

Time Estimation for Next Request to Prevent DOS

Attack on RESTful Services

حساب الوقت للطلب التالي لمنع عملية حدوث حجب الخدمة في خدمات
RESTful الريستفول

Mona Ismail Subaih

Supervised by:

Dr. Tawfiq Barhoom

Associate Professor – Applied Computer Technology

A thesis submitted in partial fulfillment of the requirements for the degree of Master of

Information Technology

July / 2016

 زةــغ – ةــلاميــــــة الإســـــــــامعـالج

 شئون البحث العلمي والدراسات العليا

 اتـــا المعلومـــيــــولوجـــة تكنليــــــك

 اتــا المعلومـــيــــولوجـــماجستير تكن

The Islamic University–Gaza

Research and Postgraduate Affairs

Faculty of Information Technology

Master of Information Technology

I

Abstract

Systems are getting integrated faster and easier using web API, as applications and cloud API’s

nowadays are shifting to REST-based services in the detriment of SOAP-based ones. RESTful

services are a lightweight alternative to Web Services implemented using HTTP and principles of

REST. Thus there is no standard applied on RESTful, so security is not considered by default. One

of the most attack suffer by the mainstream service providers is Buffer overflow in RESTful

services, as a result from misuse or intentional attack. Client requests a resource many times that

consume processing time and a lot of money for each request and may cause Denial of services

(DOS). This is a hot topic since there is a lack of study in this field and a wide use for RESTful

services as a commercial base, so our approach focuses on how to prevent the suspicious repeated

RESTful requests.

Every RESTful request has process time and guarded with a token which we increase in live time

by next expected time for next request. To protect the service provider from suspicious repeated

RESTful requests (which causes losing money & may cause buffer overflow DOS attack) we must

prevent repeated request for same resources from the same client before the process time of the

previous request is done and to ensure that the new RESTful request has a valid token.

We propose an approach to estimate RESTful process request time from a set of previous requests

using large number of experiments to find general equation for estimate current computing time

and finding the next expected time for next RESTful request using our equation.

We compute guard time depending on the next request time which protect service provider from

repeated request that causes buffer overflow DOS attack. The results were sufficient as the

accuracy ranges between 93% and 98% with average 97.31 %.

Keywords: DOS, RESTful, Buffer overflow, JSON, Tokens, Expected time

II

 الملخص

بدلا من (RESTful Services) حةيتتحول في الوقت الحاضر للاعتماد على الخدمات المر أصبحت خدمات الويب والواجهات السحابية

كاملة يتم الحصول على نظم مت(حيث راستخدام برتوكول سواب)أحد البروتوكولات المستخدمة في عملية نقل البيانات بين شبكات الكمبيوت

تم المربحة هي البديل الخفيف لخدمات الويب وي الانترنت. ان الخدماتباستخدام واجهة برمجة التطبيقات على شبكة وأسهل أسرعبشكل

ودة ع أي معايير موجوبالتالي فإن هذه الخدمات لا تتب ومبادئ الخدمة المريحة (HTTP) تطبيقها باستخدام بروتوكول نقل النص الفائق

 لخدمات الويب مما يؤدي الى وجود الثغرات الأمنية في هذه الخدمات.

الهجمات التي يتعرض لها مزودو خدمات الويب المريحة نتيجة سوء الاستخدام وأقدم أبرز أحدهي (Buffer Overflow) ثغرات الفيض

لموارد التي تقوم على شغل اوقت في المعالجة في كل مرة يستهلك الطلبات عدة مر خدمة الويبمتعمد. يطلب العميل الختراق الااو نتيجة

 بسبب نقص الدراسات في هذا ان هذا الموضوع ذو أهمية طلب.بالإضافة الى التكلفة المادية لكل (DOS)مما يؤدي الى حجب الخدمة

المريحة نا تركز على كيفية منع عملية تكرار طلبات الخدماتالمجال والاستخدام الواسع للخدمات المريحة كقاعدة تجارية. وبالتالي دراست

 .المشبوهة

يكون له وقت معالجة ويتم حمايته من خلال رمز يتم زيادة زمن البقاء له عبر الوقت (RESTfulالريستفول)كل عملية طلب لخدمة

يجب ي تتسبب في الخسائر المادية وربما حجب الخدمةالمتكررة التو طلبات المشبوهة المزود الخدمة من لحمايةالمتوقع للطلب الثاني.

مريحة ولضمان ان الطلب الجديد للخدمة ال السابق،فس العميل قبل ان ينتهي وقت المعالجة للطلب من نمنع الطلب المتكرر لنفس الموارد

 .صالحله رمز

ة من الطلبات السابقة مستخدمين عدد كبير من نقوم هنا باقتراح دراسة لحساب وقت معالجة طلب الخدمة المريحة من خلال مجموع

يجاد الوقت المتوقع للطلب التالي باستخدام لإيجادالتجارب لك بحساب ونقوم بعد ذ المعادلة.معادلة عامة لحساب الوقت الحالي للعملية وا

 .مايةالحوقت الحماية والذي بدوره يقوم بحماية المزود من الطلبات المتكررة التي تسبب اختراق حجب

حجم % وهي نتيجة مقبولة تزداد كلما زاد 97.31% مع متوسط 98% الى 93عند تقييم النتائج وجدنا أن نسبة دقة المعادلة تتراوح بين

 المعلومات المرسلة من خدمة الويب.

 .الوقت المتوقع رموز، الفيض،ثغرات مريحة،خدمات الحماية،حجب :المفتاحيةالكلمات

III

Dedication

To my peacemaker and teacher prophet Mohammed.

To my loving parents for give me support and push always.

To my beloved husband for being responsible and supportive.

To my daughters Eman and Ameer whose missing care while the study.

To my brothers and sister as they all kept me going.

To all my friends, colleagues for their endless support.

IV

Acknowledgement

The completion of this thesis could not have been possible without Allah. Thanks to Allah first

and foremost who bestowed me the awareness, perseverance and mercy.

I would like to express my sincere appreciation to my supervisor Dr. Tawfiq Barhoom for his

steady guidance, help and relentless support.

In addition, I would like to extend my thanks to the academic staff of the Faculty of Information

Technology who helped me during my master’s study and taught me different courses.

V

Table of Content

Abstract .. I

Dedication ... III

Acknowledgement .. IV

Table of Content .. V

List of Tables ... VIII

List of Figures ... IX

List of abbreviations ... XI

 Introduction .. 1

1.1 Problem Statement ... 3

1.2 Objectives ... 3

1.2.1 Main Objective ... 3

1.2.2 Specific Objectives ... 3

1.3 Importance of the research ... 4

1.4 Scope and Limitation ... 4

1.5 Research Methodology ... 5

1.6 Thesis Format ... 6

 Theoretical Background... 7

2.1 Cloud Computing ... 7

2.1.1 Cloud Service Model .. 8

2.2 DOS attack in APIs .. 10

2.3 Windows Azure Platform ... 10

2.3.1 Azure Websites .. 11

2.4 Web Services Overview ... 15

2.4.1 Web Services Definition .. 15

2.4.2 Web Services Model .. 15

2.5 REST Overview ... 16

2.5.1 REST Definition ... 16

2.5.2 Comparison between SOAP and REST ... 18

2.5.3 RESTful Services Usage Statistics ... 19

2.6 Mashape Cloud API ... 20

VI

2.6.1 Create an application .. 22

2.7 Web Service Quality of Service (QoS) .. 23

2.8 Overview of Response Time for Web Service ... 25

2.9 Summary .. 27

 Related Works... 28

3.1 Approaches to Prevent DOS Attack in Web Services .. 28

3.2 Approaches to Prevent Attack in Restful Web Service.. 29

3.3 Quality of web services (QoS) to know suitable response time 30

3.4 Summary .. 31

 Proposed Approach .. 32

4.2.1 Design of Proposed Approach.. 32

4.1 Preparation ... 35

4.1.1 Collect and prepare Data .. 37

4.1.2 Environment preparation .. 38

4.2 Processing Requests and Results ... 39

4.2.2 Send requests to RESTful services... 40

4.2.3 Process HAR files to get Excels ... 41

4.2.4 Evaluate consuming time for different size .. 41

4.3 Summary .. 42

 Implementation ... 43

5.1 Collect and prepare Data .. 43

5.1.1 DumDataCol implementation .. 44

5.1.2 DataJsonTra implantation .. 46

5.1.3 GenerateDiffSize implementation .. 47

5.2 Prepare environment .. 48

5.2.1 RESTful services implementation .. 48

5.2.2 Windows Azure environment... 50

5.3 Summary .. 51

 Experiments and Results.. 52

VII

6.1 Experiment Part I ... 52

6.1.1 Experiment for 16 kb data size ... 52

6.1.2 Experiment for 32 kb data size ... 55

6.1.3 Experiment for 64 kb data size ... 55

6.1.4 Experiment for 128 kb data size ... 56

6.1.5 Experiment for 256 kb data size ... 57

6.1.6 Experiment for 512 kb data size ... 58

6.1.7 Experiment for 1 Mb data size ... 59

6.1.8 Experiment for 2 Mb data size ... 60

6.1.9 Experiment for 3 Mb data size ... 61

6.1.10 Experiment for 4 Mb data size ... 62

6.1.11 Experiment for 5 Mb data size ... 63

6.1.12 Results & Justification for Experiment part I... 64

6.2 Experiment Part II .. 66

6.2.1 Evaluate equation using 512 kb ... 66

6.2.2 Evaluate equation using 2 M .. 67

6.2.3 Evaluate equation using 3 M .. 68

6.2.4 Evaluate equation using 4 M .. 69

6.2.5 Evaluate equation using 5 M .. 71

6.2.6 Results & Justification for Experiment part II ... 73

6.3 Summary and Discussion ... 73

 Conclusion and Future Work .. 76

The Reference List .. 77

VIII

List of Tables

Table (2.1) Comparison of SOAP and REST based Web Services (Pautasso et al., 2014) 18

Table (4.1) Terminology in developed approach ... 32

Table (4.2) Pseudo code for SendClientReq .. 39

Table (5.1) Shows the pseudo code of DumDataCol ... 45

Table (5.2) Shows the pseudo code for DataJsonTra script. .. 46

Table (5.3) Shows the pseudo code for GenerateDiffSize script ... 47

Table (5.4) Shows the .haccess code .. 49

Table (5.5) Pseudo code for GET RESTful service ... 50

Table (6.1) Shows the result of RESTful requests with 16 kb ... 54

Table (6.2) Results of evaluate equation using 2 M ... 67

Table (6.3) Results of evaluate equation using 3 M ... 68

Table (6.4) Results of evaluate equation using 4 M ... 69

Table (6.5) Results of evaluate equation using 5 M ... 71

Table (6.6) Summarization of most related work .. 74

IX

List of Figures

Figure (2.1) Cloud Computing Concepts of work ... 8

Figure (2.2) Services Provided by Cloud Computing .. 9

Figure (2.4) windows Azure portal .. 12

Figure (2.5) create a new website .. 13

Figure (2.6) create a new size using FileZilla. ... 14

Figure (2.7) upload our websites using FileZilla. .. 14

Figure(2.8) Web Services roles, operations and artifacts (Kreger, 2001).................................... 16

Figure (2.9) REST vs. SOAP Chart ... 20

Figure (2.10) Mashape's Dashboard .. 21

Figure (2.11) Mashape's new application .. 22

Figure (2.12) E-commerce application (Mappic, 2012) .. 25

Figure (2.13) PayPal response time (Mappic, 2012) ... 26

Figure (4.1) An approach of prevent DOS attack on RESTful services 33

Figure (4.2) Enhance Algorithm with our proposed approach .. 34

Figure (4.3) Phases of proposed method .. 35

Figure (4.4) Sample of collect different data from Mashape apps ... 36

Figure (4.5) Preparing Data and environment ... 37

Figure (4.7) Process and evaluate results ... 40

Figure (4.8) NET window in FireBug tool .. 41

Figure (5.1) Collect and prepare Data .. 43

Figure (5.2) Design of script to collect dummy data from API's ... 44

Figure (5.3) Mashape Application Key.. 45

Figure (5.4) Design of script to clean and transfer dummy data to JSON 46

Figure (5.5) Design of script to generate different size of JSON files ... 47

Figure (5.6) Create web app on windows azure ... 50

Figure (5.7) Transfer RESTful service into web app on Azure ... 51

Figure (6.1) Client Request for Azure Service of 8 kb data size ... 53

Figure (6.2) HAR file for RESTful request with 16 kb data size .. 53

Figure (6.3) Receive time of RESTful requests for 16 kb ... 54

Figure (6.4) Response time of RESTful requests for 16 Kb .. 54

file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190700
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190701
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190703
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190704
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190705
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190706
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190707
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190709
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190710
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190711
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190712
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190713
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190714
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190715
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190716
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190718
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190719
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190720
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190721
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190722
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190723
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190724
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190725
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190726
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190727
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190729
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190730

