 0.233 (0.100) 0.714 (0.048) 

TH 1 12 8 3.740 0.583 0.733 0.245 0.615 

 2 16 3 1.290 0.125 0.225 0.469 1.000 

 3 16 6 2.338 0.500 0.572 0.158 0.750 

 4 16 4 1.690 0.438 0.408 -0.040 1.000 

 5 15 12 8.824 0.800 0.887 0.132 0.400 

  15.000 (0.775) 6.600 (1.600) 3.576 (1.376) 0.489 (0.110) 0.565 (0.117) 0.193 (0.083) 0.753 (0.115) 

TSP 1 12 9 6.545 0.667 0.847 0.254 0.900 

 2 12 4 1.419 0.250 0.295 0.195 0.667 

 3 15 6 4.500 0.533 0.778 0.345 0.750 

 4 4 5 3.200 0.750 0.688 0.053 0.625 

 5 15 16 11.250 0.733 0.911 0.228 0.727 

  11.600 (2.015) 8.000 (2.168) 5.383 (1.689) 0.587 (0.092) 0.703 (0.109) 0.215 (0.048) 0.734 (0.047) 

BA 1 13 8 4.694 0.692 0.787 0.160 0.727 

 2 16 6 2.462 0.438 0.594 0.293 0.667 

 3 15 7 4.327 0.733 0.769 0.081 0.636 

 4 10 6 1.961 0.500 0.490 0.032 0.750 
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 5 15 12 8.491 0.800 0.882 0.127 0.750 

  13.800 (1.68) 7.800 (1.114) 4.437 (1.151) 0.633 (0.070) 0.704 (0.071) 0.139 (0.044) 0.706 (0.023) 

HNR 1 23 11 6.116 0.565 0.836 0.344 0.786 

 2 24 5 1.867 0.333 0.464 0.302 0.833 

 3 20 8 4.469 0.550 0.776 0.315 0.615 

 4 20 5 1.709 0.300 0.415 0.301 0.714 

 5 15 13 8.491 0.667 0.882 0.277 0.650 

  20.400 (1.568) 8.400 (1.600) 4.530 (1.289) 0.483 (0.071) 0.675 (0.098) 0.308 (0.011) 0.720 (0.041) 

RSB 1 22 11 6.630 0.636 0.849 0.272 1.000 

 2 25 4 1.758 0.320 0.431 0.277 1.000 

 3 25 7 3.655 0.560 0.726 0.248 0.875 

 4 21 6 2.023 0.429 0.506 0.176 1.000 

 5 18 13 10.286 1.000 0.903 -0.079 0.448 

  22.200 (1.319) 8.200 (1.655) 4.870 (1.608) 0.589 (0.116) 0.683 (0.093) 0.179 (0.067) 0.865 (0.107) 

RSC 1 13 10 6.377 0.615 0.843 0.307 0.909 

 2 24 4 1.354 0.250 0.261 0.064 0.800 

 3 24 8 2.946 0.542 0.661 0.201 1.000 

 4 25 5 1.460 0.240 0.315 0.258 0.714 

 5 16 14 11.130 0.875 0.910 0.071 0.737 

    20.400 (2.462) 8.200 (1.800) 4.653 (1.856) 0.598 (0.133) 0.598 (0.133) 0.180 (0.049) 0.832 (0.054) 

 
Table 4.  Pairwise GST values and uncorrected P-values among all sites.  GST values are below the diagonal and P-values are 

above.   

 IP TH TSP BA HNR RSB RSC 
IP  0.002 0.020 0.075 0.052 0.011 0.028 
TH 0.019  0.071 0.184 0.062 0.071 0.495 
TSP 0.014 0.011  0.574 0.344 0.131 0.303 
BA 0.007 0.006 -0.001  0.685 0.243 0.391 
HNR 0.008 0.010 0.002 -0.003  0.199 0.567 
RSB 0.011 0.009 0.007 0.003 0.004  0.110 
RSC 0.009 0.002 0.004 0.002 0.000 0.007  
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Table 5. Pairwise G″ST values and uncorrected p-values among all sites. G″ST values are 

below the diagonal and P-values are above.  After correcting for multiple testing, no 

values are significant. 

 IP TH TSP BA HNR RSB RSC 

IP  0.004 0.014 0.070 0.046 0.013 0.030 

TH 0.103  0.064 0.185 0.067 0.080 0.492 

TSP 0.095 0.067  0.580 0.330 0.126 0.276 

BA 0.051 0.033 -0.011  0.689 0.235 0.382 

HNR 0.049 0.057 0.013 -0.019  0.202 0.556 

RSB 0.069 0.052 0.048 0.024 0.025  0.102 

RSC 0.053 0.008 0.023 0.013 0.000 0.038  
 
Table 6. AMOVA results examining genetic variation at different scales. Variation 
among populations accounted for only 4.3% of the variation found, with 34.7% of the 
variation found among individuals and the majority (61.0%) of the variation within 
individuals.  
  

  df SS MS 
Variance 

Component 
Percent 

Variation 
Fixation 

Index P-value 

Among Populations 6 34.423 5.737 0.078 4.284 FST=0.043 < 0.001 

Among Individuals  144 343.809 2.388 0.636 34.743 FIS=0.363 < 0.001 

Within Individuals 151 168.500 1.116 1.116 60.973 FIT=0.390 < 0.001 

Total 301 546.732   1.830 100.000    
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Table 7. Historical mean estimates of proportion of migrants and non-migrants within 

each population as estimated from MIGRATE.   Values along the diagonal represent the 

proportion of non-migrants within the population, and values above and below the 

diagonal represent the proportion of migrants within the population.  Column names 

indicate source population and row names indicate sampled population.   

Historical estimates have been calculated with a mutation rate of 1×10−6.  The highest 

proportions of migrants were from Rural Site B and Thurman-Hutchins Park to Blackacre 

State Nature Preserve, and the lowest proportions of migrants were all from Horner 

Wildlife Refuge.  The proportion of migrants to and from each population ranged from 

0.053 to 0.105. Note, MIGRATE does not provide standard deviations.   

 IP TH TSP BA HNR RSB RSC 

IP 0.591 0.083 0.073 0.070 0.053 0.075 0.056 

TH 0.055 0.648 0.058 0.063 0.053 0.066 0.056 

TSP 0.062 0.062 0.648 0.055 0.053 0.060 0.060 

BA 0.060 0.100 0.071 0.540 0.053 0.105 0.070 

HNR 0.064 0.070 0.071 0.058 0.618 0.055 0.063 

RSB 0.058 0.085 0.062 0.059 0.053 0.629 0.054 

RSC 0.064 0.074 0.072 0.059 0.053 0.067 0.611 
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Table 8. Current mean (SD) proportion of migrants and non-migrants within each population as estimated from BAYESASS+.   

Row names indicate the populations that the migrants disperse to, and column names indicate the source population.  Values 

along the diagonal show the number of non-migrants within each population. Most populations contained approximately 70% 

non-migrants, except Rural Site C, which contained a high percentage (87.2%) of non-migrants. 

 IP TH TSP BA HNR RSB RSC 

IP 0.732 (0.045) 0.013 (0.013) 0.015 (0.014) 0.013 (0.012) 0.018 (0.018) 0.018 (0.018) 0.192 (0.046) 

TH 0.020 (0.019) 0.682 (0.014) 0.016 (0.015) 0.015 (0.015) 0.016 (0.015) 0.017 (0.016) 0.235 (0.033) 

TSP 0.049 (0.037) 0.024 (0.023) 0.699 (0.029) 0.021 (0.020) 0.034 (0.029) 0.036 (0.032) 0.137 (0.048) 

BA 0.029 (0.025) 0.021 (0.020) 0.021 (0.019) 0.689 (0.020) 0.029 (0.024) 0.021 (0.020) 0.192 (0.039) 

HNR 0.028 (0.024) 0.014 (0.013) 0.016 (0.014) 0.014 (0.013) 0.695 (0.026) 0.020 (0.018) 0.214 (0.040) 

RSB 0.018 (0.017) 0.012 (0.012) 0.015 (0.014) 0.012 (0.011) 0.016 (0.015) 0.696 (0.024) 0.231 (0.035) 

RSC 0.034 (0.030) 0.016 (0.015) 0.017 (0.016) 0.016 (0.015) 0.022 (0.021) 0.024 (0.020) 0.872 (0.040) 

 



 

32 
 

Table 9.  List of the least-cost path length (meters, LCP Length) and effective resistance 

of all linkages between sites, as calculated by Circuitscape. Linkages associated with 

Iroquois Park contained the top five resistance scores.  The link between Rural Site B and 

Rural Site C had the lowest score, 12,587.  All corridors had strong barriers, 

 

 

 

 

 

 

Population 1 Population 2 
LCP 

Length 
Effective 

Resistance 

Iroquois Park Thurman Hutchins Park 20980 100509.66 

Iroquois Park E.P. "Tom" Sawyer Park 28192 89223.17 

Iroquois Park Blackacre State Nature Preserve 35842 55384.10 

Iroquois Park Horner Wildlife Refuge  35441 120186.07 

Iroquois Park Rural Site B 49530 111845.24 

Iroquois Park Rural Site C 84658 83142.84 

Thurman Hutchins Park E.P. "Tom" Sawyer Park 14217 40078.29 

Thurman Hutchins Park Blackacre State Nature Preserve 25296 43088.57 

Thurman Hutchins Park Horner Wildlife Refuge  19153 64823.65 

Thurman Hutchins Park Rural Site B 33242 56395.64 

Thurman Hutchins Park Rural Site C 52562 68582.23 

E.P. "Tom" Sawyer Park Blackacre State Nature Preserve 13166 14874.88 

E.P. "Tom" Sawyer Park Horner Wildlife Refuge  7904 28555.87 

E.P. "Tom" Sawyer Park Rural Site B 20553 18263.02 

E.P. "Tom" Sawyer Park Rural Site C 39873 30460.21 

Blackacre State Nature Preserve Horner Wildlife Refuge  22769 49617.42 

Blackacre State Nature Preserve Rural Site B 30848 43835.43 

Blackacre State Nature Preserve Rural Site C 48838 27564.31 

Horner Wildlife Refuge  Rural Site B 13059 18252.63 

Horner Wildlife Refuge  Rural Site C 32379 30449.82 

Rural Site B Rural Site C 20219 12587.24 
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Figure 1. A map of the seven field sites with Interstate 265 separating urban and rural sites and urbanization intensity across 

the landscape.  The star shows the location of the Louisville International Airport, and the heavy bold line shows Interstate 

265.  See Table 1 for list of site abbreviations.   Urban development categories are from the National Land Cover Database. 
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Figure 2.  (A-C) Posterior probabilities of the likelihood of an individual belonging to a certain genetic cluster.  White to light 

yellow areas indicate a high likelihood and red areas indicate a low likelihood.  (D) Genetic clustering of all sites.  Spiders 

from the four urban sites grouped into two clusters, which are shown in pink (Iroquois Park and Thurman-Hutchins Park) and 
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green (E.P. “Tom” Sawyer Park and Blackacre State Nature Preserve). Spiders from the three rural sites (Horner Wildlife 

Refuge, Rural Site B, and Rural Site C) belong to a third cluster, shown in grey.    
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Figure 3. Admixture proportions estimated from GENELAND.  Each column represents 

an individual; each bar within the column reflects the proportion of the individual’s 

genotype that is genetically similar to any of the three genetic clusters.  Pink bands 

indicate genetic similarities to cluster 1, green bands indicate genetic similarities to 

cluster 2, and grey bands indicate genetic similarities to cluster 3.  The x-axis represents 

the geographical line across which admixture is tested, east (0) to west (1). All 

individuals were admixed, showing that the sampled populations were not well 

differentiated from one another. 
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Figure 4.  Habitat raster, developed by Gnarly Landscape Utilities, depicting quality of 

the landscape for suitable habitat.  The lighter the color, the more suitable the habitat. 

