

COMBINING MATHEMATICAL PROGRAMMING AND SYSML

FOR COMPONENT SIZING AS APPLIED TO HYDRAULIC

SYSTEMS

A Thesis
Presented to

The Academic Faculty

by

Aditya A. Shah

In Partial Fulfillment
of the Requirements for the Degree of

Master of Science in the
School of Mechanical Engineering

Georgia Institute of Technology
May 2010

COMBINING MATHEMATICAL PROGRAMMING AND SYSML

FOR COMPONENT SELECTION AS APPLIED TO HYDRAULIC

SYSTEMS

 Approved by:

 Dr. Chris Paredis, Co-Advisor
School of Mechanical Engineering
Georgia Institute of Technology

 Dr. Dirk Schaefer, Co-Advisor
School of Mechanical Engineering
Georgia Institute of Technology

 Dr. Ashok Goel,
School of Interactive Computing,
Georgia Institute of Technology

 Date Approved: March 18, 2010

 iii

ACKNOWLEDGEMENTS

Above all, I would like to acknowledge my family, for supporting and enabling

me to experience and follow a path that has lead me to multiple places, including my time

here at Georgia Tech. I know that I would not have made it this far without their support.

Academically speaking, I deeply wish to thank my advisers Drs. Chris Paredis

and Dirk Schaefer. They have always been there to provide guidance and I am grateful

for their patience during the times when I was slow to form ideas. Their insights and

criticisms have helped shape the ideas in this research, and have played a great role in my

personal and professional development. In addition, I thank them for providing me the

opportunity to interact with researchers in other departments as well as experiment with

new technologies that I was unaware of at the start of this research.

I would like to thank my committee members, Drs. Paredis, Schaefer and Goel for

taking the time to provide feedback and asking challenging and insightful questions. I

would also like to thank Roger Burkhart at Deere & Company for believing in this

research and providing insightful comments that helped keep this research focused and

relevant from a practical perspective.

In addition, I would like to acknowledge my fellow lab-mates and friends for their

valuable discussions and comments on a regular basis. In particular, I would like to thank

Ben Lee, Alek Kerzhner, Roxanne Moore, Stephanie Thompson, Rich Malak, Kevin

Davies, Mukul Singhee, Patrick Chang and Julie Bankston for enriching my experiences

here at Tech and making these past two years memorable.

 iv

This work is funded in part by Deere & Co., the Woodruff School of Mechanical

Engineering, and the Engineering Research Center for Compact and Efficient Fluid

Power, supported by the National Science Foundation under Grant No. EEC-0540834.

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

LIST OF TABLES ... vii

LIST OF FIGURES ... viii

SUMMARY ... x

CHAPTER 1 INTRODUCTION ... 1

1.1 Component Sizing and Architecture Exploration in Design 1

1.1.1 Component Sizing is Hard to Solve and Formulate .. 2

1.1.2 Current Approaches to Component Sizing ... 3

1.1.3 Constrained Optimization as a Better Way for Component Sizing 4

1.1.4 Acausal Algebraic Equation Based Declarative Modeling for Constrained
Optimization in Component Sizing .. 6

1.2 Research Questions and Hypotheses .. 8

1.3 Hydraulic Systems as an Example Application Domain 10

1.4 Thesis Organization .. 11

CHAPTER 2 RELATED WORK & PROBLEM BACKGROUND 13

2.1 Related Work on Solving Component Sizing Problems 13

2.1.1 Knowledge-Based Engineering Efforts .. 14

2.1.2 Constraint-Satisfaction Problem (CSP) Based Approaches 16

2.2 Related Work on Representing CSPs ... 18

2.3 Component Sizing as a Constraint Satisfaction Problem (CSP) 19

2.3.1 Using Solvers in GAMS for Solving Component Sizing Problems 23

2.3.2 Limitations of GAMS for Representing Component Sizing Problems 24

2.4 Introduction to SysML .. 26

2.5 Summary ... 28

CHAPTER 3 EXTENDING MATHEMATICAL PROGRAMMING
USING SYSML ... 29

 vi

3.1 Formal Capture of GAMS Domain Using Metamodels 30

3.2 Representing Component Sizing Problems in SysML 33

3.2.1 Capturing GAMS Semantics in SysML Using Profiles 34

3.2.2 New Constructs in SysML to Support Representation of Component Sizing
Problems ... 36

3.3 Model Transformations to Support Hierarchical Object-Oriented Modeling ... 39

3.4 Summary ... 44

CHAPTER 4 EXAMPLE APPLICATION: COMPONENT SIZING FOR A
HYDRAULIC LOG SPLITTER .. 45

4.1 Problem Description and Motivation for Fluid Power 45

4.2 Modeling the Log Splitter Problem in SysML ... 47

4.2.1 Requirements Modeling in SysML ... 48

4.2.2 Energy-Based Modeling & Multiple Use-Phases for Fluid Power Systems 51

4.2.3 Multiple Analyses & Hierarchical Modeling .. 53

4.2.4 Common Sizing Description for the Entire Model 54

4.2.5 Defining the Solve Block & Solving in GAMS.. 59

4.3 Results for Different Scenarios ... 59

4.4 Summary ... 69

CHAPTER 5 DISCUSSION AND CLOSURE ... 71

5.1 Review and Evaluation ... 71

5.2 Limitations and Future Work .. 75

APPENDIX A COMPONENT MODELS & ASSOCIATED CATALOG
DATA ... 78

REFERENCES ... 88

 vii

LIST OF TABLES

Table 1 Comparison of different types of CSP solvers... 18

Table 2 Imperative versus Declarative Implementation of a constraint 22

Table 3 The basic components of a GAMS model [3] ... 25

Table 4 Comparison of results for different scenarios. Component Sizing is represented in
terms of the selection from the corresponding component catalogs. 63

Table 5 Component Sizes to Produce Maximum Log Splitting Force (N) 64

Table 6 Comparison of selected pump (SKP1NN_012) with other pumps 66

Table 7 Component Sizes for Fastest Log Splitter Operation (Total Time in seconds) ... 67

Table 8 Component Sizes for the Cheapest Log Splitter ($) .. 67

Table 9 Component Sizes for Least Mass (kg) ... 68

Table 10 Component Sizes that Minimize Multi-objective function 69

Table 11 Cylinder Catalog Data ... 84

Table 12 Pump Catalog Data .. 85

Table 13 Valve Catalog Data .. 86

Table 14 Engine Catalog Data .. 87

 viii

LIST OF FIGURES

Figure 1 Imperative programming based approach for nonlinear optimization. The
optimizer referred to above is fmincon, a nonlinear optimizer in MATLAB
[25] ... 21

Figure 2 Optimization form for mathematical programming. Constraints represent the
behavior of a model and not how to solve it. Symbolic manipulation is
performed at runtime to determine order of execution of equations. 22

Figure 3 Example of manual input of GAMS model for an engineering problem. There is
duplication of variables and equations, making it difficult to reuse a model.
Also, variable naming must be unique ... 26

Figure 4 GAMS Metamodel Definition. Semantics Of GAMS are Represented as Objects
in the Metamodel ... 32

Figure 5 Profile to extend Mathematical Programming semantics in SysML. New
semantics are defined that extend from existing Port, Connector and
Constraint metaclasses... 35

Figure 6 Process Of Model Transformation from Source to Target Model (Czarnecki et
al. [8]) .. 40

Figure 7 Portion of correspondence metamodel defined to relate SysML and GAMS
metamodels .. 41

Figure 8 Sequence of Model Transformations to solve the component sizing problem.
Converts from SysML model to GAMS executable model and returns output
of solver to SysML... 42

Figure 9 Model Transformation to convert SysML model to MOF model (as per GAMS
Metamodel) .. 43

Figure 10 An assembly and block diagram for a horizontal acting hydraulic log splitter 46

Figure 11 SysML model for requirements and associating them with corresponding
component models through dependencies (<<verify>>). Requirements

modeling helps to decompose the problem into different analyses and use
phases. .. 49

Figure 12 System Level View highlighting the features found in component sizing
problems. This type of model hierarchy would be common for such
problems in general. ... 50

Figure 13 Modeling multiple use-phases for a problem. In this case, there are two use-
phases, a ForwardAnalysis and ReverseAnalysis. The use-phases are for the
same hydraulic circuit, as represented by the common OpenCenterCkt
Block. ... 52

 ix

Figure 14 A Internal Block Diagram for the open center circuit used in the problem. The
connections between ports are stereotyped with
<<GamsPhysicalConnection>> and automatically generate the connection
equations, based on conservation of energy. ... 53

Figure 15 The process of using a problem-independent component catalog library to
automatically populate the possible values (in this example, cost of a valve)
into the catalog model being used in the problem 56

Figure 16 Equations used to associate a component’s sizing variables (boreDiameter)
with the corresponding catalog values from supplier (boreDiameterCatData)
.. 57

Figure 17 Through the use of a customized connection (<<GamsSelectionConnection>>),
it is possible to ensure that common sizing description is used across the
entire model. Equations are automatically generated to equate the variable
used in an analysis or use-phase with the corresponding variable in the
sizing description model. ... 58

Figure 18 Model and solver statistics for the scenario of minimizing total cost. The model
statistics are same for all scenarios since they are for the same problem. The
solution is provided by the solver BARON. .. 61

Figure 19 Engine operating point for forward phase of operation, as determined by
solver. The operating point is below the speed at max torque (as provided by
engine specification), which is counterintuitive to a designer 65

Figure 20 GAMS-compliant SysML model to capture the idealized hydraulic behavior
for a double acting cylinder. The equations used to model the cylinder are
displayed in the Constraints area in the CylinderFP Block 79

Figure 21 GAMS-compliant SysML model to capture the idealized hydraulic behavior
for a fixed displacement pump. .. 80

Figure 22 GAMS-compliant SysML model to capture the idealized hydraulic behavior
for a 4-way 3-position open center directional control valve. 81

Figure 23 GAMS-compliant SysML model to capture the idealized behavior for a IC gas
engine. .. 82

 x

SUMMARY

In this research, the focus is on improving a designer’s capability to determine near-

optimal sizes of components for a given system architecture. Component sizing is a hard

problem to solve because of the presence of competing objectives, requirements from

multiple disciplines, and the need for finding a solution quickly for the architecture being

considered. In current approaches, designers rely on heuristics and iterate over the

multiple objectives and requirements until a satisfactory solution is found. To improve

on this state of practice, this research introduces advances in the following two areas: a.)

Formulating a component sizing problem in a manner that is convenient to designers and

b.) Solving the component sizing problem in an efficient manner so that all of the

imposed requirements are satisfied simultaneously and the solution obtained is

mathematically optimal.

In particular, an acausal, algebraic, equation-based, declarative modeling

approach is taken to solve component sizing problems efficiently. This is because global

optimization algorithms exist for algebraic models and the computation time is

considerably less as compared to the optimization of dynamic simulations. In this thesis,

the mathematical programming language known as GAMS (General Algebraic Modeling

System) and its associated global optimization solvers are used to solve component sizing

problems efficiently.

Mathematical programming languages such as GAMS are not convenient for

formulating component sizing problems and therefore the Systems Modeling Language

developed by the Object Management Group (OMG SysML™) is used to formally

capture and organize models related to component sizing into libraries that can be reused

 xi

to compose new models quickly by connecting them together. Model-transformations are

then used to generate low-level mathematical programming models in GAMS that can be

solved using commercial off-the-shelf solvers such as BARON (Branch and Reduce

Optimization Navigator) to determine the component sizes that satisfy the requirements

and objectives imposed on the system. This framework is illustrated by applying it to an

example application for sizing a hydraulic log splitter.

 1

CHAPTER 1

INTRODUCTION

This research focuses on improving a designer’s capability to determine

component sizes, such as during the architecture exploration phase in the design process.

This can lead to more efficient ways of exploring large design spaces and ultimately

allow a designer to consider more alternatives. The need to consider more alternatives is

increasing because the design of modern systems is becoming increasingly complex, not

only due to the associated core technology of the system, but also due to the large number

of often competing requirements that the system must simultaneously satisfy. These

requirements come from a multitude of stakeholders involved in different engineering

domains [38]. This makes the process of determining component sizes harder and

therefore a different approach is necessary. In order to determine a different approach it is

necessary to explore the problem of component sizing in more detail, starting with

understanding the importance of component sizing in design. t

1.1 Component Sizing and Architecture Exploration in Design

The process of design can be considered as problem solving involving a repeated

sequence of two steps: Synthesis and Analysis. Synthesis involves the process of

generating a complete specification of a system. This includes the architecture (also

known as topology) as well as the sizes for the components of the system. With a

complete specification available, the analysis process involves determining the extent to

which the system satisfies the requirements. For instance, a dynamic simulation or

 2

traditional machine design for a system is a type of analysis. Therefore in this context of

design, component sizing is a part of the synthesis process in which appropriate sizes for

a particular architecture are determined to enable its subsequent analysis. This is a subtle

difference, mainly because the result of component sizing is a set of specifications while

in analysis the result is a set of performance metrics. Therefore, during the architecture

exploration phase, component sizing is an important type of analysis because it is

possible to reject or not even consider a near-optimal solution due to improper

component sizing methods. This is mainly due to the fact that component sizing problems

are hard to solve and formulating them is also time-consuming.

1.1.1 Component Sizing is Hard to Solve and Formulate

Component sizing problems are hard to solve because of a variety of different

factors, some of which are as follows. The large number of requirements imposed on the

system result in multiple competing objectives, each of which must be measured,

predicted or modeled by some means. In addition these competing objectives can come

from multiple types of analyses, such as cost, mass, performance, or reliability, all of

which need to be handled simultaneously. Moreover, the requirements themselves are

often formulated as inequalities, such as “The force shall be greater than x N” or “The

cost shall be less than y dollars”. In such cases, it becomes non-trivial to find good

components that satisfy all the requirements simultaneously and is near-optimal, i.e. it is

difficult to find a better solution than the one obtained.

In addition to being hard to solve, the formulation of component sizing problems

is a time consuming effort. Due to the presence of numerous inequality relations it is

 3

often necessary to change the problem formulation based on the assumptions that have

been made. For instance, a designer may use a different method to size a system given an

engine specification versus sizing a system given a cylinder specification. Moreover, it is

often difficult to formulate a representation that can take into account all of the aspects of

the problem (multiple analyses, requirements in terms of inequalities, competing

objectives).

Therefore, the goal of this research is to provide a tool that can help designers not

only find “good” component sizes quickly but also help in formulating the problem

during the design phase. In order to do this, it would be helpful to gain a perspective on

how designers solve such problems currently.

1.1.2 Current Approaches to Component Sizing

In spite the difficulties described above, practicing designers encounter these

problems often and tackle them successfully. However, this does not mean that their

methods are ideal. Designers make use of the limited resources available and make

tradeoffs when necessary. For instance, they may use predefined “best” practices,

heuristics or spreadsheets that have been developed previously or make certain

assumptions to limit the number of available choices. A designer goes through multiple

iterations, mainly based on trial and error, and the solution obtained is largely dependent

on the experience of the designer [35]. Such compromises are made because the process

of design is ultimately one of value, in which a method or tool is used only if it provides

value to the designer. Therefore, the question is: How can a designer do better than the

current practices described above?

 4

1.1.3 Constrained Optimization as a Better Way for Component Sizing

The central idea in this research is to formulate the component sizing problem in

terms of a constrained optimization problem instead of using heuristics and assumptions

related to what is known and unknown prior to solving the problem.

As described in the previous sections, component sizing is hard because of factors

such as the presence of inequalities, multiple objectives, and different analyses. As a

result there is no predetermined single sequence of steps that can be used to solve the

equations and arrive at a solution. Consequently, the problem becomes one of

optimization in which a single or multi-variable objective needs to be optimized, such as

“Find the component sizes that minimizes the total cost”.

In particular, the class of optimization involved for component sizing is Mixed-

Integer Nonlinear Constrained Global Optimization, also known as MINLP (Mixed-

Integer Nonlinear Programming) problems. Component sizing falls under the nonlinear

class of optimization because the models involved commonly have nonlinear relations

(e.g.,� = �� ��� where F, d, p are variables). In addition, component sizing problems
usually consist of a mix of continuous and discrete variables. Discrete variables arise due

to the nature of the design space for the components. When making decisions at the

system level, detailed component behavior models are often not available or are

computationally too intensive. For instance, a system-level variable such as mass of a

cylinder is dependent on the cylinder’s detailed geometry, which is unknown or too

complex to model during the system-level design phase. Alternatively, system-level

attribute information can be obtained from manufacturers’ catalogs, which are usually

discrete in nature. This has the advantage of describing system-level information without

 5

the need for complex low-level parametric relations but at the same time makes it harder

to solve as compared to using purely continuous variables [41].

Even without the discrete nature of component sizing, global nonlinear

optimization problems are hard to solve [46]. Since the term “global optimization” is

used throughout this thesis, an important clarification is required. The term global

optimization is used purely in the context of optimizing the mathematical representation

of the problem being considered and not with the entire design process. Traditional

approaches for solving global optimization problems involved the use of imperative

techniques based on sampling such as gradient-based, stochastic and evolutionary

algorithms. However, these approaches have certain limitations when applied to the class

of component sizing problems. Sampling based algorithms treat the optimization problem

as a black box and therefore it is difficult for the algorithm to guarantee global optimality.

Since the design space is sampled, there is always the possibility that a better solution

may exist in an unsampled region. As a result, such algorithms are inefficient when

dealing with situations requiring global optimization. Gradient based methods are also

not applicable when dealing with discrete variables and MINLP problems. Moreover,

these techniques are imperative in nature, i.e. equations consist of a left hand side

representing unknown variable and right hand side representing known variables. As a

result, the equations would change depending on what is assumed to be known and

unknown. This makes it hard to formulate the component sizing problem, since multiple

models would be needed depending on the objective being optimized.

Thus, a different approach to constrained optimization is required for component

sizing.

 6

1.1.4 Acausal Algebraic Equation Based Declarative Modeling for Constrained

Optimization in Component Sizing

As discussed in the previous section, traditional optimization approaches are not

ideal when dealing with MINLP problems, such as component sizing problems.

Therefore, in this thesis, the use of equation-based declarative modeling is proposed for

component sizing problems.

One of the benefits associated with using a declarative programming approach is

the ability to describe an equation without any consideration to the order of execution of

its elements. This frees a designer to create representations that are more reusable than in

traditional methods. In addition, unlike traditional approaches, declarative based models

are not black boxes for a solver because they provide additional problem-specific

information that can be used during optimization. For instance, declarative modeling

languages support operations such as symbolic manipulation, which is used to rearrange

and determine the order of execution of equations at run-time. As a result, in addition to

using sampling points similar to traditional approaches, declarative based solvers can

make use of additional knowledge about a model. This additional knowledge can be in

the form of intervals that represent the feasible bounds of a variable. Solvers can perform

operations on intervals using interval arithmetic to logically determine optimal solutions.

This has led to the development of algorithms such as branch-and-bound, which are

better suited for global optimization as compared to traditional sampling based

techniques. Moreover, these algorithms can ensure global optimality under certain

assumptions, which is not possible with traditional sampling-based approaches.

 7

Therefore, in this research, the use of declarative equation based modeling for

component sizing is proposed. So the next question then is: What kind of declarative

modeling language should be used?

Different declarative modeling languages exist depending on the type of models

involved in a problem, such as dynamic or algebraic models. As the computing resources

available increases, there is a trend to go towards more complex models that describe a

system. To this end dynamic models, which are based on differential equations, are able

to model complex time-dependent phenomena better than algebraic models, which are

time-independent. However, in the case of component sizing, the use of dynamic models

may prove infeasible due to certain limitations which are discussed below.