X

Figure (6.5) Receive time of RESTful requests for 32 kb ... 55

Figure (6.6) Response time of RESTful requests for 32 kb ... 55

Figure (6.7) Receive time of RESTful requests for 64 kb ... 56

Figure (6.8) Response time of RESTful requests for 64 kb ... 56

Figure (6.9) Receive time of RESTful requests for 128 kb ... 57

Figure (6.10) Response time of RESTful requests for 128 kb ... 57

Figure (6.11) Receive time of RESTful requests for 256 kb ... 58

Figure (6.12) Response time of RESTful requests for 256 kb ... 58

Figure (6.13) Receive time of RESTful requests for 512kb .. 59

Figure (6.14) Response time of RESTful requests for 512 kb ... 59

Figure (6.15) Receive time of RESTful requests for 1 Mb .. 60

Figure (6.16) Response time of RESTful requests for 1 Mb ... 60

Figure (6.17) Response time of RESTful requests for 2 Mb ... 61

Figure (6.18) Receive time of RESTful requests for 2 Mb .. 61

Figure (6.19) Response time of RESTful requests for 3 Mb ... 62

Figure (6.20) Receive time of RESTful requests for 3 Mb .. 62

Figure (6.21) Response time of RESTful requests for 4 Mb ... 63

Figure (6.22) Receive time of RESTful requests for 4 Mb .. 63

Figure (6.23) Response time of RESTful requests for 5 Mb ... 64

Figure (6.24) Receive time of RESTful requests for 5 Mb .. 64

Figure (6.25) Average Response time for different size of response data 64

Figure (6.26) Average Receive time for different size of response data 65

Figure (6.27) Output data for RESTful request for 512 Kb ... 66

file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190731
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190732
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190733
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190734
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190735
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190736
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190737
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190738
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190739
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190740
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190741
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190742
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190743
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190744
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190745
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190746
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190747
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190748
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190749
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190750
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190751
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190752
file:///C:/Users/Rozn/Desktop/Time%20Estimation%20for%20Next%20Request%20to%20Prevent%20DOS%20Attack%20on%20RESTful%20Services.docx%23_Toc459190753

XI

List of abbreviations

API Application Programming Interface

CRU Create, Read, Update, Delete

DOS Denial of services

GAE Google App Engine

HAR HTTP Archive

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

MITM Man-in-the-Middle

QOS Quality of service

REST Representational State Transfer

SOAP Simple Object Access protocol

TTR Time-To-Repair

URI Uniform Resource Identifier

WS-Security Web Services Security

XSS

Cross-Site Scripting

Chapter 1

Introduction

1

Introduction

Nowadays, the world is interested in the field of cloud computing, most systems are getting

inter-connected faster, as applications and cloud API’s make deep use of RESTful services to

expose resources to consumers.

REST or Representational State Transfer architecture is designed for web services. Thus

resource implements a standard uniform interface (typically HTTP interface), resources have

name and addresses (URIs), While RESTful is supported by the simple CRUD set of operations

(Create, Read, Update, Delete). The client receives HTTP status codes as feedback result.

Therefore JavaScript Object Notation (JSON) is used for exchanging data, JSON is an open

standard format that uses human-readable text to transmit data Objects consisting of attribute–

value pairs.

RESTful Web Services are stateless. This means that every request is only dependent on itself,

one simply has to examine the request to gather all the details concerning it. Stateless also means

that the service is more reliable, because there are less steps where something can go wrong. In

distributed services, the lack of state means that there is no overhead to keep the different servers

consistent (Backere et al., 2014)

There is no standard applied on RESTful, so security is not considered by default. Many types

of attacks form security breaches in RESTful service include data confidentiality and integrity

as the attacker try to alter the communication (messages) between the client and the provider, or

have unauthorized access to resources. In the interim there are many considerable attacks in

RESTful services, as it usually public and have wide range access. The attacks are not totally

new. However, they are the known attack in the internet such as Man-in-the-Middle (MITM),

Replay attack, Spoofing, Message altering, Cross-Site Scripting XSS.

Denial of service (DOS) is an attempt to make a machine or network resource unavailable to its

intended users. A (DOS) attack generally consists of efforts to temporarily or indefinitely

interrupt or suspend services of a host connected to the Internet, and it is one of the most security

threats in RESTful services.

http://en.wikipedia.org/wiki/Open_standard
http://en.wikipedia.org/wiki/Open_standard
http://en.wikipedia.org/wiki/Human-readable
http://en.wikipedia.org/wiki/Attribute%E2%80%93value_pair
http://en.wikipedia.org/wiki/Attribute%E2%80%93value_pair

2

As of 2014, the frequency of recognized (DOS) attacks had reached an average rate of 28 per

hour(Preimesberger, 2014) . The main problem here is how to prevent DOS Buffer overflow

attack which is created by repeating a valid request multi-time or slow connection attack which

causes both consuming resources and long processing time and may end of DOS.

An access token is a string representing an access authorization issued to the client, rather than

using the resource owner's credentials directly. Tokens are issued to clients by an authorization

server with the approval of the resource owner. The client uses the access token to access the

protected resources hosted by the resource server (Jones, 2012) . The common effective security

that all researches agree is security tokens. The token has a limited time albeit it ended the token

are not valid anymore and the client need to request new token from provider. The mechanism

to extend the time is the computing activity as each time the resource are requested there is

constant increment to the computed time. Our approach handle client request tokens refresh time

according to expected time for next RESTful request.

Elkurd & Barhoom (2015) propose an algorithm to prevent buffer overflow DOS attack in

RESTful services by comparing the difference between current time for RESTful request and

the time for previous RESTful request with the current process computing time, then increase

the token live time for request depending on the expected time for next request.

Unfortunately, this solution assumes the current process computing time for RESTful request

and expected time for next request as a constant. This will represent two problems, the first one:

is to assume the process computing time as a constant because the difference between current

request time and previous request time might take more than a constant or less than it, if the

services takes less than assumed constant the approach will reject the next request which causes

a noise for the client and might lose him. On the other side if the difference time takes more than

a constant this will give a chance of suspicious repeated requests which lead to overload on

service resources and additional cost on service provider. The second problem assumes the

expected time for next RESTful request as a constant because our approach depend on this time

to increase the token life time which considered as a security breach when the token time

increases more than real need.

Our goal is to prevent DOS attack on RESTful services by finding the current process computing

time using a number of experiments and analyze the results to get equation then estimate the

3

expected time for next RESTful request in order to give the token a new defined time according

to the requested resource and to prevent suspicious repeating requests for each client.

1.1 Problem Statement

RESTful services are subject to greater and greater levels and types of attacks, as hackers exploit

vulnerabilities within software, since security is not considered by default and there is no

standard can be applied. Denial of the service (DOS) is one of the most security threats in

RESTful services, whether it is created intentionally by attacker or by misuse.

The main problem is the assumption of setting the request process computing time with the

expected time for next RESTful request as constants, this will give a chance to repeat malicious

request on RESTful services which will lead to buffer overflow DOS.

1.2 Objectives

1.2.1 Main Objective

To develop an approach for estimating the process computing time (service time) and the next

request time to prevent DOS buffer overflow attack on RESTful Services.

1.2.2 Specific Objectives

The specific objectives extracted from the main objective which are:

1. To collect data and prepare as JSON format to retrieve from RESTful services.

2. To design and Implement RESTful services, and setup on Windows Azure as Cloud

environment.

3. To design client script to send large number of requests for RESTful services and

capture the time of each request.

4. To Analyze the current computing time for RESTful requests which retrieve different

size of data, then get the equation for finding the next request time equation

5. Implement and enhance the algorithm that also includes equation for finding the next

request time for RESTful Services.

4

6. Evaluate the proposed approach by comparing the response time of our experiments

with the real response time after applying the equation on our approach.

1.3 Importance of the research

1. Recently, RESTful Services is a hot topic and there is no much researches on it. In

general, the web services are based on security standard such as WS-Security but

RESTful Services is commercially widespread and that’s why there is a security breach

which is not taken into account and need more research.

2. Denial of Service (DOS) is considered as one of the most security threats in RESTful

services, attackers may create it deliberately, or it can be created by misuse.

3. From the practical side, this topic is important as the current work in my company is

based on software production as a service and most of other web services companies

face the same issue in how to protect services or how to reduce the consumption of

resources to the service which also causes money loss.

1.4 Scope and Limitation

The work is applied with some limitations and assumptions such as:

 The RESTful service may be public and clients are unknown, or private. The research

will focus on the private customers of services but not for public services.

 Our experiments are limited to windows Azure environment.

 The results will be evaluated manually, as there is a lack of tools supporting such

evaluation.

 The main concern in this research is to detect the current process computing time and

expected time for next RESTful request to help in preventing Denial of service for

5

RESTful services. The research will focus on the accuracy of detecting times while

other issues such as accuracy of preventing attack 100 % is not considered.

1.5 Research Methodology

To achieve our objectives will follow a research methodology that consists of the following

stages:

 Research and survey: this include reviewing the recent literature closely related to the

thesis problem. After analyzing the existing methods, identifying the drawbacks of

existing approaches.

 Building the Approach: the structure of our proposed approach include the following

steps:

1. Gathering dummy data from Cloud API to let the Restful service return it back.

2. Prepare the collected data set into proper format and different sizes.

3. Design RESTful services and setup on windows Azure after preparing it.

4. Develop script using JavaScript to request (GET, POST) RESTful service for

several times, then store the request with time process for every request and size of

load data.

5. Analyze times and get the equation for next request time

6. Design our approach to prevent DOS attack on RESTful services by using the

equation to estimate next request time and apply it to our RESTful service to

evaluate our results.

 Implementation: we implement the preparation phase using PHP and JavaScript to

collect the data and transfer it for JSON format with different sizes, and we implement

the client side script using JavaScript to send several RESTful requests, also we

6

implement RESTful services using PHP language. Finally, we implement our approach

to prevent DOS attack on RESTful services.

 Evaluation: To evaluate our approach we will apply several experiments using

repeated request application to measure the response time and performance with

accuracy for RESTful services.

 Results and discussions: in this stage we will analyze the obtained results and justify

our approach.

1.6 Thesis Format

The thesis is organized as follows: Chapter 2 covers the theoretical and technical background

related to web services, cloud computing and all tools used in our thesis, Chapter 3 presents

related work in preventing DOS attacks for web services and QOS of web services, Chapter 4

presents the proposed approach for estimating the next request time of RESTful request, Chapter

5 describes the implementation, Chapter 6 describes the experiments and results. Finally,

Chapter 7 concludes the thesis and suggests some future work.

Chapter 2

Theoretical Background

7

Theoretical Background

Nowadays, the world is fully interested in building software as services since the WEB services

have been raising in recent years and are by now one of the most popular techniques for building

distributed systems. Most systems are getting inside-connected faster, as applications and cloud

API’s make deeply use of web services to expose resources to consumers.

2.1 Cloud Computing

The principal idea of cloud computing was proclaimed route in 1960 by Professor John

McCarthy, as; “If computers of the kind I have advocated become the computers of the future,

then computing may someday be organized as a public utility just as the telephone system is a

public utility. The computer utility could become the basis of a new and important industry”

(Sajid, 2013).

Cloud Computing is the utilization of Internet-based technologies for the provision of services

(Marinos & Briscoe, 2009), beginning from the cloud as a metaphor for the Internet, relying on

depictions in computer network diagrams to abstract the complex infrastructure it hides

(Marinos & Briscoe, 2009). It offers the illusion of unlimited computing resources accessible

on demand, with the disposal of forthright duty from users, and payment for the use of

computing resources on a short-term basis as needed (Armbrust et al., 2009). In addition , it

does not require the node providing a service to be present once its service is deployed (Armbrust

et al., 2009). Cloud Computing theoretically consolidates Software-as-a-Service (SaaS) (Road

& Kingdom, 2008). Web 2.0 and other technologies with reliance on the Internet, providing

common business applications online through web browsers to satisfy the computing needs of

users, while the software and data are stored on the servers. Figure 1.1 demonstrates the typical

configuration of Cloud Computing at run-time when customers visit an application served by

the central Cloud, which is housed in one or more data centers (Buyya, Yeo, & Venugopal,

2008). Green symbolizes asset utilization, and yellow resource provision. Red color is assigned

to the role of coordinator for resource provision, which is centrally controlled, even if the central

8

node is implemented as a distributed grid, which is the usual incarnation of a data center, control

is still centralized. Suppliers, who are the controllers, are typically organizations with other web

activities that require big computing resources, and in their endeavors to scale their essential

business have gained impressive skill and hardware.

