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SUMMARY 

Current brachytherapy treatment planning systems are unable to accurately 

calculate dose distributions in the vicinity of brachytherapy sources having active lengths 

much greater than 5 mm. While low dose-rate 137Cs sources are dosimetrically 

characterized using antiquated along-away tables with simple linear-linear interpolation 

errors in dose calculation exceeding 30% occur due to algorithm inadequacy. The method 

presented in this thesis permits dosimetric characterization of elongated brachytherapy 

sources with active lengths 0 < L < 10 cm for implementation on an FDA-approved 

clinical TPS. Low- and high-energy photon-emitting sources of 103Pd and 192Ir, 

respectively, were examined. 
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1 1 CHAPTER 1 

INTRODUCTION 

Radiation has been used for over a century as a method to combat the spread of 

cancer. 1 , 2  Soon after clinical application of external radiation sources, the idea of 

implanting radioactive sources into diseased tissue was considered.3 This modality is 

known as brachytherapy and was first utilized prior to the First World War. Small seeds 

have been used as the radiation source for much of the recent history of brachytherapy. In 

the past decade, the technology used to make brachytherapy sources has developed to a 

point where threadlike structures are now readily available with high pliability and a 

uniform radioactivity distribution. 

Arguably, the most important job of the medical physicist is accurately 

determining the dose a patient is going to receive during treatment. Much work has been 

accomplished by the radiotherapy community to improve the ability of medical physicists 

to predict the dose. For brachytherapy, this has meant modeling the dose distribution 

from a small source. At the outset of the modality, look up tables were used to estimate 

dose. 4,5,6 As technology became more complex, so did the algorithms; particularly when 

computers became commonplace. Currently, these algorithms superimpose precalculated 

source dose distributions over patient anatomy that is obtained using either CT or MRI 

data so that the dose estimation is determined for each individual patient implant. The 

American Association of Physicists in Medicine (AAPM) Task Group 43 (TG-43) 

established the global standard for brachytherapy dose calculation using these algorithms. 

7,8,9 

The current approach for dose calculation relies on superposition of single-source 

dose distributions obtained in a liquid water phantom of a fixed volume for radiation 

scattering. The dose distribution is assumed to be cylindrically symmetrical. Dose from 
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each source is calculated and then the total dose from all sources is taken to be the sum of 

the individual sources.  

This model works well for brachytherapy seeds with active lengths L < 0.5 cm; 

however, the medical community is considering the use of sources that cannot accurately 

be modeled as point sources.10,11,12 Elongated sources, assumed to be substantially greater 

than 0.5 cm in length, have a different dose profile than conventional brachytherapy 

sources because of attenuation along the length of the source. Additionally, the point-

source approximation breaks down at close distances from the source (i.e., r < L), making 

it inadequate to consider the elongated source as merely the sum of a series of individual 

seeds. While a line source can be modeled using Monte Carlo methods for radiation 

transport simulations, this computational process is too resource intensive for most 

hospitals to be considered for individualized patient treatment planning in a clinical 

setting. The series of AAPM TG-43 reports (i.e., Nath et al. 1995, Rivard et al. 2004, 

Rivard et al. 2007) mentioned above were developed specifically for seed-like sources 

and therefore has a few specific problems that need to be addressed in order for accurate 

dose calculations to be made within the treatment planning systems (TPS). 

This thesis aimed to determine if an elongated source can be accurately modeled 

using smaller lengths. The goal was to develop a mathematical model that combined 

smaller sources in such a way that the dose distribution was sufficiently similar to the 

elongated brachytherapy source. Monte Carlo simulations were conducted to evaluate the 

dose distributions of various lengths of 103Pd and 192Ir. This work was performed in 

conjunction with the AAPM TG-143, which has the charge of developing a new dose 

calculation formalism and associated guidelines for clinical implementation of elongated 

brachytherapy sources of photon emitting radionuclides. 
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2  CHAPTER 2 

BACKGROUND 

Manufacturers produce radioactive sources in a variety of shapes, increasing the 

clinical possibilities for brachytherapy treatment. One particular shape that needs further 

investigation is a flexible threadlike source which may be cut to the desired length. 

2.1 AAPM TG-43 Dosimetry Protocol for Interstitial Brachytherapy Sources 

The AAPM TG-43U1 formalism is currently used in brachytherapy TPS to 

calculate clinical dose distributions.8 The formalism has 1D and 2D formats: the point-

source approximation and the line-source approximation. The latter formalism is 

generally used in this thesis, and is represented with the following equation: 

),()(
),(

),(
),(

00



 rFrg

rG

rG
SrD L

L

L
K  (1) 

where r is the distance (cm) from the center of the active source to the point of interest, θ 

is the polar angle (degrees) to the point of interest, SK is the air-kerma strength of the 

source (μGy m2 h-1), Λ is the dose-rate constant, GL(r,θ) is the line-source geometry 

function, gL(r) is the line-source radial dose function, and F(r,θ) is the 2D anisotropy 

function. The subscript 0 refers to the reference point, which is taken to be r01 cm and 

θ090º as shown in Figure 2-1. 
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Figure 2-1 Coordinate system used for brachytherapy dosimetry calculations in TG-43U. 

The dose-rate constant, Λ, is defined as the ratio of dose rate to water at the reference 

position in a water phantom divided by the source air-kerma strength.  

