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SUMMARY 

Near-field thermal radiation which can exceed blackbody radiation by several 

orders of magnitude has potential applications in energy conversion devices, 

nanofabrication, and near-field imaging. The present dissertation provides a 

comprehensive and thorough investigation of near-field heat transfer between parallel 

plates at nanometer distances. 

The first part of this dissertation focuses on the fundamentals of nanoscale 

thermal radiation through a systematic study on the near-field heat transfer between 

doped Si plates. In order to calculate the near-field heat transfer, it is important to 

accurately predict the dielectric function of doped Si. The dielectric function of doped Si 

which is described by the Drude model is a function of carrier concentration and 

mobility. Hence, accurate ionization and carrier mobility models for both p- and n-type Si 

are identified after a careful review of the available literature. The radiative properties 

calculated using the improved dielectric function agrees to a good extent with 

measurements performed using a FTIR. The near-field heat transfer between doped Si 

plates at varying doping levels is then calculated using the improved dielectric functions. 

Several important and characteristic features of near-field radiation are revealed in the 

analysis. An interesting issue regarding the maximum achievable nanoscale thermal 

radiation arises out of the study on near-field heat transfer in doped Si. 

The second part of this dissertation investigates the maximum achievable near-

field thermal radiation between two plates at finite vacuum gaps. Initially, both the 

emitter and the receiver are assumed to have identical frequency-independent dielectric 

functions and a cut off in the order of the lattice spacing is set on the upper limit of the 
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wavevector. The energy transfer is maximum when the real part of dielectric function is 

around −1 due to surface waves. On the other hand, there is a strong relationship between 

the imaginary part of the dielectric function and the vacuum gap. While the study using 

frequency independent dielectric function is not realistic, it lays down the guidelines for 

the parametric optimization of dielectric functions of real materials for achieving 

maximum near-field heat transfer. A parametric study of the different adjustable 

parameters in the Drude and Loretz model is performed in order to analyze their effect on 

the near-field heat transfer. It is seen that the optimized Drude model always results in 

greater near-field heat transfer compared to the Lorentz model and the maximum 

achievable near-field heat transfer is nearly 1 order greater than that between real 

materials. 

In the third part of this dissertation, the unusual penetration depth and the energy 

streamlines in near-field thermal radiation are studied. It is seen that unlike far-field 

radiation, the penetration depth in near-field heat transfer is dependent on the vacuum 

gap. This unusual feature results in a 10 nm thick SiC film behaving as completely 

opaque when the vacuum gap is around 10 nm. The energy streamlines inside the emitter, 

receiver, and the vacuum gap are calculated using fluctuation electrodynamics and errors 

generated due to thin film optics are pointed out. It is seen that the lateral shift of the 

streamlines inside the emitter can be greater than that in the vacuum gap for SiC. 

However, for doped Si, the lateral shift is comparable in the different media. While the 

study on the penetration depth determines the thickness of the emitter, the streamlines 

determine the lateral dimension.    

 



 

1 

CHAPTER 1 
 

INTRODUCTION 

 

The Stefan-Boltzmann law predicts the maximum radiative heat flux between two 

flat plates separated by vacuum to be 4 4
1 2( )T Tσ − , where σ is the Stefan-Boltzmann 

constant and T1 and T2 are the temperatures of the two media, respectively. This law, 

however, is only applicable when the two emitting/absorbing bodies are separated by a 

distance d much greater than the characteristic wavelength of thermal radiation (λT) that 

can be obtained from Wien’s displacement law (Siegel and Howell, 2002).  As the 

distance decreases and becomes comparable with or shorter than λT, near-field effects 

become important and ray optics can no longer be used to obtain the energy transfer 

between the two bodies. 

The spacing effect on the net heat transfer arises from two effects that are 

interrelated. The first is wave interference that is important when d is close to but greater 

than λT. In such cases, radiative transfer between two bodies must be analyzed by 

considering the wave nature of energy propagation. An electromagnetic wave emitted 

from one medium, which is transmitted to the vacuum gap separating the two bodies, is 

subject to multiple reflections inside the gap. The resulting wave interference can be 

either constructive or destructive, depending on the phase differences between the 

multiply reflecting waves. The second spacing effect is due to photon tunneling that 

contributes significantly to near-field energy transfer when d < λT. When an 

electromagnetic wave traveling in a medium encounters a second medium which is 

optically rarer than the first one, it exhibits total internal reflection at the interface when 
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the angle of incidence is greater than the critical angle. Though the wave is totally 

reflected inside the first medium, there exists an evanescent wave in the second medium 

whose amplitude decays exponentially from the interface (Cravalho et al., 1967; Zhang, 

2007). The evanescent wave does not carry energy in the normal direction since the time 

average of the Poynting vector normal to the interface is zero. On the other hand, if a 

third medium with refractive index greater than the second medium is brought in close 

vicinity to the first medium, i.e., within the decay length of the forward evanescent wave, 

the evanescent wave gets reflected at the interface between the second and the third 

media. The Poynting vector of the coupled evanescent fields has a nonzero normal 

component, suggesting that energy from the first medium has tunneled through the 

second medium and reached the third medium. This phenomenon is known as photon 

tunneling or radiation tunneling, which is the key for enhanced energy transfer in the near 

field (Zhang, 2007). The near-field heat transfer between the two SiC plates at 1 nm apart 

near room temperature can exceed blackbody radiation by five orders of magnitude. 

 The possibility of achieving enhanced energy transfer in the near field has 

attracted much attention of many researchers during the past half a century. Initial studies 

were mostly devoted towards understanding the fundamentals of near-field radiation 

between semi-infinite plates made of different materials. A number of studies have also 

been performed regarding application of near-field thermal radiation in energy systems 

(Pan et al., 2000; Whale and Cravalho, 2002; Narayanaswamy and Chen, 2003; Laroche 

et al., 2006; Park et al., 2008), nano-fabrication (Liu et al., 2005; Wang et al., 2006; Lee 

et al., 2008), and near-field imaging (De Wilde et al., 2006). Recently Basu et al. (2009c) 
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presented a detailed review about the fundamentals and applications of near-field 

radiation in energy systems. 

Fast depleting reserves of conventional energy sources coupled with the ever 

increasing levels in the emission of greenhouse gases have forced the scientific 

community to seek alternative power generation technologies. Thermophotovoltaic 

(TPV) systems, which operate on the principle similar to that of solar cells, have been 

looked upon as one of the possible candidates for alternative electrical power generation 

due to their silent operation and versatility in the fuel usage. However, lower throughput 

and poor conversion efficiencies have restricted the use of TPV systems as portable 

power sources (Basu et al., 2007). A possible method of improving the performance of 

TPV systems is by employing micro/nanoscale radiation to the energy conversion. For 

example, the conversion efficiency can be improved by using micro/nanostructured 

emitter or filter, while the power throughput can be enhanced by placing the TPV cell 

close to the emitter and utilizing the near-field enhancement in the radiative energy 

transfer for power generation. This new type of TPV systems called near-field 

thermophotovoltaic systems has recently attracted much attention (Di Matteo et al., 2004; 

Laroche et al., 2006; Park et al., 2008).  

 Another important application of near-field radiation is in the field of 

nanomanufacturing. Enhanced transmission of metallic films perforated with 

subwavelength holes as shown by Ebbesen et al. (1998) stirred the interest in studying 

light transmission through nanostructures. It is believed that the coupled and localized 

surface polaritons and Fabry-Perot type resonances are responsible for the transmission 

enhancement through nanostructures. Liu et al. (2005) proposed a new nanolithography 
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technique based on the interference of surface plasmon waves. This technique can break 

the diffraction limit of light and can pattern 1-D or 2-D periodical structures of 40-100 

nm features. Wang et al. (2006) used bowtie shaped aperture to produce sub-50-nm holes 

in a positive photoresist. Such nanoapertures behave as an antenna to collect light and 

then focus it in the near field. Large transmission enhancement and strong field 

localization have also been predicted from nanoscale Al slit arrays with mid-infrared 

radiation and may be used for nanolithography (Lee et al., 2008). 

 Near-field radiation has also been used for imaging beyond the diffraction limit. 

De Wilde et al. (2006) developed an infrared near-field scanning optical microscope 

(NSOM) which utilizes the thermal infrared evanescent fields emitted by the surface to 

be imaged and do not require any external illumination. Termed as the Thermal Radiation 

Scanning Tunneling Microscope, it utilizes a tungsten tip oscillating perpendicular to the 

surface to be imaged. The tip acts as a scattering center and radiates in the far field a 

signal linearly related to the infrared evanescent fields emitted by the surface. Kittel et al. 

(2008) showed that a near-field scanning thermal microscope can be employed for 

nanoscale imaging of structures. These microscopes measure the local density of states. 

 Theoretical studies on near-field enhancement have been performed between 

parallel surfaces, two dipoles, or dipole and a flat surface. Rytov and coworkers were the 

first to propose fluctuational electrodynamics, by introducing the fluctutation-dissipation 

theorem to Maxwell’s equations, for the analysis of thermal radiation (see Rytov et al., 

1987). Cravalho et al. (1967) predicted the near-field energy transfer between two 

dielectrics at liquid-helium temperature separated by a vacuum gap. Polder and Van 

Hove (1971) employed fluctuational electrodynamics and predicted a near-field 
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enhancement between metallic materials. Loomis and Maris (1994) investigated the 

effect of resistivity on near-field energy transfer between two materials whose dielectric 

functions were modeled by a simplified Drude model. Pendry (1999) introduced the 

concept of wave vectors as channels of radiative transfer and developed a relationship 

between the real and imaginary parts of the reflection coefficients of the two emitting 

media required for the maximum achievable near-field enhancement. Mulet et al. (2002) 

predicted that the near-field heat transfer between dielectrics supporting surface phonon 

polaritons is dominated by the contribution from surface waves and, hence, the heat flux 

becomes nearly monochromatic at nanometric distances. Volokitin and Persson (2004) 

extended Pendry’s study and obtained the maximum achievable near-field heat transfer. 

Fu and Zhang (2006) studied the near-field heat transfer between doped Si media at 

different doping levels. Chapuis et al. (2008a) calculated the near-field heat transfer 

between two semi-infinite gold plates using two different nonlocal dielectric function 

models and compared their results with the heat transfer computed using the Drude 

model. Recently, Francoeur et al. (2009) analyzed near-field thermal radiation in one-

dimensional layered media using Dyadic Green’s function where the amplitude of the 

field in each layer was calculated via a scattering matrix approach. By using the 

scattering matrix technique they were able to circumvent the numerical instabilities in the 

commonly used transfer matrix formulation for multilayer geometries. Ben-Abdallah et 

al. (2009) investigated the effect of film thickness on the near-field heat transfer between 

two thin films. As the vacuum gap decreases, the influence of film thickness on the 

energy transfer decreases due to the reduction in the penetration depth of the evanescent 

waves. 
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 Among other geometries, Mulet et al. (2001) studied the near-field heat transfer 

between a particle (modeled as a point-like dipole) and a semi-infinite plane medium, 

separated by vacuum. Both the particle and the plane medium were taken as SiC. It was 

predicted that the near-field heat transfer increases as d−3, where d is the separation 

between the particle and the plane medium. The near-field radiative transfer between two 

spherical particles and that between a spherical particle and a flat surface were also 

calculated by Volokitin and Persson (2001) under proximity limit approximation. 

Chapuis et al. (2008b) investigated the radiative heat transfer between two nanoparticles 

in the near field and far field. They showed that the heat transfer was dominated by 

electric dipole-dipole interaction for identical dielectric particles and by magnetic dipole-

dipole interaction for identical metallic particles. Both the metallic and dielectric particles 

exhibit the same d−6 dependence for the near-field heat flux. Narayanaswamy and Chen 

(2008) developed a more general formulation for the near-field heat transfer between two 

spheres of arbitrary diameters without taking into account the dipole or proximity 

assumption as employed by previous researchers. By nondimensionalizing the sphere 

radius with respect to the vacuum gap and wavelength, they constructed a regime map 

showing the applicability of different solution techniques. Recently, Biehs (2008) studied 

the near-field radiative heat transfer and local density of states between a metallic 

nanosphere and a semi-infinite structured surface.  

 Along with the theoretical studies, experiments have also been performed to 

measure the near-field radiative transfer by different research groups. Domoto et al. 

