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SUMMARY 

Advances in microelectronics and nanotechnology have generated tremendous 

interest in the non-Fourier regimes of heat conduction, where the conventional theories 

based on local equilibrium no longer apply. The non-Fourier regimes include small 

length scales, where the medium can no longer be treated using bulk properties, and short 

time scales, on the order of the relaxation time of heat carriers. One of the objectives of 

this thesis is to clarify some misunderstandings of the hyperbolic heat equation (HHE), 

commonly thought of as a remedy of Fourier’s law at short time scales. The HHE is 

analyzed from the stand point of statistical mechanics with an emphasis on the 

consequences of the assumptions applied to the Boltzmann transport equation (BTE) 

when deriving the HHE. In addition, some misperceptions of the HHE, caused by a few 

experiments and confusion with other physical phenomena, are clarified. It is concluded 

that HHE should not be interpreted as a more general equation governing heat transport 

because of several fundamental limitations. The other objective of this thesis is to 

introduce radiation entropy to the equation of phonon radiative transport (EPRT) for 

understanding the heat conduction mechanism on a fundamental level which can be 

applied to both diffusion and ballistic heat transport in dielectric solids. The entropy 

generation due to phonon transport is examined along with the definition of a phonon 

brightness temperature, which is direction and frequency dependent. A better 

understanding of non-Fourier heat conduction will help researchers and engineers to 

choose appropriate theories or models in analyzing thermal transport in nanodevices. 
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CHAPTER 1 

INTRODUCTION 

 

Growing interest in devices on the order of nanometers has resulted in the need to 

understand heat transport at small scales. The physics that govern heat transport are 

largely dependent on how energy carriers interact with each other, defects inside of the 

medium, and boundaries. Electrons, despite their particle nature, propagate as waves 

inside of a medium and thus are able to travel reasonable well through a periodic crystal 

lattice. Phonons, on the other hand, are the quantum particle representation of lattice 

vibration propagating through a medium and are also capable of transporting and 

redistributing energy spatially inside of a medium. Defects such as missing atoms or non-

basis atoms can disturb the propagation of electrons and phonons resulting in defect 

scattering. In addition electron waves and phonon waves can interact with each other or 

other waves of the same type resulting in electron-phonon scattering, phonon-phonon 

scattering and electron-electron scattering mechanisms to redistribute thermal energy 

throughout the medium. In addition the boundaries between two media in direct contact, 

with different properties, can cause boundary scattering of electrons and phonons. For 

larger scales, both temporal and spatial, the interactions between carriers are described 

macroscopically by traditional equations such as Fourier’s law which relates the 

temperature gradient inside of a medium to the flux of heat in any direction. In the past 

Fourier’s law was adequate in most situations however new technologies such as short 

laser pulses which are on the order of picoseconds and new fabrication methods allowing 
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the deposition of thinner and thinner films onto substrates, which have applications in 

electronics, have generated a need to understand heat transfer in new regimes which have 

only recently become of importance 

Fourier’s law has long been established as the governing law of heat conduction, 

describing the thermal energy propagation in a medium via a diffusion process. It has 

served as a reliable model for predicting the temperature in a medium, as well as the rate 

of heat propagation through a medium, that has been validated by numerous experiments. 

One of the predicted results of Fourier’s law, as with all diffusion processes, is that the 

effect of a source will be instantaneously felt everywhere in a medium, although such a 

nonzero effect is practically negligible at large distances. Since heat is carried by particles 

such as electrons, and quanta such as phonons, which are forbidden to propagate at 

speeds greater than that of light, it is impossible that the response to a sudden heat flux at 

one location in a medium should be instantaneously felt at all other locations within the 

medium. This paradox has spurred much academic interest in the last half century 

towards seeking a model that can predict a finite speed of propagation [1-5].  

The short comings of Fourier’s law have divided heat conduction into several 

regimes which need to be treated differently when modeling thermal transport. 

Macroscopic equations such as the hyperbolic heat conduction equation (HHE) are 

intended to extend our traditional understand of conduction to shorter time scales where 

insufficient time has elapsed to describe heat transport by Fourier’s law. This sort of 

macroscopic equation is expressed in terms of the temperature and can be solved to give 

the temperature distribution directly. Other models such as the equation of phonon 

radiative transport (EPRT) can be solved to determine the particle distribution function 



 3 

and from the distribution function the effective temperature of the medium can be 

determined. Rigorously speaking the definition of temperature is not the same in non-

Fourier heat conduction as the traditional definition based on the zeroth law of 

thermodynamics. 

Much work has been done on generating and solving models that describe non-

Fourier heat conduction [3, 6, 7]. Many of the proposed models are based on the 

Boltzmann transport equation (BTE) which is viewed by many researchers as a more 

fundamental equation describing transport phenomenon that can be extended to short 

time and length scales. The HHE and EPRT are two such models based on simplification 

of heat carrier scattering term in the BTE. In order to improve the current understanding 

of heat transfer as a nonequilibrium phenomenon in the non-Fourier regime this work 

analyses the HHE as derived from the BTE. Starting from the physical limitation imposed 

by the underlying approximations used to derive the HHE. The EPRT is solved for a 1D 

medium and the solutions are analyzed from an original perspective.  In addition a second 

law perspective is taken with the EPRT and entropy generation is analyzed from the more 

fundamental BTE by applying concepts for traditional radiation heat transport to phonon 

radiative transport. This work will contribute to the understanding of modeling heat 

transport in the non-Fourier regimes of heat transport by clarifying common 

misperceptions of the HHE and analyzing entropy generation at short length scales using 

the EPRT. 

This thesis is organized into five chapters as follows: Chapter 1 gives the 

importance, background, problem, approach, and contributions of this work. Chapter 2 

gives a theoretical overview of non-Fourier heat transport. Chapter 3 clarifies some 



 4 

common misperceptions of the HHE with some new physical insight. Chapter 4 extends 

the concept of radiation entropy to entropy generation in phonon radiative transport, and 

offers new perspectives on phonon conduction. Chapter 5 concludes the present work and 

outlines some future directions in the area of non-Fourier heat transport. 
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CHAPTER 2 

THEORETICAL BACKGROUND 

 

  Non-Fourier heat transfer models attempt to describe heat transfer 

macroscopically based on fundamental microscopic descriptions of heat carriers. The 

HHE and the EPRT, two common models for non-Fourier heat transfer, are derived from 

the classical BTE. The BTE is a fundamental transport theorem and a brief description of 

the BTE is presented in this chapter. In addition the following sections present the 

fundamental background for the HHE and EPRT based on their derivation from the BTE. 

 

2.2 Overview of the Boltzmann Transport Equation 

 Heat transfer in the non-Fourier regime is generally based on analysis of the BTE 

which can be used to determine the evolution of the distribution function for electrons, 

photons, and phonons. Based on the kinetic theory of particles Boltzmann was able to 

derive the BTE for the distribution function of a single particle. In the absence of 

collision the probability of finding a particle with initial velocity v  and position r  at 

time t  under an acceleration a  due to a body force F  will be the same as the probability 

of finding a particle with velocity dtv a  and position dtr v  at time t dt  giving 

 
   , , , ,

0
f dt dt t dt f t f f f

dt t

      
     
  

r v v a r v
v a

r v
 (2.1) 

Boltzmann proposed the addition of a collision term on the right hand side giving the 

following equation known as the Botlzmann transport equation: 
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coll

f f f f

t t

    
          

v a
r v

 (2.2) 

The collision term can be quite complicated and in the absence of multi-body collisions 

under the molecular chaos assumption can be modeled as [8] 

    
2 1 2 2 1 2 2 1 2, ,

coll

f
W ff f f d d d

t
 

 
       

 p p p p p p p  (2.3) 

where  2 1 2, ,W  p p p p  is the probability that a collision between a particle with momentum 

p  colliding with a particle of momentum 2p  producing particles with momentums of 1p  

and 2p  per unit time. The first term on the left side of the parenthesis represents out-

scattering (a reduction in the number density of at a given momentum) and the second 

term represents in scattering (increase in the number density at a given momentum). 

Since integration must be performed to account for all the possible momentums of the 

second particle and the two outgoing particles the resulting integro-differential equation 

is troublesome. In addition the scattering probability may depend on the nature of the 

scattering etc. Typically simplifying assumptions are made the BTE in order to extract a 

solution and some typical simplifications will be discussed in the next section. 

 

2.3 Approximations in the Boltzmann Transport Equation 

The BTE in the un-simplified form contains a generic collision term to describe 

the time rate of change of a single particle distribution function due to collisions. It is 

through collisions that energy is redistributed and the distribution function of a single 

particle is returned to the equilibrium distribution function. It should be noted that the 

BTE is a single particle distribution function, as opposed to the Liouville equation which 
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is an N-particle distribution function, and is not the most fundamental description of 

transport phenomenon since it neglects certain particle wave effects [8]. The BTE 

however is not as limited in its application as the classical equations which describe heat 

transport as it can be applied at short time and length scales and under the appropriate 

simplifications can be used to derive classical expressions such as Fourier’s law. The 

BTE can be considered as more fundamental in the sense that it is more general and its 

application overlaps heat transfer regimes. 