KS

rD ),( 
  (2) 

The geometry function accounts for the spatial distribution of radioactivity within the 

source. For the purposes of this thesis, the source geometry is cylindrically-symmetric as 

is most always used in a clinical setting. GL(r,θ) is defined as: 
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where β is the angle (radians) that is subtended by the ends of the hypothetical line source 

with respect to the point of calculation. (See Figure 2-1) gL(r) takes into account the 

effect of absorption and scatter along the transverse plane and is normalized to unity at r0.  
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F(r,θ) corrects for the change in dose as the polar angle changes for a fixed radius when 

dividing out the effect of the geometry function.  
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2.2 Dose calculation models for elongated brachytherapy sources 

Karaiskos’ Method 

The first of the methods that is being used for comparison was published by 

Karaiskos et al.10,13 Limiting their calculations to source lengths between 3.0 cm and 7.0 

cm, and using the TG-43 formalism, the parameters necessary to calculate dose are 

calculated in the following way. 

1. Tables exist for F(r,θ) for 3.0 cm, 5.0 cm and 7.0 cm. Values of F(r,θ) are 

interpolated from these existing tables.  

2. g(r) is set equal to g(r) for L = 5.0 cm. 

3. GL(r,θ) is calculated in the following manner: 

),(
cm0.5
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4. Λ is calculated in the following manner: 

0 0
5.0cm

5.0cm 0 0

( , )

( , )
L

L

G r

G r




    (7) 

From these parameters, it is possible to calculate the dose using the TG-43 formalism. 

The Karaiskos’ Method has drawbacks in clinical implementation. First, the dose 

for L < 3.0 cm cannot be calculated using this method, which is not a reasonable 

condition to place upon clinical practice given the goal of developing a general dose 

calculation method for elongated brachytherapy sources. Second, it is not possible to 
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calculate dose for lengths that are curvilinear, a clear drawback in clinical situations as 

bending of the elongated source is most likely to occur after implantation. If a physician 

would like to place a source along the seam of a surgical cut, for example in a lung 

resectioning that would benefit from additional radiation treatment to improve the 

likelihood of cancer eradication, it becomes necessary to bend the source length to 

conform to the tumor bed. Third, this method cannot be used in a conventional 

brachytherapy TPS. In most brachytherapy TPS, F(r,θ) and g(r) are the dosimetry 

parameters with values that are inputted by then clinical brachytherapy dose calculations 

are performed. The Karaiskos’ Method deviates unacceptably from the AAPM TG-43 

dose calculation method for this to be implemented in a conventional brachytherapy TPS. 

For example, Λ has a novel definition in the Karaiskos’ Method, as does GL(r,θ). Because 

there is no way to alter the methods used in the TPS to calculate the parameters, this 

method is rendered unusable clinically with current brachytherapy TPS. 

Point-segmented source method (PSS) 

Developed by Meigooni et al,11 the PSS Method approximated a linear 

brachytherapy source by dividing it into 0.5 or 1.0 cm lengths and then treating each 

length as if it was a point source. In order to calculate a series of point sources, Meigooni 

et al used the AAPM TG-43 1D dose calculation formalism that is contained in the 

AAPM Task Group 43 Report, as defined by the following: 

)()(
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00

0 rrg
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rG
SrD anL
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L
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This 1D formalism is similar to that of the 2D formalism. F(r,θ) has been replaced with a 

1D anisotropy function, which Meigooni et al defined as 
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The simulation was a straightforward approximation, where the extended source 

was broken up into segments, and the formalism was then applied. Two geometries were 

calculated: the first divided a 3.0 cm segment into six points spaced 0.5 cm apart while 

the second divided a 3.0 cm segment into three points spaced 1.0 cm apart. Once the 

point sources were positioned, the superposition principle was applied, summing the 

contribution from each point at every point in the grid location within the volume of 

interest.  

3.0 cm line source

0.5 cm point spacing

1.0 cm point spacing

3.0 cm line source3.0 cm line source

0.5 cm point spacing0.5 cm point spacing

1.0 cm point spacing1.0 cm point spacing
 

Figure 2-2 Point-segmented source method to approximate a 3.0 cm long brachytherapy source 
using spacing of 0.5 cm and 1.0 cm. 

In order to account for radiation attenuation along the source long-axis, the point 

source parameters were calculated with dummy seeds in place as well, in addition to the 

simulations outlined above. The point source was placed in and amongst placement 

holders for source lengths in order to assure that proper attenuation conditions were met. 
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3.0 cm line source

0.5 cm point spacing

1.0 cm point spacing

3.0 cm line source3.0 cm line source

0.5 cm point spacing0.5 cm point spacing

1.0 cm point spacing1.0 cm point spacing

 

Figure 2-3 Attenuation correction for PSS. The circles represent the placement of point sources in 
the Monte Carlo simulations while the lines are dummy source lengths that were placed to 
account for attenuations conditions. 

Monte Carlo simulations were calculated for the 3.0 cm RadioCoil™ using a dose 

grid of 0.5 cm spacing in the z (along the length of the source) and y (away from the 

source) directions. (See Figure 2-4) Additionally, in order to implement the PSS Method 

in the brachytherapy TPS, the parameters necessary to perform the dose calculations 

using the AAPM TG-43 formalism were calculated using Monte Carlo simulations as 

well. The parameters were inputted into brachytherapy TPS and the PSS Method was 

clinically implementable. This was an improvement over the Karaiskos’ Method. 

y

r

θ

z

y

r

θ

z  

Figure 2-4 Coordinate system used for PSS, LSS, and TLS Methods 
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For points where y ≥ 1.0 cm, the PSS Model under-approximated the Monte Carlo 

calculated dose by as much as 8% for the 0.5 cm spacing and by 12% for the 1.0 cm 

spacing. For y < 1.0 cm, these errors increased further. Differences as high as 34% at 

specific points were reported.  

One concern with the PSS Method is the dose grid size used for the Meigooni et 

al Monte Carlo simulations. The calculation dose grid was 1.0 mm and volume averaging 

over the voxels smoothed out dose distributions in regions with higher gradients. 