(1970) measured the radiative heat transfer at cryogenic temperatures between two 

copper plates at gaps from 1 mm to 10 µm. While the near-field heat transfer was 2.3 
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times greater than that of far-field, the measured heat flux was only 3% of the energy 

transfer between blackbodies. Hargreaves (1969,1973) measured the near-field heat 

transfer between two chromium plates separated by vacuum gaps from 6 to 1.5 µm. At 

1.5 µm vacuum gap, the near-field heat transfer at room temperature was 5 times greater 

than that in the far field. However, the measured heat flux was still only 40% of that 

between two blackbodies. Xu et al. (1994) were the first to measure near-field heat 

transfer between indium needle and gold plates at vacuum gaps less than 1 µm in order to 

analyze the heat transfer between the probe and the sample in a scanning thermal profiler 

(Williams and Wickramasinghe, 1986). The minimum achievable vacuum gap was 

estimated to be 12 nm. The results showed a smaller heat transfer rate and weaker 

distance dependence than those predicted; this may be attributed to the lack of sensitivity 

in the experiments. Kittel et al. (2005) measured the near-field heat transfer between the 

tip of a scanning thermal microscope and gold or gallium nitride plates for vacuum gaps 

from 100 nm to 1 nm. For vacuum gaps greater than 10 nm, their measurements clearly 

showed near-field enhancement and agreed well with predicted values. However for gaps 

less than 10 nm, the measured heat flux saturates and differs from the divergent behavior 

of the predicted results. The authors attributed this difference to the spatial dependence of 

the dielectric function of materials. Hu et al. (2008) measured the near-field heat transfer 

near room temperature between two parallel glass plates which support surface phonon 

polaritons in the infrared region. The measured near-field heat flux exceeded that  

between two blackbodies by 35 % when the vacuum gap was 1.6 µm. Narayanaswamy et 

al. (2008) developed a sensitive technique for measuring near-field radiation between a 

silica microsphere and a glass substrate using bimaterial atomic force microscope 
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cantilevers as thermal sensors. Using this setup, the maximum measured conductance due 

to near-field radiation at 100 nm vacuum gap was 20% greater than that between two 

blackbodies. Shen et al. (2009) measured the near-field heat transfer between silica 

microsphere and substrates made of doped Si, Au, and glass down to a vacuum gap of 30 

nm. Of the different substrates, glass provided the maximum near-field enhancement due 

to coupling of surface phonon polaritons at the two interfaces.  

 This dissertation is devoted to a thorough analysis of near-field energy transfer at 

nanometer distances between two semi-infinite plane media. To start with, infrared 

radiative properties of heavily doped Si are experimentally investigated near room 

temperature. Accurate carrier mobility and ionization models are identified via a critical 

review of available literature and then incorporated in to a Drude model to predict the 

dielectric function of heavily doped Si. The calculated radiative properties of several 

samples are compared with those measured with a Fourier-transform infrared 

spectrometer. The improved dielectric function model is then employed to calculate near-

field radiative energy transfer between two semi-infinite Si plates using fluctuational 

electrodynamics. The effects of doping level, polarization, and vacuum-gap width on the 

spectral and total radiative transfer are studied. An intriguing question in nanoscale 

thermal radiation has been the existence of an upper limit of the heat transfer between 

two media as the separation distance is arbitrarily reduced. This issue is addressed here 

by calculating the maximum achievable near-field heat transfer between two parallel 

plates separated at very small distances. Initially, frequency-independent dielectric 

functions are considered to determine what combinations of the real and imaginary parts 

of the dielectric function will maximize the heat transfer. This is followed by a 
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parametric optimization of the Drude and the Lorentz model for maximum achievable 

near-field heat transfer in realistic material systems. A better understanding of the surface 

wave effect on near-field heat transfer is thus obtained. Furthermore, it is found that, 

unlike far-field radiation, the penetration depth during near-field heat transfer depends on 

the vacuum gap thickness in addition to material properties. Consequently, a 10 nm thick 

SiC film can become essentially opaque when the vacuum gap is less than 10 nm. In 

addition to the calculation of near-field energy transfer between the two media, it is 

important to understand the direction of energy flow between them. An improved 

algorithm that is consistent with the fluctuational electrodynamics is developed to 

correctly trace the energy streamlines, representing the direction of energy flow, inside 

the emitter, receiver, and the vacuum gap. The results obtained from this research will 

facilitate the future design of MEMS devices and applications of nanoscale radiation for 

energy harvesting. 
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CHAPTER 2 
 

THEORETICAL BACKGROUND 

This Chapter provides theoretical background necessary for the analysis of near-

field radiative heat transfer between two parallel plates. To start with, a brief discussion 

about fluctuation-dissipation theorem and dyadic Green’s function is provided in Section 

2.1. In section 2.2, dielectric functions of different materials are discussed. Section 2.3 

analyzes density of states and the role of surface polaritons in near-field heat transfer.  

 

2.1 Fluctuation-dissipation Theorem and Dyadic Green’s Function 

Thermal radiation between solids is often treated as a surface phenomenon and 

analyzed using ray optics with the assistance of the concept of emissivity, reflectivity and 

absorptivity of the surfaces (Siegel and Howell, 2002). On the other hand, radiation heat 

transfer inside a semitransparent medium is traditionally dealt with by the radiative 

transfer equation (RTE), considering emission, absorption, and scattering (Siegel and 

Howell, 2002). These phenomenological approaches do not fully account for the origin of 

thermal emission and break down when wave interference and diffraction become 

important. 

  According to the fluctuation-dissipation theorem, thermal emission is originated 

from the fluctuating currents induced by the random thermal motion of charges, known as 

thermally induced dipoles. Furthermore, Maxwell's equations describe the propagation of 

electromagnetic waves and their interactions with matter. The fluctuational 

electrodynamics, pioneered by Rytov and co-workers in 1950s combined the fluctuation-

dissipation theorem with Maxwell's equations to fully describe the emission, propagation, 
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and absorption of thermal radiation in both the near and far field (Rytov et al., 1987). The 

random thermal fluctuations produce a spatial and time-dependent electric current density 

( , )tj x  inside the medium whose time average is zero. The time-dependent current 

density can be decomposed into ( , )j x ω  in the frequency domain using the Fourier 

transform. The inclusion of the fluctuating current in Ampere’s law makes the Maxwell 

equations stochastic in nature (Loomis and Maris, 1994). For prescribed geometric 

conditions and temperature distribution, Maxwell’s equations need to be solved in order 

to obtain the electric and magnetic fields. This can be done with the help of the dyadic 

Green’s function, which makes the formulations simple and compact. 

With the assistance of the dyadic Green’s function ( , , )'G x x ω , the induced 

electric and magnetic fields due to the fluctuating current density can be expressed in the 

frequency domain as a volume integration: 

 0  
( , ) i ( , , ) ( , )d

V
′ ′ ′= ⋅∫E x G x x j x xω ωμ ω ω  (2.1)  

 
 

( , ) ( , , ) ( , )d
V

ω ω ω′ ′ ′= ∇× ⋅∫H x G x x j x x   (2.2) 

where μ0 is the magnetic permeability of vacuum, and the integral is over the region V 

that contains the fluctuating sources. Detailed discussions about the solution of 

Maxwell’s equations can be obtained from Francoeur and Menguc (2008). The dyadic 

Green’s function, ( , , )'G x x ω  is essentially a spatial transfer function between a current 

source j  at a location ′x  and the resultant electric field E at x (Mulet et al., 2002; Fu and 

Zhang, 2006). Based on the ergodic hypothesis, the spectral energy flux is given by (Basu 

et al., 2009b) 
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 *
0

1( , ) Re[ ( , ) ( , )] d
2

ω ω ω ω
∞

′ ′= ×∫S x E x H x   (2.3) 

where < >  represents ensemble averaging, S is the spectral Poynting vector,  and ω ω′  are 

the angular frequencies, and * denotes the complex conjugate. In order to obtain the 

spectral energy flux, it is important to know the ensemble average of the spatial 

correlation function of the fluctuating current densities which acts as the source for 

thermal radiation. The spectral density of the fluctuating currents is related to the local 

temperature of the body through the fluctuation-dissipation theorem. The ensemble 

average of the fluctuating current densities is given by (Joulain et al., 2005) 

 0
4( , ) ( , ) Im( ( )) ( ) ( , ) ( )m n mnj j Tω ω ωε ε ω δ δ ω δ ω ω
π

∗′ ′′ ′ ′ ′′ ′= − Θ −x x x x  (2.4) 

where mj  and nj  (m, n = 1, 2, or 3) stands for the x, y, or z component of j, mnδ is the 

Kronecker delta and ( )′−δ ω ω  is the Dirac delta function. In Eq. (2.4), ( , )TΘ ω  is the 

mean energy of a Planck oscillator at frequency ω in thermal equilibrium and is given by 

 
B

( , )
exp( / ) 1

T
k T

ωω
ω

Θ =
−

 (2.5) 

where ħ is the Planck constant divided by 2π, kB is the Boltzmann constant, and T is the 

absolute temperature of the source medium. In Eq. (2.5), the term 1
2 ω  that accounts for 

vacuum fluctuation is omitted since it does not affect the net radiation heat flux. A factor 

of 4 has been included in Eq. (2.4) to be consistent with the conventional definitions of 

the spectral energy density and the Poynting vector expressed in Eq. (2.3) since only 

positive values of frequencies are considered here (Fu and Zhang, 2006). 

  It should be noted that Eq. (2.4) assumes that the dielectric function is a scalar 

(isotropic media) and independent of the wavevector (local assumption). In the extreme 
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proximity (less than 1 nm distance), the dielectric function is not local and its dependence 

on wavevector must be considered (Joulain, 2008). Recently, Chapuis et al. (2008a) used 

two different non-local dielectric function models to calculate the near-field heat transfer 

between two semi-infinite gold plates and compared their results with the heat flux 

calculated using the Drude model for gold. The heat flux for s polarization is identical for 

both local and non-local dielectric function models. On the other hand, for p polarization, 

the heat flux predicted using the two different dielectric models starts to differ when the 

vacuum gap is less than 0.1 nm. While, the non-local dielectric function saturates the heat 

flux, using local dielectric function will cause the heat flux to diverge as the vacuum gap 

d → 0. In this dissertation, only the local form of dielectric function models is considered 

since they are valid for most practical problems encountered. 

 The somewhat modified expression of the spectral energy flux in Eq. (2.3) as 

compared to earlier publications (Fu and Zhang, 2006; Park et al., 2008) is due to the fact 

that the Dirac delta function ( )δ ω ω′−  has been included in the spatial correlation 

function of the currents in Eq. (2.4). At first sight, it might appear that using the 

expression of spectral energy flux as mentioned by Fu and Zhang (2006) and Park et al. 

(2008) will cause some inconsistency in units. It should be noted that the expression for 

the fluctuating current densities in those studies was obtained after an integration of Eq. 

(2.4) over ω′ . Hence, the final results obtained from these references are consistent with 

other publications.  

 Consider near-field radiative heat transfer between two semi-infinite solids 

separated by a vacuum (or a dielectric medium in some studies), as illustrated in Fig. 2.1. 

