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ABSTRACT 

IMPACTS OF AMMONIA AND TEMPERATURE ON 

FRESHWATER SNAIL BEHAVIOR AND PHYSIOLOGY 

Megan Christine DeWhatley 

November 5, 2018 

Gastropods are one of the most imperiled groups of animals in North America, yet there 

are major gaps in the literature pertaining to pollutants and climate change, and especially 

sublethal impacts. This dissertation assesses the effects of climate warming and unionized 

ammonia (NH3), one of the most abundant water pollutants, on the behavior and 

physiology of two caenogastropod snails: fine-ridged elimia (Elimia semicarinata) and 

Shawnee rocksnails (Lithasia obovata) (Gastropoda: Neotaenioglossa: Pleuroceridae). 

Righting behavior, or the movement used by snails to turn themselves right-side-up, was 

used as the main endpoint; delays in this behavior compromise fitness via lost feeding 

time and increased predation risk. NH3 experiments involved acute (24 hr) exposure to a 

range of concentrations, with righting time tested before and after exposure. NH3 

significantly affected the change in righting time for fine-ridged elimia, with snails 

exposed to higher doses righting more slowly after exposure than before. Shawnee 

rocksnails did not experience this effect, but significantly more snails failed to right 

within the time limit (60 min) after exposure to 12.61 mg NH3-N/L. The concentrations 

that affected the behavior of these species are magnitudes greater than any reported 

previously for freshwater gastropods. Oxygen consumption was also tested after 
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acute exposure to NH3 to determine if righting behavior is affected via changes to 

respiration, but no effects were found, suggesting that this behavior is altered by a 

different mechanism, at least during short-term exposure. Temperature experiments 

involved chronic (10-day) exposure, with righting time tested before and after. Both 

species failed to right at greater proportions than controls (20°C) at temperatures below 

their streams’ current summer highs; this effect could leave snails stranded on dry shores 

as water level fluctuations increase with climate change. Survival was drastically reduced 

at 35°C for fine-ridged elimia and 30°C for Shawnee rocksnails, 5°C less than the lower 

end of a common generalization of gill-breathing snail thermal tolerance. This research 

illustrates the importance of studying a wide range of species to determine tolerances for 

freshwater gastropods; conservation efforts cannot be properly informed without an 

understanding of the variation in sensitivities. 
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INTRODUCTION 

 

In the United States and Canada, 74% of gastropods are listed as vulnerable, 

threatened, endangered, or extinct (Johnson et al. 2013); a value that far exceeds the 

imperilment of fish (39%, Jelks et al. 2008) and crayfish (48%, Taylor et al. 2007). 

Conservation challenges range from declining freshwater quantity and quality to 

competition with invasive species, though a continued lack of efficient propagation and 

reintroduction techniques contributes as well (Lysne et al. 2008). The potential to lose 

almost 75% of the current gastropod diversity presents concerns for freshwater 

ecosystems. Snails provide several important ecological functions, including limiting the 

biomass of a complex assemblage of algae and bacteria, called periphyton, that covers 

submerged surfaces (Hill 1992; Brown et al. 2008). Additionally, snails aid the 

decomposition process in streams: leaf litter breakdown rates are positively correlated 

with gastropod species richness as well as biomass (Chadwick et al. 2006). Like other 

taxa, mollusk communities are more resistant to invasion when they are more diverse 

(Kennedy et al. 2002). For all of these reasons, the Freshwater Mollusk Conservation 

Society has called for more research on gastropod sensitivities, and particularly for 

comparative studies such as the ones contained in this dissertation (FMCS 2016). 

Historically, toxicology research has been focused on lethal impacts and lethal 

concentrations or temperatures for environmental stressors and pollutants. However, 
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scientists have known for decades that fitness is compromised by impairments to a wide 

range of behaviors and physiological factors (Cohn and MacPhail 1996; Pyle and Ford 

2017). Furthermore, behavioral endpoints are often between 10 and 100 times more 

sensitive than survival (Gerhardt 2007). Regardless of whether a behavior can function as 

an indicator of poor environmental quality, as many do (Hellou 2011), it is critical for 

protecting the diversity of freshwater gastropods that the sublethal effects of pollutants 

and climate warming be thoroughly studied so that conservation efforts can be as 

informed as possible (FMCS 2016). 

In an effort to begin to fill the gaps in freshwater gastropod research, two 

important environmental stressors were chosen for analysis: unionized ammonia (NH3) 

and climate warming. At present, both stream water temperatures and concentrations of 

NH3 are rising due to human impacts (Durance and Ormerod 2009; Isaak et al. 2012; 

USEPA 2013). It is the aim of this dissertation to determine how levels of these factors 

that may be experienced by freshwater gastropods now or in the near future will affect 

the behavior and physiology of two freshwater gill-breathing snails, fine-ridged elimia 

(Elimia semicarinata, Say 1829) and Shawnee rocksnails (Lithasia obovata, Say 1829). 
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CHAPTER I 

EFFECTS OF UNIONIZED AMMONIA ON RIGHTING BEHAVIOR AND 

RESPIRATION IN TWO PLEUROCERID FRESHWATER SNAILS 

 

Introduction 

Ammonia is a natural component of the nitrogen cycle, but both point and nonpoint 

sources have increased ammonia concentrations above natural levels in recent years  

(USEPA 2013). Industrially, ammonia is used for fertilizers, household chemicals, 

printing processes, metals extraction in mining, crude oil processing (USEPA 2004), and 

the production of pharmaceuticals and dyes (Karolyi 1968; Appl 1999). Agricultural 

runoff is a major source of ammonia pollution to freshwaters, especially in the form of 

synthetic fertilizers (Boyer et al. 2002; Howarth et al. 2012) and animal waste from 

livestock operations (USEPA 2004). The anthropogenic sources of ammonia listed above 

are in addition to natural sources such as animal waste from wildlife, nitrogen fixation 

(USEPA 2013), and the decomposition of organic matter (Russo 1985). 

In aquatic ecosystems, ammonia exists in two forms: ionized (NH4
+) and 

unionized (NH3) (Abel 1996). In general, ammonia is more toxic than other components 

of the nitrogen cycle, such as nitrite and nitrate (Romano and Zeng 2013), but NH3 is 

even more toxic than the ionized form (Abel 1996).  Furthermore, increases in water 

temperature and pH cause the concentration of NH3 to increase and the concentration of 
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NH4
+ to decrease, making warmer, more basic waters more toxic to aquatic organisms 

when ammonia is present (Abel 1996). Depending on the taxa, ammonia can cause death 

to aquatic animals via collapse of the gill lamellae and other gill damage (Romano and 

Zeng 2013), a decrease in gill ventilation (Lang et al. 1987), degeneration of kidneys, or 

repression of the immune system, among other effects (Russo 1985). 

Toxicants like ammonia often affect physiological processes and behaviors at 

concentrations far below lethal levels (Gerhardt 2007) and these effects can still have 

strong implications for fitness if behaviors like predator avoidance, food acquisition, or 

reproduction are affected (Alonso and Camargo 2013). The list of behaviors known to be 

affected by NH3 include locomotor activity (in amphipods, Normant-Saremba et al. 

2015), microhabitat choice (in amphipods, Gergs et al. 2013), movement behavior (in 

planaria, Alonso and Camargo 2015; in freshwater snails, Alonso and Camargo 2009), 

and feeding activity (in amphipods, Alonso and Camargo 2004; in shrimp, Frías-

Espericueta et al. 2000). Movement behaviors in particular have become an area of focus 

for behavioral toxicology because there is a tight connection between an organism’s 

ability to move (whether at all or at a regular pace) and its ability to perform behaviors 

required for foraging, mating, and avoiding predators (Alonso and Camargo 2013). A 

variety of toxicants impair movement in aquatic invertebrates (e.g. heavy metals, 

polychlorinated biphenyls, and polycyclic aromatic hydrocarbons, Salánki et al. 2003) 

and research is beginning to show similar effects of NH3 (see above). However, few 

studies have assessed the impacts of NH3 on the behavior of freshwater gill-breathing 

snails. 
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This lack of research is surprising for two reasons. First, freshwater gill-breathing 

snails have been shown to be relatively sensitive to ammonia in toxicity tests (USEPA 

2013), and second, gastropods are considered one of the most imperiled taxa in North 

America. Currently, 74% of gastropods in the United States and Canada are listed as 

vulnerable, threatened, endangered, or extinct (Johnson et al. 2013), as compared with 

39% for fish (Jelks et al. 2008) and 48% for crayfishes (Taylor et al. 2007). Aquatic 

snails are important to aquatic ecosystems because they provide the vital ecosystem 

function of decomposition; snail species richness and biomass are positively correlated 

with leaf litter breakdown rates in streams (Chadwick et al. 2006). Snail grazing also 

regulates and limits the biomass of periphyton, a complex mixture of algae and bacteria 

that attaches to submerged surfaces (Hill 1992; Brown et al. 2008). The most recent 

strategy document by the Freshwater Mollusk Conservation Society makes an urgent call 

for data on sublethal effects of stressors for mollusks (FMCS 2016). 