 The most common approximation in the heat transfer community is the relaxation 

time approximation, which is given mathematically by 

 
 

0

coll

f ff

t 

 
   v

 (2.4) 

Here, the term 0f  signifies the equilibrium distribution and ( ) v  is the relaxation time, 

which is in general dependent on the velocity or momentum of the particles. A further 

assumption is made that the relaxation time is independent of velocity, denoting the 

average relaxation time by q  for convenience. Under the relaxation time approximation 

the rate of change of the non-equilibrium distribution function is proportional to the 

difference between the equilibrium and non-equilibrium distribution function and 

collisions are the driving force that returns the distribution function to an equilibrium 

state. The relaxation time approximation is thus a linearization of the collision term and 

in order to be valid any non-linear effects of collisions must be negligible. The relaxation 

time approximation is limited in this sense to time scales greater than the relaxation time 

since at shorter times particle have not had sufficient time to interact, in addition at short 

time scales higher order effects of collisions will be more important. 



 8 

Another important assumption is called the local equilibrium assumption. 

Consider a one-dimensional problem where the temperature gradient is in the x direction 

only. This assumption can be expressed as follows [9]: 

 0ff

x x




 
 (2.5) 

The local equilibrium assumption implies that the spatial derivative of the nonequilibrium 

distribution can be approximated as that of the equilibrium distribution. Generally 

speaking the local equilibrium approximation requires that temperature deviation 

(temperature gradient) over a mean free path not be too large. More discussion of the 

simplifying assumptions used to derive heat transport equations will follow in the 

subsequent chapters. 

 

2.4 The Hyperbolic Heat Conduction Equation 

After applying the relaxation time and local equilibrium approximations and 

dropping the acceleration term the 1D BTE becomes 

 0 0
x

f f ff
v

t x 

 
 

 
 (2.6) 

Here, xv  is the x-component of the velocity, f  is the actual distribution function (in 

terms of frequency) and is usually anisotropic at given x and t, 0f  is the equilibrium 

distribution function, and   is the relaxation time that is in general a function of 

frequency and phonon velocity.  After some manipulation and integrating over the entire 

velocity, v , space Eq. (2.6) can be expressed as  

 2 0
x x x

f T
v f d v d v f d

t T x
    

 
  

    v v v
v v v  (2.7) 
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Equation (2.7) gives rise to the following rate equation for heat flux which is known as 

Cattaneo’s equation or sometimes referred to as the Cattaneo-Vernotte equation [1, 2]: 

 q Tk
t




   



q

q  (2.8) 

This equation differs from the classical Fourier’s law with the addition of the second term 

on the left hand side. At longer time scales this additional term becomes negligible and 

Eq. (2.8) reduces to Fourier’s law. If the constant q were negligibly small compared with 

the characteristic time, then this term would be removed and the equation would reduce 

to Fourier’s law. The value of q  in Eq. (2.8)  is generally taken to represent some 

average thermal relaxation time since there may be different relaxation times associated 

with various carriers in a medium. Physically the thermal relaxation time is a measure of 

the average time between two successive collisions of the heat carriers in a medium. It 

has been proposed that Cattaneo’s equation is more general than Fourier’s law and is valid 

at shorter time scales, as the heat flux is not assumed to be established instantaneously 

but with a time delay. As early as 1867, Maxwell derived an equation similar to Eq. (2.8) 

based on gas dynamics. By assuming that the time rate of change of the heat flux would 

be negligible as the heat flux would establish itself very rapidly, Maxwell was then able 

to obtain Fourier’s law from a microscopic viewpoint after dropping the time derivatives. 

Cattaneo derived Eq. (2.8) in 1948 using kinetic theory and extended it to demonstrate 

the finite propagation speed of heat in 1958. Later, others also derived Eq. (2.8) from the 

Boltzmann transport equation (BTE) [10] under the relaxation time assumption for 

phonon and electron transport. All the derivations made improper assumptions and do not 
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justify the application of Eq. (2.8) to very short time scales, as will be elaborated in the 

next chapter. 

The HHE can be arrived at by combining Eq. (2.8) with the energy equation for 

an elemental control volume: 

 p

T
q c

t



 


q  (2.9) 

Equations (2.8) and (2.9) can be combined to yield 

 
2

2

2

1q qq q T T
T

k k t t t

 

 

  
   

  
 (2.10) 

which is the HHE with generation. Without heat generation, it can be simplified to 

 
2

2

2

1 qT T
T

t t



 

 
  

 
 (2.11) 

Equation (2.11) is a damped-wave equation with a wave propagation speed given by 

 tw qv    (2.12) 

HHE predicts a wave, whose amplitude corresponds to the temperature in a medium, that 

will propagate through a medium at the speed of twv  and its amplitude will decay rapidly 

as it propagates. This speed is finite as long as 0q  , indicating that the thermal signal 

cannot be felt at locations beyond the wave front. If q  is taken to be equal to the 

relaxation time of heat carriers, and the value of thermal conductivity is estimated from 

simple kinetic theory [11], then it can be shown that 

 tw g 3v v  (2.13) 

where gv  is the group velocity (either the Fermi velocity for electrons or the speed of 

sound for phonons).  
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2.5 The Equation of Phonon Radiative Transport 

The EPRT can be used to model heat conduction in thin films as shown 

schematically in Figure 2.1. EPRT models conduction inside of thin films based on the 

BTE with the relaxation time approximation. Heat conduction is said to be radiative 

under EPRT due to the similar form and definition of the governing equation to the 

radiative transfer equation (RTA) which governs radiative heat transfer in a participating 

medium. 

The 1D BTE under the relaxation time approximation can be expresses as follows 

[7, 9, 12] 

 0
x

f ff f
v

t x 

 
 

 
 (2.14) 

by neglecting the acceleration term. Note the difference between Eq. (2.6) and Eq. (2.14) 

is the local equilibrium approximation has been made in Eq. (2.6). For phonons, the 

equilibrium distribution function is given by the Bose-Einstein statistics that is a function 

of temperature and frequency but not the direction (i.e., isotropic). 

Based on the energy flux a phonon intensity can be defined that is consistent with 

the intensity as defined in the case of radiation. The intensity of a phonon in a given 

direction at a single frequency is given by [9] 
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    g

1
, ,

4 P

I v f D     


   (2.15) 

where ħ is Planck’s constant divided by 2π, the density of state D(ω) represents the 

number of vibration modes between ω and d   per unit volume, and gv  is the group 

velocity in the direction defined by the zenith angle  and azimuthal angle . Since the 

energy of a single phonon is ħω, Eq. (2.15) represents the rate of heat transfer per unit 

projected area, per solid angle, and per unit frequency interval, just as in the case of 

photon radiation. Based on this definition of phonon intensity, the heat flux in the x 

direction can be evaluated from the phonon intensity using 

 

 

Fig. 2.1 Schematic showing directional intensity distribution at a single frequency inside 

a medium between two black walls at temperatures 1T  and 2T . The intensity at a vertical 

plane inside of the medium (dashed line) is shown qualitatively for 2 1T T   in the 

acoustically thin limit. Each wall acts as a thermal reservoir at a constant temperature, 

thus heat is transported as a radiation process inside of the medium. 
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  
1

0 0 1
2 ,xq q d I d d       

 


      (2.16) 

where cos( )   is the direction cosine relative to the x  direction (see Fig. 2.1), and q  

is the spectral heat flux. It is assumed that the intensity is not a function of the azimuthal 

angle . The phonon equilibrium intensity can be derived from the Bose-Einstein 

distribution function, which gives [9] 

  
 B

3
0

3 2
p

,
8 1

k T
P

I T
v e

 








  (2.17) 

where the summation is taken over the two transverse and one longitudinal phonon 

polarizations, and pv  is the phase speed for the corresponding polarization. Assume that 

the phonon dispersion is linear and an average acoustic speed (i.e., the sound velocity) av  

can be used for all three polarizations. Then, the equilibrium intensity becomes 

 

 B

3
0

3 2
a

3
( , )

8 1
k T

I T
v e

 








 (2.18) 

Note that emission of phonon from a black wall has the intensity equal to the equilibrium 

intensity that is by definition independent of the direction cosine. Substituting Eq. (2.15) 

into Eq. (2.14) and noting that a cosxv v  , one obtains the EPRT at steady state [7] 

 
0 *

a

( , )dI I T I

dx v

  





  (2.19) 

Equation (2.19) is very similar to the radiative transfer equation (ERT) for 

electromagnetic radiation in an absorbing and emitting medium with no scattering. 

