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( )xĝ  Approximation of model response 

h(x) System constraint function 

k scaling factor  

l Number of noise factors 

L(y) Quadratic loss function 

m Number of system goals 

n Number of system variables 

Oi Orthonormal polynomials of order i 

p(x) Probability density function of x 

p Number of inequality constraints 

q Number of equality constraints 

Q(y) Expected quality loss function 

T Target value 

wi Weight of ith objective 

x Random design variable / system variable 

xi,L, xi,U Lower and upper bound of x 

z Noise factor 

y Performance function value 

Z Objective function / deviation function 

µ, E[] Mean Value 

σ Standard deviation 

σ
2, Var[] Variance 

 

 

 



xvii 

CHAPTER 3 

+−
ii dd ,  Deviation variable in a compromise DSP 

f(x) Performance function 

x Random design variable 

z Noise factor 

y Performance function value 

Z Objective function 

Wi Weight of ith objective 

µ, E[] Mean Value 

σ Standard deviation 

σ
2, Var[] Variance 

 

CHAPTER 4 

+−
ii dd ,  Deviation variable in a compromise DSP 

L Length of pressure vessel middle section 

P Internal pressure 

R Radius of pressure vessel 

sc Maximum stress in cylindrical section 

ss Maximum stress is spherical section 

sy Material yield strength 

SF Safety factor 

T Thickness of the pressure vessel wall 

V Volume of pressure vessel 

W Weight of pressure vessel 

Wi Weight of ith objective 

Z Objective function 

µ, E[] Mean Value 

ρ Material density 

σ Standard deviation 

σ
2
, Var[] Variance 

 

 

 



xviii 

CHAPTER 5 

ai Coefficients of polynomial model approximation 
+−
ii dd ,  Deviation variable in a compromise DSP 

f(x) Black-box performance function 

Hi Hermite polynomial of order i 

Wi Weight of ith
 objective 

x Random design variable 

y Black-box model/simulation outcome 
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SUMMARY 

The goal when applying robust engineering design methods is to improve a system’s 

quality by reducing its sensitivity to uncertainty that has influence on the performance of 

the product.  In the Robust Concept Exploration Method (RCEM) this approach is 

facilitated with additionally giving the designer the possibility to search for a compromise 

between the desired performance and a satisfying robustness.  The current version of the 

RCEM, however, has some limitations that render it inapplicable for nonlinear design 

problems.  These limitations, which are demonstrated in this thesis, are mainly connected 

to the application of global response surfaces and the Taylor series for variance 

estimations.   

In order to analyze the limitation of the robustness estimation, several alternative 

methods are developed, assessed and introduced to a modified RCEM.  The developed 

Multiple Point Method is based on the Sensitivity Index (SI) and improves the variance 

estimation in RCEM significantly, especially for nonlinear problems.  This approach is 

applicable to design problems, for which the performance functions are known explicitly.   

For problems that require simulations for the performance estimation, the simulation-

based RCEM is developed by introducing the Probabilistic Collocation Method (PCM) to 

robust concept exploration.  The PCM is a surrogate model approach, which generates 

local response models around the points of interests with a minimum number of 

simulation runs.  Those models are utilized in the modified-RCEM for the uncertainty 

analysis of the system’s performance.   



xxi 

The proposed methods are tested with two examples each.  The modified RCEM is 

validated with an artificial design problem as well as the design of a robust pressure 

vessel.  The simulation-based RCEM is validated using the same artificial design 

problem and the design of a robust multifunctional Linear Cellular Alloy (LCA) heat 

exchanger for lightweight applications such as mobile computing.  The structure of the 

theoretical and empirical validation of the methods follows the validation square.   
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CHAPTER 1 

FOUNDATIONS FOR ROBUST CONCEPT EXPLORATION 

The principal goal for this thesis is to: 

Further develop the Robust Concept Exploration Method (RCEM) to facilitate the rapid 

exploration of nonlinear design spaces and the generation of robust design solutions.   

 

The motivation for conducting the research presented in this thesis is the need for a 

design method that can be applied in early stages of designing robust engineering 

systems.  This method has to have the capability of helping designers when exploring a 

nonlinear, multi-dimensional and multi-functional design space.  Thereby, the method 

should facilitate robust design, which means quality improvement through reducing the 

system’s sensibility towards noise factors and uncertainty in design variables. 

The research presented is based on the development of the original RCEM (Chen, 1995), 

which facilitates most of the above mentioned requirements but has two crucial 

limitations.  These limitations can lead to fatal errors in nonlinear, multi-modular 

problems.  It is demonstrated that those problems can be solved with the modified RCEM 

and the simulation-based RCEM, which are developed in this thesis.   

One of the core steps in a robust design method is the evaluation of the robustness of a 

system at multiple points in the design space.  Like in most methods, in RCEM the 
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robustness is measured with the variance of the performance, however, a questionable 

estimation technique is used.    

By investigating the robustness estimation method used in the original RCEM, the first-

order Taylor Series approximation, the first limitation is addressed.  Alternatives for the 

variance estimation are developed, assessed and introduced in a modified RCEM.  This 

method is validated with an artificial design problem and with the design of a robust 

pressure vessel.   

With the Probabilistic Collocation Method (PCM) (Tatang, 1995) in the simulation-based 

RCEM an alternative to the Response Surface Methodology (RSM) is introduced to 

robust concept exploration for problems that require model simulations for the 

performance assessment.  The PCM is a local response model approach based on 

Gaussian Quadrature Integration and Polynomial Chaos Expansion (PCE) that requires 

only a minimum number of simulation runs for the generation of a local surrogate model. 

On this model, the uncertainty analysis is performed and the robustness estimated.  The 

new simulation-based RCEM is validated with an artificial design problem as well as 

with the design of a robust multi-functional Linear Cellular Alloy (LCA) heat exchanger.   

Obviously, the motivation for this research is congruent with the motivation for 

developing RCEM with the additional goal of improving the original RCEM.  In Section 

1.1, the motivation is explained in greater detail.  In Section 1.2, the systematic 

engineering design process, robust design and concept exploration as well as the 

compromise Decision Support Problem technique are introduced as the frame of 

reference.  The research questions and hypotheses that guide the presented work are 
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established in Section 1.3.  Finally, the validation strategy as well as the organization of 

this thesis is outlined in Section 1.4.   

1.1  Motivation and Background for Developing Robust Concept 

Exploration Methods 

In this section, the motivation and the background for the presented research are given.  

This includes the explanation of the need for analysis tools in the early stages of design as 

well as the need for tools that help designers to handle uncertainty in the concept phase of 

engineering design.  Due to the similarity of the motivation, some parts in Sections 1.1, 

1.1.1 and 1.1.2 are leveraged from (Chen, 1995).  

As in most areas of industry, productivity is of major economic significance also in 

engineering design.  In order to reduce cost and stay competitive in a fast and globalized 

economy, a short time-to-market is desired and heavily influenced by decisions in the 

early stages of design.  This requires that, given the design requirements, alternative 

systems, options or solutions can be evaluated and compared quickly in the concept 

exploration stage.  The introduction of rigorous analysis tools to this design phase 

promises fewer design changes in later design stages thus reduced cost and shorter time-

to-market.  This effect is schematically demonstrated in Figure 1.1.  This assumption is 

made on the observation that in original design most analysis tool are used by specialists 

in individual disciplines when solving parts of the design problem in later stages of the 

design process.  Although, some analysis tools are also applied in the early stages, they 

are still dominated by personal experience and historical data.  By introducing rigorous 
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analysis tool to this design phase it is assumed that the comprehensiveness and fidelity of 

design and concept analysis can be significantly improved and thereby the number of 

later design changes reduced and time-to-market shortened. 

 

 

Figure 1.1: Advantages of Rigorous Analysis Tools in Conceptual Design (Chen, 1995) 

 

Such an analysis tool is the Robust Concept Exploration Method (RCEM) (Chen, 1995; 

Chen, et al., 1996a; Chen, et al., 1997).  The framework of this method has been applied 

to the design of product families (Simpson, 1998; Simpson, et al., 1996, 1999a; Simpson, 

et al., 1999b) and also in the field of materials design (Mistree, et al., 2002; Seepersad, 

2004).  In addition to the exploration of concepts, the RCEM enables the designer to 

improve the product’s quality by reducing its sensitivity towards uncertainty in design 

variables or noise factors.  From previous applications, it can be seen that the RCEM is 

an easy-to-apply tool for the designer that has the potential to improve the quality and 
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shorten the time-to-market of engineering products.  However, as presented in this thesis, 

there is the need for improvement of the applicability of RCEM to nonlinear problems. 

In the following sections, the context of the RCEM is introduced. Engineering design 

process and the different design phases are introduced in Section 1.1.1, followed by a 

brief explanation of uncertainty in engineering design in Section 1.1.2.  Furthermore, a 

brief introduction to the concept of robust design is given in this section.   

1.1.1  Engineering Design Processes  

As stated before, the methods proposed in this thesis are meant to be applied in the early 

stages of the engineering design process.  In this section a short overview is given on how 

design processes are structured and where the RCEM is used. 

In the engineering design community, various theories and methodologies have been 

developed for describing the engineering design process.  In (Finger and Dixon, 1989a) 

and (Finger and Dixon, 1989b), taxonomy distinctions among design methods are 

provided. Based on observing how designers go about their work, they distinguish 

between: 

• Descriptive models of design processes    

• Prescriptive models of design processes  

• Computer-based models of design processes 

A comprehensive review of works in all three categories is given in (Mistree, et al., 

1990).  A brief overview over the most important achievements of the last forty years of 

design research is presented in (Cross, 2007).  Although the approaches in the different 
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fields of research show significant differences, there are some models that are widely 

accepted because they make intuitive sense to many designers.  An example of such a 

process is the systematic approach to engineering design presented in (Pahl and Beitz, 

1996).  This prescriptive design process model was originally introduced by Pahl  and 

Beitz in 1977 in Germany.  It consists of the following four major design phases: 

• Clarification of the Task – collecting information about the design problem and 

formulating the requirements and constraints to be embodied in the design 

solution 

• Conceptual Design – establishing function structures and searching for suitable 

working principles and their combination into concept variants.  Conceptual 

design also includes the development of those concepts and finally, the selection 

of the most promising one. 

• Embodiment Design – starting from the concept, developing and determining the 

layout and form of the product under consideration of the requirements as well as 

technical and economic constraints. 

• Detail Design – specifying and documenting the all the details of the final design 

as well as generating manufacturing drawings.  

As mentioned before, the RCEM is developed for assisting designers in the early stages 

of the design process.  In context of the four phases of the systematic approach from Pahl 

and Beitz, this would be the conceptual design phase.  Based on the requirements and 

constraints established in the first phase, RCEM is meant to help the designer exploring a 

large design space of possible concepts in the search for a feasible and satisfying 
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solution.  Furthermore, RCEM can be used to find solutions that are robust to various 

sources of uncertainty. 

The types of uncertainty that an engineering designer has to deal with are introduced in 

the following section.  Additionally, a brief introduction to the concept of robust design is 

given. 

1.1.2  Uncertainty in Engineering Design and the Concept of Robust Design 

Designers are facing various sources of uncertainty when designing an engineering 

system.  The most common uncertainties are variations in factors the designer can 

control, namely, design variables, and uncertainty from uncontrollable noise factors.  

According to this distinction, in (Chen, et al., 1996b) two broad categories of problems 

are defined as: 

• Type I Robust Design – minimizing variations in performance caused by 

variations in noise factors (uncontrollable parameters) 

• Type II Robust Design – minimizing variations in performance caused by 

variations in control factors (design variables 

Type I variation are, for example, variations in environmental conditions of the system, 

like temperature changes or humidity that cannot be influenced.  Type II variations can 

be, for example, manufacturing tolerances of design variables.  The goal when applying 

robust design is to find a solution with satisfying performance while reducing the 

variations caused by uncertainty.  An illustration of the difference between an “optimal” 

solution found with traditional optimization techniques and a robust solution is given in 
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Figure 1.2 and Figure 1.3.  While under optimization an optimum for the specific 

situation is desired, in robust design each situation is left somewhat open to account for 

the possibility of deviations in design variables and noise factors. 

 

 

 

Figure 1.2: Uncertainty Influence on an Optimal Solution (Chen, 1995) 

 

 

 

Figure 1.3: Uncertainty Influence on a Robust Solution (Chen, 1995) 

 

In Figure 1.2, it can be seen that an optimal solution is, in general, a peak solution.  If in 

such a case either the problem is shifted slightly or the solution shifts due to uncertainty, 
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the quality of the solution might drop.  In Figure 1.3, in contrast, the compromise solution 

is robust against those shifts and the solution remains good even under the influence of 

uncertainty. 

In this thesis, a robust solution is defined as a compromise between the objective of a 

satisfying performance – bringing the mean on target – and the objective of robustness of 

the performance – minimizing the variance.   

In this section, the motivation for developing robust concept exploration methods is 

presented.  In the next section, the frame of reference for this thesis is established. 

1.2  Frame of Reference 

The frame of reference for this thesis is outlined in this section.  The fundamental 

building blocks for the methods developed in this thesis are robust design methods, 

especially the Robust Concept Exploration Method (RCEM), and multi-objective 

decision support, particularly the compromise Decision Support Problem.  Since the same 

components as addressed in (Seepersad, 2004), Section 1.2.1 and Section 1.2.2 of this 

frame of reference are leveraged with modifications.  In Section 1.2.3 the frame of 

reference for uncertainty analysis is given.   

1.2.1  Robust Design and Multi-Objective Concept Exploration 

Robust design means to improve the quality of products and processes through the 

reduction of their sensitivity to variations, without removing the source of uncertainty 
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(Taguchi, 1986; Taguchi and Clausing, 1990).  Typically, there are two objectives in 

robust design.  The first goal is to minimize the product’s performance sensitivity and the 

second goal is to bring the nominal or mean performance as close to the target value as 

possible; this can be minimizing, maximizing or matching a target.  In Figure 2.3, the 

illustration presented in the previous section is brought in context to an example of a 

deviation function, which measures the deviation from the desired performance mean.   

 

 

Figure 1.4: Optimal vs. Robust Solutions (Chen, et al., 1996b) 

 

It can be seen that the optimizing solution is significantly more sensitive to deviations of 

the design variable than the robust solution is.  However, the nominal performance of the 

robust solution is slightly less superior.  This is a typical example for a Type II robust 

design (see Section 1.1.2).   

Deviation 
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Taguchi’s robust design principles are widely advocated both in industry and in 

academia.  The statistical techniques used by him, however, have been criticized by many 

researchers.  In fact, improving the statistical methodology used in robust design became 

an active research area (e.g. (Li and Wu, 1999; Myers and Montgomery, 1995; Nair, 

1992; Tsui, 1992; Tsui, 1996; Vining and Myers, 1990)).  Significant effort was also put 

into extending the robust design methods for a variety of fields and applications (e.g. 

(Cagan and Williams, 1993; Chen, et al., 1996a; Chen, et al., 1996b; Otto and Antonsson, 

1993; Parkinson, et al., 1993)).   

The majority of robust design literature addresses the embodiment and detail design 

phases of the engineering design process (see Section 1.1.1), where the focus is on 

adjusting dimensions to accommodate manufacturing variations.  However, there has 

been some emphasis on applying robust design techniques in the earlier stages of design, 

where decisions are made that heavily influence the final design of a product and thus its 

quality.  Chen and coauthors (Chen, et al., 1996a; Chen, et al., 1996b) propose the Robust 

Concept Exploration Method (RCEM), a domain-independent approach for generating 

robust multidisciplinary design solutions.  The method is applicable in the early stages of 

design because it supports the exploration of a large design space, the search for multi-

objective compromises as well as the integration of both Type I and Type II robust 

designs.  The framework and the computational infrastructure of RCEM are given in 

Figure 2.3 and are discussed in greater detail in Chapter 2.   

 



12 

 

C. Simulation Programs

(Rigorous Analysis
Tools)

Overall Design

Requirements

A.  Factors and Ranges

F.   The Compromise DSP 
 

E. Response Surface Model

Input and Output

Processor

Simulation Program

x 1

x 2

y

x

z

y

2 2

2 2 2

1 1
i i

k l

y z x

i ii i

f f

z x
σ σ σ

= =

   ∂ ∂
= +   

∂ ∂   
∑ ∑

( , )y f x z=

( , )y zf xµ µ=

Robust, Top-Level

Design Specifications

D.  Experiments Analyzer

Eliminate unimportant factors

Reduce the design space to the region of
interest

Plan additional experiments

B.  Point Generator

Design of Experiments
Plackett-Burman

Full Factorial Design
Taguchi Orthogonal Array
Central Composite Design

Etc.

Find
Control Variables

Satisfy
Constraints
Goals
“Mean on Target”
“Minimize Deviation”
Bounds

Minimize
Deviation Function

Product/

Processx y

zNoise

Factors

Response
Control

Factors

 

Figure 1.5: Framework of the Robust Concept Exploration Method (Chen, et al., 1996a) 

 

1.2.2  Multi-Objective Decision-Making and the Compromise Decision Support 

Problem 

The robust design methods proposed in this thesis are developed for multi-disciplinary 

applications and thus require means for multi-objective decision-making.  This 

characteristic is also needed because the robust design approach itself has at least two 

objectives, first, meeting the desired nominal performance and second, reducing the 

performance variation.   

In this thesis, the same technique is used as in RCEM, the compromise Decision Support 

Problem (cDSP).  This framework provides a means for structuring, mathematically 

modeling and thus supporting design decisions that involve searching for compromises 

among conflicting objectives.  The cDSP, which has been first introduced by Mistree and 
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coauthors (Mistree, et al., 1993), is a domain-independent, multi-objective decision 

model that is based on mathematical programming and goal programming.  It can be used 

to find a set of design variable values that satisfy the system’s constraints and variable 

boundaries.  Furthermore, a set of (conflicting) objectives is achieved as closely as 

possible.  The designer can express preferences among the objectives by assigning 

specific weights.  The cDSP is discussed in greater detail in Chapter 2.   

1.2.3  Uncertainty Analysis and the Probabilistic Collocation Method 

In this thesis, the limitations of RCEM (see Section 1.2.1) are demonstrated and means 

for improvement are introduced.  The limitations of RCEM can be located in the 

application of the Response Surface Methodology for exploring the entire design space 

and the first-order Taylor Series approximation for the performance variance estimation 

from the generated surrogate model.  In general, it is assumed that the function of the 

performance is not known explicitly and so the need for some metamodel is given for 

performing an uncertainty analysis.  Since both uncertainty analysis techniques used in 

RCEM have been criticized in literature (e.g. (Beyer and Sendhoff, 2007; Lin, et al., 

1999)), the focus in this thesis is on finding alternative techniques.  The analysis of the 

limitations and development of alternatives is divided into two parts.  First, the first-order 

Taylor Series approximation for the variance estimation is analyzed without considering 

the surrogate model.  The new estimation methods introduced and assessed in this thesis 

are based on higher-order Taylor Series approximations (Phadke, 1989), the Sensitivity 

Index SI (Sundaresan, et al., 1995) and first-order approximations at multiple points (Lin, 

et al., 1999).   
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As an alternative for building global response surfaces, in this thesis, the Probabilistic 

Collocation Method (PCM) is considered (Tatang, 1995; Tatang, et al., 1997).  The PCM 

is a local response model approach, which means that the response is only evaluated 

locally around a point of interest.  The response model is built with a minimum number 

of simulation runs and thus is very efficient.  The method has been previously applied to 

forecast and analyze future carbon emissions (Webster, 1997), numerical geophysical 

models (Tatang, et al., 1997), a simple ocean model (Webster, et al., 1996), the 

evaluation of uncertainty in dynamic simulations of power system models (Hockenberry 

and Lesieutre, 2004) and the analysis of flow in random porous media (Li and Zhang, 

2007).  In those applications the method has been found very efficient and effective for 

estimating the statistical moments and the probability density function of the systems’ 

performance under uncertainty.  In this thesis, the Probabilistic Collocation Method is 

introduced to Robust Engineering Design.  The PCM is discussed in greater detail in 

Chapter 2.   

In this section, the building blocks of this thesis are introduced.  In the next section, the 

research questions and hypotheses are presented and discussed.   

1.3  Research Focus and Contributions 

The motivation and background for this thesis are presented in Section 1.1 and Section 

1.2.  The primary focus in this section is on discussing the research questions addressed 

in this thesis and outlining the contributions expected from this research.  The two 
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questions that guided the presented research are answered by validating two research 

hypotheses, which are introduced in this chapter as well. 

The fundamental research questions and hypotheses are presented in Section 1.3.1.  In 

Section 1.3.2, a set of contributions is presented that summarize the value of this 

research.  In Section 1.4, the strategy for validating the research hypotheses and 

establishing the contributions is outlined.   

1.3.1  Research Questions and Hypotheses 

The principal goal for this thesis is to: 

Further develop the Robust Concept Exploration Method (RCEM) to facilitate the rapid 

exploration of nonlinear design spaces and the generation of robust design solutions.   

 

To improve the original RCEM, its limitations are addressed in the research questions.  

As the first limitation, the first-order Taylor Series approximation for the performance 

variance estimation is identified.  The first research question is motivated by this research 

gap: 

First Research Question: 

How can the formulation of robustness in compromise Decision Support Problems for 

multi-dimensional and multi-objective design problems be improved? 
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To answer this question, a set of alternative formulations for robustness estimation is 

tested and evaluated.  Based on this analysis the first research hypothesis is validated: 

First Research Hypothesis: 

Using a global response surface, the nominal mean and a single point first order Taylor 

Series Approximation for the variance estimation is not accurate enough for finding 

robust solutions of nonlinear design problems.  The Robust Concept Exploration Method 

can be improved by using appropriate formulations that account for the nonlinearity of 

the problem. 

 

For the validation of this hypothesis the modified RCEM is introduced, in which a new 

variance estimation technique is implemented.  Since the second limitation is not 

eliminated by this, an alternative for the Response Surface Methodology is required.  

This need is addressed in the second research question:  

Second Research Question: 

How can the RCEM be augmented to improve the accuracy of the robust concept 

exploration for nonlinear design problems that involve simulations? 

 

For answering this question the Probabilistic Collocation Method is introduced to RCEM.  

This new method, the simulation-based RCEM, is used for the validation of the second 

research hypothesis: 
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Second Research Hypothesis: 

It is hypothesized that estimating the performance and the robustness using the 

Probabilistic Collocation Method with Polynomial Chaos Expansion in a simulation-

based approach to robust concept exploration can increase the method’s accuracy and 

reliability over the original RCEM. 

 

With answering the research questions and validating the hypotheses several 

contributions are made, which are summarized in the next section.   

1.3.2  Research Contributions 

In this thesis, the research contributions are made by justifying the research questions and 

by validating the hypotheses.   

The first research contribution is the demonstration of the limitations of the original 

RCEM.  In literature it has been claimed that RCEM can be applied to solve nonlinear 

design problems (e.g. (Chen, et al., 1996b)).  In this thesis, it is demonstrated that RCEM 

can lead to fatal errors when applied to nonlinear problems.  This is considered an 

important contribution, since several researchers have used and developed RCEM 

without noticing this crucial problem.   

The second contribution is the introduction of the Probabilistic Collocation Method to 

robust concept exploration.  The new simulation-based RCEM, which is used to validate 

the second research hypothesis, improves the accuracy, efficiency and reliability of the 

original RCEM.  Additionally, it opens up new opportunities for a detailed uncertainty 
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analysis of the performance and the consideration of alternative distributions of design 

variables and noise factors.   

The third contribution is the establishment of a new computational framework for all 

versions of RCEM.  The framework consists of a Java version of DSIDES, which can be 

used to solve cDSPs, and the integration of MATLAB functions for simulation-based 

problems or brute force uncertainty analyses like Monte Carlo. 

In this section, the research focus and the contributions are summarized.  The strategy for 

answering the research questions, validating the hypotheses and establishing the 

contributions is presented in the next section. 

1.4  Validation and Verification of this Thesis 

The validation and verification strategy for this thesis is based on the validation square, 

which was introduced for the validation of design methods (Pedersen, et al., 2000; 

Seepersad, et al., 2006b).  The following explanation of the validation square and the 

strategy for the validation and verification of this thesis are inspired by Carolyn 

Seepersad’s PhD dissertation (Seepersad, 2004).  Typically, engineering research is based 

on formal, quantitative validation through logical induction and/or deduction.  However, 

this approach is problematic for the validation of engineering design methods.  As soon 

as a method is not solely based on mathematical modeling but also on subjective 

statements, an alternative to logical induction and/or deduction is needed.  With the 

validation square, an approach to the validation of engineering design methods is 

proposed, which is based on a relativistic notion of epistemology in which “knowledge 
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validation becomes a process of building confidence in its usefulness with respect to a 

purpose.”   

The validation square is a framework for validating design methods in which the 

‘usefulness’ of a design method is associated with whether the method provides design 

solutions correctly (structural validity) and whether it provides correct design solutions 

(performance validity).  This process is illustrated in Figure 1.6.   

 

 

Figure 1.6: The Validation Square (Pederson, et al., 2000) 
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Both structural and performance validity are further divided into theoretical and empirical 

validity which leads to the four quadrants: 

1.4.1  Quadrant 1: Theoretical Structural Validity 

Theoretical structural validity involves showing the internal consistency of the individual 

constructs constituting the method as well as showing the overall internal consistency of 

their assembly.  This can be achieved by searching and referencing to literature related to 

the single constructs, which are already validated elsewhere.  Furthermore, the 

correctness of the information flow throughout the entire design method has to be 

demonstrated.  For this step a flow chart may be useful.  To ease the comparison of the 

theoretical structure and the expected outcomes to the intended properties of the design 

method, a requirements list should be formulated. 

1.4.2  Quadrant 2: Empirical Structural Validity 

Empirical structural validity involves building confidence in the appropriateness of the 

chosen example problems for illustrating and verifying the performance of the developed 

design method.  This means, it has to be shown that the examples are good 

representations of design problems, for which the method is designed and that the 

associated data can be used to support a conclusion. 
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1.4.3  Quadrant 3: Empirical Performance Validity  

Empirical performance validity includes showing the usefulness of the method for 

solving the example problems.  The results achieved using the design method have to be 

analyzed and assessed.  Measurements of the usefulness should be related to the desired 

specifications, which are formulated in the requirements list.  Furthermore it has to be 

shown that the achieved usefulness is, in fact, a result of applying the developed method, 

for example by comparing the generated outcomes to solutions acquired without the 

method.  The analysis should also include assessment of data with regard to internal 

consistency, for example multiple starting points and convergence in optimization 

exercises. 

1.4.4  Quadrant 4: Theoretical Performance Validity 

Theoretical performance validity involves a “leap of faith” from the usefulness of the 

design method for the chosen example problems to the general validity of the method, 

which means building confidence in the generality of the method and accepting that the 

method is useful beyond the example problems.  This can be supported by showing that 

the example problems are representative for a general class of engineering design 

problems as well as a final critical analysis of the entire validation process. 

1.4.5  Implementation of the Validation Framework in this Thesis 

The validation square is a framework that suggests a logical step by step approach for the 

validation of a design method.  Successfully building confidence for the validities in 
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quadrants one, two, and three followed by a critical analysis allows for the “leap of faith” 

in quadrant four.  This “leap of faith” to the general validity of the developed method is 

characteristic for the validation of design methods that include subjective statements.  

Since this is the case for the methods presented in this thesis, the validation square is an 

appropriate framework for the validation and verification of the presented work.   

In Figure 1.7, the outline of the validation strategy is presented with regard to the four 

quadrants of the validation square.  The tasks for each step are given with reference to the 

chapter in which they are addressed. 

In the flowchart provided in Figure 1.8, the organization of this thesis is illustrated.  The 

intention behind this specific structure is the implementation of the validation strategy 

outlined in Figure 1.7. 
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Quadrant 1: Theoretical Structural Validation 

 

 • Critical review of literature relating to the components that are 

foundational for the methods proposed in this thesis. 

• What are the characteristics, limitations and domains of application of the 

building blocks?  Are the underlying assumptions compatible?  How do the 

individual components relate to the research questions and hypotheses? 

Chapter 2 

 

 • Presentation and discussion of the improvements to RCEM and showing 

the relation to the first research question and the first hypothesis.   

• What are the characteristics, limitations and domains of application of the 

new method?  Does it represent the first hypothesis proposed in Chapter 1? 

Chapter 3 

 

 • Presentation and discussion of the new robust decision support method and 

showing its relation to the second research question and second hypothesis.   

• What are the characteristics, limitations and domains of application of the 

new method?  Does it represent the second hypothesis proposed in Chapter 

1? 

Chapter 5 

 

    

 Quadrant 2: Empirical Structural Validation  

 • Discussion of  the appropriateness of the example problems chosen in 

Chapter 4 (Pressure Vessel), which is part of validating the first 

hypothesis, and Chapter 6 (Linear Cellular Alloy), which is related to the 

second hypothesis:  

o Argue that the examples are representative for engineering design 

problems in the domain the methods are designed for.  

o Document that the method theoretically is applicable to the chosen 

examples. 

o Show that the expected data and results can support a conclusion 

whether the hypotheses are valid or not. 

Chapter 4 

& 

Chapter 6 

 

    

 Quadrant 3: Empirical Performance Validation  

 • Building confidence in the utility of the proposed methods using the 

example problems: 

o Demonstrate that the method is working as designed (converges, 

makes compromises, results in robust points) 

o Show that the observed utility is actually linked to the application of 

the new method by applying an alternative method and comparing 

the performance 

o Verify that the results are correct by comparing to Latin hypercube 

samplings 

Chapter 4 

& 

Chapter 6 

 

    

 Quadrant 4: Theoretical Performance Validation  

 • Building confidence in the general applicability of the methods beyond the 

examples used in this thesis. 
Chapter 7 

 

    

Figure 1.7: Validation Strategy for this Thesis with Associated Tasks and Questions 
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Figure 1.8: Thesis Overview and Roadmap 
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In Chapter 1, the foundation of this thesis is built with the presentation of the motivation 

and the frame of reference.  The research questions and hypotheses are introduced and 

explained and the expected contribution is summarized.  Based on the validation strategy, 

the outline is developed and a brief overview for each chapter is given. 

In Chapter 2, the theoretical foundations for the methods developed in this thesis are 

explained and discussed.  These foundations include robust design, meta-modeling 

techniques, multi-objective decision support problems and stochastic analysis.  

Understanding the foundations and underlying theories is crucial to fully understand the 

research questions and hypotheses proposed in this thesis.  In order to support the 

theoretical structural validity of the introduced methods, relevant literature for the 

building blocks is referenced, analyzed and critically discussed in this chapter.  Showing 

the internal consistency of the components builds the basis for the theoretical structural 

validity of the new methods.  Additionally, a computational framework is explained that 

can be used for the application of the RCEM as well as the new methods.   

In Chapter 3, RCEM is analyzed and discussed.  A simple example is demonstrated to 

explain the development of the first research question.  Following the first hypothesis, 

several possible improvements are introduced, explained and tested on the simple 

example.  For the theoretical structural validity, emphasis is placed on verifying the 

internal consistency of the new method as well as discussing advantages and limitations.   

In Chapter 4, an engineering example problem, the design of a pressure vessel, is 

introduced, which will be used to show the performance of the modified RCEM 

discussed in Chapter 3.  For the empirical structural validity, it is argued that the example 

represents a typical engineering problem with characteristic assumptions, goals, variables 
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and constraints, which is appropriate to be solved with the new method.  For the 

empirical performance validity, a comparison of the results from the improved method 

with the original RCEM and a Latin hypercube sampling (LHS) is made.  Finally, an 

outlook is given to build the transition to the second research question.  

In Chapter 5, the second research question is addressed and a new method is introduced.  

The components of this method are discussed in detail from the perspective of 

embodying the second hypothesis presented in Chapter 1.  The internal consistency and 

the applicability of the new method, the simulation-based RCEM, are shown to support 

the theoretical structural validity.  Furthermore, the advantages and limitations of the 

introduced method are critically discussed.  Finally, the computational framework is 

briefly explained that can be used to apply the new method. 

In Chapter 6, an engineering example problem, the design of a heat exchanger, is 

introduced, which is used to validate the method presented in Chapter 5.  For empirical 

structural validation, it is discussed that the example problem is representative for 

problems, which the method is designed for.  By solving the design problem the 

applicability of the method is demonstrated. For empirical structural validation, the 

results are compared to Latin hypercube samplings. 

In Chapter 7, the thesis is summarized and the research questions are answered by 

discussing the validity of the hypotheses introduced in Chapter 1.  Furthermore, the work 

is critically reviewed and the contributions are identified. Hereby, emphasis is placed on 

the underlying assumptions and conditions under which the proposed methods work.  For 

the theoretical performance validation, it is argued that the methods presented in this 

thesis as well as the conclusions are relevant and valid beyond the two example 
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problems.  Finally, potential future research topics are identified that could enhance the 

proposed methods and make them more efficient or applicable to a broader range of 

engineering design problems. 

In the Appendix, a manual for JavaDSIDES, including a description of the MATLAB 

integration is presented.  Furthermore, the MATLAB code for the application of the 

modified RCEM to the pressure vessel example is given and code of the implementation 

of the simulation-based RCEM is presented.   

1.5  Chapter Synopsis 

In this chapter, the motivation for the research presented in this thesis is given and the 

frame of reference is established.  After the explanation of the research questions and the 

hypotheses, the validation strategy is outlined.  Besides the structure for the validation, 

also a thesis roadmap is presented.  In the following chapter, a literature review is given 

and the building blocks of the research and the proposed methods are explained.   
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CHAPTER 2 

ROBUST DESIGN: REVIEW OF LITERATURE AND 

IDENTIFICATION OF RESEARCH OPPORTUNITIES 

In this chapter, the foundations for designing robust systems are investigated.  As 

presented in Chapter 1, the primary goal in this thesis is to improve the original RCEM.  

Therefore, the fundamental components of RCEM are introduced in this chapter.  An 

explanation of multi-objective decision support is given in Section 2.1.  The foundation 

of RCEM, the robust design paradigm, is discussed in Section 2.2.  This includes a 

description of Taguchi’s robust design (Section 2.2.1) as well as a review of 

improvements and extensions made to this methodology.  RCEM is described in detail in 

Section 2.2.3 with its limitations outlined in Section 2.2.4.  In Section 2.3, a brief 

introduction to uncertainty analysis is given and the Probabilistic Collocation Method is 

introduced.  Finally, the computational framework developed and used in this thesis is 

presented in Section 2.4.   

2.1  Multi-Objective Decision Support and the Decision Support Problem 

Technique 

The core requirement of a design method is that it should assist designers in making 

decisions.  Since these decisions usually depend on more than one objective and often a 

compromise among conflicting objectives is required, an appropriate framework is 
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needed.  Parts of the following description of the compromise DSP are leveraged with 

modifications from (Seepersad, 2004).   

In this thesis, the compromise Decision Support Problem (cDSP) technique (Mistree, et 

al., 1993; Muster and Mistree, 1988) is used for formulating the objectives of engineering 

design problems.  The cDSP was developed especially for engineering design 

applications and supports multi-objective decision-making.  It is a hybrid form based on 

mathematical programming and goal programming.  In goal programming, target values 

for all objectives are established and the focus is on achieving each of these goals as 

closely as possible (Charnes and Cooper, 1977).  This idea is borrowed in the cDSP; for 

each objective an achievement function, Ai(x), is formulated that represents the value of 

the ith objective as a function of a set of design variables, x.  The deviation variables, 
−
id  

and 
+
id , represent the extent to which a target value, Gi, is over- or underachieved: 

( ) iiii GddA =−+ +−x

  

mi ,...,1=  Eq. 2.1 

Usually, when applying the cDSP, the goal formulations are normalized to guarantee 

comparability of the deviations from different objectives.  The normalization conventions 

are explained in detail in (Mistree, et al., 1993).  Since under- and overachievement can 

only be positive and both cannot be achieved simultaneously, which means that at least 

one of them has to be zero, the following restrictions apply: 

0, ≥+−
ii dd

   

mi ,...,1=  Eq. 2.2 

0=⋅ +−
ii dd

   

mi ,...,1=  Eq. 2.3 
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The overall objective function is formulated as a function of the deviation variables as 

follows: 

( )+−

=

= ii
mi

ddfZ ,
,...,1

 Eq. 2.4 

This function is often called deviation function and could take any form, the simplest of 

which is the weighted sum formulation: 

( )∑
=

++−− +=
m

i

iiii dwdwZ
1

 
Eq. 2.5 

Besides an Archimedean formulation as in Eq. 2.5, also preemptive (lexicographic) 

formulations are possible (Mistree, et al., 1993). 