For them, Cloud Computing is a way to resell these as a new product while expanding into a

new market. Consumers include everyday users, Small and Medium Sized Enterprises (SMEs),

and ambitious start-ups whose innovation potentially threatens the incumbent providers.

Cloud computing can help to improve business performance by making a contribution to control

the cost of delivering IT resources to any organization. It minimizes the overhead of buying,

managing and controlling IT resources. The financial model applied in cloud computing is “Pay-

per-Use” so the consumer only pays for his needs.

2.1.1 Cloud Service Model

The principle of cloud computing is to deliver different computing services on Internet which is

available as subscription-based services in a pay-per-use model to consumers. These services

are essentially categorized under three classes as hierarchy as can be seen in Figure 2.2.

Figure (2.1) Cloud Computing Concepts of work

9

1. Software as a Service (SaaS):

In this highest level, different types of applications running on cloud environment are provided

to the customer. The user can access those applications from various devices through a thin

client interface such as a web browser (Sarna, 2015). For example, Gmail is a SaaS where

Google is the provider and we are consumers (Nandgaonkar & Raut, 2014).

2. Platform as a service (PaaS):

This intermediate level provide a platform for developers to deploy there applications which are

built using programming languages and tools supported by the provider (Sarna, 2015) such as:

Google App Engine (GAE), Microsoft Azure, IBM Smart Cloud, Amazon EC2, and

salesforce.com (Nandgaonkar & Raut, 2014).

3. Infrastructure as a Service (IaaS):

The last level provides a fundamental computing resources such as processors, storage, and

resources (Sarna, 2015). For example: Storage services provided by AmazonS3, and Amazon

EBS; and Computation services provided by AmazonEC2, and Layered tech (Nandgaonkar &

Raut, 2014).

Figure (2.2) Services Provided by Cloud Computing

10

2.2 DOS attack in APIs

A denial-of-service (DoS) or distributed denial-of-service (DDoS) attack is an attempt to make

a machine or network resource unavailable to its intended users, it consists of efforts to

temporarily or indefinitely interrupt or suspend services of a host connected to the Internet.

DoS attack, uses many devices and multiple Internet connections, often distributed globally into

what is referred to as a botnet.

A DoS attack is, therefore, much harder to deflect, simply because there is no single attacker to

defend from, as the targeted resource will be flooded with requests from many hundreds and

thousands of multiple sources.

As for Web API’s attacks there is many attacks can be classified as Dos Attack such as

 Buffer overflows in the application functions.

 Malformed data to raise unexpected exceptions.

 Exploited race conditions in multi-threaded systems.

 Heavy-duty SQL queries via web forms and "spamming" them with requests, e.g.,

inserting % characters within search query fields.

 SQL Injection attacks executing recursive CPU-intensive queries.

 The end users' web browsers to overload the application with parallel requests via

persistent / reflected Cross-Site Scripting attacks.

 Overly-complex regular expressions within search queries.

 Excessively large files uploaded to the server.

In our thesis we are going to investigate in the effective security manners to reduce DoS attacks

in RESTful services.

2.3 Windows Azure Platform

"Windows Azure can be anything you want it to be" (Tulloch, 2013) . As a cloud platform from

Microsoft that provides a wide range of different services, Windows Azure lets you build,

11

deploy, and manage solutions for almost any purpose you can imagine. In other words, Windows

Azure is a world of unlimited possibilities. Whether you’re a large enterprise spanning several

continents that needs to run server workloads, or a small business that wants a website that has

a global presence, Windows Azure can provide a platform for building applications that can

leverage the cloud to meet the needs of your business. (Tulloch, 2013).

2.3.1 Azure Websites

Azure Websites is defined as managed cloud service that permits you to deploy a web

application and make it accessible to your clients on the Internet in a very short time. You don’t

directly support the VMs on which your website runs; they are managed for you (Collier &

Shahan, 2015).

Supported languages include .NET, Java, PHP, Node.js, and Python. In addition to creating your

own website, there are several web applications available to use as a starting point, such as

WordPress, Umbraco, Joomla, and Drupal (Collier & Shahan, 2015).

2.3.1.1 Creating a new website (Collier & Shahan, 2015)

 Start by logging into the Microsoft Azure Preview Portal (portal.Azure.com). At this

point, you need an Azure account. If you don’t have one, you can sign up for a free trial

at Azure.microsoft.com.

 Using the portal: after logging into the portal, click the big +NEW icon in the lower-

left corner of the screen and select Website, as displayed in Figure 2.4.

12

You should now see something similar to Figure 2.4, with the fields ready to be filled in.

 The URL must be unique among all of the entries used in Azure Websites. If accepted, there

will be a green square with a smiley face in it. Note that whatever prefix is provided here

will be appended with. Azurewebsites.net to create the URL for the website.

 SUBSCRIPTION shows the name of the subscription assigned to the Microsoft account with

which you logged in. If you administer multiple accounts with the same Microsoft account,

you can click SUBSCRIPTION and select the subscription you want to use. LOCATION

is the region of the datacenter where the website will be hosted. Select the LOCATION

closest to you. Accept the default for RESOURCE GROUP.

Figure (2.3) windows Azure portal

13

 WEB HOSTING PLAN defines the allocation of resources for the website, such as

number of cores and memory, amount of local storage, and the features available, such

as auto scaling and backups.

 After creating the website, we can transfer our websites files using FileZilla program

for FTP transfer

2.3.1.2 Transfer website Using FileZilla (Chepaitis, 2003)

1. In the File menu, choose Site Manager

2. In the next window, click on New Site (bottom left) as shown in figure 2.6

Figure (2.4) create a new website

14

3. In order to make a connection to the FTP server, click on the arrow on the right side of

the icon the toolbar, and choose a connection name.

4. After connecting to the FTP server, select in the Local Site, one or more files (by

pressing the Ctrl key) that you wish to transfer, then drag and drop the file(s) into the

Remote Site as shown in Figure 2.6.

Figure (2.5) create a new size using FileZilla.

Figure (2.6) upload our websites using FileZilla.

15

2.4 Web Services Overview

2.4.1 Web Services Definition

Web Services is defined as an interface that describes a collection of operations that are network

accessible through standardized XML messaging (Services & Architecture, 2001). Each service

has its own description that presented using Extensible Markup Language (XML) notation and

known as Service Description. This description covers all the details necessary to interact with

the service, including message formats (that detail the operations), transport protocols and

location. The communication with Web Service is done through its interface, which conceals

the implementation details of the service; this will allow it to be used autonomously of the

hardware or software platform on which it is implemented and also independently of the

programming language in which it is written. This gives the Web Services-based applications

the advantages to be loosely coupled, component-oriented, cross-technology implementations.

Web Services fulfill a specific task or a set of tasks. They can be used alone or with other Web

Services to do a complex aggregation or a business exchange (Services & Architecture, 2001) .

2.4.2 Web Services Model

Web service interactions based on three main roles: service provider, service registry and service

requestor communicate between each other by three main operations publish, find and bind

operations as presented in Figure 2.8. Together, these roles and operations act upon the Web

Services artifacts: The Web service software module and its description. In a typical scenario, a

service provider hosts a network-accessible software module (an implementation of a Web

service). The service provider defines a service description for the Web service and publishes it

to a service requestor or service registry. The service requestor uses a find operation to retrieve

the service description locally or from the service registry and uses the service description to

bind with the service provider and invoke or interact with the Web service implementation.

Service provider and service requestor roles are logical constructs and a service can exhibit

characteristics of both (Services & Architecture, 2001) .

16

2.5 REST Overview

2.5.1 REST Definition

REST (REpresentational State Transfer) is a simple stateless architecture that generally runs

over HTTP (Richardson & Ruby, 2008). REST defines a set of architectural principles by which

you can design Web services that focus on a system's resources, including how resource states

are addressed and transferred over HTTP by a wide range of clients written in different

languages. If measured by the number of Web services that use it, REST has emerged in the last

few years alone as a predominant Web service design model. In fact, REST has had such a large

impact on the Web that it has mostly displaced SOAP- and WSDL-based interface design

because it's a considerably simpler style to use (Rodriguez, 2015).

REST asks developers to use HTTP methods explicitly and in a way that's consistent with the

protocol definition. This basic REST design principle establishes a one-to-one mapping between

creates, read, update, and delete (CRUD) operations and HTTP methods. According to this

mapping (Rodriguez, 2015) :

 To create a resource on the server, use POST.

 To retrieve a resource, use GET.

 To change the state of a resource or to update it, use PUT.

Find

WSDL, UDDI

Service

Registry

Service

Requestor

Service

Provider

Service Description

Service Description

Service

Publish

WSDL, UDDI

Bind

Figure(2.7) Web Services roles, operations and artifacts (Services & Architecture,

2001)

17

 To remove or delete a resource, use DELETE.

The formal REST constraints are:

 Client–server

In fact, a uniform interface creates a separation area between clients and servers as clients are

not concerned with data storage and it remains internal to each server. On the other hand, servers

are not concerned with user interface, so that servers can be more scalable.

 Stateless

The client–server communication is further compelled by no client context being stored on the

server between requests. Each request from any client contains all the information required to

service the request, and session state is held in the client. The session state can be transferred by

the server to another service such as a database to keep a persistent state for a period and allow

authentication. The client starts sending requests when it is ready to make the transition to a new

state. While one or more requests are outstanding, the client is considered to be in transition.

The representation of each application state contains links that may be used the next time the

client chooses to initiate a new state-transition (Fielding, 2015).

 Cacheable

As on the World Wide Web, clients can cache (reserve) responses. Responses should along these

lines, implicitly or explicitly, define themselves as cacheable, or not, to prevent clients from

reusing stale or unseemly information in response to further demands. Well-managed caching

partially or completely eliminates some client–server interactions, further improving scalability

and performance (Pautasso, Alarcon, & Wilde, 2014).

 Uniform interface

The uniform interface constraint is major to the design of any REST service. The uniform

interface simplifies and decouples the architecture, which enables each part to evolve

independently. The four constraints for this uniform interface are (Pautasso et al., 2014) :

 Identification of resources

18

 Manipulation of resources through these representations

 Self-descriptive messages

 Hypermedia as the engine of application state.

2.5.2 Comparison between SOAP and REST

Both SOAP (Simple Object Access Protocol) and REST (REpresentational State Transfer) are

methods of communication between two applications that allow access to data. SOAP is a

protocol specification for exchanging structured information in computer networks. REST is the

architectural style of the World Wide Web, and tries to simplify the method of requesting

information. The comparison of two frameworks discussed in table 2.1.

Table (2.1) Comparison of SOAP and REST based Web Services (Pautasso et al., 2014)

 SOAP REST

It is well known old traditional Technology. It is new technology as compared to SOAP

Within the enterprise and in B2B scenarios,

SOAP is still very attractive.

This is not to say that REST is not

enterprise ready. In fact, there are known

successful RESTful implementations in

mission critical applications such as

banking.

It requires binary attachment parsing. It supports all data types directly.

SOAP web services always return XML

data.

While REST web services provide

flexibility in regards to the type of data

returned.

19

SOAP

REST

It consumes more bandwidth because a

SOAP response could require more than 10

times as many bytes as compared to REST.

It consumes less bandwidth because it’s

response is lightweight.

SOAP request uses POST and require a

complex XML request to be created which

makes response-caching difficult.

Restful APIs can be consumed using simple

GET requests, intermediate proxy servers /

reverse-proxies can cache their response

very easily.

SOAP uses HTTP based APIs refer to APIs

that are exposed as one or more HTTP

URIs and typical responses are in XML /

JSON. Response schemas are custom per

object

REST on the other hand adds an element of

using standardized URIs, and also giving

importance to the HTTP verb used (i.e.

GET / POST / PUT etc.)

False assumption: SOAP is more secure.

SOAP use WS-Security. WS-Security was

created because the SOAP specification was

transport-independent and no assumptions

could be made about the security available

on the transport layer.

REST assumes that the transport will be

HTTP (or HTTPS) and the security

mechanisms that are built-in to the protocol

will be available

Is the prevailing standard for web services,

and hence has better support from other

standards (WSDL, WS) and tooling from

vendors.

Lack of standards support for security,

policy, reliable messaging, etc., so services

that have more sophisticated requirements

are harder to develop.