Scattering of phonons by crystalline defects and other phonons is analogous to the 

emission and absorption processes in the conventional ERT. Unlike ERT for a gas 
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medium, *( )T x  in Eq. (2.19) is an effective temperature of the medium. Rigorous 

speaking, a thermodynamic temperature cannot be defined in the medium unless the 

thickness of the film L is much greater than the phonon mean free path, av   . The 

Knudsen number given by 

 Kn
L


  (2.20) 

is a parameter that characterizes the acoustic thickness of the medium. A large Kn implies 

the acoustically thin limit known as Casimir’s limit  [13], whereas a very small Kn 

implies the diffusion limit where Fourier’s law can be applied. Only in the acoustically 

thick limit, the effective temperature *( )T x  becomes the local equilibrium temperature in 

the conventional sense. A further assumption is made such that the relaxation time is 

independent of the frequency, i.e., the gray-medium assumption, since the inverse of the 

mean free path is analogous to the absorption coefficient in photon radiative transfer. 
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CHAPTER 3 

MISPERCEPTIONS OF THE HYPERBOLIC HEAT EQUATION 

 

The current chapter aims at clarifying some common misperceptions of HHE in a 

systematic manner, with additional new insights into the microscopic theory of heat 

carriers and the paradox of infinite propagation speed. A brief description of HHE and its 

associated characteristics are given first. Then, the PHE and HHE are considered within 

statistical mechanics, classical thermodynamics, and irreversible thermodynamics 

frameworks. The lack of soundness of the well cited works that offer misleading 

experimental evidence to support HHE is also addressed. 

 

3.1 Assumptions Used in Deriving the Hyperbolic Heat Equation 

As mentioned in Chapter 2, HHE can be derived from BTE, which describes the 

evolution of the nonequilibrium distribution of particles in the phase space. The 

distribution function f describes the probability of a particle occupying a given quantum 

state; it is assumed that the energy levels are sufficiently dense to allow the energy 

distribution to be treated as if it were continuous. BTE itself has two limiting 

assumptions; namely, particle reactions are infrequent and the wave nature of particles 

can be neglected. Such conditions apply for substances such as ideal gases. Nevertheless, 

BTE is valid for all time and length scales and can be expressed as [9]  

 
coll

f f f f

t t

    
          

v a
r v

 (3.1) 
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The last term on the right represents the effect of molecular collisions that restore the 

distribution function to its equilibrium state. BTE provides a method by which one can 

determine the behavior of nonequilibrium distributions. This is critical since heat transfer 

will only occur as a result of a nonequilibrium distribution. Furthermore, BTE is not 

limited to just gasses, but can be extended to other particles and quanta that can be 

modeled as having infrequent interactions and obey certain distribution functions. The 

behavior of these particles must have some features in common with an ideal gas; thus, 

the term electron gas and phonon gas have been coined to describe the behavior of heat 

carriers in a solid medium. Cattaneo’s equation can be derived from the BTE by applying 

the relaxation time assumption, which linearizes the collision term by assuming that the 

system is not too far from equilibrium. 

However the derivation of HHE from BTE after these assumptions is not 

sufficient to justify HHE, since the assumption of local equilibrium does not apply to a 

system subject to a disturbance shorter than relaxation time when particles do not have 

sufficient time to interact. In fact, the HHE and the PHE are subject to the same limitation 

at short time scales: both are not applicable to time scales shorter or close to the 

relaxation time. At longer time duration when qt  , the HHE and PHE are essentially 

the same. Several theoretical studies have showed that neither HHE nor PHE can predict 

the transient behavior at short time scales for phonon or electron systems [14-16]. The 

statement that HHE is applicable at short time scales, as long as the characteristic length 

is much larger than the mean free path, is misleading. The propagation distance of the 

wave front during one relaxation time falls in the regime of micro-length scales as 

elaborated in the next section. Thus, local equilibrium cannot be guaranteed and HHE is 



 17 

not appropriate for use at time scales shorter or close to the relaxation time, which is the 

regime that the HHE was intended to be applied to improve the PHE.  

 

3.2 The Wave Behavior of the Hyperbolic Heat Equation 

If the temperature distribution in a medium does in fact obey HHE (a damped 

wave equation), then many phenomena associated with waves should be observed in the 

form of temperature waves across a medium. One feature of temperature waves 

according to HHE would be a sharp wave front and wavelike temperature distribution, 

induced by a heat pulse with a duration smaller than or on the order of the relaxation 

time. The wave front could have an amplitude much higher than the temperatures 

predicted by PHE and would decay as it travels through the medium redistributing the 

thermal energy. After a time period much longer than q , the temperature distribution 

predicted by HHE would eventually settle to the one predicted by PHE. To illustrate the 

concept of temperature wave, let us consider a 1D slab of finite thickness L  with internal 

heat generation. The governing HHE becomes 

  
 2 2

2 2 2 2
tw tw

,1 1 1
,

q x tT T T
q x t

t k tv t x v





   
    

     

 (3.2) 

The solution of this equation has been given by Özişik and Vick [17] in terms of 

dimensionless variables. The dimensionless position   and time    are defined as 

 tw

2

v x



  and 

2
tw

2

v t



  (3.3) 

A nondimensional source term is defined as 

  
2

3
0 tw

4
,

q
S

q v


    (3.4) 
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where 0q  represents the total energy generation over the entire slab for time from 0 to 

infinity: 

  0 0 0
,

L
q q x t dxdt


    (3.5) 

Consider the case of short pulse laser heating of a medium. A very rapid laser pulse can 

be modeled as an instantaneous release of energy. Such a pulse can be represented by a 

piecewise dimensionless generation function that originated from a nondimensionless 

thickness   and becomes zero for    .  

 tw

2

v x





   (3.6) 

and  
 

1
, 0

,

0, L

S
   

 

  


  

 
   

 (3.7) 

where L  corresponds to the boundary at x = L. The Dirac delta function is used to model 

the thermal energy generation as occurring instantaneously with all the energy released at 

0t  . In essence,   represents a region near the surface of the wall where the laser 

pulse is modeled as a generation term. Note that both boundaries are assumed to be 

adiabatic. Green’s function method was used to arrive at the following solution for a 

single pulse [17]. 
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where 0 tw/k T q v    is a dimensionless temperature with T  being the temperature 

rise with respect to the initial temperature, and the eigenvalues for the series are given by 

/m Lm   .  

The solution of Eq. (3.8) is illustrated in Fig. 3.1 at three dimensionless time 

values. The direction of wave propagation is indicated by the arrow and the decaying 

amplitude of the wave front. After the temperature wave front reaches the boundary, it is 

reflected back in the opposite direction. The wave continues to decay on each pass until 

the solution becomes the same as that predicted by PHE. 

In addition to the propagation and reflection of thermal waves the possibility of 

resonance features of the wave in response to various source frequencies has also been 
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Figure 3.1: Propagation of temperature wave in medium due to pulse heat source with 

duration less than the relaxation 
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investigated. Tzou [18] studied the resonance phenomenon for thermal waves and 

predicted the critical frequency of resonance. Two thermal waves may interfere 

constructively or exhibit resonance features similar to mechanical waves. In addition to 

resonance the wave may experience reflection as discussed previously, as well as 

refraction at the boundaries when adiabatic boundary conditions are removed. Most 

publications on HHE dealt with numerical or analytical solutions with very few 

experimental studies that are questionable as will be discussed later in this chapter. 

From this wave example, which is used to model short pulse laser heating, one 

can see why local equilibrium condition and relaxation time approximation are not 

satisfied by observing the solutions of HHE as shown in Fig.  3.1. The solution has a very 

sharp wave front with an elevated temperature. The simplification of the collision term 

(relaxation time approximation) used to derive the HHE relies on a linear behavior of 

scattering. Such an approximation relies on the distribution function being not too far 

from equilibrium, otherwise one should use the more general collision term in the BTE 

since the BTE used to derive the HHE may not govern all heat carriers inside of the 

medium. The sharp wave front will result in collisions between particles of different 

energies and a jump in the equilibrium distribution function at that location invalidating 

the simplifying approximations. Particles ahead of this wave front will still have an 

undisturbed equilibrium distribution while particles at the wave front will be in a state of 

nonequilibrium with an elevated temperature. The wave front will pass through this 

region and the particles occupying the region will then experience a sudden jump in 

temperature. Obviously, there is no way to establish local equilibrium at the front and 

back end of the pulse. When modeling the medium using BTE there is no reason to think 
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that the approximations should be applicable throughout the medium (due to the single 

particle nature of BTE) if a large disturbance should propagate through the medium with 

a sharp wave front. Körner and Bergmann [19] showed that for three-dimensional 

problems involving a point heat source, HHE can result in nonphysical solutions, such as 

a local negative energy value and temperature below absolute zero. Many also showed 

that HHE could predict results that contradict the second law of thermodynamics as will 

be discussed in the next section. 

 

3.3 Statistical Perspective of Thermal Transport 

An apparent advantage of HHE is the removal of the paradox of infinite speed of 

propagation associated with Fourier’s law. It is interesting to note that the classical and 

quantum statistics of particles do not explicitly limit the speed at which particles travel. 