Additionally, the PSS Method limitations in source length (L < 3.0 cm can not be 

modeled), which makes this method unusable in a clinical setting.  

Line-segmented source (LSS) Method  

The LSS Method is similar to the PSS Method, except instead of using point 

sources to model the active lengths of radioactivity, line segments were used, in 0.5 and 

1.0 cm lengths. (See Figure 2-5 and Figure 2-6) 

1.0 cm line spacing

0.5 cm line spacing

3.0 cm line source

1.0 cm line spacing1.0 cm line spacing

0.5 cm line spacing0.5 cm line spacing

3.0 cm line source3.0 cm line source

 

Figure 2-5 LSS approximation for a 3.0 cm length, using spacing of 0.5 cm and 1.0 cm. 

The 2D formalism introduced in the AAPM TG-43U1 report was used in the LSS 

Method in order to perform calculations in the TPS. Monte Carlo simulations were 

performed to obtain the parameters necessary for TG-43 implementation in the TPS.  
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3.0 cm line source

0.5 cm line spacing

1.0 cm line spacing

3.0 cm line source3.0 cm line source

0.5 cm line spacing0.5 cm line spacing

1.0 cm line spacing1.0 cm line spacing

 

Figure 2-6 Attenuation correction for LSS. The thick lines are the sections that are radioactive. 
The thin lines represent dummy sources that were placed in the Monte Carlo simulations to 
account for attenuations. 

For both simulations, meaning when the 3.0 cm source was divided into 6 

segments or 3 segment, comparison of the Monte Carlo simulation and the dose 

calculations performed by the TPS using the LSS model (without source attenuation) 

showed 4% agreement when θ = 90°, for values of r ranging from 0.5 cm to 2.0 cm. 

However, the differences were as high as 14%, which occurred at θ = 14° and r = 2.06 

cm. When source attenuation was taken into account, differences increased even further 

to as much as 21%, again along the length of the source, just outside of the cap (1.5 cm < 

z < 2.5 cm).  

Close distance approximation discrepancies were high enough to render this 

method unusable in clinical settings, as the AAPM usually demands a standard of care 

with accuracy of at most 3%. Additionally, the LSS Method suffers from many of the 

same problems as the PSS Method by not being implementable in the clinic and it cannot 

approximate lengths less than 3.0 cm with conventional brachytherapy TPS. 

Two-line-source (TLS) Method 

The TLS method to correct for dose anisotropy along the source length was 

developed by van der Laarse et al.12 For L > 1.5 cm, the total length is divided into two 
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lengths: two peripheral lengths ranging between 0.75 cm and 1.25 cm, and a series of 1.0 

cm inner lengths. For example, a 4.4 cm length would be divided into four segments: two 

outer segments of 1.2 cm each and two inner segments of 1.0 cm. To determine the 

various components for dose calculation, the following rules are used. 

1. The geometry function is calculated according to the expression recommended by 

the AAPM TG-43U1 formalism for a line source: 

Λ is obtained in a way similar to that used by Karaiskos et al10 by interpolating or 

extrapolating over the Λ values for 0.5 and 1.0 cm wires and correcting for the 

geometry by dividing out GL(r,θ) for both lengths:  

0.5cm 1.0cm 0.5cm

0 0 0.5 0 0 1 0 0 0.5 0 0

0.5cm

( , ) ( , ) ( , ) ( , ) 1.0cm 0.5cm
L

L

L

G r G r G r G r   
    

     
 (10) 

2. If a wire length is smaller than 1.0 cm, gL(r)F(r,θ) are interpolated from tables 

containing data for L = 0.5 and L = 1.0 cm.  

3. g0.5cm(r) = g1.0cm(r), therefore g1.0cm(r) is used for all lengths.  

The TLS Method was a great improvement over the previously mentioned 

methods. Agreement with Monte Carlo simulations was 5.6% along the central axis of 

the source and some locations within the grid space had agreement within 2%. However, 

this method suffers from the same problem of an inability to readily apply it in a clinical 

setting. Λ has a novel definition in this study that differs from that which is used in the 

TPS, although this could be calculated offline as it is a scalar value. However, with the 

change in definition of gL(r) and F(r,θ), and the complexity of the calculations in the TLS 

Method, this would become a non-trivial problem that would need to be overcome for 

clinical use. Therefore, the TLS Method is rendered unusable outside of theoretical uses 

within the bounds of research.  
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2.3 Areas for improvement and rationale for research 

As has been previously stated, the methods described in the literature suffer from 

a myriad of problems, the most pressing one being a lack of implementability within the 

current TPS models for brachytherapy calculations. In order for a method to be 

considered useful clinically, it needs to solve for gL(r) and F(r,θ) while using the standard 

definition for the geometry function. Additionally, the method needs to be usable for any 

length that may possibly be used clinically, which is technically only limited to the 

lengths that are produced by the vendors.  

In this work, we take the first steps in the development of a method that will 

divide lengths into smaller segments that are more manageable. Using Monte Carlo 

simulations for various lengths of straight wire, we determined gL(r) and F(r,θ) using the 

Tufts technique developed by Rivard et al.15 Unlike previous methods, this technique 

does not redefine any of the parameters that are laid out by TG-43U, which ensures that 

the method may be implemented within a conventional brachytherapy TPS. Once gL(r) 

and F(r,θ) are calculated for each length, this data was inputted into the Pinnacle TPS (v 

8.0m, Phillips Medical Systems, Cleveland, OH). Using the Pinnacle TPS, a variety of 

lengths were compared to test the efficacy of the method. This testing was performed 

with the IBA Dosimetry OmniPro I’mRT radiation dosimetry software (v.1.6, ibaDosimetry, 

Schwarzenbruck, Germany). 
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3  CHAPTER 3 

METHODS 

3.1 Overview 

In order to ensure the ability to use our method within the TPS, data necessary for 

input was identified. As the method implemented by the TPS was based on the updated 

AAPM TG-43 formalism, we used that as our guiding principle. For calculating the dose, 

it is necessary to provide the TPS with gL(r), F(r,θ) and Λ. These values are length 

dependent, so it becomes necessary to input these functions for each length that is 

intended to be used in the TPS.  

