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SUMMARY  

 

The detection of defect is a real challenge in Structural Health Monitoring (SHM). 

This thesis suggests the potential for a Structural Health Monitoring method for 

aircraft panels based on passive ultrasound imaging reconstructed from diffuse fields.  

 This study will, first, present passive-only reconstruction of coherent Lamb waves 

(80-200 kHz) i.e. estimation of the Green’s functions (impulse responses) 

experimentally from full-field measurements obtained with a scanning Laser Doppler 

Velocimeter in an aluminum plate of thickness comparable to aircraft fuselage and 

wing panels. Diffuse fields were generated by probing the structure at random 

locations with a few sources (actuators or laser). In particular, the influence of the 

noise source characteristics (location, number, frequency spectrum, and recording 

duration) on the signal-to-noise ratio of the emerging coherent waveform will be 

investigated. This first part is based on recent theoretical and experimental studies in a 

wide range of applications, which have demonstrated that Green’s functions can be 

extracted from cross-correlation of diffuse fields using only passive sensors.  

Secondly, the knowledge of the Green’s functions between large numbers of 

points can be used to successfully identify and localize damage in complex structural 

components. This provides the wealth of a-priori information necessary to detect and 

localize "secondary" sources, such as damages, when only a limited number of sensors 

are actually mounted on the structure. The approach in this thesis relies on the detailed 

knowledge of the structural response, which is exclusively obtained through 

experimental measurements performed on the actual component under consideration.  
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CHAPTER 1 

INTRODUCTION 

 
Structural health monitoring (SHM) often relies on propagating elastic waves (e.g. 

guided waves) through a structure using embedded sensors in order to assess its structural 

integrity and detect eventual degradations. However most inspected structures are 

geometrically complex (e.g. aircraft wings): rivets, holes and stiffeners cause scattering, and 

subsequent multiple reflections also enhance modal conversion, particularly at high 

frequencies. Indeed the superposition and complex interaction of guided waves can rapidly 

lead to complicated waveforms away from the elastic source (e.g. piezoelectric actuator or 

laser). Hence, the geometric complexity of the inspected structures enhances the 

randomization of the elastic energy within these structures and thus actually favors the 

formation of diffuse fields over long reverberation time. Fully diffuse wave fields are often 

defined as ones that are globally equipartitioned, with all normal modes having 

uncorrelated amplitudes with equal mean squares [Weaver 1982; Weaver 1984; Evans 

and Cawley 1999; Weaver 2004]. Overall, a structure capable of sustaining a diffuse field 

must be lightly damped, allowing many reflections of the initial wave energy.  

 

Diffuse fields in structures have an apparent random nature and are thus generally 

discarded in conventional SHM systems. However, despite their apparent complexity, the 

diffuse field signals generated by distant ultrasonic sources can be used to reconstruct 

remotely the local elastic response between a pair of (embedded) sensors [Weaver and 

Lobkiss 2001; Larose et al. 2007, Sabra et al. 2008] (see Fig. 1). For instance, for 
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practical applications, the distant ultrasonic sources could be located in easily accessible 

areas during routine maintenance operations (e.g. on the outer wing of aircraft structure) 

while the sensors would be embedded in hard to reach area (e.g. in the vicinity of a 

hidden structural “hot-spots” within the wing panels) where structural failure (e.g. fatigue 

cracks) is likely to occur. Indeed several theoretical and experimental studies have 

demonstrated a general relationship between the Green’s function (or impulse response) 

and the cross-correlations of diffuse fields or ambient noise records for various 

environments and frequency ranges such as seismology [Shapiro et al. 2005; Sabra et al. 

2005c], underwater acoustics [Roux et al. 2004; Sabra et al. 2005a; 2005b], civil 

engineering  [Farrar and James 1997; Snieder and Cafak 2006], low-frequency (< 5 kHz) 

flexural properties identification of hydrofoils [Sabra et al. 2007] and high frequency 

ultrasonics (~Mhz) [Weaver and Lobkis, 2001; Larose et al. 2006; Van Wijk 2006; 

Langley 2007]  and guided wave measurements (~kHz) [Larose et al. 2007; Sabra et al. 

2008]. In the context of SHM methodology, we will refer to this coherent processing of 

diffuse field as Diffuse Field Interferometry (DFI) since this technique allows for 

compensation of signal distortion accumulated along the propagation paths up to the 

(embedded) sensors locations. The term "interferometry" generally refers to the study of 

interference phenomena between pairs of signals in order to obtain information from the 

phase differences between them. Indeed, DFI can be thought as an analogy with an 

astronomical technique in which light from a bright "guide star" is used to correct 

atmospheric aberration of weaker objects that are nearby in the angular sense. More 

specifically, DFI unravels the recorded diffuse fields through a correlation process and 

extracts coherent (guided) waves which travel locally between a pair of sensors           
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(see Fig. 1). These coherent waveforms are similar to those obtained from conventional 

pitch-catch measurements between a source and receiver pair (i.e. the Green's function). 

The sources spectra define the frequency bandwidth in which the Green’s function 

response can be retrieved. Thus overall, DFI provides a mean for SHM without a local 

source. Furthermore, DFI offers an inherently safe sensing technique for monitoring 

structural hot-spots in hazardous regions (e.g. fuel transfer holes in the wing risers), since it 

does not require locally an active source, which could cause electrical sparks, but only 

sensors.   

 

 
FIGURE 1:  Principle of the Diffuse Field Interferometry (DFI) technique: A coherent guided wave 
propagating locally between two sensors (and proportional to the actual Green's function) can be extracted 
from the cross-correlation of the recorded diffuse field (e.g. scattered waves) generated by a distant 
ultrasonic source (see Chapter 2, Eq. (4) and Eq. (6)). DFI provides a mean for monitoring remote 
structural hot-spots in an elastic structure, illustrated here by a rivet hole (note the crack running leftward 
from it) on a random structure.  
 

In practice, being able to generate a fully diffuse field in the monitored structure is 

critical in order to extract an accurate estimate of the Green’s function (i.e. with the 

correct phase and amplitude) from the DFI output. Hence, a practical issue in the 

Distant ultrasonic source 

Remote           
structural                   
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Sensor 

0 

t 

t 
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#2 
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Signal-Processing 

Principle of Diffuse Field Interferometry 

Diffuse Field 
t 
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(Green’s function) 

1 2 1 2 
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implementation of DFI resides in selecting the number N of secondary ultrasonic sources 

and their locations in order to generate a fully diffuse field in the structure after 

superposition of their individual contributions at the receiver. Furthermore, in complex 

structures, the measured signals are typically non-stationary signals with an exponentially 

decaying coda which is dominated by multiply scattered waves. On one hand, it has been 

shown that the diffuse-field regime is more likely to be achieved within the late coda 

waves (after multiple reflections have occurred) than during the early ballistic direct 

arrivals [Weaver et al. 1986; Larose et al. 2004; Paul et al. 2005]. On the other hand, coda 

waves have an overall exponential decay, mainly determined by elastic attenuation in 

most cases and thus late coda waves can quickly be contaminated by measurements noise 

or electronic noise (e.g. due to imperfect sensors). Thus selecting the optimal portion of 

duration T of the recorded signals for implementing DFI may not be straightforward and 

indeed depends on the experimental conditions. One metric commonly used to asses the 

performance of DFI is the signal-to-noise ratio (SNR) of the emerging coherent arrivals 

from the cross-correlation waveform obtained from DFI output. This coherent SNR is 

defined as the ratio of the maximum amplitude of the coherent waveform (i.e. obtained 

from the mean of the DFI output) to the standard deviation of temporal residuals of the 

cross-correlation time-function (i.e. determined by the square root of the variance of the 

DFI output). Hence for a given measurement system and secondary sources 

configuration, the variance level sets the measurement precision (e.g. for phase or group 

velocity measurements from the extracted coherent guided waves). Thus, a relevant 

question for practical SHM systems based on DFI may be how to achieve a given 

coherent SNR level in order to ensure accurate defect detection between a pair of passive 



 

 5 

sensors? One contribution to the variance of the DFI output results from the imperfect 

averaging over the N secondary sources or recordings duration T when computing an 

estimate of the expected value of the cross-correlation waveform (also called “pseudo-

noise” contribution by Larose et al. 2008) as compared to the ideal case of using 

recordings of fully diffuse wavefield. Based on previous studies considering only this 

“pseudo-noise” contribution to the variance [Sabra et al. 2005b; Weaver et al. 2005; 

Larose et al. 2008], the coherent SNR is expected to grow theoretically as the square root 

of both the processed diffuse field duration T and the number N of secondary ultrasonic 

sources, all others parameters kept constant. Larose et al. (2008) have presented general 

theoretical predictions and numerical studies clearly emphasizing the role of multiple 

scattering on reducing the level of the “pseudo-noise” due to imperfect ensemble 

averaging (in space or time) of computed cross-correlation waveforms. However the 

influence of experimental sensor noise or electrical noise (i.e. “incoherent measurement 

noise”) on the variance of the obtained coherent waveforms has not been explicitly 

described by the previous literature. Furthermore, few experimental studies [Larose et al. 

2007; Sabra et al. 2008] have been conducted to assess the performance of DFI for SHM 

applications: for instance regarding the precision of the phase and group velocity 

measurements from DFI, in addition to the usual coherent SNR metric.  

 

The main objective of this thesis is to investigate experimentally the emergence of 

coherent lamb waves from the cross-correlations output of the DFI technique in a thin 

plate with complex geometry and boundaries in order to assess the performance of DFI 

for practical SHM application and thus complement previous theoretical studies [Weaver 
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and Lobkis 2004; Weaver et al. 2005; Sabra et al. 2005b; Larose et al. 2008]. To do so, 

the diffuse nature of the vibrating field recorded over the whole plate for long recording 

time was assessed using a scanning laser vibrometer. Furthermore, the coherent SNR as 

well as the accuracy of the phase and group velocities of the extracted coherent guided 

wave arrivals from DFI were measured to quantify: 1) the performance of various 

processing schemes of the recorded diffuse fields, 2) the effect of the spatial 

configuration of the secondary ultrasonic sources and 3) the influence of incoherent 

measurement noise (e.g. sensor noise) on the DFI performance.  

Following this introductory section, the second chapter of the thesis exposes the 

theory linked to the reconstruction of the Green’s function and to the variance prediction 

in the presence of incoherent measurement noise. Chapter 3 presents first the 

experimental setup, followed by the study of the onset of the diffuse field regime for 

waves propagating in a plate with complex geometry (chaotic plate) and finally the 

experimental parametric study of the coherent SNR and accuracy of the phase and group 

velocity measurements to assess the performance of DFI in chaotic plate. Chapter 4 

details the experimental setup and results for the detection of a simulated defect by 

applying the technique seen in Chapter 3. Chapter 5 will present the influence of 

boundary conditions on the measurement from DFI to highlight the robustness of this 

technique. Finally the conclusions drawn from this study are summarized in the last 

chapter of this thesis. 
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CHAPTER 2 

THEORETICAL BACKGROUND 
 
 

2.1 Reconstruction of the estimate of the true Green’s function (GF) 
 

The way to retrieve the GF in passive and conventional also called active testing is 

different. Indeed active testing uses one sensor to broadcast and another one to record 

(Fig. 2.a), passive testing (Fig. 2.b) instead uses only sensors to extract the GF from 

ambient noise or diffuse field recordings.  

 

 FIGURE 2.a. Active sensing principle. 2.b. Passive testing principle. 
 

The main assumption for the theoretical derivations of the DFI technique is that the 

wavefield resulting from the excitations of all remote, or secondary, sources in the 

structure is homogeneous in space and in time which requires the field to be diffused 

Cross-correlation between 1 and 2 

t 
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2

Sensor #2Sensor #1

1 
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2 1 

0 t

Active transmission 
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0 t 
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( - - - ) 

PASSIVE ACTIVE  

  (a)   (b) 
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[Weaver and Lobkis 2004]. Indeed having a diffuse field ensures that all paths existing 

between a pair of sensors are fully illuminated by the various wave components of the 

diffuse field.  

The cross-correlation between the diffuse field recorded at the two sensors (#1 and 

#2), denoted S1(t) and S2(t) respectively, is defined by the following formula. 

∫
∞

∞−
)+ = ttStSC  d()()( 2112 ττ           (1) 

where τ is the time delay. 

On a specific time-window of length rT , the previous formula becomes:  

∫
+

−

+>=<
2

2

2112 )()(
1

)(

r

r

T

Tr

dtSS
T

tC τττ         (2) 

It can be shown that the Fourier Transform (FT) of the cross-correlation is related to 

the frequency-domain GF through the following formula [Roux et al. 2004; Weaver and 

Lobkis 2004]: 

))(
~

)(
~

()(
~

211212 ωωβω ∗−>=< GGiC     (3) 

where β is the noise spectrum, )(
~

12 ωG is the causal impulse response, )(
~

21 ωG  is the anti-

causal impulse response.  

 

Furthermore in the time domain equivalent of Eq. (3), it is the time-derivative of the 

cross-correlations which actually yields the time-domain GF as it is illustrated here: 

))()((
)(

2112
12 tGtGDQ

dt

tCd
−−Ω≈

><
   (4) 

where Q  is set by the sensors' transfer function and the exciting sources spectrum, Ω  is a 
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factor set by the attenuation in the medium, and D is the actual distance between sensors 

#1 and #2. 

 

Diffuse field can be easily generated in aircraft fuselage and wing structures thanks to 

their complex geometry and the random excitation in flight. Hence, being able to 

reconstruct the local GF with the diffuse part of a signal would be of big interest.  

 

2.2 Definitions of Mean and Variance of the DFI estimate 

As stated in the introductory section, DFI is typically implemented by using one or 

several remote sources distributed throughout the structure of interest away from the 

sensors region to generate a diffuse field in the sensor region (see Fig. 1). The cross-

correlation )(12 tC j  between the reverberating signals )(1 tS j  and )(2 tS j  generated by the jth 

remote source and recorded by two sensors #1 and #2 respectively is given by: 

∫ +=
T

jjj dtSS
T

tC
0

2112 )()(
1

)( τττ           (5) 

where T is the duration of the reverberating recordings. The temporal integration in      

Eq. (5) physically corresponds to a temporal averaging operation over the finite duration 

T. The expected value of the DFI estimate )(12 tC  can be constructed from an ensemble 

average of the cross-correlations )(12 tC j obtained from each secondary source j: 

            ∑
=

=
N

j

j tC
N

tC
1

1212 )(
1

)(                                                       (6) 

The ensemble average over all remote sources helps establishing a diffuse regime at 

the receiver’s locations by cumulating multiple realizations of the scattered field in the 
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structure of interest. Simply put, the more complex and reverberant the structure is, the 

fewer sources are needed, in general, to generate in practice a diffuse field throughout the 

structure.  

 

Furthermore, it should be noted that since DFI involves cross-correlating signals 

originating from the same source event at both sensors (i.e. a coherent processing), only 

the square of the amplitude spectrum of the signal excitation matters and not its absolute 

phase (which cancels out in the cross-correlation operation). Hence, various source 

excitations could indeed be used in practice (e.g. pulse, frequency sweeps, coded 

sequences) depending on the sensors types and signal-to-noise ratio constraints. Indeed, 

DFI has even been implemented using random excitations or ambient noise, recorded for 

instance during flight operation due to air-turbulence [Sabra et al. 2007a]. However, 

obtaining reliable sources of ambient noise excitations at higher frequencies (~kHz, 

required for guided-waves sensing) remains challenging.  

 

In practice, the computed mean coherent estimate )(12 tC  (see Eq. (6)) is only an 

approximation of the actual local Green’s function )(12 tG  between sensor #1 and #2 (see 

Eq. (4)). Consequently, )(12 tC  always contains some residual temporal fluctuations 

which can blur the identification of the symmetric arrivals of )(12 tC . High levels of 

residual fluctuations may potentially prevent the accurate extraction of the local Green’s 

function )(12 tG  from DFI. The level of these temporal fluctuations can be estimated from 

the square root of the variance )(12 tV  of the DFI estimate )(12 tC  which is defined as 

[Weaver et al. 2005; Sabra et al. 2005b; Larose et al. 2008]:  
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Finally, as stated in the introduction chapter, the coherent signal-to-noise ratio ( )(tSNR ) 

of the DFI estimate )(12 tC  can be defined by:  

)(

)(
)(

12

12

tV

tC
tSNR =                                                             (8) 

The value of )(tSNR  is a commonly used metric to assess the performance of DFI for 

estimating the local Green’s function )(12 tG  between sensors #1 and #2. Theoretical 

predictions of )(tSNR  are developed in the next section for a simple model of the 

recorded signals in a reverberant elastic structure. 

 

2.3 Theoretical prediction of the coherent SNR 

Theoretical expressions for the mean )(12 tC  and variance )(12 tV  of the DFI estimate 

variance )(12 tV  have been previously derived for various recorded signal models (e.g. 

stationary or non-stationary elastic field) [Weaver et al. 2005; Sabra et al. 2005b; Larose 

et al. 2008]. To the first order, following the notations of Larose et al. (2008), the 

theoretical expression of )(12 tC  reduces to: 

duutIuItGtGtFtC
T

)()())()(()()(
0211212 +⋅−−⊗≈ ∫                                 (9) 

where )(12 tG  is the actual Green’s function between sensors #1 and #2, )(tI  is the  

envelope of the recorded signal averaged over the N sources (i.e. the square root of the 

averaged intensity) , T is the recording duration, )(tF  is a function taking into account 

the combined effect of transducer’s response (in phase and amplitude) and the normalized 
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autocorrelation of the source signal (close to a Dirac function for impulsive sources) and 

the symbol ⊗  denotes a convolution operation. When using identical transducers at 

location #1 and #2 and impulsive remote sources (e.g. laser impulse) to generate the 

elastic wavefields, )(tF  simply acts as band-pass filter on the true Green’s function 

)(12 tG . 

 

The energy equipartition of the diffuse field is a necessary and sufficient condition to 

extract the full Green's function from the coherent output of the DFI [Weaver and Lobkis 

2004; Paul et al. 2005; Langley 2007]. Structural complexity (e.g. due to random 

geometry) typically enhances multiple scattering and hence helps achieving a diffuse 

field regime. Indeed, the existence of a diffuse field ensures that all paths existing 

between #1 and #2 are fully illuminated, thus leading to an accurate estimate of the 

Green’s function from DFI. The two Green's function terms in Eq. (9) are respectively:  

1) the causal impulse response which comes from the portion of the diffuse field 

propagating from sensor #1 to #2 and yielding a non-zero correlation for a positive time-

delay, and 2) the time-reversed (or anti-causal) impulse response which comes from the 

portion of the diffuse field that propagates from #2 to #1 and yields a non-zero 

correlation at a negative time-delay (see Fig. 1). Thus, for a fully diffuse field, the cross-

correlation is a symmetric function of time, as shown in the following illustration. Hence, 

in practical applications, symmetric arrivals of )(12 tC  can be used as reliable estimates of 

actual paths of the local Green’s function )(12 tG .  

 

t
0

t
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Similarly to Eq. (9), the theoretical expression of the variance )(12 tV  is given by 

[Weaver et al. 2005; Sabra et al. 2005b; Larose et al. 2008]:  

 duutIuI
BN

tV
T

)()(
2

1
)( 2

0

2
12 +≈ ∫                                              (10) 

where N is the number of remote sources, T is the recording duration and B is the 

frequency bandwidth of the recorded signals.  