Dynamic modeling languages such as Modelica [26] are commonly used to

simulate the dynamic behavior of a system given the complete specification of the system

at an initial time. This is also known as initial-value problems. However, in component

sizing, the specifications of the system are unknown and are to be determined based on

the requirements imposed on the system. Therefore, in the case of dynamic models, it

becomes a boundary-value problem in which the sizes (considered as variables with

derivative equal to zero) are to be determined given boundary conditions in the form of

requirements. This can be very time consuming due to the large number of simulations

required and ensuring global optimality becomes very difficult.

Therefore, in this research, declarative algebraic models are used to represent

component behavior instead of dynamic models. Since algebraic models are not time-

dependent and do not contain derivative terms, component sizing can be formulated as

solving a number of algebraic equations simultaneously, which is considerably faster than

 8

for a similar dynamic model formulation. Moreover, the limitation of algebraic models

can be overcome by performing a dynamic simulation to verify the performance once

sizing has been performed with algebraic models [35].

To summarize the line of thought presented in this section, component sizing is an

important part of architecture exploration. However, for a particular architecture, it is

non-trivial to find “good” sizes for components that both satisfies all the requirements

and is near-optimal. It is also time consuming to formulate the problem when trying to

explore different scenarios for the same architecture (e.g. minimize cost, minimize mass,

maximize force, etc.).

The goal of this research, therefore, is to provide designers with a capability to

represent and solve component sizing problems for a given architecture more efficiently.

Integrating such a method within architecture exploration would increase the value

associated with exploring more system architectures early in the design phase, thereby

increasing the likelihood of designing better systems that satisfy all of the requirements.

1.2 Research Questions and Hypotheses

The ideas presented in the previous section lead to the following research

questions and hypotheses:

RQ: Is it possible for designers to represent and solve component sizing problems

more efficiently?

The above question can be divided into two parts: a.) Solving component sizing

problems efficiently and b.) Formulating the problem in a manner that is both convenient

 9

to designers and can be solved using the method proposed. The answers to these two

questions forms the basis for the hypotheses defended in this thesis.

H1: Through the use of mathematical programming and constraint satisfaction

techniques, designers can solve component sizing problems involving algebraic

models more efficiently.

Based on the discussion in the previous section, the idea is to use declarative

algebraic equations to solve component sizing problems efficiently. Mathematical

programming is a type of algebraic declarative language that can be used to solve mixed

integer nonlinear optimization problems such as those encountered in component sizing.

In addition, by using the global optimizers available in mathematical programming

languages it is possible to determine sizes with a possibility of optimality.

Along with solving component sizing problems more efficiently, designers care

equally, if not more, about the ease with which problems can be formulated and

represented. This becomes more important as the complexity of problems increases and it

is no longer feasible to manually create models that can be executed. Mathematical

programming is good for solving complex algebraic models. However, it lacks the

semantics necessary to represent engineering design problems in an easy-to-use manner.

Therefore, a method for representing component sizing problems in a more convenient

manner is developed using the Systems Modeling Language (SysML™) [33] developed

by the Object Management Group (OMG). Thus, in order to increase the value associated

with using Mathematical Programming for solving component sizing problems, the

following hypothesis is also studied in this thesis:

 10

H2: It is possible to extend traditional mathematical programming using SysML and

model transformations to provide designers with improved capabilities for

representing and formulating component sizing problems.

Since component sizing can be applied to many types of problems the scope of

this research is limited to one application domain, which is the hydraulic systems domain.

The motivation for using hydraulic systems as an application domain is provided in the

next section.

1.3 Hydraulic Systems as an Example Application Domain

The term Component Sizing Problem is very broad in scope and can be applied to

many different domains and disciplines. Therefore, in order to take the first steps towards

addressing the research question proposed in the previous section, it is necessary to

identify the domain over which component sizing problems will be considered.

In this thesis, the domain under consideration is the Fluid Power or Hydraulics

domain. From the perspective of design automation and systems engineering, fluid power

systems have an interesting characteristic in that they are circuit-like. This is because

fluid power systems can easily be decomposed into a number of modular components

that connect together to form complex systems. This modularity also ensures the presence

of a consistent interface between different components, such as fluid ports. As a result,

the systems can be specified in terms of independent component models that can be

connected together, just as in the actual systems. These independent component models

refer to two types of models: behavior models as well as selection models, such as

supplier catalog information. Moreover, hydraulic systems consist of components

 11

belonging to different domains, such as motors, engines, and cylinders. This is an

important characteristic that helps broaden the scope of component sizing being

considered in this thesis. The hydraulic system used in this thesis for an example

application is based on a practical application of a log splitter, which is discussed in

Chapter 4.

1.4 Thesis Organization

The remainder of this thesis is organized as follows:

In the next chapter, related work is reviewed and the problem background is

provided. This includes related literature on solving of component sizing problems as

well as literature on representing constraint satisfaction problems (CSPs). Based on this

related work, the use of CSP-based formulation for component sizing is discussed.

Thereafter, an introduction to the mathematical programming language GAMS and

general modeling language SysML is provided.

In Chapter 3 the framework for component sizing is described, in which

mathematical programming is extended using SysML. The framework is based on the

use of domain specific languages, metamodels and model transformations to

automatically generate executable GAMS code from SysML models.

This framework is then applied to an example application for a hydraulic log

splitter in Chapter 4. This chapter details the process of representing the problem in

SysML and its subsequent solution using GAMS. The results obtained for different

scenarios are then presented.

 12

Finally, in Chapter 5 the research questions and hypotheses are reviewed along

with a discussion about the research contributions, limitations and future work.

 13

CHAPTER 2

RELATED WORK & PROBLEM BACKGROUND

This chapter provides a review of the underlying principles along with a

discussion on the related work that is applicable for this research. A basic premise of this

research is the use of Mathematical Programming for solving component sizing problems

and use of SysML for its representation. Therefore, related work in solving component

sizing problems as well as for representing Constraint Satisfaction Problems (CSPs) is

discussed. Thereafter, the motivation for describing component sizing problems in terms

of CSP and based on mathematical programming is discussed. Finally, a brief

introductory background regarding the use of GAMS (General Algebraic Modeling

System) and SysML (Systems Modeling Language) is provided to familiarize the reader

with concepts that will be used in the framework presented in this thesis.

2.1 Related Work on Solving Component Sizing Problems

The following is a review of other literature related to the solving of problems

related to component sizing of systems. The focus of this research is to develop an

automated tool for component sizing; therefore, two main approaches are reviewed:

knowledge-based engineering (KBE) efforts and efforts based on Constraint

Programming (or CSP).

In addition to the research in automated sizing of systems, a more conventional

approach known as the Component Sizing Procedure is also commonly used in industry,

in which pre-defined procedures are used to guide the designer in selecting a particular

 14

component. For instance, companies like Sauer-Danfoss [43] and Eaton [12] publish

manuals that provide procedures for selecting a particular component based on

assumptions made regarding loading, performance, life requirements, etc. A disadvantage

of such procedures is that they limit the designer’s ability to experiment with different

alternatives by forcing the designer to assume certain starting values for variables and

check the feasibility of the system. For instance, a designer may be required to start with

assumptions on the engine output and then sequentially size the remaining components of

the system. Another disadvantage with such procedures is that they are company

dependent i.e., a manual from Eaton uses components by Eaton only and therefore

mixing components from multiple manufacturers can be difficult to implement in the

form of a procedure.

2.1.1 Knowledge-Based Engineering Efforts

The idea of automating design tasks and capturing knowledge through computers

gained momentum through the use of Knowledge-Based Engineering (KBE) in the 1980s

with the advent of artificial intelligence and expert systems [7, 11]. These efforts were

characterized by two main features:

a. Use of detailed design knowledge, and

b. Heuristics for sizing.

For instance, this initial effort was strongly focused on the generation of geometry

during the detailed design phase, which resulted in a variety of commercial software

based around CAD tools, such as Knowledge Fusion (part of NX by Siemens PLM) or

KnowledgeWare (part of Catia by Dassault Systèmes). These tools were typically add-

 15

ons to existing mechanical CAD tools and most often required low-level design

knowledge that involved using relationships based on physical principles (e.g., modeling

mass based on complex relations between material properties and detailed geometry).

Concurrently, in the hydraulics domain, a few efforts toward KBE have been reported in

the literature [9, 10, 18, 22, 42, 48]. In particular, da Silva developed an expert system for

configuring hydraulic components based on a high-level characterization of loading

conditions [9]. This expert system is entirely rule-based and does not involve any analysis

models. Its heuristics can identify a reasonable configuration among the known hydraulic

circuit configurations, but does not attempt any component-level or system-level

optimization.

The framework presented in this research differs from the above mentioned

approaches in two distinct areas, namely:

a. The use of tradeoff models [24] instead of low-level models that rely on

physical principles

b. The use of analysis models instead of heuristics

Low-level models are used to establish relations between the sizing attributes of

components, such as maximum power output, cost or mass. However, such low-level

models are not usually available during system-level decision making. As an alternative,

tradeoff models that consist of discrete observational data from existing components

(supplier catalogs) are used. By definition, a tradeoff model is an “abstract representation

of a system in terms of a predictive relationship between its top-level attributes” [24].

Therefore, discrete component data is utilized to establish system-level relations between

component attributes.

 16

In addition to tradeoff models, analysis models are used in place of heuristics. In

the context of this research, the analysis models consist of algebraic equations that relate

to a model's performance as well as the physical laws that it must obey at component

interfaces where energy flow takes place. For instance, in the electrical domain this refers

to the two Kirchhoff Laws, in which the potentials between two connections are equal

and the currents flowing in and out of each connector sum-to-zero. These principles of

equality and sum-to-zero are found in almost all domains in which some kind of energy

flow takes place between components.

Consequently, it is possible to define self-contained analysis models that can be

connected together to form larger systems. The approach for automating this connection

behavior is similar to approaches used in Modelica [16, 26] (a modeling language for

dynamic simulations of energy-based systems). In addition to these characteristics, the

framework proposed in this research relies on principles used in solving CSPs and so the

next section reviews related literature that utilizes CSP-based approaches.

2.1.2 Constraint-Satisfaction Problem (CSP) Based Approaches

The analysis models described in the previous section consist of constraints or

equations over variables, which must be satisfied simultaneously in order for the

selection of components to be valid. As discussed in Section 2.3, the resulting system

model consisting of a number of components can be treated as a Constraint Satisfaction

Problem (CSP). CSPs have been commonly used in many different areas, such as

artificial intelligence, operations research, engineering design, and computer science

since the 1960's [37]. Moreover, algorithms to solve such problems have also been in

 17

development and have become increasingly powerful at solving problems belonging to a

wide variety of domains [14]. Based on the type of variables, constraints or domains

encountered, CSPs can be classified as: discrete (integer and boolean), continuous (real),

linear, nonlinear, finite and infinite bounded. In the field of engineering and engineering

design the most common type of CSP encountered is the mixed-integer nonlinear type,

consisting of a combination of integer, real and boolean variables along with both linear

and nonlinear constraints. In the literature, the use of CSP for engineering design has

been reported by Chenouard et al. [6], O'Sullivan [31], Wielinga [49] and others.

Depending on the type of CSP, different solvers are available. Table 1 includes a

comparison of some commonly used CSP tools. Continuous constraint support is a must

for engineering problems due to the presence of continuous variables and non-linear

constraints.

It is clear from the related literature that CSP techniques are a powerful tool for

solving problems and component sizing problems clearly fit within the framework of

CSP-based modeling. However, the current implementations for CSP are limited in their

ability to effectively represent the engineering problem to be solved. Therefore in the

next section, literature related to the representation of CSPs is reviewed.

 18

Table 1 Comparison of different types of CSP solvers

Solver

Continuous

Constraint

Support

Math

based

Syntax

OS
Modeling

Language
License

Development

Status

BARON [40] Y Y
Windows /
Unix

GAMS Commercial
Current (by
GAMS &
BARON)

Choco1 Y N Independent Java Open Source Current

Elisa2
(Gaol3, Mathlib)

Y N Linux / GCC C++ Open Source
2005

(Gaol: 2008)

GlobSol4 Y N Windows FORTRAN
Boost
License

2003

Ilog5 Y Y Windows Multiple Commercial
Current
(by IBM)

RealPaver [20] Y N Linux / GCC C++ Open Source 2004

JaCoP6 N N Independent Java Open Source Current

Koalog7 N N Independent Java Commercial Current

1 http://www.emn.fr/z-info/choco-solver/index.html
2 http://sourceforge.net/projects/elisa/
3 http://sourceforge.net/projects/gaol/
4 http://interval.louisiana.edu/GlobSol/
5 http://www-01.ibm.com/software/websphere/products/optimization/
6 http://jacop.osolpro.com/
7 http://www.koalog.com

2.2 Related Work on Representing CSPs

A common feature for representing CSPs and declarative programming involves

the separation between defining the problem to be solved and specifying how to solve it.

Towards this, there has been a recent trend in the CSP tools described in the previous

section to separate the process of defining and solving problem, such as in Zinc [28] for

discrete CSPs or in GAMS [19] for continuous optimization problems (and CSPs).

However, there is close to limited or no support for object-oriented representation of

CSPs, even if the tool itself is encoded in an object-oriented language such as Java or

 19

C++. This is a major limitation when dealing with engineering systems due to their

hierarchical nature, in which systems can be decomposed into multiple levels of

subsystems and modular units.

As an example of research in this direction, Chenouard et al. have developed a

custom implementation (s-COMMA GUI) that allows users to graphically define

constraint models [5]. However, some of its features limits its use in engineering design,

such as limited support for defining continuous CSPs and limited support for continuous

CSP solvers (only RealPaver is currently supported), as well as a custom user interface in

which only constraint models can be defined. Another example is the development of

ASCEND [36], which is an object-oriented mathematical modeling system used mainly

for chemical process modeling. A common limitation of these tools is the difficulty

involved in integrating the custom representations within other tools that are used in the

design process.

Based on the related work, it is clear that component sizing problems fit within

the framework of CSPs. The use of CSP formulation approach that is based on

mathematical programming is discussed in the next section.

2.3 Component Sizing as a Constraint Satisfaction Problem (CSP)

The process of component sizing for a particular architecture can be viewed as a

two-part process. First, constraints are specified to limit a designer’s selection and then

different alternatives that satisfy all of these constraints are explored, with the best

alternative being the solution [21]. There are different types of constraints associated with

 20

the sizing of a system, such as behavioral constraints (fundamental physical laws) and

selection constraints (catalog information) that are not controllable by the designer, as

well as requirements and objectives that reflect a designer's preferences and goals. When

taken together, component sizing becomes a constrained optimization problem, which

can be solved in various ways. The approach taken in this thesis is to model component

sizing in terms of a Constraint Satisfaction Problem (CSP), which is based on

Mathematical Programming principles. The motivation for using Mathematical

Programming is discussed in the next section.

Motivation for Mathematical Programming:

There are two main approaches to defining and solving constrained optimization

problems: a declarative and imperative approach. Imperative programming is based on

explicitly specifying the sequence of statements necessary to model a problem. For

instance, a designer may define a model to calculate the force produced by a cylinder.

The model would take certain inputs such as pressure and return an output force. This

same model cannot be used to determine the pressure required to generate some known

force. From a designer’s perspective, the same model for a cylinder should be able to

calculate force given pressure as well as pressure given force. Thus, imperative

programming limits the expressivity of a designer, because multiple models are needed

depending on what is known and unknown. This influences the way designers solve

optimization problems. For instance when using fmincon [25], a non-linear optimizer in

MATLAB, a designer is required to specify non-linear constraints and objectives in terms

of functions with predetermined causality, i.e. a left- and right-hand side with inputs and

 21

outputs respectively (Figure 1). Therefore, in order to use the imperative programming

approach designers must make some assumptions regarding what is known and unknown

at the time of execution, a valid assumption in certain cases.

 min� �
�� subject to �
�� ≤ 0���
�� = 0� ∙ � ≤ ��� ∙ � = ��! ≤ � ≤ "

where the RHS is constant

(1)

Figure 1 Imperative programming based approach for nonlinear optimization. The
optimizer referred to above is fmincon, a nonlinear optimizer in MATLAB [25]

During component sizing, however, this is a difficult assumption to make since

the different components of a system are coupled while at the same time are independent.

For instance, the behavior of a pump, engine and cylinder can be modeled independently

but their selection is coupled at the system-level. The force requirement on cylinder

influences pressure requirements in the circuit, thereby influencing torque requirements

on the pump which ultimately affects the output of the engine. Thus a different approach

is required when it is not possible to identify what is known and unknown, and

declarative programming is an approach that can handle such situations.

Declarative programming, in contrast to imperative programming, involves

specifying properties of a valid solution for a problem instead of specifying how to solve

it. From the perspective of component sizing designers can specify constraints on

variables without any mention of inputs or outputs. The acausal nature of constraints

allows the designer to experiment with different objectives without changing the models.

For instance, consider a constraint for a cylinder in which force is related to bore

diameter and pressure (see Table 2). In the imperative approach, the constraint would be

 22

formulated differently depending on what the designer assumes as input and output.

Declarative equations, on the other hand, specify a relation and impose causality only at

the time of solving. Consequently, it is possible to use the same equation for different

problem formulations.

Table 2 Imperative versus Declarative Implementation of a constraint

Constraint
formulated by
designer

Implementation of Constraint in a Solver

Imperative Approach
(MATLAB, C, Java)

Declarative Approach
(Mathematical Programming)

� = � ∙ *4 ∙ ��

Output: F � = � ∙ *4 ∙ ��

Output: F, p or d � = � ∙ *4 ∙ �� Output: p � = � ∙ 4* ∙ 1��

Output: d � = -� ∙ 4* ∙ 1�

Therefore in this research, a mathematical programming approach, which is based

on the declarative programming, is used to formulate and solve component sizing

problems. In mathematical programming, by modeling variables and constraints over

these variables, a variable is optimized as opposed to an objective function (see Figure 2).

This means that there is no restriction on the way constraints are formulated. As a result,

issues of causality are taken care of during runtime by the solver.

 min ./ given �2, ��, �4, … and variables .2, .�, .4, … , .8
where �2, ��, �4, … are constraints
linear/nonliner� of the form

�
.� ≤ ;
.�, �
.� = ;
.�, or �
.� ≥ ;
.�
(2)

Figure 2 Optimization form for mathematical programming. Constraints represent the
behavior of a model and not how to solve it. Symbolic manipulation is performed

at runtime to determine order of execution of equations.

 23

In particular the mathematical programming language GAMS (General Algebraic

Modeling System) is used in this research and a brief discussion of the relevant features

of GAMS is discussed in the next section.

2.3.1 Using Solvers in GAMS for Solving Component Sizing Problems

A benefit of using CSPs to solve problems is that a designer can specify a

problem without needing to specify how to solve it. This relates to the concept of

separation between modeling and solving of a problem. Such concepts have been popular

in mathematics and operations research, in which the same model can be solved by a

number of different solvers. In engineering, however, the trend has been to define

specialized solving techniques that are tailored for a particular problem [17].

Traditional approaches included the use of sampling-based techniques such as

stochastic, gradient-based or evolutionary algorithms to find solutions. These approaches

are imperative in nature, i.e. the model may change depending on the assumptions

imposed regarding the knowns and unknowns in the problem [6]. In addition, engineering

problems typically consist of a combination of continuous and discrete variables as well

as linear and non-linear constraints. One such example is the combination of continuous

variables such as force and integer variables such as number of gear teeth or a variable

used to select a gear out of a set of potential gears from a supplier catalog. Such problems

are commonly known as MINLP (Mixed-Integer Non Linear Programming) problems

and are a special type of CSPs that use specialized algorithms based on interval

arithmetic and branch-and-bound frameworks [2], such as those included within the

algebraic modeling environment known as GAMS [19].