It was decided that we would model both a 3.0 cm length and 5.0 cm length using 

various smaller lengths and compare that data to Monte Carlo simulations. These lengths 

were chosen for comparison to Meigooni et al.11 (3.0 cm) and van der Laarse et al.12 (5.0 

cm). To that end, Monte Carlo simulations were performed for a variety of lengths for 

both radionuclides and each Monte Carlo simulation was then used to calculate gL(r) and 

F(r,θ) for each length. These values were inputted into the TPS, and the TPS was used to 

“build” longer brachytherapy sources from various smaller lengths. 

3.2 Geometry of wires 

Two types of brachytherapy wires (103Pd and 192Ir) were modeled. 

Palladium 

The 103Pd RadioCoil™ geometry was used in order to ensure that results were 

comparable to previously published work by the Meigooni team. RadioCoil™ sources are 

a flat ribbon of cyclotron-activated 102Rh (ρ = 12.45 g/cm3), which produces radioactive 

103Pd uniformly distributed throughout by the 102Rh(p,n)103Pd reaction. This metal is then 
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coiled into a 0.8 mm outer diameter ribbon with a hollow core, with lengths ranging from 

1.0 cm to 6.0 cm at 1.0 cm increments. The core was taken to be water (ρ = 0.998 g/cm3) 

instead of air. This was justified by running a Monte Carlo simulation with an air core 

and comparing it to the same length with a water core. The ratio of the results from a 

water core to those of an air core averaged 1.0061 along the transverse plane and 1.0070 

throughout the space. One 3.0 cm length Monte Carlo simulation was completed with a 

core of air to ensure that the results with a water core were accurate. See Figure 3-1. 

 

Figure 3-1 103Pd RadioCoil™ geometry 

Iridium 

The 192Ir model used was comparable to what has already been published in the 

literature by the van der Laarse team. The wire is platinum encapsulated with a 0.1 mm 

core that is 192Ir (ρ = 21.68 g/cm3) with a 0.1mm sheath of platinum (ρ = 21.45 g/cm3), 

yielding a total diameter of 0.3mm. See Figure 3-2. 

0.1mm

0.1mm

 

Figure 3-2 192Ir geometry 
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3.2 Monte Carlo methods for radiation transport 

Monte Carlo simulations were performed on the MCNP5 v5 cluster established by 

Prof. Rivard at Tufts Medical Center and the photoatomic cross sections based on 

EPDL97. 16,17,18 The nine good practices for Monte Carlo simulations, as laid out in 

AAPM TG-43U, were followed.8 For both radionuclides, source lengths of 0.1 cm 

through 1.0 cm (step 0.1 cm), 1.5 cm, 2.0 cm, 2.5 cm, and 3.0 cm through 10.0 cm (step 

1.0 cm) were calculated. Cylindrical coordinates were used for the sampling geometry, 

with the y-axis defined along the source and the z-axis is away from the source. (Figure 

2-1) The origin was placed in the center of the source segment. While reviewing the 

results of previous studies, we questioned whether the sampling space had adequate 

spatial resolution to accurately estimate the dose distribution. In order to ensure 

appropriate resolution, the MC spatial resolution was 0.05 cm, although the range varied 

for the two radionuclides. In both cases, the Monte Carlo simulations calculated kerma 

using linear track-length estimators or energy deposition (F6 tally) and the Monte Carlo 

output was in MeV/g/starting particle, which directly correlates to absorbed dose rate, so 

further calculations were not needed to obtain the absorbed dose rate.19,20  

An F6 tally track-length estimator for kerma was used for computational 

efficiency since differences with an absorbed dose estimator (e.g., *F8 MCNP5 tally) 

would be negligible over the regions examined and for the photon energies of the two 

radionuclides. In the case of 103Pd, the low-energy source, this assumption was safe since 

the secondary charged particle (i.e., electron) range was much less than the voxel size. 

For the high-energy photo-emitter 192Ir, secondary particle/electron range and electron 

emissions from the thinly encapsulated source needed consideration. Ballester et al. 

reported that collisional kerma and absorbed dose are equivalent within 1% beyond 0.6 

mm from an 192Ir source.21 Additionally, they reported that the electron component to 

dose exceeded 1% only for r < 0.2 cm. To test this further for the source geometries used 

in this thesis, 1) an F6 collisional kerma tally was compared to a *F8 absorbed dose tally, 
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both with photon and electron transport, and 2) a *F8 tally with a pure photon-emitting 

source was compared to the same estimator also having electron source contributions, 

again with photon and electron transport.21 These comparisons were performed using the 

5.0 cm long 192Ir source. The kerma:dose comparison yielded an average ratio of 

1.000±0.001 (k = 1 ) for 0.2 < r < 5.0 cm. The electron contribution to total dose for 0.2 < 

r < 5.0 cm was less than 0.1% ± 0.05% which was in good agreement with Ballester et al. 

for these distances.21 It was concluded that the collisional kerma tally (F6) provided an 

acceptable approximation. 

y

z

(0,0)

Cylindrical voxels

y

z

(0,0)

Cylindrical voxels

 

Figure 3-3 Monte Carlo coordinate system. Cylindrical voxels were used to calculate the dose 
from the source. The voxels were defined by z, the distance along the source and y, the distance 
away from the source.  