The probability of gas particles and free electrons in their statistical models allows large 

velocities with a probability approaching zero as the velocity goes to infinity. The 

statistical model of phonons, however, will have a finite velocity limit that depends on 

the speed of sound in the material but derivations of the HHE should be valid without 

ever considering the heat carrier type as discussed later. The free path distribution allows 

for a particle to travel extremely large distances without colliding with another particle 

with a very small probability. Take for instance the Maxwell-Boltzmann distribution; the 

probability is nonzero for a particle to travel faster than the speed of light, albeit the 

probability is extremely small. Any particle traveling at a finite speed, even if that speed 

is greater than the speed of light, has a small probability of having a relaxation time long 

enough to allow a miniscule but nonzero effect at very large distances. Under the well-
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accepted statistical models, heat could propagate at an unbounded rate, although the 

probability of carriers propagating at extremely high rate decreases to nearly zero. The 

limitation is set by the negligible probability; hence, these statistics will not predict any 

meaningful heat propagation at a speed greater than the speed of light that will contradict 

the special theory of relativity. A finite but negligibly small change is exactly what 

should be expected by any equation that is consistent with the statistical models of 

particles. This is essentially the prediction of Fourier’s law which states that the 

instantaneous response to a thermal disturbance at an infinite distance is not zero but 

infinitesimally small. It is PHE, rather than HHE, that gives results that are fundamentally 

consistent with statistical mechanics. In fact HHE does not take into account the type of 

heat carrier distribution function and always predicts a finite speed of propagation. The 

wave nature of the HHE on the other hand is more artificial and is partially a 

consequence of assuming that all particles collide at a distance of a mean free path rather 

than obey a path distribution function, This is not an issue in the PHE as the relaxation 

time term has gone to zero. 

Note that Fourier’s law is only an approximate model of heat transfer that 

describes the diffusion processes in a single-phase material not involving phase change, 

advection, or bulk flow. Moreover, all measurements of temperature and heat flux are 

subject to instrumental uncertainties as well as random noises existing everywhere in 

nature. The statement that Fourier’s law predicts an infinite speed of propagation is 

strictly limited to the sense of an infinitely small temperature change. The thermal 

response predicted by Fourier’s law decays rapidly toward large distances to below any 

meaningful values. A more reasonable definition of the speed of heat propagation is the 
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diffusion speed, which is generally much lower than the thermal wave speed given in Eq. 

(2.12) as to be elaborated in Sec. 3.6. 

 

3.4 Thermodynamic Considerations 

The zeroth law of thermodynamics states that two bodies that are in thermal 

equilibrium with a third body are in thermal equilibrium with each other. This statement 

implies the existence of a property of the system known as temperature. This definition of 

temperature requires that the particles in a body are in a state of interaction with one 

another. A single particle in the body possesses energy but the temperature of a single 

particle cannot be defined. Within any given medium, particles will distribute themselves 

at different energy levels depending on the temperature. Temperature in this sense only 

posses meaning on scales large enough to define an average energy of particles and only 

when there is sufficient interaction between particles to define a macroscopic 

temperature. Therefore, local equilibrium is essential for the definition of thermodynamic 

temperature to apply [8]. 

In this sense, the meaning of temperature described in HHE does not satisfy the 

definition of temperature in thermodynamics. Note that q  is a measure of interaction in 

the medium and presumably to be the same or at least on the same order of the relaxation 

time in the medium. At time scales near or less than q , there is simply insufficient time 

for particle interactions to establish themselves. A nonequilibrium temperature can be 

defined based on the energy of the particles but this is different from the definition of 

temperature and such a temperature cannot be measured by conventional means such as a 

thermocouple or electrical resistance thermistor. Many researchers did not make this 
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distinction between the thermodynamic temperature and nonequilibrium temperature 

when studying HHE and the associated phenomena. 

If the temperature in HHE were taken in the classical sense there could be a 

negative entropy generation according to classical thermodynamics, which is in violation 

of the second law. In some cases, HHE may predict a heat transfer from the cold region 

to the hot region [20]. Barletta and Zanchini [21] derived an expression for the rate of 

entropy generation based on Eq. (2.8) using classical thermodynamics definitions: 

 irr q2

1
S

tkT


 
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q
q q  (3.9) 

When the heat flux decreases rapidly enough with respect to time, Eq. (3.9) will take on a 

negative value, which is forbidden in classical thermodynamics as this would indicate a 

decrease in entropy due to heat dissipation.  

Hence, the temperature in HHE must be interpreted as a nonequilibrium 

temperature. Several nonequilibrium thermodynamics theories have been proposed which 

would give the entropy generation a positive value when applying HHE. The basic 

argument is that if HHE is a correct physical model, one must modify the definition of 

entropy or internal energy of classical thermodynamics to justify HHE within a modified 

thermodynamics [22]. These so-called nonequilibrium thermodynamics propose that 

entropy is dependent on dissipative fluxes such as the heat flux, in addition to the 

classical thermodynamic variables. The most widely known nonequilibrium 

thermodynamics that justifies HHE is called extended irreversible thermodynamics (EIT) 

by Jou et al. [23]. It should be noted that the original irreversible thermodynamics 

proposed by Onsager [24] dealt with coupled transport phenomena such as 

thermoelectricity and is an extension of Fourier’s law. Onsager explained that his theory 
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is not meant to be applied at time scales smaller than the relaxation time. The purpose of 

EIT is to extend macroscopic thermodynamics to non-local-equilibrium situations. EIT 

introduces dissipative fluxes as independent variables in addition to the classical 

thermodynamic variables to describe a system on time scales when these terms have not 

decayed, but that a sufficient amount of time has elapsed to allow the system to be 

described by only the dissipative fluxes and the classical thermodynamic variables. Jou 

and coworkers derived an equation for a generalized Gibbs equation and an expression 

for the entropy generation [22]. They further assumed that the non-local-equilibrium 

entropy generation must be positive. This assumption is used to limit the values that the 

dissipative fluxes can assume in order to meet the requirements of the second law under 

EIT. The mathematical details are not covered here, but a thorough overview of EIT can 

be found in the literature [22]. The only justification for EIT as a valid description of any 

real processes seems to be HHE, while at the same time the only theoretical justification 

for HHE seems to be EIT. Hence, EIT cannot be justified until HHE has been verified 

experimentally. A few papers contain experimental evidence of HHE and have been well 

cited by others as validation of HHE. Although these experiments have been questioned 

by many others, a critical examination is given later to complete this chapter. 

 

3.5 Confusion With Other Physical Phenomena 

Earlier pioneers like Cattaneo, Vernotte, and Taverneir did not examine the 

validity of HHE. When the thermal wave phenomenon was actually observed at lower 

temperatures, many believed that Cattaneo’s equation should be a generalized Fourier’s 

law [3]. It is important to differentiate between HHE and similar equations that have 
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physical foundations such as the two-temperature model (TTM) for ultrafast laser heating 

and the thermal wave phenomenon at low temperatures. TTM unlike HHE may depict 

certain physical phenomena that arise from coupling due to the interactions of electrons 

and phonons. The assumption is made that phonons are in equilibrium with phonons and 

that electrons are in equilibrium electrons, but the two types of particles are not in 

equilibrium with each other [9]. Thus, TTM gives two parabolic differential equations 

that are coupled with each other, and both equations are consistent with Fourier’s law. 

Results corresponding to the prediction of TTM have been obtained experimentally for 

femtosecond pulsed-laser interaction with metals [25]. Furthermore, TTM does not 

predict any wavelike features nor does it predict a finite speed of propagation of a 

thermal signal.  

Low-temperature behavior of thermal waves in liquid helium and a few dielectrics 

is fundamentally different from HHE, although both predict the second sound (or thermal 

wave velocity as described in Eq. (2.13). This behavior is actually due to two different 

scattering mechanisms for phonons, one associated with a normal process in which 

momentum is conserved and an Umklapp process in which the momentum is not 

conserved. Guyer and Krumhansl [26] derived the dispersion relation for second sound in 

solids based on BTE, where the collision contribution is approximated by two terms. The 

first term is given as 

 
N

f f




  (3.10) 

which is associated with the normal scattering process. Since phonon momentum 

is conserved, the normal process will not change the direction of energy flow but it can 

change the distribution function. The change of the distribution function due to the 
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normal process will be zero when the distribution function is the same as that of a 

uniformly drifting phonon gas f . The second collision term represents the Umklapp 

process and is given as 

 0

0

f f




  (3.11) 

The Umklapp scattering process does not conserve momentum and will 

eventually return the distribution function to the equilibrium distribution function 0f . 

The two relaxation times are the relaxation times associated with each of the scattering 

processes. Combining the scattering effects gives a simplified BTE for phonon scattering 
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The solution of this linearized BTE gives the following differential equation for the 

effective temperature of phonons [27]: 
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where av  is the average phonon speed. When the condition N 0   is satisfied, the 

energy transfer is dominated by wave propagation. At higher temperatures, the scattering 

rate for the U processes is usually very high, and the N processes contribute little to the 

heat conduction or thermal resistance. Therefore, the reason why temperature waves have 

never been observed in dielectric crystals above 100 K is not because of their small 

relaxation time, in the range from 10
10

 to 10
13

 s, but because of the lack of mechanisms 

required for a second sound to occur. No experiments have ever shown a second sound in 

metals, as suggested by HHE. Note that Eq. (3.13) predicts a wavelike feature with a 

diffusion tail that is subject to the same criticism of infinite speed or propagation. A very 
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illustrative summary of solutions to the various heat conduction models was given by 

Tang and Araki [28]. Only the pure HHE has a finite speed of propagation; however, it is 

contradictory to statistical mechanics and violates the laws of thermodynamics as 

discussed earlier. 