 24

In this research, the solver used is BARON (Branch and Reduce Optimization

Navigator), which is available within the GAMS (General Algebraic Modeling System)

language. BARON is a global optimization solver that can be used to solve purely

continuous nonlinear programs (NLP), purely integer, and mixed-integer nonlinear

programs (MINLP) [40]. According to a comparison carried out by Neumaier et al.,

BARON is the fastest and most robust global optimization solver among available global

solvers [29].

GAMS (General Algebraic Modeling System) is a high-level modeling language

for mathematical programming and optimization. According to [19], GAMS is intended

for “complex, large scale modeling applications, and allows [a designer] to build large

maintainable models that can be adapted quickly to new situations.” To this end, GAMS

consists of a modeling language and a number of integrated solvers which can be

changed according to the type of problem (LP, NLP, MINLP, etc.). GAMS models

consist of purely algebraic statements, which is compatible with this research’s use of

algebraic constraints for modeling component sizing problems.

Although GAMS is suitable for representing constraints declaratively, it is limited

in its ability to describe engineering systems. This is discussed in the next section.

2.3.2 Limitations of GAMS for Representing Component Sizing Problems

GAMS is a text-based language with semantics based on the characteristics of

optimization problems typically found in Operations Research. One of the main features

of GAMS is the separation between the characteristics of a problem and the data that it

uses. For instance, in a transportation problem the model is defined independently of the

 25

size of the supply and demand. This is similarly found in component sizing problems, in

which the same model can be used irrespective of the number of potential catalog

components being considered. To facilitate such modeling, the common components of a

GAMS model are described in Table 3. Through these components, it is clear that GAMS

is well-suited for problems found in mathematical programming, such as operations

research, in which problems can be described without the need for subsystems and

individual components.

Table 3 The basic components of a GAMS model [3]

Inputs:

• Sets: Container for elements. Represents “collections”

• Data (Scalars, Parameters, Tables): Used to

store constant data in one, two or multiple dimensions.

• Variables: Same as traditional variables. Its value

changes during the process of solving

• Assignment of bounds and/or initial values (optional)

• Equations: Used to define the symbolic algebraic

relationships

• Model and Solve statements: Model is used to collect

equations into a group; Solve solves the set of

equations included in the Model for the objective to be

optimized and using the specified solver and

• Display statement (optional)

Outputs:

• Echo Print

• Reference Maps

• Equation Listings

• Status Reports

• Results

However, GAMS is not well suited for describing engineering design problems

due to a number of reasons, one of which is the hierarchical nature of engineered

systems. Engineered systems are commonly composed of multiple levels of subsystems

that ultimately consist of individual component models. In addition, there is a large

amount of model reuse in engineering systems and corresponding design problems, such

as reusing the same component (e.g. Cylinder) multiple times in the same circuit as well

in other problems. These characteristics of design problems imply the need for an object-

oriented perspective along with additional language constructs, which GAMS does not

 26

support. In Figure 3, an example of manual creation of a GAMS model for engineering

problems is shown. In particular, note the manual duplication and unique variable naming

required when using the same cylinder component again.

In order to support the modeling and formulation of component sizing problems

using mathematical programming, the use of the Systems Modeling Language (SysML)

[33] is proposed. SysML is a general modeling language developed by the Object

Management Group (OMG). Therefore, prior to discussing the proposed framework in

Chapter 3, a brief introduction to SysML is provided in the next section.

Figure 3 Example of manual input of GAMS model for an engineering problem. There is
duplication of variables and equations, making it difficult to reuse a model. Also,

variable naming must be unique

2.4 Introduction to SysML

In order to familiarize the reader with the terminology used in this thesis, some

general background is provided regarding the features of SysML. SysML is an extension

* To use the same cylinder model twice, a copy with unique names must be created.

* There is no concept of objects, or model hierarchies, or reuse of the same model.

* Cylinder Model 1

set cylinderCatalog1 / SAE-64508, SAE-64008, HMW-5008, PMC-5608 /;

parameterboreDiameterData1 / SAE-64508 0.1143, SAE-64008 0.1016, HMW-5008 0.127, PMC-5608 0.1016 /;

variable cylinder_f1, cylinder_bore1, cylinder_rod1, cylinder_portA_p1, cylinder_portB_p1;

equation cylinder_f_eq1;

cylinder_f_eq1.. cylinder_f1 =e= Pi*0.25*((sqr(cylinder_bore1)*cylinder_portA_p1) - cylinder_portB_p1*

(sqr(cylinder_bore1)-sqr(cylinder_rod1)));

* Cylinder Model 2

set cylinderCatalog1 / SAE-64508, SAE-64008, HMW-5008, PMC-5608 /;

parameterboreDiameterData1 / SAE-64508 0.1143, SAE-64008 0.1016, HMW-5008 0.127, PMC-5608 0.1016 /;

variable cylinder_f1, cylinder_bore1, cylinder_rod1, cylinder_portA_p1, cylinder_portB_p1;

equation cylinder_f_eq1;

cylinder_f_eq1.. cylinder_f1 =e= Pi*0.25*((sqr(cylinder_bore1)*cylinder_portA_p1) - cylinder_portB_p1*

(sqr(cylinder_bore1)-sqr(cylinder_rod1)));

model m /cylinder_f_eq1, cylinder_f_eq2/;

solve m using minlp maximizing cylinder_f1;

display cylinder_f1.l, cylinder_f2.l;

 27

of the Unified Modeling Language (UML) [34], both of which have been standardized by

the OMG. UML is widely used in software engineering and has been extended to support

the modeling of systems of all types through SysML. The following are some of the

common SysML entities used throughout this thesis. These descriptions are based on the

book by Friedenthal et al. [15] and the SysML specification [33].

SysML Blocks:

A block is the primary modeling unit in SysML. The analogous of a block in

software engineering is a class. A block can be used to represent various parts of a

system, such as a process, function, model, behavior or the system itself. Blocks can be

combined together to form subsystems and systems that collectively describe the problem

being modeled. In addition, blocks can contain other entities like properties and ports to

describe the problem in more detail. Thus, blocks provide a modular way for a designer

to represent the system in a decomposable manner.

SysML Properties:

SysML properties are an extension of UML properties and can be classified as

value properties and part properties. Value properties are commonly used to specify

variables while part properties are used to define local usages for a block within another

block. This is similar to the concept of class definition versus class usage in object-

oriented programming. This translates well for component sizing problems, in which

systems can be decomposed using part properties and variables can be modeled using

value properties.

SysML Flow Ports:

 28

In order to enable model reuse in SysML, ports are used to clearly define the

interfaces through which information can be exchanged [33]. By connecting together the

ports of different blocks, it is possible to model the flow between various parts of the

system. Depending on the system being modeled, the concept of what flows can be

different such as energy flow between components in energy-based system models.

Stereotypes & Profiles:

In order to customize SysML for a specific domain such as GAMS or fluid power,

UML (and SysML) provide a construct known as a stereotype that can be used to extend

existing SysML constructs like blocks and properties. A stereotype is more precise than

the existing SysML entities. Stereotypes are organized within profiles, which represent a

collection of customizations for a specific domain or application.

2.5 Summary

Through a review of literature related to solving of component sizing problems

and their representation, it is clear that the CSP approach is a powerful solving technique

that can be used in a variety of problems. In particular, component sizing problems

clearly fit within the framework of CSP-based solving. However, limitations in the

expressivity of the current modeling capabilities of CSP tools such as GAMS limits it

from being used to solve problems in engineering design such as component sizing.

Consequently, the framework proposed in this thesis involves using a general

modeling language such as SysML to extend the current modeling formalisms of GAMS

in order to support a more efficient representation of component sizing problems. This

framework is described in the next chapter.

 29

CHAPTER 3

EXTENDING MATHEMATICAL PROGRAMMING USING SYSML

In this chapter, the framework for representing and solving component sizing

problems more efficiently using SysML and GAMS is presented. In this framework,

SysML is used to extend current mathematical programming formalisms of GAMS in

order to provide a designer with improved capabilities for modeling the component sizing

problem to be solved. The actual solving of the problem is still done using the integrated

solvers included in GAMS. In this research, the solver BARON is used to solve the

problem after it has been modeled in SysML.

This process is based on using the principles of Model Driven Software

Development (MDSD) [45], which is commonly used in software engineering. This

process involves the specification of metamodels, domain specific languages (DSLs) and

automated model transformations. In particular, the process of representing the analysis

knowledge related to component sizing in a form that is convenient to designers within

SysML is presented. Along with capturing this analysis knowledge, the process of

transforming such a representation into a form that can be solved by external solvers in

GAMS is also discussed. In order to use the advantages of both languages (SysML and

GAMS), a combination of DSLs and model transformations are used to create a

consistent representation in both languages. The approach presented in this thesis

involves the following steps:

1. Formal Capture of GAMS Domain Using Metamodels.

2. Representing GAMS Compliant Models in SysML using Profiles

3. Model Transformations to Support Hierarchical Object-Oriented Modeling

 30

Each step is discussed in the following sections.

3.1 Formal Capture of GAMS Domain Using Metamodels

In order to provide designers with improved capabilities for representing

component sizing problems, SysML is used as a formal object-oriented modeling

language, which can then be passed to GAMS and subsequently solved. This requires a

different approach than when done in a single tool, e.g. entirely in GAMS. In a single

tool, this process would be done through internal data-models (language compilers) that

are customized for the particular software tool, such as the source code for GAMS. In

order to integrate multiple tools a common metamodel is used, which describes the

concepts that can appear in a valid model as well as represents the links between these

concepts, such as inheritance and composition. To support such model and metamodel

driven systems, the OMG established the Meta Object Facility (MOF) standard, which

provides a framework for “defining, manipulating, and integrating meta-data and data in

a platform independent manner” [23, 32]. A metamodel represents the abstract syntax for

a domain, since the relations are defined using classes and associations that are

independent of any particular encoding.

To extend the functionality supported by GAMS, the approach taken is to convert

the implicit metamodel for GAMS (i.e., the data structures used internally – refer Table

3) into a formal and explicit metamodel compliant with the MOF standard. In addition,

existing constructs are extended through additional features such as object-oriented

modeling that are added to the metamodel.

 31

The GAMS metamodel is shown in Figure 4, in which the constructs in GAMS

are represented as classes (GamsSolve, Model, GamsVariable, etc.). According to

mathematical programming formalism of GAMS, the model that is passed to a solver

consists only of equations and there is no concept of ownership. Moreover, a GAMS file

consists of a number of variables, parameters, sets, equations, a model statement and a

solve statement, and some display statements, all of which are modeled at the same level.

As a result, a GAMS model is flat i.e., there is no concept of an object, ownership, or

visibility (public, private). This lack of expressivity severely limits a designer’s

ability to describe systems in terms of modular components. To overcome this, existing

GAMS constructs are mapped to different objects (similar to class in object-oriented

programming) in the metamodel shown in Figure 4. In order to introduce the concept of

ownership and hierarchical modeling, associations are defined between the objects such

as A_owner_ownedModels and A_model_variables. This enables a designer to

define and limit the scope of GAMS constructs used within models. These associations

can be described as follows.

The GamsSolve corresponds to the solve statement in GAMS and it represents

the top-most level in the resultant model hierarchy. Just as a solve statement specifies

the model to solve, a GamsSolve object has an association A_gamsSolve_model

which specifies that a GamsSolve object owns a Model. This is as far as the similarity

between GAMS and the metamodel goes. Unlike GAMS, the metamodel allows a Model

to own the following: other models, variables, sets, parameters and equations.

In this way, it is possible for a designer knowing GAMS syntax to define a

modular class-based system with object-oriented constructs.

 32

Figure 4 GAMS Metamodel Definition. Semantics Of GAMS are Represented as Objects
in the Metamodel

An interesting feature of the metamodel described above is that it is not specific

for component sizing problems. The abstract syntax described in this metamodel can be

used to represent any GAMS model and can therefore be used for other applications as

well that consist of decomposable systems.

In order to provide additional capabilities specifically for component sizing, new

language constructs are added to the concrete syntax, in this case SysML. This involves

customizing SysML through the use of profiles, and then using model transformations to

 33

automatically generate an executable representation in GAMS. The customization of

SysML is discussed in the next section.

3.2 Representing Component Sizing Problems in SysML

Since SysML is a general purpose modeling language, it lacks the detailed, formal

semantics needed for representing a problem in a domain-specific way [4]. For instance,

there is no SysML concept that can represent GAMS-specific semantics like variable

or parameter. They could all be modeled by using the same SysML construct, such as

Property, and using the name to represent a variable or parameter (e.g. variable_x

as the name of a Property in SysML). This would lead to ambiguity at the time of

converting from SysML to GAMS. In addition, the lack of precise problem-specific

semantics can make it cumbersome for domain experts to create models in SysML due to

the large amount of repetitive tasks involved. This can limit the acceptance of general

SysML for specific domains and problems. Therefore, in order for SysML to be used for

modeling a particular type of problem, the necessary semantics associated with the

problem must be included within SysML through customizations.

Therefore, in this section, the process of customizing SysML for component

sizing is discussed. There are two parts to this: capturing existing GAMS semantics in

SysML and defining new semantics that are relevant from a component sizing

perspective.

 34

3.2.1 Capturing GAMS Semantics in SysML Using Profiles

SysML (UML) provides several mechanisms for customization, such as extending

the UML metamodel, creating new profiles that extend existing SysML/UML constructs

or defining a completely new language. Profiles are preferred since they do not modify

the underlying UML metamodel, thereby retaining existing tool support [47]. A portion

of a profile created for representing component sizing problems based on GAMS

semantics is shown in Figure 5.

The profile is constructed as per the MOF metamodel (Figure 4). For instance

variable, parameter and set each have their own stereotype defined but all

extend the SysML Property class. The GAMS construct for equation is defined by a

stereotype GamsEquation that extends the SysML Constraint class.

Since both the model and solve constructs extend the SysML Block, all of the

characteristic of a Block are available to objects stereotyped as GamsModel and

GamsSolve. For instance, SysML supports hierarchical modeling through composition

associations and this is automatically available when using GamsModel stereotype to

create models.

 35

Figure 5 Profile to extend Mathematical Programming semantics in SysML. New
semantics are defined that extend from existing Port, Connector and Constraint

metaclasses.

GamsProfile GamsProfile[Profile] pkg []

-modelType : GamsModelType [1] = minlp
-optimizeDirection : GamsOptimizeDirectionKind [1] = minimize
-solverType : GamsSolverType [1] = BARON
-objVarName : String [1] = null

«stereotype»

GamsSolve

[Class]

«metaclass»

Property

«stereotype»

GamsSelectionConnectionEquation

[Constraint]

«stereotype»

GamsPhysicalConnectionEquation

[Constraint]

-causality : GamsCausality [1] = inout

«stereotype»

GamsPort

[Port]

-flowFlag : FlowFlag [1] = nonflow
-domainName : String
-type : GamsVariableType [1] = free

«stereotype»

GamsVariable

[Property]

-isEncapsulated : Boolean [0..1]

«stereotype»

Block

[Class]

«stereotype»

GamsSelectionConnection

[Connector]

«stereotype»

GamsPhysicalConnection

[Connector]

-specification : String [1] = ""
-domain : ValueProperty [0..*]
-domainName : String

«stereotype»

GamsSet

[Property]

-specification : String [1]
-domainName : String

«stereotype»

GamsParameter

[Property]

«stereotype»

OwnedGamsModel

[Property]

-domainName : String

«stereotype»

GamsEquation

[Constraint]

«stereotype»

GamsModel

[Class]

«metaclass»

Port

«metaclass»

Connector

«metaclass»

Constraint

«metaclass»

Constraint

Existing GAMS Semantics

New Semantics

 36

3.2.2 New Constructs in SysML to Support Representation of Component Sizing

Problems

Existing SysML constructs are extended using stereotypes to make it easier for a

designer to define component sizing problems. These new features include support for

hierarchical modeling, embedding the physics related to energy-based systems that are

typically encountered during engineering design, as well as support for explicitly defining

dependencies between component models and their associated selection models (supplier

catalogs).

Hierarchical modeling is established through existing composition associations in

SysML and this allows the designer to logically decompose a system into its individual

components. It also enables a designer to store models and reuse them in multiple

contexts in the same problem or across different problems. An important effect of

modularization is the possibility of using connections to connect the components in

different ways, which is similar to the process engineers use when assembling together

components in the real world.

The concept of connecting components exists at multiple levels during the design

process. Moreover, the connections can have different meanings depending on the

context in which they are used. For instance, when connections are used to create

schematics they refer to the graphical representation. For this and other situations in

which connections can be used, the existing SysML constructs of Port and

Connector are customized depending on the context of use. Based on the different

contexts, it is possible to encode knowledge by customizing SysML in order to make it

more convenient for designers to formulate component sizing problems. This reduces the

 37

amount of repetitive and error-prone manual modeling that a designer would otherwise

have to do. In particular, three types of connections are considered in this research:

1. Connections used to describe a system architecture

2. Connections used for energy-based analysis models

3. Connections used to establish relations between multiple analysis models

and corresponding catalog models

In this research, a system architecture is assumed to exist and component sizing is

performed on the given architecture. Therefore, the capability to model a system

architecture by connecting components together is provided by customizing existing

SysML constructs of Port and Connector. The additional knowledge that is encoded

in Port and Connector can be used to automatically generate equations that a

designer would otherwise have to manually define.

A common feature in models for energy-based systems is the existence of

standard interfaces through which energy is transferred between components. This

process of energy transfer can be captured in terms of equations that can be used to

generate system-level models from component-level models and their connections. This

logic is based on the law of energy conservation and can generally be formulated through

two equations:

• Sum-to-zero equation for flow variables (e.g. force, flow, torque)

• Equality equation for potential variables (e.g. pressure, velocity, angular

speed).

This is a generic logic that applies to multiple domains including fluid power,

mechanics (translational / rotational), thermal, etc. Therefore, to aid the designer in

 38

creating system-level analysis models from component models, Port and Connector

are customized to encode this logic for energy transfer (refer to

<<GamsPhysicalConnection>> stereotype in the GAMS profile in Figure 5). This

allows for automatic generation of equations, which would otherwise be done manually

by the designer. As a result, it is easier for designers to create new architectures and

analyze them.

The final type of connection that is customized refers to the process of relating a

component to its use across multiple analyses. As discussed previously, component sizing

involves satisfying a number of requirements simultaneously. These requirements come

from multiple analyses such as cost analysis, mass analysis, and hydraulic performance

analysis. Different component models exist for each analysis and therefore it is necessary

to ensure that ultimately the same component is referred to across all of the analyses. This

is done by defining a SystemSizingModel, in which all of the components to be

sized are included, and then explicitly defining connections between each component in

the SystemSizingModel and its usage in each analysis model. The Connector

class is extended through the <<GamsSelectionConnection>> stereotype. The

corresponding logic to be encoded involves the creation of equality constraints between

each variable in the component model in SystemSizingModel and its corresponding

usage in an analysis.

Thus, by defining current GAMS semantics along with new constructs related to

component sizing problems in SysML, a designer is provided with additional capabilities

to represent component sizing problems. Moreover, the combination of profiles and

 39

metamodels provides the framework in which model transformations can be used to

define the logic described above in order to automatically generate models that can be

solved in GAMS. This is discussed in the next section.