Monte Carlo simulations of the 103Pd sources 

The 103Pd photon spectrum used was taken from the NuDat database.22 The dose 

grid ranged from 0 cm < z <10 cm and 0.2 cm < y < 12.5 cm, placed in a spherical water 

phantom with a radius of 15.0 cm (ρ = 0.998 g/cm3). On average, the statistical 

uncertainty of the runs was 0.0111. See Table 3-1. 

Monte Carlo simulations of the 192Ir sources 

The 192Ir photon spectrum used was taken from the NuDat database.23 The 192Ir β 

spectrum was not considered as it does not significantly contribute to the dose in this 

case.21 The dose grid ranged from 0 cm < z <15 cm and 0.2 cm < y < 12.5 cm, placed in a 



17 

spherical water phantom with a radius of 40.0 cm (ρ = 0.998 g/cm3). On average, the 

statistical uncertainty of the runs was 0.0026. See Table 3-1. In the case of both 103Pd and 

192Ir, the y-axis dose grid began at 0.2 cm so that all the voxels were outside of the source.  

Table 3-1 Average statistical uncertainties for each of the Monte Carlo simulations 

Length (cm) 192Ir 103Pd 
0.1 0.00246 0.01076  
0.2 0.00325 0.01426  
0.3 0.00248 0.01096  
0.4 0.00240 0.01100  
0.5 0.00238 0.01134  
0.6 0.00314 0.01478  
0.7 0.00314 0.01489  
0.8 0.00231 0.01503  
0.9 0.00232 0.01079  
1.0 0.00239 0.01117  
1.5 0.00243 0.01116  
2.0 0.00250 0.01063  
2.5 0.00248 0.01094  
3.0 0.00248 0.01081  
4.0 0.00247 0.01043  
5.0 0.00256 0.00952  
6.0 0.00294 0.01257  
7.0 0.00291 0.00891  
8.0 0.00305 0.00874  
9.0 0.00230 0.00799  
10.0 0.00217 0.00724  

3.3 Preparing Monte Carlo output data for TPS input 

In order to use Pinnacle to independently calculate the dose distributions, the data 

for gL(r) and F(r,θ) needed to be derived using the output from the Monte Carlo 

simulations, which was done using the Tufts technique.15 The Tufts technique takes the 

following steps: 1) identify the cylindrical axis of symmetry of the dose distribution, 2) 

identify the effective length Leff, 3) derive the effective radial dose function, 4) derive the 

2D anisotropy function and 5) choose a virtual dose-rate constant at the reference point 

that reproduces the dose values yielded by the Monte Carlo simulations. The geometry 

function, GL(r,θ), was calculated based on the 2004 AAPM TG-43U1 recommendations, 
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as explained above, which was then used in conjunction with the MCNP5 output data. 

Then g(r)F(r,θ) was calculated as follows: 
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rFrg




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  (11) 

Setting F(r,θ0) = 1, the data for g(r)F(r,θo) = g(r). By plotting g(r)F(r,θo), it 

becomes possible to calculate g(r) for any r, as there is no angular dependence. Excel 

trendline tools were used to determine formulas that accurately described the various 

regions of the graph. The behavior of the graph had three distinct regions: y < 1.0 cm, 

1.0 cm ≤ y ≤ ymax, and y > ymax, ymax being the farthest tabulated distance on the transverse 

plane (y-axis) by the Monte Carlo simulations (Figure 3-4 and Figure 3-5). Beyond ymax, 

it was then necessary to extrapolate the data, since the TPS extends beyond the range 

given by ymax. For 192Ir, ymax = 12.5 cm and for 103Pd, ymax = 10.0 cm.  

In the first region, y < 1.0 cm, the dotted line in Figure 3-4 and Figure 3-5, a 

fourth-order polynomial was used to estimate the shape of the curve. For this region of 

the graph, there were only 17 data points in each case and the fourth order was visually 

the best fit for the data, resulting in R2 > 0.999 in all cases. In the region where 

1.0 cm < y < ymax, the solid line in Figure 3-4 and Figure 3-5, a sixth-order polynomial 

was used, again because, for both radionuclides, the polynomial fit the graph best and 

R2 > 0.999 in all cases. The third region had to be treated differently for 103Pd and 192Ir 

because the drop-off at large distances was greater for 103Pd. The initial plan for 

characterizing the region defined by y > ymax was that a linear extrapolation would be 

appropriate, given the shape of the curve in the far region. Intending to use the last few 

data points from the given data, linear approximations were made for both graphs. When 

this was done for 192Ir, the linear approximation was reasonable and fit the curve nicely. 

However, for 103Pd, the linear approximation resulted in a g(r) curve that fell below zero, 

which is not physically possible. As the values at the far distance were so close to zero, 
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when the values were being tabulated for r > ymax, a nearest neighbor extrapolation was 

used setting g(r > ymax) = g(ymax), meaning that when r > ymax, the value of g(r) at that 

point was set equal to the value of g(r = ymax).  
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Figure 3-4 g(r)F(r,θ0) for 103Pd. The dashed portion is for 0.2 < r < 1.0 cm 
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Figure 3-5 g(r)F(r,θ0) for 192Ir The dashed portion is for 0.2 < r < 1.0 cm. 

The TPS requires that g(r) and F(r,θ) be put in terms of g(y) and F(y,z). In order 

to relate one to the other, simple geometry was used. The following equations explain the 

relationship.  

2 2r y z   (12) 

1tan
y

z
     

   (13) 

In this Cartesian coordinate system, it is simple to use the z and y coordinates to 

determine the correct g(r) for any point, using equation 12. The angular component is 

taken into account during GL(r,θ) calculation. For each length, the values of g(r) were 

tabulated for a grid that went from 0 to ymax in both the z and y direction. Using these 

tables, FFIT(r,θ) was calculated in the following way:  
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It is not necessary to make any correction for the angular component of FFIT(r,θ) because, 

as stated above, this was already satisfied in the calculation of GL(r,θ). In the region 

r<0.2 cm, a nearest neighbor extrapolation was applied in order to complete the table. 