 

In complex structures, the measured signals at the sensors’ locations, generated by an 

impulsive source, are typically non-stationary signals with an exponentially decaying 

coda (see Fig. 1). This coda is dominated by multiply scattered waves over long 

reverberation time. In this case, the temporal evolution of the averaged intensity of the 

decaying elastic wavefield, noted )(2 tI c  (i.e. the signal’s envelope), can be fitted by (see 

Fig. 7): 

Dt
c eItI τ/

0)( −=                                                            (11) 

where τD is the decay time of the elastic field whose value depends on the scattering 

properties and elastic attenuation of the structure [Evans and Cawley 1999; Derode et al. 

1999; Larose et al. 2008].   

Furthermore, in practice, the recorded signals always contained some amount of non-

propagating noise (e.g. experimental sensor noise or electrical noise) which hinders the 

accurate recording of weak multiply scattered signals at longer times. The simplest noise 

model for this incoherent noise contribution is: an additive stationary homogeneous flat-

spectrum band-limited zero-mean random field that is uncorrelated between sensors’ 

locations and uncorrelated with the diffuse elastic wavefield. Since both the reverberating 
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signal and noise would be subjected to the same filtering in any actual DFI application, 

the noise bandwidth is assumed to coincide with the signal bandwidth B, and, for 

simplicity, the band-pass filtering is assumed to be ideal (unity band-pass response with 

complete spectral rejection outside the passband). Under these circumstances, the 

autocorrelation function of the idealized noise field (at sensor #1 or #2 location) is: 

))'(2cos(
)'(

))'(sin(
)',(),( 2 ttf

ttB

ttB
trntrn cijNji −

−
−>=< π

π
πδσ                          (12) 

where 2
Nσ  is the variance of the idealized noise field, ijδ  is the Kronecker delta function 

and 2/)(2 21 ωωπ +=cf  is the center frequency of the signal band [Proakis 1995]. It was 

also assumed that the variance of the noise field 2
Nσ  is identical for all measurements. 

Although this noise-field model is idealized, it allows simplification of the total variance 

)(12 tV  and provides gage performance results for actual DFI implementation. In 

particular, in the expression of the variance )(12 tV  (see Eq. (10)), the total recorded 

intensity )(2 tI  can then be approximated by 22 )( Nc tI σ+ . On the other hand, since the 

incoherent noise-field is assumed to be spatially uncorrelated and with zero mean, it does 

not contribute, to the first order, to the mean coherent estimate )(12 tC . Hence in the 

numerator of )(12 tC  the envelope )(tI  (associated with the amount of coherent energy 

flowing between sensor #1 and #2) can then simply be approximated by )(tI c . 

Consequently, after combining Eq. (9-12) and based on this simple model for noise 

multiply scattered signals, the theoretical prediction of the signal-to-noise ratio )(tSNR  

(see Eq. (8)) of the DFI estimate )(12 tC  is:  
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which can be rewritten explicitly, after using Eq. (11) as: 
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      (14) 

where 22 /)( Nor tISNR σ=  is defined as the signal-to-noise ratio of the recorded diffuse 

waveforms. Figure 3 illustrates the result of the coherent SNR in function of SNRr using 

parameters from the experiment described in Chapter 3: T=6ms, τD=5ms and t=A0 arrival 

time = 0.14777ms. 
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FIGURE 3: Normalized variations of the coherent signal-to-noise ratio (SNR(t)) vs. signal-to-noise ratio of 
the recordings (SNRr) based on theoretical predictions of Eq. (10) for the parameters: T=6ms, τD=5ms and 
t0 =A0 arrival time = 0.14777ms. 
 

Eq. (13-14) can be used to estimate the influence of various parameters such as N 

(number of sources), B (signal frequency bandwidth), T (recording duration), τD (the 

decay time of the diffuse field signals) and rSNR  on the coherent signal-to-noise ratio 
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)(tSNR  of the cross-correlation waveform. Based on Eq. (13-14), it appears that the 

parameters T and N do not have the same influence on the increase of the incoherent SNR 

in the case of noisy recorded waveforms (see Eq. (15)). Indeed, since the incoherent noise 

component is assumed to be spatially uncorrelated (Eq. (12)), it can be noticed that 

)(tSNR  theoretically grows asN , which is the same dependency found by previous 

studies not accounting for the incoherent noise component. This physically occurs since 

adding secondary sources provides additional realizations of the scattered wavefield in 

the complex structure so that the averaged recorded field is a better approximation of the 

ideal diffuse elastic wavefield. On the other hand, the dependence of coherent SNR with 

respect to the parameters T and τD is affected by the presence of incoherent noise, via the 

parameter rSNR  (recorded signal-to-noise ratio), for the case of non-stationary decaying 

elastic wavefield.  

 

For low values of rSNR  ( 1<<rSNR ), Eq. (13-14) can be reduced to:  

           ( )))()(()(

).sinh()..(

2)( 2112

)(

2

2
0

tGtGtF
T

e
TI

BNtSNR

D

tT

Dn
D

−−⊗⋅=

+
−

τ

τσ
τ

             (15) 

This case is to be avoided as the incoherent noise is much too high and will then make the 

reconstruction of the GF difficult. Eq. (13-15) show then that low values of rSNR  for the 

recorded signals limit the achievable value of the coherent SNR, especially if the 

recordings duration T is erroneously selected longer than τD. Thus, in the case of weakly-

scattered signals and in the presence of incoherent noise, it is often necessary to increase 

the number of sources N in order to reduce the variance )(12 tV  (i.e increase the coherent 
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SNR) and improve the convergence of )(12 tC  towards the true Green’s function. 

Finally, in the case of high values of the recorded rSNR  (i.e. weak incoherent noise 

level), the expression of the coherent SNR is, as expected, independent of rSNR  and 

reduces to the formula expressed in previous studies [Weaver et al. 2005; Sabra et al. 

2005b; Larose et al. 2008]: 

for 1>>rSNR  ,       ( )))()(()(

)
.2

sinh(

)sinh(

2)( 2112 tGtGtF
T

T

NBtSNR

D

D
D −−⊗⋅≈

τ

ττ           (16) 

where the classical dependency of NB Dτ2  (for exponentially decaying diffuse signals, 

that is T~τD  ) or BTN2  (for stationary signals -such continuous ambient noise- that is 

τD →∞) is recovered.  

For high level of attenuation (i.e. small decay time τD), the recorded signals can be 

very short, which can lower the values of the coherent SNR (see Eq. (16)). In this case, 

the late portion of coda of the signals, composed of weak multiply scattered waves, 

would not contribute significantly to the total correlation )(12 tC . Hence the DFI process 

would not benefit from the coherence of these weak multiply scattered waves although 

they represent the portion of the recorded signal which is closer to the ideal diffuse field 

regime. Previous experimental studies have proposed to increase the coherent SNR by 

clipping the amplitude of the recorded signal to an arbitrary threshold in order to 

artificially enhance the contribution of these weak arrivals in the recorded coda [Larose et 

al. 2004; Sabra et al. 2008]. This clipping procedure allows maximizing the amount of 

useful information in the recorded signals which contributes to the mean DFI estimate, 
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)(12 tC  obtained from cross-correlation (see Eq. (6)). However if the recorded rSNR  is 

low, amplitude clipping also artificially enhances the relative importance of the 

incoherent noise in the late coda. Indeed, very low clipping level of the recorded signals, 

such as “one-bit clipping”, may actually be detrimental to the DFI performance since it 

artificially amplifies the effect of incoherent noise. The theoretical prediction of Eq. (13) 

indicates that the clipping level should, as expected, be significantly larger than the level 

of incoherent noise (2
Nσ  ) in order to effectively enhance the signal-to-noise ratio )(tSNR  

of the mean DFI estimate )(12 tC . Practical selection of this clipping level will be 

discussed in following experimental chapters. 

 

Overall, the theoretical results in Eq. (13-14) confirmed the role of multiple scattering 

for accelerating the apparition of the diffuse field regime (for high )(tSNR  and large 

values of τD) and hence reducing the variance )(12 tV . These analytical results suggest that 

for any given structures (i.e. a given τD) and noise level (i.e. rSNR ), some optimal 

combinations of the parameters N and T exist to reach a given targeted coherent SNR 

value. However, as discussed by Larose et al. (2008), the simple model of the diffuse 

signals yielding Eq. (9-11) is not valid if long-range correlations occur in the multiply 

scattered signals, for instance due to the existence of closed loops or recurrent scattering  

which may exist in a highly disorganized propagating medium. In this case, the coherent 

SNRsignificantly differs from the ideal prediction of Eq. (13-14), and increasing the 

duration T (with or without using amplitude clipping) or the number of sources N may 

not then be useful to efficiently improve the coherent SNRafter a certain point.  



 

 19 

CHAPTER 3 

BROADBAND PERFORMANCE OF THE DIFFUSE FIELD 
INTERFEROMETRY TECHNIQUE 

 

3.1 Presentation of the experiments 

Experiments were conducted on an aluminum plate of thickness 2mm (Fig. 4.a), 

similar to the one in aircraft fuselage and wing panels to demonstrate the potential of the 

DFI technique for remote monitoring of structural hot-spots. Cutting the plate edges 

irregularly enhances the generation of diffuse field through multiple scattering and 

reflections from the plate’s edges and other discontinuities [Weaver 1986; Evans and 

Cawley 1999]. A practical issue in the implementation of DFI resides in the spatial 

distribution of the secondary ultrasonic sources in order to generate a fully diffuse field in 

the plate. To investigate these diffuse field requirements, a parametric study of the DFI 

technique can be conducted for a given pair of sensors at location r1 and r2 by varying the 

spatial distribution of N uncorrelated elastic sources located at rs,j (j=1..N). This approach 

is not very practical for large values N since it involves either using a large number of 

sources or repeating the experiment several times by moving a single source. Instead, by 

swapping the role of source and receiver based on elastic reciprocity [Aachenbach 1993], 

experimental parametric studies of the DFI were conducted by        1) scanning the plate 

with a Laser Doppler Vibrometer to record the signals generated by two separated 

sources, now located at r1 and r2, over the distributed sensing locations rs,j (j=1..N)  (see 

Fig. 4) and 2) summing the cross-correlations contributions according to Eq. (5-7). This 

reciprocal implementation of the DFI allows simply varying the number and location of 

reciprocal sources.  
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To this end, two piezoelectric (PZT) ceramic actuators disks (Steminc mod. 

SMD15T09F2275S) [Giurgiutiu 2007] were mounted 15.6cm apart on the plate at two 

arbitrary locations (plate dimensions 18cm*16.5cm). Each actuator was driven by a wave 

generator (Agilent mod. 33220A – 20Mhz Functions) sending sinusoidal bursts of 

frequency 50kHz of amplitude 1V and of width 20µs. These piezoelectric actuators 

provide shot-to-shot repeatability and are commonly used for SHM applications. A 

Scanning Laser Doppler Vibrometer (SLDV) [Polytec PI, Model PSV400M2] allowing 

sampling to 1MHz, was used to record the reverberant wavefield over a fixed grid of 624 

points (see Fig. 4.b). The sampling frequency of the recorded signals was 2.5MHz and 

the total recorded signal duration was 12.8ms.  

FIGURE 4.a: 2mm-thick aluminum plate subjected to piezoelectric devices excitations at location #1 first, 
then at location #2. The color scale indicates the measured small variations of the average rms velocity over 
the plate. 4.b: Measurement grid of the SLDV (624 points). The square pixel size is 0.6 cm. The locations 
of the two actuators as well as the grid point equidistant from the sensors (middle point) are also indicated. 
The blue dots represent the area of the central scanning grid used for the diffuse field analysis (see 3.2.2). 
 
 

 Figure 5.a illustrates the waveforms collected by the SLDV following a piezoelectric 

pulse sent by the first actuator at the actuator 1 (Act1) in solid red line and at actuator 2 

(Act2) in dotted blue line reported in function of time. There is a delay between the two 
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signals, which represents the traveling time of a wave from Act1 to Act2. There is also a 

difference of amplitude between the first arrivals due to some damping happening in the 

plate. The waveforms show also a long “coda” caused by the multiple reflections on the 

edges. Their FFT is shown in Fig. 5.b and are composed of three main bandwidths due to 

the circular shape of the piezoelectric: B=[4-90]kHz, B2=[90-186]kHz and           

B3=[186-440]kHz. B concentrates almost all the energy. 

The SLDV is mainly sensitive to the out-of-plane displacements of the plate 

dominated here by the A0 guided wave modes given the thin plate geometry and the use 

of PZT actuators. Furthermore, due to the limited bandwidth and geometry of the PZT 

actuators, the energy spectrum extends in the frequency band B=[4-90]kHz (see Fig. 5.b), 

with most signal energy concentrated around 40-50kHz. Finally, as it is a narrowband 

signal, no significant frequency dispersion was observed for the A0 mode arrival for the 

recorded signals (see Fig .14).  
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FIGURE 5.a: Waveforms collected by the SLDV following a piezoelectric pulse sent by the first actuator 
at Act1 (solid) and at Act2 (dot) reported in function of time. 5.b: FFT of the recorded signals.  
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3.2 Experimental results 

3.2.1 Elimination of erroneous recorded signals 

In order to improve the overall signal-to-noise ratio SNR, the signals with high 

incoherent noise level (NL) were dismissed. The incoherent noise level also called 

electronic noise was estimated from the standard deviation during the last .4ms of the tail 

of each recorded signal after filtering in the main bandwidth B=[4-90]kHz (see Fig. 6.a). 

Usually the electric noise is measured on the pre-trigger signal but in our case we did not 

dispose of pre-trigger recordings. Then, the signals with a noise level ( )(iNL  i=1..624) 

higher than three times the averaged value of all these 624 noise level estimates 

( ))(
1

(*3)(
1
∑

=

<
N

i

iNL
N

iNL , N=624 and i=1..N) were considered as bad signal and thus did 

not participate in the estimation of the cross-correlation. 11 points have been dismissed 

using this method. Moreover the FFT of each signal has to contain the three main lobes 

shown in Fig. 5.b; those that didn’t, were also dismissed: there were 3. So from this point, 

all the calculation will be done on these 610 remaining points and not on the 624 initial 

ones (see Fig. 6.b).  
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FIGURE 6.a: Noise Level )(iNL along the plate before elimination when the Act2 is active. 6.b: Location 

of the erroneous points on the plate (holes). Black diamonds are the locations of Act1 and Act2. 
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3.2.2 Diffuse field analysis  

The spatial and temporal variations of the elastic energy distribution in the plate were 

investigated in order to determine the overall onset of the diffuse field regime using the 

SLDV measurements. The energy equipartition of the diffuse field is a necessary and 

sufficient condition to extract the full Green's function from the coherent output of the 

DFI [Weaver and Lobkis 2004; Paul et al. 2005; Langley 2007]. Formal equipartition 

means that in phase space the available energy is equally distributed in fixed average 

amounts among all the possible “states” (e.g. normal modes or incidence angle at the 

receiver) of the structure [Weaver 1982; 1984]. In the context of this study, energy 

equipartition should occur among the different guided wave modes supported by the 

structure which are primarily the lowest order modes S0 and A0 given the thin plate 

geometry and low frequency excitations [Akolzin and Weaver 2004]. Previous studies 

have shown that a diffuse field can be generated within a few tens wave transits across a 

regular thin plate [Evans and Cawley 1999].  

The decay time τD of the elastic energy for the recorded reverberant wavefield was 

determined by fitting the exponential decaying model (see Eq. (11)) to the smoothed 

envelopes of the measured signals. The fitting procedure was only performed in the 

central portion of the signals, for 3.3ms<t<10.6ms in order to exclude the ballistic and 

singly scattered portion of the signal. The last 2.2ms of the recorded signals were 

excluded from the analysis since they appeared to be dominated by incoherent 

measurement noise (see Fig. 5.a). Figure 7 displays the smoothed envelopes of the signals 

recorded on the middle point between the two actuators (see Fig. 4.b), when either 

actuator #1 or #2 were activated. The slight difference between these two envelopes, even 
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at late times, results from the experimental differences inherent to these simple PZT 

actuators (actuator size, mounting conditions, and transducer response). Figure 7 also 

shows the best fit model, based on Eq. (11), of the recorded signal’s envelope averaged 

over all SLDV sensing locations when either actuator is activated. This fitting procedure 

yields very similar estimates for τD of 4.7ms and 5ms respectively for actuator #1 and #2. 

Based, on the estimated velocity of the A0 mode (around 1000m/s, see section 3.2.4.2), 

the decay time corresponds to an effective travel distance for the scattered waves of 

D≈5m, i.e. over 30 reflections across the dimensions of the plate which is in quantitative 

agreement with previous studies [Evans and Cawley 1999]. 
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FIGURE 7:  Smoothed envelopes of the signals filtered in B and exponential fit of the signal for the two 
cases (act #1 and act #2 active one at a time) at the point #261, middle point between the two actuators. The 
two vertical lines is the interval [3.3 - 10.6] ms on which the fit had been calculated.  
 

As stated in the introduction, a uniform spatial distribution of the elastic energy is a 

consequence of the existence of energy equipartition in the plate. Figure 4.a qualitatively 

shows that the rms velocity of each recorded reverberant wavefield (see Fig. 5.a) across 

the SLDV scanning region is uniform, as a result of the wavefield randomization induced 
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by the irregular geometry of the plate. The spatial fluctuations of the elastic energy over 

the plate were measured in more details in order to further investigate the onset of the 

diffuse field regime. Furthermore, in order to avoid any artefacts due to proximity of the 

plate edges and corners, the spatial variations of the elastic energy were only measured in 

the central section of the SLDV measurement grid (see 204 points blue dots on Fig. 4.b) 

while actuator #1 was exciting the plate and the signals were filtered in the band B=[4-

90]kHz. To do so, the smoothed time-varying envelopes (similar to the ones displayed in 

Fig. 7) of the recorded signals at these 204 central locations were divided into 35 

successive time-intervals of equal duration 0.37ms. For each interval, the amount of 

energy fluctuations across the plate was estimated from the spatial variations of the mean 

value of the signal envelope (i.e. square root of the signal energy) in each interval. Figure 

8 displays the spatial fluctuations of the mean envelope value across the 204 points on the 

1st time interval (0<t<0.37 ms), which includes the ballistic arrival, and the 25th time 

interval (8.8ms<t<9.17ms) which corresponds to late coda arrivals. Note the different 

vertical scaling on each plot to enhance the visualization of the much weaker amplitudes 

of the late arrivals in Fig. 8.b. These results illustrate, as expected, that the averaged mean 

energy is more uniformly distributed over the plate at later time (multiply scattered 

waves), when compared to first interval where the spatial anisotropy of the energy is due 

to energy flux emanating from the first actuator which is mounted on the right hand side 

of the plate.  

Similar results were found when using the other actuator #2. Hence the diffuse field 

regime is more likely to occur during the late coda of the recorded signals which is 

composed of multiply scattered waves. 
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FIGURE 8:  Average energy (mean values) of the envelopes of the filtered signals generated by Act1 over 
the 204 selected points located in the centre of the plate during both intervals: 8.a: T1=[0 – 0.37] ms and 
8.b: T25=[8.8 – 9.1]ms.  
 

