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SUMMARY 

 

Somatic embryogenesis is a clonal propagation method that encompasses many 

advantages for large-scale propagation of plants.  Application of somatic embryogenesis 

is however limited due to unresolved problems in culture techniques.  One major obstacle 

is the inhibition from culture of embryos in liquid culture medium, i.e. in a bioreactor 

environment, on subsequent plant development.  To overcome this obstacle, it is 

important to gain insight into the effects of flow on somatic embryo development.  

Specifically, preliminary data points to the importance of the effect from 

hydrodynamically-induced mechanical stress, on the development of a polarized somatic 

embryo in the proliferation phase.  This doctoral research program intends to establish the 

correlation between shear stress in liquid culture conditions and somatic embryo 

development.   

The effect of steady shear stress on somatic embryos were investigated in a flow 

chamber and evaluated at different time intervals using microscopy technique.  The 

development of meristematic cell clusters, i.e. the immature embryos, into a polarized 

somatic embryo, and the effect on the localization of the suspensor cells that form during 

development of the immature embryos, were studied as a function of shear stresses.  With 

the distribution and growth rate of the meristematic and suspensor cells, the effect of 

stress on the embryo development was established.  Furthermore, the effect of shear 

stress on the cells at molecular level, the reaction of integrin-like proteins, the production 



 xix 

of reactive oxygen species and the pore size of the cell walls involved in the shear stress 

responses, were investigated with molecular techniques.   

In general, shear stress inhibits meristematic cells growth.  Meristematic cells 

grow fastest at shear rate of 86 s
-1

 among all the tested shear stress conditions.  By 

combining the results of meristematic cells growth and suspensor cells formation, it 

suggests that there is a critical shear rate between 86 and 140 s-1, at which no suspensor 

cells form.  The unidirectional flow with different shear stresses helps the polarized 

growth and the unidirectional alignment of suspensor cells.  Reactive oxygen species and 

integrin-like protein are detected in the stressed cells as cellular responses to shear 

stresses.  By monitoring the pore size and uptake time of cells to macromolecules with 

solute-exclusive experiments, it suggests that the stressed cells expedite the response to 

plasmolyzing components that are used to induce maturation treatment thus affect the 

response to maturation stimuli.  The results from this research program will contribute to 

the knowledge of somatic embryo development in liquid condition under different shear 

stresses.   
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CHAPTER 1 

INTRODUCTION 

 

 Plants play a vital role in human lives and have important functions in ecosystems 

(Forest Trees, Committee on Managing Global Genetic Resources: Agricultural 

Imperatives, National Research Council 1991).  Plants provide not only renewable 

sources such as food, fibers, wood and chemicals for human societies, but also habitats 

for numerous organisms.  Forest trees draw special attentions among all the plants due to 

their broad coverage area and the influence to ecosystems. They provide essential 

ecological functions as land preservation, water purification and carbon storage.  Nearly 4 

billion hectares of forest cover the earth’s surface that is roughly 30% of the total land 

area on earth. However, the world’s forests have shrunk by nearly 30% in the last two 

centuries as land was cleared to make way for farms and to meet demand for wood 

(Mygatt 2006).    

 Forests are cleared to grow food and energy crops and meet demand for wood 

products.  As the global population increases, there is a high demand for food, energy and 

chemicals according to the resources on the website of United Nations Food & 

Agriculture Organization (data from Food and Agriculture Organizations of United 

Nations, 2008-2009).  The global wood harvest totaled 3.4 billion cubic meters in 2004, 

up from 2.3 billion cubic meters in 1961. Fifty-two percent of this is used as fuel, though 

this varies regionally.  Fuel wood accounts for 89 percent of Africa’s wood harvest, 

where it is often the only accessible and affordable source of energy for heating and 
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cooking, but only 17 percent in North and Central America, where other energy sources 

are more readily available (Global Forest Resources Assessment 2005, United Nations 

Food and Agriculture Organization). For North America, conifers are the most 

widespread forest trees.  Plant materials have also been used to produce Biofuel which, as 

a green energy source, lessens the toxic pollutant emissions produced by burning 

gasoline, and cuts down on the dumping of used oil.  Although large scale production of 

this renewable energy is still under debate mainly because of the high production energy 

consumption, Biofuel technology has gained rapid development over the past few years 

and Biofuel supplied 1.5% of the world’s transportation fuel in 2008 (Bringezu et al 

2009).   

 The increasing global need for food and bio products demands a steady supply of 

a large amount of plant materials (e.g., potato, corn, etc.).  One possibility to meet the 

increased need for wood products is to naturally grow highly productive plants (von 

Arnold et al 2005).  This approach, however, is limited by the scarce natural resources, 

unpredictable climate conditions and the long life cycle.  The world suffered a net loss of 

some 37 million hectares of forest over the last five years, according to data from FOA. 

This number reflects the felling of 64.4 million hectares of trees and the planting or 

natural regeneration of 27.8 million hectares of new forest. Each year the world loses 

around 7.3 million hectares of forest, an area the size of Panama.  Due to extensive 

reforestation, this net forest shrinkage has slowed slightly from the 8.9 million hectares 

lost annually in the 1990s. While this is encouraging, it obscures the fact that gross 

deforestation has not declined significantly since 2000.  Another possibility is to grow 

modified cells in a bioreactor to produce certain compounds in a more controlled 
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environment to increase productivity and save the forest trees.  This relatively new 

approach warranties further research to ensure it is safe and sustainable.   

 With the rapid advance of technology, bioreactors can now be used to culture 

cells and eventually will produce plants in a much faster pace (Ingram & Mavituna 2000; 

Preil 1991; Tautorus & Dunstan 1995; Ziv et al 1994).  For example, some of the 

chemical compounds that play an important role in the pharmaceutical and health but 

only exist in small amount in naturally-grown plants, can be produced in bioreactors with 

cell culture technique.  Such as shikonin (Fujii et al 1992; Inouye et al 1979; 

Papageorgiou et al 1999; Sankawa et al 1977), ginseng (Ang-Lee et al 2001; Attele et al 

1999; Fugh-Berman 2000) and paclitaxel (Herbst et al 2004; McGuire et al 1996; 

Rowinsky & Donehower 1995; Sandler et al 2006) are now commercially available.  

Angelica (Angelica archangelica) plantlets cultured in an air-sparged bioreactor has been 

successfully transferred to soil and grow to maturity after two seasons (Eeva et al 2003).  

 Years of studies have shown that propagating trees vegetatively creates significant 

advantages both for deployment of selected genotypes through mass-propagation and for 

capturing and enhancing the genetic gain in the breeding program (Egertsdotter 1999; 

Harry & Thorpe 1999).  The methods of clonal propagation and especially somatic 

embryogenesis provide powerful options for breeding and management.  Somatic 

embryogenesis is the only clonal propagation technique with the potential for practical 

application in large scale propagation of softwood trees.  The technique has thus the 

potential to enable mass propagation of selected genotypes and can be used as part of 

breeding programs(Egertsdotter 1999; Harry & Thorpe 1999).  Before the technique can 

be effectively implemented on a larger scale, however, it is necessary to eliminate the 
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costly and time consuming manual processing of somatic embryos.  Furthermore, to 

automate the laboratory procedure for handling somatic embryos in bioreactors, it is 

essential to establish an efficient system for propagation and plant formation in a liquid 

culture medium (Gupta and Timmis 2005; Moorhouse et al. 1996; Tautorus et al. 1992).     

1.1 Motivation, hypotheses and objectives 

 The progress in application of somatic embryogenesis to large-scale clonal 

propagation of plants and agricultural goods is partially halted because the majority of the 

embryos growing in liquid do not mature to produce a plant.  Past studies by Egertsdotter 

(1996) and others (Krishna & Singh 2007; Stadler et al 2005) have shown that the 

underlying problem is the lack of polarity in suspensor cell growth on the surface of the 

early embryo.  To overcome this obstacle, it is important to gain insight into how flow 

affects somatic embryo development and distribution and orientation of suspensor cells 

on the embryo.  The most important effect is the hydrodynamically-induced mechanical 

stress (hereafter referred to as “mechanical stress” only) on the development of suspensor 

cells.   

Somatic embryos of gymnosperm species develop into plants in vitro by passing 

through three culture phases of proliferation, maturation and germination, in response to a 

sequence of different compositions of culture media (Von Arnold & Clapham 2007).  

During proliferation phase, embryos at several stages of development are present at the 

same time, ranging from pro embryogenic masses (PEMs) to extended, polarized 

embryos comprised of a bundle of unidirectional suspensor cells attached to a 

meristematic region (Bozhkov et al 2002; Filonova et al 2000).  The composition of 
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embryos at different stages relating to the physical culture conditions is either 

proliferating on the surface of a solidified culture medium, or within a liquid culture 

medium under rotation (Egertsdotter & von Arnold 1998).  Liquid culture conditions 

have shown to be able to support growth of predominantly earlier stage embryos and 

PEMs that are at a too early developmental stage to respond to the maturation stimuli.  

However, it rarely occurs that somatic embryos fully mature in liquid culture condition 

(Gorbatenko & Hakman 2001).  In contrast, the solid culture conditions can support 

growth of PEMs, and produce embryos successfully responding to maturation stimuli.  

Currently, it remains unclear why embryos develop differently in liquid and solid culture 

conditions.   

 The motivation of this thesis is to understand the inhibition of development of 

somatic embryos in liquid culture bioreactor.  Especially, this thesis will focus on the 

effect of flow-induced shear stress on the embryo development.  This research is based 

on the following two hypotheses that during proliferation phase, (1) somatic embryos 

need to be polarized to develop into mature embryos and (2) shear stress generated under 

liquid culture conditions has an effect on polarized growth of somatic embryos.  The 

objectives of this thesis are to:  

1) Investigate how shear stress affects immature somatic embryo growth; 

2) Investigate the directional growth of suspensor cell in response to shear stress; 

3) Investigate possible mechanisms of stress signal transduction.  
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1.2 Plant clonal propagation techniques 

1.2.1 Advantages of plant clonal propagation techniques 

The natural way of plant propagation is through seeds.  Matured plants produce 

seeds, and seeds either undergo a period of hibernation or develop and grow into new 

plants under proper conditions, such as light, temperature, water, etc.  However, some 

plants do not produce seeds at all and this makes the propagation of such species more 

difficult, if not impossible.  For these species, clonal propagation techniques can be a 

good option for reproduction without the present of seeds.  Clonal propagation techniques 

also make large scale production of certain wood products possible. 

Large scale production of high value plants for forest plants, agricultural 

applications, biofuel production, ornamental purposes, or molecular pharming within the 

pharmaceutical sector, relies on production of clonal propagules from selected superior 

genotypes.  To make this process more efficient, the concept of automated production of 

clonal plant propgaules for plantation growth has been introduced.  Clonal propagation 

gives an opportunity for transgenic modification and further improvements of the quality 

of the raw material (Merkle & Dean 2000), which is also the pre requisite for production 

of plants that have been genetically improved by traditional breeding strategies, or direct 

genetic transformation.  Optimal growth and yield from plantations can only be achieved 

when genetically identical (clonal) plants are utilized.   

There are many advantages from clonal plantations.  Most importantly, it is 

overall a more cost effective approach when dealing with a uniform crop throughout the 

processes from planting to harvesting.  A uniform planting stock for which the growth 
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requirements are previously known, and where the genotype has been optimally matched 

to the environment, is more cost effective to maintain and results in higher gain.  Uniform 

crop makes harvesting easier and the final processing of the raw material better tailored 

to fit the quality characteristics.     

1.2.2 Application of different plant clonal propagation techniques 

Different clonal propagation techniques have been developed for producing clonal 

plant propagules depending on the plant species of interest and the ultimate use for the 

propagule.  For example, traditionally, clonal propagation of plants has been through 

grafting and rooting of cuttings.  Propagation of many important species of ornamental 

plants (Rout et al 2006) and medicinal plants (Rout et al 2000) requires meristem culture 

or axillary bud/shoot culture.  However, application of these techniques is limited.  Most 

woody plant species (e.g. coffee, cotton, mango and all trees) are highly recalcitrant to 

propagation through cuttings, which frequently cause the resulting plants to display 

plagiotropic (un-naturally directed) growth.  For many plant species, vital normal looking 

clonal plants can not be obtained from meristems or bud/shoot explants either.  

Furthermore, the number of cuttings that can be obtained from the same plant is limited, 

preventing large scale propagation efforts.    For large scale production of woody plants, 

somatic embryogenesis is currently the only clonal propagation method suitable (Thorpe 

et al 2006).  This technique is discussed further next. 

For many agricultural plant species, vital normal looking clonal plants can only be 

obtained from embryos through the process of somatic embryogenesis.  This process has 

been demonstrated to be essential scalable clonal propagation technology for sugarcane 
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(Lakshmanan et al 2006), mango (Krishna & Singh 2007), maize (Che et al 2006), oil 

palm (Morcillo et al 2006), coffee (Barry-Etienne et al 2002), cotton (Rathore et al 2006) 

and all soft wood trees (e.g., Loblolly pine, Radiata pine, White spruces and Douglas fir 

(Thorpe et al 2006)).  Somatic embryogenesis technique has also shown great potential 

for important hard wood trees like Eucalyptus (Pinto et al 2004).  The somatic embryos 

can be stored for many years under liquid nitrogen.  In cryogenic storage, combination of 

somatic embryogenesis with cryopreservation allows testing of the clonal plants in field 

trials before multiplying and deploying a certain genotype on a large scale.  Somatic 

embryogenesis can produce unlimited numbers of clonal plants with a good connection 

between root and shoot, which is often a problem in cuttings.  The somatic 

embryogenesis process is suitable for automation even considering the obstacles the 

process has to overcome, as discussed below.   

Sufficient numbers of genetically identical plants suitable for industrial scale 

operations requires a clonal propagation system that allows for scaleable propagation in 

liquid medium.  Different types of bioreactors have been developed for automation of the 

somatic embryogenesis procedures, as reviewed by Moorhouse et al. (1996). However, 

for most current clonal propagation technologies, one or more developmental stages have 

to be conducted in air.  This greatly complicates the handling of propagules and makes 

the technology inefficient and more expensive.  For somatic embryogenesis in particular, 

the development of polarized somatic embryos is rare in liquid culture conditions.  

Therefore, large scale propagation of plants through somatic embryogenesis in 

bioreactors has thus not been realized due to a lack of understanding how flow-induced 
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mechanical stress/shear stress affects the development of somatic embryos in liquid 

culture. 

1.2.3 Somatic embryogenesis technique 

Somatic embryogenesis is a clonal propagation technology (Fowke et al 1995; 

Hakman & von Arnold 1985) based on the multiplication of the earliest organized 

structures in plants, the embryos (Figure 1).  Somatic embryos are induced from somatic 

cells (seed embryos) of the initial explants from the donor plant, followed by a 

developmental process starting with multiplication of the initiated somatic embryo in 

response to growth regulators, in which immature embryos undergo continuous divisions 

and thereby multiply indefinitely.  The immature embryos then transit into the next step 

of development, maturation, by the influence of plant growth regulators and other growth 

medium components.  At this stage, the embryos have ceased to divide and start to 

accumulate storage products that enable them to go through the final step of the process 

in vitro, germination.   

The process of somatic embryogenesis in softwood trees was first established for 

a conifer species, Norway spruce (Picea abies) in 1985 (Hakman & von Arnold 1985).  

Embryogenic cell lines of Norway spruce are established from zygotic embryos.  An 

embryogenic cell line established from one seed can generate a large number of somatic 

embryos.  Therefore, it is possible to produce genetically identical plants within a short 

period of time in a large scale.  Since then, most conifer species for which somatic 

embryogenesis has been applied responded to the cultural treatments but at varying 

degrees of success (Merkle & Dean 2000).  Significant efforts have thus globally been 
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directed towards improving the somatic embryogenesis technology for critical species 

like loblolly pine (Pinus taeda) in the U.S. and Norway spruce (Picea abies) in Europe 

(Thorpe et al 2006).   

To date, Norway spruce is the best described somatic embryogenesis system in a 

woody species.  Due to the robustness of the plant regeneration process and relative 

amenability to genetic transformation, Norway spruce has been the preferred model 

system for studying fundamental processes during somatic embryogenesis and the 

regulation of embryo development.  In this thesis, somatic embryo cells of Norway 

spruce are used as the model system. 

 

 

MaturationProliferationInitiation Germination

 

Figure 1.  Somatic embryogenesis process for clonal propagation of plants. Somatic 

embryos are initiated from an initial explant from the donor plant. The embryos 

multiply during the proliferation phase. Maturation of somatic embryos prepares 

individual embryos for germination into the final plant structure. 

 

 

 



 11 

1.2.3.1 Laboratory protocol for somatic embryogenesis 

Current laboratory protocol for small scale production includes in order, 

proliferation, maturation, and germination.  Proliferation is the multiplication of somatic 

embryos in culture that occurs through repeated cycles of divisions of existing embryos 

and formation of new somatic embryos from small cell aggregates (Figure 2A).  This 

process is successful both on solid medium and in liquid medium and thus allows for 

efficient production of unlimited numbers of immature somatic embryos of different 

developmental stages.   

Maturation is the next stage of development, which takes place in conjunction 

with ceased multiplication of immature embryos and further development of the most 

developed immature somatic embryos presenting amongst the population of proliferating 

embryos in culture (Figures 2B and C).  Embryo maturation involves the expansion of 

polarized immature embryos containing an embryo “head” region composed of 

meristematic cells and the suspensor region composed of highly vacuolated tubular cells.  

In current laboratory protocol, the maturation phase takes place in air on a solid medium.  

The mature embryos have to be manually separated from a flocculated cluster of embryos 

on the solid medium and the process is very tedious (Figure 2E).   

Germination is a stage that a polarized maturing embryo develops into a fully 

mature embryo from the expanded “head” region, whereby the suspensor region will be 

reduced and eventually disappear.  The mature embryo contains two meristematic regions 

that will give rise to the shoot and root of the resulting plant (Figure 2D).  It is a 

prerequisite for normal development of the embryos into plants that the meristematic 
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regions develop correctly and are positioned in the correct locations.  If the embryo 

develops appropriately in the maturation stage, the same success rate can be achieved no 

matter if the germination occurs in air or liquid.  It should be noted that keeping the 

process in liquid will be much more efficient and lends itself to automation and large-

scale production. 

In summary, the current methods to grow plants from somatic embryos are quite 

labor-intensive and therefore costly.  The underlying reason is due to the tedious 

laboratory procedure for manually selecting, separating and sorting the embryos during 

the maturation and germination processes.  The current laboratory protocol for somatic 

embryogenesis is therefore only suitable for small scale production.  For large scale 

production, an automated liquid handling protocol is desired.   
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Figure 2.  Somatic embryo developmental stages in soft wood trees.  (A) Different 

cellular structures corresponding to different stages of immature embryo development are 

present during the proliferation phase.  (B) Only the more differentiated, polarized 

structures, i.e. more developed immature embryos, will proceed into the maturation 

phase.  (C) The maturing somatic embryo is a polarized structure composed of a “head” 

region of meristematic cells, and a suspensor region of oblong vacuolated cells.  (D) A 

mature embryo shows the initial cotyledons in one end of the embryo. A proper mature 

embryo has distinctive meristems that will give rise to shoot and root, respectively.  (E) 

Cluster of mature embryos combined with partially mature embryos. 
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1.2.3.2 Desired protocols for large scale production 

The desired liquid-based protocol for automated mass production, has the same 

proliferation as the current laboratory protocol except the maturation and germination 

stages.  The proliferation stage requires continuous agitation of the culture medium to 

keep a sufficient supply of oxygen to the embryos and to prevent the embryos from 

flocculating into a clump that is difficult to handle.  Agitation also mixes the medium 

components and increases the nutrient accessibility for the embryos.  Since medium 

nutrient access is already sufficient in the situation when embryos are cultured on solid 

medium without direct contact with the liquid culture medium, this aspect of the agitation 

is not considered here.  However, the majority of embryos cultured in liquid medium 

grow in a non-polar form with the suspensor cells growing in all directions.  The desired 

embryos should have a polarized structure which is composed of a “head” region of 

meristematic cells and a suspensor region of oblong vacuolated cells that will later 

successfully germinate in liquid.   

1.2.3.3 Prerequisite for proper embryo development  

A prerequisite for proper embryo development from proliferation to maturation is 

polarization, which is also one of the hypotheses of this research.  This is a generally 

known effect for somatic embryogenesis of Norway spruce, but not published yet.  The 

transition from proliferation to maturation only occurs in the more developed immature 

somatic embryos displaying a differentiated, polarized structure (Egertsdotter & von 

Arnold 1998).  Embryos showing polarized structures are common when the proliferation 

occurs on a solid culture medium and exposed to air (Figure 3A).  Polarized embryos, 
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however, rarely form in liquid medium.  Instead, a few suspensor cells form in random 

directions (Figure 3B).  Size fractionation of a liquid culture of somatic embryos, 

collecting and culturing the smallest clusters of cells and embryos (less than 200 µm; 

Figure 3C), shows that the early stages of immature embryos develop into polarized 

structures when being cultured in liquid medium without agitation (Figure 3D), although 

with a large level of aggregation and cluster formation.  The clusters of cells and embryos 

less than 200 µm are the main study objects for this thesis.   

Due to the difficulties in obtaining polarized and developed embryos in liquid 

medium, maturation of somatic embryos in liquid medium has rarely been reported for 

any soft wood species, for example, Norway spruce (Gorbatenko & Hakman 2001).  

Currently, the standard procedure for obtaining mature somatic embryos from a soft 

wood species involves transferring the proliferating immature embryos from the liquid 

proliferation medium onto a solid culture medium of the same composition, which allows 

large, polarized embryos to form (Figure 4A).  Somatic embryos cultured in liquid 

medium are subjected to mechanical stresses incurred by agitation of the culture vessel 

containing the liquid culture medium.  As discussed earlier, this motion is necessary to 

supply the embryos with sufficient oxygen and to avoid flocculation of the embryos.  The 

early stages of immature embryos respond to this motion by forming immature embryos 

with multidirectional development of suspensor cells surrounding the embryo “head” 

region in later stage (Figure 4B).  