The disadvantage of goal programming formulations is that they do not support 

constraints.  However, equality and inequality constraints are an integral part of 

engineering design problems.  This is why in the cDSP, this feature is borrowed from 

mathematical programming and constraints can be formulated as: 

0)( ≥xhi

   

pi ,...,1=  Eq. 2.6 

0)( =xhi

   

qppi ++= ,...,1

 

Eq. 2.7 

where p and q are the number of inequality and equality constraints, respectively.  The 

bounds on the set of design variables, x, are defined as: 

UiiLi xxx ,, ≤≤
  

ni ,...,1=  Eq. 2.8 

where n is the number of design variables, by which each solution is defined, and Lix ,  

and Uix ,  are the lower and upper bound of the ith variable.   
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Figure 2.1: The Framework of the Compromise DSP (modified from (Bras and Mistree, 1993)) 
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The formulations from goal programming and mathematical programming combined 

with the additional constructs of the cDSP are presented in Figure 2.1.  The cDSP is used 

to find a set of design variables that satisfy the bounds and constraints of the problem, 

while achieving a set of (conflicting) objectives as closely as possible.  Through the 

combination of components from both goal and mathematical programming, the cDSP is 

a flexible framework; it accommodates multiple constraints and objectives, as well as 

both quantitative information and information that may be based on the designer’s 

judgment and experience (Marston, et al., 2000).  The segmented structure of the cDSP 

(Given, Find, Satisfy, Minimize) guides the designer through the collection of data.  By 

following the structure, the designer is less likely to miss or forget important information 

when formulating the design problem.   

The compromise DSP has been utilized for designing various types of engineering 

systems.  Especially the overall objective function has been a research focus and was 

modified to facilitate physical programming (Hernandez, et al., 2001), Bayesian (Vadde, 

et al., 1994), fuzzy (Zhou, et al., 1992) and utility-theory formulations (Seepersad, 2001) 

for specific contexts.  Since the compromise DSP has been validated extensively in 

literature, the contribution in this thesis is limited to incorporating the cDSP into the 

modified RCEM and the simulation-based RCEM as the foundational framework.   

In this section, the details of the compromise DSP are explained.  In the next section the 

foundations of robust design are reviewed and the Robust Concept Exploration Method 

(RCEM), which also utilizes the cDSP, is introduced.   
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2.2  Robust Design and Robust Concept Exploration 

“Robustness is the state where technology, product, or process performance is minimally 

sensitive to factors causing variability (either in the manufacturing or user’s environment) 

and aging at the lowest unit manufacturing cost” (Taguchi, et al., 2000). The foundations 

for robust design are based on the philosophy of Genichi Taguchi, a Japanese industrial 

consultant, who introduced his concept in the mid 80s (Taguchi, 1986; Taguchi and 

Clausing, 1990).  In 1993, Box defines said that “Robustifying a product is the process of 

defining its specifications to minimize the product’s sensitivity to variation” (Box and 

Fung, 1993).  Suh defines robust design as “the design that satisfies the functional 

requirements even though the design parameters and the process variables have large 

tolerances for ease of manufacturing and assembly” (Suh, 2001).  Although the 

formulations are slightly different, their core notion is the same: increasing robustness 

means reducing performance variability.   

The robust design philosophy is the core component of the research presented in this 

thesis.  Therefore it is important to understand the underlying theory and the different 

concepts introduced in academia.  In this Section, the fundamentals of robust design are 

presented.  In Section 2.2.1, Taguchi’s robust design approach is explained briefly.  This 

philosophy got significant industrial and academic attention resulting in many proposed 

improvements of the Taguchi approach.  These critiques, improvements and extensions 

are reviewed in Section 2.2.2.  The Robust Concept Exploration Method (RCEM), which 

the research presented is based on, is described in Section 2.2.3.  Finally, in Section 2.2.4, 

the limitations of RCEM are outlined as the research opportunities addressed in this 

thesis.   
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2.2.1  Taguchi’s Robust Design 

“Robust design is a method for improving the quality of products and processes by 

reducing their sensitivity to variations, thereby, reducing the effects of variability without 

removing its sources” (Seepersad, 2004).  This means that a robust product, if exposed to 

uncertainty, remains a constant level of quality and performance.  This design philosophy 

is established by Genichi Taguchi, a Japanese industrial consultant.  His robust design 

approach is a two-step process. It is subdivided in parameter design and tolerance design.  

In parameter design, the goal is to find a robust region in the design space without 

modifying or eliminating the sources of uncertainty or variation.  In tolerance design, the 

variations are analyzed and tolerances are adjusted.  For this thesis, only the parameter 

design is of importance, since the variations are assumed to be not controllable.  

Taguchi’s parameter design is explained in the following.   

Taguchi’s approach is based on the assumption that deviation from the intended 

performance of a product or process can be expressed monetarily.  Supposed y is the 

quality or performance characteristic of a product or process and T its target value 

defined by the designer, Taguchi defines a quadratic loss function as: 

( ) ( )2
TykyL −=  Eq. 2.9 

This function is a measure for the quality loss due to the performance deviation, |y-T|.  

The main advantage of this function is that it allows the decomposition shown in Eq. 2.10 

when calculating the average or expected quality loss Q.   

( ) ( ) ( ) 



 +−=



 −= 222

E yy TkTykyQ σµ  
Eq. 2.10 
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In this equation yµ  is the mean and 2
yσ  is the variance of y and E[ ] is the expectation.  

The goal is to minimize Eq. 2.10, which is equivalent to maximizing the signal-to-noise 

factor, a ratio that includes the performance mean and its variance, introduced by 

Taguchi.  For a brief explanation of the formulations of the signal-to-noise ratios it is 

referred to (Park, et al., 2006).  While this step, the parameter design, does not increase 

the cost, tolerance design is expensive through the cost associated with tightening the 

tolerance.  This is the reason why Taguchi developed a two step approach.  According to 

his philosophy, tolerance design should only be utilized when robustness cannot be 

designed into a product or process with parameter design.  In Figure 2.2, the probability 

density functions of three different designs are illustrated in comparison to the quality 

loss function.  In this scenario, design A is preferred over design B due to the smaller 

deviation of its mean from the performance target and over C due to its smaller variance.   

When analyzing the design space, Taguchi clearly separates control factors, which are 

design variables that can be controlled, from noise factors, which are difficult or 

impossible to control.  This is the basis for the definition of Type I and Type II robust 

designs by (Chen, et al., 1996b) (see Section 1.1.2).   
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Figure 2.2: Taguchi’s Quality Loss Function (Seepersad, 2004) 

 

 

Figure 2.3: Robust Design for Variations in Noise and Control Factors (Chen, et al., 1996b) 
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Finding a robust solution means to take advantage of nonlinear relationships defining the 

performance.  This is illustrated in Figure 2.3.  It can be seen, that control factors are 

chosen that the performance variation caused by the variations of control and noise 

factors are minimal.  Hereby, the robust solution is usually different from the optimal 

solution, meaning that the optimal solution is rarely robust.  

In this section, Taguchi’s approach to robust design is introduced.  Certainly, Taguchi 

initiated a paradigm shift in engineering design.  Although he received a lot of credit for 

this development, academia and industry expressed concern and criticism on his approach 

and have been constantly trying to improve robust design and make it applicable for a 

variety of fields and problems.  A review of the critiques and further developments is 

given in the next section.   

2.2.2  Limitations and Improvements of Taguchi’s Robust Design Methodology 

In this section, the criticism on Taguchi’s robust design approach is reviewed and some 

improvements and further developments are presented.  This section is leveraged with 

minor modifications from (Allen, et al., 2006).   

Although Taguchi’s robust design principles are advocated widely in industrial and 

academic settings, his statistical techniques, including orthogonal arrays and the signal-

to-noise ratio, have been criticized extensively.  Especially improving the statistical 

methodology for robust design has been an active area of research (Myers and 

Montgomery, 1995; Nair, 1992; Tsui, 1992; Tsui, 1996).  In the panel discussion reported 

by Nair (Nair, 1992), practitioners and researchers discuss Taguchi’s robust design 

methodology, the underlying engineering principles and philosophy, and alternative 
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statistical techniques for implementing it.  For example, many alternative experimental 

designs have been proposed (Giunta, et al., 1997; Lin, 2004; Santner, et al., 2003; Wu 

and Hamada, 2000), and a significant point of debate and scholarly research has been 

dedicated to the comparative advantages of Taguchi’s cross arrays (in which control 

factors and noise factors are varied according to separate plans) versus combined arrays 

(in which control and noise factors are varied jointly according to a single plan).  A key 

advantage of the combined array approach is that it provides flexibility for the designer to 

rule out certain effects a priori and thereby accomplish computational savings (see e.g. 

(Borror and Montgomery, 2000; Shoemaker, et al., 1991; Welch, et al., 1990)).  Despite 

the convincing theoretical case for combined arrays, empirical studies suggest that cross 

arrays provide superior outcomes under a wide range of conditions (Frey and Li, 2004).  

In (Shoemaker, et al., 1991) it is noted that combined arrays are successful to the extent 

that the model fits well. 

It has been demonstrated that using the signal-to-noise ratio as the objective in robust 

design can hide information about the effects of noise (Box, 1988; Shoemaker, et al., 

1991).  Nair (Nair, 1992) also reports that a panel of statisticians suggest independently 

modeling the mean response and variability directly or via statistical data transformations 

(Box, 1988; Tsui, 1992; Vining and Myers, 1990), rather than modeling the signal-to-

noise ratio - a practice that discards useful information about the response particularly by 

confounding mean response with variance information.   

In (Chen, et al., 1996b) and (Bras and Mistree, 1993), robust design problems are 

formulated as multi-objective decisions using the compromise Decision Support 

Problems (cDSPs) (see Section 2.1).  In this approach, control and noise factors are 
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considered as potential sources of variation, and constraints are modeled in a worst-case 

formulation to ensure feasibility robustness.  Separate goals of bringing the mean on 

target and minimizing variation for each design objective are included in a goal 

programming formulation of the objective function.  This provides flexibility for 

achieving compromises among multiple performance objectives as well as individual or 

collective compromises among mean values and variations for all objectives.  In more 

recent work, Chen et al. have extended the approach to include alternative formulations 

of the objective function, such as compromise programming (Chen, et al., 1999) and 

physical programming (Chen, et al., 2000).   

Researchers have also developed alternative analysis procedures including “response 

modeling” (Welch, et al., 1990), dual response approaches (Vining and Myers, 1990), 

and rejection of pre-decided criteria in favor of graphical analysis and discovery (Box, 

1988).   

Taguchi’s robust design principles have also been extended by applying them to 

simulation-based design.  With increasing pressure to cut development costs and reduce 

development times, robust design is increasingly conducted by evaluating the relationship 

between input factors and responses using computer simulations rather than prototypes 

and physical experiments.  Given that computer experiments lack pure error, different 

experimental design and analysis strategies are recommended (Simpson, et al., 2001b).  

In response to this need, the field of design and analysis of computer experiments has 

grown rapidly in recent decades providing a variety of useful techniques (Santner, et al., 

2003).   
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Once a robust design problem has been formulated, it must be solved.  The computational 

burden can be significant, particularly for design problems, in which a broad design space 

must be explored.  Solving a robust design problem is distinguished by the need to 

evaluate not only a nominal value for each response but also the variation of each 

response due to control or noise factor variation.  If a response y is a function of control 

factors x and noise factors z, then: 

( )zx,fy =  Eq. 2.11 

where the function f can be a detailed simulation model, a surrogate model, or a physical 

system.  The challenge is to estimate the expected value yµ  and variance 2
yσ  of the 

response.  As presented in Section 1.3.1, this challenge is the research focus in this thesis.  

There are many techniques for transmitting or propagating variation from input factors to 

responses, and each technique has strengths and limitations.  Monte Carlo analysis is a 

simulation-based approach that requires a very large number of experiments (Liu, 2001).  

It is typically very accurate for approximating the distribution of a response, provided 

that probability distributions are available for the input factors.  On the other hand, it is 

very computationally expensive, especially if there are large numbers of variables or if 

expensive simulations are needed to evaluate each experimental data point.  Du and Chen  

review several approaches for maintaining feasibility robustness and introduce a most 

probable point (MPP) based approach that offers accuracy similar to Monte Carlo based 

approaches with fewer computations (Du and Chen, 2000).  If only a moderate number of 

experimental points are affordable, a variety of space-filling experimental designs are 

available, and experimental designs such as fractional factorials or orthogonal arrays can 

be used (Myers and Montgomery, 1995; Wu and Hamada, 2000).  These experimental 
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designs provide adequate estimates of the range of the response rather than its 

distribution, and they require fewer experimental points.  All of these experimental 

techniques can be used in two ways: (1) to provide estimates of the variation or 

distribution in responses at a particular design point or (2) to construct surrogate models 

of the response that can then be used in place of a computationally expensive simulation 

model for evaluating mean responses and variations (e.g. (Chen, et al., 1996b)).  All of 

these methods suffer from the problem of size identified in (Koch, et al., 1997), in which 

the number of experiments becomes prohibitively large (given the computational expense 

of most engineering simulations) as the number of input factors or design variables 

increases.  As an alternative method for propagating variation, the Taylor Series 

expansions has been applied (Phadke, 1989).  A first-order Taylor Series expansion, for 

example, can be used to relate variation in response, �y, to variation in a noise factors, 

�z, or a control factor, �x, as follows: 
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Eq. 2.12 

where the variation may represent a tolerance range or may be a multiple of the standard 

deviation.  In Section 2.2.3, the mathematical details for deriving Eq. 2.12 are given.  

Higher-order Taylor Series expansions can be formulated to provide a better 

approximation of the variation in response, but higher-order expansions also require 

higher-order partial derivatives of the response function with respect to control and noise 

factors.  Taylor Series expansions are relatively accurate for small degrees of variation in 

control or noise factors but lose their accuracy for larger variations or highly nonlinear 

functions.  A Taylor Series expansion requires evaluation of the partial derivative or 
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sensitivity of the response function with respect to changes in control or noise factors.  If 

analytical expressions are available for the sensitivities, this can be a computationally 

attractive and relatively accurate approach even for large numbers of control and noise 

factors.   

A crucial point that has not been addressed in literature is that with the Taylor Series 

expansion a performance variation of zero is estimated in stationary points.  This means 

that optima, which are in general not considered robust, have perfect robustness when 

evaluated with this technique.  This renders this approach inappropriate for problems, 

where the design space might contain local performance optima.  In this thesis, this 

limitation is addressed in the research questions and hypotheses (see Section 1.3.1).  The 

Taylor Series is also utilized in the original RCEM (Chen, 1995), which is explained in 

the next section.   

2.2.3  The Robust Concept Exploration Method 

A foundational component for the research presented in this thesis is the Robust Concept 

Exploration Method (RCEM) introduced by Chen, et al. (Chen, 1995; Chen, et al., 1996a; 

Chen, et al., 1996b).  This robust design method is explained in this section.  The 

explanation is leveraged with modifications from (Seepersad, 2004).   

RCEM is a domain-independent, systematic approach that is formulated by integrating 

statistical experimentation and approximate models, robust design techniques and multi-

objective decisions.  The framework and the information flow of RCEM are illustrated in 

Figure 2.4.  In stage A, design variables, noise factors and their ranges as well as the 

responses are defined.  Statistical experiments are designed and simulation data is 
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generated in stages B-D.  This data is utilized for building global surrogate models for 

each response in stage E.  For that, the Response Surface Methodology (RSM) is used.  

The performance values and variances calculated from the response models with a Taylor 

Series expansion are processed in the compromise Decision Support Problem (cDSP), 

which builds the frame of this approach.  The design problem, which is entirely 

formulated in the cDSP, can then be solved using a computer system like DSIDES (see 

Section 2.4).  
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Figure 2.4: Framework of the Robust Concept Exploration Method (Chen, et al., 1996a) 

 

A component that is criticized in this thesis is the variance estimation used in RCEM.  In 

RCEM, the first-order Taylor Series is used to derive the function for the estimation of 

the performance variance (Phadke, 1989).  Variance is defined as the expected squared 

difference between the mean and the random variable X: 
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22 µσ XEXVar X  Eq. 2.13 

The variance has the following property: 
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Eq. 2.14 

where c and d are constant factors, 1X and 2X are random variables and Cov(X1, X2) is 

their covariance.  If the two random variables are independent, the covariance is equal to 

zero and the third term of Eq. 2.14 can be ignored.  The first-order Taylor Series 

expansion of the surrogate model or explicit performance function f about the point (a,b) 

is defined as: 
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The variance of the performance ),( 21 xxf  can be calculated using the property given in 

Eq. 2.14.  Assuming that 1x  and 2x  are Gaussian distributed with the variances 2

1xσ and 

2

2xσ , the performance variance can be derived as follows: 

)(
),(

)(
),(

)],([)],([ 2

2

2
1

2

1
21 bxVar

x

baf
axVar

x

baf
bafVarxxfVar −









∂

∂
+−









∂

∂
+≈  

Eq. 2.16 

With 0)],([ =bafVar , )()( 11 xVaraxVar =− and )()( 22 xVarbxVar =−  respectively, 

the estimation for the performance variance using first order Taylor Series Expansion is: 
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Eq. 2.17 can be generalized for n design variables x and m noise factors z: 
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Eq. 2.18 

Although RCEM has some limitations, which are outlined in the next section, it has been 

employed successfully for a simple structural problem and design of a solar powered 

irrigation system (Chen, 1995), a High Speed Civil Transport (HSCT) (Chen, et al., 

1996a), and a General Aviation Aircraft (Simpson, et al., 1996).  In addition, RCEM has 

been extended to facilitate the design of complex hierarchical systems (Koch, 1997) and 

product platforms (Simpson, et al., 2001a).   

Within the RCEM framework, the compromise DSP is used as a multi-objective decision 

support tool for determining the values of design variables that satisfy a set of constraints 

and balance a set of (conflicting) goals.  These goals contain both performance and 

robustness objectives.  In this setting, the cDSP is particularly flexible.  Families of 

robust designs can be generated by changing the priority levels or weights of goals or by 

changing the target values for design requirements - none of which require reformulation 

of the compromise DSP.   

In this section the RCEM is presented, which the research in this thesis is based on.  In 

the research conducted the limitations of RCEM are addressed, which are outlined in the 

following section. 
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2.2.4  Limitations of RCEM 

The principal goal for this thesis is to: 

Further develop the Robust Concept Exploration Method (RCEM) to facilitate the rapid 

exploration of nonlinear design spaces and the generation of robust design solutions.   

 

For achieving this goal, the limitations of RCEM, which are outlined in this section, are 

addressed. 

The first limitation found in RCEM is the variance estimation with the first-order Taylor 

Series expansion (Eq. 2.18).  In stationary points of the performance function this 

technique estimates a performance variance of zero, independent of the deviation of the 

design variables or noise factors, because the derivative in those points is zero.  Since 

optimal solutions are, in general, not considered to be robust (see e.g. Figure 2.3), the 

application of this technique in nonlinear problems can lead to fatal errors.  This problem 

is demonstrated with an example in Chapter 3 and is addressed in the first research 

question: 

How can the formulation of robustness in compromise Decision Support Problems for 

multi-dimensional and multi-objective design problems be improved? 

 

To answer this question the modified RCEM is introduced in Chapter 3, which utilizes an 

alternative method for the performance variance estimation.   
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The second limitation of RCEM is the utilization of global response surfaces.  Especially 

the RSM can lead to surrogate models that do not reflect the robust areas of the design 

space correctly.  An example is given in Chapter 3 (see Figure 3.3).  The error in the 

global response models increases as the nonlinearity of the performance function 

increases.  This limitation of RCEM is addressed in the second research question: 

How can the RCEM be augmented to improve the accuracy of the robust concept 

exploration for nonlinear design problems that involve simulations? 

 

This question is answered with the development of the simulation-based RCEM.  In the 

new method, the Probabilistic Collocation Method (PCM) is incorporated.  This 

uncertainty analysis tool is a local response model approach.  The fundamental concept of 

this method is explained in the next section.   

2.3  The Probabilistic Collocation Method 

In the last section, the limitations of the original RCEM are outlined.  One of the 

limitations is linked to the application of global response surfaces for design problems 

that require simulations for the performance evaluation of a design solution.  For this 

reason an alternative surrogate modeling technique is needed.  To account for nonlinear 

problems, in this thesis, a local approach is considered to be a promising alternative.  

With a local response model approach, surrogate models are only created for a small 

region around a point of interest as opposed to a global response surface for the entire 

design space.   
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In this thesis, the Probabilistic Collocation Method (PCM) is investigated, which was 

developed by Tatang (Tatang, 1995) for applications in Chemical and Environmental 

Engineering.  It is a very efficient method that generates response models with a 

minimum number of simulation runs.  The method has been previously applied to 

forecast and analyze future carbon emissions (Webster, 1997), numerical geophysical 

models (Tatang, et al., 1997), a simple ocean model (Webster, et al., 1996), the 

evaluation of uncertainty in dynamic simulations of power system models (Hockenberry 

and Lesieutre, 2004) and the analysis of flow in random porous media (Li and Zhang, 

2007).  In those applications, the method has been found very efficient and effective for 

estimating the statistical moments and the probability density function of the system 

performance under uncertainty.  In this thesis, the Probabilistic Collocation Method is 

introduced to Robust Engineering Design.   

The following description of the concept of the Probabilistic Collocation Method is 

leveraged with modifications from the explanations in (Hockenberry, 2000) and 

(Webster, et al., 1996). 

The basic concept underlying the Probabilistic Collocation Method is to generate an 

approximation of the response of a simulation as a polynomial function of the uncertain 

input factors.  This polynomial approximation can then be used for traditional uncertainty 

analysis tools, such as Monte Carlo or Latin hypercube sampling.  However, in contrast 

to the original RCEM, with the Probabilistic Collocation Method the model response is 

estimated locally instead generating a global response surface.  For this local 

approximation a very small number of simulation runs is needed.   
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Assuming that in a one dimensional problem, x is the uncertain parameter, p(x) its 

probability density function and g(x) the outcome of interest of order (2n-1), the 

approximation would have the following form: 

( ) 12
1210 ...ˆ −

−′++′+′= n
n xgxggxg  

Eq. 2.19 

where ig ′  are constants, that could be determined by performing many simulations and 

applying a least square approach.  The minimum number of simulations required to 

determine all coefficients would be 2n.  If the primary interest is to just match the 

expected outcome, the ideas underlying the Gaussian Quadrature Integration can be 

borrowed.  For details on this integration approach, see for example (Davis and 

Rabinowitz, 1975).  Following the Gaussian Quadrature Integration the following 

relationship can be derived: 

( )[ ] ( ) ( ) ( ) ( )[ ]xgExgpdxxgxpxgE
n
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=== ∫ ∑
=

 

Eq. 2.20 

The crucial part in this method is the selection of the sample points, xi, which is again 

done according to the Gaussian Quadrature technique.  From p(x), a set of orthonormal 

polynomials O can be computed and the roots of On can be calculated.  These roots or 

collocation points are independent of any particular output and are then used to determine 

the coefficients for the approximation of all outputs, which is presented in Eq. 2.21. 

( ) ( ) ( ) ( )xOgxOgxOgxg nn 111100 ...ˆ −−+++=  
Eq. 2.21 
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With the simulation results at the n collocation points, a linear system of equations can be 

built and solved to determine the coefficients gi.  In case x is Gaussian distributed, the 

Hermite polynomials can be used as orthogonal polynomials so that Eq. 2.21 has the form 

of a Polynomial Chaos Expansion (PCE) (Choi, et al., 2007).  An overview of the steps of 

the PCM is given in Figure 2.5.  The PCM is explained in greater detail with an example 

in Section 5.1.1.   

From the description it can be seen that the PCM is a method for calculating the 

coefficients of a polynomial approximation with the bare minimum number of simulation 

runs.  It is designed to reproduce the moments of the outcome with high fidelity by 

approximating the model response particularly well in regions of high probability.  The 

representation of the outcome in low probability regions might not be as accurate.  This 

negative effect is assumed to have a minor effect on the accuracy when the PCM is used 

in RCEM.  Compared to a global response surface, which is used in the original RCEM, a 

significant improvement of the accuracy and reliability in non-linear regions is expected.  

In Chapter 5, the PCM is introduced to robust concept exploration and the simulation-

based RCEM is developed.  This method used for the validation of the second research 

hypothesis of this thesis. 

In this section, the Probabilistic Collocation Method has been introduced and the 

underlying theoretical and mathematical concept was presented.  In Section 5.1.1, this 

explanation is extended on a simple example.  The computational framework used for 

applying the new design methods proposed in this thesis is introduced in the next section. 
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Figure 2.5: Information Flow Diagram of the Probabilistic Collocation Method (Webster, et al., 1996) 

2.4  New Computational Framework for RCEM 

For the application of the new design methods proposed in this thesis an appropriate 

computational framework is required.  In this section, the framework that was developed 

for this thesis is outlined.   
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The foundational framework of all RCEM variants is the compromise DSP.  The design 

problems are always formulated as a cDSP, which has to be solved for finding the desired 

solutions.  Solving a cDSP means to minimize the deviation function while satisfying all 

constraints and bounds (Section 2.1).  The Adaptive Linear Programming (ALP) is 

considered to be an appropriate algorithm for solving cDSPs (Mistree, et al., 1993).  This 

algorithm and the computer program, which implements ALP, are introduced briefly in 

Section 2.4.1.  The new extended computational framework developed for this thesis is 

presented in Section 2.4.2.   

2.4.1 Adaptive Linear Programming and DSIDES 

In this section, the Adaptive linear Programming (ALP) as well as the original DSIDES 

(Decision Support In the Design of Engineering Systems) are briefly introduced.  Since 

the focus in this thesis is not on testing or modifying this component, it is referred to 

(Mistree, et al., 1993) for greater details.   

The ALP has been developed for the design of large, highly constrained, complex 

systems (Mistree, et al., 1981).  According to (Mistree, et al., 1993) the following three 

features contribute to the success of the ALP algorithm: 

• the use of second-order terms in linearization 

• the normalization of the constraints and goals and their transformation into generally 

well-behaved convex functions in the region of interest 

• an “intelligent” constraint suppression and accumulation scheme. 
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These features are described in detail in (Mistree, et al., 1981).  The implementation of 

the ALP algorithm for solving cDSPs is illustrated in Figure 2.3.   

 

 

Figure 2.6: Implementation of the ALP for Solving cDSPs (Mistree, et al., 1993) 

 

ALP has been implemented in DSIDES, a computer system written in FORTRAN that 

can be used for solving cDSPs.  The original DSIDES is appropriate for solving both 
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compromise and selection DSPs.  However, since the FORTRAN is not very widely 

used, Matthew Marston has written the cDSP part of DSIDES in Java.  This JavaDSIDES 

is significantly easier to apply and further develop than the original FORTRAN version.  

JavaDSIDES is used as the foundation of the computational framework used in this 

thesis.  A manual for JavaDSIDES is presented in Appendix A.  The additional 

components of the computer system used in this thesis are introduced in the following 

section.   

2.4.2  New Computational Framework with JavaDSIDES and MATLAB Integration 

In this section, the entire computational framework used in this thesis is introduced 

briefly.  It is based on JavaDSIDES, which is described in the previous section.  For the 

application of JavaDSIDES, the cDSP of the design problem is formulated in an XML 

document.  Since many designers are not familiar with the XML syntax, this has been 

found a limitation of JavaDSIDES.  In order to make the XML document creation more 

convenient, a MATLAB program has been developed as part of this thesis.  This 

MATLAB cDSP XML Generator offers a clear and intuitive interface for the designer.  

The designer can type in the cDSP almost as he or she would formulate it as a word 

document.  The code and the interface are presented in Figure A.5 in Appendix A.  If a 

global response surface is used or the performance and constraint functions are known 

explicitly, JavaDSIDES is executed right from this interface and the results are displayed 

in the MATLAB command window and are saved as an output text file and a spreadsheet 

in the DESIDES root folder.  Examples of these files are given in Figure A.9 as well in 

Table A.1 and Table A.2 in Appendix A.   
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To make JavaDSIDES applicable in this thesis, especially for the simulation-based 

RCEM, the integration with MATLAB has to be established.  This is accomplished by 

wrapping the MATLAB code in Java and thus, making it executable as native Java 

functions.  This was required, since the PCM implementation as well as the simulation 

code for the LCA heat exchanger is written in MATLAB.  The MATLAB add-on, 

MATLAB Builder JA, can be used for deploying the MATLAB functions.  A description 

of this process is given in Appendix A.8.  The deployed MATLAB Java function 

packages can then be imported to the JavaDSIDES model file.  The detailed steps for this 

process are given in Appendix A.9.  A simplified scheme of the computational 

framework is shown in Figure 2.3.   

 

 

Figure 2.7: Computational Framework used in this Thesis 
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This framework allows for implementing all functions and simulations written in 

MATLAB with JavaDSIDES.  This also applies to brute force Monte Carlo Simulations 

or Latin hypercube samplings that are written in MATLAB, as used for example in 

Chapter 3 of this thesis. 

2.5  Chapter Synopsis 

As presented in Figure 2.8, in this chapter the fundamental concepts and methods, which 

the research presented in this thesis is based on, are introduced.  The compromise DSP is 

explained in Section 2.1; the robust design approach are reviewed and discussed in 

Section 2.2 with the RCEM introduced in Section 2.2.3.  The limitations of RCEM are 

outlined as the research opportunities addressed in this thesis in Section 2.2.4.  

Furthermore, the Probabilistic Collocation Method as an integral component of the new 

simulation based RCEM is explained in Section 2.3.  Finally, the computational 

framework required for the application of the proposed methods is presented in Section 

2.4.   

After discussing all foundations, the research conducted in presented in the next chapters.  

Chapter 3 contains the demonstration of the limitations of RCEM and the development of 

alternative variance estimation techniques.  The modified RCEM, which is introduced in 

Section 3.2.4, is validated in Chapters 3 and 4.  In Chapter 5 the simulation-based RCEM 

is developed and validated.  The validation of this method is continued in Chapter 6.   
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CHAPTER 3 

MODIFYING THE ROBUST CONCEPT EXPLORATION METHOD 

In traditional engineering design, the designers make their decisions with the mindset of 

achieving the highest feasible performance of their product.  In robust design, however, 

designers want to find a trade-off between performance and robustness, which measures 

the product’s sensitivity to uncertain factors.  It is crucial at this stage to find a reliable 

way for assessing the robustness of a system.  The success of a robust design method 

heavily depends on how robustness is defined and formulated.  This is addressed in the 

first research question introduced in Chapter 1: 

First Research Question: 

How can the formulation of robustness in compromise Decision Support Problems for 

multi-dimensional and multi-objective design problems be improved? 

 

In this chapter the answer to this research question is developed.  Therefore, in Section 

3.1 the Robust Concept Exploration Method, which was introduced by Wei Chen (Chen, 

1995), is reviewed, analyzed, and its limitations and resulting research gaps are 

presented.  Thereupon, several possible ways to improve the method are discussed and 

tested in Section 3.2.  These improvements are based on the first research hypothesis, 

which is also described in Chapter 1: 
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First Research Hypothesis: 

Using a global response surface, the nominal mean and a single point first order Taylor 

Series Approximation for the variance estimation is not accurate enough for finding 

robust solutions of nonlinear design problems.  The Robust Concept Exploration Method 

can be improved by using appropriate formulations that account for the nonlinearity of 

the problem. 

 

In order to validate the new method, for which the validation strategy is explained in 

Section 3.3, a new computational framework is required.  This framework was also 

developed as part of this thesis and is introduced in Section 2.4.   

3.1  Characteristics and Limitations of RCEM 

Based on the detailed description of the Robust Concept Exploration Method in Chapter 

2, the focus in this section is on analyzing and discussing the method.  The underlying 

assumptions are compared to the claims and the performance is assessed.  This critical 

review leads to the limitations of the method, which build the foundation for the first 

research question. 

What is the objective of applying RCEM? 

The Robust Concept Exploration Method was developed to support the early stages of the 

design of complex systems.  It is intended to provide a tool for designers to examine the 

entire design space effectively and efficiently and determine feasible robust solutions.  To 
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explain the desired outcome of RCEM, often Figure 3.1 is used in literature (e.g. (Chen, 

1995; Chen, et al., 1996b)).   

 

 

Figure 3.1: Optimizing Solution vs. Robust Solution (Chen, 1995; Chen, et al., 1996b) 

 

In Figure 3.1, a univariate nonlinear design problem is illustrated.  In this example, x is an 

uncertain design variable and y is the deviation function that does not consider 

robustness.  In this case, the deviation function can be seen as a signal factor, which has 

to be minimized for better performance of the engineering system.  Using traditional 

engineering optimization, the designer would choose xopt as the preferred solution.  

However, by introducing robustness as an objective, the robust solution µrobust becomes 

the better solution because it is less sensitive to variations of the design variable x and 

still has a satisfying performance.  RCEM is developed to find these robust solutions.  To 

accomplish this, a synthesis of ideas from the Taguchi method, statistical experimentation 
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methods and nonlinear programming methods is used.  Although the combination of 

those methods is very promising, the framework of RCEM has some crucial gaps.   

What are the limitations of RCEM? 

The limitations of RCEM are explored and explained along the three steps of the method 

which are according to (Chen, et al., 1996b): 

“Step 1: Build response surface models to relate each response to all important 

control- and noise- factors using the Response Surface Methodology 

Step 2: Derive functions of mean and variance of the responses based on the type 

of robust design applications. 

Step 3: Use the compromise DSP to find the robust design solution“ 

These steps are also illustrated in Figure 2.3.   

The limitations of Step 1 are related to the accuracy of the surrogate model generated 

using the Response Surface Methodology.  Considering that RCEM is meant to assist 

designers in the early stages of design, it can be assumed that a) the design space is still 

relatively large and b) the design might change, which requires a repetition of the 

method.  Most engineering design problems have several design variables, which makes 

the generation of a response surface for a large design space computationally expensive.  

This response surface becomes invalid as soon as the underlying model is modified.  

Furthermore, the second or third order response surfaces might not be able to provide a 

good fit for a large design space, especially if the problem is nonlinear or even highly 

nonlinear.  In a nonlinear design problem, it can lead to fatal problems, if the fit of the 
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response surface is not accurate enough around a robust region.  In such a case, the best 

goal formulations cannot detect it.  This problem is addressed in (Lin, et al., 1999), where 

the authors use Eq. 3.1 as an artificial performance function.   

∑
=

− =−=
9

1

)1( ]976...910[)900()(
i

i
i xwithxaxf  

a1 =   – 659.23 a4 = 0.82691 a7 =   – 3.2446 x 10-6 

a2 = 190.22 a5 =   – 0.021885 a8 = 1.6606 x 10-8 

a3 =   – 17.802 a6 = 0.0003463 a9 =   – 3.5757 x 10-11 

 

Eq. 3.1 

 

This function is chosen so that it is representative for an engineering problem, which 

RCEM is designed for.  The example is not complex; however, it has characteristics, with 

which many concept exploration methods have difficulties; it has (a) a global 

performance maximum, (b) a global minimum and (c) a robust area, which are illustrated 

in Figure 3.2. 

In order to illustrate the limitation of the first RCEM step, a quadratic and a third order 

response surface for this problem are generated.  The surrogate models are fitted to 23 

sample points evenly distributed over the design space.  The response surfaces, together 

with the performance function and sample points, are illustrated in Figure 3.3. 
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Figure 3.2: Example Function with (a) Maximum, (b) Minimum and (c) Robust Area 
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Figure 3.3: 2nd and 3rd Order Response Models of the Example Function. 
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It can be seen that both surrogate models do not represent the robust area accurately, 

which would make the exploration method giving wrong results.  This example raises the 

question of whether response surfaces that are generated over the entire design space are 

at all appropriate for robust engineering design problems.  Since robust design does not 

make sense for linear problems (equal robustness over the entire design space), it can be 

assumed that all robust exploration problems are at least of quadratic order; in the case of 

systems engineering with many interdependencies between components, the designer 

often has to deal with highly nonlinear performance functions.  Considering that 

decisions in the early stages of design should be made extremely thoroughly, a better 

method is needed for problems where the performance function is not known explicitly.   

This shortcoming of RCEM influenced the second research question and is addressed 

more detailed in Chapters 5 and 6.   

For the remainder of Chapters 3 and 4, no response surfaces are considered; instead, 

examples are used, in which explicit performance functions are available and no 

surrogate model is required.  This allows focusing on the performance and robustness 

formulations.   

 

Another critical part of RCEM is Step 2, where the functions for the performance mean 

and the performance variance (robustness) are derived from the response surface or the 

explicit performance function.  In RECM, the performance mean yµ  is simply assumed 

to be the function value at the mean of design variables µx and noise factors µz (Eq. 3.2).  

This is called the nominal mean.   
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),( zxy f µµµ ≈  Eq. 3.2 

This estimation is only accurate for linear or nearly linear functions.  If f(x) is nonlinear, a 

nominal value shift can be observed (Giovagnoli and Romano, 2008; Li and Wu, 1999).  