 
Figure 9 displays the evolution, for increasing recording time, of the relative 

temporal fluctuations of the mean envelope value computed in each of the 35 successive 

time-intervals of equal duration 0.37ms. The relative temporal energy fluctuations were 

computed from the ratio of the standard deviation to the mean value of the averaged 

energy values obtained at each of the 204 points locations over the whole plate area for 

each time interval (e.g. as displayed in Fig. 8). After the first initial 1.5ms of the 

recordings, the temporal fluctuations of the averaged envelope level remain on the order 

of 10%. The increase in fluctuations at late time (t>12ms) is an artifact due to the high 

variance of the incoherent measurement noise which actually dominates the recorded 

signals in the late coda (see Fig. 5.a).  

 

Overall, the results displayed in Fig. 7-9 indicate that the selected thin plate with 

random geometry appears to rapidly randomize the propagating elastic energy which 

rapidly exhibits characteristic features of a diffuse field regime. Hence this thin plate 

appears as a relevant test structure to assess the performance of the DFI technique 



 

 27 

between location #1 and #2 using the implementation based on spatial reciprocity as 

discussed in the section 3.1. 
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FIGURE 9:  Temporal evolution, for increasing recording time, of the relative spatial fluctuations of the 
elastic energy in the central region of the plate. At each measurement location, the elastic energy was 
estimated from the mean envelope value of the time-windowed recorded wavefield for each of the selected 
35 successive time-intervals (see Fig. 8).  
 
 

Now that we are sure to dispose of a diffuse noise field, the cross-correlation of 

the two signals can be done. Different improvements of the correlation (filtering, 

clipping) have been studied in order to improve the results. The next sections will present 

the results. 

3.2.3 Estimate of the Green’s function  

3.2.3.1 Cross-correlation (CC) of the two signals measured at every 610 points  

The signals were filtered in B=[4-90]kHz, and then cross-correlated at each single 

point ( )(12 tC j ) using the command “xcorr”  in Matlab (see Eq. (1)). The summation of all 

the cross-correlations had been done in a random order to have the most general solution 

(see Eq. (6)). This specific random order had been used each time that the evaluation of 

the cross-correlation was needed in order to allow comparison between the different cases 
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studied in the following subsections.  

To compensate for possible signal clipping at its maximums, each cross-correlation 

was reevaluated on a 10 times more precise scale (Tsnew=Ts/10=39.063ns), using the 

“spline”  function in Matlab. Figure 10 illustrates this final cross-correlation ( )(12 tC ) 

with a distinct first arrival, where the energy is mainly concentrated, and also part of the 

later reflections. 

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Time (ms)

C
12

(t
)

 
FIGURE 10: Cross-correlation ( )(12 tC ) of the two signals recorded by the SLDV when Act1 and Act2 

were active at the 610 points on a scale [-1.5 1.5]ms. 
 

3.2.3.2 Estimate of the true Green’s function (GF) 

 
Section 2.1 explained the theoretical method to access to the Green’s function 

especially through Eq. (4). Thus, the estimate of the GF had been evaluated by taking the 

derivative with respect to time of the cross-correlation (see Fig.10) and the result is 

shown in Fig. 11.  

dt

tdC )(12  is not exactly equal to the GF but proportional to the sum of the reciprocal 

and the anti-reciprocal Green’s function (See Eq. (4)). This result seems satisfactory, as 

the first arrival clearly dominates the later reflections.  
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FIGURE 11: Estimate of the true Green’s function by taking the derivative with respect to time of the 

cross-correlation (
dt

tdC )(12 ) over the 610 points on a time scale of [-1.5  1.5]ms. 

 

Also, this estimate of the GF can be considered as being symmetric in time, required 

criterion by the theory in a fully diffuse field. Table 1 sums up the study of the symmetry 

of 
dt

tdC )(12 . 

TABLE 1:  Comparison of the maximums on the negative and positive time of )(12 tC
dt

d
and on the 

positive side of its symmetric. Their corresponding A0 mode arrival times are also given. 
 

 For negative time For positive time For symmetric CC 
tmax (s) -1.4770e-4 1.4789e -4 1.4781e-4 
Max (A.U.) 0.5257 0.4866 0.5060 

 
 
The positive time of the maximum represents the time that a wave takes to propagate 

from Act1 to Act2, and the negative time is the time taken from Act2 to Act1. Thus the 

symmetry is needed. The table shows that between the corresponding times of the 

maximums on the negative and positive sides of the GF there is 0.2 µs of difference (less 

than one recording step of time Ts) which is very good. And the difference with the time 

of the maximum on the symmetric of the GF (see Fig. 12) is ~0.1 µs. So the symmetry in 
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time of the GF can be admitted, especially when the exact similarity of the two actuators 

have not been proven. Furthermore, the error between the amplitude of the two 

maximums is around 8.0% which is also a good result.  

The symmetric part of the total estimate of the GF, i.e. the mean contribution of the 

amplitude obtained for both positive and negative time-delays is compared to the estimate 

of the GF in the Fig. 12. The two estimates of the GF are mainly in phase along the time 

unless around zero where there is mainly only electrical noise.  
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FIGURE 12: Comparison of )(12 tC
dt

d
 (blue) and its symmetric (red) on the interval [-0.25 0.25]ms.  

 

From this symmetric estimate of the GF the dispersion of the A0 mode arrival can be 

computed using two different methods first a smooth-pseudo Wignerville and a 

scalogram. Both are based on the study: frequency vs. time. Therefore )(12 tC
dt

d
 vs. time 

and its FFT are shown in Fig.13. The FFT confirms the filtering applied to the signals in 

B=[4-90]kHz, and shows that the signals are mainly in the frequency bandwidth 

Bmain=[40-50]kHz. Then Figure 14 illustrates the results of the two methods. As said 

earlier no significant frequency dispersion is observed for the A0 mode arrival for the 

recorded signals filtered in B. Indeed around the arrival time of the A0 mode: t0=0.148 ms 

(see Table1), the signal is concentrated in the frequency bandwidth Bmain, as agreed by the 
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two figures 14.a and b. 
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FIGURE 13.a: Symmetric of the estimate of the Green’s function vs. time. 13.b: Corresponding FFT. 
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FIGURE 14.a: Smooth-pseudo Wignerville of )(12 tC
dt

d
. 14.b: Scalogram of )(12 tC

dt

d
. 
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3.2.4 Performance study of the Diffuse Field Interferometry (DFI) technique  

3.2.4.1 Influence of clipping level of the reverberant waveforms 

To better understand the information contained in the diffuse field portion of the 

signal, a study of its impact on the Green’s function calculation was done. The signals 

filtered in B=[4-90]kHz were further processed using an amplitude clipping procedure to 

assign uniform weights to the multiple reverberations in order to improve the apparent 

contribution of the late coda (tail of the signal) of the diffuse field records [Sabra et al. 

2008; Larose et al. 2004] (see section 2.3). Three different threshold levels were studied: 

no threshold, 5 and 15 times the standard deviation of the ambient noise level (5NL and 

15NL) calculated on the last .4ms of the signals (see subsection 3.2.1). The clipped 

signals in both cases (5NL and 15NL) have the same time length: the first 4.3ms of the 

original waveform, corresponding to the length of the signals clipped at 15NL. The 

processed waveforms are shown in Fig. 15.a, and the clipping effects are easily 

noticeable in term of change of amplitude (5NL dashed line, 15NL dotted line).  

The estimate of the Green’s function, illustrated in Fig. 15.b, was evaluated for each 

case following the steps developed in the previous section after summing over the 

contributions of all 610 points of the scanning grid. The first observation, coming from 

Fig. 15.b, is that the computed estimates of the GF are similar for the three different 

processing schemes, so the estimate of the GF does not depend much on the processing, 

at least for the early A0 arrival. Thus the DFI process is robust with respect to applying 

various clipping level. As expected, Fig. 15.b shows the first arrival distinct from the 

following reflections. A second result is the symmetry of the cross-correlation in function 

of time, satisfying the theoretical prediction in a fully diffuse field. As in the previous 
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section, the symmetry had been proven with a difference between the positive and 

negative times of the A0 mode less than 2 steps of well-defined time (Tsnew) which 

correspond to <0.1 µs. Hence, the first high-amplitude symmetric arrival provides a 

reliable estimate of the A0 mode contribution of the local Green’s function between the 

locations #1 and #2 (see Fig. 4).  
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FIGURE 15.a: Recorded signal at Act1 when Act1 was active filtered in B=[4-90] kHz. The second and 
third ones have been clipped respectively at 5 and 15 times the electronic noise level over the same time-
window of length 4.3ms. 15.b: Normalized estimate of the Green’s function of the 610 points added in a 
specific random order in the three cases (see 3.2.3.1).    
 
 

Furthermore, as stated in Section 2.3, this amplitude clipping procedure is sensitive to 

the amount of incoherent measurement noise present in the recorded waveforms, and can 

potentially degrade the performance of DFI at low recorded rSNR (see Eq. (13)). Thus, 

the influence of clipping threshold of the reverberant waveforms on the DFI performance 

was investigated by measuring the obtained coherent )(tSNR .  
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High coherent SNR of the A0 mode arrivals (t0=148µs) were measured for the three 

waveforms (no clipping, 5NL and 15NL) for N=610 as respective level: 71, 73 and 75 

using Eq. (6-8) (i.e. ~36dB). To evaluate the coherent SNR, both Eq. (6) and (7) were first 

computed over a time-window T0=[-0.234 0.234]ms containing the first arrival only. 

Then in order to minimize the effect of local temporal fluctuations around t0, the local 

variance V12(t) (see Eq. (7)) was approximated by its mean value on the interval t=[70-

223]µs centered on t0. Then Eq. (8) was evaluated at t0 for each contribution of the 

secondary sources N. 

 

The process just described had been used to evaluate the variations of the coherent 

)(tSNR  in function of the clipping level as shown in Fig. 16. The waveforms were 

filtered in B and then clipped at different level from 5NL to 70NL, using two different 

recording durations: T=4.3ms (solid line) or T=6ms (dash line). The chosen lengths of the 

signals both correspond to a certain clipping level: 15NL and 9.84NL respectively. The 

SNR were evaluated from the symmetric of the estimate of the GF for which only the 

contributions of the first 200 measured points of the specific random order cited earlier 

had been taking into account. High clipping level (e.g 70NL) barely modifies the initial 

reverberant waveform while low clipping level (e.g. 5NL) removes all visual appearance 

of the ballistic arrival and exponential decay, as shown qualitatively on Fig. 15.a.  

The experimental curves displayed on Fig. 16 indicate that lower clipping improves 

the coherent SNR up to a maximum obtained around 15NL approximately for both 

selected recording duration T. Beyond this value, any additional clipping increase the 

contribution of incoherent measurement noise on the measurement which lowers the 
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effective recorded rSNR  and thus, in turn, the measured coherent SNR decreases as 

expected from theoretical predictions (see Eq. (9-10)). 
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FIGURE 16: Variations of the coherent SNR of the correlation waveform (linear scale) for increasing 
clipping level applied to the different recording duration of the reverberant waveforms T=4.3ms (solid line) 
or T=6ms (dash line). 
 
 
3.2.4.2 Influence of the number of secondary sources N  

The influence of the number of sources N on the DFI performances is studied in this 

section. The coherent SNR of the A0 arrival is evaluated as explained in the previous 

section for the three cases from Fig. 15 (no clipping, 5NL and 15NL on recording 

duration T=4.3ms). This definition of the SNR provides the contribution of each source 

in the cross-correlation and will help minimizing the number of sources required. In 

agreement with previous studies [Snieder 2004; Sabra et al. 2005b; weaver and Lobkis 

2005; Larose et al. 2008], the SNR evolves as N  regardless of the specific amplitude 

clipping threshold apply to the reverberant waveforms (Fig. 17, linear scale). This study 

showed that the first arrival contained good signal growing as N with the fluctuation in 

this portion growing as N . Furthermore, results of Fig. 17 also demonstrate the 

improvement of coherent SNR when using a moderate clipping level (15NL, dotted line) 

with respect to no clipping at all (plain line), while very low clipping level (5NL, dashed 
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line) improves only slightly the coherent SNR. For example to reach a SNR level of 60 

(i.e. 35dB), the number of sources increases from respectively 384 for a clipping 

threshold of 15NL to 410 for a clipping threshold of 5NL and 428 if no clipping is 

applied to the recorded waveforms. 

The clipping procedure thus allows the diminution of the number of secondary 

sources by almost 50. However the lower the SNR level is, the less difference there is 

between the three cases.  
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FIGURE 17: SNR in B using the definition given by Eq. (6-8) for the three cases of thresholding from the 

previous part vs. N . The theoretical result is given in green, and confirms the growth in N . 
 

In SHM, the precision of the phase and group velocity measurements obtained from 

DFI for a given set of N secondary sources is another important criterion to estimate the 

performance and robustness of the DFI technique. It is thus studied in this subsection, in 

addition to the usual coherent SNR metric. For a given value of N, the phase (resp. group) 

velocity was computed respectively based on the arrival times of the first maximum of 

the symmetric of the derivative with respect to time of the cross-correlation waveform 

( 0t =0.148ms for N=610) (resp. envelope (envt0 =0.153ms for N=610)) and given the 

knowledge of the separation distance D=15.6cm between the two actuators. The 
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asymptotic estimate of the phase (resp. group) velocity obtained for the largest number 

N=610 points, and hence best reconstructed waveforms (see Fig. 15.b), was estimated as 

Cp=1057m/s-1 (resp. Cg=1020m/s-1), which is in good agreement with predicted valued 

for the A0 mode (wavelength λ≈1cm) in aluminum samples [Achenbach, 1993]. The 

relative variation of these arrival times 0t , with respect to the asymptotic values used to 

compute Cp and Cg, computed for each contribution of the secondary sources N are shown 

respectively in Fig. 18.a and .b for the three previous cases (5NL, 15NL clipping or no 

clipping).  
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FIGURE 18.a: Evolution of the time of the maximums of the symmetric of the Green’s function for the 
three cases in B in function of the number of sources (log10 (N)). 18.b: Evolution of the time of the 
maximums of the symmetric of the envelope of the Green’s function for the three cases in function of the 
number of sources (log10(N)). For each curve, the final time had been centered on zero. 

 

The decision to perform the study on the symmetric function had been made in order 
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to have the most general and accurate result. A logarithmic scale was used for the 

horizontal axis in order to enhance the visualization of the variations for small values of 

the parameter N. Note that the vertical scale is the same for both and thus the variations 

are more than 10 times higher in the group velocity measurements than in the phase ones. 

This is even truer that to minimize the variation between consecutive times the “smooth” 

function in Matlab had been used in the group velocity measurement shown in Fig. 18.b.  

As a consequence, the error in measured arrival times becomes very small (<0.5 µs 

(13*Tsnew)) after N=25 (resp. N=205) for phase (group) velocity measurements. Hence, at 

this point, the obtained cross-correlation waveforms from DFI should yield reliable 

estimates of the phase and group velocity of the A0 mode on this thin plate.  

 

3.2.4.3 Influence of the location of the secondary sources 

The effects of the spatial configuration and the number of the secondary ultrasonic 

sources on the DFI performance were then assessed in a practical SHM scenario where 

only 25 secondary sources would be used to remotely extract the coherent A0 mode 

between locations #1 and #2 (indicated by diamond shapes on Fig. 19). The choice of 25 

sources is made for practical reasons, none experiment will indeed allow having more 

than 30 sources.  

To do so, 25 measurement points of the SLDV, acting as secondary sources in this 

reciprocal DFI implementation, were selected on the plate along three different patterns: 

surrounding the whole plate (Fig. 19.a), randomly located  (Fig. 19.b) or aligned along 

the three top lines of the measurement grid (Fig. 19.c). 
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FIGURE 19: Geometric configurations of the selected N=25 measurement points (circle), acting as 
secondary sources for the reciprocal DFI implementation, 19.a: all around the plate, 19.b: randomly 
distributed, 19.c: aligned along one side of the plate. The actuators’ locations (see Fig. 4.a), acting as 
sensors’ locations for the reciprocal DFI implementation, are indicated by diamond shapes 
 
 

Using waveforms filtered in B=[4-90] kHz and clipped at 5NL, for each configuration 

the estimate of the GF was reconstructed and normalized. Figure 20 shows the 

superposition of these three previous estimated GF obtained from DFI.  
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FIGURE 20: Superimpose normalized estimate of the Green’s function obtained from DFI for the three 
configurations of secondary sources displayed in Fig. 19. 

 

Visual evaluation once again reveals that the cross-correlation waveforms using these 

three different sources configurations are highly similar, especially during the first 

symmetric A0 arrival (100µs<t<200µs). Indeed, when the measured A0 arrival times for 

the three configuration are compared with the asymptotic value obtained using the whole 

610pts measurement point (see Fig. 15.b and Fig. 18): ptst 610
0 = 0.14777 ms, the errors 
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made respectively in case a, b and c are: 0.08%, 0.1%, 0.18%. Even if, using sensors 

either all around or randomly on the plate leads to the smallest error in the estimation of 

0t , the error made by putting them in the same area is also small. This result highlights 

the fact that, once the recorded (or processed) reverberant field of the structure 

approximates well a diffuse wavefield, the location of a small number of sensors on the 

plate does not drastically alter the performance of the DFI technique, as expected from 

previous numerical simulations [Larose et al. 2008]. And furthermore, it demonstrates 

that practical implementations of the DFI technique for SHM applications are feasible 

even using a small number of secondary sources. 

 

In addition to these performance criteria, it will also be shown in the following 

subsection that relative measurements of the SNR for the direct waves vs. late arrivals of 

the cross-correlation waveforms obtained from DFI can be used to determine if those late 

arrivals are actually dominated by weak coherent coda arrivals (thus potentially usefully 

for SHM purposes) or by residual fluctuations instead (thus indicating that more spatial 

or temporal averaging is required). Therefore, a new definition of the SNR will be 

developed. 

 

3.2.4.4 Emergence of coherent coda arrivals from DFI 

Based on the previous discussion, a clear coherent A0 arrival emerges from cross-

correlation waveform when using a sufficient number of sources N (see Fig. 15.b, and 

Fig. 20). But, the computed cross-correlation waveform contains also multiple later 

arrivals for any given value of N (see Fig. 21.a). Hence a practical question for SHM 
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applications is to determine beyond which point these late arrivals correspond to actual 

coherent coda arrivals of Green’s function vs. residual temporal fluctuations due to the 

imperfect convergence of the DFI process.  

One simple way to distinguish between these two situations is to measure the 

variations of relative amplitude changes );( lTNR  of  the coherent A0 arrival amplitude 

with respect to the standard deviation of these late arrivals averaged over a given time 

interval lT  for increasing number of sources N, defined as:  

                                             
));((

))((
);(

12

12

l

t

l

TttC
dt

d
std

tC
dt

d
Max

TNR
∈

=                                   Eq. (17) 

where the cross-correlation waveform )(12 tC  computed using Eq. (6) for N randomly 

selected secondary sources. No amplitude clipping was applied to the recorded 

waveforms. This second definition is similar to the equation giving the SNR (Eq. 8), but 

instead of dividing the square root of the standard deviation of these late arrivals, it 

divides it directly. And since DFI is a coherent process, the amplitude of any coherent 

arrival (e.g. related to an actual arrival of the local Green’s function) would grow linearly 

with N, while the amplitude of residual temporal fluctuations (e.g. due to incoherent 

noise) only grows as N  [Weaver and Lobkis 2005; Sabra et al. 2005b; Larose et al. 