Both media are nonmagnetic, isotropic, and homogeneous. Furthermore, each medium is 
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assumed to be at a thermal equilibrium, which is often reasonable due to the relatively 

large thermal conductivity of solid materials. As shown in Fig. 2.1, a vacuum gap of 

width d separates the two parallel and smooth surfaces of the semi-infinite media at 

temperatures T1 and T2, respectively. In this study, it is always assumed that medium 1 

(emitter) is at a higher temperature than medium 2 (receiver). Note that the radiative 

energy from the lower-temperature medium to the higher-temperature medium must also 

be considered. The random motion of the dipoles represented as ellipses in the figure 

results in a space-time dependent fluctuating electric field, E. Cylindrical coordinate 

system is used so that the space variable x = r + z, with r-direction being parallel to the 

interface and z-direction perpendicular to the interface. β and jγ  refer to the r-component 

and z-component of the wavevector kj, respectively. Thus, ˆ ˆj jβ γ=k r + z  and 

2 2 2
j jk β γ= + , for j = 0, 1, and 2. The magnitude of kj is related to the dielectric function 

jε by 0 /k cω= , 1 1  /k cε ω= , and 2 2 /k cε ω= , with c being the speed of light in 

vacuum and 1ε  and 2ε  being the dielectric functions (or relative permittivity) of medium 

1 and 2, respectively. With the relationship between the fluctuating current densities and 

the temperature of the emitting medium being established through Eq. (2.4), the spectral 

energy flux can now be calculated once the dyadic Green’s function, ( , , )'G x x ω  is 

obtained. The dyadic Green’s function depends on the geometry of the physical system 

and for two semi-infinite media shown in Fig. 1, it takes the following form (Sipe, 1987), 

 ( ) 2 1
 p i( )s i ( )

12 2 112 0 1

i ˆ ˆ ˆ ˆ( , , )  e e d
4

z z r rt t γ γ βω β β
πγ

∞ ′ ′− −′ = +∫G x x s s p p  (2.6) 

where ˆ ˆr z= +x r z  and ˆ ˆr z′ ′ ′= +x r z . s
12t  and p

12t  are the transmission coefficients from 
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Figure 2.1 Schematic for near-field radiation between two closely placed parallel plates at 

temperatures T1 and T2, separated by a vacuum gap d. The random motion of the charges 

results in a time-dependent fluctuating electric field. 

 

medium 1 to medium 2 for s and p polarizations, respectively, which are given by Airy’s 

formula (Zhang, 2007). The unit vectors are ˆ ˆ ˆ ,= ×s r z ( )1 1 1ˆ ˆˆ / ,kβ γ= −p z r  

and ( )2 2 2ˆ ˆˆ / kβ γ= −p z r . Note that the Green’s function in Eq. (2.6) helps to calculate the 

energy transferred from the emitter to the receiver and vice versa. 

The net energy flux between the two media is (Basu and Zhang, 2009) 

 ( ) ( ) ( )net 1 22
1 d , , , dq T T sω ω ω ω β β

π

∞ ∞

0 0
′′ = Θ − Θ⎡ ⎤⎣ ⎦∫ ∫  (2.7)  
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Note that the integration of s(ω,β) over β gives a weighted function to modify the Planck 

blackbody distribution function. Expression of ( , )s ω β  is different for propagating (β < 

ω/c) and evanescent (β > ω/c) waves,  

 ( )
0 0

p ps s
01 02 01 02

prop 2 2i2 i2p ps s
01 02 01 02

(1 )(1 )(1 )(1 ),
4 1 e 4 1 ed d

s
r r r r

− −− −
= +

− −γ γ

β ρ ρβ ρ ρ
ω β    (2.8)  

and ( )
( )

( )

( )

00

0 0

2Imp p2Im( )s s
01 02 01 02

evan 2 22Im 2Imp ps s
01 02 01 02

Im( )Im( ) eIm( )Im( ) e,
1 e 1 e

dd

d d

r rr rs
r r r r

−−

− −
= +

− −

γγ

γ γ

ββω β  (2.9) 

In Eqs. (2.8) and (2.9), the first term on the right-hand side refers to the contribution of s 

polarization or TE wave, while the second term refers to the contribution of p 

polarization or TM wave. Note that ( ) ( )s
0 0 0j j jr γ γ γ γ= − +  and 

( ) ( )p
0 00 j j j jjr ε γ γ ε γ γ= − +  are the Fresnel reflection coefficients for s and p 

polarization, respectively, at the interface between vacuum and medium j (1 or 2). On the 

other hand, 
2

0 0j jrρ =  is the far-field reflectivity at the interface between vacuum and 

medium j.  

For evanescent waves, when β >> ω/c, 1 2 0 iγ γ γ β≈ ≈ ≈ . As a result, 01
sr  and 02

sr  

are negligibly small, and the contribution of TE waves can be ignored. Furthermore, 

p 1
01

1

1
1

r ε
ε

−
≈

+
 and p 2

02
2

1
1

r ε
ε

−
≈

+
 are independent of β . Hence, Eq. (2.9) can be simplified as,  

 
p p 2

01 02
evan 2p p 2

01 02

Im( ) Im( )e
( , )

1 e

d

d

r r
s

r r

β

β

β
ω β

−

−
≈

−
 (2.10) 
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As shown recently by Chapuis et al. (2008a), for metals, the contribution from TE waves 

is more significant when 1c cω β ε ω , while the contribution from TM waves is 

more important for 1 c cβ ε ω ω . Subsequently, for metals, heat transfer due to 

TM waves becomes dominant only at very short distances.  

Using the relation, 2
1 2Im
1 1

ε ε
ε ε

′′−⎛ ⎞ =⎜ ⎟+⎝ ⎠ +
, and assuming identical permittivity for 

both media, the spectral heat flux from 1 to 2 in the limit 0d →  is given by (Basu and 

Zhang, 2009) 

 
( ) ( )0

2 2
1

,1 2 2 2 22 2 2

4 ( , ) e d

1 1 e

Tq
d

−∞

−
−

′′Θ′′ ≈
+ − −

∫
ξ

ω
ξξ

ω ε ξ ξ
π ε ε

 (2.11) 

where dξ β= , 0 /d cξ ω= , and ε ′′ is the imaginary part of the dielectric function. As 

seen from Eq. (2.11) the heat flux will be proportional to 2d −  in the proximity limit.  

 

2.2 Dielectric Function 

For thermal radiation, the polarization P is linearly related to the electric field 

given by (Griffiths, 1999), 

 0 e( , ) ( , ) ( , )P x = x E xω ε χ ω ω  (2.12) 

where e ( , )xχ ω is the electric susceptibility of the medium and 0ε  is the permittivity of 

vacuum. The value of e ( , )xχ ω depends on the microscopic structure of the medium. The 

electric displacement vector D can be expressed as  

 ( , ) ( ) ( , )D x = E xω ε ω ω  (2.13) 
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In Eq. (2.13), the dielectric function or relative permittivity ( )ε ω of the medium is given 

by 0 e( ) (1 ( ))ε ω ε χ ω+= . Due to the assumption of a local form of the dielectric function, 

the spatial dependence term drops out from the expressions of susceptibility and relative 

permittivity. The real and imaginary parts of the dielectric function are intrinsically 

related based on the Kramers-Kronig dispersion relation, which is a consequence of the 

causality and is very useful in determining the frequency-dependent dielectric functions 

of real materials (Zhang, 2007). 

 
2.2.1 Drude Model  

The Drude model describes the frequency-dependent conductivity of metals and 

can also be extended to semiconductors. In a good conductor, electrons in the outermost 

orbits are “free” to move in accordance with the external electric field. The dielectric 

function of a conductor  can be modeled by considering the electron movement under the 

electric field and is related to the conductivity by (Zhang, 2007) 

 ( ) ( )
2 0

2
0

( ) i
i

n σ τ
ε ω κ ε

ε ω ω τ
∞= + = −

+
 (2.14) 

where ε∞  accounts for high-frequency contributions, τ  is the relaxation time (inverse of 

scattering rate), 0σ is the dc conductivity, and n and κ are the refractive index and 

extinction coefficient respectively. Based on Eq. (2.14), the real and imaginary parts of 

the dielectric function can be expressed as 2 2nε κ′ = − and 2nε κ′′ = , respectively. The 

plasma frequency is defined as p 0 0ω σ τε= and is in the ultraviolet region for most 

metals. When pω ω< , n κ<  and ε′ becomes negative. At very low frequencies, the real 

part of the dielectric function is much smaller than the imaginary part and, therefore, 
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n κ≈ . Generally speaking, metals become highly reflective in the visible and infrared 

regions. Drude model for doped Si will be discussed in Chapter 3. 

 
2.2.2 Lorentz Model  

 Unlike metals, the electrons in a dielectric are bound to molecules and cannot 

move freely. In contrast to free electrons, bound charges experience a restoring force in 

addition to the damping force. While the restoring force is given by the spring constant, 

the scattering rate is a measure of the damping force. The response of a single-charge 

oscillator to a time-harmonic electric field can be extended to a collection of oscillators. 

Assuming N types of oscillators in a dielectric, the dielectric function can be given by the 

Lorentz model (Zhang, 2007), 

 
 2
p,

2 2( )
i

N j

j j j

ω
ε ω ε

ω ω ω τ∞= +
− −

∑  (2.15) 

where  
p, jω ,  

jω ,  
jτ   may be viewed as the plasma frequency, resonance frequency and 

the relaxation time of the jth oscillator, respectively. Since the parameters for the Lorentz 

model are more difficult to be modeled as compared to those for the Drude model, they 

are considered as adjustable parameters that are determined from fitting. It can be seen 

from Eq. (2.15) that for frequencies far greater or lower than the resonance frequency, the 

extinction coefficient becomes negligible and the dielectrics are completely transparent. 

Absorption is appreciable only with an interval (1/τj) around the resonance frequency. 

Therefore, dielectrics become highly reflective near the resonance frequency, and 

radiation inside them is rapidly attenuated or dissipated. The spectral region with a large 

imaginary part of the dielectric function is also called the region of resonance absorption. 
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2.3 Density of States  

The spectral energy density in the vacuum space between the two semi-infinite 

surfaces is given by (Joulain et al., 2005; Zhang, 2007) 

 ( ) ( ) ( ) ( ) ( )0 0
0

, , , , ,  d
4 4

u ε μω ω ω ω ω ω
∞ ∗ ∗′ ′ ′= +∫x E x E x H x H xi i  (2.16) 

The spectral energy density can be looked upon as the electromagnetic energy per unit 

volume per unit angular frequency. It is the product of the local density of states (LDOS), 

( ),D z ω , and the mean energy of the Planck oscillator, i.e., 

 ( ) ( ) ( ), , ,u z D z Tω ω ω= Θ  (2.17) 

The LDOS is the number of modes per unit frequency interval per unit volume. It is a 

fundamental quantity and can provide a qualitative understanding of the enhanced near-

field radiation. In Eq. (2.17), the LDOS is expressed as a function of z only due to the 

continuous translation symmetry of the system in the radial direction. Several studies 

have discussed the LDOS for a free-emitting surface, i.e., without medium 2 (Joulain et 

al., 2005; Fu and Zhang, 2006). Basu et al. (2009b) developed an expression for LDOS in 

the vacuum gap by considering multiple reflections from the receiver. Neglecting the 

emission from the receiver, the LDOS can be expressed as the sum of electric and 

magnetic density of states; thus, 

 ( ) ( ) ( )E M, , ,D z D z D zω ω ω= +  (2.18) 

It can be shown that  

 ( )
2 *2 2 2p p s1 1 1

E 0 0 21 22 2 * 2
1 10 1 1

Im( ), d
16 Im( )

D z t t k t
c k k

ω ε β γ γ βω γ β β
π γ γ

∞ ⎡ ⎤+⎛ ⎞= + +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦∫ (2.19) 
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and ( )
2 *2 2 2p s s1 1 1

M 0 2 1 222 2 * 2
1 10 1 1

Im( ), d
16 Im( )

D z k t t t
c k k

ω ε β γ γ βω γ β β
π γ γ

∞ ⎛ ⎞+
= + +⎜ ⎟⎜ ⎟

⎝ ⎠∫  (2.20) 

In the above expressions, 1t t t+ −= −  and 2t t t+ −= + , where 

 
0

0

i
10

+ i2
02 01

e
1 e

z

d
tt
r r

γ

γ=
−

 (2.21) 

and 
0

0

i2 ( )
10 02

i2
02 01

e
1 e

d z

d
t rt

r r

γ

γ

−

− =
−

   (2.22) 

where 10 101t r= +  is the Fresnel transmission coefficient for a given polarization (Zhang, 

2007; Born and Wolf, 1999). Note that subscripts + and – represent the forward and 

backward waves (due to multiple reflections from both surfaces), respectively, in the 

vacuum gap. As seen from Eqs. (2.19) and (2.20), the density of states is a function of the 

material properties of the emitter and the receiver which are temperature dependant. As a 

result, LDOS is an implicit function of temperature. 