2.5.3 RESTful Services Usage Statistics

According to some statistics from Programmable Web (Avram, 2011), an API resource indexer,

showing that SOAP has grown over the years, but it has a smaller share than REST, which has

had consistent growth:

20

Figure (2.8) REST vs. SOAP Chart

Figure 2.9 shows the high usage of Rest which reaches 73% of APIs usage and this is shows the

large scale of Rest usage in enterprise applications. From this point most of service providers

are looking for protecting their services from DOS attacks, and this makes protecting Rest

Service a very hot topic.

2.6 Mashape Cloud API

Mashape is considered as a cloud API Management and Marketplace where a developer can

find, circulate, and expend public and private APIs in addition to offering free or monetized

APIs (Team, 2015). To start this, sign up for a new account then log in. You will have with the

following:

21

1. Site navigation (Team, 2015)

 Search Mashape: Find an API in the marketplace by name or keyword

 Explore APIs: Explore the marketplace for public APIs

 Docs: Developer documentation, guides and tutorials

 Applications: easy and quick access to all the applications you've created on Mashape

 My APIs: Quick access to all the APIs you've added to Mashape

 Your Profile: Ability to Access to your profile settings

2. Applications Navigation (Team, 2015)

 Applications: A dashboard showing all the APIs you've consumed in applications, with

graphs of analytics over time.

 My APIs: A dashboard showing all the APIs you've added to Mashape, showing graphs

of analytics over time.

 Subscriptions: A list of all the APIs you've consumed on Mashape, FREE and PAID,

best way to review Pricing of APIs you're associated with

 Filter: Type the name of the application to filter the analytics.

 Analytics Period: Shows analytics over a certain period of time.

Figure (2.9) Mashape's Dashboard

22

3. Applications Dashboard (Team, 2015)

Applications are a way to group APIs together. Supposed you consume different APIs for

various applications, you might be interested in how the APIs perform. This is where

"Applications" come in handy.

2.6.1 Create an application

When you consume an API on Mashape you assign it to an Application, by default this is the

Default Application (Team, 2015).

All the APIs you've consumed on Mashape are listed below, grouped by the Application they

are assigned to. You can quickly see the status of APIs in a glance.

There are two ways to create an application:

 From the site navigation toolbar

 From the dashboard clicking the Add application button

After specifying the name of the application (I picked "New App") you will be greeted with the

following screen.

Figure (2.10) Mashape's new application

23

 On the left sidebar:

 Upload App Logo: To help you identify your apps easily, you can pick and upload an

app logo from your computer.

 Overview: Summary of the APIs contained within this application.

 Quotas: Number of requests (directly related to the period displayed in the dropdown

menu on the top right)

 General Settings: This view allows you to specify or rename your application,

description and to delete the application.

 On the top menu of this view:

 Filter: Use the filter to select specific APIs to view its analytics within the application

 Analytics Dropdown: Filtering by period and environment for analytics purposes

 Get The Keys: Retrieve your Development or Production keys, used as authorization

headers in all your API calls to Mashape when consuming one of the APIs from the

marketplace. You can re-generate (and block previous ones) keys in case you misplace

them or if you believe they might be compromised.

In our thesis we use our application called dummyDataApps this application connects with

several API to get dummy data to use it in our RESTful services.

2.7 Web Service Quality of Service (QoS)

 (QoS)-oriented systems are very dependent on the quality of employed web services. As Web

services basically accessed through Internet, achieving high quality of web services is becoming

more and more essential (Zheng, Zhang, & Lyu, 2014). In this section, we have a study about

(QoS) to ensure that it will not affect of nonfunctional characteristics of web services such as

response time, throughput, failure probability, availability, price, and popularity.

24

 Web service QoS requirements

The major requirements for supporting QoS in Web services are as follows:

1) Availability: Availability is the quality aspect of whether the Web Service is present or

prepared for prompt use. Availability represents the probability that a service is available

(Araban, 2004) . In our approach we are keen to keep RESTful services is available all the

time by preventing the DOS attacks on it.

2) Accessibility: Accessibility is the quality aspect of a service that represents the degree it

is capable of serving a Web service request. It may be expressed as a probability measure

denoting the success rate or chance of a successful service instantiation at a point in time.

There could be situations when a Web service is available but not accessible. High

accessibility of Web services can be achieved by building highly scalable systems (Araban,

2004). By preventing buffer overflow on RESTful service we ensure that our services are

always accessible.

3) Scalability: Scalability refers to the ability to reliably serve the requests despite variations

in the volume of requests (Saeed Araban, 2004) .

4) Performance: Performance is part of quality of Web service, which is measured in terms

of throughput and latency. Good performance of a Web service means the service has

higher throughput and lower latency values (Zheng et al., 2014) . In our approach we aim

that the response time of the RESTful service will not affected.

5) Security: is the quality part of the Web service of giving secrecy and non-denial by

verifying the parties included, encoding messages, and giving access control. Security has

included significance since Web service invocation happens over the public internet The

service supplier can have diverse methodologies and levels of giving security relying upon

the service requestor (Araban, 2004) . The main goal of our approach is preventing the

RESTful service from DOS attack.

25

2.8 Overview of Response Time for Web Service

In this section, we have a study about response time to ensure that it will not affect the quality

of service during the design of our Restful service and our approach.

In case that application has SOA design standards, is intensely depends on a 3rd party service

provider, then user will be baffled sooner or later when the application become slow or crashes.

The issue is that: the end user experience and quality of service (QoS) is just comparable to the

QoS of the service provider. Along these lines, unless you monitor QoS you cannot measure

QoS–and on the off chance that you can't quantify QoS, you can't deal with your service provider

and your end user experience. For instance, see this client e-commerce application which has 7

JVM's, 1 database and 7 outside web service providers (Mappic, 2012).

Figure (2.11) E-commerce application (Mappic, 2012)

26

Figure 2.12 presents the service time that have drop or have big time in red arrow, as the service

need to be faster than it. The following is the response time of another web service (PayPal) for

a client application over the most recent 3 months. Observe the spikes in response time and take

a gander at deviation between average & maximum response time over the time period. What's

great is that in spite of the incidental service blip, the PayPal service has gradually enhanced by

14% from 450 milliseconds to around 385 milliseconds. It's additionally been extremely steady

in the most recent weeks, alongside having a predictable service (little deviation from average

and maximum response time) (Mappic, 2012).

If the application relies on one or more 3rd party web services, you should periodically check

and report what level of service you are receiving each week. That way, you can truly understand

your service provider QoS and its impact on your end user experience and application

Figure (2.12) PayPal response time (Mappic, 2012)

27

performance. You can also keep your service providers honest, with complete visibility of

whether QoS is improving or degrading over time as service outages occur and are fixed.

2.9 Summary

 In this chapter, we discussed a summary about web service in general and about RESTful

service in particular and after studying quality of service and response time we used this

information to specify the best time for RESTful service which we will use to find the required

time to request the service for a second time, thus reaching guard time by sending multiple

requests while service is still working, this will consume server’s resources and cause DOS.

Chapter 3

Related Works

28

Related Works
RESTful Services is a new and hot topic in web services field, so there is lack of papers in this

field. Thus our approach of finding related works is looking for topics related to DOS attacks in

general and RESTful security concerns.

3.1 Approaches to Prevent DOS Attack in Web Services

Irfan siddavatam (Siddavatam & Gadge, 2008) propose comprehensive set of test mechanism to

detect attacks on web services. The study includes algorithms section to analyze SOAP requests

through a number of tests and find out if it can transform into attack on web service like cipher

test to find if the header element does not contain cipher or not matched with SOAP requests

and reply attack test to check the time at which the last time request was received in persistent,

also set guard time period to limit request in frame by admin configuration and preventing buffer

overflow attack. In our approach we add dynamic different guard time for each action, thus

computing time is different from one resource to another.

Zhang (2011) provide measurement to prevent DOS attack, this study analyzes the DOS attack

prevention principles and gives an thorough analysis of existing prevention techniques,

proposed to prevent DOS attacks by adding certification system defense that define the identity

for each client, this limit the probability of attacks outside the defined clients but it is costly, in

our approach we can define the identity of authorized clients as condition to generate new

tokens, therefore we can apply the study of Ramin (Fouladi, 2013) that define frequency

characteristics for DOS into high speed intrusion detection systems that support RESTful web

services architecture as Mohsen (Rouached, 2013) propose to use RESTful Web services for

coordinating heterogeneous entities of a high speed distributed IDS then detect and prevent any

DOS attacks .

Cotroneo, Peluso, Romano, Ventre, and Napoli (2002) propose a new protocol that can protect

against DOS attack moreover it detect the source of the attacker even there is a spoofed IP. Our

approach is algorithmic; however, we can provide union solution with hardware for RESTful in

future work.

29

3.2 Approaches to Prevent Attack in Restful Web Service

Elkurd and Barhoom (2015), proposed an algorithm to prevent buffer overflow DOS attack in

RESTful services by comparing the difference between current time for RESTful request and

the time for previous RESTful request with the current process computing time, then increase

the token live time for request depending on the expected time for next request. Unfortunately,

this solution supposes the current process computing time for RESTful request and expected

time for next request as a constant. This will represent two problems, the first one: is to assume

the process computing time as a constant because the difference between current request time

and previous request time might take more than a constant or less than it, if the services takes

less than assumed constant the approach will reject the next request which causes a noise for the

client and might lose him. On the other side if the difference time takes more than a constant

this will give a chance of suspicious repeated requests which lead to overload on service

resources and additional cost on service provider. The second problem assumes the expected

time for next RESTful request as a constant because our approach depend on this time to increase

the token life time which considered as a security breach when the token time increases more

than real need.

In our solution we suggest an approach to find the current process computing time using several

experiments and analyze its results and estimate the expected time for next RESTful request

using our equation then handle client request tokens refresh time and prevent suspicious repeated

requests for each client.

Our approach will cover the enhancement for preventing slow connection attack which means

that If a RESTful request is not completed, or if the transfer rate is very low, the Web server

keeps its resources busy waiting for the rest of data which leads to DOS or cost more money.

Serme, Oliveira, Massiera, and Roudier (2012) provide a security protocol to make message

security implementation by encrypt message exchange between the provider and client throw

new encrypted headers in the http request and response in order to meet RESTful principles.

While the idea is novel and provide security for RESTful services equivalent to WS-Security

but it always need to overload request and response with extra headers and this is drawback.

30

Furthermore the study Femke (Backere et al., 2014) compare the current known security

mechanism and the drawbacks for each one and how far it adaptive the RESTful (stateless)

standards. Technically, the proposed security mechanism try to harmonizes the RESTful

principles and the lightweight security techniques; it assume no need to encrypt each transmitted

message to enhance the performance but only the sensitive information to avoid sniffing; in the

login it use CA (certificate is signed by a certificate authority) and hash password H(pw) to

transmit it securely and check the password with salt in the backend H(H(pw)+salt), after

successful login TLS token is sent back to the client with expire date. This study is not clear of

how digital certificate are created and send it to the user and used with different device. In our

approach we try to adapt the REST design as possible, by save the needed information for

security

Cheng, Laih, Lai, Chen, and Chen (2008) presents an on-line user-behavior surveillance system

that detects the malevolent user ‘s behavior and web application attacks using Embedded

Markov model (EMM). The EMM proposed in this paper is a two-phase Markov model. The

first phase Markov model is used to establish the normal model for every attribute. The second

phase is used to build the user–behavior surveillance model for detecting the abnormal visiting

behavior.

Park, Iwai, Tanaka, and Kurokawa (2014) show analysis for Slow Read DOS attack which is

one of sophisticated DOS techniques. Our approach will find a way to prevent this attack

especially that it causes buffer overflow attack.

3.3 Quality of web services (QoS) to know suitable response time

(Jiang, Lee, & Hu, 2012) present one such a largescale longitudinal analysis of publicly available

web services of SOAP-based and RESTful types. For the period of roughly one year and from

five different world-wide locations, they closely monitor the ups and downs of various basic

properties of web services and their QoS values using a total of 825,132 real web services. One

of the important factors of QoS is response time of service, the study considers that the service

is failed when response time is greater than 60 seconds, and the acceptable average response

time is between 100 and 1,000 MS (for text message size between 0.5 K and 16 K). We have a

31

study about response time to ensure that it will not affect the quality of service during the design

of our Restful service and our approach.

3.4 Summary

In this chapter we discussed the related work about approaches to prevent DOS attack in web

services specific in RESTful services and the difference between our approaches and the other,

we study the quality of service to make sure that our approach not violated the factor of QoS

specially the time response of our RESTful services.