3.3 Model Transformations to Support Hierarchical Object-Oriented Modeling

As discussed in the previous sections, a combination of profiles and metamodels

are used to provide new capabilities to designers for representing component sizing

problems in SysML and solving them by solvers in GAMS. In order to encode the logic

behind these new constructs (such as <<GamsPhysicalConnections>>) as well as

generate GAMS-compliant executable code, model transformations are used to

automatically perform these tasks.

Model transformations are used to convert the SysML model into an intermediate

object-oriented GAMS model, which is then transformed into a flat executable model that

can be solved within GAMS. Since the domain MOF metamodel and SysML profile can

be described in terms of graphs [1], model transformations can be defined in which the

domain semantics (metamodel and profile objects) represent the nodes, and associations

between objects represent the edges. As is shown in Figure 6, the transformations are

defined in a declarative fashion at the meta-model level and are then compiled into an

executable form that operate at the user-model level.

 40

Figure 6 Process Of Model Transformation from Source to Target Model (Czarnecki et
al. [8])

A correspondence metamodel is used to maintain relations between the elements

of the input SysML model and the resulting GAMS model [23, 44]. This is necessary

when retrieving information from the solver's output to update the SysML model. An

example of a correspondence link is shown in the correspondence metamodel in Figure 7.

It involves the use of object gmu2gmpp of type

GamsModelUsage2GamsModelPartProperty to link a

topLevelGamsModelPartProp object of type Property in SysML to a

topLevelGamsModel object of type GamsModel in the GAMS metamodel (refer to

the GAMS metamodel in Figure 4).

Source

Metamodel

Transformation

Definition

Target

Metamodel

Source

View
Transformation Target View

Refers to Refers to

Conforms to Conforms toExecutes

Reads Writes

 41

Figure 7 Portion of correspondence metamodel defined to relate SysML and GAMS
metamodels

Model transformations are then defined using the correspondence metamodel to

relate elements of the source and target views with one another. The transformations are

written in a declarative and graphical manner through the use of story diagrams [13]. The

model transformations used in this research are defined in MOFLON [27], which

automatically generates Java Metadata Interface (JMI) code that implements the

transformations in Java. This JMI code is then combined with a JMI-compliant SysML

tool, such as Magic Draw [30], in the form of a plugin that can be executed from within

SysML.

The sequence of model transformations executed to solve a component sizing

problem described in SysML using solvers in GAMS is shown in a SysML activity

diagram (Figure 8). Each action represents a transformation that is performed.

GAMS Metamodel SysML MetamodelCorrespondence Metamodel

 42

Figure 8 Sequence of Model Transformations to solve the component sizing problem.
Converts from SysML model to GAMS executable model and returns output of

solver to SysML

The transformation that converts an input SysML model of the problem into an

intermediate representation based on the MOF metamodel is shown in Figure 9. One such

transformation is shown in, in which the input is a SysML block (stereotyped with

GamsSolve) that contains solver information and the model to be solved. The output of

this model transformation is the creation of an equivalent model based on the GAMS

metamodel that was defined previously. The mechanism for transformation involves

matching a pattern (left-hand side) and applying a replacement pattern (right-hand side) if

successful. The pattern to be matched is defined in black and the replacement pattern is

shown in green (with <<create>> tag visible).

SysML Activity Diagram XformSequence[]

Generate Physical Connection Equations

Solve Block in SysML

Generate Sizing Connection Equations

Execute Model using Solvers in GAMS

Transformation to Convert MOF
Model to Flattened MOF Model

Print Flattened Model into a GAMS
executable text file

Transformation to Convert SysML
Model to MOF Model (as per GAMS

Metamodel)

Update SysML Model with Results

Operate on SysML

Model

Operate on MOF

model

Pretty Printing to

text file

 43

Figure 9 Model Transformation to convert SysML model to MOF model (as per GAMS
Metamodel)

 44

3.4 Summary

In this chapter, a framework using Model-Driven Software Development concepts

is presented for representing component sizing problems in SysML and their solving in

GAMS. This framework provides improved capabilities to designers for more efficiently

formulating component sizing problems in a hierarchical, model-based manner, thereby

addressing the limitations of current tools in terms of expressivity. Moreover, the use of

SysML enables this framework to be integrated within larger frameworks of design, such

as Model-Based Systems Engineering. In the next chapter, an example application is

presented which explores the use of this framework for representing and solving

component sizing problems more efficiently.

 45

CHAPTER 4

EXAMPLE APPLICATION: COMPONENT SIZING FOR A

HYDRAULIC LOG SPLITTER

In this chapter, an example application involving the sizing of a hydraulic log

splitter is presented in order to apply the framework presented in this research. First, the

motivation for the use of fluid power as an example domain is provided. Thereafter, the

modeling of the problem in SysML using the proposed framework is discussed. Finally,

results obtained from solving the problem under different scenarios are presented.

4.1 Problem Description and Motivation for Fluid Power

To validate the framework presented in the previous chapter for automated

component sizing, it is applied to an example belonging to the fluid power domain. The

use of fluid power as an example domain for component sizing was discussed in Section

1.3. To summarize, some of the desirable characteristics of the fluid power domain

include: systems are circuit-like in that they can be modularized and connected together,

well defined interfaces exist between components, and there is large amount of catalog

data available for different components which makes component sizing problems

combinatorially hard to solve. .

The hydraulic system considered in this example application is that of a horizontal

acting hydraulic log splitter (Figure 10). A log splitter is a system used to divide roughly

cylindrical pieces of wood into two or more pieces, generally longitudinally along the

grain of the wood. An operator loads a piece of wood (of varying length) and actuates a

 46

control to drive a wedge along the grain of the wood. Log splitters are usually portable

and so the critical requirements include the ram force available to split the log, total cycle

time involved, total mass, and total cost of the machine. These attributes represent

competing objectives, out of which the designer must make tradeoffs to find a

specification that satisfies all of the requirements simultaneously.

Figure 10 An assembly and block diagram for a horizontal acting hydraulic log splitter

The scope of component sizing is limited to the hydraulic subsystem; the

mechanical structure is not considered. In Figure 10, a block diagram of the log splitter

architecture considered in this example application is shown. There are different system

architectures that can be used, for instance open center circuit with constant pump

displacement versus closed center circuit with variable pump displacement. In this

example, the open-center circuit is used.

The components that are considered include: a gas engine, hydraulic fixed

displacement pump, directional control valve, double acting cylinder, load and tank.

Since the system is horizontal, only a horizontal load requirement is considered. As

discussed in Chapter 1, this example is restricted to a single architecture for which

component sizing is to be performed.

Log Loading &
Splitting Area

Directional
Control Valve

Hydraulic Cylinder
& Ram

Engine &
Pump

(credit: Dave Thompson)

Engine
Directional
Control Valve

Cylinder

Tank

LoadPump

Hydraulic Connection

Mechanical Translational
Connection

Mechanical Rotational
Connection

 47

The log splitter problem is a valid example for the proposed framework because it

possesses characteristics that belong to larger and more complex models. This includes

the presence of multiple types of interfaces (hydraulic, translational, rotational),

competing objectives (minimize cost versus maximize force), as well as multiple types of

analyses (cost, mass, fluid power performance). In this example, four components –

engine, pump, cylinder and valve – are considered for sizing, and their possible sizes are

taken from component catalog information that has been obtained from industrial

component manufacturers.

In the following sections, the modeling of the log splitter in SysML and its

subsequent solving in GAMS is discussed.

4.2 Modeling the Log Splitter Problem in SysML

As described in the previous section, the log splitter possesses different aspects

that are commonly found in component sizing problems. From a designer’s perspective,

the modeling steps that would be involved are as follows.

The first step involves the specification of requirements and their relation to a

particular component or variable. Since a single architecture is considered, the descriptive

modeling step is not considered in which the architecture to be sized is modeled. This is

discussed more in the Future Work section in the next chapter. Thereafter, the modeling

of hydraulic performance is considered in which energy-based modeling principles are

used. As part of the hydraulic performance analysis, the designer needs to consider

multiple use-phases based on the problem requirements. After modeling the hydraulic

performance with multiple use phases, other types of analyses are modeled. Finally, in

 48

order to ensure that all of the analyses and use phases are considered simultaneously the

designer needs to ensure that a common sizing for each component is used throughout the

entire model and is associated with one catalog model.

In order to evaluate the usefulness of the proposed framework, each aspect is

discussed separately in the same order that the designer would approach the modeling

task without a framework.

4.2.1 Requirements Modeling in SysML

One of the features of SysML is the ability to model requirements and assign

dependencies between requirements and model elements. In the case of component

sizing, requirements modeling is the first step for guiding the designer in defining the

composition of the system in terms of relevant analyses as well as the mathematical

constraints associated with the requirements. In Figure 11, a SysML requirements model

is shown in which requirements are decomposed hierarchically until they can be

described mathematically. For instance, the forward phase for the hydraulic analysis

consists of two requirements: a.) The force produced by the cylinder should be greater

than a specified limit and b.) The maximum pressure in the circuit should be less than the

specified max pressure. In this way, requirements modeling helps to derive mathematical

constraints that are then included in the different SysML analysis models, which is

described in the next section.

 49

Figure 11 SysML model for requirements and associating them with corresponding
component models through dependencies (<<verify>>). Requirements

modeling helps to decompose the problem into different analyses and use phases.

L
o
g
S
p
lit
te
rR
e
q

R
e
q
u
ir
e
m
e
n
ts

[P
a
c
k
a
g
e
]

re
q

[

]

p
a
rt
s

s
y
s
te
m
L
e
v
e
lM
o
d
e
l
:
S
y
s
te
m
L
e
v
e
lM
o
d
e
l{
V
e
ri
fi
e
s
 =
 T
o
ta
lS
y
s
te
m
}

F
l

{f
lo
w
F
la
g
 =
 n
o
n
fl
o
w
,

ty
p
e
 =
 f
re
e
}

lo
a
d
 :
 L
o
a
d

o
c
 :
 O
p
e
n
C
e
n
te
rC
k
t

fo
rw
a
rd
 :
 F
o
rw
a
rd
A
n
a
ly
s
is

re
v
e
rs
e
 :
 R
e
v
e
rs
e
A
n
a
ly
s
is

to
ta
lT
im
e
 :
 G
a
m
s
F
re
e

{f
lo
w
F
la
g
 =
 n
o
n
fl
o
w
,

ty
p
e
 =
 f
re
e
}

fp
A
n
a
ly
s
is
 :
 F
P
A
n
a
ly
s
is

to
ta
lM
a
s
s
 :
 G
a
m
s
F
re
e

{f
lo
w
F
la
g
 =
 n
o
n
fl
o
w
,

ty
p
e
 =
 f
re
e
}

m
a
s
s
A
n
a
ly
s
is
 :
 M
a
s
s
A
n
a
ly
s
is

to
ta
lC
o
s
t
:
G
a
m
s
F
re
e

{f
lo
w
F
la
g
 =
 n
o
n
fl
o
w
,

ty
p
e
 =
 f
re
e
}

c
o
s
tA
n
a
ly
s
is
 :
 C
o
s
tA
n
a
ly
s
is

z

{f
lo
w
F
la
g
 =
 n
o
n
fl
o
w
,

ty
p
e
 =
 f
re
e
}

s
y
s
te
m
L
e
v
e
lM
o
d
e
l
:
S
y
s
te
m
L
e
v
e
lM
o
d
e
l

«
G
a
m
s
S
o
lv
e
»

S
o
lv
e

Id
 =
 "
2
.1
"

T
e
x
t
=
 "
 "

«
re
q
u
ir
e
m
e
n
t»

H
y
d
ra
u
li
c
S
y
s
te
m

Id
 =
 "
2
.1
.3
"

T
e
x
t
=
 "
T
o
ta
l
c
y
c
le
 t
im
e

s
h
a
ll
b
e
 l
e
s
s
 t
h
a
n
 2
0
 s
 "

«
re
q
u
ir
e
m
e
n
t»

C
y
c
le
T
im
e

Id
 =
 "
2
.1
.1
.1
"

T
e
x
t
=
 "
F
o
rc
e
 s
h
a
ll
b
e

g
re
a
te
r
th
a
n
 1
0
0
0
0
 N
"

«
re
q
u
ir
e
m
e
n
t»

F
o
rc
e
F

Id
 =
 "
2
.3
"

T
e
x
t
=
 "
T
o
ta
l
c
o
s
t
s
h
a
ll

b
e
 l
e
s
s
 t
h
a
n
 $
1
0
0
0
 "

«
re
q
u
ir
e
m
e
n
t»

C
o
s
t

Id
 =
 "
2
"

T
e
x
t
=
 "
 "

«
re
q
u
ir
e
m
e
n
t»

T
o
ta
lS
y
s
te
m

Id
 =
 "
2
.1
.2
"

T
e
x
t
=
 "
 "

«
re
q
u
ir
e
m
e
n
t»

R
e
v
e
rs
e
 P
h
a
s
e

Id
 =
 "
2
.2
"

T
e
x
t
=
 "
T
o
ta
l
m
a
s
s
 s
h
a
ll

b
e
 l
e
s
s
 t
h
a
n
 3
0
0
 k
g
 "

«
re
q
u
ir
e
m
e
n
t»

M
a
s
s

Id
 =
 "
2
.1
.2
.2
"

T
e
x
t
=
 "
S
y
s
te
m

p
re
s
s
u
re
 s
h
a
ll
b
e
 l
e
s
s

th
a
n
 3
e
7
 P
a
 "

«
re
q
u
ir
e
m
e
n
t»

P
rR

Id
 =
 "
2
.1
.2
.1
"

T
e
x
t
=
 "
F
o
rc
e
 s
h
a
ll
b
e

g
re
a
te
r
th
a
n
 1
0
0
0
 N
 i
n

n
e
g
a
ti
v
e
 d
ir
e
c
ti
o
n
 "

«
re
q
u
ir
e
m
e
n
t»

F
o
rc
e
R

Id
 =
 "
2
.1
.1
.2
"

T
e
x
t
=
 "
S
y
s
te
m

p
re
s
s
u
re
 s
h
a
ll
b
e
 l
e
s
s

th
a
n
 3
e
7
 P
a
 "

«
re
q
u
ir
e
m
e
n
t»

P
rF

Id
 =
 "
2
.1
.1
"

T
e
x
t
=
 "
 "

«
re
q
u
ir
e
m
e
n
t»

F
o
rw
a
rd
 P
h
a
s
e

«
v
e
ri
fy
»

«
v
e
ri
fy
»

«
v
e
ri
fy
»

«
v
e
ri
fy
»

«
v
e
ri
fy
»

«
d
e
ri
v
e
R
e
q
t»

«
d
e
ri
v
e
R
e
q
t»

«
d
e
ri
v
e
R
e
q
t»

«
d
e
ri
v
e
R
e
q
t»

«
d
e
ri
v
e
R
e
q
t»

R
e

q
u

ir
e

m
e

n
ts

 D
e

co
m

p
o

si
ti

o
n

A
ss

o
ci

a
ti

n
g

 R
e

q
u

ir
e

m
e

n
ts

 w
it

h

M
o

d
e

ls
 t

h
ro

u
g

h
 d

e
p

e
n

d
e

n
ci

e
s

(<
<

v
e

ri
fy

>
>

)

 50

Before discussing the details of the SysML models used to formulate the sizing

problem, the overall system model is shown in Figure 12. The details of these models

(such as constraints) have been hidden to allow the reader to understand the overall

model hierarchy that is common to general component sizing problems.

Figure 12 System Level View highlighting the features found in component sizing
problems. This type of model hierarchy would be common for such problems in

general.

LogSplitterProblem SystemLevelView[Package] bdd []

parts

«OwnedGamsModel»pump : PumpSizing
«OwnedGamsModel»cylinder : CylinderSizing
«OwnedGamsModel»engine : EngineSizing
«OwnedGamsModel»cylinderCat : CylinderCat
«OwnedGamsModel»engineCat : EngineCat
«OwnedGamsModel»pumpCat : PumpCat
«OwnedGamsModel»valveCat : DCValveCat
«OwnedGamsModel»valve : ValveSizing

«gamsModel»

SystemSizingDescription

parts

«OwnedGamsModel»cylinder : CylinderMass
«OwnedGamsModel»pump : PumpMass
«OwnedGamsModel»valve : ValveMass
«OwnedGamsModel»tank : TankMass
«OwnedGamsModel»engine : EngineMass

values

«GamsVariable»totalMass : GamsFree

«gamsModel»

MassAnalysis

parts

«OwnedGamsModel»cylinder : CylinderCost
«OwnedGamsModel»pump : PumpCost
«OwnedGamsModel»tank : TankCost
«OwnedGamsModel»valve : ValveCost
«OwnedGamsModel»engine : EngineCost

values

«GamsVariable»totalCost : GamsFree

«gamsModel»

CostAnalysis

parts

«OwnedGamsModel»cylinder : CylinderFP
«OwnedGamsModel»pump : PumpFP
«OwnedGamsModel»tank : TankFP
«OwnedGamsModel»valve : ValveFP
«OwnedGamsModel»engine : EngineFP
«OwnedGamsModel»fixed : FixedFP
«OwnedGamsModel»load : Load

«gamsModel»

OpenCenterCkt

«GamsSolve»

modelType = minlp

objVarName = "massAnalysis.totalMass"

optimizeDirection = minimize

solverType = BARON

«GamsSolve»

Solve

values

«GamsVariable»totalTime : GamsFree

«gamsModel»

FPAnalysis

values

«GamsVariable»z

«gamsModel»

SystemLevelModel

«gamsModel»

ReverseAnalysis

«gamsModel»

ForwardAnalysis

«OwnedGamsModel»

-fpAnalysis

«OwnedGamsModel»

-massAnalysis

«OwnedGamsModel»

-systemSizing

«OwnedGamsModel»

-costAnalysis

«OwnedGamsModel»

-systemLevelModel

«OwnedGamsModel»

-oc

«OwnedGamsModel»

-oc

«OwnedGamsModel»

-reverse

«OwnedGamsModel»

-forward

Multiple Analyses Multiple Use-Phases

Energy-Based

Modeling

Common Sizing

Across Entire Model
Solve Block

 51

4.2.2 Energy-Based Modeling & Multiple Use-Phases for Fluid Power Systems

In order to analyze the hydraulic performance and ensure that the requirements

are satisfied, algebraic equations are used to model the behavior of the individual

hydraulic components as well as the combined system behavior. Since algebraic

equations are used instead of dynamic simulations, steady state behavior is assumed for

the system. Assuming a single steady state operation for a problem is not feasible and

therefore multiple use-phases are considered, each representing a particular steady state

phase. In the case of the log splitter, two use-phases are considered: the forward motion

of the wedge and the reverse motion of the wedge. These two phases can be assumed to

occur at constant velocity and therefore the steady state equations can be used. In Figure

13, a portion of the SysML model is shown in which the same hydraulic circuit is used

for two phases. For more complex problems, it is possible to discretize the system into a

number of time-steps, each of which can be assumed to operate at steady state. This is

discussed further in the section on Future Work in the next chapter.

 52

Figure 13 Modeling multiple use-phases for a problem. In this case, there are two use-
phases, a ForwardAnalysis and ReverseAnalysis. The use-phases are for the same

hydraulic circuit, as represented by the common OpenCenterCkt Block.

