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ABSTRACT 

PLANT COMMUNITY RESPONSES TO THE REMOVAL OF LONICERA MAACKII  

FROM AN URBAN WOODLAND PARK 

November 16, 2016 

Elihu H. Levine 

Impacts of Lonicera maackii on native forest communities have been widely researched, but long-

term responses of plant communities to the removal of this exotic shrub have not been extensively 

evaluated.  The Louisville Olmsted Parks Conservancy removes exotic shrubs and vines to restore 

ecological processes and native species in the woodlands of Cherokee Park.  Paired-plots were established 

in 2008 to gather baseline herb, vine, tree, and shrub community data.  Honeysuckle was removed from one 

plot of each pair in 2009 and community data were gathered again in 2013.  Native herb cover and richness, 

vine cover, and tree sapling abundance increased where honeysuckle had been removed.  Higher summer 

herb cover was also correlated to sites with longer duration of L. maackii invasion and a more open tree 

canopy above.  This suggests a legacy of L. maackii invasion on the forest community structure impacting 

herb communities, even 5 years after its removal.    
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INTRODUCTION

 

As development near natural areas increases, invasive exotic plants have been identified as significant 

problems in many parts of the world (Vitousek et al.1997). D’Antonio and Vitousek (1992) put forth the 

argument that anthropogenic reductions of biogeographic dispersal barriers have allowed massive 

introductions of exotic species with a corresponding increase in “invasions” by these exotic species in 

theirnovel territories. This has allowed species that evolved in isolation from one another to interact in a 

common environment. Not all exotic species are defined as invasive.  A presidential Executive Order in 

1999 defined invasive species as “Those species whose introduction does, or is likely to, cause economic or 

environmental harm or harm to human health” (Clinton 1999).  Some invasive species are estimated to 

cause billions of dollars-worth of economic damage (Vitousek et al. 1997).  Invasive plant management 

accounts for more than half of the budgets for some parks and are a “serious threat” to more than half of the 

parks in the US National Park System (NPS) (D’Antonio and Meyerson 2002).  In 2009, the NPS listed 

more than 4,550 invasive plants, approximately 70% of the invasive species found in the USA, documented 

in the parks that it manages (National Park Service 2009).  While the traits that cause individual species to 

become “invasive” are not fully understood, much effort has gone into understanding the effects of 

invasion (Tillman 1997; Davis et al. 2000; Sakai et al. 2001; Levine et al.2003; Callaway and Maron 2006).     

In some cases invasive species may alter ecosystem processes in such a way as to facilitate their own 

spread, or make the ecosystem more vulnerable to invasion by another species (Vitousek et al.1997).  

Ehrenfeld (2003) suggests that invasive plant species frequently alter biomass and net primary production, 

water cycling, and carbon (C) and nitrogen (N) availability and cycling in habitats where they have been 

introduced.  Such alterations of nutrients and soil processes may have dramatic effects on native species 

(Yelenik and Levine 2011) sometimes causing positive feedbacks that increase the abundance of the 

invasive species themselves (Smith and Reynolds 2012).   
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The increasing loss of natural areas due to human development and climate change (Vitousek et al. 

1997) places an increasing importance on the preservation of biodiversity in protected natural areas in 

preserves and parklands (Scott et al. 2001; Bruner et al.2001; Hansen et al. 2002).  There is evidence that 

positioning preserves within a larger landscape of protected land will reduce the likelihood of invasion by 

exotic plants (Pyšek et al. 2002).  In a synthesis of threats posed to wilderness parks in the US National 

Park System, Cole and Landres (1996) concluded that smaller, more isolated, areas situated within a 

disturbed landscape matrix would see higher likelihood of invasion by non-native species, especially those 

areas with higher rates of human visitation.  These criteria describe parks in urban areas: smaller size due to 

premium land prices, isolation from other natural areas by dense human development, location in a 

dynamic urban landscape of shifting development, disturbance, and visitation patterns.  This similarity 

suggests that urban parks will be among the areas that are more vulnerable to exotic species invasions.  

Despite often being the most species-rich green spaces in urban zones, parks often contain high proportions 

of exotic species- particularly exotic plants (Nielsen et al. 2014). 

The urban landscape is not only a barrier isolating fragmented green spaces, it can also be a source 

for exotic species.  The horticultural use of exotic plants for private property has resulted in the 

introduction of many invasive exotic plants in North America (Reichard and White 2001).  Indeed one such 

plant, Lonicera maackii (Rupr.) Herder (Caprifoliaceae), has spread dramatically in eastern North America 

since its introduction from Northern China into U.S. gardens in the late 1890's (Luken and Thieret 1996).  

Trisel (1997) noted that this shrub has become naturalized in 24 states of the United States and the 

Canadian Province of Ontario.  In 2016, the United States Department of Agriculture’s PLANTS database 

(NRCS 2016) reported L. maackii populations in 26 eastern states plus the District of Columbia and Oregon 

on the west coast (as well as Ontario).  Commonly known as Amur Honeysuckle, L. maackii is an upright 

shrub that grows up to six to seven meters high, creating a dense understory canopy that is not commonly 

found in much of the deciduous forests of North America (Hartman and McCarthy 2008).   

Notably, L. maackii benefits from an extended leaf phenology.  In addition to better freeze 

tolerance, L. maackii leaf development in the spring occurs some two to three weeks earlier than similar 

competitors that are native to Kentucky (McEwan et al. 2009). Leaf abscission in the fall occurs three to 

four weeks after the main tree canopy pulse in Louisville, Kentucky (Trammell et al. 2012).  Some reports 
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have suggested that L. maackii may retain leaves as much as two months after some native canopy trees 

(Quercus rubra and Acer saccharum) drop their leaves (Blair and Stowasser 2010).  This distinct timing 

difference may be key to L. maackii’s competitive success through a variety of mechanisms (Smith 2013).  

For example, the extended phenology of L. maackii has been shown to reduce native plant diversity and 

abundance and alter the behavior of pollinators to native herbs (McKinney and Goodell 2010).  The relative 

timing of the phenologies, therefore, can be key to determining the relative success of native and exotic 

species of plants (Rejmanek 2013; Cleland et al. 2013).   

 There is a robust body of literature documenting the negative impacts of L. maackii establishment 

on the plant communities of eastern deciduous woodlands of North America.  L. maackii invasion 

manifestly reduces the realized niches for many other native species as evidenced by the depauperate sub-

canopy and forest floor plant strata observed in invaded forests (Collier et al.2002).  Gould and Gorchov 

(2000) found reduced survival and fecundity of three native herbs in proximity to L. maackii (Galium 

aparine and Impatiens pallida both found in this study, plus Pilea pumila).  Forests long invaded by L. 

maackii may see reduced densities and species richness for herbs and tree seedlings suggesting that 

invasion may have significant consequences for the community’s species composition in the future (Collier 

et al. 2002; Gorchov and Trisel 2003; Hartman and McCarthy 2004; Hartman and McCarthy 2008).   

The addition of this one newly dominant species into a previously under-exploited niche may even 

reduce the growth rates of mature canopy trees (Hartman and McCarthy 2007).  L. maackii invasion is 

associated with an approximately 25% reduction in total foliar leaf litter biomass and L. maackii may 

comprise a higher proportion of the litter that is present (Trammell et al. 2012).  The leaf litter that L. 

maackii produces contains more nitrogen and lower C:N ratios (Blair and Stowasser 2010; Trammell et al. 

2012), and so decays faster than native tree leaf litters in both aquatic (McNeish et al. 2012; Fargen et al. 

2015) and terrestrial ecosystems (Arthur et al. 2012; Poulette and Arthur 2012; Trammell et al. 2012).  This 

could result in an alteration in availability of safe sites for seed germination and seedling survival for some 

plants as both reduced canopy litter input and faster litter decomposition resulted in thinner leaf litter layers 

(Facelli and Pickett 1991; Baker and Murray 2010; Masters and Emery 2015). 

Some evidence suggests that L. maackii may have allelopathic potential, at least against native 

herbaceous seedlings (Dorning and Cipollini 2006; Cipollini and Dorning 2008; Cipollini et al. 2008; 
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Cipollini et al. 2009; Cipollini and Bohrer 2016).  However, while chemicals with allelopathic potential are 

found in L. maackii roots and foliage, demonstrating long-lasting in situ allelopathic effects is 

methodologically difficult given the confounding factors of direct competition.  Some attempts to separate 

above- and below-ground effects of L. maackii have been made, and data shows some below-ground 

negative interactions, but the significant portion of the interactions seem to result from above-ground 

competition for light (Gorchov and Trisel 2003; Cipollini et al. 2009).  Therefore it is likely that the 

invasion success of this shrub is due to a combination of effects on the native plant community involving 

competition for light, ability to take advantage of autogenically altered nutrient dynamics in the soil, and 

the potential for reduced seed safe sites- all altering the native plant community composition. 

Since parks and other sensitive woodlands are often managed specifically for desirable herb 

species and to improve tree health and recruitment (Cole and Landres 1996; Bruner et al.2001; Carreiro and 

Zipperer 2011; Nielsen et al.2014), it is imperative to quantify the success of efforts to remove L. maackii 

from these forests as a strategy to ensure a more desirable successional trajectory for woody and 

herbaceous native plant communities.  When considering the implications of removing L. maackii, 

managers must take into consideration two major alterations in the habitat that may constrain restoration 

success and affect their management goals.  The first is that the invasion itself may have already caused 

ecosystem-level changes such as more rapid soil N cycling (McEwan et al.2012), higher earthworm 

biomass (Pipal 2014), thinner leaf litter layers (Trammel et al. 2012), and reductions in the native plant 

seed bank.  In some cases these changes have the potential to remain as legacies even after the shrub's 

removal.  The second is the removal of the L. maackii itself, which is a considerable disturbance to the 

lower strata of the forest in its own right.  The elimination of the upright woody structure and its canopy 

permits greater light penetration to the forest floor.  This can potentially benefit non-target exotic plants as 

well as native plants, depending on the community composition, the extant propagule-bank in the soil, and 

proximity of nearby propagule sources.   

A recent review suggests that exotic species can often account for as many as half of the plant 

species identified in urban parks (Nielsen et al. 2014).  Increased densities of L. maackii itself have been 

associated with proximity to urban areas, and may contribute greatly to the seed bank (Borgmann and 
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Rodewald 2005; White et al. 2014; Trammel and Carreiro 2011).  As a result, identifying the potential for 

exotic plants to become invasive after competitive release due to L. maackii removal is of great concern.   

A recent review of the literature (McNeish and McEwan 2016) underscored the robust understanding 

of the effects of L. maackii invasion on woodlands, but it left unresolved the legacy, if any, of the invasion 

after removal of the shrub.  Their synthesis predicts that invaded forests are likely to experience altered 

community structure and function, even altered successional trajectories.  However, there is very little data 

on the state of forest communities when L. maackii is removed.  Most research has concentrated on 

describing the effects of L. maackii on invaded forests, sometimes along a gradient of duration of invasion 

(Collier et al. 2002; Hartman and McCarthy 2008) or gradients of disturbance (Gould and Gorchov 2000).  

A few studies have focused on the efficacy of the efforts to remove L. maackii, but did not examine the 

community as a whole (Loeb et al. 2010), or were limited to following recovery for just a couple of 

growing seasons (Hartman and McCarthy 2004).  Some efforts have been made to follow plant community 

recovery after L. maackii removal, but few have extended past one growing season of response (Owen et al. 

2005), or examined the response of more than a couple of species (Gould and Gorchov 2000).  The few 

studies that have examined plant communities over more than a few seasons generally focused on only one 

component of the community (Luken et al. 1997a and b; Runkle et al.2007).   

The flush of spring ephemerals often die back as the tree canopy fully leafs out, leading to distinct 

spring and summer herb communities. Luken et al. (1997a) noted that measuring in the spring compared to 

the summer in one year increased the ground-level species richness, likely due to the inclusion of some of 

the ephemeral spring herbs, many of which are of high conservation value.  Due to differences in abiotic 

factors (light penetration through the canopy, temperatures, forest floor litter cover, access to pollinators) 

these communities might react to the disturbance of L. maackii in different ways. One recent study 

examined the herb and tree seedling responses to L. maackii removal, but did not separate spring ephemeral 

from summer herb communities, instead treating all herbs as part of one community with only peak cover 

reported over an 8 year interval (Boyce 2015).    Boyce’s (2015) data make it very clear that plant 

community responses after just one or two years can vary drastically from those of 3-5 years post-removal 

and that these responses may vary depending on the intensity of L. maackii invasion. 
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Specifically, managers need to know whether the alterations to the available niches of native plants are 

short-term and reversible once L. maackii is removed, or if the simple fact of invasion has the potential to 

permanently alter the plant communities that arise (i.e., whether L. maackii invasion results in a legacy of 

reduced niche availability for native species known to have colonized the forest in the past).  If the native 

plant community cannot recover on its own, then managers will have to combine shrub removal with 

planting efforts of desirable native herbs and tree species to achieve a future target community.  This study 

seeks to quantify the responses by the forest plant community five years after removal of L. maackii shrubs 

from a managed urban park woodland.  There are three over-arching questions: 

In the fifth growing season since being released from L. maackii domination: 

1. Did either of the spring or summer native herbaceous plant communities exhibit an increase in 

abundance or diversity? 

2. Did woody plant communities (vines, trees, or shrubs) exhibit an increase in recruitment and 

diversity of seedlings and saplings? 

3. To what extent did the resulting plant community become dominated by exotic species, including 

L. maackii itself? 

4. Do variables associated with light influence the resulting plant community structure after removal 

of L. maackii?  

5. Did longevity of occupation by L. maackii explain variation in plant community responses after its 

removal? 
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METHODS

Background and site description 

This study occurred in Cherokee and Seneca Parks (158 ha and 135 ha, respectively) located in Louisville, 

KY, (Latitude 38.25N, Longitude -85.76W), a city with a merged city-county population of over 756,000 in 

2013 (U.S. Census Bureau 2013).  These contiguous parks were established in the late 19th and early 20th 

century and have had a history of human recreational use and of planting both native and non-native 

species (Carreiro and Zipperer 2011).  In 1974, half of the tree canopy of Cherokee Park was destroyed by 

an F4 tornado, which likely accelerated re-colonization by exotic vines and shrubs (Carreiro and Zipperer 

2011).  Therefore, much of the area of these mixed deciduous woodlands consists of secondary forests with 

Acer saccharum, Fraxinus americana and Celtis occidentalis as dominant tree species (M. Carreiro, 

unpublished). 

 In 2005, the Louisville Olmsted Parks Conservancy (LOPC) began a campaign of park-wide 

invasive plant removals.  When this present study was initiated in 2008, these deciduous woodlands were in 

a highly degraded state due to long-term invasion by exotic vines and shrubs, particularly Lonicera 

maackii.  This study was initiated in cooperation with the LOPC to establish long-term plots to determine 

the extent to which the plant community might recover from Lonicera shrub removal, and without further 

removals or plant additions by management, the extent to which that community would become dominated 

by native or exotic plant species.  

Experimental design 

 In 2008, ten sites were established in different management areas of these woodlands, representing 

a range of slopes, aspects and honeysuckle densities in these adjacent parks (Figure 1). In order to collect 

baseline data on vegetation and soils no manipulations occurred during this first year of the study. Each 

paired-plot site consisted of two permanent 10 x 10 m plots, which were separated by a buffer-strip (three-
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meter minimum) and a five-meter buffer between their perimeters and any management activities occurring 

in the rest of the forest.  Each plot was divided into sixteen 2.5 x 2.5 m quadrats for simplifying the 

quantification of vegetation, leaf litter cover and collection of soil samples. 

The heavily invaded areas of the park were small and easily accessible enough for the cut-stump-

application method using glyphosate to be a viable strategy for park managers rather than foliar application 

of herbicide.  Of these two common strategies for L. maackii removal, foliar application is generally used 

in areas either too large or too difficult to access for more intensive efforts (Hartman and McCarthy 2004; 

Czarapata 2005; Miller 2006).  The foliar application method allows the woody structure of the invasive 

shrub to remain, which may provide some protection for nascent seedlings underneath (Hartman and 

McCarthy 2004).  This, however, may harm other desirable plants in the area.  Therefore, in stands where 

resources allow, the cut-stump-application method is often employed.  The shrub is cut down as close to the 

ground as is feasible, then herbicide is immediately applied directly to the vascular tissue of the stump.  