While all movement behaviors have the potential to impact snail fitness, a 

behavior called righting time is particularly important. This behavior represents the 

amount of time it takes an organism to “right” itself after it has been flipped upside-down 

with its dorsal surface facing upward; it has been studied in an array of aquatic animals 

(e.g. turtles, Domokos and Várkonyi 2008; sea stars, Lawrence and Cowell 1996; 

crayfish, Newland 1989; sea urchins, Challener and McClintock 2013) including 

freshwater and marine snails (Weldon and Hoffman 1979; Brown et al. 1998; Fei et al. 

2007). Increased righting time is used as an indicator of stress in various gastropods (e.g. 

Weldon and Hoffman 1979; Fong et al. 2017) because snails that are flipped upside 

down, with the aperture, or shell opening, exposed, may be more vulnerable to predators 
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(Orr et al. 2007, Lemmnitz et al. 1989) and cannot carry out normal activities like mating 

or foraging. Several factors have been found to impact righting behavior in gastropods. 

For instance, both pH and temperature affect righting time, in an interactive way, in the 

marine snail, Margarella antarctica (Schram et al. 2014). Elevated temperatures also 

impair righting ability in the freshwater snails fine-ridged elimia (Elimia semicarinata) 

and Shawnee rocksnail (Lithasia obovata) (DeWhatley and Alexander 2018). 

Although righting behavior is not a new method for assessing the impacts of 

stressors on aquatic gastropods, the behavior has not widely been used with toxicants. 

Another sublethal endpoint indicative of organismal stress and in need of further testing 

with regards to toxicants relates not to behavior but to physiology. Oxygen consumption 

is one of the most basic measures of animal health and proper physiological function. 

Oxygen is the final electron acceptor in the electron transport chain of aerobic 

respiration; as more energy is needed, oxygen demand increases as well. Thus, increases 

in an organism’s oxygen consumption relate to increases in energy demand, which—

other factors being equal—may indicate that the organism is stressed and requires 

additional energy to maintain physiological processes. There is a positive correlation 

between water temperature and oxygen consumption for many species, including 

freshwater mussels (Ganser et al. 2015) and freshwater snails (Hawkins and Ultsch 1979; 

Alexander and Wagoner 2016).  

Similarly, oxygen consumption in the zebra mussel (Dreissena polymorpha) 

increases with temperature, but only up to about 30°C, after which the rate declines as the 

temperature continues to increase and the animal succumbs to heat stress (Alexander and 

McMahon 2004). Thus, declines in oxygen consumption can indicate impaired 
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physiological function. Such declines are seen when various taxa are exposed to lethal 

concentrations of toxicants, in the days prior to the organism’s death (Bharathi and Rao 

1989; Sivaramakrishna et al. 1991). Acute exposure to mercury causes a steep decline in 

oxygen consumption for the freshwater snail Pila globosa and the mussel Lamellidens 

marginalis (Sivaramakrishna et al. 1991). Other toxicants have a similar effect, including 

copper exposure for the marine prosobranch snail Babylonia lutosa (Cheung and Wong 

1998) and aluminum exposure for Daphnia magna and two perlid stoneflies, Perlestra 

lagoi and Acroneuria abnormis (Soucek 2005). 

This study used two laboratory experiments to test whether acute exposure (24 

hours) to NH3 affects righting behavior and oxygen consumption in two freshwater 

caenogastropod snails: fine-ridged elimia (Elimia semicarinata, Say 1829) and Shawnee 

rocksnails (Lithasia obovata, Say 1829; both Gastropoda: Neotaenioglossa: 

Pleuroceridae). Acute exposure was chosen because, in this instance, it is more 

environmentally relevant than chronic exposure; NH3 concentrations in small streams and 

rivers are generally low on average, but spike to higher levels during pulses attributed to 

factors like rain (Yahdjian and Sala 2010), animal die-offs (Cherry et al. 2005), or 

rewetting of sediments (Baldwin et al. 2005). For the first experiment, I predicted that 

righting time would increase at higher concentrations of NH3 as the snails’ ability to 

move became impaired. Given that snails are naturally exposed to low concentrations of 

NH3, I also predicted that the effects on oxygen consumption would more closely mirror 

those of temperature than heavy metals such as mercury and aluminum. Thus, for the 

second experiment, I expected that acute exposure to sublethal concentrations of NH3 
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would cause an increase in oxygen consumption rate in Shawnee rocksnails and fine-

ridged elimia. 

Materials and Methods 

Fine-ridged elimia were collected from Elkhorn Creek near Frankfort, Kentucky, USA 

(38°19´11.26˝N, 84°49´35.93˝W) in the summers of 2016, 2017, and 2018 for righting 

time experiments and summer 2017 for oxygen consumption experiments. Shawnee 

rocksnails were collected from the Rough River near Elizabethtown, Kentucky, USA 

(37°38´26.5˝N, 86°11´52.26˝W) in fall 2016, summer 2017, and summer 2018 for 

righting time experiments and in summer 2017 for oxygen consumption experiments. 

Species identities of the focal snails were verified by the Museum of Biological Diversity 

at Ohio State University (catalog # for fine-ridged elimia: OSUM Gastropod 41567, for 

Shawnee rocksnail: OSUM Gastropod 42302). Over the course of 2015 to 2018, in the 

months of April to November, I tested water samples for both creeks approximately every 

other month to determine the concentration of NH3. 

In the lab, snails were initially housed in water from their source streams for one 

day, but then were acclimated to reconstituted hard fresh water, which was prepared 

according to American Public Health Association methods (APHA 2005). This 

acclimation process took place over the course of at least one week, via daily additions of 

reconstituted fresh water. While housed in the lab, snails were fed ad libitum on 

TetraMin® tropical flakes (Spectrum Brands, Inc., Blacksburg, VA) and a mixture of 

diatoms and green algae, including Oocystis and Chlorella, provided by the Center for 

Mollusk Conservation in Frankfort, Kentucky, USA. During both experiments, snails 

were housed individually in 250 mL beakers. Snails were kept at 20°C (±2°C) with a 
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12:12 light:dark cycle in incubators (Norlake Scientific, Undercounter BOD Refrigerated 

Incubator). Overall snail size (measured from shell apex to the outer edge of the aperture) 

was recorded for each individual before the experiments began. 

NH3 solutions were prepared from a stock solution, which was created by 

dissolving ammonium chloride (NH4Cl) in reconstituted water (Borgmann 1994; Alonso 

and Camargo 2009). For the oxygen consumption experiment, stock solutions were made 

weekly and stored in a refrigerator until needed. The concentration of NH3 was tested for 

the stock solution every other day. All testing of NH3 concentrations for both experiments 

was done with a spectrophotometer (DR/2000 Direct Reading Spectrophotometer, Hach 

Company) using the salicylate method, following the protocol of Hach Company (1992). 

To improve precision and accuracy, absorbance values from the spectrophotometer were 

used with a standard curve to calculate concentrations of NH3. 

Righting Time Experiments 

Average snail sizes (±SE) were 11.7 ± 0.07 mm for fine-ridged elimia and 12.0 ± 0.07 

mm for Shawnee rocksnails. Each snail’s righting time was tested before and after 

exposure to NH3 to account for differences in righting time related to size, age, or other 

individual differences (Fong et al. 2017). Before the pre-exposure righting test, snails 

were allowed to acclimate to their beakers overnight in 150 mL reconstituted fresh water 

and were fed ad libitum on TetraMin® tropical flakes. Fish flakes were chosen instead of 

algae as the food source during the experiment because they are easier to portion into 

individual beakers (Besser et al. 2016). 

Pre-exposure tests of righting time were conducted the morning following 

overnight acclimation. To test righting time, a glass syracuse dish (d = 104 mm, h = 42 
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mm) was filled with the water from the beaker in which the snail had been housed (water 

height = 19 mm). The snail was then placed, by hand, on its dorsal surface, with the 

aperture facing upwards, in the center of the dish, at which point the timer was started. 

The timer was stopped when the snail had contacted the glass surface with its foot and 

pulled its shell into the upright position. Snails that required >20 minutes to right 

themselves in the pre-exposure test were removed from the study. 

