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SUMMARY 

In this research, the focus is on improving a designer’s capability to determine near-

optimal sizes of components for a given system architecture. Component sizing is a hard 

problem to solve because of the presence of competing objectives, requirements from 

multiple disciplines, and the need for finding a solution quickly for the architecture being 

considered. In current approaches, designers rely on heuristics and iterate over the 

multiple objectives and requirements until a satisfactory solution is found.  To improve 

on this state of practice, this research introduces advances in the following two areas: a.) 

Formulating a component sizing problem in a manner that is convenient to designers and 

b.) Solving the component sizing problem in an efficient manner so that all of the 

imposed requirements are satisfied simultaneously and the solution obtained is 

mathematically optimal.  

In particular, an acausal, algebraic, equation-based, declarative modeling 

approach is taken to solve component sizing problems efficiently. This is because global 

optimization algorithms exist for algebraic models and the computation time is 

considerably less as compared to the optimization of dynamic simulations. In this thesis, 

the mathematical programming language known as GAMS (General Algebraic Modeling 

System) and its associated global optimization solvers are used to solve component sizing 

problems efficiently.   

Mathematical programming languages such as GAMS are not convenient for 

formulating component sizing problems and therefore the Systems Modeling Language 

developed by the Object Management Group (OMG SysML™) is used to formally 

capture and organize models related to component sizing into libraries that can be reused 



 xi 

to compose new models quickly by connecting them together. Model-transformations are 

then used to generate low-level mathematical programming models in GAMS that can be 

solved using commercial off-the-shelf solvers such as BARON (Branch and Reduce 

Optimization Navigator) to determine the component sizes that satisfy the requirements 

and objectives imposed on the system. This framework is illustrated by applying it to an 

example application for sizing a hydraulic log splitter. 
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CHAPTER 1 

INTRODUCTION 

This research focuses on improving a designer’s capability to determine 

component sizes, such as during the architecture exploration phase in the design process. 

This can lead to more efficient ways of exploring large design spaces and ultimately 

allow a designer to consider more alternatives. The need to consider more alternatives is 

increasing because the design of modern systems is becoming increasingly complex, not 

only due to the associated core technology of the system, but also due to the large number 

of often competing requirements that the system must simultaneously satisfy. These 

requirements come from a multitude of stakeholders involved in different engineering 

domains [38]. This makes the process of determining component sizes harder and 

therefore a different approach is necessary. In order to determine a different approach it is 

necessary to explore the problem of component sizing in more detail, starting with 

understanding the importance of component sizing in design.  t 

1.1 Component Sizing and Architecture Exploration in Design 

The process of design can be considered as problem solving involving a repeated 

sequence of two steps: Synthesis and Analysis. Synthesis involves the process of 

generating a complete specification of a system. This includes the architecture (also 

known as topology) as well as the sizes for the components of the system. With a 

complete specification available, the analysis process involves determining the extent to 

which the system satisfies the requirements. For instance, a dynamic simulation or 
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traditional machine design for a system is a type of analysis. Therefore in this context of 

design, component sizing is a part of the synthesis process in which appropriate sizes for 

a particular architecture are determined to enable its subsequent analysis. This is a subtle 

difference, mainly because the result of component sizing is a set of specifications while 

in analysis the result is a set of performance metrics. Therefore, during the architecture 

exploration phase, component sizing is an important type of analysis because it is 

possible to reject or not even consider a near-optimal solution due to improper 

component sizing methods. This is mainly due to the fact that component sizing problems 

are hard to solve and formulating them is also time-consuming.  

1.1.1 Component Sizing is Hard to Solve and Formulate 

Component sizing problems are hard to solve because of a variety of different 

factors, some of which are as follows. The large number of requirements imposed on the 

system result in multiple competing objectives, each of which must be measured, 

predicted or modeled by some means. In addition these competing objectives can come 

from multiple types of analyses, such as cost, mass, performance, or reliability, all of 

which need to be handled simultaneously. Moreover, the requirements themselves are 

often formulated as inequalities, such as “The force shall be greater than x N” or “The 

cost shall be less than y dollars”. In such cases, it becomes non-trivial to find good 

components that satisfy all the requirements simultaneously and is near-optimal, i.e. it is 

difficult to find a better solution than the one obtained.   

In addition to being hard to solve, the formulation of component sizing problems 

is a time consuming effort. Due to the presence of numerous inequality relations it is 
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often necessary to change the problem formulation based on the assumptions that have 

been made. For instance, a designer may use a different method to size a system given an 

engine specification versus sizing a system given a cylinder specification. Moreover, it is 

often difficult to formulate a representation that can take into account all of the aspects of 

the problem (multiple analyses, requirements in terms of inequalities, competing 

objectives).  

Therefore, the goal of this research is to provide a tool that can help designers not 

only find “good” component sizes quickly but also help in formulating the problem 

during the design phase. In order to do this, it would be helpful to gain a perspective on 

how designers solve such problems currently.  

1.1.2 Current Approaches to Component Sizing 

In spite the difficulties described above, practicing designers encounter these 

problems often and tackle them successfully. However, this does not mean that their 

methods are ideal. Designers make use of the limited resources available and make 

tradeoffs when necessary. For instance, they may use predefined “best” practices, 

heuristics or spreadsheets that have been developed previously or make certain 

assumptions to limit the number of available choices. A designer goes through multiple 

iterations, mainly based on trial and error, and the solution obtained is largely dependent 

on the experience of the designer [35]. Such compromises are made because the process 

of design is ultimately one of value, in which a method or tool is used only if it provides 

value to the designer. Therefore, the question is: How can a designer do better than the 

current practices described above? 
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1.1.3 Constrained Optimization as a Better Way for Component Sizing 

The central idea in this research is to formulate the component sizing problem in 

terms of a constrained optimization problem instead of using heuristics and assumptions 

related to what is known and unknown prior to solving the problem. 

As described in the previous sections, component sizing is hard because of factors 

such as the presence of inequalities, multiple objectives, and different analyses. As a 

result there is no predetermined single sequence of steps that can be used to solve the 

equations and arrive at a solution. Consequently, the problem becomes one of 

optimization in which a single or multi-variable objective needs to be optimized, such as 

“Find the component sizes that minimizes the total cost”.  

In particular, the class of optimization involved for component sizing is Mixed-

Integer Nonlinear Constrained Global Optimization, also known as MINLP (Mixed-

Integer Nonlinear Programming) problems. Component sizing falls under the nonlinear 

class of optimization because the models involved commonly have nonlinear relations 

(e.g.,� = �� ��� where F, d, p are variables). In addition, component sizing problems 
usually consist of a mix of continuous and discrete variables. Discrete variables arise due 

to the nature of the design space for the components. When making decisions at the 

system level, detailed component behavior models are often not available or are 

computationally too intensive. For instance, a system-level variable such as mass of a 

cylinder is dependent on the cylinder’s detailed geometry, which is unknown or too 

complex to model during the system-level design phase. Alternatively, system-level 

attribute information can be obtained from manufacturers’ catalogs, which are usually 

discrete in nature. This has the advantage of describing system-level information without 
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the need for complex low-level parametric relations but at the same time makes it harder 

to solve as compared to using purely continuous variables [41]. 

Even without the discrete nature of component sizing, global nonlinear 

optimization problems are hard to solve [46]. Since the term “global optimization” is 

used throughout this thesis, an important clarification is required. The term global 

optimization is used purely in the context of optimizing the mathematical representation 

of the problem being considered and not with the entire design process. Traditional 

approaches for solving global optimization problems involved the use of imperative 

techniques based on sampling such as gradient-based, stochastic and evolutionary 

algorithms. However, these approaches have certain limitations when applied to the class 

of component sizing problems. Sampling based algorithms treat the optimization problem 

as a black box and therefore it is difficult for the algorithm to guarantee global optimality. 

Since the design space is sampled, there is always the possibility that a better solution 

may exist in an unsampled region. As a result, such algorithms are inefficient when 

dealing with situations requiring global optimization. Gradient based methods are also 

not applicable when dealing with discrete variables and MINLP problems. Moreover, 

these techniques are imperative in nature, i.e. equations consist of a left hand side 

representing unknown variable and right hand side representing known variables. As a 

result, the equations would change depending on what is assumed to be known and 

unknown. This makes it hard to formulate the component sizing problem, since multiple 

models would be needed depending on the objective being optimized.  

Thus, a different approach to constrained optimization is required for component 

sizing.  
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1.1.4 Acausal Algebraic Equation Based Declarative Modeling for Constrained 

Optimization in Component Sizing 

As discussed in the previous section, traditional optimization approaches are not 

ideal when dealing with MINLP problems, such as component sizing problems. 

Therefore, in this thesis, the use of equation-based declarative modeling is proposed for 

component sizing problems.   

One of the benefits associated with using a declarative programming approach is 

the ability to describe an equation without any consideration to the order of execution of 

its elements. This frees a designer to create representations that are more reusable than in 

traditional methods. In addition, unlike traditional approaches, declarative based models 

are not black boxes for a solver because they provide additional problem-specific 

information that can be used during optimization. For instance, declarative modeling 

languages support operations such as symbolic manipulation, which is used to rearrange 

and determine the order of execution of equations at run-time. As a result, in addition to 

using sampling points similar to traditional approaches, declarative based solvers can 

make use of additional knowledge about a model. This additional knowledge can be in 

the form of intervals that represent the feasible bounds of a variable. Solvers can perform 

operations on intervals using interval arithmetic to logically determine optimal solutions. 

This has led to the development of algorithms such as branch-and-bound, which are 

better suited for global optimization as compared to traditional sampling based 

techniques. Moreover, these algorithms can ensure global optimality under certain 

assumptions, which is not possible with traditional sampling-based approaches.  
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Therefore, in this research, the use of declarative equation based modeling for 

component sizing is proposed. So the next question then is: What kind of declarative 

modeling language should be used?  

Different declarative modeling languages exist depending on the type of models 

involved in a problem, such as dynamic or algebraic models. As the computing resources 

available increases, there is a trend to go towards more complex models that describe a 

system. To this end dynamic models, which are based on differential equations, are able 

to model complex time-dependent phenomena better than algebraic models, which are 

time-independent. However, in the case of component sizing, the use of dynamic models 

may prove infeasible due to certain limitations which are discussed below.   

Dynamic modeling languages such as Modelica [26] are commonly used to 

simulate the dynamic behavior of a system given the complete specification of the system 

at an initial time. This is also known as initial-value problems. However, in component 

sizing, the specifications of the system are unknown and are to be determined based on 

the requirements imposed on the system. Therefore, in the case of dynamic models, it 

becomes a boundary-value problem in which the sizes (considered as variables with 

derivative equal to zero) are to be determined given boundary conditions in the form of 

requirements. This can be very time consuming due to the large number of simulations 

required and ensuring global optimality becomes very difficult.  

Therefore, in this research, declarative algebraic models are used to represent 

component behavior instead of dynamic models. Since algebraic models are not time-

dependent and do not contain derivative terms, component sizing can be formulated as 

solving a number of algebraic equations simultaneously, which is considerably faster than 
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for a similar dynamic model formulation. Moreover, the limitation of algebraic models 

can be overcome by performing a dynamic simulation to verify the performance once 

sizing has been performed with algebraic models [35].  

 

To summarize the line of thought presented in this section, component sizing is an 

important part of architecture exploration. However, for a particular architecture, it is 

non-trivial to find “good” sizes for components that both satisfies all the requirements 

and is near-optimal. It is also time consuming to formulate the problem when trying to 

explore different scenarios for the same architecture (e.g. minimize cost, minimize mass, 

maximize force, etc.).   

The goal of this research, therefore, is to provide designers with a capability to 

represent and solve component sizing problems for a given architecture more efficiently. 

Integrating such a method within architecture exploration would increase the value 

associated with exploring more system architectures early in the design phase, thereby 

increasing the likelihood of designing better systems that satisfy all of the requirements.       

1.2 Research Questions and Hypotheses  

The ideas presented in the previous section lead to the following research 

questions and hypotheses: 

RQ: Is it possible for designers to represent and solve component sizing problems 

more efficiently? 

The above question can be divided into two parts: a.) Solving component sizing 

problems efficiently and b.) Formulating the problem in a manner that is both convenient 
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to designers and can be solved using the method proposed. The answers to these two 

questions forms the basis for the hypotheses defended in this thesis.  

H1: Through the use of mathematical programming and constraint satisfaction 

techniques, designers can solve component sizing problems involving algebraic 

models more efficiently. 

Based on the discussion in the previous section, the idea is to use declarative 

algebraic equations to solve component sizing problems efficiently. Mathematical 

programming is a type of algebraic declarative language that can be used to solve mixed 

integer nonlinear optimization problems such as those encountered in component sizing. 

In addition, by using the global optimizers available in mathematical programming 

languages it is possible to determine sizes with a possibility of optimality.  

Along with solving component sizing problems more efficiently, designers care 

equally, if not more, about the ease with which problems can be formulated and 

represented. This becomes more important as the complexity of problems increases and it 

is no longer feasible to manually create models that can be executed. Mathematical 

programming is good for solving complex algebraic models. However, it lacks the 

semantics necessary to represent engineering design problems in an easy-to-use manner. 

Therefore, a method for representing component sizing problems in a more convenient 

manner is developed using the Systems Modeling Language (SysML™) [33] developed 

by the Object Management Group (OMG). Thus, in order to increase the value associated 

with using Mathematical Programming for solving component sizing problems, the 

following hypothesis is also studied in this thesis: 
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H2: It is possible to extend traditional mathematical programming using SysML and 

model transformations to provide designers with improved capabilities for 

representing and formulating component sizing problems. 

Since component sizing can be applied to many types of problems the scope of 

this research is limited to one application domain, which is the hydraulic systems domain. 

The motivation for using hydraulic systems as an application domain is provided in the 

next section.   

1.3 Hydraulic Systems as an Example Application Domain 

The term Component Sizing Problem is very broad in scope and can be applied to 

many different domains and disciplines. Therefore, in order to take the first steps towards 

addressing the research question proposed in the previous section, it is necessary to 

identify the domain over which component sizing problems will be considered.  

In this thesis, the domain under consideration is the Fluid Power or Hydraulics 

domain. From the perspective of design automation and systems engineering, fluid power 

systems have an interesting characteristic in that they are circuit-like. This is because 

fluid power systems can easily be decomposed into a number of modular components 

that connect together to form complex systems. This modularity also ensures the presence 

of a consistent interface between different components, such as fluid ports. As a result, 

the systems can be specified in terms of independent component models that can be 

connected together, just as in the actual systems. These independent component models 

refer to two types of models: behavior models as well as selection models, such as 

supplier catalog information. Moreover, hydraulic systems consist of components 
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belonging to different domains, such as motors, engines, and cylinders. This is an 

important characteristic that helps broaden the scope of component sizing being 

considered in this thesis. The hydraulic system used in this thesis for an example 

application is based on a practical application of a log splitter, which is discussed in 

Chapter 4.  

1.4 Thesis Organization 

The remainder of this thesis is organized as follows:  

In the next chapter, related work is reviewed and the problem background is 

provided. This includes related literature on solving of component sizing problems as 

well as literature on representing constraint satisfaction problems (CSPs). Based on this 

related work, the use of CSP-based formulation for component sizing is discussed. 

Thereafter, an introduction to the mathematical programming language GAMS and 

general modeling language SysML is provided. 

In Chapter 3 the framework for component sizing is described, in which 

mathematical programming is extended using SysML.  The framework is based on the 

use of domain specific languages, metamodels and model transformations to 

automatically generate executable GAMS code from SysML models.  

This framework is then applied to an example application for a hydraulic log 

splitter in Chapter 4. This chapter details the process of representing the problem in 

SysML and its subsequent solution using GAMS. The results obtained for different 

scenarios are then presented.  
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Finally, in Chapter 5 the research questions and hypotheses are reviewed along 

with a discussion about the research contributions, limitations and future work.  
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CHAPTER 2 

RELATED WORK & PROBLEM BACKGROUND 

This chapter provides a review of the underlying principles along with a 

discussion on the related work that is applicable for this research. A basic premise of this 

research is the use of Mathematical Programming for solving component sizing problems 

and use of SysML for its representation. Therefore, related work in solving component 

sizing problems as well as for representing Constraint Satisfaction Problems (CSPs) is 

discussed. Thereafter, the motivation for describing component sizing problems in terms 

of CSP and based on mathematical programming is discussed. Finally, a brief 

introductory background regarding the use of GAMS (General Algebraic Modeling 

System) and SysML (Systems Modeling Language) is provided to familiarize the reader 

with concepts that will be used in the framework presented in this thesis.  