This allows a careful applicator to avoid over-spraying and potentially damaging other sensitive or 

desirable plants. 

In January 2009, honeysuckle shrubs were cut and removed in one randomly selected plot at each 

site.  Lonicera stems were cut at ground level and painted with a 26% solution of the herbicide, glyphosate 

(N-(phosphonomethyl) glycine (Roundup).  All aboveground cut shrub biomass was removed from the site 

to: a) make subsequent data and soil sample collection easier, b) ensure that all L. maackii shrubs were 

removed at one time, and c) to prevent the structure of remaining debris from providing a “ladder” for any 

subsequent vine growth to overtop the ground-level plant community.  Discs were taken from the stumps 

with the largest basal-area at each plot for counting annual growth rings and thereby estimate the minimum 

known presence of L. maackii at that location.  Discs were sanded smooth and annual growth rings were 

counted by three observers and averaged to obtain the reported values.  These cut plots were designated 

“removal” and the uncut plots as “control” treatments.  Our use of the term, site, refers to a single plot pair.   

Three additional sites were designated reference sites and one 10 x 10 m plot was established at 

each reference site (Figure 1).  These three plots had been cleared of L. maackii by the same methods as the 

removal plots at least five years prior to the beginning of this study.  In these three plots only, many other 
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exotic plants deemed invasive (e.g. Alliaria petiolata, Ampelopsis brevipedunculata, Celastrus orbiculatus, 

Morus alba) had also been removed at the same time as L. maackii by either chemical herbicide application 

or mechanical removal (Major Waltman, personal communication).   

 The data for this study were collected in 2013, in the fifth growing season after the removal 

treatment at eight of the original ten sites (N=8).  By 2013, the control plots at two of the original sites had 

been accidentally cut by management crews.  Therefore the vegetation responses for this fifth year could 

only be obtained for eight of the original ten paired-plot sites.   

Vegetation Sampling 

To characterize the understory plant community in this study, plant data were quantified as in 

2008.   Herb data were collected twice during the growing season: first in the spring (April 10-May 17, 

2013) to capture early ephemeral species and then again in the summer (July 9-19, 2013) to assess 

abundance and diversity of species that develop later in the growing season.  Estimates of % herb cover 

were collected by species for each entire plot. Woody vine cover by species was also collected in the 

summer.  Only vine foliage below 30 cm in height was recorded.  Since total foliage by species for herbs 

and woody vines is layered, it is possible to exceed 100% total cover in a plot.  

Tree species were separately recorded by seedling (< 30 cm tall) and sapling (> 30 cm tall, DBH 

<2.5 cm) strata. Seedling and sapling data were collected between June 18 and July 3.  Shrub species were 

quantified as the number of living stems >30 cm tall from between May 8 to June 12. For shrubs with 

multiple branching stems only the ones that emerged from the trunk at a height less than 30 cm from the 

ground were counted. Vine and shrub seedlings were also counted between May 8 and June 12.  Woody 

vine seedlings were those that were newly germinated and in their first year of growth (most still had 

cotyledons).  Stems and seedlings were recorded as number per 100 m2, the area of each plot.  

Plants were identified to species where possible, otherwise to genus with nomenclature following 

the USDA PLANTS online database (NRCS 2016).  Vines in the family Vitaceae were difficult to 

differentiate until mature (particularly Vitis sp. vs. Ampelopsis sp.), but when possible they were separated 

according to species.  When this wasn’t possible, these seedlings were classified as Vitaceae and 
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considered native to provide a conservative estimate of colonization by invasive vines in this study.  The 

USDA PLANTS database was used to classify plants as either native or exotic for the United States and its 

territories in the western hemisphere. 

Diversity Indices 

 Species richness, R, was measured as the number of plant species identified in a plot (100 m2).  

Diversity was calculated using two indices.  The first is Shannon’s Index, H’:  

H′ = ∑−𝑝𝑖 ∗ ln(𝑝𝑖)

𝑅

𝑖=1

 

The second diversity index is Simpson’s Index, D: 

D = ∑p𝑖
2

𝑅

𝑖=1

 

For both equations R is the total number of species in the plot and pi is the proportion of the total herb 

cover in the plot of species  

Shannon’s Evenness, J, was calculated as:  

J = 
𝐻′

ln(𝑅)
 

Richness was calculated for spring and summer herbs separately, vines, shrubs, and tree seedlings and 

saplings.  Diversity (H’ and D) and evenness (J) were calculated separately for each of the spring and 

summer herb collections, for tree seedlings, and for tree saplings. 

Environmental variables 

Several environmental variables that were anticipated to potentially explain vegetation responses 

were measured at each of the plots.  These included aspect, slope, canopy cover, % bare soil (with no leaf 

litter cover), litter mass in late spring, and distance to nearest edge with a road or field.  Aspect was 

measured using magnetic compass, declination 4o West, taken at the center point facing down the major 
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slope for each plot.  The % slope for each plot was determined using a clinometer (Suunto PM-5/360 PC; 

Suunto, Finland).  In 2009, soils in each plot were identified to soil series by personnel from the Natural 

Resources Conservation Service (NRCS). 

Canopy cover was estimated using a Model-C spherical Densiometer (Paul E. Lemmon, Forest 

Densiometers, Bartlesville, OK).  Measurements were taken in 2013 (May 22-28) at the center of each 

control and removal plot.  In 2013, densiometer readings were taken at or near ground level (<10 cm) to 

measure the light environment that might influence a seedling’s growth. These readings included tree, 

shrub and low plant canopies.  These seedling-level measurements were taken facing north in each of the 

center four quadrats, then averaged.  Densiometer measurement were again made in 2014 (August 30) 

because two main types of summer plant abundance responses were observed among the different sites, and 

we wished to test whether correlations with tree canopy cover might explain these divergent patterns. 

Therefore, densiometer readings were taken at a height of 1.25m to avoid most shrub canopy and obtain a 

better estimate of foliar cover by the tree canopy alone. These 2014 measurements were obtained as close 

to the center of the plot as possible with one measurement taken while facing each of the four cardinal 

directions then averaged (Lemmon 1956).  If necessary, some measurements were taken away from the 

center of the plots in 2014 to avoid interference from dense shrub sub-canopy.  Only densiometer data from 

the removal plots in 2014 measurements have been used for correlations with plant response data, although 

the 2014 control-plot data and 2013 data are also reported for comparison.  

As part of an ancillary study the Leaf Area Index (LAI; m2 of leaves per m2 of ground area) of 

trees and honeysuckle shrubs collected for the 2010 growing season were gathered, while not part of the 

original study it was intended to provide some measure of the relative availability of light to plants below 

the canopy.  LAI was gathered in addition to densiometer data because densiometer readings do not 

completely capture the 3-dimensional contribution of the leaf canopy to light extinction. LAI was estimated 

using the leaf litter-fall method.  Leaf litter was captured weekly to monthly depending on time of year 

from mid-August 2010 to early April of 2011 (4 baskets per plot).  LAI was measured in the lab using a Li-

Cor area meter (LI-3100 Area Meter, Lincoln, NE, USA).   The LAI for each sampling date was summed to 

obtain an estimate of the total canopy LAI for all woody species (trees, shrubs, vines) in the 2010 growing 
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season, with shrub honeysuckle leaves separately quantified. Because the LAI data were acquired for a 

separate experiment, it was only measured for five of the eight sites used in this study (N=5) and is meant 

to supplement or verify the densiometer data. Only non-Lonicera leaf litter was used for LAI estimates of 

the tree canopy above the plots for this vegetation study. 

Since the amount and distribution of litter cover on the forest floor can affect germination and 

growth of plants, the percent exposed soil in the forest floor was estimated visually in late spring 2013. In 

addition, leaf litter mass was sampled between May 29 and June 12, 2013 by collecting leaf litter at 8 

random locations per 2.5 m2 quadrat (total n= 128/plot) using a circular template of  8.7 cm diameter.  Leaf 

litter was pooled by quadrat, oven dried at 60° C, weighed to 0.0000g and calculations performed to 

calculate the mean g leaf litter m-2 plot.  Fine woody debris (FWD, defined as woody stems and bark with a 

diameter <5 cm) was also quantified using two 25 cm x 25 cm square templates randomly placed in each 

2.5 m2 quadrat collected on the same days as leaf litter mass collections.  All FWD within each template 

was collected, pooled by quadrat, dried as per leaf litter, weighed to 0.00g, and plot means were calculated 

to determine g FWD m-2 per plot. 

 In addition, to explore the potential role of light and seed entry from the sides of the plots to 

explain plant community and abundance responses, the distance from the wooded plot edge to the nearest 

field, mown road verge, road or stream was measured.  Measurements were taken from the midpoint of the 

downhill edge between each pair of plots in a straight line following the direction of the dominant slope out 

to the edge of the forest canopy.  

Statistical analyses 

 Pairwise t-tests were used to compare data between “Control” and “Removal” treatments in 2013 

using SAS (SAS Studio, SAS University Edition v2.2) Proc Ttest using the Paired statement. If data were 

not normally distributed according to the Shapiro-Wilk tests, the data were transformed as needed to ensure 

normality (allowing the use of parametric tests to preserve statistical power).   Reported means ± 1 standard 

error (S.E.) are untransformed.  Two-tailed t-tests were performed for the diversity indices (Shannon’s H’ 

and J; Simpson’s D), vine and shrub seedlings density, and total shrub stem density.  Four sets of data 

could not be transformed to normality; instead Wilcoxon Ranked-Sign Tests were used to determine 
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control vs. removal-plot differences in native vine cover, exotic and native vine species richness, and shrub 

species richness (total shrub species, as well as native and exotic shrub species richness).  All other within-

year t-tests were one-tailed, predicting higher vegetative responses in removal plots (herb cover, species 

richness, woody seedling and tree sapling density, and vine cover).   

Two-way ANOVAs modeling the interactions of treatment (Lonicera shrubs present or absent) 

and year (2008 vs. 2013) with blocking by site were performed using Proc Mixed (SAS Studio, SAS 

University Edition, v9.3) to examine year-to-year variation in herb cover, herb species richness, herb 

diversity and evenness (Shannon’s H’ and J), vine cover and richness, woody seedling densities, and 

sapling density and richness (N=8).  In 2013, a one-factor ANOVA was used to compare the plant 

communities in the “open tree canopy” vs. “shaded tree canopy” removal plots (N = 4 per canopy 

category).  The plant community variables compared in this manner were summer herb cover and richness; 

summer exotic herb cover; vine cover and richness; vine, shrub, and tree seedling density, sapling density; 

tree seedling and sapling species richness; shrub stem density; Lonicera spp. stem density: total stems, 

short stems (0.3-0.99m), and medium stems (1.00-1.99m). 

Since total plant cover differed between removal plots, we explored whether abiotic variables 

associated with light could explain this variation. Pearson’s product-moment correlation (r) was calculated 

for summer herb cover (%) and the environmental variables: canopy cover, distance from between plot 

edge and forest–canopy edge, LAI, and aspect using the SAS Proc Corr.  Aspects were converted from 

compass degrees to degrees from north by subtracting any value greater than 180o from 360o and using the 

absolute value of the result, so that no value would be greater than 180o.  Correlation involving LAI was 

only available for five of the eight sites as explained above.  

In the fifth growing season since L. maackii removal, plant cover was found to vary between 

removal plots.  Plants closer to ground level received a great deal of shading from taller herbs therefore 

herb cover was regressed against diversity (Shannon’s H’), evenness (Shannon’s J), and richness (R) to 

determine if herb cover abundance was associated with these measures of community structure.  Spring and 

summer herb cover (%) were also regressed against the minimum known presence of L. maackii at each 
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site to determine if longevity of Lonicera occupation might have left a legacy effect on these recovering 

communities.  These regressions were calculated using SAS Proc Reg.   

Reported p-values are corrected using the False Discovery Rate (FDR) to control the Type I error 

rate, as calculated using the SAS Proc Multtest (SAS Studio, SAS University Edition, v9.3).  When FDR 

corrected p-values for interaction terms from the 2-factor ANOVAs were significant at α=0.05, the p-values 

of the main effects were ignored in results. 

Due to the experimental design the vegetative responses of the paired plots were expected to vary 

by treatment and between years.  General increases in plant abundance and species richness were predicted 

in the removal plots after five years.  However, directionality (increase or decrease) in the responses of 

community diversity, H’, and evenness, J were not posited.   Significant differences between the years 

(2008 to 2013) but not the treatments (removal vs. control) might indicate some other confounding factor 

that was not explicitly measured by the study (ex. external events or alterations that affected all plots in a 

roughly equivalent manner).  Whereas, significant differences in experimental treatment, but not year might 

indicate some factor intrinsic to the sites that differed at the plot scale in a consistent manner over the five 

years.  It should also be noted that the 2008 data collection took place before the removal treatment 

occurred, therefore no difference in the treatment component in 2008 was presumed.  A significant 

difference for the interaction of terms year and treatment (year*treatment) would indicate a response to the 

experimental treatment during the five years after the removal treatment was enacted.  This interaction term 

was of primary interest as it would suggest that the restoration method (L. maackii removal only) had 

stimulated a response from the plant community over time that differed from the control plots that still 

retained L. maackii shrubs. Of course, the intention was to determine if the abundance and species richness 

of native plants would improve and that exotic plants would not be favored, but this result could not be 

assured.   
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RESULTS  

Herb Community 

Spring herbs  

Mean total species richness in spring was 55% higher in removal than in control plots (p=0.008; 

Table 1).  Of 68 herb species found this study in spring 2013, 15 were exotic, with any one plot being 

colonized by at least 2 and by as many as 9 exotic species.  In contrast, in any given plot there were 

between 7 and 27 native species.  Both native and exotic species richness were higher in the removal plots 

than in the control plots (native: p=0.008; exotic: p=0.076; Table 1).  Herb diversity was higher in removal 

than in control plots for both Shannon’s H’ (p=0.05) and Simpson’s D (p=0.053).  While the removal plot 

communities exhibited greater mean evenness as measured by Shannon’s Equitability than in control plots, 

this was not statistically significant (p=0.103; Table 1). Shannon’s H’ and J in removal plots declined as the 

herb cover increased (H’: R2=0.760, p=0.01; J: R2=0.842, p=0.004; Fig. 2A and 2C).  However, species 

richness in removal plots was not related to percent herb cover (R2=0.033, p=0.667; Fig. 2E). Mean spring 

herb cover in control plots (range: 2.4% to 38.2%) did not significantly differ from removal plots (range: 

0.8% to 36.4%) (p = 0.648; Table 1), despite the fact that average exotic herb cover in removal plots was 

almost 8 times higher than in control plots (p=0.05; Table 1).  Herb cover of native species was not higher 

in removal plots when compared to controls (p=0.670; Table 1).  In removal plots, there was no significant 

difference in spring between mean native (7.75 ± 3.45%) and exotic (10.7 ± 5.86%) plant cover (p=0.832; 

Figure 2A).    