 Figure 2.2 shows the LDOS calculated at different heights over a semi-infinite 

SiC medium. The dielectric function of SiC is calculated using the Lorentz model 

(Zhang, 2007). From Fig. 2.2, notice that the LDOS increases as the distance to the 

emitter decreases. The increase in LDOS is due to additional modes provided by the 

evanescent waves which are confined close to the surface and cannot be seen in the far 

field. An increase in the number of modes enhances the heat transfer since it provides 

more channels of energy transfer (Pendry, 1999). Also around ω = 1.79 × 1014 rad/s there 

is a near monochromatic increase in the LDOS. This is due to resonance caused by the 

excitation of surface waves and will be discussed in details later. The resonance 

frequency will be denoted by ωm throughout this dissertation. When 0z → , 
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  evan 2 3 2
1 Im( )( , )

4 1
D z

z
εω

π ω ε
≈

+
  (2.23) 

The LDOS increases by three orders of magnitude around mω as the vacuum gap is 

reduced by one order due to the z−3 dependence of LDOS as seen from Eq. (2.23). 

 

 

 

Figure 2.2 Local density of states for SiC plates. 
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2.4 Surface Waves 

 Surface waves are electromagnetic waves that propagate along the interface 

between two different media without radiation and their amplitude decays away from the 

interface (Zhang, 2007). The excitation of surface waves is a resonance phenomenon and 

is due to the coupling of electromagnetic waves with electrons (conductors) and phonons 

(polar materials). The requirement of evanescent waves on both sides of the interface 

prevents the coupling of propagating waves in air to the surface waves. For TM waves, 

the permittivity of the two media should have opposite signs for excitation of surface 

waves. However, for TE waves, magnetic materials are needed with negative 

permeability in order to excite surface waves (Zhang, 2007). All the materials considered 

in this research have permeability = 1. Hence, surface wave effects are considered only 

for TM waves. The near-field heat transfer between two media can be enhanced by 

several orders if surface waves are excited at the interface of both the emitter and the 

receiver and vacuum gap.  

Due to the coupling of surface polaritons at the two interfaces, there exist two 

branches of dispersion curves for the p polarization as follows:  

Symmetric mode:  0 0 1

0 1

icoth 0
2

dγ γ γ
ε ε

⎛ ⎞+ − =⎜ ⎟
⎝ ⎠

 (2.24a) 

Asymmetric mode: 0 0 1

0 1

itanh 0
2

dγ γ γ
ε ε

⎛ ⎞+ − =⎜ ⎟
⎝ ⎠

 (2.24b) 

The lower-frequency branch corresponds to the symmetric mode, and the higher-

frequency branch represents the asymmetric mode (Park et al., 2005). As will be seen 

later, the dispersion curve becomes almost flat at mω  implying that surface polaritons 

can be excited over a large range of β values resulting in large near-field enhancement.  



 24

CHAPTER 3 
 

INFRARED RADIATIVE PROPERTIES OF HEAVILY DOPED 

SILICON AT ROOM TEMPERATURE 

 

 This chapter describes an experimental investigation on the infrared radiative 

properties of heavily doped Si at room temperature. Initially accurate carrier mobility and 

ionization models are identified before incorporating them in the Drude model for 

predicting the radiative properties of heavily doped Si at room temperature. The 

calculated radiative properties are then validated with experiments in the infrared. 

 
3.1 Dielectric Function of Doped Si 

 

For heavily doped Si at room temperature, ionized donors or acceptors produce 

free carriers which can greatly enhance the absorption in the infrared region. The Drude 

model, originally developed to describe the frequency-dependent conductivity of metals, 

has been employed to model the free-carrier absorption of doped Si in many studies 

(Hesketh et al., 1988; Marquier et al., 2004). For doped silicon in the infrared 

region ( )2 mλ μ> , the Drude model gives the dielectric function or relative permittivity 

as follows, 

 
( )

2
p

bl(ω)=
+ /i

ω
ε ε

ω ω τ
−   (3.1) 

where ω  is the angular frequency, blε  is 11.7≈  for heavily doped Si in the infrared 

(Marquier et al., 2004). The plasma frequency and relaxation time can be expressed as 

2
p 0Ne mω ε∗=  and m eτ μ∗= respectively, where 0ε  is the permittivity of free 
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space, e is the electron charge, N is the carrier concentration, m∗ is the carrier effective 

mass, and μ  is the mobility (Ashcroft and Mermin, 1976). Notice that for heavily doped 

Si at room temperature, the scattering process is dominated by impurity scattering. 

Hence, lattice or phonon scattering is neglected. The effective mass in general depends 

on the carrier concentration and frequency. In the case of heavily doped silicon, the 

effective mass is independent of carrier concentration unless it exceeds 

20 35 10 cm−× (Howarth and Gilbert, 1963; Riffe, 2002). The effective mass of electron or 

hole is taken as 0.27 0m  or 0.37 0m , respectively, where 0m  is the free electron mass in 

vacuum (Zhang, 2007). The effective mass is assumed to be independent of frequency. In 

order to obtain the optical constants of heavily doped silicon, it is very important to 

accurately model the mobility and carrier concentration at a given doping concentration. 

Hence, to begin with different mobility and ionization models are examined. Hereafter, 

phosphorus and boron implanted Si is referred to as n-type and p-type Si, respectively.  

 Caughey and Thomas (1967) proposed an empirical model for carrier mobility for 

Si in the doping range from 15 21 310  to 10 cm−  by fitting the measured resistivity of Si 

with both p-type and n-type dopants. Using a different fitting procedure for the same 

expression, Baccarani and Ostoja (1975) obtained different coefficients for n-type Si. On 

the other hand, Wagner (1972) and Antoniadis et al. (1978) obtained different 

coefficients for p-type Si. Masetti et al. (1983) improved the above-mentioned mobility 

models in order to fit the experimental data more accurately at higher carrier 

concentrations. The mobility expression for n- and p-type Si are given as 
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 max 1 2
1

e r s e1 ( ) 1 ( )N C C Nα β
μ μ μμ μ −

= + −
+ +

 (3.2) 

and 
( ) ( )h

max 2
1 c h

h r s

exp( )
1 1

p N
N C C Nα β
μ μμ μ= − + −

+ +
 (3.3) 

Values of different symbols in Eqs. (3.2) and (3.3) can be obtained from Masetti et al. 

(1983). 

 A comparison of the different mobility models with experimentally measured 

values is shown in Figs. 3.1(a) and (b) for p- and n-type Si, respectively. The solid lines 

refer to the models while the symbols refer to the experimental data. It can be clearly 

seen that while the mobility models used by Caughey and Thomas (1967), Baccarani and 

Ostoja (1975), Wagner (1972), and Antoniadis et al. (1978) predict a constant value 

beyond carrier concentration of 19 35 10  cm−× , the model suggested by Masetti et al. 

(1983) can accurately fit the experimental data at higher carrier concentrations. While the 

first two terms in the Eqs. (3.2) and (3.3) exhibit a trend similar to the mobility 

expressions used by previous researchers, the third term accounts for the decreasing 

mobility at higher doping concentrations. Since this term is negligible for carrier 

concentrations lower than 19 35 10  cm−× , the different mobility models exhibit a similar 

trend at lower carrier concentrations. Hence, the mobility model proposed by Masetti et 

al. (1983) is adopted in the present study for calculation of the carrier mobility.  

 Marquier et al. (2004) assumed complete impurity ionization over the entire 

doping concentration range in their calculation of the radiative properties of doped Si. 

Similar assumptions have also been made in some previous studies by different 

researchers (Caughey and Thomas, 1967; Sze and Irvin, 1968). Fu and Zhang (2006) on  
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Figure 3.1 Comparison of different mobility models for (a) p-type and (b) n-type Si at 

room temperature with experimental data. 
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the other hand considered complete ionization for doping concentrations below 

17 310  cm− , and partial ionization beyond 17 310  cm− . They had adopted the ionization 

model proposed by Gaylord and Linxwiler (1976) in their analysis. Recently, Park et al. 

(2007) reported a doping density model which was accurate to 8% of the measured values 

for doping concentration lower than 18 310  cm−  within the temperature range of 50-300 

K. However, for concentrations greater than 19 310  cm− , the model generated considerable 

error. Previous experimental results on doped Si have indicated that only in the doping 

range from about 1710  to 19 310  cm− , the dopant atoms are not completely ionized and 

the majority carrier concentration can be lower than the doping concentration. Between 

1016 and 1018
 cm−3, the Fermi level is located close to the doping level; this results in the 

dopant states being occupied and leads to incomplete ionization (Kuzmicz, 1986). 

However, beyond 1018
 cm−3 the donor energy band gets broadened and merges with the 

conduction band; this generates more free carriers and increases the degree of ionization 

as the doping level further increases. As a result of the two competing effects, the degree 

of ionization is the lowest around 1018
 cm−3. Kuzmicz (1986) included this effect of 

partial ionization while considering a wide range of doping concentrations for both p- and 

n-type Si and developed an empirical model. Figures 3.2 (a) and (b) compare the different 

ionization models for p- and n-type Si, respectively. The degree of ionization has been 

presented as insets in the two figures. For the model proposed by Kuzmicz (1986), the 

degree of ionization first reduces to 0.75 for p-type Si and 0.9 for n-type Si around 

18 310  cm− , and then increases to almost unity at doping concentrations greater than 

19 310  cm− , suggesting partial ionization in the doping range from 1710  and 19 310  cm− , 
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for both p- and n-type Si. On the other hand, the model predicted by Gaylord and 

Linxwiler (1976) suggests incomplete ionization for both p- and n-type Si over the entire 

doping range and the carrier concentration is only 5% of the doping concentration at 

doping levels exceeding 21 310 cm− . For complete ionization model, the degree of 

ionization is always 1. Using the different ionization models, the carrier concentrations 

can be obtained which, when multiplied by mobility expressions in Eqs. (3.2) and (3.3) 

will yield resistivity. 

 The dc resistivity is a function of the carrier concentration and mobility given as 

1( )Neρ μ −= . Figures 3.3 (a) and (b) compare the measured resistivity values, taken from 

previous studies with those calculated from different ionization models. The solid lines 

represent the resistivity predicted with the carrier concentration obtained from Kuzmicz 

(1986) and mobility from Eqs. (3.2) and (3.3), for p- and n-type Si, respectively. For 

comparison, the resistivity for p-type Si calculated using the ionization model from 

Gaylord and Linxwiler (1976) is shown as the dash-dotted line and the resistivity 

calculated by assuming complete ionization is shown as the dashed line in Fig. 3.3(a). 

Clearly, the model proposed by Gaylord and Linxwiler (1976) results in an 

overprediction of the resistivity beyond 18 310 cm− . On the other hand, the full ionization 

model yields an underprediction of the resistivity in the doping range between 1710  and 

19 310 cm− . The resistivity obtained from the ionization model of Kuzmicz (1986) agrees 

very well with the experimental measurements over a wide range of doping 

concentrations and, hence, is adopted in this study. Beyond 20 310 cm− , the data from 

Beadle et al. (1985) do not match well with the prediction for p-type Si as can be seen in 
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Figure 3.2 Carrier concentrations versus doping level calculated from two models for (a) 

p-type and (b) n-type Si at room temperature. The insets show the degree of ionization. 
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Figure 3.3 Comparison of calculated resistivity with measurements from different studies 

for (a) p-type and (b) n-type Si, for different doping levels at room temperature.  
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Fig. 3.3(a). At doping concentrations greater than 20 310 cm− , the carrier mobility and 

degree of ionization depend on the doping and annealing methods.  

 
3.2 Sample Preparation and Characterization 

 
In this study, lightly doped 15 3(10 cm )−  Si wafers (400 μm thick) were ion-

implanted by a commercial vendor, using 70 keV boron and 160 keV phosphorus atoms 

with dosage of 14 26.4 10 cm−×  and 15 26.4 10 cm−× ,respectively. These dosages 

correspond to as-implanted peak doping concentrations of 20 310  cm−  and 21 310  cm− , 

respectively. To activate the implanted ions, subsequent annealing is required at 

appropriate combinations of time and temperature (May and Sze, 2004). 

 Rapid thermal annealing was selected in order to prevent substantial dopant 

diffusion into the sample. Before annealing, the doped Si wafers were diced into 

225 25 mm×  samples and a 500-nm thick silicon dioxide layer was deposited on the 

wafers using low-pressure chemical vapor deposition at 300°C, in order to prevent out-

diffusion of boron and phosphorus ions during annealing. Different temperatures were 

selected for studying the influence of temperature on activation of the implanted ions. 