The day after pre-tests of righting time, solutions of NH3 were prepared as 

previously described. Concentrations ranged from 0.25 to 12.51 mg NH3-N/L for fine-

ridged elimia and from 0.34 to 12.61 mg NH3-N/L for Shawnee rocksnails. The term 

NH3-N is the notation for unionized ammonia (NH3) concentrations when the molecular 

weight is based only on the nitrogen component. Up to two concentrations could be 

tested simultaneously, along with a control group. Thus, I began with concentrations near 

those reported to affect behavior or survival in comparable studies (Alonso and Camargo 

2015; Goudreau et al. 1993) and continued raising the concentration for each species. In 

total, there were nine rounds of the experiment for fine-ridged elimia and ten for 

Shawnee rocksnails, all performed between 2016 and 2018. 

Following preparation of the ammonia solutions, each snail’s water was changed, 

either to new control (reconstituted fresh) water (≤ 0.05 mg NH3-N /L) or to the assigned 

concentration of NH3. After 24 hours, righting time was tested again. In post-exposure 

tests, snails that did not right in 60 minutes were labeled “failed to right.” The change in 

righting time was calculated for each snail by subtracting the pre-exposure righting time 

from the post-exposure righting time. 
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Examination of Potential Residual Effects 

Due to the unusually high concentrations of NH3 being tolerated by both species during 

the 24-hour exposures (see Results), additional tests were performed for fine-ridged 

elimia in 12.51 mg NH3-N/L and Shawnee rocksnails in 8.99 mg NH3-N/L and 12.61 mg 

NH3-N/L, as well as the control snails associated with each of those treatment groups. On 

the same day as the post-exposure righting time tests described above, all treatment and 

control snails were moved to clean beakers with 150 mL new reconstituted fresh water 

(i.e. control water), fed, and put back into the incubators. No snails were exposed to NH3 

for the next 10 days.  During the 10-day period following NH3 exposure, the snails were 

checked daily for survival. Fifty percent water changes were performed every other day, 

with feeding done on the same day as water changes. On the seventh day of the 10-day 

post-exposure period, righting time was tested again, using the same methods as the 

previous post-exposure test. Only one Shawnee rocksnail died during the post-exposure 

period; it was in the treatment group that had been exposed to 8.99 mg NH3-N/L and it 

died on the 10th day following ammonia exposure. A single fine-ridged elimia died on the 

sixth day of the post-exposure period, but it was from the control group. 

Oxygen Consumption Experiments 

The fine-ridged elimia used in oxygen consumption experiments had an average shell 

length (±SE) of 11.4 ± 0.09 mm and an average wet weight of 0.1667 ± 0.00402 g. Wet 

weight refers to the entire living snail with the shell attached; it was chosen to avoid 

killing any snails (Chen et al. 2001). Average Shawnee rocksnail shell length and wet 

weight were 11.6 ± 0.13 mm and 0.2968 ± 0.00979 g, respectively. The experiment took 

place in 2017 and involved three separate rounds for each species, each using a new batch 
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of stock NH3 solution. Snails were put into their assigned concentration of NH3 or control 

reconstituted water (≤0.03 mg NH3-N/ L) on the first day of each round, and oxygen 

consumption was tested 24 hours later. In the control trials, I tested 40 fine-ridged elimia 

and 39 Shawnee rocksnails. Unionized ammonia levels (NH3-N) were 10.6 mg/L (fine-

ridged elimia: n=22; Shawnee rocksnails: n=11) and 15.0 mg/L (fine-ridged elimia: 

n=15; Shawnee rocksnails: n=30). Concentrations varied slightly between replicates (up 

to 0.6 mg NH3-N/L); thus, all values reported are averages. These NH3 levels were 

chosen because the lower concentration was near the dose that affected righting behavior 

for fine-ridged elimia in the righting time tests. 

At the beginning of each round, the snails were weighed, in addition to being 

measured, for later calculations of mass specific oxygen consumption rates. The snails’ 

shells were dried before weighing and individuals from the control and treatment groups 

were approximately size-matched. The snails were put individually into beakers with 150 

mL of their assigned treatment, or reconstituted fresh water for controls. 

During the 24 hours of exposure to NH3 (or control water), all snails were kept in 

incubators as described above. Afterwards, oxygen consumption was assessed. First, the 

snails’ shells were cleaned with a Kimwipe® to remove algae and bacteria (Alexander 

and McMahon 2004; Hahn 2005). Following the methods of Alexander and McMahon 

(2004), a respirometer (YSI 5300A Biological Oxygen Monitor) was used to determine 

oxygen consumption, accounting for oxygen consumption associated with microbial 

activity by using a second chamber containing only water as a control (i.e. blank). A 

water bath surrounding the chambers maintained constant temperature at 20°C. Oxygen 

consumption was calculated for each snail by determining the amount of oxygen used per 
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hour for the blank and subtracting that from the same value for the snail. This value was 

then converted into the oxygen consumption rate as µg O2 · hr-1 · g wet wt-1. Snails were 

tested for oxygen consumption in water without added NH3, regardless of their treatment 

group, in order to maintain proper functioning of the oxygen probe (Cheung and Wong 

1998). Additionally, prior to testing oxygen consumption, the water in which the snail 

will reside in the respirometer must be aerated to nearly 100% saturation, which would 

drive off volatile chemicals such as NH3. 

Statistical Analyses 

All statistical tests were conducted in the R platform (ver. 3.3.1) (R Core Team 2016). 

For each species, linear regression with permutation tests was used to test for an effect of 

NH3 concentration on change in righting time (lmPerm package, Wheeler and Torchiano 

2016). Permutation tests were used because the change in righting time was not normally 

distributed and transformations could not correct normality (Kabacoff 2015). Shell length 

was included in the model as a covariate; length was used to represent the snail size. 

Experimental round was also included in the model as a random factor (though the 

designation is not necessary with permutation tests). Logistic regression was used to test 

whether the concentration of ammonia affected the proportion of snails that failed to right 

in the post-exposure test. Where a significant effect was found, Dunnett’s test was used to 

determine which treatment groups differed from the control group. Data from the residual 

effects tests were analyzed in the same manner as above, but with change in righting time 

representing the difference in righting time seven days after ammonia exposure and 

before ammonia exposure. 
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For each species, mixed effect analysis of covariance (lmerTest package, 

Kuznetsova et al. 2016) was used to test for an effect of the concentration of NH3 on the 

rate of oxygen consumption, while controlling for the effects of snail size (both shell 

length and gross wet weight). The models for each species included experimental round 

as a random effect. 

Results 

Over the course of 2015-2018 (in the months of April to November), I recorded an 

average concentration (±SE) of 0.025 ± 0.010 mg NH3-N/L for Elkhorn Creek and 0.053 

± 0.016 mg NH3-N/L for the Rough River; maximum concentrations were 0.056 mg 

NH3-N/L for Elkhorn Creek and 0.178 mg NH3-N/L for the Rough River. 

Righting Time Experiments 

Sample sizes, pre-exposure righting time averages, and post-exposure righting time 

averages for each species at each treatment level can be found in Table 1 in Appendix A. 

Sample sizes differed among treatment groups due to variation in the number of snails 

that righted within the 20-minute time limit for pre-exposure tests. Overall, 4.4% of fine-

ridged elimia were removed from the study for failing to right within 20 minutes in pre-

exposure tests; 55.4% of Shawnee rocksnails were removed for the same reason. 

Neither species’ change in righting time was affected by the random effect, 

experimental round (fine-ridged elimia: p=0.667; Shawnee rocksnail: p=0.278); thus it 

was dropped from both models. Acute exposure to NH3 affected righting behavior for 

both species tested in this study, but in different ways. NH3 affected the change in 

righting time for fine-ridged elimia (p<0.001), with snails exposed to higher 

concentrations of NH3 righting more slowly after the 24-hour exposure period (Figure 1). 
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However, control snail change in righting time only differed significantly from that of 

snails exposed to 9.03 mg NH3-N/L; snails in this treatment group righted 2.48 min more 

slowly on average in post-exposure tests, as compared to a decrease in righting time of 

0.35 min for controls (p=0.021). Shawnee rocksnail change in righting time was not 

affected by ammonia concentration (p=0.882) but it was affected by shell length 

(p=0.017). Larger Shawnee rocksnails righted slightly more slowly after the exposure 

period than smaller snails; however, size explained very little of the variation in change 

in righting time (R2 =0.01). Shell length did not affect change in righting time for fine-

ridged elimia (p=1). 
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Figure 1. Average change in righting time (RT) for snails exposed to unionized ammonia 

(NH3) for 24 hours. Positive values for change in righting time indicate righting more 

slowly in post-exposure tests; negative values indicate righting more quickly after the 

exposure period. Bars represent standard error. Treatment groups that differ 

significantly from the control group (≤0.05 mg NH3-N/L) are indicated by an asterisk. 
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While NH3 did not cause Shawnee rocksnails to right more slowly in the range of 

tested doses, it negatively impacted righting success (p=0.0046, χ2=8.048, df=1; Figure 

2); 61.5% of snails exposed to 12.61 mg NH3-N/L failed to right themselves in post-

exposure tests, as compared to 18.5% of snails in control conditions (p=0.004). NH3 did 

not affect righting success for fine-ridged elimia (p=0.103, χ2=2.667, df=1). 
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Figure 2. Proportion of snails that failed to right (within 60 minutes) after 24-hour 

exposure to unionized ammonia (NH3). Treatment groups that differ significantly from 

the control group (≤0.05 mg NH3-N/L) are indicated by an asterisk. 