The spring herb community in reference plots in 2013 resembled the removal plots, with a few 

notable distinctions.  Average species richness of herbs in the reference plots in the spring was roughly 

similar to the removal plots (19.7 ± 2.4).   There were approximately two fewer exotic species (2.33 ± 0.33) 

and two more native species (17.3 ± 2.19) than in the removal plots.  Shannon’s diversity, H’, and 

evenness, J, were both slightly lower in reference plots than they were in removal plots (1.47 ± 0.26 and 
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0.49 ± 0.07, respectively).  However, Simpson’s diversity measure, D, for the reference plots (2.69 ± 0.66) 

was 50% lower than he removal plots, closer to the average measure for the control plots.  Average spring 

herb cover reflected the trends in species richness.  Herb cover in the reference plots was approximately 

similar to removal plots (17.1 ± 3.72).  However, cover by exotic herbs was dramatically lower than in 

removal plots (0.30 ± 0.07) while average native cover was almost double that found in removal plots (16.9 

± 3.67). (Table 1) 

Despite most plots having high herb species richness, just a few species accounted for most of the 

abundance at the sites, explaining the low diversity index values in these plots.  The five most abundant 

plant species in each control and removal plot in the spring cumulatively accounted for between 67.4% and 

99.9% of total herb cover in control plots (mean 91.4 ± 3.9%) and between 65.4% and 99.98% of herb 

cover in removal plots (mean 86.22 ± 4.68%;  Appendix 1). These most abundant spring herbs were the 

exotics Alliaria petiolata (garlic mustard) and Ranunculus ficaria (fig buttercup) and the natives Geum sp., 

Ageratina altissima (white snakeroot), Carex spp. (several sedges) and Erythronium americana (trout lily) 

(Appendix 2). There were specific plots where two unusual species were locally abundant and dominant.  

These were the exotic Lycoris squamigera (Resurrection Lily), which escaped from a residential yard 

abutting the woodland and the native Camassia scilloides (wood hyacinth) in another site. (Appendix 2). 

When compared to the 2008 plant community before treatment, mean spring herb species richness 

was significantly higher in 2013 than it was in 2008 (p=0.008).  While the number of species in removal 

plots almost tripled from 2008 (7.75 ± 2.3) to 2013 (21.38 ± 2.58), species in the control plots doubled 

(p=0.013; Table 2).  Spring herb community diversity, H’, increased and evenness, J, decreased in removal 

and control plots between 2008 and 2013 (Table 2), but neither statistically differed between years. While 

herb cover in the removal plots increased by 2.5 times between 2008 and 2013, the increase was not 

statistically significant due to high variation in values across plots.  Mean herb cover in the control plots 

decreased over the years, but not statistically (Table 2).   

Summer Herbs 

The summer flush of vegetation exhibited some different responses to Lonicera shrub removal 

than the ephemeral-dominated spring herbs. Mean summer herb richness in removal plots (17.9 ± 2.05) was 
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almost twice that of controls (9.5 ± 1.59) (p=0.017; Table 1).  Native and exotic herb species in removal 

plots were also approximately twice those in paired controls (exotic: p=0.017; native p=0.020; Table 1).  

Native species richness ranged from 1 to 16 (mean = 8.13 ± 1.46) species in control plots and 8 to 24 (15.4 

± 2.00) in removal plots.  Despite higher species richness in the removal plots, there were no significant 

difference between treatments for any of the summer diversity indices (H’: p=0.902; D: p=0.524; J: 

p=0.483; Table 1), indicating that plots were dominated by a few species in any single plot, particularly in 

the removal plots.  This trend was reflected in the significant inverse correlations between summer cover in 

removal plots and their associated Shannon’s H and J (H:  R2=0.769, p=0.010; J: R2=0.897, p=0.003; 

Figure 3B and D).  Similar to the trend in the spring, herb species richness in summer removal plots was 

not correlated with herb cover (R2=0.158, p=0.377; Figure 3F).  Mean total herb cover was significantly 

higher in removal plots than in control plots (p=0.024; Table 1) and ranged from 0.055% to 6.62% in 

control plots and from 1.27% to 37.9% in removal plots.  This large response in cover in removal plots was 

dominated by native plants, whose cover was 8 times greater than in control plots (p=0.023; Table 1).  On 

the other hand, exotic plant cover was no higher in removal plots (0.25 ± 0.07) than in their respective 

control plots (0.26 ± 0.11) (p=0.328; Table 1). Overall, native plant cover was 66 times greater than exotic 

cover in the summer removal plots (p=0.022; Figure 2B).   

The summer herb community in reference plots in 2013 were generally more intermediary 

between control and removal plot averages.  The average herb species richness in reference plots was very 

similar to the control plot average and lower than in reference plots (10.7 ± 0.88).  This pattern was 

observed in both the average exotic species richness (1.0 ± 0.58) and average native species richness (9.67 

± 0.89).  All three measures of Diversity and Evenness were, on average, lower in reference plots than in 

either control or removal plots (H’: 1.09 ± 0.09; J: 0.46 ± 0.02; D: 2.04 ± 0.25).  (Table 1) 

In the summer, the top five species in the control plots accounted for between 86.1% and 100% of 

the herb cover at their respective sites (mean 93.2 ± 1.91%; Appendix 1B). In removal plots the top 5 

species accounted for 80.6% to 98.9% of herb cover (mean 92.3 ± 1.87%; Appendix 1B).   The most 

abundant herb in any given control plot (which varied from plot to plot) accounted for, on average, 48.2 ± 

8.21% of total cover, ranging from 25% to 100% (Appendix 1B).  Across all removal plots, the top species 
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accounted for up to 56.8 ± 7.0% of cover.  The exotic, Alliaria petiolata, was found in the top 5 most 

abundant species in 5 of the control plots and 3 of the removal plots, while the exotic, Duchesnea indica, 

was in the top 5 most abundant species for one control and one removal plot (but the same paired-plot).  

The native, Ageratina altissima was the most abundant and frequently encountered summer herb and was 

among the top five species in 13 of the 16 experimental plots. The native Phytolacca americana was 

among the top five in seven plots (both treatment plots at two sites, and the removal plots of 3 other sites), 

followed by Geum spp. and Asarum canadense, which were among the top 5 most abundant herbs in 5 

(both plots in two sites and the control plot of a third site)  and 4 (both plots at two sites) experimental 

plots, respectively.  Native sedges of the genus Carex were among the top five herbs in five plots in 

summer (both plots at one site, two other control plots, and one other removal plot) (Appendix 3).  

Only three of the removal plots in the summer had any exotic species among the top five most 

abundant herbs in that plot (vs. seven of eight removal plots in the spring) and in none of those plots were 

the exotic the single most abundant herb (vs. four plots in the spring; Appendix 1).  Aside from the two 

dominant herbs in summer, A. altissima and P. americana, no other herb comprised even 0.5% of cover in 

any one plot in the summer.  The next most abundant eight herbs in the summer are common woodland 

herbs, including Asarum canadense (wild ginger), Sanicula odorata (clustered blacksnakeroot), 

Hydrophyllum spp. (waterleaf, likely a mix of H. canadense and H. appendiculata).  Only three species of 

exotic herbs are present in removal plots in the summer: Alliaria petiolata in three plots, and Arctium minus 

(lesser burdock) and Duchesnea indica (Indian strawberry) in one plot each (Appendix 3).  In contrast, 

none of the herbs in summer control plots make up more than 0.5% of cover, even A. altissima, which was 

still the most abundant herb (Appendix 3).  Although, A. canadense and Hydrophyllum spp. were nearly as 

abundant as in removal plots, P. americana’s rank dropped to fifth (Appendix 3).  Interestingly, despite 

being fourth most abundant in control plots, A. petiolata had roughly twice the cover as in removal plots 

(Appendix 3), suggesting that even though this exotic herb can perform better in more open conditions, it 

may have been outcompeted by other plants in removal plots where light was more available.   

Summer herb species richness in control plots nearly doubled from a mean of 5.5 ± 1.78 species in 

2008 to 9.5 ± 1.59 species in 2013.  In removal plots, however, richness nearly tripled from a mean of 5.13 
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± 1.62 species in 2008 to 17.9 ± 2.05 species in 2013 (p=0.011 for the interaction term of Year*Treatment; 

Table 2).  There was a trend towards a higher herb species diversity, H’, in 2013 than was the case in 2008 

(p=0.09; Table 2).  Shannon’s evenness, J, in the summer herb community did not appear to vary by year or 

treatment (FDR adjusted p-values > 0.1; Table 2).  The herb cover and species richness of summer herbs 

varied significantly between 2008 and 2013 and across the two honeysuckle treatments. Mean herb cover in 

the control plots appears to have diminished from 4.93% ± 3.07% in 2008 to 2.32% ± 0.81% in 2013, while 

in the removal plots cover increased from 1.28% ± 0.68% in 2008 to 16.74% ± 5.34% in 2013 (p=0.010 for 

the interaction term of Year*Treatment; Table 2).  

Average herb cover in the removal plots was explained by the minimum known presence of L. 

maackii at the site; the longer a site had been occupied by L maackii, the more herb cover was measured at 

that site in 2013. In the summer this may be a function of the canopy cover.  The correlation held for both 

spring and summer herb cover in an exponential model that explained 57.4% and 58.3% of the variation in 

herb cover, respectively (p=0.039 for both spring and summer; Table 3; Figure 4). 

Responses of woody species  

Mean seedling density of all woody species combines (pooled seedlings of vines, trees, and 

shrubs) in 2013 was not statistically higher in removal plots (60,037 ± 20,648 seedlings ha-1) than in control 

plots (47,050 ± 14,202 seedlings ha-1; p=0.714; Table 4). 

Vines 

Ten vine species were found in the experimental plots in 2013, with equal numbers of exotic 

(Ampelopsis brevipedunculata., Celastrus orbiculatus, Euonymus fortunei, Hedera helix, Lonicera 

japonica) and native species (Menispermum canadense, Parthenocissus quinquefolia, Smilax sp., 

Toxicodendron radicans, Vitis spp.). In the summer, there were an average of 1.4 more species of woody 

vines in the removal plots than in the control plots (p=0.05), although, neither exotic (p=0.113) nor native 

species (p=0.521) were present in significantly greater numbers in either treatment (Table 5). 

However, there was a strong trend of woody vine vegetation in summer 2013 covering more of the 

ground in removal plots (11.8 ± 5.36%) than it did in control plots (2.49 ± 0.987%; p=0.053; Table 6).  
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While average exotic vine cover in removal plots (9.89 ± 5.49%) was higher than in control plots (2.23 ± 

0.99%) the difference was not statistically significant (p=0.170).  There was a strong trend towards greater 

native vine cover in the removal plots (1.95 ± 1.42%) than in control plots (0.26 ± 0.06%) in the summer 

(p=0.076; Table 6). 

Vines were propagating not only via vegetative growth, but also from germinating seeds. This is 

evidenced by vine seedling densities in experimental plots ranging between 1,600 ha-1 and 9,800 ha-1, 

although there was no statistically apparent difference between control and removal plots (p=0.30; Table 

4).  

The summer woody vine community appears to have responded to both the change in years and to 

the removal of honeysuckle.  Between 2008 and 2013, mean vine cover doubled in the control plots from 

1.21 ± 0.51% in 2008 to 2.49 ± 0.99%, but increased ten-fold in the removal plots (Table 2; p=0.057 for the 

interaction term Year*Treatment). Species richness for the vines likewise markedly varied between years 

with significantly higher species richness in 2013 than in 2008 for both treatments (Table 2).   

While all three reference plots increased slightly in total vine cover over the five year interval, the 

variance between the three plots was almost as high as the mean in both 2008 (26.6 ± 22.0%) and 2013 

(28.7 ± 23.9%).  Each of the three plots were orders of magnitude apart in terms of absolute cover: one 

increased from 0.069% in 2008 to 0.314% in 2013 another from 9.37% to 9.59%.  The third reference plot 

may illustrate what can happen if vines are left to grow even after L. maackii is removed: it had cover of 

70.3% in 2008 and 76.3% in 2013. Two species made up the majority of the cover in that reference plot 

Euonymus fortunei (73.5% cover) and Hedera helix (13.9% cover).   

Tree Seedlings and Saplings 

Twenty-four tree species were found across all experimental plots in the seedling stratum in 2013 

(one seedling of a twenty-fifth species was found in a reference plot), up from twenty in 2008 (p=0.010).  

In 2013, Fraxinus americana and F. pensylvannica accounted for nearly two-thirds of the total tree 

seedlings (60.8%).  Seven other species each accounted for >1% of tree seedlings, four natives Acer 

negundo (7.58%), Celtis occidentalis (5.92%), Prunus serotina (4.38%), Acer saccharum (3.06%); and two 
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exotic species: Rhamnus cathartica (9.95%) and Koelreutaria paniculata (5.38%). The four exotic species 

present in the tree seedling stratum (R. cathartica, K. paniculata plus Morus alba and Ailanthus altissima) 

accounted for 15.5% of total tree seedlings. In fact, the percentage of exotic tree seedlings declined from 

2008 to 2013, despite their appearance in 5 plots where they had not occurred in 2008.  Some exotic trees 

declined in the seedling stratum, while others increased over five years.   In 2008, A. altissima seedlings 

were the most widespread of the exotics, being recorded in both plots at three sites plus one reference plot.  

By 2013, however, A. altissima seedlings were found in only one control plot. K. paniculata was locally 

dominant but not widespread, occurring in both plots of one site in both 2008 and 2013.  K. paniculata 

seedlings exhibited a greater than four-fold increase from 75 in 2008 to 313 in 2013. Present in five plots 

across four sites in 2008, R. cathartica spread dramatically over the five year interval.  In 2013, R. 

cathartica seedlings could be found in one or both of the paired plots at every site except one: H6. (Table 

7). (Appendix 4) 

In 2013, tree seedling densities across all experimental plots ranged between 7,900 ha-1 and 

179,100 ha-1. Although removal plots on average contained twice the number of tree seedlings than control 

plots in 2013, the difference was not significant (p=0.255; Tables 7 and 8). Every experimental plot had 

more tree seedlings in 2013 than in 2008 (p=0.008).  There were not more species of tree seedlings in 

removal plots than there were in control plots in 2013 (p=0.26).  

A total of 21 species of tree saplings were found in the experimental sites in 2013, up from 10 

species in this stratum in 2008.  Three additional species of saplings were found only in reference sites: two 

saplings each of Fagus grandifolia and Juglans nigra and one Quercus sp.  There was an average of 3.4 

times as many saplings in removal plots as in control plots (p=0.024; Table 8) .   As with seedlings, 

saplings comprised mostly F. americana and F. pensylvanica across the experimental plots (35.7%).  The 

native Acer negundo saplings made up 30.6% of the saplings.  Eight other species accounted for the 

majority of the remaining saplings: six native (Acer saccharum, 7.8%; Prunus serotina, 7.1%; Asimina 

triloba, 5.6%; Celtis occidentalis, 2.4%; Aesculus glabra, 1.2%) and two exotic species (Rhamnus 

cathartica, 5.6%; Koelreutaria paniculata, 1.2%).  The remaining ten species each accounted for <1% of 
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the saplings.  Interestingly, one sapling of the exotic Pyrus calleryana was found, but no other exotic 

saplings, not even A. altissima. (Appendix 5) 

The tree seedling and sapling communities in reference plots in 2013 were generally more similar 

to the control plots than the removal plots regarding abundance, but more similar to removal plots in 

species richness.  Average species richness of tree seedlings in reference plots (9.0 ± 0.58) was almost 

exactly intermediate between control and removal plot averages.  However, the average exotic species 

richness in reference plots (0.33 ± 0.33) was less than half of the average found in either treatment of the 

paired plots.  The difference in richness was made up in native species richness (8.67 ± 0.33) which was 

higher than either of the other treatments.  On average, saplings in reference plots (13,600 ± 9,760 ha-1) 

were about as abundant as in control plots, but only about one quarter the density of saplings in removal 

plots.  Average species richness of saplings in reference plots (6.33 ± 2.19) appeared higher than that of 

either treatment in the paired-plots.  This is likely due to much lower average exotic species richness (0.33 

± 0.33) and much higher average native species richness (6.0 ± 2.0) than either control or removal plots.  