This means that the actual mean shifts away from the nominal mean.  In Figure 3.4, this 

phenomenon is illustrated.   

 

 

Figure 3.4: Nominal Value Shift 

 

The nonlinearity of the performance function can lead to a nonsymmetrical output 

distribution, where the mean is no longer equal to the mode.  For example, in Figure 3.4, 

the output has a positive skew in which case the actual mean is shifted to the right from 

the estimated mean.   
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In Section 3.2.1, a possibility for estimating the performance mean is introduced, which 

accounts for the nominal value shift. 

A similar, however more severe problem can be found in the estimation of the 

performance variance.  In RCEM, the first-order Taylor Series is used to estimate the 

output variance, which is used to formulate and assess the robustness (see Section 2.2.3). 

( ) ( )
∑∑

==









∂

∂
+









∂

∂
≈

m

i

z

i

n

i

x

i

y ii z

f

x

f

1

2

2

1

2

2

2 σσσ
zx,zx,

 

Eq. 3.3 

In this equation, simply the square of the derivative at the design variable or noise factor 

mean is multiplied with the variance of the design variable or noise factor.  This means 

that the steeper the function is at the point of interest, the higher is the expected variance.  

This approach works as long as the function is nearly linear.  When dealing with 

nonlinear functions, this approach can lead to fatal errors.  The biggest problem occurs in 

local optima; here the derivative is equal to zero, which leads to a performance variance 

estimation of zero, while the actual variance can be very high if it is a peak optimum.  

This is why an exploration method using the first order Taylor Series Expansion will 

converge in a local optimum (if there is one) instead of converging in a robust area.  This 

concern is confirmed with the following example using Eq. 3.1 as the performance 

function, where a design is considered better if it has a lower function value and a lower 

performance variance (higher robustness).  By assigning a high weight to the robustness 

goal, the designer would then expect the robust solution to be in area (c) of Figure 3.2.  

However, with the example it will be shown that the exploration algorithm will find the 

optimum (b) as the “robust solution”.  This is because, for the used formulation, this point 
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is the best solution, since it has the best performance and the Taylor Series leads to a 

variance estimation of zero (maximum robustness).   
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 Performance function )(xf : Eq. 3.1 
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Figure 3.5: cDSP for Illustrative Example 
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The cDSP for the example is given in Figure 3.5.  This cDSP is solved using a Java 

implementation of DSIDES (Mistree, et al., 1993) that allows solving cDSPs with 

explicit goal functions.  The Scenario 1 results of the robust design exploration for 

different starting points are given in Table 3.1 and Figure 3.6.  For evaluation of the 

results, accurate reference values for the deviation function are generated using a Latin 

hypercube sampling.  For experiment run #4 the convergence plot is shown in Figure 3.7. 

 

Table 3.1: RCEM Results for Illustrative Example (Scenario 1) 

Run # Initial Point Solution 
Estimated Deviation Actual Deviation (LHS) 

−
1d  

−
2d  

−
1d  

−
2d  

1 x = 910 910 0.90232 0.99879 0.8883 0.9847 

2 x = 912 911.9925 0.91077 0 0.9040 0.9619 

3 x = 920 931.9491 0.28378 0 0.3211 0.5671 

4 x = 940 931.9489 0.28378 0 0.3211 0.5674 

5 x = 960 931.9494 0.28378 0 0.3211 0.5655 

6 x = 976 931.9487 0.28378 0 0.3211 0.5664 
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Figure 3.6: Plot of RCEM Results 

 

 

Figure 3.7: Convergence Plot of Run #4 
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From the results and Figure 3.6, it can be seen that the solutions do not lie in the robust 

area.  In Section 3.2, it is shown that this result is actually correct and a good compromise 

for the stated objectives.  However, the estimated deviation from the variance goal in the 

solution points is significantly different from the actual deviation, which is calculated 

using a Latin hypercube sampling with 10,000 points (Table 3.1).  To confirm the 

concerns about RCEM, the example is repeated with a heavy weight on the robustness 

goal ( 9.0,1.0 21 == WW ).  In this scenario, a design in the robust area is a significantly 

better compromise than a solution around the minimum of the performance function (see 

Section 3.2).  The results of the original RCEM for this scenario are presented in Table 

3.2.   

 

Table 3.2: RCEM Results for Illustrative Example (Scenario 2) 

Run # Initial Point Solution 
Estimated Deviation Actual Deviation (LHS) 

−
1d  

−
2d  

−
1d  

−
2d  

1 x = 910 931.9484 0.2837 0 0.3211 0.5659 

2 x = 912 911.9925 0.9107 0 0.9040 0.9619 

3 x = 920 931.9526 0.2837 0 0.3211 0.5699 

4 x = 940 931.9528 0.2837 0 0.3211 0.5699 

5 x = 960 931.9528 0.2837 0 0.3211 0.5699 

6 x = 976 931.9488 0.2837 0 0.3211 0.5657 
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The results of the second scenario are not significantly different from the first, which 

means they are also very close to the global minimum at x = 931.9499.  This confirms a 

major gap in RCEM, which leads to the first research question: 

How can the formulation of robustness in compromise Decision Support Problems for 

multi-dimensional and multi-objective design problems be improved? 

 

A hypothesis for answering this question is introduced in the next section. 

3.2  Advancements of RCEM 

In the previous section, several gaps in RCEM are identified.  In this section the 

hypothesis for answering the first research question is elaborated and the shortcomings in 

Step 2 of RCEM are addressed.   

3.2.1  Nominal Value Shift 

How can the estimation of the performance mean be improved? 

The problem in RCEM is that the estimation of the performance mean is simply the 

function value of the nominal values (means) of the design and noise factors.  This is 

only accurate for linear problems.  If the input distribution is transformed by a nonlinear 

performance function, a nominal value shift can be observed (Section 3.1).  To account 

for the nominal value shift, a Taylor Series Expansion can be used (Beyer and Sendhoff, 

2007; Li and Wu, 1999; Vuchkov and Boyadjieva, 2001).   
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The expected value of the performance can be derived from the second order Taylor 

Series.  The mathematical proof is shown in the following.   

The second order Taylor Series Expansion (without cross product terms) around the point 

0x for independent variables is shown in Eq. 3.4.  When assuming independent 

variables, the cross product terms can be ignored in this calculation. 
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Eq. 3.6 

The properties used to derive the mean of y  from Eq. 3.4 are given in Eq. 3.5 and Eq. 

3.6.  In this step, the cross product terms would become zero because independent 

variables, which have a covariance of zero, are assumed. In Eq. 3.7, the result of the 

transformation is presented. 
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Eq. 3.7 

For problems, in which design variables and noise factors are considered, the formulation 

is given in Eq. 3.8: 
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Eq. 3.8 

Part of the first research hypothesis is that the introduction of this formulation to RCEM 

as a replacement for the nominal mean will improve the accuracy of the exploration 

method. 

Validation 

The new formulation for estimating the mean of the performance, which accounts for the 

nominal value shift, will be tested on several points of the design space and a comparison 

will be made to a Latin hypercube sampling as well as to the results generated with the 

previous formulation used in RCEM. 

The easiest way to validate the effectiveness of the new formulation Eq. 3.8 is to test it on 

various point of the design space and compare the estimation to values calculated from a 

LHS sample.  In order to demonstrate the improvement towards the formulation in the 

original RCEM, the results generated using Eq. 3.2 are also given for the test points.  In 

Figure 3.8, the locations of the chosen test points are shown and in Table 3.3 and Table 

3.4, the results of the new and old formulations are compared.  In this test, design 

variables are assumed to be Gaussian distributed with variances of 4
1

2 =xσ and 9
2

2 =xσ .   
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Figure 3.8: Location of Test Points  

 

Table 3.3: Comparison of Mean Predictions with σ2=4 

Test Point 
LHS 

(10000 samples) 

New Formulation 

Eq. 3.8 
Nominal mean 

912 104.1838 104.544 112.0770 

920 59.8057 59.9255 58.8959 

932 14.7218 14.7173 13.9628 

940 20.5691 20.5552 20.6384 

950 27.7717 27.7704 27.8247 

960 33.0813 33.086 32.9216 
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Table 3.4: Comparison of Mean Predictions with σ2=9 

Test Point 
LHS 

(10000 samples) 

New Formulation 

Eq. 3.8 
Nominal mean 

912 93.3716 95.1279 112.0770 

920 60.5949 61.2126 58.8959 

932 15.6821 15.6605 13.9628 

940 20.5204 20.4512 20.6384 

950 27.7094 27.7026 27.8247 

960 33.2683 33.2915 32.9216 

 

From the results, a clear advantage of the new formulation can be observed particularly at 

the test points around the optima.  However, in all cases the new formulation led to a 

more accurate performance mean estimation.  This is why in this thesis it is 

recommended to incorporate the new formulation into RCEM. 

3.2.2  Alternative Methods for Variance Approximation 

How can the estimation of the performance variance be improved, especially around 

local optima? 

The answer to this question will be the major part of the first research hypothesis.  

Therefore, three possible formulations are introduced in this section and their 

effectiveness is tested on a simple illustrative example.  Upon the evaluation of the 
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results, the most promising formulation is chosen and will be used to modify the original 

RCEM.  The three methods are: 

1. Variance estimation using second order Taylor Series Expansion (Second 

Derivative Method) 

2. Variance estimation using first order Taylor Series Expansion at the nominal 

value and points around the mean (Multiple Derivative Method) 

3. Evaluation of the function values at and around the nominal value (Multiple Point 

Method) 

Similar approaches can be found in literature, e.g. (Lin, et al., 1999) and (Sundaresan, et 

al., 1995), however, a comprehensive comparison of their effectiveness, especially for 

their application in a robust concept exploration method, is missing.   

Second Derivative Method 

The Second Derivative Method is derived from the second order Taylor Series 

Expansion.  In Section 3.1, it was shown that the first order Taylor Series fails as a good 

approximation, since it does not account for the nonlinearity of the performance function.  

By considering the second derivative of the performance function, the second order 

Taylor Series might have the potential to eliminate this problem.  The cross product terms 

are ignored in order to simplify the calculation in Eq. 3.9.   
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With the assumption of independent variables as well as the properties of the variance in 

Eq. 2.13 and Eq. 2.14, the performance variance can be derived as: 
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for the design variables x and noise factors z .   

Multiple Derivative Method 

The idea for developing the Multiple Derivative Method is to consider not only the 

nominal input values but also the points around the mean.  Therefore, the first order 

Taylor Series approximation is used for the variance prediction (Eq. 3.3) and is evaluated 

at three points for each design variable and noise factor.  This formulation prevents the 

method from estimating a performance variance of zero in local optima. 
























∂

∆−∂
+









∂

∆−∂
+
























∂

∆+∂
+









∂

∆+∂
+
























∂

∂
+









∂

∂
≈

∑∑

∑∑

∑∑

==

==

==

m

i

z

i

ii
n

i

x

i

ii

m

i

z

i

ii
n

i

x

i

ii

m

i

z

i

n

i

x

i

y

ii

ii

ii

z

zzf

x

xxf
W

z

zzf

x

xxf
W 

z

f

x

f
W

1

2

2

1

2

2

3

1

2

2

1

2

2

2

1

2

2

1

2

2

1
2

,...)(...,,...)(...,

,...)(...,,...)(...,

σσ

σσ

σσσ

 

Eq. 3.11 

In Eq. 3.11, the formulation of the Multiple Derivative Method is shown, which is 

basically a weighted average of the first-order Taylor Series approximation at the input 

means (nominal x  and z  values) and edge points ( iiii zzxx ∆±∆± , ).  Since the 
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formulation consists of three terms it is reasonable to divide the input distribution into 

three arrays to determine iii zxW ∆∆ and,  . 

If Gaussian distributions are assumed for the uncertain input, according to Figure 3.9, the 

following parameter values for Eq. 3.11 can be suggested: 

 
ixix µ= and 

iziz µ= with 7.01 =W  

 
ixix σ2=∆ with 15.032 ==WW  

The middle section in Figure 3.9 is represented by the mean and covers about 70% of the 

probability density function.  The outer sections are represented by ii xx ∆+  and ii xx ∆−  

respectively.  These sections cover about 15% of the PDF each.   

 

 

 

Figure 3.9: Confidence Intervals of a Normal Distribution (modified from (Kemp, 2005)) 

ixix σ2−  
ixix σ2+  ix  

~ 70 % ~ 15 % ~ 15 % 
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Multiple Point Method 

The Multiple Point Method was introduced in (Lin, et al., 1999) and is based on the 

Sensitivity Index (SI) (Sundaresan, et al., 1995).  In this method, the weighted average of 

the performance difference between the points ix  and ii xx ∆±  is calculated as in Eq. 

3.12 in order to estimate the level of robustness. 
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Eq. 3.12 

 

In Eq. 3.12, w is the weight for 2
3 )( is .  In (Lin, et al., 1999) it is set to 0.25 because it is 

expected that 213 22)(2)(2)( iiiiiiiii ssyyyyyys ==−=−=−= +−+−  and the three terms 

should contribute equally to the goal formulation.  However, no suggestions are made on 

how to choose ix∆ .  In this thesis, 
ixσ2  will be used as ix∆ .  Assuming that the inputs 

are Gaussian distributed, this means that 95.6% of the input values lie between ii xx ∆+  

and ii xx ∆−  (see Figure 3.9).  Using 
ixσ2  for ix∆  means that using Eq. 3.8 will lead to 

an estimation of 24 yσ  and therefore the equation is modified to: 
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Eq. 3.13 

with =∆ ix
ixσ2 . 

With Eq. 3.13, the value of the performance variance can be estimated and therefore this 

formulation can be used to substitute the old robustness formulation in RCEM. 

In this section, three methods for estimating the robustness are introduced.  Whether 

these methods have the potential to improve RCEM will be tested in the next section, 

where their performances are compared to Latin hypercube samplings (LHS). 

3.2.3  Assessment of Alternative Methods 

The three methods, which are introduced in the previous section, are assessed in this 

section using the example from Section 3.1 (Eq. 3.1).  The ability of the three 

formulations to estimate the performance variance, and by this the robustness of a design 

solution, are compared in this section.  Reference values are generated with the 

simulation of a Latin hypercube sample.  The findings are confirmed by evaluating the 
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effectiveness of the three robustness formulations in a modified RCEM framework.  

These results are again compared to those of Latin hypercube samples. 

The goal is to identify the most promising formulation, which will be introduced to the 

modified RCEM.  In order to have a good basis for comparison, the same tests as with the 

original RCEM in Section 3.1 are performed.  Hereby, the original formulation for the 

mean will be used, without considering the nominal value shift, so that improvements can 

be clearly linked to the new robustness formulation.   

In Section 3.1, it was discovered that the local minimum of the example function is the 

critical point of the performance function.  The original RCEM fails in solving the design 

problem because its estimation of the performance variance at this point is wrong.  This is 

why, in this section, the variance estimations of the three new methods in this point are 

compared to the estimation generated from a Latin hypercube sample with 100,000 

sample points.  For the comparison, Gaussian input distributions are assumed with 

standard deviations of 2 ( 42 =xσ ) and 3 ( 92 =xσ ) respectively.  The test point is the local 

minimum at x = 931.95.  In Table 3.5, the performance variance estimations  2
yσ  for the 

three new formulations and the normal distributed Latin hypercube sample are presented.   
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Table 3.5: Variance Estimation of New Formulations 

Method Scenario 1: 42 =xσ  Scenario 2: 92 =xσ  

Latin Hypercube Sampling =2
yσ 1.32 =2

yσ 7.52 

Second Derivative Method =2
yσ 0.08 =2

yσ 0.41 

Multiple Derivative Method =2
yσ 3.19 =2

yσ 18.68 

Multiple Point Method =2
yσ 1.67 =2

yσ 9.44 

 

From the results, it can be seen that the Multiple Point Method returns the variance 

estimates that are closest to the Latin hypercube outcomes, although they are still not 

very accurate.  Considering that the Multiple Point Method only needs three function 

calls, whereas the Latin hypercube sampling is done with 100,000 function calls, the 

Multiple Point Method seems to be a promising augmentation to the RCEM framework.  

The estimations of the Second Derivative Method are too low to be considered a good 

estimate.  This is due to the formulation’s similarity to the first order Taylor series 

approximation, which is equal to 0 at this point.  The influence of the second derivative is 

too little to be able to correct this result.  In the formulation of the Multiple Derivative 

Method, the influence of the derivatives at σ2±ix  lead to an estimate that is too high in 

both examples.   

The results generated here are confirmed in the following.  The three new formulations 

are used in a modified RCEM framework for the performance variance estimation.  In the 

example an artificial robust design problem is solved with these methods.  The cDSP for 

the example is given in Figure 3.10.   
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W1 = 0.1 
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Figure 3.10: cDSP for Test of Robustness Formulations 
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The results generated using d) Latin hypercube sampling are presented first, in order to 

provide a basis for discussing the results of the three methods to be tested.  The results 

are generated using 10,000 LHS points to determine the performance mean and variance.  

In Table 3.6 and Table 3.7, the results of the two scenarios are presented together with 

the estimated deviation variables and function values. 

 

Table 3.6: Results for RCEM using the Latin Hypercube Sampling (Scenario 1) 

Run # Initial Point Solution 
Deviation 

−
1d  

−
2d  Z 

1 x = 910 910 0.888254 0.984668 0.936461 

2 x = 912 932.7186 0.320906 0.498915 0.409911 

3 x = 920 932.7188 0.320907 0.498914 0.409911 

4 x = 940 932.7178 0.320901 0.498921 0.409911 

5 x = 960 932.7189 0.320908 0.498913 0.409911 

6 x = 976 932.7183 0.320904 0.498917 0.409911 

 

Table 3.7: Results for RCEM using the Latin Hypercube Sampling (Scenario 2) 

Run # Initial Point Solution 
Deviation 

−
1d  

−
2d  Z 

1 x = 910 951.67 0.6486 0.2389 0.2804 

2 x = 912 951.67 0.6486 0.2389 0.2804 

3 x = 920 951.67 0.6486 0.2389 0.2804 

4 x = 940 951.67 0.6486 0.2389 0.2804 

5 x = 960 951.67 0.6486 0.2389 0.2804 

6 x = 976 951.67 0.6486 0.2389 0.2804 
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Figure 3.11: Location of the Solutions Using Formulation d) Latin Hypercube Sampling 

 

The results are summarized in Figure 3.11, in which the locations of the solutions are 

shown.  These results are taken as reference values for the remaining chapter.  Using 

10,000 samples per algorithm iteration on a single design variable, allows the assumption 

that these values are very similar to the actual values and results.  From these results it 

can be seen that the location of the solution depends on how the designer formulates the 

preferences through the weighting parameters.  However, it also depends on the setting of 

the goal values.  If, for example, one goal value is set relatively far away from the actual 

feasible performance, its deviation will only change insignificantly compared to an 

objective, for which the goal is set close to the feasible area.  This leads to a higher 

weight on the later objective, although the actual weighting parameters in the deviation 

function remain unchanged.  It is very important that the designer is aware of this 

phenomenon when using the cDSP to formulate and solve engineering design problems.  
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In this example, Scenario 1 represents a situation where the designer assigns equal 

weights on performance and robustness, which results in a solution close to the 

minimum.  This means that increasing the robustness would not outweigh the loss in 

performance when moving the solution towards the robust area.  This is different in 

Scenario 2, where the focus is on finding a robust solution with only little weight on 

performance.  In this case, the gain in robustness in the robust area is valued higher than 

the loss of performance.  The outlier at x = 910 can be explained with an unfortunate 

selection of the starting point; the maximum at around x = 912 prevents the exploration 

algorithm from finding the points on its right side. This can be seen in for the following 

examples as well. 

In the following tests, the three approximation methods are assessed using the same 

example and identical scenarios.  This will show which methods are capable of 

suggesting the best compromises for each scenario.  In Scenario 1, the methods should 

suggest a solution close to the minimum at around x = 932 and in Scenario 2, a solution 

around x = 952 would confirm the capability of the method.   

The results for using RCEM with variance goal formulation a) Second Derivative 

Method are given in Table 3.8 and Table 3.9. 

From the results it can be seen that the Second Derivative Method (second order Taylor 

Series) does not lead the designer to the robust area (see Figure 3.12) in the second 

Scenario.  Using a modified RCEM with the Second Derivative Method as the robustness 

formulation leads to the same incorrect results as the original RCEM.   
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Table 3.8: Results for RCEM using the Second Derivative Method (Scenario 1) 

Run 

# 

Initial 

Point 
Solution 

Estimated Deviation Actual Deviation 

−
1d  

−
2d  

−
1d  

−
2d  

1 x = 910 910 0.9023 0.9991 0.8883 0.9995 

2 x = 912 910 0.9023 0.9991 0.8883 0.9995 

3 x = 920 932.14 0.2841 0.1049 0.3201 0.5762 

4 x = 940 932.14 0.2841 0.1049 0.3201 0.5762 

5 x = 960 932.14 0.2841 0.1049 0.3201 0.5762 

6 x = 976 932.14 0.2841 0.1049 0.3201 0.5762 

 

Table 3.9: Results for RCEM using the Second Derivative Method (Scenario 2) 

Run 

# 

Initial 

Point 
Solution 

Estimated Deviation Actual Deviation 
−
1d  

−
2d  

−
1d  

−
2d  

1 x = 910 932.14 0.2841 0.1049 0.3201 0.5762 

2 x = 912 932.14 0.2841 0.1049 0.3201 0.5762 

3 x = 920 932.14 0.2841 0.104 0.3201 0.5762 

4 x = 940 932.14 0.2841 0.1049 0.3201 0.5762 

5 x = 960 932.14 0.2841 0.1049 0.3201 0.5762 

6 x = 976 932.14 0.2841 0.1049 0.3201 0.5762 
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Figure 3.12: Location of the Solutions Using  Formulation a) Second Derivative Method 

 

From the very small values of 
−
2d  it can be seen that the Second Derivative Method gives 

a very low estimate of the performance variance.  This is because the mathematical 

formulation that is derived from the second order Taylor Series approximation is very 

similar to the original formulation in RCEM (first order Taylor Series).  Note that the 

second derivative in Eq. 3.10 only has a weight of 0.25 and the first two terms are 

identical to the variance estimation used in the original RCEM (Eq. 3.3).  Thus, the 

additional terms only have very little influence on the performance variance estimation 

and the formulation fails for the same reason as the first order Taylor Series. 

The results for using RCEM with variance goal formulation b) Multiple Derivative 

Method are given in Table 3.10 and Table 3.11. 
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Table 3.10: Results for RCEM using the Multiple Derivative Method (Scenario 1) 

Run # Initial Point Solution 
Estimated Deviation Actual Deviation (LHS) 

−
1d  

−
2d  

−
1d  

−
2d  

1 x = 910 910 0.9023 0.9997 0.8883 0.9995 

2 x = 912 910 0.9023 0.9997 0.8883 0.9995 

3 x = 920 951.62 0.6484 0.2724 0.6484 0.2392 

4 x = 940 951.62 0.6484 0.2724 0.6484 0.2392 

5 x = 960 951.62 0.6484 0.2724 0.6484 0.2392 

6 x = 976 951.62 0.6484 0.2724 0.6484 0.2392 

 

 

Table 3.11: Results for RCEM using the Multiple Derivative Method (Scenario 2) 

Run # Initial Point Solution 
Estimated Deviation Actual Deviation (LHS) 

−
1d  

−
2d  

−
1d  

−
2d  

1 x = 910 951.69 0.6487 0.2722 0.6487 0.2392 

2 x = 912 951.69 0.6487 0.2722 0.6487 0.2392 

3 x = 920 951.69 0.6487 0.2722 0.6487 0.2392 

4 x = 940 951.69 0.6487 0.2722 0.6487 0.2392 

5 x = 960 951.69 0.6487 0.2722 0.6487 0.2392 

6 x = 976 951.69 0.6487 0.2722 0.6487 0.2392 
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Figure 3.13: Location of the Solutions Using Formulation b) Multiple Derivative Method 

 

In Figure 3.13, it is shown that, by using the Multiple Derivative Method, the designer 

would be led to solutions in the robust area in both scenarios.  This means that the 

method leads to an estimation of the variance in the robust area that is lower than the 

actual variance.  Furthermore, around the minimum, the variance is estimated to be 

higher than the actual performance variance, which makes this method useful if the 

designer puts a high weight on the robustness when looking for a compromise.   

The results for using RCEM with variance goal formulation c) Multiple Point Method 

are given in Table 3.12 and Table 3.13.   
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Table 3.12: Results for RCEM using the Multiple Point Method (Scenario 1) 

Run # Initial Point Solution 
Estimated Deviation Actual Deviation (LHS) 

−
1d  

−
2d  

−
1d  

−
2d  

1 x = 910 910 0.9023 0.9996 0.8883 0.9995 

2 x = 912 910 0.9023 0.9996 0.8883 0.9995 

3 x = 920 932.96 0.2331 0.5633 0.3228 0.5074 

4 x = 940 932.96 0.2331 0.5633 0.3228 0.5074 

5 x = 960 932.96 0.2331 0.5633 0.3228 0.5074 

6 x = 976 932.96 0.2331 0.5633 0.3228 0.5074 

 

 

Table 3.13: Results for RCEM using the Multiple Point Method (Scenario 2) 

Run # Initial Point Solution 
Estimated Deviation Actual Deviation (LHS) 

−
1d  

−
2d  

−
1d  

−
2d  

1 x = 910 951.69 0.6487 0.2757 0.6487 0.2391 

2 x = 912 951.69 0.6487 0.2757 0.6487 0.2391 

3 x = 920 951.69 0.6487 0.2757 0.6487 0.2391 

4 x = 940 951.69 0.6487 0.2757 0.6487 0.2391 

5 x = 960 951.69 0.6487 0.2757 0.6487 0.2391 

6 x = 976 951.69 0.6487 0.2757 0.6487 0.2391 
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Figure 3.14: Location of the Solutions Using Formulation c) Multiple Point Method 

 

The results from using RCEM with the robustness formulation c) look very promising.  

When comparing Figure 3.14 to Figure 3.11, it can be seen that the solution for both 

scenarios lie very close to the solutions generated with LHS.  The method leads to a good 

estimation of the variance in the robust area as well as in the area around an optimum.  

This can be attributed to the mathematical formulation of this method, which accounts for 

nonlinearity by evaluating the performance differences between the mean and the tail 

ends of the input distribution as well as the difference between both tail ends.  

Particularly, this second aspect leads to good variance estimation around local optima. 

Scenario 1 

Scenario 2 
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3.2.4  Critical Evaluation of Results and Introduction of the Modified RCEM 

In this paragraph, the findings of Sections 3.1 and 3.2 are summarized and the improved 

RCEM is introduced.  Three major limitations of the original RCEM were identified and 

improvements were suggested (see Table 3.14).   

 

Table 3.14: Improvements to RCEM 

Limitation of the Original RCEM Suggestion for Improvements 

Inaccuracy of global response surface RCEM should only be used if performance 

function is known explicitly 

Inaccurate estimation of the performance 

mean 

New formulation for the estimation of the 

mean is introduced 

Inaccurate estimation of the performance 

variance 

New formulation for the estimation of the 

variance is introduced 

 

One suggestion is that the original or modified RCEM should only be applied if the 

performance functions are available explicitly, i.e. the mathematical function is known.  

Generating a global response surface can lead to fatal errors and ultimately to an 

engineering solution that is far away from being satisfactory.  In cases where the explicit 

performance functions are not known, the designer should refer to simulation-based 

design methods that generate local surrogate models in each iteration of the exploration 

algorithm.  An example of such a method is developed later in this thesis beginning in 

Chapter 5. 
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For the estimation of the mean in RCEM, the nominal value shift should be considered if 

the performance functions are known and differentiable, since more accurate estimations 

can be achieved with this formulation. 

For the formulation of the robustness, it was shown that the simplest of the three 

formulations generates the most accurate results.  For the modified RCEM it is suggested 

to use the Multiple Point Method for estimating the performance robustness.  This 

method has the advantage that no derivative is needed.  The framework of the modified 

RCEM is shown in Figure 3.15. 
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Figure 3.15: Framework of the Modified RCEM 
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3.3  Guide for Validation of the First Research Questions 

The first research hypothesis can be verified by validating its two parts: 

Part 1: Using a global response surface, the nominal mean and a single point Taylor 

Series Approximation for the variance estimation is not accurate enough for finding 

robust solutions of nonlinear design problems. 

Part 2: The Robust Concept Exploration Method can be improved by using appropriate 

formulations that account for the nonlinearity of the problem. 

 

The research focus is clearly on the second part of the hypothesis.  The first part of 

Hypothesis I is validated in Section 3.1, where the limitations of RCEM are 

demonstrated.  To validate the second part, a modified RCEM is introduced in Section 

3.2.  For validating this method, the Validation Square is employed (see Section 1.4). 

3.3.1  Theoretical Structural Validity 

The internal consistency of the individual constructs of the improved RCEM is shown in 

the previous sections and is summarized here.   

The main components of the new method are: 

• cDSP 

• Mean estimation accounting for the nominal value shift 

• Variance estimation using Taylor Series expansion on multiple points 
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The cDSP has been validated in literature before (Bras and Mistree, 1993), so the internal 

consistency does not have to be shown here.  The internal consistency of the new 

performance mean and variance estimation has been shown in Section 3.2.  This was 

done by explaining the mathematical and statistical backgrounds.  Furthermore, the 

formulations have been tested in a simple example.  The results of these tests clearly 

supported the internal consistency of the components.   

3.3.2  Empirical Structural Validity 

In order to demonstrate empirical structural validity, the appropriateness of the examples 

used for illustrating and verifying the method has to be shown.  The improved method, 

introduced previously in this chapter, is validated using two examples.  First, in Section 

3.2 a simple example is used to assess different options and also to validate the new 

method.  This example, although it is artificial, is representative of an engineering design 

problem with a nonlinear performance function.  The designer’s goal is to find a 

satisfying compromise between robustness and high performance.  The second example, 

which is the design of a robust pressure vessel, is introduced in Chapter 4.  This example 

is also representative for a typical robust engineering design problem.  The modified 

RCEM can be applied to this problem because the performance functions are known 

explicitly.  It is a multivariate problem with several performance and robustness 

objectives that require the designer to find a compromise.  Further details about the 

example are given in the next chapter.  So both examples, which are used to validate the 

new method, are appropriate and representative for engineering problems the method is 

developed for. 
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3.3.3  Empirical Performance Validity 

The empirical performance validity of the design method is shown through a critical 

analysis of the results from the two examples.  In Section 3.2.3 it is demonstrated that the 

method using the new formulations is clearly superior because it is able to solve a design 

problem the old method is not able to solve correctly.  In Chapter 4, the results of the 

second design example are critically evaluated.  The accuracy of the method is shown by 

a comparison with results generated using Latin hypercube sampling.   

3.3.4  Theoretical Performance Validity 

The theoretical performance validity of the proposed design method will be discussed in 

Chapter 7 based on the performance, characteristics and limitations of the method and its 

components. 

3.4  Chapter Synopsis 

As shown in Figure 3.16, the focus in this chapter is on elaborating Hypothesis 1.  This 

includes a critical analysis of the characteristics and limitations of the original RCEM as 

well as the development of formulations that improve RCEM.  These advancements are 

tested and critically evaluated.  Furthermore the validation strategy for the new method is 

elaborated.  In the next chapter, the method introduced in this chapter will be applied to 

another engineering design problem.  The design of a robust pressure vessel will be used 

to support the validity of the method and eventually Hypothesis 1 can be verified.   
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Figure 3.16: Thesis Roadmap 
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CHAPTER 4 

MULTI-OBJECTIVE ROBUST DESIGN OF A PRESSURE VESSEL 

Using the modified RCEM, it is possible to consider the robustness of a system as an 

objective in the decision making process during the conceptual design phase.  In this 

chapter, it will be shown that the modified RCEM has the capability to solve 

multidimensional robust design problems with multiple objectives.  When applying 

robust design methods, the designer wants to find a compromise between high 

performance and low sensitivity of the performance towards uncertainty in design 

variables and noise factors.   

The effectiveness of the modified RCEM is demonstrated in this chapter with the design 

of a pressure vessel as an example.  The results of this example are used to support 

Research Hypothesis 1.   

After an introduction to the details of the pressure vessel, the validation and verification 

strategy for this example is explained.  The results of the modified RCEM applied to the 

example will then be used to support the presentation of the empirical structural 

validation as well as the empirical performance validation of the method.  A critical 

review of the results and an outlook to the next chapters of the thesis conclude Chapter 4. 
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4.1  The Robust Design of a Pressure Vessel 

The purpose of this example is the validation of the modified RCEM and thereby, the 

validation of Hypothesis 1.  With the example, it is intended to demonstrate the 

effectiveness of the method for multi-objective robust engineering design problems.  The 

design of a pressure vessel has been investigated previously by authors in several areas of 

engineering design (Hernández, 2001; Lewis and Mistree, 1998; Sandgren, 1990; 

Simpson, 1998).  It is very suitable for showing the effectiveness of the modified RCEM 

because it fulfills the following requirements: 

• all performance functions are known explicitly; no simulations are required  

• the design has multiple design variables 

• the design has multiple objectives 

The design variables in this example are the radius of the vessel (R), the length of the 

middle section (L) and the thickness of the vessel wall (T).  A schematic of the pressure 

vessel is given in Figure 4.1. 

 

Figure 4.1: Schematic of Cylindrical Pressure Vessel (Hernández, 2001) 
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The symbols used in this chapter are introduced in Table 4.1.   

 

Table 4.1: Nomenclature for Chapter 4 

V Volume of the pressure vessel [in3] 

W Weight [lb] 

R Radius [in] 

L Length of middle section [in] 

T Thickness of wall [in] 

2
Rσ  = 4/9 
2
Lσ  = 4/9 
2
Tσ  = 1/9 

Variances of R, L and T [in2] 

2
Vσ , 2

Wσ  Performance variances of V and W [in2] 

Vµ  Performance mean of V 

P = 1000 Internal pressure [psi] 

SF = 2 Safety factor 

ρ = 0.284 Material density [lb/in
3] 

sy= 26,000 Material yield strength [psi] 

ss Maximum stress in spherical section [psi] 

sc Maximum stress in cylindrical section [psi] 

 

The application requirements demand a vessel that is able to contain a gas under 1,000 

psi of pressure with a minimum volume of 20,000 in3 and a maximum vessel weight of 

2,500 lb.  The material is UNS G10100 HR, with a yield strength of 26,000 psi and a 

density of 0.284 lb/in
3.   

The bounds on the radius are 6 inch and 36 inch respectively (Eq. 4.1).  The middle 

section of the vessel has to be between 6 inch and 48 inch (Eq. 4.2) and the thickness 

between 1.5 inch and 6 inch (Eq. 4.3).  
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inR 0.360.6 ≤≤  
Eq. 4.1 

inL 0.480.6 ≤≤  
Eq. 4.2 

inT 0.65.1 ≤≤  
Eq. 4.3 

Due to space limitations, the overall radius is required to be less than 40 inch (Eq. 4.4) 

and the overall length less than 60 inch (Eq. 4.5).   

inTR 40≤+  
Eq. 4.4 

inTRL 6022 ≤++  
Eq. 4.5 

Furthermore, the radius has to be at least 5 times greater than the thickness of the vessel.   

TR 5≥  
Eq. 4.6 

Due to inaccuracy and uncertainty in the manufacturing process, deviations in the input 

values of the design variables can be observed.  For this example, these deviations are 

assumed to be Gaussian.  The variance of the radius and length of the middle section are 

0.444 in2; the variance of the thickness is 0.111 in2.   

Industry regulations specify that the design has to comply with a minimum safety factor, 

SF, of 2 for the maximum stress appearing in both the cylindrical and spherical sections 

of the vessel (Eq. 4.7 and Eq. 4.8) (see (Roark and Young, 1975)).   
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Eq. 4.8 

The basis for the performance objectives, in this example, are the volume (Eq. 4.9) and 

the weight (Eq. 4.10) of the pressure vessel.   
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The design objectives (goals) in this example are: 

• High vessel volume mean Vµ  (as close to 50,000 in3 as possible) 

• Low vessel volume variance 2
Vσ  (as close to 5,000,000 in6 as possible) 

• Low vessel weight variance 2
Wσ  (as close to 200,000 lb2 as possible) 

 

Only the aforementioned conditions, bounds and constraints are considered in this design 

example and a constraint violation of 1% is allowed, which is the default setting in 

JavaDSIDES.  All other sources of variability like temperature and material 

imperfections are ignored.   
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Prior to the development of the cDSP formulation for this design problem, which is 

described in Section 4.3, the validation strategy for this example is outlined in the next 

section. 