Rural areas had more suitable habitat than do urban areas. 
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Figure 5.  Least-cost paths identified from Linkage Mapper incorporated with Pinchpoint 

Mapper’s current flows.  Higher values indicate higher currents indicating locations 

where the corridor narrows and dispersal becomes more difficult. There is a high level of 

resistance within the northern path connecting Iroquois Park (IP) with other parks. 
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Figure 6. Mantel test showing a significant association between the resistance and genetic 
distance matrices (r = 0.599; p=0.046).
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CHAPTER III 

URBANIZATION DIFFERENTLY AFFECTS POND AND STREAM ODONATE 

COMMUNITIES 

 

SUMMARY 

Habitat alteration via urbanization has very different effects on even closely related taxa.  

However, most research investigating the ecological effects of urbanization focuses on 

birds or mammals, resulting in a poor understanding of the responses of invertebrate 

populations.  I quantified the differences in the diversity of odonates (dragonflies and 

damselflies) at lentic and lotic sites between urban and rural landscapes and examined 

environmental factors that might affect community composition.  Urbanization 

significantly lowered lentic damselfly species richness but did not alter lentic dragonfly 

species richness.  Changes in lentic odonate community composition were associated 

with the amount of urban development within 150 of each site, mean algal coverage, and 

distance to the urban center.  At lotic sites, water temperature and distance to the urban 

center influenced odonate communities. Inherent differences between dragonflies versus 

damselflies and between lentic versus lotic ecosystems likely drive the differing 

responses to urbanization observed in this study. Given that different environmental 

factors affect taxa differently in lentic and lotic sites, maintaining the highest level of 

odonate diversity possible across a landscape will require the use of different 

management practices for each ecosystem type. 
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INTRODUCTION 

Urbanization profoundly affects biodiversity, and as cities continue to grow, the 

impact increases.  Approximately 3.9 billion people currently inhabit urban areas; 

projections expect that number to rise to 6.3 billion by 2050 (United Nations 2015) and 

the land area occupied by cities will triple from 2000 to 2030 (Seto et al. 2012).  The 

consequences of urbanization for animal species depend on the degree of urbanization 

and vary among taxa and ecosystems.  In part, because of this complexity, our 

understanding of how urbanization affects animal communities remains inadequate, 

although major drivers of extinction include habitat loss and fragmentation (Wilcox and 

Murphy 1985; Fahrig 1997; Heinrichs et al. 2016).   Further, urban development results 

in high rates of extinction for many native taxa (Vale and Vale 1976; Marzluff 2001; 

McDonald et al. 2008; Aronson et al. 2014).  Taxonomic bias in research has hampered 

our understanding of the effects of urbanization on animal taxa—only 10-12% of studies 

of urban wildlife in the 1990s and 2000s focused on arthropods, for example, while 38% 

focused on mammals and 43% on birds (Magle et al. 2012). 

Urbanization commonly affects both species richness and community 

composition.  In vertebrates, species richness typically declines along a rural to urban 

gradient (reviewed in McKinney 2008; Urban et al. 2006; Pillsbury and Miller 2008; Van 

Nuland and Whitlow 2014), although sites with intermediate levels of urbanization hold 

higher avian species richness levels than rural or highly urbanized areas (Chace and 

Walsh 2006).  Although relatively little studied, invertebrate responses to urbanization 

are complex and vary across taxa.  Similar to the vertebrate pattern, invertebrate species 

richness generally declines along rural to urban gradients (Hansen et al. 2005; reviewed 
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by McKinney 2008).  However, some species richness patterns also show neutral 

responses (reviewed by Faeth et al. 2011; Jones and Leather 2012), such as in nematodes 

(Pavao-Zuckerman and Coleman 2007), isopods (Hornung et al. 2007), and wasps 

(Christie and Hochuli 2009), and other taxa experience increased species richness in 

urban areas (carabids: Magura et al. 2004; spiders: Magura et al. 2010).  In butterflies, 

the highest species richness can occur at intermediate levels of urbanization (Blair 1999), 

and tropical gardens hold more species than primary or secondary forests (Kudavidanage 

et al. 2011).   

Urbanization also affects community composition for both vertebrates and 

invertebrates, and the ability of species to persist in urban areas depends on species-

specific traits.  (Chace and Walsh 2006; Scott 2006; Thompson and McLachlan 2007; 

Pillsbury and Miller 2008; Alexandre et al. 2010).  Urban animal communities typically 

have lower diversity than those in less altered habitats (McKinney 2002; Shochat et al. 

2006; Luck and Smallbone 2010), and often widespread, non-native species replace 

native species, resulting in homogenization at urban sites (McKinney and Lockwood 

1999; Blair 2004; McKinney 2006; Horsák et al. 2013; Knop 2016; but see Olden and 

Rooney 2006).  Habitat specialization may relate to species persistence in urban areas, 

with urban species possessing broader habitat tolerances (McKinney and Lockwood 

1999; Devictor et al. 2007).  Dispersal ability also affects species persistence; species 

with strong dispersal capabilities can traverse urban matrices (Bierwagen 2007) and thus 

may be more likely to persist.  Differences in dispersal capability explained variation in 

the responses of some terrestrial and aquatic arthropods to urbanization (Vergnes et al. 
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2012; Smith et al. 2105), but did not affect urban carabid beetle communities (Weller and 

Ganzhorn 2004).  

Urbanization negatively influences aquatic and terrestrial ecosystems (Paul and 

Meyer 2001; Hassall 2014), although studies predominantly focus on terrestrial habitats 

(Abel 2002; Dudgeon et al. 2006).  Habitat fragmentation (Fahrig 2003; Fuller et al. 

2015; Haddad et al. 2015), exotic species introductions (Gurevitch and Padilla 2004; 

Havel et al. 2015) and increased temperatures (Pickett et al. 2001; Grimm et al. 2008; 

Somers et al. 2013) alter both aquatic and terrestrial communities in urbanized 

environments.  In aquatic habitats, because impervious surface cover replaces native 

vegetation, freshwater systems suffer from increased run-off of pollutants and nutrients 

into the water (Booth and Jackson 1997) and increased water temperatures driven by 

increases in air temperatures (Brönmark and Hansson 2002; Nelson and Palmer 2007).  

Decreased canopy cover further increases water temperatures (Somers et al. 2013).  

These anthropogenic factors reduce species richness and alter community composition in 

aquatic communities (Roy et al. 2003; Morse et al. 2003; Moore and Palmer 2005; 

Cuffney et al. 2010; Collier and Clements 2011; de Jesús-Crespo and Ramírez 2011).  

However, lentic and lotic habitats do not always suffer the same degradation or respond 

in the same ways to urbanization.  Unlike ponds, streams additionally suffer from 

increased erosion and higher flow rates (Booth and Jackson 1997; Paul and Meyer 2001; 

Allan 2004), which further contribute to altered communities and reduced species 

richness in urbanized areas (Kennen et al. 2010; Marshall et al. 2010).  Just as 

urbanization differently affects a single taxon inhabiting different terrestrial ecosystems 
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(Ogai and Kenta 2015), the inherent differences in lentic and lotic ecosystems may drive 

dissimilar responses of aquatic invertebrates inhabiting both systems. 

Important predictors of odonate species richness and community composition in 

urban ponds (Aliberti Lubertazzi and Ginsberg 2010; Goertzen and Suhling 2013; 

Jeanmougin et al. 2014) and streams (Samways and Steytler 1996; Monteiro-Júnior 2013, 

2014, 2015) include pH levels and the presence and characteristics of surrounding 

vegetation (for example canopy cover and emergent vegetation).  Few studies have 

examined odonate communities across aquatic habitat types within an urban landscape, 

and most did not consider which environmental variables drove detected differences 

between lentic and lotic communities. One study identified locations of endangered 

species and which habitats possessed high odonate diversity (Küry and Christ 2010) and 

another merely identified how many odonate species inhabited an urban area (Craves and 

O’Brien 2013).  Only Willigalla and Fartmann (2012) examined both lentic and lotic 

ecosystems, and they found that overall odonate species richness correlated with climate 

factors, but this study did not analyze lentic and lotic ecosystems separately.  Thus, we 

still do not fully understand whether pond and stream communities respond in a similar 

manner to urban development.  Additional studies will not only contribute to the 

understanding of how ecosystem degradation threatens odonates specifically, but will 

also provide further insight into the general response of insects to urban development.  

Because the life histories of dragonflies and damselflies include both an aquatic 

larval stage and a terrestrial adult stage, odonate communities should reflect the effects of 

urbanization on ecosystems (Samways and Steytler 1996; Corbet 1999; Goertzen and 

Suhling 2013, 2015; Jeanmougin et al. 2014; Villalobos-Jiménez et al. 2016).  However, 
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previous research shows that odonate communities vary in their response to urbanization.  

A recent review concluded that urban development usually lowers odonate species 

richness (Villalobos-Jiménez et al. 2016), although urbanization had no effect or a 

positive effect on richness in approximately one-third of studies.  Further, even small, 

urban bodies of water can maintain high odonate species richness (Aliberti Lubertazzi 

and Ginsberg 2010; Craves and O’Brien 2013; Goertzen and Suhling 2013; but see 

Fattorini 2014).   

In this study, I examined whether odonate communities at lentic and lotic habitats 

within the same landscape respond similarly to urbanization.  The objectives were to 

examine whether odonate species richness and community composition significantly 

differ between urban and rural areas and to identify which environmental variables are 

associated with any changes in community composition. 

 

METHODS 

Study Sites 

 

I surveyed ten ponds (five urban and five rural) and ten streams (five urban and 

five rural) in and around Louisville, Kentucky (38°15'N - 85°45’W; population: 763,623 

Figure 7; Table 10; US Census Bureau 2010).  I categorized a site as urban if more than 

30% of a 150-m zone surrounding the stream or pond consisted of urban development.  

The sites were primarily located within city parks, but four were located on private lands 

and two were on state or federal property.  To decrease the possibility of odonates 

travelling between survey sites, I selected sites at least 1 km away from other sites, with 
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the exception of one pond and one stream site (Angler Lake and Floyds Fork), which 

were located 0.2 km apart.  Pond size ranged from 0.3 to 28.1 hectares.  Because most 

ponds in Louisville contain stocked or released pet fishes, I surveyed only ponds and 

streams that contained fishes, which are predators of odonate larvae.  Shoreline 

vegetation, an important factor for larval odonate emergence (Corbet 1999), was present 

at all surveyed ponds, but not in streams.  Surveyed streams were perennial and varied 

from 1.6 m to 35.9 m in width.  All the streams are located within the Salt River Basin 

and are direct or indirect tributaries of the Ohio River.   

 

Surveys 

 

To encompass the flight seasons of local odonate species, I surveyed all sites three 

times during May-August 2015, with at least one month between visits to the same site 

(Jeanmougin et al. 2014).  To ensure high odonate diversity during my surveys, I 

conducted them between 09:00 and 16:30 hours when the temperature was over 17.5°C 

in the shade and when I estimated cloud cover to be less than 50% (Jeanmougin et al. 

2014).  For surveys, I walked 10-m linear transects along the water’s edge and identified 

each odonate I encountered to species.  A distance of one meter separated transects at a 

site, and I walked each transect in 6 minutes.  I followed a rule-based stopping protocol 

(Watson 2003) to determine when a survey was complete so that my surveys accurately 

reflected the diversity of each site.  A survey ended when three consecutive transects 

revealed no new species for a given site on that day.  If I could not immediately identify 

an individual, I paused the survey until I made the identification.  I used binoculars to 
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identify distant individuals, and if I was unable to identify an individual, when possible I 

used a standard insect net to capture it and then identified it using a field guide.  I 

combined Tramea onusta and T. carolina as Tramea sp. because I was unable to reliably 

distinguish or capture them for identification, but I left the distinctive T. lacerata as a 

single species. 