2.1 Related Work on Solving Component Sizing Problems 

The following is a review of other literature related to the solving of problems 

related to component sizing of systems. The focus of this research is to develop an 

automated tool for component sizing; therefore, two main approaches are reviewed: 

knowledge-based engineering (KBE) efforts and efforts based on Constraint 

Programming (or CSP).  

In addition to the research in automated sizing of systems, a more conventional 

approach known as the Component Sizing Procedure is also commonly used in industry, 

in which pre-defined procedures are used to guide the designer in selecting a particular 
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component. For instance, companies like Sauer-Danfoss [43] and Eaton [12] publish 

manuals that provide procedures for selecting a particular component based on 

assumptions made regarding loading, performance, life requirements, etc. A disadvantage 

of such procedures is that they limit the designer’s ability to experiment with different 

alternatives by forcing the designer to assume certain starting values for variables and 

check the feasibility of the system. For instance, a designer may be required to start with 

assumptions on the engine output and then sequentially size the remaining components of 

the system. Another disadvantage with such procedures is that they are company 

dependent i.e., a manual from Eaton uses components by Eaton only and therefore 

mixing components from multiple manufacturers can be difficult to implement in the 

form of a procedure.  

2.1.1 Knowledge-Based Engineering Efforts 

The idea of automating design tasks and capturing knowledge through computers 

gained momentum through the use of Knowledge-Based Engineering (KBE) in the 1980s 

with the advent of artificial intelligence and expert systems [7, 11]. These efforts were 

characterized by two main features:  

a. Use of detailed design knowledge, and  

b. Heuristics for sizing.  

For instance, this initial effort was strongly focused on the generation of geometry 

during the detailed design phase, which resulted in a variety of commercial software 

based around CAD tools, such as Knowledge Fusion (part of NX by Siemens PLM) or 

KnowledgeWare (part of Catia by Dassault Systèmes). These tools were typically add-
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ons to existing mechanical CAD tools and most often required low-level design 

knowledge that involved using relationships based on physical principles (e.g., modeling 

mass based on complex relations between material properties and detailed geometry). 

Concurrently, in the hydraulics domain, a few efforts toward KBE have been reported in 

the literature [9, 10, 18, 22, 42, 48]. In particular, da Silva developed an expert system for 

configuring hydraulic components based on a high-level characterization of loading 

conditions [9]. This expert system is entirely rule-based and does not involve any analysis 

models. Its heuristics can identify a reasonable configuration among the known hydraulic 

circuit configurations, but does not attempt any component-level or system-level 

optimization.  

The framework presented in this research differs from the above mentioned 

approaches in two distinct areas, namely: 

a. The use of tradeoff models [24] instead of low-level models that rely on 

physical principles 

b. The use of analysis models instead of heuristics 

Low-level models are used to establish relations between the sizing attributes of 

components, such as maximum power output, cost or mass. However, such low-level 

models are not usually available during system-level decision making. As an alternative, 

tradeoff models that consist of discrete observational data from existing components 

(supplier catalogs) are used. By definition, a tradeoff model is an “abstract representation 

of a system in terms of a predictive relationship between its top-level attributes” [24]. 

Therefore, discrete component data is utilized to establish system-level relations between 

component attributes.   
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In addition to tradeoff models, analysis models are used in place of heuristics. In 

the context of this research, the analysis models consist of algebraic equations that relate 

to a model's performance as well as the physical laws that it must obey at component 

interfaces where energy flow takes place. For instance, in the electrical domain this refers 

to the two Kirchhoff Laws, in which the potentials between two connections are equal 

and the currents flowing in and out of each connector sum-to-zero. These principles of 

equality and sum-to-zero are found in almost all domains in which some kind of energy 

flow takes place between components.  

Consequently, it is possible to define self-contained analysis models that can be 

connected together to form larger systems. The approach for automating this connection 

behavior is similar to approaches used in Modelica [16, 26] (a modeling language for 

dynamic simulations of energy-based systems). In addition to these characteristics, the 

framework proposed in this research relies on principles used in solving CSPs and so the 

next section reviews related literature that utilizes CSP-based approaches. 

2.1.2 Constraint-Satisfaction Problem (CSP) Based Approaches  

The analysis models described in the previous section consist of constraints or 

equations over variables, which must be satisfied simultaneously in order for the 

selection of components to be valid. As discussed in Section 2.3, the resulting system 

model consisting of a number of components can be treated as a Constraint Satisfaction 

Problem (CSP). CSPs have been commonly used in many different areas, such as 

artificial intelligence, operations research, engineering design, and computer science 

since the 1960's [37]. Moreover, algorithms to solve such problems have also been in 
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development and have become increasingly powerful at solving problems belonging to a 

wide variety of domains [14]. Based on the type of variables, constraints or domains 

encountered, CSPs can be classified as: discrete (integer and boolean), continuous (real), 

linear, nonlinear, finite and infinite bounded. In the field of engineering and engineering 

design the most common type of CSP encountered is the mixed-integer nonlinear type, 

consisting of a combination of integer, real and boolean variables along with both linear 

and nonlinear constraints. In the literature, the use of CSP for engineering design has 

been reported by Chenouard et al. [6], O'Sullivan [31], Wielinga [49] and others. 

Depending on the type of CSP, different solvers are available. Table 1 includes a 

comparison of some commonly used CSP tools. Continuous constraint support is a must 

for engineering problems due to the presence of continuous variables and non-linear 

constraints.    

It is clear from the related literature that CSP techniques are a powerful tool for 

solving problems and component sizing problems clearly fit within the framework of 

CSP-based modeling. However, the current implementations for CSP are limited in their 

ability to effectively represent the engineering problem to be solved. Therefore in the 

next section, literature related to the representation of CSPs is reviewed. 
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Table 1 Comparison of different types of CSP solvers 

Solver 

Continuous 

Constraint 

Support 

Math 

based 

Syntax 

OS 
Modeling 

Language 
License 

Development 

Status 

BARON [40] Y Y 
Windows / 
Unix 

GAMS Commercial 
Current (by 
GAMS & 
BARON) 

Choco1 Y N Independent Java Open Source Current 

Elisa2 
(Gaol3, Mathlib) 

Y N Linux / GCC C++ Open Source 
2005 

(Gaol: 2008) 

GlobSol4 Y N Windows FORTRAN 
Boost 
License 

2003 

Ilog5 Y Y Windows Multiple Commercial 
Current 
(by IBM) 

RealPaver [20] Y N Linux / GCC C++ Open Source 2004 

JaCoP6 N N Independent Java Open Source Current 

Koalog7 N N Independent Java Commercial Current 

1 http://www.emn.fr/z-info/choco-solver/index.html 
2 http://sourceforge.net/projects/elisa/ 
3 http://sourceforge.net/projects/gaol/ 
4 http://interval.louisiana.edu/GlobSol/ 
5 http://www-01.ibm.com/software/websphere/products/optimization/ 
6 http://jacop.osolpro.com/ 
7 http://www.koalog.com 

 

2.2 Related Work on Representing CSPs 

A common feature for representing CSPs and declarative programming involves 

the separation between defining the problem to be solved and specifying how to solve it. 

Towards this, there has been a recent trend in the CSP tools described in the previous 

section to separate the process of defining and solving problem, such as in Zinc [28] for 

discrete CSPs or in GAMS [19] for continuous optimization problems (and CSPs). 

However, there is close to limited or no support for object-oriented representation of 

CSPs, even if the tool itself is encoded in an object-oriented language such as Java or 
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C++. This is a major limitation when dealing with engineering systems due to their 

hierarchical nature, in which systems can be decomposed into multiple levels of 

subsystems and modular units. 

As an example of research in this direction, Chenouard et al. have developed a 

custom implementation (s-COMMA GUI) that allows users to graphically define 

constraint models [5]. However, some of its features limits its use in engineering design, 

such as limited support for defining continuous CSPs and limited support for continuous 

CSP solvers (only RealPaver is currently supported), as well as a custom user interface in 

which only constraint models can be defined. Another example is the development of 

ASCEND [36], which is an object-oriented mathematical modeling system used mainly 

for chemical process modeling. A common limitation of these tools is the difficulty 

involved in integrating the custom representations within other tools that are used in the 

design process.  

 

Based on the related work, it is clear that component sizing problems fit within 

the framework of CSPs. The use of CSP formulation approach that is based on 

mathematical programming is discussed in the next section.  

2.3 Component Sizing as a Constraint Satisfaction Problem (CSP)  

The process of component sizing for a particular architecture can be viewed as a 

two-part process. First, constraints are specified to limit a designer’s selection and then 

different alternatives that satisfy all of these constraints are explored, with the best 

alternative being the solution [21]. There are different types of constraints associated with 
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the sizing of a system, such as behavioral constraints (fundamental physical laws) and 

selection constraints (catalog information) that are not controllable by the designer, as 

well as requirements and objectives that reflect a designer's preferences and goals. When 

taken together, component sizing becomes a constrained optimization problem, which 

can be solved in various ways. The approach taken in this thesis is to model component 

sizing in terms of a Constraint Satisfaction Problem (CSP), which is based on 

Mathematical Programming principles. The motivation for using Mathematical 

Programming is discussed in the next section.     

Motivation for Mathematical Programming: 

There are two main approaches to defining and solving constrained optimization 

problems: a declarative and imperative approach. Imperative programming is based on 

explicitly specifying the sequence of statements necessary to model a problem. For 

instance, a designer may define a model to calculate the force produced by a cylinder. 

The model would take certain inputs such as pressure and return an output force. This 

same model cannot be used to determine the pressure required to generate some known 

force. From a designer’s perspective, the same model for a cylinder should be able to 

calculate force given pressure as well as pressure given force. Thus, imperative 

programming limits the expressivity of a designer, because multiple models are needed 

depending on what is known and unknown. This influences the way designers solve 

optimization problems. For instance when using fmincon [25], a non-linear optimizer in 

MATLAB, a designer is required to specify non-linear constraints and objectives in terms 

of functions with predetermined causality, i.e. a left- and right-hand side with inputs and 
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outputs respectively (Figure 1). Therefore, in order to use the imperative programming 

approach designers must make some assumptions regarding what is known and unknown 

at the time of execution, a valid assumption in certain cases.    

 min� �
��  subject to �
�� ≤ 0���
�� = 0� ∙ � ≤  ��� ∙ � =  ��! ≤ � ≤ " 
 

where the RHS is constant 

(1)  

Figure 1 Imperative programming based approach for nonlinear optimization. The 
optimizer referred to above is fmincon, a nonlinear optimizer in MATLAB [25] 

During component sizing, however, this is a difficult assumption to make since 

the different components of a system are coupled while at the same time are independent. 

For instance, the behavior of a pump, engine and cylinder can be modeled independently 

but their selection is coupled at the system-level. The force requirement on cylinder 

influences pressure requirements in the circuit, thereby influencing torque requirements 

on the pump which ultimately affects the output of the engine. Thus a different approach 

is required when it is not possible to identify what is known and unknown, and 

declarative programming is an approach that can handle such situations.   

Declarative programming, in contrast to imperative programming, involves 

specifying properties of a valid solution for a problem instead of specifying how to solve 

it. From the perspective of component sizing designers can specify constraints on 

variables without any mention of inputs or outputs. The acausal nature of constraints 

allows the designer to experiment with different objectives without changing the models.  

For instance, consider a constraint for a cylinder in which force is related to bore 

diameter and pressure (see Table 2). In the imperative approach, the constraint would be 
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formulated differently depending on what the designer assumes as input and output. 

Declarative equations, on the other hand, specify a relation and impose causality only at 

the time of solving. Consequently, it is possible to use the same equation for different 

problem formulations.  

Table 2 Imperative versus Declarative Implementation of a constraint  

Constraint 
formulated by 
designer 

Implementation of Constraint in a Solver 

Imperative Approach 
(MATLAB, C, Java) 

Declarative Approach 
(Mathematical Programming) 

� = � ∙ *4 ∙ �� 

Output: F � = � ∙ *4 ∙ �� 

Output: F, p or d � = � ∙ *4 ∙ �� Output: p � = � ∙ 4* ∙ 1�� 

Output: d � = -� ∙ 4* ∙ 1� 
 

Therefore in this research, a mathematical programming approach, which is based 

on the declarative programming, is used to formulate and solve component sizing 

problems. In mathematical programming, by modeling variables and constraints over 

these variables, a variable is optimized as opposed to an objective function (see Figure 2). 

This means that there is no restriction on the way constraints are formulated. As a result, 

issues of causality are taken care of during runtime by the solver.  

 min ./  given �2, ��, �4, …  and variables .2, .�, .4, … , .8 
where �2, ��, �4, …  are constraints 
linear/nonliner� of the form 

�
.� ≤ ;
.�, �
.� = ;
.�, or �
.� ≥ ;
.� 
(2)  

Figure 2 Optimization form for mathematical programming. Constraints represent the 
behavior of a model and not how to solve it. Symbolic manipulation is performed 

at runtime to determine order of execution of equations.  
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In particular the mathematical programming language GAMS (General Algebraic 

Modeling System) is used in this research and a brief discussion of the relevant features 

of GAMS is discussed in the next section.  

2.3.1 Using Solvers in GAMS for Solving Component Sizing Problems 

A benefit of using CSPs to solve problems is that a designer can specify a 

problem without needing to specify how to solve it. This relates to the concept of 

separation between modeling and solving of a problem. Such concepts have been popular 

in mathematics and operations research, in which the same model can be solved by a 

number of different solvers. In engineering, however, the trend has been to define 

specialized solving techniques that are tailored for a particular problem [17].  

Traditional approaches included the use of sampling-based techniques such as 

stochastic, gradient-based or evolutionary algorithms to find solutions. These approaches 

are imperative in nature, i.e. the model may change depending on the assumptions 

imposed regarding the knowns and unknowns in the problem [6]. In addition, engineering 

problems typically consist of a combination of continuous and discrete variables as well 

as linear and non-linear constraints. One such example is the combination of continuous 

variables such as force and integer variables such as number of gear teeth or a variable 

used to select a gear out of a set of potential gears from a supplier catalog. Such problems 

are commonly known as MINLP (Mixed-Integer Non Linear Programming) problems 

and are a special type of CSPs that use specialized algorithms based on interval 

arithmetic and branch-and-bound frameworks [2], such as those included within the 

algebraic modeling environment known as GAMS [19].  
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In this research, the solver used is BARON (Branch and Reduce Optimization 

Navigator), which is available within the GAMS (General Algebraic Modeling System) 

language. BARON is a global optimization solver that can be used to solve purely 

continuous nonlinear programs (NLP), purely integer, and mixed-integer nonlinear 

programs (MINLP) [40]. According to a comparison carried out by Neumaier et al., 

BARON is the fastest and most robust global optimization solver among available global 

solvers [29].     

GAMS (General Algebraic Modeling System) is a high-level modeling language 

for mathematical programming and optimization. According to [19], GAMS is intended 

for “complex, large scale modeling applications, and allows [a designer] to build large 

maintainable models that can be adapted quickly to new situations.” To this end, GAMS 

consists of a modeling language and a number of integrated solvers which can be 

changed according to the type of problem (LP, NLP, MINLP, etc.). GAMS models 

consist of purely algebraic statements, which is compatible with this research’s use of 

algebraic constraints for modeling component sizing problems.  

Although GAMS is suitable for representing constraints declaratively, it is limited 

in its ability to describe engineering systems. This is discussed in the next section.  

2.3.2 Limitations of GAMS for Representing Component Sizing Problems 

GAMS is a text-based language with semantics based on the characteristics of 

optimization problems typically found in Operations Research. One of the main features 

of GAMS is the separation between the characteristics of a problem and the data that it 

uses. For instance, in a transportation problem the model is defined independently of the 
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size of the supply and demand. This is similarly found in component sizing problems, in 

which the same model can be used irrespective of the number of potential catalog 

components being considered. To facilitate such modeling, the common components of a 

GAMS model are described in Table 3. Through these components, it is clear that GAMS 

is well-suited for problems found in mathematical programming, such as operations 

research, in which problems can be described without the need for subsystems and 

individual components.      

Table 3 The basic components of a GAMS model [3] 

Inputs: 

• Sets: Container for elements. Represents “collections” 

• Data (Scalars, Parameters, Tables): Used to 

store constant data in one, two or multiple dimensions.  