The advantages of using liquid culture medium in the early stages are to keep the 

embryos dispersed in liquid and to maximize the growth rate, which greatly affect the 
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probability of successful germination and plant formation during later stages.  It should 

be noted, however, complete isolation of embryos may not necessarily facilitate growth.  

It has long been known that cultured cells release conditioning factors into the 

surrounding medium and that the conditioned medium has a positive feed back effect on 

newly started cultures.  Several studies have been conducted on the nature and 

mechanism of the conditioning factors using Norway spruce (Egertsdotter et al 1993; 

Egertsdotter & von Arnold 1995; Egertsdotter & von Arnold 1998).  These studies 

revealed correlations between the amount of stress-related proteins that are released into 

the culture medium and the morphology of the somatic embryos and the number of 

suspensor cells produced.  It is likely that such conditioning factors also affect the further 

development of the somatic embryos from proliferation to maturation.  The studies 

reported in this thesis focus on the effects of the mechanical stresses on the embryo 

development. The effects from any conditioning factors will be normalized by keeping 

the concentration of embryos constant in all experiments. 

The possible mechanism of shear stress signal transduction will be studied 

separately.  
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Figure 3.  Immature somatic embryos in the proliferation phase. (A) Early stage 

immature somatic embryo cultured on solid medium. (B) Early stage immature 

somatic embryo cultured in liquid medium. (C) The fraction of cells and somatic 

embryos smaller than 200 µm in a liquid culture of somatic embryos at 

proliferation. (D) The same fraction cultured in liquid medium after 4 weeks in 

culture without agitation. The big aggregations of polarized immature somatic 

embryos are shown in the black circle.  Scale bars in A-D represent 150, 100, 

100 and 300 µm. (Egertsdotter & von Arnold 1998) 
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Figure 4.  Morphology of somatic embryos of Norway spruce (Picea abies) (A) 

cultured on solid medium, and (B) in liquid medium. Scale bars represent 200 µm. 

(Egertsdotter & von Arnold 1998) 

 

 1.3 Usage of bioreactors for plant cells  

1.3.1 Bioreactor for large-scale production in plant cell culture 

Plants make an important contribution to the industry, such as the plant secondary 

metabolites used in pharmaceutical preparations, food additives, as process aids, and in 

cosmetic and perfumes.  Higher plants synthesis a tremendous array of chemical 

structures, probably greater than any other group of living organisms, like microbial cells 

(Kieran et al 1997; Sajc et al 2000; Tautorus & Dunstan 1995).  In commercial terms, the 

group of structures which come under the secondary metabolites is the most important.  

Secondary metabolites are substances whose structure and metabolic interactions appear 

to be functionally distinct from those involved with primary metabolism.  Quite a number 

of secondary metabolites have properties which are of social and commercial benefits to 

humans.  There are currently three major approaches to produce such fine chemicals, 
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through extraction of whole plants, synthetic organic chemistry and cell culture.  Cell 

culture is a promising and the cheapest and eco-friendly way among the three approaches 

(Brodelius & Rosevear 1985; Harry & Thorpe 1999; Holden et al 1987; Kieran et al 

1997; Scragg & Fowler 1985; Scragg et al 1987; Street 1977). 

It has long been hoped that the unique biosynthetic capacity of plants could be 

exploited in vitro using culture systems analogous to microbial fermentations. The use of 

mass cultivation of plant cells to produce a continuous supply of material independent of 

disease, climate, or seasons has obvious attractions to industrial applications.  Since the 

first successful plant-cell culture process was announced in 1983 (Curtin 1983), a large 

number of bioreactors have been designed and applied to grow plant cells.  It should be 

noted, however, the characteristics of both the growth and metabolism of plant cells in 

vitro differ considerably from those of microbial cells (Brodelius & Rosevear 1985; 

Harry & Thorpe 1999; Kieran et al 1997; Sajc et al 2000; Scragg & Fowler 1985; Scragg 

et al 1987).  Great efforts have been invested by various researchers to optimize the plant-

cell culture process.  For example, Tanaka (1981) investigated how to enhance product 

yield (Tanaka 1981); McDonald et al. (1996), Mo et al. (1996) and Ziv et al. (1994) 

focused their research on developing growth media and production media that better 

support plant cell growth and secondary metabolites productions (McDonald et al 1996; 

Mo et al 1996; Ziv et al 1994); Pinto et al. (2004) studied how product synthesis and 

growth affect stability and variability of cell lines (Pinto et al 2004); and many groups 

have investigated the secondary metabolite biosynthesis process, which provides an 

additional production option to natural product synthesis (Aoyagi et al 1992; 

Archambault et al 1994; Brodelius & Rosevear 1985; Cervantes et al 2006; Chi et al 
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1994; Egertsdotter 1999; Fleischer et al 1998; Ingram & Mavituna 2000; Kieran et al 

1997; Mehrotra et al 2007; Moorhouse et al 1996; Morris & Fowler 1981; Scragg et al 

1987; Serra et al 2009; Shi et al 2003; Street 1977; von Arnold et al 2005; Zhang et al 

2008; Ziv et al 1994).  Plant-cell culture can be used as an alterative route to whole plant 

or established product synthesis, a means of synthesizing novel products, and a source of 

enzymes as process aids for biotransformation systems and natural products where the 

source plant is difficult to grow. 

Its large-scale production capability makes bioreactors more appealing in the cell 

and tissue culture industry.  Bioreactors provide a well-controlled cultivation 

environment.  The physical and chemical conditions inside of bioreactors can be 

controlled for optimum growth.  The increased working volume coupled with the 

potential for automation of culture is ideal for reducing labor-intensive manual tasks and 

production costs.  Most bioreactors are designed with either a mechanical or gas agitation 

mechanism to provide mixing and maintain the homogeneity of the culture media by 

dispersing the cells to avoid aggregation. 

Somatic embryogenesis technique has the potential for large scale clonal 

propagation of plants in a short period of time.  The ability to grow somatic embryos in 

liquid medium would make the production more efficient.  For cultivation of cells at 

laboratory scale, a simple mechanically shaking flask can be used and normally very 

effective; however, for large scale or industrial scale production, bioreactors provide 

many advantages for the growth of plant cell and organ cultures.  Various types of 

bioreactors have been developed to automatically and continuously monitor and control 

the culture conditions for somatic embryogenesis.     
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1.3.2 Bioreactor types 

Over the past two decades, many reviews have been done on bioreactors that were 

designed and configured for culturing plant cell suspensions, plant tissue and organs 

(Kargi & Rosenberg 1987).  Bioreactors for plant cell culture can be classified according 

to the type of agitation used (Mehrotra et al. 2007; Sajc et al. 2000): mechanically 

agitated bioreactors, including aeration agitation bioreactors, rotating drum and spin-filter 

bioreactors; air-driven bioreactors, including bubble column, concentric tube airlift 

reactors, external loop airlift bioreactors, propeller loop reactors and jet loop reactors; 

non-agitated bioreactors, including packed bed, fluidized bed and membrane reactors 

with immobilized cells.  Among all types of bioreactors, the aeration-agitation 

bioreactors are the most popularly used, which are often referred as stirred tank with 

impellers as turbines, screws, paddles and helical ribbons (Gupta & Timmis 2005). 

1.3.3 Limitations of bioreactors 

At the early stages of growing plant cells in a bioreactor, the relatively low 

growth rate and rich media requirement make the culturing process prone to microbial 

contamination.  In addition, the large size (20-200 µm) and aggregated nature of plant 

cells in suspensions cause difficulties in mixing within bioreactors.  A further constraint 

is added to these systems due to the fact that many plant cells are sensitive to shear stress 

induced during mixing (Chen & Huang 2000; Cunningham & Gotlieb 2005; Shi et al 

2003; Sowana et al 2001; Sun & Linden 1999; Tanaka 1981).  Since most bioreactors are 

designed for culturing microbial and plant cells, it is necessary to better understand the 

requirements imposed on differentiated cells by large-scale culture of clusters, embryos 
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or buds. As shown by Preil, many factors could affect proliferation, such as, the rate of 

aeration and circulation, cluster or organ size, O2 and CO2 levels and the damaging 

effects of shearing forces due to rapid mixing and circulation (Preil 1991).  It is also 

necessary to reduce the undesirable conditions encountered in plants that are cultured in 

liquid media, for example, morphological aberration and hyperhydration (Ziv 1991; Ziv 

et al 1994). Tautorus and Dunstan (1995) reviewed the suitability of various types of 

bioreactors for the culture of somatic embryos.  However, direct comparisons of different 

bioreactor configurations for somatic embryo growth and development are rare. 

Bioreactors are normally designed and configured for specific purposes with their 

unique advantages and disadvantages based on their applications.  Stirred tank 

bioreactors typically use bubble aeration to provide oxygen supply.  This design is of 

high power consumption and the cells experience high shear.  Many researchers have 

studied the shear stress effects on the suspension cultured cells in order to improve the 

reactor design for scale-up production (Ingram & Mavituna 2000; Kieran et al 1995; 

Sowana et al 2001; Takeda et al 1998).  Different blade types, blade numbers, internal 

positions of blades, and the ratios of stirrer diameter to that of vessel were tried to 

optimize the reactor for shear-sensitive cells (Paek et al 2001).  Another type of reactors, 

airlift bioreactors, has generally lower relative velocity between liquid and air bubbles, 

therefore lower shear rate.  For this reason, airlift bioreactors have been favorable for 

culturing cells that are sensitive to shear (Debnath 2007; Ingram and Mavituna 2000; Sajc 

et al. 1995a; Sajc et al. 1995b).  In addition, the design of the airlift reactors is simple and 

the energy consumption is low.  However, air induced foaming makes the cultured cells 

tend to be thrown out of culture medium and grow on the foam head and the wall of 
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culture vessel. This leads to big aggregation of cells.  Non-agitated bioreactors are mostly 

used for immobilized cells.  Membrane reactors and packed bed reactors are 

advantageous for the case wherein a large number of cells are immobilized or densely 

“packed”.  The disadvantage of these reactors is the inefficient mass transfer that affects 

transport of nutrient and gas supply (Prenosil & Pedersen 1983).   

The approach of immobilizing cells has been successfully applied to culture 

shear-sensitive cells.  In an immobilized system, growth and production phases can be 

decoupled and controlled by chemical and physical stress conditions.  Since most of the 

plant cells have low tolerance to sustained shear, immobilization offers the cells a 

microenvironment with well-defined shear field and protects the cells from being 

exposed to excessively high shear.  Mavituna et al. reported that Capsicum frutescens 

Mill. cv. annuum (chili pepper) cells were entrapped in polyurethane foam matrices to 

successfully produce the pungent flavor, capsaicin (Mavituna et al 1987).  Later, more 

studies using immobilized cells focused on valuable products of secondary metabolism 

(Adris et al. 1994; Lopez and Matson 1997; Molina-Munoz et al. 2010; Rosenberger et 

al. 2000; White and Broadley 2000).  

Further improving the bioreactor designs requires knowledge on various media 

components and the mechanism of signal transduction of plant cell.  Researchers have 

identified different media components for culturing different species, such as the most 

popularly used half-strength Quoirin and Lepoivre’s (½ LP) medium, and Murashige and 

Skoog (MS) medium (Declerck and Korban 1994; Egertsdotter 1999; Kim et al. 2009).  

The nutrient requirement for the induction of somatic embryos is quite different from that 

for the normal development and conversion of somatic embryos into plantlets.  Thus, a 
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majority of studies that use bioreactors were conducted in batch cultures while few 

studies can be found for micropropagation of plants via tissue cultures, such as meristem 

tips and shoot propagules (Debnath 2007; Debnath 2009; Jo et al 2008; Sharma et al 

2009).  So far, only a small number of plant species, several ornamental, vegetable and 

fruit crop plants are successfully propagated through organogenic or embryogenic 

pathway using bioreactors (Mehrotra et al 2007). 

1.4 Shear stress effects on cells 

Cells can sense and respond to a broad range of chemical and mechanical stimuli.  

Mechanical forces can also influence cell structure, growth and function (Gloe et al. 

2002; Li et al. 2005; Lynch and Lintilhac 1997; Wang et al. 1993).  Cells in situ are 

subjected to various mechanical stresses, such as gravitational force, mechanical stretch 

and shear stress.  For example, Endothelial cells lining blood vessels as a cellular 

monolayer experience all those mechanical forces and in particular are exposed to a 

relatively elevating shear stresses associated with blood flow (Fisher et al 2001; Gloe et 

al 2002; Li et al 2005; Metallo et al 2008; Nerem et al 1998; Yu et al 2002); Bending and 

twisting in wind introduce mechanical stress (Carpita et al 1979); Drought and 

salinization in nature can be manifested by osmotic stress in plant cells, which can cause 

cell damage or death (Menke et al 2000; Pei & Kuchitsu 2005; Spiteller 2003); 

Appropriate turgor pressure keeps the plant cells shape (javis 09) (Jarvis 2009; Lynch & 

Lintilhac 1997; Malinowski & Filipecki 2002).  It is of great interest to study how cells 

sense and respond to changes in shear stress.   
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1.4.1 Shear stress on cells cultured in bioreactors 

A well-designed culture vessel provides a controlled environment inside which 

the shear stress can be adjusted.  This provides controlled test conditions to study how the 

cells are affected by flow-induced shear stress (e.g., blood flow for endothelial cells or 

liquid culture media flow for plant cells).  The study is expected to help researchers to 

understand the molecular mechanism and signal transduction. 

Studies of shear stress effects on cells can be broadly divided into two categories. 

Cell suspensions are either exposed to shear stress under permissive growth condition for 

the duration of cultivation, or cells are exposed to well-defined laminar or turbulent flow 

for a short time period and under non-permissable growth condition (Kieran et al 1997).  

In studies done in both categories, scaled-down experiments are typically conducted, 

which serve as predictions for scaled-up applications.  In the first category, the 

hydrodynamic environment is generally regulated by changing the rate or method of 

agitation. The level of shear can be estimated from the impeller speed or power input to 

the agitator.  It is, however, rather difficult to accurately quantify the shear rate that the 

cells are exposed to.  The experimental exposure time is limited by the kinetics of the 

system and the ability of the cells to survive the experimental conditions.  In the second 

category, cells are exposed to well-defined laminar or turbulent flow in a Couette (Kargi 

& Rosenberg 1987; Paul et al 2003), capillary (Kieran et al 1995; Shin et al 2004), or 

submerged jet flow (MacLoughlin et al 1998) for short periods of time. Typically, the 

viability loss is used to describe the resultant death of cells due to exposure to the 

shearing conditions.   
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Shear in these experiments mentioned above is experienced by the whole 

suspension as a presumption and the results are concluded based on an average/statistics.  

In suspension cultures, the morphology of plant cell clusters exhibits a great variety.  For 

studies that apply shear to the whole suspension and obtain results based on averaging, 

the shear effects on a single cell or cell cluster cannot be quantified since the averaging 

process shields the changes of cells in one particular size group.  Thus, no single 

mechanism for cell responding to shear has been conclusively identified.   

In 1997, Lynch and Lintilhac (Lynch & Lintilhac 1997) studied the response of 

embedded protoplasts of tobacco root cells in agarose blocks to mechanical loads by 

directly applying controlled mechanical load to agarose blocks.  The orientation of 

primary division plane of the embedded protoplasts was used as an indication of the cells’ 

response to the mechanical load.  Since the mechanical load was applied on agarose 

blocks, the stress experienced by individual protoplasts could not be accurately 

determined.  Lynch and coworkers combined two ideas in their experimental design, 

embedded cells of which are easy to keep a track and controlled mechanical load which is 

accurately set for each experiment. 

In order to track the change or development of a single cell or cells group, 

immobilization of the cells is necessary.  Plant cells can be immobilized by attaching 

them on carrier beads, net or foam surface; and entrapping into porous gel made of 

natural or synthetic polymers and membranes in flat sheet and hollow fiber.  

Immobilization of cells with these methods has been extensively studied with respect to 

cell viability and function, and physical and mass transfer properties of the 

immobilization support (Birnbaum & Mosbach 1991; Curtis et al 1995; Gontier et al 
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1994; Kurata & Furusaki 1993).  Pati et al. immobilized protoplast cells on an extra thin 

alginate film and observed the development of those cells (Pati et al 2005).  This extra 

thin alginate film provides an efficient culture environment for protoplasts and makes it 

easy to keep track of the development of each single protoplast. 

1.4.2 Cell morphology studies 

 Plant cells undergo various morphological changes during whole culture period.  

Norway spruce somatic cells even have more varieties of cell shapes at proliferation stage 

(Figure 2).  Since only the most differentiated cells can successfully respond to 

maturation stimuli and further develop and mature, morphology of cells at proliferation 

stage is an important factor to study. 

1.4.2.1 Different experimental setups 

Different setups have been used to study the morphology of cells, for example, 

agarose or alginate film/block embedded with protoplasts (Golds et al 1992; Lynch & 

Lintilhac 1997; Pati et al 2005), cytometry combined with motorized microscope stage 

for automatic image analysis of specimens (Lockett & Herman 1994), fermenters for 

microorganisms (Thomas 1992), flow chambers culture (Metallo et al 2008; Ye et al 

2008).  All these setups were designed for specific needs.  Agorose or alginate film/block 

have cells embedded which provide culture environment for cells and make it easy to 

trace the development of individual cell.  Cytometry guides cells flow through the system 

in order to sample and observe on single cell.  Fermenter for microorganism is for scale-

up industrial production.  Flow chamber provides a well-controlled flow environment 

inside of which shear stress can be estimated. 
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Flow cell chambers have been extensively used to study shear stress effects on 

morphology of mammalian cells in culture (Metallo et al 2008; Ye et al 2008).  Different 

configurations of flow cell offer various flow patterns, such as laminar steady flow, step 

disturbing flow, turbulent flow, jet flow and capillary flow (Kargi & Rosenberg 1987; 

Kieran et al 1995; MacLoughlin et al 1998; Paul et al 2003; Shin et al 2004), thus various 

shear stresses can be studied.  Shear stress effects on gene expression and morphology on 

human endothelial embryonic cells cultured in a flow cell chamber have been described 

also (Metallo et al 2008).  

Combination of alginate film embedded with cells and well-defined fluid field 

inside of a flow chamber will provide a desirable setup to follow the development and 

morphological changes of individual cell clusters of Norway spruce. 

1.4.2.2 Image analysis methods 

To observe the morphology changes of cells, a powerful tool is a microscope.  In 

the past, microscope is used to record the morphology and differentiation of cells.  

Through analyzing the recorded images, either qualitative information or quantitative 

information is obtained (Chi et al 1996; Ibaraki & Kenji 2001; Kristensen et al 2008; 

Petřek et al 2007; Petřek et al 2005; Thomas 1992).  Traditional analysis of the recorded 

images was based on human observations.   This makes the measurements subjective and 

inconsistent.  Image analysis, however, is a well established complement to optical 

microscopy and makes measurements accurate and reproducible, and usually quicker.  It 

also makes repetitive measurements semi-automation/automation possible.  The use of 

image analysis has been widely applied in mammalian cells, filamentous organisms and 
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plant cells in suspension culture (Chi et al 1996; Petřek et al 2007; Petřek et al 2005; 

Thomas 1992; Thomas & Paul 1996; Zhang et al 1996).       

To extract information from an image, image analysis starts with the capturing of 

images, the storage of the images and followed by the processing of the images.  The 

algorithms used to process the images are normally based on the feature of the images 

and the desired application of the extracted data.  For example, cross-correlation 

techniques have been used to reveal the spatial similarity of groups of particles between 

groups of neurons (Reid & Alonso 1995; Tanaka 1985), in surface patterns detection 

(Ono et al 2001), and in particle image velocimetry (PIV) technique (Adrian 1991).  

Spectral analysis through discrete and fast Fourier transformations has been applied to 

acquire quantitative information on different embryo shapes (Cazzulino et al 1987; Chi et 

al 1996; Chi et al 1994; Vits et al 1994).  The features converted from the segments of an 

embryo contour by discretizing the entire contour with an equal angle increment, resulted 

in a non-uniform contour sampling and could not consistently define the cotyledonary 

embryos (Chi et al 1994).  To address this issue, a different Fourier descriptor was 

employed with the contour of embryos discretized by an equal arc-length increment (Vits 

et al. 1994).  The same algorithm was further applied to liquid cultured carrot embryos to 

categorize embryos into different groups based on the distinguishable developmental 

stages for the purpose of rapid evaluation of the overall yield of embryos in a bioreactor, 

and the robustness of the method tested (Chi et al 1996; Chi et al 1994; Zhang et al 

1996).  These features have been useful to describe the developmental stages of plant 

somatic embryos in typical angiosperm species, e.g. carrot, showing distinctive shapes at 
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different developmental stages.  These two methods are especially useful to identify the 

shape of an embryo and hence sort the picked embryo into one specific category. 

1.4.2.3 Parameters used to quantify shear stress effects 

To quantify the response of cells to a given hydrodynamic environment, many 

parameters are used.  For example, a critical shear stress of 50 N/m
2
 was reported (Kargi 

& Rosenberg 1987) for suspensions of Daucus carota using regrowth potential as an 

indicator of system response; Another parameter, energy dissipation, was used as a 

measure for shear stress effects on cells (Dunlop et al 1994; Jeffers et al 2007; Kargi & 

Rosenberg 1987; Kieran et al 1995; MacLoughlin et al 1998; Sowana et al 2001).  

Although the energy dissipation rate is a useful parameter for studying the flow inside of 

bioreactors, it is difficult to accurately predict the shear inside of bioreactors. It is hard to 

get the exact value of shear stress in shaken flasks and airlift bioreactors but can be 

estimated based on the reported data (Sajc et al 1995a; Sajc et al 1995b; Stathopoulos & 

Hellums 1985).  For example, Stathopoulos et al. (1985) conducted their experiments 

using human embryonic kidney cells in vitro and reported that forces of 0.65 N/m2 had 

significant effects on cell morphology and forces higher than 2.6 N/m2 caused marked 

reduction in cell viability.   