 

Tests for Residual Effects 

Results from residual effects tests suggest that fine-ridged elimia and Shawnee rocksnails 

recover from exposure to NH3 within seven days of returning to regular water. The 
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concentration of NH3 applied seven days prior did not affect change in righting time for 

either species (fine-ridged elimia: p=0.902; Shawnee rocksnail: p=0.106; Figure 3). 

Additionally, there was no effect of snail size (fine-ridged elimia: p=0.961; Shawnee 

rocksnail: p=0.077) or experimental round (Shawnee rocksnail: p=0.540; fine-ridged 

elimia: not applicable) on change in righting time for the residual effects tests. The 

concentration of NH3 applied seven days prior did not affect the proportion of snails that 

failed to right (fine-ridged elimia: p=0.100, χ2  =2.71, df=1; Shawnee rocksnail: p=0.236, 

χ2 =1.41, df=1; Figure 3). 

 

 

 



20 
 

 

Figure 3. Average change in righting time and proportion of snails that failed to right 

after 24-hour exposure to unionized ammonia (NH3) and seven days after exposure to 

NH3 ended. Bars represent standard error. Significant differences (p<0.05) between 

groups are indicated with an asterisk. All concentrations represent mg NH3-N/L. Control 

solutions contained ≤0.05 mg NH3-N/L. (A) Change in righting time refers to the righting 

time at a given time point minus the pre-exposure righting time. (B) Failure to right 

refers to failing within 60 minutes. 
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Oxygen Consumption Experiments 

Little to no respiration occurred in the blanks (<7.92 µg O2 /hr). Acute exposure to NH3 

did not affect the rate of oxygen consumption for either species at any concentration 

tested (fine-ridged elimia: p=0.364, t= -0.92, df=73; Shawnee rocksnail: p=0.857, t=        

-0.18, df=74; Figure 4). Neither species displayed an effect of shell length on oxygen 

consumption (fine-ridged elimia: p=0.530, t=1.97, df=73; Shawnee rocksnail: p=0.219, 

t=1.24, df=74). Snail wet weight did not affect the rate of oxygen consumption for 

Shawnee rocksnails (p=0.069, t= -1.85, df=74), but it did negatively affect the rate of 

oxygen consumption for fine-ridged elimia (p=0.015, t= -2.50 df=73). Larger fine-ridged 

elimia had slightly lower rates of oxygen consumption, but weight explained only 4% of 

the variation in oxygen consumption (R2 =0.04). 

 

 

Figure 4. Average rate of oxygen consumption after 24-hour exposure to unionized 

ammonia (NH3). Bars represent standard error. Concentrations of NH3 are averages of 

actual concentrations, which ranged from 10.5-10.6 and 14.7-15.3 mg NH3-N/L. 
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Discussion 

Ammonia pollution has the potential to confer serious negative effects on freshwater 

biodiversity via disruption of animal behavior and physiology (e.g. Muñoz et al. 2012; 

Schalkhausser et al. 2014; Zhang et al. 2017). Despite increasing evidence for such 

consequences, this study shows that natural populations of fine-ridged elimia and 

Shawnee rocksnails are unaffected by typical ammonia levels and are able to recover 

from exposure to extremely high pulses of ammonia. While the tolerances of these two 

species differ slightly, both appear to behave and respire normally when exposed to doses 

of NH3 that are considered lethal to other aquatic taxa. 

There are several implications of the impacts of high doses of NH3 on fine-ridged 

elimia. Righting more slowly costs snails feeding time (Wei et al. 2016) and could 

potentially increase exposure to predators. Snails typically right more quickly when 

predator scent is present (Orr et al. 2007), but this adaptation could be lost or impaired 

when righting behavior is slowed by exposure to ammonia. Furthermore, these effects are 

expected to be more severe for Shawnee rocksnails when they are exposed to high doses 

of ammonia, as 61.5% of them failed to right themselves at all (compared to 18.5% in 

control conditions). 

While the effects of righting slowly or failing to right can be problematic for 

snails, these effects are unlikely to be seen in natural populations of Shawnee rocksnails 

and fine-ridged elimia. First, fine-ridged elimia only experienced a maximum average 

increase in righting time of 2.48 minutes in this study (with exposure to 9.03 mg NH3-

N/L), as compared to -0.35 minutes on average for controls. Shawnee rocksnails 

experienced more severe impairments of righting behavior with increased failure to right 
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at 12.61 mg NH3-N/L, but regardless, the doses of ammonia required to elicit behavioral 

effects for both species are well above the concentrations of NH3 in the snails’ source 

streams. Over the course of 2016 to 2018, I recorded a maximum value of 0.056 mg NH3-

N/L for Elkhorn Creek, where fine-ridged elimia were collected, and a maximum value 

of 0.178 mg NH3-N/L for the Rough River, where Shawnee rocksnails were collected. 

Thus, it is extremely unlikely that the populations of snails used in these experiments are 

currently experiencing impairment of righting behavior in their natural habitats due to 

NH3 exposure. 

Additionally, my results suggest that fine-ridged elimia and Shawnee rocksnails 

recover from exposure to NH3 within seven days of returning to water containing no 

NH3, suggesting that there are no lasting effects after a pulse event ends and the NH3 is 

flushed downstream. At the highest concentrations tested, neither species righted 

significantly more slowly than controls seven days after the 24-hour exposure period, nor 

did the proportion failing to right differ from controls. The freshwater mussel (Anodonta 

anatina) similarly returns to normal behavior within seven days of exposure to de-icing 

salt (Hartmann et al. 2016). Freshwater planaria (Polycelis felina) also recover 

behaviorally within seven days of exposure to NH3, but after two additional pulses of 

ammonia, they fail to fully recover in the same amount of time (Alonso and Camargo 

2015). Shawnee rocksnails and fine-ridged elimia may not recover their righting abilities 

as well as they did in this study if they were exposed to multiple pulses of NH3, an 

approximation of recurring rainstorms or other ammonia-releasing events (Yahdjian and 

Sala 2010). 
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Regardless of whether behavioral impairments caused by high doses of ammonia 

last longer with additional pulses of the toxin, these snails’ tolerances to NH3 are 

extremely high compared to other taxa. Locomotion behavior is significantly impaired at 

0.20 mg NH3-N/L for freshwater planaria (Alonso and Camargo 2015) and at 0.07 mg 

NH3-N/L for New Zealand mudsnails (Potamopyrgus antipodarum, Alonso and Camargo 

2009), though both studies used exposure periods ≥10 days. Even lethal concentrations 

for other species are well below the 12.61 mg NH3-N/L it took to affect righting success 

for Shawnee rocksnails and the 9.03 mg NH3-N/L it took to affect righting time for fine-

ridged elimia in this study. The 24 hr LC50 for New Zealand mudsnails is 2.72 mg NH3-

N/L (Alonso and Camargo 2003) and the 96 hr LC50 for the freshwater snail Pleurocera 

unciale unciale is 0.742 mg NH3-N/L (Goudreau et al. 1993). For comparison, the 96 hr 

LC50 for rainbow trout (Oncorhynchus mykiss) is 0.296 mg NH3-N/L (Thurston et al. 

1981). 

In the future, it would be beneficial to study the impacts of NH3 on different life 

stages. This study and many others focused only on adult snails, but it is possible that 

juvenile snails experience behavioral impacts at lower concentrations than adults. This 

pattern has been documented for mortality in many invertebrates with exposure to various 

chemicals (e.g. Aguirre-Sierra et al. 2011; An et al. 2013; Archambault et al. 2015). 