That’s about half the number of exotic species in the experimental plots, and three and four times more 

native species than control and removal plots, respectively. (Table 8) 

Tree sapling density appears to have varied between years and across treatments (p=0.046 for the 

interaction term Year*Treatment).  The mean number of saplings per hectare in control plots almost 

quadrupled from 4.625 ± 1.79 in 2008 to 16.63 ± 6.06 in 2013, while removal plots saw an increase from 

9.50 ± 3.60 per hectare in 2008 to 57.0 ± 20.1 saplings per hectare in 2013. (Table 7) 

Average sapling species richness was 34 % higher in removal than in the control plots in 2013 

(p=0.05; Table 8).  On average there were two more species of native saplings in the removal plots than in 

the control plots (p=0.024; Table 8).  No difference between treatments was detected for exotic species of 

saplings likely due to the small pool of exotic species in that stratum which ranged from none to one in all 

but one plot which had two species (p=0.456; Table 8).  The most widespread species in this stratum were 

A. negundo and P. serotina, which were found in 10 plots as well as in the reference plots (Appendix 5).  

Four exotic species were recorded in this stratum.  The most prolific of the exotic species was R. 

cathartica, found in five plots across four experimental sites in 2013, increasing from ten saplings in 2008 
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to 33 in 2013. K. paniculata was found at only one site in both treatment plots and, while no saplings were 

noted in 2008, seven were recorded in 2013. One sapling of Morus alba was found in each of two plots 

(Appendix 5).  There was no statistically significant variation when the sapling richness was examined 

between years or across treatments, nor was there an interaction between main effects (p-values >0.1; Table 

7). 

Shrubs 

Across all experimental plots in 2013 94.3% of shrub seedlings were Lonicera maackii with the 

remainder divided between one exotic species (Ligustrum sinense) and four native species (Lindera 

benzoin, Staphylea trifolia, Sambucus canadensis, Viburnum dentalis; Appendix 6).  Densities ranged 

between 1,600 ha-1 and 14,000 ha-1 with shrub seedling densities an average of 3.5 times greater in control 

plots than in removal plots, although this was not statistically significant (p=0.428; Table 4). 

It appears that more shrub seedlings, primarily L. maackii, are germinating in the un-cut control 

plots, but the stem data that follow indicate that they likely do not recruit into the larger size classes.  There 

is a strong trend (p=0.075) towards higher densities of shrub stems (≥30cm tall) in removal plots (43,938 ± 

10,967 stems ha-1) than in control plots (23,987 ± 3,145 stems ha-1).  This trend is even stronger when non-

Lonicera spp. stems are dropped from the test (Removal mean: 34,835 ± 11,784 stems ha-1; Control mean: 

19,588 ± 2,691 stems ha-1; p=0.055).  Shrub stems of all species were denser in removal plots than in 

control plots for those between 30 cm and 0.99 m tall (p=0.05) and for those between 1.0 m and 1.99 m tall 

(p=0.056).  Shrub stems ≥2 m tall were much more common in control plots (p=0.003), most likely driven 

by the L. maackii stems that were shorter and uncut in those plots in 2008. (Table 9). 

Mean shrub species richness in 2013 did not vary between experimental treatments, either in total 

(p=0.793) or when separated into native (p=1.00) and exotic (0.447) species (Table 5).  The second most 

abundant shrub, another exotic, Ligustrum sinense, spread from 7 plots to 11 plots between 2008 and 2013 

(Appendix 6). The native Spicebush, Lindera benzoin, was found in only one of experimental sites in both 

years, but showed signs of increasing in response to honeysuckle removal after 5 years (Appendix 6).   

Three other native shrubs (Staphylea trifolia, Sambucus canadensis, and Viburnum dentalis) showed 
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similar responses as Lindera: they were found in only one or two plots and the stem density increases 

where L. maackii had been removed were modest and restricted to their initial plots. 

When L. maackii stems are examined by height categories it is evident that shorter, generally 

younger, stems are driving the trend towards more shrubs stems in removal plots.  L. maackii stems 

accounted for 80% of the shrub stems 0.3-1.99m tall in control plots and 78% of shrub stems in the removal 

plots.  Mean densities of shorter L. maackii  stems (30cm-0.99m) were nearly four times greater in removal 

plots (276.1 ± 99.7 stems ha-1) than in control plots (70.1 ± 17.1 stems ha-1; p=0.061; Table 9).  Although, 

mean stem densities for L. maackii  stems between 1.0m-1.99m were about 50% greater in removal plots 

than in control plots, this was not statistically significant (p=0.160; Table 9).  Predictably, the uncut control 

plots had more than ten times as many L. maackii stems >2 m tall (p=0.003; Table 9). Despite the removal 

treatment five years prior, L. maackii stems were found in every plot at each site except one reference site.  

The total number of L. maackii stems 0.3-1.99m tall in removal plots (2,727) was triple that found in 

control plots (894).  Six of the eight removal plots had at least one L. maackii stem already two meters tall 

after five years; three of these plots had 10 or more stems of L. maackii plants that had reached >2 m. 

Environmental Variables  

The eight experimental sites had east to northwest-facing aspects.  Two sites were southeast- to 

south-facing, one was east-facing, and the remaining five had aspects in the NW-W-SW arc (Table 10).  

Two reference plots fell in the same range of aspects, but one was due north (Table 10).  Summer herb 

cover in removal plots in 2013 was positively correlated with the aspect of the dominant slope expressed as 

degrees from north (r = 0.649; p=0.082; Table 11).  The dominant slopes at most sites ranged from 12% to 

40% (Table 10).  Slopes at the three reference plots were within a similar range as the experimental sites 

(Table 10).  Soils in all but one experimental plot were silt loam Alfisols with most being in the Crider 

(Paleudalf) or Caneyville (Hapludalf) series (Table 10, Table 12).  

Canopy cover measured using a densiometer ranged between 88.8% and 99.5% in 2014 when the 

attempt was made to minimize influence from shrubs so as to estimate tree cover.  Control plots ranged 

between 96.1% and 99.5% cover with an average of 97.2 ± 0.4% with removal plots averaging 94.4 ± 

0.02% (Table 3), a difference that was statistically detectable (p=0.015; Table 13).  Summer herb cover was 
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negatively correlated with canopy cover (r= -0.693; p=0.057; Table 10).  The five removal plots for which 

LAI was available exhibited values ranging from 1.91 to 6.27 with a mean of 3.67 ± 0.74 (Table 3). 

Leaf litter mass in late spring 2013 did not significantly vary between treatments (p=0.237; Table 

13), although there was a trend for removal plots having 28% less litter mass than control plots (Table 13).  

However, mass of fine woody debris was three times higher in removal plots than in control plots (p=0.05; 

Table 13). 

Group distinctions: “sun” and “shade” plots 

By 2013 it was visually obvious that each of the eight removal plots could be placed into one of 

two categories of vegetation response, four plots with higher summer herb cover (22.2- 37.9%) and four 

plots with much lower summer herb cover values (1.27-8.7%) (Table 3; see also Table 1 and Figure 3B, D, 

F). Spring herb cover was higher in the plots with a more depauperate community (lower diversity and 

evenness (Figure 3A, C, E). 

Since the plots with the more robust summer herb community also appeared to be the four 

sunniest sites, these were dubbed “open” and the other four labelled “shade” sites.  Sunlight at the forest 

floor was not measured directly so several proxy measures associated with sunlight at the forest floor were 

measured to see if they correlated with the visual observation of a sun vs. shade grouping of plots.  The 

distance to forest edge, LAI (for the N = 5 sites available), and canopy cover individually exhibited strong 

negative correlations with summer plant cover in removal plots (Pearson’s r =-0.754, -0.717, and -0.693, 

respectively; p=0.142, 0.246, 0.142, respectively; Table 11).  All four of the removal plots with higher plant 

cover had dominant-slope aspects of southeast to southwest (Table 9), resulting in a positive correlation 

between south-facing slopes and higher plant cover (Pearson’s r = 0.649, p=0.246; Table 11).  Taken 

together, we concluded that these correlations between summer herb cover and greater light supported a 

grouping of these plots into “open” vs. “shade” categories for further analyses that attempt to explain the 

divergent plant community results obtained due to the removal treatment.  

 When the plant communities in the “open”- and “shade”-plots were compared, only summer herb 

cover was higher in the “open” plots than in the “shade” plots.  Mean summer herb cover in “open” plots 
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was 29.8 ± 3.98% compared to 3.66 ± 1.75% in the “shade” plots (p=0.011).  Herb community diversity, 

H’, and evenness, J, were both lower in “open” plots than in the “shade” plots.  Average diversity, H’, in 

“open” plots (1.00 ± 0.10) was only 60% of that in control plots (1.70 ± 0.15; p=0.044; Table 14).  Average 

evenness, J, in “open” plots (0.34 ± 0.03) was just over half of the average for “shade” plots (0.624 ± 0.04; 

p=0.011; Table 14).  Both diversity and evenness in the “shade” plots were about equivalent to the mean 

control and removal values for summer herbs- only the “open” plot means differed.   Summer herb richness 

and summer exotic herb cover did not significantly vary between “shade” and “open” removal plots  (p-

values > 0.6; Table 14).  None of the other woody plant community traits examined varied significantly 

between “shade” and “open” removal plots in 2013 (p-values >0.6; Table 14).  
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DISCUSSION

 Five years after the removal of Lonicera maackii, spring herb communities were richer and more 

diverse, and summer herb communities more abundant and species rich. Native species numbers were 3 to 

6 times greater than exotics in removal plots, which provides optimism that exotic herbs are not yet 

outcompeting native herbs as these communities recover from decades-long honeysuckle occupancy. 

However, seasonal and treatment differences in exotic species cover were strikingly apparent in these urban 

woodlands.  In spring, exotic species cover was five times greater in the removal plots than controls, but 

very low in summer for both treatments. However, only two exotic herbs, A. petiolata and R. ficaria more 

than accounted for the average cover differences between treatments in spring.   Summer herb cover within 

the removal plots varied greatly, however, with half the plots having seven times the cover response of the 

other half. Supporting evidence is provided showing that the cover differences in summer are likely related 

to differences in light availability across the plots due to edge proximity and tree canopy density.  Species 

richness differences in control vs. removal plots in summer may also be related not only to differences in 

light but also to increased entry  of seed via wind and potentially animal vectors that correlate with greater 

understory openness due to shrub removal. 

Herbs   

 This study found evidence that the release from competition for light may be the most important 

driver of the resultant plant communities.  That is because distinct responses to shrub removal were 

detected between spring and summer herb communities with the contrast in herb abundance between 

removal and control plots being greater in summer when tree canopies were expanded than in the spring 

before leaf-out, which would result in less light contrast between control and removal plots. Also, in plots 

where L. maackii had been removed, the summer herb community could be differentiated into two groups 

based on relative proximity to edges and to canopy cover, both of which affect light availability.  
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The increase in exotic cover in spring may demonstrate that light had been a potential limiting 

factor for introduced as well as native species that had been otherwise suppressed by the early emergent L. 

maackii.  The timing of emergence by invasive exotic species can have a strong effect on their relative 

success against native herbs (Rejmanek 2013; Wainwright and Cleland 2013; Cleland et al.2013).  The 

most prolific herb in the spring of 2013 was the exotic invasive, Alliaria petiolata (garlic mustard).  A 

biennial which can bolt in the second year of growth to form stands up to 120cm tall, A. petiolata is 

considered shade tolerant (Miller 2004), but was much more prominent in plots that lacked L. maackii 

(Appendices 2 and 3).  Englehard and Anderson (2011) found evidence suggesting that A. petiolata’s 

invasive success is linked to the availability of resources such as sunlight in this early phase of the growth 

season.  Boyce (2015), in a similar study in southwest Ohio, found results similar to those in this study, but 

suggested that A. petiolata’s success may be “transitory”. However, after five years garlic mustard was still 

an important component of the spring herb understory in Cherokee Park woodlands. Likewise, the exotic 

Ranunculus ficaria, was also more abundant in the removal than in the control plots (2.1% mean cover in 

removal plots vs. 0.06% mean cover in control plots).  Considered an early emergent herb, it is possible 

that R. ficaria is also well positioned to take advantage of greater light once shrub cover is removed 

(Masters 2014; Masters and Emery 2016).  Why native spring ephemerals did not respond with a greater 

cover response under the same circumstances as these particular exotics may be related to potential 

contrasting means of dispersal and potentially low abundance in the seed bank.  However, despite a 

subdued cover-abundance response by native spring species within the 5-year period, the species richness 

of natives did increase more in the removal than in control plots, providing optimism in their fuller 

recovery and spread over time.    

As expected, the summer herb community species richness and abundance increased over five 

years, with removal plots showing large increases compared to control plots, particularly in those sites 

closer to edges and with lower tree canopy cover. This again implicates light as a main factor predicting the 

extent of the community cover response, and also community species composition.  Five years after L. 

maackii removal, most of the plots were dominated by Ageratina altissima and Phytolacca americana.  

These species are common in disturbed woodlands containing canopy gaps, and also in thin woods 

(Campbell and Medley 2012) and along woodland edges where more light is available.  There is evidence 
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that A. altissima may be “adapted to allow opportunistic germination” in precisely the late spring and early 

summer season that corresponds with our data collection and is considered “disturbance dependent” in a 

forest context (Redwood et al. 2016).  P. americana, too, seems to be well adapted to take advantage of 

germinating conditions in forest gaps particularly the increased availability of light (Hyatt and Casper 

2000). 

The fact that native herb cover in the summer communities was greater than exotic cover provides 

encouragement for achieving management goals of restoring native herbs to these woodland understories.  

There was an average of one additional exotic species in the removal plots, suggesting that they not only 

are present within dispersal distance, but are also capable of taking advantage of the removal of L. maackii.  

Encouragingly, however, in those removal plots there were an average of seven additional native species 

(two more than in the spring community).  While there were numerous native species in the top five most 

abundant herbs in control and removal plots, several of the most abundant native herbs in the control plots 

were populations localized to only one or two sites (ex. Trillium flexipes and Cammassia scilloides in 

spring and Laportea canadensis and Collinsonia canadensis in summer; Appendices 2 & 3).  This suggests 

that simply removing L. maackii may not be sufficient to expect a widespread increase in native plants with 

limited dispersal mechanisms.  The native herbs with the most dramatic increases (A. altissima and P. 

americana) are “weedier” species that one would expect to respond well to sudden openings in the sub-

canopy.  Whether this flush of growth might alter the ultimate successional pathway of the sites (i.e.  alter 

the composition of the canopy community or of the ultimate stable forest floor community) would require 

continued long-term monitoring.  

In general, the findings for the herb community support those of previous studies that used smaller 

plot sizes than those in this study and examined species colonization over fewer growing seasons (Gould 

and Gorchov 2000; Collier et al. 2002; Gorchov and Trisel 2003; Owen et al. 2005; Swab et al. 2008).  A 

removal-response study in northern Kentucky that subsampled larger plots, and reported data through eight 

growing-seasons after L. maackii removal found similar trends for herb-layer plants- particularly the 

increase in late-spring- and summer-blooming plants (Boyce 2015).  Both overall species richness and 

herbaceous cover increased, although cover had a lag time of about two to three years depending on 
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intensity of initial L. maackii invasion.  That same study found data suggesting that exotic species richness 

increased, but decreased as proportion of herb cover.  Of the 14 species listed by Boyce (2015) with ≥5% 

mean cover in at least one year of the study, five were among the most abundant species found in this 

Cherokee Park study.  The two most common, A. altissima and A. petiolata, were listed in all four 

categories of L. maackii canopy density (light, moderate, heavy, very heavy).  The sedge Carex jamesii and 

the forb Polygonatum biflorum both have high coefficients of conservatism (hereafter “CC”; Appendix 2).  

The CC is a rating between 0-10 that rates the relative fidelity (or conservatism) of any given species in 

association with the other species native to the region or geographic area.  A higher CC indicates a higher 

confidence that the species is from a remnant native community rather than degraded or anthropogenically 

disturbed habitats as indicated by lower CCs (Shea et al. unpublished, sensu Swink and Wilhelm 1994).  

The fifth herb that was abundant in both studies, Geum vernum, was not distinguished from G. canadense 

in the spring of this study and was pooled as Geum spp. (Appendix 2).  Boyce (2015) also noted as 

abundant two species that were present in our study, although in lower abundances: Stellaria media and 

Galium aparine.  Noticeably absent from Boyce’s (2015) list of abundant herbs was P. americana, one of 

the most abundant summer herbs in this study. 