In these experiments mentioned above, either study organism under conditions 

that are either permissive or impermissible to grow.  The parameters to quantify the shear 

stress were selected based on the selection of experimental setups.  For example, 

experimental exposure time was picked for experiments that most of the organism could 

not survive under the test conditions; in the counterpart, the viability loss and well-
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defined shear stress were generally used to describe the resultant death of cells due to 

exposure to the shearing conditions where most of the organism could survive.   

Evidence of sensitivity to hydrodynamic shear in conventional stirred tank and 

air-lift reactors has been attributed to the physical characteristics of the cells, namely their 

size, the presence of a rigid cell wall, the existence of a large vacuole, and their tendency 

to aggregate (Kieran et al 1995; Moorhouse et al 1996; Sowana et al 2001; Sun & Linden 

1999).  In terms of morphological changes in response to shear stress, different 

developmental stages of carrot somatic embryos have been characterized by parameters 

describing the shape of the embryo in terms of axial length, diameter, cotyledon length 

and cotyledon arc (Schiavone & Cooke 1985).   

Other parameters used to describe the response of cells to stress are growth rate 

by measuring dry weight (Sun & Linden 1999), sugar consumption (Chen & Huang 

2000), the first response to environment changes such as the increase of Ca
2+

 or the 

change of pH and secretion of second messengers, such as stress proteins (Chen & Huang 

2000).   

1.4.3 Shear stress responses and signal transduction mechanisms 

1.4.3.1 Mammalian cell response to shear stress and signal pathways 

Mammalian cell response to shear stress has been extensively studied, especially 

endothelial cells (Cervantes et al 2006; Cheng et al 2008; Cunningham & Gotlieb 2005; 

Fisher et al 2001; Gloe et al 2002; Li et al 2005; Metallo et al 2008; Nerem et al 1998; 

Prentice et al 2007; Reneman et al 2006; Ye et al 2008; Yu et al 2002; Zhang et al 2008).  
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Shear stress is believed to play an important role on endothelial cells (ECs) in vascular 

development, remodeling and lesion formation.  Shear stress also has been recognized as 

an important modulator of endothelial phenotype, morphology, gene expression and 

differentiation (Gloe et al 2002).  ECs use multiple sensing mechanisms to detect changes 

in mechanical forces which lead to the activation of signaling networks.  Li et al. (Li et al 

2005) reported in their work that ECs respond differently to different modes of shear 

forces, such as laminar, disturbed and oscillatory flows.  ECs that are subjected to steady 

laminar flows tend to elongate along flow direction and the steady flow causes a transient 

induction of reactive oxygen species (ROS), so called oxidative burst.  Pulsatile flows 

with different levels of mean and oscillatory components make ECs exhibit similar 

elongation and alignment as steady flows.  ECs that are exposed to pure oscillatory flows 

keep their polygonal shapes that are common to ECs in static culture or at vessel 

bifurcations.  The study also shows that when the shear stress patterns vary, ECs respond 

differently in the signaling, gene expression and functions (see Fisher et al. 2001 for a 

review).   

There are many mechano-sensors for shear stress in ECs, for example, integrins, 

ion channels and adhesion molecule-1 (PECAM-1), etc.  Past studies have shown that 

atherosclerotic plaques occur preferentially at arterial locations that experience turbulent 

flow or shear stress lower than 5 dyne/cm
2
 (Reneman et al 2006).  In such regions, 

endothelial cell (EC) repair is reduced, coupled with increasing in ROS, endothelial 

permeability to lipoproteins, smooth muscle cell proliferation and collagen deposition, etc 

(Cunningham & Gotlieb 2005).  Low shear stress activates IL-8 gene expression (Yu et al 

2002) and mitogen-activated protein kinase (MAPK) along ERK1/2 and JNK1/2 regulate 
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this expression (Cheng et al 2008).  Integrins as a family of more than 20 transmembrane 

heterodimers composed of α and β subunits, mediate both “inside-out” and “outside-in” 

signaling in mammalian cells.  The extracellular domains of integrins bind to 

extracellular matrix (ECM) ligands for “inside-out” signaling and extracellular stimuli 

induce the intracellular signaling cascade via integrin activation for “outside-in” signaling 

(Li et al 2005; Schwartz et al 1995 for a detail describsion of integrin pathway in 

mammalian cells).  Those results suggest shear stress not only change the morphology of 

mammalian cells, but also activate different signal pathways.  ROS have been shown to 

related to shear stress, activation of some stress proteins, regulation of transporters and 

ion channels, cell adhesion and spreading, cell proliferation and wound healing, etc. (for 

a recent review, Bartosz 2009) 

The importance of shear stress in determining cell fate has recently received 

attention in mammalian cell systems through the potential positive effects of shear stress 

on stem cell development (Stolberg & McCloskey 2009).  The recent findings from 

mammalian cell research may help shed light on plant meristematic cell development, 

and further suggest signaling pathways involved in the plant meristematic cell response to 

shear stress.  Integrin proteins are conserved in vertebrates, invertebrates, and fungi, 

according to past studies (Hynes 1992; Schwartz et al. 1995; Swatzell et al. 1999).  

Evidence from previous research using monoclonal and polyclonal antibodies to localize 

β1 integrin-like proteins in plants suggests that integrin-like proteins may be present in 

plants as well, and these proteins may function in signal transduction (Gao et al. 2007; Lü 

et al. 2007; Sun et al. 2000; Sun and Sun 2001; Swatzell et al. 1999).   
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1.4.3.2 Plant cell response to shear stress and signal transduction 

Integrin-like protein detection in plant cells 

The mechanism of plant cell signal transduction is not known as clear as 

mammalian cell; however, studies on mammalian cells will shine lights on the research of 

plant cells.  There is some evidence suggesting that in some plant species the plant cell 

wall may interact with extrinsic and intrinsic proteins, for example integrin-like proteins, 

on the plasma membrane, which are similar to the transmembrane integrin(s) in 

mammalian cells (Hynes 2002; Luo & Springer 2006).   

Integrin proteins in mammalian cells sever as receptors that mediate attachment 

and signal transductions between cell and ECM. In plant cells, however, the structure of 

integrin proteins is not fully discovered.  A tripeptide sequence Arg-Gly-Asp (RGD) 

motif which is conserved in each of the adhesive proteins (like integrins) has been 

recognized in Taxus cells (Gao et al 2007) and Zea may cells (Lü et al 2007), and proved 

to play a role in shear stress signal transduction.  Western blot tests of the extracellular 

proteins proved that these RGD-related proteins have the similiar molecular weight as 

integrins.  This RGD-related protein is so called integrin-like protein in plant cells.(Gao 

et al 2007) 

Integrin-like proteins have been detected in many plant species, for example, 

soybean root which was the first cell reported to have integrin-like proteins (Schindler et 

al 1989), onion epidermal cells (Gens et al 1996), pollen tube of Lilium davidii and 

Nicotiana tabacum (Sun et al 2000) and root tip cells in Zea mays (Lü et al 2007). 

Integrin-like proteins transmit both outside-in and inside-out signaling and are involved 
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in development, wound healing and other stressed processes (Brownlee 2002; Hynes 

2002; Lü et al 2007; Lynch et al 1998; Sun et al 2000; Sun & Sun 2001; Swatzell et al 

1999). 

Reactive oxygen species detection in plant cells 

Reactive oxygen species (ROS), including hydrogen peroxide (H2O2), superoxide 

(
•

2O ) and hydroxyl radical (OH-), are natural byproducts of normal metabolism of 

oxygen. Production of ROS is believed to generally occur by direct transfer of excitation 

energy from chlorophyll to produce singlet oxygen, or by univalent oxygen reduction at 

photosystem (Allen 1995; Foyer et al 1994).  Past studies suggest that ROS may play a 

central role in many signaling pathways during stress perception, regulation of 

photosynthesis, pathogen response and plant growth and development (Apel & Hirt 2004; 

Dat et al 2000; Foreman et al 2003; Neill et al 2002). 

 Production of ROS has been studied as a parameter of shear stress on the plant 

cells (Gao et al 2007; Gens et al 1996; Swatzell et al 1999).  The transient generation of 

ROS, also known as oxidative burst, has been thought to be a hallmark of plant defense 

response to both biotic and abiotic stresses.  Studies with Arabidopsis (Arabidopsis 

thaliana) and rice (Oryza sativa) have shown that ROS are associated with aging.  ROS 

are connected with cellular and molecular alteration in animal and plant cells, and are 

essential to induce disease resistance and mediate resistance to multiple stresses in plant 

(for a review, Kotchoni & Gachomo 2006).  

The role of cell wall in signal transduction 
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The mechanical strength and contiguous nature of plant cell walls provide 

mechanical protection for the cell against a wide variety of stresses, such as mechanical 

and microbial stresses.  Cell walls respond to the internal stress of turgor pressure, sense 

damage or loss of integrity and help the signal pass to cytoplasm (Hematy et al 2007; 

Turner 2007).  Plant cell walls not only play a role in signaling as the cells sense their 

environment through this large porous network but also represent the first line of defense 

against pathogens.   

Since some substances of smaller size, such as salts, sugars and amino acids, can 

move freely in the plant, the pore size must be bigger than those molecules in order to 

provide them a free passage.  Signaling molecules also need to pass the cell wall and 

reach the cell membrane in order to have an effect. It has been argued that size exclusion 

at this level controls development (Jarvis 2009).  Study of loblolly pine (Pinus taeda) has 

shown that osmotic pressure changes during the zygotic embryo development inside of 

the ovule (Pullman & Johnson 2009).  In the maturation culture medium, macromolecules 

are added into the culture medium to stimulate the maturation process (von Arnold & 

Eriksson 1981).  The osmotic pressure is changed by adding the macromolecules.  The 

medium components have an impact on the growth and development of somatic embryos 

(Pullman et al 2005a; Pullman et al 2005b).  Based on the past studies, pore size is found 

to play a role in a variety of host-pathogen interactions, such as recognition phenomena 

involving lectins and integrins (Carpita et al 1979; Gao et al 2007; Jarvis 2009; Sequeira 

1978).  Jarvis (2009) reviewed, in details, the structure of primary cell wall in 

nongraminaceous plants and discussed the role of cell wall in providing mechanical 

support, sensing and signaling, etc.   
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The past pore size tests with solute exclusion technique are based on the 

plasmolysis and cytorrhysis responses of cells to macromolecules of known sizes.  Based 

on the phenomena of either plasmolysis or cytorrhysis, one can have an idea of how big 

the pore size of the cell wall is in comparison with the solute size.   

Plasmolysis is a process in plant cells where the plasma membrane pulls away 

from the cell wall due to the loss of water through osmosis.  Molecule concentration 

outside of the plasma membrane is higher than the inside.  In another word, the solute 

concentration inside of cell is lower than the outside.  Since cell wall is a semi-permeable 

membrane and water can move freely through it but large molecules do not have free 

passage.  The solution outside of plasma membrane is a hypertonic solution having more 

solutes per unit volume when compared to the solution on the opposite side of the semi-

permeable membrane.  Water moves outside of the membrane to reach a balanced 

concentration on both sides of the membrane. 

When water loss is severe, cytorrhysis will follow plasmolysis.  Cytorrhysis is the 

complete collapse of a plant cell’s cell wall within plants due to the loss of water through 

osmosis.  Cytorrhysis occurs when the size of the molecules constituting the osmoticum 

exceeds that of the pores of the cell wall matrix.  It is formed by the inward bending of 

the outer wall of a single cell as water goes out and the cell volume decreases.  The wall 

bends until touches in the cell center.  Although the cell wall is not actually destroyed, the 

vacuole, which is a membrane enclosed compartment and contains water in plant cells, 

seems to increase in size and finally collapses, releasing its components into the cytosol.  

The plasma membrane seems to be pressed to the cell wall.  The collapse will cause a 

much greater loss of shape and structure comparing with plasmolysis.  The cells might be 
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extremely damaged and possibly dead.  This process is reversible and increases the plants 

resistance of loss to drought. 

Shear stress studies on cultured plant cells 

Shear stress effects on undifferentiated plant cells, not somatic embryos, have 

been studied in different bioreactor types (Kieran et al 2000).  Various approaches of 

measuring the effect of shear stress on cell growth have been used, notably the viability 

of cells (Hooker et al 1989; Zhong et al 1994), and the production of secondary 

metabolites (Takeda et al 1998; Zhong et al 1994).  More recent studies have focused on 

the cellular and molecular responses of plant cells to shear stress, such as RGD peptide, 

MAPK cascade and ROS being signaling molecules.  In particular, the shear stress 

responses of Taxus cuspidata cells have been extensively characterized using a Couette-

type shear reactor; where at a shear rate of 95 s
-1

 an oxidative burst similar to the 

pathogen defense response was recorded (Han & Yuan 2004); at 190 s
-1 

there was a 

detectable response to RGD peptides by reduced level of phosphorylation of MAPK-like 

cascades, a reduced alkalinization response, production of ROS and accumulation of 

phenolics, thus suggesting a cellular response to shear stress resembling the MAPK-like 

cascades present in mammalian cells (Gao et al 2007).  The oxidative response was 

further investigated by analyzing the proteins released to the culture medium (Cheng & 

Yuan 2009).  Shear rates below 458 s
-1

 enhanced the primary metabolism and shear rates 

over 719 s
-1

 initiated an oxidative stress response in the Taxus chinensis var. mairei cells 

(Shi et al 2003).  The hydrodynamic stresses on Taxus cells at the gas-liquid interphase in 

a bubble column studied using a 3D Laser Doppler Anemometer (LDA) system showed 

an initial damaging effect from the bubble column conditions and a long term 
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improvement in growth over suspension culture flasks (Zhong & Yuan 2009).  Previous 

studies have shown that the profile of extracellular proteins derived from Norway spruce 

somatic embryos and presented in culture medium are related to the developmental stage 

of the proliferating embryos (Egertsdotter et al 1993; Mo et al 1996), and more developed 

embryos specially relate to presence of extracellular chitinase and zeamatin (Mo et al 

1996).  These findings suggest that specific proteins may affect the development of 

somatic embryos at some developmental stage.   

It should be noted that undifferentiated plant cells do not have a defined 

morphology, and also do not progress through stages of development. Thus, the 

discussion of shear stress in plant cell suspensions has limited applicability to the present 

study where the focus is specifically on shear stress effects on morphology and 

development of somatic embryos.  However, these responses might shine light on the 

study of cellular response of Norway spruce somatic cell clusters under shear stress.  

Studies about shear stress effect on individual somatic embryo development are blank 

and warranty further research.  Next the details of designed experiments in this thesis to 

study the shear stress effect on individual immature somatic embryo development and the 

possible mechanisms of stress signal transduction will be presented in Chapter 2. 
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CHAPTER 2 

MATERIALS AND METHODS 

 

This chapter describes the materials used for each experiment, along with methods 

and detail procedures.  Both steady shear stress experiments and signal transduction 

experiments are introduced.  Section 2.1 describes the working materials used in this 

thesis.  The method used for cell immobilization in steady shear experiments is 

introduced in Section 2.2, followed by steady shear experiments details in Section 2.3.  

The experimental setup for imaging the cells is described in Section 2.4.  Section 2.5 

introduces the image processing method and quantification analysis.  Section 2.6 details 

the validation of image processing method with artificial images.  Finally, Section 2.7 

describes the signal transduction experiments which cover integrin-like proteins and 

reactive oxygen species (ROS) detections and pore size monitoring with solute-exclusion 

experiments.   

2.1 Plant material 

Norway spruce somatic cells in the proliferation phase were primarily used in 

current studies.  Somatic embryos are cultured from open pollinated seeds of Norway 

spruce following the procedures introduced by (von Arnold 1987).  In brief, the somatic 

embryos are initiated on a solid medium and then proliferated for multiplication in a 

medium with identical composition.  For faster multiplication, the cultures are transferred 

to liquid medium of the same composition and sub-cultured with fresh medium every 

seventh day.   
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Successful proliferation can be achieved using either solid or liquid culture 

medium.  Cells grow on solid medium in callus which is a lump composed of cultured 

cells and form relatively bigger aggregates compared with liquid cultured cells.  This 

difference is essentially due to the shear stress introduced by agitation that keeps cells 

well dispersed in the liquid.  The size difference makes liquid cultured cells more suitable 

for shear stress studies since cells in smaller aggregates can be more easily and more 

evenly exposed to shear stress compared with cells in bigger aggregates. 

The somatic embryos of ten different cell lines, cell line #1, #2, #3, #4, #5, #6, #7, 

#8, #9 and #10, at proliferation stage are treated to produce mature embryos that will 

subsequently be treated to induce germination and eventually grow into plants (Högberg 

2003).  Briefly, 2 to 3 callus of immature somatic embryos are transferred from solid 

medium to 15 ml liquid medium in a 250 ml Erlenmeyer flask rotating on a shaker table.  

Cells are sub-cultured once a week until well dispersed suspension cells established.  

Three cell lines that readily produce plants are then selected from the initial ten, to be 

used for the experiments.  Among these three cell lines, cell line #3 has most ideal cell 

clusters in the range of 100 to 200 µm that are composed of meristematic cells with only 

few or without suspensor cells.  Cell line #3 was picked as the working material for the 

shear experiments.  Proliferating liquid suspension cultures from cell line #3 are cultured 

in 250 ml Erlenmeyer flasks on an orbital shaker (Lab-line, Model 3520) with a rotation 

speed of 100 rpm in a dark room at 25 °C.  The culture medium is ½ LP (von Arnold & 

Eriksson 1981) for proliferation stage.  Each flask of suspension culture is sub-cultured 

every two weeks (Egertsdotter 1999).  For ROS and integrin-like protein detection 

experiments, same suspension cultured cells from cell line #3 was used. 
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For the pore size study in signal transduction experiments, cells cultured on solid 

medium, which has the same components as liquid medium but solidified with agar, at 

proliferation stage were used instead of liquid suspension cultured cells in order to 

eliminate the effect of shear stress experienced by the cells in the liquid medium.  For a 

well established liquid culture, cells can divide and multiply infinitely thus we assume 

these cells having been acclimated to the shear stress introduced by the liquid condition. 

However, cells cultured on solid medium do not experience shear stress at all.  By using 

cells cultured on solid medium, cells affected by later introduced shear stress in liquid 

medium would better stimulate the effects from liquid culture conditions. 

2.2 Cell immobilization 

Immobilized plant cells show a great potential for production of some enzymes 

and secondary metabolites (Aoyagi et al 1998; Curtis et al 1995; Lindsey & Yeoman 

1984; Lindsey et al 1983; Mavituna et al 1987; Thu et al 1996).  In an immobilized 

system, growth and production phases can be decoupled and controlled by chemical and 

physical stress conditions.  Since most of the plant cells have low tolerance to sustained 

shear, immobilization also offers a microenvironment with well defined shear field or 

protection from shear.  For cell immobilization and encapsulation, alginate is widely used 

due to its biocompatibility and simple gelation with a divalent cations such as Ca
2+

.  Thu 

et al. (1996) described in detail the structure function of alginate gels relevant to their use 

as immobilization matrix for cells.  Their work provided broad background information 

of understanding the basic structure-function correlations.   

To find the shear stress effect on individual cells, the growth of each cell needs to 

be tracked and recorded.  This can not happen in suspension cultures but can in an 
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immobilized cell system.  Since the growth and production of plant cells can be 

decoupled and controlled in an immobilized system, immobilization offers plant cells a 

microenvironment exposed to a defined shear field.  Once the cells were immobilized on 

alginate films, culture medium streamed over the cells, as designed in experimental setup, 

provided nutrients to cells and introduced direct hydrodynamic stresses.  Following detail 

description of how Pati et al. (2005) immobilized protoplast cells on an alginate film and 

observed the development of those cells, a modified procedure of immobilization of the 

somatic embryos with alginate is developed in this thesis. 

2.2.1 Cell collection procedure 

Before immobilization, cell clusters for the steady shear stress experiments were 

collected in sterile conditions following the procedure: 

(1) All the tools, flasks and beakers which are autoclavable were autoclaved; non-

autoclavable tools and containers were wiped with 75% alcohol and surface 

sterilized by exposing to UV light overnight. 

(2) 25 ml of dense suspension culture at day 5 after each subculture, when the 

culture proliferation rate is at peak (Egertsdotter & von Arnold 1992), was 

passed through 500 µm and 200 µm nylon mesh (Small Parts Inc.) with 1000 

µl micropipettor, respectively, in a bio-hood. 

(3) The cells were settled for 30 minutes and collected for immobilization in 

alginate.  This fraction of the embryo culture contains small aggregates of 
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meristematic cells (as highlighted in Figure 3C), without suspensor cells or 

with just one or a few suspensor cells. 

2.2.2 Immobilization procedure 

A procedure for immobilizing the cell clusters in alginate suitable for our system 

was developed under sterile conditions.  In brief,  

(1) Sodium alginate was dissolved in nanopure water based on concentration of 

2.8% (w/v).  The solution was then autoclaved at 120 °C in liquid cycle for 20 

minutes.  After the solution was cool down to room temperature 25 °C, 300 µl 

of sodium alginate solution was evenly dispersed on a 40 mm diameter bottom 

glass slide and settled for a few seconds to get a more uniform alginate film.   

(2) 100 µl of settled cell clusters was gently placed on top of the alginate film 

using a 1000 µl micropipettor. Another 40 mm diameter glass slide rinsed 

with 20 mM CaCl2 solution was put on top of the bottom slide with the rinsed 

side touching the cell clusters in alginate solution to construct a sandwich-like 

layered structure.   

(3) A 25mm x 60mm glass slide was used as weight on the top of the sandwich 

and 300 µl of CaCl2 solution was added from the edges of the glass slides to 

help solidify the film.   

(4) After 20 minutes, the top glass slide was gradually pushed to one side and 

removed with the help of forceps.  Another 300 µl of CaCl2 was dripped on 

the top surface of film to reinforce the film solidification and to rinse off the 
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loose cells. The film was then washed with culture medium to remove the 

excess CaCl2.   

(5) The film with the immobilized cell clusters on the bottom glass slide was 

mounted into a flow cell chamber (FCS2, Bioptechs) for shear stress 

experiments (Figure 6A), or into a Petri plate as the control described below.  