• Variables: Same as traditional variables. Its value 

changes during the process of solving  

• Assignment of bounds and/or initial values (optional) 

• Equations: Used to define the symbolic algebraic 

relationships  

• Model and Solve statements: Model is used to collect 

equations into a group; Solve solves the set of 

equations included in the Model for the objective to be 

optimized and using the specified solver and  

• Display statement (optional) 

Outputs: 

• Echo Print 

• Reference Maps 

• Equation Listings 

• Status Reports 

• Results 

 

However, GAMS is not well suited for describing engineering design problems 

due to a number of reasons, one of which is the hierarchical nature of engineered 

systems. Engineered systems are commonly composed of multiple levels of subsystems 

that ultimately consist of individual component models. In addition, there is a large 

amount of model reuse in engineering systems and corresponding design problems, such 

as reusing the same component (e.g. Cylinder) multiple times in the same circuit as well 

in other problems. These characteristics of design problems imply the need for an object-

oriented perspective along with additional language constructs, which GAMS does not 
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support. In Figure 3, an example of manual creation of a GAMS model for engineering 

problems is shown. In particular, note the manual duplication and unique variable naming 

required when using the same cylinder component again.  

In order to support the modeling and formulation of component sizing problems 

using mathematical programming, the use of the Systems Modeling Language (SysML) 

[33] is proposed. SysML is a general modeling language developed by the Object 

Management Group (OMG). Therefore, prior to discussing the proposed framework in 

Chapter 3, a brief introduction to SysML is provided in the next section.  

 

Figure 3 Example of manual input of GAMS model for an engineering problem. There is 
duplication of variables and equations, making it difficult to reuse a model. Also, 

variable naming must be unique  

2.4 Introduction to SysML 

In order to familiarize the reader with the terminology used in this thesis, some 

general background is provided regarding the features of SysML. SysML is an extension 

* To use the same cylinder model twice, a copy with unique names must be created.

* There is no concept of objects, or model hierarchies, or reuse of the same model.

* Cylinder Model 1

set cylinderCatalog1 / SAE-64508, SAE-64008, HMW-5008, PMC-5608 /;

parameterboreDiameterData1 / SAE-64508 0.1143, SAE-64008 0.1016, HMW-5008 0.127, PMC-5608 0.1016 /;

variable cylinder_f1, cylinder_bore1, cylinder_rod1, cylinder_portA_p1, cylinder_portB_p1;

equation cylinder_f_eq1;

cylinder_f_eq1.. cylinder_f1 =e= Pi*0.25*( (sqr(cylinder_bore1)*cylinder_portA_p1) - cylinder_portB_p1*

(sqr(cylinder_bore1)-sqr(cylinder_rod1)) );

* Cylinder Model 2

set cylinderCatalog1 / SAE-64508, SAE-64008, HMW-5008, PMC-5608 /;

parameterboreDiameterData1 / SAE-64508 0.1143, SAE-64008 0.1016, HMW-5008 0.127, PMC-5608 0.1016 /;

variable cylinder_f1, cylinder_bore1, cylinder_rod1, cylinder_portA_p1, cylinder_portB_p1;

equation cylinder_f_eq1;

cylinder_f_eq1.. cylinder_f1 =e= Pi*0.25*( (sqr(cylinder_bore1)*cylinder_portA_p1) - cylinder_portB_p1*

(sqr(cylinder_bore1)-sqr(cylinder_rod1)) );

model m /cylinder_f_eq1, cylinder_f_eq2/;

solve m using minlp maximizing cylinder_f1;

display cylinder_f1.l, cylinder_f2.l;
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of the Unified Modeling Language (UML) [34], both of which have been standardized by 

the OMG. UML is widely used in software engineering and has been extended to support 

the modeling of systems of all types through SysML. The following are some of the 

common SysML entities used throughout this thesis. These descriptions are based on the 

book by Friedenthal et al. [15] and the SysML specification [33]. 

SysML Blocks: 

A block is the primary modeling unit in SysML. The analogous of a block in 

software engineering is a class. A block can be used to represent various parts of a 

system, such as a process, function, model, behavior or the system itself. Blocks can be 

combined together to form subsystems and systems that collectively describe the problem 

being modeled. In addition, blocks can contain other entities like properties and ports to 

describe the problem in more detail. Thus, blocks provide a modular way for a designer 

to represent the system in a decomposable manner.  

SysML Properties: 

SysML properties are an extension of UML properties and can be classified as 

value properties and part properties. Value properties are commonly used to specify 

variables while part properties are used to define local usages for a block within another 

block. This is similar to the concept of class definition versus class usage in object-

oriented programming. This translates well for component sizing problems, in which 

systems can be decomposed using part properties and variables can be modeled using 

value properties.    

SysML Flow Ports: 
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In order to enable model reuse in SysML, ports are used to clearly define the 

interfaces through which information can be exchanged [33]. By connecting together the 

ports of different blocks, it is possible to model the flow between various parts of the 

system. Depending on the system being modeled, the concept of what flows can be 

different such as energy flow between components in energy-based system models. 

Stereotypes & Profiles: 

In order to customize SysML for a specific domain such as GAMS or fluid power, 

UML (and SysML) provide a construct known as a stereotype that can be used to extend 

existing SysML constructs like blocks and properties. A stereotype is more precise than 

the existing SysML entities. Stereotypes are organized within profiles, which represent a 

collection of customizations for a specific domain or application.   

2.5 Summary 

Through a review of literature related to solving of component sizing problems 

and their representation, it is clear that the CSP approach is a powerful solving technique 

that can be used in a variety of problems. In particular, component sizing problems 

clearly fit within the framework of CSP-based solving. However, limitations in the 

expressivity of the current modeling capabilities of CSP tools such as GAMS limits it 

from being used to solve problems in engineering design such as component sizing.  

Consequently, the framework proposed in this thesis involves using a general 

modeling language such as SysML to extend the current modeling formalisms of GAMS 

in order to support a more efficient representation of component sizing problems. This 

framework is described in the next chapter. 
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CHAPTER 3  

EXTENDING MATHEMATICAL PROGRAMMING USING SYSML 

In this chapter, the framework for representing and solving component sizing 

problems more efficiently using SysML and GAMS is presented. In this framework, 

SysML is used to extend current mathematical programming formalisms of GAMS in 

order to provide a designer with improved capabilities for modeling the component sizing 

problem to be solved. The actual solving of the problem is still done using the integrated 

solvers included in GAMS. In this research, the solver BARON is used to solve the 

problem after it has been modeled in SysML.  

This process is based on using the principles of Model Driven Software 

Development (MDSD) [45], which is commonly used in software engineering. This 

process involves the specification of metamodels, domain specific languages (DSLs) and 

automated model transformations. In particular, the process of representing the analysis 

knowledge related to component sizing in a form that is convenient to designers within 

SysML is presented. Along with capturing this analysis knowledge, the process of 

transforming such a representation into a form that can be solved by external solvers in 

GAMS is also discussed. In order to use the advantages of both languages (SysML and 

GAMS), a combination of DSLs and model transformations are used to create a 

consistent representation in both languages. The approach presented in this thesis 

involves the following steps: 

1. Formal Capture of GAMS Domain Using Metamodels. 

2. Representing GAMS Compliant Models in SysML using Profiles 

3. Model Transformations to Support Hierarchical Object-Oriented Modeling 
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Each step is discussed in the following sections.  

3.1 Formal Capture of GAMS Domain Using Metamodels 

In order to provide designers with improved capabilities for representing 

component sizing problems, SysML is used as a formal object-oriented modeling 

language, which can then be passed to GAMS and subsequently solved. This requires a 

different approach than when done in a single tool, e.g. entirely in GAMS. In a single 

tool, this process would be done through internal data-models (language compilers) that 

are customized for the particular software tool, such as the source code for GAMS. In 

order to integrate multiple tools a common metamodel is used, which describes the 

concepts that can appear in a valid model as well as represents the links between these 

concepts, such as inheritance and composition. To support such model and metamodel 

driven systems, the OMG established the Meta Object Facility (MOF) standard, which 

provides a framework for “defining, manipulating, and integrating meta-data and data in 

a platform independent manner” [23, 32]. A metamodel represents the abstract syntax for 

a domain, since the relations are defined using classes and associations that are 

independent of any particular encoding.   

To extend the functionality supported by GAMS, the approach taken is to convert 

the implicit metamodel for GAMS (i.e., the data structures used internally – refer Table 

3) into a formal and explicit metamodel compliant with the MOF standard. In addition, 

existing constructs are extended through additional features such as object-oriented 

modeling that are added to the metamodel.   
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The GAMS metamodel is shown in Figure 4, in which the constructs in GAMS 

are represented as classes (GamsSolve, Model, GamsVariable, etc.). According to 

mathematical programming formalism of GAMS, the model that is passed to a solver 

consists only of equations and there is no concept of ownership. Moreover, a GAMS file 

consists of a number of variables, parameters, sets, equations, a model statement and a 

solve statement, and some display statements, all of which are modeled at the same level. 

As a result, a GAMS model is flat i.e., there is no concept of an object, ownership, or 

visibility (public, private). This lack of expressivity severely limits a designer’s 

ability to describe systems in terms of modular components. To overcome this, existing 

GAMS constructs are mapped to different objects (similar to class in object-oriented 

programming) in the metamodel shown in Figure 4. In order to introduce the concept of 

ownership and hierarchical modeling, associations are defined between the objects such 

as A_owner_ownedModels and A_model_variables. This enables a designer to 

define and limit the scope of GAMS constructs used within models. These associations 

can be described as follows.  

The GamsSolve corresponds to the solve statement in GAMS and it represents 

the top-most level in the resultant model hierarchy. Just as a solve statement specifies 

the model to solve, a GamsSolve object has an association A_gamsSolve_model 

which specifies that a GamsSolve object owns a Model. This is as far as the similarity 

between GAMS and the metamodel goes. Unlike GAMS, the metamodel allows a Model 

to own the following: other models, variables, sets, parameters and equations.  

In this way, it is possible for a designer knowing GAMS syntax to define a 

modular class-based system with object-oriented constructs.  
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Figure 4 GAMS Metamodel Definition. Semantics Of GAMS are Represented as Objects 
in the Metamodel 

An interesting feature of the metamodel described above is that it is not specific 

for component sizing problems. The abstract syntax described in this metamodel can be 

used to represent any GAMS model and can therefore be used for other applications as 

well that consist of decomposable systems.  

In order to provide additional capabilities specifically for component sizing, new 

language constructs are added to the concrete syntax, in this case SysML. This involves 

customizing SysML through the use of profiles, and then using model transformations to 
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automatically generate an executable representation in GAMS. The customization of 

SysML is discussed in the next section.  

3.2 Representing Component Sizing Problems in SysML 

Since SysML is a general purpose modeling language, it lacks the detailed, formal 

semantics needed for representing a problem in a domain-specific way [4]. For instance, 

there is no SysML concept that can represent GAMS-specific semantics like variable 

or parameter. They could all be modeled by using the same SysML construct, such as 

Property, and using the name to represent a variable or parameter (e.g. variable_x 

as the name of a Property in SysML).  This would lead to ambiguity at the time of 

converting from SysML to GAMS. In addition, the lack of precise problem-specific 

semantics can make it cumbersome for domain experts to create models in SysML due to 

the large amount of repetitive tasks involved. This can limit the acceptance of general 

SysML for specific domains and problems. Therefore, in order for SysML to be used for 

modeling a particular type of problem, the necessary semantics associated with the 

problem must be included within SysML through customizations. 

Therefore, in this section, the process of customizing SysML for component 

sizing is discussed. There are two parts to this: capturing existing GAMS semantics in 

SysML and defining new semantics that are relevant from a component sizing 

perspective.  
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3.2.1 Capturing GAMS Semantics in SysML Using Profiles 

SysML (UML) provides several mechanisms for customization, such as extending 

the UML metamodel, creating new profiles that extend existing SysML/UML constructs 

or defining a completely new language. Profiles are preferred since they do not modify 

the underlying UML metamodel, thereby retaining existing tool support [47]. A portion 

of a profile created for representing component sizing problems based on GAMS 

semantics is shown in Figure 5.  

The profile is constructed as per the MOF metamodel (Figure 4). For instance 

variable, parameter and set each have their own stereotype defined but all 

extend the SysML Property class. The GAMS construct for equation is defined by a 

stereotype GamsEquation that extends the SysML Constraint class.  

Since both the model and solve constructs extend the SysML Block, all of the 

characteristic of a Block are available to objects stereotyped as GamsModel and 

GamsSolve. For instance, SysML supports hierarchical modeling through composition 

associations and this is automatically available when using GamsModel stereotype to 

create models.   
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Figure 5 Profile to extend Mathematical Programming semantics in SysML. New 
semantics are defined that extend from existing Port, Connector and Constraint 

metaclasses.   

GamsProfile GamsProfile[Profile] pkg [   ]

-modelType : GamsModelType [1] = minlp
-optimizeDirection : GamsOptimizeDirectionKind [1] = minimize
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«stereotype»

GamsSolve

[Class]

«metaclass»
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«stereotype»
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«stereotype»
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-domainName : String

«stereotype»

GamsEquation
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«stereotype»

GamsModel
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«metaclass»

Port

«metaclass»

Connector

«metaclass»

Constraint

«metaclass»
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3.2.2 New Constructs in SysML to Support Representation of Component Sizing 

Problems 

Existing SysML constructs are extended using stereotypes to make it easier for a 

designer to define component sizing problems. These new features include support for 

hierarchical modeling, embedding the physics related to energy-based systems that are 

typically encountered during engineering design, as well as support for explicitly defining 

dependencies between component models and their associated selection models (supplier 

catalogs).  

Hierarchical modeling is established through existing composition associations in 

SysML and this allows the designer to logically decompose a system into its individual 

components. It also enables a designer to store models and reuse them in multiple 

contexts in the same problem or across different problems. An important effect of 

modularization is the possibility of using connections to connect the components in 

different ways, which is similar to the process engineers use when assembling together 

components in the real world.  

The concept of connecting components exists at multiple levels during the design 

process. Moreover, the connections can have different meanings depending on the 

context in which they are used. For instance, when connections are used to create 

schematics they refer to the graphical representation. For this and other situations in 

which connections can be used, the existing SysML constructs of Port and 

Connector are customized depending on the context of use. Based on the different 

contexts, it is possible to encode knowledge by customizing SysML in order to make it 

more convenient for designers to formulate component sizing problems. This reduces the 
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amount of repetitive and error-prone manual modeling that a designer would otherwise 

have to do. In particular, three types of connections are considered in this research: 

1. Connections used to describe a system architecture 

2. Connections used for energy-based analysis models 

3. Connections used to establish relations between multiple analysis models 

and corresponding catalog models 

In this research, a system architecture is assumed to exist and component sizing is 

performed on the given architecture. Therefore, the capability to model a system 

architecture by connecting components together is provided by customizing existing 

SysML constructs of Port and Connector. The additional knowledge that is encoded 

in Port and Connector can be used to automatically generate equations that a 

designer would otherwise have to manually define.  

A common feature in models for energy-based systems is the existence of 

standard interfaces through which energy is transferred between components. This 

process of energy transfer can be captured in terms of equations that can be used to 

generate system-level models from component-level models and their connections. This 

logic is based on the law of energy conservation and can generally be formulated through 

two equations:  

• Sum-to-zero equation for flow variables (e.g. force, flow, torque)  

• Equality equation for potential variables (e.g. pressure, velocity, angular 

speed).  

This is a generic logic that applies to multiple domains including fluid power, 

mechanics (translational / rotational), thermal, etc. Therefore, to aid the designer in 
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creating system-level analysis models from component models, Port and Connector 

are customized to encode this logic for energy transfer (refer to 

<<GamsPhysicalConnection>> stereotype in the GAMS profile in Figure 5). This 

allows for automatic generation of equations, which would otherwise be done manually 

by the designer. As a result, it is easier for designers to create new architectures and 

analyze them. 

The final type of connection that is customized refers to the process of relating a 

component to its use across multiple analyses. As discussed previously, component sizing 

involves satisfying a number of requirements simultaneously. These requirements come 

from multiple analyses such as cost analysis, mass analysis, and hydraulic performance 

analysis. Different component models exist for each analysis and therefore it is necessary 

to ensure that ultimately the same component is referred to across all of the analyses. This 

is done by defining a SystemSizingModel, in which all of the components to be 

sized are included, and then explicitly defining connections between each component in 

the SystemSizingModel and its usage in each analysis model. The Connector 

class is extended through the <<GamsSelectionConnection>> stereotype. The 

corresponding logic to be encoded involves the creation of equality constraints between 

each variable in the component model in SystemSizingModel and its corresponding 

usage in an analysis.  