Woody plants 

 Based on this study, there is evidence for cautious optimism for the recovery of native woody 

species after shrub honeysuckle removal.  Five years after L. maackii removal, tree, vine and shrub seedling 

density responses increased, but were not statistically greater in the removal than in the control plots (Table 

7). Only tree sapling density was statistically detected to have been positively affected by the removal of L. 

maackii in this study, with increased sapling densities across both treatments over time, but a greater 

increase in the removal plots.  A recent study in southwest Ohio found that larger stems of L. maackii were 

associated with suppressed Acer saccharum seedling recruitment, but those same stems may protect young 

trees leading to greater recruitment of saplings (Cameron et al.2016).  However, L. maackii has been noted 

to have differential impacts on canopy tree species survival on a species-by-species basis (Hartman and 

McCarthy 2004). 
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 It is very possible that the increases in woody seedlings and saplings over time in both control and 

removal plots can be explained by the ongoing honeysuckle and vine removals that occurred across the 

entire park woodlands over this period. In 2008, the treatment sites were surrounded by a woodland matrix 

dominated by L. maackii. By 2013, almost all L. maackii shrubs and invasive vine shrouds on trees had 

been removed, allowing greater growth and reproduction by trees and other woody plants throughout the 

park. The five-meter wide honeysuckle buffer left around the control and removal plot-pairs may not have 

been as effective in blocking light and mediating other abiotic factors like wind.  This likely resulted in 

greater seed production in the external woodlands as well as increased entry into both the control and 

removal plots. Therefore, the environmental contrast in removal vs. control plots would have been lower in 

2013 than in 2009 right after shrub honeysuckle removal.  This potential explanation for the woody 

seedling and sapling changes over time is supported by a concurrent study (Moore et al. unpublished) in 

Cherokee Park that found a 14-fold increase in tree seedling densities and a tripling of sapling densities that 

occurred over the same time-frame as this study in thirteen permanent 500m2 plots.  By covering a larger 

proportion of the park, Moore et al. (unpublished) provided a clearer snapshot of forest tree community 

change from 2008 and 2013 than our smaller-scale plots, which exhibited much greater plot-to-plot 

variability in woody seedling and tree sapling densities. 

 With one exception (Rhamnus cathartica), threats to native tree establishment from invasive 

exotic trees remained low in these woodlands after honeysuckle shrub removal.  Of the six species of 

invasive exotic trees found in this study, Ailanthus altissima was not found in large numbers in the seedling 

layer ( 0.17% of seedlings), and seedlings and saplings of Koelreuteria paniculata were localized to a 

single plot pair.  Neither of these species was reported by Moore et al. (unpublished).  While small saplings 

of Ailanthus altissima were observed in a few plots in 2008, by 2013 these same individual saplings had 

died due to extensive herbivory by caterpillars of the Ailanthus webworm moth (Atteva aurea) over several 

consecutive years (M. Carreiro pers. comm.).  Koelreuteria paniculata occurs in a restricted area and any 

threats from this tree species can be easily dealt with by cutting down the few adult trees there.  On the 

other hand, Rhamnus cathartica, a subcanopy tree, became more widespread and abundant in our plots 

after honeysuckle removal.  This tree, which was present in all sites, was the second most abundant 

seedling found, accounting for 9.95% of all tree seedlings. This small understory tree has displayed 
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numerous traits that contribute to its success as an invasive exotic in Eastern North America and has a 

variety of known or suspected impacts on native ecosystems (Knight et al. 2007).  The rapid response to 

honeysuckle removal by this sub-canopy tree may threaten the recovery of the native plant community 

since it appears to be taking over the niche space once held by L. maackii in this woodland.  Management 

must deal with removal of this species as quickly as possible if gains in native plant community restoration 

from honeysuckle removal are to be secured. 

 The success of native trees, however, can also be threatened by invasive pests. Among the most 

widespread and abundant tree seedlings (60.8% of all tree seedlings in 2013) in our plots were Fraxinus 

spp, primarily F. americana and F. pennsylvanica. This high proportion of Fraxinus spp. seedlings is of 

particular concern to the restoration of these park woodlands given the recent detection in 2009 and spread 

of the Emerald Ash Borer in Kentucky (https://entomology.ca.uky.edu/ef453).  Moore et al. (unpublished) 

found a dramatic decrease in Fraxinus spp. seedlings between 2008 and 2013 (from 7.4% to 2.7% of all 

surveyed seedlings, respectively).  This is likely due to the death of mature reproductive trees, which was 

first observed in the park in 2011 and the short longevity of ash in the seed bank (Hille Ris Lambers et al. 

2005; but see also Burns and Honkala 1990).  Unfortunately, some eradication methods for the control of 

the Emerald Ash Borer can result in the spread of other invasive plants, including Lonicera spp. (Hausman 

et al. 2010). 

 In contrast with exotic trees, some of the vines found to be recovering in these plots are a threat to 

forest regeneration, as they may decrease tree seedling germination, strangle saplings and over-top the 

canopy of mature trees (Webster et al. 2006).  While the exotic vines, Ampelopsis brevipedunculata and 

Celastrus orbiculatus, were found in small numbers inside the plots, they are important invaders along 

forest edges in Cherokee Park, forming complexes of vines growing up into the upper forest canopy and 

overtopping shrubs and small trees (M. Waltman, pers. comm.). They may also get a foothold inside 

woodland fragments after tree canopy gaps form, such as those expected in greater numbers as mature ash 

trees die in Cherokee Park.  Seedling densities and ground-level foliar cover (<30 cm high) of A. 

brevipedunculata were higher in the removal plots, especially those closer to road edges and having lower 

canopy cover, and therefore could pose an immediate threat to tree seedlings and saplings growing in these 

https://entomology.ca.uky.edu/ef453
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plots. Two other exotic low-growing vines found in this study, known to be shade tolerant, Hedera helix 

and Lonicera japonica, have been found to exclude seedlings of native trees and shrubs in other forests 

(Vidra et al. 2006).  However, Euonymus fortunei is likely the vine of most concern to restoration efforts of 

both woody and herbaceous communities in Cherokee Park.  In the removal plots, E. fortunei foliar cover 

increased nearly 50-fold between 2008 achieving mean coverage of 72.1%, becoming the most abundant 

vine found in this study.  Of all the vines found in this woodland, this shade-tolerant vine has benefited the 

most from honeysuckle removal, since Moore (2015) also found to have increased across the entire park 

between 2007 and 2014.  The success of E. fortunei is of great management concern, because it has the 

potential to suppress the recruitment and growth of many other plants including trees, via several 

mechanisms including light reduction for seed germination, alteration of soil conditions  and strangling 

young saplings (Smith and Reynolds 2012). 

The Return of Honeysuckle 

 One issue of management concern is determining how quickly L. maackii may recolonize an area 

after removal, and therefore how often to return to an area to remove it again.   The only clear consensus 

based on other studies that followed L. maackii recruitment post-removal is that L. maackii can reinvade 

after removal.  In southwest Ohio, Boyce (2015) found L. maackii seedling densities similar to those in this 

study, but did not mention post-seedling stem recruitment.  A study in north-central Tennessee focused on 

densities of L. maackii stems >1m after recovery periods of  1-7 years, but found densities roughly one-

third of those found in this study (Loeb et al. 2010).  Runkle et al. (2007) found stems ≥2m in 22% of 180 

1m2 removal plots after 8 years, but did not note the number of stems. 

In the absence of further management efforts it is clear that L. maackii is re-invading where it has 

been removed in Cherokee Park.  In 2013, L. maackii stems (> 30cm) were found in every plot. Since 

regrowth from cut-stumps painted with Roundup was observed in only one instance, these individuals 

could have entered as seed or grown from very small plants that had not been removed in 2009. In addition, 

due to park-wide removals of this shrub light conditions, wind penetration, and animal entry patterns likely 

changed in ways that would have promoted honeysuckle colonization and growth for both control and 

removal plots. 
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 Higher connectivity of forest patches is associated with higher L. maackii distribution (Hutchinson 

and Vankat 1998), suggesting that seed dispersal vectors are selective for forest canopy, as opposed to open 

spaces and land under agricultural use. However, the colonization of new habitats by L. maackii appears to 

follow the edges of woodlands (Hutchinson and Vankat 1997 & 1998), edges that abound in the fragmented 

matrix of forest, flood-plain meadows, roads, and residential yards in and around urban parks like Cherokee 

Park.  This suggests that urban parks are particularly vulnerable to re-invasion even after removal of 

populations in the park woodlands. 

 Important sources of L. maackii seed into these woodlands are the many privately owned yards 

adjacent to the park where this ornamental plant continues to grow, particularly along property boundaries 

that owners manage less often. The abundance of L. maackii in these properties is, therefore, a great 

concern to woodland managers working to maintain a high quality native community in the forested areas 

of Cherokee Park since they represent seed sources that can attract animal vectors that can subsequently 

enter the woodlands.  The removal of this shrub in the woodlands and the simultaneous alterations in forest 

physical structure may also actually compound this threat by increasing L. maackii seed entry via animal, 

especially bird, vectors entering from these boundaries.  Bartuszevige and Gorchov (2006) found that 

viable seeds passed through the guts of American Robins (Turdus migratorius). These birds are likely 

attracted to L. maackii fruit along the shared park-private yard boundaries, then fly into the woodlands 

where they later evacuate seeds.  This potential is supported by Lynch (2016), who found that higher 

numbers of T. migratorius were attracted to dense stands of L. maackii in the fall when fruit was ripening 

as compared to other seasons of the year.   

  While it is possible that the proximity of seed sources (control plots, un-restored park woodlands, 

shrubs adjacent to the park) could increase the propagule pressure in newly opened woodlands after the 

removal of L. maackii, Hutchinson and Vankat (1997) found that higher light levels (in addition to 

proximity to potential seed sources) are key to predicting the invasibility of a forest to L. maackii.  Loeb et 

al. (2010) found evidence that annual management efforts across several years are much more effective at 

controlling the number of L. maackii stems >1m, than a single management event.  In fact, the increased 

light caused by the removal of L. maackii may release any L. maackii plants that escaped removal from 
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conspecific competition for light.  L. maackii can better take advantage of light in sunnier habitats than 

native competitors (Luken et al. 1997b).  Additionally, L. maackii have higher photosynthetic rates and 

correspondingly higher biomass in sunnier habitats and even produce more fruit in open and edge habitats 

than they do in forest interiors (Lieurance and Landsbergen 2016).  This suggests that the newly-opened 

woodlands may be high quality habitat for re-invasion. 

 Given the increase in Lonicera spp. seedling densities (Table 7) and the distribution of stems 

(Table 9) within 5 years of shrub removal, it is apparent that Lonicera is not only arriving, but is 

establishing itself once again in the plots where it was removed and within five to seven years can become 

reproductive (Deering and Vankat 1999).   

Plant Community Development and Light Availability  

 The responses and successional direction of forest plant communities after disturbances caused by 

tree death (i.e. gap formation) can be affected by light levels (Kupfer and Runkle 1996).  In this study, it 

was evident that a large contrast existed in summer herb cover among the removal plots and that this cover 

contrast appeared to be related to the amount of light entering the plots. This prompted the placement of 

removal plots into two groups, termed “open” vs. “shaded” plots, for further analysis of the plant 

communities that had developed therein.  Support was provided for this light hypothesis and grouping by 

acquiring data on removal plot proximity to forest edges created by roads and meadows, aspect, and tree 

cover (densiometer readings and LAI).  The strongest correlate with summer herb cover across the removal 

plots was edge proximity, followed by tree LAI.  By comparing community diversity and species 

composition in these two groups of removal plots (“open” vs. “shaded”) over time, the roles of edge 

proximity and light in influencing plant community responses to honeysuckle shrub removal in urban 

woodlands over time can be better understood.  

 Light is an important resource in a forest ecosystem with multiple canopy layers.  Invasive plants, 

especially shrubs like L. maackii, can often spread along forest edges (Hutchinson and Vankat 1998) 

decreasing in frequency and establishment rates as the distance from the edge increases.  This is presumed 

to be related to decreasing light availability at the forest floor (Flory and Clay 2006, Flory and Clay 2009b).  

In an intact canopy, while light from treefall gaps can be important for the establishment of invasive plants, 
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propagule rain and species-specific life-history traits are also important (Driscoll et al. 2016).  Light 

availability under a forest canopy impact the establishment of grasses in Indiana woodlands (Flory et al. 

2007) and can even reverse the relative success of native versus exotic shrub and understory tree seedling 

survival (Flory and Clay 2009a).   

 After five growing seasons, the herb communities that developed in the “shaded” removal plots 

were comprised of species often listed as native components of eastern deciduous forests (Natural 

Resources Conservation Service 2016).  These were Asarum canadense (wild ginger), Hydrophyllum spp 

(two species of waterleaf), Sanicula odorata, Arisaema triphyllum, Polygonatum biflorum, Hypericum 

punctatum, Stellaria pubera, and Collinsonia Canadensis, which all together accounted for 2.05% cover 

(Appendix 3).  These eight species also tend to be lower growing (<0.5m), forest floor species. In contrast, 

summer herb cover in the “open” removal plots was 7 times greater the “shaded” removal plots. While A. 

altissima and P. americana, indicative of disturbed and more open woodlands, were present in shaded 

plots, they were smaller individuals. These two species dominated the summer herb communities in “open” 

removal plots (A. altissima (18.8% cover), P. americana (7.45% cover)).  In one plot “open” plot Verbesina 

alternifolia was locally abundant accounting for 0.41% of cover in the “open” plots.  Solidago canadensis 

and Oxalis stricta were the next most abundant summer herbs in open plots (0.325% and 0.321% cover, 

respectively). Increased summer herb cover was correlated with reductions in community diversity, H’, and 

evenness, J, in removal plots (Figure 3B, D).   It is likely that increased biomass by upright, fast-growing 

herbs such as P. americana, V. alternifolia and A. altissima shaded out other herbs, resulting in lower H’ 

and J in those sunnier sites where they dominated.  The fact that species richness did not vary with cover 

(Figure 3F) demonstrates that the other herb species were able to grow from the seed bank and arrive in the 

more open removal plots, but did not flourish under the conditions found there. There were three species, 

accounting for just 0.738% cover, found only in “open” removal plots. These were Eupatorium serotinum, 

Arctium minus, and Symphyotrichum lateriflorum the seventh, eighth, and tenth most abundant herbs in 

these “open” plots (A. minus is an exotic).  All three of these species along with A. altissima and V. 

alternifolia are members of the Asteraceae family having wind-dispersed seeds. (Appendix 7).  
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 In addition to light, the structure of a forest (both understory and canopy) may play a part in 

determining the community assemblage.  The removal of dense edge vegetation, as often happens during L. 

maackii and vine removals during woodland restoration efforts, can increase the flow of seeds into the 

woodland interior (Cadenasso and Pickett 2001). Wind-dispersed species, such as members of the 

Asteraceae, would be expected to benefit the most from this alteration in the forest structure (Cadenasso 

and Pickett 2001) and might explain the relatively high abundance of certain herbs species in the removal 

plots, especially Ageratina altissima and the four other most abundant species found only in the “open” 

plots.  The maintenance of dense foliage at the edge of a forest may provide some buffer against exotic 

species invasion into the interior (Brothers and Spingarn 1992), but may also filter out other wind-dispersed 

native herbs.  The shade provided by a more closed canopy may also differentially affect species growth by 

altering moisture regimes via buffering temperature and reducing evaporation rates.  There is some 

evidence linking a more open forest canopy (and mesic soil moisture levels) to higher proportions of 

herbaceous seeds in forest seed banks- compared to more closed canopies where seeds of woody species 

predominated in the seedbanks (Leckie et al. 2000).  Leckie et al (2000) posited that this distinction in 

seedbank communities was more due to seed dispersal and dormancy characteristics of species native to the 

old growth forest of their study (rather than inputs from the surrounding agricultural-dominated landscape).  

This suggests that the capacity for divergent communities may be present in an ecosystem.  There are many 

factors that determine which seeds enter, survive and germinate in a site, all of which could change as plant 

community development progresses in these fragmented urban woodlands.   

Other Factors may Affect Community Development  

Direct competition for light may only be a partial explanation for lower herb abundance under L. 

maackii.  Smith (2013) suggests that in many studies which implicate direct competition for light based on 

an observed extended leaf phenology may be overlooking other mechanisms of displacement such as 

altered soil nutrient cycling, allelopathy, and modifying the behavior of herbivores and pollinators. 