 

Environmental Variables 

 

I measured several environmental factors at each site.  I used a Hydrolab 

Surveyor4 with an MS5 sonde to obtain the temperature and luminescent dissolved 

oxygen of the water at each site during each visit.  To assess the availability of perching 

and oviposition sites at each site, I assessed the amount of emergent vegetation, algae, 

and miscellaneous debris along the edge of the water for every meter surveyed during a 

visit.  Miscellaneous debris consisted of all items floating on the water that were not 

plants or algae, e.g., floating/emergent sticks, leaves, and anthropogenic litter.  I placed a 

1 m2 square quadrat made of PVC pipe over the water at each meter surveyed and 

estimated to the nearest ten percent the percentage of the quadrat covered by each of 

emergent vegetation, algae, and miscellaneous debris.  For analysis, I averaged all 

environmental variables measured at each site across all three sampling times, with the 

exception of water temperature and dissolved oxygen, which we measured only during 

the second and third surveys at each site.  

Using data from the National Land Cover Database 2011 (NLCD) (Homer et al. 

2015), I quantified the proportion of urban land use within 150m of each study site 



 

48 
 

(Kutcher and Bried 2014).  The NLCD classifies the landscape into 16 possible land-use 

categories at a resolution of 30m, with four of those categories describing urban land use: 

1) developed, open space; 2) developed, low intensity; 3) developed, medium intensity; 

and 4) developed, high intensity.  Open space urban development consists of mowed 

areas and <20% impervious surface cover; low intensity urban development consists of 

20% to 49% impervious surface cover.  Medium intensity urban development consists of 

50 to 79% impervious surface cover, and high intensity urban development consists of 

80-100% impervious surface cover.  I ground-truthed each site to ensure that the NLCD 

produced accurate information, and I corrected cell categories as needed.  In particular, I 

corrected the tendency of the NLCD to place cells located within parks into the 

“herbaceous” category when those cells should be in the “developed, open space” 

category, which by definition includes the open spaces of parks.  I then calculated the 

proportion of urban cells within the 150-m buffer zone around each study site. 

 

Statistical Analysis 

 

I reported all means with standard deviations and performed all statistical 

analyses using the statistical software R v 3.1.1 (R Core Development Team 2015).  I 

performed all analyses on community data summed across all seasons.  First, I conducted 

a correlation of species richness with site size to determine whether site size should be 

included in further analyses.  I then performed generalized linear mixed models using the 

lme4 package v 1.1-122 (Bates et al. 2015) to compare odonate species richness between 

urban and rural sites for each ecosystem type.  I also did this separately for the two 
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suborders Anisoptera and Zygoptera.  I next determined whether pond and stream 

community compositions differed, using a two-factor permutational multivariate analysis 

of variance (PERMANOVA) with the factors being type of aquatic ecosystem (pond or 

stream) and urbanization level (urban or rural).  This PERMANOVA yielded a 

significant p-value (p = 0.037), so I then compared urban versus rural sites within each 

ecosystem using one-factor PERMANOVAs.  All tests used Jaccard’s measure of 

similarity and ran with 9999 permutations in the Vegan package v 2.0-10 (Oksanen et al. 

2013).  I used non-metric multidimensional scaling (NMDS) to visualize the data for each 

PERMANOVA.    

To examine the effects of environmental variables on dragonfly community 

composition, I first log-transformed the environmental data to linearize the relationship 

between the variables and community composition.  I then performed separate forward-

selection canonical correspondence analyses (CCA) (Ter Braak 1986) for ponds and 

streams, using significance of p ≤ 0.10 as the cut-off value for inclusion in further 

models.  I ran each analysis with 1000 permutations in each step.  To determine whether 

the variation explained by the axes was significant, I performed a permutational ANOVA 

on each axis in the final model.  

 Finally, I conducted indicator species analyses to investigate whether certain 

species were characteristic of either ecosystem (pond versus stream) or land use type 

(urban versus rural) within each ecosystem.  I ran all tests with 9999 permutations in the 

indicspecies package v 1.7.5 (De Caceres and Legendre 2009).  To reduce the likelihood 

of a Type I error, I used Holm’s (1979) correction for multiple testing on all tests that 
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found more than four species to be significantly associated with a system or urbanization 

level (De Caceres and Legendre 2009).   

 

RESULTS 

I observed 50 odonate species, including 20 zygopterans and 30 anisopterans 

(Table 11), which is 32% of the 157 species documented in Kentucky (NatureServe 

Explorer 2009).  Of the 50 observed species, 21 species (four zygopterans and 17 

anisopterans) were only found at ponds, six species (three zygopterans and three 

anisopterans) were only at streams, and 23 species (13 zygopteran and 10 anisopteran) 

occurred at both ponds and streams.  No significant correlation existed between pond 

species richness and pond size (r = -0.27, p = 0.44).  Species richness significantly 

differed between dragonflies and damselflies at urban and rural pond sites (p = 0.03) but 

not at stream sites (p = 0.34).  Odonate species richness did not differ significantly 

between rural ponds (�̅� = 19.6 ± 3.0 species; range: 15-23 species) and urban ponds (�̅� = 

15.4 ± 1.5 species; range: 13-17 species; p = 0.11) nor did rural and urban stream species 

richness differ significantly (rural: �̅� = 10.0 ± 3.1 species; range: 6-13 species; urban: �̅� = 

7.0 ± 2.1 species; range: 4-10 species; p = 0.10; Figure 8).  Anisopteran species richness 

did not differ significantly between rural and urban ponds (rural: �̅� = 12.2 ± 3.6 species; 

range: 7-17 species; urban: �̅� = 12.0 ± 1.6 species; range: 10-14 species; p = 0.93) or 

between rural and urban streams (rural: �̅� = 2.6 ± 1.3 species; range: 1-4 species; urban: 

�̅� = 1.2 ± 1.6 species; range: 0-4 species; p = 0.12; Figure 8).  However, rural ponds held 

significantly higher zygopteran species richness values (�̅� = 7.4 ± 1.3 species; range: 6-9 

species) than urban ponds (�̅� = 3.4 ± 1.5 species; range: 2-6 species; p = 0.01) but did not 
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differ significantly between rural and urban streams (rural: �̅� = 7.4 ± 1.8 species; range: 

6-13 species; urban: �̅� = 5.8 ± 1.1 species; range: 4-10 species; p = 0.32; Figure 8).   

Multiple environmental variables were measured for each study site (Table 12).  

The percent urban development surrounding urban and rural ponds ranged from 37.0 to 

93.4%, and 3.8 to 14.5% respectively.  Most of that development consisted of open-space 

development (range for urban ponds: 1.0% to 21.6; rural ponds: 0.0 to 14.0%), with low-

intensity urban development covering a relatively small proportion of the area around 

ponds (Urban:  2.3 to 16.5%; rural: 0.0 to 0.4%).  Urban and rural streams were 

surrounded by 36.9 to 100.0% and 0.0 to 26.0% urban development, respectively.  

Streams resembled ponds in that the development around them was primarily open 

development (urban: 8.7 to 96.2%; rural: 0.0 to 15.4%), with some low-intensity 

development (urban: 3.3 to 60.9%; rural: 0.0 to 6.7%).  

 Ponds and streams differed significantly in odonate community composition (two-

way PERMANOVA; p ≤ 0.05; Table 13).  Pond communities clustered together but were 

distinct from stream communities along the first axis of an NMDS (Figure 9a).  Pond 

communities of odonates differed significantly in urban versus rural sites (one-way 

PERMANOVA; p = 0.01; Table 13 and Figure 9b).  Stream communities also differed 

significantly in urban versus rural sites (one-way PERMANOVA; p = 0.03; Table 13 and 

Figure 9c). 

 The environmental factors associated with the change in community composition 

within each ecosystem type generally differed, although distance to the urban center may 

have affected both pond and stream communities.  For ponds, mean algal cover and 

distance to urban center were significant factors driving community composition (CCA; p 
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≤ 0.04), and proportion of urban development approached significance (CCA; p = 0.07) 

(Table 14; Figure 10).  These three factors together explained 45.4 % of the variation in 

odonate community composition at ponds.  Axis 1 of the CCA (Figure 10) depicts 

approximately half (49.4%) of the variation explained by these three variables 

(eigenvalue: 0.3111), and a permutational ANOVA found this axis to be significant (p = 

0.04).  This axis appears to represent a rural-urban gradient as well as a gradient of algal 

coverage.  Mean algal cover and proportion of urban development had positive 

correlations with Axis 1 (Table 14), and all of my urban sites clustered around the vector 

representing urban development (Figure 10a).  Distance to urban center had a negative 

correlation with Axis 1 (Table 14).  Axes 2 and 3 of the CCA were not significant (p ≥ 

0.13).   

 For stream community assemblages, the forward-step CCA found that only mean 

water temperature was significantly associated with community differences (p = 0.02; 

Table 14; Figure 11).  Distance to urban center approached significance (p = 0.06), but 

the proportion of urban development did not appear in the final model.  Mean water 

temperature and distance to urban center explained 30.8% of the community diversity 

among the stream sites.  Axis 1 depicts 63.6% of the variation in community assemblage 

explained by these two variables (eigenvalue: 0.4342) and was significant (p = 0.03); 

Axis 2 explained 36.2% of the variation explained by the two variables (eigenvalue: 

0.2463), and approached significance (p = 0.06).  Axes 1 and 2 reflect a water 

temperature gradient and an urban-rural gradient, with mean water temperature 

negatively correlated with Axis 1 and positively correlated with Axis 2, and distance to 

urban center positively correlated with both axes (Table 14).  
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Indicator species analyses found select odonate species were indicators of ponds 

and streams in general and more specifically of urban versus rural ponds.  After 

correcting for multiple testing, there were ten indicator species of pond ecosystems, all of 

which were anisopterans (Table 15).  In contrast, the four species that were stream 

indicators were all zygopterans (Table 15).  I found four indicator species (three 

Zygoptera and one Anisoptera) for rural ponds and one indicator (Anisoptera) for urban 

ponds, but no indicator species for rural or urban streams.   

 

DISCUSSION 

The effects of urbanization on species richness and community composition 

differed for dragonflies and damselflies and between ponds and streams.  Urbanization 

altered pond damselfly species richness.  However, urbanization did not alter damselfly 

species richness between urban and rural streams, and dragonfly species richness did not 

differ between urban and rural sites for either ponds or streams.  Other researchers have 

noted that urban areas have the potential to maintain high levels of odonate diversity 

(Craves and O’Brien 2013; Goertzen and Suhling 2013; 2015; Ball-Damerow et al. 

2014), but those species found in urban areas were often habitat generalists with strong 

dispersal abilities (Hill and Wood 2014).   Habitat generality likely explains why 

dragonfly species richness did not significantly differ between urban and rural areas, as 

dragonflies are typically habitat generalists and strong dispersers (Corbet 1999; Heiser 

and Schmitt 2009; Monteiro-Júnior et al. 2014).   

My analyses of indicator species also emphasize differences in the responses of 

dragonflies and damselflies to urbanization, as well as differences across ponds and 
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streams.  I identified indicator species for urban and rural ponds, but none for urban or 

rural streams.  Further, my indicator species analyses found no damselfly indicators of 

urban ponds, yet found three for rural ponds.  These findings highlight the sensitivity of 

lentic damselflies to urbanization.  As habitat specialists, damselflies experience local 

extinctions in degraded areas more often than generalist dragonflies (Korkeamäki and 

Suhonen 2002).  This difference, combined with their poorer dispersal capabilities (Clark 

and Samways 1996; Corbet 1999; Sahlén 2006; Heiser and Schmitt 2009) and a lack of 

connectivity among urban ponds, resulted in lower species richness at ponds in urban 

areas.  I did not find a significant difference in zygopteran species richness between 

urban and rural streams because of the inherent connectedness of streams in both urban 

and rural settings, which reduces the likelihood of local extinction and allows for quicker 

recolonization should it occur.   