 

3.6 Misinterpretation of Experiments 

Kaminski [29] performed experiments with several nonhomogenous materials 

(one of which was sand). Placed in the sand were an electric heating wire surrounded by 

electric insulation inside of a needle and a thermocouple inside of another needle used to 

measure the temperature. The experimental setup involved a thermocouple placed 6.8 

mm and 16.8 mm from a restive heating source and found that heat propagated in sand at 

a velocity of 0.143 mm/s and q  for sand to be approximately 20 s. The value for 

relaxation time and velocity were determined when the penetration depth of the heat 

source reached the thermocouple. The penetration depth of a heat source is defined as the 

distance inside of the medium at which the temperature change has reached a certain 

threshold. This value of q  seems artificially high with regard to HHE and has no 

physical meaning as it is too large to represent an average time between scattering of 

particles. It is also possible that the solution that Kaminski obtained from Fourier’s law 

was incorrect due to improper formulation of the problem or some other phenomena 

associated with a porous media such as sand grains. It should be noted that, although 

Fourier’s law predicts the effect of a heat flux to be instantaneously felt everywhere 

throughout the medium, an effective propagation speed of heat can be defined base on the 

penetration depth. Even under Fourier’s law this effective propagation speed can be very 
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slow as the effect at large distances will be negligible (below the sensitivity of the 

measurement instrument) until a sufficient amount of time has passed. Even though in 

theory the temperature will change a finite amount at large distances, the change will not 

be detectable by experimental means. Hence, the velocity that Kaminski observed may 

simply be an effective velocity of heat predicted by Fourier’s law.  

To demonstrate just how slow a diffusion process is, let us take for instance a 

semi-infinite slab with constant surface heat flux sq  . This problem has been solved in 

Carslaw and Jaeger [30], and the temperature distribution is given as 
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where 4x t   is a similarity parameter and iT  is the initial temperature of the 

medium. The effective penetration depth can be defined based on a minimum 

temperature change in the medium. The diffusion velocity can be found by dividing the 

effective penetration depth by the elapsed time. The effective diffusion speed is shown in 

Fig. 3.2 for a semi-infinite medium with the thermal properties of (a) fused silica, (b) 

hardboard siding, and (c) copper respectively at 300 K [31]. Three curves show three 

different temperature change thresholds used to define the effective penetration depth. At 

a distance of 20 mm inside of the medium the effective thermal velocity for a  

temperature rise of  T = 1 mK will result in an effective thermal velocity of about 1.67 

mm/s for fused silica, 0.31 mm/s for hardboard siding, and 122 mm/s for copper. The 

effective velocity of a diffusion process may vary with the geometry, position, heat flux, 

minimum temperature rise, and properties of a material. Nevertheless, it can be seen that 

the diffusion process results in very slow thermal signal propagation, contrary to the 
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Figure 3.2: Velocity of diffusion for a semi-infinity medium with  constant surface 

flux of 5 21  m2 0 W/sq   : (a) Fused Silica; (b) hardboard siding; (c) copper. The 

thermophysical properties of these materials are taken from [26] 
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 belief of many researchers. As early as 1997, Tzou [6] pointed out that the thermal wave 

model is unsuitable for describing transient thermal behavior in casting sand (or other 

nonhomogeneous materials). However, many recent publications on heat transfer in 

biological systems continue to misinterpret the speed of diffusion as the speed of 

temperature waves in HHE.  

Mitra et al. [32] performed an experiment on processed meat to show that 

temperature waves have a finite propagation speed in certain biological media and other 

materials with nonhomogenous inner structures. Two samples held at different initial 

temperatures of identical processed meat were brought into contact and the temperature 

was measured by a thermocouple embedded in each of the samples. The experimental 

results showed a temperature jump after a finite amount of time had passed rather than a 

smooth transition such as would be predicted by Fourier’s law. In addition, two other 

experiments were performed to demonstrate phenomena associated with temperature 

waves such as superposition of two temperature waves and one additional experiment 

intending to demonstrate the finite propagation speed of temperature waves in a medium. 

In one of their experiments, a slab (14.3°C) was sandwiched between a large cold sample 

(6.2°C) and a large hot sample (24.1°C). Results shown in the paper indicated a 

superposition phenomenon of the temperature waves as measured by a thermocouple 

embedded in the thin meat sample. If the temperature of HHE is an effective 

nonequilibrium temperature, it seems unlikely one would be able to measure this 

temperature with a simple thermocouple. Their results were never repeated by themselves 

or verified by others. 
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A similar experiment was performed by Herwig and Beckert [33] who used water 

flowing through a copper pipe in a box filled with a desired medium. The experiment was 

conducted with both sand and processed meat similar to the experiments used to validate 

HHE [29, 32]. The results obtained in Ref. [33] showed that the temperature distribution 

predicted by Fourier’s law was within the uncertainty of the temperature values obtained 

in their experiment. 

If the experimental results validating HHE were reliable, then there would be a 

plethora of similar findings in the literature; such results however are lacking. It seems 

unlikely that nonporous media would sometimes obey HHE and sometimes obey PHE at 

such relatively long time scales as in the aforementioned experiments. On a microscopic 

basis, diffusion-like behavior would be expected and any disagreement may be due to 

other phenomena associated with the nonhomogeneous inner structure not related to 

HHE. At the present time, conclusive experimental results supporting HHE do not exist. 

Finally, it should be reminded that the experimental results showing thermal 

waves in liquid helium and cryogenic dielectric crystals are not a result of HHE, but are 

rather due to another phenomenon. This phenomenon is only observable at low 

temperatures where the normal process of phonon scattering becomes more significant. 

This gives rise to two relaxation mechanisms for phonon scattering, one associated with 

the normal process and one with the Umklapp process, leading to a two-relaxation time 

model. This model is only valid when the time scale is greater than the relaxation time of 

the normal process and less than the combined relaxation time of both processes [9]. 
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CHAPTER 4 

PHONON RADIATIVE ENTROPY GENERATION 

 

Despite numerous studies on the phonon radiative transfer, there seems to be a 

lack of research dealing with the entropy generation associated with phonon radiation. 

Entropy generation associated with heat conduction is well known [34]. However, the 

conventional control volume analysis is for large scales when diffusion is the dominant 

process of heat conduction. Entropy of radiation has been used to derive Planck’s law of 

thermal radiation and can model the entropy generation in radiative transfer both at the 

boundaries as well as in participating medium [35-39]. Furthermore, an understanding of 

the entropy transfer and generation processes in phonon radiation can deepen the 

knowledge of irreversibility associated with lattice conduction from small to large scales.  

This chapter describes a study on the entropy of phonon radiation to provide new 

insight into the phonon heat conduction process. The 1D phonon radiative transport 

between two constant-temperature thermal reservoirs (black walls) at steady state, as 

illustrated in Fig. 2.1, is considered to develop fundamental arguments that could be 

extended to multiple dimensions. The boundaries or surfaces of the medium are treated as 

infinite thermal reservoirs and are referred to throughout this chapter as walls due to the 

arbitrary choice of vertical orientation. It extends the analogy between photons and 

phonons to understand the process of entropy generation at all length scales. A phonon 

brightness temperature is defined that is frequency and direction dependent. 
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4.1 Radiative Equilibrium and Local Equilibrium 

The radiative equilibrium is the condition at which [40, 41] 

 0 q  (4.1) 

which corresponds to the case where there are no sources or sinks in the medium. In the 

case of steady-state conduction, Eq. (4.1) holds for phonon transport. For the 1D case, it 

implies that 
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Integrating Eq. (2.19) over the frequency and direction cosine and applying Eq. (4.2), one 

obtains the following relation:  
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while Eq. (4.1) is applicable to steady state only, it was shown that Eq. (4.3) is also 

applicable to transient EPRT [14]. For a gray medium, the equilibrium condition reduces 

to 

 
D D 10

0 0 1

1

2
I d I d d

 

   


    (4.4) 

where the upper limit is replaced by the Debye cut-off frequency D , which is related to 

the Debye temperature by D D B/ k   [9, 12]. Furthermore, when the temperature of 

the medium is much lower than the D , the total equilibrium intensity can be expressed 

as 
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where 
2 4

B
SB 3 2

a40

k

v


    may be thought as the Stefan-Boltzmann constant for phonons [9, 

42]. Using the total intensity defined as 
D

0
I I d



   , Eq. (4.4) can be simplified to the 

following: 
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Hence, for a gray medium, one can integrate Eq. (2.19) over all frequencies and substitute 

Eq. (4.6) for 0 *( )I T  to obtain 
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When the boundary conditions are prescribed, Eq. (4.7) can be solved for I using standard 

techniques in radiative transfer, such as the discrete ordinates method and the Monte 

Carlo method [40, 41]. The effective temperature *( )T x  throughout the medium can be 

determined using Eq. (4.5). Once the temperature distribution is known, the intensity can 

be divided into right and left hemispheres. For black walls, the local intensity can be 

expressed as follows [9]:  
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which can be evaluated using numerical integration to obtain the local phonon intensity 

in any direction and at any frequency. 