The main idea in our thesis is to define the expected time for next RESTful request by using

several experiments on RESTful services with different size of data to get the general equation

for calculate the current computing time and get next request time according to generated

equation.

Chapter 4

Proposed Approach

32

Proposed Approach
In this chapter we present our proposed approach for estimating time for next request of RESTful

service to prevent DOS attack on RESTful Services.

The main idea of our proposed approach is to get equation for estimate time of next request on

RESTful service, this equation will be generated from the analysis of huge requests on RESTful

service with different sizes of data.

4.2.1 Design of Proposed Approach

Our goal is to prevent DOS attack on RESTful services through finding the next request time

for RESTful service and substitute our formula in the following approach. Figure 4.1 Display

the developed algorithm to prevent buffer overflow DOS attack. The algorithm checked the

valid token to identify the legal clients, then the request time is checked after that it saved as

previous time to compare it with the new request. If the difference between the new request time

and the previous time are less than the process computing time, the request is neglected.

We need to clarify some terminology in the proposed algorithm which is defined in Table 4.1

Table 4.1) Terminology in developed approach

Allowance Time

Fixed time wasted through communication and request

Process Computing

Time

Current Process computing time (service time).

Next Expected Time Next expected request maximum computing time

Guard Time Difference time between current and previous

RESTful request time

33

The next request time in the algorithm is assumed as constant so we substitute the next request

time with the following formula:

Tnx = Response Time (Tre) + Allowance time (W) + Process Computing Time

The response time is calculated according to the size of retrieved data from RESTful service

negating the processing time. We work on enhancing the algorithm to be as following steps:

1. Calculate the size of retrieved data, find the response time of RESTful service and add

the current time of current request to it then save it as previous time.

Algorithm

structure

Figure (4.1) An approach of prevent DOS attack on RESTful services

34

2. After that when the next request come, the algorithm will get the previous time and

compare it with current time: if it is greater, the algorithm will reject the request. If

not, the algorithm will process it and save the next request time.

Figure 4.2 shows the enhanced algorithm where we substitute the constant for next request time

with our formula depending of retrieved data from RESTful service.

Our approach consists from two following main phases:

Phase 1: Preparation which aims to prepare data and environment of our approach described in

section 4.1.

Phase 2: processing the requests include the evaluation for the results and applying results on

Hussam's (Elkurd & Barhoom, 2015) algorithm to prevent buffer overflow DOS, phase 2 is

described in section 4.2.

Figure (4.2) Enhance Algorithm with our proposed approach

35

However, the steps look straightforward we face many challenges to decide how the approach

defined with reasonable justification depends on previous studies or a real experiment.

4.1 Preparation

Our proposed model need to preparation phase. This phase consists from tow section, the first

is to prepare data as JSON files, this step needs to multi-steps to get the required data we

described it later in this chapter, second section of preparation phase is preparing and configure

the environment, thus we perform the following steps in preparation phase:

Section 1: Data Preparation

1. Collect data: In this step we collect different data from Mashape Application described

in section 2.5. The data retrieved is consists from array of objects, each object contain

attribute such as name, domain, tagline, address. Figure 4.2 shows the collection data

Phase 1

Preparation

Phase 2

Processing & Analysis

Figure (4.3) Phases of proposed method

36

2. Clean and prepare data as JSON Format.

3. Prepare cleaning JSON data in different sizes JSON file.

Section 2: Environment Preparation

1. Design RESTful service to perform testing.

2. Select environment testing over cloud.

3. Create Client Script to send requests.

After perform the 2 sections the data and environment are ready to process requests and evaluate

the results to prevent buffer overflow DOS. However, we may continuously have made

modifications on the data set such as size in order to enhance the results, below figure 4.5 shows

conceptual diagram for preparation phase. In the next para graphs we discuss each step in details.

Figure 4.4) Sample of collect different data from Mashape apps

37

Figure (4.5) Preparing Data and environment

4.1.1 Collect and prepare Data

Our approach need to use JSON file in different sizes. The first part is collect data, thus we have

developed a PHP script to collect data throw dummy data API’S, DumDataCol collect data and

save it in files, therefore the files are assembled incrementally in a single data warehouse were

the data are prepared and cleaned to be ready to use it in our services, we have discussed

DumDataCol in Section 5.1

The second part is to clean and formatting data as JSON. DataJsonTra scripts take the dummy

data and clean it from any unused and blank data then transfer it to JSON formatting, after that

generateDiffSize script is responsible to generate different size of JSON files.

In this steps we generate different size of JSON file with different data (from 16 K size to 5 M).

Later in chapter 5, every step will be discussed in details.

38

4.1.2 Environment preparation

First step in environment preparation is to design restful services, that our proposed approach

depends on it, then prepare cloud environment to test our approach. In the next para graphs we

discuss each step in details.

4.1.2.1 Design RESTful services

We will design two types of RESTful services (GET and POST) called getAllCategories and

postCatData, our services are declined process time and implement using PHP Object Oriented

to be suitable with Azure platform. Chapter 5. Describe this in details.

4.1.2.2 Select environment over cloud

Our proposed approach is designed to work on a cloud environment. For this purpose, we have

two choices, either use a real test beds such as Windows Azure or use simulation tools to

simulate a cloud environment. In our work we use real environment windows Azure. The reason

of our choice is that Azure is very friendly and easy to use with their portal and web Apps that

it's an easy-to-manage, scalable, highly secure, and highly available solution for running

presence websites. We will set up our services as a Website. Chapter 5 will describe how we

deploy our services using Azure in details.

4.1.2.3 SendClientReq script

We developed client script to send REST asynchronous request for our RESTful services called

SendClientReq. The goal of the script is to send several requests to record the response time for

every request, then analyze a set of requests to get acceptable response time. We applied this

script for different size of data. Table 4.1 shows the pseudo code for SendClientReq script.

39

Table (4.2) Pseudo code for SendClientReq

4.2 Processing Requests and Results

The next stage after preparing the data and environment is processing results and enhancing the

results. The phase consists of 5 steps as follow:

1. Send requests to RESTful service and save results in HAR files.

2. Process HAR files to get data in Excels

3. Evaluate consuming time for defined data sizes

4. Analyze results and justification

5. Evaluate results Using Hussam's Algorithm to prevent DOS attack

The conceptual diagram in Figure 4.7 below shows the main steps in classification phase.

SendClientReq 4.1

Output: returnData JSON data

1. SET n to number of repeated requests

2. FOR counter = 1 to n-1 do

3. CALL RESTfulService()

4. RETURN returnData //return data from RESTful service formatted as JSON

40

4.2.2 Send requests to RESTful services

We will apply SendClientReq scripts to send requests from client to RESTful services. In this

step we use different data sizes (16 K, 32 K, 64 K, 128 K, 250 K, 512 K, 1 M, 2 M, 3 M, 4 M,

5 M) and send 50 requests for each size of data. The request must have some attributes like the

type of request is GET Request with no cache and asynchronous, the details of each requests are

saved in HAR file. Using Mozilla FireBug tools. Firebug integrates with Firefox to put a wealth

of development tools at your fingertips while we browse. We can edit, debug, and monitor CSS,

HTML, and JavaScript live in any web page. We use NET window in firebug to monitor time

response for each requests and save it. Figure 4.8 shows the NET window in FireBug tools.

Figure (4.6) Process and evaluate results

41

4.2.3 Process HAR files to get Excels

When we save the NET window as discussed in the previous section, the output files are saved

in HAR format. HAR (HTTP Archive) (Google Apps Tool, 2014) is a file format used by several

HTTP sessions tools to export the captured data. The format is basically a JSON object with a

particular field distribution. We use har2csv tools to convert our HAR files to csv formats then

excel to deal with results, we change the code of this files to get our need from the HAR files

like data size, waiting time, consume time.

4.2.4 Evaluate consuming time for different size

We analyze excel files to get consume time for requests for each size of data, using average and

median methods, we depend on median method to get consume time because the median is the

number in the middle of a set of numbers, so we can discard all abnormal records.

Figure (4.7) NET window in FireBug tool

42

4.3 Summary

This chapter presented the approach for preventing DOS attack on RESTful service, therefore it

shapes the approach for estimating next request time for RESTful services. The chapter

described the preparation phase include the preparation of data which output several JSON files

with several size of data and preparation of environment which include the design of restful

services and prepare client script which is responsible for sending several RESTful requests for

services. Further it takes over the processing phase, including sending requests to RESTful

service and save results in HAR files. From the HAR files and used Excel methods we got the

equation to find the next RESTful request time

Tnx = Response Time (Tre) + Allowance time (W) + Process Computing Time

 After that we redesign Hussam’s algorithm and enhancing it according to the new formula then

evaluate the equation by repeating the experiments using enhanced algorithm. The next chapter

presents the experiments based on the approach.

Chapter 5

Implementation

43

Implementation
In this chapter we discuss the implementation of the proposed approach and describe the details

of the practical application.

5.1 Collect and prepare Data

Collect and prepare data consists of 3 main stages: first stage is to collect dummy different data

from Mashape application and save it to file. DumDataCol script responsible to achieve this

stage, the second stage is to clean and format data using DataJsonTra script, and the last stage

GenerateDiffSize script responsible for generate different size according to our needs in

experiment. Figure 5.1 shows the stages for collecting and preparing data.

GenerateDiffSize

3. Script to generate different size of

JSON files

DataJsonTra

DumDataCol

1. Script to collect dummy data from

API's

2. Script to clean and transfer dummy

data to JSON

Figure (5.1) Collect and prepare Data

44

5.1.1 DumDataCol implementation

We use DumDataCol to collect different data, DumDataCol is a web application written in PHP

language that connect to dummy data API’S to get different data and save it in file as shown in

Figure 5.2.

First of all, we create Mashape Application on Mashape development platform in order to enable

DumDataCol access Mashape through application key as we describe in chapter 2 After

authenticate the app, we look to find dummy data that used as returned data from our RESTful

services.

To create application, we do the following steps:

1. From the site navigation toolbar, we choose create application then named it "

dummyDataApps"

2. From dashboard we click on our application and take the key to use it in our script.

DumDataCol

Dummy Data File

Figure (5.2) Design of script to collect dummy data from API's

45

DumDataCol scripts consist of two stages, first stage is to get data from dummyDataApps

application since this application give just 5000 record of data and the second stage is to save

data in file until get the required size.

Table (5.1) Shows the pseudo code of DumDataCol

Script 5-1 DumDataCol

Input: dataSize Size of required data

Output: dummyDataFile file of dummy data

open "dummyDataFile " for output

while size of dummyDataFile not equal dataSize

request dummyDataApps

set dummyDataResponse from the request;

if dummyDataResponse contain data then

for dataCounter:= 0 to dummyDataResponse size do

format dummyDataResponse[dataCounter];

save the current dummyDataResponse and add it to dummyDataFile ;

end;

end;

Figure (5.3) Mashape Application Key

46

5.1.2 DataJsonTra implantation

We develop DataJsonTra script in PHP languages which is responsible to clean dummy data

from unrequired data like empty variable and spatial character then transfer data to JSON and

save it Figure5.4 show the input and output for scripts and Table 5.2 shows the pseudo code for

DataJsonTra script.

Table (5.2) Shows the pseudo code for DataJsonTra script.

Script 5-2 DataJsonTra

Input: dataFile file of data

Output: jsonFile file of JSON data

open " dataFile " for input (reading) ;

open " jsonFile " for output (writing) ;

while not end of file " dataFile "

read data items from " dataFile ";

set dummyData from " dataFile ";

 if dummyData equal empty then

delete current dummyData from " dataFile ";

Dummy Data File

DataJsonTra

Figure (5.4) Design of script to clean and transfer dummy data to JSON

47

 else

format current dummyData to JSON ;

save the current dummyData and add it to jsonFile;

end;

5.1.3 GenerateDiffSize implementation

GenerateDiffSize scripts is responsible to create different sizes of JSON files, we need to

perform our experiments on (16 K , 32 K , 64 K, 128 K , 250 K, 512 K, 1 M , 2 M , 3 M , 4 M ,

5 M) sizes Table 5.3 shows the pseudo code for GenerateDiffSize script and Figure 5.5 shows

the input and output for scripts.