However, removal of this shrub may not alter all of these factors immediately, thereby leaving legacies that 

could have long-lasting effects on plant community development that this study was not designed to 

address.   
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This study, designed to test the efficacy of restoration practices, did not explicitly examine these 

alternate mechanisms.  However, we may have found some indirect evidence supporting at least one 

apparent competitive interaction.  A major component of the summer herb community in the more open 

plots, Phytolacca americana, was found almost exclusively in the gaps formed from the removal of L. 

maackii in another study in Northern Kentucky (Luken et al. 1997b).  Being primarily bird-dispersed it was 

not surprising to find the native herb P. americana in many of our plots.  The abundant populations found 

in the more open, sunnier, sites may be explained by P. americana being more limited by seed predation 

than by dispersal (Orrock et al.2006).  Seed predators have been shown to be preferentially more active and 

use L. maackii thickets for cover from their own predators given the right conditions (Meiners 2007; Mattos 

and Orrock 2010; Dutra et al. 2011).  For instance, Dutra et al. (2011) linked the usage of L. maackii cover 

by nocturnal rodent seed predators to cloudless nights, indicating a need for protection from moonlight to 

escape sight-predators.  By removing the protective shrub canopy, seed predation by small rodents may 

have been reduced allowing for the abundant stands of P. americana observed in the sunnier “open” plots.  

It is possible that plots with less tree-canopy cover would allow even more moonlight to reach the forest 

floor further reducing rodent seed predation activity even further in plots where L. maackii had been 

removed. 

The release from nocturnal seed predation may help account for localized densities of Fraxinus 

spp. seedlings found in a few of our removal plots [see above]. Meiners (2007) used Fraxinus 

pennsylvanica seeds in their study and found 74% of seeds removed at the end of the 28-day study.  This 

suggests that in areas where L. maackii cover is removed, if there is a reduction of seed predation by 

rodents, there may be a concomitant increase in seed survival to germination and seedling status that more 

light promotes.  Proximity to adult Fraxinus seed sources would be expected to account for a majority of 

seedling density, but the reduction in seed predation could be a contributing factor to increased seedling 

recruitment. 

In addition to seed predation, herbivory may also play a role in reducing the survival of some 

native herbs, particularly in the removal plots where plant growth was greater.  White-tailed Deer 

(Odocoileus virginianus) have been observed in Cherokee Park, in areas immediately adjacent to the study 
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sites (E. Levine, personal observation).  Intense browsing by deer is known to have dramatic negative 

impacts on the abundance and survivorship of the understory plant community of forests (Russel et al. 

2001; Rooney 2001; Ruhren and Handel 2003).  In addition to deer, heavy clipping of smaller herbs by 

animals (likely rabbits) has been observed in the removal plots (M. Carreiro, pers. comm.).  It is possible 

that any preferentially browsed smaller herbs that were present in the plots might have left higher 

proportions of P. americana and A. altissima, both of which are known to contain herbivory-reducing 

phytotoxins.  Such preferential browsing could reduce the richness and evenness of the plots while still 

allowing for large biomass accumulation of the dominant herbs. 

Duration of Invasion 

 In addition to altering the specific communities of the different plant strata (spring and summer 

herbs and woody plants), the duration of invasion leave a discernable legacy effect on the forest as a whole.  

Forest sites with invasion durations of 18-26 years have been shown to have lower densities of herb, 

seedling, and sapling layers and reduced seed bank species richness than non-invaded forests (Hartman and 

McCarthy 2008).  Duration and intensity of invasion by L. maackii can lead to suppressed tree basal area in 

forests (Hartman and McCarthy 2007).  In this Cherokee Park study the length of time that a site has been 

known to be invaded by L. maackii correlated positively with summer herb cover.   In sunnier more “open” 

sites (Figure 4) ring counts of the largest shrubs removed indicated that the site had been colonized for at 

least 17 to 22 years, whereas in the “shaded” removal plots the sites had been colonized for 24 to 31 years .  

The relative openness of these plots can therefore be explained by duration of seedling and sapling 

recruitment suppression and suppression of canopy tree growth over decades by L. maackii. These 

potentially long-term legacy effects of L. maackii invasion underscore the importance of responding to 

invasion before it has a chance to alter the long-term structure of the forest.  If L. maackii reduces tree 

canopy density by suppressing regeneration, then the resulting plant communities that develop after shrub 

removal in forests will likely resemble those of our “open” plots rather than the “shade” plots: dominated 

by relatively few herbs with reduced diversity and abundance of other herbs which might be more desirable 

for management goals. 

Conclusions 
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 The herbaceous plant community on the forest floor where L. maackii has been removed shows 

signs of release from competition with L. maackii, however the resulting communities may be distinct from 

one another based on the availability of light penetrating the summer tree canopy.  Distinctions in summer 

herb cover and community diversity and structure were observed and herbs of greater value to conservation 

were less important components of the summer herb communities in sunnier locations.  The sunnier 

locations were correlated with longer durations of L. maackii invasion, suggesting that suppression of 

canopy regeneration by L. maackii might have left a legacy in the forest community structure resulting in 

less desirable herb communities even five years after the removal of the invasive shrub. 

 Woody plants are also taking advantage of what appears to be a release from competition with L. 

maackii with increases in seedling densities, species richness, vine cover, and sapling abundance.  The 

increase in cover by invasive exotic vines should concern managers and indicate a need for comprehensive 

and continued removal efforts.  Compared to the broad research available on L. maackii there is relatively 

little research on the specific effects of the exotic vines found in this study (E. fortunei, Ampelopsis 

brevipedunculata, Hedera helix).  Also of concern is the species composition of the trees that are 

regenerating.  Very few oak seedlings or saplings were observed, while Acer saccharum and Fraxinus spp. 

were most abundant.  Both trees are common in many parts of the park, but the Emerald Ash Borer has 

been devastating the Fraxinus spp. canopy in the region.  

Of greatest concern, perhaps, is the return of L. maackii.  Few studies explicitly examine the re-

colonization by the shrub once removal has been performed.  Even leaving a relatively small patch of 

reproductively mature L. maackii might greatly increase the chance of re-invasion.  Given the widespread 

sources of seeds in the urban residential landscape and the potentials for dispersal vectors by birds and deer 

reintroduction seems likely, with re-establishment to follow unless vigilance is maintained.  In order to 

minimize re-invasion removal efforts should be careful not to leave any seed sources within the woodlot 

and restoration should be combined with plantings to maintain a dense canopy and restore the integrity of 

the forest edge as a buffer against some seed vectors. 

Natural areas managers need to be aware of and account for the abiotic factors-especially sunlight- 

that influence invasion and re-invasion and that guide succession after the removal of an invasion.  This 
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awareness is especially important as differing restoration methods can affect the resulting plant community 

(Flory and Clay 2009a; Loeb et al. 2010).  There is evidence that colonization windows can close after 

~5years of succession in old-field settings and that it is linked to the closing of a canopy of perennial 

species (Bartha et al. 2003).  If a similar window can be determined for the type of secondary succession 

examined in this study it may guide land managers in planning restoration time-lines and to minimize re-

introduction of invasives and preserve desired native communities. 
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Table 1. Spring and summer 2013 herb community characteristics.  Cover (%) values are absolute cover 

not relative cover.  Values are means (N=8 for Control and Removal plots, N=3 for Reference plots); 

parentheses enclose standard errors.  P-values are corrected for False Discovery Rate (FDR) for one-

tailed paired t-tests of removal > control. Asterisks (*) indicate 2-tailed paired t-tests. 

       

 Season Control Removal p-value  Reference 

Species Richness (R) Spring 13.8 (1.35) 21.4 (2.58) 0.008  19.7 (2.40) 

 Summer 9.5 (1.59) 17.9 (2.05) 0.017  10.7 (0.88) 

Exotic (R) Spring 3.75 (0.412) 5.5 (0.845) 0.076  2.33 (0.33) 

 Summer 1.38 (0.375) 2.5 (0.327) 0.017  1.0 (0.58) 

Native (R) Spring 10 (1.35) 15.9 (2.05) 0.008  17.3 (2.19) 

 Summer 8.13 (1.46) 15.4 (2.00) 0.020  9.67 (0.89) 

Shannon's Diversity 

(H') 

Spring 0.954 (0.195) 1.64 (0.285) 0.050*  1.47 (0.26) 

 Summer 1.39 (0.215) 1.35 (0.157) 0.902*  1.09 (0.09) 

Shannon's 

Equitability (J) 

Spring 0.348 (0.067) 0.547 (0.097) 0.104*  0.49 (0.07) 

 Summer 0.594 (0.089) 0.482 (0.059) 0.483*  0.46 (0.02) 

Simpson's D Spring 2.02 (0.34) 4.56 (1.11) 0.053*  2.69 (0.66) 

 Summer 3.5 (0.49) 2.94 (0.54) 0.524*  2.04 (0.25) 

Herb Cover (%) Spring 10.5 (4.17) 17.9 (7.39) 0.648  17.1 (3.72) 

 Summer 2.32 (0.87) 16.7 (5.34) 0.024  5.56 (1.82) 

Exotic 

Cover (%)  

Spring 1.36 (0.66) 10.7 (5.86) 0.050  0.30 (0.07) 

 

 Summer 0.26 (0.11) 0.25 (0.07) 0.327  0.71 (0.60) 

 

Native  

Cover (%) 

Spring 9.17 (4.39) 7.75 (3.46) 0.670  16.9 (3.67) 

 

 Summer 2.06 (0.78) 16.5 (5.3) 0.023  8.25 (1.75) 
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Table 2. Herb and vine richness, diversity and cover in 2008 and 2013.  Values are means; parentheses 

enclose standard errors.  Herb cover in %.  P-values for 2-Factor ANOVAs blocked by site, with Year 

and Treatment as main effects and are corrected for False Discovery Rate (FDR) using Proc Multtest 

(SAS, v9.3).  

  2008 2013 2-Factor Test p-value 

Spring Herb Spp. 

Richness, R 

Control: 6.37 

(2.04) 

13.75 

(1.35) 

Year 

Treatment 

0.008 

0.013 

Removal: 7.75 

(2.3) 

21.38 

(2.58) 

Year*Treatment 0.102 

Summer Herb Spp. 

Richness, R 

Control: 5.5 

(1.78) 

9.5 

(1.59) 

Year 

Treatment 

0.010 

0.016 

Removal: 5.125 

(1.62) 

17.9 

(2.05) 

Year*Treatment 0.011 

Summer Vine Spp. 

Richness, R 

Control: 

 

2.38 

(0.26) 

5.25 

(0.45) 

Year 

Treatment 

0.008 

0.782 

Removal: 2.13 

(0.48) 

6.63 

(0.46) 

Year*Treatment 0.082 

Spring Herb H' Control 0.77 

(0.17) 

0.95 

(0.20) 

Year 

Treatment 

0.435 

0.018 

Removal 1.13 

(0.24) 

1.64 

(0.29) 

Year*Treatment 0.564 

Summer Herb H' Control: 0.66 

(0.19) 

1.39 

(0.22) 

Year 

Treatment 

0.090 

0.974 

Removal: 0.60 

(0.21) 

1.35 

(0.16) 

Year*Treatment 0.530 

Spring Herb J Control 0.49 

(0.07) 

0.35 

(0.07) 

Year 

Treatment 

0.208 

0.023 

Removal 0.64 

(0.05) 

0.55 

(0.10) 

Year*Treatment 0.782 

Summer Herb J Control: 0.50 

(0.11) 

0.59 

(0.09) 

Year 

Treatment 

0.989 

0.917 

Removal: 0.58 

(0.12) 

0.48 

(0.06) 

Year*Treatment 0.486 

Spring Herb Cover 

(%) 

Control 13.49 

(5.04) 

10.53 

(4.17) 

Year 

Treatment 

0.435 

0.630 

Removal 7.17 

(3.25) 

17.92 

(7.39) 

Year*Treatment 0.797 

Summer Herb Cover 

(%) 

Control 4.93 

(3.07) 

2.32 

(0.81) 

Year 

Treatment 

0.132 

0.208 

Removal 1.28 

(0.68) 

16.74 

(5.34) 

Year*Treatment 0.010 

Vine Cover (%) Control: 1.21 

(0.51) 

2.49 

(0.99) 

Year 

Treatment 

0.008 

0.102 

Removal: 1.09 

(0.59) 

11.8 

(5.36) 

Year*Treatment 0.057 
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Table 3.  Light related factors and key plant responses in removal plots. Plots ordered by distance of plot 

center to nearest open area as defined in Methods.  Canopy cover is mean % closed canopy on spherical 

densiometer (2014: mean of measurements facing each cardinal direction at 1.25m; 2013: north facing at 

<10cm) measured in summer.  LAI is Leaf Area Index in m2 of non-Lonicera maackii leaf area per m2 of 

ground area (n.m. = not measured at that site; see Methods for explanation).  Canopy category is based 

on the integration of measures that influence light entry into plots (Distance to open area, % canopy 

cover and LAI).   Minimum known presence (MKP) of Lonicera maackii at time of cutting in 2008 is 

listed in years.  

  4 9 8 2 3 6 5 1 

Aspect 

(0o= North) 

S 

158o 

SW 

228o 

W 

253o 

SE  

148o 

W 

271o 

W  

277o 

E  

101o 

NW 

 334o 

Distance to nearest 

Open Area (m) 

11.3 13.2 16.5 29.3 30.2 31 41.4 48.6 

Canopy Cover 

(2014, %) 
88.8 97.7 92.7 92.2 97.4 93.8 96.4 96.4 

Canopy Cover (2013, 

%) 
89.1 88.5 93.9 93.8 90.2 95.1 96.4 93.3 

LAI(2010) 1.91 n.m. n.m. 2.8 3.32 4.03 6.27 n.m. 

Canopy Category: open open open open shade shade shade shade 

Minimum Known 

Presence (MKP) 
25 31 24 29 17 19 22 19 

         

Spring herb cover 

(2013, %) 
36.4 22.0 4.80 59.0 0.28 0.80 2.54 17.5 

Summer herb cover 

(2013, %) 
37.9 22.2 35.4 23.8 1.27 1.33 3.30 8.72 

          

Woody seedlings 

(2013, # ha-1) 
23900 18300 41100 99300 17800 188400 34400 57100 

L. maackii stems 

0.3m-0.99m 

(2013, # ha-1) 

14,400 8,000 90,500 46,800 21,900 16,600 12,400 10,300 

Shrub stems 

0.3m-0.99m 

(2013, # ha-1) 

14,400 19,100 90,700 47,500 21,900 34,500 14,400 12,400 
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Table 4. Woody plant seedling density (2013).  Values are mean number of seedlings ha-1 (± 1 S.E.) in 

the given treatment.  P-values are from 2-tailed paired t-tests between Control and Removal and are 

corrected for False Discovery Rate (FDR) using Proc Multtest (SAS, v9.3).  P-value for tree seedlings 

(marked with asterisk) is for a 1-tailed paired t-test (Removal > Control). 

 Control Removal p-value Reference 

Vines 5,525 

(1,151) 

7,438 

(710) 

0.298 27,833 

(16,852.9) 

Trees 24,963  

(8,657) 

47,788 

(20,689) 

0.255* 1,600 

(378.6) 

Shrubs 16,563 

(7,232) 

4,813 

(1,359) 

0.428 733.3 

(384.4) 

Total 47,050 

(14,202) 

60,037 

(20,648) 

0.714 30,233.3 

(17,513.6) 

  



53 

 

Table 5. Vine and shrub species richness (2013). Values are mean number of species (± 1S.E.) in plots 

by treatment.  P-values are corrected for False Discovery Rate (FDR) using a 2-tailed paired t-test.  P-

values marked with an asterisk (*) are FDR-corrected Wilcoxon Ranked Sign test results used because 

data were non-parametric. 