In some studies [7, 14], a more restrictive assumption was used such that phonon 

radiative equilibrium exists at every frequency so that 
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which is equivalent to say that  
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From the derivation in the preceding section, Eqs. (4.10) and (4.11) are not needed in 

order to solve EPRT. As a matter of fact, even for a gray medium, Eqs. (4.10) and (4.11)  

are not satisfied unless the medium is acoustically thick. It was pointed out by Zhang [9] 

that Eq. (4.11)  is equivalent to the local equilibrium assumption but without a proof. In 

the following, the local equilibrium conditions are discussed and shown to be consistent 

with Eq. (4.10) or (4.11). 

 Under the relaxation time approximation, the local equilibrium assumption states 

that 
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To the first order approximation, the intensity can be expressed as follows [12, 40]: 
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where T is used instead of *T  to signify local equilibrium has been established. For Eq. 

(4.13) to be a good approximation, the implicit assumptions are 1Kn  , i.e., the medium 

is acoustically thick, and in addition 
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Equation (4.14) requires that the temperature of the medium should not change abruptly 

over a mean free path ( ). Under the assumptions given in Eqs. (4.13) and (4.14), the 

Fourier law at steady state can be derived such that 
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where k, given by the frequency integral, is the thermal conductivity. It should be noted 

that the assertion that the hyperbolic heat equation can be derived from BTE or EPRT, by 

keeping the transient term in Eq. (2.14), is misleading due to the fact that Eq. (4.14) is 

rarely satisfied at time scales shorter than the relaxation time. As pointed out the previous 

chapter and in the literature recently [43], Cattaneo’s equation was misconceived and 

does not extend the applicable regime of Fourier’s law as often thought in the heat 

transfer community. 

If both sides of Eq. (4.13) are integrated over the direction cosine, the result will 

be the same as Eq. (4.10), suggesting that local equilibrium is a sufficient condition of 

Eq. (4.10). Furthermore, from Eqs. (4.8) and (4.9), the spatial derivative of the spectral 

heat flux can be expressed as [9], 
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where 
1 2 /

0
( ) m x

mE x e d     is the mth exponential integral. The last two terms on the 

right-hand side of Eq. (4.16) originated from the wall emission. It can be seen that, in 
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general, / 0q x    unless L    and x is not too close to the wall, i.e., in the 

acoustically thick limit. Therefore, Eq. (4.10) or (4.11) can be viewed as the local 

equilibrium condition that should not be imposed in solving EPRT for thin films. 

Consider a thin film in Casimir’s limit where ballistic phonon transport dominates 

between two black walls. One may view phonon radiation as being emitted from two 

black walls with no scattering and little absorption/emission inside of the medium. Figure 

4.1 shows the equilibrium intensity distributions evaluated at the wall temperatures, along 

with the exact equilibrium intensity distribution 0 *( , )I T   evaluated using the effective 

temperature of the medium at / 2x L . The average speed of sound is taken as that of 

 

Fig. 4.1 Phonon intensity at different frequencies corresponding to two black walls at 

temperatures 1 50 KT   and 2 100 KT  . The equilibrium temperature of the medium 

is denoted by *T  and avgI  is the average intensity of the two wall distributions. 
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diamond, i.e., a 12288v   m/s [7]. The intensity integration over the direction cosine is 

the same as the algebraic average avg ( )I   of the intensities of the two walls. The two 

curves do not overlap except at a single finite frequency. In general, 0 *
avg( )I T I   at 

lower frequencies and 0 *
avg( )I T I   at higher frequencies. If avg ( )I   were taken as the 

equilibrium distribution, according to Eq. (4.10), a frequency-dependent effective 

temperature would be obtained. It is worth noting that the results presented in Refs. [7, 

14] are correct, disregards the excessive assumption in the form of Eq. (4.10) made in the 

analysis of these studies. 

 

4.2 Classical Entropy of Diffusion 

In EPRT, the phonon radiation process is analogous to photon radiation with 

absorption and emission, but without scattering, as prescribed by Eq. (2.19). As 

suggested by Prasher [44], a phonon scattering phase function may be introduced to 

derive a more general EPRT that includes the in-scattering term just like the conventional 

ERT for thermal radiation. This would require some modification of the collision term on 

the right-hand side of Eq. (2.14). For simplicity, the in-scattering term is excluded in the 

present study.  

When comparing photon and phonon radiation, it is important to keep in mind the 

physical differences between the two processes. In thermal radiation in a participating 

medium, the medium or gas itself emits radiation at its local (equilibrium) temperature. 

For phonon radiation, the scattering term remains after simplification of the collision 

term in the BTE and is manifested by the emission and absorption terms in EPRT due to 



 40 

the assumption of linearity. Despite the differences, it is convenient to think of phonon 

radiation as also having a local medium, which emits phonons according to the 

equilibrium distribution at the effective temperature ( *T ). Under the relaxation time 

approximation, the distribution function is not too far from equilibrium and the medium 

temperature is thus obtained by the equilibrium intensity ( 0I ). Furthermore, such a 

medium can also absorb phonon radiation. While the total emitted and absorbed energy 

must be the same, as required by the radiative equilibrium condition, the absorbed and 

emitted energy at any particular frequency are in general not equal to each other, unless 

Eq. (4.10) is satisfied. One should keep in mind that in actuality all phonons are governed 

by the nonequilibrium distribution function (f) or intensity ( I ) that is determined by 

solving the BTE or EPRT.  

 The process of entropy generation due to phonon transport is caused largely by 

the redistribution of the phonon radiative intensity over the spectrum. If a medium lies at 

constant temperature (no heat transfer), then phonon transport still takes place but the 

phonon “emission” and “absorption” both correspond to equilibrium distributions at the 

corresponding temperature of the medium in any location. This of course results in no net 

transfer of energy in any direction and, therefore, no entropy generation since the phonon 

intensity cannot be redistributed across the spectrum. If there is a temperature gradient in 

the medium (i.e., temperature difference between the two walls), the contribution of 

phonon emission from one side will have a different intensity distribution than the other. 

Since the intensity of phonon emission decays rapidly within a few mean free paths, the 

majority of frequency redistribution occurs within a few mean free paths where the 

temperature difference is generally small for a thick medium. However, small differences 
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in intensity at each frequency can result in relatively large heat transfer and entropy 

generation when taking into account the large frequency range of phonons. Temperature 

gradients result in a gradual spectral shift of the phonon intensity, towards longer 

wavelengths in the direction of decreasing temperature, across the medium. 

 The entropy of thermal radiation has been extensively studied [35-39]. It is 

convenient in the analysis of radiative entropy generation to introduce a frequency 

dependent temperature, known as the brightness temperature, and an entropy intensity 

which is analogous to radiation intensity but in terms of the flow of entropy instead of 

energy. The brightness temperature can be thought of as a measure of temperature of the 

nonequilibrium distribution of phonon radiation in a given direction at a given frequency. 

The brightness temperature is the temperature of an equilibrium distribution which has 

the same intensity as the nonequilibrium distribution at a given frequency. The inverse of 

the brightness temperature can be found by [9], 
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where β depends on the number of phonon modes but is taken to be 3 (two transverse and 

one lateral mode) in the present study. The entropy intensity is defined based on the 

phonon radiation intensity as [9, 39], 
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Furthermore, the phonon entropy intensity and the brightness temperature are related by 

the definition of thermodynamic temperature as follows: 
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 The 1D entropy generation rate per unit volume in radiation transfer in a 

participating medium is given by [38, 39], 
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Equation (4.20) can be used to evaluate the entropy generation in the medium for phonon 

radiation. Due to the temperature jump at the boundaries, there will also be entropy 

generation at the wall, which can be written as [9, 38, 39] 

  D 1 in, out,
gen,w in, out,0 0

w

2
I I

s L L d d
T

  
    

 
    

 
   (4.21) 

where wT  is the wall temperature,  and for the right wall noting that   should be 

replaced by   to make it positive. The term with  in, out, WI I T    is net heat flux 

from the medium to the wall by phonon radiation over the temperature and the term with 

 in, out,L L    is the net entropy flux from the medium to the wall. Note that the 

entropy generation inside of the wall in a real system may depend on the acoustical 

properties of the boundaries and may not be well described by a black wall model. In the 

present study, only the entropy generations between the walls and the medium and inside 

the medium are considered since each wall is assumed to be at a uniform temperature 

(i.e., as a thermal reservoir). 