(6) A second alginate film with immobilized cell clusters on the top surface made 

at the same time was used as a stationary control for the shear stress 

experiments.  The glass slide with immobilized cell clusters was cultured in a 

Petri plate and covered with a thin layer of the same culture medium that was 

used in the steady shear stress experiment.   

2.3 Steady shear stress experiments 

 The focus of this thesis is to find out the correlation of cell cluster development 

and shear stress effect.  Agitation in the culture flask/bioreactor causes shear flow around 

cell clusters.  A rough estimation of shear rates inside of a shaking flask can be carried 

out based on the rotation speed of shaker table (100 rpm), rotation radius (15 mm) and 

radius of culture Erlenmeyer flasks (45 mm).  It is determined that the shear rate at the 

flask wall is in the range of 5 to 50 s
-1

.  In order to get a better estimation or more 

accurate value of shear stress, a channel with well defined Poiseuille flow profile was 

picked to conduct the shear stress experiments.  Furthermore, immobilized cells with top 

part exposed to liquid were selected as recording objects.  The detail experimental setups 

and procedure are described in the following section. 
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2.3.1 Flow cell chamber construction and experimental procedure 

The laminar flow channel inside of FCS2 (Bioptech Inc.) was constructed by 

layers (as shown in the close-up in Figure 5A) under sterile conditions.  The average 

thickness of an alginate film was 100 µm based on measurement of six films made with 

the same procedure as immobilization of cell clusters.  The variance of the film thickness 

was within 20 µm.  The length scale of the roughness due to the embedded cells was 

within 4% of the channel height (h1 in Figure 5A).  Therefore we assumed the roughness 

of the film, or the variance of the film thickness, has no significant effect on the laminar 

flow region.  To seal the constructed channel and compensate for the thickness of the 

film, a 100 µm thick gasket (h2) was added around the film to secure the film position, 

and then a gasket with rectangular cutting (22 mm × 14 mm) and thickness of 500 µm 

(h1) was put on top to construct the shape of the channel. 

Another glass slide was added on top of the film and gaskets to assemble the 

channel.  It was then connected to a reservoir of culture medium, a peristaltic pump 

(Peristaltic 77, Harvard Apparatus) and a dampener (a flask half-filled with culture 

medium, Fisher Sci.) with Tygon tubing (ID = 1.6 mm, Harvard) to complete a flow loop 

(Figure 5B).  An air tube with an air filter as stopper in one end was through the plug of 

reservoir to provide oxygen to the system.  This filter was used to make sure the whole 

system was sterile and had approximated the same air to liquid ratio as in suspension 

culture.  A flow of ½ LP culture medium was streamed across the flow cell, horizontally 

from left to right.  The cell clusters then experienced shear generated by the working fluid 
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in the laminar flow cell chamber FCS2.  The experiments were run under sterile 

conditions.   

The FCS2 was then positioned on the stage of the microscope.  The cell clusters 

immobilized in the alginate film then experienced shear stresses on the surface of the film 

generated by the flow of liquid medium.  Vital cells on the film surface were selected 

based on appearance of cytoplasm and imaged on the first day.  Cells in both FCS2 and 

control Petri plate were located by recording the relative microscope x-y stage position.  

Each cell cluster was imaged through a magnification of 10× and 15× lens every 24 hours 

for 14 days with CCD camera.  The raw images were 1024 × 768 by pixels and stored in 

the computer for later processing. 
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Figure 5.  Schematic drawing of the experimental setup used to study shear stress 

effects on cell clusters of Norway spruce at room temperature 25 °C. (A) Cross section 

of the flow cell chamber (FCS2), with a close-up look on the top surface of the 

alginate film with immobilized cell clusters each about 100 - 150 µm across. h1 = 

height of the fluid channel; h2 = thickness of the alginate film; L = length of the 

alginate film; x = horizontal axis direction; z = vertical axis direction. (B) The flow 

loop setup with the flow cell chamber FCS2 sitting on the stage of an inverted 

microscope, a peristaltic pump to drive the flow, a 250 ml Erlenmeyer flask as the 

reservoir for culture medium that are pumped through the system, and a pressure 

dampener, connected with Tygon tubing.  
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2.3.2 Experimental parameters 

The shear stress at the bottom wall of FCS2 which is also the top surface of the 

alginate film affixed on the bottom of the chamber, τ , is estimated based on laminar flow 

with parabolic velocity profile in a channel, to be given by 2/wh6 Qµτ = , where µ  = 

0.001 Pa·s is the dynamic viscosity of the culture medium, estimated based on 1% (w/v) 

concentration of sucrose at 20 °C (Schneider 1979) whose density and viscosity are very 

close to water; Q is the flow rate that can be controlled by the peristaltic pump; w is the 

width of the channel which equals 14 mm in this case; h is the height of the channel 

which equals h1 (in Figure 6A).  The shear rate γ& can be calculated by dividing the shear 

stress by dynamic viscosity, that is 2/wh6Q=γ& . 

The dimensions of the examined area and the culture medium properties were 

listed in Table 1.  Reynolds number µρ /hRe U=  based on the height of the chamber 

and the mean inlet velocity ( AQU /= ) was in the order of 10
0
 to 10

1
 thus the flow was 

in laminar range; entrance length, Le, based on the hydraulic diameter of the chamber 

(dhydro= 4Lw/(2L+w) for rectangular cross-section) and the Reynolds number.  Le = 0.058 

Rehydro dhydro was in the order of 10
1
 to 10

2
 µm that means the flow inside of channel 

becoming fully developed quickly, in 5×10
-5

 second, and the observation location inside 

of the chamber needs to avoid such length (Le) on both ends of the channel; Reynolds 

number based on the size of cells exposed to the flow, Red (~30 µm), was greatly less 

than one which means the roughness of the alginate film due to the cell clusters can be 
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neglected.  The flow parameters with shear rate in the range of 9 to 140s
-1

 cover the most 

interesting range as studying the shear stress effect on plant cells. 

 

Table 1.  Channel dimension and fluid properties 

h1 (m) h2 (m) w (m) L (m) A (m2) ρ (kg/m
3
) µ  (Pa·s) 

0.0005 0.0001 0.014 0.022 7.0×10
-6

 1000 0.001 

 

Table 2.  Flow parameters for each steady shear stress experiment.  The Reynolds number 

Re is based on the mean inlet velocity and the height of the channel, h1; Red is based on 

the size of meristematic cells (30 µm). 

Q(ml/min) U (mm/s) Re Le(µm) τ (N/m
2
) γ& (s

-1
) Red 

0.3 0.71 0.36 38.6 0.009 9 0.007 

0.5 1.19 0.6 64.4 0.014 14 0.012 

1 2.38 1.19 128.7 0.029 29 0.024 

3 7.14 3.57 386.2 0.086 86 0.071 

5 11.9 5.95 643.7 0.14 140 0.119 

 

2.3.3 Flow field velocity profile check 

To further test the uniform of velocity profile in the span-wise direction (y 

direction) and the small effect of side walls to the fluid field, the velocity profile inside of 

the flow field of FCS2 chamber is checked with visualization technique—micro-particle 

imaging velocimety (micro-PIV).  Micro-PIV is the most common technique for 

measuring flows inside of micro-sized channels.  Since there is a body of research 

literatures about micro-PIV technique (Adrian 1991; Adrian 2004; Meinhart et al 2000; 

Meinhart & Zhang 2000; Santiago et al 1998), the detail of micro-PIV will not be 
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presented here.  Briefly, in this particle-based flow velocimetry, the motion of the bulk 

fluid in a plane inside of the fluid is inferred from the observed velocity of tracer particles 

that are seeded in the fluid, and the two in-plane velocity components can be obtained by 

dividing the displacement of matched tracer particles by the time interval between image 

pairs.  Due to the small length scale and the optical access associated with micro-sized 

channels, volume illumination is used for micro-PIV.  The test region of the channel is 

then illuminated by a volume of light.  The fluorescent particles seeded in the fluid within 

this region are excited and emit light with appropriate wavelengths.  But not all these 

excited particles look bright and sharp under the objective lens or on the images.  Only 

these ones within the depth of focal plane of lens are sharp and contributed to the velocity 

measurement.  This imaging difference makes optical slicing possible, and the velocity 

along the direction of illumination can be measured.  Thus, not only the velocities in 

horizontal plane are obtained, but also the velocities along the optical axis directions.   

 In the shear stress experiments mentioned in this thesis, the FCS2 chamber is 

placed on the stage of an inverted epi-fluorescent microscope (Leica, DMIRM), as shown 

in Figure 6.  Illumination light from a metal Halid lamp (X-Cite, EXFO Inc.), with 

wavelength of 450 to 490 nm after passing an I3 filter cube (Leica), shines on the seeded 

particles with 500 nm in diameter (DUKE) inside of the flow chamber (with a seeding 

density in term of number of particles in a volume of 2.5×10
13

/liter), and the fluorescent 

signal or light of wavelength 515 nm emitted from the particles is imaged on the sensor 

of charged couple device (CCD, Hamamatsu 1394 ORCA-ERA) camera after passing the 

filter cube.  The images are processed for displacement of particles and the velocity 

information is obtained when applying the time interval between each image pairs.  The 
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shear rate is obtained by applying the distance along optical axis (z) direction between 

two imaging sequences.  Uniform velocity profiles are obtained after processing images 

along optical axis and span-wise (y) directions, which mean the side wall effect to the 

flow field can be neglected. 

Velocity profile at the center of the chamber along the optical axis direction is 

shown on Figure 7, with flow rate set at 0.05 ml/min on the peristaltic pump.  Due to the 

symmetry of the profile, along with our interests only on the velocity profile near the 

bottom surface, only half of the profile along optical axis is drawn here.  The error bars 

show the standard deviation that is less than 5% of the mean.  The experimental data 

varies with the theoretical solution based on two-dimensional assumption within 15%.  

Since the Reynolds number for the highest flow rate, 5 ml/min, tested in the controlled 

shear stress experiments is not greater than 1, flow inside of FCS2 is still in the laminar 

region and have similar pattern as the one of 0.05 ml/min.   

Images on CCD Camera

Light From Lamp

λ ~ 450-490 nm

Fluorescence

Signal

λ ~ 515 nm

FCS2 Chamber

Objective

Lens

Filter
cube

y

x

z

 
Figure 6. Illustration of micro-PIV setup.  Flow chamber FCS2 sits on the stage of 

microscope; reflective light is used to excite fluorescent particles; fluorescent signals are 

collected with CCD camera after passing the I3 cube. 
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Figure 7.  Comparison of velocity profiles at the center of FCS2 chamber along optical 

axis (z) direction, measured with micro-PIV (█) and theoretical result based on two-

dimensional assumption (━), with flow rate of 0.05 ml/min. 

 

2.4 Imaging system 

 Most plant cells tend to exist in aggregates since the secondary metabolites 

require cell-to-cell contact due to the transfer of materials from one cell to another 

through the plasmodesmata (Hall et al 1981; Street 1977).  The cells are “glued” together 

by producing pectin which is a sticky gel-like sugar component.  The average size of a 

meristematic cell in the proliferation stage of Norway spruce somatic embryo ranges 

between 20 to 30 µm.  The cell clusters that are suitable for shear stress studies are 100 to 

200 µm in length and these clusters are mainly composed of meristematic cells with few 
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or no suspensor cells, according to previous sizing study (Egertsdotter & von Arnold 

1998).    

2.4.1 Imaging system configuration 

 An inverted fluorescent microscope (Leica DMIRM) connected with a charged 

couple device (CCD camera; Hamamatsu 1394 ORCA-ERA) and a personal computer 

(DELL DIMENSION 8250) was used to observe and record the growth of cell clusters.  

Those are the same setup as for micro-PIV measurement of flow profile inside of FCS2 

(Figure 6).  Lens with a magnification of 10× and a numerical aperture (NA) of 0.25 was 

used to fit a cluster in an image area of 1024×768 pixels (which covers the physical 

dimension of 1052×789 µm
2
).  The detail of the cluster can be recorded with an extra 

magnification module of 1.5× (which gives a total magnification of 15×).  In order to 

observe the light transmitted by the cells, transmitted light from an arc metal Halid lamp 

(X-Cite, EXFO Inc.) was used as illumination.  For integrin-like protein and ROS 

detection, different fluorescent dyes, TRITC and dihydrorhodamine 123, were used.  A 

TRITC filter cube (with excitation: 535/50 nm and emission: 610/75 nm from Chroma) 

and an I3 filter cube from Leica, with excitation filter of 450-490 nm and suppression 

long pass filter of 515 nm, was equipped with the microscope to detect the desired 

fluorescent signals, respectively. 

2.4.2 Fine tune drum reading calibration 

 The size of immobilized cells along the optical axis direction on an alginate film 

is estimated based on the focal plane of the microscope lens.  Essentially, the focal plane 

of the microscope lens can be moved along the optical axis by adjusting the fine tune 
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drum on the microscope, which allows different sections of the cell located at different 

depths to be observed.  The cell size along the optical axis can therefore be estimated 

from the difference in the relative positions of the focal plane when it is aligned with the 

very top and bottom sections of the cell.  The location of the focal plane can be correlated 

to the scale on the fine tune drum.  Calibration experiments are therefore carried out with 

slides of known thicknesses.   The procedure is discussed below. 

 The thicknesses of microscope slides (VWR) were measured with a micrometer 

on three different locations. These locations were then marked by different color markers 

on both top and bottom of the slide for later observation with the microscope.  The slides 

were set rest for five minutes to allow the marker ink to dry completely.  Each of the 

slides was then put on the stage of microscope to measure their thicknesses at the marked 

locations.  At each marked location, the focal plane was adjusted to focus on the top and 

bottom surfaces of the slide by dialing the fine tune drum.  When the top and bottom 

surfaces of the slide were in focus, the readings on the fine tune drum were recorded.  

The relative change in the readings can then be translated to actual linear dimension 

based on the thickness of the slide measured above. 

 In Figure 8, the relative change in the fine tune drum reading is plotted as a 

function of the actual slide thickness.  For each thickness, three repeated tests are 

conducted.   The four data points represent the mean value and the error bars are standard 

deviations.  For the experiments concerned in this thesis, thicknesses less than 200 µm 

are of the most interest.  More calibrations were therefore conducted in this range, as 

shown in the inset of Figure 8.  
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  As shown in Figure 8, the drum reading varies linearly with the thickness of the 

slide, which gives a scaling factor of 2.87 µm/reading.  This factor was later used to 

measure the thickness of alginate films and the relative depth of immobilized cells in the 

optical axis direction.   
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Figure 8. Calibration of drum reading versus known thickness of slides for 10× lens 

 

2.5 Image processing with normalized cross-correlation method 

In this thesis, the focus is on the development of gymnosperm somatic embryos in 

the proliferation phase, during which embryos at several stages of development are 

present at the same time (Bozhkov et al 2002).  In order to measure the effect of shear 

stress in terms of morphological changes in embryos at different developmental stages, it 

is necessary to apply direct and quantitative measures of individual somatic embryo 

development.   
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 The growth of the cell cluster was monitored by taking sequential images in time 

over a period of several days.  By visual inspection one can easily see the growth 

qualitatively.  However, to quantitatively measure the growth rate as a function of the 

polar angle in the plane of visualization (radial growth rate), one has to establish a 

systematic method.  The method selected in this thesis was based on comparison of each 

image through cross-correlation of the image at day k to the image taken at the previous 

day, k-1.  Cross-correlation of image pattern is useful when the image pattern moves or 

deforms slightly relative to the reference image pattern (Ono et al 2001).  The 

mathematical formulation of this cross-correlation is outlined below.   

 In physical terms, the method consists of “shifting” the image pattern relative to 

the reference image to identify the “shifted” location that the overlapping between the 

images is maximized.  If the image pattern, in this case the image of the cell cluster, has 

not changed but only shifted by a small amount, then at the location of the best overlap, 

the cross-correlation will be perfect (i.e., 1.0).  Here, however, the cluster also grows 

slightly over the period of one time interval (in this case one day).  The aim is to measure 

the growth in each radial direction by finding the best overlap between the cluster image 

and the reference image from the previous time period (in this case, previous day).  Then 

by directly comparing the cluster image with the reference image, one can quantitatively 

measure the growth rate in each direction over the time interval (i.e., one day in this 

study).   

 In the application here, cell clusters were fixed on an alginate film.  Therefore, 

several cell clusters could be selected, tagged and imaged each time by noting the 

location of each cluster.  This way, in each experiment the growth of several clusters 
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could be examined simultaneously.  The time interval for imaging was selected such that 

the shape of the cell clusters did not change significantly.  In these experiments, a time 

period of 24 hours was picked based on observations and experiences.  Since the 

brightness of the images varies due to lighting and exposure conditions, the gray scale of 

each image was normalized to eliminate variations in exposure.  This is done by using 

normalized cross-correlation method by subtracting the mean grayscale value from the 

images and dividing the correlation value by the standard deviation, a standard method in 

image analysis. 

2.5.1 Image processing procedure 

Time-lapsed images of one cell cluster were recorded over a period of time.  In 

this case, the time lapse ∆t ≡  tα+1 - tα = 24 hours, where α = 1, 2, …, k.  The maximum 

duration of one experiment (i.e., k) was 14 days; thus the maximum number of images 

per cluster was k + 1 = 15.  The gray scale values of each image taken in sequence were 

stored in a 1344 × 1024 matrix.  To reduce the processing time, the images were then 

cropped to a rectangular region (I × J, row by column) which contains the cell cluster of 

interest, as shown in Figure 9A.  The cropped images were binarized by defining a 

threshold value to maximize the contrast between the cell cluster and the background 

(Figure 9B).  The background noise, generated during image acquisition, was removed by 

a thinning algorithm to identify the cluster boundary (Figure 9C).  The locations that the 

cell cluster occupied was then filled in with white color along the boundary of the cluster 

to get a binary image of a white object on black background (Figure 9D).  The last three 

steps were to enhance the contrast of the image, increase the signal-to-noise ratio, and 

improve the accuracy of processing results.  The images were then stored in a series of 
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matrices αA (i, j) where i = 1, 2, …, I, and j = 1, 2, …, J .  The normalized cross-

correlation of two consecutive images, αA  and 1+αA , is given by  
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where αA  is the mean gray scale value of the imaged region αA ; m and n are the pixel 

row and column locations of the correlation values, αc , residing in the range of 

ImI 22 ≤≤−  and JnJ 22 ≤≤− .  The image αA  taken at time tα serves as the 

reference or template when correlating with the image 1+αA  taken at time tα+1.  Cross-

correlation is first used to identify the (m, n) location of the maximum value of ( )nmc ,α  

which indicates the offset corresponding to the best match or overlap between the two 

cluster images αA  and 1+αA .  The image 1+αA  was then shifted with respect to the 

template αA  by m rows and n columns, resulting a new image 1+
′
αA .  As discussed in 

Section 2.6, this shift compensates for the slight change in physical location of the cell 

cluster and inconsistency in locating the cluster when imaging it at different time.  Next 

step was to detect the edge of the cell cluster on each image using the Prewitt 

approximation (Parker 1997) to get the boundary contours, as shown in Figure 9E.  Each 

contour was individually labeled and the coordinates were recorded. 
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Figure 9. Outline of the step-wise procedure for processing images of the cell clusters 

monitored in the experiments to estimate growth and development. (A) Cropped 

image with cell cluster of interest; scale bar = 50 µm. (B) Binarized image; (C) 

Background and noise removed from binarized image; (D) Filled the inside of the 

cell cluster followed by normalized cross-correlation; (E) Edge-detection of the cell 

cluster; (F) Contours superimposed; one reference point was picked in the center of 

the small red circle. (G) Evaluation of growth by dividing the superimposed contours 

into 36 sections, and calculating the radii from the reference point to the points on the 

edge of contours along the same direction.  The white rays indicate the directions of 

the radii; the white arrow indicates the counter-clock-wise rotation of angles.  The 

color bar represents the day of experiment. 
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2.5.2 Quantification analysis of cell growth 

2.5.2.1 Radial growth as a quantification parameter 

In the past studies, different developmental stages of carrot somatic embryos have 

been characterized by parameters that describe the shape of the embryo in terms of axial 

length/radial growth, diameter, cotyledon length and cotyledon arc, to quantify the 

individual shape of cells (Schiavone & Cooke 1985).  To show how shear stress affects 

cell growth, monitoring and quantifying the growth and development of individual cell 

cluster/somatic embryo under shear stress is the focus in this thesis.   

In current studies, radial growth of embryos was chosen as the quantity to reflect 

the morphology change.  To quantify the rate and direction of the cell cluster growth, the 

origin of a polar coordinate on the superimposed contour image (the center of the small 

red circle as shown in Figure 7F) was selected at the center of mass of the cell cluster at 

the beginning of an experiment.  The directional growth of the cell cluster, which can be 

characterized by polar angle θ  and radius length ( )θαR  for each point on the contour 

image, was computed in each direction as demonstrated in Figure 7G. 

 In each experiment, there was a total of M ( 6020 ≤≤ M ) clusters recorded.  

Among those M clusters, typically N ( MN ≤≤10 ) clusters that survived the whole 

duration of experiment were processed with the normalized cross-correlation method.   

The final growth of cell cluster l (1 ≤ l ≤ N) along each direction was calculated as  

( ) ( )θθ llk RR ,1,1 −+ . 
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This was further averaged by the number of time intervals during the experiment to get 

the mean growth rate 

( )
( ) ( )
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.                                                                       (2) 

The mean growth rate along each direction θ  for the total of N clusters in each 

experiment was calculated as 
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thus the standard deviation of this averaged growth is given by  

( ) ( )[ ] ( ) ( )[ ]∑∑
==

∆−∆
−

=∆−∆
−

=
N

l

l

N

l

l RR
N

RR
N

s
1

22

1

2

1

1

1

1
θθθθ .            (4) 

The mean growth rate and standard deviation along each direction for the clusters in all 

three experimental repetitions under each test condition were calculated the same way, by 

combining all the data from three repetitions. 