These values were then tabulated into two tables for each radionuclide length. Once these 

two tables were derived for each source length, the resolution of both tables was reduced 

as TPS have limitations in terms of grid size. Further, high-resolution exceeded clinical 

requirements. Because of these factors, the resolution of the fit of g(r) and F(r,θo) were 

set to 0.2 cm and 0.1 cm respectively. In the case of 103Pd, 0.0 cm ≤ gFIT(r0) ≤ 15.0 cm, 

step 0.2 cm (51 datapoints) and FFIT(r,θ) spanned from 0.0 cm ≤ y ≤ 10.0 cm, step 0.1 cm, 

and 0.0 cm ≤ z ≤ 10.0 cm, step 0.1 cm (10,201 datapoints). This meant that for 192Ir, 0.0 

cm ≤ gFIT(r0) ≤ 20.0 cm, step 0.2 cm (101 datapoints) and FFIT(r,θ) spanned from 0.0 cm 

≤ y ≤ 15.0 cm, step 0.1 cm, and 0.0 cm ≤ z ≤ 12.5 cm, step 0.1 cm (19,027 datapoints). In 

order to speed the process and ensure accuracy, this data was converted into a computer 

script that automated data input into the Pinnacle TPS.  

3.4 Pinnacle TPS 

To evaluate the accuracy of the method, it was decided to create a series of 3.0 cm 

segments and 5.0 cm segments, made up from various lengths in order to complete the 

comparison with the published literature. 3.0 cm was broken into 1, 3, 4, 5, 6, 10, 15 and 

30 segments. 5.0 cm was broken into 2, 5, 10, 25 and 50 segments. Table 3-2 details the 

3.0 cm lengths used for each trial and Table 3-3 details the 5.0 cm lengths used.  
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Table 3-2 Segment lengths used in Pinnacle to approximate a 3.0 cm source length. 

Segment length (cm) Number of Segments Source Strength (U) 
3.0 1 1.0000 
1.5 2 0.5000 
1.0 3 0.3333 
0.8/0.7 4 (2 each) 0.2667, 0.2333 
0.6 5 0.2000 
0.5/1.0 4 (2 each) 0.1667, 0.3333 
0.5 6 0.1667 
0.3 10 0.1000 
0.2 15 0.0667 
0.1 30 0.0333 

Table 3-3 Segment lengths used in Pinnacle to approximate a 5.0 cm source length 

Segment length (cm) Number of Segments Source Strength (U) 
5.0 1 1.000 
2.5 2 0.500 
1.0 5 0.200 
0.5 10 0.100 
0.2 25 0.040 
0.1 50 0.020 

Within Pinnacle TPS, the calculation space (Table 3-4) was chosen to be large enough to 

ensure an accurate depiction of the dose distribution. The dose grid was limited by the 

TPS and was set to 0.2 cm. In clinical practice, 0.2 cm accuracy for a brachytherapy 

source placement is adequate. 
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Table 3-4 Description of the calculation space within Pinnacle where dose calculations were 
performed. The X axis described the plane that the source was placed in, the Y axis is along the 
source, and the Z axis is away from the source.  

 X Y Z 
Calculation Space    

Voxel Size (cm) 0.25 0.25 0.25 
Data Points 208 208 208 
Spatial Extent (cm) 52.0 52.0 52.0 

 
Dose Grid    

Voxel Size (cm) 0.2 0.2 0.2 
Data Points 3 201 201 
Spatial Extent (cm) 0.6 40.2 40.2 

This calculated space was duplicated for all of the line source configurations in Table 3-2 

and Table 3-3. Each configuration was then built within the TPS, calculated, and the data 

exported. 

3.5 IBA Dosimetry OmniPro-I’mRT 

In order to compare the results of the 3.0 cm line segments with the various 

configurations, OmniPro-I’mRT by IBA Dosimetry was used. There were a number of 

reasons that this type of analysis was performed. Fluence maps, depicting dose 

distributions, can be exported from Pinnacle and directly imported into OmniPro-I’mRT 

without any formatting. Extra steps to perform the comparisons within Excel would have 

been required. OmniPro-I’mRT can perform all of the same calculations that Excel can 

handle without programming, as well as allowing visual depictions of the dose 

distributions comparisons. 

The Gamma method 24 was employed to compare the dose of the L = 3.0 cm or L 

= 5.0 cm source lengths to all configurations from Table 3-2 and Table 3-3, respectively, 

to the dose at the same point. This permitted a threshold both in terms of distance and 

dose. The calculation that the software performs is defined by the following: 
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rm is the position of a single measurement point, rc is the spatial location of the 

calculated distribution relative to the measurement point, ΔdM is the passing criteria for 

isodose distance, ΔDM is the passing criteria for dose, Dc(rc) is the calculated dose in rc 

and Dm(rm) is the measured dose in rm. Two comparisons were done. The more strict 

comparison defined ΔdM as 0.1 cm and ΔDM was chosen to be 1%. Additionally, ΔDM was 

chosen to be 2% (ΔdM remained the same) for comparison. 
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4  CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Excel comparison 

As a quick check of principle, the superposition principle was applied within 

Excel, taking the MC output files and directly using them to sum to various lengths. The 

same comparisons were made in Excel as were made in OmniPro I’mRT, as detailed in 

Table 3-2 and Table 3-3. In all cases, the superposition principle worked as expected. 