 Under the local equilibrium assumption, *( )T x  in Eq. (4.20) can be replaced by 

( )T x , and one can use the first-order expansion to approximate T  in the following,  
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From Eqs. (2.18) and (4.22), it can be seen that 
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Substituting Eqs. (4.13),  (4.22), and (4.23) into Eq. (4.20) and simplify using Eq. (4.14), 

one obtains 
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Compared with Eq. (4.15)  for the heat flux in the diffusion limit, Eq. (4.24) can be 

expressed as  
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which is the classical expression of entropy generation during heat diffusion [34] as well 

as thermal radiation in the optically thick limit [45].  

 Equations (4.20) and (4.21) are general case of entropy generation and can be 

evaluated after the EPRT solution is obtained. The total entropy generation inside of the 

medium under the radiation model can be found by adding the wall entropy generation 

and the generation inside of the medium. Under the local equilibrium assumption, the 

entropy generation due to phonon radiation can be approximated with the entropy 

generation model derived based on heat diffusion from control volume analysis. Liu and 

Chu [46] studied entropy generation using numerical techniques to solve the radiative 

transfer equation and showed that a medium must be optically thick for the diffusion 

model correctly predict the entropy generation. 
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4.3 Numerical Study of Phonon Radiative Entropy 

The techniques for solving the radiative transfer equation in a participating 

medium are numerous [40, 41]. In the present study, the discrete ordinates method is 

employed except when the Kn is very small. For a 1D thin medium a solution with 16 

discrete directions is used with weights and abscissas corresponding to the standard 

Gaussian quadrature technique. The temperature solution is obtained directly using linear 

algebra techniques to get an exact solution to the system of equations. For Kn ≤ 0.001, 

the discrete ordinates method becomes very inefficient and time consuming to obtain 

converging solutions. A diffusion approximation [47] is used to solve the temperature 

distribution inside of the medium, coupled with the jump boundary condition at the walls, 

in order to satisfy the condition of a continuous heat flux at the wall and throughout the 

medium. The jump boundary condition can be expressed as [40, 47].  
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where 1 2 and    are the emissivities of the walls and both are equal to 1 (blackbody). 

Equations (4.26) and (4.27) can be iteratively solved with the Rosseland diffusion 

equation [40], 
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when Kn is extremely small. To the first order approximation, Eqs. (4.26) through (4.28) 

can also give a linear temperature distribution inside the medium with temperature jumps 

at the boundaries. The application of Eq. (4.28) implies that the thermal conductivity is 
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fixed, that is proportional to 3T . This is reasonable since at low temperatures, phonon 

specific heat is proportional to 3T  and the scattering rate is governed by defect scattering 

that is independent of temperature. 

Figure 4.2 shows several solutions for the effective temperature inside of a 

medium for different Kn plotted in terms of the dimensionless position /x L  . 

Solutions of the EPRT using the discrete ordinates method (exact) and compared with the 

diffusion approximation with temperature jump at the boundaries. When Kn = 0.001, the 

two methods give essentially the same results. As Kn increases, deviation becomes larger, 

suggesting that the diffusion approximation is no longer applicable.  

 
Fig. 4.2 Temperature distribution inside of medium between two black walls as given 

by the EPRT (solid) and the diffusion approximation (dashed) for various Kn. 
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The spectral intensity can be calculated for different Kn based on the exact 

solution. For diamond, the relaxation time is independent of temperature at low 

temperatures and the mean free path is calculated to be 1.343 m   from Ref. [7]. The 

Debye temperature of diamond is 1860 K, which is much higher than the temperatures 

considered in the present study. The speed of sound is av  12288 m/s as mentioned 

before. These parameters are used to obtain all the numerical results in the present study.  

 

Fig. 4.3 Phonon intensity I  (red dashed) and 0 *( )I T  (black dotted) distributions 

inside a medium with Kn = 1 when 1 10 KT   and 2 50KT  , at three different 

locations and two different frequencies, i.e., 13
1 4 10    rad/s and 11

2 1 10    rad/s. 

The unit of intensity is 2J/m sr rad  . 
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The intensity distribution is shown in Fig. 4.3 for 1Kn   with 1 10 KT   and 

2 50 KT  , at three locations inside the medium and  for  two frequencies. Since the 

mean free path is equal to the film thickness, approximately 37% of the phonon radiation 

will be preserved from one wall to the other in the direction normal to the walls. The 

calculated temperatures in the medium are *( 0) 36.6 KT    , *( 0.5) 42.1 KT    , 

and *( 1) 46.0 KT    .  There is a larger temperature jump near the lower temperature 

wall. The dotted circle represent the phonon equilibrium intensity (or emitted intensity), 

0 *( )I T , which is isotropic and increases from the left to the right. It should be noted that 

the change of 0 *( )I T  is more prominent at higher frequencies than at lower frequencies. 

This is because the distribution function is more sensitive to temperature change at higher 

frequencies. The dashed curve is the actual intensity ( )I  , which is always larger in the 

left hemisphere than in the right hemisphere since 2 1T T  and heat transfer is from right 

to the left. Note that ( 0)I    for cos 0   is the emitted intensity from the left wall 

and ( 1)I    for cos 0   is the emitted intensity from the right wall. It is interesting to 

compare the area inside the ( )I   and 0 *( )I T  curve. At high frequencies, 

 
1 10 *

1 1
I T d I d  

 
   so the area surrounded by ( )I   is bigger as can be seen from 

the upper three figures. At lower frequencies, the opposite is true as can be seen from the 

lower figures in Fig. 4.3. Clearly, Eq. (4.10) is not satisfied for 1Kn   since the condition 

of local equilibrium is not met.  



 48 

 

Fig. 4.4 Phonon intensity I  (red dashed) and 0 *( )I T  (black dotted) distributions at 

the center of the medium: (a) Kn = 100; (b) Kn = 1; (c) Kn = 0.01.  The unit of 

intensity is 2J/m sr rad  , the wall temperatures are 1 10 KT  and 2 50KT  , and the 

angular frequency is set to 131.7 10    rad/s.  
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In Fig. 4.4, the intensity distribution at the center of the medium for different Kn  

is plotted at a single frequency for 1 10 KT   and 2 50 KT  . One may view the cases for 

different film thicknesses. As the thickness of the medium becomes larger, the 

nonequilibrium and equilibrium distributions appear to overlap in all directions. This 

suggests that the classical definition of temperature in heat conduction becomes 

reasonable in the diffusion limit. However, a small difference between the two 

distributions must always be present since ( )I   must be anisotropic in order for the heat 

transfer to occur. Although the difference between ( )I   and 0 *( )I T  may be very small 

at the same location, integration over all frequencies can still result in a significant 

amount of heat transfer in the diffusion limit. Both Figs. 4.3 and 4.4 show some 

properties unique to the 1D heat transfer problem. For instance, the symmetry over the 

horizontal line is due to the fact that the transport properties are independent of  . At the 

same location and frequency,  (180 )I   is always the largest and (0 )I   is always the 

smallest. One can think about the effective medium thickness according to / cosL  . 

Hence, in the x direction, the effect of ballistic transport is the strongest. The curves of 

( )I   and 0 *( )I T  always cross over each other at 90    or 270    (i.e., when 

0  ). In essence, the medium along the vertical direction is infinitely thick. 

Figure 4.5 shows the brightness temperature at the center of the medium under the 

same conditions as in Fig. 4.4, except at two different frequencies. The two separate 

frequencies are considered to illustrate the difference in brightness temperature at high 

and low frequencies. From this figure it appears that the higher-frequency curve always 

bounds the lower-frequency curve for the same Kn. Furthermore, intensity in the  
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Fig. 4.5 Polar plots of the brightness temperature ( , )T    at two frequencies, at the 

center of the medium, for (a) Kn = 100; (b) Kn = 1; (c) Kn = 0.01.  The wall 

temperatures are 1 10 KT  and 2 50KT  .  
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direction 0   has the largest temperature variance at different frequencies. For smaller 

Kn, it becomes apparent that the brightness temperature will converge to the medium 

temperature at every frequency as shown in Fig. 4.5(c), where the curve looks like circles 

and overlap with each other at different frequencies. It should be emphasized that these 

curves cannot be perfect circles in order for heat transfer to occur. 

Figure 4.6 plots the phonon brightness temperature as a function of frequency for 

1Kn   at the center of the medium, with several direction cosine values. The other 

parameters are the same as in Fig. 4.5. It can be seen that the results are consistent with 

 

Fig. 4.6 Brightness temperature for different direction cosine in center of medium with 

1Kn   as a function of frequency. 
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Fig. 4.5. At any given frequency, the brightness temperature increases as   is changed 

from 0 to 180° ( 1   to 1 ). When 0  , the brightness temperature is not a function 

of frequency and is equal to the effective  temperature of the medium, *T . Furthermore, 

at any given   that is not equal to zero, the brightness temperature increases with 

increasing frequency. The fact that the brightness temperature is higher at higher 

frequencies is consistent with the plot shown in Fig. 4.1. It can be seen from Fig. 4.1 that 

at higher the frequency, the larger the relative difference between the averaged local 

intensity avgI  and the equilibrium intensity 0I . At lower frequencies, avgI  becomes 

smaller than 0I . From thermodynamic point of view, this suggests that more phonons at  

higher frequencies are absorbed than emitted, while at the same time more phonons at 

lower frequencies are emitted than absorbed. The absorption of higher-frequency 

phonons and emission of lower-frequency phonons is an irreversible process that is 

associated with entropy generation. It should be noted that, for gray medium, the 

absorption coefficient (which is inverse of the mean free path) is independent of 

frequency. Since the intensity is calculated from Eq. (4.8) and (4.9), the coupled 

absorption and emission processes result in the brightness temperatures at lower 

frequencies being closer to the medium temperature when 0  . On the other hand, for 

0  , the brightness temperatures at higher frequencies are closer to the medium 

temperature. Since the effective thickness is /L  , in the direction normal to the wall, 

the effect of frequency on the brightness temperature is expected to be the largest. 