Clearly juvenile survival and fitness are important to the conservation of snail species; 

thus, it is important to determine how environmental stressors like NH3 affect juveniles as 

well. 

There remains uncertainty surrounding the underlying reason righting behavior is 

affected by NH3 (albeit very high doses). Doses up to 6 mg NH3-N/L greater than the 
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doses that affected behavior still had no significant effect on the snails’ oxygen 

consumption rates. This result is not completely surprising based on zebrafish 

toxicological research. Behavioral impairments occur at much lower concentrations of 

the fungicide carbendazim than it takes to affect metabolism for early life-stage zebrafish 

(Danio rerio, Andrade et al. 2016). Thus, oxygen consumption in snails could be affected 

by higher doses of NH3 than were tested in this study, but ultimately, the behavioral 

impairments seen in this study are unlikely to have been caused by respiratory damage or 

metabolic stress. Impairments of behavior caused by exposure to toxins are usually signs 

of underlying physiological issues (Pyle and Ford 2017). If the physiological issue 

causing impairment of righting behavior for Shawnee rocksnails and fine-ridged elimia is 

not respiratory, perhaps it is related to the central nervous system, as has been suggested 

to explain effects of ammonia on fish, such as increases in gill ventilation and 

convulsions (Russo 1985). 

There is still a great deal to learn about the sublethal impacts of NH3. This 

research highlights the incredible breadth of gastropod tolerance to NH3, as well as the 

lack of clarity regarding the physiological causes of behavioral impairments induced by 

this chemical. Additional comparative studies are needed to reach the Freshwater 

Mollusk Conservation Society’s goal of determining similarities of sensitivities across 

species and genera (FMCS 2016). The results of this study suggest that ammonia 

pollution poses very little risk to natural populations of Shawnee rocksnails and fine-

ridged elimia, but the massive difference in these species’ tolerances and those of the 

other gastropods tested so far highlights the utmost importance of studying more species 

rather than relying on generalizations based on one or a few. 
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CHAPTER II 

IMPACTS OF ELEVATED WATER TEMPERATURES ON RIGHTING BEHAVIOR 

AND SURVIVAL OF TWO FRESHWATER CAENOGASTROPOD SNAILS 

 

Introduction 

With surface temperatures on Earth increasing at a rate of 0.05°C per decade, and the 

ocean surface warming even faster (0.11°C per decade), efforts to understand the effects 

of climate warming have likewise been increasing (IPCC 2014). Streams and rivers are 

experiencing greater increases in average temperature than oceans and may be more 

sensitive to climate change than any other ecosystem (Durance and Ormerod 2009; Isaak 

et al. 2012). One reason for the expected severity of effects to freshwater communities is 

limitations to movement (Shuter and Post 1990). Animals in freshwaters often cannot 

move to cooler waters because of physical barriers or the difficulty of moving upstream 

for taxa with limited mobility; thus, extinction rates and extirpations of freshwater taxa 

have so far matched or surpassed those of terrestrial species (Heino et al. 2009). In 

general, freshwater snails can actively move upstream by <1.0 km per year (Kappes and 

Haase 2012). As such, predictions show that active dispersal is not likely to be fast 

enough for freshwater mollusks to compensate for the predicted rate of climate warming 

(Kappes and Haase 2012; Alexander and Wagoner 2016).  

In addition to limitations on movement, the ectothermic nature of aquatic 

invertebrates puts them at the mercy of the environment. Freshwater mussels have 
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already experienced reduced diversity and density (Galbraith et al. 2010) and 

thermophilic invertebrates have been incrementally replacing upstream, northern species 

(Daufresne et al. 2004). While temperatures rising above thermal limits can result in 

movement of some species and population extinctions for others, small temperature 

changes can have large impacts on freshwater communities as well. Elevated 

environmental temperatures increase metabolism and respiratory rates in most 

ectothermic organisms by eliciting greater oxygen demand (Schalkhausser et al. 2014; 

Zhang et al. 2014; Alexander and Wagoner 2016). Many behaviors are impacted by 

elevated temperatures as well, such as lowered reproductive output and advanced timing 

of spawning (Philippart et al. 2003), reduced activity levels (Verdelhos et al. 2015), 

increased burrowing (Clements et al. 2017), reduced duration of escape response 

(Schalkhausser et al. 2014), and increased swimming speeds (Zhang et al. 2014). 

When diverse animals like snails, turtles, sea stars, crayfish, and sea urchins find 

themselves flipped onto their dorsal sides, the attempt to turn the body right-side-up is 

called righting behavior. This behavior has been shown to be impacted by climate 

change, but few species have been tested so far (Antarctic limpet (Nacella concinna), 

Peck et al. 2004; land snail (Cornu aspersum), Gaitán-Espitia et al. 2013; Antarctic 

marine snail (Margarella antarctica), Schram et al. 2014; sea urchin (Lytechinus 

variegatus), Brothers and McClintock 2015). While in the upside-down position, snails in 

particular may be vulnerable to predators as their aperture is exposed; evidence for this 

idea arises from research showing that escape and righting behaviors are induced and/or 

accelerated by the presence of predators (Lemmnitz et al. 1989; Orr et al. 2007). 

Furthermore, with the body in this position, normal activities, such as feeding and 
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mating, cannot be accomplished (Wei et al. 2016). Thus, increased righting time is used 

as an indicator of stress in gastropods and other aquatic groups (e.g. Burger 1998; Fong et 

al. 2017; Zhang et al. 2017). 

Righting behavior may become increasingly important for the success of snails 

living near shore lines because the combination of altered rainfall patterns and periodic 

increased evaporation associated with climate warming results in greater water level 

fluctuations (Heino et al. 2009). These fluctuations can result in exposure of snails to 

drying, and while at least one species is known to respond to decreasing water levels by 

moving to deeper water or burrowing into the sediments (Poznańska et al. 2015), this 

adaptation could be compromised if warming temperatures impair the snails’ ability to 

right themselves. 

While several studies have found effects of elevated temperature on righting 

behavior for various aquatic taxa (as previously discussed), few studies of this kind have 

focused on temperate or freshwater snails (e.g. invasive freshwater snail (Potamopyrgus 

anitpodarum), Sharbrough et al. 2017). Snails are currently in a precarious state, with 

74% of North American species listed as imperiled (vulnerable, threatened, endangered) 

or extinct as of 2013 (Johnson et al. 2013). Freshwater snails play several important roles 

in their ecosystem; they accelerate the decomposition process of leaf litter (Chadwick et 

al. 2006) and control the biomass of periphyton, which covers submerged surfaces (Hill 

1992; Brown et al. 2008). Based on the perilous state of snail diversity and the 

importance of their presence in freshwater habitats (along with mussels), an urgent call 

has been made for further research on the sublethal impacts of environmental stressors 

with regards to mollusks (FMCS 2016). 



29 
 

In order to increase our understanding of the potential impacts of elevated 

temperatures associated with climate warming to freshwater snails, I tested whether 

chronic exposure to elevated temperatures affects righting time for fine-ridged elimia 

(Elimia semicarinata, Say 1829) and Shawnee rocksnails (Lithasia obovata, Say 1829) 

(both Gastropoda: Neotaenioglossa: Pleuroceridae). It should be noted that recent 

research has suggested that Lithasia obovata may be a synonym for Pleurocera 

semicarinata (Dillon 2014) and the genera Elimia and Pleurocera may also be 

synonymous (Dillon 2011). However, due to the ongoing transitional state of pleurocerid 

taxonomy, I retain the traditional taxonomy for the time being, following Johnson et al. 

(2013). Fine-ridged elimia are found in Kentucky, Indiana, and Ohio, USA; Shawnee 

rocksnails extend beyond these states into Illinois, Pennsylvania, and Tennessee, USA 

(Johnson et al. 2013). Both species are generally found in shallow, slow-flowing portions 

of streams and rivers, largely on rocks and logs where they graze on periphyton (Johnson 

and Brown 1997, Greenwood and Thorp 2001). I chose to study these species because 

they are locally abundant in Kentucky, and therefore, removing several hundred 

individuals should not negatively impact their populations. I hypothesized that elevated, 

sublethal temperatures would have a negative effect on snail righting time, with snails 

righting more slowly at higher temperatures. 