Table (5.3) Shows the pseudo code for GenerateDiffSize script

Script 5-3 GenerateDiffSize

Input: dataFormatedFile file of data

Output: jsonFileDiffSize different sizes of JSON files

set requiredSizeArr array of sizes

open " dataFormatedFile " for input (reading) ;

16 Kb 64 Kb 512 Kb

GenerateDiffSize

Figure (5.5) Design of script to generate different size of JSON files

48

for indexCounter:= 0 to requiredSizeArr size do

open " jsonFile " for output (writing) ;

 while not end of file " dataFormatedFile "

read data items from " dataFormatedFile ";

save the current data items and add it to jsonFile;

 if size of jsonFile equal requiredSizeArr [indexCounter]

 break;

 end;

end;

5.2 Prepare environment

5.2.1 RESTful services implementation

The following four steps describe our services implementation :

Step 1: Initialization

The first part of design our services is basic initialization. This part of the script defines the

service's settings, such as whether a secure HTTPS connection is required and whether the

services is username and password protected. Additionally, the API initialization will define the

API response codes. Finally, the initialization contains a function definition for the

“deliver_response” function. This function controls the HTTP response codes, sets the Content-

Type header and formats the data as JSON. The “deliver_response” function is described in

more detail in Step 3.

Step 2: Process Request

The second step of the web service script is the meat of the API. This is where the requested

data is gathered by the application. In our work, the response data is JSON data files which is

prepared in previous section 4.2.1, the service take parameter to determine the size of JSON file

to retrieve it.

Step 3: Deliver Response

49

The final action of our web service script is to deliver a response in JSON format. The

“deliver_response” function first defines several basic HTTP response codes. After the response

codes are defined, The JSON response is complete according to size of JSON file.

RESTful principles provide strategies to handle CRUD (Heller, 2007) actions using HTTP

methods mapped as follows:

 GET /tickets - Retrieves a list of tickets

 POST /tickets - Creates a new ticket

We need to set up our service environment which is composed of 2 files, an application script

(index.php) and a URL redirection file (.htaccess). The URL redirector will allow users to

connect to the service using pretty URLs. The .htaccess file requires the mod_rewrite module

on an Apache server. The API can still work if mod_rewrite is not available, but URLS will

need to be formatted like:

http://ourdomainOnAzure/Controller/serviceName/Size

Table (5.4) Shows the .haccess code

RewriteEngine On

 #Route to Main file

 RewriteCond %{REQUEST_FILENAME} !-f

 RewriteCond %{REQUEST_FILENAME} !-d

 RewriteCond %{URL} !-d

 RewriteRule ^([^/]+)/([^/]+)?/(.*)$ testApp/webroot/index.php?ttag=$1&rt=$2/$3 [L]

We will design 2 type of RESTful services (GET and POST), our services are declined process

time and implement Using PHP Object Oriented to be suitable with Azure platform.

Table 5.5 present the pseudo code for GET RESTful service called getAllCategories. This

service takes a parameter to determine the size of returned data, then take the data of JSON file

and returned it to client.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

50

Table (5.5) Pseudo code for GET RESTful service

Service 5-5 getAllCategories

Input: dataSize Size of returned

Output: returnData JSON Dummy data

define HTTP request

set HTTP response

set HTTP Response Content Type to JSON

if dataSize greater than 0

open " Jsonfile " for input (reading) ; // according to size

read data items from " Jsonfile " and set to returnData;

 end; // Error in service

return returnData //return data in file formatted as Json

5.2.2 Windows Azure environment

We need to prepare our environment on windows Azure by perform the following steps:

1- Create web app as shown in figure 5.6 we choose the nearest datacenter which is located

in West Europe

Figure (5.6) Create web app on windows azure

51

2- Upload our RESTful services on web app by using the ftp program such as FileZilla and

transfer all files using it. Figure 5.7 show the transfer files into Azure.

5.3 Summary

This chapter presented the implementation of our approach, it takes over the phases of the

approach described in Chapter 4, from the preparation phase to the processing. In preparation

phase we implements three algorithms the first one to collect data called “DumDataCol “, second

called “DataJsonTra” which is responsible to clean dummy data from unrequired data, and the

third algorithm called “GenerateDiffSize” to create different sizes of JSON files which used in

our RESTful services. In addition, the chapter presented the implementation of the RESTful

services and show how we setup our work on windows Azure. In the next chapter we introduce

the experiment and results.

Figure (5.7) Transfer RESTful service into web app on Azure

Chapter 6

Experiments and Results

52

Experiments and Results

In this chapter we will present the experiments on the proposed approach. The experiments are

divided into two parts. The first part presents a study of response time for RESTful requests

using different size of retrieve data. The second part contains the experiments which test and

evaluate the results and equations of the proposed method.

For every experiment, firstly we will present in details the objective, and the result for every

experiment. And then at the end of each part, we summarize and discuss result of the

experiments. All experiments are done on windows Azure environment.

6.1 Experiment Part I

 In this part the main aim of experiment is studying the response time of RESTful requests for

different size of Data begin from 16K end with 5 M to generate equation to get the response

time so we can indicate for next request time and substitution the formula in Hussam's algorithm,

thus we performed the experiment on windows Azure.

This experiment is done to get average response time of request for RESTful services on

windows Azure. Number of request is 50 requests for RESTful service (getAllCategories) with

different size of response data, the choice the 50 request because we have limit choices with our

account on windows Azure, thus every request we charging money more

6.1.1 Experiment for 16 kb data size

In this experiment we send the request with parameter size equal 16 so the service catch the

parameter and response with 16 kb of JSON data.

The link is:

http://masterdegree.Azurewebsites.net/bufferOverFlowAttackApi/getAllCategories/size*16

53

Figure 6.1 shows the requests of service on windows Azure. We capture this figure using

FireBug and the request activities using windows Azure portal.

Figure 6.2 shows the snapshot of HAR file recorded for this experiment that record the URL

link and the time response for every requests and the all data captured from request.

Figure (6.2) HAR file for RESTful request with 16 kb data size

 Results

We will convert the following HAR file into Excel file to get the Table 6.1 which contain all

details of request, thus we note that the response time is the response from the service measured

in millisecond and the waiting time is from the time of request to the time first byte is received,

which involves a round trip time. There can be latency if your server away from your machine.

Usually it requires 3 round trips. 1 for DNS lookup and 1 for establishing TCP Connection, 1

for request and response pair, total receive time is the response time plus the waiting time.

Figure (6.1) Client Request for Azure Service of 8 kb data size

54

Table (6.1) Shows the result of RESTful requests with 16 kb

Time – Wait (ms) Time – Response (ms) Total Receive time (ms)

239 10 249

224 10 234

213 10 223

215 11 226

228 11 239

284 10 294

245 10 255

326 12 338

309 11 320

228 10 238

299 11 310

242 10 252

We use the average method to get the average of total response time in millisecond since we

note that the average response time is 10.4 ms and the average of total receive time is 258.7 ms

.

9.5

10

10.5

11

11.5

12

12.5

0204060

R
es

p
o

n
se

 t
im

e
in

 m
ill

is
ec

o
n

d

RESTful Requests

Response Time (16 kb)

0

100

200

300

400

500

01020304050
R

ec
ei

ve
 t

im
e

in
 m

ill
is

ec
o

n
d

RESTful Requests

Total Receive Time (16 kb)

Figure (6.4) Response time of RESTful

requests for 16 Kb
Figure (6.3) Receive time of RESTful requests

for 16 kb

55

6.1.2 Experiment for 32 kb data size

In this experiment we send the request with parameter size*32 so the service get the parameter

and response with JSON data the size of it is 32 kb.

The link is:

http://masterdegree.Azurewebsites.net/bufferOverFlowAttackApi/getAllCategories/size*32

Using Firebug tools and netExport tools we save all details of requests into HAR file which we

convert it into Excel file using har2csv tools and processing the excel file to find the following

results.

 Results

After analyze the excel file that get it from HAR file, we use the average method to get the

average of total response time in millisecond since we note that the average response time is 20

ms and the average of total receive time is 268.1 ms.

6.1.3 Experiment for 64 kb data size

In this experiment we send the request with parameter size*64 so the service get the parameter

and response with JSON data the size of it is 64 kb.

18.5

19

19.5

20

20.5

21

21.5

22

22.5

01020304050

R
es

p
o

n
se

 t
im

e
in

 m
ill

is
ec

o
n

d

RESTful Requests

Response Time (32 kb)

0

50

100

150

200

250

300

350

400

01020304050 R
ec

ei
ve

 t
im

e
in

 m
ill

is
ec

o
n

d
RESTful Requests

Total Receive Time (32 kb)

Figure (6.6) Response time of RESTful

requests for 32 kb
Figure (6.5) Receive time of RESTful requests

for 32 kb

56

The link is:

http://masterdegree.Azurewebsites.net/bufferOverFlowAttackApi/getAllCategories/size*64

Using Firebug tools and netExport tools we save all details of requests into HAR file which we

convert it into Excel file using har2csv tools and processing the excel file to find the following

results.

 Results

After analyze the excel file that get it from HAR file, we use the average method to get the

average of total response time in millisecond since we note that the average response time is

39.91 ms and the average of total receive time is 288.1 ms.

6.1.4 Experiment for 128 kb data size

In this experiment we send the request with parameter size*128 so the service get the parameter

and response with JSON data the size of it is 128 kb.

The link is:

http://masterdegree.Azurewebsites.net/bufferOverFlowAttackApi/getAllCategories/size*128/

38

39

40

41

42

43

44

45

46

0204060

R
es

p
o

n
se

 t
im

e
in

 m
ill

is
ec

o
n

d

RESTful Requests

Response Time (64 kb)

230

240

250

260

270

280

290

01020304050 R
ec

ei
ve

 t
im

e
in

 m
ill

is
ec

o
n

d

RESTful Requests

Total Receive Time (64 kb)

Figure (6.8) Response time of RESTful

requests for 64 kb
Figure (6.7) Receive time of RESTful requests

for 64 kb

57

Using Firebug tools and netExport tools we save all details of requests into HAR file which we

convert it into Excel file using har2csv tools and processing the excel file to find the following

results.

 Results

After analyze the excel file that get it from HAR file, we use the average method to get the

average of total response time in millisecond since we note that the average response time is

80.09 ms and the average of total receive time is 328.6 ms .

6.1.5 Experiment for 256 kb data size

In this experiment we send the request with parameter size*256 so the service get the parameter

and response with JSON data the size of it is 256 kb.

The link is:

http://masterdegree.Azurewebsites.net/bufferOverFlowAttackApi/getAllCategories/size*256/

Using Firebug tools and netExport tools we save all details of requests into HAR file which we

convert it into Excel file using har2csv tools and processing the excel file to find the following

results.

 Results

78.5

79

79.5

80

80.5

81

81.5

82

82.5

0204060

R
es

p
o

n
se

 t
im

e
in

 m
ill

is
ec

o
n

d

RESTful request

Response Time (128 kb)

0

100

200

300

400

500

0204060 R
ec

ei
ve

 t
im

e
in

 m
ill

is
ec

o
n

d

RESTful Requests

Total Receive Time (128 kb)

Figure (6.10) Response time of RESTful

requests for 128 kb

Figure (6.9) Receive time of RESTful requests

for 128 kb

58

After analyze the excel file that get it from HAR file, we use the average method to get the

average of total response time in millisecond since we note that the average response time is

160.07 ms and the average of total receive time is 408.1 ms .

6.1.6 Experiment for 512 kb data size

In this experiment we send the request with parameter size*512 so the service get the parameter

and response with JSON data the size of it is 512 kb.

The link is:

http://masterdegree.Azurewebsites.net/ bufferOverFlowAttackApi/getAllCategories/size*512/

Using Firebug tools and netExport tools we save all details of requests into HAR file which we

convert it into Excel file using har2csv tools and processing the excel file to find the following

results.

 Results

After analyze the excel file that get it from HAR file ,we use the average method to get the

average of total response time in millisecond since we note that the average response time is

319.1 ms and the average of total receive time is 566.3 ms .

156

158

160

162

164

166

168

0204060

R
es

p
o

n
se

 t
im

e
in

 m
ill

is
ec

o
n

d

RESTful Requests

Response Time (256kb)

0

100

200

300

400

500

0204060 R
ec

ei
ve

 t
im

e
in

 m
ill

is
ec

o
n

d

RESTful Requests

Total Receive Time (256 kb)

Figure (6.12) Response time of RESTful

requests for 256 kb

Figure (6.11) Receive time of RESTful

requests for 256 kb

59

6.1.7 Experiment for 1 Mb data size

In this experiment we send the request with parameter size*1m so the service get the parameter

and response with JSON data the size of it is 1 Mb.

The link will be like the following:

http://masterdegree.Azurewebsites.net/ bufferOverFlowAttackApi/getAllCategories/size*1m/

Using Firebug tools and netExport tools we save all details of requests into HAR file which we

convert it into Excel file using har2csv tools and processing the excel file to find the following

results.

 Results

After analyze the excel file that get it from HAR file ,we use the average method to get the

average of total response time in millisecond since we note that the average response time is

641.01 ms and the average of total receive time is 888.82 ms .