Energy-based modeling principles are used to define analysis models for a

particular use-phase. This is used when connecting individual component models

together to form a system level model of the fluid power circuit. In Figure 14, an Internal

Block Diagram (IBD) for the hydraulic circuit is shown. Through the use of

transformations to automatically generate equations based on the connections between

components, it is possible to generate complete analysis models by combining individual

LogSplitterProblem UsePhases[Package] bdd []

parts

cylinder : CylinderFP
pump : PumpFP
tank : TankFP
valve : ValveFP
engine : EngineFP
fixed : FixedFP
load : Load{Verifies = ForceF}

«gamsModel»

OpenCenterCkt

{pump.portP.p =e= valve.portP.p,
pump.portP.q + valve.portP.q =e= 0,

pump.portT.p =e= tank.portP.p,
pump.portT.q + tank.portP.q =e= 0,

valve.portT.p =e= tank.portT.p,
valve.portT.q + tank.portT.q =e= 0,
valve.portA.p =e= cylinder.portA.p,

valve.portA.q + cylinder.portA.q =e= 0,
valve.portB.p =e= cylinder.portB.p,

valve.portB.q + cylinder.portB.q =e= 0,
engine.flange.w =e= pump.flange.w,

engine.flange.tau + pump.flange.tau =e= 0,
cylinder.flangeA.v =e= fixed.flange.v,

cylinder.flangeA.f + fixed.flange.f =e= 0,
cylinder.flangeB.v =e= load.flange.v,

cylinder.flangeB.f + load.flange.f =e= 0}

totalTime : GamsFree{flowFlag = nonflow, type = free}
values

«gamsModel»

FPAnalysis

{totalTime =e= forward.oc.cylinder.time + reverse.oc.cylinder.time,
totalTime =l= 20,

totalTime =g= 0.001}

«gamsModel»

ForwardAnalysis

{oc.load.Fl =g= 50000,
oc.cylinder.length =g= 0.25,

oc.valve.control =e= 1}

«gamsModel»

ReverseAnalysis

{oc.load.Fl =l= -1000,
oc.cylinder.length =l= -0.25,

oc.valve.control =e= 0}

«OwnedGamsModel»

-oc

«OwnedGamsModel»

-oc

«OwnedGamsModel»

-forward

«OwnedGamsModel»

-reverse

 53

components and connecting them together. Energy-based principles are used when

connecting components as well as at the time of defining individual component behavior.

Through the use of proper sign conventions and standardized port-based interfaces, it is

possible to define components that can potentially be reused in other problems as well.

Component models and the sign conventions used are described in Appendix A.

Figure 14 A Internal Block Diagram for the open center circuit used in the problem. The
connections between ports are stereotyped with <<GamsPhysicalConnection>>
and automatically generate the connection equations, based on conservation of

energy.

Along with the energy-based analysis such as hydraulic performance, there are

also other types of analyses that are needed to determine if requirements are satisfied.

The modeling of multiple analyses and organizing them in a model hierarchy is discussed

in the next section.

4.2.3 Multiple Analyses & Hierarchical Modeling

In addition to energy-based analyses such as fluid power performance, other

analyses are also needed depending on the requirements specified by the designer. For

OpenCenterCkt OpenCenterCkt[gamsModel] ibd []

cylinder : CylinderFP

portA portB

flangeA : TransConnectorFP
flangeB

pump : PumpFP

portP : FluidConnectorFP

portT

flange : RotConnectorFP

engine : EngineFP

flange : RotConnectorFP

valve : ValveFP

portT

portP : FluidConnectorFP
portA

portB

tank : TankFP

portT

portP

fixed : FixedFP flange : TransConnectorFP load : Load

flange
«GamsPhysicalConnection»

«GamsPhysicalConnection»

«GamsPhysicalConnection»

«GamsPhysicalConnection»

«GamsPhysicalConnection»

«GamsPhysicalConnection»

«GamsPhysicalConnection»

«GamsPhysicalConnection»

 54

instance, the requirement on total mass and total cost of the system cannot be included

within the analysis described in the previous section, because defining cost in multiple

use-phases does not make sense from a modeling perspective and would also result in

duplication of the same constraint, resulting in model ambiguity. Different analyses can

be modeled in the same way as energy-based analyses and can be arranged in a model

hierarchy under a single top-level model. By grouping the analyses under a common

model, it is ensured that the resultant executable model contains all of the different

analyses and, if applicable, multiple use-phases (see cost, mass and fluid power analysis

all acting simultaneously in Figure 12).

In this way, hierarchical modeling in SysML can be used to model the component

sizing problem in a logical and modular fashion using individual component models that

can be reused in the same problem or in different problems. It is important to note that

each analysis and use-phase uses different (or duplicate) component models to ensure that

there is no overlap in variable usage. However, since all of the analyses and use-phases

are supposed to involve the same components, a mechanism is needed in SysML to

define the relations between a component sizing model and its multiple usages across

analyses and use-phases. This is discussed in the next section.

4.2.4 Common Sizing Description for the Entire Model

When a problem is divided into different analyses and use-phases that exist

independently of each other, it is important to remember that sizing is determined by

considering all of the analyses simultaneously. However, since each analysis and use-

phase model use different usages for the same component model, it is necessary to

 55

establish a relation between all of the usages throughout the model. For instance, the

forward and reverse use phases and the mass and cost analyses each use a different

cylinder model that has all of the sizing variables. From a systems perspective, the

selection of the Cylinder depends on all the analyses. Therefore, to ensure that the same

sizing variable is referred to throughout the different analyses and use-phases, a separate

system sizing model is defined that contains the sizing variables used throughout the

system (SystemSizingDescription – see Figure 12).

There are two main reasons for using a system sizing model:

a. Specifying a component model and its associated catalog model once for

the entire problem, irrespective of the number of use-phases or analyses

(see the component catalog library in Figure 15)

b. Ensuring that all analyses and use-phases refer to the appropriate

component model by explicitly connecting the component model with its

usages in each analysis and use-phase. (see Figure 17)

In order to specify the sizes a component can assume, a two-step process is used,

in which first a catalog model is populated with data and then equations are defined to

ensure that the sizing variables only take values from the catalog model. By storing

supplier data in a problem-independent model library, it is possible to populate a

component catalog model, which is problem-specific, with possible component values by

establishing dependencies between the sizing variables used in the problem with the

corresponding parameters (constants) found in the model library. Model transformations

are used to automatically populate the component model with information found from the

model library (see Figure 15).

 56

Figure 15 The process of using a problem-independent component catalog library to
automatically populate the possible values (in this example, cost of a valve) into

the catalog model being used in the problem

After defining the catalog model, constraints are defined to ensure that sizing

variables for a component assume values only from the set of possible values contained

in the catalog model. For instance, it is not meaningful for a cylinder to have sizing

variables like: boreDiameter = 0.3m, stroke = 1m, mass = 1kg, cost = $10 because it is

physically impossible. Therefore, a Boolean variable is used to determine which

component from the catalog has actually been selected. An example of the collection of

equations used for a cylinder is provided in Figure 16. In this way, it is possible to ensure

that all of the sizing variables take values from a particular catalog entry.

LogSplitterProblem ValveCatalog[Package] bdd []

parts

fpAnalysis : FPAnalysis{Verifies = CycleTime}
costAnalysis : CostAnalysis{Verifies = Cost}
massAnalysis : MassAnalysis{Verifies = Mass}

values

z{flowFlag = nonflow, type = free}

«gamsModel»

SystemLevelModel

pump : PumpSizing
cylinder : CylinderSizing
engine : EngineSizing
cylinderCat : CylinderCat
engineCat : EngineCat
pumpCat : PumpCat
valve : ValveSizing

parts

«gamsModel»

SystemSizingDescription

values

id
select : GamsBinary
maxFlowCatData
costCatData
maxPressureCatData
massCatData

«gamsModel»

DCValveCat

«GamsSolve»

Solve

«OwnedGamsModel»

-valveCat

«OwnedGamsModel»

-systemSizing

«OwnedGamsModel»

-systemLevelModel

Sizing Description

Model for Problem

Valve Catalog

Model

Possible Values for

Cost of Valve

Component Catalog Library

Automatically Populate

Values from Library

 57

Equation in SystemSizingDescription:
cylinder.boreDiameter = sum(cylinderCat.id, cylinderCat.select(cylinderCat.id) *

 cylinderCat.boreDiameterCatData(cylinderCat.id))

where:
cylinderCat.id �set of all cylinder components in the catalog library
cylinderCat.select(cylinderCat.id) �binary variable defined over set cylinderCat.id. One binary variable
 for each component in the catalog set. But only one value is 1, all else are 0, as given by the
 equation: sum(cylinderCat.id, cylinderCat.select(cylinderCat.id)) = 1.
cylinder.boreDiameter � sizing variable. Can assume a value from the catalog
cylinderCat.boreDiameterCatData � possible values of bore diameter (from catalog)

Figure 16 Equations used to associate a component’s sizing variables (boreDiameter)
with the corresponding catalog values from supplier (boreDiameterCatData)

The equations above involve the use of a binary variable (0 or 1) that is defined

over the set of all possible components. From the summation equation (sum(cylinderCat.id,

cylinderCat.select(cylinderCat.id)) = 1), only one of the binary values in the entire set can be 1

and this represents the component that is selected by the solver.

After defining the relation between component and catalog connections are

defined (stereotyped with <<GamsSelectionConnection>>) between the

component models in the system sizing model with the component models used in the

analyses (see Figure 17). Based on the model transformation logic defined in the

framework, constraints are automatically generated for all of the variables included at

LogSplitterProblem CylinderSelection[Package] bdd []

values

id
select : GamsBinary
boreDiameterCatData
costCatData
maxPressureCatData
strokeLengthCatData
massCatData

«gamsModel»

CylinderCat

parts

pump : PumpSizing
engine : EngineSizing
engineCat : EngineCat
pumpCat : PumpCat
valveCat : DCValveCat
valve : ValveSizing

«gamsModel»

SystemSizingDescription

values

boreDiameter
strokeLength
mass
cost
maxPressure
rodDiameter

«gamsModel»

CylinderSizing

«OwnedGamsModel»

-cylinderCat

«OwnedGamsModel»

-cylinder

Sizing Variables Possible Values

from Catalog

 58

each end of the connection, since both ends of the connection refer to the same sizing

model. In Figure 17, an example of such a constraint is shown in the

SystemLevelModel Block in which the bore diameter in the forward phase is equated

to the bore diameter in the system sizing model.

Figure 17 Through the use of a customized connection (<<GamsSelectionConnection>>),
it is possible to ensure that common sizing description is used across the entire
model. Equations are automatically generated to equate the variable used in an
analysis or use-phase with the corresponding variable in the sizing description

model.

SystemLevelModel SystemLevelModel[gamsModel] ibd []

size : CylinderSizing

cylinder : CylinderFP

size : PumpSizing

pump : PumpFP

oc : OpenCenterCkt

forward : ForwardAnalysis

size : CylinderSizing

cylinder : CylinderFP

size : PumpSizing

pump : PumpFP

oc : OpenCenterCkt

reverse : ReverseAnalysis

fpAnalysis : FPAnalysis

size : CylinderSizing

cylinder : CylinderCost

size : PumpSizing

pump : PumpCost

costAnalysis : CostAnalysis

size : CylinderSizing

cylinder : CylinderMass

size : PumpSizing

pump : PumpMass

massAnalysis : MassAnalysis

cylinder : CylinderSizingpump : PumpSizing

systemSizing : SystemSizingDescription

«GamsSelectionConnection»

«GamsSelectionConnection»

«GamsSelectionConnection»

«GamsSelectionConnection»

«GamsSelectionConnection»

«GamsSelectionConnection»

«GamsSelectionConnection»

«GamsSelectionConnection»

LogSplitterProblem SystemSizing[Package] bdd []

«gamsModel»

SystemLevelModel1

{systemSizing.cylinder.boreDiameter =e= fpAnalysis.forward.oc.cylinder.size.boreDiameter,
systemSizing.cylinder.cost =e= fpAnalysis.forward.oc.cylinder.size.cost,

systemSizing.cylinder.mass =e= fpAnalysis.forward.oc.cylinder.size.mass,
systemSizing.cylinder.maxPressure =e= fpAnalysis.forward.oc.cylinder.size.maxPressure,
systemSizing.cylinder.rodDiameter =e= fpAnalysis.forward.oc.cylinder.size.rodDiameter,

systemSizing.cylinder.strokeLength =e= fpAnalysis.forward.oc.cylinder.size.strokeLength}

Automatic Generation of

Constraints from Connection

 59

4.2.5 Defining the Solve Block & Solving in GAMS

Once all the analysis models have been defined along with a system sizing model,

it is possible to define a Solve Block of stereotype <<GamsSolve>> that specifies

solver related properties such as solver name, model type, objective variable and so on.

After the top-level SystemLevelModel Block of stereotype <<GamsModel>> is

connected with the Solve block, the next step is to execute the model transformations in

the form of a plugin (refer to Section 3.3) in order to solve the problem externally in

GAMS.

In this way, a complete component sizing model for the log splitter is constructed

in SysML. Then, through model transformations, executable GAMS code is generated

that can be solved using the solver specified in the SysML model. The results obtained

from this model are discussed in the next section.

4.3 Results for Different Scenarios

In this section, results obtained from solving the log splitter component sizing

problem for different scenarios are presented. As discussed in the Introduction, the

motivation for this research is the investigation of new frameworks that can represent and

solve component sizing problems more efficiently. Therefore, in addition to describing

the actual solutions obtained for various scenarios, a discussion is provided regarding the

use of SysML versus other tools such as MATLAB or GAMS. In the current scope of this

research, investigation into the global optimality of solutions is not considered; such

validation is beyond the current scope of this research and is left for future work.

 60

Based on available component catalog data, sizing was performed on four

components: a gas engine with 45 possible options, a fixed displacement pump with 64

possible options, a double acting cylinder with 158 possible options, and an open center

directional control valve with 34 possible options.

Depending on the constraints defined by the requirements as well as the variable

to be “optimized”, the component selections obtained are different. The global MINLP

solver BARON [39] in GAMS is used to solve the log splitter problem. Figure 18 lists a

summary of the model and solution statistics for one scenario as provided by BARON.

The model statistics remain the same for all scenarios, since they are only a variation of

the problem. These statistics are useful in evaluating the complexity of the problem from

a solver’s perspective. In this case, there are 68 nonlinear coefficient entries, 256

equations and 298 discrete variables (representing the catalog components). The code

length of 503 provides some indication of the complexity of the nonlinearity of the model

and represents the amount of code that GAMS passes onto the non-linear solver (For

more information, refer to GAMS User Guide, Ch. 10 [3]).

An important aspect to note is that the component models used in this example do

not consider losses such as leakage or friction, i.e. they model ideal physical behavior.

This assumption has been made because these models represent the first time that

GAMS-compliant declarative models have been used. Since losses do not alter the

fundamental behavior of the component, including them will only serve to make the

model more complex, but will not invalidate the use of GAMS for solving of this class of

problems.

 61

Figure 18 Model and solver statistics for the scenario of minimizing total cost. The model
statistics are same for all scenarios since they are for the same problem. The

solution is provided by the solver BARON.

Five scenarios are considered: maximizing the cylinder force during the forward

phase, minimizing total cost, minimizing total mass, minimizing total time, and

minimizing a variable that is defined by a multi-objective function. The requirements

imposed on the system, in terms of constraints, are shown in Equation 3. These

requirements act in addition to the constraints already imposed by individual component

behavior models (see Appendix A for details of component models).

 Force produced in forward phase: �@ABCDECF ≥ 50,000 N Total time taken by system: LMNMOP ≤ 20 s Total Cost of Components: SMNMOP ≤ $1,000 Total Mass of Components: VMNMOP ≤ 150 kg
(3)

 62

In order to understand the results obtained for the scenarios, it is necessary to

identify the coupling between the different components of the log splitter. The log

splitter’s function is to split wood by using force generated by a cylinder. The force

produced by a cylinder directly depends on the bore diameter and pressure of the fluid

inside it. Therefore, to produce more force, either the bore diameter or pressure can

increase or both. Higher pressure at the cylinder means that the pump needs a greater

input torque, which places a demand on the engine for higher torque. An increase in the

bore diameter results in a decrease in flow rate in the cylinder, which increases the time

taken to split the wood. Moreover, the maximum flow that can be handled by the system

is limited by the valve that is used. Thus, with inequalities in the constraints it is difficult

to determine manually what the best solution is to a given scenario.

Before discussing the individual scenarios, provides an overall comparison of the

results obtained. It appears that the results are appropriate, since the objective to be

optimized in each scenario is better (smaller or larger, depending on optimization

direction) than its corresponding value in the other scenarios. In addition to the overall

results, the actual component sizes for each scenario are also described below, along with

a discussion to understand the logic behind the values obtained.

 63

Table 4 Comparison of results for different scenarios. Component Sizing is represented in terms of the selection from the
corresponding component catalogs.

Cylinder Id Pump Id Engine Id Valve Id
Forward

Force (N)

Total

Mass (kg)

Total

Cost ($)

Total

Time (s)
z

Maximize Force

(N)
HMW-5032 SKP1NN_012 DP340E NT-2020 139,833 94.9 993.5 20 0.4027 2.82

Minimize Total

Time (s)
HMW-3010 SKP1NN_012 DP390E

NT_Prince-

2036
50,000 51.87 843.97 4.896 0.2529 3.54

Minimize Total

Cost ($)
HMW-4010 SKP1NN_012 DP240 NT-2020 53,698 51.3 657.4 9.69 0.26116 2.45

Minimize Total

Mass (kg)
PMC-5414 SNP2NN_4_0 DP160V

MSCDirect-

01825629
52,013 32.25 708.6 9.15 0.2528 78.13

Minimize

Multiobjective z
HMW-5010 SKP1NN_012 DP390 NT-2020 147,437 71.53 866.3 13.79 -0.3968 5.65

z = 0.25*((totalMass/300) + (totalTime/20) + (totalCost/1000) - (forwardForce/50000))

Component Sizing (Selection Id from Catalog) Selected Variable Values

Scenario
CPU Execution

Time (s)

 64

Maximize Force Produced by Cylinder in Forward Phase:

In this scenario, the problem is to find the sizes for the components so that the

maximum force can be produced to split the log, which is the force produced in the

forward phase. The component sizes obtained are presented in Table 5.

Table 5 Component Sizes to Produce Maximum Log Splitting Force (N)

Since this scenario only cares about maximizing force, it is logical to assume that

the other requirements (Equation 3) would remain at the bounds. The cylinder selected

has a large bore diameter, resulting in greater force but increasing the time taken to

complete one cycle. This is reflected in the total time lying at the boundary of the

constraint, i.e. 20s. Similarly, the total cost ($993) is very close to the boundary of the

constraint on total cost ($1000). The large bore diameter results in smaller flow for the

same pressure and in this case it is only 0.0004 m3/s. Therefore, the consideration for

valve selection lies mainly on the cost in order to maintain a total cost below the

requirement. Since the objective is to maximize force, the possibility is to increase bore

diameter and increase the pressure. The increase in bore diameter has been taken into

account by selecting a large size cylinder. Higher system pressure is possible if the input

torque to pump is higher, which leads to engines with higher possible torques. The logic

underlying the selection of engine and pump is shown in Figure 19.

Bore Diameter (m) 0.13 Max Torque (N-m) 23.4

Stroke Length (m) 0.81 Speed at Max Torque (rpm) 2500

Max Operating Pressure (Pa) 17200000 Max Power (W) 8200

Cost ($) 293.5 Speed at Max Power (rpm) 3600

Mass (kg) 56.1 Cost ($) 399.99

Mass (kg) 32.65

Displacement (m3/rev) 1.1995E-05

Max Operating Pressure (Pa) 11997000 Max Flow (m3/s) 0.0016

Max Operating Speed (rpm) 2000 Max Operating Pressure (Pa) 1.38E+07

Cost ($) 230 Cost ($) 70

Mass (kg) 1.65 Mass (kg) 4.53

Cylinder:

HMW-5032
Engine:

DP340E

Valve:

NT-2020

Pump:

SKP1NN_012

 65

Figure 19 Engine operating point for forward phase of operation, as determined by
solver. The operating point is below the speed at max torque (as provided by

engine specification), which is counterintuitive to a designer

In Figure 19 the torque-speed curve for the engine selected by the solver is

shown, in which the region below the curve represents the feasible operating region of

the engine. A clarification regarding the position of the max torque point is required: the

curve represents a quadratic curve fitted through the two operating points specified by the

vendor (see Appendix for more details). Also shown is the maximum operating speed for

the selected pump (red dashed line). Therefore, based on the intersection of these two

feasible regions (engine and pump), the solver determined the operating point to be 21

Nm @ 2010 rpm.