Materials and Methods 

Snail collection occurred in 2017 August for fine-ridged elimia and 2017 September-

October for Shawnee rocksnails. Both species have been verified by the Museum of 

Biological Diversity at Ohio State University (catalog number for fine-ridged elimia: 

OSUM Gastropod 41567, for Shawnee rocksnails: OSUM Gastropod 42302). Fine-ridged 
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elimia were collected from Elkhorn Creek near Frankfort, Kentucky, USA 

(38°19´11.26˝N, 84°49´35.93˝W) and Shawnee rocksnails were collected from the Rough 

River near Elizabethtown, Kentucky, USA (37°38´26.5˝N, 86°11´52.26˝W). The average 

daily water temperature of Elkhorn Creek in summer 2016 was 28.1°C; the maximum 

temperature for the entire year was 34.3°C (USGS 2017a). In the Rough River, average 

daily summer temperature was 19.9°C in 2016 and the maximum temperature was 

28.6°C (USGS 2017b; see Figure 1 in Appendix B for year-long stream temperature 

data). 

 Once in the lab, all snails were housed in aquaria with water from their home 

streams. Over the course of at least one week, aquarium water was incrementally changed 

to reconstituted hard fresh water, which was prepared according to American Public 

Health Association methods (APHA 2005). During this acclimation time, snails were fed 

ad libitum on a mixture of green algae and diatoms, provided by the Center for Mollusk 

Conservation in Frankfort, Kentucky, USA. 

The experiment was run in several rounds for each species: two rounds for fine-

ridged elimia, in 2017 August-September and three rounds in 2017 September-November 

for Shawnee rocksnails. A control group (20°C) was tested in each round along with the 

elevated temperature treatment. A third round was performed for Shawnee rocksnails to 

increase the sample size of snails exposed to 27°C for greater statistical power. 

Throughout the experiment, snails were housed in individual 250 mL beakers containing 

150 mL reconstituted hard fresh water. These beakers were kept in incubators (Norlake 

Scientific, Undercounter BOD Refrigerated Incubator) with 12/12 light/dark cycles. On 

the first day of the experiment, snails were allowed to acclimate to their beakers in 
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incubators at 20°C overnight. The next day, righting time was tested for each snail by 

placing the snail on its dorsal surface, with the aperture facing up, in a Syracuse dish (d= 

10.4 cm, h= 4.2 cm) with all of the water from its beaker (water depth = 1.9 cm). To 

reduce variation in the test conditions, no substratum was used. These pre-tests were done 

at room temperature (20°C) to provide a baseline righting time for each snail before the 

treatment groups were exposed to elevated temperatures. Pre-tests also helped to account 

for potential differences in righting time related to size, age, sex, or other factors (Fong et 

al. 2017). However, age was controlled to some degree as only adult snails were included 

in this study. The amount of time it took the snail to reach the glass surface with its foot 

and pull the shell back to its proper place was recorded as the snail’s righting time. Fine-

ridged elimia individuals were removed from the study if they did not right within 20 

minutes; Shawnee rocksnails were removed if they did not right within 30 minutes. This 

time limit helped to ensure that only healthy snails were included in the study. Shawnee 

rocksnails were given additional time compared to fine-ridged elimia because preliminary 

tests revealed that they generally right more slowly, even when unimpeded by outside 

influences. 

After righting time pre-tests, all snails were randomly assigned to treatment 

groups by size (working from smallest to largest shell length). One incubator was 

maintained at 20°C to serve as a control (n= 34 Shawnee rocksnails, 40 fine-ridged 

elimia). Treatment temperatures for fine-ridged elimia were 30°C (n=22) and 35°C 

(n=40); for Shawnee rocksnails they were 27°C (n=25) and 30°C (n=11). We originally 

planned to test all snails at 30°C and 35°C, but high mortality for fine-ridged elimia at 

35°C prompted us to reduce the temperature treatments for Shawnee rocksnails. The non-
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control incubators were incrementally brought to the assigned temperature over the 

course of two days. Only one temperature was tested against a control group in each 

round of the experiment. 

Snails were kept at the elevated temperatures for 10 days, making this a chronic 

test (Brothers and McClintock 2015, Clements et al. 2017). Every other day, half the 

water in each beaker was changed using water pre-heated to the snail’s assigned 

temperature and all snails were fed TetraMin® tropical flakes (www.tetra-fish.com, 

Spectrum Brands, Inc., Blacksburg, VA) ad libitum. Dissolved oxygen and pH were 

tested on alternate days from water changes; the samples were arbitrarily selected from 

two snail beakers per treatment group. Temperature was recorded for each incubator 

daily. On the tenth day of the experiment, righting time was tested again. The control 

group was tested in the same manner as before. Righting time for the elevated 

temperature groups was tested using a warm water bath to maintain assigned 

temperatures. An aquarium was filled with warm water and 6 glass dishes were 

submerged; the snails’ Syracuse dishes were placed on top of the submerged dishes such 

that the water in the snail’s dish would not mix with the water bath surrounding it. The 

water baths kept the snails’ water within 2°C of the assigned temperature, although there 

were a few exceptions in which the temperature reached 3 to 4°C above the assigned 

temperature for a portion of the behavior test. These exceptions only occurred for 

Shawnee rocksnails in the 27°C treatment group. For all treatment groups, if snails did 

not right themselves in a maximum amount of time (60 minutes for fine-ridged elimia, 90 

minutes for Shawnee rocksnails), they were recorded as failing to right. 
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All statistical tests were conducted in the R platform (ver. 3.3.1) (R Core Team 

2016) and were performed separately for the two species. (Approximate) exact logistic 

regression (elrm package; Zamar et al. 2007) was used to test for an effect of temperature 

on snail mortality as proportions of total numbers of snails tested. MCMC sampling 

parameters were set to 1000 iterations with 0 burnin. This test was chosen because 

instances of low or zero counts, which were present in several treatment groups for both 

species, can be problematic for regular logistic regression (UCLA 2018). Logistic 

regression was used to test for an effect of temperature on the proportion of snails that 

failed to right in the post-exposure test. The uppermost temperature treatment groups 

(35°C for fine-ridged elimia, 30°C for Shawnee rocksnails) were omitted from this 

analysis, as well as analyses of righting time, because high mortality resulted in small 

sample sizes for post-exposure righting time tests. 

Pre-exposure righting time values were subtracted from post-exposure values to 

obtain the change in righting time for each snail. Positive values indicate that snails right 

more slowly after spending ten days in a given temperature; negative values indicate 

faster righting after the chronic exposure. The effect of temperature on change in righting 

time was determined for each species using ANCOVA with permutation tests (lmPerm 

package, Wheeler and Torchiano 2016), because the data were not normally distributed 

and normality could not be corrected with transformations (Kabacoff 2015). The 

permutation ANCOVA included snail shell length (from apex to outer edge of aperture) 

and gross wet weight (combined shell and body weight) as covariates. Additionally, 

experimental round was included in the model as a random effect variable for Shawnee 

rocksnails because the 27°C treatment was tested in two rounds. 
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Results 

Incubator temperatures and pH and dissolved oxygen values from the 10-day exposure 

period are listed in Table 1 for both species. Fine-ridged elimia shell lengths ranged from 

9.1 mm to 13.9 mm; gross weights ranged from 0.09 g to 0.30 g. Shawnee rocksnail shell 

lengths ranged from 9.0 mm to 14.2 mm and gross weights ranged from 0.11 g to 0.48 g. 

 

Table 1. Average water quality data from snail beakers over the 10-day exposure period. 

fine-ridged elimia (Elimia semicarinata) 
Incubator Temperature (±SE) pHa (±SE) Dissolved Oxygena (±SE) 

20.4 ± 0.2°C 7.75 ± 0.03 6.6 ± 0.2 mg O2 · L-1 

30.4 ± 0.1°C 7.61 ± 0.04 4.2 ± 0.2 mg O2 · L-1 

35.0 ± 0.2°C 7.79 ± 0.01 5.2 ± 0.8 mg O2 · L-1 

 
Shawnee rocksnail (Lithasia obovata) 
Incubator Temperature (±SE) pH (±SE) Dissolved Oxygen (±SE) 

20.4 ± 0.1°C 7.68 ± 0.05 6.1 ± 0.2 mg O2 · L-1 

26.4 ± 0.2°C 7.58 ± 0.02 4.5 ± 0.1 mg O2 · L-1 

30.0 ± 0.1°C 7.58 ± 0.04 3.4 ± 0.4 mg O2 · L-1 
a  Each pH and dissolved oxygen measurement was taken from two arbitrarily selected 
beakers per incubator. 
 

Survival was significantly impacted by temperature for both species (Figure 1). 

Fine-ridged elimia experienced 95% mortality at 35°C (38 snails out of 40), as compared 

with 0% mortality at 20°C (p=0.001±0.001). P-values for (approximate) exact logistic 

regression are reported with Monte Carlo standard error values (UCLA 2018). While 9% 

of the snails exposed to 30°C (2 of 22 snails) died during the study, the difference in 

mortality between this group and the control group was not significant (p=0.105±0.005). 