2008]. Hence the ratio );( lTNR  theoretically grows as N as long as the arrivals in the 

window lT  are dominated by residual fluctuations, but then plateaus at a fixed value 

when coherent arrivals actually emerge in the selected time-window lT . Figure 21.b 

displays the normalized variations of );( lTNR  vs. N  for three successive time-
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windows lT  selected from the reference cross-correlation waveforms (see Fig 21.a). The 

windows had been chosen one close (T1=[0.58ms-1.8ms]), one in the middle (T2=[3.2-

4.3]ms) and one far (T3=[10.2ms-11.4ms]) from the first A0 mode arrival to have thus an 

overview of the waveform content in its whole. The normalized variations of the coherent 

)(tSNR  for increasing N in the case of no clipping (same as Fig. 17) are also indicated as 

a reference.  
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FIGURE  21.a: Location of the three selected time-windows: T1=[0.58-1.8]ms, T2=[3.2-4.3]ms, T3=[10.2-
11.4]ms, on the filtered d/dt(C12(t)) obtained from N=610 secondary sources. 21.b: Normalized variations 

of the ratio );( lTNR  (see Eq. (17)) for increasing values of N for the three time-windows shown in 

21.a. The normalized variations of the coherent SNR are also indicated for comparison (blue solid line). 
 

As expected the ratio );( lTNR  starts to plateau more rapidly for increasing N when 

the selected time-window lT  contains early coherent arrivals (dashed line, T1) compared 

to a later time-window (dot-dashed line, T2 or T3). As expected, the emergence of the late 
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coherent arrivals is thus slower than for early coherent arrivals. For instance, the ratio 

);( lTNR  reaches 95% of the asymptotic plateau value after N=4 for the window 

T1=[0.58ms-1.8ms], after N=28 for the window T2=[3.2ms-4.3ms], and after N=73 for the 

window T3=[10.2ms-11.4ms]. However, in practice, for sufficient number of sources N, 

even the late coda arrivals appear to be genuine coherent arrivals which could potentially 

be used for structural monitoring purposes (e.g. for passive coda wave interferometry). 

 

The following part uses these results to go further in the analysis of the contribution 

of the diffuse field part of the signal in the improvement of the SNR. 

 

3.2.4.5 Influence of the duration of the reverberant signal  

After improving the SNR by playing on the clipping level, on the number and 

locations of the secondary sources N, it is known that using a longer duration T of the 

recorded waveforms allows the benefit from the multiple scattering effects (see Eq. (13-

15)), and thus it is important to know the relation between the coherent SNR and the 

length of the signal.   

The coherent )(tSNR  had then been experimentally measured for signals of 

increasing recording duration lT  varying on the same time interval than the one set by 

clipping at 15NL: T=[0.43-4.3]ms so the maximum recording duration is Tmax = 3.87ms; 

and this, for the three different cases from the previous studies: no clipping, 5NL, and 

15NL. The variation of the recording duration lT  is done almost continuously from 0 to 

Tmax = 3.87ms with an increment of 40 µs. Figure 22 shows the recorded signal at Act2 

when Act2 was active, filtered in B and clipped at 15NL on the full length of the time-
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window T (solid line), and on a smaller time-window 1T =[0.43-1.8]ms (dashed line), 

which is only one example among the different time-windows measured.  
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FIGURE 22: Recorded signal at Act2 when Act2 was active filtered in B=[4-90]kHz and clipped at 15NL. 
The time-window (red part) is one example among the time-windows on which the estimate of the GF had 
been evaluated. These time-windows start from 0.43ms to 4.3ms (blue part). 
 

The cross-correlation and thus the coherent )(tSNR  were then evaluated for these 

three cases taking the contribution of different numbers of secondary sources N=25 (Fig. 

23.a), N=100 (Fig. 23.b) and N=200 (Fig. 23.c). The coherent )(tSNR  measured at the A0 

arrival time t=0.148ms are displayed in Fig. 23 in function of the square-root normalized 

length of the signal: max/TTl .  

These measured variations of SNR(t) appear to be very similar regardless of  which 

pre-processing types (no clipping, 5NL or 15NL) or specific number of secondary 

sources N used (see Fig. 23 for N=25, N=100 or N=200). Moreover, for each number of 

secondary sources, the SNRs of the signals clipped at 15NL are, as expected, always the 

highest of the three experimental curves (see Fig. 16). And the differences in terms of 

SNR level reached by each curve increase with N, which is due to the contribution of each 

extra sources taking into account: when N=25 (see Fig. 23.a), the SNR obtained with no 
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clipping and 5NL reached the same level: 17, and when N=200 (see Fig. 23.c), SNR with 

no clipping reaches 39 and SNR after clipping at 5NL reaches 41.  
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FIGURE  23: Evolution of the coherent SNR vs. the normalized recording duration max/TT  for       
Tmax=3.87ms using three clipping levels of the recordings: no clipping (solid line), 5NL (dashed line), and 
15NL (dotted line) with 23.a: N=25, 23.b: N=100, 23.c: N=200. 

 

In order to compare the experimental result obtained in Fig. 23, the theoretical 

prediction had been computed from Eq. (13). As the waveforms are best reconstructed 

with increasing numbers of secondary sources, the variables in Eq. (13) have been 

estimated from the experimental results using N=200 points.  
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In the selected time-window T=[0.43ms-4.3ms], the exponential decay of the 

reverberant field was estimated as τD =3.8ms (see the procedure described in Section 

3.2.2), the average signal-to-noise ratio of the recorded waveforms was measured as 

1616>>=rSNR , and finally t corresponds to the arrival time of the A0 mode 

t0=0.148ms. Due to the high-values of the recorded rSNR , the influence of the incoherent 

measurement noise can be neglected in the selected time-window [0.43ms-4.3ms], and 

Eq. (13) tends toward Eq. (14). Thus Eq. (14) was used to predict the theoretical 

variations of  SNR(t) (dot-dashed line) which are compared in Fig. 24 to the variations of 

the coherent experimental SNR of the signals clipped at 15NL with N=200 points (dotted 

line).  
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FIGURE 24: Comparison between the experimental variations of the coherent SNR of the cross-correlation 
waveforms obtained using a clipping at 15NL and N=200 (same as Fig. 23.c dotted line) and the theoretical 
predictions for 0<T<Tmax obtained from Eq. (14) by using: Tmax=3.87ms, t=t0=0.148ms, τD =3.7ms, 
SNRr=616.  
 

 
The theoretical curve appears in good agreement with the measured one. Both 

experimental and measured variations of the coherent SNR(t) tend towards the expected 

plateau when DT τ>  (i.e. when all the energetic part of the recorded waveforms had been 

processed). This limit shows that the SNR does not depend on the length of the signal 

beyond a certain recording duration, as the energy in the late arrivals is not enough to 
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have a significant contribution in the evaluation of the SNR. The recording of the signal 

can thus be done on shorter period of time than 12.8ms, as it has been done here. 

 

Different time-windows of same length 

Now that we know that increasing the recording duration of the signal will not 

improve significantly the coherent SNR, a further study had been performed to evaluate 

the energy content of different parts of the signal by studying the coherent SNR on 

different time-windows of same length; and thus to assess the effect of incoherent 

measurement noise on the performance of the DFI. Each reverberant signals collected 

over the whole measurement grid were first filtered in B, and then clipped at 5NL, then 

they were divided into four arbitrary time-windows of same length: T1=[0 - 4.6133]ms, 

T2=[1.3672 - 5.9258] ms, T3=[2.7344 - 7.2930] ms , T4=[4.1016 - 8.6602]ms as shown in 

Fig. 25.a. The four estimates of the GF using all processed reverberant signals (N=610) 

for each of the four selected time-windows, are presented in Fig. 25.b. As seen earlier, no 

big difference can be observed between each coherent A0 arrival. A study of the arrival 

time 0t  was also conducted, to confirm this observation. On the first three windows, 0t  is 

the same (0t = 0.14785ms) which also corresponds to the final time found by taking the 

entire signal filtered in B and clipped at 5NL without any length constraints. On T4, 
)4(

0t  

has a difference of 0.2 µs compared to the previous one, which remains a really good 

result. This highlights the robustness of the DFI process for obtaining deterministic 

Green’s function estimate and illustrates that both early (e.g. window T1) and late coda 

(e.g. window T4) portions of the diffuse recordings -of similar duration- contain a 

comparable amount of coherent propagating waves, or “coherent information”, between 
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the actuators locations #1 and #2 for this randomly cut thin plate. However, the effective 

recorded rSNR  decreases over the four selected time-windows since the amplitude of the 

reverberant wavefield decays exponentially with time (see subsection 3.2.2) while the 

amplitude of the incoherent measurement noise likely remains constant throughout the 

recording.  
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FIGURE 25.a: Typical recorded waveform filtered in B along with the four selected time-windows:  
T1=[0-4.6133]ms, T2=[1.3672- 5.9258] ms, T3=[2.7344- 7.2930] ms , T4=[4.1016-8.6602]ms of the clipped 
waveform. 25.b: Coherent A0 arrivals obtained from DFI for T1 to T4 (N=610). 25.c: Variations of the 

coherent SNR(t0) vs. N obtained from DFI using the time-windows T1-T4.  
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Consequently, in agreement with the theoretical predictions from Eq. (14), the 

achieved coherent )(tSNR  for a given number of secondary sources N is lower when 

using late coda waves (e.g. window T4) when compared to early coda waves results (e.g. 

window T1) (see Fig 25.c). For instance in order to obtain an arbitrary value of 60 for the 

coherent SNR(t0) of the A0 arrival, the number of secondary sources is increased from 

respectively N=408 in the window T1, N=445 in the window T2, to N=488 in the window 

T3, and finally to N=535 in the window T4. The variations of the coherent )( 0tSNR  

evaluated on full length clipped at 5NL signals (T5NL=[0-9.1]ms) is also shown for 

comparison (thick solid line) and is always higher for the same value of N than the other 

computed SNR, as expected from Fig. 23. 

 

To conclude, by cross-correlating the diffuse part of the signal, an estimate of the 

local field Green’s function can still be extracted using a large number of sources (here 

130 sources more than with the early arrivals evaluation). The high number of sources 

required for this computation can be also explained by the fact that the diffuse field is not 

enough rich in modes.  

 

3.2.4.6 Parametric variations of the coherent SNR vs. N and T 

The last section of this chapter summarizes the previous studies in Fig. 26. Figure 26 

displays contour plots of the variations in coherent SNR of the A0 arrival for increasing 

values of T and N using three different pre-processing of the filtered reverberant 

waveforms: 5NL or 15NL clipping level or no clipping at all (similarly to the procedure 

used to generate Fig. 15 and Fig. 22). Based on the results from Fig. 19-20 showing that 



 

 50 

the specific distribution of secondary sources does not influence significantly the 

coherent symmetric A0 arrival computed from DFI, only one random realization of the 

spatial distribution of the secondary sources was used for any given value N (up to N=200 

here). These parametric variations coherent SNR displayed on Fig. 26 are a summary of 

the combined results displayed in Fig. 17 and Fig. 23. Each contour represents a constant 

SNR level at the indicated value from 8 (i.e. 18dB) to 38 (i.e. 32 dB). 

As expected, Fig. 26 shows that obtaining a given value of coherent SNR from DFI 

can be achieved by increasing either the recording duration T or number of sources N. 

Furthermore, following the findings from Fig 15.b and Fig. 16, Fig. 26 also illustrates the 

possibility of using amplitude clipping of the recorded data to further reduce the required 

value of T or N to achieve a given coherent SNR value, as seen by comparing the SNR 

contours on Fig. 26.a and Fig. 26.c. The asymmetric shape of each SNR contour curves 

with respect to the variables T and N also shows that an increase in recording duration T 

can not always compensate for a lack of secondary sources when using noisy multiply 

scattered signals. Indeed the near vertical portion of these parametric curves for small 

value of N shows that the coherent SNR(t) tend towards a plateau when DT τ>  due to the 

exponential decay of the measured reverberant waveforms and the influence of the 

incoherent measurement noise for low recorded rSNR  (see Eq. (13) and Fig. 21).    

Figure 26 shows that a given value of coherent SNR can be achieved optimally in the 

“elbow” region of each curve by minimizing both the necessary recording duration T and 

number of sources N. However, the lower the desired SNR level is, the fewer 

combinations of the parameters T and N exist, as the “elbow” region is sharper than for 

higher SNR levels. Indeed, for high SNR level, the contours begin to have a third linear 
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region instead of an “elbow” region, and these regions provide more possibilities to 

optimize the combination. 
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FIGURE 26: Parametric variations of the coherent SNR (linear scale) as a function of the recording 
duration T and number of secondary sources N (selected randomly across the measurement plate). Prior to 
cross-correlations, the recorded signals were first filtered in B and then three different clipping levels were 
applied: 26.a. no clipping, 26.b. 5NL, 26.c. 15NL. 
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For instance, inspection of Fig. 26 shows that a coherent SNR level of 17 could be 

optimally achieved with the respective combinations (1.49ms, 47), (1.53ms, 49) and 

(1.37ms, 43) while for 35 the choice is wider, possible combinations are (3.25ms, 165), 

(2.82ms, 163) and (2.78ms, 152). The choice of the best combinations is not easy. It 

needs to be specified here that none of these contours have been smoothed which 

complicates the lecture on it. We can see that for a SNR level of 17, using N=25 points or 

N=200 points does not make a big difference (recording duration diminished by only 

0.12ms and only 4 sources in less), however there is a clear improvement for a SNR level 

of 35: 0.5ms and 13 points win by using N=200 points instead of N=25 points. These 

figures are also useful to choose the right amount of sensors according to a specific 

recording duration. 

 

3.3 Conclusion 

The estimation of the Green’s function of a mechanical structure using Diffuse Field 

Interferometry provides the possibility of remote SHM with none or a limited number of 

ultrasonic sources. Hence DFI provides a mean for local estimation of the monitored 

structure, which is easy to interpret and free from aberrations introduced by the source, from 

the effects of multiple reflections and distortions caused by structural and material 

complexity often encountered in typical aircraft components.  

To study the potential of the DFI for passive and real-time Structural Health Monitoring 

of remote structural hot-spots in complex aircraft structures, Chapter 4 presents the results of 

the detection of a simulated defect using the DFI technique. 
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CHAPTER 4  

DEFECT DETECTION EXPERIMENTS 
 

4.1 Presentation of the two experiments 

Experiments were conducted with the same aluminum plate as the first experiment 

described in Chapter 3 of thickness 2mm. In addition of cutting the plate edges irregularly, 

slots were cut on one edge of the plate to randomize the field faster (see Fig. 27) [Evans 

and Cawley 1999; Weaver 1986]. Instead of using piezoelectric actuators, the plate was 

excited by an impulsive ND-YAG laser (Continuum - Surelite). The use of the laser was 

motivated by several reasons. First, the laser has a wider frequency range than the 

actuators actually have. Secondly, the same excitation will be exactly reproduced at 

different locations. Finally, the laser allows us to easily excite the plate at more than two 

locations without moving the plate and grid, for practical SHM implementations of the 

DFI technique, it is likely that approximately only twenty sources would be used (as 

opposed to several hundred used in Chapter 3). The recordings of the out-of-plane 

displacements were here again done with the same Scanning Laser Doppler Vibrometer 

(SLDV, Polytech).  

Two different experiments have been conducted on the plate. The first one was 

similar to the one described in Chapter 3, the ND-YAG laser was exciting the plate at two 

different locations #1 and #2, 10cm apart, and the SLDV was recording along a pre-

defined grid of 339 points covering almost the entire plate (see Fig. 27). This experiment 

was done to confirm the similarities between actuator and laser excitements. The laser 

and the SLDV were synchronized through the data acquisition system of the SLDV. A 

wave generator (Agilent mod. 33220A – 20Mhz Functions) sending square pulses of 
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10µs long at 2Hz was exciting the laser. 

 
FIGURE 27: Location of the grid of 339 pts on the plate and the two laser impacts 10cm apart. The square 
pixel size is 0.83 cm. 
  
 

The second experiment had for goal the detection of a defect and was thus done 

twice: once without defect (Experiment 1, with an intact plate) and once with one 

(Experiment 2, with a “damaged” plate). The setup is presented in Fig. 28. The two 

experiments were following the exact same scheme that consisted of exciting the plate at 

25 random locations (approximately the same for both) using the ND-YAG laser (see  

Fig. 29.a), and the SLDV was recording the responses to each single excitation along a 

grid of 40 points split into two lines (see Fig. 29.b). The plate was fixed on an air table to 

avoid any vibration coming from the floor, and the laser was on a separated table to be 

able to move it easily without moving the plate. For practical reason, the lens was 

attached to the top of the laser using tape and a wooden support, thus avoiding the need to 

move the lens in order to focus the light of the laser each time the laser was moved. The 

SLDV was 1.5m away from the measured plate. Moreover, the defect, a damping screw, 

had been carefully stuck on the center of the scanning grid, so as not to move the plate 

between the two experiments. Indeed to be able to compare the recorded signals, neither 

Impact 
Laser 2 

Impact 
Laser 1 

10 cm 
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the plate nor the grid should move. The diameter of the contact zone (screw/plate) is 

1.5cm.  

 
FIGURE 28: Setup of the defect detection experiment. 

 

 
 

 
FIGURE 29.a: 2mm-thick aluminum plate subjected to laser excitations at the 25 different locations. The 
SLDV scanning grid is indicated by red dots. The defect, a damping screw, has been stuck on the center of 
the scanning grid. 29.b: Pattern of the scanning grid of 40 points read by the SLDV (red line on Fig. 29.a). 
The vertical spacing is 0.46cm and the horizontal spacing is 1cm. 
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4.2 Experimental results 

4.2.1 First experiment: Performance study  

In this experimental setup, the signals had been recorded on a longer time-window, 

twice as long as the time-window of the experiment described in Chapter 3 (25.6ms 

compare to 12.8ms) at 339 points. The same method as earlier had been used to dismiss 

the bad points (see 3.2.1), but this time as we disposed of pre-trigger signal (see Fig. 

30.a), by comparing the pre-trigger noise level of each signal to the mean one over the 

339 points. After this, 317 points were remaining. 

0 5 10 15 20 25
-0.04
-0.02

0
0.02
0.04
0.06
0.08

time (ms)

R
ec

or
de

d 
si

gn
al

fr
om

 im
pa

ct
 #

1 
(A

.U
.)

 

 

0  50 100 150 200 250 300 350 400
0

10

20

30

Frequency (kHz)

|F
F

T
|

DATA1 at impact #1
DATA2 at impact #1

(a)(a)

(b)

 
FIGURE 30.a: Waveforms collected by the SLDV following a laser impulse at impact #1 when hitting at 
impact #1 in black and at impact #2 in blue reported in function of time (see Fig. 27). 30.b: FFT of the 
recorded signals: Blaser=[5-280] kHz. The energy is uniform along Blaser.  

 

Figure 30.a shows the waveforms collected by the SLDV following a laser impulse at 

impact #1 when hitting at impact #1 in black and at impact #2 in blue reported in function 

of time (see Fig. 27). There is a delay between the two signals, which represents the 

traveling time of a wave from impact #1 to impact #2. The waveform shows also a long 
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“coda” caused by the multiple reflections on the edges. Moreover, Fig. 30.b illustrates the 

main interest of this experiment which is the wider frequency content of the signal. 

Indeed, in this case, the FFT is no more composed of several lobes where all the energy 

was mainly in one (B=[4-90]kHz) but only of one: Blaser=[5-280]kHz of high energy all 

along the window Blaser.  