 

Thus, by defining current GAMS semantics along with new constructs related to 

component sizing problems in SysML, a designer is provided with additional capabilities 

to represent component sizing problems. Moreover, the combination of profiles and 
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metamodels provides the framework in which model transformations can be used to 

define the logic described above in order to automatically generate models that can be 

solved in GAMS. This is discussed in the next section.  

3.3 Model Transformations to Support Hierarchical Object-Oriented Modeling 

As discussed in the previous sections, a combination of profiles and metamodels 

are used to provide new capabilities to designers for representing component sizing 

problems in SysML and solving them by solvers in GAMS. In order to encode the logic 

behind these new constructs (such as <<GamsPhysicalConnections>>) as well as 

generate GAMS-compliant executable code, model transformations are used to 

automatically perform these tasks.  

Model transformations are used to convert the SysML model into an intermediate 

object-oriented GAMS model, which is then transformed into a flat executable model that 

can be solved within GAMS. Since the domain MOF metamodel and SysML profile can 

be described in terms of graphs [1], model transformations can be defined in which the 

domain semantics (metamodel and profile objects) represent the nodes, and associations 

between objects represent the edges. As is shown in Figure 6, the transformations are 

defined in a declarative fashion at the meta-model level and are then compiled into an 

executable form that operate at the user-model level.  
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Figure 6 Process Of Model Transformation from Source to Target Model (Czarnecki et 
al. [8]) 

A correspondence metamodel is used to maintain relations between the elements 

of the input SysML model and the resulting GAMS model [23, 44]. This is necessary 

when retrieving information from the solver's output to update the SysML model. An 

example of a correspondence link is shown in the correspondence metamodel in Figure 7. 

It involves the use of object gmu2gmpp of type 

GamsModelUsage2GamsModelPartProperty to link a 

topLevelGamsModelPartProp object of type Property in SysML to a 

topLevelGamsModel object of type GamsModel in the GAMS metamodel (refer to 

the GAMS metamodel in Figure 4).  

Source 

Metamodel

Transformation 

Definition

Target 

Metamodel

Source 

View
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Figure 7 Portion of correspondence metamodel defined to relate SysML and GAMS 
metamodels 

Model transformations are then defined using the correspondence metamodel to 

relate elements of the source and target views with one another. The transformations are 

written in a declarative and graphical manner through the use of story diagrams [13]. The 

model transformations used in this research are defined in MOFLON [27], which 

automatically generates Java Metadata Interface (JMI) code that implements the 

transformations in Java. This JMI code is then combined with a JMI-compliant SysML 

tool, such as Magic Draw [30], in the form of a plugin that can be executed from within 

SysML.  

The sequence of model transformations executed to solve a component sizing 

problem described in SysML using solvers in GAMS is shown in a SysML activity 

diagram (Figure 8). Each action represents a transformation that is performed.   

GAMS Metamodel SysML MetamodelCorrespondence Metamodel
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Figure 8 Sequence of Model Transformations to solve the component sizing problem. 
Converts from SysML model to GAMS executable model and returns output of 

solver to SysML 

The transformation that converts an input SysML model of the problem into an 

intermediate representation based on the MOF metamodel is shown in Figure 9. One such 

transformation is shown in, in which the input is a SysML block (stereotyped with 

GamsSolve) that contains solver information and the model to be solved. The output of 

this model transformation is the creation of an equivalent model based on the GAMS 

metamodel that was defined previously. The mechanism for transformation involves 

matching a pattern (left-hand side) and applying a replacement pattern (right-hand side) if 

successful. The pattern to be matched is defined in black and the replacement pattern is 

shown in green (with <<create>> tag visible).  

SysML Activity Diagram XformSequence[   ]
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Generate Sizing Connection Equations

Execute Model using Solvers in GAMS

Transformation to Convert MOF 
Model to Flattened MOF Model

Print Flattened Model into a GAMS 
executable text file

Transformation to Convert SysML 
Model to MOF Model (as per GAMS 

Metamodel)

Update SysML Model with Results

Operate on SysML

Model

Operate on MOF 

model

Pretty Printing to 

text file



 43

 

Figure 9 Model Transformation to convert SysML model to MOF model (as per GAMS 
Metamodel) 
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3.4 Summary 

In this chapter, a framework using Model-Driven Software Development concepts 

is presented for representing component sizing problems in SysML and their solving in 

GAMS. This framework provides improved capabilities to designers for more efficiently 

formulating component sizing problems in a hierarchical, model-based manner, thereby 

addressing the limitations of current tools in terms of expressivity. Moreover, the use of 

SysML enables this framework to be integrated within larger frameworks of design, such 

as Model-Based Systems Engineering. In the next chapter, an example application is 

presented which explores the use of this framework for representing and solving 

component sizing problems more efficiently.  
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CHAPTER 4 

EXAMPLE APPLICATION: COMPONENT SIZING FOR A 

HYDRAULIC LOG SPLITTER  

In this chapter, an example application involving the sizing of a hydraulic log 

splitter is presented in order to apply the framework presented in this research. First, the 

motivation for the use of fluid power as an example domain is provided. Thereafter, the 

modeling of the problem in SysML using the proposed framework is discussed. Finally, 

results obtained from solving the problem under different scenarios are presented.  

4.1 Problem Description and Motivation for Fluid Power 

To validate the framework presented in the previous chapter for automated 

component sizing, it is applied to an example belonging to the fluid power domain. The 

use of fluid power as an example domain for component sizing was discussed in Section 

1.3. To summarize, some of the desirable characteristics of the fluid power domain 

include: systems are circuit-like in that they can be modularized and connected together, 

well defined interfaces exist between components, and there is large amount of catalog 

data available for different components which makes component sizing problems 

combinatorially hard to solve. .  

The hydraulic system considered in this example application is that of a horizontal 

acting hydraulic log splitter (Figure 10). A log splitter is a system used to divide roughly 

cylindrical pieces of wood into two or more pieces, generally longitudinally along the 

grain of the wood. An operator loads a piece of wood (of varying length) and actuates a 
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control to drive a wedge along the grain of the wood. Log splitters are usually portable 

and so the critical requirements include the ram force available to split the log, total cycle 

time involved, total mass, and total cost of the machine. These attributes represent 

competing objectives, out of which the designer must make tradeoffs to find a 

specification that satisfies all of the requirements simultaneously.  

 

Figure 10 An assembly and block diagram for a horizontal acting hydraulic log splitter 

The scope of component sizing is limited to the hydraulic subsystem; the 

mechanical structure is not considered. In Figure 10, a block diagram of the log splitter 

architecture considered in this example application is shown. There are different system 

architectures that can be used, for instance open center circuit with constant pump 

displacement versus closed center circuit with variable pump displacement. In this 

example, the open-center circuit is used.   

The components that are considered include: a gas engine, hydraulic fixed 

displacement pump, directional control valve, double acting cylinder, load and tank. 

Since the system is horizontal, only a horizontal load requirement is considered. As 

discussed in Chapter 1, this example is restricted to a single architecture for which 

component sizing is to be performed.  

Log Loading &
Splitting Area
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(credit: Dave Thompson)
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The log splitter problem is a valid example for the proposed framework because it 

possesses characteristics that belong to larger and more complex models. This includes 

the presence of multiple types of interfaces (hydraulic, translational, rotational), 

competing objectives (minimize cost versus maximize force), as well as multiple types of 

analyses (cost, mass, fluid power performance). In this example, four components – 

engine, pump, cylinder and valve – are considered for sizing, and their possible sizes are 

taken from component catalog information that has been obtained from industrial 

component manufacturers.  

In the following sections, the modeling of the log splitter in SysML and its 

subsequent solving in GAMS is discussed.  

4.2 Modeling the Log Splitter Problem in SysML 

As described in the previous section, the log splitter possesses different aspects 

that are commonly found in component sizing problems. From a designer’s perspective, 

the modeling steps that would be involved are as follows. 

The first step involves the specification of requirements and their relation to a 

particular component or variable. Since a single architecture is considered, the descriptive 

modeling step is not considered in which the architecture to be sized is modeled. This is 

discussed more in the Future Work section in the next chapter. Thereafter, the modeling 

of hydraulic performance is considered in which energy-based modeling principles are 

used. As part of the hydraulic performance analysis, the designer needs to consider 

multiple use-phases based on the problem requirements. After modeling the hydraulic 

performance with multiple use phases, other types of analyses are modeled. Finally, in 
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order to ensure that all of the analyses and use phases are considered simultaneously the 

designer needs to ensure that a common sizing for each component is used throughout the 

entire model and is associated with one catalog model.   

In order to evaluate the usefulness of the proposed framework, each aspect is 

discussed separately in the same order that the designer would approach the modeling 

task without a framework. 

4.2.1 Requirements Modeling in SysML 

One of the features of SysML is the ability to model requirements and assign 

dependencies between requirements and model elements. In the case of component 

sizing, requirements modeling is the first step for guiding the designer in defining the 

composition of the system in terms of relevant analyses as well as the mathematical 

constraints associated with the requirements. In Figure 11, a SysML requirements model 

is shown in which requirements are decomposed hierarchically until they can be 

described mathematically. For instance, the forward phase for the hydraulic analysis 

consists of two requirements: a.) The force produced by the cylinder should be greater 

than a specified limit and b.) The maximum pressure in the circuit should be less than the 

specified max pressure. In this way, requirements modeling helps to derive mathematical 

constraints that are then included in the different SysML analysis models, which is 

described in the next section. 
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Figure 11 SysML model for requirements and associating them with corresponding 
component models through dependencies (<<verify>>). Requirements 

modeling helps to decompose the problem into different analyses and use phases.  
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Before discussing the details of the SysML models used to formulate the sizing 

problem, the overall system model is shown in Figure 12. The details of these models 

(such as constraints) have been hidden to allow the reader to understand the overall 

model hierarchy that is common to general component sizing problems.  

 

Figure 12 System Level View highlighting the features found in component sizing 
problems. This type of model hierarchy would be common for such problems in 

general. 
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4.2.2 Energy-Based Modeling & Multiple Use-Phases for Fluid Power Systems  

In order to analyze the hydraulic performance and ensure that the requirements 

are satisfied, algebraic equations are used to model the behavior of the individual 

hydraulic components as well as the combined system behavior. Since algebraic 

equations are used instead of dynamic simulations, steady state behavior is assumed for 

the system. Assuming a single steady state operation for a problem is not feasible and 

therefore multiple use-phases are considered, each representing a particular steady state 

phase. In the case of the log splitter, two use-phases are considered: the forward motion 

of the wedge and the reverse motion of the wedge. These two phases can be assumed to 

occur at constant velocity and therefore the steady state equations can be used. In Figure 

13, a portion of the SysML model is shown in which the same hydraulic circuit is used 

for two phases. For more complex problems, it is possible to discretize the system into a 

number of time-steps, each of which can be assumed to operate at steady state. This is 

discussed further in the section on Future Work in the next chapter.  
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Figure 13 Modeling multiple use-phases for a problem. In this case, there are two use-
phases, a ForwardAnalysis and ReverseAnalysis. The use-phases are for the same 

hydraulic circuit, as represented by the common OpenCenterCkt Block.  

Energy-based modeling principles are used to define analysis models for a 

particular use-phase. This is used when connecting individual component models 

together to form a system level model of the fluid power circuit. In Figure 14, an Internal 

Block Diagram (IBD) for the hydraulic circuit is shown. Through the use of 

transformations to automatically generate equations based on the connections between 

components, it is possible to generate complete analysis models by combining individual 

LogSplitterProblem UsePhases[Package] bdd [   ]

parts

cylinder : CylinderFP
pump : PumpFP
tank : TankFP
valve : ValveFP
engine : EngineFP
fixed : FixedFP
load : Load{Verifies = ForceF}

«gamsModel»

OpenCenterCkt

{pump.portP.p =e= valve.portP.p,
pump.portP.q + valve.portP.q =e= 0,

pump.portT.p =e= tank.portP.p,
pump.portT.q + tank.portP.q =e= 0,

valve.portT.p =e= tank.portT.p,
valve.portT.q + tank.portT.q =e= 0,
valve.portA.p =e= cylinder.portA.p,

valve.portA.q + cylinder.portA.q =e= 0,
valve.portB.p =e= cylinder.portB.p,

valve.portB.q + cylinder.portB.q =e= 0,
engine.flange.w =e= pump.flange.w,

engine.flange.tau + pump.flange.tau =e= 0,
cylinder.flangeA.v =e= fixed.flange.v,

cylinder.flangeA.f + fixed.flange.f =e= 0,
cylinder.flangeB.v =e= load.flange.v,

cylinder.flangeB.f + load.flange.f =e= 0}

totalTime : GamsFree{flowFlag = nonflow, type = free}
values

«gamsModel»

FPAnalysis

{totalTime =e= forward.oc.cylinder.time + reverse.oc.cylinder.time,
totalTime =l= 20,

totalTime =g= 0.001}

«gamsModel»

ForwardAnalysis

{oc.load.Fl =g= 50000,
oc.cylinder.length =g= 0.25,

oc.valve.control =e= 1}

«gamsModel»

ReverseAnalysis

{oc.load.Fl =l= -1000,
oc.cylinder.length =l= -0.25,

oc.valve.control =e= 0}

«OwnedGamsModel»

-oc

«OwnedGamsModel»

-oc

«OwnedGamsModel»

-forward

«OwnedGamsModel»

-reverse



 53

components and connecting them together. Energy-based principles are used when 

connecting components as well as at the time of defining individual component behavior. 

Through the use of proper sign conventions and standardized port-based interfaces, it is 

possible to define components that can potentially be reused in other problems as well. 

Component models and the sign conventions used are described in Appendix A.  

Figure 14 A Internal Block Diagram for the open center circuit used in the problem. The 
connections between ports are stereotyped with <<GamsPhysicalConnection>> 
and automatically generate the connection equations, based on conservation of 

energy. 

Along with the energy-based analysis such as hydraulic performance, there are 

also other types of analyses that are needed to determine if requirements are satisfied. 

The modeling of multiple analyses and organizing them in a model hierarchy is discussed 

in the next section. 

4.2.3 Multiple Analyses & Hierarchical Modeling  

In addition to energy-based analyses such as fluid power performance, other 

analyses are also needed depending on the requirements specified by the designer. For 

OpenCenterCkt OpenCenterCkt[gamsModel] ibd [   ]

cylinder : CylinderFP

portA portB

flangeA : TransConnectorFP
flangeB

pump : PumpFP

portP : FluidConnectorFP

portT

flange : RotConnectorFP

engine : EngineFP

flange : RotConnectorFP

valve : ValveFP

portT

portP : FluidConnectorFP
portA

portB

tank : TankFP

portT

portP

fixed : FixedFP flange : TransConnectorFP load : Load

flange
«GamsPhysicalConnection»

«GamsPhysicalConnection»

«GamsPhysicalConnection»

«GamsPhysicalConnection»

«GamsPhysicalConnection»

«GamsPhysicalConnection»

«GamsPhysicalConnection»

«GamsPhysicalConnection»
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instance, the requirement on total mass and total cost of the system cannot be included 

within the analysis described in the previous section, because defining cost in multiple 

use-phases does not make sense from a modeling perspective and would also result in 

duplication of the same constraint, resulting in model ambiguity. Different analyses can 

be modeled in the same way as energy-based analyses and can be arranged in a model 

hierarchy under a single top-level model. By grouping the analyses under a common 

model, it is ensured that the resultant executable model contains all of the different 

analyses and, if applicable, multiple use-phases (see cost, mass and fluid power analysis 

all acting simultaneously in Figure 12).  

In this way, hierarchical modeling in SysML can be used to model the component 

sizing problem in a logical and modular fashion using individual component models that 

can be reused in the same problem or in different problems. It is important to note that 

each analysis and use-phase uses different (or duplicate) component models to ensure that 

there is no overlap in variable usage. However, since all of the analyses and use-phases 

are supposed to involve the same components, a mechanism is needed in SysML to 

define the relations between a component sizing model and its multiple usages across 

analyses and use-phases. This is discussed in the next section.  