4.2  Validation and Verification with the Example 

The pressure vessel example is intended to provide evidence for the validity of 

Hypothesis 1 (see Section 1.3) by demonstrating that the modified RCEM is an effective 

and efficient method to solve robust engineering design problems.  The research 

presented in this thesis is validated along the four quadrants of the validation square 

(Figure 1.6).  In this section, the empirical structural validation is discussed and a plan for 

the empirical performance validation is outlined.   

4.2.1  Empirical Structural Validation 

Empirical structural validation of Hypothesis 1 involves documenting that the example is 

actually similar to design problems for which the modified RCEM is intended and may 

be applied.  Furthermore, it has to be shown that the data associated with the example can 

be used to support the hypothesis.   

Is this example similar to design problems for which the modified RCEM is intended and 

may be applied?  

The following characteristics of the pressure vessel example qualify it as a suitable 

problem for the modified RCEM: 
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- The design of the pressure vessel is determined by three design variables.  This 

means that the example is a multidimensional design problem that requires a 

method that can handle multiple input variables.  In this example the three 

dimensions are the radius, the length and the wall thickness. 

- The performance of the design is dependent on several uncertain factors.  In this 

case, the three design variables contain uncertainty in form of manufacturing 

inaccuracy.  Showing that the modified RCEM is capable of handling multiple 

uncertain design variables implies that the method can also solve problems with 

multiple noise factors.  For the uncertainty analysis, noise factors can be regarded 

as uncertain design variables with a constant mean value. 

- The objective is to design a pressure vessel that is robust towards uncertain design 

variables or noise factors.  This means that the goal is to find a design variable 

configuration, which results in a low variation of the volume and the weight of the 

vessel without changing or modifying the source of uncertainty.  A method that 

can help solving this kind of problems requires a means to estimate accurately the 

robustness of the design at various points in the design space. 

- The example design problem has multiple design objectives that have to be 

considered by the designer.  The goal is to find a compromise among the several 

objectives.  This example has one performance objective (high vessel volume) 

and two robustness objectives (low variances of volume and weight).  Since these 

objectives oppose each other, a trade-off has to be found that satisfies the 

designer’s preferences.  
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Can the data from this example be used to support conclusions with respect to the 

hypothesis? 

The data for this example is generated using the Java implementation of DSIDES, which 

is introduced in 2.4.  The results of the modified RCEM are compared to results of the 

original RCEM and to results of a brute force Latin hypercube simulation.  This 

comparison will be used to demonstrate the effectiveness and efficiency of the modified 

RCEM in solving multidimensional and multi-objective robust design problems.  

Furthermore, the generated data includes estimations of the values for all three objectives.  

These will be used to support the hypothesis that the modified RCEM predicts the 

performance and variances more accurately than the original method.  Finally, the results 

will also be compared to the outcome of a traditional single-objective optimization of the 

problem.  This comparison will support the hypothesis that the modified RCEM is 

capable of finding a compromise between high volume and low variances of volume and 

weight. 

4.2.2  Empirical Performance Validation 

The pressure vessel example is also used to demonstrate the empirical performance 

validation of the modified RCEM and thus Hypothesis 1.  Therefore, it has to be shown 

(1) that the results meet the expectations, (2) that the demonstrated effectiveness and 

efficiency is linked to the application of the new method and (3) that the data generated 

and used for validation is accurate and internally consistent. 
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How can the results be evaluated with respect to the expected outcome of the method? 

The results of the pressure vessel example will be generated for two different design 

scenarios (Table 4.2).  Scenario 1 is equivalent to a traditional design approach where the 

goal is to maximize the performance without considering uncertainty.  The second 

scenario demands for a robust design method that is able to compromise performance and 

robustness objectives.  The expected outcome is that using the modified RCEM on 

Scenario 2, a design can be found that is less sensitive towards uncertainty than a solution 

found with a traditional maximizing design method (Scenario 1).  Since in Scenario 2 a 

compromise is intended, the volume will be smaller than in Scenario 1, however, the 

variances of the volume and the weight are expected to be smaller than in Scenario1, too.  

Meeting these expectations, the results support Hypothesis 1. 

 

Table 4.2: Design Scenarios for the Empirical Performance Validation 

Scenario 1 Scenario 2 

 

The design objective is to maximize 

the volume of the pressure vessel 

under the given constraints and 

bounds. 

 

The goal is to design a robust pressure 

vessel with high volume and low 

variances of the volume and weight.  

A compromise among the three design 

objectives has to be found, which 

satisfies the designer’s preferences. 
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How can it be demonstrated that the observed effectiveness and efficiency is linked to the 

application of the modified RCEM? 

In order to show the link between the effectiveness and efficiency and the application of 

the modified RCEM, the design problem scenario 2 is solved using the original RCEM, 

too, and both results are compared to the outcomes of a brute force Latin hypercube 

approach, which is used as a reference.  If the results of the modified RCEM are of higher 

quality, which means they are closer to the outcome of the reference method, Hypothesis 

1 is supported.  The efficiency of the new method is demonstrated by comparing the 

computational costs of the modified RCEM to the original RCEM as well as the LHS 

approach.   

How are the accuracy and the internal consistency of the results verified?  

First, the accuracy of the results is verified by comparing the outcome of the modified 

RCEM to those of a Latin hypercube approach, which is taken as reference.  Using a 

computationally expensive Latin hypercube sampling within the DSIDES algorithm to 

determine performance and robustness is assumed to give results very close to reality.  

Showing that the results of the modified RCEM are close to those values will support the 

argument for the accuracy of the method.  The internal consistency of the results is 

confirmed by testing multiple starting points for the algorithm as well as by an analysis of 

the convergence of the algorithm.   
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4.3  Application of the Modified RCEM to the Design of a Pressure Vessel 

The modified RCEM is developed and introduced in detail in CHAPTER 3.  In this 

section, the new method is applied to the pressure vessel example.  In Section 4.3.1, the 

design task is clarified and the cDSP is formulated; in Section 4.3.2, the modified RCEM 

is applied to the problem and the results are presented.  For comparison, the original 

RCEM is applied to the example in Section 4.3.3.  Furthermore, in this section the 

accuracy of the results is verified.  The data associated with this example is used to 

support Hypothesis 1 in Section 4.4.   

4.3.1  Clarification and Formulation of the Design Problem 

The details of the design problem are described in Section 4.1.  In this section, the 

compromise Decision Support Problems (cDSPs) for both design scenarios (see Table 

4.2) are formulated and presented.  Formulating a cDSP is a neat way for the designer to 

summarize the design problem.  By filling in the information into the four sections of the 

cDSP, “Given”, “Find”, “Satisfy”, and “Minimize”, the designer is guided through the 

definition of the design problem.  This way, it is likely that the designer will realize if the 

information or data is incomplete.  The cDSP formulations are the basis for applying 

RCEM.  In Figure 4.2, the cDSP for the pressure vessel example is presented.  In the first 

section of the cDSP, all the information about the pressure vessel is summarized.  For this 

example all details are given in Section 4.1.  This includes the model of the vessel, all 

constants and variable definitions as well as the constraint and goal functions.  

Furthermore, the assumptions made for this example (see Section 4.1) are stated here.  In 
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the next sections of the cDSP, the variables are identified for which the designer has to 

find the values.  These are the design variables R, L and T as well as the deviation 

variables d, which are used in the goal formulations.  In the third section of the cDSP, all 

constraints, bounds and goal formulations are listed that have to be satisfied.  Finally, the 

deviation function Z is presented, which has to be minimized.  By assigning weights to 

the deviations from the individual targets, this function is used to formulate the 

compromise.  In this example, Scenario 1 represents the optimization for maximum 

volume, which is equivalent to assigning a weight of 1.0 to the volume goal and weights 

of 0.0 to the robustness goals.  This way, only the deviation to the volume goal is 

minimized.  In Scenario 2, the designer is asked to find a robust pressure vessel.  This 

means that the designer is looking for a compromise among the three goals.  This is 

realized by assigning the following weights to the three deviation variables: 

30.0,25.0,45.0 321 === WWW .  The mindset behind choosing these values is that the 

robustness should have a larger weight (0.25+0.30=0.55) than the performance (0.45).   

In the following section, it is described and explained how the modified RCEM is 

implemented to solve the presented cDSP. 
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Given 

Assumptions for the design of the pressure vessel as presented in Section 4.1. 

Nomenclature, constants and design schematic as given in Table 4.1 and Figure 4.1. 

System constraint functions as given in Eq. 4.4 to Eq. 4.8 and below.  

System goal functions: 

Mean of V: Vµ     (see Section 4.3.2) 

Variances of V and W: 2
Vσ , 2

Wσ   (see Section 4.3.2) 

Goal target values: 

High vessel volume mean (as close to 50,000 in3 as possible) 

Low vessel volume variance (as close to 5,000,000 in6 as possible) 

Low vessel weight variance (as close to 200,000 lb2 as possible) 
 

Find 

R   Radius [in] 

L   Length of middle section [in] 

T   Thickness of wall [in] 

3,2,1, =+− idd ii  Deviation variables 
 

Satisfy 

Constraints: 

inTR 40≤+  see Eq. 4.4 

inTRL 6022 ≤++  see Eq. 4.5 

TR 5≥  see Eq. 4.6 

SF

s
s

SF

s
s

y

s

y

c ≤≤ ,  see Eq. 4.7 and Eq. 4.8 

Goals (normalized): 

( )
1

000,50

,
113

V =−+ +−
dd

in

LRµ
 

1
000,000,5

222

6

=−+ +− dd
in

Vσ
  1

000,200
332

2

=−+ +− dd
lb

Wσ
 

Bounds: 

inR 0.360.6 ≤≤

 inL 0.480.6 ≤≤
 inT 0.65.1 ≤≤

 
3,2,10,;0 =≥=⋅ +−+−

idddd iiii

  

Minimize 
−−− ++= 332211 dWdWdWZ  

Figure 4.2: cDSP for the Robust Design of the Pressure Vessel 

Scenario 1:  

0,0,1 321 === WWW  

Scenario 2:  

30.0,25.0,45.0 321 === WWW  

(see Table 4.2) 
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4.3.2  Implementation of the Modified RCEM 

In this section, the modified RCEM is applied to the pressure vessel example which is 

formulated in the previous section.  As presented in Chapter 3 and in Figure 3.15, the 

modified RCEM has two major components, the cDSP as well as the performance and 

robustness evaluation.  The cDSP is the framework, in which the design problem is 

formulated and the deviation function is defined.  Since the modified RCEM is developed 

for robust design applications, there is at least one uncertain design variable or noise 

factor in the design problem.  In order to determine the deviation function value of a 

design, the performance mean(s) and performance variance(s) have to be estimated under 

this uncertainty.  As noted before, this part is the focus of this thesis.  After having 

formulated the cDSP for the design example, in this section, the estimation of the 

performance and the robustness of the pressure vessel is explained.  Furthermore, the 

cDSP is solved in this section using JavaDSIDES, which is introduced in Section 2.4.  

The results are then analyzed and their internal consistency is shown. 

In the pressure vessel example, one of the goals is to have a high vessel volume with a 

target value of 50,000 in3.  In Section 3.1, it is shown that the mean of the performance 

can be different from its nominal value (see Figure 3.4).  This is why, within the modified 

RCEM, the performance mean is calculated using Eq. 3.8, which accounts for the 

nominal value shift when having nonlinear performance functions under uncertainty.  

With the function for the volume V given in Eq. 4.9, the estimation of the volume mean 

Vµ  can be derived as:  
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Eq. 4.11 

Since the function for the vessel volume is known explicitly and is fairly simple, the 

second derivative, which is needed in Eq. 4.11, can be easily calculated.   

In the modified RCEM, the robustness of a design is measured with the variance of the 

performance.  In the case of the pressure vessel example, the variance of the volume 2
Vσ  

and the variance of the weight 2
Wσ  are the indicators for robustness.  They are estimated 

using the Multiple Point Method, which is introduced in Section 3.2.2.  The functional 

definition of the Multiple Point Method is presented in Eq. 3.13.  With the explicit 

function for the vessel volume V, which is given in Eq. 4.9, the estimation of the volume 

variance can be derived as: 
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Eq. 4.12 

The variance of the weight 2
Wσ  can be calculated similarly with the function for the 

vessel weight given in Eq. 4.10: 
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Eq. 4.13 

With Eq. 4.12 and Eq. 4.13, the cDSP for the design of the pressure vessel (Figure 4.2) is 

now completely defined with explicit functions and can be solved using JavaDSIDES.  A 

special MATLAB program (JavaDSIDES XML Generator) was developed for this thesis, 

which offers a clear and simple interface for the designer to formulate the cDSP.  This 

XML Generator takes the designer’s input and generates the problem specific XML input 

file and executes JavaDSIDES.  The code for Scenario 2 of the pressure vessel example is 

given in the Appendix B.  The JavaDSIDES output files, for which examples are given in 

the Appendix B as well, provide the final values of the design variables as well as the 

intermediate results of each iteration cycle.  From these values the designer can confirm 

the internal consistency of the results by analyzing the convergence of the DSIDES 

algorithm.   

The JavaDSIDES results of the modified RCEM for design scenario 1 are presented in 

Table 4.3.  From the results it can be seen that the DSIDES algorithm is sensitive towards 

the selection of the initial point.  This is a known limitation of many gradient based 

search algorithms and is not further investigated in this thesis.  For this design problem 
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the best results could be achieved in run # 5.  The quality of a particular solution can be 

read from the deviation value Z.  The smaller the deviation from the goal(s) the more 

satisfactory is the solution.  The fact that the algorithm converged in similar points 

supports the internal consistency of the results.   

 

Table 4.3: Scenario 1 Results (modified RCEM) 

Run 

# 

Initial point 

{R,L,T} in 

[in] 

JavaDSIDES 

Solution 

{R,L,T} in [in] 

Estimated 

Volume 

[in3] 

Estimated 

Variance of 

Volume 

[in6] 

Estimated 

Variance 

of Weight 

[lb2] 

Estimated 

Deviation 

Z 

1 {  6,    6, 1.5} {18.72, 8.79, 1.5} 37,281 13,755,928 376,214 0.2543 

2 {  6,  25,    6} {18.72, 8.79, 1.5} 37,281 13,755,928 376,214 0.2543 

3 {20,  25, 1.5} {18.72, 9.27, 1.5} 37,809 14,030,351 383,336 0.2438 

4 {20,  25,    4} {18.91, 8.42, 1.5} 37,913 14,054,754 383,268 0.2417 

5 {20,  48,    4} {18.91, 8.41, 1.5} 37,914 14,054,950 383,264 0.2417 

6 {36,    6,    4} {18.73, 9.25, 1.5} 37,811 14,030,969 383,334 0.2438 

7 {36,  48,    6} {18.72, 9.27, 1.5} 37,809 14,030,324 383,335 0.2438 

 

For run # 5 the convergence plot is given in Figure 4.3.  Although the algorithm starts 

with an infeasible solution, it converges smoothly to a feasible solution.  In Figure 4.4, 

the convergence plot for run # 1 is presented.  Also here, a smooth convergence of the 

algorithm can be observed.   

 



116 

 

Figure 4.3: Convergence Plot for Run # 5 (Scenario 1) 

 

 

Figure 4.4: Convergence Plot for Run # 1 (Scenario 1) 

 

Both plots support the internal consistency of the results for Scenario 1.   

In Table 4.4, the JavaDSIDES results of the modified RCEM for Scenario 2 are given.  

Again, it can be seen that the convergence of the algorithm depends on the initial point.  

The internal consistency of the results can be concluded from the observation that the 

results of the different runs are almost the same and all show a smooth convergence.  The 
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design solutions with the lowest deviation from the goals are the results from runs # 1 and 

2.  However, here the volume constraint is violated to the maximum extent of 1%.  The 

solutions of the remaining runs do not violate the volume constraint.  Convergence plots 

for runs # 1 and 5 and are presented in Figure 4.5.   

 

Table 4.4: Scenario 2 Results (modified RCEM) 

Run 

# 

Initial point 

{R,L,T} in 

[in] 

JavaDSIDES 

Solution 

{R,L,T} in [in] 

Estimated 

Volume 

[in3] 

Estimated 

Variance of 

Volume 

[in6] 

Estimated 

Variance 

of Weight 

[lb2] 

Estimated 

Deviation 

Z 

1 {  6,    6, 1.5} {15.38, 6.0, 1.5} 19,800 5,904,472 176,411 0.31009 

2 {  6,  25,    6} {15.38, 6.0, 1.5} 19,800 5,904,472 176,411 0.31009 

3 {20,  25, 1.5} {15.44, 6.0, 1.5} 20,000 5,983,542 178,477 0.31109 

4 {20,  25,    4} {15.44, 6.0, 1.5} 20,000 5,983,542 178,477 0.31109 

5 {20,  48,    4} {15.44, 6.0, 1.5} 20,000 5,983,542 178,477 0.31109 

6 {36,    6,    4} {15.44, 6.0, 1.5} 20,000 5,983,542 178,477 0.31109 

7 {36,  48,    6} {15.44, 6.0, 1.5} 20,000 5,983,542 178,477 0.31109 
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Figure 4.5: Convergence plots of Runs # 1 and 5 (Scenario 2) 

 

A comparison of the solutions of the runs # 5 for both scenarios is given in Table 4.5.  

The results are as expected.  The design solutions for Scenario 2 have a lower variance of 

the volume and the weight than the designs in Scenario 1.  Since the Scenario 2 designs 

are a compromise between performance and robustness, the volume in those designs is 

lower, yet still within the given constraints.   

 

Table 4.5: Comparison of Scenario 1 and Scenario 2 Results (modified RCEM) 

Scenario 

JavaDSIDES 

Solution 

{R,L,T} in [in] 

Estimated 

Volume 

[in3] 

Estimated 

Variance of 

Volume 

[in6] 

Estimated Variance 

of Weight 

[lb2] 

Scenario 1 {18.91, 8.41, 1.5} 37,914 14,054,950 383,264 

Scenario 2 {15.44, 6.0, 1.5} 20,000 5,983,542 178,477 

 

The computational costs of these modified RCEM runs are almost negligible.  The 

runtime to test one initial point is less than 0.1 seconds. 
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From the presented results it can be seen that the method is very efficient and that the 

Scenario 2 solutions are indeed more robust than the Scenario 1 designs.  For the 

validation of the effectiveness and the efficiency, however, some additional data is 

required.  As outlined in Section 4.2, the accuracy of the results has to be verified and the 

efficiency has to be compared to alternative methods.  In the following section, the results 

of the modified RCEM are verified by comparing them to Latin hypercube samplings.  

Furthermore, the results are compared to results of the original RCEM.   

4.3.3  Verification of the Results and Comparison to the Original RCEM 

In this section, a computationally expensive but very accurate Latin hypercube sampling 

is used to verify the accuracy of the results from the previous section.  Furthermore, the 

original RCEM is applied to the pressure vessel design problem.  A comparison of the 

results will be used to validate the performance of the modified RCEM.   

For the verification of the accuracy of the results generated using the modified RCEM, a 

method is applied to the example, which implements a Latin hypercube sampling for 

estimating the performance mean and variances.  This method is similar to the original 

and also the modified RCEM.  A flow diagram of the method is given in Figure 4.6.  If 

compared to the modified RCEM in Figure 3.15, it can be seen that the only difference is 

the estimation of the performance and the robustness.  This way, the results are 

comparable because any differences in the results can be directly linked to the estimation 

of the performance mean and variances. 
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Figure 4.6: Framework of the used Latin Hypercube Method 

 

In this example, a sample size of 100,000 is used.  For three uncertain variables (R, L, T), 

this sample size is considered large enough to get results that are very close to the real 

values.  The JavaDSIDES solutions for the Latin hypercube method are presented in 

Table 4.6 for Scenario 1 and in Table 4.7 for Scenario 2.   
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Table 4.6: Scenario 1 Results (Latin Hypercube) 

Run # 
Initial point 

{R,L,T} in [in] 

JavaDSIDES Solution 

{R,L,T} in [in] 

Estimated Volume 

[in3] 

1 {  6,    6, 1.5} {18.72, 8.79, 1.5} 37,281 

2 {  6,  25,    6} {18.72, 8.79, 1.5} 37,281 

3 {20,  25, 1.5} {18.72, 9.27, 1.5} 37,809 

4 {20,  25,    4} {18.91, 8.42, 1.5} 37,913 

5 {20,  48,    4} {18.91, 8.41, 1.5} 37,914 

6 {36,    6,    4} {18.73, 9.25, 1.5} 37,811 

7 {36,  48,    6} {18.72, 9.27, 1.5} 37,809 

 

Comparing Table 4.6 and Table 4.3 (modified RCEM) it can be observed that the 

solutions are very similar.  Only the estimations of the vessel volume are slightly 

different.  However, with a difference of 0.01% in the estimation of the volume, the 

results of the modified RCEM can be considered very accurate.   

Table 4.7: Scenario 2 Results (Latin Hypercube) 

Run # 
Initial point 

{R,L,T} in [in] 

JavaDSIDES 

Solution 

{R,L,T} in [in] 

Estimated 

Volume 

[in3] 

Estimated 

Variance of 

Volume 

[in6] 

Estimated 

Variance of 

Weight 

[lb2] 

1 {  6,    6, 1.5} {15.38, 6.0, 1.5} 19801 5887928 177090 

2 {  6,  25,    6} {15.38, 6.0, 1.5} 19801 5887928 177090 

3 {20,  25, 1.5} {15.44, 6.0, 1.5} 20,000 5966442 179148 

4 {20,  25,    4} {15.44, 6.0, 1.5} 20,000 5966442 179148 

5 {20,  48,    4} {15.44, 6.0, 1.5} 20,000 5966442 179148 

6 {36,    6,    4} {15.44, 6.0, 1.5} 20,000 5966442 179148 

7 {36,  48,    6} {15.44, 6.0, 1.5} 20,000 5966442 179148 
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The same is true for Scenario 2.  The JavaDSIDES results in Table 4.7 and Table 4.4 

(modified RCEM) are again very similar.  Furthermore, the estimations for the vessel 

volume are the same and the estimations of the volume and weight variances differ less 

than 1%.  These observations allow the conclusion that the accuracy of the modified 

RCEM results is verified.   

A comparison of the design solutions found with the modified RCEM and those found 

with the original RCEM is required to clearly link the efficiency and accuracy of the 

results to the modifications in the new method.  The design solutions for Scenario 2 

generated using the original RCEM are given in Table 4.8.   

Table 4.8: Scenario 2 Results (Original RCEM) 

Run # 
Initial point 

{R,L,T} in [in] 

JavaDSIDES Solution 

{R,L,T} in [in] 

1 {  6,    6, 1.5} {15.41, 6.0, 1.5} 

2 {  6,  25,    6} {15.41, 6.0, 1.5} 

3 {20,  25, 1.5} {15.46, 6.0, 1.5} 

4 {20,  25,    4} {15.46, 6.0, 1.5} 

5 {20,  48,    4} {15.46, 6.0, 1.5} 

6 {36,    6,    4} {15.46, 6.0, 1.5} 

7 {36,  48,    6} {15.46, 6.0, 1.5} 

 

When comparing these results to those from the modified RCEM (Table 4.4) and the 

Latin hypercube sampling (Table 4.7), it can be seen that the original RCEM leads to 

design solutions that are slightly different.  Since the Latin hypercube sampling method is 
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assumed to be closest to the real values, the modified RCEM has a higher accuracy and 

thus is more effective than the original RCEM.   

In this section, the modified RCEM was applied to the pressure vessel example and the 

accuracy was verified with a comparison to results generated using Latin hypercube 

samples.  Furthermore, the results were compared to those from the original RCEM.  This 

comparison allowed for linking the effectiveness of the new methods to the 

modifications.  In the next section, the results and comparisons are critically discussed 

with regard to the validation of Hypothesis 1.  The focus is on empirical performance 

validation. 

4.4  Critical Discussion of the Example Results and Validation of 

Hypothesis 1 

The data collected in Sections 4.3.2 and 4.3.3 is critically discussed in this section with 

respect to the validation of Hypothesis 1.  The structure of this section will follow the 

outline of the validation strategy for the pressure vessel example presented in Section 4.2.  

While the empirical structural validation was discussed in Section 4.2.1, the empirical 

performance validation is discussed in this section. 
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First Research Hypothesis: 

Using a global response surface, the nominal mean and a single point Taylor Series 

Approximation for the variance estimation is not accurate enough for finding robust 

solutions of nonlinear design problems.  The Robust Concept Exploration Method can be 

improved by using appropriate formulations that account for the nonlinearity of the 

problem. 

 

In Chapter 3, it was presented that using a global response surface, the nominal mean and 

a single point Taylor Series approximation for the variance estimation is not accurate 

enough for finding robust solutions of nonlinear design problems.  In Section 3.2, 

modifications to the original RCEM are introduced that are hypothesized to be able to 

solve the discovered gaps.  In Chapter 3, it is shown that the modified RCEM is capable 

of solving nonlinear problems.  In this chapter, the validation is concluded with an 

engineering design problem.  As outlined in Section 4.2.2, for the empirical performance 

validation it has to be shown (1) that the results meet the expectations, (2) that the 

demonstrated effectiveness and efficiency is linked to the application of the new method 

and (3) that the data generated and used for validation is accurate and internally 

consistent.   
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It has to be shown… 

… (1) that the results meet the expectations: 

In Section 4.3.2, the modified RCEM is applied to both pressure vessel example design 

scenarios.  In Scenario 2, the design goal is to find a robust solution, while Scenario 1 

demands for an optimization for maximum volume.  These goals are achieved by using 

the modified RCEM.  In Table 4.5, it is shown that the design goals are achieved and the 

modified RCEM is effective for solving this design problem.  So the outcome was 

exactly as expected.    

… (2) that the demonstrated effectiveness and efficiency is linked to the application of the 

new method: 

A comparison of the solutions from the modified RCEM to those of the original RCEM is 

presented in Section 4.3.3.  It is demonstrated that the solutions of the modified RCEM 

are slightly closer to the reference solutions from the Latin hypercube sampling.  This 

shows that the effectiveness of the method is linked to the application of the new method.  

The modified RCEM is about as computationally efficient as the original RCEM, but 

significantly more efficient than the Latin hypercube sampling.  While a JavaDSIDES 

run with the modified RCEM takes less than 0.1 seconds, a JavaDSIDES run with Latin 

hypercube sampling takes more than 4 minutes.  For the experiments in this chapter a 

Windows XP PC with an Intel Core2 Quad CPU at 2.4 GHz and 3.25 GB of Ram was 

used. 
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… (3) that the data generated and used for validation is accurate and internally 

consistent: 

The accuracy of the method’s results is verified in Section 4.3.3 by a comparison to 

results of a method that implements a Latin hypercube sampling to estimate the 

performance mean and variances.  In this method, 100,000 samples are generated for 

each evaluation of the goals and constraints in the search algorithm.  The outcome of the 

modified RCEM was very similar to the sampling, only the estimations for the variances 

were slightly different but still very accurate.  Previously in Chapter 3, it was presented 

that the modified RCEM is more effective in estimating performance variances than the 

original RCEM. 

The internal consistency of the results from modified RCEM is demonstrated in Section 

4.3.2.  For both design scenarios multiple starting points are tested with the result that the 

algorithm always converges in one of two possible design solutions, which are almost 

identical.  Furthermore, the internal consistency of the results was verified by 

demonstrating that the search algorithm within JavaDSIDES converges smoothly to the 

design solutions (Figure 4.3, Figure 4.4, and Figure 4.5). 

 

In this section, the empirical performance of the modified RCEM is validated.  This 

supports and confirms Hypothesis 1, which is stated at the beginning of this section.  In 

the next section, this chapter is concluded and an outlook over the next chapters is given. 
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4.5  Chapter Synopsis 

As shown in Figure 4.7, the focus in this chapter is the empirical structural and the 

empirical performance validation of the modified RCEM and Hypothesis 1.  The 

modified RCEM is effective and efficient in solving design problems with explicit 

performance and constraint formulations.  However, the modified RCEM is not capable 

of solving design problems that require simulations for the evaluation of goals or 

constraints.  In Chapter 5, a method is developed that can solve nonlinear simulation-

based design problems.   
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Figure 4.7: Thesis Roadmap 
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CHAPTER 5 

DEVELOPMENT OF A SIMULATION-BASED ROBUST CONCEPT 

EXPLORATION METHOD 

In the previous two chapters, Research Question 1 is answered and Hypothesis 1 

validated.  With the modified RCEM, a method is introduced that is able to assist 

designers when designing a robust engineering system.  However, the prerequisite to the 

design problem is that the performance and constraint functions are known explicitly 

since the derivatives are required to estimate the performance mean (see Section 3.2).  In 

case the designer faces a design problem that requires simulations for the determination 

of the performance or constraint violation, e.g. FEM, Fluent or MATLAB, the modified 

RCEM is not applicable anymore.  This problem is addressed in the Second Research 

Question, which is introduced in Chapter 1:   

Second Research Question: 

How can the RCEM be augmented to improve the accuracy of the robust concept 

exploration for nonlinear design problems that involve simulations? 

 

In this chapter, the answer to this question is developed by investigating possibilities for a 

method that allows for simulation-based robust design.  The main motivation for 

developing such an approach is that the use of global surrogate models like response 

surfaces can lead to wrong results.  This limitation of the original RCEM is presented in 
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Section 3.1.  In this chapter, particularly the Probabilistic Collocation Method (PCM), 

which was first introduced by Menner A. Tatang (Tatang, 1995), is assessed as a 

potential augmentation to RCEM.  The goal is to develop a simulation-based Robust 

Concept Exploration Method that can be used for the validation of the Second Research 

Hypothesis, which is introduced in Chapter 1:   

Second Research Hypothesis: 

It is hypothesized that estimating the performance and the robustness using the 

Probabilistic Collocation Method with Polynomial Chaos Expansion in a simulation-

based approach to robust concept exploration can increase the method’s accuracy and 

reliability over the original RCEM. 

 

In the following sections, the Probabilistic Collocation Method is described, discussed, 

and assessed.  Afterward, the PCM is introduced to the RCEM framework to create a 

design method that can be used to validate the second Research Hypothesis.  Following a 

detailed description of the Probabilistic Collocation Method and its implementation in 

RCEM in the next section, the strategy for validating the new method and Research 

Hypothesis 2 is presented.  The remaining chapter, as well as Chapter 6, follow the 

structure determined by this outline.   
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5.1  Towards a Simulation-Based RCEM  

Instead of running real experiments, in science and industry often resources are invested 

in generating computable models.  These models are supposed to represent the real life 

relations between input and output of a specific system.  The mindset behind building 

models can be very diverse; some real experiments are too expensive to be repeated very 

often (e.g., car crash tests), others are too dangerous (e.g., statics tests of buildings or 

bridges) or the goal of the experiment is a prediction (e.g., weather or climate 

predictions).  Having a computer model opens up new possibilities, especially, the ability 

to assess the model under uncertainty of some or all of the input factors.  This means that 

uncertainties of the input factors are assumed as random variables with specific 

distributions.  If the model is computationally inexpensive, Monte Carlo Simulations 

(MCS) or Latin hypercube samplings (LHS) are the easiest way to investigate the 

model’s behavior under uncertainty and to determine the mean, variance, higher moments 

or even the probability density functions (PDF) of the outputs.  Since these methods 

involve 10,000 or more simulation runs for just one input setting, they are inapplicable 

for larger, computationally more expensive models.  Especially, if the analysis is part of 

an iterative algorithm, which is the case for robust concept exploration methods, the need 

for alternative, more efficient methods is raised.  For these reasons, methods have been 

developed, which can help to reduce the number of required simulations runs.  In this 

thesis such a method, the Probabilistic Collocation Method, is introduced to RCEM to 

allow for simulation-based robust concept exploration.  The underlying concept of the 

Probabilistic Collocation Method (PCM) is explained in greater detail in Section 2.3.  In 

the following sub-sections first, the Probabilistic Collocation Method is demonstrated 
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along an example and then introduced to RCEM.  Finally, the computational framework 

for this design method is described briefly.   

5.1.1  The Probabilistic Collocation Method 

The following description of the Probabilistic Collocation Method is leveraged with 

modifications from (Webster, et al., 1996). 

The PCM is a local surrogate modeling technique based on the Gaussian Quadrature 

Integration and the Polynomial Chaos Expansion (PCE).  The details of the underlying 

concept of the PCM are explained in greater detail in Section 2.3.  The steps of the 

method are illustrated in the flow diagram in Figure 5.1.  In this section, the PCM is 

explained along the artificial design problem used in Chapter 3.  For this description, Eq. 

3.1 is taken as a black box model and the function calls represent the simulations.   

Step 1 and 2: Identify and specify uncertain design variables and noise factors  

First, the uncertain parameters (design variables or noise factors) have to be identified 

and their uncertainty distribution has to be determined.  The determination of the 

distribution can either be based on the designer’s experience or on available empirical 

statistical data like known manufacturing tolerances, temperature or climate observations.  

In the example (Eq. 3.1), there is only one design variable, which is Gaussian distributed.  

For this example a standard deviation of 3 is assumed and the analysis is done for the 

local minimum at x = 931.95.   
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Figure 5.1: Information Flow Diagram of the Probabilistic Collocation Method (Webster, et al., 1996) 
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Step 3: Derive orthogonal polynomials for the uncertainty distributions  

In the third step, the orthogonal polynomials for the distributions determined in the 

previous step have to be derived.  If the approximation of the model response should be 

of order n the orthogonal polynomials up to order n+2 have to be determined.  A 

recursive algorithm for the construction of orthogonal polynomials can be found in 

(Davis and Rabinowitz, 1975); alternatively an algorithm called ORTHPOL (Gautschi, 

1994) can be used to derive the required polynomials.  Since in this example a Gaussian 

distribution is assumed, the following simplification can be used.  All Gaussian 

distributed random variables X can be represented by: 

( )( )ξσµ 1HX +=  
Eq. 5.1 

where µ is the mean and σ is the standard deviation of X. ( )ξ1H  is the first order Hermite 

polynomial.  Hermite polynomials are a set of polynomials that are orthogonal to the 

standard normal distribution ξ , which has a mean of 0 and a variance of 1.  This allows 

for using the same set of orthogonal polynomials for all Gaussian distributions instead of 

deriving orthogonal polynomials for each specific distribution.  Since in this example an 

approximation of third order is demonstrated, the first five Hermite polynomials are 

required: 

( ) ξξ =1H  
Eq. 5.2 

( ) 12
2 −= ξξH  

Eq. 5.3 
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( ) ξξξ 33
3 −=H  

Eq. 5.4 

( ) 36 24
4 +−= ξξξH  

Eq. 5.5 

( ) ξξξξ 1510 35
5 +−=H  

Eq. 5.6 

For the example in this chapter, σx = 3 is assumed and the analysis for µx = 931.95 is 

demonstrated.  According to Eq. 5.1, design variable x can be represented as: 

( )( )ξ1395.931 Hx +=  
Eq. 5.7 

Step 4: Generate a polynomial chaos expansion to approximate the model’s response  

In this step, a polynomial expression is generated to represent the performance or 

response variable as a function of the orthogonal polynomials of ξ .  The third order 

approximation used in this example is given in Eq. 5.8.   

( ) ( ) ( )ξξξ 3322110ˆ HaHaHaayy +++=≈  
Eq. 5.8 

Since ( )ξ1H , ( )ξ2H  and ( )ξ3H  are known, Eq. 5.8 has four unknowns; a0, a1, a2 and 

a3.  To solve for these variables, four simulation runs are required.  The points for those 

runs are determined in the next step.  If the model has more than one uncertain parameter, 

cross product terms can be added to the polynomial chaos expansion.   
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Step 5: Generate collocation points for model runs  

The goal when applying the Probabilistic Collocation Method is to find a good 

approximation with the fewest number of simulations.  This is why it is important to 

carefully select the collocation points in which the model is evaluated.  The method for 

selecting the collocation points is derived from the same idea as the Gaussian Quadrature 

method to numerically solve integrals (for example, see (Davis and Rabinowitz, 1975)).  

In the PCM, the collocation points are selected from the roots of the orthogonal 

polynomials of the next higher order (n+1) for each uncertain parameter.  In case of only 

one uncertain parameter, the number of roots equals the number of required points.  If the 

model has more than one uncertain dimension, it is suggested in the literature to select the 

collocation points with the highest joint probability.  For this example the roots of ( )ξ4H  

are (2.3344, 0.7420, -0.7420, -2.3344).  Substituting into Eq. 5.1, the collocation points 

are: 



















=

924.9468

929.7241

934.1759

 938.9532

x  

Eq. 5.9 

Step 6: Run model on collocation points and solve for approximation  

Running the example model with the collocation points (Eq. 5.9) as inputs gives the 

following results: 
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

















=

27.4895

15.0445

14.7726

 19.4843

y  

Eq. 5.10 

With the four pairs ( )ii y,ξ  the approximation in Eq. 5.8 can be solved for the unknowns 

using, for example, the following equation: 

( ) yBBBa TT 1−
=  

Eq. 5.11 

with 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )


















=

434241

333231

232221

131211

1

1

1

1

ξξξ

ξξξ

ξξξ

ξξξ

HHH

HHH

HHH

HHH

B  

Eq. 5.12 

In this example the coefficients are:   

a0 = 15.6957 

a1 = - 0.9489 

a2 = 1.7510 

a3 = - 0.3126 

Step 7: Check error of approximation (optional) 

Before the approximation is used for the uncertainty analysis, the goodness of the fit can 

be tested.  For this error check a few more simulation runs are required.  The collocation 

points for these runs are derived from the next higher order orthogonal polynomials.  