 

Furthermore, to have a comparison with the first experiment described earlier and 

especially with the study 3.2.3.1, the signals have been filtered in B=[50-90]kHz, and 

then clipped at different noise level: no clipping, 5NL and 15NL and all have been cut on 

the same time-window of length 7.6ms which corresponds like earlier to the length of the 

signals after clipping at 15NL. 
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FIGURE 31.a: Recorded signal at impact #1 when impact #1 was active filtered in B=[4-90] kHz. The 
second and third ones had been clipped respectively at 5 and 15 times the electronic noise level over the 
same time-window of length 7.6ms. 31.b: Normalized estimate of the Green’s function of the 317 points 
added in a random order in the three cases.    
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Figure 31.a illustrates the three signals, and Fig. 31.b, the normalized estimate of the 

true GF corresponding to each case. As earlier, the arrival of the A0 mode is similar in the 

three cases, and distinguished itself from the other arrivals. Also the three estimated GF 

are symmetric. Positive and negative measured A0 arrival time for the three cases are all 

within 0.2µs of the asymptotic value obtained using the symmetric of the GF of the non 

clipped signal on all its length 0t =98.52µs. This value will help determining the phase 

velocity (see Fig. 33). 

 

The SNR in function of N is given in Fig. 32. The variation of the SNR is the 

same as earlier growing as N , regardless of the specific amplitude clipping threshold 

apply to the reverberant waveforms. As the contribution of only 317 points compare to 

610 points in the first experiment had been taken into account, the SNR level reached here 

is lower and follows a smaller slope. Furthermore, results of Fig. 32 also demonstrate the 

slight improvement of coherent SNR when using a moderate clipping level (15NL, dotted 

line) with respect to no clipping at all (plain line). However, very low clipping level (5NL, 

dashed line) contrary to earlier does not improve the coherent SNR and stay approximately 

of the same level compare to the case of no clipping. This may occurs since this low 

clipping level artificially enhances the relative importance of the measurement noise 

component, and thus effectively lowers the recorded signal-to-noise ratio especially in the 

late coda. For instance in order to obtain an arbitrary value for the coherent SNR of 40 (i.e. 

32dB), the number of secondary sources is increased from respectively 211 for a clipping 

threshold of 15NL to 217 when no clipping is applied and 220 for a clipping threshold of 

5NL. 
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FIGURE 32: SNR in Blaser using the definition given by Eq. (2-4) for the three cases of thresholding from 

the previous figure in function of N . The theoretical result is given in green, and confirms the growth in 

N . 

 
 

As previously, the precision of the phase and group velocity measurements obtained 

from DFI for a given set of N=317 points secondary sources is studied, in addition to the 

usual coherent SNR metric (see 3.2.4.2). The phase (resp. group) velocity was estimated 

as Cp=1015m/s-1 (resp. Cg=1014m/s-1), using the value of the arrival time 0t =98.52 µs 

(resp. envt0 =98.7 µs) and knowing the separation distance D=10 cm between the two 

impact locations. These results are in good agreement with the ones estimated in the 

previous part Cp=1057m/s-1 (resp. Cg=1020m/s-1) and thus with the predicted valued for 

the A0 mode (wavelength λ≈1cm) in aluminum samples [Achenbach, 1993]. Figure 33 

displays the variations of arrival time of the maximums of the symmetric cross-

correlation waveform and its envelope, in the same three cases (5NL, 15NL clipping or 

no clipping all on a 7.6ms time-window) as in Fig. 31. A logarithmic scale was used for 

the horizontal axis in order to enhance the visualization of the variations for small values 
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of the parameter N.  

1 10 100

9.78

9.8

9.82

9.84

9.86

9.88

x 10
-5

Number of points

M
ax

im
um

 o
n 

sy
m

m
et

ric
 o

f 
d/

dt
(C

12
(t

))
 

 

 

no clipping

15NL
5NL

1 10 100

9

9.2

9.4

9.6

9.8

10

x 10
-5

Number of points

M
ax

im
um

 o
n 

sy
m

m
et

ric
 o

f 
th

e 
hi

lb
er

t(
d/

dt
(C

12
(t

))
) 

 

 

no clipping

15NL
5NL

 
FIGURE 33.a: Evolution of the time of the maximums of the symmetric of the Green’s function for the 
three cases in B in function of the number of sources (log10 (N)). 33.b: Evolution of the time of the 
maximums of the symmetric the envelope of the Green’s function for the three cases in function of the 
number of sources (log10(N)).  
 

Contrary to Fig. 18, the variations of time given here are not centered on 0 but on the 

true values. We can thus see that the three curves in both figures converge approximately 

towards the same limit. It is more obvious on the Fig. 33.a. Indeed the vertical scale is 

different on both figures, and the variations are much higher in Fig. 33.b but stay in a 

good range of error. Overall in all cases, the error in measured arrival times becomes very 

small (<0.2 µs) after N=46 (resp. N=140) for phase (group) velocity measurements. 

These errors are slightly smaller than the one obtained with the piezoelectric. Hence, at 

this point, the obtained cross-correlation waveforms from DFI should yield reliable 
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estimates of the phase and group velocity of the A0 mode on this thin aluminum plate. 

 

These results show the equivalence between the two methods (piezoelectric or laser 

excitation). 

  

4.2.2 Second experiment: Defect Detection  

The spatial distribution of the 25 secondary sources (all around the grid) have been 

chosen to optimize the creation of diffuse field (see 3.2.4.5) and thus the extraction of the 

time domain Green’s function from DFI between any two points of the scanning grid. 

The extraction of a high number of potential GF is the first objective (Experiment 1, with 

an intact plate). The second objective is to demonstrate that the extracted GF from DFI 

allows high-resolution detection of a defect located in the monitoring grid (Experiment 2, 

with a “damaged” plate).  

 
4.2.2.1 Recorded diffuse fields 

The diffuse field recorded by the SLDV at the grid point #4 (see Fig. 29.b) when the 

laser was impacting source point #1 (top middle of the plate, see Fig 29.a) is shown in 

Fig. 34. The FFT of the recorded raw data in Fig. 34.b shows once again that the ND-

YAG laser has a large frequency bandwidth due to the impulsive nature of its excitation. 

We will however concentrate our study in the frequency band: B= [50-200] kHz, where 

the sensitivity of the SDLV is the highest. The signals presented in Fig. 34.a have been 

both filtered in this frequency band. Following the approach described by                  

Sabra and al. (2008), the filtered signals were further processed using an amplitude 
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clipping procedure to assign uniform weights to the multiple reverberations (see 3.2.4.1). 

The level of the threshold was set at 30 times the standard deviation of the electronic 

noise level (30NL) which was estimated from the pre-trigger part of the signals. Fig. 34.a 

compares both the clipped (blue line) and original filtered (red line) signals. 
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FIGURE 34.a: Recorded signal at #4 when the laser was exciting the plate at laser pt1 and filtered in 
B=[50-200]kHz. Comparison between the signal only filtered (red) and the signal also clipped at 30 times 
the electronic noise level (blue). 34.b: FFT of the signal before filtering and clipping. 
 

4.2.2.2 Estimate of the true GF and defect detection 

Following the theoretical results from Eq. (4), the time-derivative of the cross-

correlation functions between all sensor pairs, normalized by the energy of the records, 

was computed and then summed over all 25 secondary sources contributions. This was 

done in order to estimate all possible local GF between the scanning points and a fixed 

sensor reference. Fig. 35.a (resp. b) displays the normalized estimates of the GFs between 

point #5 (resp. point #4) and all sensors on the vertical line where it lays: line2 (resp. 
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line1) (see Fig 29.b). Each curve had been normalized by the maxima derivative of the 

auto-correlation of the signal without defect. Clear propagating wavefronts emerge from 

this coherent processing, as if the sensing points #4 and #5, located on the top of the 

scanning grid acted as virtual sources. The two wavefronts correspond to the main A0 

arrival and to the first reflection, given the frequency bandwidth of the recording and the 

fact that the SLDV records the plate out-of-plane displacements. Moreover, in agreement 

with theoretical predictions for a fully diffuse field, the noise cross-correlation is a 

symmetric function of time. Similar results were obtained using as reference sensors #20 

and #21 which are located in the middle of the scanning grid (see Fig. 37). The “X” shape 

wavefronts correspond to A0-dominated responses propagating away from the reference 

sensors. 

The second experiment was then conducted, using the same experimental setup, by 

attaching to the plate a screw, acting as a local “defect”. The effect of additional mass is 

to strongly attenuate the incident waves as shown in Fig. 36, where the attenuation effect 

of this surrogate defect is clearly visible in the recorded signal at sensor #20, which is 

located over the defect location. Figure 35 compares the estimated GF with and without 

defect. First, the difference in the amplitudes between the curves is only visible in Fig. 

35.b and not in Fig. 35.a. This is due to the strong attenuation effect of the attached defect 

on the amplitude of the direct path for the GF between sensor #4 and the middle points of 

line 1 (#18,#20,#22, located around 4.1cm from #1) (Fig. 35.b). In comparison, little 

variations occur when sensor #5 is used as a virtual source since the defect is not on the 

direct path. Hence DFI allows the precise localization of the “defect” in the middle of  

line 1 of the scanning grid, without the need for a-priori information. 
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FIGURE 35: Comparison of estimates of the Green’s function with and without defect. 35.a: Green's 
function estimates between point #5 and the points along line 2. 35.b: Green's function estimates between 
point #4 and the points along line 1.  
 

 
FIGURE 36: Recorded signals along line 1 when the laser excited the plate with defect at laser pt1 vs. 
time. 



 

 65 

-100 0 100 

0
0.46

1.4

2.3

3.2

4.1

5.1

6

6.9

7.8
8.3

Time (µs)

 

 

D
is

ta
nc

e 
to

 p
oi

nt
 #

3 
(c

m
)

without defect 30NL

with defect 30NL
(a)

 

-100 0 100 

0
0.46

1.4

2.3

3.2

4.1

5.1

6

6.9

8.3

Time (µs)

 

 

D
is

ta
nc

e 
to

 p
oi

nt
 #

1 
(c

m
)

without defect 30NL

with defect 30NL
(b)

 
FIGURE 37: Comparison of estimates of the Green’s function with and without defect. 37.a: Green's 
function estimates between point #21 and the points along line 2. 37.b: Green's function estimates between 
point #20 and the points along line 1. 
 

 
Figure 37.a and .b further illustrate the high-resolution detection and localization of 

the defect from DFI using sensor #20 (i.e. at the actual defect location) and #21 as virtual 

sources. The GF estimates between the point #20 and line 1 has very low amplitude when 

the defect is present for all the points on the line: the virtual source #20 can not excite the 

plate since all waves are damped by the defect. On the other hand, the estimated GF 

between point #21, only two centimeters apart from the point #20, and the line 2 is not 

affected by the defect.  
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4.2.2.3 Time reversal reconstruction of the defect location 

After estimating all the different GF for every single pair existing, and having a clear 

idea of the defect location, some more data reduction have been performed to identify the 

defect location precisely following the method described in [Tarantola 1984; Fichtner et 

al. 2006]. This method is based on the time reversal of the error produced by the defect 

back onto the source that created it, i.e. the defect location. The study has been performed 

on the symmetric of the estimated GF. 

 

A first step consisted of evaluating the error which is the difference between the 

estimate of the GF without and with defect for every pair of points given by: 

     )( ,,
U

BA
D

BA GFGFError −=                                                 (18) 

where U stands for undamaged and D for damaged. Figure 38 illustrates the Error between 

the points #10 and #31 (plain blue) and the first arrival of the Error (dotted line) (Fig. 

29.b and next step).  
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FIGURE 38: Error between the points #10 and #31 (plain blue) and the first arrival of the Error (dotted 
line). 
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Secondly, only the part included into the time interval [-60 ; 60]µs, which correspond 

to the first arrival, has been kept in each estimated GF undamaged ( U
jiGF ,  where i and j 

are chosen arbitrarily) or damaged ( D
jiGF , ) and also in the term Error (see Fig. 38). Figure 

39 illustrates the undamaged UGF 31,10 , and in black is the first arrival of the wavefront 

between these two points and thus the only part kept for this study. 
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FIGURE 39: GF without defect between the points #10 and #31 (solid line), and first arrival in black. 
 

Then, the third step was the whitening of the FFT of the estimates of the GF and also 

of the Error. The whitening consists of clipping all frequencies to a certain level so that 

there is no frequency dominating when it should not. The new FFT of the GF is given by: 

                  
)))((max(*05.))((

)(

,,

,

jiji

ji

GFFFTabsGFFFTabs

GFFFT
FFTnew

+
=                         (19) 

where jiGF ,  is the estimate of the Green’s function between the point i and j, FFTnew is 

the whitened FFT. This allows weighting spectral components based upon prior spectral 

components, and averaging spectral components with prior spectral components. Back in 

the time domain, the estimated GF without defect between the point #10 and the line1 
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(see Fig. 29.b) before and after whitening are compared in Fig. 40. Figure 40 shows that 

the signals recorded in this experiment are good, as there is not much difference between 

the whitened and the original estimated GF. 
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FIGURE 40: Comparison of the GF without defect between point #10 and line1 before (solid line) and 
after (dot line) whitening the FFT. The ordinate axis gives the number of the points #j on line1. 
 

The final step was the defect location by using the Error term between two points #A 

and #B generally chosen each one on a different line. Moreover #A and #B have to be far 

enough from each others and on both side of the defect location estimated from the 

subsection 4.2.2.2 (location #20).  

Let us first consider the two undamaged GF profiles of #A (resp. #B) and line1: 

U
jAGF ,  and U

jBGF ,  given in Fig. 40.  



 

 69 

 
FIGURE 41: Profile of the first arrivals of the GF without defect (U for undamaged) between the points 
#A (resp. #B) and #j describing the entire line1. 
 

Then the selected model tells us to convolute the conjugate of the Error and the two 

undamaged GF terms one at a time. These terms are given by the following formulas: 

U
jB

U
BA

D
BA

BAError
jB GFGFGFGF ,,,

),(
, .)( −=  

U
jA

U
BA

D
BA

BAError
jA GFGFGFGF ,,,

),(
, .)( −=   

 

(20)

where j covers line1, #A usually will be chosen on line1 and #B on line2. What the 

convolution actually does, is shifting U
jAGF ,  (resp. U

jBGF , ) to the right onto Errort0  and to 

the left onto Errort0−  which are the times of the first A0 arrival on the positive and 

negative sides of the Error term between the points #A and #B. These times are 

represented in Fig. 42 by the vertical dashed dot blue lines. So basically U
jAGF ,  (resp. 

U
jBGF , ) are reproduced twice symmetrically to t=0 centered on Errort0  (dashed lines on 

Fig. 42). The important part in this study is how the positive side of U
jAGF ,  (resp. U

jBGF , ) 

is shifted (see the dashed lines in both profiles of Fig. 42). Indeed the intersection 

between one of these positive parts of ),(
,

BAError
jBGF (resp. ),(

,
BAError

jAGF ) and the positive side 
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of U
jAGF ,  (resp. U

jBGF , ) is where the defect is located. Figure 42 represents the defect 

location using this described technique. 

 
FIGURE 42: Detection of the defect location at the intersection between the positive side of the 

undamaged GF between #A and #j: U
jAGF ,  (solid red and “X” shape) (resp. 

U
jBGF , (solid green)) and 

),(
,

BAError
jBGF  (dashed green line and “W” shape) (resp. ),(

,
BAError

jAGF  (dashed red)). The dashed dot blue 

line indicates the time of the first arrival in the Error term. 
 

 
Fig. 43.a and .b illustrate this principle for the couple (#10, #31). The “X” shape of 

the undamaged estimate of the GF is distinguishable and given in solid red lines. And the 

“W” shape of the )31,10(
,

Error
jAorBGF  is also clear in dashed blue lines. Both figures show that 

there are two intersections between the positive side of both )31,10(
,31

Error
jGF  (resp. 

)31,10(
,10

Error
jGF ) and U

jGF ,10  (resp. U
jGF ,31 ) marked by circles. However, these two circles do 

not correspond to the location of the defect: in #20 but to the location of the two sources 

#10 and #31.  

 

The result of this study is thus not good. Indeed instead of focusing onto the defect 

location it was focusing onto the sources #A and #B. This is due to the fact that almost all 

the energy contained in the error was mainly coming from the sources, which also means 
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that the screw glued on the plate had strictly damping effect and no scattering effect. To 

conclude, this method helped us to understand better what impact had the defect onto the 

field.  
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FIGURE 43: Comparison of U

jGF ,10  (solid red and “X” shape) (resp. 
U

jGF ,31  (solid red)) and 

)31,10(
,31

Error
jGF  (dashed blue line and “W” shape) (resp. )31,10(

,10
Error

jGF  (dashed line)) in order to locate the 

defect at the intersection of their positive side. 
 

So to detect the defect another method such as tomography had to be used. 
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4.2.2.4 Tomography: defect detection 

Using DFI, the local Green’s function can be computed between any pair of the 40 

SLDV locations surrounding the monitoring region with or without defect, thus providing 

up to 780 potential Green’s function measurements between sensor pairs. This high 

number of crossed paths can be used advantageously for tomographic imaging of the 

defect region.  It was found that the presence of the absorbing defect was affecting much 

more the amplitude the first coherent arrival (A0 mode) than its arrival time. Hence only 

tomographic reconstruction of the local plate attenuation was performed thereafter. To do 

so, the monitoring area (see Fig. 29: width 2cm by height 9.2cm) was divided into small 

square cells of length 2mm. This grid size was determined by the sensor spacing and the 

measurement errors. The propagations paths of the A0 mode along each pair of sensor #l-

#m, on this the 2D tomography grid, were assumed to be straight. The ratio Rlm of the A0 

mode amplitude in the damaged case to the undamaged case was measured 

experimentally for each pair of sensors #l-#m. Hence, the amplitude of the A0 mode in 

the undamaged case acts as a calibration factor when measuring the A0 mode amplitude 

in the damaged case by effectively mitigating the amplitude variations caused by 

geometric spreading and transducer responses. By modeling the attenuation of the 

propagating A0 wave by a simple exponential decay, the ratio Rlm can be expressed as 

(exponential decay): 

                                                            lmeRlm
γ−=                                                            (21) 

where lmγ  is the relative cumulated decay of the A0 mode along the inter-sensor path of 

length lmL . A value of ratio Rlm=1 (i.e. lmγ =0) theoretically indicates the absence of 

defect along path between sensors #l-#m. However, small amplitude fluctuations of the 
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ratio Rlm, on the order of 0.1, were actually measured even for those inter-sensor paths not 

crossing the defect region. This was likely due to variations in the experimental 

conditions and setups between the two experiments (undamaged and damaged case) 

which took place one day apart such as: 1) small errors in the repositioning of the ND-

YAG laser when attempting to excite the same location of 25 secondary sources used for 

DFI and 2) small shifts in the alignment of the scanning grid of the SLDV (after having 

stuck the screw on the plate) and 3) small temporal changes of the actual Green’s 

function in the plate (e.g. due to temperature changes) occurring between the two 

experiments. Hence only significant measurements of Rlm<0.9 were kept for a linear 

Bayesian tomography inversion scheme [Tarantola, 1987] for reconstructing the local 

plate attenuation α.  