A very similar pattern was seen in Shawnee rocksnails, but at lower temperatures. The 
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control group experienced 8.8% mortality (3 snails out of 34), which was not 

significantly different from the 8.0% mortality of the 27°C group (2 snails out of 25; 

p=1.0±0.0), but which was significantly lower than the 72.7% mortality of the 30°C 

group (8 snails out of 11; p=0.001±0.001). 

 

Figure 1. Proportion of snails that died during the 10-day exposure period to various 

temperatures. Different letters represent significant differences in proportions. 

 

There were significant differences in failure to right across the temperatures for 

each species (Figure 2). For fine-ridged elimia, only 1 snail out of 40, or 2.5%, of control 

snails failed to right themselves in the post-exposure test, compared to 30% (6 snails out 

of 20 that survived to the post-exposure test) in the 30°C group (p=0.002, χ2=9.44, df=1). 

Failure to right for the Shawnee rocksnail control group was higher at 19.4% (6 snails out 

of 31), but there was still a significant increase in failure to right for snails exposed to 

elevated temperatures. Of the 27°C group, 11 snails out of 23, or 47.8%, failed to right 

(p=0.026, χ2=4.97, df=1). 
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Figure 2. Proportion of snails that failed to right themselves within 60 minutes for fine-

ridged elimia (Elimia semicarinata) and 90 minutes for Shawnee rocksnails (Lithasia 

obovata) after 10-day exposure to different temperatures. Different letters represent 

significant differences in proportions. The uppermost temperatures tested (35°C for fine-

ridged elimia, 30°C for Shawnee rocksnails) are not included because too few snails 

survived to the post-exposure test to be included. 

 

 Neither species displayed a significant effect of temperature on the change in 

righting time (fine-ridged elimia: p=0.353, n= 39 and 14 for 20°C and 30°C respectively; 

Shawnee rocksnail: p=0.382, n= 25 and 12 for 20°C and 27°C respectively; Figure 3). 

Average righting times from pre and post-exposure tests are provided in Table 2. Neither 

species showed a significant relationship between shell length and change in righting 

time or gross snail weight and change in righting time. For Shawnee rocksnails, change in 

righting time did not differ significantly between the two 27°C experimental rounds. 
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Figure 3. Average change in righting time (RT) for snails chronically exposed to 

different temperatures. Error bars represent standard error. The uppermost temperatures 

tested (35°C for fine-ridged elimia (Elimia semicarinata), 30°C for Shawnee rocksnails 

(Lithasia obovata)) are not included because too few snails survived to the post-exposure 

test to be included. 

 

Table 2. Average righting time (RT) for temperature treatment groups of snails in pre-

exposure tests and post-exposure tests (following 10-day exposure to assigned 

temperatures). 

fine-ridged elimia (Elimia semicarinata) 
 

Temperature Treatment 
Pre-exposure Test 

Avg RT (±SE) 
Post-exposure Test 

Avg RT (±SE) 
20°C 5.06 ± 0.56 min 6.07 ± 0.84 min 

30°C 4.62 ± 0.61 min 6.80 ± 1.60 min 

 
Shawnee rocksnail (Lithasia obovata) 

 
Temperature Treatment 

Pre-exposure Test 
Avg RT (±SE) 

Post-exposure Test 
Avg RT (±SE) 

20°C 11.91 ± 1.68 min 17.58 ± 2.74 min 

27°C 7.99 ± 2.05 min 16.39 ± 5.84 min 
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Discussion 

This study provides evidence that two species of freshwater snails are sensitive to 

elevated temperatures not far above those currently experienced by natural populations in 

summer. At the highest temperatures tested, survival was significantly reduced for both 

species (see Figure 1). Within ten days of exposure to constant 35°C, fine-ridged elimia 

experienced 95% mortality and in the same time frame at 30°C, Shawnee rocksnails 

experienced 72.7% mortality. These high mortality rates are troubling for future 

temperature increases in these species’ habitats, because the streams already reach 

maximum summer temperatures near or above these lethal temperatures. Elkhorn Creek, 

where fine-ridged elimia were collected, reached a maximum temperature of 34.3°C in 

2016 (USGS 2017a); the Rough River, where Shawnee rocksnails were collected, 

reached a maximum temperature of 28.6°C in the same year (USGS 2017b). It is 

important to keep in mind, though, that the temperatures that were lethal to these species 

(30 and 35°C) both caused much more than 50% mortality; typically, over 50% death in a 

given time period is considered lethal (Cox and Rutherford 2000). 

Information on thermal maxima for freshwater snails is relatively sparse, 

compared to marine and especially intertidal snails (McMahon 2001). The most 

comparable studies found activity cessation with chronic exposure to 33.7±3.08°C for 

Jackson lake springsnails (Pyrgulopsis robusta (=P. idahoensis), Lysne and Koetsier 

2006) and a 96 hr LT50 of 31±0.6°C at constant temperature for New Zealand mud snails 

(Potamopyrgus antipodarum, Cox and Rutherford 2000), both gill-breathing snails like 

the species in this study. A widely used generalization of gill-breathing freshwater snail 

thermal tolerance supplies a range of 35 to 40°C as the critical limit (Aldridge 1983). 
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However, based on the results of the present study as well as the research of Cox and 

Rutherford (2000) and Lysne and Koetsier (2006), it appears that the lethal temperature 

range should be lowered, at least for chronic exposure. The lethal temperature for 

Shawnee rocksnails is definitely below 35°C, and fine-ridged elimia’s likely is as well, 

given that 35°C is actually the LT95. Research like this displays the fact that relying on 

data from a few species may underestimate the effects climate change will have on 

freshwater gastropods and how soon those effects will occur as temperatures continue to 

rise. 

While elevated temperatures did not affect righting time for either species (see 

Figure 3), they did affect the ability of both species to right successfully, with a 

significant decrease in the proportion of snails able to right themselves at 27°C for 

Shawnee rocksnails and at 30°C for fine-ridged elimia (see Figure 2). Thus, the snails 

that were able to right in each species’ elevated temperature treatments did not do so any 

more slowly than those in the control temperature of 20°C, but fewer snails in each group 

were able to right at all. Increases in failure to right at elevated temperatures have also 

been documented in sea urchins (Brothers and McClintock 2015), land snails (Gaitán-

Espitia et al. 2013), and New Zealand mudsnails (Sharbrough et al. 2017). 

While thorough research on the topic is lacking, it has often been assumed that the 

upside-down position causes gastropods to be more vulnerable to predators and to lose 

feeding opportunities (Gore 1966; Lemmnitz et al. 1989; Peck et al. 2004). If righting 

slowly has negative effects on an individual snail, it is conceivable that failing to right 

altogether would have far more negative effects, with a total loss of the ability to feed or 

avoid predators. Unless a current happens to flip the snail back over, it will remain in this 
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vulnerable state. Additionally, our findings suggest that snails with behavioral responses 

to declining water levels, such as the common river snail (Viviparus viviparus; Poznańska 

et al. 2015), will become stranded on drying sediments during water level fluctuations 

when temperatures are warm enough to reduce their ability to right themselves. This 

study assessed only one behavior, but future work should determine whether other snail 

behaviors, such as velocity or ability to attach to submerged surfaces, are impacted by 

elevated temperatures as well. Additionally, only adult snails were tested, but it is 

possible that juvenile snails experience behavioral impacts at lower temperatures than 

adults, as is true for other invertebrates (Collin and Chan 2016; Wang et al. 2017). 

In summer 2016, the average daily temperature in Elkhorn Creek was 28.1°C 

(USGS 2017a). Based on the results of this experiment, it would only take ten days of 

temperatures consistently above 30°C to cause 30% of the fine-ridged elimia population 

in Elkhorn Creek to fail to right each time they were flipped over. We predict that there 

may be less risk of imminent behavioral effects to the Shawnee rocksnail population in 

the Rough River as the daily average temperature in the Rough River was only 19.9°C in 

summer 2016 (USGS 2017b) and Shawnee rocksnails experienced a significant reduction 

in righting success at 27°C. 

The combined implications of increased failure to right and mortality at elevated 

temperatures are even more concerning in light of the relative inability of snails to 

migrate to cooler reaches of streams. Snails can only actively move upstream by 0.3 to 

1.0 km per year, and it has been suggested that freshwater snails cannot outrun climate 

warming (Kappes and Haase 2012). For fine-ridged elimia and Shawnee rocksnails, this 

study provides further evidence of this conclusion because elevated temperatures impair a 
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behavior important to migration. Snails unable to right themselves when currents or 

passing animals flip them over will be even more constrained from moving upstream to 

cooler waters. North American gill-breathing snails already have smaller geographic 

ranges than lung-breathing snails and less capacity for metabolic compensation of 

temperature increases (Alexander and Wagoner 2016). 