However, the variation of brightness temperature for 0   is not as large as for 0  . It 
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turns out that the lower temperature side has a more prominent impact on the brightness 

temperature distribution, especially when 1  . 

In classical heat conduction, entropy flux can be expressed as  

 
*

( )
( )

x
x

q
s x

T x


   (4.29) 

Equation (4.29) is not applicable inside the medium except in the diffusion limit. From 

the entropy intensity evaluated by using Eq. (4.18),  the entropy flux inside the medium 

can be expressed as 

  D 1

0 1
( ) 2 ,xs x L d d



     


     (4.30) 

The total entropy generation rate per unit area over the thickness L for heat conduction 

between two thermal reservoirs at 1T  and 2T  is  

 to
1 2

t

1 1
xq

T
s

T


 
  
 

  (4.31) 

which is applicable for all thicknesses. Figure 4.7 shows the normalized entropy flux 

calculated from Eq. (4.30) for 1T 10 K and 2T  50 K. At the walls,  

 w1 w2
1 2

    and    x xq q
s s

T T

 
    (4.32) 

The increase in the entropy flux from right to left is caused by irreversibility inside the 

medium due to phonon radiative transfer. In fact, the integration of Eq. (4.20) from 

1 2 to x x  is the same as the subtraction of the entropy flux, Eq. (4.30) at these two 
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locations. Furthermore, there is an entropy flux jump at the wall that represent the 

entropy generation by the wall as predicted by Eq. (4.21). It can be seen that the entropy 

generation is more significant towards the low temperature side. Furthermore, the entropy  

generation at the lower-temperature wall is much greater than at the higher-temperature 

wall. Even with 0.001Kn   when the distance is 1000 times the mean free path, the 

entropy generation at the left wall is nearly 10% compared with the overall entropy 

generation.  

 

Fig. 4.7 Normalized entropy flux at different locations across the medium for different 

Kn. Note the jump at the walls corresponding to wall entropy generation. 
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 Table 4.1 compares the entropy generation for different Kn at the walls and inside 

the medium. If the classical expression, Eq. (4.25), is used to calculate the medium 

entropy generation using the temperature solution from EPRT or the diffusion 

approximation with jump boundary conditions for small Kn, there will be a large error 

when Kn is large. Even when Kn is relatively small, e.g., 0.1Kn  , the difference can be 

as large as 15%. Note that one could simply use the entropy flux, Eq. (4.29), to calculate 

the conduction entropy generation inside the medium by 

 

 
 

gen,m * *

1 1

(0)
xs q

T T L

 
   

  

 (4.33) 

 

Table 4.1. Calculated entropy generation rate per unit area (W/Km
2
) between two 

black walls at temperatures 1 10 KT   and 2 50 KT   for various Kn for diamond. The 

relative difference in the medium entropy generation between the diffusion model and 

the radiation model is compared. 

 

Kn 
Medium 

(radiation) 
Left Wall Right Wall Total 

Medium 

(diffusion) 

Relative 

Difference 

1000 1.612E+04 2.320E+07 2.036E+06 2.524E+07 6.754E+03 58% 

100 1.177E+05 2.297E+07 1.934E+06 2.503E+07 6.496E+04 45% 

10 6.285E+05 2.109E+07 1.415E+06 2.314E+07 4.695E+05 25% 

1 1.491E+06 1.211E+07 3.511E+05 1.395E+07 1.230E+06 17% 

0.1 8.723E+05 2.080E+06 1.188E+04 2.964E+06 7.447E+05 15% 

0.01 2.037E+05 1.272E+05 1.416E+02 3.311E+05 1.933E+05 5.1% 

0.001 3.015E+04 3.389E+03 1.443E+00 3.354E+04 3.013E+04 0.07% 

0.0001 3.323E+03 4.359E+01 1.445E-02 3.367E+03 3.315E+03 0.26% 

0.00001 3.365E+02 4.501E-01 1.444E-04 3.369E+02 3.351E+02 0.40% 
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It is difficult to generalize the results presented in the table to different wall 

temperatures as they are presented as dimensional values. However, the same general 

trend is expected regardless of the wall temperatures. The general trend is a decrease in 

the difference between the radiation model and the conduction model as thickness of the 

medium is increased. Increasing medium thickness also results in the majority of entropy 

generation occurring inside of the medium and a decrease in the relative contribution of 

wall entropy generation. For all numerical integrations, a convergence criterion was used 

such that the relative difference between two iterations 5
rel 10   by mesh refinement. 

In the case of very small Kn  (less than 0.001), the numerical calculation is based on the 

diffusion model with jump boundary conditions. In addition, the heat flux decreases as 

the thickness increases; thus reducing the numerical accuracy. Hence, the differences 

between the diffusion model and the radiation model in bottom two rows in Table 4.1 are 

presumably due to numerical error.  
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CHAPTER 5 

CONCLUSIONS 

 

The hyperbolic heat equation is fundamentally inconsistent with statistical 

mechanics and the solutions may violate the laws of thermodynamics. The claim that 

HHE can be validated by BTE is misleading since the assumptions made during the 

derivation invalidates its application to time scales shorter than the relaxation time, for 

which HHE was intended. While Fourier’s law has its own limitations, HHE does not 

extend Fourier’s law to describe the heat transfer process at short time scales, as it was 

originally proposed and believed by many heat transfer researchers. The infinite speed of 

propagation of diffusion process is consistent with the statistical theory and, furthermore, 

Fourier’s law predicts a very slow diffusion process that has been validated by numerous 

experimental observations. Thermal waves observed at low temperatures are associated 

with a different phenomena of two-relaxation times and does not serve as evidence of 

HHE. The two-temperature model for ultrafast laser heating of metals contains a pair of 

coupled PHEs and does not predict wavelike behavior. The few experiments that showed 

temperature waves at near room temperatures in nonhomogenous materials could not be 

reproduced by others. Furthermore, attempts to thermodynamically justify HHE have not 

themselves been justified, albeit the completeness and selfconsistency of these theories. It 

is hoped that this study will clarify some common misunderstandings about HHE in the 

heat transfer community to avoid similar pitfalls in the future. 

An analytical derivation of the entropy generation of a diffusion process inside of 

a medium has been presented from the more fundamental BTE and the conditions for 
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heat transport by phonons to be treated as such have been determined. Furthermore the 

entropy generation mechanism during phonon transport has been explored in a 

fundamental manner by applying concepts from radiation heat transfer to phonon 

transport. The concepts of radiation entropy generation in a participating medium and the 

brightness temperature have been extended to the phonon radiative process and are useful 

concepts for understanding the fundamental heat transport mechanism. Solutions to the 

EPRT have been presented, in a novel manner using the concept of brightness 

temperature, which give insight into heat transport by phonon radiation and the analogy 

between phonons and photons has been revisited to offer a unique perspective. 

Differences between phonon radiation and photon radiation have been stressed including 

the meaning of temperature for phonon radiation. Numerical results showed that the 

disagreement between the diffusion approximation for entropy can give relative errors 

larger than 10% for Knudsen numbers as low as 0.1. Emphasis was placed on 

understanding the fundamental nature of heat transport processes in dielectric solids and 

the entropy generation as phonon energy is redistributed throughout a medium by phonon 

scattering processes. 

Future directions related to this work in the modeling of non-Fourier heat transfer 

could involve comparison of results from careful molecular dynamics simulation to those 

predicted by EPRT and HHE to assess the validity of those models. In addition since 

reliability of electronic devices is an important issue the prediction of phase change or 

material properties based on non-equilibrium temperatures as modeled by non-Fourier  

equations needs to be investigated. Furthermore techniques for reliably measuring the 

non-equilibrium temperatures need to be developed (if possible). An analysis of wall 
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entropy generation with realistic conditions such as the interface between two 

acoustically dissimilar thin film or a multilayer structure with different materials should 

be investigated to understand how real boundaries effect entropy production. Such an 

analysis could be coupled with models such as the acoustic and diffuse mismatch models 

or more sophisticated models to determine the transmissive and reflective properties of 

such an interface to give a more realistic surface model. Investigation of electronic 

transport in the non-Fourier regime and the interaction between electrons and phonons 

are promising areas of research and extension of the radiation model needs to be 

investigated. 
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