2.5.2.2 Statistical significance analysis—t-test 

Most of the past studies were research on the suspension cells, and the results 

were concluded based on the average/statistics of individuals.  Statistical methods are 

commonly applied to interpret data in the biological related studies to extract objective 

conclusions (Davenport et al 2000; Ewing et al 1999; Nyberg et al 1999; Pendzich et al 

1997).  In order to find out if there is significance among all the directions the cell 

clusters grow, statistical significance test is applied.   
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Significance test is an analytical procedure which concentrates on assessing the 

reasonableness of regarding two (or more) populations as the same in some respect.  This 

particular hypothesis of equality studied by the significance test is called the null 

hypothesis.  In this thesis, it is assumed that cell clusters grow at the same rate along all 

directions, which can be also claimed that the cell growth rate is isotropic.  To decide 

whether this hypothesis is compatible with the actual mean growth rate data, the 

probability, P, is obtained as the mean of the actual growth rate is the same as the mean 

of the total population growth rate.  Before making decision of the null hypothesis being 

either accepted or rejected, a confidence level, (1 – a), is preset, where a is called the 

significance level that is also preset with the confidence level.  If P value is bigger than 

the preset significance level (P > a), then the null hypothesis is accepted.  If P value is 

smaller than the preset significance level (P < a), then the null hypothesis is rejected.  

The rejected result is informally referred as statistically significant.  Normally, a 

probability greater than 5% is regarded as reasonable, and the null hypothesis is accepted 

under such a probability.  Stricter probabilities, such as 0.1%, are used for very sensitive 

tests. 

For the cases that the mean and standard deviation of the total population are not 

known, only the mean and standard deviation (or so called standard error) of a set of 

sample data are known, the significance test of such sample data is with t-test.  For data 

R∆ (
NRRR ∆∆∆  ..., ,, 21

) of sample size N (with N-1 degrees of freedom), the null 

hypothesis is that the sample mean  

∑
=

∆=∆
N

l

lR
N

R
1

1
       (5) 



 63 

is equal to a hypothesized population mean µ .  In testing the null hypothesis, one 

uses t-test statistic, which is defined as 

Ns

R
t

/

µ−∆
= ,        (6) 
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−
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1
 is the standard deviation of the sample data.  When 

there is no way to know beforehand that how two or more sample data will perform, two-

sided test under a preset significance level a is applied first.  Based on the two-sided tests, 

one gains the knowledge of how the sample mean varies to the hypothesized population 

mean.  Then one-sided test with significance level a/2 can be used to predict the 

probability of the null hypothesis being accepted or rejected. 

For example, for a set of 11 data of radial growth in an experiment of shear rate of 

140 s-1 along 45 degree direction, 1.24, -0.59, 1.50, 16.50, 18.38, 6.36, 6.89, 0.24, 5.91, 

1.41, 6.60, the sample mean is 5.86 with standard deviation of 6.37, while the 

hypothesized population mean is 5.88 which is calculated based on all the data along all 

directions in this experiment. The t-test statistic is equal to (5.86 – 5.88)/(6.37/3.32) = -

0.011.  The two-sided probability P(t < -0.011) = P(t > 0.011) can be found by the t 

distribution with 10 degrees of freedom in the Table E in Moore and McCabe (Moore & 

McCabe 1999), where P(t > 0.011) = 0.9914 is great greater than a = 0.05. This result is 

insignificant at the 0.05 significance level, indicating that the null hypotheses can be 

accepted with the 0.95 confidence level.   

Another example of rejecting the null hypothesis will be with 11 data in the same 
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experiment of shear rate of 140 s
-1

 along 0 degree direction, 3.88, 7.17, 0.88, 24.67, 

28.33, 6.00, 1.50, 8.17, 17.00, 10.25, 19.67.  The sample mean is 11.60 with standard 

deviation of 9.41, while the hypothesized population mean is still 5.88 as the last 

example.  The t-test statistic is equal to (11.60 – 5.88)/(9.41/3.32) = 2.016.  The two-sided 

probability P(t > 2.016) can be found by the t distribution with 10 degrees of freedom in 

the Table E in Moore and McCabe (Moore & McCabe 1999) also, which is P(t < -2.016) 

= P(t > 2.016) = 0.0715 slightly greater than 0.05. This result is insignificant at the 0.05 

significant level, indicating that the null hypotheses can be accepted with the 0.95 

confidence level on two-sided test.  But this result is significant at the 0.1 significant 

level, indicating that the null hypotheses can be rejected with the 0.90 confidence level on 

two-sided test; or for the one-sided test, the probability is 1/2 P = 0.0357 < 0.05, the 

result is significant at the 0.05 significant level indicating that the null hypotheses can be 

rejected with 0.95 confidence level on one-sided test.   

All sampled experiments data in this thesis are processed with two-sided tests 

first, after getting the significant directions under 90 % confidence level, one-sided tests 

results with confidence level of 95 % are presented in the tables. 

2.6 Validation of normalized cross-correlation image processing method 

 Fluorescent microscope and digital image analysis provide the platform for 

investigation of cell development.  The studies rely on the analysis of digital images, and 

the validation of image processing methods becomes an important topic especially in the 

high-throughput measurement technologies involving vast amount of information 
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(Lehmussola et al 2007; Lehmussola et al 2008; Pepperkok & Ellenberg 2006; 

Starkuviene & Pepperkok 2007).   

 In the steady shear stress experiments, somatic embryo cell clusters were affixed 

with alginate film.  Cells grew by enlarging and dividing at the beginning of each 

experiment.  The changes of shape or contour of cell clusters are not significant in a 24 

hours period, which makes the observation and record of the cell clusters at different time 

steps possible.  When capturing the first images of clusters, the locations of the clusters 

were recorded as the positions of the x-y stage of the microscope.  During the 

experiments, the lighting and exposure conditions may vary; the location of clusters may 

change due to manually relocating; the background of the clusters may not be clean 

enough to identify the clusters of interest; and it is desire to match the contour of a cluster 

at different time steps during an experiment.   

 The image processing method applied here needs to solve all the challenges 

mentioned above.  A normalized cross-correlation Matlab code was developed to meet 

such requirements.  This image processing, as described in section 2.3, was semi-

automated, involving manual processes of picking cell clusters of interest out and a 

threshold value as distinguishing cells out of background if the default value did not work 

well.  Before drawing any meaningful conclusions from the extracted data by the image 

processing method, the accuracy of the method needs to be ensured.  In order to test the 

robustness and reliability of this method, a series of artificial images were generated to 

validate this method.   
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2.6.1 Generation of artificial images 

 Images obtained from a microscope were preprocessed with an in-house code in 

order to eliminate the errors originated from the measurement system, such as different 

lighting and exposure times, detector noise and undesired information from cells not of 

interest.  Then the cell cluster of interest was extracted from the image by cropping the 

original image.  Finally different features were quantified from the correlation of the 

extracted cluster and stored for further analysis.  To better understand the impact of 

various factors (for example, background noise and threshold value for binarization etc.) 

and to test the accuracy of the processing method, a series of artificial images were used.  

With the artificial images, one can effectively control the desired features of the images, 

such as the location of the cell clusters, the growth of cells, the grayscale of images and 

the background noise.   

 The generated artificial images of cell clusters should follow the physical 

conditions of the testing materials, in order to reflect the real cases of experiments.  In 

liquid suspension culture during the proliferation phase, cells normally grow in small 

clusters with a few cells together.  The individual cell is around 20 µm in diameter.  Cell 

clusters with length in the range of 100 - 200 µm were selected for immobilization and 

exposed to shear stresses.  The representative artificial images are constructed from the 

superposition of several ellipses with major axis of 20 µm (as shown in Figure 10A).  The 

image size is 253 × 192 pixels in horizontal x direction and vertical y direction, 

respectively.  This sample cluster represents a cluster of 100 µm length. 
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2.6.2 Translation motion of cells between image pairs 

 The sample cluster is then shifted in the (x, y) plane by (26, -31) in pixel size 

along horizontal and vertical directions, as shown in Figure 10B.  The red arrow indicates 

the shifting of cluster positions.  These two images are used to test the validity of the 

cross-correlation method for computing the translation of two objects on a two-

dimensional (2D) plane.  As shown in Figure 10C, the contours of two clusters match 

each other perfectly after correlation since two contour lines are overlapped.  The contour 

line of first color in the color bar from cluster A is overlaid by the line of second color in 

the color bar from cluster B.  The plot in Figure 10D shows zero displacement 

( ( ) ( )θθ 1RRn − ) along 36 directions (θ ) around the cluster contour between these two 

correlated images, where 
nR , n = 1, 2, is the radial length measured from the reference 

point (the center of the red circle which is the center of mass of the 2D cell cluster A as 

shown in Figure 10 C). This supports the accuracy of correlation due to displacement. 
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Figure 10.  Test accuracy of correlation due to translation. (A) Original cell cluster. (B) 

Shifted original cluster by moving (26, -31) pixels in the x-y plane. The red arrow 

indicates the translation motion of cell cluster.  (C) Superimposed two clusters in A and B 

after correlation, with the center of the small red circle representing the reference point 

and the color bar representing the colors used for two clusters, respectively. (D) Distance 

between the contours of correlated two clusters along different angle.  
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2.6.3 Contour changes due to growth between image pairs 

 As clusters grow, new cells appear in the x-y plane.  A new cluster was 

constructed by adding one additional cell along the original contour of cluster in Figure 

11A to test the matching of clusters before and after growth.  Newly added cell was 

labeled in red color to distinguish from the original cluster (as shown in Figure 11B).  

The correlated image show the partially overlaid contours of two clusters.  The overlaid 

area is the location without new cell.  The area not overlaid displays the growth of the 

new cell (as shown in Figure 11C).  The white bars in Figure 11D represent the distance 

between the contours of two clusters along each direction, which also represent the 

change or growth of the new cell; the red diamonds along the contour represent the 

direction of the growth with the origin being the center of the red circle (which is the 

mass center of the cluster at the beginning of one experiment) that are also the end points 

of the white bar on the second cluster.  A qualitative growth along each direction can be 

easily identified by the white bars. 

2.6.4 Image noise control 

 To test the computation effectiveness of background noise removal and the effect 

of background noise on the accuracy of cluster matching and quantification, random 

noise is added on images (as shown in Figures 12 and B, which are modified from the 

constructed artificial clusters without noise as in Figures 10A and B).  These noises do 

not blur the edge of the cell cluster and are easy to remove (as shown in Figures 12C and 

D).  The cleaned images of two cell clusters match each other perfectly with zero 

displacement between the two contours.   
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 In some cases, the noise may make it difficult to distinguish the cells from the 

background.  A threshold value needs to be manually chosen based on the contrast 

between the object and the background, to binarize the images before removing noise.  

Such case is represented in Figure 13A compared with image without noise in Figure 

13B.  Cleaned image in Figure 13C used the mean grayscale value as a threshold to 

detect the edge of the cluster and remove the background noise, while the cleaned image 

in Figure 13D used a manually picked higher than mean grayscale value as threshold 

through a few trials.  With the cost of a few more (three in this case) minutes of 

computation time involving the manually handling, the cluster edge in Figure 13D is 

sharper than the one in Figure 13C and the measurement error due to the blur edge is 

within one pixel, as shown in Figure 13E. 
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Figure 11.  Test accuracy of correlation due to growth introduced deformation. (A) 

Original cluster. (B) Cluster with a new cell labeled with red color. (C) Superimposed 

two clusters in A and B after correlation, with the center of the small red circle 

representing the reference point and the color bar representing the colors used for two 

clusters, respectively. (D) Distance between the contours of correlated two clusters along 

different angle.  
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Figure 12.  Test accuracy of correlation due to background noise. (A) First cell cluster 

with background noise. (B) Second cell cluster by moving the first (26, -31) pixels in the 

x-y plane. (C) Superimposed two clusters in A and B after background noise removal and 

correlation, with the center of the small red circle representing the reference point and the 

color bar representing the colors used for two clusters, respectively. (D) Distance 

between the contours of correlated two clusters along different angle.  
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Figure 13.  Test accuracy of edge detection by defining threshold values. (A) Cell cluster 

with blurred edge between cells and background. (B) Cell cluster only as a comparison to 

A. (C) Edge detection with the mean value of the grayscale as a threshold. (D) Edge 

detection with a higher than mean grayscale value as threshold, with the cost of manually 

processing time increasing about three minutes. (E) Displacement between the contours 

of two clusters along different directions. Measurement error due to the blur edge is 

within ± 1 pixel with the extra three minutes as processing time. 
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2.6.5 Small rotation of cell cluster between image pairs 

 The experimental system is designed to have cell clusters affixed with alginate 

film.  The rotation of film (thus cells) during one experiment can be neglected.  To test if 

the image processing method can resolve the small rotation of the cell clusters, the cluster 

in Figure 14A is rotated clock-wise for 5° (as shown in Figure 14B).  Figure 14C shows 

the correlated results of original image with the rotated image.  The perfect match of two 

images implicates the method can detect and correct small rotations between image pairs.  

Past studies about the normalized cross-correlation method also show that cross-

correlation method can detect rotation between image pairs, up to a rotation of 5 to 10 

degrees (Petrosyan 2009).  There is further confirmation with real image processing of all 

the images taken during experiments.  
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Figure 14.  Test accuracy of correlation due to small rotation. (A) Original cell cluster. 

(B) Rotated original cluster clock-wise by 5°. The red coordinate lines indicate the 

direction of cluster. (C) Superimposed two clusters in A and B after correlation, with the 

center of the small red circle representing the reference point and the color bar 

representing the colors used for two clusters, respectively.  
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2.6.6 Validation results and discussions 

2.6.6.1 Summary of validation results 

 The normalization procedure before correlation eliminates the effects of different 

lighting conditions and exposure times caused image grayscale variation.  The algorithm 

of background noise removal is efficient even with manually processing involved.  With 

the cost of a few minutes of threshold value setting, the measurement error due to edge 

blur can be controlled within one pixel.  From the validation results, we can conclude that 

the cross-correlation method can compensate the lighting condition and exposure time 

differences during the duration of one experiment, and compensate the possible 

deformation of alginate film and the measurement error due to manually locating cell 

clusters.  This method can provide perfect match for clusters over a certain time period of 

development. 

2.6.6.2 Reference point selection 

 Since the directional growth is of most interest in this thesis, radial angle is 

applied to quantify the growth direction.  Thus a reference point or the original of a polar 

coordinate needs to be set.  For a three-dimensional (3D) object, the shifting of mass 

center will reflect its growth.  Images of the object taken through a fluorescence 

microscope are its projection in 2D horizontal x-y plane.  The center of mass obtained 

from the 2D image is the center of mass of the projected area of cells on x-y plane which 

is not the physical center of mass.   
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 The appearance of the object through a microscope depends on the thickness of 

the sample.  The thickness of the sample layer in microscope causes blurring to the 

objects (Dieterlen et al. 2002; Lockett and Herman 1994; Meinhart et al. 2000).  The 

blurring originates from the 3D nature of the sample.  Only flat objects on a focal plane 

can be thoroughly in focus.  The further the objects are from the focal plane, the more 

blurred is their appearance.  The general size of Norway spruce meristematic cells is 

around 20 to 30 µm, and the thickness of the focal plane for 10× and 15× lens with 

numerical aperture of 0.25 is around 10 µm.  Since these two sizes are close, it is 

impossible to take images by segmenting the cell cluster at different depth.  Thus, in this 

thesis, only 2D images are used to evaluate the growth of cells under different test 

conditions. 

 Although the center of mass of a 2D projection image is not the physical center of 

mass of one cell cluster, it reflects the shape of the projected cell contour.  By tracing the 

contour changes, one can get the qualitative idea of how the cluster grows and develops 

in the 2D plane.  Thus the center of mass of the projected 2D image of one cell cluster at 

the beginning of one experiment was selected as the reference point, or the origin of the 

polar coordinate, to evaluate the cells growth over time. 

2.6.6.3 Division of angles when quantifying directions 

 To evaluate the direction of growth and not miss any new cells, the minimum 

division of angle was determined as shown in Figure 15.  Cell cluster is around 200 µm 

in length (with the black circle represent the possible edge location of one cluster) with 

meristematic cells of diameter of 20 µm (which is represented as the red circle).  The 
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minimum angle division not to miss the peak and valley of the new cell will be β/2.  The 

triangle as sketched on the right of Figure 15 is used to determine the angle division, 

which is 5.8°.   

 Figure 16A shows such a cell cluster with the new cell on the edge labeled with 

red color, Figures 16B –D show the matched contours and measurements of the growth 

due to this new cell with white bars, using divisions of 36, 72 and 90, respectively, and 

Figure 16E shows the radial length of the growing cluster with division of 36, 72 and 90, 

respectively.  There are two white bars in Figure 16B with 32 divisions that miss the peak 

of the new cell.  There are three white bars showing the growth in Figure 16C with 72 

divisions. These bars cover the peak and the valley of the cell along the edge.  So do the 

white bars in Figure 16D with 90 divisions.  Radial length line with 36 divisions differs 

to the radial length lines with 72 and 90 divisions, and the lines with 72 and 90 divisions 

match each other well.  The more the divisions, the more computation time is needed.  

Based on the above discussion, division of 72 provides enough accuracy of catching the 

growth trend of a new cell with reasonable computation time, and a 5° is used in this 

thesis to get an even distribution of angles along each direction.   
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R = 100 µm

d = 20 µm

β
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β/2

R sin(β/2) = d/2

 
Figure 15.  Sketch used to determine the angle division for radial growth evaluation.  

The black circle with radius R = 100 µm represents the possible edge location of one 

cluster, the red circle represents the new cell with diameter d = 20 µm, and β/2 is the 

angle representing the minimum angle division. 
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Figure 16.  Evaluation of angle division.  (A) One cell cluster with length of 200 µm, 

the black circle is of diameter of 200 µm and the red circle represents the new cell in 

the size of 20 µm. (B) Measurement of new cell growth with 36 divisions, white bars 

represent the growth along certain directions. (C) Measurement of growth with 72 

divisions. (D) Measurement of 90 divisions. (E) Radial length of the growing cluster 

with division of  36, 72 and 90. 
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2.7 Signal transduction experiments 

2.7.1 Integrin-like protein detection experiments 

To verify if there are integrin-like proteins as stress signal molecules in Norway 

spruce somatic cells that could cross react with antibody against human integrin, and 

determine their distribution, immunofluorescence study was performed (Lü et al 2007).  

Suspension cultured cells passed 500 µm nylon mesh and the cells larger than 500 µm 

left on the mesh were collect for study.  The detail procedure is as follows: 

(1) The cells were treated with enzyme solution, containing 0.25% (w/v) Driselase 

(Sigma Aldrich), 0.25% (w/v) Macerozyme (Sigma Aldrich) and 1% (w/v) 

Cellulase (Sigma Aldrich) at room temperature, for 15 minutes on the 20 rpm 

rotary table in the dark to loose the cell wall and expose the membrane for 

further antibody treatment.  The enzyme treatment dissolve cell walls in 

different extend and breaks down cell clusters to smaller size.  Some cells 

with cell wall partially removed present as individual cell and a shape close to 

sphere; cells with cell wall completely removed present as protoplasts which 

are in spherical shape.  In order to get cells in various states, such as intact 

cells, damaged cells, cells with cell wall partially removed, cells with 

membrane partially peeled from cell walls, and protoplasts with cell wall 

completely removed, larger fraction of cell clusters (> 500 µm) was used here.   

(2) The cells were then washed with medium three times to remove the enzyme 

solution.  During each wash, cells were put into Petri plates and shaken on the 

rotary table at 20 rpm for 5 minutes. Liquid was then removed with 1000 µl 
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pipettor.  After wash, cells were divided in Petri plates and ready for further 

treatments.   

(3) Six plates were marked as control.   Three of them experienced no further 

treatment and ready to be observed under the microscope.  The other three of 

these plates were incubated with secondary antibody followed the same 

procedure as in step 6 and 7. 

(4) The cells in rest plates were incubated in phosphate-buffered saline (PBS) 

containing 10% (w/v) bovine serum albumin (BSA) in dark on the rotary table 

at 20 rpm for 10 minutes.  Cells were washed with PBS as step (2) after 

incubation for three times.   

(5) The primary rabbit antibody against human integrin β1 (M-106 from Santa 

Cruz Biotechnology Inc.) at a dilution of 1:400 was added to the Petri plates 

with cells.  The plates were then incubated at 37 °C overnight (for total of 17 

hours) then washed three times with PBS after the incubation. 

(6) Tetramethylrhodamine isothiocyanate (TRITC)-conjugated anti-rabbit 

immunoglobulins (Sigma Aldrich) was added to the Petri plates at a dilution 

of 1:500.  The plates were then incubated at 37 °C for 4 hours.   

(7) After the incubation, cells were washed with PBS for four times and left in 

Petri plate for observation.  The fluorescence microscope was equipped with a 

TRITC filter (with excitation: 535/50 nm and emission: 610/75 nm from 
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Chroma) capable of detecting the fluorescent signal from the secondary 

TRITC-conjugated antibody. 

2.7.2 Reactive oxygen species detection experiments 

Another cellular level signaling molecule studied in this thesis is hydrogen 

peroxide, H2O2, which is one of the reactive oxygen species (ROS) along with superoxide 

•

2O  and hydroxyl radical OH-.  Past studies show that ROS is a natural byproduct of the 

normal metabolism of oxygen and has important roles in cell signaling.  Production of 

ROS has been studied as a parameter of shear stress effect on the plant cells (Gao et al 

2007; Gens et al 1996; Swatzell et al 1999).  In this section, the production of H2O2 in the 

stressed cells was tested using dihydrorhodamine 123 (DHR123).  The accumulation of 

H2O2 can be detected by the stain of DHR123 by showing fluorescent signals of high 

intensity. 

Suspension cultured cells at proliferation stage from cell line #3 were used as 

testing material.  The detail procedure is following: 

(1) Cells were first filtered through a 200 µm nylon mesh to get rid of the old 

culture medium, or the H2O2 in the medium; cells were rinsed on the mesh 

with fresh medium 5 times; washed cells were placed in Petri plates with fresh 

medium.   

(2) One plate with cells was labeled as control and without any further treatment; 

a second Petri plate with cells was shaken vigorously at a frequency of 180 

rpm for 2 minutes and then 20 µM dihydrorhodamine 123 (DHR123, Sigma 
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Aldrich) was added in this plate to stain the cells for 5 minutes; cells in a third 

Petri plate were stressed by fast pippeting the cells up and releasing them 

continuously at a frequency of 60 repetitions per minute for 2 minutes and 

then 20 µM DHR123 was added in this plate to stain the cells for 5 minutes. 