The p-type wafers were annealed at 850, 950, and 1100°C for 60 s, while the n-type 

wafers were annealed at 850, 950, and 1050°C for 60 s in vacuum. The ramp time 

required to attain the annealing temperature was set to 10 s, consistent with the furnace 

specifications. The wafers were allowed to cool below 100°C before being taken out of 

the annealing chamber. The temperature of the wafers was constantly monitored using 

thermocouples. After annealing, the deposited oxide layer was etched away using dilute 

hydrofluoric acid.  
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 Transmittance and reflectance for the doped Si samples were measured by a 

commercial FTIR spectrometer, equipped with a globar source and a pyroelectric detector 

(Lee et al., 2005). The spectra were measured at room temperature with a spectral 

resolution of 4 cm−1 in the spectral range from 500 to 5000 cm−1. For the transmittance 

measurements, the sample holder with an aperture of 6-mm diameter limits the beam 

diameter on the sample. The spectrometer and sample compartment were purged with N2 

gas for about 30 min to reduce the absorption by water vapor and CO2 molecules in air. 

An average over 64 scans was used. The uncertainty was estimated to be 0.01 with 95%  

confidence level (Lee et al., 2005). Reflectance was measured at an incidence angle of 

10° using a specular reflectance accessory with an Au mirror as the reference. The 

reflectance of Au mirror was calculated using the tabulated optical constants (Palik, 

1985). The sample holder has a hole which is smaller than the beam diameter. As a result, 

part of the beam is reflected back from the sample holder for measurements of both the 

sample and the reference.  The reflectance from the backside of the holder was measured 

by removing the samples and is always less than 0.02. The overall uncertainty for 

reflectance measurements was estimated to be 0.02 with 95%  confidence level, taking 

into account the different error sources.  

Figure 3.4 compares transmittance of both p- and n-type Si wafers when annealed 

to different temperatures. Without annealing, both the p- and n-type as-implanted 

samples behave like lightly doped Si as seen from the transmittance measurements. For 

the 20 310 cm−  p-type Si, it is observed that the samples attain full dopant activation at 

950°C since there is no further change in the transmittance when annealed to 1100°C. 

However, for the 21 310 cm−  p-type Si, higher temperature is required to activate majority 
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of the dopants as seen in Fig. 3.4(a). The dashed line with symbols in Fig. 3.4(b) shows 

the calculated transmittance of the lightly doped Si substrate used in this study, to be 

discussed later. Based on the transmittance measurements, the four fully activated 

samples were selected for SIMS analysis. Table 1 tabulates the as-implanted and post-

annealing peak doping concentration of the fully activated samples, along with the 

corresponding annealing temperatures. Hereafter, these four samples will be referred by 

their numbers.  

 SIMS analysis was provided by a commercial supplier for the four selected 

samples. Since SIMS is a destructive test (May and Sze, 2004), one of the wafers was 

used for SIMS analysis while optical measurements were performed on the other sample 

but from the same batch. Due to the formation of a native-oxide layer of a few 

nanometers on the surface of Si, the doping concentration in the skin layer close to the 

surface is not accurate as is seen from the SIMS profile and this layer was subtracted 

from the total film thickness during modeling. Figure 3.5 shows the doping profiles 

obtained from SIMS measurements.  

Table 1 Samples for SIMS analysis and spectrometric measurements 

 

Sample 
number 

Dopant 
type 

As-implanted peak 
doping 

concentration 
3(cm )−  

Annealing 
temperature 

(°C) 

Peak doping 
concentration after 
annealing 3(cm )−  

1 Phosphorus 201.0 10×  950 193.1 10×  

2 Boron 201.0 10×  1100 193.8 10×  

3 Phosphorus 211.0 10×  950 202.8 10×  

4 Boron 211.0 10×  1100 201.5 10×  
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Figure 3.4 Measured transmittance of (a) p-type and (b) n-type Si annealed at different 

temperatures. The dashed line with symbols in (b) refers to the transmittance calculated 

based on the refractive index of Si obtained from Palik (1985) and the extinction 

coefficient extracted from the measured transmittance at 4 cm−1 resolution. The doping 

concentration refers to the peak concentration before annealing of the samples. 
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Figure 3.5 Comparison of the doping profiles obtained from SIMS for (a) p-type Si 

(Samples 2 and 4) and (b) n-type Si (Samples 1 and 3). 
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3.3 Measurement Results and Comparison with Modeling 

  The doped Si samples can be treated as a multilayer structure of thin films of 

varying doping concentrations on a thick Si substrate. For the Si substrate, the refractive 

index was obtained from the tabulated data in Palik (1985). The extinction coefficient for 

the Si substrate was extracted from the measured transmittance at 4 cm−1 resolution. The 

tabulated values of the extinction coefficient from Palik (1985) cannot account for the 

absorption due to the interstitial oxygen at around 9 μm (Zhang, et al., 1996) and the 

lattice absorption around 16 μm for the lightly doped Si substrate used in the present 

study. The doping profile down to a doping concentration of 17 31 10 cm−× , obtained from 

SIMS measurements was approximated by a step function and broken into 10 nm thin 

films. The film thickness was also reduced to 5 nm and the difference in modeling results 

was observed to be less than 0.03%. The carrier concentrations were obtained from the 

doping concentrations using the ionization model of Kuzmicz (1986), and consequently 

the optical constants could be calculated for each layer using the Drude model, discussed 

earlier. For the structure of thin films on a thick substrate, radiation inside the film can be 

treated as coherent and that in the substrate as incoherent. The transmittance and 

reflectance for the radiation incident on the substrate as well as the film were calculated 

using thin film optics (Zhang, 2007).  

Figure 3.6 shows the measured transmittance and reflectance compared with 

theoretical modeling results for samples 1 to 4. The transmittance and reflectance is 

calculated using the doping profiles obtained from SIMS measurements. In the 

calculation, the doped Si region is considered up to the doping level of 17 310 cm−  with a 

total of 65 layers, each 10 nm thick. For Sample 1, the calculated results based on the 



 38

Drude model agree very well with the experimental measurements for both transmittance 

and reflectance. The reflectance for radiation incident on both the film and the substrate 

is close to that of the lightly doped Si substrate up to 8 μm. Beyond 8 μm, however, the 

reflectance for radiation incident on the substrate changes little while the reflectance from 

the film increases with wavelength. For a doping concentration of 19 32 10  cm−× , the 

penetration depth increases with wavelength and, at 8 μm, the penetration depth is about 

15 μm, which is much greater than the thickness of the doping region. As the wavelength 

further increases, the penetration depth continues to decrease while the refractive index of 

the doping region decreases with wavelength.  Both effects contribute to the reduction in 

the reflectance for incidence on the film. Note that the decreased refractive index of the 

film results in an antireflection effect. Generally speaking, the transmittance and 

reflectance for Samples 1 and 2 follow the same trends due to the similar optical 

constants as a result of the similar doping concentrations. For Sample 2, however, the 

measured transmittance is lower than that predicted. The difference significantly exceeds 

the uncertainty of FTIR measurements. While the model may have some limitations, this 

discrepancy may also be caused by the nonuniformity in the dopant distribution during 

the ion bombardment as well as the annealing process.  

For Samples 3 and 4, the heavily doped region causes significant absorption, 

especially at longer wavelength and results in a reduction in the transmittance. The 

measured and predicted radiative properties agree fairly well, except for the transmittance 

at shorter wavelengths. The reflectance is much higher for incidence on the film due to 

the metallic behavior of the heavily doped silicon. The location of the reflectance minima 

matches with that in the refractive index for the average doping concentration. Sample 3 
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has a slightly higher peak doping concentration, and the reflectance minimum is shifted 

to a slightly shorter wavelength than that for Sample 4. Note that the minimum value of 

the reflectance at around 4 μm for incidence on the film is less than that for incidence on 

the substrate. This implies that the absorptance is greater for incidence on the film. At 

longer wavelengths, however, the reflectance for incidence on the substrate is smaller, 

indicating a higher absorptance than incidence on the film. While the transmittance for 

Samples 1 and 2 shows dips at 9 and 16 μm due to lattice vibration, these dips are 

essentially not observable for Samples 3 and 4 due to the screening effect of the film. In 

fact, the reflectance for incidence on the film does not show dips at all, because the 

penetration depth is much less than the thickness of the doping layer. Due to multiple 

reflections, the absorption at 9 and 16 μm is greatly enhanced for incidence on the 

substrate, as can be seen by the magnitude of the dips in the reflectance. This can be 

understood as an optical cavity effect. 

To sum up, we have measured the transmittance and reflectance of heavily doped 

Si up to a doping concentration of 21 310  cm−  in the wavelength region from 2 to 20 mμ . 

Drude model was employed for modeling the dielectric function of doped Si based on the 

selected carrier mobility and ionization models. The doped Si samples were modeled as 

multilayer structure of heavily doped Si thin films deposited on a thick lightly doped Si 

substrate. The calculated results are in good agreement with transmittance and reflectance 

measurements, suggesting that the Drude model developed in this study is appropriate in 

predicting the radiative properties of heavily doped Si near room temperature.  This 

model will be used in the next chapter to calculate near-field heat transfer. 
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Figure 3.6 Comparison of measured (solid lines) and calculated (dash-dotted lines) 

transmittance and reflectance (for incidence from either side) of all four samples. 
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CHAPTER 4 
 

NEAR-FIELD THERMAL RADIATION IN HEAVILY DOPED 

SILICON  

 

Doped Si has been extensively used in microelectronics and optoelectronics 

industries. As seen from the previous chapter, the optical properties of doped Si can be 

tuned by changing the doping concentration. Hence, the study of near-field radiation 

between doped Si is of great significance. Marquier et al. (2004) studied near-field 

radiative transfer between doped-silicon plates near room temperature using a simplified 

Drude model, without considering the effect of doping level. Fu and Zhang (2006) 

calculated the radiative energy transfer between two plates of doped silicon at different 

temperatures for various doping levels and vacuum gap widths. However, the employed 

ionization and mobility models may not be appropriate for heavily doped silicon near 

room temperature, which in turn, may cause inaccuracies in the prediction of energy 

transfer. 

This chapter describes a theoretical investigation of near-field radiative heat 

transfer between doped silicon surfaces separated by a vacuum gap using the improved 

dielectric function model for heavily doped silicon discussed in the previous chapter. The 

effects of surface waves, doping level, polarization, and vacuum-gap width on the 

spectral and total radiative transfer are studied based on the fluctuational 

electrodynamics. The local density of states near the emitter is also calculated with and 

without the receiver. Surface roughness and tilting effects are not considered. The emitter 
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is maintained at 400 K, while the receiver is maintained at 300 K. Only n-doped Si is 

considered in this study, since the results for p-doped Si would be similar.  

Before looking into near-field radiation in doped Si, the dielectric function of n-

type Si at 400 K is plotted in Fig. 4.1. The dielectric function is calculated using the 

improved Drude model discussed in the previous chapter. With increase in the doping 

level, the real part of dielectric function ε ′  decreases, while the imaginary part ε ′′  

increases, due to increased free carrier concentration. An order of magnitude increase in 

the doping concentration of Si results in a tenfold increase in ε ′′ . A negative ε ′  with 

simultaneously very large ε ′′  results in metallic behavior of heavily doped silicon. The 

dielectric function adopted by Fu and Zhang (2006) fails to capture the metallic behavior 

of Si at doping levels greater than 1020 cm−3 due to lesser number of free carriers. On the 

other hand, the simple model used by Marquier et al. (2004)  cannot accurately predict 

the dielectric function for Si in the doping range from 1017−1019 cm−3 since it assumes 

that all the dopant atoms in Si are fully ionized irrespective of doping level. 