The reduction in native vegetation, rather than increased levels of impervious 

surface cover, most likely affects odonate communities at urban ponds.  The amount of 

urban development surrounding my pond sites ranged from 37.0 to 93%, and at least half 

of the total urban development surrounding any urban pond was open development (51.1 

to 92.3% of the total development) which consists of less than 20% impervious surface 

cover.  The loss of the native vegetation surrounding bodies of water can influence 

odonate community assemblage, especially damselfly diversity and abundance 

(Remsburg and Turner 2009; Dutra and De Marco 2015), and likely alters predator-prey 

interactions for odonates and lowers environmental quality for some odonate species.  

Mowing can reduce the abundance of insects (Diehl et al. 2013), which would reduce 

prey availability for odonates (Baird and May 1997), and mowing can also increase 
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predator pressure on odonates due to the loss of potential refuges from predators.  

Predation by birds became the leading cause for changes in herbivorous arthropod 

diversity in urban areas (Faeth et al. 2005), and while insectivorous avian species 

richness declines in urban areas, omnivorous species richness increases (Allen and 

O’Conner 2000; Kark et al. 2007).  Due to the increase in omnivorous species, avian 

predation pressures on insects remain strong in urban areas.  Additionally, tenerals 

(immature odonates that have recently emerged from an aquatic habitat) mature in the 

terrestrial vegetation surrounding lentic sites, and adults use this vegetation for roosting 

(Corbet 1999).  In addition, Lee Foote and Rice Hornung (2005) found that a reduction in 

plant height from grazing negatively affected odonate diversity at wetlands and that the 

reduction in tall vegetation especially affected damselflies because the vegetation acted 

as a barrier to wind.  Tall vegetation also creates shade, which damselflies need for 

thermoregulation (Monteiro-Júnior et al. 2013).  The perception by odonates that grazed 

areas are degraded habitats exacerbates the reduction in odonate diversity (Lee Foote and 

Rice Hornung 2005).  At my study sites, adult odonates possibly viewed the surrounding 

mowed areas and impervious surface cover as poor-quality habitat and continued to 

search for suitable habitat rather than reproduce at a poor-quality site.   

In addition to urban development, mean algal cover also significantly affected 

pond communities.  Mean algal coverage in a pond should correlate with impervious 

surface coverage, as increased impervious surface coverage leads to higher nutrient run-

off into water bodies (Paul and Meyer 2001; Allan 2004), which results in higher 

amounts of algal coverage.  This increase in nutrient levels can be especially detrimental 

to lentic systems where nutrients stay within the water body and are not carried 



 

56 
 

downstream (Hassall 2014).  In this study, some rural ponds also had high levels of algal 

coverage, possibly due to nearby agricultural fields or aeration of the rural ponds.  

Aeration prevents nutrients from settling to the bottom of the pond, thereby providing a 

constant source of nutrients for algal growth (Fast et al. 1973).  Odonates use algal mats 

for perching and ovipositioning (Corbet 1999), and, for this reason, certain species prefer 

sites with high algal coverage, regardless of the amount of urbanization around the site.  

For example, Tramea sp. had the highest positive correlation with Axis 1 (Figure 10), 

which represented mean algal coverage and distance from urban center.  This species 

occurred at both urban and rural sites (Table 11), suggesting this species prefers sites 

with high amounts of algal cover.  

Distance to the urban center significantly predicted pond community composition 

and neared significance for predicting stream community composition.  This factor 

broadly reflects the overall change in anthropogenic disturbance over distance without 

identifying specific elements of urbanization that might affect community compositions 

(Kinzig et al. 2005).  Three of the species indicators for rural ponds, Enallagma basidens, 

Arigomphus villosipes, and Argia fumipennis, cluster near the distance variable in Figure 

9, showing that the further a lentic site is from the urban center (e.g. the more rural the 

site), the more likely these species will be present.  Interestingly, in my analysis of pond 

communities, the distance to the urban center did not correlate with the amount of 

urbanization around each site as obtained from the NLCD.  Although frequently used to 

measure urbanization (e.g., Kinzig et al. 2005; Trammell and Carreiro 2011; Pardee and 

Philpott 2014), these two variables measure different aspects of urban development, 

resulting in differing outcomes (Raciti et al. 2012).  
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For stream communities, only mean water temperature significantly predicted 

odonate community composition (Table 14; Figure 11).  Urban streams tend to have high 

water temperature (Samways and Steytler 1996; Somers et al. 2013).  However, in this 

study, an urban site recorded the coolest mean water temperature while a rural site held 

one of the warmest mean temperatures (Table 12).  Samways and Steytler (1996) 

suggested that shade cover likely affected water temperature, which then significantly 

affected odonate community composition.  They reasoned that cool lotic systems with 

much shade slowly warm up daily, and proper larval development possibly depends on 

warm water temperatures.  Cool sites, urban or not, will host only those species whose 

larval stages tolerate cooler water temperatures.  Water temperature affects egg 

development (Corbet 1999), and due to their tropical evolutionary history, odonates 

likely have high water temperature tolerances (Pritchard and Leggott 1987).  Thus, the 

problem lies in cooler stream temperatures rather than warmer ones. 

Inherent differences between pond and stream habitats likely affected how pond 

and stream communities respond to the same environmental factors.  For example, mean 

algal cover did not significantly affect stream communities, and this lack of effect may be 

due to the fact that some of the problems unique to urban streams (e.g. increased flow 

disturbance) can counteract the increased nutrient loads that would encourage extensive 

algal growth (Walsh et al. 2005).  Only one stream site, compared to eight pond sites, 

possessed over 5% algal cover.  The difference in how many pond versus stream sites 

possessed high levels of algal cover suggests that water flow mitigates the effects of 

increased nutrient loads in the stream sites. 
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In sum, due to inherent differences in lentic and lotic ecosystems and between 

dragonflies and damselflies, different environmental factors contribute to the taxonomic 

makeup of adult odonate communities at urban habitats, something not necessarily 

detected by species richness measurements alone.  Urbanization altered community 

composition but not necessarily species richness, a pattern also found in odonates 

inhabiting deforested and forested streams (Monteiro-Júnior et al. 2013).  This study thus 

confirms community composition provides more insight than species richness into how 

odonate communities respond to urbanization (Monteiro-Júnior et al. 2013); measuring 

species richness alone does not detect the homogenization of odonate communities that 

occurs in urban areas (Ball-Damerow et al. 2014).  Focusing on species richness rather 

than community composition can lead to misinformed conclusions and ultimately, 

incorrect management practices (Fleishman et al. 2006).   

Conservationists need to consider more than just the urban development when 

conserving or restoring freshwater systems in urban areas, and implement different 

management practices in the two types of ecosystems in order to conserve the highest 

diversity of odonates possible.  The quality of habitat patches often determines insect 

diversity, and given the high mobility of odonates compared to many taxa, small efforts 

to improve urban ponds and streams for odonates could result in large gains in these 

sites’ effectiveness as contributors to conserving odonate diversity.  This study shows 

that different measurements of urbanization do not similarly reflect odonate communities, 

highlighting the need for the use of multiple variables measuring urbanization in 

conservation studies. 
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My study focused on adult community assemblages, but lentic and lotic larval 

stages may show different responses to urbanization.  Future studies should investigate 

the mechanisms driving the observed responses to urbanization to provide a basis for 

conservation efforts and assess whether adult and larval communities in urban areas 

respond similarly to urbanization. 
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Table 10. List of pond and stream sites with their respective abbreviations, 

classifications, and geographic coordinates.  Urban sites contain over 30% urban 

development within 150 m of the site.  Urban development is determined from the four 

development categories of the National Land Cover Database. 

  Category          Site Abbreviation Coordinates 

Pond Urban McNeely Lake ML 38°06'15"N 85°38'08"W 

  Waverly Pond WA 38°07'49"N 85°49'51"W 

  Iroquois Pond IQ 38°09'23"N 85°46'45"W 

  Willow  Pond WI 38°14'38"N 85°42'10"W 

  Chickasaw Pond CH 38°14'26"N 85°49'54"W 

 Rural Tom Wallace Lake TW 38°05'09"N 85°46'20"W 

  Private Pond PP 38°19'48"N 85°35'08"W 

  Lower Douglas Lake LD 37°49'20"N 85°52'36"W 

  Jackson's Pond JK 38°11'56"N 85°32'05"W 

  Angler Lake AN 38°13'52"N 85°27'59"W 

      
Stream Urban Beargrass Creek BG 38°16'05"N  85°43'22"W 

  South Fork Beargrass Creek SF 38°12'46"N  85°42'44"W 

  Weicher Creek WC 38°14'20"N 85°38'06"W 

  Middle Fork Beargrass Creek MF 38°14'00"N  85°40'56"W 

  Clark Creek CL 38°12'52"N  85°43'36"W 

 Rural Popelick Creek PL 38°11'19"N  85°29'17"W 

  Floyds Fork FF 38°13'47"N  85°28'07"W 

  Wolf Pen Branch Creek WP 38°19'40"N  85°35'37"W 

  South Fork Harrod's Creek SH 38°20'23"N  85°31'41"W 

    Otter Creek OT 37°55'48"N  86°01'45"W 
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Table 11. List of species found at each site and abbreviations for each species name.  See site name abbreviations in Table 10.  

Tramea sp. includes T. onusta and T. carolina. 

 
Dragonflies Ponds Streams 

  ML WA IQ WI CH TW PP LD JK AN BG SF WC MF CL PL FF WP SH OT 

Aeshna umbrosa (A)       •                 
Aeshna verticalis (B)       •                 
Anax junius (C) •  • • •  •  •              
Anax longipes (D)        •                
Arigomphus  villosipes (E)   •    • • • • •             
Boyeria vinosa (F)                   •     
Celithemis eponina (G)           •             
Celithemis fasciata (H)       •    •             
Didymops transversa (I)  •                      
Dromogomphus spinosus (J)       •                 
Dromogomphus spoliatus (DE)         •               
Dythemis velox (K)           •         •    
Epiaeschna heros (L)                     • •  
Epitheca cynosura (M) • • • • • •                 
Epitheca princeps (N) • • • •   •  • • • •       •    
Erythemis simplicicollis (O) • • • • • • •  • •    •     •   • 

Gomphus graslinellus (P)       •  •               
Hagenius brevistylus (AA)         •               
Ladona deplanata (Q) • • • •   • •              •  
Libelulla incesta (R) • • • •   • •  • •           •  
Libelulla luctuosa (S) • • • • • • • • • •   •      •    
Libelulla pulchella (T)   • •    •                
Macromia illinoiensis (U)            •           
Pachydiplax longipennis (V) • • • • • • •  • • •           
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Pantala flavescens (W)  •  • • •                 
Perithemis tenera (X) • • • • • • •  • • •           
Plathemis lydia (Y) • • • • • • • • • •        •   • • 

Sympetrum obtrusum (Z)          •              
Tramea sp. (BC)    • •  •  •              
Tramea lacerata (EF) • • • • • • •   • •                     

                      
Damselflies Ponds Streams 

  ML WA IQ WI CH TW PP LD JK AN BG SF WC MF CL PL FF WP SH OT 

Argia apicalis (a) •    • •  •   •   •   • • • • • 

Argia fumipennis (b)  •     • • • • •   • • • • • •  •  

Argia moesta (c)              • • •   • • • • • 

Argia sedula (d)         •  • •   •   • •    
Argia tibialis (e)            • •  •   • •   • 

Argia translata (f)                     • •  

Calopteryx maculata (g)         •      •  • • • • • • 

Enallagma aspersum (h)       •   •            •  

Enallagma basidens (i)       • • • • •        •     
Enallagma civile (j) •  •              •      
Enallagma exsulans (k)            • • • •    • •   
Enallagma signatum (l) •       • •  •           •  

Enallagma traviatum (m)       • •  • •   •          
Hetaerina americana (n)           •        • •   • 

Ischnura hastata (o) •        •               
Ischnura posita (p) • • • • • • •  • • • • • • •  •  • • 

Ischnura verticalis (q) • • • • •  • • • • •  •       •  

Lestes congeners (r)           •             
Lestes rectangularis (s)          •              
Lestes vigilax (t)                 •                       
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Table 12. List of environmental variables and the mean values of each variable used in my analyses.  Dissolved oxygen was 

measured in microsiemens.  Pond size and stream width were measured in meters.  Development percentages describe the 

amount of urban development within 150 m of each site.  Width of streams (in meters) was not used in any analyses. 