(3) Stained cells in both last two plates were filtered and washed with fresh 

medium for 3 times;  washed cells were put into two new Petri plates with a 

few drops of fresh medium for fluorescent signal detection.  The microscope 

was equipped with I3 filter from Leica, with excitation of 450-490 nm and 

suppression long pass of 515 nm, to detect the signal. 

2.7.3 Cell wall pore size experiments 

To find the molecular response of cells to shear stress, the permeability of the cell 

walls of the cell clusters as a result of shear stress was tested.  Signaling molecules need 

to pass the cell wall and reach the cell membrane in order to have an effect, and it has 

been argued that size exclusion at this level controls development (Jarvis 2009).  In order 

to design experiments to further explore the physiological functions of cell wall and the 

uptake of molecules like proteins by intact plant cell, it is necessary to consider the pore 

size of plant cells. 

Based on the phenomena of either plasmolysis or cytorrhysis, one can have the 

idea of how big the solutes size comparing with the pore size of the cell wall.  Carpita et 

al. (1979) devised a solute exclusion method to determine the pore size of cell walls of 

living cells, by observing the plasmolysis and cytorrhysis of plant cells after immersing 

cells in a solute of certain size with a phase-contrast microscope.  Based on their idea, a 
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procedure was designed to test pore size of the cell wall of Norway spruce somatic 

embryo cells. 

2.7.3.1 Solute concentration concerns 

In order to eliminate the effect from osmotic pressure, all the solutions will be in a 

concentration that keeps the osmotic pressure of each solution the same.  Osmotic 

pressure is an important factor affecting cells.  Plant cells in a hypotonic solution will 

swell and increase their volume, while the cell walls restrict the expansion and this results 

a turgor pressure on the cell wall from within, and turgor pressure allows plants stand 

upright in nature.  Plant cells in hypertonic solution lose water and this will cause 

plasmolysis.   The hypertonic solution may or may not have a higher osmotic pressure 

than the cell interior as the hypotonic solution since the rate of water entry/leave will 

depend upon the permeability of the cell wall.  Testing the permeability of cell wall is the 

priority goal in the following designed experiments; the factor of osmotic pressure has to 

be considered to isolate the effect of cell wall pore size. 

In the protoplast experiments of Norway spruce somatic embryos, 0.44 M of 

mannitol as an osmoticum was used.  This helps the forming protoplasts keep their shape 

and not burst.  For plasmolysing somatic embryos before transformation with particle 

bombardment, 0.25 M myoinositol was applied.  Plasmolysis occurs under this condition.  

These two values can serve as guides for the osmotic pressure of cells in isotonic 

solution.  The osmotic pressure, Π, in [atm] unit of a dilute solution can be approximated 

using the Morse equation (Amiji & Sandmann 2003) 

Π = iosmRgasT                                                                                              (7) 
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where ios is the dimensionless van't Hoff factor; m is the molarity of solution with unit of 

[mol·L-1]; Rgas=0.08206 [L·atm·mol-1·K-1] is the gas constant; T is the thermodynamic 

(absolute) temperature in [K].  The van't Hoff factor is the ratio between the actual 

concentration of particles produced when the substance is dissolved, and the 

concentration of a substance as calculated from its mass.  For most non-electrolytes 

dissolved in water, the van't Hoff factor is essentially 1.  For most ionic compounds 

dissolved in water, the van't Hoff factor is equal to the number of discrete ions in a 

formula unit of the substance.  This equation gives the pressure on one side of the 

membrane.  The total pressure on the membrane is given by the difference between the 

pressures on the two sides.  Based on the above equation, it is obvious that the osmotic 

pressure is proportion to molarity for non-electrolyte, thus molarity can serve as an easy 

indicator. 

To get the mass concentration (CN) in [g· L-1] of one solute, the Morse equation 

can be rearranged as following formula: 

CN = MW m = MW Π/(iosRgasT)                                                                    (8)                                                                  

Where MW is the molecular weight of a solute in [g·mol
-1

].    The mass used for 10 ml of 

solution for each solute will be 0.01 CN grams.  Table 3 listed the molecular weight along 

with mass concentration of each solute under different osmotic pressures/molarities of 

solutions.   
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Table 3. Solutes molecular weight and size, and mass used in 10 ml of different solutes 

based on molarity of 0.25 and 0.44, respectively. 

Solute 

Molecular 

weight 

[g/mol] 

Molecular 

diameter 

[A] 

Mass used for 10 ml 

solution of 0.25M 

[g] 

Mass used for 10 ml 

solution of 0.44M 

[g] 

Mannitol 182 8 0.46 0.80 

Sucrose 342 10 0.86 1.50 

Stachyose 666 14 1.67 2.93 

Polyethylene glycol (PEG) 

PEG 400 380-420 22 1.00 1.76 

PEG 600 570-630 29 1.50 2.64 

PEG 1000 950-1050 35 2.50 4.40 

PEG 1540 1305-1595 38 3.63 6.38 

PEG 4000 3015-3685 45 8.38 14.74 

PEG 6000 5000-7000 52 15.00 26.40 

 

2.7.3.2 Experimental procedures 

Norway spruce somatic embryo cell clusters in the proliferation stage are cultured 

on solid medium in 10 mm Petri plates in the dark.  The solid medium has the same 

components as liquid ½ LP medium and is solidified with agar (0.35% w/v).  Cell 

clusters from cell line 06:22:02 and 06:21:00 were picked for the pore size solute 

exclusion experiments due to their ease of dispersion.  The response of cell clusters to 

one macromolecule with concentration of either 0.25 M or 0.44 M was observed.  The 

experiment was repeated for total three times on one solute.  Following is the procedure 

for preparing stressed cells. 
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(1) A very thin layer of cells (approximate 200 mg) were carefully taken out of 

the clumps of cells and put into a 6 mm Petri plate for control study as cells 

experienced no stress.   

(2) For the stressed group of cells, about 1/3 of one clump of cells (approximate 

200 mg) was taken out of the solid cultured plate and put into a 6 mm Petri 

plate filled with 2 ml of liquid culture medium.  The cells were then liquid 

cultured in the plate on the rotary table at 100 rpm and covered in the dark.   

(3) Cells were sampled from the liquid culture plate after 4 hours and overnight 

for 22 hours.  Nine solutes (from Sigma-Aldrich) of different molecular 

diameters from literature (Carpita et al 1979), Mannitol, Sucrose, Stachyose, 

Polyethylene glycol (PEG) 400, 600, 1000, 1540, 4000 and 6000 as listed in 

Table 3 were dissolved with nanopure water to make solutions to test the pore 

size. 

The experiment started with the solute preparation based on two concentrations as 

listed in Table 3.  Following is the procedure for sample observation. 

(1) Cells were put onto a glass slide with forceps.  Two drops of liquid culture 

medium were dripped upon to disperse the cells quickly for control cells, this 

step was skipped for stressed cells.  Cells were covered and affixed with a 

cover slip.   The glass slide was then put on the stage of the microscope.   

(2) One of the solutions was dripped drop wise on the right side of the slip.  A 

piece of paper towel was positioned on the left side of the slip to absorb the 
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liquid between the glass slide and cover slip such that the test solution was 

drawn from right to left across the cells affixed between.  The time between 

the drop contacting the slide and the cell clusters showing plasmolysis and 

cytorrhysis were recorded.  The above cells testing procedure was repeated for 

the rest solutions. 

After introduction of experimental setups, methods and procedures for each 

experiment, the results from controlled shear stress experiments and signal transduction 

experiments will be presented and discussed in next chapter. 
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CHAPTER 3 

EXPERIMENTAL RESULTS AND DISCUSSION 

 

This chapter presents the results and discussions for steady shear stress and signal 

transduction experiments.  In order to make comparison of cell cluster growth and 

development, the results of cell cluster growth under control are presented first in Section 

3.1, followed by the results of steady shear stress experiments and comparison between 

them in terms of cluster growth and formation of suspensor cells.  Section 3.2 describes 

the results of signal transduction experiments that include integrin-like protein and 

reactive oxygen species detections and the pore size monitoring experiments with solute-

exclusive method. 

3.1 Cell cluster development 

3.1.1 Cell cluster development in control group 

To compare the difference between cell clusters experiencing shear stress and 

those in stationary culture, a second film was made at the same time as the film 

experiencing steady shear stress inside of the FCS2 chamber, following the same 

procedure.  This second film served as control for the shear stress experiments.   
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The control film with immobilized cells was kept stationary in a Petri plate, with 

liquid medium partially immersed the film and immobilized cell clusters on top of the 

film exposed to air.  The film was stored in the dark (by covering with aluminum foil) at 

25 °C except when being imaged once a day.  The amount of liquid medium was kept 

small to provide enough nutrients to the immobilized cells and prevent the film from 

floating around in the medium, which makes tracking the cells very difficult.  The 

repeated tests on the control group show that the small amount of liquid medium (around 

2 ml) is sufficient to supply the cells with nutrients over the two-week period. 

The development of cell clusters over the 14 days of experimental period was 

recorded and processed.  One representative cell cluster development in the control group 

is shown in Figure 17.  The images present the status of the cluster on day 1 (A), day 5 

(B), day 6 (C) and day 7 (D) of the experiment.  The cell cluster started as a small 

aggregate and continued to divide and grow.  Suspensor cells developed on this cell 

cluster at day 5 of the experiment and formed a polarized structure as indicated by the red 

arrows in Figures 17B-D.  For all the experimental cases, the cell clusters in the control 

group which developed suspensor cells formed suspensor cells at day 5 to day 9 of an 

experiment.  The suspensor cells formed unidirectionally on cell cluster and all the 

clusters with developed suspensor cells show polarized structure.  The clusters which did 

not develop suspensor cells continued to divide and grow as an aggregate (as shown in 

Figure 18 on next sub section).  The quantificational analysis will be presented in the 

quantification section. 
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Figure 17. A cell cluster in the control group under stationary condition. (A) 1 day 

after the experiment was started; (B) 5 days; (C) 6 days; (D) 7 days. The red arrows 

indicate the location of suspensor cells.  Scale bar = 50 µm. (E) Estimation of 

development and growth of the cell cluster by superimposing the cell contours from 

the 7 days of duration of the experiment by the step-wise method outlined in Figure 7. 

The different colors on the color bar represent the different day of experiment. 

 

3.1.2 Cell cluster development under steady shear stress 

The steady shear stresses that are exerted on the cell clusters immobilized on 

alginate films were generated by the peristaltic pump (Harvard) running at pre-set flow 

rates (0.3, 0.5, 1, 3 and 5 ml/min) as described in Chapter 2.  To eliminate the pressure 

pulsation during operation of the pump, a pressure damper was added into the flow loop 

before the culture medium entered the FCS2.  The flow rate was kept constant over the 

B A C 

D E 
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full duration of the experiment—fourteen days.  Each experiment at a given flow rate was 

carried out for three times to get triple set of data.   

The embryo cells immobilized on the top of an alginate film are exposed to shear 

stresses generated by fluid flowing through the chamber.  Flow rates of 0.3, 0.5, 1.0, 3.0 

and 5.0 ml/min were used in the steady flow experiments, resulting in shear rates of 9, 14, 

29, 86 and 140s-1, respectively.  These shear rates correspond to wall shear stresses of 

0.009, 0.014, 0.029, 0.086 and 0.140 N/m
2
, as shown in Table 2.  The development of 

cell clusters under shear rates of 9, 14, 29, 86 and 140 s
-1

 over the 14 days of 

experimental period was recorded and processed.  These cell clusters’ morphological 

changes are further quantified in the later sub section.  Experiments were also carried out 

at shear rates of 3 and 290 s
-1

, corresponding to flow rates of 0.1 and 10 ml/min and wall 

shear stresses of 0.003 and 0.29 N/m2, respectively.  However, no cell clusters survived 

for more than two days under these two tested conditions.  These results are therefore 

excluded from further analysis except the discussion of possible cause.  The lower shear 

rates of 3, 9, 14 and 29 s
-1

 are in the range resembling the shear rates in a suspension 

culture flask.  The higher shear rates of 86, 140 and 290 s
-1

 tested in this thesis are in the 

range of shear rates under which plant cells are claimed to be stress sensitive (Sun & 

Linden 1999).   

 Figures 18 to 20 show the representative cell cluster growth under shear rates of 

140, 86 and 29 s
-1

, respectively.  As shown in Figure 18, the cell clusters under the shear 

rate of 140 s
-1

 started as a small aggregate at day 1 (A) and continued to divide and grow 

through day 3 (B), day 8 (C) and day 13 (D) of the 14-day period of experiment.  But the 

cluster did not develop suspensor cells in this experiment during the two-week period of 
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experiment.  This happens to all the cell clusters which were exposed to the shear rate of 

140 s-1.  At shear rate of 86 and 29 s-1, some of the clusters did form suspensor cells in a 

unidirectional manner, as shown in Figures 19 and 20, respectively.  Most of the clusters 

which developed suspensor cells have suspensor cells formed at day 5 to day 9 of the 

experiment (as shown in Figures 19B and 20C). This is similar to the suspensor cell 

development on the clusters in the control group. At even lower shear rates of 14 and 9 s
-1

 

not all clusters developed suspensor cells either.  The clusters which developed suspensor 

cells grow in the similar pattern as those shown in Figures 19 and 20.  The clusters which 

did not develop suspensor cells grow in the similar pattern as shown in Figure 18.  The 

quantificational analysis about cluster growth will be discussed in quantification section 

below. 
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Figure 18. A cell cluster in the flow cell experiment subjected to steady stress at a 

shear rate of 140 s
-1

.
 
 (A) 1 day after the experiment was started; (B) 3 days; (C) 8 

days and (D) 13 days at the end of the experiment. Scale bar = 50 µm. (E) Estimation 

of development and growth of the cell cluster by superimposing the cell contours 

from the 13 days of duration of the experiment by the step-wise method outlined in 

Figure 7. The center of the red circle represents the origin of the radial coordinate, 

and the white bars represent the values of the growth vectors and the red end dots on 

the white bars indicate the positions of the cell cluster edge at the end of the 

experiment. The white arrow indicates the flow direction from left to right.  The 

different colors on the color bar represent the different day of experiment. 

 

A B 

C D 
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Figure 19. A cell cluster in the flow cell experiment subjected to steady stress at a 

shear rate of 86 s
-1

.
 
 (A) 1 day after the experiment was started; (B) 5 days; (C) 13 

days close to the end of the experiment with few suspensor cells forming. Scale bar = 

50 µm. (D) Estimation of development and growth of the cell cluster by 

superimposing the cell contours from the 13 days of duration of the experiment by 

the step-wise method outlined in Figure 7. The center of the red circle represents the 

origin of the radial coordinate, and the white bars represent the values of the growth 

vectors and the red end dots on the white bars indicate the positions of the cell cluster 

edge at the end of the experiment. The white arrow indicates the flow direction from 

left to right.  The different colors on the color bar represent the different day of 

experiment. 
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Figure 20. A cell cluster in the flow cell experiment subjected to steady stress at a shear 

rate of 29 s
-1

.
 
 (A) 1 day after the experiment was started; (B) 3 days; (C) 6 days with 

few suspensor cells forming. Scale bar = 50 µm. (D) Estimation of development and 

growth of the cell cluster by superimposing the cell contours from the 12 days of 

duration of the experiment by the step-wise method outlined in Figure 7. The center of 

the red circle represents the origin of the radial coordinate, and the white bars represent 

the values of the growth vectors and the red end dots on the white bars indicate the 

positions of the cell cluster edge at the end of the experiment. The white arrow indicates 

the flow direction from left to right.  The different colors on the color bar represent the 

different day of experiment. 
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 3.1.3 Suspensor cell development 

 The clusters of somatic embryo cells subjected to shear and stationary cultured as 

control were imaged every 24 hours after the start of the experiment.  Three repeated 

experiments under each shear rate were conducted and images of recorded clusters were 

analyzed.  Shear stress effect is qualitatively measured by the growth of meristematic 

cells and monitoring the formation of suspensor cells.  Suspensor cell development is a 

prerequisite for cell cluster showing polarized structure.  The formation of suspensor cell 

is examined first before the growth of meristematic cells.  The formation of suspensor 

cells under different test conditions is categorized in Table 4 as (a) no suspensor cells; (b) 

a few, randomly positioned; (c) many, randomly positioned; (d) a few, unidirectional; and 

(e) many, unidirectional.  For the final evaluation of stress effects on the morphology of 

embryo cell clusters that is the growth of meristematic and suspensor cells, image 

analysis is used to evaluate the morphological changes by analyzing the collected images 

from the experiments using the in-house code.   

As shown in Table 4, cell clusters develop suspensor cells in a polarized manner 

both under control and steady shear stressed groups except at the highest shear rate of 

140 s
-1

.  Cell clusters exposed to shear rate of 140 s
-1

 did not form suspensor cells.  Under 

other shear rate conditions, cell clusters exposed to shear rate of 86 s
-1

 have the lowest 

suspensor cell formation rate of 13.2% (5/38); cell clusters exposed to shear rate of 29 s
-1

 

show the maximum suspensor cell formation rate of 47.1% (16/34) among the fluid shear 

cases; cell clusters exposed to shear rate of 14 and 9 s
-1

 have suspensor cell formation rate 

of 38.5% (10/26) and 27.3% (3/11), respectively.  However, cell clusters in the control 
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group have the highest suspensor cell formation rate of 60.5% (23/38) among all the test 

conditions. 

 

Table 4. Number of cell clusters with/without suspensor cells formation during 14 days of 

experiments under different test conditions (N: number of observations over all cell 

clusters). 

Test 

condition 

as shear 

rate  

In s-1 N 

No 

suspensor 

cells 

A few 

randomly 

positioned 

suspensor 

cells 

Many 

randomly 

positioned 

suspensor 

cells 

A few 

unidirectional 

positioned 

suspensor 

cells 

Many 

unidirectional 

positioned 

suspensor 

cells 

0 

(control) 38 15 0 0 0 23 

9 11 8 0 0 3 0 

14 26 16 0 0 2 8 

29 34 18 0 0 2 14 

86 38 33 0 0 1 4 

140 37 37 0 0 0 0 

 

In order to quantitatively describe the suspensor cell formation under different test 

conditions, Table 5 and two polar diagrams (Figures 21 and 22) are made to represent the 

number and location of suspensor cells formed on cell clusters.  In Table 5, only 

suspensor cells formed in horizontal (x) and vertical (y) directions within ±15° range are 

observed.  These directions are either parallel (+x and –x) or perpendicular (+y and –y) to 

the flow direction (+x) in the x-y plane.  In Figures 21 and 22, the clusters formed 

suspensor cells are all presented on the x-y plane.  The dots on Figures 21 and 22 
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represent the number and direction of clusters formed suspensor cells in a 30° angle 

range. 

Suspensor cells in control group are formed in a relatively random manner.  As 

shown in Table 5, suspensor cells formed along ±x direction and ±y direction are close, 

with 17.4% formation rate along both +x and -x directions and 13.0% formation rate 

along both +y and -y directions.  The even distributed dots along each 30° angle range as 

can be observed in Figure 21 also suggest the random distribution of suspensor cell 

formation, although all the clusters with suspensor cells showed polarized structure with 

meristematic cells as “head” region and suspensor cells as “tail” region.  There is not a 

preferable direction of suspensor cell forming under control.  The observation of all the 

clusters in the control group indicates that the direction at which the suspensor cells grow 

is random when cell clusters are not exposed to shear stress.  This can be explained as the 

seeding orientation of cell clusters during immobilization is random.  The development of 

suspensor cells in the control agrees with that when cell clusters are cultured on solid 

medium, with liquid culture medium of the same components and being solidified with 

agar.  Past experience with somatic cell clusters has shown that somatic cell clusters form 

polarized structure with suspensor cells at the late stage of proliferation, after transferring 

the cell clusters onto solid medium (as shown in Figures 3A and 4A)(Egertsdotter & von 

Arnold 1998).  For the control group, cell clusters were immobilized that are similar to 

cell clusters cultured on solid medium except the culture medium is in liquid phase and 

not solidified with alginate.  Agar and alginate are both used as solidifying agent for 

liquid medium and proved to support cell cluster growth. 
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Cell clusters that formed suspensor cells under different shear stresses are further 

observed in term of forming directions, as shown in Figure 22.  The directions along 

which the suspensor cell formed are mostly in either perpendicular (±y) or parallel (±x) to 

flow direction within ±15° range (as further observed in Table 5).  Most of the suspensor 

cells grow in the horizontal (±x) direction, with over 80% formation rate along horizontal 

direction compared with about 20% formation rate along vertical direction.  The number 

of suspensor cells formed on cell clusters under different shear rates along horizontal 

direction is significantly more than that formed in control, based on t-test with confidence 

level of 99%.  The suspensor cells formed on cell clusters under different shear rates 

along vertical direction, however, are not significantly different from that in the control. 

 

Table 5. Directions of suspensor cells formation under different test conditions, control, 

shear rates of 9, 14, 29, 86 and 140 s
-1

, respectively.  Positive horizontal direction is the 

flow direction which is the x axis in Cartesian coordinate and positive vertical direction is 

the y axis direction under different shear rate tests. (“+” is the +x/+y direction, “-” is the -

x/-y direction.) 