Those points are always between the collocation points the approximation is fitted to, 
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which allows for a reliable error check.  In this thesis, R2 is used as a measure of the fit.  

In literature also the sum-square-root and the relative sum-square-root are recommended 

(see (Webster, et al., 1996)).  For the example, in this section R2 equals 0.9996, which 

allows the conclusion that the fit is sufficiently good.   

Step 8: Use approximation for uncertainty analysis  

Since orthogonal polynomials are used in the polynomial chaos expansion, some of the 

output or performance moments can be derived directly from the coefficients ai.  Details 

on this can be found in (Hockenberry, 2000).  For example, the mean is simply a0, which 

is 15.6957 in this example.  The second moment, the variance can be determined by 

solving the following equation: 

∑
−

=

=
1

1

22
)(

n

i

ixy aσ  

Eq. 5.13 

In the example, 2
)(xyσ  equals 4.0643.  Of course, the approximation can now be used for 

any uncertainty analysis including Monte Carlo Simulations.  Applied to the 

approximation, the MCS requires a faction of the computational time that it would take if 

applied to the simulation.   

The MATLAB code required to reproduce these results can be found in Appendix B.1. 

5.1.2  The New Simulation-Based Robust Concept Exploration Method 

In the previous section, the Probabilistic Collocation is described.  With this method, the 

uncertainty propagation in simulations can be estimated.  By introducing the PCM to the 
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RCEM, a simulation-based robust concept exploration method is created in this section.  

The mindset behind developing this new design method is to eliminate the limitation of 

the original RCEM, which are identified in Section 3.1.  Particularly the limitations of 

global response surfaces when having a design problem that involves simulations are 

addressed.  The PCM substitutes the response surfaces as well as the Taylor series 

approximations in the original RCEM.  The new framework is presented in Figure 5.2.   
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Figure 5.2: Framework of the Simulation-Based RCEM 

 

With the new method the designer does not have to build a global response surface before 

analyzing the concepts.  With the PCM integrated into the cDSP, small local response 
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surfaces at the points of interest are generated within the DSIDES algorithm.  This 

process is fully automated and by this simplifies the application of RCEM.  The 

implications on the performance of the design method are evaluated in Section 5.4 as 

well as in Chapter 6. 

5.1.3  Computational Framework for the Simulation-Based RCEM 

The simulation-based RCEM is computationally realized within JavaDSIDES, which is 

described in Section 2.4 and Appendix A.  Since PCM is written in MATLAB, the code 

has to be made compatible with JavaDSIDES.  The module MATLAB Builder JA is 

capable of wrapping MATLAB code in Java and thus allows deploying the PCM code as 

a Java package file.  This file can be imported to the JavaDSIDES model so that the 

algorithm can execute it for the uncertainty analysis.  For details on this process see 

Appendix A.   

5.2  Validation and Verification Strategy for the Simulation-Based RCEM 

In this and the next chapter, the simulation-based RCEM and Hypothesis 2 are validated 

and verified.  As outlined in Section 1.4, the validation square provides the structure for 

the validation of this thesis.  The validation square consists of four quadrants: Theoretical 

Structural Validation, Empirical Structural Validation, Empirical Performance 

Validation, and Theoretical Performance Validation (see Figure 1.6).  The theoretical 

structural validation is discussed in this section.  The empirical structural validation and 

the empirical performance validation are outlined in this section and demonstrated in 
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Section 5.4 and Section 6.4 in the next chapter.  The theoretical performance validation 

for both Hypothesis 1 and 2 is discussed in Chapter 7.   

5.2.1  Theoretical Structural Validation 

For the theoretical structural validation, the internal consistency of the method has to be 

shown.  The simulation-based RCEM (see Figure 5.2) consists of the following two main 

components: 

• Compromise Decision Support Problem (cDSP) 

• Probabilistic Collocation Method (PCM) 

The cDSP has been validated in literature before (Bras and Mistree, 1993), so the internal 

consistency of this component does not have to be shown here.  The internal consistency 

of the new component in the RCEM, the PCM, is presented in Section 2.3 and Section 

5.1.1 with the detailed explanation of the method.  The description contains all steps of 

the PCM as well as the underlying mathematical formulations.  Furthermore, the PCM 

has been used successfully in literature before (see Section 5.1).  In Figure 5.2, the flow 

diagram of the new design method is given and the relation between the components is 

shown.  The design problem formulation in the cDSP requires the estimation of the 

performance mean and variance, which is provided by the PCM.  With this, the 

theoretical structural validity is demonstrated. 
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5.2.2  Empirical Structural Validation 

Demonstrating the empirical structural validity involves discussing the appropriateness of 

the chosen examples for illustrating and verifying the design method.  The simulation-

based Robust Concept Exploration Method, which is introduced in Section 5.1.2, is 

validated with two example problems.  The first example is the artificial design problem 

used previously in Chapter 3.  For the validation in this chapter, this function (Eq. 3.1) is 

regarded as a black box and thus simulating a model with unknown response.  This way, 

the example is representative for a simple one-dimensional design problem with one 

uncertain design variable.  In Chapter 6, the new method is applied to the design of a 

robust Linear Cellular Alloy cooling structure.  The empirical structural validation of this 

example is addressed in Chapter 6.   

Is the example similar to design problems for which the simulation-based RCEM is 

intended and may be applied? 

The following characteristics of the artificial design problem qualify it as a suitable 

problem for the simulation-based RCEM: 

- The problem is non-linear and thus requires a method that can handle non-

linearity.  Particularly this example problem could not be solved with the original 

RCEM due to its non-linear characteristics. 

- The example includes a black box model for which the functional relation 

between input and output is regarded as unknown.   
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- The design has two objectives, of which one is a robustness goal.  This means that 

a method is required that can handle multiple objectives and is able to find 

compromises.  Furthermore, the method has to be capable of evaluating the 

robustness of a potential design solution. 

- The design example has an uncertain design variable and thus demands for a 

method that can handle uncertain inputs. 

Can the data from these examples be used to support conclusions with respect to the 

hypothesis?   

In order to validate Research Hypothesis 2, it has to be shown that the simulation-based 

RCEM increases accuracy and reliability over the original RCEM.  Accuracy in this 

context means that the new method’s estimations for the performance mean and variance 

have to be closer to the real values.  Reliability means that the new method has to be able 

to bring better results especially for highly non-linear problems, for which the original 

RCEM fails.  Both improvements in accuracy and reliability can be shown with data from 

the first example, the artificial problem.  With both methods, the performance mean and 

variance is estimated.  A comparison of those values to reference values generated using 

a Latin hypercube sampling or Monte Carlo simulation will support conclusions 

regarding the accuracy.  Furthermore, the simulation-based RCEM is applied to the 

example problem.  From Section 3.1, it is known that the original RCEM fails to solve 

this problem.  The data from applying the new method will support conclusions regarding 

the reliability of the method.  Additionally, it can be seen if the new method is able to 

find a robust solution.  This will also be supported by the data from the second example, 
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the design of a robust LCA cooling structure.  Furthermore, this data is used to evaluate 

the ability of the method to solve multidimensional, multi-objective problems with 

multiple uncertain parameters.  Finally, the data from the LCA example will also support 

the conclusion that the new method can handle simulation-based problems effectively 

and efficiently without requiring a global response surface or a similar global surrogate 

model.   

5.2.3  Empirical Performance Validation 

The two examples are used to demonstrate the empirical performance validation of 

Hypothesis 2 and the simulation-based RCEM as well.  Therefore, it has to be shown (1) 

that the results meet the expectations, (2) that the demonstrated effectiveness and 

efficiency is linked to the application of the new method and (3) that the data generated 

and used for validation is accurate and internally consistent. 

How can the results be evaluated with respect to the expected outcome of the method? 

The results for both examples are generated for two different scenarios, of which the first 

one will ask the designer to focus on maximum performance and the second on a 

compromise between high performance and high robustness (low performance 

variability).  If the results for the second scenario are design solutions that are more 

robust than the results for the first scenario, the outcome is as expected and Hypothesis 2 

is supported.   
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How can it be demonstrated that the observed effectiveness and efficiency is linked to the 

application of the simulation-based RCEM? 

The first example is solved with both methods, the original RCEM and the simulation-

based RCEM.  A direct comparison of the results will allow conclusions regarding the 

link between the observed effectiveness and efficiency and the application of the 

simulation-based RCEM. 

The results of the LCA example will allow conclusions especially about the efficiency of 

the new method.  The efficiency is regarded as inversely proportional to the 

computational costs.  A comparison of the required computational time of applying the 

simulation-based RCEM to the time required for using the original RCEM will be used to 

support the Research Hypothesis 2.   

How are the accuracy and the internal consistency of the results verified? 

First, the accuracy of the results is verified by comparing the outcome of the simulation-

based RCEM to Latin hypercube samplings.  Using a computationally expensive Latin 

hypercube sampling within the DSIDES algorithm (see Figure 4.6) to determine 

performance and robustness is assumed to give results very close to reality.  Showing that 

the results of the simulation-based RCEM are close to those values will support the 

argument for the accuracy of the method.  The internal consistency of the results is 

confirmed by testing multiple starting points for the algorithm as well as by an analysis of 

the convergence of the algorithm.   

The following sections and Chapter 6 are structured according to the validation strategy 

outlined in this section.  In the next section, the simulation-based RCEM is applied to the 
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artificial design problem introduced in Chapter 3 followed by a critical discussion of the 

results.   

5.3  Application of the Simulation-Based RCEM to the Artificial Design 

Problem 

In this section, the simulation-based RCEM is applied to the artificial design problem 

(Eq. 3.1), which is introduced in Chapter 3.  First, the performance of the mean and 

variance estimation used in the simulation-based RCEM is compared to the Taylor series 

approximation used in the original RCEM.  Afterwards, the new method is implemented 

within JavaDSIDES for solving the design problem.  All results will be verified and 

checked for internal consistency.   

A crucial part of a robust concept exploration method is the accurate estimation of the 

performance mean and variance values.  In Section 3.1, it is shown that the original 

RCEM has limitations here when it comes to non-linear problems.  Similar to Section 

3.2, the accuracy of the Probabilistic Collocation Method, which is responsible for the 

mean and variance estimation in the simulation-based RCEM, is tested using the artificial 

performance function given in Eq. 3.1.  In Section 3.1, it was discovered that the local 

minimum of the example function is the crucial point.  The original RCEM fails in 

solving the design problem because its estimation of the performance variance in this 

point is wrong.  This is why, in this section, the mean and variance estimations of the new 

method in this point are compared to the estimation with a Latin hypercube sample with 

100,000 sample points.  For the comparison, Gaussian input distributions are assumed 
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with standard deviations of 2 ( 42 =xσ ) and 3 ( 92 =xσ ) respectively.  The test point is the 

local minimum of the performance function at x = 931.95 (see Figure 3.2) with a nominal 

function value (performance) of y = 13.96.  In Table 5.1, the performance mean 

estimations yµ  and the variance estimations 2
yσ  are presented.   

 

Table 5.1: Mean and Variance Estimations at x = 931.95 

Method 

Scenario 1: 42 =xσ  Scenario 2: 92 =xσ  

yµ  2
yσ  yµ  2

yσ  

Latin Hypercube Sampling 14.72 1.32 15.69 7.52 

simulation-based RCEM 14.72 0.69 15.69 4.07 

original RCEM 13.96 0.00 13.96 0.00 

 

From the results it can be seen that the accuracy of the estimations from the Probabilistic 

Collocation Method in the simulation-based RCEM are superior to the estimation 

methods used in the original RCEM.  Both the estimations for the mean and the variance 

of the new method are closer to the reference values from the Latin hypercube sampling 

than those of the old method.  Although the new method shows a significant 

improvement, there is still some potential for further development.  These results are 

confirmed by a second test at the point x = 950.00, which lies in the robust area of the 

performance function.  The outcome of this example, which is given in Table 5.2, 

supports the previous finding that the new method has an improved accuracy in 

estimating the performance mean and variance.    
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Table 5.2: Mean and Variance Estimations at x = 950.00 

Method 

Scenario 1: 42 =xσ  Scenario 2: 92 =xσ  

yµ  2
yσ  yµ  2

yσ  

Latin Hypercube Sampling 27.77 0.74 27.71 1.97 

simulation-based RCEM 27.77 0.73 27.71 1.94 

original RCEM 27.82 0.62 27.82 1.40 

 

In the next step, the complete simulation-based RCEM is tested on the artificial design 

problem.  The cDSP for this example is given in Figure 5.3.  The design problem is 

similar to the one in Chapter 3.  However, the comparability of the results is limited 

because the performance function is regarded as a black box model in this section.  The 

goal for the performance mean is yµ  = 10 and for the variance 2
yσ  = 0.5.  The design 

variable x is assumed to be uncertain with a Gaussian distribution and a variance 92 =xσ .  

As in Chapter 3, the problem is solved for two scenarios.  In the first scenario, the 

designer is putting a high weight on achieving maximum performance without really 

considering the robustness of the solution.  The designer in the second scenario is looking 

for a compromise between high performance and high robustness.  The example problem 

is solved with two methods: the simulation-based RCEM (Section 5.1.2), which is 

computationally realized as described in Section 5.1.3 and a Latin hypercube sampling 

approach, which is illustrated in Figure 4.6.   
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Figure 5.3: cDSP for First Example Design Problem 



150 

Table 5.3: Design Solutions for Scenario 1 and Scenario 2 

Run # Initial Point 

Scenario 1 Scenario 2 

Solution of 

the LHS 

Method 

Solution of 

the 

Simulation-

Based RCEM 

Solution of 

the LHS 

Method 

Solution of 

the 

Simulation-

Based RCEM 

1 x = 920 933.57 933.26 951.70 951.70 

2 x = 940 933.57 933.26 951.70 951.70 

3 x = 960 933.57 933.26 951.70 951.70 

4 x = 976 933.57 933.26 951.70 951.70 

 

The results, which are presented in Table 5.3, are exactly as expected. The design 

solutions of the simulation-based RCEM are very similar to the results of the LHS 

reference method.  The two design scenarios are solved correctly.  The solutions for 

Scenario 2 lie in the robust region (compare to Figure 3.2), whereas the solutions for 

Scenario 1 are very close to the local minimum at x = 931.95.  The reason why the 

algorithms did not converge in the minimum is the small weight that is put on robustness 

in Scenario 1.  Since the performance is more robust to the right side of the minimum, the 

solutions are around x = 933.57.  For the validation of the internal consistency of the 

results, the convergence plots of the algorithm for run #2 in both scenarios are given in 

Figure 5.4.  

For completeness, it has to be mentioned that the simulation-based RCEM does not find 

the robust solution in Scenario 2, if the design variable variance is 4 or less.  In Table 5.1, 

it can be seen that the variance estimation of the PCM at the minimum is close to 0.5 if 

42 =xσ , which is the target in the cDSP.  One limitation of the cDSP and DSIDES is that 
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values that are close to the target are weighted higher by the algorithm than those further 

away from the target.  For this reason the method converges in a design solution that is 

not satisfying for the designer.   

 

 

Figure 5.4: Convergence plots of Run # 2 for Scenario 1 and 2 

 

In this section, the simulation-based RCEM was successfully applied to the artificial 

design problem and the results were verified with Latin hypercube samples and 

convergence analyses.  In the next section, the results are discussed with regard to the 

validation of the new design method as well as Research Hypothesis 2.   
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5.4  Critical Evaluation of the Results  

In this section, the validation of the simulation-based RCEM and Research Hypothesis 2 

is discussed.  As outlined in Section 1.4 for the entire thesis and in Section 5.2 for the 

simulation-based RCEM, the validation is presented along the four quadrants of the 

validation square (see Figure 1.6).  The first two quadrants, the theoretical structural 

validation and the empirical structural validation, are discussed and verified in Sections 

5.2.1 and 5.2.2.  The empirical performance validation is addressed in the following. 

In order to demonstrate the empirical performance validation, it has to be shown (1) that 

the results meet the expectations, (2) that the demonstrated effectiveness and efficiency is 

linked to the application of the new method and (3) that the data generated and used for 

validation is accurate and internally consistent. 

(1) Do the results meet the expectation? 

As mentioned in Section 5.3, the results of the new method meet the expectations.  The 

estimations for the mean of the performance are very accurate.  While the estimations of 

the performance variance from the new method are significantly better than from the 

original RCEM, they still leave room for improvement.  The results from applying the 

new method to the design problem are very accurate as seen in the last section.  However, 

design scenarios and parameter constellations have been found, where the solutions of the 

new method are just equal to the original RCEM.  With a further improvement of the 

estimation accuracy of the performance variance, the new method could find satisfying 

solutions for these scenarios as well.  This is discussed more detailed in Chapter 7. 
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(2) Is the demonstrated effectiveness and efficiency linked to the application of the new 

method? 

The demonstrated effectiveness is clearly linked to the application of the new method.  In 

Section 5.3, all results of the new method are compared to results of the original RCEM.  

It is demonstrated that all results of the new method are superior to the old method.  This 

is true for the estimations of the performance mean and the variance as well as for the 

application of the entire method to a design problem.   

In this example, the simulation-based RCEM does not show a significantly higher 

efficiency than the original RCEM.  This is because the example was not a real 

simulation-based problem but an explicit performance function that was handled as a 

black-box for the new method.  This means that the original RCEM was applied to the 

problem without generating a response surface.  The efficiency of the new design method 

will be addressed in Chapter 6 in greater detail. 

(3) Is the data generated and used for validation verified and internally consistent? 

The internal consistency of the generated data is demonstrated with the convergence plots 

in Section 5.3 (Figure 5.4).  It can be seen that the algorithm shows a smooth 

convergence.  Furthermore, several starting points are tested in Section 5.3, which all 

converge to the same solution.  This allows the conclusion that the data is internally 

consistent. 

The accuracy of the data from the new method is verified in Section 5.3 with 

comparisons to the results of Latin hypercube samples with a sample size of 100,000.  

The sample size is large enough for this example so that the LHS results can be 
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considered very accurate and close to the real values.  With these comparisons it is 

demonstrated that the accuracy of the new method is as expected.   

The empirical performance validation was discussed in this section.  This discussion is 

continued in Section 6.4 with the results of the heat exchanger example, which is 

introduced in Chapter 6.  

5.5  Chapter Synopsis 

As presented in Figure 5.5, the focus in this chapter is on the introduction of the 

Probabilistic Collocation Method in Section 5.1.1 and the simulation-based Robust 

Concept Exploration Method in Section 5.1.2.  Furthermore, the new method is validated 

with an artificial design problem in Section 5.3.  The Validation of the new method and 

Research Hypothesis 2 is outlined and discussed in Sections 5.2 and 5.4.  In Chapter 6, 

the new method is validated with a second example, the design of a robust Linear 

Cellular Alloy cooling structure.   
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CHAPTER 6 

SIMULATION-BASED ROBUST DESIGN OF A LINEAR 

CELLULAR ALLOY COOLING SRTUCTURE 

In the previous chapter, Research Question 2 is addressed.  For the validation of the 

Research Hypothesis 2, the simulation-based Robust Concept Exploration Method is 

developed and its validation is discussed.  Since the example in Chapter 5 is only one-

dimensional, a multi-dimensional design example is presented in this chapter.  In the heat 

exchanger example described in this chapter, the simulation-based RCEM is applied for 

designing a robust Linear Cellular Alloy (LCA) cooling structure.  With multiple 

uncertain design variables, multiple objectives and the required MATLAB simulations 

the example is suitable for the validation of the new design method.  The two main 

components of the simulation-based RCEM, the compromise Decision Support Problem 

(cDSP) and the Probabilistic Collocation Method (PCM), provide a set of tools to handle 

exactly these kinds of design problems.  The cDSP assists in compromising between 

multiple objectives and the PCM handles uncertain simulation input.   

While the simulation-based RCEM’s ability of coping with non-linear models is 

demonstrated in Chapter 5, the focus of this chapter is in the efficiency of the new 

method.  First, the LCA technology and the design problem are introduced briefly and the 

validation strategy is outlined.  Then the simulation-based RCEM is applied to the 

example and the results are discussed. 



157 

6.1  Linear Cellular Alloy Cooling Structure 

In this section, the Linear Cellular Alloy technology is introduced briefly and the cooling 

structure design example is presented.   

The LCA design example is taken from the research area of multifunctional material 

design.  In this case, the cooling structure is designed to provide a certain structural 

stiffness as well as high heat transfer rate for cooling applications.  Similar examples 

have been used previously (e.g. (Seepersad, 2004; Seepersad, et al., 2006a; Seepersad, et 

al., 2004)).  Some parts in the description of the LCA technology in the next section are 

taken from these publications.   

6.1.1  Linear Cellular Alloy 

Linear Cellular Alloys (LCAs) are extruded cellular honeycomb materials.  Some 

examples are presented in Figure 6.1.   

 

       

Figure 6.1: Examples of Linear Cellular Alloys (Seepersad, et al., 2006a) 
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Certain structural and thermal properties of these materials are superior to those of 

metallic foams with equivalent densities (see (Evans, et al., 2001) and (Hayes, et al., 

2004)).  This is why these linear or two-dimensional cellular materials are particularly 

suitable for multifunctional applications that require both structural performance and 

lightweight thermal or energy absorption capabilities.  Due to larger surface area density 

and lower pressure drop, LCAs are suitable for applications as heat exchangers.  Those 

two factors can compensate for lower heat transfer coefficients for laminar forced 

convection than for turbulent convection in stochastic metal foams with comparable 

relative densities (see (Lu, 1999)).   

The manufacturing process for LCAs was developed by the Lightweight Structures 

Group at the Georgia Institute of Technology (Cochran, et al., 2000).  To build LCAs, 

powder slurries are extruded through a die and then exposed to thermal and chemical 

treatments.  Those structures can be produced in nearly any cellular topology, solely 

limited by paste flow and die manufacturability.  In (Church, et al., 2001) it is reported 

that wall thicknesses as small as fifty microns and cell diameters of several hundred 

microns have been realized.   

6.1.2  Design of the LCA Cooling Device 

In this section, the boundary conditions and objectives for a structural heat exchanger for 

electronic cooling applications are outlined and the cDSP for the design example is 

formulated.   

The cooling device that is designed in this chapter would be well-suited for application in 

electronic devices.  The goal is to design a multifunctional heat exchanger that can 
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provide a certain structural support in addition to the cooling capabilities.  Areas of 

application could be for example laptop computers.  For this example, only rectangular 

cell topologies are considered with an overall structure of the heat exchanger as presented 

in Figure 6.2.  A topology with two rows and twelve columns with an overall height and 

width of 25 mm and an overall length of 75 mm is selected.   
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Figure 6.2: Compact, Forced Convection Heat Exchanger with Graded Rectangular LCAs 

(Seepersad, 2004) 

 

The design variables, parameters, objectives, bounds and constraints are summarized in 

Table 6.1 and explained in the following.   
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Table 6.1: Nomenclature and Boundary Conditions for Chapter 6 

 

Design Variables and Bounds 

Ht
µ  (0.15 – 1.20 mm) Mean of wall thickness in horizontal direction 

Vt
µ  (0.15 – 1.20 mm) Mean of wall thickness in vertical direction 

2hµ  (3.00 – 22.00 mm) Mean of height of bottom row 

1hµ  (h1 = H - h2 - 3tV) Mean of height of top row (determined by h2) 

 

Constants 

H = 25 mm Overall height of the heat exchanger 

W = 25 mm Overall width of the heat exchanger 

L = 75 mm Overall length of the heat exchanger 

Nv = 2 Number of rows 

NH = 12 Number of columns  

wi 
Width of cells in column i 

(in this example the columns are evenly distributed) 

Ts = 373 K Temperature of heat source 

Tin = 293 K Temperature of air at inlet 

ks = 363 W/(m*K) Thermal conductivity of solid base material 

V& = 0.00182 m3/s Volumetric flow rate of air/coolant 
2

2hσ  = 1.0 mm2 

22

VH tt σσ = = 0.0009 mm2 

Variances of the bottom row height and the wall 
thickness in both directions 

 
Objectives 

Q&  
Total heat transfer rate 

(target: Q&  = 150 W) 

2

Q&
σ  

Variance of total heat transfer rate 

(target: 2

Q&
σ  = 0.8 W2) 

 
Constraints 

Ex/Es ≥ 0.01 
Overall elastic stiffness in x-direction, relative to the 

elastic modulus of the solid base material  

Ey/Es ≥ 0.01 
Overall elastic stiffness in y-direction, relative to the 

elastic modulus of the solid base material 

Further constraints on the manufacturability that do not require the introduction 
of new variables are introduced in the following 
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The overall design specifications boundary conditions are taken from (Seepersad, 2004), 

where a very similar example problem is used for the validation of a two-step topology 

design method.  For this thesis, the problem is slightly modified to suit the requirements 

of the simulation-based RCEM.   

The intended application for the heat exchanger demands for satisfactory performance in 

two physical domains: overall structural elastic stiffness and overall rate of steady state 

heat transfer.   

The rectangular cell topology of the cellular structure of the heat exchanger can be 

tailored by adjusting the height of the two rows (
1hµ ,

2hµ ) as well as the thickness of the 

walls in x- and y-direction (
Ht

µ ,
Vt

µ ).  For this example, the design variables are 

assumed to be uncertain due to manufacturing tolerances.  The wall thicknesses are 

Gaussian distributed with a variance of 0.0009 mm2 and the location of the horizontal 

wall between the two rows is Gaussian distributed with a variance of 1.0 mm2.  The 

device is intended to dissipate heat from the heat source with an elevated Temperature, Ts 

= 373 K, to cooling air that flows through the cellular alloy with a fixed volumetric flow 

rate, V& = 0.00182 m3/s, and a fixed entry temperature, Tin = 293 K.  According to 

(Church, et al., 2001) the thermal conductivity, ks, of copper samples fabricated with the 

thermal-chemical LCA extrusion process has been measured to be 363 W/(m*K).  The 

goal is to design an exchanger that can provide a robust heat transfer rate with a target 

rate of Q&  = 150 Watts and a target variance of 2

Q&
σ  = 0.8 W2.  These goals are 

formulated as design objectives in this example.  For the calculation of the steady state 

heat transfer rate of the cooling device, a MATLAB Finite Element Analysis is 
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implemented.  The simulation has been developed by Carolyn Conner Seepersad, Hae-Jin 

Choi and Marco Gero Fernández at Georgia Tech.   

Additionally, the cellular structure of the heat exchanger should provide a minimum 

elastic stiffness in the x- and y-directions in Figure 6.2.  The application demands for a 

elastic stiffness relative to the modulus of the base material of at least 0.01 (Ex/Es ≥ 0.01, 

Ey/Es ≥ 0.01).  For the calculation of these values a simplified approach is taken, which is 

presented in (Seepersad, 2004).  In a prismatic cellular material with non-periodic 

rectangular cells that is loaded along the x- or y-axis in Figure 6.2, elastic deformation 

occurs due to axial extension or compression of the walls.  If it is then assumed that there 

are no imperfections in structure and material, there is no bending contribution to the 

deformation in this particular configuration.  Thus, the overall elastic stiffness in x- and 

y-directions can be approximated as the fraction of the total width W or height H, 

respectively, occupied by the cell walls: 

01.0
)1(

/ ≥
+

≅
H

N
EE

Vt

sx
H

µ
 

Eq. 6.1 

01.0
)1(

/ ≥
+

≅
W

N
EE

Ht

sy
V

µ
 

Eq. 6.2 

where Es is the elastic modulus of the solid cell wall material.  In this design example, the 

minimum requirement for this fraction in both directions is 0.01.   

While meeting the design requirements, the heat exchanger has to be manufacturable.  In 

(Seepersad, et al., 2004) it is reported that, as a rule of thumb, the aspect ratio of cell wall 
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thickness to cell dimension has to be 0.08 or above to guarantee manufacturability (Eq. 

6.3, Eq. 6.4, Eq. 6.5).  
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Furthermore, the MATLAB simulation used to calculate the heat transfer rate is intended 

for predominantly open structures, which demands for the constraints given in Eq. 6.6, 

Eq. 6.7, and Eq. 6.8.   
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In addition, the row height should not be smaller than 3 mm. For the bottom row, h2, this 

is ensured through the bound on the variable.  For the top row, h1, the constraint given in 

Eq. 6.9 has to be formulated. 

mmH htV
33

2
≥−⋅− µµ  

Eq. 6.9 

The design problem described in this section is used for the validation of the simulation-

based RCEM in Section 6.3.  In that section, the cDSP for the design problem is 

formulated, too.  In the next section, the strategy for the validation with this example is 

outlined. 

6.2  Validation and Verification with the Example 

In this section, the strategy for the validation of the simulation-based RCEM with the 

LCA example is outlined.  As presented in Section 1.4, the validation square provides the 

structure for the validation of this thesis.  The validation square consists of four 

quadrants: Theoretical Structural Validation, Empirical Structural Validation, Empirical 

Performance Validation, and Theoretical Performance Validation (see Figure 1.6).  The 

theoretical structural validation and the empirical structural validation are demonstrated 

in this section.  The empirical performance validation is outlined in this section and 

discussed in Section 6.4.  The theoretical performance validation of both Hypothesis 1 

and 2 is discussed in Chapter 7.   
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6.2.1  Theoretical Structural Validation 

The theoretical structural validation of the simulation-based RCEM is discussed and 

demonstrated in Section 5.2.1 and therefore not elaborated here.   

6.2.2  Empirical Structural Validation 

Demonstrating the empirical structural validity involves discussing the appropriateness of 

the chosen example for illustrating and verifying the design method.  The simulation-

based Robust Concept Exploration Method, which is introduced in Section 5.1.2, is 

validated with the LCA design example in this chapter.  

Is the example similar to design problems for which the simulation-based RCEM is 

intended and may be applied? 

The following characteristics of the Linear Cellular Alloy problem qualify it as a suitable 

problem for the simulation-based RCEM: 

- The design of the LCA cooling structure is modeled in multiple MATLAB 

functions that require a simulation each time the performance of a certain design 

variable configuration is evaluated.  This requires the design method to be able of 

handling problems where the functional relationship between input and output is 

not known explicitly.  

- The design and the performance of the LCA cooling structure is determined by 

three design variables.  This means that the example is a multidimensional design 

problem that requires a method that can handle multiple input variables.   
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- The performance of the design is dependent of several uncertain factors.  In this 

case, the three design variables contain uncertainty in form of manufacturing 

inaccuracy.  Showing that the simulation-based RCEM is capable of handling 

multiple uncertain design variables implies that the method can also solve 

problems with multiple noise factors.  In these design problems, noise factors can 

be regarded as uncertain “design variables” with a constant mean value. 

- The objective is to design a cooling structure that is robust towards uncertain 

design variables or noise factors.  This means that the goal is to find a design 

variable configuration, which results in a low variation of the heat transfer rate 

without changing or modifying the source of uncertainty.  A method that can help 

solving this kind of problems requires a means to estimate accurately the 

robustness of the design at various points in the design space. 

- The example design problem has multiple design objectives that have to be 

considered by the designer.  The goal is to find a compromise among the several 

objectives.  This example has one performance objective (high heat transfer rate) 

and one robustness objective (low variance of the heat transfer rate).  Since these 

objectives oppose each other, a trade-off has to be found that satisfies the 

designer’s preferences.   

Can the data from these examples be used to support conclusions with respect to the 

hypothesis?   

In order to validate Research Hypothesis 2, it has to be shown that the simulation-based 

RCEM increases accuracy and reliability over the original RCEM.  Accuracy in this 
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context means that the new method’s estimations for the performance mean and variance 

has to be closer to the real values and that the application of the method actually lead to 

robust design solutions.  Reliability means that the new method has to be able to bring 

better results especially for highly non-linear problems, for which the original RCEM 

fails.  Both improvements in accuracy and reliability are shown with data from the first 

example in Sections 5.3 and 5.4.  This can be supported by the data from the second 

example, the design of a LCA cooling structure.  This data is used especially to evaluate 

the ability of the method to solve multidimensional, multi-objective problems with 

multiple uncertain parameters.  Furthermore, it can support the conclusion that the new 

method can handle simulation-based problems effectively and efficiently without 

requiring a global response surface or a similar global surrogate model.   

6.2.3  Empirical Performance Validation 

The LCA example is used to demonstrate the empirical performance validation of 

Hypothesis 2 and the simulation-based RCEM.  Therefore, it has to be shown (1) that the 

results meet the expectations, (2) that the demonstrated effectiveness and efficiency is 

linked to the application of the new method and (3) that the data generated and used for 

validation is accurate and internally consistent. 

How can the results be evaluated with respect to the expected outcome of the method? 

The results for the example problem are generated for two different scenarios, of which 

the first one asks the designer to focus on maximum performance and the second on a 

compromise between high performance and high robustness (low performance 
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variability).  If the results for the second scenario are design solutions that are more 

robust than the results for the first scenario, the outcome is as expected and Hypothesis 2 

is supported.   

How can it be demonstrated that the observed effectiveness and efficiency is linked to the 

application of the simulation-based RCEM? 

The results of the LCA example will allow conclusions especially about the efficiency of 

the new method.  The efficiency is regarded as inversely proportional to the 

computational costs.  A comparison of the required computational time of applying the 

simulation-based RCEM to the time required for using the original RCEM will be used to 

support the Research Hypothesis 2.   

How are the accuracy and the internal consistency of the results verified? 

First the accuracy of the results is verified by comparing the outcome of the simulation-

based RCEM to Latin hypercube samplings.  Showing that the results of the simulation-

based RCEM are close to those values will support the argument for the accuracy of the 

method.  The internal consistency of the results is confirmed by testing multiple starting 

points for the algorithm as well as by an analysis of the convergence of the algorithm.   

 

In this section, the validation strategy for the LCA example is outlined.  In the next 

section, the data for this validation is generated by applying the simulation-based RCEM 

to the LCA design problem.   
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6.3  Application of the Simulation-Based RCEM to the LCA Design 

Example 

In this section, the simulation-based RCEM is applied to the LCA design problem, which 

is introduced in Section 6.1.2.  First, the problem is solved for two scenarios using the 

new method.  The first scenario demands for a cooling device with maximum heat 

transfer with less focus on the robustness of the performance.  The second design 

scenario, on the other hand, requires the designer to find a compromise between a high 

heat transfer rate and a low performance variation.  The results of the method are verified 

using a Latin hypercube sampling.  Furthermore, the computational costs for applying the 

simulation-based RCEM are compared to those of the original RCEM.   

For the application of the simulated RCEM to the LCA design example, first, the problem 

has to be formulated as a cDSP.  The cDSP generated from the information given in 

Section 6.1.2 is presented in Figure 6.3.   

 

GIVEN 

 FEA analysis simulation of LCA structure in MATLAB 

 Constants and boundary conditions (Table 6.1)  

 Variance of design variables 2

2hσ  = 1.0 mm2,  22

VH tt σσ = = 0.0009 mm2 

 
FIND 

 Design variable:  
Ht

µ , tV, h2 

 Deviation variables:   2,1, =+− idd ii  
 

SATISFY 

 CONSTRAINTS 

  on minimum structural stiffness (see Eq. 6.1 and Eq. 6.2): 
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  on minimum cell height (see Eq. 6.9): 

   mmH htV
33

2
≥−⋅− µµ  

 

 GOALS 

  Performance goal: 1
150

11 =−+ +− dd
W

Q&
 

  Robustness goal: 1

8.0
1

1

22

2

2

=−+ +−
dd

W

Q&
σ

   

  

 BOUNDS 

  mmmm
Ht

20.115.0 ≤≤ µ  

  mmmm
Vt

20.115.0 ≤≤ µ  

  mmmm h 00.2200.3
2

≤≤ µ  

  2,10, =≥+− idd ii  

  2,10 ==⋅ +− idd ii  

MINIMIZE 

 
−− ⋅+⋅= 2211 dWdWZ             0, 21 =++

dd  

 

Scenario 1: 

W1 = 1.0 

W2 = 0.0 

Scenario 2: 

W1 = 0.2 

W2 = 0.8 

 

Figure 6.3: cDSP for LCA Example Design Problem 

 

For this example, it has been found that a second order polynomial chaos expansion 

without cross product terms for the probabilistic collocation method is sufficiently 
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accurate with an R2 around 99%.  The polynomial chaos expansion used here is given in 

Eq. 6.10.   
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Eq. 6.10 

with H1 and H2 being the first and second order Hermite polynomials.  According to Eq. 