500 1000 1500 2000 2500 3000 3500 4000 4500
0

5

10

15

20

25

Speed in rpm

E
n
g
in

e
 T

o
rq

u
e
 i
n
 N

-m

Engine Model: DP340E

Max Op. Speed for

Pump (2010 rpm)

Feasible pump

operation region

(left of the

dashed line)

Feasible engine

operation region

(under the solid curve)

Determined by solver:

Operating Point of

Engine in Forward Phase

(21 N-m @ 2010 rpm)

Max Torque Point

(from engine spec)

Max Power Point

(from engine spec)

 66

This result is counter-intuitive to what a designer would normally expect. A

designer may assume that to achieve maximum torque input to pump, the maximum

torque point for the engine should be considered first. Thereafter, a pump with suitable

maximum operating speed would be selected. In that case, the designer would have

outright rejected the pump selected by the solver for being too slow. Therefore, the

question is: Why did the solver select this pump?

A closer look at the selected pump reveals the answer. In Table 6, the selected

pump is compared with some of the other pumps available in the catalog. Since the total

time is 20 seconds, the flow rate is low and consequently the pump displacement needed

is also small. The two pumps with smaller displacements (SKP1NN_78 and

SKP1NN_010) cannot generate enough flow in the system to have the total time under

20s. Pumps with larger displacements can be chosen, but their costs are much higher

(around $400 compared to $230 for the selected pump). This comes with the

disadvantage of a much lower maximum operating speed of 2010 rpm.

Table 6 Comparison of selected pump (SKP1NN_012) with other pumps

Thus, the solver selects the pump SKP1NN_012 and chooses the engine operating

points to be at 2010 rpm and 21 Nm, at the bounds of both the engine and pump feasible

Pump Id
Displacement

(m3/rev)

Maximum

operating

Pressure (Pa)

Maximum

operating

RPM (rpm)

Mass (kg) Cost ($)

SKP1NN_78 7.58721E-06 2.00E+07 3000 1.39 225.45

SKP1NN_010 9.94695E-06 1.50E+07 2000 1.55 227.99

SKP1NN_012 1.19953E-05 1.20E+07 2010 1.65 230.01

SNP3NN_022 2.21225E-05 2.50E+07 3000 6.80 410.94

SNP3NN_026 2.62193E-05 2.50E+07 3000 6.80 415.67

SNP3NN_033 3.31019E-05 2.50E+07 3000 7.17 426.41

 67

operating regions. This is interesting because such a solution would likely have been

overlooked by a designer performing sizing manually.

For the remaining scenarios, the component sizes are presented in the following

tables. For the case of minimizing the total time (LWNXYOXZ + LX\]\X^\), the same logic
applies. The main characteristic is that a cylinder with a much smaller bore is selected

(0.08m versus 0.13m) and in this case the force produced lies at the boundary of the

requirement. Refer Table 7.

Table 7 Component Sizes for Fastest Log Splitter Operation (Total Time in seconds)

In Table 8, the component sizes for minimizing the total cost of the system are

presented. In this case, the force lies at the bounds and the cheapest components are

selected.

Table 8 Component Sizes for the Cheapest Log Splitter ($)

Bore Diameter (m) 0.08 Max Torque (N-m) 26.4

Stroke Length (m) 0.25 Speed at Max Torque (rpm) 2500

Max Operating Pressure (Pa) 2.07E+07 Max Power (W) 9694

Cost ($) 74.97 Speed at Max Power (rpm) 3600

Mass (kg) 12.3 Cost ($) 449.99

Mass (kg) 32.9

Displacement (m3/rev) 1.1995E-05

Max Operating Pressure (Pa) 11997000 Max Flow (m3/s) 0.0016

Max Operating Speed (rpm) 2000 Max Operating Pressure (Pa) 1.38E+07

Cost ($) 230 Cost ($) 89

Mass (kg) 1.65 Mass (kg) 4.98

Cylinder:

HMW-3010
Engine:

DP390E

Pump:

SKP1NN_012

Valve:

NT_Prince-

2036

Bore Diameter (m) 0.1 Max Torque (N-m) 16.6

Stroke Length (m) 0.25 Speed at Max Torque (rpm) 2500

Max Operating Pressure (Pa) 2.06E+07 Max Power (W) 5966

Cost ($) 107 Speed at Max Power (rpm) 3600

Mass (kg) 20.2 Cost ($) 249.99

Mass (kg) 24.94

Displacement (m3/rev) 1.1995E-05

Max Operating Pressure (Pa) 11997000 Max Flow (m3/s) 0.0016

Max Operating Speed (rpm) 2000 Max Operating Pressure (Pa) 1.38E+07

Cost ($) 230 Cost ($) 70

Mass (kg) 1.65 Mass (kg) 4.53

Cylinder:

HMW-4010
Engine:

DP240

Pump:

SKP1NN_012
Valve:

NT-2020

 68

In Table 9, the component sizes for minimizing the total mass of the system are

presented. In order to decrease the mass, smaller components are selected in general.

Table 9 Component Sizes for Least Mass (kg)

Finally, a multi-objective function is constructed by using a weighted normalized sum of

the four individual objectives considered above. The variable _ is defined as
_ = 0.25 ∙ aVMNMOP300 + LMNMOP20 + SMNMOP2000 − �@ABCDECF50000 d

The mass, time and cost are added because they are minimized while the force is

subtracted because it is maximized. In Table 10, the component sizes for minimizing the

multi-objective function are provided. Since �@ABCDECF is normalized by its lower bound,

the solver tries to maximize the force produced in order to lower the value of _ by the
largest amount. This is reflected in the selection of components that generates a large

amount of force.

Bore Diameter (m) 0.06 Max Torque (N-m) 7.9

Stroke Length (m) 0.36 Speed at Max Torque (rpm) 2700

Max Operating Pressure (Pa) 1.72E+07 Max Power (W) 4101

Cost ($) 99.93 Speed at Max Power (rpm) 3600

Mass (kg) 9.98 Cost ($) 279.99

Mass (kg) 15.42

Displacement (m3/rev) 3.93E-06

Max Operating Pressure (Pa) 2.50E+07 Max Flow (m3/s) 0.0016

Max Operating Speed (rpm) 4000 Max Operating Pressure (Pa) 1.89E+07

Cost ($) 218 Cost ($) 109.7

Mass (kg) 2.3133 Mass (kg) 4.53

Cylinder:

PMC-5414
Engine:

DP160V

Pump:

SNP2NN_4_0

Valve:

MSCDirect-

01825629

 69

Table 10 Component Sizes that Minimize Multi-objective function

4.4 Summary

In this chapter, an example application problem was used to demonstrate the

framework presented in this thesis for representing and solving component sizing

problems. Through the steps described in this chapter, it is possible to formulate

component sizing problems in SysML which can then be executed and solved within

GAMS using the specified solver (BARON, in this case). The SysML representation is a

structured and object-oriented model composed of individual component models that can

be connected together in different ways. By encoding the logic common to component

sizing problems, such as generation of equations for energy-based connections, a

designer can formulate new architectures quickly by connecting components in different

ways.

After formulating the SysML model, different scenarios were run simply by

modifying the objective to be optimized in the block stereotyped with <<GamsSolve>>.

From the execution time of the solver to the type of solutions obtained, it is clear that

MINLP solvers such as BARON are efficient at solving component sizing problems. The

solutions presented in this example application are near-optimal (as stated in output file

Bore Diameter (m) 0.13 Max Torque (N-m) 26.4

Stroke Length (m) 0.25 Speed at Max Torque (rpm) 2500

Max Operating Pressure (Pa) 1.72E+07 Max Power (W) 9694

Cost ($) 166.3 Speed at Max Power (rpm) 2500

Mass (kg) 34.5 Cost ($) 399.99

Mass (kg) 30.8

Displacement (m3/rev) 1.1995E-05

Max Operating Pressure (Pa) 11997000 Max Flow (m3/s) 0.0016

Max Operating Speed (rpm) 2000 Max Operating Pressure (Pa) 1.38E+07

Cost ($) 230 Cost ($) 70

Mass (kg) 1.65 Mass (kg) 4.53

Cylinder:

HMW-5010
Engine:

DP390

Pump:

SKP1NN_012
Valve:

NT-2020

 70

by BARON) but global optimality can be ensured by BARON through different methods,

such as specifying upper and lower bounds on variables. In a comparison of global

optimization solvers, BARON is considered to be the fastest and most robust [29].

Therefore, these initial results indicate that BARON is well suited for solving component

sizing problems encountered in engineering design.

Global optimality cannot be ensured by conventional sampling-based solvers and

in the worst case, an exhaustive search would involve searching 45 ∙ 64 ∙ 158 ∙ 34 =
15,471,360 alternatives. This number would increase as more components are
considered and larger component catalog sizing data are used.

To conclude, this example application shows that mathematical programming and

GAMS is well-suited for solving component sizing problems while SysML is well-suited

for representing them.

 71

CHAPTER 5

DISCUSSION AND CLOSURE

5.1 Review and Evaluation

The high-level motivation for this research involves the automated exploration of

system architectures, with the ultimate goal being to automatically synthesize and select

the “best” architecture for a problem given a set of requirements. For this to happen there

are a number of different steps that must be integrated together; this research is a first

step towards addressing this by considering the case of analyzing one system

architecture.

In particular, this research aims to provide designers with improved capabilities

for both representing and solving of component sizing problems. This leads to the

following research question and hypotheses:

RQ: Is it possible for designers to represent and solve component sizing problems

more efficiently?

H1: Through the use of mathematical programming and constraint satisfaction

techniques, designers can solve component sizing problems involving algebraic

models more efficiently.

H2: It is possible to extend traditional mathematical programming using SysML and

model transformations to provide designers with improved capabilities for

representing and formulating component sizing problems.

This research does not claim to validate the hypotheses completely; such

validation is beyond the current scope. By applying the proposed framework to an

 72

example application involving a hydraulic log splitter, this research is intended to provide

a foundation and basis for future research that can help in validating the hypotheses more

rigorously.

Evidence to support Hypothesis 1:

The results obtained in the example show that mathematical programming solvers

such as BARON (within GAMS) can find solutions quickly in approximately 2-5 seconds

depending on the particular scenario. When the same log splitter problem was modeled in

MATLAB using an exhaustive search, the computation time involved was approximately

30 minutes to consider around 16 million combinations. However, some issues

encountered when using MATLAB include:

• The causal nature of MATLAB requires that some variables be assumed as

known and reorder equations accordingly.

• Defining inequality constraints in MATLAB is often not possible and very

cumbersome if possible. If a variable in an inequality is assumed as known,

then an assumption is that value occurs at the boundary. This is different from

mathematical programming, in which values can lie between bounds as well.

The above issues highlight the difficulties in formulating and solving a

component sizing problem in conventional imperative programming languages such as

MATLAB. As a result, it is clear that mathematical programming can solve component

sizing problems in an efficient manner as compared to similar approaches in MATLAB

or other tools.

 73

Moreover, solvers like BARON fall under the category of global optimization

solvers [29], which is important when dealing with non-linear design spaces that are

found in component sizing problems.

Evidence to support Hypothesis 2:

The second hypothesis in this research refers to the use of SysML and model

transformations to make it easier to formulate component sizing problems in terms of

mathematical programming. Although “easier” is subjective, there are certain

characteristics of component sizing problems that can be used to illustrate the usefulness

of SysML for component sizing; in particular, scalability and reduction in the time

required to model the system.

As discussed in the example (Section 4.2), component sizing problems consist of

different models such as multiple analyses and use-phases, energy-based analysis models,

catalog models, etc. This results in a large number of SysML models, as evident from

Section 4.2. Since the example presented in this thesis is not very complex, it can be

argued that the problem could have been formulated manually and directly in GAMS

instead of in SysML in a similar time frame. However, as larger and more complex

problems are considered, it quickly becomes cumbersome and error prone to formulate

the problem manually. Therefore, as problems become more complex, a formal

representation becomes more important to a designer. The framework using SysML and

model transformations presented in this thesis supports this requirement for a formal

representation by reducing the time required to model component sizing problems. The

time required to model a problem stems from two aspects: creating models and then

composing them together to form system-level models.

 74

Through the use of energy-based modeling, ports, and a common sign convention

it is possible to define independent and self-contained models that captures its steady-

state behavior. Moreover, additional constructs related to inheritance (similar to those

found in Modelica) would enable the creation of a standard library that can be used for a

wide variety of problems. Although there is some effort required to initially create

models, this time is offset by the savings obtained when models are reused, such as

across multiple use-phases or multiple components in a system. In addition, with a library

of components available, system models can quickly be composed by connecting them

together through their ports.

Arguably the largest benefit of using this framework for representing component

sizing problems is the model-based graphical nature of SysML, which is similar to the

way designers construct schematics and other models. Thus, without these model

transformations or SysML, a designer would have to manually define the entire problem

directly in terms of an executable model consisting of equations and variables. This is

non-intuitive for designers and would increase the occurrence of errors that are unrelated

to the problem being solved.

To summarize, the primary research contributions in this thesis are:

1. This thesis presents an initial framework for representing and solving component

sizing problems using SysML and GAMS.

2. Demonstrating the use of mathematical programming (GAMS and its solvers) for

solving of engineering design problems.

 75

3. Initial implementation of a language in SysML that can be used for object-

oriented algebraic modeling of energy-based systems. This is achieved through

the use of domain specific languages and model transformations.

5.2 Limitations and Future Work

This thesis provides only a first step towards defining a framework for

representing and solving component sizing problems. Therefore, many of the limitations

of the current work serve as a basis for future work in addition to the existing open

research questions for this work.

The framework presented in this thesis was applied to a single example

application involving a hydraulic log splitter, a non-trivial problem to solve but not as

complex compared to other real-world systems. In addition, the hydraulic component

behavior models used in this work do not take into account phenomena such as losses

that would be found in practical components (refer Appendix A). Making the component

models more complex by including losses, increasing the variety of components

modeled, and applying the framework to more complex problems are all future work that

can address these limitations.

As more complex problems are considered, there is a greater need for a standard

model library of algebraic component models (similar to the Modelica standard library

[16, 26]). Since more complex problems would involve many different use-phases, a

standard way of defining components also needs to be investigated. Such approaches may

lead to a new modeling language similar to Modelica, but for the mathematical

programming of engineering design problems. In addition to better tools for modeling,

 76

such a language could provide better support for debugging. For instance, it is not always

easy to determine a bug in the model from the debugging support available in existing

tools like GAMS. This can be improved by using the existing debugging output of

GAMS and analyzing it to provide additional information that is specifically related to

engineering problems instead of general mathematical problems.

In addition to bigger problems and better debugging, another aspect of future

work involves improving the support for a larger number and more complex steady-

states. In this thesis independent use-phases are considered; however, it is not always the

case. There are instances in which use-phases may be related to each other i.e., the initial

and final values obtained in a use-phase tie into the previous and next use-phase. For

instance a system can be discretized into a number of time steps, in which each time step

represents a steady state, and optimization can be performed over all of the time steps.

This can result in a more standardized way of defining models as well as the ability to

solve more complex models.

Another area that can be investigated is the use of continuous catalog models (see

Malak et al. [24]) instead of discrete catalog models that are used in this research. This

refers to the use of continuous models to capture the high-level dependencies between

component attributes instead of catalog models that capture the dependencies discretely.

Continuous models are useful in cases where a system may benefit from custom designed

components instead of COTS components from a supplier. Some questions related to this

include: “What is involved in defining acausal continuous catalog models?”, and “How

does solver performance change for continuous catalog models?”

 77

Although the use of mathematical programming is proposed in this research, it is

not clear how far this capability can extend. What is the limit after which mathematical

programming is no longer feasible as a solution technique?

In conclusion, the “Model Based Mathematical Programming” framework presented in

this thesis provides designers with the ability to quickly define systems using model

libraries and explore solutions for different requirements and objective functions.

 78

APPENDIX A

COMPONENT MODELS & ASSOCIATED CATALOG DATA

This appendix gives an overview of the different components used in the example

application as well as the mathematical models for each of these components. As

discussed in the thesis, the component models are all algebraic in nature, in which an

assumption of steady-state conditions is applied. The components considered in this

thesis include a double-acting cylinder, fixed displacement pump, 4/3 directional control

valve, and a gas engine.

An important aspect to note is that the component models in this thesis do not

consider losses such as leakage or friction, i.e. they model ideal physical behavior. This

assumption has been made because these models represent the first time that GAMS-

compliant declarative models have been used. Since losses do not alter the fundamental

behavior of the component, including them will only serve to make the model more

complex, but will not invalidate the use of GAMS for solving of this class of problems.

Double Acting Cylinder:

In Figure 20, a SysML model is shown that captures the hydraulic behavior of a

double-acting cylinder in steady-state. As discussed previously, losses are not considered

and the model captures the steady-state behavior for a cylinder. The model consists of

sizing variables (boreDiameter, strokeLength, mass, cost, maxPressure,

rodDiameter) that are contained within a separate CylinderSizing block as well

as state variables (similar to time-dependent) like time, force, vel, and length. It

also contains four ports, two translational and two fluid power ports. This is similar to the

 79

interfaces found in actual cylinders. These ports represent the interfaces through which

components can be connected together. The ports also have variables, depending on the

type of port. For instance, the fluid power port has variables pressure and flow,

while translational port has variables for force and velocity.

Figure 20 GAMS-compliant SysML model to capture the idealized hydraulic behavior
for a double acting cylinder. The equations used to model the cylinder are

displayed in the Constraints area in the CylinderFP Block

Based on these variables, declarative constraints are established to model cylinder

behavior. For instance, consider the equation for force generated:

 �hi�� =
jk ∙ 0.25 ∙ l�i
 hi�mknV�L�i� ∙ �hiL�. �� −
jk ∙ 0.25∙
l�i
 hi�mknV�L�i� − l�i
ih�mknV�L�i�� ∙ �hiLo. ��; (4)

CylinderModel[Package] imagesbdd []

values

time{flowFlag = nonflow, type = free}
force{flowFlag = nonflow, type = free}
vel{flowFlag = nonflow, type = free}
length{flowFlag = nonflow, type = free}

«GamsPort»portA : FluidConnectorFP{causality = inout}
«GamsPort»portB : FluidConnectorFP{causality = inout}
«GamsPort»flangeA : TransConnectorFP{causality = inout}
«GamsPort»flangeB : TransConnectorFP{causality = inout}

{force =e= (Pi*0.25*sqr(size.boreDiameter)*portA.p) - (Pi*0.25*(sqr(size.boreDiameter)-sqr(size.rodDiameter))*portB.p),
0 =e= flangeA.f + flangeB.f,

flangeB.f =e= force,
abs(length) =l= size.strokeLength,

portA.p =l= size.maxPressure,
portA.q =e= vel*0.25*Pi*sqr(size.boreDiameter),

portB.p =l= size.maxPressure,
portB.q*sqr(size.boreDiameter) + portA.q*(sqr(size.boreDiameter)-sqr(size.rodDiameter)) =e= 0,

size.rodDiameter =e= 0.5*size.boreDiameter,
time =g= 0.00001,
vel*time =e=length,

vel =e= flangeB.v - flangeA.v}

«gamsModel»

CylinderFP

values

boreDiameter{flowFlag = nonflow, type = free}
strokeLength{flowFlag = nonflow, type = free}
mass{flowFlag = nonflow, type = free}
cost{flowFlag = nonflow, type = free}
maxPressure{flowFlag = nonflow, type = free}
rodDiameter{flowFlag = nonflow, type = free}

«gamsModel»

CylinderSizing

«OwnedGamsModel»

-size

Constraints

State Variables

Ports

Sizing Variables

 80

This is a declarative equation and therefore it does not matter what variable is

known or unknown; the necessary symbolic manipulation is done at the time of solving

by the solver.