Along the transverse plane, the average ratio of the superposition to the solid source was 

1.007 for 103Pd and 0.999 for 192Ir. Overall, the average ratio over the whole grid was 

1.051 for 103Pd and 1.009 for 192Ir. For both 103Pd and 192Ir, the instances where the 

sources were made up of variable lengths (i.e. two 0.5 cm lengths and two 1.0 cm lengths) 

produced the worst results, particularly along the transverse plane. One reason for this 

could be that the segments were treated as if they had the same activity. However, 

weighting of the segments would have to reflect the relative mass that each length 

comprises. Results improved as the number of lengths used were reduced, with the best 

results stemming from the long source (3.0 cm or 5.0 cm) being divided into two pieces 

(1.5 cm or 2.5 cm). This was expected because the approximation of attenuation along 

the length of the source is more accurate for a longer segmentation (or fewer segments).  
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Table 4-1 The ratio of the segmented source to the full source in Excel using the raw 103Pd Monte 
Carlo data. 

   Excel Superposition ratios 
Total Length 
(cm) Length of Segments 

Number of 
Segments Average Max Min 

Transverse 
plane average 

3 1.5 cm 2 1.009 1.212 0.901 1.001 
3 1.0 cm 3 0.999 1.188 0.681 1.008 
3 2x0.5 cm + 2x1.0 cm 4 1.056 1.479 0.373 0.966 
3 2x0.8 cm + 2x0.7 cm 4 1.025 1.234 0.735 1.002 
3 0.6 cm 5 1.018 1.218 0.635 1.015 
3 0.5 cm 6 1.026 1.251 0.561 1.016 
3 0.3 cm 10 1.088 1.328 0.956 1.031 
3 0.2 cm 15 1.130 1.424 0.969 1.049 
3 0.1 cm 30 1.011 1.525 0.685 0.763 
       
5 2.5 cm 2 1.004 1.150 0.933 1.000 
5 1.0 cm 5 1.019 1.168 0.957 1.011 
5 0.5 cm 10 1.043 1.272 0.847 1.021 
5 0.2 cm 25 1.110 1.440 0.969 1.030 
5 0.1 cm 50 1.210 1.695 1.022 1.113 

Table 4-2 The ratio of the segmented source to the full source in Excel using the raw 192Ir Monte 
Carlo data. 

   Excel Superposition ratios 

Total Length Length of Segments 
Number of 
Segments Average Max Min 

Transverse 
plane average 

3 1.5 cm 2 1.002 1.068 0.983 1.000 
3 1.0 cm 3 1.003 1.115 0.989 1.000 
3 2x0.5 cm + 2x1.0 cm 4 1.009 1.380 0.781 0.979 
3 2x0.8 cm + 2x0.7 cm 4 1.003 1.166 0.776 0.995 
3 0.6 cm 5 1.006 1.199 0.992 1.001 
3 0.5 cm 6 1.007 1.242 0.853 1.000 
3 0.3 cm 10 1.013 1.376 0.994 1.000 
3 0.2 cm 15 1.019 1.511 0.995 1.001 
3 0.1 cm 30 1.033 1.701 0.997 1.002 
       
5 2.5 cm 2 1.001 1.069 0.968 1.000 
5 1.0 cm 5 1.003 1.121 0.991 1.001 
5 0.5 cm 10 1.007 1.245 0.994 1.001 
5 0.2 cm 25 1.010 1.522 0.959 0.968 
5 0.1 cm 50 1.022 1.709 0.998 1.004 
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(a) (b) 

Figure 4-1 Plot of the number of line segments versus the transverse plane average dose for (a) 
103Pd and (b) 192Ir. 

  

  

(a) (b) 

Figure 4-2 Sample plot of the dose ratio of segmented source to the intact source for  
(a) 5.0 cm = 1.0cm+1.0cm+1.0cm+1.0cm+1.0cm and (b) 3.0 cm = 1.0cm+1.0cm+1.0cm. For 
both, 103Pd is on the top and 192Ir is on the bottom. 
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Figure 4-3 Plot of F(r,θ) for a variety of r values. 103Pd is on the left and 192Ir is on the right. The 
topmost pair is for L = 0.5 cm, the middle pair is for L = 1.0 cm and the bottom pair is for L = 5.0 
cm. As expected, F(r,θ) for all values approaches 1 as θ approaches 90º. This is expected as this 
is the reference point (r=1.0 cm, θ = 90º) and was chosen to be 1. Note that the F(r,θ) values for L 
= 0.5 cm and L = 1.0 cm are comparable. This was previously reported in the literature, however 
had not been quantified. 
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Figure 4-4 g(r) for L = 0.5 cm, L = 1.0 cm and L = 5.0 cm. 103Pd is on the left and 192Ir is on the 
right. 

4.2 Pinnacle results 

A visual inspection of the Pinnacle results indicated agreement with the Excel 

results. Isodose lines that intersected the transverse plane remained constant over the 

range of line segments examined. However, the isodose lines that intersected the source 

long axis became less accurate as the number of segments increased. 
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Figure 4-5 Isodose maps for 103Pd. Each image contains four quadrants. The top left hand 
quadrant is the whole source in one segment. The top right hand quadrant is the source broken 
into two segments. The bottom left hand quadrant is the length broken into 1.0 cm segments, and 
the bottom right hand quadrant is the source broken into 0.1 cm lengths. The column on the left is 
a wide perspective as shown by the yellow ruler/scale, while the right hand column zooms in to a 
3.0 cm width. The blue circle is 1.0 cm in radius. The 5.0 cm lengths are on the top row and the 
bottom row is the 3.0 cm lengths. In all cases, the plane that bisects the source in the middle 
produced good results, while the results from the source long-axis deteriorated as the number of 
segments increased.  
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Figure 4-6 Similar approach to those in Figure 4-5, except for 192Ir. The results were also similar 
in that the comparison along the transverse plane produced good results while the results on the 
long axis diminished as the number of segments increased.  