 

4.1 Effect of Surface Waves 

As can be seen from Eq. (2.7), the net energy transfer involves integration over 

both ω and β. The function s(ω,β)/2π is illustrated in Fig. 4.2 as a contour plot for 1020 

cm−3 doped Si plates separated by a 10 nm vacuum gap. It should be noted that Fig. 4.1 is 

for TM waves since the contribution for TE waves is negligible for doping levels between 

1018 and 1020 cm−3. The color bar on the right shows the scale for s(ω,β)/2π with the 

brightest color representing the peak value at 14
m  2.67 10 rad / sω = × , corresponding to  

m   7 mλ μ≈ ,and βm = 62ω/c. Most of the energy transfer will occur around this peak and  
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Figure 4.1 Predicted dielectric function of n-type silicon for different doping 

concentrations at 400 K: (a) real part; (b) imaginary part. 
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there will be negligible energy transfer at β  > 400ω/c for a given ω and at ω > 4×1014 

rad/s for any β. Note that the contribution of propagating waves (β < ω/c) is also 

negligible. The resonance energy transfer in the near field is a result of surface plasmon 

polaritons (SPPs), which can greatly enhance the radiative transfer. Following the work 

of Lee and Zhang (2008), the dispersion relation is calculated between doped Si plates 

and plotted as dashed curves in Fig. 4.2. Notice that at SPP resonance, a large number of 

models or channels of heat transfer can be excited which increases the total energy 

transfer. The dispersion curves match well with the peak in s(ω,β).  

The vacuum gap width d has a significant effect on near-field heat transfer. This 

can be understood by plotting s(ω,β) at ωm as a function of β for different d values, as 

shown in Fig. 4.3 where β is normalized with respect to ωm/c. Note that ωm changes little 

for d < 100 nm. As the gap width decreases, the peak of s(ω,β) increases and shifts 

toward larger β values. The area underneath is proportional to the spectral energy flux, 

and the volume under the curved surface of s(ω,β) in Fig. 4.3 is proportional to total 

energy flux that tends to be inversely proportional to d2 as noted in previous studies (Fu 

and Zhang, 2006; Joulain et al., 2005). An alternative view would be to consider the 

ratio /s β , which was called transfer function according to Fu and Zhang (2006). As d 

decreases, the peak value of ( , ) /s ω β β  remains nearly unchanged, but its location will 

shift towards larger β values. As a consequence, there will be a significant increase in the 

number of modes for energy transfer, because the integration of /s β  over 2 dπβ β , i.e., 

the area in the x-y plane of wavevector-space, is directly proportional to the energy 

transfer. The transfer function can thus be viewed as the contribution per unit area in the 

parallel plane of the wavevector. 
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Figure 4.2 Contour plot of s(ω,β) for doping concentration of 1020 cm−3 in both the 

emitter (at 400 K) and receiver (at 300 K), when the vacuum gap width d = 10 nm. Note 

that the angular frequency is shown in the range from 1014 to 4 × 1014 rad/s, and the 

parallel wavevector component is normalized to the frequency. The dashed curves 

represent the two branches of the surface-polariton dispersion. 

 

 
Figure 4.3 Graph of s(ωm,β) as a function of β for different vacuum gap widths. 
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4.2 Effect of Doping Level 

  
When different doping levels are considered, the location of the peak in s(ω,β) 

shifts towards higher frequencies with increased doping level. For example, 

13
m 2.67 10ω = × , 138.5 10× , and 142.67 10×  rad/s for doping concentrations of 1018, 1019, 

and 1020 cm−3, respectively. The integration of s(ω,β) over β gives a weighted function to 

modify the Planck blackbody distribution function. The spectral energy transfer per unit 

area qω′′  can be obtained as 

 ( ) ( ) ( )1 22
1 , , , dq T T sω ω ω ω β β

π

∞

0
′′ = Θ − Θ⎡ ⎤⎣ ⎦ ∫  (4.1) 

so that 
0

 dnetq qω ω
∞

′′ ′′= ∫ . This function is plotted against ω for different doping 

concentrations in Fig. 4.4 for T1 = 400 K and T2 = 300 K. It can be seen from Fig. 4.4(a) 

that, for d = 100 nm, a strong spectral peak occurs near the SPP resonance frequency for 

each doping level. The peaks for doped silicon, however, are much broader than that for 

SiC and for metals because of the large losses. In addition to the peaks caused by SPPs, 

there exists a broadband spectral distribution due to thermal fluctuation as described by 

the Planck’s oscillator model. As discussed by Francoeur and Menguc (2008), Wien’s 

displacement law no longer holds for near-field radiative transfer. There may be two or 

more peaks in the spectral radiative flux. When the vacuum gap width is reduced to 10 

nm, the spectral energy flux is increased by two orders of magnitude around the SPP 

resonance frequencies, as shown in Fig. 4.4(b). In the regions far away from resonance 

frequencies, the spectral energy flux does not increase further as the d decreases. This is 

why some traces (away from the peaks) in Fig. 4.4(a) do not show up in Fig. 4.4(b). It is 
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Figure 4.4 Spectral energy flux for different doping levels at (a) d = 100 nm, and (b) d = 

10 nm. 
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the area under these curves that determines the total energy transfer. The predicted 

radiative heat transfer between two doped Si plates is plotted in Fig. 4.5 as a function of 

the vacuum gap width. Both plates are maintained at the same doping level, which is 

varied from 1018 to 1021 cm−3. The dotted line with circles is the radiation heat flux 

between two blackbodies given by ( )4 4
1 2T Tσ − . At d = 1 nm, the net heat flux between 

1019 or 1020 cm−3 doped Si plates can exceed five orders of magnitude that between two 

blackbodies because of photon tunneling and surface waves. It is interesting to note that, 

while the energy flux spectra are different between doping concentration of 1019 or 1020 

cm−3, the total energy is about the same when d < 30 nm. As can be seen from Fig. 4.4, 

the peak is sharper and narrower for doping concentration of 1019 cm−3 than that for 1020 

cm−3. This explains why the nanoscale radiation between doped Si plates can be 

enhanced to the same order of magnitude as that between SiC plates; the latter case has 

an extremely high peak in a very narrow spectral band (Mulet et al., 2002; Lee and 

Zhang, 2008). It should be noted that near room temperature, increase in the doping level 

of Si does not always enhance the energy transfer. In fact, the radiative heat transfer is 

smallest for 1021 cm−3 doped Si plates as compared with other doping levels as shown in 

Fig. 4.5. The main reason for this is that at the doping concentration of 1021 cm−3, mω  is 

too high and due to the exponential term in the denominator of the mean energy of 

Planck’s oscillator, the spectral energy flux is not significantly enhanced as compared 

with other doping levels. Another way to view it is that at smaller d, the spectral heat flux 

is proportional to product of ( ) ( )1 1Im 1 / 1ε ε− +⎡ ⎤⎣ ⎦  and ( ) ( )2 2Im 1 / 1ε ε− +⎡ ⎤⎣ ⎦ (Joulain et 

al., 2005). Hence, very large values of ε", as for 1021 cm−3 doped Si, will significantly 
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reduce the energy transfer. This is also the case for good metals in the infrared region 

such as Al and Cu. At d > 200 nm, doping concentrations between 1018 or 1019 cm−3 yield 

the largest radiative heat transfer. Note that surface wave coupling becomes weaker as d 

increases to beyond 100 nm. The above calculations assumed that the doping 

concentrations are the same for both media. 

Figure 4.6 illustrates the effect of doping concentration on nanoscale radiation 

when the vacuum gap width is fixed at d = 1 nm. The doping level of medium 1 is 

represented as N1 while that for medium 2 is represented by N2. Generally speaking, 

surface waves are better coupled when the two media have similar dielectric functions. 

The result is that there exist peaks when 1 2N N≈ , at doping levels up to 1020 cm−3. A 

decrease in the energy transfer is seen when the doping level of one or both of the silicon 

plates exceeds 1020 cm−3. Generally speaking, the model used by Fu and Zhang (2006) 

does not correctly predict the net radiative transfer near room temperature for doping 

levels greater than 1018 cm−3, because it was assumed that a large portion of the doping 

sites are not ionized to free carriers. It should be noted that the dielectric function model 

used in the present study did not consider band gap absorption and cannot be used at 

wavelengths shorter than 1.3 μm. Furthermore, the Drude model proposed in this study is 

not applicable at temperatures much higher than 400 K. 
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Figure 4.5 Net energy flux between medium 1 at 400 K and medium 2 at 300 K at 

different doping levels versus gap width. The dash-dotted line refers to the net energy 

transfer between two blackbodies maintained at 400 and 300 K, respectively. 

 

 

Figure 4.6 Effect of doping on the net energy transfer between two doped Si plates 

separated by 1 nm vacuum gap. 
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4.3 Effect of Polarization 

So far, all the discussions are for TM waves, because the contribution by TE 

waves are negligible in most cases, except for doping concentration of 1021 cm−3 in the 

region d > 5 nm. As can be seen from Fig. 4.5 that the curve for the net energy transfer 

(calculated for both polarizations) for N1 = N2 = 1021 cm−3 exhibits different trend as the 

other curves. Figure 4.7 shows the contribution of different polarization states to the net 

energy transfer for two doping levels. It is seen from Fig. 4.7(a) that TM wave 

contribution dominates the net energy transfer for 1020 cm−3 doped Si, although the TE 

wave contribution increases as d increases to beyond 100 nm. This is expected since 

surface waves are strongly coupled at the nanometer scales as discussed earlier. On the 

other hand, there is a significant TE wave contribution for 1021 cm−3 doped Si at vacuum 

gap d > 10 nm. The TE wave contribution does not increase when the gap is reduced 

further from about d = 50 nm or so. Most of the TE wave contributions are limited to 

smaller β values, because ( )s
01Im r and ( )s

02Im r  decreases quickly as β increases and 

become negligible when 5 / cβ ω> . When 5 / cβ ω<  and d < 50 nm, the term 

0exp[ 2 Im( ) ] 1dγ− ≈  in Eq. (2.9). Hence, ( , )s ω β  becomes independent of d, resulting in 

the nearly constant total energy flux for the TE wave. Similar results have been seen 

between two metallic surfaces (Chapuis et al., 2008). 
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Figure 4.7 Contribution of TE and TM waves to the net energy transfer for (a) 1020 cm−3, 

and (b) 1021 cm−3 doped Si at different gap widths. 
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4.4 Local Density of States 

The local density of states is calculated when both media are doped silicon with the same 

doping concentration of 1020 cm−3. Only the LDOS for TM waves is considered since the 

contribution of TE waves is negligibly small. The LDOS is calculated in the vacuum gap 

for the case when the emitter is at 400 K and the receiver is at 0 K. Emission from the 

receiver is not considered in this analysis. If the receiver is not at 0 K, the LDOS must be 

separately considered by assuming that the other medium is at 0 K. Since the 

electromagnetic fields from the emitter and the receiver are not correlated, the LDOS 

from each surface can be separately calculated, however, they cannot be added as the sum 

does not have any physical meaning. In terms of energy density, the local energy density 

will be sum of the energy densities from the emitter and the receiver and hence can be 

added together. Other than the temperature dependence of the dielectric function, LDOS 

is not a function of temperature. Figure 4.8(a) plots the spectral variation of LDOS at 

three different locations inside the vacuum gap when d = 10 nm. When mω ω= , LDOS is 

strongly amplified and displays a peak in the spectra. Figure 4.8(b) compares the spatial 

variation of LDOS in the gap with and without the receiver at mω ω= . It can be seen 

from Fig. 4.8 that the receiver has little influence on the LDOS close to the emitter, e.g., z 

< 0.5d, where LDOS is almost the same as that of free emission from medium 1 into 

vacuum. As 0z → , LDOS diverges as z−3, which has been noticed by others without the 

receiver. On the other hand, the presence of the receiver starts to modify the LDOS when 

z > 0.5d. At z = d, LDOS calculated considering the receiver is nearly twice of the LDOS 

without the receiver. Multiple reflections of the evanescent waves result in a strong 

coupling that enhances the density of states near the receiver surface.   
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Figure 4.8 Local density of states for 1020 cm−3 doped Si plates separated by a 10 nm 

vacuum gap: (a) Spectral variation of LDOS at z = 0.01d, z =0.6d, and z = d (b) spatial 

variation of LDOS at ωm = 2.67×1014 rad/s. 