Fixed Displacement Pump:

Figure 21 GAMS-compliant SysML model to capture the idealized hydraulic behavior
for a fixed displacement pump.

Similar to the cylinder, a model for a fixed displacement pump is shown in Figure

21. The pump has three ports: one rotational flange and two fluid power ports. The sizing

variables, state variables, ports and constraints are shown, similar to the cylinder model.

PumpModel[Package] imagesbdd []

values

pr{flowFlag = nonflow, type = free}
flow{flowFlag = nonflow, type = free}

«GamsPort»portP : FluidConnectorFP{causality = inout}
«GamsPort»portT : FluidConnectorFP{causality = inout}
«GamsPort»flange : RotConnectorFP{causality = inout}

«gamsModel»

PumpFP

{flange.w =l= size.maxOpSpeed*2*Pi/60,
flow =e= size.displacement * flange.w/(2*Pi),

pr =e= portP.p - portT.p,
portP.p =l= size.maxOpPr,
0 =e= portP.q + portT.q,

portP.q + flow =e= 0,
flow =g= 1e-9,

flange.tau + size.displacement*pr /(2*Pi) =e= 0}

values

displacement{flowFlag = nonflow, type = free}
maxOpSpeed{flowFlag = nonflow, type = free}
maxOpPr{flowFlag = nonflow, type = free}
cost{flowFlag = nonflow, type = free}
mass{flowFlag = nonflow, type = free}
totalEff{flowFlag = nonflow, type = free}

«gamsModel»

PumpSizing

«OwnedGamsModel»

-size

portT

portP

flange

 81

4/3 Directional Control Valve:

Figure 22 GAMS-compliant SysML model to capture the idealized hydraulic behavior
for a 4-way 3-position open center directional control valve.

An open center type valve is chosen for the log splitter problem, and is shown in

Figure 22. It has four ports: portP connecting to pump, portT connecting to tank, and

ports A and B connecting to actuator. A control variable is used to determine the

position of the valve; two positions are considered, corresponding to forward and reverse

phases (control = 1 and 0 respectively). In this way, the internal connections are

established depending on the control value.

It is assumed that the valve changes position instantaneously, which is different

from the gradual opening that normally occurs. Moreover, pressure losses in the input

ValveModel[Package] imagesbdd []

values

control{flowFlag = nonflow, type = free}

«GamsPort»portT : FluidConnectorFP{causality = inout}
«GamsPort»portP : FluidConnectorFP{causality = inout}
«GamsPort»portA : FluidConnectorFP{causality = inout}
«GamsPort»portB : FluidConnectorFP{causality = inout}

«gamsModel»

ValveFP

{portP.q =l= size.maxFlow,
portP.p =l= size.maxPr,

portP.p =e= portA.p*control + portB.p*(1-control),
0 =e= portP.q + portA.q*control + portB.q*(1-control),

portT.p =e= portB.p*control + portA.p*(1-control),
0 =e= portT.q + portB.q*control + portA.q*(1-control)}

values

cost{flowFlag = nonflow, type = free}
mass{flowFlag = nonflow, type = free}
maxFlow{flowFlag = nonflow, type = free}
maxPr{flowFlag = nonflow, type = free}

«gamsModel»

ValveSizing

«OwnedGamsModel»

-size

portP

portT

portA

portB

control=1

control=0

 82

and output side of the valve is not considered. These losses can be modeled by modifying

the equations relating the pump pressure to the actuator side pressure. In order to model

gradual opening of the valve, it may be possible to divide the two use-phases considered

in this problem into multiple use-phases to model the change in position of valve. This is

left to future work.

Gas Engine:

Figure 23 GAMS-compliant SysML model to capture the idealized behavior for an IC
gas engine.

Similar to the previous components, the engine consists of variables, ports, and

constraints. Based on the supplier information (two engine points – max torque and max

power), a quadratic curve is fitted through these two points. The curve is of the form:

 q = nr + n2s + n�s� j = qs �q�s = n2 + 2n�s �j�s = nr + 2n2s + 3n�s�

(5)

EngineModel[Package] imagesbdd []

«GamsPort»flange : RotConnectorFP{causality = inout}

values

P{flowFlag = nonflow, type = free}

«gamsModel»

EngineFP

{P =e= flange.tau*flange.w,
flange.tau =l= size.a0 + size.a1*flange.w + size.a2*sqr(flange.w),

flange.w =g= size.rpmMin*2*pi/60,
flange.w =l= size.rpmMax*2*pi/60}

values

rpmMin{flowFlag = nonflow, type = free}
rpmMax{flowFlag = nonflow, type = free}
a0{flowFlag = nonflow, type = free}
a1{flowFlag = nonflow, type = free}
a2{flowFlag = nonflow, type = free}
mass{flowFlag = nonflow, type = free}
cost{flowFlag = nonflow, type = free}

«gamsModel»

EngineSizing

«OwnedGamsModel»

-size

500 1000 1500 2000 2500 3000 3500 4000 4500
0

5

10

15

20

25

Speed in rpm

E
n
g
in

e
 T

o
rq

u
e
 i
n
 N

-m

Engine Model: DP340E

 83

Four equations are possible: max torque, max power, derivatives for torque and

power at max conditions. Based on these equations, quadratic interpolation is performed

for each engine in the supplier catalog. The model of the engine is represented by an

inequality in which the torque must lie under the curve.

tu
uu
v1 sqwO� sxyEz �
0 1 2sqwO� 1 s{yEz s{yEz�
1 2s{yEz 3s{yEz� |}

}}
~

�nrn2n�
� =

tu
uu
vqwO� 0jwO�swO�

0 |}
}}
~
 (6)

The use of a curve within the model highlights the ability of the solver to handle

searching both across alternative engines as well as below the curve for each engine.

Again, losses have not been considered; but they can be added to these models without

affecting other components.

Supplier Catalog Models for Components:

For the component models described above, the actual supplier catalog

information for each is presented below. This data was collected by Richard Malak and

Lina Tucker from manufacturers and vendors. The highlighted cells represent the

components selected in the different scenarios for the example problem discussed in

Chapter 4.

 84

Table 11 Cylinder Catalog Data

Cylinder Id

Stroke

Length

(m)

Bore

Diameter

(m)

Maximum

Operating

Pressure (Pa)

Mass (kg) Cost (kg) Cylinder Id
Stroke

Length (m)

Bore

Diameter

(m)

Maximum

Operating

Pressure

(Pa)

Mass (kg) Cost (kg)

SAE-64508 0.20 0.11 2.068E+07 24.49 217.88 PMC-8324 0.6096 0.0762 1.724E+07 18.60 139.11

SAE-64008 0.20 0.10 2.068E+07 19.05 192.79 HMW-3524 0.6096 0.0889 2.068E+07 25.71 125.88

HMW-5008 0.20 0.13 1.724E+07 32.60 158.75 PMC-5424 0.6096 0.0635 1.724E+07 13.61 111.80

PMC-5608 0.20 0.10 1.724E+07 15.88 149.87 HMW-3024 0.6096 0.0762 2.068E+07 20.00 109.05

PMC-5508 0.20 0.09 1.724E+07 11.79 118.97 HMW-2524 0.6096 0.0635 2.068E+07 16.90 92.96

PMC-8308 0.20 0.08 1.724E+07 9.98 103.35 HMW-2024 0.6096 0.0508 2.068E+07 12.50 86.48

HMW-4008 0.20 0.10 2.068E+07 18.50 96.53 HMW-5028 0.7112 0.127 1.724E+07 52.21 260.03

PMC-5408 0.20 0.06 1.724E+07 7.71 92.72 HMW-4028 0.7112 0.1016 2.068E+07 35.11 167.88

HMW-3508 0.20 0.09 2.068E+07 14.80 81.63 HMW-3528 0.7112 0.0889 2.068E+07 28.40 146.78

HMW-3008 0.20 0.08 2.068E+07 11.20 69.31 HMW-3028 0.7112 0.0762 2.068E+07 22.20 121.09

HMW-2508 0.20 0.06 2.068E+07 9.00 61.96 HMW-2528 0.7112 0.0635 2.068E+07 18.80 102.64

HMW-1508 0.20 0.04 2.068E+07 5.20 61.39 HMW-2028 0.7112 0.0508 2.068E+07 14.10 89.94

HMW-2008 0.20 0.05 2.068E+07 6.10 57.00 SAE-64530 0.762 0.1143 2.068E+07 47.17 279.51

HMW-5010 0.25 0.13 1.724E+07 34.50 166.30 HMW-5030 0.762 0.127 1.724E+07 54.11 270.73

HMW-4010 0.25 0.10 2.068E+07 20.20 107.40 SAE-64030 0.762 0.1016 2.068E+07 35.83 233.17

HMW-3510 0.25 0.09 2.068E+07 16.20 85.16 PMC-5630 0.762 0.1016 1.724E+07 32.66 190.62

HMW-3010 0.25 0.08 2.068E+07 12.30 74.97 HMW-4030 0.762 0.1016 2.068E+07 36.80 180.06

HMW-2510 0.25 0.06 2.068E+07 9.90 66.36 PMC-5530 0.762 0.0889 1.724E+07 21.77 160.73

HMW-1510 0.25 0.04 2.068E+07 5.80 65.21 HMW-3530 0.762 0.0889 2.068E+07 29.81 160.69

HMW-2010 0.25 0.05 2.068E+07 6.90 60.71 PMC-8330 0.762 0.0762 1.724E+07 20.87 151.81

SAE-64512 0.30 0.11 2.068E+07 28.12 227.49 HMW-3030 0.762 0.0762 2.068E+07 23.31 126.13

SAE-64012 0.30 0.10 2.068E+07 21.77 199.77 PMC-5430 0.762 0.0635 1.724E+07 15.88 118.78

HMW-5012 0.30 0.13 1.724E+07 36.51 187.68 HMW-2530 0.762 0.0635 2.068E+07 19.80 114.96

PMC-5612 0.30 0.10 1.724E+07 18.60 153.38 HMW-2030 0.762 0.0508 2.068E+07 14.90 108.94

PMC-5512 0.30 0.09 1.724E+07 13.15 127.51 HMW-5032 0.8128 0.127 1.724E+07 56.11 293.57

HMW-4012 0.30 0.10 2.068E+07 21.90 114.20 SAE-64532 0.8128 0.1143 2.068E+07 48.08 284.73

PMC-8312 0.30 0.08 1.724E+07 11.79 111.99 SAE-64032 0.8128 0.1016 2.068E+07 37.65 237.93

PMC-5412 0.30 0.06 1.724E+07 9.07 97.43 PMC-5632 0.8128 0.1016 1.724E+07 33.57 198.80

HMW-3512 0.30 0.09 2.068E+07 17.60 89.98 HMW-4032 0.8128 0.1016 2.068E+07 38.41 189.53

HMW-3012 0.30 0.08 2.068E+07 13.40 81.63 HMW-3532 0.8128 0.0889 2.068E+07 31.21 165.80

HMW-2512 0.30 0.06 2.068E+07 10.90 68.63 PMC-5532 0.8128 0.0889 1.724E+07 23.59 164.84

HMW-2012 0.30 0.05 2.068E+07 7.70 63.52 PMC-8332 0.8128 0.0762 1.724E+07 21.77 155.93

HMW-5014 0.36 0.13 1.724E+07 38.41 203.61 HMW-3032 0.8128 0.0762 2.068E+07 24.30 133.04

PMC-5614 0.36 0.10 1.724E+07 20.41 157.63 HMW-2532 0.8128 0.0635 2.068E+07 20.80 123.75

PMC-5514 0.36 0.09 1.724E+07 14.51 131.81 PMC-5432 0.8128 0.0635 1.724E+07 18.60 122.80

HMW-4014 0.36 0.10 2.068E+07 23.51 123.79 HMW-2032 0.8128 0.0508 2.068E+07 15.80 116.35

PMC-8314 0.36 0.08 1.724E+07 13.15 116.98 HMW-5036 0.9144 0.127 1.724E+07 60.01 309.55

PMC-5414 0.36 0.06 1.724E+07 9.98 99.93 SAE-64536 0.9144 0.1143 2.068E+07 52.16 295.03

HMW-3514 0.36 0.09 2.068E+07 18.90 94.06 SAE-64036 0.9144 0.1016 2.068E+07 40.82 252.80

HMW-3014 0.36 0.08 2.068E+07 14.50 85.16 PMC-5636 0.9144 0.1016 1.724E+07 36.29 205.08

HMW-2514 0.36 0.06 2.068E+07 11.90 73.71 HMW-4036 0.9144 0.1016 2.068E+07 41.71 202.31

HMW-2014 0.36 0.05 2.068E+07 8.50 67.05 HMW-3536 0.9144 0.0889 2.068E+07 33.91 180.43

SAE-64516 0.41 0.11 2.068E+07 32.21 239.45 PMC-5536 0.9144 0.0889 1.724E+07 25.40 173.16

HMW-5016 0.41 0.13 1.724E+07 40.41 216.07 PMC-8336 0.9144 0.0762 1.724E+07 23.59 164.42

SAE-64016 0.41 0.10 2.068E+07 24.95 207.11 HMW-3036 0.9144 0.0762 2.068E+07 26.50 142.86

PMC-5616 0.41 0.10 1.724E+07 21.77 161.89 HMW-2536 0.9144 0.0635 2.068E+07 22.80 128.00

PMC-5516 0.41 0.09 1.724E+07 15.42 136.10 PMC-5436 0.9144 0.0635 1.724E+07 19.96 127.93

HMW-4016 0.41 0.10 2.068E+07 25.21 128.44 HMW-2036 0.9144 0.0508 2.068E+07 17.40 121.32

PMC-8316 0.41 0.08 1.724E+07 14.06 121.88 HMW-5040 1.016 0.127 1.724E+07 63.91 345.05

HMW-3516 0.41 0.09 2.068E+07 20.30 104.47 SAE-64540 1.016 0.1143 2.068E+07 56.25 311.76

PMC-5416 0.41 0.06 1.724E+07 10.43 102.52 SAE-64040 1.016 0.1016 2.068E+07 43.54 255.21

HMW-3016 0.41 0.08 2.068E+07 15.60 88.86 PMC-5640 1.016 0.1016 1.724E+07 38.56 219.54

HMW-2516 0.41 0.06 2.068E+07 12.90 76.43 HMW-4040 1.016 0.1016 2.068E+07 45.01 216.57

HMW-2016 0.41 0.05 2.068E+07 9.30 72.15 HMW-3540 1.016 0.0889 2.068E+07 36.60 189.37

HMW-5018 0.46 0.13 1.724E+07 42.41 228.73 PMC-5540 1.016 0.0889 1.724E+07 27.22 181.43

HMW-4018 0.46 0.10 2.068E+07 26.80 133.52 HMW-3040 1.016 0.0762 2.068E+07 28.70 170.51

HMW-3518 0.46 0.09 2.068E+07 21.60 110.79 PMC-8340 1.016 0.0762 1.724E+07 25.40 168.68

HMW-3018 0.46 0.08 2.068E+07 16.70 92.25 HMW-2540 1.016 0.0635 2.068E+07 24.80 147.24

HMW-2518 0.46 0.06 2.068E+07 13.90 80.05 HMW-2040 1.016 0.0508 2.068E+07 19.01 134.64

HMW-2018 0.46 0.05 2.068E+07 10.10 76.23 SAE-64542 1.0668 0.1143 2.068E+07 58.06 336.75

SAE-64520 0.51 0.11 2.068E+07 36.29 250.64 SAE-64042 1.0668 0.1016 2.068E+07 45.36 262.42

HMW-5020 0.51 0.13 1.724E+07 44.31 239.91 PMC-5642 1.0668 0.1016 1.724E+07 41.73 223.38

SAE-64020 0.51 0.10 2.068E+07 28.12 214.92 PMC-5542 1.0668 0.0889 1.724E+07 29.03 185.59

PMC-5620 0.51 0.10 1.724E+07 25.40 170.29 PMC-8342 1.0668 0.0762 1.724E+07 26.76 172.84

PMC-5520 0.51 0.09 1.724E+07 17.24 144.70 PMC-5442 1.0668 0.0635 1.724E+07 21.32 147.70

HMW-4020 0.51 0.10 2.068E+07 28.50 139.43 HMW-5048 1.2192 0.127 1.724E+07 71.71 381.43

PMC-8320 0.51 0.08 1.724E+07 15.88 130.47 SAE-64548 1.2192 0.1143 2.068E+07 66.68 339.57

HMW-3520 0.51 0.09 2.068E+07 23.01 116.74 SAE-64048 1.2192 0.1016 2.068E+07 52.16 284.22

PMC-5420 0.51 0.06 1.724E+07 12.25 107.23 HMW-4048 1.2192 0.1016 2.068E+07 51.71 253.33

HMW-3020 0.51 0.08 2.068E+07 17.80 97.45 PMC-5648 1.2192 0.1016 1.724E+07 45.36 234.19

HMW-2520 0.51 0.06 2.068E+07 14.90 86.48 PMC-5548 1.2192 0.0889 1.724E+07 31.75 224.39

HMW-2020 0.51 0.05 2.068E+07 10.90 79.25 HMW-3548 1.2192 0.0889 2.068E+07 42.01 214.85

SAE-64524 0.61 0.11 2.068E+07 40.37 263.15 HMW-3048 1.2192 0.0762 2.068E+07 33.11 189.40

HMW-5024 0.61 0.13 1.724E+07 48.21 248.55 PMC-8348 1.2192 0.0762 1.724E+07 29.48 188.82

SAE-64024 0.61 0.10 2.068E+07 31.30 221.90 HMW-2548 1.2192 0.0635 2.068E+07 28.70 185.94

9-6890 0.61 0.10 2.068E+07 32.21 199.95 HMW-2048 1.2192 0.0508 2.068E+07 22.20 161.20

PMC-5624 0.61 0.10 1.724E+07 28.12 177.32 SAE-64560 1.524 0.1143 2.068E+07 80.29 404.30

PMC-5524 0.61 0.09 1.724E+07 19.96 148.16 SAE-64060 1.524 0.1016 2.068E+07 62.60 284.04

HMW-4024 0.61 0.10 2.068E+07 31.81 146.66 PMC-5660 1.524 0.1016 1.724E+07 54.43 273.41

 85

Table 12 Pump Catalog Data

Pump Id
Displacement

(m3/rev)

Max operating Pr

(Pa)

Max operating

RPM (rpm)

Weight

(kg)
Cost ($)