    Site 
Distance 

(km) Size  
Development 

(%) 

Water 
Temperature 

(°C) 
Dissolved 

Oxygen (μS) 

Emergent 
Vegetation 

(%) Alga (%) 
Miscellaneous 

Debris (%) 

Ponds Urban ML 21.1 18.7 37.0 28.7 (0.3) 205.5 (56.1) 44.6 (14.9) 7.3 (0.4) 11.8 (3.9) 

  WA 15.4 1.7 42.3 29.9 (2.7) 138.05 (55.6) 12.2 (3.3) 6.8 (11.7) 5.9 (5.2) 

  IQ 11.4 0.4 65.3 26.5 (4.0) 88.9 (12.4) 19.7 (6.9) 5.2 (5.3) 8.1 (6.8) 

  WI 5.8 1.9 73.0 28.9 (1.3) 116.6 (71.0) 47.6 (11.5) 5.9 (8.5) 8.7 (2.8) 

  CH 6.4 0.3 93.4 27.2 (6.9) 26.95 (1.1) 35.0 (19.6) 27.7 (7.7) 17.5 (10.5) 

 Mean  12.0 (6.4) 4.6 (7.9) 62.2 (23.1) 28.2 (1.34) 115.19 (65.5) 31.8 (15.4) 10.6 (9.6) 10.4 (4.5) 

 Rural TW 19.3 2.2 3.8 28.3 (1.9) 119.7 (19.8) 14.4 (8.2) 3.4 (4.1) 26.7 (23.3) 

  PP 17.7 0.8 4.2 26.7 (4.9) 137.6 (115.6) 44.2 (19.9) 17.5 (20.1) 17.0 (5.7) 

  LD 49.7 28.1 6.9 29.6 (1.7) 112.3 (2.8) 8.5 (4.3) 0.6 (0.8) 6.1 (4.6) 

  JK 22.4 0.4 9.7 26.0 (1.5) 63.2 (49.0) 39.5 (29.5) 18.3 (16.4) 6.3 (3.1) 

  AN 26.4 1.2 14.5 29.0 (2.6) 104.1 (9.8) 33.4 (17.7) 11.2 (14.1) 9.0 (6.1) 

 Mean  27.1 (13.0) 6.5 (12.1) 7.8 (4.4) 28.0 (1.5) 107.4 (27.6) 28.0 (15.7) 10.2 (8.0) 13.0 (8.8) 

           
Stream Urban BG 3.9 35.9 36.9 27.5 (5.7) 115.0 (14.6) 12.3 (20.3) 0.9 (1.6) 5.1 (3.4) 

  SF 6.9 3.8 82.6 21.1 (1.6) 100.2 (15.8) 26.6 (6.4) 3.1 (1.8) 9.9 (1.9) 

  WC 11.6 10.4 100.0 22.7 (1.4) 115.4 (20.2) 4.8 (6.9) 0.2 (0.1) 12.5 (7.5) 

  MF 7.6 13.5 100.0 23.3 (2.2) 128.3 (25.0) 4.8 (3.6) 9.4 (8.9) 4.5 (3.9) 

  CL 6.1 1.6 100.0 18.2 (1.1) 93.1 (8.3) 3.3 (3.2) 0.5 (0.9) 9.9 (2.9) 

 Mean  7.2 (2.8) 13.0 (13.6) 83.0 (26.8) 22.6 (3.4) 110.4 (13.9) 10.4 (9.7) 2.8 (3.8) 8.4 (3.5) 

 Rural PL 25.5 7.4 26.0 23.7 (1.2) 118.2 (15.3) 0.1 (0.2) 2.8 (3.3) 7.3 (1.6) 

  FF 26.2 21.7 17.7 26.3 (1.2) 108.7 (35.8) 14.4 (5.6) 4.6 (6.4) 4.0 (4.2) 

  WP 17.2 13.9 2.9 20.3 (3.0) 92.8 (6.7) 2.0 (2.9) 0.1 (0.2) 8.5 (4.4) 

  SH 22.7 6.12 0.0 21.1 (1.2) 103.6 (12.7) 3.1 (3.5) 3.4 (5.7) 5.3 (6.7) 

  OT 42.3 20.7 0.0 22.5 (3.0) 141.4 (0.2) 35.8 (16.1) 0.6 (1.0) 5.2 (3.7) 

  Mean   26.8 (9.3) 14.0 (7.2) 9.3 (11.9) 22.8 (2.4) 112.9 (18.4) 11.1 (14.9) 2.3 (1.9) 6.1 (1.8) 
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Table 13. A two-way PERMANOVA testing the effects of ecosystem type and 

development category on odonate community composition showed that ponds and 

streams differed significantly in odonate community composition (a). One-way 

PERMANOVAs showed that both pond (b) and stream (c) communities of odonates 

differed significantly in urban versus rural sites. Ecosystem = pond or stream; 

Development = urban or rural.   

     Df SS F Model R² P-value 

a) Ecosystem Ecosystem 1 1.808 10.058 0.325 0.000 
  Development  1 0.490 2.726 0.088 0.020 
  Ecosystem*Development 1 0.384 2.138 0.069 0.050 

  Residuals 16 2.875  1.000  
        
b) Pond Development 1 0.442 3.659 0.314 0.010 
  Residuals 8 0.967  1.000  
        
c) Stream Development 1 0.432 1.810 0.185 0.030 
  Residuals 8 1.908  1.000  
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Table 14. Forward-selection canonical correspondence analysis parameters for pond and 

stream systems and intraset correlations showing correlation of environmental factors 

with axes. For pond communities, mean algal cover and distance to urban center were 

significant factors driving community composition, and proportion of urban development 

approached significance (CCA; p = 0.07). For stream communities, only mean water 

temperature significantly predicted odonate community composition 

  Environmental Factor F Model P value AXIS 1 AXIS 2 

Pond Mean algal cover 1.91 0.04 0.84 0.39 

 Proportion of urban development 1.42 0.07 0.53 -0.82 

 Distance to urban center 1.95 0.01 -0.86 0.37 

      
Stream Mean water temperature 1.57 0.02 -0.79 0.61 

  Distance to urban center 1.44 0.06 0.70 0.72 
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Table 15. Indicator species for ponds versus streams and rural versus urban ponds.  No 

species represented urban or rural stream systems.  Indicator values represent the strength 

of a species being an indicator species.  

  Category Species Indicator Value P-value 

Ecosystems Pond Tramea lacerata 90.0 0.000 

  Libelulla luctuosa 83.3 0.001 

  Pachydiplax longipennis 81.0 0.001 

  Perithemis tenera 81.0 0.001 

  Plathemis lydia 76.9 0.003 

  Libelulla incesta 71.1 0.007 

  Epitheca cynosura 60.0 0.010 

  Anax junius 60.0 0.012 

  Erythemis simplicicollis 67.5 0.020 

  Epitheca princeps 64.0 0.023 

 Stream Argia moesta 80.0 0.001 

  Argia tibialis 60.0 0.011 

  Enallagma exsulans 60.0 0.011 

  Calopteryx maculata 61.3 0.021 

     
Ponds Rural Enallagma basidens 100.0 0.007 

  Arigomphus villosipes 83.3 0.047 

  Argia fumipennis 83.3 0.048 

  Enallagma traviatum 80.0 0.048 

 Urban Epitheca cynosura 83.3 0.047 
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Figure 7.  Map of sites.  Filled circles indicate lentic sites, filled triangles indicate lotic sites, and the star locates downtown 

Louisville.  Development categories are based on the urban development classifications of the National Land Cover Database. 
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Figure 8. Mean species richness (standard deviation) of anisopteran, zygopteran, and all 

odonate species found in urban ponds (UP), rural ponds (RP), urban streams (US), and 

rural streams (RS).  Each category includes five sites.  Only zygopteran pond 

communities differed significantly (*) between urban and rural sites. 
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Figure 9. NMDS analysis showed that pond communities clustered together but were 

distinct from stream communities (a; stress= 0.13). Urban versus rural communities 

clustered separately at both ponds (b; stress=0.07) and streams (c; stress=0.09).  Symbols: 

open circles, ponds; open triangles, streams; solid grey circles, rural ponds; solid black 

circles, urban ponds; solid grey triangles, rural streams; solid black triangles, urban 

streams.  
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Figure 10. Plots of canonical correspondence analysis for pond communities showing 

sites (a) and species (b).  Axis 1 represents a rural-urban gradient as well as a gradient of 

algal coverage and was significant. See Table 10 for site name abbreviations, which are 

in bold. See Table 11 for species name abbreviations.  Environmental factor 

abbreviations: Distance= distance to urban center; Algae= mean algal cover; 

Development= proportion of urban development. 
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Figure 11. Plots of canonical correspondence analysis for stream communities showing 

sites (a) and species (b).  The CCA found that only mean water temperature was 

significantly associated with community differences (p = 0.02), with distance to urban 

center approaching significance (p = 0.06).  See Table 10 for site name abbreviations, 
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which are in bold, and Table 11 for species name abbreviations. Environmental vectors: 

Distance = distance to urban center; Temperature = mean water temperature.
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CHAPTER IV 

DRAGONFLIES AND DAMSELFLIES HAVE DIFFERENT ECOLOGICAL 

CORRELATES WITH AN EXTINCTION RISK ASSESSMENT 

 

 

SUMMARY 

 Resilience against extinction is not uniform among taxa.  Researchers need to be 

able to prioritize conservation concerns, and one effective approach is to identify species 

traits that correlate with extinction risk assessments.  I tested for a correlation for three 

ecological traits (geographic range size, length of flight period, and habitat breadth) with 

an extinction risk assessment for North American odonates.  Different traits showed 

different degrees of correlation with the assessment for anisopterans (dragonflies) and 

zygopterans (damselflies).  Geographic range size and length of flight period correlated 

with assessments in both taxa, but dragonfly conservation rank also correlated with 

habitat breadth, and with the interactions between length of flight period and both 

geographic range size and habitat breadth.  This research shows that even closely related 

taxa differ in their resilience to extinction, and that extinction correlates reflect 

interspecific variation in dispersal capabilities and voltinism among odonate taxa.
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INTRODUCTION 

Prioritizing conservation concern is a key aspect of conservation biology 

(Jeppsson and Forslund 2014) because the world is currently losing species at an 

increasing rate (Murray and Hose 2005).  One important task is to develop cost-effective 

means of predicting which species are most at risk so that conservation efforts can be 

directed appropriately (O’Grady et al. 2004; Reynolds 2003; Murray and Hose 2005).  

Biota do not show uniform extinction risk (McKinney 1997; Fisher and Owens 2004; 

Cardillo et al. 2008) because variation in life-history traits within and among species 

cause differential responses of species to changes in the environment (Reynolds 2003).  

Differences in life-history traits can be correlated with extinction risk (McKinney 1997; 

Reynolds 2003; Hutchings et al. 2012; Jeppsson and Forslund 2014) and need to be 

identified across taxa and used to assess which species are most at risk (Foufopoulos and 

Ives 1998).  Conservation priorities can then be established (Reynolds 2003; Jeppsson 

and Forslund 2014) and implemented (Nylin and Bergström 2009).   