Number of suspensor cells 

formed in horizontal (x) 

direction (±15°) 

Number of suspensor cells 

formed in vertical (y) 

directions (±15°) Test 

condition 

as shear 

rate (s
-1

) 

Percentage 

of clusters 

formed 

suspensor 

cells (%) + - 

Percentage among 

all clusters formed 

suspensor cells (%) + - 

Percentage among 

all clusters formed 

suspensor cells (%) 

0(control) 60.5 2 2 17.4 2 1 13.0 

9 27.3 2 1 100.0 0 0 0.0 

14 38.5 5 3 80.0 0 2 20.0 

29 47.1 8 6 87.5 1 1 12.5 

86 13.2 2 2 80.0 1 0 20.0 

140 0 0 0 0.0 0 0 0.0 
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Figure 21. Polar diagram of suspensor cells forming direction in the control 

experiments after 14 days of growth.  The red dots represent the number of cell 

clusters forming suspensor cells in each of a 30° angle range; the first 30° angle 

range starts with -15° to 15°, followed by 15° to 45°, 45° to 75°, and so on; there 

are total of 12 ranges. 
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Figure 22. Polar diagram of suspensor cells forming direction in the shear stressed 

experiments after 14 days of growth.  The dots represent the number of cell clusters 

forming suspensor cells in each of a 30° angle range; the first 30° angle range starts 

with -15° to 15°, followed by 15° to 45°, 45° to 75°, and so on; there are total of 12 

ranges.  The red dots are for shear rate of 9 s
-1

, yellow for 14 s
-1

, green for 29 s
-1

 and 

light blue for 86 s
-1

.  The blue arrow indicates the flow direction. 
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3.1.4 Quantification of cell cluster development  

The general geometric outline of one cell cluster did not change significantly 

within 24 hours under any experimental conditions.  The imaged patterns of the same 

somatic embryo cluster from two consecutive days were matched for image analysis.  

The growth of one cell cluster is quantified by the changes in its radial sizes measured in 

72 directions, based on the validation results of minimum division angle of 5° to catch 

one single newly divided cell.  The mean radial growth rate of a cell cluster was 

measured along each of the 72 directions.   

The mean growth rates R∆  were evaluated along different θ  directions under 

different test conditions.  Figure 23 shows the mean growth rates for meristematic cells, 

excluding the clusters that developed suspensor cells in the stressed groups and the 

suspensor cells in the control group.  Since over 60% of cell clusters in the control group 

developed suspensor cells, all the meristematic cell clusters are counted for statistical 

analysis.  The sub figures in Figure 23 are mean growth rates of meristematic cells under 

stationary culture (A), shear rate of 9 (B), 14 (C), 29 (D), 86 (E) and 140 s
-1

 (F), 

respectively.  Figure 24 shows the mean growth rates for all the observed clusters, 

including the suspensor cell growth.  The sub figures in Figure 24 are results under 

stationary culture (A), shear rate of 9 (B), 14 (C), 29 (D), 86 (E) and 140 s-1 (F), 

respectively.  The error bars in both Figures 23 and 24 represent the standard deviation.  

The growth rates of meristematic cells (Figure 23) have relatively smaller variations 

along each direction compared with the growth rates of all the clusters including those 

developed suspensor cells (Figure 24).  This is due mainly to the polarized structure of 
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these suspensor cells.  The standard deviation in Figure 24, which is based on the data of 

all cell clusters including those formed suspensor cells, varies more along different 

direction than in Figure 23.  Figure 24F shows the mean growth rates for meristematic 

cells at the shear rate of 140 s
-1

 since no cell cluster developed suspensor cell under this 

condition.  As shown in the figure, the data has much less variation in the standard 

deviation along different directions than that in Figure 24E, which shows the results at 

the shear rate of 86 s
-1

.  This difference is attributed to the fact that no suspensor cells 

formed under shear rate of 140 s
-1

 (F) while about 13.2% of cell clusters formed 

suspensor cells under shear rate of 86 s
-1

(E).  Suspensor cells are larger than meristematic 

cells and in a vacuole shape, which contribute to larger mean growth rates than the ones 

of meristematic cells only, as further observed in Table 6.  

Table 6 presents the mean growth rates based on the average of growth rates along 

72 directions of both meristematic cells and all observed cell clusters, respectively.  The 

meristematic cell cluster growth rate excludes the clusters that developed suspensor cells 

in the stressed groups and the suspensor cells in the control group.  The growth rate of 

cell clusters with suspensor cells covers data from all the observed clusters including 

those developed suspensor cells and the meristematic cell clusters.  The growth rates of 

meristematic cells along different directions are checked with significant test based on 

one-sided confidence level of 95% t-test.  The mean growth rates of meristematic cells 

that were exposed to shear flows are lower than that of the control group (7.4 µm/day as 

shown in Table 6).  Under shear rates of 9, 14 and 29 and 86 s
-1

, some cell clusters form 

suspensor cells and the suspensor cell grow in a polarized fashion.  The mean growth 

rates of cell clusters for these cases including suspensor cells are in the range of 7.3 to 7.7 
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µm/day which are also lower than the growth rate of 8.4 µm/day in the control group.  

The experiments under each test condition show consistent results among repetitions as 

the mean growth rates obtained in the three experiments at each shear rate vary within 

10% range except experiment 2 under shear rate of 29 s
-1

 which has a bigger variation of 

19%.   

The student t-test about the growth rate of cell clusters between under stress and 

in the control shows significant difference.  The significance occurs in both the growth 

rate of meristematic cell cluster and that of all cell clusters including suspensor cells.  The 

growth rates of meristematic cell clusters under different shear stresses are significantly 

slower than that in the control, based on t-test with confidence level of 99%.  The growth 

rates of all cell clusters including suspensor cells under different shear stresses are also 

significantly slower than that in the control, based on t-test with confidence level of 99%. 

These results suggest that cell clusters grow significantly slower in the stressed group 

than in the control. 
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Figure 23.  Meristematic cells mean growth rates R∆  (µm/day) in θ  (°) directions 

under different test conditions after 14 days of growth. The suspensor cells on the 

clusters in the control group are disregarded and the clusters developed suspensor 

cells in the stressed groups are also disregarded from the radial growth 

measurements. The radial growth for each direction was combined from the three 

experimental repetitions and the error bars represents the standard deviation.  (A) 

Stationary culture condition. (B) Shear rate of 9 s-1, (C) 14 s-1, (D) 29 s-1, (E) 86 s-1 

and (F) 140 s-1. 
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Figure 24. Cells mean growth rates R∆  (µm/day) in θ  (°)  directions under different 

test conditions after 14 days of growth. The radial growth for each direction was 

combined from the three experimental repetitions and the error bars represents the 

standard deviation. (A) Stationary culture condition. (B) Shear rate of 9 s-1, (C) 14 s-1, 

(D) 29 s-1, (E) 86 s-1 and (F) 140 s-1. 
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 It appears that there may be preference in growth of meristematic cell clusters in 

the flow direction (i.e., θ  = 0) at shear rate of 140s-1 (Sun et al 2010).  This observation is 

based on the statistical analysis showing 95% confidence for maximum growth in θ  = 0 

direction for all three experimental repetitions.  No other direction has maximum growth 

in all experimental repetitions at 95% confidence. There are also no significant 

correlation between the radial growth direction of the meristematic cell clusters and the 

direction of flow for any of the other test conditions, based on the results of one-sided 

statistical significance t-test analysis with confidence level of 95% (Table 6).   

The highest growth rate of merisimatic cells under stress is obtained at the shear 

rate of 86 s
-1

.  This is also the highest shear rate under which suspensor cells form on the 

meristematic cells.  These data suggest that there is a shear rate threshold between 86 and 

140 s-1, above which the cell clusters can no longer form suspensor cells; there is also a 

suitable growth condition for meristematic cells between shear rates of 86 and 140 s
-1

 

(growth rate of 6.90 µm/day under the shear rate of 86 s
-1

 and 5.80 µm/day under shear 

rate of 140 s
-1

), under which meristematic cells grow faster than under other shear rates. 

 Few clusters survived the experiments under the shear rate of 9 s
-1

.  This is mainly 

due to the difficulties in supplying and removing gaseous components from the system at 

low shear rates (Sajc et al 2000).  For the controlled stationary culture, the alginate film 

partially immersed in liquid medium and the top surface exposed to air.  Culture medium 

used in control Petri plate is only around 2 ml.  However, the medium used in stress 

experiments is about 50 times of that in control.  Considering the small amount of liquid 

medium used during two weeks experiment in the control group, nutrients are not 

concerned to cause lower cell cluster survival rate since cell clusters in the control group 
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grow and develop appropriately.  For the same reason, the diffusion of mass transfer for 

nutrients at low shear rates does not make big difference compared with the control 

either.  Another issue for cells grow properly is gas components, oxygen and carbon 

dioxide (Preil 1991).  In the control group, cells exposed to air and the gas components 

exchange is free.  The cells exposed to low shear rates, however, are confined in a 

relatively closed chamber without free exchange of gas components.  The slow diffusion 

of gas components thus leads to low survival rate of cell clusters.  Of the conditions 

tested, the experiments at the shear rate of 9 s
-1

 give the lowest survival rate.  In Table 6, 

data shown for the shear rate of 9 s
-1

 is the combination of three individual experiments 

under the same condition.  Due to the lowest survival rate, data collected from this test 

condition is not statistically reliable and listed for information purpose only. 

The suspensor cell formation rates along horizontal and vertical directions are 

tested with statistical significance t-test with confidence level of 99%.  The result shows 

that suspensor cells formed in horizontal direction under different shear stresses are 

significantly more than that formed in control; while the rates of suspensor cell formation 

in vertical direction under different shear stresses are not significant different to that 

formed in control.   
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Table 6.Average growth rate R∆ of meristematic cell clusters with and without suspensor 

cell formation under various experimental conditions with shear rates of 0 (stationary 

culture condition), 9, 14, 29, 86 and 140 s
-1

. Significant growth directions are the results 

based on one-sided confidence level of 95 % t-test for the different test conditions (N: 

number of total observed clusters; Exp.: experiment).   

Meristematic cell clusters only with suspensor cells Test 

condition 

as shear 

rate in s
-1

 Exp. N 

Mean 

growth rate 

(µm/day) 

Significant 

fast growth 

direction (°) N 

Mean 

growth rate 

(µm/day) 

1 14 6.8 N/A 14 8.7 

2 11 7.7 N/A 11 8.5 

3 13 7.9 N/A 13 8 0  
(control) Average 38 7.40 N/A 38 8.40 

9 Average 8 6.27 N/A 11 7.59 

1 6 6.11 N/A 9 8.3 

2 5 5.42 N/A 9 6.9 

3 5 5.89 N/A 8 6.68 

14 Average 16 5.73 N/A 26 7.32 

1 8 4.9 N/A 10 7.21 

2 6 6.35 N/A 12 8.09 

3 4 5.8 N/A 12 8.16 

29 Average 18 5.33 N/A 34 7.68 

1 12 6.8 N/A 15 7.1 

2 10 7 N/A 11 7.5 

3 11 7.1 N/A 12 7.5 

86 Average 33 6.90 N/A 38 7.30 

1 11 5.9 0, 350, 355 N/A N/A 

2 14 6 0, 115, 120 N/A N/A 

3 12 5.6 

0, 120, 125, 

130, 135, 205, 

210, 250, 255, 

260 N/A N/A 

140 Average 37 5.80 0, 355 N/A N/A 
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3.2 Cellular response of cell clusters under shear stress 

 After the study of the effect of shear stresses of 0.009, 0.014, 0.029, 0.089 and 

0.14 N/m
2
 on the development of early stage conifer somatic embryos, the cellular level 

experiments of somatic cell clusters under shear stress were further carried out to study 

cellular level responses.  These include integrin-like protein detection, ROS detection and 

monitoring of the pore size of meristematic cell wall and uptake of marcomolecule before 

and after the cell clusters were exposed to shear stress.   

Evidence from previous research using monoclonal and polyclonal antibodies to 

localize β1 integrin-like proteins in plants suggests that integrin-like proteins may be 

present in plants as well, and these proteins may function in signal transduction (Gao et al. 

2007; Lü et al. 2007; Sun et al. 2000; Sun and Sun 2001; Swatzell et al. 1999).   

3.2.1 Integrin-like protein detection 

Immunofluorescence study was performed to verify whether integrin-like proteins 

involved in signal transduction as a response to shear stress in the Norway spruce somatic 

cells that could crossreact with antibody against human integrin.  The stained cells were 

treated with enzyme solution first then stained with primary antibody, a rabbit polyclonal 

antibody against human integrin β1 (Santa Cruz Biotech.), and followed by the stain of 

secondary antibody, TRITC-conjugated anti-rabbit immunoglobulin (Sigma Aldrich), for 

fluorescent signal display.  In order to compare the signal intensity from the primary 

antibody stain, cell clusters without antibody treatments were recorded as control 1 and 

cell clusters stained with only secondary antibody were recorded as control 2.  Both 
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controls and stained cell clusters were observed using the microscope equipped with a 

TRITC filter and a 40x lens at an exposure time of 2 seconds.  

Figure 25 shows the images of cell clusters in the control 1 group.  Both 

fluorescent and bright field images are shown here.  These cell clusters were treated with 

enzyme solution to make plasma membranes exposed to culture medium, which is also 

the treatment for clusters before antibody stain.  Clusters of different size respond to the 

treatment at different degree.  The bigger the cluster is, the harder the cell walls are to get 

loose and plasma membranes are to expose to culture medium.  Clusters with intact cell 

walls show no fluorescent signal (Figure 25A); protoplasts with cell wall completely 

removed show no fluorescent signal either; however, cells with cell wall partially 

removed and damaged cells show dim fluorescent signals (Figures 25C and E).   

Figure 26 shows the images of cell clusters in the control 2 group.  Cell clusters 

experienced enzyme treatment and stained with secondary antibody only.  This control 2 

serves as a negative primary antibody stain group to compare with the cell clusters treated 

with both primary and secondary antibodies.  As shown in Figure 26, cell clusters with 

intact cell walls show no fluorescent signal (Figure 26A); protoplasts with cell wall 

completely removed show no fluorescent signal either (Figures 26A and C); however, 

cells with plasma membrane partially peeled from cell wall and damaged cells show dim 

fluorescent signals (Figures 26A and E).  These results are consistent with the ones in 

control 1 group where no antibody stain involved. 

Stained cell clusters were treated with both primary and secondary antibody 

stains.  The clusters were then washed on a rotary table.  These cell clusters exposed to 
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the processing are “stressed” and differ from the naturally grown or cultured cells.  

Figure 27 shows cell clusters that were stained with antibodies.  Cell clusters were 

incubated with a rabbit polyclonal antibody against human integrin β1 and then with 

TRITC-conjugated anti-rabbit immunoglobulin.    As shown in the figure, cells with their 

cell wall partially removed show strong fluorescence along the membrane and nuclei 

(Figure 27A).  Cells with membrane partially peeled from the cell wall show strong 

fluorescence along the separation position (Figure 27C).  Protoplasts without cell wall 

show no fluorescent signal (Figure 27E), and damaged cells show strong fluorescence 

(Figures 27C and E).   

Protoplasts are cells with cell wall completely removed thus connection between 

membrane and cell wall is destroyed.  Protoplasts did not show fluorescence on both the 

control group and the antibody treated group.  The membranes of cells with cell wall 

partially removed are exposed to culture medium; and cells having membrane partially 

separated from the cell wall and the damaged cells do not have intact cell structure.  All 

these cells are stressed and show strong fluorescence in the antibody treated group.  This 

suggests the integrin-like proteins in Norway spruce somatic cells locate mainly in the 

Hechtian stands (Domozych et al 2003), which is a complex anchoring structure linking 

the plasma membrane to the cell wall at specific sites.   
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Figure 25. Immunofluorescence localization of integrin-like proteins in Norway 

spruce somatic cell clusters without antibody treatments as control 1.  The clusters 

experienced enzyme treatment for 10 minutes to make plasma membrane exposed 

to culture medium at different level.  The images on the left are fluorescent images, 

and the images on the right are the relative bright field ones. (A & B) Cells with 

cell wall intact show no fluorescent signal. (C & D) and (E & F) Protoplasts 

without cell wall show no fluorescent signal as indicating by red arrows pointing to 

right; damaged cells and cells with cell wall partially removed show dim 

fluorescent signal as indicating by green arrows pointing left.  Scale bar = 50 µm. 
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Figure 26. Immunofluorescence localization of integrin-like proteins in Norway 

spruce somatic cell clusters with only secondary antibody treatments as control 2.  

The clusters experienced enzyme treatment for 10 minutes to make plasma 

membrane exposed to culture medium at different level.  After washing, cells were 

further stained with secondary antibody and incubated at 37 °C for 4 hours in dark.  

The images on the left are fluorescent images, and the images on the right are the 

relative bright field ones. (A & B) Cells with cell wall intact show no fluorescent 

signal as indicated by red arrows pointing to right. Green arrow pointing to left 

indicates a protoplast without cell wall showing no fluorescent signal. (C & D) 

Protoplasts without cell wall show no fluorescent signal as indicating by green 

arrows pointing to left. (E & F) Cells with plasma membrane partially peeled from 

cell wall show dim fluorescent signal as indicating by red arrows pointing to right.  

Scale bar = 50 µm. 
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Figure 27. Immunofluorescence localization of integrin-like proteins in Norway 

spruce somatic cells. Cells are incubated with a rabbit polyclonal antibody against 

human integrin β1 for 17 hours and then with TRITC-conjugated anti-rabbit 

immunoglobulin for 4 hours at 37 °C in the dark.  Images on the left are showing 

fluorescent signal and images on the right are the relative bright field images, 

corresponding to the left.  (A-B) Cells with cell walls partially removed show strong 

fluorescence along the membrane and nuclei as indicating with green arrows 

pointing left. (C-D) Cell with plasmolysis shows strong fluorescence along the 

position where membrane separating from the cell wall, as indicating with green 

arrows pointing left. (E-F) Protoplasts without cell wall show no fluorescent signal 

as indicating by red arrows pointing to right, and damaged cells showing strong 

fluorescence as indicating by green arrows pointing left. Scale bar = 50 µm. 



 118 

3.2.2 Reactive oxygen species detection 

Another cellular level signaling molecule studied in this thesis is hydrogen 

peroxide, H2O2, which is one of the reactive oxygen species (ROS) along with superoxide 

(
•

2O ) and hydroxyl radical (OH-).  Several ROS are continuously produced in plants as 

byproducts of aerobic metabolism and some are highly toxic and rapidly detoxified by 

various cellular enzymatic and nonenzymatic mechanisms (Bartosz 2009; Kotchoni & 

Gachomo 2006; Pandhair & Sekhon 2006). In other circumstances plants appear to 

purposefully generate ROS as signaling molecules to control various processes including 

pathogen defense, programmed cell death, and stomatal behavior (Apel & Hirt 2004; 

Davies et al 2006; Kotchoni & Gachomo 2006).  Production of ROS has also been 

studied as a parameter of shear stress effect on the plant cells (Gao et al 2007; Gens et al 

1996; Swatzell et al 1999).  In this section, the production of ROS in the stressed cells 

were tested using dihydrorhodamine 123 (DHR123). 

 Cells were observed under the microscope equipped with I3 filter cube which has 

a band-pass excitation filter of 450-490 nm and a long pass filter with a cut-off 

wavelength of 510 nm for the DHR123 fluorescence detection.  Both fluorescent and 

bright field images were taken for each test group.  Figure 28 shows the comparison of 

cell clusters before and after shear stress.  Two kind of stressing methods are used to 

stress the cell clusters.  One is pipetting cell clusters through 1000 µl pipette tube at a 

frequency of 60 repetitions per minute for two minutes.  The stress is generated by the 

suction and discharge motion through the tube.  Pipette handling is a normal procedure 

occurred during cell cluster culture and tests.  Past study of human embryos has shown 
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stress effect of this procedure to the cells (Xie et al 2007).  Another way is through 

vigorous shaking of cell clusters at a frequency of 180 rpm for two minutes, which is an 

extreme condition as liquid culture on a rotary table.  Figure 28A indicates that there is 

only dim autofluorescence showing up on the already stressed cell clusters during 

suspension culture in the controlled group.  The stressed cell clusters in suspension 

culture lose the shiny look of healthy cells and show dark color under microscope.  As 

the counter part of the control, the vigorously stressed cell clusters by two different ways 

show strong fluorescent signals (Figure 28C and E).  H2O2 is detected in most of the 

stressed cells by showing bright fluorescence contours which is the result from the stain 

of DHR123.  Comparison of cells in Figure 28C and 28E shows that the more stressed 

the cells are, the stronger the fluorescence from ROS is as indicated by the arrows.  The 

dim signal from the control suggests that the suspension cultured cell clusters are 

accustomed to the stress from the culture medium after suspension is well established, 

which generally takes weeks to months in Norway spruce somatic cell clusters.   
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Figure 28. Reactive oxygen species detection in suspension cultured Norway spruce 

somatic cells (cell line #3).  Cell clusters were stained with dihydrorhodamine 123. 

Images on the left are showing fluorescent signal.  Images on the right are the 

corresponding bright field images, respectively.  (A-B) Normal suspension cells as 

control showing dim autofluorescence. (C-D) Stressed cells by vigorously shaking 

(180 rpm) for 2 minutes showing strong fluorescence after stain especially the most 

stressed cells as indicated by narrow green arrows. Live stressed cells show bright 

contour as indicated by broad red arrows.  (E-F) Stressed cells by pippeting vigoursly 

(60 repetitions per minute) for 2 minutes showing strong fluorescence after stain 

especially the most stressed cells as indicated by narrow green arrows. Live stressed 

cells show bright contour as indicated by broad red arrows. Scale bar = 50 µm. 
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3.2.3 Pore size of cell wall and response to macromolecule  

Osmotic stress is an important factor during plant embryo development (von 

Aderkas & Bonga 2000). The osmotic pressure of loblolly pine (Pinus taeda) seeds 

changes as the zygotic embryo inside the ovule develops (Pullman & Johnson 2009).  

The high molecule weight molecules added to the culture medium of somatic embryos 

induce osmotic stress in the cells by depletion of intracellular water and stimulate the 

embryos to further develop to maturation.  It has been argued that size exclusion at this 

level controls development (Jarvis 2009).  Based on the phenomena of either plasmolysis 

or cytorrhysis, one can have the idea of the size of the pore in the cell wall compared with 

the solutes size.   

The past pore size tests with solute exclusion technique are based on the 

plasmolysis and cytorrhysis responses of cells to macromolecules of known sizes.  In this 

thesis, not only the cellular response of plasmolysis/cytorrhysis was observed, but also 

the uptake time of macromolecules in cells under different conditions was noted.  By 

combining the cellular responses with the examination of the uptake time of different 

macromolecules in stressed cells and control cells, the effect of shear stress will be 

detected. The hypothesis of the pore size experiments here is that there is a difference in 

macromolecular uptake induced by shear stress.  