5.1 in Section 5.1.1 the design variable have the following characteristics: 

( )( )
HHH tttH Ht ξσµ 1+=  

Eq. 6.11 

( )( )
VVV tttV Ht ξσµ 1+=  

Eq. 6.12 

( )( )
222 12 hhh Hh ξσµ +=  

Eq. 6.13 

Having seven unknowns, ai, means that each time the performance and robustness is 

evaluated using the PCM in this example, seven MATLAB FEA simulations of the LCA 

are required.   

In the following, the results of the second order simulation-based RCEM for the design 

example are presented.     

First, the simulation-based RCEM results for design scenario 1 are generated.  This 

scenario is equivalent to an optimization problem without the consideration of the 

robustness of the performance.  However, in order to evaluate the results of the second 

scenario the variances of the total heat transfer rate in Scenario 1 are calculated and 
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presented together with the results in Table 6.2.  The results are verified using a Latin 

hypercube sample with 1000 sample points; the LHS outcome is given in parenthesis.   

 

Table 6.2: LCA Design Results for Scenario 1 

Run 

# 

Initial Point 

{tH, tV, h2} in 

[mm] 

Solution of the   

S-B RCEM     

{tH, tV, h2} in 

[mm] 

Mean of Q&  

estimated with the  

S-B RCEM 

(LHS) 

Variance of Q&  

estimated with the 

S-B RCEM    

(LHS) 

1 {0.5, 0.5, 3} {1.00, 1.14, 8.43} 135.70   (135.70) 1.50   (1.50) 

2 {0.15, 1.2, 10} {1.00, 1.20, 8.94} 135.57   (135.57) 1.53   (1.52) 

3 {1.2, 0.15, 10} {1.00, 1.20, 8.53} 135.65   (135.65) 1.54   (1.54) 

4 {0.5, 0.5, 20} {1.00, 1.20, 8.98} 135.57   (135.57) 1.52   (1.53) 

 

From the results it can be seen that the target value for the total heat transfer rate could 

not be achieved and that 135.70 W is the highest heat transfer rate that can be achieved 

within the given bounds and constraints.  Furthermore, it can be seen that the solutions 

from the simulation-based RCEM are very similar of those from the Latin hypercube 

sample, which leads to the conclusion that the simulation-based RCEM is very accurate 

in this example.  The similar solutions that are generated from the different starting points 

indicate the internal consistency of the results.  This is confirmed by the smooth 

convergence of the algorithm.  The convergence plot of run #1 is given in Figure 6.4.   
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Figure 6.4: Convergence Plot for Run #1 in Scenario 1 

 

With a heat transfer rate variance of about 1.50, the robustness of the performance is 

relatively low in scenario 1.  The simulation-based RCEM results for scenario 2, which 

are presented in Table 6.3, have a significantly higher robustness than the solutions from 

the optimization in Scenario 1.   

 

Table 6.3: LCA Design Results for Scenario 2 

Run 

# 

Initial Point   

{tH, tV, h2} in 

[mm] 

Solution of the    

S-B RCEM       

{tH, tV, h2} in 

[mm] 

Mean of Q&  

estimated with the  

S-B RCEM in 

[W] 

(LHS) 

Variance of Q&  

estimated with the 

S-B RCEM in [W2]   

(LHS) 

1 {0.5, 0.5, 3.0} {0.15, 0.89, 11.17} 103.36   (103.36) 1.02    (1.02) 

2 {0.15, 1.2, 10.0} {0.15, 0.92, 10.97} 103.25   (103.26) 1.03    (1.02) 

3 {1.2, 0.15, 10.0} {0.15, 1.00, 12.51} 102.83   (102.83) 1.03    (1.05) 

4 {0.5, 0.5, 20.0} {1.00, 0.89, 11.16} 135.33   (135.33) 1.35    (1.35) 
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In run #1 the best results can be observed.  Both the mean and the variance of the heat 

transfer rate decrease from 135.70 Watt to 103.36 Watt and 1.50 W2 to 1.02 W2, 

respectively compared to Scenario 1.  From this, the effectiveness of the simulation-based 

RCEM can be concluded.  The solutions presented in Table 6.3 are compromises between 

high performance and high robustness.  Furthermore, the estimations for the performance 

mean and the variance of the new method are again very similar to the LHS outcomes.  

This observed accuracy can be linked to the Probabilistic Collocation Method used in the 

simulation-based RCEM.  The internal consistency of the results is demonstrated using 

different initial points.  Most of them converge close to the robust solution.  Only run #4 

converged to a solution that is obviously not satisfying.  This can be seen when looking at 

the deviation function values, which are 0.237 for run #1 and 0.346 for run #4.  The 

convergence plot of run# 1 (see Figure 6.5), in which a smooth convergence can be seen, 

supports the internal consistency of the results for Scenario 2.   

 

 

Figure 6.5: Convergence Plot for Run #1 in Scenario 2 
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With the presented data, the effectiveness of the simulation-based RCEM can be 

validated.  However, in this chapter there is a special focus also on the efficiency of the 

new method in comparison to the original RCEM and the brute force LHS approach.  For 

solving the LCA design problem in run #1 of scenario 2 the JavaDSIDES algorithm has 

evaluated the performance and robustness 106 times.  This means that the PCM has been 

invoked 106 times with seven simulations per run.  This is a total of 742 LCA FEA 

MATLAB simulations, which takes a Windows XP PC with an Intel Core2 Quad CPU at 

2.4 GHz and 3.25 GB of RAM eleven minutes and one seconds to solve.  This is about 

0.9 seconds per simulation.  Using a Latin hypercube approach as presented in Figure 4.6 

with 1000 sample points for each performance evaluation would require 106,000 

simulations, which would take about 2 days 2 hours and 30 minutes.  This is almost 150 

times as much time as the simulation-based RCEM takes.  For the application of the 

original RCEM first, the response surface has to be built.  Assuming a full factorial 

design and 20 sample points for each dimension (tH, tV, h2), 8000 simulations are required 

just for building the surrogate model.  Ignoring the computational time for applying the 

original RCEM itself, including calculating the required derivative, this would take about 

2 hours; this is more than 10 times as much as the simulation-based RCEM.  A summary 

of the computational cost of the three methods is given in Table 6.4. 
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Table 6.4: Comparison of the Computational Costs 

Method 
Number of Required LCA 

FEA Simulations 

Required Computational 

Time 

Simulation-Based RCEM 742 11 Minutes 1 Second 

Original RCEM about 8,000 about 2 hours 

Brute Force LHS approach about 106,000 
about                                   

2 Days 2 Hours 30 Minutes 

 

Another advantage of using the Probabilistic Collocation Method is that the local 

response can be used to estimate higher statistical moments of the performance or even 

the probability density function.  For the design solution of run # 1 in Scenario 2 of this 

example the first four (standardized) statistical moments (mean, variance, skewness and 

kurtosis) as well as a histogram of the performance are generated in the following.  The 

outcome is compared to a Latin hypercube sampling.  The skewness of a sample or a 

distribution is defined as the third standardized moment(see (Wasserman, 2004)): 

( )
3
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µ
γ

−
=

xE
 

Eq. 6.14 

The skewness is a measure of the asymmetry of the probability density function of a 

random variable.  In the LCA example, this random variable is the total heat transfer rate 

Q& .  The kurtosis is a measure of how “peaked” a PDF is; this means a high kurtosis 

indicates that more of the variance is due to infrequent extreme deviations, as opposed to 

frequent more modest sized deviations.  Equivalent to the skewness, the kurtosis is 

defined as the fourth standardized moment (see (Joanes and Gill, 1998)): 
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Eq. 6.15 

The skewness, the kurtosis, a histogram or the probability density function of the 

performance of a design can provide important information for the designer, depending 

on the design preferences.  In this section, only the possibility of estimating these values 

is presented, however, their role in engineering design is not discussed in this thesis.   

Using the Probabilistic Collocation Method on the considered design solution, a local 

surrogate model is built, on which a Latin hypercube sampling can be performed.  In this 

example this requires seven LCA FEA simulations (see above) and, when using 10,000 

sample points, 10,000 model function calls.  From these samples the statistical moments 

can be calculated and a histogram can be generated.  The entire process takes less than 7 

seconds of computational time.  The outcome of the PCM is compared to a brute force 

10,000 points LHS simulation.  Executing the 10,000 simulations takes about 2 hours and 

10 minutes; 1000 times longer than the PCM.  In Figure 6.6, the histograms of the two 

approaches are presented.  It can be seen that they are very similar.  This is confirmed by 

the moment estimations from both methods, which are shown in Table 6.5.  Furthermore, 

the samples from both histograms are tested with the two-sample Kolmogorov-Smirnov 

test (Young, 1977).  The test is used for testing if two samples are from the same 

distribution.  The null hypothesis is that the samples have the same underlying 

distribution.  In this example, the null hypothesis is not rejected on a 99.9% confidence 

level and thus, it can be assumed that the samples have the same underlying distribution.  

This is another indication for the very accurate estimation of the probability density 

function with the PCM.  
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Figure 6.6: Histograms of the Performance of the Design Solution from Run #1 in Scenario 2 

 

Table 6.5: Comparison of Moment Estimation 

Heat Transfer Rate 
Probabilistic Collocation 

Method 

Brute Force Latin 

Hypercube Sampling 

Mean 103.36 W 103.36 W 

Variance 1.02 W2 1.02 W2 

Skewness 0.04 0.05 

Kurtosis 3.03 3.02 

 

The MATLAB code required to perform the Probabilistic Collocation Method on the 

LCA heat exchanger example is given in Appendix C.2.  By integrating this code to 

JavaDSIDES following the instructions in the JavaDSIDES Manual (see Appendix A) the 

simulation-based RCEM can be performed.   
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In this section, the simulation-based RCEM is applied to the LCA heat exchanger design 

example for the validation of Research Hypothesis 2.  The results are presented and 

compared to alternative methods for verification.  In the next section, the results are 

critically discussed and related to the validation strategy outlined in Section 6.2.   

6.4  Critical Discussion of Example Results 

In this section, the results presented in the previous section are discussed and related to 

the validation of Research Hypothesis 2.  As outlined for the entire thesis in Section 1.4 

and specifically for the LCA heat exchanger in Section 6.2, the Validation Square is used 

for the validation of the research presented here.  This means that the theoretical 

structural validity, the empirical structural validity, the empirical performance validity 

and the theoretical performance validity of the simulation-based RCEM have to be 

demonstrated for the validation of Research Hypothesis 2.  In this section, this is done for 

the results from the heat exchanger example.   

The theoretical structural validity of the simulation-based RCEM is discussed and 

demonstrated in Section 5.2.1.  It is shown that the components of the simulation based 

RCEMare valid and that the information flow is internally consistent.   

The empirical structural validity for the LCA example is discussed in Section 6.2.2 by 

demonstrating that the heat exchanger example is appropriate for the validation of the 

simulation-based RCEM.   

For confirming the empirical performance validity it has to be shown that (1) the 

results meet the expectations, that (2) the demonstrated effectiveness and efficiency is 
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linked to the application of the new method and that (3) the data generated and used for 

the validation is accurate and consistent.   

(1) Do the results of the LCA heat exchanger design problem meet the expected outcome? 

It is expected that by using the simulation-based RCEM for design scenario 2, where a 

robust solution is desired, a design solution can be found, which has a higher robustness 

than the result for Scenario 1, where a optimizing solution is preferred.  When comparing 

the results in Table 6.2 and Table 6.3, it can be seen that this expectation is met.  Since 

the results for both scenarios are generated using the simulation-based RCEM it is also 

demonstrated that modifying the weight for the objectives changes the compromise that is 

made.   

(2) Is the demonstrated effectiveness and efficiency linked to the application of the new 

method? 

The focus of this chapter is mainly the on validating the improvement in efficiency of the 

simulation-based RCEM over the original RCEM.  The improvement in effectiveness is 

shown in Chapter 5.  However, the effectiveness of the new method is also evident for the 

LCA example.  It is demonstrated by meeting the expectations and by verifying the 

results in Table 6.2 and Table 6.3 with a Latin hypercube sampling.  The presented 

efficiency can be clearly linked to the application of the simulation-based RCEM as well.  

It is shown that the computational cost for implementing the new method is significantly 

lower than for the application of the original RCEM (see Table 6.4).  This is especial due 

to the global response surface that has to be generated as part of applying the original 
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RCEM.  Additionally, further advantages of new method are demonstrated, which 

include for example the efficient estimation of higher statistical moments of the 

performance.   

(3) Is the data generated and used for this validation accurate and internally consistent? 

The internal consistency of the data is demonstrated by applying the new method to the 

different starting points of the LCA heat exchanger design (see Table 6.2 and Table 6.3).  

Except for one starting point all runs converge very close to the same satisfying solution.  

Furthermore, the internal consistency of the results is confirmed by the smooth 

convergence of the algorithm, which is presented with the convergence plots in Figure 

6.4 as well as Figure 6.5.   

The accuracy of the results is verified by comparing the outcome of the simulation-based 

RCEM to computationally expensive Latin hypercube samplings with sampling sizes of 

1,000 and 10,000 respectively.  With these comparisons, it is shown that the accuracy of 

the new method is as expected.   

 

For the validation of the simulation-based RCEM and Research Hypothesis 2 only the 

demonstration of the theoretical performance validation is missing.  This quadrant of the 

validation square is part of the discussion in Chapter 7.   
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Figure 6.7: Thesis Roadmap 
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6.5  Chapter Synopsis 

As shown in Figure 6.7, the focus in this chapter is on the empirical structural validation 

and the empirical performance validation of the simulation-based RCEM.  The 

effectiveness and efficiency of the new method is shown with its application to the LCA 

heat exchanger design problem.  It is demonstrated that robust solutions in problems can 

be found, which require simulations for the performance evaluation.  This chapter 

concludes the generation of data for the validation of the Research Hypotheses 1 and 2.  

For the final validation of both hypotheses everything but the theoretical performance 

validation of the modified RCEM and the simulation-based RCEM is presented in this 

and in the previous chapters.  The last quadrant is discussed in the next chapter.  Chapter 

7 also contains the closure of this thesis including an outlook and the identification of 

possible further research directions.   
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CHAPTER 7 

CLOSURE 

The principal goal in this thesis is on further developing the Robust Concept Exploration 

Method based on the Research Questions and Hypotheses introduced in Section 1.3.   

This chapter concludes this thesis with a critical analysis of the work presented.  In 

Section 7.1, the final validation of the modified RCEM and the simulation-based RCEM 

is discussed.  The achievements and research contributions made in this thesis are 

summarized in Section 7.2.  Finally, an analysis of the limitations of the presented 

research as well as an outlook into research opportunities based on this work is given in 

Section 7.3.   

7.1  Answering the Research Questions and Validation of the Research 

Hypotheses 

In this section, the Research Questions proposed in Chapter 1 are answered by validating 

the Research Hypotheses.  Therefore, the validation of the two developed methods is 

summarized here in context of the validation square (see Section 1.4 and Figure 7.1).  In 

Section 7.1.1, Research Hypothesis 1 and the modified RCEM (see Chapters 3 and 4) is 

addressed.  The Validation of Hypothesis 2 and the simulation-based RCEM (see 

Chapters 5 and 6) is discussed in Section 7.1.2.  
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Figure 7.1: Validation of this Thesis in Context of the Validation Square 

 

7.1.1  Validation of Research Hypothesis 1 

In this thesis, several limitations of the original RCEM are presented (see Section 3.1).  In 

RCEM, the robustness is measured with the variance of the performance.  One of the 

limitations of the original RCEM is that this variance is estimated using a first-order 

Taylor Series approximation of the engineering system’s performance.  Because of this, 

the original RCEM may converge in local optima of the performance without considering 

the robustness of the system in non-linear and multi-modular design problems.  This gap 

is addressed in the first research question: 
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First Research Question: 

How can the formulation of robustness in compromise Decision Support Problems for 

multi-dimensional and multi-objective design problems be improved? 

 

To answer this question the following Research Hypothesis is validated in this thesis: 

First Research Hypothesis: 

Using a global response surface, the nominal mean and a single point first order Taylor 

Series Approximation for the variance estimation is not accurate enough for finding 

robust solutions of nonlinear design problems.  The Robust Concept Exploration Method 

can be improved by using appropriate formulations that account for the nonlinearity of 

the problem. 

 

Hypothesis 1 is validated in this thesis with the development of the modified RCEM in 

Chapter 3.  As outlined in Section 1.4, the validation in this thesis follows the four 

quadrants of the validation square.  The theoretical structural validity, the empirical 

structural validity and the empirical performance validity of the modified RCEM are 

demonstrated with two examples, an artificial design problem (Chapter 3) as well as the 

design of a robust pressure vessel (Chapter 4) and are summarized here.  Afterward, the 

theoretical performance validity is discussed and Hypothesis 1 is validated.  

The theoretical structural validity of the modified RCEM is demonstrated in Section 3.3.1 

by showing the internal consistency of the individual components of the method as well 

as the consistency of their assembly.   
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The empirical structural validity of the new method is demonstrated by arguing that the 

examples used for the validation are representative for engineering design problems the 

method is designed for and might be applied to.  In Section 3.3.2, the specific 

characteristics of the artificial design problem that qualify it as an appropriate example, 

are pointed out.  The same is done in Section 4.2.1 for the pressure vessel example.   

The empirical performance validity of the modified RCEM is demonstrated with the data 

from the two example problems.  In Section 3.3.3, it is shown that the generated results 

from the first example are as expected and that the improvements over the original 

RCEM are directly linked to the modifications.  This is confirmed with the data from the 

pressure vessel example in Section 4.4.  The solutions from this example are also as 

expected and support the validity of the modified RCEM. 

As discussed in Section 1.4, theoretical performance validation involves establishing 

confidence that the method is applicable and useful for problems beyond the examples.  

This step is the logical consequence from validating the first three quadrants of the 

validation square.  For the modified RCEM, it is demonstrated that the method’s 

mathematics and its internal information flow is consistent, that the example problems 

used are appropriate, that the results are valid and as expected and that the observed 

effectiveness and efficiency is linked to the application of the new method.  Based on 

this, its usefulness for general classes of problems is inferred.   

In Hypothesis 1, it is hypothesized that by using modified formulations and estimations 

for the mean and the variance of the performance, the reliability of RCEM in non-linear 

design problems can be improved.  The modified RCEM was successfully applied to a 

non-linear, multi-modular design problem, which the original RCEM failed to solve 
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correctly.  The modifications in the new method do not limit the functionality or the 

applicability of RCEM and remain the same efficiency.  From these findings, the validity 

of Hypothesis 1 is inferred.   

7.1.2  Validation of Research Hypothesis 2 

The second limitation of the original RCEM, which is demonstrated in Section 3.1, is the 

generation of a global response surface for simulation-based design problems.  The 

inaccuracy in these models can lead to fatal errors in highly non-linear design problems.  

This gap is addressed in Research Question 2: 

Second Research Question: 

How can the RCEM be augmented to improve the accuracy of the robust concept 

exploration for nonlinear design problems that involve simulations? 

 

This question is answered in this thesis with the validation of the second Research 

Hypothesis: 

Second Research Hypothesis: 

It is hypothesized that estimating the performance and the robustness using the 

Probabilistic Collocation Method with Polynomial Chaos Expansion in a simulation-

based approach to robust concept exploration can increase the method’s accuracy and 

reliability over the original RCEM. 
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Hypothesis 2 is validated with the development of the simulation-based RCEM and the 

introduction of the Probabilistic Collocation Method to robust concept exploration.  The 

new method’s theoretical structural validity, empirical structural validity and empirical 

performance validity are demonstrated with an artificial design problem in Chapter 5 and 

the design of a LCA heat exchanger in Chapter 6.  The validation of the first three 

quadrants of the validation square is summarized here.  Afterward, the theoretical 

performance validity is discussed and Hypothesis 2 is validated. 

The theoretical structural validity of the simulation-based RCEM is demonstrated in 

Section 5.2.1 by showing the internal consistency of the individual components of the 

method as well as the consistency of their assembly.   

The empirical structural validity of the new method is demonstrated by arguing that the 

examples used for validation are representative for engineering design problems the 

method is designed for and might be applied to.  In Section 5.2.2, the specific 

characteristics of the artificial design problem that qualify it as an appropriate example, 

are pointed out.  The same is done in Section 6.2.2 for the LCA heat exchanger example.   

The empirical performance validity of the simulation-based RCEM is demonstrated with 

the data from the two example problems.  In Section 5.4, it is shown that the generated 

results from the first example are as expected and that the improvements are directly 

linked to the application of the new method.  This is confirmed with the data from the 

heat exchanger example in Section 6.4.  The solutions from this example are also as 

expected and support the validity of the simulation-based RCEM. 

As discussed in Section 1.4, theoretical performance validation involves establishing 

confidence that the method is applicable and useful for problems beyond the examples.  
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This step is the logical consequence from validating the first three quadrants of the 

validation square.  For the simulation-based RCEM, it is demonstrated that the method’s 

mathematics and its internal information flow is consistent, that the used example 

problems are appropriate, that the results are consistent, valid and as expected and that 

the observed effectiveness and efficiency is linked to the application of the new method.  

Based on this, its usefulness for general classes of problems is inferred.   

In Hypothesis 2, it is hypothesized that by introducing the Probabilistic Collocation 

Method to robust concept exploration the accuracy and reliability can be improved when 

compared to the original RCEM, which uses a global response surface.  In Section 3.1, it 

is shown that a global response surface, as used in the original RCEM, would lead to 

wrong results for the artificial design example.  In Section 5.3, it is demonstrated that 

with the simulation-based RCEM the designer is able to solve this exact problem and 

finds a satisfying robust solution.  With this, it is shown that the new method is more 

reliable for non-linear problems.  Furthermore, it is shown in Section 5.3 and in Section 

6.3 that the robustness estimations of the new method are very accurate and especially for 

the multi-modular problem in Chapter 5 significantly more accurate than the original 

RCEM.  From this, the validity of Research Hypothesis 2 can be inferred.  In addition to 

the improvements mentioned in Hypothesis 2, the simulation-based RCEM also increases 

the efficiency and flexibility of the RCEM.  Since for the application of the simulation-

based RCEM no computationally expensive global response surface has to be built, the 

new method is very flexible and efficient when changes in the model or simulation are 

made.  In the original RCEM, such a change would require a new response surface, while 

the simulation-based RCEM can be simply applied to the new model without further 
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changes.  The integration of the Probabilistic Collocation Method, furthermore, opens the 

possibility to account for alternative input distributions.  While the original RCEM is 

basically limited to the assumption of Gaussian or Uniform distributions, the PCM can 

account for any probability density function of the design variables and noise factors.   

In the next section, the achievements and contribution to the field of engineering design, 

which are established by answering the research questions and validating research 

hypotheses, are summarized.   

7.2  Achievements and Contributions 

The major contributions of the presented research are the critical analysis of the original 

RCEM, the development and the validation of the simulation-based RCEM as well as the 

development of a computational framework for a user-friendly application of all RCEM 

versions.   

- A critical analysis of the original RCEM is presented in this thesis.  Two major 

limitations, which can lead to fatal errors, are explained and demonstrated on an 

example.  It is shown that the first-order Taylor Series approximation for the 

estimation of a system’s robustness is critical when used in an iterative 

exploration algorithm like in RCEM.  Although, this has been realized by 

researchers for other applications before, it was not demonstrated for RCEM yet.  

In fact, several students already worked on developing RCEM without noticing 

this gap.  Furthermore, it is shown that a global response surface, as used in the 

original RCEM, can lead to wrong results.  This problem has been also addressed 
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by other researchers before but has not been demonstrated for the application of 

RCEM. 

- With the development of the modified RCEM, several alternatives to the 

criticized Taylor Series are demonstrated and assessed.  The Multiple Point 

Method, which is introduced to the modified RCEM, is a modification of the 

Sensitivity Index.  It is augmented for the specific estimation of the performance 

variance given a Gaussian distributed design variable or noise factor.  The 

research on this topic was the basis for developing the simulation-based RCEM.   

- It is presented that the methods for the variance estimation both in the original 

RCEM as well as in the modified RCEM have little computational advantage over 

a brute force method like Monte Carlo or Latin hypercube when an explicit 

function or an exact surrogate model is available.  With today’s available 

computational power, those brute force methods are very fast when applied to 

explicit functions, which questions the need for estimations in such cases. 

- With the simulation-based RCEM, a design method is developed that fills both 

gaps found in the original RCEM.  The introduction of the Probabilistic 

Collocation Method to robust concept exploration opens up entirely new 

possibilities.  Besides increasing the accuracy and reliability of RCEM, it allows 

for considering any observed or assumed probability density functions of design 

variables and noise factors. 

- With the development of the JavaDSIDES XML Generator and the integration of 

MATLAB simulations in JavaDSIDES, a computational framework for the 

application of all RCEM versions is provided.  These advancements make 
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JavaDSIDES, which is written by Matthew Marston, more user-friendly and 

easier to apply to simulation-based engineering design problems.   

The list of contributions in this section emphasizes solely the achievements established in 

the presented research.  The aspects that could not be addressed or solved and the new 

questions and problems that were discovered are discussed in the following section. 

7.3  Limitations and Opportunities for Future Research 

In this section, the work presented in this thesis is critically evaluated and 

recommendations and ideas on further improvement are provided.   

The first concern is the practical applicability of the presented computational framework 

for the simulation-based RCEM.  JavaDSIDES is a powerful tool that has many levers to 

adjust and customize the algorithm.  Those levers include, for example, the constraint 

violation, the constraint adaption or the convergence tolerance.  For someone, who is not 

an expert in operations research, it is difficult to find the appropriate setting for a specific 

problem. 

- Since an engineering designer is not necessarily also an expert in statistics and 

operations research, a more detailed documentation of the JavaDSIDES 

application and the DSIDES algorithm would be very helpful for industrial 

application of the simulation-based RCEM as well as for further research in 

robust concept exploration. 

Another concern is the practical implementation of the modified RCEM.  There are two 

open questions.  First, one might argue that no practical validation of the method is 
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performed in this thesis.  Although the method is extensively verified with two examples, 

they might not represent the level of complexity an engineering designer might face in 

industry.   

- Although the verification of the modified RCEM is throughout positive in this 

thesis, which gives reason to argue for the theoretical performance validity of the 

method, it should be tested on a larger case study.  This data could then be used to 

support the finding in this thesis.   

The second open question about the modified RCEM is its utility when compared to brute 

force methods like Monte Carlo.  Like in the original RCEM, also in the new method the 

robustness of an engineering system is estimated from an explicit function, e.g., a 

performance function or a surrogate model.  Today’s available computational power 

allows for thousands of calculations is just split-seconds.  This decreases the advantage of 

the developed estimation methods in computational time and might not justify the 

decrease in accuracy over the brute force methods.   

- It might be worth investigating in which cases estimation is advantageous and for 

which scenarios brute force methods are the better choice.  Here, the 

computational efficiency as well as the methods’ accuracy, especially in non-

linear, multi-modular design problems are the crucial factors that have to be 

evaluated. 

Further concerns exist regarding practical applicability of the simulation-based RCEM.  

This method is extensively validated with two examples in this thesis.  Although the 

results clearly support the validity of the method, one might argue that the examples’ 

levels of complexity are not comparable to those of systems design problems in industry.   
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- To support the validity of the simulation-based RCEM, the method should be 

applied to a larger industry case study.  This data could then be used to support 

the finding in this thesis.   

The implementation of the Probabilistic Collocation Method within the simulation-based 

RCEM is very promising.  The data generated with the examples strongly support the 

validity of the method.  The method also opens up the possibility to take alternative 

design variable distributions into account.  Any distribution that can be formulated with a 

probability density function can be considered in the PCM.  The local response model 

generated with the PCM also allows for detailed investigations of the performance 

sensitivity and probability distribution. However, the method has several limitations.  

Due to the underlying mathematics, the method is very accurate for estimations in the 

region around the performance mean (high probability region).  This is because the 

collocation points, which are used to generate the local response model, are located 

mainly around the mean.  For this reason, the method can become inaccurate if the 

variance of a performance is largely influenced by the low probability regions in the tail 

ends of a distribution.   

- In future research on the simulation-based RCEM, the PCM should be 

investigated in further detail.  One could explore if there are alternative methods 

for selecting the collocation points, which lead to higher accuracy of the method 

in predicting the tail ends of the performance distribution.  This investigation is 

especially necessary for multi-dimensional problems because here more 

collocation points are generated in the PCM then for the calculation of the local 

response model needed.  Currently, the points are selected according to their joint 
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probability.  This supports the observation that the method is especially accurate 

for the high probability region.  It could be studied if, for example, orthogonal 

arrays or d-optimal designs could be used for the selection of the collocation 

points and if this would increase the accuracy of the method.  Since especially 

researchers in the field of reliability-based design are dealing with the problem of 

the tail end estimation, there might be some synergies to find in this area.  It might 

even be possible to develop a combined reliability-based RCEM.   

In the last concern that is to be mentioned in this thesis, the compromise DSP is 

addressed, which is the basis for all Robust Concept Exploration Methods.  The cDSP is 

a very clear and almost self-explanatory framework, which designers can use for the 

formulation of their design problems.  Its structure guides the designers through the 

collection of all important data for solving the problem.  However, there are some aspects 

the designer has to be aware of when using the cDSP, especially when formulating the 

goals and assigning their target values and their weights.  Usually, the designer would 

think that the weight of an objective is only influenced by the weighting factor in the 

objective or deviation function.  This is not true for the cDSP. Here, the weight is also 

influenced by the selection of the target values for the design goals.  In the deviation 

function, the goals are normalized with their target value.  This means that the further 

away a target is from the current point, the smaller is the influence of a change of that 

goal on the deviation function, thus resulting in a smaller weight. 

- If designers are aware of this phenomenon when using the cDSP they can 

minimize its interfering effect by thoroughly assigning the targets as close to the 

feasible area as possible and only using the weighting factors to express their 
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preferences.  However, there might be the opportunity for further research, too.  

The ideas of value-based and utility-based cDSPs have been investigated in 

literature before.  Assessing these methods with respect to the above motioned 

phenomenon might help to further develop the cDSP framework and thus further 

improve the Robust Concept Exploration Methods presented in this thesis. 
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APPENDIX A 

JAVADSIDES MANUAL 

A.1  Acknowledgements  

The optimization algorithm used in DSIDES and JavaDSIDES is called “Adaptive Linear 

Programming” and is developed by Farrokh Mistree, Owen F. Huges and Bert Brass 

(Mistree, et al., 1993). DSIDES (Decision Support In the Design of Engineering Systems) 

is designed to solve Decision Support Problems (DSPs) and was originally programmed 

in FORTRAN. Matthew Marston developed the Java version of DSIDES (JavaDSIDES), 

which is used in this manual. In contrast to the original DSIDES, JavaDSIDES can only 

solve compromise Decision Support Problems (cDSP) whereas the original DSIDES also 

has the functionality to solve selection DSPs. Matthew Marston’s help in developing this 

manual is greatly acknowledged.  

A.2  System Information and Requirements 

System and programs installed: 

• Operating System: Windows XP 

• JavaDSIDES 

• MATLAB 2008b including the following components: 

o MATLAB Compiler 

o MATLAB Builder JA 
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• NetBeans IDE 6.5.1 including the Maven Plug-in (Integrated (Java) Development 

Environment, http://www.netbeans.org/) 

• Java JDK 1.6.0_13 (Java Development Kit, 

http://java.sun.com/javase/downloads/index.jsp) 

• Java JRE 1.6.0_07 (Java Runtime Environment, 

http://java.sun.com/javase/downloads/index.jsp) 

• Apache Maven 2.1.0 and 2.0.10 (http://maven.apache.org/) 

A.3  Overview 

So far the manual is written for computers that have MATLAB installed and for users 

who have a basic knowledge of Java. 

This manual describes how to solve design problems, formulated as compromise 

Decision Support Problems, using the Java version of DSIDES. 

The Java version of DSIDES was originally designed to handle explicit functions as goal 

and constraint expressions. In this manual, it is described how to extend the functionality 

for using MATLAB functions as goal or constraint formulations. 

There are two ways of running JavaDSIDES: 

• Using a XML file containing the cDSP information as input 

• Using a model file written in Java as input (the model Java file (‘model’.java) 

contains the cDSP information)  

In case an XML file is used as input, JavaDSIDES generates the required model Java file 

automatically. In Figure A.1 the steps of this current approach of JavaDSIDES are 

illustrated. After the designer has formulated the design problem in the form of a 
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compromise Decision Support Problem it has to be translated into a XML document 

using the instructions given in Section A.5. JavaDSIDES is then executed using the XML 

file as input. The DSIDES results are displayed on the screen and saved in output files. 

 

 

Figure A.1: Current JavaDSIDES Approach 

 

Since many designers are not familiar with the XML syntax, and the XML formulation 

can become confusing for large design problems, a MATLAB function was developed 

that can generate the required XML model files automatically. It provides a simple 

interface between the designer and JavaDSIDES. In case of explicit function 

formulations, the MATLAB cDSP XML Generator function can call JavaDSIDES 

directly and display the results (see Section A.7). 
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Figure A.2: MATLAB cDSP XML Generator 

 

If MATLAB functions are used for calculating goals or constraints, some additional steps 

are required. Since JavaDSIDES cannot call external MATLAB functions directly, these 

have to be wrapped in Java. MATLAB offers the packages “MATLAB Compiler” and 

“MATLAB Builder JA” that have exactly this functionality. In Section A.8, their 

application to wrap MATLAB functions is described. The Java packages created with 

those tools can then be imported into the Java model file and the functions can be called 

(see Figure A.18). The easiest way to get the model Java file is to use the automatic 

generation of the model file integrated in JavaDSIDES using the MATLAB cDSP XML 

Generator (see Figure A.3). The Java model file has to be edited and compiled so that he 

wrapped MATLAB functions can be called (see Section A.9). Finally, JavaDSIDES can 

then be executed with the new model (See Section A.10). 
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Figure A.3: Integrated MATLAB JavaDSIDES Approach 

 

In Section A.11 some possibilities for advanced editing of the Java model file are 

demonstrated, e.g., the implementation of a function counter. 

The entire process for the case of explicit functions (Section A.12) and for the case of a 

“black box” MATLAB model (Section A.13) is demonstrated with a simple cantilever 

beam design problem. 

A.4  Installing JDSIDES 

The required files to run JavaDSIDES are contained in the ZIP archive dsides.zip. 

The content of this archive should be extracted to C:\dsides\. The file jdsides.jar 

should now have the following path: C:\dsides\dsides-app\jdsides.jar. 
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A.5  Setting up the cDSP for Implementation in JavaDSIDES 

Due to the way JavaDSIDES handles and normalizes goals and constraints the following 

conventions are necessary for the formulations of goals and constraints. 

Goal formulations: 

JavaDSIDES is written to handle all goals as maximization goals, which requires the 

following changes: 

1. If a goal is to be maximized with a certain target, no changes have to be made. 

iA being the goal formulation and iG the target value, JavaDSIDES uses the 

following normalization:  

1/)( =−+ +−
iiii ddGXA with 

−
id to be minimized and 0=+

id   (*) 

2. If a goal is to be minimized with a certain target, the goal formulation as well 

as the target have to be inverted, which makes it a maximization problem. 

Goal formulation )(/1)(* XAXA ii =  with goal ii GG /1* = leads to: 

1*/)(*

1]/1/[)](/1[

1)(/

=−+⇔

=−+⇔

=−+

+−

+−

+−

iiii

iiii

iiii

ddGXA

ddGXA

ddXAG

 

Which is now equivalent to (*) with 
−
id to be minimized and 0=+

id  

3. If the goal target of a minimization is zero, the transformation of the goal 

formulation )(XAi  is a bit tricky. In the literature (Mistree, et al., 1993) the 

formulation for this case is:  

0/)(
max

=−+ +−
iiii ddAXA   (**) 
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with 
maxiA being the estimated maximum of )(XAi . JavaDSIDES instead uses 

the formulation 1/)(
**

=−+ +−
iiii ddGXA . (***) 

With 
max

* )()( iii AXAXA += and 
max

*

ii AG =  (***) becomes equivalent to (**) 

where 
+
id is to be minimized and 0=−

id . 

Constraints: 

JavaDSIDES normalizes the constraints by dividing the expression by the limit. This is 

why the limit is not permitted to be zero. If the technical limit is actually zero, the 

problem can be solved by adding a number of the same order of magnitude as the 

expression to both sides of the equation or inequality.  

If for example the original constraint is 04 ≥−⋅ yx with ]50...10[=x  and ]100...50[=y , 

the constraint could be transformed to 50504 ≥+−⋅ yx . 

A.6  The Structure of the cDSP XML 

As an interface between the designer and the JavaDSIDES an XML file is used. Creating 

the XML structure with the specific cDSP formulation of the design problem is easier 

than coding the required Java file of the model.  