4.3 IBA Dosimetry 

Comparisons were made with ΔDm set to both a 1% tolerance and a 2% tolerance 

within the IBA Dosimetry OmniPro I’mRT, with Δdm = 2.0 mm. In comparing the 3.0 cm 

length of 103Pd, three 1.0 cm segments produced the best comparison with 99.2% of the 

pixels passing ΔDm = 2%. For the 3.0 cm length of 192Ir, the best results were for the 
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model comprised of three 1.0 cm segments, with 100.0% of the pixels passing for ΔDm = 

2%. Comparing these results to the LSS results of Meigooni et. al, showed a marked 

improvement in methodology. Their results averaged a 4% dose difference (with fewer 

positions across the dose grid reported), with a maximum difference of 14% for 103Pd. 

They did not simulate 192Ir so direct comparison is not possible. However, the results that 

are reported in this work demonstrate that the Tufts technique achieves a pass rate that is 

well within acceptable margins of error.8 

Comparing our results to the TLS method produced similar observations. The 

OmniPro-I’mRT Gamma comparison determined that, for the 103Pd 5.0 cm length, two 

2.5 cm segments yield the best results, with 98.7% of the pixels passing with ΔDm = 2%. 

192Ir had the best comparison for five 1.0 cm segments, with 99.7% passing with ΔDm = 

2%. This is an improvement over the TLS method, which had discrepancies of up to 

5.6% along the transverse plane. Additionally, the TLS method is not clinically 

implementable, while the Tufts technique is, which means that the results are not only 

numerically superior but also practicable. 
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Table 4-3 Percent of pixels passing a gamma test within OmniPro-I’mRT for both 103Pd and 192Ir. 

 Pd Ir 
3.0 cm 1 %, 2 mm 2 %, 2 mm 1 %, 2 mm 2 %, 2 mm

(n x mm) % % % % 
2 x 15.0 98.2 99.1 99.1 99.5 
3 x 10.0 98.5 99.2 99.8 100.0 
8.0+7.0+7.0+8.0 98.6 99.2 98.2 99.1 
5 x 6.0 97.7 98.4 99.5 99.8 
5.0 + 10.0 + 10.0 + 5.0 98.2 99.2 99.5 99.8 
6 x 5.0 97.8 99.2 99.2 99.8 
10 x 3.0 97.1 98.5 99.3 99.7 
15 x 2.0 97.0 98.2 98.9 99.5 
30 x 1.0 98.1 98.9 98.8 99.4 

     
5.0 cm     

(n x mm)     
2 x 25.0 97.5 98.7 98.3 99.1 
5 x 10.0 96.5 97.9 98.8 99.7 
10 x 5.0 94.8 98.0 98.1 99.0 
25 x 2.0 94.3 96.0 97.8 98.5 
50 x 1.0 95.3 97.6 97.5 98.2 
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Figure 4-7 Gamma comparison of the 5.0 cm length to the 5.0 cm length that was made up of five 
1.0 cm segments (left) and the 3.0 cm length to the three 1.0 cm segments (right). 103Pd is on the 
top and 192Ir is on the bottom. 
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Figure 4-8 Comparison of the isodose lines of the 5.0 cm length to the five 1.0 cm segments (left) 
and of the 3.0 cm length to the three 1.0 cm lengths (right). 103Pd is on the top and 192Ir is on the 
bottom. The agreement is seen to be worst in the areas at the end of the source as well as very 
close to the source. However, overall agreement is quite good.  
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5  CHAPTER 5 

CLOSING 

As expected, the superposition principle for brachytherapy dose calculation 

worked upon dividing the elongated sources into smaller segments. Dosimetric 

differences were, on average, less than 1% in the majority of locations in the vicinity of 

each source. It is clear that the anisotropy of the elongated source needs to be one of the 

most important criteria in developing a series of suggestions for treatment planning.  

Techniques were developed that can be used clinically, making dosimetric 

calculations of elongated sources an easy task that can be undertaken to ensure patient 

safety. The Tufts technique permitted derivation of the anisotropy and radial dose 

functions on a clinical TPS.  

IBA dosimetry tools, which were developed for IMRT QA, were used in a novel 

way to analyze brachytherapy isodose curves. It is possible that this approach could be 

used to perform QA on patients who are implanted with brachytherapy sources, to 

compare the desired/ideal seed configuration to the actual outcome. A CT scan can be 

performed before the surgery, and the medical physicist and physician can work to decide 

the best placement of the source. After the surgery, another CT can be acquired and the 

real source placement can be calculated in Pinnacle. These two datasets can then be 

compared using the OmniPro-I’mRT software. 

The next step of this work is to move beyond straight-elongated sources and 

extend the analysis to curved sources and then curvilinear sources. In the practice of 

brachytherapy, it is necessary to have brachytherapy sources physically conform to the 

patient’s anatomy. One important question to answer is, “What is the correlation between 

the radius of a curved portion of a source and the straight-length approximation?” If the 

arc is approximated with a length that it too short, there is not enough attenuation and the 
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dose is too high. However, if the length is too long, it no longer conforms to the shape of 

the source and the self-attenuation becomes too great.  

Additionally, tables should be developed, using Monte Carlo techniques, for a 

variety of sources that can then be used as a standard set of segments to be used in 

treatment planning for elongated brachytherapy cases. From this research, it seems that 

longer segments will be more useful than shorter segments (i.e. <0.5 cm), since shorter 

segments are problematic in terms of accounting for dose anisotropy. These tables can 

then be used as standards within the medical community. 
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