 55

In summary, a theoretical investigation is performed on the near-field radiative 

energy transfer between heavily doped Si (1018 to 1021 cm−3) plates near room 

temperature, using an improved dielectric function model. The effect of surface wave is 

examined, and the ranges of ω and β that dominate the heat transfer are identified for 

different doping levels. Increasing the doping level for Si does not necessarily increase 

the energy transfer. The effect of the receiver on the local density of states in the vacuum 

gap is negligibly small except near the surface of the receiver.  
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CHAPTER 5 
 

MAXIMUM ENERGY TRANSFER IN NEAR-FIELD THERMAL 

RADIATION AT NANOMETER DISTANCES 

 
From the previous chapter, we see that when the vacuum gap d separating the two 

surfaces becomes very small, the near-field heat transfer varies as d−2. This means that 

the heat flux will diverge as d → 0 and its physical significance has been debated among 

researchers (Mulet et al., 2001; Pan, 2000). As the vacuum gap decreases, the energy 

transfer shifts to large values of the parallel wavevector component. The imposed cutoff 

limits the number of modes for photon tunneling. Chapuis et al. (2008a) used a nonlocal 

dielectric function of metals and showed that the d−2 dependence would disappear at d < 

0.1 nm and the heat flux for p polarization would asymptotically reach a constant. It 

should be noted that some time back the maximum near-field radiative transfer was 

discussed by Pendry (1999) who assessed the allowable modes or channels in near-field 

interactions. A relation between the real and the imaginary parts of the reflection 

coefficient was derived for achieving maximum heat transfer between two flat plates 

separated by vacuum. This relation was also used by Volokitin and Persson (2004) in 

calculating the maximum possible near-field energy transfer. However, the expression for 

maximum heat flux obtained in these studies is achievable only when d → 0 and cannot 

be looked upon as the maximum near-field heat transfer at finite separation distances. 

According to Pendry (1999), the material of choice that maximizes the near-field heat 

flux would be a good conductor with ε ε′′ ′>> . On the contrary, it has been calculated 

that good conductors do not result in significant enhancement in radiative transfer at the 

nanometer length scales (Loomis and Maris, 1994). 
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This chapter investigates the maximum achievable radiative heat flux between 

two parallel plates separated by a vacuum gap from 0.1 to 100 nm. Starting from the 

general expression for near-field heat transfer between two semi-infinite media, 

simplified relations are derived for the energy transfer at very small vacuum gaps in 

terms of the cutoff wavevector. By assuming a frequency-independent dielectric function 

and introducing a cutoff parallel wavevector component, the ideal dielectric function for 

the two media which will maximize the near-field radiative transfer is identified. 

Subsequently, the influence of cutoff wavevector on the net energy transfer is 

investigated at different vacuum gaps.  

 

Theoretical Formulation 

The total heat flux between the two media is given by,  

 ( ) ( )net 1 22
1( ) , , ( )q q d T T X dω ω ω ω ω ω ω

π

∞ ∞

0 0
′′ ′′= = Θ − Θ⎡ ⎤⎣ ⎦∫ ∫   (5.1) 

where ( )X ω  is a weighting function given by 

 c

0
( ) ( , )X Z d

β
ω ω β β β= ∫   (5.2) 

In most studies, the upper limit in Eq. (5.2) is set to infinity. Electrons in solids move in a 

periodic potential characterized by the Bloch wave, with a maximum wavevector of π/dc 

at the edge of the first Brillouin zone (Ashcroft and Mermin, 1976). Here, dc is the lattice 

constant, which is on the order of interatomic distance. This posts a limit on the smallest 

surface wavelength or cutoff wavevector parallel to the surface c c/ dβ π=  (Volokitin 

and Persson, 2004). If identical dielectric function is assumed for both media in the form 

of iε ε ε′ ′′= + , the following approximation can be obtained for β >> ω/c:  
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( ) ( )

2 2

22 2 2

4( , )
1 1

d

d

eZ
e

β

β

εω β
ε ε

−

−

′′
=

+ − −
  (5.3) 

which is based solely on the contribution from p-polarized waves. It can be shown that 

Eq. (5.3) has a maximum of max 0.25Z =  when 

 ( )
( )

2 2
2

2 2

1

1
de βε ε

ε ε

′ ′′− +
=

′ ′′+ +
  (5.4) 

For materials with ε ε′′ ′>>  such as metals in the long wavelength, it can be seen that 

when 0,d =  Eq. (5.4) will be satisfied and Eq. (5.3) will approach max 0.25Z =  for 

sufficiently large /ε ε′′ ′ . Taking maxZ Z= , one obtains from Eq. (5.2) that 

2
max c / 8X β= . With 

2

0 61x
xdx

e
π∞

=
−∫ , it can be shown that the maximum near-field heat 

flux becomes 

 
2 22

2 2 2 2B cB
max max 1 2 1 2( ) ( )

6 48
kkq X T T T Tβ′′ = − = −   (5.5) 

which is the 2T  dependence obtained by Volokitin and Persson (2004). It should be 

noted that Eq. (5.5) differs by a factor of 2 from the expression of maximum heat flux in 

Volokitin and Persson (2004), since the contribution from s polarization is not included in 

Eq. (5.5). The expression given in Eq. (5.5) is the ultimate maximum heat flux and is 

only achievable when 0d → . Even at 1 nmd = , the condition given in Eq. (5.4) cannot 

be satisfied in a large range when β  is near cβ . Subsequently, the achievable heat flux at 

finite separation distances is much smaller than that provided in Eq. (5.5) when 

/ 1ε ε′′ ′ >> . Furthermore, it has been noted that a good conductor generally does not 
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provide the greatest enhancement. In order to determine the maximum radiative heat flux 

in the near field, it is convenient to rewrite Eq. (5.2) as 

 
( ) ( )

c 2 2

2 22 2 20

4( )
1 1

e dX
d e

ξ ξ

ξ

ε ξ ξω
ε ε

−

−

′′
=

+ − −∫   (5.6) 

Where dξ β=  and c cdξ β= . If the upper bound is set to infinity, it can be seen 

that 2X d −∝ , which results in divergence of the heat flux as the distance approaches 

zero.  

 

Maximum Radiative Energy Transfer 

 

 A frequency-independent permittivity is used to study the limit of near-field heat 

flux for arbitrary materials considering finite separation distances. This will help identify 

the suitable combinations of real and imaginary parts of the dielectric function in order to 

obtain maximum energy transfer at different vacuum gaps. For simplicity, both the 

emitter and receiver are assumed to have the same dielectric function. The key for 

maximizing heat flux is to optimize X in Eq. (5.1) since it is a weighted function that 

modifies the spectral distribution. The approximation in Eq. (5.3), which is valid for p 

polarization at short distances, is used to evaluate Eq. (5.2). Figure 5.1 shows a contour 

plot of X with respect to ε ′  and ε ′′ , for different gap thicknesses by setting dc = 0.5 nm 

or 1
c c/ 2  nmdβ π π −= = . The value of X is normalized by 2

c / 8β  so that the maximum 

of 2
c* 8 /X X β=  is 1. In the plots, ε ′  varies from −5 to 5 while ε ′′  varies from 10−3 to 

10. The color bar on the right shows the value for X* (in logarithmic scale for d = 10 nm) 

with the brightest color representing the peak value. When d → 0 as shown in Fig. 5.1(a), 
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Figure 5.1 Contour plot of X* as a function of and ε ε′ ′′at 0d =  (a) and d = 10 nm. The 

magnitude of X* is denoted by the colored contours and is plotted in linear scale for d = 0 

and in logarithmic scale for d = 10 nm. 
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* 1X =  can be achieved in a large region when / | | 1ε ε′′ ′ >>  and the plot is symmetric 

with respect to 0ε ′ = . At a finite distance, d = 10 nm as shown in Fig. 5.1(b), the peak of 

X* is located at 1ε ′ = −  as long as ε ′′  is not so large. Furthermore, due to the dependence 

of Z with respect to dβ , the maximum of *X  is less than 0.01 when d = 10 nm. From 

Eqs. (5.3) and (5.4), 1ε ′ = −  corresponds to a resonance-like condition, which has been 

discussed in Volokitin and Persson (2004). For 0ε ′ >  and ε ε′′ ′<< , the two media 

behave as lossless dielectrics and contribution is negligible for large β  values. In such 

cases, the enhancement in near-field radiation is very limited and will saturate as d → 0. 

In order to further explore the dependence of X upon ,  ,ε ε′ ′′  and d, Fig. 5.2 plots 

X* as a function of  (or )ε ε′ ′′  at different distances with fixed (or )ε ε′′ ′  for dc = 0.5 nm. 

When 0.1ε ′′ =  as shown in Fig. 5.2(a), X* is the largest at 1ε ′ = −  for d ≥ 1 nm. 

However, at d = 0.1 nm, there exists a dip in X* for 3.3 0.3ε ′− < < −  and the value of X* 

at 1ε ′ = −  is even less than that at d = 1 nm. This is caused by the imposed cutoff cβ  in 

the upper integrand of Eq. (5.2) as will be discussed later. When 0d → , the peak shifts 

to 0ε ′ =  at which X* = 1. When ε ′  is kept at −1 as shown in Fig. 5.2(b), at d = 100 nm 

and 10 nm, reducing the vacuum gap results in an increase in X* for 0.001 10ε ′′< < . 

However, at d = 1 nm and 0.1 nm, there exists a maximum in X* and further reduction of 

d will result in a decrease in X*.  The peak shifts towards larger ε ′′ as d decreases. 

Furthermore, as 0d → , X* reaches its maximum (unity) when 1ε ′′ >> . The existence of 

a peak is again attributed to the imposed cutoff in β . 

When 1ε ′ = −  and 1ε ′′ << , the function ( , )Z ω β  given in Eq. (5.3) has a peak 

located at 2 /deβ ε ′′= , which can be deduced from Eq. (5.4). Figure 5.4 plots ( , )Z ω β in 
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Figure 5.2 Graphs of Z as a function of ε΄ when ε˝ = 0.1 (a) and ε˝ when ε΄ = −1 (b) at 

different vacuum gaps. 
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terms of dξ β=  for several and ε ε′ ′′  values. As d decreases, the peak shifts towards 

larger β, and most near-field energy transfer is through modes around this peak. The 

product of 2Xd  can be obtained as the integration of ( , )Z ω ξ ξ  over ξ  using Eq. (5.6). 

Due to the imposed cutoff in β, a significant amount of energy is excluded in calculating 

the heat flux from the emitter to receiver at very small vacuum gaps. With d = 0.1 nm and 

dc = 0.5 nm, c c 0.2 0.628dξ β π= = ≈ . This results in a decrease in X when d is reduced 

from 1 nm to 0.1 nm for 1 0.1iε = − +  and other cases. On the other hand, setting the 

 

 

Plot of Z as a function of βd for different and ε ε′ ′′  values. The shaded area shows the 

reduction of energy transfer modes due to the cutoff imposed in β for 1 0.1iε = − +  with 

m 0.6 nmd = . 
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upper limit of β to βc does not affect the energy transfer at relatively large vacuum gaps. 

For example, when d = 3 nm, c 6ξ π= . Even for 1 0.0001iε = − + , the peak is located 

near 10dβ =  and the cutoff of c 6ξ π=  has little impact on the integration. Hence, most 

of the energy in these evanescent modes can still contribute to near-field radiation despite 

the cutoff in β. There exists an optimal distance md  when X will be maximized. For 

1 0.1iε = − + , it can be shown that m 0.6 nmd =  and m 3.77dβ = . When md d= , the 

shaded area under the curve ( , )Z ω ξ  in the figure represents the reduction of energy 

transfer due to the cutoff in β for 1 0.1iε = − + . If md d< , additional reduction of the 

energy transfer can occur that will reduce the near-field heat flux. At relatively large 

separation distances, 0 10iε = +  gives very small Z values for ξ  near cξ  and should 

result in a relatively small heat flux. However, for very small d values when 

0.003 nmd <  (i.e., c 0.02ξ < ), it can be seen from the figure that 0.25Z ≈  for 

0 10iε = +  when 0.02ξ < . As a result, the integration of Eq. (5.6) gives X* = 1. It can be 

expected that the maximum heat flux will not only depend on the choice of the dielectric 

function but also on the distance of separation, i.e., the vacuum gap width. 