314

315

316

317

318

319

320

321

0204060

R
es

p
o

n
se

 t
im

e
in

 m
ill

is
ec

o
n

d

RESTful Requests

Response Time (512kb)

555

560

565

570

575

580

585

0204060 R
ec

ei
ve

 t
im

e
in

 m
ill

is
ec

o
n

d

RESTful Requests

Total Receive Time (512kb)

Figure (6.14) Response time of RESTful

requests for 512 kb

Figure (6.13) Receive time of RESTful

requests for 512kb

60

6.1.8 Experiment for 2 Mb data size

In this experiment we send the request with parameter size*2m so the service get the parameter

and response with JSON data the size of it is 2 Mb.

The link is:

http://masterdegree.Azurewebsites.net/ bufferOverFlowAttackApi/getAllCategories/size*2m/

Using Firebug tools and netExport tools we save all details of requests into HAR file which we

convert it into Excel file using har2csv tools and processing the excel file to find the following

results.

 Results

After analyze the excel file that get it from HAR file ,we use the average method to get the

average of total response time in millisecond since we note that the average response time is

1279.86 ms and the average of total receive time is 1528.04 ms .

630

632

634

636

638

640

642

644

646

0204060

R
es

p
o

n
se

 t
im

e
in

 m
ill

is
ec

o
n

d

RESTful requests

Response Time (1 Mb)

870

880

890

900

910

920

930

940

0204060 R
ec

ei
ve

 t
im

e
in

 m
ill

is
ec

o
n

d

RESTful Requests

Total Receive Time (1 Mb)

Figure (6.16) Response time of RESTful

requests for 1 Mb

Figure (6.15) Receive time of RESTful

requests for 1 Mb

61

6.1.9 Experiment for 3 Mb data size

In this experiment we send the request with parameter size*3m so the service get the parameter

and response with JSON data the size of it is 3 Mb.

The link is:

http://masterdegree.Azurewebsites.net/ bufferOverFlowAttackApi/getAllCategories/size*3m/

Using Firebug tools and netExport tools we save all details of requests into HAR file which we

convert it into Excel file using har2csv tools and processing the excel file to find the following

results.

 Results

After analyze the excel file that get it from HAR file, we use the average method to get the

average of total response time in millisecond since we note that the average response time is

1920.6 ms and the average of total receive time is 2167.6 ms .

1505

1510

1515

1520

1525

1530

1535

1540

0204060 R
ec

ei
ve

 t
im

e
in

 m
ill

is
ec

o
n

d

RESTful Requests

Total Receive Time (2 Mb)

1255

1260

1265

1270

1275

1280

1285

1290

0204060

R
es

p
o

n
se

 t
im

e
in

 m
ill

is
ec

o
n

d

RESTful Requests

Response Time (2 Mb)

Figure (6.17) Response time of RESTful

requests for 2 Mb

Figure (6.18) Receive time of RESTful

requests for 2 Mb

62

6.1.10 Experiment for 4 Mb data size

In this experiment we send the request with parameter size*4m so the service get the parameter

and response with JSON data the size of it is 4 Mb.

The link is:

http://masterdegree.Azurewebsites.net/ bufferOverFlowAttackApi/getAllCategories/size*4m/

Using Firebug tools and netExport tools we save all details of requests into HAR file which we

convert it into Excel file using har2csv tools and processing the excel file to find the following

results.

 Results

After analyze the excel file that get it from HAR file, we use the average method to get the

average of total response time in millisecond since we note that the average response time is

2560.9 ms and the average of total receive time is 2808.08 ms .

2155

2160

2165

2170

2175

2180

2185

0204060 R
ec

ei
ve

 t
im

e
in

 m
ill

is
ec

o
n

d

RESTful Requests

Total Receive Time (3 mb)

1918

1919

1920

1921

1922

1923

1924

1925

0204060

R
es

p
o

n
se

 t
im

e
in

 m
ill

is
ec

o
n

d

RESTful Requests

Response Time (3 Mb)

Figure (6.20) Receive time of RESTful

requests for 3 Mb

Figure (6.19) Response time of RESTful

requests for 3 Mb

63

6.1.11 Experiment for 5 Mb data size

In this experiment we send the request with parameter size*5m so the service get the parameter

and response with JSON data the size of it is 5 Mb.

The link is:

http://masterdegree.Azurewebsites.net/ bufferOverFlowAttackApi/getAllCategories/size*5m/

We will convert the HAR file to Excel file with same step in previous experiment.

 Results

After analyze the excel file that get it from HAR file ,we use the average method to get the

average of total response time in millisecond since we note that the average response time is

3201.3 ms and the average of total receive time is 3449.8 ms .

2795

2800

2805

2810

2815

2820

2825

0204060

R
ec

ei
ve

 t
im

e
in

 m
ill

is
ec

o
n

d

RESTful requests

Total Receive Time (4 Mb)

2556

2558

2560

2562

2564

2566

0204060

R
es

p
o

n
se

 t
im

e
in

 m
ill

is
ec

o
n

d

RESTful Requests

Response Time (4 Mb)

Figure 6.22) Receive time of RESTful requests

for 4 Mb
Figure (6.21) Response time of RESTful

requests for 4 Mb

64

6.1.12 Results & Justification for Experiment part I

Our results depend on response time and receive time that consists of both time response plus

waiting time. We note that when the size of retrieve data increase then the response time will

increase. Figure 6.25 shows the response time of different data size.

3350

3400

3450

3500

3550

3600

0204060 R
ec

ei
ve

 t
im

e
in

 m
ill

is
ec

o
n

d

RESTful Requests

Total Receive Time (5 Mb)

3199

3200

3201

3202

3203

3204

3205

3206

0204060

R
es

p
o

n
se

 t
im

e
in

 m
ill

is
ec

o
n

d

RESTful Requests

Response Time (5 Mb)

16208318356450412928126051352008310231182038798309671040732265042880

Series1 10.42039.980.09160319.1641.091279.861920.62560.93201.3

0

500

1000

1500

2000

2500

3000

3500

R
es

p
o

n
se

 t
im

e
in

 m
ill

is
ec

o
n

d

Data size in bytes

Average Response time

Figure 6.24) Receive time of RESTful requests

for 5 Mb

Figure (6.23) Response time of RESTful

requests for 5 Mb

Figure (6.25) Average Response time for different size of response data

65

In our experiment we use lightly weight of JSON response data, thus every time we double the

size of retrieve data, we note the response time will double also, and there is waiting time is as

constant partially equal 248 milliseconds for all experiment used lightly weight, figure 5.16

shows the average total receives time for different size of data, as we know this time consists of

time response plus waiting time.

We conclude after performed experiments that the equation for response time is

Tre = (X/Tc) *10

Where Tre is response time, X is data size and Tc is a constant equal 16000 according to our

experiment and Azure environment which may change on another cloud environment when we

calculate the total receive time we need to increase the waiting time which as we mentioned is

as constant in our experiment, thus the equation for receive time is

Trec = Tre + TW

Where Trec is the receive time, Tre the response time, and TW is the waiting time (Allowance

time) for used server where equal in our experiment to 248 ms.

After we have the receive time equation now we can substitute in Hussam's algorithms to

evaluate our work and the correctly of equation.

16208318356450412928126051352008310231182038798309671040732265042880

Series1 258.7268.1288.1328.6408.1566.3888.81528.042167.62808.083449.8

0

500

1000

1500

2000

2500

3000

3500

4000

R
ec

ie
ve

 t
im

e
in

 m
ill

is
ec

o
n

d

size of data in bytes

Average Recieve Time

Figure (6.26) Average Receive time for different size of response data

66

6.2 Experiment Part II

In this section we aim to evaluate our approach using our enhanced algorithms, thus we

substitute the next request time as constant in our equation Trec that represents the receive time.

In the algorithm we use our RESTful service getAllCategories and perform the experiment using

different size of retrieve data.

6.2.1 Evaluate equation using 512 kb

In this section we use 512 kb of retrieve data from RESTful service and depend on our equation

we will substitute the next request time with our equation, then send 5 request to service ,for

first request the algorithm send the required data and we noted that for all requests the algorithm

will retrieve data and serve all requests that’s because the next request time according to our

equation will increased the current time about 0.568 second , this is very small time , Figure

6.27 shows the response data from request .

Figure (6.27) Output data for RESTful request for 512 Kb

67

6.2.2 Evaluate equation using 2 M

In this section we use 2 M of retrieve data from RESTful service and depend on our equation

we will substitute the next request time with our equation, then send 5 request to service, we

note according to our equation is the next request time response must be current time + 1558

ms.

When we send 5 requests to our enhanced algorithm the results will be as shown in table 6.2

Table (6.2) Results of evaluate equation using 2 M

We note that the average response time after apply our experiments on enhanced algorithm is

1399.1ms, and according to our equation the response time must be 1310.7 ms.

We used the following equation to calculate the percent of error:

percent error = | (Vtrue - Vused)/Vtrue| * 100

Where: Vtrue is the true value

 Vused is the value used

Number of request Response message

Request 1 JSON data from service (response time 1360.4ms)

Request 2 Refused get data

Request 3 JSON data from service (response time 1320.6 ms)

Request 4 Refused get data

Request 5 JSON data from service (response time 1516.3 ms)

68

 = | (1310.7-1399.1)/1310.7|*100

 = 6.7445%

After found the percent error we can said that the accuracy of our equation is 93.255 % the

precision is very good as it’s affected with data size which retrieved from our services.

6.2.3 Evaluate equation using 3 M

In this section we use 3 M of retrieve data from RESTful service and depend on our equation

we will substitute the next request time with our equation, then send 5 request to service, we

note according to our equation is the next request time response must be current time + 2167.6

ms.

When we send 5 requests to our enhanced algorithm the results will be as shown in table 6.3

Table (6.3) Results of evaluate equation using 3 M

Number of request Response message

Request 1 JSON data from service (response time 1950.4ms)

Request 2 Refused get data

Request 3 Refused get data

Request 4 JSON data from service (response time 1943.3 ms)

Request 5 Refused get data

69

We note that the average response time after apply our experiments on enhanced algorithm is

1946.8 ms, and according to our equation the response time must be 1919.6 ms.

We used the following equation to calculate the percent of error:

percent error = | (Vtrue - Vused)/Vtrue| * 100

Where: Vtrue is the true value

 Vused is the value used

 = | (1919.6 -1946.8)/ 1919.6|*100

 = 1.417 %

After found the percent error we can said that the accuracy of our equation is 98.58 % the

precision is very good as it’s affected with data size which we note when the size of data

increased the accuracy of our equation will increase.

6.2.4 Evaluate equation using 4 M

In this section we use 4 M of retrieve data from RESTful service and depend on our equation

we will substitute the next request time with our equation, then send 10 request to service, we

note according to our equation is the next request time response must be current time + 2621.4

ms .

When we send 10 requests to our enhanced algorithm the results will be as shown in table 6.4

Table (6.4) Results of evaluate equation using 4 M

Number of request Response message

Request 1 JSON data from service (response time 2690.3 ms)

Request 2

Refused get data

70

We note that the average response time after apply our experiments on enhanced algorithm is

2670.5 ms, and according to our equation the response time must be 2621.4 ms.

We used the following equation to calculate the percent of error:

percent error = | (Vtrue - Vused)/Vtrue| * 100

Where: Vtrue is the true value

 Vused is the value used

Number of request Response message

Request 3

Refused get data

Request 4 Refused get data

Request 5 JSON data from service (response time 2650.7 ms)

Request 7 Refused get data

Request 8 Refused get data

71

 = | (2621.4 - 2670.5)/ 2621.4 |*100

 = 1.87%

After found the percent error we can said that the accuracy of our equation is 98.10 % as we

noted when the size of data increased the accuracy of our equation will increase.

6.2.5 Evaluate equation using 5 M

In this section we use 5 M of retrieve data from RESTful service and depend on our equation

we will substitute the next request time with our equation, then send 10 request to service, we

note according to our equation is the next request time response must be current time + 3449.8

ms .

When we send 5 requests to our enhanced algorithm the results will be as shown in table 6.5

Table (6.5) Results of evaluate equation using 5 M

Number of request Response message

Request 1 JSON data from service (response time 3250.3 ms)

Request 2 Refused get data

Request 3 Refused get data

Request 4

Refused get data

72

We note that the average response time after apply our experiments on enhanced algorithm is

3246.4 ms, and according to our equation the response time must be 3201.8 ms.