SNP2NN_4_0 3.9329E-06 2.499E+07 4000 2.31 218.96

SNP2NN_6_0 6.06321E-06 2.499E+07 4000 2.40 222.66

SNP2NN_8_0 8.3574E-06 2.499E+07 4000 2.49 228.18

SNP2NN_011 1.08155E-05 2.499E+07 4000 2.63 232.49

SNP2NN_014 1.44206E-05 2.499E+07 3500 2.86 254.02

SNP2NN_017 1.67148E-05 2.499E+07 3000 2.95 258.31

SNP2NN_019 1.91729E-05 2.099E+07 3000 3.04 264.47

SNP2NN_022 2.2778E-05 1.800E+07 3000 3.18 266.95

SNP2NN_025 2.52361E-05 1.600E+07 3000 3.31 269.40

SKP2NN_8_0 8.3574E-06 2.499E+07 4000 2.49 228.18

SKP2NN_011 1.08155E-05 2.499E+07 4000 2.63 232.49

SKP2NN_014 1.44206E-05 2.499E+07 3500 2.86 254.02

SKP2NN_017 1.67148E-05 2.499E+07 3000 2.95 258.31

SKP2NN_019 1.91729E-05 2.399E+07 3000 3.04 264.47

SKP2NN_022 2.2778E-05 2.099E+07 3000 3.18 266.95

SKP2NN_025 2.52361E-05 1.900E+07 3000 3.31 269.40

DE1L-07 7.04644E-06 2.758E+07 3400 7.17 348.86

DE1L-10 9.5045E-06 2.758E+07 3400 7.30 350.58

DE1L-13 1.2618E-05 2.758E+07 3400 7.48 352.31

DE1L-14 1.42567E-05 2.758E+07 3400 7.57 353.16

DE1L-17 1.70425E-05 2.758E+07 3400 7.76 354.03

DE1L-19 1.9009E-05 2.758E+07 3400 7.89 354.89

DE1L-21 2.04838E-05 2.758E+07 3400 7.94 361.78

DE1L-23 2.24503E-05 2.758E+07 3400 8.07 363.51

DE1L-25 2.53999E-05 2.758E+07 3400 8.26 366.10

DE1L-29 2.90051E-05 2.758E+07 3200 8.44 367.82

DE1L-32 3.17909E-05 2.758E+07 3000 8.62 383.34

DE1L-38 3.8018E-05 2.275E+07 2750 8.98 386.79

DE1L-41 4.09677E-05 2.068E+07 2500 9.16 391.96

CPB-020 3.2938E-05 2.482E+07 3200 8.75 837.80

CPB-023 3.6707E-05 2.482E+07 3200 8.89 843.95

CPB-026 4.16231E-05 2.482E+07 3200 9.07 850.21

CPB-030 4.78502E-05 2.482E+07 3200 9.30 858.56

CPB-032 5.14554E-05 2.482E+07 3200 9.48 866.67

CPB-035 5.5716E-05 2.482E+07 3200 9.66 871.34

CPB-040 6.35818E-05 2.482E+07 3200 10.07 883.77

CPB-045 7.16115E-05 2.482E+07 3000 10.48 897.61

CPB-050 7.94773E-05 2.275E+07 2750 10.89 907.37

CPB-055 8.78347E-05 2.068E+07 2500 11.29 921.06

CPB-060 9.57005E-05 1.862E+07 2500 11.70 934.97

SKP1NN_12 1.17987E-06 2.499E+07 4000 1.03 213.05

SKP1NN_17 1.57316E-06 2.499E+07 4000 1.05 213.85

SKP1NN_22 2.09754E-06 2.499E+07 4000 1.09 216.18

SKP1NN_26 2.62193E-06 2.499E+07 4000 1.11 218.49

SKP1NN_32 3.14632E-06 2.499E+07 4000 1.14 220.04

SKP1NN_38 3.65432E-06 2.499E+07 4000 1.18 220.81

SKP1NN_43 4.19509E-06 2.499E+07 3000 1.20 222.35

SKP1NN_60 5.88296E-06 2.299E+07 3000 1.30 223.89

SKP1NN_78 7.58721E-06 1.999E+07 3000 1.39 225.45

SKP1NN_010 9.94695E-06 1.500E+07 2000 1.55 227.99

SKP1NN_012 1.19953E-05 1.200E+07 2000 1.65 230.01

SNP3NN_022 2.21225E-05 2.499E+07 3000 6.80 410.94

SNP3NN_026 2.62193E-05 2.499E+07 3000 6.80 415.67

SNP3NN_033 3.31019E-05 2.499E+07 3000 7.17 426.41

SNP3NN_038 3.8018E-05 2.499E+07 3000 7.30 429.54

SNP3NN_044 4.40812E-05 2.499E+07 3000 7.48 433.76

SNP3NN_048 4.80141E-05 2.310E+07 3000 7.62 436.99

SNP3NN_055 5.50605E-05 2.310E+07 2500 7.85 443.51

SNP3NN_063 6.34179E-05 4.168E+07 2500 8.12 449.80

SNP3NN_075 7.43973E-05 1.820E+07 2500 8.48 456.87

SNP3NN_090 8.81624E-05 1.500E+07 2500 8.89 468.79

 86

Table 13 Valve Catalog Data

Valve Id
Max Operating flow

(m3/s)

Max Operating

Pressure (Pa)
Weight (kg) Cost ($)

SurplusCenter-9-6765 0.001261804 20684271.87 5.44 74.50

SurplusCenter-9-1684 0.001577255 15513203.9 4.54 76.50

SurplusCenter-9-1262 0.001577255 13789514.58 4.99 76.50

SurplusCenter-9-6766 0.001261804 20684271.87 5.44 77.50

SurplusCenter-9-6767 0.001261804 20684271.87 5.44 82.50

SurplusCenter-9-6701 0.001577255 20684271.87 7.26 97.95

SurplusCenter-9-6759 0.001577255 20684271.87 7.26 105.95

SurplusCenter-9-6701-F 0.001577255 20684271.87 7.26 112.95

SurplusCenter-9-4500 0.000315451 17236893.23 2.27 169.95

SurplusCenter-9-1517 0.001577255 18960582.55 3.63 76.95

SurplusCenter-9-1518 0.001387984 15513203.9 4.54 76.95

SurplusCenter-9-1789 0.001892706 13789514.58 6.35 96.95

SurplusCenter-9-5174 0.001135624 20684271.87 3.18 179.99

MSCDirect-01825629 0.001577255 18960582.55 4.54 109.70

DrillSpot-40529 0.001009443 20684271.87 4.54 144.85

DrillSpot-40861 0.001892706 20684271.87 6.80 166.06

DrillSpot-40642 0.001261804 20684271.87 4.54 134.84

DrillSpot-40480 0.001892706 20684271.87 6.80 168.36

MSCDirect-01825678 0.001892706 20684271.87 4.54 94.23

MSCDirect-01825751 0.001261804 24131650.52 5.44 132.77

NT-202305 0.000675065 31026407.81 1.81 109.99

NT-201302 0.001059915 31026407.81 1.81 119.99

NT-202502 0.001665581 31026407.81 5.90 139.99

NT-201505 0.001249186 31026407.81 5.90 139.99

NT-2020 0.001577255 13789514.58 4.54 70.00

NT_Prince-2036 0.001577255 13789514.58 4.99 89.00

NT_Northman-202508 0.001577255 20684271.87 4.08 105.00

NT_Prince-2010 0.001261804 20684271.87 4.99 80.00

NT_Prince-2035 0.001577255 20684271.87 4.99 80.00

NT_Prince-20114 0.001892706 20684271.87 4.54 140.00

NT_Northman-202509 0.001577255 20684271.87 4.08 105.00

NT_BrandHyd-20120 0.002839059 20684271.87 7.71 270.00

NT_Prince-20113 0.001261804 20684271.87 4.54 90.00

NT_BrandHyd-20119 0.001135624 20684271.87 3.63 145.00

 87

Table 14 Engine Catalog Data

Engine Id
Max Power

(W)

RPM at max

Power (rpm)

Max torque (N-

m)

RPM at max

torque (rpm)
Weight (kg) Cost ($)

CS4T-901502 2983 3600 7.46 2600 19.05 312.00

CS6T 4474 3600 10.98 2400 18.14 356.04

CS8_5T 6338 3600 16.54 2400 30.39 608.00

CS12T 8948 3600 24.95 2400 41.28 736.00

CH18S 13423 3600 41.35 2600 40.82 1350.83

CH20S 14914 3600 44.06 2600 40.82 1506.34

CH22S 16405 3600 44.74 2600 40.82 1397.60

CH15T 11185 3600 32.27 2400 40.05 937.12

CS10T 7457 3600 19.93 2400 31.98 688.17

CV15T 11185 3600 32.27 2400 39.46 801.21

CV18S 13423 3600 41.35 2600 40.82 1607.78

CV20S 14914 3600 44.06 2600 40.82 1562.58

CV22S 16405 3600 44.74 2600 40.82 1539.33

CV25S 18642 3600 54.23 2200 42.64 1906.75

DP160 4101 3600 10.85 2500 15.00 229.99

DP200 4847 3600 13.02 2500 16.00 249.99

DP240 5966 3600 16.68 2500 24.95 249.99

DP270 6711 3600 18.98 2500 24.95 299.99

DP340 8203 3600 18.98 2500 24.95 349.99

DP390 9694 3600 26.44 2500 30.84 399.99

DP120V 2983 3600 5.97 2700 12.47 199.99

DP160V 4101 3600 8.00 2700 15.42 279.99

DP225 5593 3600 16.00 2500 18.14 249.99

DP200E 4847 4000 12.88 2500 16.74 349.99

DP240E 5966 3600 16.68 2500 26.31 349.99

DP270E 6711 4000 18.98 2500 29.48 399.99

DP340E 8203 3600 23.46 2500 32.66 399.99

DP390E 9694 3600 26.44 2500 32.93 449.99

DP420E 11931 3600 28.47 2500 36.29 499.99

DP225E 5593 3600 16.00 2500 19.96 349.99

NT-Honda-6059 4101 3900 10.71 2900 17.24 364.99

NT-Honda-60242 15287 3600 45.96 2500 43.09 1299.99

NT-Honda-60694 3878 3600 11.25 2500 13.79 259.99

NT-Honda-6066 8203 3600 25.08 2500 30.98 674.99

NT-Honda-60863 5294 3600 15.32 2500 24.99 699.99

NT-Honda-60968 5966 3600 17.76 2500 24.99 589.99

NT-Honda-6032 2610 3600 7.32 2500 13.02 349.99

NT-Honda-605921 3579 3600 10.30 2500 13.02 374.99

NT-Honda-6067 4101 3600 12.34 2500 16.01 399.99

Honda-GC160 3728 3600 10.30 2500 13.52 280.00

Honda-GX160 4101 3600 10.85 2500 15.42 310.00

Honda-GX270 6711 3600 18.98 2500 25.40 590.00

Honda-GX120 2983 3600 6.78 2500 13.15 370.00

Honda-GX200 4474 3600 13.29 2500 20.87 400.00

Honda-GX240 5966 3600 16.27 2500 25.40 579.00

 88

REFERENCES

1. Baresi, L. and R. Heckel, Tutorial Introduction to Graph Transformation: A
Software Engineering Perspective, in Graph Transformation. 2002. p. 402-429.

2. Benhamou, F. and L. Granvilliers, Continuous and Interval Constraints, in
Handbook of Constraint Programming, F. Rossi, P.v. Beek, and T. Walsh,
Editors. 2006, Elsevier. p. 571-603.

3. Brooke, Kendrick, Meeraus, and Raman. GAMS - A User's Guide. 2008;
Available from: http://gams.com/docs/document.htm.

4. Brucker, A.D. and J. Doser, Metamodel-based UML Notations for Domain-

specific Languages, in 4th International Workshop on Software Language

Engineering (ATEM 2007). 2007: Nashville, USA.

5. Chenouard, R., L. Granvilliers, and R. Soto, Model-driven constraint

programming, in Proceedings of the 10th international ACM SIGPLAN

conference on Principles and practice of declarative programming. 2008, ACM:
Valencia, Spain.

6. Chenouard, R., P. Sébastian, and L. Granvilliers, Solving an Air Conditioning
System Problem in an Embodiment Design Context Using Constraint Satisfaction

Techniques, in Principles and Practice of Constraint Programming – CP 2007.
2007. p. 18-32.

7. Coyne, R.D.D., M.A.R. Rosenman, A. D. , M. Balachandran, and J.S. Gero,
Knowledge-Based Design Systems. 1989: Addison-Wesley Longman Publishing
Co., Inc.

8. Czarnecki, K. and S. Helsen, Feature-based survey of model transformation
approaches. IBM Systems Journal, 2006. 45(3): p. 621-645.

9. da Silva, J.C. and N. Back, Shaping the Process of Fluid Power System Design
Applying an Expert System. Research in Engineering Design, 2000. 12(1): p. 8-17.

10. Dunlop, G.R. and R.K. Rayudu. An expert design assistant for hydraulic systems.
in Proceedings of the First New Zealand International Two-Stream Conference
on Artificial Neural Networks and Expert Systems. 1993. Dunedin, New Zealand.

11. Dym, C.L. and R.E. Levitt, Knowledge-Based Systems in Engineering. 1991, New
York, NY, USA: McGraw-Hill.

 89

12. Eaton, Pump and Motor Sizing Guide. 1998, Eden Prarie, MN: Eaton Corporation
Hydraulics Division.

13. Fischer, T., J. Niere, L. Torunski, and A. Zündorf, Story Diagrams: A New Graph
Rewrite Language Based on the Unified Modeling Language and Java, in Theory
and Application of Graph Transformations. 2000. p. 157-167.

14. Freuder, E.C. and A.K. Mackworth, Constraint Satisfaction: An Emerging
Paradigm, in Handbook of Constraint Programming, F. Rossi, P.v. Beek, and T.
Walsh, Editors. 2006, Elsevier. p. 13-28.

15. Friedenthal, S., A. Moore, and R. Steiner, A Practical Guide to SysML: The

Systems Modeling Language. 2008: Morgan Kaufmann.

16. Fritzson, P., Principles of Object-Oriented Modeling and Simulation with

Modelica 2.1. 2004: IEEE Press.

17. Fu, J.F., R.G. Fenton, and W.L. Cleghorn. Nonlinear Mixed Integer-Discrete-

Continuous Programming and its Applications to Engineering Design. in
Proceedings of the 1989 ASME Design Automation Conference. 1989. Montreal,
Canada.

18. Fujita, K., S. Akagi, and M. Sasaki. Adaptive Synthesis of Hydraulic Circuits from
Design Cases Based on Functional Structure. in Proceedings of the 1995 ASME

International Design Engineering Technical Conferences - 21st Annual Design

Automation Conference. 1995: ASME.

19. GAMS. General Algebraic Modeling System (GAMS). 2009; Available from:
http://www.gams.com.

20. Granvilliers, L., Fr\, \#233, d\, and r. Benhamou, Algorithm 852: RealPaver: an
interval solver using constraint satisfaction techniques. ACM Trans. Math.
Softw., 2006. 32(1): p. 138-156.

21. Gross, M.D., Design as Exploring Constraints, in Dept. of Architecture. 1986,
Massachusetts Institute of Technology: Boston, MA.

22. Hughes, E.J., T.G. Richards, and D.G. Tilley, Development of a Design Support
Tool for Fluid Power System Design. Journal of Engineering Design, 2001. 12(2):
p. 75-92.

23. Königs, A. and A. Schürr, Tool Integration with Triple Graph Grammars - A
Survey. Electronic Notes in Theoretical Computer Science, 2006. 148(1): p. 113-
150.

 90

24. Malak, R.J., L. Tucker, and C.J.J. Paredis. Composing Tradeoff Models For

Multi-Attribute System-Level Decision Making. in Proceedings of the ASME 2008

International Design Engineering Technical Conferences & Computers and

Information in Engineering Conference. IDETC/CIE 2008. 2008.

25. MATLAB. fmincon - Find minimum of constrained nonlinear multivariable
function. Available from:
http://www.mathworks.com/access/helpdesk/help/toolbox/optim/ug/fmincon.html
.

26. Modelica, Modelica Language Specification v 3.1. 2009:
http://www.modelica.org/documents/ModelicaSpec31.pdf.

27. MOFLON. MOFLON Homepage. 2009 [cited 2009 02-11-2009]; Available
from: http://moflon.org/.

28. Nethercote, N., P. Stuckey, R. Becket, S. Brand, G. Duck, and G. Tack. MiniZinc:

Towards a Standard CP Modelling Language. in Principles and Practice of
Constraint Programming - CP 2007, 13th International Conference, CP 2007,

Providence, RI, USA, September 23-27, 2007, Proceedings. 2007: Springer.

29. Neumaier, A., O. Shcherbina, W. Huyer, Tam\, \#x00e1, s. Vink\, and \#x00f3, A
comparison of complete global optimization solvers. Math. Program., 2005.
103(2): p. 335-356.

30. NoMagic. Magic Draw. 2009; Available from:
http://www.nomagic.com/text.php?lang=2&item=232&arg=206.

31. O'Sullivan, B.A., Constraint-Aided Conceptual Design, in Department of

Computer Science. 1999, University College Cork. p. 236.

32. OMG. Meta Object Facility (MOF) Core Specification v2.0. 2006 01-01-2006;
Available from: http://www.omg.org/docs/formal/06-01-01.pdf.

33. OMG. OMG Systems Modeling Language v1.1. 2008 November 2008; Available
from: http://www.omg.org/docs/formal/08-11-02.pdf.

34. OMG. Unified Modeling Language (UML). 2009; Available from:
http://www.omg.org/spec/UML/2.2/.

35. Pedersen, H.C., Automated Hydraulic System Design and Power Management in

Mobile Applications, in Institute of Energy Technology. 2007, Aalborg
University.

 91

36. Piela, P., T. Epperly, K. Westerberg, and A. Westerberg, ASCEND: An Object-
Oriented Computer Environment for Modeling and Analysis: The Modeling

Language. Computers and Chemical Engineering, 1991. 15(1): p. 53-72.

37. Russell, S.J. and P. Norvig, Constraint Satisfaction Problems, in Artificial
Intelligence: A Modern Approach. 2003, Prentice Hall/Pearson Education: Upper
Saddle River, N.J. p. 137-160.

38. Sage, A.P., and Armstrong Jr., J. E., Introduction to Systems Engineering. 2000,
New York, NY: John Wiley & Sons, Inc.

39. Sahinidis, N., Global Optimization and Constraint Satisfaction: The Branch-and-
Reduce Approach. 2003. p. 1-16.

40. Sahinidis, N.V., BARON: A general purpose global optimization software
package. Journal of Global Optimization, 1996. 8(2): p. 201-205.

41. Sandgren, E., Nonlinear Integer and Discrete Programming in Mechanical

Design Optimization. Journal of Mechanical Design, 1990. 112(2): p. 223-229.

42. Sargent, C.M., R.T. Burton, and R.W. Westman. Expert Systems and F luid
Power. in Proceedings of the 8th International Fluid Power Symposium. 1988. Li
verpool, England.

43. Sauer-Sunstrand, Selection of Driveline Components. 1997, Ames, IA: Sauer-
Sunstrand Company.

44. Schürr, A., Specification of graph translators with triple graph grammars, in
Graph-Theoretic Concepts in Computer Science. 1995. p. 151-163.

45. Stahl, T., M. Voelter, and K. Czarnecki, Model-Driven Software Development:

Technology, Engineering, Management. 2006: John Wiley \& Sons.

46. Törn, A.A. and A. Zilinskas, Global Optimization. Lecture Notes in Computer
Science. Vol. 350. 1989: Springer.

47. Weisemöller, I. and A. Schürr, A Comparison of Standard Compliant Ways to

Define Domain Specific Languages, in Models in Software Engineering. 2008. p.
47-58.

48. Westman, R., C. Sargent, and R. Burton, A knowledge-based modular approach
to hydraulic circuit design. Computers in Engineering, 1987. 1: p. 37-41.

49. Wielinga, B. and G. Schreiber, Configuration-design problem solving. IEEE
Expert, 1997. 12(2): p. 49-56.