The average background attenuation α0 =0.1m-1 was determined from the median 

value of the measured quantities lmlm L/γ . The local attenuation coefficient α(i) (m-1) was 

assumed to be constant over each of grid cell #i. If γ is the column vector of cumulated 

decay estimated lmγ  from the cross-correlation time-function (with respect to the 

background attenuation α0), α is the column vector of the local attenuation coefficient α(i) 

at each grid cell #i, and assuming a simple linear model for the cumulated decay with 

propagation distance, the inversion problem reduces to: 

                                                                       γ = Ф α,         (22) 

where Ф is the forward mapping matrix (or kernel) indicating for each particular straight 

A0 paths its length across each crossed cell grids. The measurement-error covariance 

matrix ΣT was defined as a diagonal matrix with elements 2.02 =Tσ  (m-1) corresponding 

to a low a-priori measurement error of the cumulated decay given the high SNR for all 
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computed cross-correlation time functions. The elements of the a-priori error covariance 

matrix of the cell slowness Σs values are: 

                                                   )/exp(),( ,
2 LDji jiss −=Σ σ                                (23) 

where σs=2m-1 is the a-priori (large) variance in local attenuation, Di,j is the distance (in 

cm) between the center of the ith and jth grid cell and L=4mm is a smoothness scale 

selected to extend over 2 grid cells (i.e. slightly smaller to the sensor grid’s vertical 

spacing). The a-priori attenuation vector α0 was set to have constant elements α0(i)= α0 

over all grid cells. The maximum a-posteriori solution α (attenuation vector) for the linear 

problem defined by Eq. (22) is then: 

                                  α = α0 +( Ф t ΣT
-1 Ф +ΣS

-1) -1 Ф t ΣT
-1(γ -Ф α0).                    (23)  

where the superscript “t”  indicates a transpose matrix. 

 
FIGURE 44: Tomographic reconstruction of the local attenuation coefficient in the presence of a 
simulated attenuating defect (see Fig. 29). 
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Figure 44 shows the reconstructed variations of the local attenuation coefficient 

obtained from the maximum a-posteriori solution (see Eq. (23)) [Tarantola 1987], which 

produces a residual variance reduction of 93% relative to the residual for the homogenous 

model. The high attenuation values clearly correspond to the defect region (see Fig. 29.a).  

But, only the rim of the (nearly) circular defect is mapped correctly with this simple 

linear tomographic reconstruction and the interior of the circular defect perturbation 

remains invisible. This likely occurs since the wavelength of the A0 mode (~1cm here) is 

comparable to the defect size (estimated defect size 1.5cm) and thus only the rim of the 

defect acts as attenuation perturbation here [Fichtner et al. 2006]. 

 

4.3 Conclusion 

This chapter has thus demonstrated the potential of the DFI technique. Indeed, the 

detection of the simulated damage (see Fig. 35) demonstrates that variations of the 

amplitude of the Green’s function can also be correctly estimated from DFI. Furthermore, 

when implemented with a distributed sensor array (e.g. scanning grid of the SLDV), the 

performance of DFI originates from the high density of cross paths between all sensor 

pairs obtained with a minimal number of sources, thus potentially minimizing the power 

consumption. Hence DFI could be used for remote monitoring and tomographic 

reconstruction of structural hot spots. 
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CHAPTER 5 

INFLUENCE OF THE BOUNDARY CONDITIONS 
 

 

It should be noted that DFI relies on the spatial correlation of diffuse fields generated 

by one (or several) diffuse source recorded simultaneously between a pair of sensors.  

Hence, the extracted coherent waveforms from DFI are only sensitive to the local 

properties of elastic medium itself between the sensors and not to the precise source 

characteristics. For instance, when implementing DFI in a large plate with two sensors in 

its center, the first coherent arrivals (e.g. A0 or S0 guided modes on a plate) obtained from 

DFI are not sensitive to small changes in boundary conditions far from the sensors 

(similar to conventional active SHM results) even though the original recorded diffuse 

field are, since they may sample those boundaries. This ensures a good repeatability and 

robustness of the DFI output for practical SHM implementation.  

Hence, DFI fundamentally differs from other active sensing techniques for diffuse 

fields; for instance, measuring how diffuse fields (e.g. coda waveforms) between a single 

source and single receiver pair change over time with respect to a reference waveform 

[Snieder et al. 2002; Lobkis and Weaver 2003; Michaels and Michaels 2005; Lu and 

Michaels 2006]. As opposed to DFI, these techniques: 1) are based on the temporal 

coherence of the medium, 2) are sensitive to global changes of the elastic medium but yet 

do not provide local information between sensors and 3) require a calibrated and highly 

repetitive elastic source and stable experimental setup in order to minimize potential 

artifacts due to changes in source excitation or mounting conditions when trying to detect 

actual changes of the propagating medium itself. 
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A study of the influence of boundary conditions on the cross-correlation obtained 

from DFI is exposed in this last chapter. 

 

5.1 Presentation of the experiment 

To evaluate the influence of the boundary conditions on the recorded data, 

experiments were conducted on the same plate as previously on which some more slots 

had been cut on two more edges. The influence of the mounting had been evaluated by 

comparing the exact same setup with two different mountings: the first one had two 

mounts on each side of the plate (see Fig. 45.a), and for the second one, the right side 

mount had been carefully removed so that the plate and the grid does not move between 

the two experiments and thus only the left one was remaining (see Fig. 45.b). The same 

ND-YAG laser used in the two previous experiments (see Chapter 4) was exciting the 

plate at three different locations (#1 and #3 were 9.1cm apart and #1 and #2 were 6.5cm 

apart), and the SLDV was recording the answers following a pre-defined grid of 323 

points as shown on both figures hereunder.  

 (a) (b) 
FIGURE 45.a: Plate held with two mounts, excited once at a time at three different locations (#1, #2 and 
#3). The grid is constituted of the 323 points. The square pixel size is 0.65 cm. 45.b: Plate held with one 
mount, the same left one as in Figuremount2, excited once at a time at three different locations (#1, #2 and 
#3). The grid is constituted of the 323 points. 
 
 

#1 #2 #3 #1 #2 #3 
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The propagation of the waves into the plate can be represented in a RMS picture as 

shown in Fig. 46. Figure 46 illustrates the answer of the plate to a laser excitation at #1 

when the plate was held by two mounts. The first arrivals are in red. 

 

 
FIGURE 46: RMS field on the pre-defined grid when the laser was hitting location #1 on the plate. In red 
are the energetic first arrivals.  

 

Then the same process to dismiss the bad recorded signals had been performed here 

by comparing the standard deviation of the pre-trigger signal to the median one overall 

the 323 points, and after this 308 points were remaining.  

 

5.2 Experimental results 

The signals at impact #1 recorded after each impact #1, #2 and #3 and their FFT are 

respectively plotted on Fig. 46. As expected, the propagation time of the first impulse 

from the point of impact of the laser to the point #1 increases proportionally with the 

distance. Indeed the time of the first maximum for the three cases are respectively        
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1
0t = 0.271ms, 2

0t =0.3ms, 3
0t =0.313.  Moreover, the FFT of these signals are comparable 

and as the two previous experiments on a wide bandwidth, which will allow to study on 

the signal on different frequency bandwidth (see next section). 
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FIGURE 47.a: Waveforms collected by the SLDV on the plate held by one mount at impact #1 following 
a laser impulse at impact #1, #2 and #3 respectively. There is a delay between the three signals, which 
represents the traveling time of a wave from impact #1 to impact #2 and to impact #3. The waveform 
shows also a long “coda” caused by the multiple reflections on the edges. 47.b: FFT of the recorded 
signals: B=[5-280] kHz.  
 

Then the recorded signals had been filtered in different frequency bandwidth B1=[50-

90]kHz and B2=[50-150]kHz (same as previous studies) and clipped at 25NL, but no 

constraint on the length of the signal had been applied. So that the signals compared with 

one or two mounts did not have the same recording duration: in B1, 
mountT1

1 = 5.6ms and 

mountT 2
1 = 4.2ms; in B2, 

mountT1
2 = 7.5ms and mountT 2

2 = 5.5ms. On these two frequency 

bandwidth, the estimates of the GF had been evaluated for both setups and compared for 

the three combinations of points: )(12 tG  (see Fig. 48), )(23 tG  (see Fig. 49), and finally 

)(13 tG (see Fig. 50). 
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FIGURE 48: Comparison of the estimate of the GF: )(12 tG  between #1 and #2 with one (solid line) or 

two (dashed line) mounts 48.a: filtered in B1=[50-90]. 48.b: filtered in B2=[50-150]. 
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FIGURE 49: Comparison of the estimate of the GF: )(23 tG  between #2 and #3 with one (solid line) or 

two (dashed line) mounts 49.a: filtered in B1=[50-90]. 49.b: filtered in B2=[50-150]. 
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FIGURE 50: Comparison of the estimate of the GF: )(13 tG  between #1 and #3 with one (solid line) or 

two (dashed line) mounts 50.a: filtered in B1=[50-90]. 50.b: filtered in B2=[50-150]. 
 
 

Even if there are some discrepancies in amplitude, the phase of the first arrival is 

conserved between the two experiments as shown in Fig. 48-50, and this independently 

of the frequency bandwidth. However, the correlation waveforms seem to be slightly 

better reconstructed in the larger frequency bandwidth B2=[50-150]. 

The errors between the A0 arrival times for each pair of points on each frequency 

bandwidth had been computed and are given in Table 2 (more detailed values are given 

in Appendix A).  

 
TABLE 2:  Error between the arrival times for each case. 

mountt1
0  vs. mountst 2

0  #1-#2 #2-#3 #1-#3 
[50-90]kHz 5% 0.9% 0.7% 
[50-150]kHz 3.5% 0.7% 0.6% 
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The results of Table 2 are good, and lead to a good approximation of the phase 

velocities for the three couple of points studied here. Indeed, knowing the distances 

separating the three points, the phase velocities had been evaluated to be in accordance 

with the previous experiments with a mean value over the three phase velocities of 

Cp=1030m/s.   

 

5.3 Conclusion 

The results of this experiment confirm that the DFI technique allow a great freedom 

on the setup of the experiments and that the computation of the first coherent arrivals and 

thus the reconstruction of the estimate of the Green’s function are not sensitive to small 

changes in boundary conditions far enough from the sensors. 
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CHAPTER 6 

CONCLUSION  
 
 

The Diffuse Field Interferometry technique investigated in this thesis has the potential 

to expand and improve SHM system applications since it allows transforming a simple 

receiver into a virtual elastic source using only cross-correlations of the signals recorded 

from a limited number of secondary sources which are remotely located from the sensing 

region. Theoretical predictions of the signal-to-noise ratio of the coherent waveforms 

extracted from DFI in the presence of incoherent measurement noise were developed 

using a simple model for the exponentially decaying reverberant wavefield. The 

performances of the DFI technique were also investigated experimentally based on cross-

correlations of the multiply scattered wavefield measurements collected over a thin 

aluminum plate with complex geometry and boundaries, in the frequency bandwidth [4-

90]kHz using a scanning SLDV. Estimates of the A0 lamb wave component as well as 

coda waves arrivals of the local Green’s function propagating between two arbitrary 

locations on the plate were extracted from DFI. Hence this highlights the robustness of 

DFI for estimating the full Green’s function (i.e. ballistic and coda arrivals) locally using 

only passive sensors, in agreement with previous findings [Weaver et al., 2005; Sabra et 

al. 2006; Larose et al. 2008].  

 

The coherent SNR of the Green’s function estimates obtained from DFI sets the 

achievable accuracy for damage detections between a pair of passive sensors (e.g. for 

detecting the weak scattered field from a local crack). Hence theoretical predictions or 
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experimental determination of the dependency of the coherent SNR on independent 

parameters that the operator can potentially control -such as the recordings duration T, the 

number of secondary sources N or signal-to-noise ratio of the selected portion of the 

recorded waveforms- can be used to quantify the probability of detection of the SHM 

systems used to inspect the structure of interest [Achenbach 2000]. An extensive 

parametric analysis of the DFI performances was conducted experimentally and yielded 

the following findings: 1) the coherent SNR of the cross-correlation waveforms can be 

improved by using amplitude clipping of the recorded reverberant wavefield as long as 

the selected threshold remains higher than the noise level (NL) of the measurements 

(around 15NL for optimal results), carefulness should be used especially when using late 

coda portion of the reverberant wavefield, 2) the SNR is barely influenced by the spatial 

configuration of the secondary ultrasonic sources for small number of sources and by the 

boundary conditions applied to the plate, as long as the recorded field is diffused in the 

entire structure, as expected from previous numerical simulations [Larose et al. 2008],   

3) a selected value of the coherent SNR can be optimally achieved with a certain 

combination of the parameters T and N.  However an increase in recording duration T can 

not always compensate for a lack of secondary sources when using noisy multiply 

scattered signals, 4) late coda arrivals contain also “coherent information”, and thus an 

accurately reconstruction of the Green’s function is feasible. However, the influence of 

incoherent measurement noise (e.g. sensor noise) is higher on these late arrivals, which 

limits their use in the improvement of the DFI performances.  

 

Furthermore, even if this technique offers good potentialities of retrieving an accurate 
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estimate of the true Green’s function between two sensors, the performance of DFI can 

be limited by the geometry and material properties of the structure of interest: 1) as just 

stipulated, the incoherent measurement noise has to be much lower than the amplitude of 

the signals to allow the theory to be applicable. Great efforts have then to be done to 

reduce the ambient noise during the experimental recordings. 2) Moreover, highly 

disordered media have to be avoided as they allow the existence of closed loops or 

recurrent scattering. Thus adding too many slots on the plate can have detrimental effects 

on the performances of the DFI technique. 3) The reconstruction of the Green’s function 

from DFI does not require necessarily high number of sources, however a quite 

substantial number (~100) is needed to lead to a good estimate of the phase and group 

velocities of the A0 mode on this thin plate. This requirement on high number of 

secondary sources may result both from the presence of strong elastic attenuation (which 

increases the temporal decay of the diffuse field and thus limits the effective duration of 

the diffuse field record) and the small number of propagating modes in this plate at low 

frequencies (mainly S0 and A0 modes here at 50kHz). 

 

Despites this, the theory works well when using the diffuse part of the signal to 

extract the local field Green’s function. Especially as shown by the results of the 

detection of the simulated defect. Indeed, the experiment without damage had 

demonstrated the proposed DFI technique provides an estimate of the local GF between 

any pair of monitored points. Hence DFI provides a mean for local estimation of the 

monitored structure, which is easy to interpret and free from aberrations introduced by 

the source, from the effects of multiple reflections and distortions caused by structural 
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and material complexity often encountered in typical aircraft components. The 

experiment with damage illustrated the precise detection and localization of a damping 

defect with DFI using only passive sensors and no a-priori information. The use of a 

distributed sensor array (e.g. scanning grid of the SLDV) allows a precise tomographic 

reconstruction of structural hot spots. However the damping effect of the simulated defect 

did not allow the use of a time-reversal technique to detect it. 

 

It will be interesting in the future to look at the performances of the DFI technique 

onto the detection of a scattering defect. However, the setup of this experiment will need 

great care to reduce significantly the incoherent measurement noise, to be able to notice 

the scattering effect of the defect. Once done, the great potential of the DFI technique in 

the monitoring of defect location will be definitely proven. 

 

In closing, this thesis confirms that a great amount of information can be found from 

the diffuse part of a signal including the fact that, by cross-correlating the diffuse part of 

the signal, an estimate of the local field’s Green’s function can be extracted. As stated 

earlier, this can be very useful for analyzing aircraft fuselage and wing structures. These 

methods and the resulting Green’s functions have the potential to facilitate significant 

application for passive and real-time Structural Health Monitoring to detect, locate, and 

quantify damage in structures. 
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APPENDIX A 

 MATLAB CODE 

CODE TO LOAD THE RECORDED DATA  

%================================================== ====================  
%Correlation Plaque  
%================================================== ====================  
clc  
clear all  
close all  
format compact  
  
n=3; % number of DATA recorded  
c=[ 'ko' , 'bo' , 'ro' ];  
c1=[ 'k' , 'b' , 'r' ];  
f1=fullfile( 'C:' , 'Documents and Settings' , 'Adelaide' , 'My 
Documents' , 'Adelaide' , 'LASER_TEST_09_16_08' , '2mounts' );  
f1=fullfile( 'Specific directory' );  
cd(f1)  
  
  
Nn=[0,1:n];  
%Objective #ii: Load and Arrange Data. First Actuat or  
for  ii=Nn;  
    ii  
    if  (ii==0) v=genvarname( 'DATA' , who); eval([v ' =0;' ]);  
    else  
    cd([ 'pt' ,num2str(ii)])  
    load( 'TH.mat' );  
    v=genvarname( 'DATA' , who);  
    eval([v ' =TH;' ]);  
    co = load( 'xyz.mat' );  
    load ( 'raw_conn_data.mat' );  
    cd(f1)  
    end  
     
end  
clear v  
clear DATA 
  
 %conn_data.geom.array; CM=ans; d=CM(:,[1 2 3 4])';  
d=grid_r(:,[1 2 3 4])';  
time=time_val;  
Ts=time(2)-time(1) % sampling time  
  
clear TH* %%pour faire la place  
  
%Create Coordinate Matrix of xyz positions (co.x si gnifies the 
structure)  
% 
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CO=[co.x' co.y' co.z'];  
xx = CO(:,1); yy = CO(:,2); zz = CO(:,3);  
cd(f1)  
 
%Drawing the grid and finding the excited points on  it  
figure(2);clf;  
patch(xx(d),yy(d),zz(d)); hold on 
axis equal  
  
[x,y]=ginput(n);  
  
for  ii=1:1:length(x)  
ii  
     
    for  jj=1:1:size(DATA1,2)  
        D(jj)=sqrt((xx(jj)-x(ii)).^2+(yy(jj)-y(ii)) .^2);  
        [M,K(ii)]=min(D);  
               
   end  
               
end  
K 
X=xx(K);  
Y=yy(K);  
  
save K K 
  
%Drawing the impact points on the grid  
figure(4);clf;  
patch(xx(d),yy(d),zz(d)); hold on 
for  ii=1:length(K)  
     
    plot(xx(K(ii)),yy(K(ii)),c(2*ii-1:2*ii), 'linewidth' ,5); hold on 
end  
axis equal  
saveas(figure(1), '01- Location of impact points on plate' )  
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Fe=1/Ts; %sampling frequency  
N=length(DATA1); % number of sample  
freq=[0:N-1]/N/Ts;  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%PLot one received data  
  
for  ii=1:n; %Choisis un des points  
ii  
figure(ii);clf;hold on 
    for  jj=1:n  
        s=[ 'DATA' ,num2str(jj)];  
        D=eval(s);  
         
        subplot(2,1,1);hold on         
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        %Temps 
        plot( time*10^3,D(:,K(ii)),c1(jj));hold on 
        xlabel( 'time (ms)' , 'fontsize' ,10)  
        ylabel( 'Velocity (A.U.)' , 'fontsize' ,10)  
        title([ 'DATAs at impact #' , num2str(ii), ' and their 
fft' ], 'fontsize' ,10)  
         
        subplot(2,1,2);hold on %Frequence  
        plot(freq,abs(fft(D(:,K(ii)))),c1(jj)); hol d on 
        xlabel( 'Frequency (Hz)' , 'fontsize' ,10)  
        ylabel( 'Spectrum' , 'fontsize' ,10)  
        clear s  
        clear D 
    end  
    subplot(2,1,1);  
    legend([ 'DATA1 at impact #' , num2str(ii)],[ 'DATA2 at impact #' , 
num2str(ii)],[ 'DATA3 at impact #' , num2str(ii)])  
    saveas(figure(ii),[ '0' ,num2str(ii+2), '- DATAs at impact #' , 
num2str(ii), ' and their fft' ])  
end  
   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%Elimination of the signal with a std of the pre-t rigger  
%%%signal or the tail of the signal too high i.e. w ith a electric noise 
too high  
%%% in order to improve the SNR  
  