In Figure A.4, the structure of an XML input file for JavaDSIDES is shown with arbitrary 

values and formulations. 
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<?xml version="1.0" encoding="utf-8"?> 

<Model xmlns="http://dsides.configuration/model" 

autoNormalizeConstraintsAndGoals="true" 

decisionVariableConvergenceTolerance="0.00000001" 

deviationFunctionConvergenceTolerance="0.00000001" writeCSVFile="true"> 

   <Name>Name of Design Problem</Name> 

 

   <DecisionVariables> 

      <DecisionVariable> 

         <Name>x</Name> 

         <Minimum>10.0</Minimum> 

         <Maximum>76.0</Maximum> 

         <InitialValue>20.0</InitialValue> 

      </DecisionVariable> 

 (…further decision variables if needed…) 

   </DecisionVariables> 

   <Constants> 

      <Constant> 

         <Name>Constant1</Name> 

         <Value>10</Value> 

      </Constant> 

      (…further constants if needed…) 

   </Constants> 

   <Goals> 

      <IntermediateExpression> (…if needed) 

         <Name>int1</Name> 

         <Expression>1.0+2.0+3.0+Constant1+x</Expression> 

      </IntermediateExpression> 

 (…further intermediate expressions if needed…) 

      <Goal level="1" negativeDeviationCoefficient="0.1" 

positiveDeviationCoefficient="0.0"> 

         <Name>goal1</Name> 

         <Expression>1.0/(x-7.0)^2</Expression> 

         <Target>1</Target> 

      </Goal> 

 (…further goals if needed…) 

   </Goals> 

   <Constraints> 

      (…intermediate expressions if needed…) 

      <Constraint type="LessThanOrEqual"> 

         <Name>Constraint1</Name> 

         <Expression>Constant1 + x</Expression> 

         <Limit>100</Limit> 

      </Constraint> 

   </Constraints> 

</Model> 

 

Figure A.4: XML Structure for JavaDSIDES Inputs 
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As it can be seen, the deviation variables 
−
id and 

+
id do not have to be introduced neither 

in the goal formulations nor as design variables with boundaries; this is done 

automatically by JavaDSIDES. The corresponding weights for the deviation variables can 

be set as negativeDeviationCoefficient and 

positiveDeviationCoefficient for 
−
id  and 

+
id respectively for each goal. 

Furthermore the level can be set if a hierarchical optimization is desired. For the 

constraints the following types are allowed:  

• “LessThenOrEqual” 

• “GreaterThenOrEqual” 

• “Equal” 

 

It is easy to see that if the design problem is complex, the XML structure can become 

long and confusing. This is the reason why a MATLAB interface has been developed that 

provides a clear input interface for the designer. 

A.7  The MATLAB cDSP XML Generator  

The Matlab cDSP XML Generator is a MATLAB code that can serve as an interface 

between the designer and the JavaDSIDES. Since the direct generation of a cDSP XML 

file can be confusing for large design problems, this MATLAB code is intended to ease 

this step. It consists of two sections; the first requires the designer’s inputs and the second 

will generate the XML file, save it and execute the JavaDSIDES with the generated file. 

The  first section of the MATLAB cDSP XML Generator code is shown in Figure A.5. 
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clear all; 

clc; 

% INPUT 

    projectname = 'Template'; 

% Design Variable Information    

    dvariables = {'Name',   'minimum',  'maximum',  'initial value'; 

                  'x',      '10.0',     '76.0',     '20.0'; 

                  'y',      '10.0',     '76.0',     '20.0'; 

                 }; 

% Constants  

    constants = {'Name',    'value'; 

                 'constant1',   '10'; 

                };  

% Intermediate Expressions 

    % used in goal expressions:  

    goalintermediate = {'Name',     'Expression'; 

                        'int1',    '1.0+2.0+3.0+constant1+x'; 

                       };  

    % used in constraints expressions:  

    constraintintermediate = {'Name',     'Expression'; 

                             };                                           

% Goals (need to have at least one) 

    % Equations    

    goals = {'Name',  'NegD', 'PosD', 'level', 'Target', 'Expression'; 

             'goal1', '0.1',  '0.0',  '1',     '1',      '1.0/(x-

7.0)^2'; 

            };         

% Constraints (need to have at least one) 

    constraints = {'Name',        'type',            

'Limit','Expression'; 

                   'Constraint1', 'LessThanOrEqual', '100,   'constant1 

+ x'; 

                  };                        

% Set XML Model variables (Convergence Tolerance) 

docNode = com.mathworks.xml.XMLUtils.createDocument('Model'); 

docRootNode = docNode.getDocumentElement; 

  

docRootNode.setAttribute('xmlns', 'http://dsides.configuration/model'); 

docRootNode.setAttribute('decisionVariableConvergenceTolerance', 

'0.00000001'); 

docRootNode.setAttribute('deviationFunctionConvergenceTolerance', 

'0.00000001'); 

docRootNode.setAttribute('writeCSVFile', 'true'); 

docRootNode.setAttribute('autoNormalizeConstraintsAndGoals', 'true'); 

  

% ------------------------------------ 

% NO EDITING AFTER THIS POINT REQUIRED 

% ------------------------------------ 

Figure A.5: MATLAB cDSP XML Generator Code 
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Also in the MATLAB cDSP XML Generator, the deviation variables 
−
id and 

+
id do not 

have to be introduced neither in the goal formulations nor as design variables with 

boundaries; this is done automatically by JavaDSIDES. The corresponding weights for 

the deviation variables can be set as NegD and PosD for 
−
id  and 

+
id respectively for each 

goal. Furthermore, the level can be set if a hierarchical optimization is desired. For the 

constraints the following types are allowed:  

• “LessThenOrEqual” 

• “GreaterThenOrEqual” 

• “Equal” 

 

The MATLAB cDSP XML generator is pretty much self-explanatory. The input is 

handled with arrays that take string inputs and can be extended to the number of rows 

required to represent the cDSP of the specific design problem. 

If the design problem contains only explicit functions, the DSIDES results are shown in 

the MATLAB command window and are saved under C:\dsides\dsides-app\. If 

the problem requires MATLAB functions to be called, they have to be exported as Java 

packages and the Java model file has to be edited accordingly. 

In this case the following steps should be performed: 

1. cDSP information is entered in the MATLAB cDSP XML generator 

2. For the goals and constraints that require the call of a MATLAB function a 

random number is entered as an expression. This number will later be changed 

to the specific function call in the Java model file. 
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3. MATLAB cDSP XML Generator is executed. JavaDSIDES should run and 

display results. These results are ignored because they do not yet contain the 

MATLAB function calls. 

4. The required MATLAB functions are wrapped in Java using MATLAB 

Compiler and MATLAB Builder JA (see Section A.8). 

5. Java model file is edited.  

A.8  Wrapping and Packaging MATLAB into Java 

In this section, it is explained how MATLAB functions can be wrapped and packaged as 

Java functions. The result is a .jar file that contains the Java classes that are required to 

call the function(s) in a Java program. This allows the designer to use these functions in 

JavaDSIDES as goal or constraint formulations. 

MATLAB has an integrated Compiler (MATLAB Compiler) and Java Builder tool 

(MATLAB Builder JA). Those are optional packages, which have to be selected when 

installing MATLAB. 

A summary of steps to deploy a MATLAB function (detailed description see MATLAB 

Builder JA manual) is given in the following: 

1. Open MATLAB and browse to the folder containing the MATLAB function to be 

wrapped. 

2. Type deploytool in the MATLAB command window 

3. Click “New Project” in the Deploytool Graphic User Interface (GUI) 

• Select MATLAB Builder JA – Java Package 

• Type the name of the project and browse to the location for the project folder 

(e.g. project name: “exproject”) 
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• Project name will become name of the *.jar package (e.g. “exproject.jar”) 

4. Rename class folder 

• Folder name will become class name *.class (e.g. folder name “exfolder” -> 

“exfolder.class”) 

5. Drag and drop all needed MATLAB *.m files in the class folder in the deploytool 

GUI 

• *.m file names will become the Java function names (e.g. exfunction.m will 

be function “exfunction” of the class “exfolder”) 

6. Click “Build the project”. 

 

Now the project folder will contain the required .jar file as well as additional 

documentation, which is not necessarily needed for JavaDSIDES if the designer 

remembers the names of the used functions. 

For running the generated Java code on computers that have MATLAB installed, no 

further steps are required to implement the new class into a DSIDES model. 

Please refer to the MATLAB Builder JA Manual if packaging is required. 

A.9  Calling the MATLAB Function in a JavaDSIDES Model File 

In this section, it is described how the JavaDSIDES model file has to be augmented in 

order to call a wrapped MATLAB function. It is assumed that JavaDSIDES was executed 

before with the corresponding XML file or the MATLAB cDSP XML Generator was 

invoked. 
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The model file (*.java) is located in the folder C:\dsides\dsides-app\model\model\ and 

can be edited in any Java or text editor. 

Importing packages 

First the following Java packages need to be imported in the .java file (class) that calls 

the wrapped MATLAB function: 

import com.mathworks.toolbox.javabuilder.*;  /* MATLAB Builder Package 

*/ 

import exproject.*;          /* (projectname.jar) */ 

 

Adding functions that return the MATLAB function values 

For every wrapped MATLAB function that has to be called, a java function, which 

provides the desired values, has to be added to the model class. The easiest way is to add 

these functions as part of the model class right after the declaration of the class that 

usually looks like: 

public class ModelExample 

  implements dsides.compiler.ModelImplementation 

 

How such a function call can look like is shown in the following example: 

public double customFunction (String[] args) 

   { 

      MWNumericArray n = null;   /* Stores input value */ 

      Object[] result = null;    /* Stores the result */ 

      exfolder exObject = null;     /* Stores example class instance */ 

 

      try 

      { 

         /* Convert and print input value*/ 

         n = new 

MWNumericArray(Double.valueOf(args[0]),MWClassID.DOUBLE); 

         /* Create new example object */ 

         exObject = new exfolder(); 
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         /* Compute result */ 

         result = exObject.exfunction(1, n); 

         MWNumericArray resultA = (MWNumericArray) result[0]; 

         /* Return result */ 

    return resultA.getDouble(1); 

      } 

      catch (Exception e) 

      { 

         System.out.println("Exception: " + e.toString()); 

      } 

 

      finally 

      { 

         /* Free native resources */ 

         MWArray.disposeArray(n); 

         MWArray.disposeArray(result); 

         if (exObject != null) 

            exObject.dispose(); 

      } 

 return null; 

   } 

 

In the following the components of the code are described in detail. 

In the declaration of the function, it can be seen that this example accepts an array of 

strings as input and gives a double as output. Of course, this can be changed so that the 

function uses for example a double value or array as input. In this case, the string to 

double conversion is obviously not needed. 

Because the MATLAB function throws exceptions, which have to be caught, the 

structure of the function always needs to have the following components: 

      try 

      { 

 … 

  /* Function call */ 

 … 

      } 

      catch (Exception e) 

      { 

         System.out.println("Exception: " + e.toString()); 

      } 

 

      finally 

      { 

       /* Free native resources */ 

      } 
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The MATLAB Java function accepts MWArrays as inputs. If the input data is not 

converted to such an array before calling the function, the function will convert the data 

automatically. 

This means that both of the following expressions will have the same result: 

1. 

n = new MWNumericArray(Double.valueOf(args[0]),MWClassID.DOUBLE); 

result = exObject.exfunction(1, n); 

 

2. 

double n = Double.valueOf(args[0]); 

result = exObject.exfunction(1, n); 

 

In both cases the first variable determines the number of outputs. If arrays are used when 

MATLAB functions have multiple outputs, it is always “1”. 

Multiple inputs 

Multiple inputs can either be passed as used in MATLAB: 

result = exObject.exfunction(1, n, m); 

 

Or they can also be passed as an object array (Object[]): 

Object[] input = {n, m}; 

result = exObject.exfunction(1, input); 

 

Handling output 

First the result needs to be casted into an MWNumericArray: 

MWNumericArray resultA = (MWNumericArray) result[0]; 
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Then there are two ways to access the values in the new array: 

• Accessing the values individually: 

double a = resultA.getDouble(int); 

 

Here int is the integer describing the position of the variable in the array (“1” for the 

first value). 

 

• Converting the results into a double array: 

double[][] a = (double[][])resultA.toDoubleArray(); 

return = a[0][int]; 

 

Here int is the integer describing the position of the variable in the array (“0” for the 

first value). 

Augmenting the goal or constraint expressions 

Now the added functions can be called in the “calculate” functions of the GoalProvider or 

ConstraintProvider class (further down in the Java model file). For example: 

double d = customFunction(x[0]); 

f[0] = (1.0 / d); 

 

Used in the GoalProvider, this code fragment would pass the first design variable (x[0]) 

to the function that provides the MATLAB function results and would use its return in 

the formulation of the first design objective (f[0]). 
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A.10  Compiling and Executing JavaDSIDES Models 

General 

In this subsection, it is described how, in general, classes are compiled and executed that 

contain calls of wrapped MATLAB function. For the specific case of a JavaDSIDES 

model class please see the next subsection.   

To execute the wrapped MATLAB function the following components are required: 

1. exproject.jar (generated .jar file containing the MATLAB code) 

2. javabuilder.jar (package containing classes needed to execute the wrapped 

MATLAB code. This file can be found and copied in the following MATLAB 

folder: MATLAB_ROOT\toolbox\javabuilder\jar\ 

3. the .java file that calls the wrapped MATLAB function (see 1.7) 

 

The description assumes that the three files are in the same folder (preferably 

C:\dsides\dsides-app\) and the following system variables contain the presented 

information: 

JAVA_HOME: the JDK directory (e.g. C:\Java\jdk1.6.0_13 ) 

PATH:  the JDK \bin directory (e.g. C:\Java\jdk1.6.0_13\bin ) 

1. Browse to the folder containing the three files in the Windows command prompt. 

Compiling the .java file to a Java class file: 

javac -classpath javabuilder.jar;exproject.jar filename.java 

 

2. Executing Java class main function: 

java -classpath .\;javabuilder.jar;exproject.jar filename input 
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For details on these steps please refer to the MATLAB Builder JA manual.  

JavaDSIDES model file 

As mentioned in the previous section, the project.jar file and the javabuilder.jar file are 

required to compile and run the augmented model file. In the description it is assumed 

that both of them are copied into the dsides-app folder (C:\dsides\dsides-app\). 

 

1. Browse to C:\dsides\dsides-app\ in the Windows command prompt. 

2. Compile the model (‘model name’.java) file to a Java class file with the following 

command: 

javac -g -classpath jdsides.jar;javabuilder.jar;exproject.jar -d model 

model\model\modelname.java 

where exproject.jar contains the wrapped MATLAB functions and 

modelname.java is the model file edited before.  

3. With the same name conventions, JavaDSIDES can now be executed using the 

following command: 

java -classpath jdsides.jar;javabuilder.jar;exproject.jar;model 

model.modelname 

 

Every time the model Java file is edited, it has to be compiled again before the changes 

take effect. Furthermore, it is important to know that if the MATLAB cDSP XML 

generator is executed with the same project name, the model Java file is overwritten. This 

is why it might be useful to rename the edited class and the corresponding filename. 
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A.11  Advanced Editing 

Adding a function counter 

For some applications, the designer might be interested in the number of calls of a certain 

goal or constraint function. In these cases, a function counter can be added to the model 

Java class. To implement a function call counter first, a variable that holds the count, has 

to be initialized in the class containing the model (‘modelname’.java). 

e.g. 

private static int functionCount; 

 

This variable is now increased by one, each time the certain function is called. Therefore  

functionCount++; 

 

is added into the function right before the return command.  

Now the function call counter is set up. However, in order to display the result at the end 

of the DSIDES run, two further modifications have to be introduced to the model class. 

First, a PrintStream has to be instantiated within the model class: 

private PrintStream out; 

 

For this command to work, the Java.IO package has to be imported to the model file. 

Therefore, the following command has to be added to the “import section” in the header 

of the file: 

import java.io.* 
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Second, the main function of the model class has to be edited in order to give the 

function count to the PrintStream after the DSIDES run. This will allow printing the final 

count to the result output (screen and output file).  

The original main function should look like the following: 

public static void main (String[] args) 

    throws java.io.IOException 

 { 

     ModelName impl = new ModelName(); 

     JDSIDES dsides = new JDSIDES(impl.getAlpData ()); 

     dsides.run (); 

  } 

 

where ModelName represents the specific name of the model. 

This function has to be changed to the following: 

public static void main (String[] args) 

    throws java.io.IOException 

  { 

 ModelName impl = new ModelName (); 

 AlpData data = impl.getAlpData (); 

 impl.out = data.getOut(); 

 JDSIDES dsides = new JDSIDES(data); 

 dsides.run (); 

 impl.out.println("..." + functionCount + "..."); 

  } 

 

The additional commands access the output stream of the model implementation and add 

the function count with a customizable line. 

If it is necessary to count the function calls for a constraint and a goal function, the same 

concept can be used to implement additional counters. 
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Improving performance 

Previously, it is described how to add a custom function that calls a wrapped MATLAB 

function and returns its results. To keep it simple, the instance of the wrapped MATLAB 

class was instantiated within the function: 

exfolder exObject = null;     /* Stores example class instance */ 

 

This costs time and resources each time the function is called. This time can be saved if 

the object is instantiated outside the function, directly in the model class with: 

private static exfolder exObject; 

 

Repackaging jdsides.jar after changes in the main program 

Using for example NetBeans IDE and the Maven plug-in, the dsides-app Java project can 

be imported and edited. When imported for the first time, NetBeans will discover several 

bugs and missing libraries. Building the project will solve this problem. The required 

libraries are downloaded from the online server and the missing files are created. After all 

desired changes are made, the project has to be built again, which will generate a .jar file 

in the target folder under C:\dsides\dsides-app. This jdsides-

1.0.0.Alpha1.jar file does not yet contain the entire program. 

To package the whole JavaDSIDES in one single .jar file, browse to the 

C:\dsides\dsides-app subdirectory in the Windows command prompt and invoke 

the command "mvn assembly:assembly".  This will build a new distribution jar 

file in the C:\dsides\dsides-app\target subdirectory. The file will be called 

jdsides-1.0.0.Alpha1-jar-with-dependencies.jar. In order to replace 

the old version of JavaDSIDES, this file is copied to the C:\dsides\dsides-app 
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folder and renamed to jdsides.jar. Apache Maven has to be installed on the 

computer for the packaging process. How to download and install the latest version of 

Maven can be found online. 

A.12  Cantilever Beam Example with Explicit Functions 

In this section, a simple cantilever beam design problem is used to demonstrate the 

functionality of JavaDSIDES, the MATLAB cDSP XML Generator and the MATLAB 

Builder JA. 

The goal in the example is to minimize the weight as well as the maximum deflection of 

a cantilever beam with given load (P) and length (L). Also given are the Young’s 

Modulus (E) and the density of the beam material aluminum alloy (ρ). The design 

variables are the breadth (b) and the height (h) of the beam. To keep the example simple, 

no uncertainty of the parameters or design variables is considered. 

The example will be shown for two cases: 

 Case 1: The formulas (explicit functions) for the goals and constraints are known. 

 Case 2: The functions are unknown and are treated as a black box MATLAB model. 

Using explicit functions 

In this case the explicit functions for the goals and constraints are known, which means 

that no MATLAB-Java conversion is needed. The cDSP of the design problem, which is 

given in Figure A.6, can be directly translated into the MATLAB cDSP XML Generator, 

which will also run JavaDSIDES and display the results: 
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Step 1: Formulation of the general cDSP for the Design Problem. 

Given: 

• Constants: 

o Applied load: P = 4kN 

o Young’s Modulus: E = 7.17x10
7
 kN 

o Beam length: L = 5m 

o Aluminum alloy density: ρ = 2768 kg/m
3
 

• Equations: 

o Volume of beam: hbLV ⋅⋅=  

o Mass: Vm ⋅= ρ  

o Area moment of inertia:
12

3
bh

I =  

o Maximum tip displacement: 
EI

PL

3

3

=δ   

Find 

• Beam breadth: b = [0.1 m, 1.5m] 

• Beam Height: h = [0.1 m, 1.5m] 

• 
−
id , 

+
id = [0,1] 

 

Satisfy 

• Bounds: 

o See bounds on design variables 

 

• Goals: 

o Minimize mass with goal 500 kg: 1
h)m(b,

500kg
11 =−+ +−

dd   

o Minimize displacement with goal 0.02 m: 1
h)(b,

m 0.2
22 =−+ +−

dd
δ

 

• Constraints:  
o kgm 500≥  

o kgm 1000≤  

o m02.0≥δ  

o m1667.0≤δ  

Minimize 
−− ⋅+⋅= 21 6.04.0 ddZ  

 

Figure A.6: cDSP for Cantilever Beam Example with Explicit Functions 
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Step 2: Transformation of the goal and constraint formulation according to the 

conventions. 

The goal functions have to be transformed to maximization problems: 

Mass:  

• minimize m(b,h) à  maximize 1/m(b,h)  

• min goal 500kg à  max goal 1/500kg 

Displacement: 

• minimize δ(b,h) à  maximize 1/ δ(b,h) 

• min goal 0.02m à  max goal 1/0.02m 

Step 3: Translation of the cDSP into the MATLAB cDSP XML Generator 

Using the MATLAB cDSP XML Generator, it is easy to solve this design problem. As 

the initial solution for the optimization algorithm {b, h} = {0.1m, 0.1m} is used. 

 

% INPUT 

  

projectname = 'CantBeamExplicit'; 

  

% Design Variable Information    

    dvariables = {'Name',   'minimum',  'maximum',  'initial value'; 

                  'b',      '0.1',      '1.5',      '0.1'; 

                  'h',      '0.1',      '1.5',      '0.1'; 

                 }; 

% Constants  

    constants = {'Name',    'value'; 

                 'P',       '4.0'; 

                 'E',       '7.17E7'; 

                 'L',       '5.0'; 

                 'rho',     '2768.0' 

                };   

% Intermediate Expressions 

    % used in goal expressions:  

    goalintermediate = {'Name',     'Expression'; 

                        'V',        'L*b*h'; 

                        'm',        'rho*V'; 



223 

                        'I',        '(b*h^3)/12'; 

                        'dis',      '(P*L^3)/(3*E*I)'; 

                       };  

    % used in constraints expressions:  

    constraintintermediate = {  'Name',     'Expression'; 

                                'V',        'L*b*h'; 

                                'm',        'rho*V'; 

                                'I',        '(b*h^3)/12'; 

                                'dis',      '(P*L^3)/(3*E*I)'; 

                             };                                             

% Goals (need to have at least one) 

    % Equations 

     

    goals = {'Name',        'NegD', 'PosD', 'level', 'Target',  

'Expression'; 

            '1/Mass        ','0.4',  '0.0', '1',     '0.002',   

'1.0/m'; 

            '1/Displacement','0.6',  '0.0', '1',     '50',      

'1.0/dis'; 

          };         

% Constraints (need to have at least one) 

    constraints = {'Name',     'type',              'Limit',    

'Expression'; 

                   'MassMin',  'GreaterThanOrEqual','500'       'm'; 

                   'MassMax',  'LessThanOrEqual',   '1000'      'm'; 

                   'DisplMin', 'GreaterThanOrEqual','0.02'      'dis'; 

                   'DisplMax', 'LessThanOrEqual',   '0.1667'    'dis'; 

                  }; 

                         

% Set XML Model variables (Convergence Tolerance) 

  

docNode = com.mathworks.xml.XMLUtils.createDocument('Model'); 

docRootNode = docNode.getDocumentElement; 

  

docRootNode.setAttribute('xmlns', 'http://dsides.configuration/model'); 

docRootNode.setAttribute('decisionVariableConvergenceTolerance', 

'0.00000001'); 

docRootNode.setAttribute('deviationFunctionConvergenceTolerance', 

'0.00000001'); 

docRootNode.setAttribute('writeCSVFile', 'true'); 

docRootNode.setAttribute('autoNormalizeConstraintsAndGoals', 'true'); 

  

% ------------------------------------ 

% NO EDITING AFTER THIS POINT REQUIRED 

% ------------------------------------ 

 

Figure A.7: XML Generator Code for Cantilever Beam Example 
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Step 4: Running the MATLAB cDSP XML Generator. 

Running the MATLAB cDSP XML Generator will generate the XML file for this cDSP 

and will also execute JavaDSIDES for this design problem. The XML file to the inputs 

above looks like the following: 

 

<?xml version="1.0" encoding="utf-8"?> 

<Model xmlns="http://dsides.configuration/model" 

autoNormalizeConstraintsAndGoals="true" 

decisionVariableConvergenceTolerance="0.00000001" 

deviationFunctionConvergenceTolerance="0.00000001" writeCSVFile="true"> 

   <Name>CantBeamExplicit</Name> 

   <DecisionVariables> 

      <DecisionVariable> 

         <Name>b</Name> 

         <Minimum>0.1</Minimum> 

         <Maximum>1.5</Maximum> 

         <InitialValue>0.1</InitialValue> 

      </DecisionVariable> 

      <DecisionVariable> 

         <Name>h</Name> 

         <Minimum>0.1</Minimum> 

         <Maximum>1.5</Maximum> 

         <InitialValue>0.1</InitialValue> 

      </DecisionVariable> 

   </DecisionVariables> 

   <Constants> 

      <Constant> 

         <Name>P</Name> 

         <Value>4.0</Value> 

      </Constant> 

      <Constant> 

         <Name>E</Name> 

         <Value>7.17E7</Value> 

      </Constant> 

      <Constant> 

         <Name>L</Name> 

         <Value>5.0</Value> 

      </Constant> 

      <Constant> 

         <Name>rho</Name> 

         <Value>2768.0</Value> 

      </Constant> 

   </Constants> 

   <Goals> 

      <IntermediateExpression> 

         <Name>V</Name> 

         <Expression>L*b*h</Expression> 

      </IntermediateExpression> 
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      <IntermediateExpression> 

         <Name>m</Name> 

         <Expression>rho*V</Expression> 

      </IntermediateExpression> 

      <IntermediateExpression> 

         <Name>I</Name> 

         <Expression>(b*h^3)/12</Expression> 

      </IntermediateExpression> 

      <IntermediateExpression> 

         <Name>dis</Name> 

         <Expression>(P*L^3)/(3*E*I)</Expression> 

      </IntermediateExpression> 

      <Goal level="1" negativeDeviationCoefficient="0.4" 

positiveDeviationCoefficient="0.0"> 

         <Name>1/Mass        </Name> 

         <Expression>1.0/m</Expression> 

         <Target>0.002</Target> 

      </Goal> 

      <Goal level="1" negativeDeviationCoefficient="0.6" 

positiveDeviationCoefficient="0.0"> 

         <Name>1/Displacement</Name> 

         <Expression>1.0/dis</Expression> 

         <Target>50</Target> 

      </Goal> 

   </Goals> 

   <Constraints> 

      <IntermediateExpression> 

         <Name>V</Name> 

         <Expression>L*b*h</Expression> 

      </IntermediateExpression> 

      <IntermediateExpression> 

         <Name>m</Name> 

         <Expression>rho*V</Expression> 

      </IntermediateExpression> 

      <IntermediateExpression> 

         <Name>I</Name> 

         <Expression>(b*h^3)/12</Expression> 

      </IntermediateExpression> 

      <IntermediateExpression> 

         <Name>dis</Name> 

         <Expression>(P*L^3)/(3*E*I)</Expression> 

      </IntermediateExpression> 

      <Constraint type="GreaterThanOrEqual"> 

         <Name>MassMin</Name> 

         <Expression>m</Expression> 

         <Limit>500</Limit> 

      </Constraint> 

      <Constraint type="LessThanOrEqual"> 

         <Name>MassMax</Name> 

         <Expression>m</Expression> 

         <Limit>1000</Limit> 

      </Constraint> 

      <Constraint type="GreaterThanOrEqual"> 

         <Name>DisplMin</Name> 

         <Expression>dis</Expression> 

         <Limit>0.02</Limit> 

      </Constraint> 
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      <Constraint type="LessThanOrEqual"> 

         <Name>DisplMax</Name> 

         <Expression>dis</Expression> 

         <Limit>0.1667</Limit> 

      </Constraint> 

   </Constraints> 

</Model> 

 

Figure A.8: XML Model for Cantilever Beam Example  

 

The reason for developing the MATLAB cDSP XML Generator should be very obvious 

now. Although the design problem is not very complex, the XML is already several pages 

long. 

The results are displayed in the MATLAB command window and they are also saved in 

two files in the C:\dsides\dsides-app folder. The output seen in the MATLAB 

command windows is saved in a .txt file and the intermediate results of the synthesis 

cycles are saved in a comma-separated-value file (.csv). The text file’s content is 

presented in Figure A.9.   
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JDSIDES  -  Started : Fri May 15 01:27:23 EDT 2009 

JDSIDES - Alpha 1, August 2008 - Author Matthew Marston 

(mmarston.me00@gtalumni.org) 

 

Adapted from SLIPML      -  Version 5.0 

                Systems Realization Laboratory 

                Design Methods Group 

                The George W. Woodruff School  of Mechanical 

Engineering 

                Georgia Institute of Technology 

                Atlanta, Georgia 30332-0405 

                United States of America 

 Authorship  -  Farrokh Mistree and friends ... 

                Janet Allen        Eduardo Bascaran 

                Bert Bras          Owen Hughes 

                Azim Jivan         Harsh Karandikar 

                Saiyid Kamal       Tim Lyon 

                Ravi Reddy         Warren Smith 

                Srinivas Vadde     Matthew Marston 

***********************************************************************  

CONVERGED in synthesis cycle 8  

  (based on variable and deviation function stationarity)  

Synthesis Cycle: 8 ( FEASIBLE )  

 Design Variables                                                                 

 b         h           

 ----------------------------------------------------------------------  

 0.231764  0.155879    

  

 Deviation Variables                                                              

 d1-       d1+       d2-       d2+         

 ----------------------------------------------------------------------  

 0.000000  0.000000  0.370594  0.000000    

  

 Deviation Function                                                               

 Level 1     

 ----------------------------------------------------------------------  

 0.222356    

  

 Goals                                                                            

 1/Mass        1/Displacement  

 ----------------------------------------------------------------------

------  

 0.002000      31.470292       

  

 Constraints                                                                      

 MassMin        MassMax        DisplMin       DisplMax         

 ----------------------------------------------------------------------  

 500.000000     500.000000     0.031776       0.031776         

  

JDSIDES  -  Finished : Fri May 15 01:27:23 EDT 2009 

JDSIDES  -  Run Time : 0.031(s) 

 

Figure A.9: JavaDSIDES Onscreen Output 
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Step 5: Using and interpreting the results. 

The csv file can be opened in a spreadsheet application like excel and contains the 

following data: 

 

Table A.1: JavaDSIDES CSV File – Part 1 

Synthesis 
Cycle 

Constraint 
Violation b h d1- d1+ d2- d2+ Level 1 

1 1.396506 0.1 0.1 0 0 0.9283 0 0.55698 

2 0.522998 0.172327 0.1 0 0 0.876441 0 0.525865 

3 0.244324 0.231996 0.117677 0 0 0.728938 0 0.437363 

4 0 0.259953 0.141543 0.018134 0 0.471464 0 0.290132 

5 0 0.232047 0.155689 1.19E-06 0 0.372129 0 0.223278 

6 0 0.231796 0.155857 1.43E-08 0 0.370772 0 0.222463 

7 0 0.231769 0.155876 7.79E-10 0 0.370626 0 0.222375 

8 0 0.231764 0.155879 1.46E-10 0 0.370594 0 0.222356 

8 0 0.231764 0.155879 1.46E-10 0 0.370594 0 0.222356 

 

Table A.2: JavaDSIDES CSV File – Part 2 

 

Synthesis 
Cycle 1/Mass        1/Displacement MassMin        MassMax        DisplMin       DisplMax     

1 0.007225 3.585 138.4 138.4 0.27894 0.27894 

2 0.004193 6.177931 238.5009 238.5009 0.161866 0.161866 

3 0.002647 13.55311 377.8381 377.8381 0.073784 0.073784 

4 0.001964 26.42682 509.2345 509.2345 0.03784 0.03784 

5 0.002 31.39353 500.0006 500.0006 0.031854 0.031854 

6 0.002 31.4614 500 500 0.031785 0.031785 

7 0.002 31.46871 500 500 0.031778 0.031778 

8 0.002 31.47029 500 500 0.031776 0.031776 

8 0.002 31.47029 500 500 0.031776 0.031776 
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This information allows, for example, generating the convergence plots of the 

optimization algorithm: 

 

Figure A.10: Convergence Plot for Cantilever Beam Mass 

 

 

Figure A.11: Convergence Plot for Cantilever Beam Displacement 
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A.13  Cantilever Beam Example with Implicit MATLAB Functions 

For this example, the explicit functions governing this example have been implemented 

in several MATLAB functions. The main function “CantBeam.m” returns an array 

containing the value for mass and displacement given a certain breadth b and height h of 

the beam. This means, the model is regarded as a black box model. However, for the 

completeness of this manual and to understand the MATLAB to Java conversion, the 

MATLAB functions are shown here:  

function result = CantBeam(b,h) 
%Constants 
P = 4; 
E = 7.17e7; 
L = 5; 
rho = 2768; 
%Functions 
V = CantBeamVolume(L,b,h); 
I = CantBeamInertia(b,h); 
mass = rho * V; 
dis = (P*L^3)/(3*E*I); 
result = [mass dis]; 
end 

 

It can be seen that the CantBeam.m function calls CantBeamVolume.m and 

CantBeamInertia.m. Although it would be much faster if the functions would be 

integrated, the model consists of several functions in order to demonstrate the MATLAB 

to Java conversion more completely. 

The MATLAB functions CantBeamVolume.m and CantBeamInertia.m are shown here: 

function volume = CantBeamVolume(L,b,h) 
volume = L*b*h; 
end 

 

function inertia = CantBeamInertia(b,h) 
inertia = (b*h^3)/12; 
end 
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Because JavaDSIDES cannot call MATLAB functions directly, they have to be wrapped 

in Java to allow to be called in the JavaDSIDES model class. 

Step 1: Formulation of the general cDSP for the Design Problem. 

Given: 

• Constants: 

o All defined in the black box model 

• Equations: 

o All defined in the black box model 

• Models 

o Black box model for m and δ with inputs b and h 

 

Find 

• Beam breadth: b = [0.1 m, 1.5m] 

• Beam Height: h = [0.1 m, 1.5m] 

• 
−
id , 

+
id = [0,1] 

 

Satisfy 

• Bounds: 

o See bounds on design variables 

 

• Goals: 

o Minimize mass with goal 500 kg: 1
h)m(b,

500kg
11 =−+ +−

dd   

o Minimize displacement with goal 0.02 m: 1
h)(b,

m 0.2
22 =−+ +−

dd
δ

 

• Constraints:  
o kgm 500≥  

o kgm 1000≤  

o m02.0≥δ  

o m1667.0≤δ  

Minimize 
−− ⋅+⋅= 21 6.04.0 ddZ  

 

Figure A.12: cDSP for Cantilever Beam Example with Implicit Functions 
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Step 2: Transformation of the goal and constraint formulation according to the 

conventions. 

According to Section A.5, the goal functions have to be transformed to maximization 

problems: 

Mass:  

• minimize m(b,h) à  maximize 1/m(b,h)  

• min goal 500kg à  max goal 1/500kg 

Displacement: 

• minimize δ(b,h) à  maximize 1/ δ(b,h) 

• min goal 0.02m à  max goal 1/0.02m 

Step 3: Translation of the cDSP into the MATLAB cDSP XML Generator 

The MATLAB cDSP XML Generator is used to generate the preliminary java model 

class. Therefore, the cDSP is transferred to the XML Generator (Figure A.13). Note, that 

the cDSP formulation became simpler compared to the one in Section A.12 due to 

missing constants and intermediate expressions. For the goal and constraint formulations, 

where the MATLAB CantBeam function will be called later, a number is entered. This 

number is remembered and will be exchanged with the function call in the Java model 

class. 