 Control Removal p-value  Reference 

All Vines 5.25  

(0.453) 

6.63 

(0.46) 

0.050  5.0 

 (1.15) 

Exotic Vines 2.38  

(0.183) 

3.13 

(0.295) 

0.113*  3.0  

(0.58) 

Native Vines 2.88  

(0.40) 

3.50 

(0.463) 

0.521*  2.0  

(1.0) 

      

All Shrubs 1.88  

(0.295) 

2.13 

(0.300) 

0.793*  2.0 

(0.67) 

Exotic Shrubs 1.63  

(0.183) 

1.75 

(0.163) 

1.00*  0.67 

(0.33) 

Native Shrubs 0.25 

 (0.164) 

0.375 

(0.183) 

1.00*  1.0 

(0.58) 
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Table 6. Spring and Summer (2013) Vine Cover.  Data are means (± 1S.E.) (N=8 for control and 

removal, N=3 for reference) of percent cover. P-values are from 1-tailed paired t-tests (Control < 

Removal) and are corrected for False Discovery Rate (FDR) using Proc Multtest (SAS, v9.3). Asterisk, 

*, denotes p-value for a Wilcoxon Ranked Sign test used due to non-normal data. 

       

  Control Removal p-value  Reference 

 All 11.9 (7.38) 10.8 (5.15) 0.601  22.9 (16.9) 

Spring Exotic 3.03 (1.24) 10.1 (4.95) 0.147  22.9 (16.9) 

 Native 8.96 (7.69) 0.71 (0.56) 0.255  0.02 (0.01) 

       

  Control Removal p-value  Reference 

 All 2.49 (0.99) 11.8 (5.36) 0.053  28.7 (23.9) 

Summer Exotic 2.23 (0.99) 9.89 (5.49) 0.170  28.5 (23.9) 

 Native 0.26 (0.06) 1.95 (1.42) 0.076*  0.21 (0.11) 
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Table 7. Shrub, vine and tree seedling and saplings in 2008 and 2013.  Values are means (± 1 S.E.).  P-

values are for 2-Factor ANOVAs blocked by site, with Year and Treatment as main effects.  Listed p-

values are corrected for False Discovery Rate (FDR) using Proc Multtest (SAS v9.3).  

  2008 2013 2-Factor Test p-value 

Tree Seedling 

Richness 

Control: 5.38 

(1.08) 

8.75 

(0.726) 

Year 

Treatment 

0.010 

0.548 

Removal: 4.00 

(0.85) 

9.25 

(0.726) 

Year*Treatment 0.196 

Tree Seedling 

Density (# ha-1) 

Control 5,900 

(1,612) 

24,963 

(8,657) 

Year 

Treatment 

0.008 

0.917 

Removal 4,363 

(1,381) 

47,788 

(20,688) 

Year*Treatment 0.323 

Vine Seedling 

Density (# ha-1) 

Control 9,800 

(4,211) 

5,525 

(1,151) 

Year 

Treatment 

0.797 

0.805 

Removal 6,563 

(3,438) 

7,438 

(710) 

Year*Treatment 0.210 

Shrub Seedling 

Density (# ha-1) 

Control: 3,538 

(450) 

16,563 

(7,233) 

Year 

Treatment 

0.0997 

0.291 

Removal: 3,863 

(1,319) 

4,813 

(1,359) 

Year*Treatment 0.530 

Lonicera spp. 

Seedling Density (# 

ha-1) 

Control 2,425 

(586) 

15,837 

(7,309) 

Year 

Treatment 

0.014 

0.328 

Removal 1,650 

(330) 

4,337 

(1,413) 

Year*Treatment 0.805 

Sapling Richness Control: 1.88 

(0.64) 

2.63 

(0.53) 

Year 

Treatment 

0.435 

0.435 

Removal: 2.75 

(0.92) 

4.00 

(0.00) 

Year*Treatment 0.188 

Sapling Density (# 

ha-1) 

Control 4.63 

(1.79) 

16.6 

(6.06) 

Year 

Treatment 

0.010 

0.023 

Removal 9.50 

(3.59) 

57.0 

(20.1) 

Year*Treatment 0.046 
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Table 8. Tree seedling and sapling richness and density (2013).  Values are means (± 1S.E.) (N=8 for 

control and removal; N=3 for reference).  P-values are from 1-tailed paired t-test (Removal > Control), 

corrected for False Discovery Rate (FDR) using Proc Multtest (SAS v9.3). 

     

 Control Removal p-value Reference 

Seedlings     

Species Richness (R) 8.75 (0.73) 9.25 (0.73) 0.257 9.0 (0.58) 

Exotic R 0.875 (0.23) 0.875 (0.125) 0.583 0.33 (0.33) 

Native R 7.88 (0.71) 8.38 (0.68) 0.357 8.67 (0.33) 

Density (# ha-1) 24,963 (8,657) 47,788 (20,689) 0.255 27,833 (16,853) 

     

Saplings     

Species Richness (R) 3.38 (0.84) 5.25 (0.41) 0.050 6.33 (2.19) 

Exotic R 0.625 (0.183) 0.5 (0.267) 0.456 0.33 (0.33) 

Native R 2.0 (0.42) 3.5 (0.27) 0.024 6.0 (2) 

Density (# ha-1) 16,625 (606) 57,000 (2,009) 0.024 13,600 (9,760) 
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Table 9. Shrub stem density (2013). Values are mean number of live stems  (± 1S.E.) (N = 8 for control 

and removal; N = 3 for reference) counted from shrubs of the given height class. P-values are from 2-

tailed paired t-tests, except those marked with asterisks, *, which are from 1-tailed paired T-test of 

Control > Removal.  All p-values are corrected for False Discovery Rate (FDR) using Proc Multtest 

(SAS v9.3). 

     

All species Control Removal p-value Reference 

0.3 m - 1.0 m 75.4 (18.7) 318.6 (94.2) 0.050 32.0 (30.5) 

1.0m - 1.99 m 64.8 (13.7) 119.4 (30.9) 0.056 10.0 (8.02) 

≥ 2.0 m 88.0 (11.4) 13.0 (4.8) 0.003 6.0 (5.67) 

All stems ≥ 0.3 m 240 (31.5) 439 (110) 0.075 47.7 (36.0) 

     

Lonicera sp. Control Removal p-value Reference 

0.3 m - 1.0 m 70.1 (18.1) 276.1 (99.7) 0.061* 30.7 (29.2) 

1.0m - 1.99 m 41.6 (8.4) 64.8 (19.1) 0.160* 9.0 (8.5) 

≥ 2.0 m 84.1 (11.3) 7.5 (2.1) 0.003* 6.0 (5.67) 

All stems ≥ 0.3 m 196 (26.9) 348 (118) 0.055 45.3 (35.4) 
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Table 10. Soil type and slopes.  H = Experimental paired plots, Ref. = Reference plots.  C = Control plot 

(Lonicera maackii uncut), R = Removal plot (L.  maackii. cut and removed).  North aspect is 0o. LAI is 

Leaf Area Index in m2 of non-Lonicera spp. litter-fall leaf area per m2 of ground.  LAI was not measured in 

plots labelled 'n.m.'  See Methods for explanation.  

Treatment 

Level 
Aspect (o) 

Aspect 

Facing 
Mean % slope Soil Type LAI in 2010 

H1-C 332 NW 12 Crider n.m. 

H1-R 334 NW 12 Crider n.m. 

H2-C 158 S up 28%, lower 35% Caneyville 3.02 

H2-R 148 SE up 28%, lower 35% Caneyville 2.8 

H3-C 271 W 18 Crider 3.66 

H3-R 271 W 18 Crider 3.32 

H4-C 149 SE 40 Caneyville 2.24 

H4-R 158 S 40 Caneyville 1.91 

H5-C 105 E 30 up, 40% lower Upper Crider 5.68 

H5-R 101 E 30 up, 40% lower Upper Crider 6.27 

H6-C 252 W 12 Crider 4.48 

H6-R 277 W 12 Crider 4.03 

H8-C 259 W 23 Caneyville n.m. 

H8-R 253 W 23 Caneyville n.m. 

H9-C 237 SW 5 Elk n.m. 

H9-R 228 SW 5 Elk n.m. 

Ref-1 332 NW 14 Alford n.m. 

Ref-2 347 N 20 Alford n.m. 

Ref-4 100 E 30 up, 40% lower Upper Crider n.m. 
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Table 11.  Variables that are sunlight-proxies and their correlation with summer (2013) herb cover in 

removal plots.  Table of Pearson's r product-moment correlation coefficients (p-values in parentheses 

beneath each r-value).  Aspect values were the absolute value of degrees from north (north defined as 0o; 

0o ≤ y ≤ 180o) rather than compass degrees. *Leaf Area Index (LAI) was collected for only five sites, 

correlation only performed on those five sites (N=5).  Other correlations for removal plots of the 8 paired 

experimental sites (N=8).  

 Summer Herb Cover (%) p-value 

Summer Herb Cover (%) 1 - 

Meters to forest edge -0.754 0.031 

Canopy cover (%) -0.693 0.057 

LAI* -0.717 0.017 

Aspect (o from North) 0.649 0.082 
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Table 12. Soil Series and classification of soils found at experimental and reference sites. 

          

Soil Series Classification 

Crider Fine-silty, mixed, active, mesic Typic Paleudalfs 

Caneyville Fine, mixed, active, mesic Typic Hapludalfs 

Upper Crider Fine-silty, mixed, active, mesic Typic Paleudalfs 

Elk Fine-silty, mixed, active, mesic Ultic Hapludalfs 

Alford Fine-silty, mixed, superactive, mesic Ultic Hapludalfs 
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Table 13.  Canopy cover measurements.  Canopy cover in percent was measured by densiometer was 

taken at 1.25m height in 2014 and <10cm height in 2013.  FWD = Fine Woody Debris.  FWD and litter 

mass are in grams oven dry mass (gODM m-2). Values are means  (± 1S.E.) (N = 8 for control and 

removal; N = 3 for reference). P-values are corrected for False Discovery Rate (FDR) using Proc 

Multtest (SAS, v9.3). 

 Control Removal p-value Reference 

Canopy cover 

(2014, %) 

97.2 (0.425) 94.4 (0.016) 0.008 95.5 (2.18) 

Canopy cover 

(2013, %) 

95.2 (0.98) 92.6 (1.02) 0.017 96.4 (1.28) 

     

Litter Mass  

(gODM m-2) 

96.4 (33.5) 69.4 (33.5) 0.237 269.6 (58.7) 

FWD  

(gODM m-2) 

91.6 (31.8) 279.9 (29.2) 0.050 231.8 (32.4) 
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Table 14. Summer plant community characteristics in “shade” and “open” removal plots.  Cover (%) 

values are absolute cover not relative cover.  Values are means (± 1S.E.) (N=4 for “shade” and “open”); 

parentheses enclose standard errors.  P-values are corrected for False Discovery Rate (FDR) for one-

factor ANOVAs comparing means of “shade” and “open” plots. 

  “shade” “open” p-value 

Herb Species Richness (R)  15.75 (2.29) 20.0 (3.37) 0.648 

Herb Community Diversity (H’)  1.70 (0.15) 1.00 (0.10) 0.044 

Herb Community Evenness (J)  0.624 (0.04) 0.34 (0.03) 0.011 

Herb Cover (%)  3.66 (1.75) 29.8 (3.98) 0.011 

Exotic Herb Cover (%)  0.11 (0.044) 0.42 (0.20) 0.735 

     

Vine Species Richness (R)  7.25 (0.75) 6.0 (0.41) 0.648 

Vine Cover (%)  7.58 (3.89) 16.1 (10.3) 0.735 

     

Tree Seedling Species Richness (R)  9.5 (1.04) 9.0 (1.15) 0.875 

Vine Seedling Density (# ha-1)  7,550 (729) 7,330 (1,350) 0.951 

Tree Seedling Density (# ha-1)  63,050 (39,396) 32,525 (17,028) 0.875 

     

Sapling Species Richness (R)  5.75 (0.63) 4.75 (0.48) 0.648 

Sapling Density (# ha-1) 

 

 7,625 (3,968) 3,775 (786) 0.875 

Shrub Stem Density >0.3m  

(# ha-1) 

 32,675 (11,657) 57,200 (18,692) 0.648 
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Figure 1. Map of study sites in Cherokee Park Louisville, KY.  Red stars are the experimental paired-plot 

sites.  Green stars are reference sites. (See methods section for description of plots). Map source: Louisville 

Olmsted Parks Conservancy. 
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Figure 2.  Mean exotic and native herb cover in removal plots during (A) spring and (B) summer 2013.  

Bars represent mean (±SE). Two-tailed pairwise t-tests (Exotic vs Native) Spring: p = 0.80; Summer: p = 

0.0038.  N = 8. 
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Figure 3. Total herb cover as an explanatory variable for spring (A, C, E) and summer (B, D, F) Diversity, 

H’, (A, B), Evenness, J, (C, D), and species richness, R, (E, F) in removal plots only in 2013.  Data points 

are mean values, labels are site numbers provided for comparison between graphs.  P-values are corrected 

for False Discovery Rate (FDRp) using Proc Multtest (SAS, v9.3).  Equation represents the line of best fit 

calculated using Proc Reg (SAS, v9.3). 
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Figure 4.  Exponential regressions of herb cover (2013) in removal plots and the minimum known presence 

of L. maackii prior to removal based on the mean of annual ring counts in two of the largest stems removed 

per plot.  Spring herb cover (A) and summer herb cover (B).  Numbers above points indicate plot number.  

“Shade” plots are those with a more closed tree canopy, “Open” indicates a more open tree canopy.  Lines 

indicate exponential regression line of best fit; P-values were calculated using Proc Reg (SAS, v9.3). 
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Appendix 1. Exotic Species among the five most abundant herbs from each control and removal plot in 

2013.  Spring (A) and Summer (B) herbs in the control (Con.) and removal (Rem.) plots. Values are 

relative cover (%) for the most abundant single species in that plot (Top spp.; asterisk,*, indicates the 

species was exotic), the sum of the five most abundant species (Top 5).  Means for relative cover are 

given (± S.E.).  Also listed are the number of exotic species present in the five most abundant herbs, and 

the four letter code for each species counted in the Exotic spp. column: RAFI = Ranunculus ficaria, 

ALPE = Alliaria petiolata, DUIN = Duchesnea indica, LYSQ = Lycoris squamigera, Arctium minus = 

ARMI. Nomenclature and native status from USDA PLANTS Database (Natural Resources 

Conservation Service 2016). 

 

A. Spring Herbs 

 

Con. 

Plots: 

Top 

Spp. 

Top 5 Exotic 

spp. 

Exotic spp. Rem. 

plots 

Top 

Spp. 

Top 5 Exoti

c spp. 

Exotic spp. 

1 49.09 85.23 1 RAFI 1 59.01* 82.77 1 RAFI 

2 84.73* 95.94 1 ALPE 2 82.89* 98.28 1 ALPE 

3 93.76 99.88 1 ALPE 3 31.66* 91.06 2 ALPE, 

DUIN 

4 97.37 99.90 2 ALPE, 

RAFI 

4 83.50 99.98 2 ALPE, 

RAFI 

5 77.72 91.98 0  5 27.55 67.59 1 RAFI 

6 23.60 67.37 2 ALPE, 

DUIN 

6 51.97 91.72 1 ALPE 

8 37.09 98.13 1 LYSQ 8 21.35 65.42 0  

9 81.20* 92.93 1 ALPE 9 64.63* 92.92 1 ALPE 

Mean: 68.1 

(9.79) 

91.4 

(3.85) 

  Mean: 52.8 

(8.56) 

86.2 

(4.68) 

  

          

B. Summer Herbs 

 

Con. 

Plots: 

Top 

Spp. 

Top 5 Exotic 

spp. 

Exotic spp. Rem. 

plots 

Top 

Spp. 

Top 5 Exoti

c spp. 

Exotic spp. 