Our understanding of which invertebrate life-history traits and ecological factors 

correlate with extinction risk is currently poor (Reynolds et al. 2003) and with very high 

extinction rates among invertebrates (McKinney 1999), more efforts should focus on this 

group.  In vertebrate species, which have been far more studied, factors such as 

geographic range size (Purvis et al. 2000; Jones et al. 2003; Murray and Hose 2005; 

Cardillo et al. 2005), body size (Bennett and Owens 1997; Murray and Hose 2005; 

García et al. 2008; Hutchings et al. 2012), and age at maturity (Bennett and Owens 1997; 

Webb et al. 2002; González-Suárez and Revilla 2013) correlate with extinction risk in a 

variety of both terrestrial and aquatic taxa.  However, some invertebrate species do not 



 

76 
 

express these traits in a measurable form.  For example, certain life-history patterns such 

as long gestation (Purvis et al. 2000) and delayed maturity (Olden et al. 2008; Anderson 

et al. 2011) correlate with extinction risk in vertebrates, but these patterns are often not 

measurable in invertebrates.  Further, extinction patterns in vertebrates do not necessarily 

mirror those in invertebrates (Clausnitzer et al. 2009).  Thus, unique ecological correlates 

in invertebrates are needed to best prioritize conservation effects. 

I examined whether three species traits‒geographic range, mean length of flight 

season, and habitat breadth correlate with extinction risk in odonates with ranges 

including the contiguous states of the USA or Alaska.  I examined species inhabiting the 

United States because the basic ecology of these species is well documented, which is not 

the case for many species found solely in Mexico.  Geographic range is likely to be a 

strong correlate of extinction risk across all biota (Gaston 1994; Gaston and Fuller 2008; 

Hanna and Cardillo 2013), and research on vertebrates supports this idea (e.g. Purvis et 

al. 2000; Jones et al. 2003; Murray and Hose 2005; Cardillo et al. 2005; Hanna and 

Cardillo 2013).   Species with large ranges should have a reduced likelihood that a single 

environmental event will eliminate all individuals, and if local extinction occurs, then the 

species will persist in and potentially recolonize other areas (Brook et al. 2008).  

However, research predominately focuses on vertebrates and is less known for 

invertebrates (Korkeamäki and Suhonen 2002; Nylin and Bergström 2009; McCauley et 

al. 2013). With the world currently undergoing its sixth mass extinction (Barnosky et al. 

2011), we need to understand whether geographic range currently affects extinction risk 

in other invertebrates, such as freshwater species. 
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The length of the flight period may be correlated with extinction risk in odonates 

as well as other flying insects for several reasons. First, length of the flight season likely 

correlates with dispersal ability in invertebrates; species with stronger dispersal abilities 

should be better at finding suitable habitat than those with weak dispersal abilities 

(Sullivan et al. 2000).  Second, the length of flight season possibly reflects “fast-slow” 

life history patterns such as length of adult stage and voltinism (number of generations 

produced in a year).  Species with longer flight periods should have longer adult stages 

(Mattila et al. 2008; Jeppsson and Forslund 2014), and as is the case in vertebrates (Webb 

et al. 2002; Morrison and Hero 2003) the length of the adult life stage should affect 

extinction risk in invertebrates because it is positively correlated with the number of 

reproduction events (Morrison and Hero 2003).  Finally, length of flight period can also 

affect voltinism, with a longer flight season allowing more than one generation to 

reproduce and resulting in greater annual fecundity for multivoltine species.  

Multivoltinism is correlated with lower risk of extinction in longhorn beetles (Jeppsson 

and Forslund 2014).  The length of the flight season correlates with extinction risk in 

several insect taxa with winged adults, including beetles (Jeppsson and Forslund 2014), 

hoverflies (Sullivan et al. 2000), and butterflies (Kotiaho et al. 2005) and moths (Mattila 

et al. 2008).  Because odonates possess relatively strong dispersal capabilities and show 

interspecific variation in voltinism, length of flight season likely correlates with odonate 

extinction risk. 

The number of habitats a species occupies has also been found to correlate with 

extinction risk (Fisher and Owens 2004).  Species that occupy only a low number of 

habitat types are at a higher risk of extinction because the degradation or loss of any of 



 

78 
 

these habitats can have a great impact on species persistence (Rabinowitz 1981).  

Conversely, a species occupying a large variety of habitats can still persist if one of those 

habitat types is destroyed.  As with geographic range, vertebrates that occupy fewer 

habitat types are more at risk (e.g. Hutchings et al. 2005; Foufopoulos and Ives 1999; 

García et al. 2008).  The number of habitats occupied is a measure of habitat 

specialization (Fisher and Owns 2004) and ultimately niche breadth (McKinney 1997), 

with the degree of habitat specialization increasing as the number of habitats occupied 

decreases.  One would thus expect that the negative relationship between number of 

habitats occupied and extinction risk would also be seen across invertebrates.  However, 

previous studies have not shown a clear pattern for invertebrate species.  Extinction risk 

was not significantly affected by the number of habitats a species occupied in hoverflies 

(Sullivan et al. 2000) or butterflies (Nylin and Bergström 2009), but was affected by 

habitat specialization in beetles (Davies et al. 2004) and dragonflies (Korkeamäki and 

Suhonen 2002).  One reason for this ambiguity may be due to the level at which habitat 

specialization is measured.  In both studies in which habitat specialization was a 

significant predictor of extinction risk, habitat specialization was a qualitative 

measurement (e.g. habitat generalist versus specialist) rather a quantitative one, whereas 

in the studies in which specialization was not significant, the factor was measured as the 

number of habitats occupied.   

I chose the order Odonata as my focal group because they are generally well-

studied, and the group is relatively speciose and diverse.  Further, odonates are 

considered bioindicators of ecosystem health (Corbet 1999) and are well studied in North 

America.  These final two criteria make them excellent candidates for studying extinction 
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threats (McKinney 1999).  Two previous studies examined the relationship between 

odonate life-history traits and extinction risks, but at very different geographic scales.  

Clausnitzer et al. (2009) performed a global assessment of odonates and identified which 

geographic areas and broad habitat types (e.g. lentic or lotic, forest or shrubland) 

correlate with at-risk odonate species, and Korkeamäki and Suhonen (2002) found that 

geographic distribution and habitat specialization affect the local extinction of 20 odonate 

species in Finland.  However, Nylin and Bergström (2009) found that extinction patterns 

among butterflies in Sweden differed from the patterns found among butterflies across all 

of Europe, cautioning that it may be difficult to generalize extinction patterns of a taxon 

at different geographical scales.   

 

METHODS 

Data Collection 

 

 Using a variety of sources ranging from books (Westfall and May 1996; Needham 

et al. 2000; Manolis 2003; Abbott 2005; Paulson 2009; Paulson and Dunkle 2009; 

Paulson 2011) to online databases (NatureServe Explorer 2009) I collected information 

regarding the extinction risk assessment, habitat specificity, geographic distribution, and 

flight seasons of all odonate species inhabiting the United States, with the exception of 

species endemic to Hawaii.  I chose to obtain information from multiple sources to gain 

the most comprehensive and accurate list possible.  Extinction risk in this study is ranked 

according to the global conservation status ranking system developed by NatureServe 

Explorer (2009).  I used the global conservation status rather than the national 
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conservation status because some of my species ranges included Canada and Mexico and 

some species with small ranges in the United States had large ranges in Mexico.  Species 

are assigned by NatureServe to one of five global conservation statuses using a weighted, 

standardized calculator that takes into consideration rarity, trends in population size, and 

threats to species persistence (Faber-Langendoen et al. 2009).  Conservation statuses are 

ranked from G1 to G5, with G1species considered critically imperiled and G5 species 

considered secure.  Species given a status of two sequential ranks (e.g. G3G4) by 

NatureServe Explorer (2009) were adjusted to the lower rank for my analyses.  Species 

given two non-sequential ranks were assigned the intermediate rank; for example, a 

species ranked as G1G3 would be given a G2 ranking.  I excluded 26 species from this 

study because of missing or questionable information about them.  Four species for which 

insufficient data were available were not given a conservation status by NatureServe 

(2009), and seventeen species were listed as inhabiting the United States in other sources 

but not by NatureServe (2009).  The remaining five species I eliminated were listed as 

inhabiting the United States by NatureServe (2009) but not by any other source (and no 

information on habitat occupancy was provided by NatureServe or any other source).    

 As a measure of geographic distribution, I determined the number of American 

states, Canadian provinces (hereafter states), and Mexican states each species inhabits. I 

chose not to include Hawaii or island countries because of the inherently limited 

geographic distribution that may occur as a result of a species being endemic to an 

isolated island.  I obtained geographic distributions within the United States and Canada 

via NatureServe Explorer (2009), and Mexican distributions were inferred from Paulson 

(2009, 2011).  Distributions on NatureServe were cross-checked with Paulson (2009, 
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2011).  Due to the wide range of size among the states included in my study, I combined 

certain small states and analyzed them as a single state.  In Canada, I combined Prince 

Edward Island and Nova Scotia; in the United States, I combined Connecticut, Rhode 

Island, Massachusetts, Vermont, and New Hampshire into one state and Washington DC, 

Delaware, Maryland, and New Jersey into another.  In Mexico, states were combined as 

follows: Mexico City, Mexico, and Hidalgo; Puebla, Tlaxcala, and Morelos; Guanajuato 

and Queretaro; Zacatecas and Aguascalientes; Colima and Jalisco.  Thus, the maximum 

number of states and provinces across which a species could range is 81.  NatureServe 

listed 3 species as having disconnected ranges, with sightings in Rhode Island but all 

other sightings more than 500 km distant. The Rhode Island occurrences for these species 

were disregarded as they were not also listed in Paulson (2009, 2011).   

I determined the average flight season length (measured in months) per state of 

each species using information from Paulson (2009, 2011).  These sources provided the 

most comprehensive information regarding flight season for each species of all the 

sources from which I obtained habitat occupancy information.  However, these two field 

guides present flight seasons within the United States and Canada only.  I did not factor 

flight seasons in Mexico into my analyses because this information was only rarely and 

sporadically given in any source and not included in Paulson (2009, 2011) at all.  To 

remove the effect of latitudinal range on flight season, I calculated each species’ average 

flight season length per state/province and used these values in my analyses.  

To assess the habitat breadth of each species, I collected information on the types 

of aquatic systems each species inhabits (e.g. ponds, streams, rivers, lakes; Table 16) and 

the speed of the water body (still, slow, intermediate, fast).  Lotic sites described as 
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having “some current” were classified as having an intermediate flowing speed.  I did not 

consider substrate type in my analyses because this information was not consistently 

provided for all species.  To quantify the number of habitats occupied by each species, 

every descriptor was given a single point, and all points were summed together.  I used 

this method to reflect the idea that a species can occupy a greater diversity of habitats 

both by occupying a larger number of habitat types, and in the case of lentic species, flow 

speeds.  

 

Statistical Analyses  

 

I performed statistical analyses separately for zygopterans (damselflies) and 

anisopterans (dragonflies).  Due to a low number of G1 and G2 species, I combined G1 

(if present), G2, and G3 species into a single group (“At-risk” group), resulting in three 

response categories: “At-risk”, G4, and G5.  I performed an ordinal logistic regression 

because my response variable (global conservation status) was an ordered, discrete 

variable and my explanatory variables were a mixture of count data (habitat specificity 

and geographic distribution) and continuous data (average flight season per month).  I 

first tested for heteroscedasticity among my variables using the gvlma function in the R 

package gvlma v. 1.0.02 (Pena and Slate 2006).  I detected significant levels of 

heteroscedasticity between geographic distribution and both habitat occupancy and 

average flight season for anisopterans. To correct this, I used the MASS package v. 7.3-

45 (Venables and Ripley 2002) to identify lambda from a Box-Cox transformation.  