It is necessary to consider the possibility that the increased mortality and failure to 

right seen in this study may be partly attributable to reduced oxygen concentrations in the 

elevated temperature treatments (see Table 1). High temperatures are not directly 

responsible for all negative effects conferred to exposed animals; the associated decline 

in oxygen saturation contributes as well (Pörtner 2001). Additionally, hypoxia has been 

found to lower heat tolerance for freshwater snails (Koopman et al. 2016). However, 

dissolved oxygen is predicted to decrease in freshwaters as climate warming continues 

(Cox and Whitehead 2009; Fang and Stefan 2009; Bello et al. 2017). Regardless of 

whether the effects seen in this study were influenced by oxygen concentration in 

addition to temperature, the implications for freshwater snails are concerning. 

With the 74% imperilment rate of North American snail species at last estimate, it 

is crucial that all elements of the impacts of climate change be understood as best as 

possible (Johnson et al. 2013). While temperatures are already nearing those that will 

negatively affect the behavior and survival for Shawnee rocksnails and fine-ridged 

elimia, knowledge of the impending impacts can only aid conservation efforts. The 

continued collection of data for freshwater snail species is crucial to guide management 

actions that slow the loss of these interesting and necessary taxa. 
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CONCLUSION 

 

The findings contained in this dissertation highlight the importance of testing a 

range of species when determining toxicological and thermal tolerances. Fine-ridged 

elimia and Shawnee rocksnails only display impaired righting behavior at concentrations 

of NH3 that are well above lethal levels for other species, and they recover to normal 

righting behavior within seven days of returning to ammonia-free water. Several species 

of freshwater snails would be underprotected by limits based only on the NH3 tolerance 

of Shawnee rocksnails and fine-ridged elimia (Goudreau et al. 1993; Alonso and 

Camargo 2003). Conversely, for the species studied here, the assumption that various 

gastropods tolerate similar amounts of a toxicant provides unnecessary levels of 

protection. 

 Generalizations of gill-breathing snail thermal tolerances (Aldridge 1983) 

underestimated lethal temperatures for the species tested in this dissertation by up to 5°C. 

Both populations may suffer increased mortality sooner than would be expected (based 

on the tolerances of other snail species). Furthermore, this research suggests that they 

could face frequent failure to right in the near future, as summer temperatures already 

surpass the temperatures that significantly reduce righting success for Shawnee rocksnails 

and fine-ridged elimia (27°C and 30°C respectively).
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As climate warming continues in the coming years, water levels are predicted to 

fluctuate to a greater degree (Heino et al. 2009). Near-shore dwelling species like 

Shawnee rocksnails and fine-ridged elimia may become stranded on dry shorelines when 

water levels drop while the water is warm enough to impair the snails’ righting ability. 

These impacts are in addition to pre-existing costs of failing to right, such as increased 

predation risk and lower feeding success (Weldon and Hoffman 1979; Lemmnitz et al. 

1989; Orr et al. 2007). 

 While the snails studied here only displayed behavioral impairments at NH3 

concentrations that are not typically environmentally relevant, future research should 

continue searching for the underlying cause of these changes to righting behavior, as it 

may be useful for understanding the risks to more sensitive species. Other taxa, such as 

crayfish and fish, experience negative impacts to the gills when exposed to NH3, even for 

only 48 hours (Lang et al. 1987; Romano and Zeng 2013). If there was any damage to the 

gills of Shawnee rocksnails and fine-ridged elimia after 24-hour exposure to NH3, it was 

not apparent in rates of oxygen consumption. Thus, it is more likely that righting 

behavior is impaired by NH3 through another mechanism, at least in the first 24 hours. 

Based on these findings, freshwater gastropod conservation efforts should be 

more concerned with climate warming than ammonia pollution. However, it is imperative 

that the research does not stop here, as other species that have yet to be studied may be 

even more sensitive to elevated temperatures and NH3 than this dissertation or previous 

research would suggest. The most important conclusion to be gained from this 

dissertation does not pertain to ammonia or water temperature though; the ultimate 

conclusion is the assertion that to study freshwater snails properly is to study them 
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thoroughly. Toxicological and climate change studies must continue until sensitivities 

have been determined for representatives from as many gastropod families and genera as 

possible. 
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APPENDIX A 

 

Table 1. Sample sizes and average righting times (RT) before and after 24-hour exposure 
to unionized ammonia (NH3). 
 
fine-ridged elimia (Elimia semicarinata) 

NH3-N 
(mg L-1) 

n 
(righted1) 

n  
(righted2) 

Pre-exposure 
Avg RT (min) 

Post-exposure 
Avg RT (min) 

n 
(failed to right) 

≤0.05 144 143 4.96 4.61 1 

0.25 12 12 3.78 3.36 0 

0.26 20 20 4.85 4.70 0 

0.65 16 15 5.46 3.86 1 

0.69 18 17 3.55 4.16 1 

0.70 22 22 3.74 3.92 0 

1.09 19 18 4.68 2.71 1 

1.50 27 26 3.92 3.50 1 

1.78 22 22 5.14 6.78 0 

1.83 27 24 3.97 4.03 3 

2.21 22 22 5.98 5.62 0 

3.44 27 27 5.43 3.44 0 

3.61 28 28 4.06 3.67 0 

4.15 26 26 4.97 5.88 0 

5.03 26 25 4.23 4.15 1 

6.24 26 26 4.12 5.54 0 

9.03 27 25 4.98 7.45 2 

12.51 32 30 3.77 5.45 2 

n (righted1) = number of snails that righted themselves within 20 minutes in pre-exposure 
tests 
n (righted2) = number of snails that righted within 60 minutes in post-exposure tests 
n (failed to right) = number of snails that failed to right in post-exposure tests 
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Shawnee rocksnail (Lithasia obovata) 
NH3-N 

(mg L-1) 
n 

(righted1) 
n 

(righted2) 
Pre-exposure 
Avg RT (min) 

Post-exposure 
Avg RT (min) 

n 
(failed to right) 

≤0.05 92 75 8.19 10.17 17 

0.34 11 8 6.48 7.33 3 

0.72 12 12 9.58 5.14 0 

0.95 9 7 11.16 10.27 2 

1.04 11 8 8.29 10.84 3 

1.41 15 10 6.78 10.88 5 

1.43 10 9 8.20 12.85 1 

1.63 11 9 7.21 8.66 2 

1.64 9 9 7.64 13.82 0 

1.65 10 8 12.01 8.35 2 

2.38 15 13 6.80 17.73 2 

3.52 10 5 11.18 15.60 5 

3.91 10 7 9.55 14.55 3 

4.23 8 6 8.74 15.07 2 

4.35 8 7 8.69 18.74 1 

6.91 26 21 8.50 6.87 5 

8.99 14 10 9.82 9.54 4 

12.61 13 5 7.54 15.71 8 

n (righted1) = number of snails that righted themselves within 20 minutes in pre-exposure 
tests 
n (righted2) = number of snails that righted within 60 minutes in post-exposure tests 
n (failed to right) = number of snails that failed to right in post-exposure tests 



62 
 

APPENDIX B 

 

Figure 1. Monthly water temperatures (average, minimum, and maximum) in the Rough 

River near Falls of Rough, Kentucky, USA and Elkhorn Creek near Frankfort, Kentucky, 

USA in 2016. All data were obtained from USGS (2017a, 2017b).  
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APPENDIX C 

Chapter II of this dissertation has been published by Marine and Freshwater Behaviour 

and Physiology as follows: 

 

DeWhatley MC, Alexander JE Jr. 2018. Impacts of elevated water temperatures on 

righting behavior and survival of two freshwater caenogastropod snails. Mar 

Freshw Beahv Physiol. 51(4):251–262. 

 

Permission to include this paper in the dissertation was provided on 10/24/2018 by 

Natalie Davall (natalie.davall@tandf.com.au). The original text of the permission is as 

follows: “It will be fine to use the article as part of the dissertation. The final PDF or 

Version of Record cannot be used as this can only be published on the Taylor and Francis 

website, however, they are free to use the author accepted manuscript (the one accepted 

after peer review).” 

 

Furthermore, an excerpt from the Author Publishing Agreement (section 4, subsection 

viii) states that the author retains “the right to include the article in a thesis or dissertation 

that is not to be published commercially, provided that acknowledgement to prior 

publication in the Journal is given.” 
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