%Objective #ii: Load and Arrange Data. First Actuat or  
for  ii=Nn;  
    ii  
       
    if  (ii==0) v=genvarname( 'NOISE' , who); eval([v ' =0;' ]); 
v1=genvarname( 'NOISElevel' , who); eval([v1 ' =0;' ]);  
    else     
    s=[ 'DATA' ,num2str(ii)];  
    D=eval(s);  
    v=genvarname( 'NOISE' , who);  
    eval([v ' =std(D(1:600,:));' ]);  
    v1=genvarname( 'NOISElevel' , who);  
    eval([v1 ' =(median(std(D(1:600,:),0,1)));' ]);  
    clear s D      
    end  
     
end  
  
clear NOISE NOISElevel  
  
figure(5);clf;hold on 
for  ii=1:n;  
    s=[ 'NOISE' ,num2str(ii)];  
    D=eval(s);  
    plot3(xx,yy,D,c(2*ii-1:2*ii));  
end  
saveas(figure(5), '06- Ambient NOISE through the plate' )  
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KK=zeros(1,size(DATA1,2));  
for  ii=1:n;  
    s=[ 'NOISE' ,num2str(ii)];  
    D=eval(s);  
    s1=[ 'NOISElevel' ,num2str(ii)];  
    for  jj=1:size(DATA1,2);  
        if  (D(:,jj)>3*eval(s1)) KK(jj)=jj; %DATA(:,ii)=0;%  
        end  
    end  
end  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% Reordering of none dismissed signals   
L1=1:size(DATA1,2);  
L1=L1-KK;  
L1=sort(L1);  
  
ZEro=find(L1==0);  
ZEro=length(ZEro);  
  
L=zeros(1,size(L1,2)-ZEro);  
for  jj=ZEro+1:size(KK,2);  
      L(1,jj-ZEro)=L1(1,jj);  
end  
  
Ll=size(L,2);  
Ll=randperm(Ll);  
Ll=L(Ll);  
  
save Ll  Ll  
  
%Location of the remaining points  
figure(6);clf;  
patch(xx(d),yy(d),zz(d)); hold on 
plot(xx(Ll),yy(Ll), 'bd' , 'linewidth' ,3); hold on 
for  ii=1:length(K)  
    plot(xx(K(ii)),yy(K(ii)), 'ko' , 'linewidth' ,5); hold on 
end  
axis equal  
saveas(figure(6), '02- Location of remaining points' )  
  
tcorr=[-(N-1):(N-1)]*Ts;  
Ipos=find(tcorr>=0);  
Ineg=find(tcorr<=0);  
tpos=tcorr(Ipos);  
Nc=2*N-1;  
freqC=[0:Nc-1]/Nc/Ts; %% axis of the correlation frequency  
  
tfin=[-(N-1):0.1:(N-1)]*Ts; % redefined time axis  
Iposfin=find(tfin>=0);  
Inegfin=find(tfin<=0);  
tposfin=tfin(Iposfin);  
tnegfin=tfin(Inegfin);  
Tsfin=Ts/10; 
Nfin=(length(tfin)-1)/2;  
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CODE TO DO THE DIFFUSE FIELD ANALYSIS  

%================================================== ====================  
%Diffuse field analysis  
%================================================== ====================  
 
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%% Selection of points only in the middle of t he plate  
%%i.e. eliminating the points on the edges  
  
figure(2);clf;  
patch(xx(d),yy(d),zz(d)); hold on 
axis equal  
  
[x,y]=ginput(4);  
  
for  ii=1:1:length(x)  
ii  
     
    for  jj=1:1:size(DATA1,2)  
        D(jj)=sqrt((xx(jj)-x(ii)).^2+(yy(jj)-y(ii)) .^2);  
        [M,K(ii)]=min(D);  
               
   end  
               
end  
K 
X=xx(K);  
Y=yy(K);  
  
save X X 
save Y Y 
  
% load X.mat  
% load Y.mat  
  
KK=zeros(1,size(Ll,2));  
for  ii=1:length(Ll);  
        
if ((xx(Ll(ii))>=X(4))&&(yy(Ll(ii))<=Y(1))&&(xx(Ll(ii) )<=X(2))&&(yy(Ll(i
i))>=Y(3)))  KK(ii)=Ll(ii);  
    end  
end  
  
KK=sort(KK);  
ZEro=find(KK==0);  
ZEro=length(ZEro);  
  
L=zeros(1,size(KK,2)-ZEro);  
for  jj=ZEro+1:size(KK,2);  
      L(1,jj-ZEro)=KK(1,jj);  
end  
  
LL=size(L,2);  
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LL=randperm(LL);  
LL=L(LL);  
  
clear L ZEro  
  
save LL LL 
  
  
figure(2);clf; hold on 
patch(xx(d),yy(d),zz(d)); hold on 
plot(xx(LL),yy(LL), '.b' , 'markersize' ,15)  
plot(xx(K),yy(K), '.k' , 'markersize' ,30)  
plot(xx(261),yy(261), '.r' , 'markersize' ,30)  
saveas(figure(2), '01-selected points on the plate' )  
  
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% getting the envelope of DATA1 and DATA2  
tmp2=zeros(size(DATA2(:,LL)));  
for  ii=1:size(LL,2);  
    tmp2(:,ii)=abs(hilbert(DATA2(:,LL(ii))));  
    tmp2(:,ii)=smooth(tmp2(:,ii),1500);  
end  
  
tmp1=zeros(size(DATA1(:,LL)));  
for  ii=1:size(LL,2);  
      tmp1(:,ii)=abs(hilbert(DATA1(:,LL(ii))));  
      tmp1(:,ii)=smooth(tmp1(:,ii),1500);  
end  
  
save tmp2  tmp2  
save tmp1  tmp1   
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% %Computation of the mean, std on time-windows of  the same length  
%%%T/35 
% load ENV.mat  
% load ENV1.mat  
  
T=length(tmp1)/35;  
T=floor(T);  
  
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%On the 1st intervalle:  
Mean1=mean(tmp(1:1:T,:));  
Mean11=mean(tmp1(1:1:T,:));  
  
STD1=std(Mean1)/mean(Mean1);  
STD11=std(Mean11)/mean(Mean11);  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%On the 2nd intervalle:  
Mean2=mean(tmp(T:1:2*T,:));  
Mean12=mean(tmp1(T:1:2*T,:));  
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STD2=std(Mean2)/mean(Mean2);  
STD12=std(Mean12)/mean(Mean12);  
 
… 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%On the 34th intervalle:  
Mean234=mean(tmp(33*T:1:34*T,:));  
Mean134=mean(tmp1(33*T:1:34*T,:));  
  
STD234=std(Mean234)/mean(Mean234);  
STD134=std(Mean134)/mean(Mean134);  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%On the 35th intervalle:  
Mean235=mean(tmp(34*T:1:35*T,:));  
Mean135=mean(tmp1(34*T:1:35*T,:));  
  
STD235=std(Mean235)/mean(Mean235);  
STD135=std(Mean135)/mean(Mean135);  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%On the 36th intervalle:  
Mean236=mean(tmp(35*T:1:end,:));  
Mean136=mean(tmp1(35*T:1:end,:));  
  
STD236=std(Mean236)/mean(Mean236);  
STD136=std(Mean136)/mean(Mean136);  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Meanact1=[Mean11; Mean12 ;Mean13; Mean14; Mean15; M ean16;Mean17; 
Mean18;Mean19; ...  
    Mean110; Mean111;Mean112;Mean113; Mean114;Mean1 15;Mean116; ...  
    Mean117;Mean118;Mean119; Mean120;Mean121;Mean12 2;Mean123; 
Mean124;Mean125;Mean126; ...  
    Mean127;Mean128;Mean129; Mean130;Mean131;Mean13 2;Mean133; 
Mean134;Mean135;Mean136];  
  
Meanact2=[Mean1; Mean2;Mean3;Mean4; Mean5;Mean6;Mea n7; Mean8;Mean9; ...  
    Mean10; Mean211;Mean212;Mean213; Mean214;Mean21 5;Mean216; ...  
    Mean217;Mean218;Mean219; Mean220;Mean221;,Mean2 22;Mean223; 
Mean224;Mean225;Mean226; ...  
    Mean227;Mean228;Mean229; Mean230;Mean231;Mean23 2;Mean233; 
Mean234;Mean235;Mean236]; 

 
save Meanact1  Meanact1  
save Meanact2  Meanact2 

 
STDact2=[STD1,STD2,STD3,STD4,STD5,STD6,STD7,STD8,ST D9, ...  
    STD10,STD211,STD212,STD213,STD214,STD215,STD216 ,STD218, ...  
    STD219,STD220,STD221,STD222,STD223,STD224,STD22 5,STD226, ...  
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    STD227,STD228,STD229,STD230,STD231,STD232,STD23 3,STD234, ...  
    STD235,STD236];  
  
STDact1=[STD11,STD12,STD13,STD14,STD15,STD16,STD17, STD18,STD19...  
    ,STD110,STD111,STD112,STD113,STD114,STD115,STD1 16,STD118 ...  
    ,STD119,STD120,STD121,STD122,STD123,STD124,STD1 25,STD126 ...  
    ,STD127,STD128,STD129,STD130,STD131,STD132,STD1 33,STD134 ...  
    ,STD135,STD136];  
  
save STDact2  STDact2  
save STDact1  STDact1  
  
figure(1);clf;  
plot(time([1:length(STDact1(1:end-1))]*T)*1000,STDa ct1(1:end-
1), 'k' , 'linewidth' ,2); hold on 
plot(time([1:length(STDact2(1:end-1))]*T)*1000,STDa ct2(1:end-
1), 'r' , 'linewidth' ,2)  
xlabel( 'Time (ms)' )  
ylabel( 'Energy level' )  
legend( 'act1' , 'act2' , 'Location' , 'Best' )  
saveas(figure(1), '02-Energy level' )  
  
figure(3);clf;  
plot3(xx(LL),yy(LL),Meanact1(1,:), 'bo' );hold on 
plot3(xx(LL),yy(LL),Meanact2(1,:), '*r' );hold on 
zlabel( 'Mean on the 1st interval of time ' )  
legend( 'Mean for DATA act1' , 'Mean for DATA act2' , 'Location' , 'Best' )  
saveas(figure(3), '04-Mean on the first interval of time' )  
  
figure(4);clf;  
plot3(xx(LL),yy(LL),Meanact1(25,:), 'bo' );hold on 
plot3(xx(Ll),yy(LL),Meanact2(25,:), '*r' );hold on 
zlabel( 'Mean on the 25th interval of points ' )  
legend( 'Mean for DATA act1' , 'Mean for DATA act2' , 'Location' , 'Best' )  
saveas(figure(4), '05-Mean on the 25nd interval of time' )  
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CODE TO FIT THE RECORDED SIGNALS TO A DECAYING EXPO NENTIAL  

f3=fullfile(f1,  'directory' );  
cd(f3)  
  
load tmp   
load tmp1  
load Meanact1  
load Meanact2   
load STDact2   
load STDact1   
load LL 
  
%% 
ii=261  
jj=find((LL>=261)&(LL<=261));  
figure(7);clf;  
plot(time*1000,DATA1(:,ii), 'r' );hold on 
plot(time*1000,DATA2(:,ii), ':b' );hold on 
plot(time*1000,tmp1cut(:,jj), 'g' , 'linewidth' ,2);hold on 
plot(time*1000,tmp2cut(:,jj), ':k' , 'linewidth' ,2);hold on 
xlabel( 'time (ms)' )  
ylabel( 'Recorded signals and their envelopes at the middle  point' )  
legend( 'Act1 #middle point' , 'Act2 #middle point' , 'Envelope act1 #middle 
point' , 'Envelope act2 #middle point' )  
saveas(figure(7), '07-Recorded signals and their envelopes at the mid dle 
point' )  
  
%% 
T=length(time)/35;  
T=floor(T);  
X=[9*T:1:29*T];  
ENV=zeros(size(tmp));  
ENV=tmp(X,:);  
ENV1=tmp1(X,:);  
Tfinal=time(X(end));  
Xfinal=ENV1(end,jj);  
xdata=time(X);  
%% first estimation of x0  
figure(8);clf;  
plot(time*1000,tmp1(:,jj), 'b' , 'linewidth' ,1);hold on 
plot(xdata*1000, Xfinal*exp(-220*(xdata-Tfinal)), 'g' );  
% plot(time*1000,0.0004*exp(-210.0059*(time-0.0155) ));  
xlabel( 'time (s)' )  
ylabel( 'DATAs envelope' )  
legend( 'envelope #350' , 'fit sur tmp(X):0.0002*exp(-210.0083*(t-
0.0183))' , 'fit sur tmp:0.0004*exp(-210.0059*(time-0.0155))' )  
  
%% 
x0=[ Xfinal 220];  
  
for  ii=1:size(ENV1,2);  
    xs1(ii,:)=lsqcurvefit(@FITT,x0,xdata,ENV1(:,ii) );  
    xs(ii,:)=lsqcurvefit(@FITT,x0,xdata,ENV(:,ii));  
end  
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save xs1  xs1  
save xs  xs  
  
  
F1=xs1(jj,1).*exp(-xs1(jj,2).*(time-xdata(end)));  
F=xs(jj,1).*exp(-xs(jj,2).*(time-xdata(end)));  
  
  
figure(9);clf;hold on 
plot(time*1000,tmp1(:,jj), 'b' );hold on 
plot(time*1000,F1, 'g' );  
plot(time*1000,tmp(:,jj), 'r' );hold on 
plot(time*1000,F, 'k' );  
plot(time(9*T)*1000,0:0.0003:tmp1cut(9*T,jj), '+k' , 'linewidth' ,1)  
plot(time(29*T)*1000,0:0.0003:tmp1cut(29*T,jj), '+k' , 'linewidth' ,1)  
xlabel( 'time (ms)' )  
ylabel( 'Envelope and its fit at the middle point between # 1 and #2' )  
legend( 'envelope #middle point when #1 active' , 'fit sur #1' , 'envelope 
#middle point when #2 active' , 'fit sur #2' )  
saveas(figure(9), '08-Envelope and its fit at the middle point betwee n 
#1 and #2'  )  
 
 
 
where the function FITT is defined by: 

function  F = FITT(x,xdata)  
  
F=x(1).*exp(-x(2).*(xdata-xdata(end)));  
 

 

 

 

 

 

 

 

 

 



 

 97 

CODE TO FILTER AND CLIPPED THE RECORDED DATA  

%% Filtering between F1e3 and F2e^3 and clipping at  THR1 NL  
F1=50;  
F2=90;  
THR1=25;  
  
f4=fullfile(f1,[ 'BF=' ,num2str(F1), '-' ,num2str(F2), 'kHz clipped at 
' ,num2str(THR1), 'NL' ]);  
if  (exist(f4) == 0)  
   mkdir (f4);  
end  
cd(f4)  
  
  
  
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 
%%DATA processing before 
correlation%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Choice of the frequency 
bandwidth%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%BF1 
Fmin=F1*10^3;  
Fmax=F2*10^3;  
  
  
freq_intALL=[Fmin Fmax]; %%in Hz;  
  
[BB,AA]=butter(4,[freq_intALL]/Fe*2);Fs=Fe/N; % Parameters of the passe-
band filter  
  
%% Filtering of the recorded signals  
DATA1=filtfilt(BB,AA,DATA1);  
DATA2=filtfilt(BB,AA,DATA2);  
DATA3=filtfilt(BB,AA,DATA3);  
  
IND1=99  
DATAref1=DATA1(:,K(1)); % Choice of the references points  
DATAref2=DATA2(:,K(2));  
DATAref3=DATA3(:,K(3));  
  
  
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%Determine common Threshold estimated of the pre- trigger signal or 
the  
%%%tail of the signal  
for  ii=1:n;  
    s=[ 'NOISElevel' ,num2str(ii)]  
    A(ii)=eval(s);  
end  
NOISElevel=mean(A);  
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THR=THR1*NOISElevel;  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%Detect THRESHOLD 
DECAY=200; %%number of points for the decay  
WINDOW=hanning(DECAY*2);  
INDEX=1;  
for  jj=1:size(DATA1,2)  
jj  
    for  Rec=[1, 2, 3];  
        if  Rec==1  
            D1=DATA1(:,jj);  
        elseif  Rec==2  
            D1=DATA2(:,jj);  
        elseif  Rec==3  
            D1=DATA3(:,jj);  
        end  
  
        IIok=find(abs(D1)>=THR);  
        ImaxALL(INDEX,jj)=max(find(diff(IIok)<=1)); %%Prevent fomr 
getting influenced by isolated spikes  
        IIok=[IIok(1):IIok(ImaxALL(INDEX,jj))];  
  
        Imax(:,jj)=IIok(end);  
        Imin(:,jj)=IIok(1);  
    end  
end   
  
Imax=mean(Imax);  
Imin=mean(Imin);  
Imax=floor(Imax);  
Imin=(floor(Imin));  
  
  
DECAY=200; %%number of points for the decay  
WINDOW=hanning(DECAY*2);  
INDEX=1;  
for  jj=1:size(DATA1,2)  
jj  
    for  Rec=[1, 2, 3];  
        if  Rec==1  
            D1=DATA1(:,jj);  
        elseif  Rec==2  
            D1=DATA2(:,jj);  
        elseif  Rec==3  
            D1=DATA3(:,jj);  
        end  
  
        IIok1=Imin:Imax;  
         
        Imax=IIok1(end);  
        Imin=IIok1(1);  
         
        %%Select the part of the signal above the threshold  "THR"  
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        TEMP=zeros(N,1);  
        TEMP(IIok1)=D1(IIok1);  
  
        %%Smooth the edges  
        TEMP(Imax-DECAY+1:Imax)=TEMP(Imax-
DECAY+1:Imax).*WINDOW(DECAY+1:end);  
        TEMP(Imin:Imin+DECAY-1)=TEMP(Imin:Imin+DECA Y-
1).*WINDOW(1:DECAY);  
  
  
        IIhigh=find(abs(TEMP)>=THR);  
  
        %%Clip the amplitude;  
        TEMP(IIhigh)=THR.*sign(TEMP(IIhigh));  
        D1=TEMP;  
  
        %Replace each line by its clipped values   
        if  Rec==1  
            DATA1(:,jj)=D1;  
        elseif  Rec==2  
            DATA2(:,jj)=D1;  
        elseif  Rec==3  
            DATA3(:,jj)=D1;  
        end  
  
    end  
  
end ;  
  
  
%% Compare the signals before and after clipping  
for  ii=1:n  
    sref=[ 'DATAref' ,num2str(ii)]  
    s=[ 'DATA' ,num2str(ii)]  
    D=eval(s);  
    figure(IND1-(ii));clf;  
    plot(time*10^3,eval(sref), 'b' )  
    hold on 
    plot(time*10^3,D(:,(K(ii))), 'r' )  
    ylabel([ 'DATA' , num2str(ii), ' #' , num2str(ii)], 'fontsize' ,10)  
    xlabel( 'time(ms)' , 'fontsize' ,12)  
    title([ 'filtered in [' , num2str(F1), '-' ,num2str(F2), '] kHz and 
clipped at ' ,num2str(THR1), '*NL ' ], 'fontsize' ,10)  
    legend([ 'Filtered in BF=' , num2str(F1), '-
' ,num2str(F2), 'kHz' ],[ 'Clipped at' ,num2str(THR1), 'NL' ])  
    saveas(figure(IND1-(ii)),[ '01-DATA' ,num2str(ii), ' at the impact 
#' ,num2str(ii), ' clipped ' ,num2str(THR1), 'NL ' ])  
end  
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CODE TO COMPUTE THE PERFORMANCE OF THE DFI TECHNIQU E: 