Lambda values were similar to correct heteroscedasticity between geographic distribution 
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and both habitat occupancy and average flight season (0.414 and 0.444, respectively), so 

I transformed geographic range values as x0.43 to remove significant heteroscedasticity.  

All zygopteran predictor variables were heteroscedastic.  I tested for collinearity among 

the variables and the interactions of the variables using the package car (v.2.0-20, Fox 

and Weisberg 2011).  Because all variables and their interactions were highly collinear 

for both anisopterans and zygopterans, I performed a standardized transformation on each 

variable using the equation: ( 1

√𝑛−1
) (

𝑥−𝑥

𝑆𝐷
).  Because a one unit change in the original data 

is different than a one unit change in the transformed data (which is used in the 

interpretation of odds ratios), I then scaled the data using the R package plyr v. 1.8.3 

(Wickham 2011) to ensure that the calculated values (e.g., odds ratios) were at a relevant 

scale.   

I used forward-selection ordinal logistic regressions (Allison 1999) using the polr 

function in the MASS package to determine which of the three explanatory variables and 

their interactions were associated with global conservation status within each suborder.  I 

tested for overdispersion by dividing the residual deviance of the chosen model by the 

residual degrees of freedom and by a chi-square goodness-of-fit test.  All statistical 

analyses were performed using the statistical software R v 3.1.1 (R Core Development 

Team 2015).  All means were reported with standard deviation. 

 

RESULTS 

A total of 435 species (306 anisopteran and 129 zygopteran) from 12 families 

(seven anisopteran and five zygopteran) were documented and examined in this study.  I 

found six G1 species (all anisopteran), 15 G2 species (11 anisopteran and four 



 

84 
 

zygopteran), 34 G3 species (27 anisopteran and seven zygopteran), 104 G4 (73 

anisopteran and 31 zygopteran), and 276 G5 species (189 anisopteran and 87 

zygopteran).  Table 17 lists the number of anisopterans and zygopterans found in each 

conservation rank.  In anisopterans, geographic range size ranged from 1 to 76 states 

(19.44±13.04), average flight period ranged from 0.6 to 12 months (4.30±1.85), and 

habitat occupancy values ranged from 1 to 13 habitats (5.04±2.24).  Zygopteran 

geographic range size ranged from 1 to 75 states (23.23±15.92), average flight season per 

state ranged from 1 to 12 months (5.87±2.26), and habitat breadth ranged from 1 to 12 

habitats (5.45±2.35).  Table 18 lists mean values for habitat specificity, geographic 

distribution, and average flight season for each conservation status within anisopterans 

and zygopterans.   

Conservation statuses of anisopterans and zygopterans were differently affected 

by life history traits.  For anisopterans, the best-fitting ordinal logistic regression model 

included geographic range, length of flight period, habitat breadth, geographic range x 

length of flight period, and habitat breadth x length of flight period (AIC: 346.16, 

residual deviance: 332.16, residual degrees of freedom: 299).  All variables and 

interactions included in this model were significant (Table 19). Overdispersion was only 

moderate (1.15) and not significant (Χ2 test, p = 0.09).  

The odds ratios describe how a species’ conservation status changes as a one-unit 

change in a predictor variable occurs (Table 20).  The parameter value for the interaction 

between geographic range and length of flight period was negative, indicating that as the 

geographic range increased, the effect of length of flight season on extinction risk 

decreased.  Because the odds ratio for the geographic range x average length of flight 



 

85 
 

period interaction was 0.48, which was less than 1, the likelihood of a species 

transitioning from “At-risk” to G4 or G5 with a one unit increase in this interaction term 

decreased.   

For zygopterans, the best-fitting model included geographic distribution and 

average length of the flight season (AIC: 135.90, residual deviance: 127.90, residual 

degrees of freedom: 125; Table 18).  Over-dispersion was moderate and not significant 

(0.94, X2 test, p=0.41).  The odds ratios of both geographic distribution and length of 

flight season were both above a value of 1, indicating that a one unit change in either 

category increased the likelihood that a species moves from the “At-risk” rank to a G4 or 

G5 rank (Table 19).  Increasing the geographic distribution of a species by one state 

increased the odds that the species was a G4 or G5 rank by 21.32 fold (Figure 1).  

Increasing the length of a species’ flight period by one month increased the odds that the 

species was a G4 or G5 by 1.64 (Figure 2).   

 

DISCUSSION 

 Geographic range and length of flight period affected assessed risk of extinction 

in both damselflies and dragonflies.  In dragonflies, interactions between length of flight 

period with geographic range and with number of habitats occupied also affected 

extinction risk.  These results show that ecological correlates can vary even among 

closely related taxa.   More complex correlations with extinction risk exist in dragonflies 

than in damselflies.  This research not only contributes to the growing support for the use 

of ecological correlates in identifying species most at risk of extinction but identifies a 
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unique (length of flight season) ecological correlate with odonate extinction risk at the 

continental scale. 

 Geographic range size is driven by dispersal capability and is positively correlated 

with various measurements of wing size in damselflies (Rundle et al. 2007; Swaegers et 

al. 2014) and with odonate dispersal behavior (McCauley et al. 2014).  Odonates possess 

strong dispersal abilities relative to other animals (Corbet 1999; Clausnitzer et al. 2009), 

but McCauley et al. (2013) found that of 15 North American dragonfly species, those 

with smaller ranges were less likely to recolonize an area after local extinction occurred.  

In general, species characterized as having strong dispersal capacities will be able to 

sample several habitats before selecting the one of highest quality (Pulliam and Danielson 

1991).  Thus, if a large geographic range indicates that a species avoids regions of 

unsuitable habitat and recolonizes areas where local extinction has occurred, then clearly 

the risk of extinction should decrease.   

Length of flight period may also be positively correlated with dispersal capability 

(Grewe et al. 2012), although evidence is more equivocal.  A short flight season may 

reflect low dispersal abilities in hoverflies (Sullivan et al. 2000), and butterflies with low 

dispersal abilities and shorter flight periods had higher risk of extinction (Kotiaho et al. 

2005).  However, Powney et al. (2015) found that the likelihood of persistence of 

odonates across Britain and Ireland over the past 30 years increased with shorter flight 

periods not longer periods, and they reasoned that length of flight period was not a 

suitable measure of dispersal ability. 

Length of flight period could also be a surrogate measure of reproductive 

opportunities.  A longer adult stage might indicate that individuals have more 
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opportunities to mate and reproduce (Öckinger et al. 2010; Grewe et al. 2012), reducing 

the risk of population extinction (Henle et al. 2004).  At the species level, length of the 

flight period also reflects the different adaptive strategies in species.  Many odonate 

species are multivoltine Corbet et al. (2006), a trait that allows for resilience to 

environmental changes (Diaz et al. 2008).  For example, climate change caused earlier 

than normal spring time emergence of odonates (Hassall et al. 2007), and for multivoltine 

species, only the first generation would be exposed to any detrimental effects of an early 

emergence time (Knell and Thackeray 2016), with subsequent generations of the same 

season potentially able produce enough offspring to counteract any population declines in 

the first generation (Knell and Thackeray 2016).  If a longer flight season reflects more 

generations per year, as evidence suggests in lepidopterans (Kitahara and Fujii 1994; Roy 

and Sparks 2000; Nylin and Bergstrom 2009; Altermatt 2010), then multivoltine species 

may more quickly recover from changes or disturbances in the environment (Knell and 

Thackeray 2016).  This same concept can be applied to univoltine species that have 

staggered emergence times, which would similarly lengthen the flight period (Zonneveld 

et al. 2003; Komonen et al. 2004).  A population that has individuals overwintering at 

different instar stages will have staggered emergence times (Paulson and Jenner 1971); 

this temporal variation in emergence would allow for the utilization of optimal 

environmental conditions or avoidance of a catastrophic event (Neal et al. 1997) by at 

least some of a population.   

 I found a significant negative interaction between geographic range size and 

length of flight season in dragonflies but not in damselflies.  Corser et al. (2015) found 

that damselflies with longer flight periods also had larger geographic ranges across the 
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state of New York, and while I found that damselfly species with a low risk of becoming 

extinct had wider niche breadths and longer flight periods, the interaction between the 

two factors did not correlate with extinction risk assessment.  In my study, I also found 

that increasing the geographic range of a species can mitigate the impact a short flight 

season has on a species’ extinction risk, and vice versa.  Because both geographic range 

size and length of flight period reflect dispersal capacities, strong dispersers would 

quickly reach other suitable habitat in a short amount of time or have plenty of time to 

reach suitable habitat that is far away.  Or, a wide geographic range would decrease the 

likelihood that catastrophic event eliminated all adults of species with short flight 

seasons.   

 Habitat breadth significantly correlated with extinction risk assessment, but only 

in dragonflies.  Habitat generalists had broader regional occurrences across Nevada and 

California across the past century (Ball-Damerow et al. 2014), so I expected to find this 

same pattern.  However, the number of habitats occupied was not significantly correlated 

with extinction risk in damselflies, a pattern also found in hoverflies.  For hoverflies, the 

number of habitats occupied may not accurately reflect niche breadth, and host plant type 

might be a more accurate correlate (Sullivan et al. 2000).  Damselflies may be showing 

an analogous pattern with types of habitats occupied.  Habitat type correlates with 

extinction risk (Korkeamäki and Suhonen 2002; Clausnitzer et al. 2009; Suhonen et al. 

2014), and so habitat type may be a more accurate reflection of extinction risk across 

both dragonflies and damselflies.  Surprisingly, Suhonen et al. (2014) found that odonate 

specialists had lower local extinction rates than generalists.  Further studies are needed to 

better identify how habitat breadth affects odonate extinction risk. 
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Dragonfly extinction risk assessment significantly and positively correlated with 

the interaction between habitat breadth and the length of flight period.  Komonen et al. 

(2004) found a significant correlation between length of flight period and habitat breadth 

in butterflies.  They reasoned that habitat specialists would have shorter flight seasons 

due to habitat generalists being able to tolerate a wide variety of environmental 

conditions and thus able to tolerate changes in the environment.  In my study, all 28 

dragonfly species that utilize temporary habitats ranked as G5 species, and likely exhibit 

a multivoltine strategy because of the short generation time required to successfully 

inhabit temporary habitats (Corbet et al. 2006). 

I found significant differences in how species’ traits affect extinction risk in 

dragonflies and damselflies.  Surprisingly, the differences were found despite the fact that 

there are no differences in the mean values of the three ecological correlates within each 

conservation rank between dragonflies and damselflies across ranks.  These differences 

are possibly the result of the low number of at-risk damselflies found across North 

America.  Increasing the number of damselflies included in this study could reveal 

ecological correlates with extinction that align more with those found in dragonflies.  

However, it is also possible that the differences I observed are true differences due to 

species-specific trait variations (McCauley et al. 2014).   

The contrasting findings of my study versus those of other odonate studies 

suggest that geographical scale is also an important factor when identifying ecological 

correlates with extinction risk, as has been found in butterflies (Nylin and Bergstrom 

2009).  Corser et al. (2015) found a significant correlation between the length of flight 

period and geographic range size in damselflies in the state of New York, while my study 
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was across the contiguous United States, Mexico, and Canada.  Further, geographic 

distribution was found to be a significant predictor of regional extinction in Finland 

(Korkeamäki and Suhonen 2002), indicating that the use of geographic range is a 

correlate of extinction risk at larger landscape levels.  McCauley et al. (2014) noted that 

geographic scale was a likely reason for the contrasting results between their study and 

others.  

While the overall number of at-risk odonates across North America is fairly low, 

my study nonetheless contributes to the growing number of comparative studies that 

identify ecological correlates with extinction risk.  The significant effects of flight period 

length in this study show that more studies of invertebrates need to be conducted in order 

to identify predictors of extinction risk that better reflect their life history traits and 

patterns.   
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Table 16. List of documented aquatic systems inhabited by odonates in my analyses. 