4.2.4 Common Sizing Description for the Entire Model 

When a problem is divided into different analyses and use-phases that exist 

independently of each other, it is important to remember that sizing is determined by 

considering all of the analyses simultaneously. However, since each analysis and use-

phase model use different usages for the same component model, it is necessary to 
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establish a relation between all of the usages throughout the model. For instance, the 

forward and reverse use phases and the mass and cost analyses each use a different 

cylinder model that has all of the sizing variables. From a systems perspective, the 

selection of the Cylinder depends on all the analyses. Therefore, to ensure that the same 

sizing variable is referred to throughout the different analyses and use-phases, a separate 

system sizing model is defined that contains the sizing variables used throughout the 

system (SystemSizingDescription – see Figure 12). 

There are two main reasons for using a system sizing model:  

a. Specifying a component model and its associated catalog model once for 

the entire problem, irrespective of the number of use-phases or analyses 

(see the component catalog library in Figure 15) 

b. Ensuring that all analyses and use-phases refer to the appropriate 

component model by explicitly connecting the component model with its 

usages in each analysis and use-phase. (see Figure 17) 

In order to specify the sizes a component can assume, a two-step process is used, 

in which first a catalog model is populated with data and then equations are defined to 

ensure that the sizing variables only take values from the catalog model. By storing 

supplier data in a problem-independent model library, it is possible to populate a 

component catalog model, which is problem-specific, with possible component values by 

establishing dependencies between the sizing variables used in the problem with the 

corresponding parameters (constants) found in the model library. Model transformations 

are used to automatically populate the component model with information found from the 

model library (see Figure 15).  
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Figure 15 The process of using a problem-independent component catalog library to 
automatically populate the possible values (in this example, cost of a valve) into 

the catalog model being used in the problem 

After defining the catalog model, constraints are defined to ensure that sizing 

variables for a component assume values only from the set of possible values contained 

in the catalog model. For instance, it is not meaningful for a cylinder to have sizing 

variables like: boreDiameter = 0.3m, stroke = 1m, mass = 1kg, cost = $10 because it is 

physically impossible. Therefore, a Boolean variable is used to determine which 

component from the catalog has actually been selected. An example of the collection of 

equations used for a cylinder is provided in Figure 16. In this way, it is possible to ensure 

that all of the sizing variables take values from a particular catalog entry.  

LogSplitterProblem ValveCatalog[Package] bdd [   ]

parts

fpAnalysis : FPAnalysis{Verifies = CycleTime}
costAnalysis : CostAnalysis{Verifies = Cost}
massAnalysis : MassAnalysis{Verifies = Mass}

values

z{flowFlag = nonflow, type = free}

«gamsModel»

SystemLevelModel

pump : PumpSizing
cylinder : CylinderSizing
engine : EngineSizing
cylinderCat : CylinderCat
engineCat : EngineCat
pumpCat : PumpCat
valve : ValveSizing

parts

«gamsModel»

SystemSizingDescription

values

id
select : GamsBinary
maxFlowCatData
costCatData
maxPressureCatData
massCatData

«gamsModel»

DCValveCat

«GamsSolve»

Solve

«OwnedGamsModel»

-valveCat

«OwnedGamsModel»

-systemSizing

«OwnedGamsModel»

-systemLevelModel

Sizing Description 

Model for Problem

Valve Catalog 

Model

Possible Values for

Cost of Valve

Component Catalog Library

Automatically Populate 

Values from Library
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Equation in SystemSizingDescription: 
cylinder.boreDiameter = sum(cylinderCat.id, cylinderCat.select(cylinderCat.id) *  

                                                cylinderCat.boreDiameterCatData(cylinderCat.id)) 

where:  
cylinderCat.id �set of all cylinder components in the catalog library 
cylinderCat.select(cylinderCat.id) �binary variable defined over set cylinderCat.id. One binary variable 
           for each component in the catalog set. But only one value is 1, all else are 0, as given by the 
           equation: sum(cylinderCat.id, cylinderCat.select(cylinderCat.id)) = 1. 
cylinder.boreDiameter � sizing variable. Can assume a value from the catalog 
cylinderCat.boreDiameterCatData � possible values of bore diameter (from catalog)    
 

Figure 16 Equations used to associate a component’s sizing variables (boreDiameter) 
with the corresponding catalog values from supplier (boreDiameterCatData) 

The equations above involve the use of a binary variable (0 or 1) that is defined 

over the set of all possible components. From the summation equation (sum(cylinderCat.id, 

cylinderCat.select(cylinderCat.id)) = 1), only one of the binary values in the entire set can be 1 

and this represents the component that is selected by the solver.  

After defining the relation between component and catalog connections are 

defined (stereotyped with <<GamsSelectionConnection>>) between the 

component models in the system sizing model with the component models used in the 

analyses (see Figure 17). Based on the model transformation logic defined in the 

framework, constraints are automatically generated for all of the variables included at 

LogSplitterProblem CylinderSelection[Package] bdd [   ]

values

id
select : GamsBinary
boreDiameterCatData
costCatData
maxPressureCatData
strokeLengthCatData
massCatData

«gamsModel»

CylinderCat

parts

pump : PumpSizing
engine : EngineSizing
engineCat : EngineCat
pumpCat : PumpCat
valveCat : DCValveCat
valve : ValveSizing

«gamsModel»

SystemSizingDescription

values

boreDiameter
strokeLength
mass
cost
maxPressure
rodDiameter

«gamsModel»

CylinderSizing

«OwnedGamsModel»

-cylinderCat

«OwnedGamsModel»

-cylinder

Sizing Variables Possible Values 

from Catalog
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each end of the connection, since both ends of the connection refer to the same sizing 

model. In Figure 17, an example of such a constraint is shown in the 

SystemLevelModel Block in which the bore diameter in the forward phase is equated 

to the bore diameter in the system sizing model. 

 

Figure 17 Through the use of a customized connection (<<GamsSelectionConnection>>), 
it is possible to ensure that common sizing description is used across the entire 
model. Equations are automatically generated to equate the variable used in an 
analysis or use-phase with the corresponding variable in the sizing description 

model.   

 

SystemLevelModel SystemLevelModel[gamsModel] ibd [   ]

size : CylinderSizing

cylinder : CylinderFP

size : PumpSizing

pump : PumpFP

oc : OpenCenterCkt

forward : ForwardAnalysis

size : CylinderSizing

cylinder : CylinderFP

size : PumpSizing

pump : PumpFP

oc : OpenCenterCkt

reverse : ReverseAnalysis

fpAnalysis : FPAnalysis

size : CylinderSizing

cylinder : CylinderCost

size : PumpSizing

pump : PumpCost

costAnalysis : CostAnalysis

size : CylinderSizing

cylinder : CylinderMass

size : PumpSizing

pump : PumpMass

massAnalysis : MassAnalysis

cylinder : CylinderSizingpump : PumpSizing

systemSizing : SystemSizingDescription

«GamsSelectionConnection»

«GamsSelectionConnection»

«GamsSelectionConnection»

«GamsSelectionConnection»

«GamsSelectionConnection»

«GamsSelectionConnection»

«GamsSelectionConnection»

«GamsSelectionConnection»

LogSplitterProblem SystemSizing[Package] bdd [   ]

«gamsModel»

SystemLevelModel1

{systemSizing.cylinder.boreDiameter =e= fpAnalysis.forward.oc.cylinder.size.boreDiameter,
systemSizing.cylinder.cost =e= fpAnalysis.forward.oc.cylinder.size.cost,

systemSizing.cylinder.mass =e= fpAnalysis.forward.oc.cylinder.size.mass,
systemSizing.cylinder.maxPressure =e= fpAnalysis.forward.oc.cylinder.size.maxPressure,
systemSizing.cylinder.rodDiameter =e= fpAnalysis.forward.oc.cylinder.size.rodDiameter,

systemSizing.cylinder.strokeLength =e= fpAnalysis.forward.oc.cylinder.size.strokeLength}

Automatic Generation of 

Constraints from Connection
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4.2.5 Defining the Solve Block & Solving in GAMS 

Once all the analysis models have been defined along with a system sizing model, 

it is possible to define a Solve Block of stereotype <<GamsSolve>> that specifies 

solver related properties such as solver name, model type, objective variable and so on. 

After the top-level SystemLevelModel Block of stereotype <<GamsModel>> is 

connected with the Solve block, the next step is to execute the model transformations in 

the form of a plugin (refer to Section 3.3) in order to solve the problem externally in 

GAMS.  

In this way, a complete component sizing model for the log splitter is constructed 

in SysML. Then, through model transformations, executable GAMS code is generated 

that can be solved using the solver specified in the SysML model. The results obtained 

from this model are discussed in the next section.  

4.3 Results for Different Scenarios 

In this section, results obtained from solving the log splitter component sizing 

problem for different scenarios are presented. As discussed in the Introduction, the 

motivation for this research is the investigation of new frameworks that can represent and 

solve component sizing problems more efficiently. Therefore, in addition to describing 

the actual solutions obtained for various scenarios, a discussion is provided regarding the 

use of SysML versus other tools such as MATLAB or GAMS. In the current scope of this 

research, investigation into the global optimality of solutions is not considered; such 

validation is beyond the current scope of this research and is left for future work.  
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Based on available component catalog data, sizing was performed on four 

components: a gas engine with 45 possible options, a fixed displacement pump with 64 

possible options, a double acting cylinder with 158 possible options, and an open center 

directional control valve with 34 possible options.   

Depending on the constraints defined by the requirements as well as the variable 

to be “optimized”, the component selections obtained are different. The global MINLP 

solver BARON [39] in GAMS is used to solve the log splitter problem. Figure 18 lists a 

summary of the model and solution statistics for one scenario as provided by BARON. 

The model statistics remain the same for all scenarios, since they are only a variation of 

the problem. These statistics are useful in evaluating the complexity of the problem from 

a solver’s perspective. In this case, there are 68 nonlinear coefficient entries, 256 

equations and 298 discrete variables (representing the catalog components). The code 

length of 503 provides some indication of the complexity of the nonlinearity of the model 

and represents the amount of code that GAMS passes onto the non-linear solver (For 

more information, refer to GAMS User Guide, Ch. 10 [3]). 

An important aspect to note is that the component models used in this example do 

not consider losses such as leakage or friction, i.e. they model ideal physical behavior. 

This assumption has been made because these models represent the first time that 

GAMS-compliant declarative models have been used. Since losses do not alter the 

fundamental behavior of the component, including them will only serve to make the 

model more complex, but will not invalidate the use of GAMS for solving of this class of 

problems.   
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Figure 18 Model and solver statistics for the scenario of minimizing total cost. The model 
statistics are same for all scenarios since they are for the same problem. The 

solution is provided by the solver BARON. 

Five scenarios are considered: maximizing the cylinder force during the forward 

phase, minimizing total cost, minimizing total mass, minimizing total time, and 

minimizing a variable that is defined by a multi-objective function. The requirements 

imposed on the system, in terms of constraints, are shown in Equation 3. These 

requirements act in addition to the constraints already imposed by individual component 

behavior models (see Appendix A for details of component models).  

 Force produced in forward phase: �@ABCDECF ≥ 50,000 N Total time taken by system: LMNMOP ≤ 20 s Total Cost of Components: SMNMOP ≤ $1,000 Total Mass of Components: VMNMOP ≤ 150 kg 
(3)  
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In order to understand the results obtained for the scenarios, it is necessary to 

identify the coupling between the different components of the log splitter. The log 

splitter’s function is to split wood by using force generated by a cylinder. The force 

produced by a cylinder directly depends on the bore diameter and pressure of the fluid 

inside it. Therefore, to produce more force, either the bore diameter or pressure can 

increase or both. Higher pressure at the cylinder means that the pump needs a greater 

input torque, which places a demand on the engine for higher torque. An increase in the 

bore diameter results in a decrease in flow rate in the cylinder, which increases the time 

taken to split the wood. Moreover, the maximum flow that can be handled by the system 

is limited by the valve that is used. Thus, with inequalities in the constraints it is difficult 

to determine manually what the best solution is to a given scenario.  

Before discussing the individual scenarios, provides an overall comparison of the 

results obtained. It appears that the results are appropriate, since the objective to be 

optimized in each scenario is better (smaller or larger, depending on optimization 

direction) than its corresponding value in the other scenarios. In addition to the overall 

results, the actual component sizes for each scenario are also described below, along with 

a discussion to understand the logic behind the values obtained.     
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Table 4 Comparison of results for different scenarios. Component Sizing is represented in terms of the selection from the 
corresponding component catalogs. 

 

 

 

Cylinder Id Pump Id Engine Id Valve Id
Forward 

Force (N)

Total 

Mass (kg)

Total 

Cost ($)

Total 

Time (s)
z

Maximize Force 

(N)
HMW-5032 SKP1NN_012 DP340E NT-2020 139,833 94.9 993.5 20 0.4027 2.82

Minimize Total 

Time (s)
HMW-3010 SKP1NN_012 DP390E

NT_Prince-

2036
50,000 51.87 843.97 4.896 0.2529 3.54

Minimize Total 

Cost ($)
HMW-4010 SKP1NN_012 DP240 NT-2020 53,698 51.3 657.4 9.69 0.26116 2.45

Minimize Total 

Mass (kg)
PMC-5414 SNP2NN_4_0 DP160V

MSCDirect-

01825629
52,013 32.25 708.6 9.15 0.2528 78.13

Minimize 

Multiobjective z
HMW-5010 SKP1NN_012 DP390 NT-2020 147,437 71.53 866.3 13.79 -0.3968 5.65

z = 0.25*((totalMass/300) + (totalTime/20) + (totalCost/1000) - (forwardForce/50000))

Component Sizing (Selection Id from Catalog) Selected Variable Values

Scenario
CPU Execution 

Time (s)
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Maximize Force Produced by Cylinder in Forward Phase: 

In this scenario, the problem is to find the sizes for the components so that the 

maximum force can be produced to split the log, which is the force produced in the 

forward phase. The component sizes obtained are presented in Table 5. 

Table 5 Component Sizes to Produce Maximum Log Splitting Force (N) 

 

Since this scenario only cares about maximizing force, it is logical to assume that 

the other requirements (Equation 3) would remain at the bounds. The cylinder selected 

has a large bore diameter, resulting in greater force but increasing the time taken to 

complete one cycle. This is reflected in the total time lying at the boundary of the 

constraint, i.e. 20s. Similarly, the total cost ($993) is very close to the boundary of the 

constraint on total cost ($1000). The large bore diameter results in smaller flow for the 

same pressure and in this case it is only 0.0004 m3/s. Therefore, the consideration for 

valve selection lies mainly on the cost in order to maintain a total cost below the 

requirement. Since the objective is to maximize force, the possibility is to increase bore 

diameter and increase the pressure. The increase in bore diameter has been taken into 

account by selecting a large size cylinder. Higher system pressure is possible if the input 

torque to pump is higher, which leads to engines with higher possible torques. The logic 

underlying the selection of engine and pump is shown in Figure 19.  

Bore Diameter (m) 0.13 Max Torque (N-m) 23.4

Stroke Length (m) 0.81 Speed at Max Torque (rpm) 2500

Max Operating Pressure (Pa) 17200000 Max Power (W) 8200

Cost ($) 293.5 Speed at Max Power (rpm) 3600

Mass (kg) 56.1 Cost ($) 399.99

Mass (kg) 32.65

Displacement (m3/rev) 1.1995E-05

Max Operating Pressure (Pa) 11997000 Max Flow (m3/s) 0.0016

Max Operating Speed (rpm) 2000 Max Operating Pressure (Pa) 1.38E+07

Cost ($) 230 Cost ($) 70

Mass (kg) 1.65 Mass (kg) 4.53

Cylinder: 

HMW-5032
Engine: 

DP340E

Valve:  

NT-2020

Pump: 

SKP1NN_012
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Figure 19 Engine operating point for forward phase of operation, as determined by 
solver. The operating point is below the speed at max torque (as provided by 

engine specification), which is counterintuitive to a designer 

 

In Figure 19 the torque-speed curve for the engine selected by the solver is 

shown, in which the region below the curve represents the feasible operating region of 

the engine. A clarification regarding the position of the max torque point is required: the 

curve represents a quadratic curve fitted through the two operating points specified by the 

vendor (see Appendix for more details). Also shown is the maximum operating speed for 

the selected pump (red dashed line). Therefore, based on the intersection of these two 

feasible regions (engine and pump), the solver determined the operating point to be 21 

Nm @ 2010 rpm.  
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This result is counter-intuitive to what a designer would normally expect. A 

designer may assume that to achieve maximum torque input to pump, the maximum 

torque point for the engine should be considered first. Thereafter, a pump with suitable 

maximum operating speed would be selected. In that case, the designer would have 

outright rejected the pump selected by the solver for being too slow. Therefore, the 

question is: Why did the solver select this pump? 