We used the following equation to calculate the percent of error:

percent error = | (Vtrue - Vused)/Vtrue| * 100

Where: Vtrue is the true value

 Vused is the value used

 = | (3201.8 -3246.4)/ 3201.8|*100

 = 1.393%

After found the percent error we can said that the accuracy of our equation is 98.60 % as we

noted when the size of data increased the accuracy of our equation will increase.

Number of request Response message

Request 5 Refused get data

Request 6 JSON data from service (response time 3242.5 ms)

Request 7 Refused get data

Request 8 Refused get data

73

6.2.6 Results & Justification for Experiment part II

We note when apply our equation on Hussam's algorithm and enhancing it, the client cants

repeated malicious requests because the algorithm will serve the request and check if the service

complete the work, then take another request to serve it. When using this algorithm, we will

reduce the chance of DOS attack on our server and reduce the money cost from each request

which take bandwidth. In our evaluation experiments we noted that the algorithm will perform

well when the data size increased and the accuracy of our equation is very closely for large size

of data, Figure 6.28 shows the accuracy of response time for different size of data.

Figure (6.28) Accuracy of response time from enhanced algorithm

6.3 Summary and Discussion

In this chapter the experiments were presented and discussed in details. The experiments were

done using Windows Azure environment. The experiments consist of two parts. Firstly, we

presented a study of response time for RESTful requests using different sizes of retrieved data.

In this part we get the following equation to estimate the response time:

Tre = (X/ Tc) *10

Tc equal 16000 is appeared according to results of our experiment, its specific for windows

azure and may change when we do the experiment on another cloud environment

The second part of this chapter contains the experiments which test and evaluate the results and

equations of the proposed approach. We calculated the accuracy of our equations using two,

90

92

94

96

98

100

2097152 3145728 4194304 5242880

P
e

rc
e

n
ta

ge

Data in Byte

ACCUARCY OF RESPONSE
TIME

74

three, and five megabyte of retrieved data where we found the accuracy increased when the size

of data increased to be 98.60 % when the size of data is five megabytes.

Table 6.6 discussed the difference of our approach and other related work in preventing DOS

attack on web services

Table (6.6) Summarization of most related work

Author Related work: Problem and proposed solution Our Approach

H. Elkurd and T.

Barhoom

Proposed an algorithm to prevent buffer

overflow DOS Attack in RESTful

Services by comparing the difference

between current time for RESTful

request and the time for previous

RESTful request with the current process

computing time.

In our approach, we aim to

enhance this algorithm by

substitute the constant for next

request time by equation to

estimate the expected time for

next RESTful request.

Irfan siddavatam

Propose comprehensive set of test

mechanism to detect attack on web

services. he set guard time period to

limit request in frame by admin

configuration and preventing buffer

overflow attack

In our approach we add

dynamic different guard time

for each action, thus

computing time is different

from one resource to another

according to data size.

75

Author Related work: Problem and proposed solution Our Approach

Zhang Chao-yang

Proposed to prevent DOS attacks by

adding certification system defense that

define the identity for each client, this

limit the probability of attacks outside

the defined clients.

We found this solution is

costly, in our approach we

can define the identity of

authorized clients as

condition to generate new

tokens.

Gabriel

Provide a security protocol to make

message security implementation by

encrypt message exchange between the

provider and client throw new encrypted

headers in the http request and response

in order to meet RESTful principles.

While the idea is novel and

provide security for RESTful

services equivalent to WS-

Security but it always need to

overload request and response

with extra headers and this is

drawback. Our approach aims

to reduce DOS attack by put

guard time to reduce

consuming the resources by

malicious requests.

Jiang, Lee and

Songlin

Present one such a largescale

longitudinal analysis of publicly

available web services of SOAP-based

and RESTful types

We use this study to be aware

about the quality of service

after apply our approach,

where the response time one

of the important factors of

QoS.

Chapter 7

Conclusion and Future work

76

Conclusion and Future Work

In this research we have designed an approach to get next time for RESTful request and

enhanced algorithm to reduce DOS attack on RESTful services, the approach consists of two

main phases: the first one is to collect and prepare the data set, and the second one for processing

results and enhance the algorithm to evaluate the results.

We conclude after performed experiments that the equation for response time is

Tre = (X/16000) *10

Where Tre is response time and X is data size. The number of 16000 is appeared according to

results of our experiment, its specific for windows azure and may change when we do the

experiment on another cloud environment. We calculate the total receive time we need to

increase the waiting time which as we mentioned is as constant in our experiment, thus the

equation for receive time is Trec = Tre + W

Where Trec is the receive time, Tre the response time, and W is the waiting time for used server

where equal in our experiment to 248 ms

The second part contains the experiments which test and evaluate the results and equations of

the proposed approach. The test gets the expected result, therefore while we are running request

on the requested resource over REST API the new requests will be prevented until the defined

next request time is occurred, thus we calculated the error percent of our equation to be in range

6.7% - 1.3% that means the accuracy of our equation from 93.3% to 98.7% with average 97.31

%.

As a future work, the research approach can be updated through adding the following:

 Find an effective way to prevent the attack without violating REST principles like not save

any history from last request and depend on current state of request and enhance the

approach to prevent the slow connection attack.

 Test the proposed algorithm on different other real cloud like amazon to get general equation

that we can apply it on different environment.

77

The Reference List

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., … Zaharia, M.

(2009). Above the Clouds : A Berkeley View of Cloud Computing Cloud Computing : An

Old Idea Whose Time Has (Finally) Come. UC Berkeley Reliable Adaptive Distributed

Systems Laboratory Http://radlab.cs.berkeley.edu/, 7–13.

Avram, A. (2011). Is REST Successful in the Enterprise? Retrieved April 9, 2015, from

http://www.infoq.com/news/2011/06/Is-REST-Successful

Backere, F. De, Hanssens, B., Heynssens, R., Houthooft, R., Zuliani, A., Verstichel, S., …

Turck, F. De. (2014). Design of a Security Mechanism for RESTful Web Service

Communication through Mobile Clients. IEEE.

Buyya, R., Yeo, C. S., & Venugopal, S. (2008). Market-oriented cloud computing: Vision, hype,

and reality for delivering IT services as computing utilities. Proceedings - 10th IEEE

International Conference on High Performance Computing and Communications, HPCC

2008, 5–13. http://doi.org/10.1109/HPCC.2008.172

Cheng, Y. C., Laih, C. S., Lai, G. H., Chen, C. M., & Chen, T. (2008). Defending on-line web

application security with user-behavior surveillance. ARES 2008 - 3rd International

Conference on Availability, Security, and Reliability, Proceedings, 410–415.

http://doi.org/10.1109/ARES.2008.127

Chepaitis, B. A. (2003). Learning FileZilla in 5 Minutes. FileZilla, pp. 1–7. Retrieved from

http://www.framasoft.net/article1941.html

Collier, M., & Shahan, R. (2015). Fundamentals of Azure Microsoft Azure Essentials. Microsoft

Press A Division of Microsoft Corporation One Microsoft Way Redmond, Washington

98052-6399 Copyright.

Cotroneo, D., Peluso, L., Romano, S. P., Ventre, G., & Napoli, V. C. (2002). An Active Security

Protocol against DoS attacks. Proceedings of the Seventh International Symposium on

Computers and Communications (ISCC’02).

78

Elkurd, H. A., & Barhoom, T. S. (2015). Preventing Buffer Overflow DOS Attack in Restful

Services. International Journal of Information and Communication Technology Research,

5(1), 13–15.

Fielding, R. T. (2015). The REST Architectural Style List - Yahoo Groups. Retrieved April 9,

2015, from https://groups.yahoo.com/neo/groups/rest-discuss/conversations/topics/5841

Fouladi, R. F., Seifpoor, T., Anarim, E., & Engineering, E. (n.d.). Frequency Characteristics

ofDoS and DDoS Attacks, 6–9.

Google Apps Tool. (2014). HAR Analyzer. Retrieved March 30, 2016, from

https://toolbox.googleapps.com/apps/har_analyzer/

Heller, M. (2007). REST and CRUD: the Impedance Mismatch. Developer World. Retrieved

from http://www.infoworld.com/d/developer-world/rest-and-crud-impedance-mismatch-927

Jiang, W., Lee, D., & Hu, S. (2012). Large-scale longitudinal analysis of SOAP-based and

RESTful web services. Proceedings - 2012 IEEE 19th International Conference on Web

Services, ICWS 2012, 218–225. http://doi.org/10.1109/ICWS.2012.45

M. Jones, D. H. (2012). The OAuth 2.0 Authorization Framework: Bearer Token Usage.

Retrieved June 6, 2015, from http://www.hjp.at/doc/rfc/rfc6750.html#sec_4

Marinos, A., & Briscoe, G. (2009). Community Cloud Computing. arXiv:0907.2485v3 [cs.NI]

12 Oct.

Nandgaonkar, S. V, & Raut, P. a B. (2014). A Comprehensive Study on Cloud Computing.

International Journal of Computer Science and Mobile Computing, 3(4), 733–738.

Park, J., Iwai, K., Tanaka, H., & Kurokawa, T. (2014). Analysis of Slow Read DoS attack. In

Information Theory and its Applications (ISITA), International Symposium on (pp. 60–64).

Melbourne, VIC: IEEE.

79

Pautasso, C., Alarcon, R., & Wilde, E. (2014). REST: Advanced Research Topics and Practical

Applications. Retrieved from http://www.springer.com/engineering/signals/book/978-1-

4614-9298-6

Preimesberger, C. (2014). DDoS Attack Volume Escalates as New Methods Emerge. Retrieved

April 9, 2015, from http://www.eweek.com/security/slideshows/ddos-attack-volume-

escalates-as-new-methods-emerge.html

Richardson, L., & Ruby, S. (2008). RESTful Web Services. Vasa.

http://doi.org/10.1109/MIC.2008.130

Road, S., & Kingdom, U. (2008). Turning Software into a Service. IEEE Computer Society,

44(October), 38–44.

Rodriguez, A. (2015, February 9). RESTful Web services: The basics. Retrieved from

http://www.ibm.com/developerworks/library/ws-restful/

Rouached, M. (2013). RESTful Web Services for High Speed Intrusion Detection Systems. IEEE

20th International Conference on Web Services. http://doi.org/10.1109/ICWS.2013.92

Saeed Araban, L. S. (2004). Quality of Service for Web Services. IBM Developerworks Library,

(January), 1–9. Retrieved from http://www.wseas.us/e-

library/conferences/austria2004/papers/482-350.pdf

Sajid, M. (2013). Cloud Computing: Issues & Challenges. International Conference on Cloud,

Big Data and Trust 2013, Nov 13-15, RGPV.

Sandy Mappic. (2012). How Fast are your Web Services? Retrieved June 4, 2016, from

https://blog.appdynamics.com/cloud/how-fast-are-your-web-services/

Sarna, D. E. Y. (n.d.). Implementing and Developing Cloud Computing Applications. Retrieved

from https://books.google.com/books?hl=ar&lr=&id=n1zRBQAAQBAJ&pgis=1

80

Serme, G., De Oliveira, A. S., Massiera, J., & Roudier, Y. (2012). Enabling message security for

RESTful services. Proceedings - 2012 IEEE 19th International Conference on Web

Services, ICWS 2012, 114–121. http://doi.org/10.1109/ICWS.2012.94

Services, W., & Architecture, C. (2001). Web Services Conceptual Architecture (WSCA 1.0).

Architecture, 5(May), 6–7. Retrieved from

http://www.csd.uoc.gr/~hy565/newpage/docs/pdfs/papers/wsca.pdf

Siddavatam, I., & Jayant Gadge. (2008). Comprehensive test mechanism to detect attack on web

services. Proceedings of the 2008 16th International Conference on Networks, ICON 2008.

http://doi.org/10.1109/ICON.2008.4772620

Team, M. (2015). Mashape Docs - Overview. Retrieved March 31, 2016, from

http://docs.mashape.com/overview

Tulloch, M. (2013). Introducing Windows Azure. (A. Hamilton, Ed.). Microsoft Press A Division

of Microsoft Corporation One Microsoft Way Redmond, Washington 98052-6399

Copyright. http://doi.org/10.1201/1086/43311.9.4.20000910/31367.7

Zhang, C. Y. (2011). DOS attack analysis and study of new measures to prevent. Proceedings -

2011 International Conference on Intelligence Science and Information Engineering, ISIE

2011, 426–429. http://doi.org/10.1109/ISIE.2011.66

Zheng, Z., Zhang, Y., & Lyu, M. R. (2014). Investigating QoS of real-world web services. IEEE

Transactions on Services Computing, 7(1), 32–39. http://doi.org/10.1109/TSC.2012.34