The formulation in the MATLAB cDSP XML Generator is presented in Figure A.13.  In 

the code, “600” is used to replace the function call for the cantilever beam mass and 

“0.05” for its displacement. The results that are displayed when executing the XML 

Generator are ignored. 
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% INPUT 

projectname = 'CantBeamImplicit'; 

% Design Variable Information    

    dvariables = {'Name',   'minimum',  'maximum',  'initial value'; 

                  'b',      '0.1',      '1.5',      '0.1'; 

                  'h',      '0.1',      '1.5',      '0.1'; 

                 }; 

% Constants  

    constants = {'Name',    'value'; 

                };  

% Intermediate Expressions 

    % used in goal expressions:  

    goalintermediate = {'Name',     'Expression'; 

                       }; 

    % used in constraints expressions:  

    constraintintermediate = {  'Name',     'Expression'; 

                             };                                            

% Goals (need to have at least one) 

    % Equations 

     

    goals = {'Name',        'NegD', 'PosD', 'level', 'Target',  

'Expression'; 

            '1/Mass        ','0.4',  '0.0', '1',     '0.002',   

'1.0/600'; 

            '1/Displacement','0.6',  '0.0', '1',     '50',      

'1.0/0.05'; 

          };          

% Constraints (need to have at least one) 

    constraints = {'Name',     'type',              'Limit',    

'Expression'; 

                   'MassMin',  'GreaterThanOrEqual','500'       '600'; 

                   'MassMax',  'LessThanOrEqual',   '1000'      '600'; 

                   'DisplMin', 'GreaterThanOrEqual','0.02'      '0.05'; 

                   'DisplMax', 'LessThanOrEqual',   '0.1667'    '0.05'; 

                  }; 

                         

% Set XML Model variables (Convergence Tolerance) 

docNode = com.mathworks.xml.XMLUtils.createDocument('Model'); 

docRootNode = docNode.getDocumentElement; 

  

docRootNode.setAttribute('xmlns', 'http://dsides.configuration/model'); 

docRootNode.setAttribute('decisionVariableConvergenceTolerance', 

'0.00000001'); 

docRootNode.setAttribute('deviationFunctionConvergenceTolerance', 

'0.00000001'); 

docRootNode.setAttribute('writeCSVFile', 'true'); 

docRootNode.setAttribute('autoNormalizeConstraintsAndGoals', 'true'); 

  

% ------------------------------------ 

% NO EDITING AFTER THIS POINT REQUIRED 
% ------------------------------------ 

 

Figure A.13: XML Generator Formulation for Cantilever Beam Example 
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Step 4: Wrapping the MATLAB CantBeam functions in Java using MATLAB Compiler 

In this step, the CantBeam MATLAB functions are wrapped in Java and exported. 

Therefore, the working directory in MATLAB is changed to the folder containing the 

CantBeam MATLAB files. With the MATLAB command “deploytool” then the 

MATLAB Compiler graphic user interface is started and a new deployment project is 

opened (see Figure A.14). 

 

 

Figure A.14: Starting a New Deployment Project in MATLAB Builder JA 

 

The dialog box allows choosing the type of project, which is a MATLAB Builder JA Java 

Package project in this case. It also allows choosing in a project name and selecting an 

appropriate directory in which the project and the resulting java files are saved. The 

project name should be lower case since this will be the name of the .jar file later; here 

“cantbeampackage.prj’ is used (see Figure A.15). 
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Figure A.15: New Project Dialog Box in MATLAB Builder JA 

 

The project is created and two folders appear in the deployment tool GUI. The class 

folder should be renamed, so that it has a different name then the project or the function 

itself and starts with a capital letter. In this example, it is simply renamed to 

“CantBeamClass” (see Figure A.16). 

 

            

Figure A.16: Renaming Class in MATLAB Builder JA 
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After the class folder has been renamed, the required MATLAB function files are added 

to this class folder per drag & drop. 

 

 

Figure A.17: Adding Functions to the Builder Project 

 

After all functions are added (see Figure A.17), the project can be built by clicking 

“Build the project” (see Figure A.18). The default settings for building and packaging 

projects in MATLAB are fine for this application and don’t have to be changed. 

 

 

Figure A.18: Building the MATLAB Builder JA Project 

 

The compiling and packaging process can take a couple of minutes. After the compilation 

is finished, the required .jar file “cantbeampackage.jar” can be found in the 

“…\CantBeamJava\cantbeampackage\distrib” subdirectory of the project folder. This file 



237 

is copied into the “dsides-app” subdirectory (C:\dsides\dsides-app). The file 

“javabuilder.jar”, which can be found in the “MATLAB_ROOT\toolbox\javabuilder\jar” 

subfolder (e.g. “C:\ProgramFiles\MATLAB\R2008b\toolbox\javabuilder\jar”, is also 

copied (don’t move the file) to the “dsides-app” folder. Now all the Java packages are 

created and in the right place. 

Step 5: Modifying the JavaDSIDES model file  

The next step is to modify the Java model file, which can be found in the folder 

“C:\dsides\dsides-app\model\model” and in this case is named “CantBeamImplicit.java”. 

After opening the java file in an appropriate Java editor (here NetBeans) first, the 

javabuilder and cantbeamproject packages have to be imported: 

package model; 

 

import dsides.*; 

 

import dsides.compiler.*; 

import static java.lang.Math.*; 

 

import java.util.*; 

 

/* import packages here: */ 

import com.mathworks.toolbox.javabuilder.*;  /* MATLAB Builder Package 

*/ 

import cantbeampackage.*;         /* Canilever Beam 

Functions */ 

 

public class CantBeamImplicit 

  implements dsides.compiler.ModelImplementation 

{  

… 

 

Next, a function providing the cantilever beam mass and displacement has to be added. 

This function will create an instance of the CantBeamClass class and call the CantBeam 

function with the given inputs.  
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public class CantBeamImplicit 

  implements dsides.compiler.ModelImplementation 

{ 

  public double[] cantBeamValues (double[] x) 

   { 

      CantBeamClass cantileverbeam = null; 

      Object[] result = null;     

 

      try 

      {  

         cantileverbeam = new CantBeamClass(); 

         /* Compute result */ 

         result = cantileverbeam.CantBeam(1, x[0], x[1]); 

         MWNumericArray resultA = (MWNumericArray) result[0]; 

         /* Return result */ 

         double[][] a = (double[][])resultA.toDoubleArray(); 

         return a[0]; 

      } 

      catch (Exception e) 

      { 

         System.out.println("Exception: " + e.toString()); 

      } 

      finally 

      { 

         /* Free native resources */ 

         MWArray.disposeArray(result); 

         if (cantileverbeam != null) 

            cantileverbeam.dispose(); 

      } 

      return null; 

   } 

… 

 

This function can now be called in the “calculate” functions of the GoalProvider 

and the ConstraintProvider objects. 

public double[] calculate (double[] x) /* in GoalProvider */ 

      { 

        double[] f = new double[2]; 

        double[] r = cantBeamValues(x); 

 

        f[0] = (1.0 / r[0]); 

        f[1] = (1.0 / r[1]); 

 

        return f; 

      } 

 

 



239 

public double[] calculate (double[] x) /* in ConstraintProvider */ 

      { 

        double[] f = new double[4]; 

        double[] r = cantBeamValues(x); 

 

        f[0] = r[0]; 

        f[1] = r[0]; 

        f[2] = r[1]; 

        f[3] = r[1]; 

 

        return f; 

      } 

 

Now the model file can be saved and is ready to be compiled and executed. 

Step 6: Compiling and executing the edited JavaDSIDES model file. 

Therefore, the Windows command prompt is needed (WinKey+R, ”cmd”, Run). The 

command 

cd c:\dsides\dsides-app 

 

will browse to the dsides-app subdirectory, where the Java commands are invoked. With 

the following command the Java model file can now be compiled: 

javac -classpath jdsides.jar;javabuilder.jar;cantbeampackage.jar -d 

model model\model\CantBeamImplicit.java 

 

If the compiling was successful, no output is displayed in the command window. After a 

successfully compiling, JavaDSIDES can be executed with the command: 

java -classpath jdsides.jar;javabuilder.jar;cantbeampackage.jar;model 

model.CantBeamImplicit 

In this example, the same results as for the example with explicit functions should be 

displayed in the command window and saved in the output files. Note that due to the 

number of sub functions used in this section, JavaDSIDES will take much longer to finish 

than with explicit functions. The results can be used and interpreted exactly like in Step 5 

of Section A.12.   
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APPENDIX B 

JavaDSIDES and the Modified RCEM: Implementation of the Pressure 

Vessel Example 

In Section 4.3.2, the modified RCEM and JavaDSIDES are applied to the Pressure Vessel 

Example.  In this section, the required MATLAB code is given and the implementation is 

explained.  Furthermore, the JavaDSIDES output files are presented.   

The MATLAB cDSP XML Generator code with the implemented cDSP (Figure 4.2) is 

shown below in Figure B.1.  The first part of the code contains the translated cDSP with 

all variables, constants, intermediate expressions as well as goal and constraint 

formulations.  The second part consists of the commands that translate and export the 

cDSP to an XML file.  The last command executes JavaDSIDES with the generated input 

file.  The results can be seen directly in the MATLAB command window. 

 

clear all; 
clc; 
  

% MATLAB code that generates XML representation of a design problem and 

% executes JavaDSIDES using the generated XML file 

%  

% by Markus Rippel, 2009 – markus.rippel@gatech.edu 

 
% INPUT 

  
projectname = 'Pressure_Vessel_Example_new_mRCEM_20_25_4'; 

  
% Design Variable Information    
    dvariables = {'Name',   'minimum',  'maximum',  'initial value'; 
                  'R',      '6',        '36.0',     '20.0'; 
                  'L',      '6',        '48.0',     '25.0'; 
                  'T',      '1.5',      '6.0',      '4.0'; 
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                 }; 

  
% Constants  
    constants = {'Name',       'value'; 
                 'varianceR',  '0.44444'; 
                 'varianceL',  '0.44444'; 
                 'varianceT',  '0.11111'; 
                 'deltaR',     '1.33333'; 
                 'deltaL',     '1.33333'; 
                 'deltaT',     '0.66666'; 
                 'weight',     '0.25'; 
                 'pi',         '3.14159265'; 
                 'rho',        '0.284'; 
                 'ystrength',  '26000'; 
                 'SF',         '2'; 
                 'P',          '1000'; 
                }; 

 
 % Intermediate Expressions 
    % used in goal expressions:  
    goalintermediate = { 

      'Name',       'Expression'; 
      'V',          'pi*(4/3*R^3 + R^2*L)'; 
      'W',          'pi*rho*(4/3*(R+T)^3+(R+T)^2*L-(4/3*R^3 + R^2*L))'; 
      'MeanV',      'V + 0.5*(pi*(4/3*6*R+2*L))*varianceR + 

0.5*(0)*varianceL'; 
      'MeanW',      'W + 0.5*(pi*rho*(4/3*6*(R+T)+2*L-(4/3*6*R + 

2*L)))*varianceR + 0.5*(0)*varianceL + 

0.5*(pi*rho*(4/3*6*(R+T)+2*L))*varianceT'; 
      'V_plusdeltaR', 'pi*(4/3*(R+deltaR)^3 + (R+deltaR)^2*L)'; 
      'V_mindeltaR',  'pi*(4/3*(R-deltaR)^3 + (R-deltaR)^2*L)'; 
      'V_plusdeltaL', 'pi*(4/3*R^3 + R^2*(L+deltaL))'; 
      'V_mindeltaL',  'pi*(4/3*R^3 + R^2*(L-deltaL))'; 
      'W_plusdeltaR', 'pi*rho*(4/3*((R+deltaR)+T)^3+((R+deltaR)+T)^2*L-

(4/3*(R+deltaR)^3 + (R+deltaR)^2*L))'; 
      'W_mindeltaR',  'pi*rho*(4/3*((R-deltaR)+T)^3+((R-deltaR)+T)^2*L-

(4/3*(R-deltaR)^3 + (R-deltaR)^2*L))'; 
      'W_plusdeltaL', 'pi*rho*(4/3*(R+T)^3+(R+T)^2*(L+deltaL)-(4/3*R^3 

+ R^2*(L+deltaL)))'; 
      'W_mindeltaL',  'pi*rho*(4/3*(R+T)^3+(R+T)^2*(L-deltaL)-(4/3*R^3 

+ R^2*(L-deltaL)))'; 
      'W_plusdeltaT', 'pi*rho*(4/3*(R+(T+deltaT))^3+(R+(T+deltaT))^2*L-

(4/3*R^3 + R^2*L))'; 
      'W_mindeltaT',  'pi*rho*(4/3*(R+(T-deltaT))^3+(R+(T-deltaT))^2*L-

(4/3*R^3 + R^2*L))'; 
      'VarianceV',    '1/12*((V-V_mindeltaR)^2+(V-

V_mindeltaL)^2)+1/12*((V-V_plusdeltaR)^2+(V-

V_plusdeltaL)^2)+1/12*weight*((V_mindeltaR-

V_plusdeltaR)^2+(V_mindeltaL-V_plusdeltaL)^2)'; 
      'VarianceW',    '1/12*((W-W_mindeltaR)^2+(W-W_mindeltaL)^2+(W-

W_mindeltaT)^2)+1/12*((W-W_plusdeltaR)^2+(W-W_plusdeltaL)^2+(W-

W_plusdeltaT)^2)+1/12*weight*((W_mindeltaR-

W_plusdeltaR)^2+(W_mindeltaL-W_plusdeltaL)^2+(W_mindeltaT-

W_plusdeltaT)^2)'; 
                       }; 
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    % used in constraints expressions:  
    constraintintermediate = { 

      'Name',                 'Expression'; 
      'sph_stresscon',        'P*(R+0.5*T)/(2*T)'; 
      'cyl_stresscon',        'P*(2*R^2+2*R*T+T^2)/(2*R*T+T^2)'; 
      'thinwallcon',          '5*T - R + 5'; 
      'overallradiuscon',     'R + T'; 
      'overalllengthcon',     'L + 2*R + 2*T'; 
      'V',                    'pi*(4/3*R^3 + R^2*L)'; 
      'W',          'pi*rho*(4/3*(R+T)^3+(R+T)^2*L-(4/3*R^3 + R^2*L))'; 

      'MeanV',      'V + 0.5*(pi*(4/3*6*R+2*L))*varianceR + 

0.5*(0)*varianceL'; 
      'MeanW',      'W + 0.5*(pi*rho*(4/3*6*(R+T)+2*L-(4/3*6*R + 

2*L)))*varianceR + 0.5*(0)*varianceL + 

0.5*(pi*rho*(4/3*6*(R+T)+2*L))*varianceT'; 
                              };                     

                          
% Goals (need to have at least one) 
    % Equations 

     
    goals = { 

  'Name',          'NegD', 'PosD', 'level', 'Target',  'Expression'; 
  'V____________', '0.45', '0.0',  '1',    '50000',     'MeanV'; 
  '1/VarianceV__', '0.25', '0.0',  '1',    '0.0000002', '1/VarianceV'; 
  '1/VarianceW__', '0.30', '0.0',  '1',    '0.000005',  '1/VarianceW'; 
          }; 

          
% Constraints (need to have at least one) 
    constraints = { 

  'Name',           'type',               'Limit',  'Expression'; 
  'Constraint1  ',  'LessThanOrEqual',    '5',      'thinwallcon'; 
  'Constraint2  ',  'LessThanOrEqual',    '40',     'overallradiuscon'; 
  'Constraint3  ',  'LessThanOrEqual',    '60',     'overalllengthcon'; 
  'Constraint4  ',  'LessThanOrEqual',    '13000',  'sph_stresscon'; 
  'Constraint5  ',  'LessThanOrEqual',    '13000',  'cyl_stresscon'; 
  'Constraint6  ',  'GreaterThanOrEqual', '20000',  'MeanV'; 
  'Constraint7  ',  'LessThanOrEqual',    '2500',   'MeanW'; 
             }; 

                         
% Set XML Model variables (Convergence Tolerance) 

  
docNode = com.mathworks.xml.XMLUtils.createDocument('Model'); 
docRootNode = docNode.getDocumentElement; 

  
docRootNode.setAttribute('xmlns', 'http://dsides.configuration/model'); 
docRootNode.setAttribute('decisionVariableConvergenceTolerance',... 

'0.0000000001'); 
docRootNode.setAttribute('deviationFunctionConvergenceTolerance',... 

'0.0000000001'); 
docRootNode.setAttribute('writeCSVFile', 'true'); 
docRootNode.setAttribute('autoNormalizeConstraintsAndGoals', 'true'); 
docRootNode.setAttribute('adaptConstraints', 'false'); 
% ------------------------------------ 
% NO EDITING AFTER THIS POINT REQUIRED 
% ------------------------------------ 
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elName = docNode.createElement('Name'); 
elName.appendChild(docNode.createTextNode(projectname)); 
docRootNode.appendChild(elName); 

  
% ---------------------------     
% START DecisionVariables        
    elDecisionVariables = docNode.createElement('DecisionVariables'); 
    d=size(dvariables); 
     for i = 1:d(1)-1    
  elVariable = docNode.createElement('DecisionVariable'); 
     elDName = docNode.createElement('Name'); 
     elDName.appendChild(docNode.createTextNode(dvariables(i+1,1))); 
     elDmin = docNode.createElement('Minimum'); 
     elDmin.appendChild(docNode.createTextNode(dvariables(i+1,2))); 
     elDmax = docNode.createElement('Maximum'); 
     elDmax.appendChild(docNode.createTextNode(dvariables(i+1,3))); 
     elDInitial = docNode.createElement('InitialValue'); 
     elDInitial.appendChild(docNode.createTextNode(dvariables(i+1,4))); 
  elVariable.appendChild(elDName); 
  elVariable.appendChild(elDmin); 
  elVariable.appendChild(elDmax); 
  elVariable.appendChild(elDInitial); 
  elDecisionVariables.appendChild(elVariable); 

  
     end     
% END DecisionVariables 
% --------------------------- 
% START Constants 
const=size(constants); 
if const >= 2 
elConstants = docNode.createElement('Constants'); 

     
    for i = 1:(const(1)-1) 
     elConstant = docNode.createElement('Constant'); 
        elCName = docNode.createElement('Name'); 
        elCName.appendChild(docNode.createTextNode(constants(i+1,1))); 
        elCValue = docNode.createElement('Value'); 
        elCValue.appendChild(docNode.createTextNode(constants(i+1,2))); 
     elConstant.appendChild(elCName); 
     elConstant.appendChild(elCValue); 
     elConstants.appendChild(elConstant); 
    end    
end 
% END Constants 
% --------------------------- 
% START Goals 
elGoals = docNode.createElement('Goals'); 
    % put in intermediate expressions 
        ginter=size(goalintermediate); 
        if ginter >= 2 
         for i=2:(ginter(1)) 
           % for each Intermediate Expressions        
  elIntermediate1 = docNode.createElement('IntermediateExpression'); 
    elIName = docNode.createElement('Name'); 
    elIName.appendChild(docNode.createTextNode(goalintermediate(i,1))); 
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    elIExpression = docNode.createElement('Expression'); 
    elIExpression.appendChild(docNode.createTextNode...  

       (goalintermediate(i,2))); 
  elIntermediate1.appendChild(elIName); 
  elIntermediate1.appendChild(elIExpression); 
  elGoals.appendChild(elIntermediate1); 
        end 
       end 
    % put in goals 
        g=size(goals); 
        for i=1:(g(1)-1)  
            %for each Goal 
   elGoal = docNode.createElement('Goal'); 
   elGoal.setAttribute('negativeDeviationCoefficient', goals((i+1),2)); 
   elGoal.setAttribute('positiveDeviationCoefficient', goals((i+1),3)); 
   elGoal.setAttribute('level', goals((i+1),4)); 
     elGName = docNode.createElement('Name'); 
     elGName.appendChild(docNode.createTextNode(goals((i+1),1))); 
     elGExpression = docNode.createElement('Expression'); 
     elGExpression.appendChild(docNode.createTextNode(goals((i+1),6))); 
     elGTarget = docNode.createElement('Target'); 
     elGTarget.appendChild(docNode.createTextNode(goals((i+1),5))); 
   elGoal.appendChild(elGName); 
   elGoal.appendChild(elGExpression); 
   elGoal.appendChild(elGTarget); 
   elGoals.appendChild(elGoal); 
        end 

  
% END Goals 
% --------------------------- 
% START Constraints 
constr=size(constraints); 
if constr >= 2 
elConstraints = docNode.createElement('Constraints'); 
    % put in intermediate expressions 
      cinter=size(constraintintermediate); 
      if cinter >= 2 
        for i=2:(cinter(1)) 
           % for each Intermediate Expressions        
    elIntermediate1 = docNode.createElement('IntermediateExpression'); 
           elIName = docNode.createElement('Name'); 
           elIName.appendChild(docNode.createTextNode... 

              (constraintintermediate(i,1))); 
           elIExpression = docNode.createElement('Expression'); 
           elIExpression.appendChild(docNode.createTextNode... 

              (constraintintermediate(i,2))); 
    elIntermediate1.appendChild(elIName); 
    elIntermediate1.appendChild(elIExpression); 
    elConstraints.appendChild(elIntermediate1); 
        end 
      end 
    % put in constraints 
        for i=1:(constr(1)-1) 
  elConstraint = docNode.createElement('Constraint'); 
  elConstraint.setAttribute('type', constraints((i+1),2)); 
   elCSName = docNode.createElement('Name'); 
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   elCSName.appendChild(docNode.createTextNode(constraints((i+1),1))); 
   elCSExpression = docNode.createElement('Expression'); 
   elCSExpression.appendChild(docNode.createTextNode... 

       (constraints((i+1),4))); 
   elCSLimit = docNode.createElement('Limit'); 
   elCSLimit.appendChild(docNode.createTextNode(constraints((i+1),3))); 
  elConstraint.appendChild(elCSName); 
  elConstraint.appendChild(elCSExpression); 
  elConstraint.appendChild(elCSLimit); 
  elConstraints.appendChild(elConstraint); 
        end 
end 
% END Constraints 
% --------------------------- 

  
% put Nodes in Root Document 
docRootNode.appendChild(elDecisionVariables); 
if const >= 2  
    docRootNode.appendChild(elConstants); 
end 
docRootNode.appendChild(elGoals); 
if constr >= 2 
    docRootNode.appendChild(elConstraints); 
end 

  
% Save the XML document. 
% xmlFileName = [dataOutFile,'.xml']; 
    xmlFileName = fullfile('C:\dsides\dsides-app',...  

       strcat(projectname,'.xml')); 
    xmlwrite(xmlFileName,docNode); 
% open xml file to see your output 
%     edit(xmlFileName); 

  
    system(['java -jar jdsides.jar ' projectname '.xml']) 

 

 

Figure B.1: MATLAB XML Generator Code for Java DSIDES 

 

JavaDSIDES also provides two output files.  One is a text file (filename.out), which 

contains a copy of the output screen of JavaDSIDES.  The content of the output file from 

the example problem is given in Figure B.2. 
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JDSIDES  -  Started : Thu Sep 24 10:56:35 EDT 2009 

JDSIDES - Alpha 1, August 2008 - Author Matthew Marston 

(mmarston.me00@gtalumni.org) 

 

Adapted from SLIPML      -  Version 5.0 

               Systems Realization Laboratory 

               Design Methods Group 

               The George W. Woodruff School  of Mechanical Engineering 

               Georgia Institute of Technology 

               Atlanta, Georgia 30332-0405 

               United States of America 

 Authorship  - Farrokh Mistree and friends ... 

               Janet Allen        Eduardo Bascaran 

               Bert Bras          Owen Hughes 

               Azim Jivan         Harsh Karandikar 

               Saiyid Kamal       Tim Lyon 

               Ravi Reddy         Warren Smith 

               Srinivas Vadde     Matthew Marston 

*********************************************************************** 

CONVERGED in synthesis cycle 5 

  (based on variable and deviation function stationarity) 

Synthesis Cycle: 5 ( FEASIBLE ) 

 Design Variables                                                                

 R         L         T          

 ---------------------------------------------------------------------- 

 15.438209 6.000000  1.500000   

 

 Deviation Variables                                                             

 d1-       d1+       d2-       d2+       d3-       d3+        

 ---------------------------------------------------------------------- 

 0.600002  0.000000  0.164371  0.000000  0.000000  0.000000   

 

 Deviation Function                                                              

 Level 1    

 ---------------------------------------------------------------------- 

 0.311094   

 

 Goals                                                                           

 V____________1/VarianceV__1/VarianceW__ 

 ---------------------------------------------------------------------- 

 19999.894863 0.000000     0.000006      

 

 Constraints                                                                     

 Constraint1  Constraint2  Constraint3  Constraint4  Constraint5  

Constraint6  Constraint7   

 ---------------------------------------------------------------------- 

 -2.938209    16.938209    39.876419    5396.069809  10815.304626 

19999.894863 1673.543008   

 

JDSIDES  -  Finished : Thu Sep 24 10:56:35 EDT 2009 

JDSIDES  -  Run Time : 0.063(s) 

 

 

Figure B.2: JavaDSIDES Onscreen Output and Content of Output ‘filename.out’ 
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The second output file is a comma separated value file (filename.csv), which can be 

opened in spreadsheet software like Microsoft Excel.  This file contains all the 

intermediate results of the DSIDES iterations.  The csv file from the example problem is 

shown in Figure B.3.  The data found in this file can be used to verify the internal 

consistency of the result, since it allows, for example, plotting the algorithm’s 

convergence.   

 



2
4

8
 

 

 

 

 

 

 

 

Level 1 

0.465709 

0.382548 

0.413495 

0.31543 

0.311094 

0.311094 

d3+ 

0 

0 

0 

0 

0 

0 

d3- 

0.855794 

0.607592 

0.461971 

0 

0 

0 

d2+ 

0 

0 

0 

0 

0 

0 

d2- 

0.835881 

0.741738 

0.630999 

0.220137 

0.164371 

0.164371 

d1+ 

0

0

0

0

0

0

d1- 

0 

0.032968 

0.260342 

0.578656 

0.600002 

0.600002 

T 

4 

1.5 

1.528469 

1.5 

1.5 

1.5 

L 

25 

6 

6 

6 

6 

6 

R 

20 

21.17545 

19.25039 

15.73099 

15.43821 

15.43821 

Constraint 

Violation 

3.565627 

0.301114 

0 

0 

0 

0 

Synthesis 

Cycle 

1 

2 

3 

4 

5 

5 

 

 

 

 

 

 

 

 

 

Constraint 

7 

10872.4 

2938.542 

2524.995 

1729.565 

1673.543 

1673.543 

Constraint 

6 

65072.85 

48351.59 

36982.92 

21067.18 

19999.89 

19999.89 

Constraint 

5 

5545.455 

14634.07 

13113.64 

11010.08 

10815.3 

10815.3 

Constraint 

4 

2750 

7308.482 

6547.276 

5493.664 

5396.07 

5396.07 

Constraint 

3 

73 

51.35089 

47.55771 

40.46198 

39.87642 

39.87642 

Constraint 

2 

24 

22.67545 

20.77886 

17.23099 

16.93821 

16.93821 

Constraint 

1 

5 

-8.67545 

-6.60804 

-3.23099 

-2.93821 

-2.93821 

1/Variance

W 

7.21E-07 

1.96E-06 

2.69E-06 

5.27E-06 

5.60E-06 

5.60E-06 

1/Variance

V 

3.28E-08 

5.17E-08 

7.38E-08 

1.56E-07 

1.67E-07 

1.67E-07 

V 

65072.8 

48351.5 

36982.9 

21067.1 

19999.8 

19999.8 

 

 

Figure B.3: JavaDSIDES CSV Output File 
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APPENDIX C 

MATLAB CODE FOR PCM IMPLEMENTATION 

C.1  PCM MATLAB Code for Example in Chapter 5 

In this section, the MATLAB code required to reproduce the results in Chapter 5 is 

presented.  The main function code in given in Figure C.1, the sub-function myPCM, 

which is given in Figure C.2, was provided by Professor Seung-Kyum Choi.  The 

function ‘ThesisFunction()’ is the MATLAB representation of Eq. 3.1.  All other 

functions that are used in this code are native MATLAB functions.   

 

function result = PCM_ExampleFunction(mu,variance) 

  
% Function returns mean and variance of the example function 
% (ThesisFunction) for the input mean and variance assuming a Gaussian 
% distribution using the Probabilistic Collocation Method of third 

% order 
% by Markus Rippel, 2009 - markus.rippel@gatech.edu 

  
sigma = sqrt(variance); 

  
% Generating of Hermite Polynomials 
h0 = myPCE(0); 
h1 = myPCE(1); 
h2 = myPCE(2); 
h3 = myPCE(3); 
h4 = myPCE(4); 
h5 = myPCE(5); 
h.a = h0; 
h.b = h1; 
h.c = h2; 
h.d = h3; 

  
% Deriving Collocation Points 
r = roots(h4) 
r5 = roots(h5); 



250 

B = mu +r.*sigma 
Y = ThesisFunction(B) 

  
% Solving for Coefficients of Polynomial Chaos Expansion 
X = [polyval(h.a, r(1)), polyval(h.b, r(1)), polyval(h.c, r(1)), 

polyval(h.d, r(1)); 

     polyval(h.a, r(2)), polyval(h.b, r(2)), polyval(h.c, r(2)), 

polyval(h.d, r(2)); 
     polyval(h.a, r(3)), polyval(h.b, r(3)), polyval(h.c, r(3)), 

polyval(h.d, r(3)); 
     polyval(h.a, r(4)), polyval(h.b, r(4)), polyval(h.c, r(4)), 

polyval(h.d, r(4))] 
y = pinv(X'*X)*X'*Y 

  
% Deriving Moments 
mean1 = y(1); 
variance1 = y(2)^2 + y(3)^2 + y(4)^2; 

  
% Checking Fitting Error 
T = mu +r5.*sigma; 
Z = ThesisFunction(T); 
for i=1:5 
    Ze(i,1) = y(1)*polyval(h0, r5(i))+ y(2)*polyval(h1, r5(i))+ 

y(3)*polyval(h2, r5(i))+ y(4)*polyval(h3, r5(i)); 
end 
TSS = sum((Z-mean(Z)).^2); 
RSS = sum((Z-Ze).^2); 
Rsquared = 1 - RSS/TSS 
% Displying Warning if Error is too Large 
if Rsquared<=0.95 
    [mu, Rsquared]  
end 

  
result = [mean1 variance1]; 
end 
 

 

Figure C.1: MATLAB Code for PCM Example in Chapter 5 – “PCM_ExampleFunction.m" 
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function [hk]=myPCE(n) 

  
% Return the coefficient of n_th order of PCE: x^(n+1-m) 
% polyval(myPCE(n),x) evaluates H_n(x). 
% 
% Usage Example: 
% hh = myPCE(n) 
% x = polyval(hh, xi) 

  
if n==0 
    hk = 1; 

  
elseif n==1 
    hk = [1 0]; 

  
else 
    hkm2 = zeros(1,n+1); 
    hkm2(n+1) = 1; 
    hkm1 = zeros(1,n+1); 
    hkm1(n) = 1; 
    for k=2:n 
        hk = zeros(1,n+1); 
        for e=n-k+1:1:n 
            hk(e) = 1*(hkm1(e+1) - (k-1)*hkm2(e)); 
        end 
        hk(n+1) = -1*(k-1)*hkm2(n+1); 
        if k<n 
            hkm2 = hkm1; 
            hkm1 = hk; 
        end 
    end 
end 

 
 

 

Figure C.2: MATLAB Code for Generation of Hermite Polynomoals – “myPCE.m" 

C.2  PCM MATLAB Code for Example in Chapter 6 

In this section, the MATLAB code for the multi-dimension PCM in Chapter 6 is 

presented.  The code consists of the function “PCM_LCA_Thesis()” as well as two 

important subfunctions “myPCE()” and “myPCM_solve()”. 
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The function PCM_LCA_Thesis.m is the main function that takes the user input, the 

mean values of the design variables and their variance, and returns the mean and variance 

of the LCA design solution.  In the simulation-based RCEM, this function is called within 

the DSIDES algorithm.  The code is given in Figure C.3. 

Within the main function “PCM_LCA_Thesis()”, the subfunction “myPCE()” generates 

Hermite polynomials of the desired order.  The code was provided by Professor Seung-

Kyum Choi and is given in Figure C.4. 

The subfunction “myPCM_solve()” returns the coefficients of the Polynomial Chaos 

Expansion within the Probabilistic Collocation Method.  The code of this function is 

presented in Figure C.5.   

The code for the LCA FEA simulation, which is called with the function 

“MR_LCA_Thesis()” is not presented in this thesis since the focus is on the design 

method.   

 

function result = PCM_LCA_Thesis_Q_2order(row, tx, ty,rowvar, txvar, 

tyvar) 
sigma(1) = rowvar^(0.5); 
sigma(2) = txvar^(0.5); 
sigma(3) = tyvar^(0.5); 
  

% Define Terms of the Polynomial Chaos Expansion 
 m =   [0 0 0; 
        1 0 0; 
        0 1 0; 
        0 0 1; 
        2 0 0; 
        0 2 0; 
        0 0 2]; 

 
%% Generate Hermite Polynomials 
h0 = myPCE(0); 
h1 = myPCE(1); 
h2 = myPCE(2); 
h3 = myPCE(3); 
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h4 = myPCE(4); 
h(1,:) = [0,0,0,h0]; 
h(2,:) = [0,0,h1]; 
h(3,:) = [0,h2]; 
h(4,:) = [h3]; 
  

%% Generate and Select Required Number of Collocation Points 
r = roots (h3);  
cm = fullfact([3 3 3]); 
CP = [r(cm(:,1)) r(cm(:,2)) r(cm(:,3))]; 
CP(:,4) = normpdf((CP(:,1).*1),0,1).*normpdf((CP(:,2).*1),0,1). 

*normpdf((CP(:,3).*1),0,1); 
CP = sortrows(CP,-4); 
cp = CP(1:7,1:3); 

  
%% Calculate Y (Simulated Values for Collocation Points) 
C1 = row + cp(:,1).*sigma(1); 
C2 = tx + cp(:,2).*sigma(2); 
C3 = ty + cp(:,3).*sigma(3); 

  
for i = 1:length(C1) 
    Y(i,1) = MR_LCA_Thesis(C1(i),C2(i),C3(i)); 
end 

  
%% Solve for the Coefficients q 
res = myPCM_solve(Y,cp,h,m); 
q = res{1}; 
m = res{2}; 
F = res{3}; 

  
%% Calculate mean and variance 
qmean = q(1); 
qvariance = 0; 
for i = 2:length(q) 
    qvariance = qvariance + q(i)^2; 
end 

  
% %% Checking Fitting Error 
% r4 = roots(h4); 
% tm = fullfact([4 4 4]); 
% tp = [r4(tm(:,1)) r4(tm(:,2)) r4(tm(:,3))]; 
% for i = 1:length(m) 
%     for j = 1:length(tp) 
%         F(j,i) = polyval(h(m(i,1)+1,:), 

tp(j,1))*polyval(h(m(i,2)+1,:), tp(j,2))*polyval(h(m(i,3)+1,:), 

tp(j,3)); 
%     end 
% end 
% Ze = F*q; 
%  
% T1 = row + tp(:,1).*sigma(1); 
% T2 = tx + tp(:,2).*sigma(2); 
% T3 = ty + tp(:,3).*sigma(3); 
% for i = 1:length(T1) 
%     Z(i,1) = MR_LCA_Thesis(T1(i),T2(i),T3(i)); 
% end 
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% Z; 
% TSS = sum((Z-mean(Z)).^2); 
% RSS = sum((Z-Ze).^2); 
% Rsquared = 1 - RSS/TSS 
% % Displying Warning if Error is too Large 
% if Rsquared<=0.95 
%     [Rsquared]  
% end 

  
%% 
result = [qmean qvariance]; 
end 

 

Figure C.3: MATLAB Code for the PCM with the LCA example – PCM_LCA_Thesis.m 

 

function [hk]=myPCE(n) 

  
% Return the coefficient of n_th order of PCE: x^(n+1-m) 
% polyval(myPCE(n),x) evaluates H_n(x). 
% Usage Example: 
% hh = myPCE(n) 
% x = polyval(hh, xi) 

  
if n==0 
    hk = 1; 

elseif n==1 
    hk = [1 0]; 

else 
    hkm2 = zeros(1,n+1); 
    hkm2(n+1) = 1; 
    hkm1 = zeros(1,n+1); 
    hkm1(n) = 1; 
    for k=2:n 
        hk = zeros(1,n+1); 
        for e=n-k+1:1:n 
            hk(e) = 1*(hkm1(e+1) - (k-1)*hkm2(e)); 
        end 
        hk(n+1) = -1*(k-1)*hkm2(n+1); 
        if k<n 
            hkm2 = hkm1; 
            hkm1 = hk; 
        end 
    end 
end 

 

Figure C.4: MATLAB Code for the Generation of Hermite Polynomials – myPCE.m 
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function result = myPCM_solve(Y,cp,h,m) 

  
for i = 1:length(m) 
    for j = 1:length(m) 
        F(j,i) = polyval(h(m(i,1)+1,:), cp(j,1))*polyval(h(m(i,2)+1,:), 

cp(j,2))*polyval(h(m(i,3)+1,:), cp(j,3)); 
    end 
end 

 
q = pinv(F'*F)*F'*Y; 
result = {q, m, F}; 
end 

 

Figure C.5: MATLAB Code for the Calculation of the PCE Coefficients – myPCM_solve.m 
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