A closer look at the selected pump reveals the answer. In Table 6, the selected 

pump is compared with some of the other pumps available in the catalog. Since the total 

time is 20 seconds, the flow rate is low and consequently the pump displacement needed 

is also small. The two pumps with smaller displacements (SKP1NN_78 and 

SKP1NN_010) cannot generate enough flow in the system to have the total time under 

20s. Pumps with larger displacements can be chosen, but their costs are much higher 

(around $400 compared to $230 for the selected pump). This comes with the 

disadvantage of a much lower maximum operating speed of 2010 rpm.   

Table 6 Comparison of selected pump (SKP1NN_012) with other pumps 

 

Thus, the solver selects the pump SKP1NN_012 and chooses the engine operating 

points to be at 2010 rpm and 21 Nm, at the bounds of both the engine and pump feasible 

Pump Id
Displacement 

(m3/rev)

Maximum 

operating 

Pressure (Pa)

Maximum 

operating 

RPM (rpm)

Mass (kg) Cost ($)

SKP1NN_78 7.58721E-06 2.00E+07 3000 1.39 225.45

SKP1NN_010 9.94695E-06 1.50E+07 2000 1.55 227.99

SKP1NN_012 1.19953E-05 1.20E+07 2010 1.65 230.01

SNP3NN_022 2.21225E-05 2.50E+07 3000 6.80 410.94

SNP3NN_026 2.62193E-05 2.50E+07 3000 6.80 415.67

SNP3NN_033 3.31019E-05 2.50E+07 3000 7.17 426.41
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operating regions. This is interesting because such a solution would likely have been 

overlooked by a designer performing sizing manually.  

For the remaining scenarios, the component sizes are presented in the following 

tables. For the case of minimizing the total time (LWNXYOXZ + LX\]\X^\), the same logic 
applies. The main characteristic is that a cylinder with a much smaller bore is selected 

(0.08m versus 0.13m) and in this case the force produced lies at the boundary of the 

requirement. Refer Table 7. 

Table 7 Component Sizes for Fastest Log Splitter Operation (Total Time in seconds) 

 

In Table 8, the component sizes for minimizing the total cost of the system are 

presented. In this case, the force lies at the bounds and the cheapest components are 

selected.  

Table 8 Component Sizes for the Cheapest Log Splitter ($) 

 

Bore Diameter (m) 0.08 Max Torque (N-m) 26.4

Stroke Length (m) 0.25 Speed at Max Torque (rpm) 2500

Max Operating Pressure (Pa) 2.07E+07 Max Power (W) 9694

Cost ($) 74.97 Speed at Max Power (rpm) 3600

Mass (kg) 12.3 Cost ($) 449.99

Mass (kg) 32.9

Displacement (m3/rev) 1.1995E-05

Max Operating Pressure (Pa) 11997000 Max Flow (m3/s) 0.0016

Max Operating Speed (rpm) 2000 Max Operating Pressure (Pa) 1.38E+07

Cost ($) 230 Cost ($) 89

Mass (kg) 1.65 Mass (kg) 4.98

Cylinder: 

HMW-3010
Engine: 

DP390E

Pump: 

SKP1NN_012

Valve:  

NT_Prince-

2036

Bore Diameter (m) 0.1 Max Torque (N-m) 16.6

Stroke Length (m) 0.25 Speed at Max Torque (rpm) 2500

Max Operating Pressure (Pa) 2.06E+07 Max Power (W) 5966

Cost ($) 107 Speed at Max Power (rpm) 3600

Mass (kg) 20.2 Cost ($) 249.99

Mass (kg) 24.94

Displacement (m3/rev) 1.1995E-05

Max Operating Pressure (Pa) 11997000 Max Flow (m3/s) 0.0016

Max Operating Speed (rpm) 2000 Max Operating Pressure (Pa) 1.38E+07

Cost ($) 230 Cost ($) 70

Mass (kg) 1.65 Mass (kg) 4.53

Cylinder: 

HMW-4010
Engine: 

DP240

Pump: 

SKP1NN_012
Valve: 

NT-2020
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In Table 9, the component sizes for minimizing the total mass of the system are 

presented. In order to decrease the mass, smaller components are selected in general. 

Table 9 Component Sizes for Least Mass (kg) 

 

Finally, a multi-objective function is constructed by using a weighted normalized sum of 

the four individual objectives considered above. The variable _ is defined as 
_ = 0.25 ∙ aVMNMOP300 + LMNMOP20 + SMNMOP2000 − �@ABCDECF50000 d 

The mass, time and cost are added because they are minimized while the force is 

subtracted because it is maximized. In Table 10, the component sizes for minimizing the 

multi-objective function are provided. Since �@ABCDECF  is normalized by its lower bound, 

the solver tries to maximize the force produced in order to lower the value of _ by the 
largest amount. This is reflected in the selection of components that generates a large 

amount of force. 

Bore Diameter (m) 0.06 Max Torque (N-m) 7.9

Stroke Length (m) 0.36 Speed at Max Torque (rpm) 2700

Max Operating Pressure (Pa) 1.72E+07 Max Power (W) 4101

Cost ($) 99.93 Speed at Max Power (rpm) 3600

Mass (kg) 9.98 Cost ($) 279.99

Mass (kg) 15.42

Displacement (m3/rev) 3.93E-06

Max Operating Pressure (Pa) 2.50E+07 Max Flow (m3/s) 0.0016

Max Operating Speed (rpm) 4000 Max Operating Pressure (Pa) 1.89E+07

Cost ($) 218 Cost ($) 109.7

Mass (kg) 2.3133 Mass (kg) 4.53

Cylinder: 

PMC-5414
Engine: 

DP160V

Pump: 

SNP2NN_4_0

Valve: 

MSCDirect-

01825629
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Table 10 Component Sizes that Minimize Multi-objective function 

 

4.4 Summary 

In this chapter, an example application problem was used to demonstrate the 

framework presented in this thesis for representing and solving component sizing 

problems. Through the steps described in this chapter, it is possible to formulate 

component sizing problems in SysML which can then be executed and solved within 

GAMS using the specified solver (BARON, in this case). The SysML representation is a 

structured and object-oriented model composed of individual component models that can 

be connected together in different ways. By encoding the logic common to component 

sizing problems, such as generation of equations for energy-based connections, a 

designer can formulate new architectures quickly by connecting components in different 

ways.  

After formulating the SysML model, different scenarios were run simply by 

modifying the objective to be optimized in the block stereotyped with <<GamsSolve>>. 

From the execution time of the solver to the type of solutions obtained, it is clear that 

MINLP solvers such as BARON are efficient at solving component sizing problems. The 

solutions presented in this example application are near-optimal (as stated in output file 

Bore Diameter (m) 0.13 Max Torque (N-m) 26.4

Stroke Length (m) 0.25 Speed at Max Torque (rpm) 2500

Max Operating Pressure (Pa) 1.72E+07 Max Power (W) 9694

Cost ($) 166.3 Speed at Max Power (rpm) 2500

Mass (kg) 34.5 Cost ($) 399.99

Mass (kg) 30.8

Displacement (m3/rev) 1.1995E-05

Max Operating Pressure (Pa) 11997000 Max Flow (m3/s) 0.0016

Max Operating Speed (rpm) 2000 Max Operating Pressure (Pa) 1.38E+07

Cost ($) 230 Cost ($) 70

Mass (kg) 1.65 Mass (kg) 4.53

Cylinder: 

HMW-5010
Engine: 

DP390

Pump: 

SKP1NN_012
Valve:  

NT-2020
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by BARON) but global optimality can be ensured by BARON through different methods, 

such as specifying upper and lower bounds on variables. In a comparison of global 

optimization solvers, BARON is considered to be the fastest and most robust [29]. 

Therefore, these initial results indicate that BARON is well suited for solving component 

sizing problems encountered in engineering design.  

Global optimality cannot be ensured by conventional sampling-based solvers and 

in the worst case, an exhaustive search would involve searching 45 ∙ 64 ∙ 158 ∙ 34 =
15,471,360 alternatives. This number would increase as more components are 
considered and larger component catalog sizing data are used.  

To conclude, this example application shows that mathematical programming and 

GAMS is well-suited for solving component sizing problems while SysML is well-suited 

for representing them.  
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CHAPTER 5 

DISCUSSION AND CLOSURE 

5.1 Review and Evaluation 

The high-level motivation for this research involves the automated exploration of 

system architectures, with the ultimate goal being to automatically synthesize and select 

the “best” architecture for a problem given a set of requirements. For this to happen there 

are a number of different steps that must be integrated together; this research is a first 

step towards addressing this by considering the case of analyzing one system 

architecture.  

In particular, this research aims to provide designers with improved capabilities 

for both representing and solving of component sizing problems. This leads to the 

following research question and hypotheses: 

RQ: Is it possible for designers to represent and solve component sizing problems 

more efficiently? 

H1: Through the use of mathematical programming and constraint satisfaction 

techniques, designers can solve component sizing problems involving algebraic 

models more efficiently. 

H2: It is possible to extend traditional mathematical programming using SysML and 

model transformations to provide designers with improved capabilities for 

representing and formulating component sizing problems. 

This research does not claim to validate the hypotheses completely; such 

validation is beyond the current scope. By applying the proposed framework to an 
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example application involving a hydraulic log splitter, this research is intended to provide 

a foundation and basis for future research that can help in validating the hypotheses more 

rigorously.  

Evidence to support Hypothesis 1: 

The results obtained in the example show that mathematical programming solvers 

such as BARON (within GAMS) can find solutions quickly in approximately 2-5 seconds 

depending on the particular scenario. When the same log splitter problem was modeled in 

MATLAB using an exhaustive search, the computation time involved was approximately 

30 minutes to consider around 16 million combinations. However, some issues 

encountered when using MATLAB include:  

• The causal nature of MATLAB requires that some variables be assumed as 

known and reorder equations accordingly. 

• Defining inequality constraints in MATLAB is often not possible and very 

cumbersome if possible. If a variable in an inequality is assumed as known, 

then an assumption is that value occurs at the boundary. This is different from 

mathematical programming, in which values can lie between bounds as well.  

The above issues highlight the difficulties in formulating and solving a 

component sizing problem in conventional imperative programming languages such as 

MATLAB. As a result, it is clear that mathematical programming can solve component 

sizing problems in an efficient manner as compared to similar approaches in MATLAB 

or other tools.  
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Moreover, solvers like BARON fall under the category of global optimization 

solvers [29], which is important when dealing with non-linear design spaces that are 

found in component sizing problems. 

Evidence to support Hypothesis 2: 

The second hypothesis in this research refers to the use of SysML and model 

transformations to make it easier to formulate component sizing problems in terms of 

mathematical programming. Although “easier” is subjective, there are certain 

characteristics of component sizing problems that can be used to illustrate the usefulness 

of SysML for component sizing; in particular, scalability and reduction in the time 

required to model the system.  

As discussed in the example (Section 4.2), component sizing problems consist of 

different models such as multiple analyses and use-phases, energy-based analysis models, 

catalog models, etc. This results in a large number of SysML models, as evident from 

Section 4.2. Since the example presented in this thesis is not very complex, it can be 

argued that the problem could have been formulated manually and directly in GAMS 

instead of in SysML in a similar time frame. However, as larger and more complex 

problems are considered, it quickly becomes cumbersome and error prone to formulate 

the problem manually. Therefore, as problems become more complex, a formal 

representation becomes more important to a designer. The framework using SysML and 

model transformations presented in this thesis supports this requirement for a formal 

representation by reducing the time required to model component sizing problems. The 

time required to model a problem stems from two aspects: creating models and then 

composing them together to form system-level models.  
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Through the use of energy-based modeling, ports, and a common sign convention 

it is possible to define independent and self-contained models that captures its steady-

state behavior. Moreover, additional constructs related to inheritance (similar to those 

found in Modelica) would enable the creation of a standard library that can be used for a 

wide variety of problems. Although there is some effort required to initially create 

models, this time is offset by the savings obtained when models are reused, such as 

across multiple use-phases or multiple components in a system. In addition, with a library 

of components available, system models can quickly be composed by connecting them 

together through their ports.  

Arguably the largest benefit of using this framework for representing component 

sizing problems is the model-based graphical nature of SysML, which is similar to the 

way designers construct schematics and other models. Thus, without these model 

transformations or SysML, a designer would have to manually define the entire problem 

directly in terms of an executable model consisting of equations and variables. This is 

non-intuitive for designers and would increase the occurrence of errors that are unrelated 

to the problem being solved.    

 

To summarize, the primary research contributions in this thesis are: 

1. This thesis presents an initial framework for representing and solving component 

sizing problems using SysML and GAMS.  

2. Demonstrating the use of mathematical programming (GAMS and its solvers) for 

solving of engineering design problems.  
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3. Initial implementation of a language in SysML that can be used for object-

oriented algebraic modeling of energy-based systems. This is achieved through 

the use of domain specific languages and model transformations.  

5.2 Limitations and Future Work 

This thesis provides only a first step towards defining a framework for 

representing and solving component sizing problems. Therefore, many of the limitations 

of the current work serve as a basis for future work in addition to the existing open 

research questions for this work. 

The framework presented in this thesis was applied to a single example 

application involving a hydraulic log splitter, a non-trivial problem to solve but not as 

complex compared to other real-world systems. In addition, the hydraulic component 

behavior models used in this work do not take into account phenomena such as losses 

that would be found in practical components (refer Appendix A). Making the component 

models more complex by including losses, increasing the variety of components 

modeled, and applying the framework to more complex problems are all future work that 

can address these limitations.  

As more complex problems are considered, there is a greater need for a standard 

model library of algebraic component models (similar to the Modelica standard library 

[16, 26]). Since more complex problems would involve many different use-phases, a 

standard way of defining components also needs to be investigated. Such approaches may 

lead to a new modeling language similar to Modelica, but for the mathematical 

programming of engineering design problems. In addition to better tools for modeling, 
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such a language could provide better support for debugging. For instance, it is not always 

easy to determine a bug in the model from the debugging support available in existing 

tools like GAMS. This can be improved by using the existing debugging output of 

GAMS and analyzing it to provide additional information that is specifically related to 

engineering problems instead of general mathematical problems.  

In addition to bigger problems and better debugging, another aspect of future 

work involves improving the support for a larger number and more complex steady-

states. In this thesis independent use-phases are considered; however, it is not always the 

case. There are instances in which use-phases may be related to each other i.e., the initial 

and final values obtained in a use-phase tie into the previous and next use-phase. For 

instance a system can be discretized into a number of time steps, in which each time step 

represents a steady state, and optimization can be performed over all of the time steps. 

This can result in a more standardized way of defining models as well as the ability to 

solve more complex models.  

Another area that can be investigated is the use of continuous catalog models (see 

Malak et al. [24]) instead of discrete catalog models that are used in this research. This 

refers to the use of continuous models to capture the high-level dependencies between 

component attributes instead of catalog models that capture the dependencies discretely. 

Continuous models are useful in cases where a system may benefit from custom designed 

components instead of COTS components from a supplier. Some questions related to this 

include: “What is involved in defining acausal continuous catalog models?”, and “How 

does solver performance change for continuous catalog models?” 
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Although the use of mathematical programming is proposed in this research, it is 

not clear how far this capability can extend. What is the limit after which mathematical 

programming is no longer feasible as a solution technique?  

 

In conclusion, the “Model Based Mathematical Programming” framework presented in 

this thesis provides designers with the ability to quickly define systems using model 

libraries and explore solutions for different requirements and objective functions.  
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APPENDIX A 

COMPONENT MODELS & ASSOCIATED CATALOG DATA 

This appendix gives an overview of the different components used in the example 

application as well as the mathematical models for each of these components. As 

discussed in the thesis, the component models are all algebraic in nature, in which an 

assumption of steady-state conditions is applied. The components considered in this 

thesis include a double-acting cylinder, fixed displacement pump, 4/3 directional control 

valve, and a gas engine.  

An important aspect to note is that the component models in this thesis do not 

consider losses such as leakage or friction, i.e. they model ideal physical behavior. This 

assumption has been made because these models represent the first time that GAMS-

compliant declarative models have been used. Since losses do not alter the fundamental 

behavior of the component, including them will only serve to make the model more 

complex, but will not invalidate the use of GAMS for solving of this class of problems.   