BY EVALUATING THE ESTIMATE OF THE GREEN’S FUNCTION, THE SNR , THE ARRIVAL 

TIME AND R(N,T) 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Computation of the cross-correlation  
CORR=0 
  
for  jj=1:length(Ll);  
    jj  
    CORR=CORR+xcorr(DATA2(:,Ll(jj)),DATA1(:,Ll(jj)) );  
  
end  
  
CORRorig=CORR; 
save CORRorig  CORRorig  
  
  
%% Comparison of the two definition of Correlation  
figure(100);clf;hold on;  
plot(tcorr*1000,CORR/max(CORR), 'k' )  
xlim(1.5*[-1 1])  
drawnow  
xlabel( 'Time (ms)' )  
ylabel( 'C_1_2(t)' )  
saveas(figure(100),[ '01-Normalized Correlation between ' ,num2str(rr), ' 
and ' , num2str(RR), ...  
    'BF=' ,num2str(F1), '-' ,num2str(F2), 'kHz at ' ,num2str(THR1), 'NL ' ])  
  
%% reassign the time axis of the Correlation  
tfin=[-(N-1):0.1:(N-1)]*Ts;  
Cfin=spline(tcorr,CORRorig,tfin);  
figure(101);clf;  
plot(tfin,Cfin);  
xlim(1.5e-3*[-1 1]);  
xlabel( 'time(s)' )  
ylabel( 'C_1_2(t) using spline' )  
saveas(figure(101),[ '02-Correlation using spline between ' ,num2str(rr), 
' and ' , num2str(RR), ...  
    'BF=' ,num2str(F1), '-' ,num2str(F2), 'kHz clipped at 
' ,num2str(THR1), 'NL ' ])  
  
  
%% Gradient of Corr  
DCfin=gradient(Cfin);  
figure(102);clf;  
plot(tfin*1000,DCfin/max(DCfin));  
xlim(1.5*[-1 1]);  
xlabel( 'Time (ms)' )  
ylabel( 'd/dt(C_1_2(t))' )  
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saveas(figure(102),[ '03-DCfin between ' ,num2str(rr), ' and ' , 
num2str(RR), ...  
    'BF=' ,num2str(F1), '-' ,num2str(F2), 'kHz at ' ,num2str(THR1), 'NL ' ])  
  
save DCfin  DCfin  
  
%% determination of the max and min of the green fu nction  
I=3.22e5:Nfin+1;  
II=Nfin+1:Nfin+1+length(I)-1;  
  
figure(111);clf;hold on 
plot(tfin,DCfin/max(DCfin));  
plot(tfin(I),DCfin(I)/max(DCfin), 'g' );  
plot(tfin(II),DCfin(II)/max(DCfin), 'r' );  
xlim(1.5e-3*[-1 1]);  
  
Iposfin=find(tfin>=0);  
Inegfin=find(tfin<=0);  
tposfin=tfin(Iposfin);  
tnegfin=tfin(Inegfin);  
Tsfin=Ts/10;  
[Mmin,Imin]=min(DCfin(II));  
[Mmax,Imax]=max(DCfin(I));  
  
  
%% symmetric of DCfin and its max time  
CC=fliplr(DCfin);  
CDsym=(DCfin-CC)./2;  
figure(103);clf;hold on 
plot(tfin,DCfin, 'b' );  
plot(tfin,CDsym, 'r' );  
xlim(1.5e-3*[-1 1]);  
xlabel( 'time(s)' )  
ylabel( 'symmetric and d/dt(C_1_2(t)) using spline' )  
saveas(figure(103),[ '04-Symmetric and GF between ' ,num2str(rr), ' and 
' , num2str(RR), ...  
    'BF=' ,num2str(F1), '-' ,num2str(F2), 'kHz clipped at 
' ,num2str(THR1), 'NL ' ])  
  
[Mpossym,Ipossym]=min(CDsym(II));  
[Mnegsym,Inegsym]=max(CDsym(I));  
tmax=tfin(I(1)+Imax-1)  
tmin=tfin(II(1)+Imin-1)  
tminpossym=tfin(II(1)+Ipossym-1)  
 
%% On a small time-window  
DCfinlast=DCfin(Nfin+1-6000:Nfin+1+6000);  
CDsymlast=CDsym(Nfin+1-6000:Nfin+1+6000);  
figure(104);  
plot(DCfinlast)  
[Mmin,Imin2]=min(DCfinlast(6001:end));  
Imin2=Imin2+6000;  
[Mmax,Imax2]=max(DCfinlast(1:6000));  
[Mpossym,Ipossym2]=min(CDsymlast(6001:end));  
Ipossym2=Ipossym2+6000;  
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IM=[Imax2,Imin2,Ipossym2];  
save IM IM 
  
DD=abs(hilbert(DCfin));  
DDsym=abs(hilbert(CDsym));  
  
[Mpossymenv,Iposenvsym]=max(DDsym(II));  
[Mposenv,Iposenv]=max(DD(II));  
[Mnegenv,Inegenv]=max(DD(I));  
tmaxnegenv=tfin(I(1)+Inegenv-1)  
tmaxposenv=tfin(II(1)+Iposenv-1)  
tmaxposenvsym=tfin(II(1)+Iposenvsym-1)  
  
save TTmax tmax  tmin  tminpossym  tmaxposenv  tmaxnegenv  tmaxposenvsym   
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Location of the different time-windows  
STD=5.9e5:6.2e5;  
STD2=4.086e5:4.086e5+length(STD);  
STD3=3.425e5:3.425e5+length(STD);  
  
figure(105);clf;  
plot(tfin,DCfin);hold on 
plot(tfin(STD),DCfin(STD), 'r' );hold on 
plot(tfin(STD2),DCfin(STD2), 'g' ); hold on 
plot(tfin(STD3),DCfin(STD3), 'k' )  
xlabel( 'time (s)' )  
ylabel( 'GF' )  
saveas(figure(105), '05-Location of STD on GF' )  
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Do the correlations receiver one by one. then su m all of them  
tref=tminpossym;  
trefenv=tmaxposenvsym;  
trefneg=-tref;  
trefnegenv=-trefenv;  
Irefpos=find((tfin>=tref)&(tfin<=tref+Tsfin))  
Irefneg=Nfin+1-Irefpos+1  
Irefneg=find((tfin>trefneg)&(tfin<(trefneg+Tsfin))) -1  
Irefposenv=find((tfin>trefenv)&(tfin<trefenv+Tsfin) )  
Irefnegenv=find((tfin>trefnegenv)&(tfin<(trefnegenv +Tsfin)))-1  
   
%% computation of the correlation and SNR  
I=3.22e5:3.26e5;  
II=3.295e5:3.335e5;  
  
figure(200);clf;  
plot(tfin,DCfin, 'b' );hold on 
plot(tfin(I),DCfin(I), 'g' );hold on 
plot(tfin(II),DCfin(II), 'r' );  
  
CORR=0 
% figure(6);clf;  
XX=0;  
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XXsym=0;  
for  jj=1:200; %size(Ll,2);  
    jj  
    temp=xcorr(DATA2(:,Ll(jj)),DATA1(:,Ll(jj)));  
    tempfin=spline(tcorr,temp,tfin);  
    Dtempfin=gradient(tempfin);  
    Dtempfin1=Dtempfin(Nfin-6000:Nfin+6000);  
    CORR=CORR+temp;  
    Cfin=spline(tcorr,CORR,tfin);  
    DCfin=gradient(Cfin);  
    DCfin1=DCfin(Nfin-6000:Nfin+6000);  
  
     
    DCsym=(-DCfin+fliplr(DCfin))./2;  
    DCsym1=DCsym(Nfin-6000:Nfin+6000);  
    Dtempsym=(-Dtempfin+fliplr(Dtempfin))./2;  
    Dtempsym1=Dtempsym(Nfin-6000:Nfin+6000);  
    DD=abs(hilbert(DCfin));  
    DDsym=abs(hilbert(DCsym));  
     
%     %%%for STD  
    STDD=std(DCfin(:,STD),0,2);  
    STDDsym=std(DCsym(:,STD),0,2);  
       
    %%%for STD2 
    STDD2=std(DCfin(:,STD2),0,2);  
    STDDsym2=std(DCsym(:,STD2),0,2);  
     
    %%%for STD3 
    STDD3=std(DCfin(:,STD3),0,2);  
    STDDsym3=std(DCsym(:,STD3),0,2);  
     
    %Estimate of the arrival time on the envelope  
     
    [Max_ENVpos(jj,1),Imin_ENVpos(jj,1)]=max(DD(II) );  
     
    [Max_ENVneg(jj,1),Imax_ENVneg(jj,1)]=max(DD(I)) ;  
       
    [Max_ENVsym(jj,1),Imax_ENVsym(jj,1)]=max(DDsym( II));  
 
    %Estimation of the arrival time on the GF and of R( N,T)  
  
   [Min_pos(jj,1),Iminpos(jj,1)]=min(DCfin(:,II));  
    M_pos(jj)=-Min_pos(jj)/STDD;  
    M_pos2(jj)=-Min_pos(jj)/STDD2;  
    M_pos3(jj)=-Min_pos(jj)/STDD3;  
     
    [Max_neg(jj,1),Imaxneg(jj,1)]=max(DCfin(:,I));  
    M_neg(jj)=Max_neg(jj)/STDD;  
    M_neg2(jj)=Max_neg(jj)/STDD2;  
    M_neg3(jj)=Max_neg(jj)/STDD3;  
    
    [Max_sym(jj,1),Imaxsym(jj,1)]=max(DCsym(:,II));  
    M_sym(jj)=Max_sym(jj)/STDDsym;  
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    M_sym2(jj)=Max_sym(jj)/STDDsym2;  
    M_sym3(jj)=Max_sym(jj)/STDDsym3;  
     
   %%%computation of the SNR  
   
    XX=(XX+Dtempfin1.^2);  
    Varr(:,jj)=sqrt((jj/(jj-1)*(XX*1/jj-(1/jj*DCfin 1).^2))/jj);  
    Varrmin(jj)=median(Varr(IM(2)-2000:IM(2)+2000,j j));  
    SNR(:,jj)=(1/jj)*DCfin1./(Varrmin(jj));  
   
    XXsym=(XXsym+Dtempsym1.^2);  
    Varrsym(:,jj)=sqrt((jj/(jj-1)*(XXsym*1/jj-(1/jj *DCsym1).^2))/jj);  
    Varrminsym(jj)=median(Varrsym(IM(3)-2000:IM(3)+ 2000,jj));  
    SNRsym(:,jj)=(1/jj)*DCsym1./(Varrminsym(jj));  
    
end  
  
%% SNR vs. sqrt(N) at the maximum point of the GF  
figure(8);clf;  
plot(sqrt(1:size(SNR,2)),SNR(IM(1),:), 'r' , 'linewidth' ,2); hold on 
plot(sqrt(1:size(SNR,2)),-SNR(IM(2),:), 'b' , 'linewidth' ,2);  
plot(sqrt(1:size(SNR,2)),SNRsym(IM(3),:), 'k' , 'linewidth' ,2)  
title( 'SNR in function of N^1^/^2' )  
xlabel( 'N^1^/^2' )  
ylabel( 'SNR ' )  
legend( 'negative side' , 'positive side' , 'symmetric' )  
saveas(figure(8), '07-SNR in function of sqrt N' )  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% time representation: phase velocity and group ve locity  
figure(11);clf;  
subplot(1,2,1)  
plot(-tfin(I(1)+Imaxneg-1), '+r' );hold on 
plot(tfin(II(1)+Iminpos-1), '+b' );hold on 
plot(tfin(II(1)+Imaxsym-1), '*k' );  
plot(1:0.1:length(Ll),tref, '--g' , 'linewidth' ,4)  
xlabel( 'Number of points' )  
ylabel( 'Maximum time on symmetric of d/dt(C_1_2(t)) ' )  
legend( 'negative side' , 'positive side' , 'symmetric' ...  
    , 'reference time' )  
subplot(1,2,2)  
plot(-tfin(I(1)+Imax_ENVneg-1), '+r' );hold on 
plot(tfin(II(1)+Imin_ENVpos-1), '+b' );hold on 
plot(tfin(II(1)+Imax_ENVsym-1), '*k' );  
plot(1:0.1:length(Ll),trefenv, '--g' )  
xlabel( 'Number of points' )  
xlabel( 'Number of points' )  
ylabel( 'Maximum time on symmetric of the envelope of d/dt( C_1_2(t)) ' )  
saveas(figure(11), '10-Maximum time on symmetric of DCfin and its 
envelope' )  
   
%% comparison between SNR and R(N,T) on the symmetr ic of the GF  
figure(12);clf;  
plot(sqrt(1:length(Ll)),M_sym/max(M_sym), 'b' , 'linewidth' ,2);hold on 
plot(sqrt(1:length(Ll)),M_sym2/max(M_sym2), 'b' , 'linewidth' ,2);hold on 
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plot(sqrt(1:length(Ll)),M_sym3(1:length(Ll))/max(M_ sym3(1:length(Ll))),
'g' , 'linewidth' ,2);hold on 
plot(sqrt(1:length(Ll)),SNRsym(IM(3),:)/max(SNRsym( IM(3),:)), 'k' , 'linew
idth' ,2);  
xlabel( 'N^1^/^2' )  
ylabel( 'SNR' )  
title( 'SNR with VARR and MAx/max(MAX) in function of N^1^ /^2 ' )  
legend( 'symmetric Max/STD2' , 'symmetric Max/STD3' , 'symmetric VARR' )  
saveas(figure(12), '14- Comparison two SNRs in function of sqrt N' )  
  
save SNR SNR 
save SNRsym SNRsym 
save Imaxneg  Imaxneg  
save Imaxsym  Imaxsym  
save Iminpos  Iminpos  
save Imax_ENVneg  Imax_ENVneg  
save Imax_ENVsym Imax_ENVsym 
save Imin_ENVpos  Imin_ENVpos  
  
save M_sym M_sym 
save M_sym2 M_sym2 
save M_sym3 M_sym3 
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CODE TO COMPUTE THE WIGNERVILLE  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%% WIGNERVILLE %%%%%%%%%%% 
  
DCORR=gradient(CORR);  
DCORR1=DCORR(N-800:N+800);  
  
CORR=DCORR1; 
  
FeOLD=2.5e6;  
freq_int1=[10e3 90e3]; %%en hz;  
[BB,AA]=butter(4,[freq_int1]/FeOLD*2); % Parametres du Filtre passe-
bande  
CORR=filtfilt(BB,AA,CORR);  
  
%%Downsample by a factor RATE to reduce the number of points in the 
time-series  
%%Need to Change the sampling frequency  
RATE=4;  
Fe2=FeOLD/RATE;  
    CORR=decimate(CORR,RATE);  
                 
                     
                    %%Redefine Time-frequency axis after resampling  
                    Ts2=1/Fe2;  
Mpoint=(length(CORR)-1)/2; %floor(delay/Ts);  
tcorr2=[-(Mpoint):(Mpoint)]*Ts2;  
  
Ipos2=find(tcorr2>=0);  
Ineg2=find(tcorr2<=0);  
tpos2=tcorr2(Ipos2);  
Nc2=length(tcorr2); %2*N-1;  
freqC2=[0:Nc2-1]/Nc2/Ts2; %%axe de frequence pour la correlation  
  
  
%%%PLot the two correlations  
figure;;hold on 
subplot(2,1,1)  
plot(tcorr2,CORR/max(abs(CORR)), 'r' );  
xlabel( 'time' )  
ylabel( 'normalized correlation' )  
subplot(2,1,2)  
plot(freqC2,abs(fft(CORR)), 'k' )  
xlabel( 'frequency' )  
ylabel( 'FFT of the correlation' )  
  
%%%%%%%%%%%%%%%%%Time Frequency analysis; 
addpath( 'C:\Documents and Settings\Sarah Herbison\My 
Documents\TIME_FREQUENCY\tftb-0.1\mfiles' )  
  
%%%%%%%%%%%%For Time Frequ Analysis 
IcentTF=Ineg2; %pos2;%Ineg; %%Select only positive time  
%%Make it even number-> remove last point;  
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IcentTF(end)=[];  
TcentTF=tcorr2(IcentTF);  
LENGTH1=length(TcentTF)/2;  
Nc_TF=length(TcentTF);  
freqC_TF=[0:Nc_TF-1]/Nc_TF/Ts2;  
Csym=(-CORR+flipud(CORR))/2; %figure;plot(Csym)  
CC=Csym(IcentTF).*hanning(length(IcentTF));  
% CC=CORR(IcentTF).*hanning(length(IcentTF));  
   
   %%Select Frequency equalization to improve bandwidt h/ resolutions  
   EXPOwhiten=0.01  
       CC=FREQ_WHITEN_HANNINGonly(fft(CC),freq_int1 ,Fe2,EXPOwhiten);  
  
        [Wig,Tc1,F1] =tfrspwv(CC+sqrt(-
1)*hilbert(CC),[1:length(TcentTF)],LENGTH1);  
       %  [Wig, RWig] =tfrrspwv(CC+sqrt(-
1)*hilbert(CC),[1:length(TcentTF)],LENGTH1);  
      Wig=((Wig.')); %%each column is a frequency  
        
        Fc1=[0:LENGTH1-1]/length(TcentTF)/Ts2;  
        If1=find(Fc1>=freq_int1(1) & Fc1<=freq_int1 (2) );  
        Fc2=Fc1;If2=If1;  
  
        [RWig, Tc1, Fc2,Wt] = 
tfrscalo(CC,[1:length(TcentTF)],sqrt(length(TcentTF ))/4,freq_int1(1)/Fe
2,freq_int1(2)/Fe2 );  
        Fc2=Fc2*Fe2; %[0:LENGTH1-1]/length(TcentTF)/Ts;  
        If2=[1:length(Fc2)] ;  
                     
  
        RWig=((RWig.')); %%each column is a frequency  
        
        RMMamp=max(max(abs(RWig)));  
        MMamp=max(max(abs(Wig)));  
  
        Scale=10 %%in DB 
        figure;clf;hold on 
                 subplot(2,1,1);hold on 
                 
pcolor(TcentTF,Fc1(If1),20*log10(abs(Wig(:,If1).')/ MMamp)) 
                hold on 
                shading interp  
                caxis([-1 0]*Scale);colorbar  
        %        xlim(0.1/2*[-1 1])  
                ylim(freq_int1)  
                hold off  
                axis tight  
        title( 'Smooth-Pseudo Wigner Ville - Ineg on 
symGrad(CORR)BF1_2_._5_N_L' )  
  
        subplot(2,1,2);hold on 
                 
pcolor(TcentTF,Fc2(If2),20*log10(abs(RWig(:,If2).') /RMMamp))  
                hold on 
                shading interp  
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                caxis([-1 0]*Scale);colorbar  
        %        xlim(0.1/2*[-1 1])  
                ylim(freq_int1)  
                hold off  
                axis tight  
title( 'Scalogram' )      
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