Since it is unclear if other signal cascades may be activated during the solute-

exclusion experiments, the observations were recorded by the timing of events which is 

when the plasmolysis or cytorrhysis occurs after continuously dripping one solution to 

the cell clusters.  Two cell lines, 06:22:02 and 06:21:00, were tested for solute exclusion 
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experiments.  The cell clusters were imaged with the microscope with a 15× 

magnification and representative example images of plasmolysis and cytorrhysis of 

Norway spruce somatic cell clusters are shown in Figure 29.  Figure 29B shows the 

plasmolysis that occurs as the volume of the cell in control group decreases, water is lost 

from the cell (A) and plasma membrane is partially peeled from the cell wall, after 

continuously dripping 0.4M macromolecule mannitol solution for 10 minutes.  In this 

case, the cell cluster still keeps its shape.  Figure 29D shows the cytorrhysis that occurs as 

the volume of the cell cluster in the control decreases dramatically and cell walls collapse 

right after dripping 0.4M PEG 4000 (C).   

The stresses experienced by the cell clusters in the Petri plate on the rotary shaker 

simulate the shear stress in a suspension culture flask.  The stressed sample after 4 hours 

of liquid suspension culture show no significant difference to the control sample, for both 

0.25M and 0.44 M solutions.  However, stressed cell clusters sampled after 22 hours are 

obviously different from the control.  The detail comparison of cell clusters under stress 

to the control in responses to different solutes is listed in Table 7, for two cell lines.  The 

two concentrations of macromolecule solutions, 0.25 M and 0.44 M, are based on the 

previously published data for high osmotic solutions that are compatible with somatic 

embryos of Norway spruce (Clapham et al 2000; Egertsdotter & Von Arnold 1993).  

Responses tested with 0.25 M solutes are similar to the ones with 0.44M solutes but are 

generally slower.  The longest response of cell clusters to 0.25M Mannitol is 45 minutes.  

Only responses to 0.44M solutes are listed below in Table 7.  

The experiments with each solute for one testing material are carried out for total 

three times.  For each experiment, there is at least one cell cluster recorded.  The error 
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listed in Table 7 is the standard deviation from different observations.  Response from 

cell clusters stressed for 22 hours is significantly faster than control cells in response to 

all the solutes in both cell lines; cytorrhysis occurs in the solutes of smaller molecules in 

stressed cells comparing with the control.  For example, meristematic cells in cell clusters 

from cell line 06:22:02 show cytorrhysis with molecules of 2.9 nm (PEG600) after 

getting stressed and molecules of 3.8 nm (PEG1540) in the control; meristematic cells in 

cell clusters fromn cell line 06:21:00 show cytorrhysis with molecules of 3.5 nm 

(PEG1000) after getting stressed and molecules of 3.8 nm (PEG1540) in the control.  Cell 

clusters from cell line 06:21:00 response generally slower than that of cell line 06:22:02.  

The above responses are for meristematic cells.  The suspensor cells generally respond 

(around 2 to 5 seconds) faster than meristematic cells as showing plasmolysis or 

cytorrhysis which also proves that meristematic cells are more stress tolerant than 

suspensor cells as revealed in shear stress experiments.  The difference of response time 

between meristematic cells and suspensor cells falls in the range of standard deviation 

from different observations.   

These results show the pore size of meristematic cells of somatic embryos in 

Norway spruce to be between 2.2 to 3.5 nm and different cell lines may have slight 

variance.  Stressed cells respond to marcomolecules significantly faster than that in 

control.  Shear stress exposure does not induce a detectable change in pore size (Table 7).   
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Table 7. Response of Norway spruce somatic cells from two cell lines to various 0.44M 

solutes as showing plasmolysis and cytorrhysis.  Stressed cells are stressed in liquid 

medium for 22 hours and the control cells are taken directly from clumps cultured on 

solid medium.  The uptake of each macromolecule for one tested plant material is 

conducted three times.  The standard deviation is listed after each mean response time. 

(Dm: molecular diameter; PL: plasmolysis; CR: cytorrhysis) 

Cell line 06:22:02 Cell line 06:21:00 

Time of response showing 

after solution dripping 

[minute & second] 

Time of response showing 

after solution dripping 

[minute & second] 

Solute Dm [nm] Control Stressed Control Stressed 

Mannitol 0.8 

10'±2'11", 

PL 2'5"±23", PL 20'±1'5", PL 

10'6"±50", 

PL 

Sucrose 1.0 

30'20"±2'31"

, PL 6'8"±49", PL 

30'20"±1'30"

, PL 

7'5"±52", 

PL 

Stachyose 1.4 

29'50"±1'15"

, PL 58"±5", PL 

30'23"±2'26"

, PL 

3'5"±12", 

PL 

PEG 400 2.2 

5'6"±55", PL 

with CR; 

30'10"±1'43"

, PL 

1'53"±21", 

PL with CR 

5'2"±17", PL 

with CR; 

30'15"±2'11"

, PL 

2'3"±11", 

PL with CR 

PEG 600 2.9 

10'9"±1'16", 

PL 2'3"±8", CR 

24'40"±1'31"

, PL 

1'58"±13", 

PL; 

10'21"±1'3", 

CR  

PEG 1000 3.5 

Instant, CR; 

10'20"±1'40"

, PL 1'4"±15", CR 

Instant, CR; 

10'3"±53", 

PL 

1'53"±21", 

CR 

PEG 1540 3.8 Instant, CR Instant, CR Instant, CR Instant, CR 

PEG 4000 4.5 Instant, CR Instant, CR Instant, CR Instant, CR 

PEG 6000 5.2 Instant, CR Instant, CR Instant, CR Instant, CR 
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Figure 29. Representative examples of observation of plasmolysis and cytorrhysis of 

Norway spruce somatic cells in response to solutes of various molecular diameters. 

Images on the left show the clusters before dripping a solute; images on the right show 

the response of the cluster on left after dripping the solute. (A) Cells in control group 

before continuously dripping 0.4M Mannitol solution; (B) Cells show plasmolysis as 

labeled by arrows after dripping 0.4M Mannitol solution for 10 minutes. The narrow 

red arrows indicate the positions where plasmolysis happens. (C) Cell cluster in control 

group before continuously dripping 0.4M PEG 4000 solution; (D) Cell cluster show 

instant cytorrhysis after dripping PEG 4000.  The broad red arrow heads indicate the 

positions where cytorrhsis happens.  Scale bar = 50 µm. 
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3.3 Discussion 

The inhibition on the growth of somatic embryos exposed to shear stresses 

suggests that shear stress negatively affects the development of somatic embryos under 

liquid culture conditions.  Similar results have been observed on California poppy 

(Eschscholzia californica) using a helical ribbon impeller bioreactor (Archambault et al 

1994).  The experimental work done by Moorhouse et al. (1996) also reported that shear 

stress affects the development of gymnosperm somatic embryos for Sitka spruce (Picea 

sitchensis) using a Braun Biostat BF2 system which resulted in similar performance of 

the bioreactor culture to a suspension culture in Erlenmeyer flasks.  The authors indicated 

that no mature embryos could be obtained, which suggests that the somatic embryos can 

not reach the developmental stage permissive to maturation stimuli.  

Agitation in the culture flask/bioreactor causes shear flow around cell clusters.  A 

rough estimation of shear rates inside of a shaking flask is carried out based on the 

rotation speed of shaker table (100 rpm), rotation radius (15 mm) and radius of culture 

Erlenmeyer flasks (45 mm).  It is determined that the shear rate at the flask wall is in the 

range of 5 to 50 s-1.  The three tested lower shear rates, 9, 14 and 29 s-1, fall right into this 

range.  It should be noted, however, the cell clusters inside a shaking flask experience 

shear that is more random in nature than that in the current study wherein immobilized 

cells are exposed to constant and unidirectional shear flow.  The randomness of shear 

experienced may make cells to lose their polarization when developing suspensor cells.  

The meristematic cells rarely form suspensor cells in liquid culture or form suspensor 

cells randomly around meristematic cells during proliferation stage (as shown in Figures 

3B and 4B) (Egertsdotter & von Arnold 1998).  The clusters under shear rates of 9, 14, 29 
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and 86 s
-1

 form suspensor cells in a unidirectional manner, with most of the suspensor 

formed along horizontal direction either parallel or against flow direction (as shown in 

Figure 20).  The suspensor cells formed along horizontal direction, however, are 

significantly more than those formed along vertical direction.  The clusters in the control 

group with cells randomly seeded on the film form suspensor cells also in a unidirectional 

manner, however, the direction suspensor cells formed is random and even distributed in 

all directions (as shown in Figure 19).  Based on these comparisons, it suggests that the 

unidirectional flow or shear rate helps the unidirectional growth and alignment of 

suspensor cells.   

The results are in agreement with the previous findings suggesting that plant cells 

are most sensitive to hydrodynamic shear stress in the range of shear rate from 30 to 300 

s-1 (Sun & Linden 1999).  No suspensor cells form at shear rate of 140 s-1 and suspensor 

cells form under lower shear rates of 86, 29, 14 and 9 s-1.  Meristematic cells, however, 

grow under all these shear rates with lower growth rates compared with stationary 

control.  While at shear rate of 280 s
-1

, cell clusters do not survive for more than 3 days.  

The meristematic cells in the cell clusters are more stress tolerant than the suspensor cells 

since meristematic cells grow and develop under the five shear rates, 9, 14, 29, 86 and 

140 s
-1

 while suspensor cells only develop under shear rate of 86 s
-1

 and lower.  It is also 

known that meristematic cells are more tolerant than other cell types to other type of 

stresses, such as cold stress during cryopreservation (Wang et al 2009).  The suspensor 

cells associated with somatic embryos resembles undifferentiated cells in cell cultures, 

notably by a large vacuole and less cytoplasm, rendering the cells less density.   
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Past studies show that drastic changes in the cellular environment like nutrient and 

hormone supply (as in vitro culture conditions) can generate significant stress effects 

(Costa & Shaw 2006; Pullman & Johnson 2009).  The response to stress conditions 

depends on the level of the stress and the physiology state of the cells.  While lower level 

of stress enhances metabolism and induce adaptation mechanisms (Lichtenthaler 1998), if 

the stress level exceeds cellular tolerance, the cells die.  For example, the highest shear 

rate of 280 s
-1

 was tested in this thesis in the same flow cell followed the same procedure, 

the cell clusters only survived two to three days under this condition. Shear rate of 280 s
-1

 

exceeds the stress tolerance of somatic cell clusters of Norway spruce.  The adaptations 

of cells exposed to lower level of stresses include the reprogramming of gene expression, 

as well as changes in the physiology and metabolism of the cells (Roitsch 1999; Takeda 

et al. 1998; Zhong et al. 1994).  Recently, more and more researches are focused on the 

cellular and molecular responses of plant cells to shear stress.  To elucidate the 

mechanisms that regulate shear stress response in cellular and molecular level, 

complementing experimental approaches are required.   

Integrin-like proteins carry and transfer signals (e.g., stress induced by osmotic 

pressure) between cell walls and the intercellular structures.  Therefore integrins connect 

the extracellular matrix (ECM) to the plasma membrane and/or cytoskeleton as suggested 

by other researchers (Lü et al. 2007; Swatzell et al. 1999; Wang et al. 1993).  When cell 

wall is completely removed, the connections between cell wall and plasma membrane are 

destroyed and integrin-like proteins are lost which results in no fluorescence on 

protoplasts.  In this thesis, the immunofluorescent experimental results suggest that the 

integrin-like proteins mainly locate on the Hechtian stands which link the plasma 
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membrane and the cell wall at specific sites.  Lynch and coworkers suggested that a β1-

integrin-like protein was present in amyloplasts of Nicotiana root cells (in both tissue 

culture cells and whole root), but not on the plasma membrane (Lynch et al 1998). 

However in Arabidopsis cells, β1-integrin-like proteins were found on the plasma 

membrane fractions (Canut et al 1998; Swatzell et al 1999).  These findings suggest that 

integrin-like proteins may function differently in different species. 

Another cellular level signaling molecule studied in this thesis is hydrogen 

peroxide, H2O2, which is one of the reactive oxygen species (ROS) along with superoxide 

(
•

2O ) and hydroxyl radical (OH-).  Past studies show that ROS as a natural byproduct of 

the normal metabolism of oxygen has important roles in cell signaling.  Studies with 

Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) have shown that ROS are 

associated with aging, cellular and molecular alteration in animal and plant cells, and are 

essential to induce disease resistance and mediate resistance to multiple stresses in plant 

(for a review, Kotchoni & Gachomo 2006).  Production of ROS has been studied as a 

parameter of shear stress effect on the plant cells (Gao et al. 2007; Gens et al. 1996; 

Swatzell et al. 1999). 

Since the pose size in plant cell wall affects the transportation of marcomolecules, 

in order to find if pore size is affected by shear stress, size exclusion experiments are 

conducted.  The experiment results show that the pore size of Norway spruce 

meristematic cells in somatic embryos is between 2.2 to 3.5 nm.  The meristematic cells 

respond to shear stress by a faster response to plasmolyzing compounds in the culture 

medium.  There are no measurable effects on the pore size of the cells exposed to shear 
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stress.  The high molecule weight molecules added to the culture medium of somatic 

embryos induce osmotic stress in the cells by depletion of intracellular water.  The fast 

response of stressed cells to the plasmolyzing compounds indicates that shear stress may 

affect the maturation response of somatic embryos in liquid culture medium.  Shear stress 

expedites the response of cells to the plasmolyzing agents added as a desiccation 

treatment.  The treatment is used to induce the maturation, thus the conversion of PEMs 

into mature somatic embryos. 

Cell-wall pore size can determine the movement of many large molecules such as 

proteins, nucleic acids, and toxins across the cell walls.  Past studies show that when a 

foreign organism trying to invade plant cells, the limited pore size of the cell wall 

restricts access for enzymes produced by pathogens which tend to degrade the cell wall 

(Deising et al. 2000; Hardham 2001; Jones et al. 1972).  Study on wheat cell walls 

suggests that the predominated pore size of 3 to 6 nm in diameter is bellow the size limit 

that allows free penetration of the wall by degrading enzymes (Chesson et al 1997).   

Several researches found pH changes in culture media connecting to signal 

cascade mechanisms and coupling to developmental phenomena (Felle 1989).  For 

example, pH increase inside of echinoderm eggs, slime molds and mammalian cells acts 

as a cell division signal (Oberdorf et al 1989); cytosolic pH alkalinization was found in 

guard cells as a measure of abscisic acid (ABA) regulation (Pei & Kuchitsu 2005); and 

mechanical stimulation of plants cells triggers an apoplastic alkalinization and 

cytoplasmic acidification as well as apoplastic reactive oxygen species (ROS) production 

(Monshausen et al 2009).  Monshausen et al. (2009) also suggested that the transient 

changes in pH and extracellular ROS are signals involved in modulating cell wall 
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characteristics to counteract mechanical stress.  Further studies of acid and pH value in 

the digestion of plant leaves by animals and algae by marine fish have shown impact on 

the pore size of plant cell walls (Ramirez et al. 2000; Zemke-White et al. 2000).  At low 

pH value, acid helps increase the pore size and digestive enzymes are allowed to enter the 

cells.  Cold acclimation of suspension cultured cells of grapes (Vitis spp.) and apple 

(Malus domestica) also showed that there is a decrease of the limiting cell wall pore size 

from 3.5 to 2.2 nm in grape cells and from 2.9 to 2.2 nm in apple cells (Rajashekar & 

Lafta 1996).   

It is well-known that the continuous proliferation of embryogentic culture needs 

auxin and cytokinin (Dong & Dunstan 1994) and the further development and maturation 

of individual somatic embryos requires abscisic acid (ABA) that is a plant hormone 

involved in many plant developmental processes (Dunstan et al 1998), there is little 

knowledge about the molecular mechanisms by which plant embryos activate specific 

gene sets shortly after fertilization (Kawashima et al 2009).  For angiosperm embryos, 

G564 was found in scarlet runner bean (Weterings et al 2001) and further used to identify 

the cis-regulatory sequences in the suspensor transcription in tobacco embryo 

(Kawashima et al 2009).  There are increasing evidence showing that two particular 

modes of signaling via auxin and cell wall components play important roles in plant cell 

polarity in Arabidopsis cells (Souter & Lindsey 2000).  The complexity of signal 

transduction and the cross talk between signals make the identification of mechanism 

more difficult.  It is uncertain if all the signal pathways are conserved between 

gymnosperm and angiosperm species, which warranties further study.  
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CHAPTER 4 

CONCLUSIONS AND CONTRIBUTIONS 

 

Norway spruce somatic cell clusters at proliferation stage are exposed to shear 

stresses of 0.009, 0.014, 0.029, 0.086 and 0.140 N/m
2
 (with respect to shear rates of 9, 14, 

29, 86, 140 s
-1

).  The development of meristematic cell clusters is evaluated by radial 

growth and suspensor cell formation with image analysis based on normalized cross-

correlation method.  The results are checked with statistical significance t-test with 

confidence level of 95 and/or 99%.  To the author’s knowledge, this is the first study that 

monitors the shear stress effects on somatic embryo development by following the 

development of individual embryos in a flow cell.  In conclusion, this study shows that  

(a) the growth of meristematic cell clusters (PEMs) are negatively affected by 

shear stresses.  The mean growth rates of meristematic cell clusters under 

different shear stresses are significantly slower than that under stationary 

control based on t-test with confidence level of 99%;  

(b) there is no significant correlation between the radial growth direction of 

meristematic cell clusters and the direction of flow; there might be a 

preference in growth of meristematic cell clusters in the flow direction (i.e., θ  

= 0) at shear rate of 140 s-1 based on the statistical analysis showing 95% 

confidence for maximum growth in this direction for all three experimental 

repetitions;  
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(c) there is a critical shear stress above which no suspensor cells are developed in 

somatic embryo cell clusters of Norway spruce, and present experiments 

showed that this critical shear stress is between 0.086 and 0.14 N/m2 (with 

respect to shear rates of 86 and 140 s
-1

, respectively);  

(d) meristematic cells in the cell clusters are more stress tolerant than the 

suspensor cells.  Meristematic cells grow and develop under all the tested 

conditions and suspensor cells are only formed at lower shear stresses; 

(e) the unidirectional flow or shear rate helps the unidirectional growth and 

alignment of suspensor cells.  The suspensor cells that formed on cell clusters 

under shear rates of 9, 14, 29 and 86 s
-1

 are unidirectional and in polarized 

structure, and are significantly more along horizontal directions than that 

along vertical direction, based on t-test with confidence level of 99% ; 

(f) cellular responses of reactive oxygen species (ROS) are detected in the 

stressed Norway spruce somatic cell clusters.  The immunofluorescent 

experiments tested the formation of H2O2 in the stressed cell clusters.  The 

high intensity of H2O2 fluorescent signals show that ROS are generated as cell 

clusters are exposed to shear stresses. 

(g) integrin-like proteins are detected in stressed Norway spruce somatic cells;  

possible locations of integrin-like proteins in somatic cells of Norway spruce 

are the Hechtian strands which connect the plasma membrane and the cell 

wall at some specific sites; 
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(h) pore size on the cell walls of meristematic cells of Norway spruce somatic cell 

clusters is around 2.2 to 3.5 nm.  Suspensor cells’ uptake of macromolecules 

is faster than meristematic cells.  This also supports the conclusion of 

meristematic cells are more stress tolerant than suspensor cells.  The stressed 

cell clusters have a significantly faster response to macromolecules compared 

to cell clusters in the control although no detectable pore size changes after 

cell clusters exposed to shear stress; 

(i) the immobilization method developed in this thesis provides a platform to 

have cell clusters affixed on the top of alginate film and exposed to defined 

shear stresses.  This makes the study of shear stress effect on the cell cluster 

development possible; 

(j) the image analysis method based on normalized cross-correlation in the 

present study provides a direct and quantitative evaluation of cell cluster 

growth and allows for detailed analysis of cellular response to applied 

stresses.  The accuracy of correlation among images of different time periods 

of one cell cluster is within one pixel. 

The studies reported in this thesis contribute to the knowledge of how shear stress 

introduced by liquid medium affects the growth and development of Norway spruce 

immature somatic embryos in liquid culture, establish the correlation between shear 

stresses and somatic embryo development. 
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CHAPTER 5 

FUTURE DIRECTIONS 

 

There are several suggestions for the future study and continuous work after the 

conclusions in chapter 4.  A long-term goal of this study is to identify the specific marker 

genes that are triggered by shear stress.  Identification of gene markers that are activated 

when plant cells are exposed to shear stress will shed light on a better understanding of 

the mechanism of plant cells response to shear stress through the signal transduction 

pathway.   

Further test of the capability of immature somatic embryo developing into 

maturation under different shear stresses will be appreciated in terms of design of new 

culture protocol and bioreactors.  The critical shear stress between 0.086 and 0.14 N/m
2
 is 

a threshold for suspensor cells to develop on meristematic cell clusters.  In practical, how 

to design a bioreactor that provides shear stress lower than this critical value will be of 

great interest in order to apply the gained knowledge from this study. 

The uptake into animal cells (for example, proteins like low density lipoprotein, 

transferring and insulin) is well characterized for a number of different animal cell 

systems (see reviews by Goldstein et al 1985; Sythe & Warren 1991).  In contrast, uptake 

in plants is not well understood (Brownlee 2002; Coleman et al 1988; Deising et al 2000; 

Foyer et al 1994; see reviews by Low & Chandra 1994; Lynch et al 1998; Malinowski & 

Filipecki 2002; Schwartz et al 1995).  One major difficulty in studying uptake into plant 

cells is the existence of the plant cell wall, which limits the types of marker molecules 
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that can be used to probe the plasma membrane. Furthermore, specific plant ligands have 

been difficult to identify thus precluding detailed studies of receptors and their role in the 

process.  Protoplasts that lack a cell wall can, however, be labeled with a variety of 

electron dense probes such as cationized ferritin and colloidal gold, which normally do 

not penetrate the intact cell wall or do so only very slowly (Fowke et al 1995).   
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