 

Double Acting Cylinder: 

In Figure 20, a SysML model is shown that captures the hydraulic behavior of a 

double-acting cylinder in steady-state. As discussed previously, losses are not considered 

and the model captures the steady-state behavior for a cylinder. The model consists of 

sizing variables (boreDiameter, strokeLength, mass, cost, maxPressure, 

rodDiameter) that are contained within a separate CylinderSizing block as well 

as state variables (similar to time-dependent) like time, force, vel, and length. It 

also contains four ports, two translational and two fluid power ports. This is similar to the 
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interfaces found in actual cylinders. These ports represent the interfaces through which 

components can be connected together. The ports also have variables, depending on the 

type of port. For instance, the fluid power port has variables pressure and flow, 

while translational port has variables for force and velocity.  

 

Figure 20 GAMS-compliant SysML model to capture the idealized hydraulic behavior 
for a double acting cylinder. The equations used to model the cylinder are 

displayed in the Constraints area in the CylinderFP Block  

Based on these variables, declarative constraints are established to model cylinder 

behavior. For instance, consider the equation for force generated: 

 �hi�� =  
jk ∙ 0.25 ∙ l�i
 hi�mknV�L�i� ∙ �hiL�. ��  −  
jk ∙ 0.25∙ 
l�i
 hi�mknV�L�i� − l�i
ih�mknV�L�i�� ∙ �hiLo. ��; (4)  

CylinderModel[Package] imagesbdd [   ]

values

time{flowFlag = nonflow, type = free}
force{flowFlag = nonflow, type = free}
vel{flowFlag = nonflow, type = free}
length{flowFlag = nonflow, type = free}

«GamsPort»portA : FluidConnectorFP{causality = inout}
«GamsPort»portB : FluidConnectorFP{causality = inout}
«GamsPort»flangeA : TransConnectorFP{causality = inout}
«GamsPort»flangeB : TransConnectorFP{causality = inout}

{force =e= (Pi*0.25*sqr(size.boreDiameter)*portA.p) - (Pi*0.25*(sqr(size.boreDiameter)-sqr(size.rodDiameter))*portB.p),
0 =e= flangeA.f + flangeB.f,

flangeB.f =e= force,
abs(length) =l= size.strokeLength,

portA.p =l= size.maxPressure,
portA.q =e= vel*0.25*Pi*sqr(size.boreDiameter),

portB.p =l= size.maxPressure,
portB.q*sqr(size.boreDiameter) + portA.q*(sqr(size.boreDiameter)-sqr(size.rodDiameter)) =e= 0,

size.rodDiameter =e= 0.5*size.boreDiameter,
time =g= 0.00001,
vel*time =e=length,

vel =e= flangeB.v - flangeA.v}

«gamsModel»

CylinderFP

values

boreDiameter{flowFlag = nonflow, type = free}
strokeLength{flowFlag = nonflow, type = free}
mass{flowFlag = nonflow, type = free}
cost{flowFlag = nonflow, type = free}
maxPressure{flowFlag = nonflow, type = free}
rodDiameter{flowFlag = nonflow, type = free}

«gamsModel»

CylinderSizing

«OwnedGamsModel»

-size

Constraints

State Variables

Ports

Sizing Variables
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This is a declarative equation and therefore it does not matter what variable is 

known or unknown; the necessary symbolic manipulation is done at the time of solving 

by the solver.  

Fixed Displacement Pump: 

 

Figure 21 GAMS-compliant SysML model to capture the idealized hydraulic behavior 
for a fixed displacement pump. 

Similar to the cylinder, a model for a fixed displacement pump is shown in Figure 

21. The pump has three ports: one rotational flange and two fluid power ports. The sizing 

variables, state variables, ports and constraints are shown, similar to the cylinder model.   

 

PumpModel[Package] imagesbdd [   ]

values

pr{flowFlag = nonflow, type = free}
flow{flowFlag = nonflow, type = free}

«GamsPort»portP : FluidConnectorFP{causality = inout}
«GamsPort»portT : FluidConnectorFP{causality = inout}
«GamsPort»flange : RotConnectorFP{causality = inout}

«gamsModel»

PumpFP

{flange.w =l= size.maxOpSpeed*2*Pi/60,
flow =e= size.displacement * flange.w/(2*Pi),

pr =e= portP.p - portT.p,
portP.p =l= size.maxOpPr,
0 =e= portP.q + portT.q,

portP.q + flow =e= 0,
flow =g= 1e-9,

flange.tau + size.displacement*pr /(2*Pi) =e= 0}

values

displacement{flowFlag = nonflow, type = free}
maxOpSpeed{flowFlag = nonflow, type = free}
maxOpPr{flowFlag = nonflow, type = free}
cost{flowFlag = nonflow, type = free}
mass{flowFlag = nonflow, type = free}
totalEff{flowFlag = nonflow, type = free}

«gamsModel»

PumpSizing

«OwnedGamsModel»

-size

portT

portP

flange
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4/3 Directional Control Valve: 

 

Figure 22 GAMS-compliant SysML model to capture the idealized hydraulic behavior 
for a 4-way 3-position open center directional control valve.  

An open center type valve is chosen for the log splitter problem, and is shown in 

Figure 22. It has four ports: portP connecting to pump, portT connecting to tank, and 

ports A and B connecting to actuator. A control variable is used to determine the 

position of the valve; two positions are considered, corresponding to forward and reverse 

phases (control = 1 and 0 respectively). In this way, the internal connections are 

established depending on the control value.  

It is assumed that the valve changes position instantaneously, which is different 

from the gradual opening that normally occurs. Moreover, pressure losses in the input 

ValveModel[Package] imagesbdd [   ]

values

control{flowFlag = nonflow, type = free}

«GamsPort»portT : FluidConnectorFP{causality = inout}
«GamsPort»portP : FluidConnectorFP{causality = inout}
«GamsPort»portA : FluidConnectorFP{causality = inout}
«GamsPort»portB : FluidConnectorFP{causality = inout}

«gamsModel»

ValveFP

{portP.q =l= size.maxFlow,
portP.p =l= size.maxPr,

portP.p =e= portA.p*control + portB.p*(1-control),
0 =e= portP.q + portA.q*control + portB.q*(1-control),

portT.p =e= portB.p*control + portA.p*(1-control),
0 =e= portT.q + portB.q*control + portA.q*(1-control)}

values

cost{flowFlag = nonflow, type = free}
mass{flowFlag = nonflow, type = free}
maxFlow{flowFlag = nonflow, type = free}
maxPr{flowFlag = nonflow, type = free}

«gamsModel»

ValveSizing

«OwnedGamsModel»

-size

portP

portT

portA

portB

control=1

control=0
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and output side of the valve is not considered. These losses can be modeled by modifying 

the equations relating the pump pressure to the actuator side pressure. In order to model 

gradual opening of the valve, it may be possible to divide the two use-phases considered 

in this problem into multiple use-phases to model the change in position of valve. This is 

left to future work.  

Gas Engine: 

 

Figure 23 GAMS-compliant SysML model to capture the idealized behavior for an IC 
gas engine. 

Similar to the previous components, the engine consists of variables, ports, and 

constraints. Based on the supplier information (two engine points – max torque and max 

power), a quadratic curve is fitted through these two points. The curve is of the form: 

 q = nr + n2s + n�s� j = qs �q�s = n2 + 2n�s �j�s = nr + 2n2s + 3n�s� 

(5)  

EngineModel[Package] imagesbdd [   ]

«GamsPort»flange : RotConnectorFP{causality = inout}

values

P{flowFlag = nonflow, type = free}

«gamsModel»

EngineFP

{P =e= flange.tau*flange.w,
flange.tau =l= size.a0 + size.a1*flange.w + size.a2*sqr(flange.w),

flange.w =g= size.rpmMin*2*pi/60,
flange.w =l= size.rpmMax*2*pi/60}

values

rpmMin{flowFlag = nonflow, type = free}
rpmMax{flowFlag = nonflow, type = free}
a0{flowFlag = nonflow, type = free}
a1{flowFlag = nonflow, type = free}
a2{flowFlag = nonflow, type = free}
mass{flowFlag = nonflow, type = free}
cost{flowFlag = nonflow, type = free}

«gamsModel»

EngineSizing

«OwnedGamsModel»

-size
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Four equations are possible: max torque, max power, derivatives for torque and 

power at max conditions. Based on these equations, quadratic interpolation is performed 

for each engine in the supplier catalog. The model of the engine is represented by an 

inequality in which the torque must lie under the curve.  

 

tu
uu
v1 sqwO� sxyEz �
0 1 2sqwO� 1 s{yEz s{yEz�
1 2s{yEz 3s{yEz� |}

}}
~

�nrn2n�
� =

tu
uu
vqwO� 0jwO�swO� 

0 |}
}}
~
 (6)  

The use of a curve within the model highlights the ability of the solver to handle 

searching both across alternative engines as well as below the curve for each engine. 

Again, losses have not been considered; but they can be added to these models without 

affecting other components.  

 

Supplier Catalog Models for Components: 

For the component models described above, the actual supplier catalog 

information for each is presented below. This data was collected by Richard Malak and 

Lina Tucker from manufacturers and vendors. The highlighted cells represent the 

components selected in the different scenarios for the example problem discussed in 

Chapter 4. 

 



 84

Table 11 Cylinder Catalog Data 

 

Cylinder Id

Stroke 

Length 

(m)

Bore 

Diameter 

(m)

Maximum 

Operating 

Pressure (Pa)

Mass (kg) Cost (kg) Cylinder Id
Stroke 

Length (m)

Bore 

Diameter 

(m)

Maximum 

Operating 

Pressure 

(Pa)

Mass (kg) Cost (kg)