System 

Seep 

Garden Pond 

Pool 

Stream 

Spring Run 

Rivulet 

Brook 

Stream Backwater 

Irrigation Ditch 

Slough 

Bog 

Ditch 

Fen 

Muskeg 

Pond 

Lagoon 

Burrow Pit 

Creek 

Canal 

Bayou 

Marsh 

Bay 

Estuary 

Lake 

River 

 
Table 17.  Number of anisopterans and zygopterans found in each of NatureServe’s 

global conservation ranks. 

 
Conservation Status Anisoptera Zygoptera Total 

G1 6 0 6 

G2 11 4 15 

G3 27 7 34 

G4 73 31 104 

G5 189 87 276 
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Table 18.  Mean (standard deviation) geographic range, length of flight period, and habitat breadth for each conservation status 

within Anisoptera and Zygoptera.  Geographic range indicates number of American states, Mexican states, and Canadian 

provinces.  Length of flight period is the average number of months adults are flying, and habitat breadth is the number of 

habitats a species occupies. 

  Conservation Status Geographic Range  Length of Flight Season Habitat Breadth 

Anisoptera At-risk 6.20 (5.94) 2.73 (1.16) 4.05 (1.84) 

 G4 13.37 (7.42) 3.49 (1.23) 3.73 (1.74) 

 G5 24.86 (12.71) 4.98 (1.83) 5.77 (2.19) 

     
Zygoptera At-risk 6.09 (6.89) 5.40 (3.44) 4.81 (2.79) 

 G4 9.52 (8.04) 5.92 (2.27) 4.62 (2.11) 

  G5 30.29 (13.91) 5.98 (2.13) 5.79 (2.27) 
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Table 19. Values from ordinal logistic regression for anisopterans and zygopterans.  For anisopterans, the best-fitting model 

included the variables and interactions listed below, and all were significant.  For zygopterans, the best-fitting model included 

only geographic range and length of flight period. * indicate p-values less than 0.05; **, less than 0.01; ***, less than 0.0001. 

  Ecological Correlate Parameter Standard Error t value 

Anisoptera Geographic Range 1.71 0.21    8.00*** 

 Length of Flight Period 1.15 0.28   4.18** 

 Habitat Breadth 0.65 0.22   2.96** 

 Range x Flight Period -0.74 0.26    -2.91** 

 Habitat x Flight Period 0.68 0.29 2.36* 

     
Zygoptera Geographic Range 3.06 0.50     6.12*** 

  Length of Flight Period 0.50 0.23 2.15* 

 
 



 

94 
 

Table 20. Odds ratios and 95% confidence intervals of each significant variable for the 

ordinal logistic regression models with the lowest AIC values.  In both Anisoptera and 

Zygoptera a 1-unit change in geographic range had the largest effect on conservation 

rank. 

  Ecological Correlate Odds Ratio 0.025 0.975 

Anisoptera Geographic Range 5.53 3.68 8.54 

 Length of Flight Period 3.17 1.93 5.72 

 Habitat Breadth 1.91 1.27 3.00 

 Range x Flight Period 0.48 0.29 0.78 

 Habitat x Flight Period 1.97 1.16 3.60 

     
Zygoptera Geographic Range 21.32 8.78 63.21 

  Length of Flight Period 1.65 1.06 2.63 
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Figure 1.  Prediction curves for predicting the probability of an odonate being a certain 

conservation status across geographic ranges.  Increasing the geographic distribution of a 

species by one state increased the odds that the species was a G4 or G5 rank by 21.32 

fold. Short-dashed line: “At-risk” conservation status; long-dashed line: G4 conservation 

status; solid line: G5 conservation status 

 
 

 

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

P
ro

b
ab

ili
ty

Geographic Range

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

P
ro

b
ab

ili
ty

Length of Flight Season



 

96 
 

Figure 2.  Prediction curves for determining a species’ conservation status based on its 

flight period length.  Increasing the length of a species’ flight period by one month 

increased the odds that the species was a G4 or G5 by 1.64.  Short-dashed line: “At-risk” 

conservation status; long-dashed line: G4 conservation status; solid line: G5 conservation 

status
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CHAPTER V 

CONCLUSION 

 

Summary 

 

 I took three distinct approaches to studying arthropod conservation in North 

America.  My research on wolf spiders shows that not all arthropods are negatively 

affected by urban development.  Some species are able to tolerate and disperse through 

an inhospitable matrix caused by urbanization.  Other taxa, such as odonates, are 

negatively affected by urban development.  However, even among odonates, their 

responses to urbanization are variable, and these differences are likely due to variations in 

ecological and life-history patterns.  My dissertation suggests that invertebrates have 

much more variation in their responses to urban development than do vertebrates. 

 

Future Directions 

 

 Future studies need to develop a comprehensive theoretical framework to predict 

the responses of arthropod taxa to urbanization.  Foundational data are necessary in order 

to identify the biological and environmental mechanisms that drive the differential 

responses of arthropod taxa to urban development.  Biological factors (e.g. dispersal 

ability and voltinism) will certainly contribute to which species are resilient to extinction.  
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My research suggests that even passive forms of dispersal can help maintain gene flow so 

long as individuals successfully traverse large swaths of uninhabitable land and reach 

suitable habitat.  Additionally, variations in dispersal abilities, as measured by geographic 

range size and length of flight period, correlate with extinction risk assessment in 

odonates.  With such diverse modes of dispersal and variations in dispersal abilities, 

researchers need to investigate the ecological, behavioral, and morphological traits that 

enable some species to disperse successfully through inhospitable urban matrices while 

other species fail to do so.  Direct measurements of long-distance dispersal are difficult to 

obtain (Nathan et al. 2003) and can be at least partially inferred from genetic analyses 

methods such as MIGRATE and BYESASS+, but more studies are needed to understand 

how different modes and patterns of dispersal contribute to species persistence in urban 

areas.  Environmental mechanisms also need to be identified in order for invertebrates to 

be effectively conserved in urban areas (McDonnell and Hahs 2013).   For example, I 

found that the amount of urban development surrounding a site affected pond 

communities but not stream communities.  Future studies need to investigate why urban 

development affects odonate pond communities and not stream communities and if this 

pattern is found in other taxa as well. 

 In order to identify the mechanisms driving the urban biodiversity patterns that 

others and I have observed, I first need to better understand the basic ecology and 

distribution of invertebrates in general (D’Amen et al. 2013).  In other words, in order for 

conservationists to effectively protect these taxa, I need to take a stronger interest in 

invertebrates and learn more about them.  Sophisticated modeling techniques, which can 

inform conservation management practices, can only be effective if basic research has 
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been conducted first (D’Amen et al. 2013) and researchers confidently know which 

environmental variables affect species persistence (Araujo and Guisan 2006).   

 

Conclusion  

 

 The significance of urban areas in maintaining high levels of biodiversity is still 

being debated.  Schwartz et al. (2014) concluded that the possibility of urban areas to 

contribute to animal conservation is low, but McDonnell and Hahs (2013) believe that 

cities can be important in conserving biodiversity.  Certain species, such as R. rabida, 

may be able to tolerate urban areas, but study after study has shown that urban areas 

negatively affect biodiversity, especially those species that have narrow niches.  If urban 

areas are to hold high levels of biodiversity, then society needs to take an active approach 

to making greener cities (Colding and Barthel 2013; McDonnell and Hahs 2013; Parker 

2015) and conservationists need to put a stronger emphasis on learning more about the 

neglected 90% (Redak 2000) of an estimated 8.7 million extant invertebrate species 

(Mora et al. 2011).  
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 Identified specific barriers to dispersal within the landscape 
 Determined location and quality of wildlife corridors within the landscape 
 Identified the most important corridors and core habitat areas for maintaining 

connectivity 
 Discovered significant isolation-by-resistance among populations 

 
Baylor University 

 
2009:   Determined differential responses of odonate taxa to environmental stress 

 Participated in summer research fellowship 

 Collected individuals at Lake Waco Wetlands 

 Measured odonate wing areas and performed wing cell counts using Adobe 
Photoshop 

 Analyzed levels of fluctuating asymmetry with Microsoft Excel 
 

PRESENTATIONS 

 

 Prescott, V.A., P.K. Eason. April 2016. Determinants of odonate diversity in ponds 
versus streams across an urban-rural gradient. Invited talk at Biology Department 
Awards Day, University of Louisville. 

 Prescott, V.A, P.K. Eason. April 2016. Urbanization negatively affects dragonfly 
communities. Graduate Student Council Regional Conference. 

 Prescott, V.A., P.K. Eason. November 2015. Dragonflies of pond and stream 
communities respond similarly to urbanization. Kentucky Academy of Science. 

 Prescott, V.A., P.K. Eason. March, 2015. Pond and stream dragonfly communities 
respond differently to urban development. Midwest Ecology and Evolution 
Conference. 

 Prescott, V.A., P.K. Eason. November, 2014. Odonate diversity across an urban-
rural gradient: Odonates in ponds and streams respond differently to altered 
habitats. Kentucky Academy of Science. 

 Prescott, V.A, D. Vodopich. August, 2009. Fluctuating asymmetry in damselflies of 
the Lake Waco Wetlands. Baylor University.  
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GRANTS RECEIVED 

 

2015 

 Effect of habitat destruction on odonate diversity 

- Horner Wildlife Refuge Grant ($1000) 
- Biology Graduate Student Association ($300) 

 

2012-2014 

 Effect of inhospitable matrix on wolf spider dispersal 
- Graduate Student Creative Activities Fund ($500) 
- Graduate Student Committee Research Fund ($300) 
- Graduate Student Committee Research Fund ($100)      
- Cornett Entomological Endowment Fund ($2000)  

 

LEADERSHIP  

 

2014-Present  

 Senior Graduate Teaching Assistant 
- Taught laboratories for introductory biology to majors and nonmajors 
- Designed new lecture powerpoints used in all lab sections 
- Drafted homework assignments used in all lab sections 
- Mentor undergraduate teaching assistants 
- Corresponded with other teaching assistants on behalf of professor 
- Communicated clearly to students 
- Managed labs  
- Wrote and graded exams 
- Prepared equipment for laboratory experiments 
- Attended weekly meetings 
- Proctor exams 

 
2011-Present 

 Member, Biology Graduate Student Association 
 

2015   

 Guest Lecturer, Principles of Ecology  

 

2015 
 Third place, Oral presentation competition, Kentucky Academy of Science 

Conference 
 

2014-2015  
 President, Biology Graduate Student Association 

- Streamlined monthly meetings 
- Liaison between members and other associations 
- Coordinated fundraising events 
- Modified amendments and regulations of the association 
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- Established new role entitled outreach coordinator 
 

2014 

 Judged undergraduate poster presentations at Kentucky Academy of Science 
conference 

 
2013   

 Guest Lecturer, Invertebrate Zoology 

 
COMMUNITY INVOLVEMENT 

 

2016 

 Park Steward for Olmsted Parks Conservancy 

- Volunteer management 
- Community engagement 
- Pesticide management 
- Horticultural techniques 

 Working with The Nature Conservancy to assess habitat needs of an endangered 
moth 

 Entomologist for Lincoln Boyhood National Memorial Park BioBlitz  
 Invited talk for the Sierra Club 

 Invited talk for the Kentucky Society of Natural History  
 Led nature walk for the Kentucky Society of Natural History 

 

2014-2015 

 Led nature walks for Kentucky Natural History Society 
 Taught dragonfly biology to the public at Otter Creek Recreation Area and 

Blackacre State Nature Preserve        
 

2014  

 Hosted odonate booth at Bernheim Research Forest annual BugFest   
 

 
 


	University of Louisville
	ThinkIR: The University of Louisville's Institutional Repository
	12-2016

	Approaches to arthropod conservation : landscape genetics, community assessment, and prediction of extinction risk.
	Victoria Annette Prescott
	Recommended Citation


	tmp.1480695655.pdf.7fJtZ