1 25.01 86.46 0  1 32.27 93.62 0  

2 

44.26 98.41 2 

ALPE, 

DUIN 

2 

68.34 91.93 2 

ALPE, 

ARMI 

3 

100 100 0  

3 

60.38 93.44 2 

ALPE, 

DUIN 

4 39.18 97.48 1 ALPE 4 68.96 98.93 0  

5 57.95 95.62 1 ALPE 5 40.81 91.78 1 ALPE 

6 48.70 90.86 1 ALPE 6 29.67 80.59 0  

8 38.90 86.06 0  8 83.33 92.36 0  

9 31.60 91.03 1 ALPE 9 70.27 95.78 0  

Mean: 48.2 

(8.21) 

93.24 

(1.91) 

  Mean: 56.76 

(7.04) 

92.31 

(1.87) 
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Appendix 2. Most abundant spring herbs in control and removal plots (2013).  Values in Control and 

Removal columns are the # of plots that in which each species was among the five most abundant 

species; parentheses enclose total cover in all control and removal plots (%).  Species ordered by plot 

presence in “Removal”.  Timing of reproduction are perennial (P), annual (A), or biennial (B).  

Coefficient of Conservatism (CC) for taxa above species provided as a range based on possible species 

(Shea et al, unpublished, sensu Swink and Wilhelm 1994).  Invasive species are marked with an asterisk 

(*); graminoids marked with †, all others are non-legume forbs. Nomenclature, timing of reproduction, 

native status, and forb/legume are based on USDA PLANTS database (Natural Resources Conservation 

Service 2016). 

Species Control Removal Timing CC Family 

Alliaria petiolata (M. Bieb.) 

Cavara & Grande* 
5 (1.744) 5 (8.97) AB - Brassicaceae 

Ageratina altissima (L.) R. M. 

King & H. Rob. 
2 (0.055) 4 (0.753) P 2 Asteraceae 

Geum spp. 4 (0.092) 4 (0.275) P 2-3 Rosaceae 

Ranunculus ficaria L.* 2 (0.065) 3 (2.174) P - Ranunculaceae 

Cardamine parviflora L. 0 (0.009) 2 (1.113) A 1 Brassicaceae 

Erythronium americanum Ker 

Gawl. 
2 (0.83) 2 (0.187) P 7 Liliaceae 

Carex spp. L. † 2 (0.163) 2 (0.059) P 3-10 Cyperaceae 

Podophyllum peltatum L. 1 (0.195) 2 (0.013) P 6 Berberidaceae 

Camassia scilloides (Raf.) Cory 1 (4.653) 1 (3.084) P 6 Liliaceae 

Hydrophyllum spp. 2 (0.398) 1 (0.265) P 5 Hydrophyllaceae 

Trillium sessile L. 2 (0.149) 1 (0.16) P 5 Liliaceae 

Asteraceae / Solidago 0 (0.001) 1 (0.125) P 1-10 Asteraceae 

Polygonatum biflorum  (Walter) 

Elliott 
2 (1.327) 1 (0.113) P 5 Liliaceae 

Asarum canadense L. 2 (0.115) 1 (0.108) P 6 Aristolochiaceae 

Impatiens spp. 1 (0.089) 1 (0.102) A 2 Balsaminaceae 

Sanicula odorata (Raf.) K.M. 

Pryer & L.R. Phillipe 
0 (0.009) 1 (0.094) P 4 Apiaceae 

Dicentra spp. 1 (0.047) 1 (0.084) P 6-7 Fumariaceae 

Phytolacca americanum L. 1 (0.009) 1 (0.065) P 1 Phytolaccaceae 

Duchesnea indica (Andrews) 

Focke* 
1 (0.012) 1 (0.061) P - Rosaceae 

Verbesina alternifolia (L.) Britton 

ex Kearney 
1 (0.018) 1 (0.058) P 2 Asteraceae 

Cardamine concatenate Michx. 

(Sw.) 
1 (0.058) 1 (0.048) P 5 Brassicaceae 

Polymnia canadensis L. 0 (0.006) 1 (0.024) P 4 Asteraceae 

Arabis laevigata (Muhl. ex Willd.) 

Poir. 
0 (0.008) 1 (0.014) B 5 Brassicaceae 

Allium spp. 2 (0.052) 0 (0.065)  3-9 Liliaceae 

Arisaema triphyllum L. (Schott) 1 (0.028) 0 (0.04) P 6 Araceae 

Trillium flexipes Raf. 1 (0.7) 0 (0.002) P 6 Liliaceae 

Lycoris squamigera Maxim.* 1 (0.132) 0 (0) P - Liliaceae 
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Appendix 3. Most abundant summer herbs in control and removal plots (2013).  Values in Control and 

Removal columns are the number of plots that in which each species was among the five most abundant 

species; parentheses enclose total cover in all control and removal plots (%).  Species ordered by plot 

presence in “Removal”.  Timing of reproduction are perennial (P), annual (A), or biennial (B).  

Coefficient of Conservatism (CC) for taxa above species provided as a range based on possible species 

(Shea et al, unpublished, sensu Swink and Wilhelm 1994).  Invasive species are marked with an asterisk, 

*.  Graminoids are marked with †; all others are non-legume forbs. Nomenclature, timing of 

reproduction, native status, and forb/legume are based on USDA PLANTS database (Natural Resources 

Conservation Service 2016). 

 Control Removal Timing CC Family 

Ageratina altissima (L.) R. M. King 

& H. Rob. 6 (0.445) 7 (9.65) P 2 Asteraceae 

Phytolacca americana L. 2 (0.204) 5 (3.99) P 1 Phytolaccaceae 

Oxalis stricta L.   0 (0) 3 (0.189) P 0 Oxalidaceae 

Alliaria petiolata (M. Bieb.) Cavara 

& Grande * 5 (0.224) 3 (0.141) AB - Brassicaceae 

Asarum canadense L. 2 (0.353) 2 (0.368) P 6 Aristolochiaceae 

Verbesina alternifolia (L.) Britton ex 

Kearney 1 (0.086) 2 (0.228) P 2 Asteraceae 

Solidago canadensis L.  1 (0.008) 2 (0.169) P 8 Asteraceae 

Geum canadense Jacq. 3 (0.047) 2 (0.125) P 2 Rosaceae 

Symphyotrichum lateriflorum (L.) Á. 

Löve & D. Löve 0 (0) 2 (0.109) P 3 Asteraceae 

Carex sp. L. † 2 (0.036) 2 (0.006) P 3-10 Cyperaceae 

Sanicula odorata (Raf.) K.M. Pryer 

& L. R. Phillipe 0 (0.024) 1 (0.275) P 4 Apiaceae 

Hydrophyllum spp. 2 (0.273) 1 (0.266) P 5 Hydrophyllaceae 

Carex jamesii Schwein † 1 (0.007) 1 (0.14) P 6 Cyperaceae 

Eupatorium serotinum Michx. 0 (0) 1 (0.136) P 2 Asteraceae 

Arctium minus Bernh.* 0 (0) 1 (0.124) B - Asteraceae 

Geum vernum (Raf.) Torr. & A. Gray 2 (0.034) 1 (0.119) P 3 Hydrophyllaceae 

Duchesnea indica (Andrews) Focke 

* 1 (0.024) 1 (0.104) P - Rosaceae 

Impatiens spp. L. 1 (0.02) 1 (0.092) A 2 Balsaminaceae 

Arisaema triphyllum L. (Schott) 1 (0.029) 1 (0.071) P 6 Araceae 

Carex blanda Dewey † 1 (0.004) 1 (0.024) P 2 Cyperaceae 

Polygonatum biflorum (Walter) 

Elliott 0 (0) 1 (0.021) P 5 Liliaceae 

Hypericum punctatum Lam. 0 (0) 1 (0.012) P 1 Clusiaceae 

Stellaria pubera Michx. 1 (0.037) 0 (0.012) P 4 Caryophyllaceae 

Collinsonia candensis L.  1 (0.199) 0 (0.001) P 7 Lamiaceae 

Laportea canadensis (L.) Weddell 1 (0.176) 0 (0) P 4 Urticaceae 

Polystichum acrostichoides (Michx.) 

Schott. 1 (0.018) 0 (0) P 4 Dryopteridaceae 
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Appendix 4. Tree seedling species incidence in 2013.  All seedling species and the number of plots in 

which they were present in 2013.  Percent (%) values are percent of total tree seedlings found in 2013 

were represented by that species.  Species ordered by percent of total tree seedlings. Species marked 

with an asterisk (*) are exotic, those marked with † were found only in Reference plots in 2013. 

Nomenclature and native status are based on USDA PLANTS database (Natural Resources Conservation 

Service 2016). 

     

  

Plots Present 

 

Spp. Control Removal Reference % 

Fraxinus pennsylvanica Marshall 6 5 2 30.0 

Fraxinus spp. L. 7 7 2 20.0 

Acer saccharum Marshall 4 4 3 11.6 

Rhamnus cathartica L. * 5 6 0 8.71 

Acer negundo L.  7 7 2 6.72 

Prunus serotina Ehrh. 6 6 3 5.91 

Celtis occidentalis L. 8 7 3 5.85 

Koelreutaria paniculata Laxm. * 1 1 0 4.71 

Fraxinus americana L. 2 4 0 3.58 

Ulmus rubra Muhl. 7 5 2 0.827 

Asimina triloba (L.) Dunal 2 1 1 0.346 

Cercis canadensis L. 1 2 0 0.331 

Juniperus virginiana L. 1 2 0 0.226 

Crataegus sp. L. 2 4 0 0.165 

Ailanthus altissima (Mill.) Swingle* 1 0 0 0.150 

Fraxinus quadrangulata Michx. 0 4 1 0.150 

Carya sp. Nutt 2 3 1 0.135 

Juglans nigra L. 1 0 1 0.120 

Quercus sp. L. 3 4 0 0.120 

Ilex sp. L. 2 2 0 0.105 

Carpinus caroliniana Walter 1 1 0 0.090 

Aesculus glabra Willd.  1 1 2 0.060 

Fagus grandifolia Ehrh. 0 1 2 0.060 

Morus rubra L. 0 1 0 0.030 

Morus sp. L. 0 1 0 0.015 

Robinia psudeoacia L. 0 1 0 0.015 

Morus alba L. *† 0 0 1 0.015 
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Appendix 5. Tree sapling species incidence in 2013.  All sapling species and the number of plots in 

which they were present in 2013.  Percent (%) values are percent of total saplings found in 2013 were 

represented by that species. Species ordered by percent of total tree seedlings. Species marked with an 

asterisk (*) are exotic, those marked with † were found only in Reference plots in 2013. Nomenclature 

and native status are based on USDA PLANTS database (Natural Resources Conservation Service 

2016). 

     

  

Plots Present 

 

Sapling Species Control Removal Reference % 

Acer negundo L. 3 7 3 26.9 

Fraxinus pennsylvanica Marshall 2 5 2 25.0 

Asimina triloba (L.) Dunal  2 1 1 13.6 

Acer saccharum  Marsh.  4 4 1 8.54 

Prunus serotine Ehrh. 2 2 1 7.09 

Fraxinus americana L. 2 3 0 5.64 

Rhamnus cathartica L. 3 2 0 4.78 

Celtis occidentalis L.  1 6 2 2.32 

Aesculus glabra Willd.   2 2 3 1.45 

Koelreuteria paniculata Laxm*. 1 1 0 1.01 

Acer rubrum L. 0 1 0 0.579 

Morus alba L. * 0 1 1 0.579 

Cercis canadensis L. 0 2 0 0.289 

Fagus grandifolia Ehrh. † 0 0 1 0.289 

Fraxinus quadrangulata Michx. 2 0 0 0.289 

Juglans nigra L. † 0 0 1 0.289 

Morus rubra L. 0 2 0 0.289 

Robinia pseudoacacia L. 0 1 0 0.289 

Carya alba (Lam.) Nutt. 0 1 0 0.145 

Carya sp. Nutt. † 0 0 1 0.145 

Fraxinus sp. L. 1 0 0 0.145 

Pyrus calleryana Decne. * 1 0 0 0.145 
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Appendix 6.  Shrub species incidence in 2013.  All shrub species distributed by stems >30cm (A) and 

seedlings (B) in all plots in which they were present in 2013.  Percent values are percent of total stems or 

seedlings found in 2013 that were of that species.  Species are ordered by % of stems.  Exotic species are 

marked with an asterisk (*).  Nomenclature and native status are based on USDA PLANTS database 

(Natural Resources Conservation Service 2016). 

     

A.  

Plots Present 

 

Species Control Removal Reference % of stems 

Lonicera spp. L. * 8 8 2 80.6 

Ligustrum sp. L.* 5 6 0 17.7 

Staphylea trifolia L. 0 1 0 0.934 

Lindera benzoin (L.) Blume 1 1 1 0.682 

Viburnum sp. L. 0 1 0 0.036 

Rubus sp. L. * 0 1 0 0.018 

Sambucus canadensis (L) R. 

Bolli 

1 0 0 0.018 

     

B. 

 

Plots Present  

Species Control Removal Reference % of seedlings 

Lonicera maackii (Rupr.) 

Herder * 8 8 2 93.2 

Lindera benzoin (L.) Blume 2 2 2 3.79 

Ligustrum sp. L. * 4 3 0 1.78 

Sambucus canadensis (L) R. 

Bolli 1 0 2 0.746 

Rubus sp. L. * 1 2 0 0.229 

Staphylea trifolia L. 1 1 0 0.229 

Lonicera fragrantisisma Lindl. 

& Paxton* 

1 0 0 0.057 
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Appendix 7.  Summer (2013) herb incidence in “shade” and “open” removal plots. Herbs are the most 

abundant species as per Appendix 3.  Values in plots present are the number of removal plots from the 

“shade” or “open” categories where the species was present, while % cover is the amount of cover for 

that herb in each category. Species are ordered by highest % cover in the “Open” column.  Species 

marked with an asterisk (*) are exotic; those marked with † are graminoids, all other species are non-

legume forbs.  Nomenclature, native status, and forb/legume are based on USDA PLANTS database 

(Natural Resources Conservation Service 2016). 

       

 Plots present  % cover  

Species: "Shade" "Open"  "Shade" "Open" Family 

Ageratina altissima (L.) R. 

M. King & H. Rob. 

4 4  0.549 18.8 Asteraceae 

Phytolacca americana L.  2 3  0.529 7.45 Phytolaccaceae 

Verbesina alternifolia (L.) 

Britton ex Kearney 

1 1  0.043 0.413 Asteraceae 

Solidago canadensis L. 1 4  0.014 0.325 Asteraceae 

Oxalis stricta L. 3 4  0.057 0.321 Oxalidaceae 

Carex jamesii Schwein.† 2 2  0.007 0.274 Cyperaceae 

Eupatorium serotinum Michx. 0 2  0 0.273 Asteraceae 

Arctium minus Bernh.* 0 1  0 0.248 Asteraceae 

Geum vernum (Raf.) Torr. & 

A. Gray 

1 4  0.005 0.233 Asteraceae 

Symphyotrichum lateriflorum 

(L.) Á. Löve & D. Löve  

0 3  0 0.218 Asteraceae 

Geum canadense Jacq. 2 3  0.034 0.216 Asteraceae 

Alliaria petiolata (M. Bieb.) 

Cavara & Grande * 

4 4  0.078 0.203 Brassicaceae 

Duchesnea indica  (Andrews) 

Focke * 

2 4  0.04 0.168 Rosaceae 

Impatiens spp. L. 4 2  0.092 0.093 Balsaminaceae 

Carex blanda Dewey † 2 2  0.025 0.023 Cyperaceae 

Carex spp. L. † 2 1  0.005 0.008 Cyperaceae 

Asarum canadense L. 2 0  0.735 0 Aristolochiaceae 

Hydrophyllum spp. L.  2 0  0.532 0 Hydrophyllaceae 

Arisaema triphyllum L. 

(Schott) 

2 0  0.142 0 Araceae 

Hypericum punctatum Lam. 1 0  0.025 0 Clusiaceae 

Polygonatum biflorum 

(Walter) Elliott   

1 0  0.043 0 Liliaceae 

Sanicula odorata (Raf.) K.M. 

Pryer & L. R. Phillipe 

1 0  0.55 0 Apiaceae 

Collinsonia candensis L.   1 0  0.002 0 Lamiaceae 

Stellaria pubera Michx. 1 0  0.024 0 Caryophyllaceae 
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