SAE-64508 0.20 0.11 2.068E+07 24.49 217.88 PMC-8324 0.6096 0.0762 1.724E+07 18.60 139.11

SAE-64008 0.20 0.10 2.068E+07 19.05 192.79 HMW-3524 0.6096 0.0889 2.068E+07 25.71 125.88

HMW-5008 0.20 0.13 1.724E+07 32.60 158.75 PMC-5424 0.6096 0.0635 1.724E+07 13.61 111.80

PMC-5608 0.20 0.10 1.724E+07 15.88 149.87 HMW-3024 0.6096 0.0762 2.068E+07 20.00 109.05

PMC-5508 0.20 0.09 1.724E+07 11.79 118.97 HMW-2524 0.6096 0.0635 2.068E+07 16.90 92.96

PMC-8308 0.20 0.08 1.724E+07 9.98 103.35 HMW-2024 0.6096 0.0508 2.068E+07 12.50 86.48

HMW-4008 0.20 0.10 2.068E+07 18.50 96.53 HMW-5028 0.7112 0.127 1.724E+07 52.21 260.03

PMC-5408 0.20 0.06 1.724E+07 7.71 92.72 HMW-4028 0.7112 0.1016 2.068E+07 35.11 167.88

HMW-3508 0.20 0.09 2.068E+07 14.80 81.63 HMW-3528 0.7112 0.0889 2.068E+07 28.40 146.78

HMW-3008 0.20 0.08 2.068E+07 11.20 69.31 HMW-3028 0.7112 0.0762 2.068E+07 22.20 121.09

HMW-2508 0.20 0.06 2.068E+07 9.00 61.96 HMW-2528 0.7112 0.0635 2.068E+07 18.80 102.64

HMW-1508 0.20 0.04 2.068E+07 5.20 61.39 HMW-2028 0.7112 0.0508 2.068E+07 14.10 89.94

HMW-2008 0.20 0.05 2.068E+07 6.10 57.00 SAE-64530 0.762 0.1143 2.068E+07 47.17 279.51

HMW-5010 0.25 0.13 1.724E+07 34.50 166.30 HMW-5030 0.762 0.127 1.724E+07 54.11 270.73

HMW-4010 0.25 0.10 2.068E+07 20.20 107.40 SAE-64030 0.762 0.1016 2.068E+07 35.83 233.17

HMW-3510 0.25 0.09 2.068E+07 16.20 85.16 PMC-5630 0.762 0.1016 1.724E+07 32.66 190.62

HMW-3010 0.25 0.08 2.068E+07 12.30 74.97 HMW-4030 0.762 0.1016 2.068E+07 36.80 180.06

HMW-2510 0.25 0.06 2.068E+07 9.90 66.36 PMC-5530 0.762 0.0889 1.724E+07 21.77 160.73

HMW-1510 0.25 0.04 2.068E+07 5.80 65.21 HMW-3530 0.762 0.0889 2.068E+07 29.81 160.69

HMW-2010 0.25 0.05 2.068E+07 6.90 60.71 PMC-8330 0.762 0.0762 1.724E+07 20.87 151.81

SAE-64512 0.30 0.11 2.068E+07 28.12 227.49 HMW-3030 0.762 0.0762 2.068E+07 23.31 126.13

SAE-64012 0.30 0.10 2.068E+07 21.77 199.77 PMC-5430 0.762 0.0635 1.724E+07 15.88 118.78

HMW-5012 0.30 0.13 1.724E+07 36.51 187.68 HMW-2530 0.762 0.0635 2.068E+07 19.80 114.96

PMC-5612 0.30 0.10 1.724E+07 18.60 153.38 HMW-2030 0.762 0.0508 2.068E+07 14.90 108.94

PMC-5512 0.30 0.09 1.724E+07 13.15 127.51 HMW-5032 0.8128 0.127 1.724E+07 56.11 293.57

HMW-4012 0.30 0.10 2.068E+07 21.90 114.20 SAE-64532 0.8128 0.1143 2.068E+07 48.08 284.73

PMC-8312 0.30 0.08 1.724E+07 11.79 111.99 SAE-64032 0.8128 0.1016 2.068E+07 37.65 237.93

PMC-5412 0.30 0.06 1.724E+07 9.07 97.43 PMC-5632 0.8128 0.1016 1.724E+07 33.57 198.80

HMW-3512 0.30 0.09 2.068E+07 17.60 89.98 HMW-4032 0.8128 0.1016 2.068E+07 38.41 189.53

HMW-3012 0.30 0.08 2.068E+07 13.40 81.63 HMW-3532 0.8128 0.0889 2.068E+07 31.21 165.80

HMW-2512 0.30 0.06 2.068E+07 10.90 68.63 PMC-5532 0.8128 0.0889 1.724E+07 23.59 164.84

HMW-2012 0.30 0.05 2.068E+07 7.70 63.52 PMC-8332 0.8128 0.0762 1.724E+07 21.77 155.93

HMW-5014 0.36 0.13 1.724E+07 38.41 203.61 HMW-3032 0.8128 0.0762 2.068E+07 24.30 133.04

PMC-5614 0.36 0.10 1.724E+07 20.41 157.63 HMW-2532 0.8128 0.0635 2.068E+07 20.80 123.75

PMC-5514 0.36 0.09 1.724E+07 14.51 131.81 PMC-5432 0.8128 0.0635 1.724E+07 18.60 122.80

HMW-4014 0.36 0.10 2.068E+07 23.51 123.79 HMW-2032 0.8128 0.0508 2.068E+07 15.80 116.35

PMC-8314 0.36 0.08 1.724E+07 13.15 116.98 HMW-5036 0.9144 0.127 1.724E+07 60.01 309.55

PMC-5414 0.36 0.06 1.724E+07 9.98 99.93 SAE-64536 0.9144 0.1143 2.068E+07 52.16 295.03

HMW-3514 0.36 0.09 2.068E+07 18.90 94.06 SAE-64036 0.9144 0.1016 2.068E+07 40.82 252.80

HMW-3014 0.36 0.08 2.068E+07 14.50 85.16 PMC-5636 0.9144 0.1016 1.724E+07 36.29 205.08

HMW-2514 0.36 0.06 2.068E+07 11.90 73.71 HMW-4036 0.9144 0.1016 2.068E+07 41.71 202.31

HMW-2014 0.36 0.05 2.068E+07 8.50 67.05 HMW-3536 0.9144 0.0889 2.068E+07 33.91 180.43

SAE-64516 0.41 0.11 2.068E+07 32.21 239.45 PMC-5536 0.9144 0.0889 1.724E+07 25.40 173.16

HMW-5016 0.41 0.13 1.724E+07 40.41 216.07 PMC-8336 0.9144 0.0762 1.724E+07 23.59 164.42

SAE-64016 0.41 0.10 2.068E+07 24.95 207.11 HMW-3036 0.9144 0.0762 2.068E+07 26.50 142.86

PMC-5616 0.41 0.10 1.724E+07 21.77 161.89 HMW-2536 0.9144 0.0635 2.068E+07 22.80 128.00

PMC-5516 0.41 0.09 1.724E+07 15.42 136.10 PMC-5436 0.9144 0.0635 1.724E+07 19.96 127.93

HMW-4016 0.41 0.10 2.068E+07 25.21 128.44 HMW-2036 0.9144 0.0508 2.068E+07 17.40 121.32

PMC-8316 0.41 0.08 1.724E+07 14.06 121.88 HMW-5040 1.016 0.127 1.724E+07 63.91 345.05

HMW-3516 0.41 0.09 2.068E+07 20.30 104.47 SAE-64540 1.016 0.1143 2.068E+07 56.25 311.76

PMC-5416 0.41 0.06 1.724E+07 10.43 102.52 SAE-64040 1.016 0.1016 2.068E+07 43.54 255.21

HMW-3016 0.41 0.08 2.068E+07 15.60 88.86 PMC-5640 1.016 0.1016 1.724E+07 38.56 219.54

HMW-2516 0.41 0.06 2.068E+07 12.90 76.43 HMW-4040 1.016 0.1016 2.068E+07 45.01 216.57

HMW-2016 0.41 0.05 2.068E+07 9.30 72.15 HMW-3540 1.016 0.0889 2.068E+07 36.60 189.37

HMW-5018 0.46 0.13 1.724E+07 42.41 228.73 PMC-5540 1.016 0.0889 1.724E+07 27.22 181.43

HMW-4018 0.46 0.10 2.068E+07 26.80 133.52 HMW-3040 1.016 0.0762 2.068E+07 28.70 170.51

HMW-3518 0.46 0.09 2.068E+07 21.60 110.79 PMC-8340 1.016 0.0762 1.724E+07 25.40 168.68

HMW-3018 0.46 0.08 2.068E+07 16.70 92.25 HMW-2540 1.016 0.0635 2.068E+07 24.80 147.24

HMW-2518 0.46 0.06 2.068E+07 13.90 80.05 HMW-2040 1.016 0.0508 2.068E+07 19.01 134.64

HMW-2018 0.46 0.05 2.068E+07 10.10 76.23 SAE-64542 1.0668 0.1143 2.068E+07 58.06 336.75

SAE-64520 0.51 0.11 2.068E+07 36.29 250.64 SAE-64042 1.0668 0.1016 2.068E+07 45.36 262.42

HMW-5020 0.51 0.13 1.724E+07 44.31 239.91 PMC-5642 1.0668 0.1016 1.724E+07 41.73 223.38

SAE-64020 0.51 0.10 2.068E+07 28.12 214.92 PMC-5542 1.0668 0.0889 1.724E+07 29.03 185.59

PMC-5620 0.51 0.10 1.724E+07 25.40 170.29 PMC-8342 1.0668 0.0762 1.724E+07 26.76 172.84

PMC-5520 0.51 0.09 1.724E+07 17.24 144.70 PMC-5442 1.0668 0.0635 1.724E+07 21.32 147.70

HMW-4020 0.51 0.10 2.068E+07 28.50 139.43 HMW-5048 1.2192 0.127 1.724E+07 71.71 381.43

PMC-8320 0.51 0.08 1.724E+07 15.88 130.47 SAE-64548 1.2192 0.1143 2.068E+07 66.68 339.57

HMW-3520 0.51 0.09 2.068E+07 23.01 116.74 SAE-64048 1.2192 0.1016 2.068E+07 52.16 284.22

PMC-5420 0.51 0.06 1.724E+07 12.25 107.23 HMW-4048 1.2192 0.1016 2.068E+07 51.71 253.33

HMW-3020 0.51 0.08 2.068E+07 17.80 97.45 PMC-5648 1.2192 0.1016 1.724E+07 45.36 234.19

HMW-2520 0.51 0.06 2.068E+07 14.90 86.48 PMC-5548 1.2192 0.0889 1.724E+07 31.75 224.39

HMW-2020 0.51 0.05 2.068E+07 10.90 79.25 HMW-3548 1.2192 0.0889 2.068E+07 42.01 214.85

SAE-64524 0.61 0.11 2.068E+07 40.37 263.15 HMW-3048 1.2192 0.0762 2.068E+07 33.11 189.40

HMW-5024 0.61 0.13 1.724E+07 48.21 248.55 PMC-8348 1.2192 0.0762 1.724E+07 29.48 188.82

SAE-64024 0.61 0.10 2.068E+07 31.30 221.90 HMW-2548 1.2192 0.0635 2.068E+07 28.70 185.94

9-6890 0.61 0.10 2.068E+07 32.21 199.95 HMW-2048 1.2192 0.0508 2.068E+07 22.20 161.20

PMC-5624 0.61 0.10 1.724E+07 28.12 177.32 SAE-64560 1.524 0.1143 2.068E+07 80.29 404.30

PMC-5524 0.61 0.09 1.724E+07 19.96 148.16 SAE-64060 1.524 0.1016 2.068E+07 62.60 284.04

HMW-4024 0.61 0.10 2.068E+07 31.81 146.66 PMC-5660 1.524 0.1016 1.724E+07 54.43 273.41
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Table 12 Pump Catalog Data 

 

Pump Id
Displacement 

(m3/rev)

Max operating Pr 

(Pa)

Max operating 

RPM (rpm)

Weight 

(kg)
Cost ($)

SNP2NN_4_0 3.9329E-06 2.499E+07 4000 2.31 218.96

SNP2NN_6_0 6.06321E-06 2.499E+07 4000 2.40 222.66

SNP2NN_8_0 8.3574E-06 2.499E+07 4000 2.49 228.18

SNP2NN_011 1.08155E-05 2.499E+07 4000 2.63 232.49

SNP2NN_014 1.44206E-05 2.499E+07 3500 2.86 254.02

SNP2NN_017 1.67148E-05 2.499E+07 3000 2.95 258.31

SNP2NN_019 1.91729E-05 2.099E+07 3000 3.04 264.47

SNP2NN_022 2.2778E-05 1.800E+07 3000 3.18 266.95

SNP2NN_025 2.52361E-05 1.600E+07 3000 3.31 269.40

SKP2NN_8_0 8.3574E-06 2.499E+07 4000 2.49 228.18

SKP2NN_011 1.08155E-05 2.499E+07 4000 2.63 232.49

SKP2NN_014 1.44206E-05 2.499E+07 3500 2.86 254.02

SKP2NN_017 1.67148E-05 2.499E+07 3000 2.95 258.31

SKP2NN_019 1.91729E-05 2.399E+07 3000 3.04 264.47

SKP2NN_022 2.2778E-05 2.099E+07 3000 3.18 266.95

SKP2NN_025 2.52361E-05 1.900E+07 3000 3.31 269.40

DE1L-07 7.04644E-06 2.758E+07 3400 7.17 348.86

DE1L-10 9.5045E-06 2.758E+07 3400 7.30 350.58

DE1L-13 1.2618E-05 2.758E+07 3400 7.48 352.31

DE1L-14 1.42567E-05 2.758E+07 3400 7.57 353.16

DE1L-17 1.70425E-05 2.758E+07 3400 7.76 354.03

DE1L-19 1.9009E-05 2.758E+07 3400 7.89 354.89

DE1L-21 2.04838E-05 2.758E+07 3400 7.94 361.78

DE1L-23 2.24503E-05 2.758E+07 3400 8.07 363.51

DE1L-25 2.53999E-05 2.758E+07 3400 8.26 366.10

DE1L-29 2.90051E-05 2.758E+07 3200 8.44 367.82

DE1L-32 3.17909E-05 2.758E+07 3000 8.62 383.34

DE1L-38 3.8018E-05 2.275E+07 2750 8.98 386.79

DE1L-41 4.09677E-05 2.068E+07 2500 9.16 391.96

CPB-020 3.2938E-05 2.482E+07 3200 8.75 837.80

CPB-023 3.6707E-05 2.482E+07 3200 8.89 843.95

CPB-026 4.16231E-05 2.482E+07 3200 9.07 850.21

CPB-030 4.78502E-05 2.482E+07 3200 9.30 858.56

CPB-032 5.14554E-05 2.482E+07 3200 9.48 866.67

CPB-035 5.5716E-05 2.482E+07 3200 9.66 871.34

CPB-040 6.35818E-05 2.482E+07 3200 10.07 883.77

CPB-045 7.16115E-05 2.482E+07 3000 10.48 897.61

CPB-050 7.94773E-05 2.275E+07 2750 10.89 907.37

CPB-055 8.78347E-05 2.068E+07 2500 11.29 921.06

CPB-060 9.57005E-05 1.862E+07 2500 11.70 934.97

SKP1NN_12 1.17987E-06 2.499E+07 4000 1.03 213.05

SKP1NN_17 1.57316E-06 2.499E+07 4000 1.05 213.85

SKP1NN_22 2.09754E-06 2.499E+07 4000 1.09 216.18

SKP1NN_26 2.62193E-06 2.499E+07 4000 1.11 218.49

SKP1NN_32 3.14632E-06 2.499E+07 4000 1.14 220.04

SKP1NN_38 3.65432E-06 2.499E+07 4000 1.18 220.81

SKP1NN_43 4.19509E-06 2.499E+07 3000 1.20 222.35

SKP1NN_60 5.88296E-06 2.299E+07 3000 1.30 223.89

SKP1NN_78 7.58721E-06 1.999E+07 3000 1.39 225.45

SKP1NN_010 9.94695E-06 1.500E+07 2000 1.55 227.99

SKP1NN_012 1.19953E-05 1.200E+07 2000 1.65 230.01

SNP3NN_022 2.21225E-05 2.499E+07 3000 6.80 410.94

SNP3NN_026 2.62193E-05 2.499E+07 3000 6.80 415.67

SNP3NN_033 3.31019E-05 2.499E+07 3000 7.17 426.41

SNP3NN_038 3.8018E-05 2.499E+07 3000 7.30 429.54

SNP3NN_044 4.40812E-05 2.499E+07 3000 7.48 433.76

SNP3NN_048 4.80141E-05 2.310E+07 3000 7.62 436.99

SNP3NN_055 5.50605E-05 2.310E+07 2500 7.85 443.51

SNP3NN_063 6.34179E-05 4.168E+07 2500 8.12 449.80

SNP3NN_075 7.43973E-05 1.820E+07 2500 8.48 456.87

SNP3NN_090 8.81624E-05 1.500E+07 2500 8.89 468.79
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Table 13 Valve Catalog Data 

 

 

Valve Id
Max Operating flow 

(m3/s)

Max Operating 

Pressure (Pa)
Weight (kg) Cost ($)

SurplusCenter-9-6765 0.001261804 20684271.87 5.44 74.50

SurplusCenter-9-1684 0.001577255 15513203.9 4.54 76.50

SurplusCenter-9-1262 0.001577255 13789514.58 4.99 76.50

SurplusCenter-9-6766 0.001261804 20684271.87 5.44 77.50

SurplusCenter-9-6767 0.001261804 20684271.87 5.44 82.50

SurplusCenter-9-6701 0.001577255 20684271.87 7.26 97.95

SurplusCenter-9-6759 0.001577255 20684271.87 7.26 105.95

SurplusCenter-9-6701-F 0.001577255 20684271.87 7.26 112.95

SurplusCenter-9-4500 0.000315451 17236893.23 2.27 169.95

SurplusCenter-9-1517 0.001577255 18960582.55 3.63 76.95

SurplusCenter-9-1518 0.001387984 15513203.9 4.54 76.95

SurplusCenter-9-1789 0.001892706 13789514.58 6.35 96.95

SurplusCenter-9-5174 0.001135624 20684271.87 3.18 179.99

MSCDirect-01825629 0.001577255 18960582.55 4.54 109.70

DrillSpot-40529 0.001009443 20684271.87 4.54 144.85

DrillSpot-40861 0.001892706 20684271.87 6.80 166.06

DrillSpot-40642 0.001261804 20684271.87 4.54 134.84

DrillSpot-40480 0.001892706 20684271.87 6.80 168.36

MSCDirect-01825678 0.001892706 20684271.87 4.54 94.23

MSCDirect-01825751 0.001261804 24131650.52 5.44 132.77

NT-202305 0.000675065 31026407.81 1.81 109.99

NT-201302 0.001059915 31026407.81 1.81 119.99

NT-202502 0.001665581 31026407.81 5.90 139.99

NT-201505 0.001249186 31026407.81 5.90 139.99

NT-2020 0.001577255 13789514.58 4.54 70.00

NT_Prince-2036 0.001577255 13789514.58 4.99 89.00

NT_Northman-202508 0.001577255 20684271.87 4.08 105.00

NT_Prince-2010 0.001261804 20684271.87 4.99 80.00

NT_Prince-2035 0.001577255 20684271.87 4.99 80.00

NT_Prince-20114 0.001892706 20684271.87 4.54 140.00

NT_Northman-202509 0.001577255 20684271.87 4.08 105.00

NT_BrandHyd-20120 0.002839059 20684271.87 7.71 270.00

NT_Prince-20113 0.001261804 20684271.87 4.54 90.00

NT_BrandHyd-20119 0.001135624 20684271.87 3.63 145.00
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Table 14 Engine Catalog Data 

 

  

Engine Id
Max Power 

(W)

RPM at max 

Power (rpm)

Max torque (N-

m)

RPM at max 

torque (rpm)
Weight (kg) Cost ($)

CS4T-901502 2983 3600 7.46 2600 19.05 312.00

CS6T 4474 3600 10.98 2400 18.14 356.04

CS8_5T 6338 3600 16.54 2400 30.39 608.00

CS12T 8948 3600 24.95 2400 41.28 736.00

CH18S 13423 3600 41.35 2600 40.82 1350.83

CH20S 14914 3600 44.06 2600 40.82 1506.34

CH22S 16405 3600 44.74 2600 40.82 1397.60

CH15T 11185 3600 32.27 2400 40.05 937.12

CS10T 7457 3600 19.93 2400 31.98 688.17

CV15T 11185 3600 32.27 2400 39.46 801.21

CV18S 13423 3600 41.35 2600 40.82 1607.78

CV20S 14914 3600 44.06 2600 40.82 1562.58

CV22S 16405 3600 44.74 2600 40.82 1539.33

CV25S 18642 3600 54.23 2200 42.64 1906.75

DP160 4101 3600 10.85 2500 15.00 229.99

DP200 4847 3600 13.02 2500 16.00 249.99

DP240 5966 3600 16.68 2500 24.95 249.99

DP270 6711 3600 18.98 2500 24.95 299.99

DP340 8203 3600 18.98 2500 24.95 349.99

DP390 9694 3600 26.44 2500 30.84 399.99

DP120V 2983 3600 5.97 2700 12.47 199.99

DP160V 4101 3600 8.00 2700 15.42 279.99

DP225 5593 3600 16.00 2500 18.14 249.99

DP200E 4847 4000 12.88 2500 16.74 349.99

DP240E 5966 3600 16.68 2500 26.31 349.99

DP270E 6711 4000 18.98 2500 29.48 399.99

DP340E 8203 3600 23.46 2500 32.66 399.99

DP390E 9694 3600 26.44 2500 32.93 449.99

DP420E 11931 3600 28.47 2500 36.29 499.99

DP225E 5593 3600 16.00 2500 19.96 349.99

NT-Honda-6059 4101 3900 10.71 2900 17.24 364.99

NT-Honda-60242 15287 3600 45.96 2500 43.09 1299.99

NT-Honda-60694 3878 3600 11.25 2500 13.79 259.99

NT-Honda-6066 8203 3600 25.08 2500 30.98 674.99

NT-Honda-60863 5294 3600 15.32 2500 24.99 699.99

NT-Honda-60968 5966 3600 17.76 2500 24.99 589.99

NT-Honda-6032 2610 3600 7.32 2500 13.02 349.99

NT-Honda-605921 3579 3600 10.30 2500 13.02 374.99

NT-Honda-6067 4101 3600 12.34 2500 16.01 399.99

Honda-GC160 3728 3600 10.30 2500 13.52 280.00

Honda-GX160 4101 3600 10.85 2500 15.42 310.00

Honda-GX270 6711 3600 18.98 2500 25.40 590.00

Honda-GX120 2983 3600 6.78 2500 13.15 370.00

Honda-GX200 4474 3600 13.29 2500 20.87 400.00

Honda-GX240 5966 3600 16.27 2500 25.40 579.00
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