Figure 5.4 shows the calculated radiative heat flux between the two media 

( 1 300 KT =  and 2 0 KT = ) as a function of the vacuum gap for different values of 

 and ε ε′ ′′  when cd  is taken as 0.5 nm. In most cases, ε ′  is fixed at −1. For the sake of 

comparison, the energy transfer between two SiC plates is also shown in the figure using 

a frequency-dependent dielectric function of SiC. By setting the temperature of medium 2  

to absolute zero, only the energy transfer from the emitter to the receiver is considered, 

but not vice versa. It should be mentioned that the use of the approximation in Eq. (5.3) 
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has been validated by comparison with the original formula based on Fresnel’s 

coefficients, which depend on ω  even though the dielectric function itself is independent 

of ω . The comparison verifies that the calculated near-field heat flux is almost the same 

with the largest relative difference within 0.1% at d = 100 nm. At 300 K, the maximum 

achievable near-field heat flux calculated from Eq. (5.5) is 11 21.4 10  W/m× ,   which is 

represented as the dashed horizontal line in Fig. 5.4. The radiation flux between two 

 

Figure 5.4 Radiative heat flux versus gap width for different dielectric functions. The 

temperatures of the two media are set to be 300 K and 0 K. 
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blackbodies maintained at 300 K and 0 K is 459 W/m2, several orders of magnitude 

smaller than near-field radiative transfer. 

The cutoff in β sets an upper limit on the maximum energy transfer between the 

two media. Hence, for each of the dielectric functions, there exists an optimal vacuum 

gap width (dm) for maximum energy transfer. For 1 0.1iε = − + , it can be seen from Fig. 

5.4 that m 0.6 nmd = , which also maximizes X as explained previously. The value of dm 

decreases with increasing ε ′′ , implying that the reduction in the energy transfer begins to 

take place at smaller vacuum gaps. This is consistent with the Z functions shown in Fig. 

5.3. Furthermore, the d−2 dependence in the energy transfer exists only when md d> . At 

2 nmd > , increasing ε ′′  results in a decrease of the heat flux. When 0 10iε = + , the 

radiative heat flux is generally much smaller than those with 1ε ′ = −  but will keep 

increasing towards the maximum as d  unrealistically approaches zero. For the selected 

dielectric functions with 1ε ′ = −  and 1ε ′′ << , the energy transfer can be orders of 

magnitude greater than that between SiC plates. This is because of the excitement of 

surface waves at almost every frequency since the dielectric function is assumed to be 

independent of frequency. While no such materials exist and a frequency-independent 

dielectric function is nonphysical, the calculated results provide a limit of near-field heat 

flux at finite distances and may help in the selection of appropriate dielectric functions 

that will result in optimal heat flux at different vacuum gaps. By introducing the cutoff in 

β , even for SiC, the  d−2 trend ceases to exist at d < 0.6 nm. Instead, the near-field 

radiative transfer reaches a plateau below d = 0.5 nm. 

The effect of βc on the heat flux is studied by setting cd  = 0.25, 0.5, and 1 nm. 

The result for 1 0.0001iε = − +  is shown in Fig. 5.5. Increase in dc will decrease βc and 
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hence will reduce the number of modes for heat transfer. As mentioned earlier, the 

maximum heat flux at 0d →  is proportional to 2
cd − . When cd  = 1 nm, the cutoff in β 

starts to affect the heat transfer at d < 4 nm and the peak is at dm = 3.6 nm. It can be seen 

that md  is proportional to cd ; this is also true for 1 0.1iε = − + , although not shown in 

the graph. The peak heat flux varies as 2
cβ ; that is to say, the ratio of the peak heat flux 

to the limiting near-field heat flux at  0d →  remains the same.  

 

 

Figure 5.5 Influence of cutoff wavevector βc on the heat transfer between two media at 

300 K and 0 K, respectively, when 1 0.0001iε = − +  for both media. 
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This chapter describes an investigation of the maximum energy flux between two 

parallel plates separated by a vacuum gap from 0.1 to 100 nm. An upper bound is 

imposed to the parallel wavevector component in the analysis based on fluctuation-

dissipation theory. Due to the cutoff in the wavevector, the energy transfer deviates from 

the d−2 dependence at sub-nanometer distances. The maximum enhancement occurs when 

ε ′  is around −1. Furthermore, the maximum heat flux depends on the vacuum gap and 

ε ′′  value when ε ′  is set to −1. The effect of dispersion on the maximum achievable hat 

flux will be further examined in the subsequent chapter. 
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CHAPTER 6 
 

PARAMETRIC OPTIMIZATION OF DIELECTRIC FUNCTIONS 

FOR MAXIMIZING NANOSCALE RADIATIVE TRANSFER 

 
In Chapter 5, the maximum achievable radiative heat flux between two parallel 

plates was investigated using a frequency-independent dielectric function for both plates. 

By introducing a cutoff on the parallel wavevector component, we notice that the ideal 

(complex) dielectric function iε ε ε′ ′′= +  that would maximize the near-field radiative 

transfer should be 1ε ′ =  and 1ε ′′ << . Such a dielectric function can excite surface 

polaritons at every frequency. However, real materials can approximate such a behavior 

only in a relatively narrow spectral interval due to dispersion. Hence, an intriguing 

question always exists about what kind of real materials will maximize the energy 

transfer during near-field thermal radiation.  

As discussed in Chapter 2, the dielectric function of many materials can be 

described by either the Drude model or the Lorentz model. The Drude model is 

commonly used for metals and doped semiconductors, while the Lorentz model is often 

employed for the dielectric function of polar materials. Generally speaking, good 

conductors are not ideal for near-field energy transfer since their plasma frequencies are 

in the ultraviolet region. Heavily doped Si, however, is a good candidate since the plasma 

frequency can be tuned by changing the doping concentration. For a 1-nm separation 

(vacuum gap) and near room temperature, radiative transfer between two Si plates with a 

doping concentration of 1019 cm−3 is around five orders of magnitude greater than that 

between two blackbodies as seen in Chapter 4. Nanoscale radiation in polar materials 

such as SiC is on the same order as that in doped Si since surface phonon polaritons can 
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be excited, resulting in nearly monochromatic heat transfer. It will be very useful to know 

how each parameter in the dielectric function models affects the near-field radiation and, 

moreover, whether there exist optimal set(s) of parameters that will maximize near-field 

heat transfer under certain constraints.  In this Chapter, a parametric study is performed to 

investigate the effect of different parameters in the dielectric function models on near-

field heat transfer by using fluctuational electrodynamics. Optimal values of these 

parameters are obtained that maximize nanoscale radiative transfer between two plates. In 

addition, the effect of temperature on the adjustable parameters is also investigated.  

 

6.1 Objective Function and Adjustable Parameters 

The total radiative heat flux between two parallel plates at temperatures 1T  and 

2T , separated by a vacuum gap d, is given by  

 ( ) ( ) ( )c
1 22

1 , , ,q d T T s d
β

ω ω ω ω β β
π

∞

0 0
′′ = Θ − Θ⎡ ⎤⎣ ⎦∫ ∫  (6.1) 

As mentioned before, the upper integration limit cβ  is related to the crystalline 

lattice constant and it prevents the divergence in heat transfer as 0d → . This Chapter 

aims at maximizing the near-field radiative heat transfer between two plates and thus Eq. 

(6.1) is the objective function. Near-field energy transfer is dominated by evanescent 

waves ( )β ω c>  and the contribution from propagating waves can be neglected. For real 

materials, cβ  affects the heat transfer only for d < 1 nm. Since this Chapter only deals 

with cases with  > 1 nmd , cβ  is set to infinity for all calculations. On simplification of 

Eq. (2.10), ( , )s ω β  for β >> ω/c can be expressed as:   
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+ − −
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which is a function of the dielectric function of the media. From the objective function 

defined by Eq. (6.1), the calculation of overall radiative heat flux involves integration 

over both ω space and β  space. Near the resonance frequency, the peak location of the 

integral of ( , )s ω β  shifts towards larger β  values as d decreases; while the peak location 

of the integral of ( , )TΘ ω  moves to higher ω (to be discussed later) when temperature 

increases. Therefore, the key for maximizing the near-field heat transfer at certain 

temperature is to determine the value of ω and corresponding dielectric function so that 

the peak locations of ( , )TΘ ω  and the integral of ( , )s ω β  match each other. As seen in 

Chapter 5, the maximum value of ( , )s ω β  is / 4β , which can be achieved only when 

0d →  andε ε′′ ′>> . At finite vacuum gaps and for real materials, the value of ( , )s ω β β  

is always less than 0.25. In order to implement the optimization, the influence of 

dielectric function of materials on the near-field heat transfer needs to be examined. It 

should be noted that Eq. (5.2) was introduced to illustrate how the dielectric function may 

be optimized to maximize the heat flux. All the calculations presented below use the 

more complicated form of ( , )s ω β . 

 In terms of plasma frequency and scattering rate, the Drude model can be 

expressed as   

 [ ]
2

2 p
2( ) ( ) ( )n i

i

ω
ε ω ω κ ω ε

ω ωγ∞= + = −
+

 (6.3)  
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Here, 0ε , pω , and γ are treated as adjustable parameters to maximize the near-field heat 

flux. For Si, ε∞  is approximately 11.7, while for metals it is on the order of 1. The 

minimum of ε∞  is 1, since the refractive index for any material cannot be less than that 

for vacuum at high frequencies. The plasma frequency for most metals lies in the UV 

region and is much higher than the characteristic frequencies of thermal sources ( Tω ). 

When p<ω ω , ε ′  becomes negative and the extinction coefficient κ  is much greater 

than the refractive index n . On the other hand, the scattering rate indicates loss due to 

collisions of electrons and affects the width of the spectral heat flux. Hence, appropriate 

selection of these parameters is important for the optimization of near-field heat transfer. 

 On the other hand, the Lorentz model in terms of plasma frequency is given by, 

 
2
p

2 2
0

( )
i∞= +

− −

ω
ε ω ε

ω γω ω
 (6.4) 

where ( )2 2 2
p LO 0∞= −ω ε ω ω , and LOω  and 0ω  are frequencies corresponding to the 

longitudinal and transverse phonons, respectively. The high-frequency termε∞  for some 

common dielectrics are 2.2 for SiO2, 6.7 for SiC, and 3.01 for MgO. When 

0 LO< <ω ω ω , ε′  is negative and this spectral region is of particular interest for near-

field radiation enhancement. Note that pω  determines the strength of the oscillators in the 

Lorentz model. Furthermore, when 0 0=ω , Eq. (6.4) reduces to Eq. (6.3). Hence, the 

Lorentz model provides an additional adjustable parameter ( 0ω ) compared to the Drude 

model.  
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6.2 Results and Discussion 

In this section, the influence of different adjustable parameters in both the Drude 

and the Lorentz models on the near-field heat flux is investigated. The effect of 

temperature on different parameters in the Drude model is also studied. 

 

6.2.1 The Drude Model 

Rearranging Eq. (6.3), the real and imaginary parts of the dielectric function given 

by the Drude model can be expressed as  

 
2
p

2 2( )
ω

ε ω ε
ω γ∞′ = −

+
 (6.5a) 

and 
2
p

3 2( )
γω

ε ω
ω ωγ

′′ =
+

  (6.5b)  

It can be seen that increasing either ε∞  or γ  will increase ε ′ , while increasing pω  will 

decrease ε ′ . However, ε ′′  is independent of ε∞  and its dependence on γ  and pω  is 

opposite to that of ε ′ . Figure 6.1 shows the spectral variation of the real and imaginary 

parts of the dielectric function calculated using the Drude model with different scattering 

rates when 1ε∞ =  and pω = 1014 rad/s. At smaller values of γ  (γ  = 0.001 pω , 0.01 pω , 

and 0.1 pω ), ε ′  is almost independent of γ over the calculated spectral range. Also, when 

142 10  rad/sω ≥ × , ε ′  approaches to ε∞ . As a result, the material starts to behave as a 

dielectric and there is no significant near-field enhancement. On the other hand, ε ′′  is 

proportional to γ  for small γ  values.  

Figure 6.2 shows the spectral heat flux at d = 10 nm calculated according to the  
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Figure 6.1 (a) Real and (b) imaginary parts of the dielectric function calculated from the 

Drude model for varying scattering rates with 1ε∞ =  and pω  = 1014 rad/s. 
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Drude model with 1ε∞ =  and pω = 1014 rad/s for different γ  values. In the calculation, 

the temperatures of the media are set to T1 = 300 K and T2 = 0 K and the frequency 

corresponding to the heat flux peak is denoted by maxω . It can be seen that 

13
m 7.0 10ω ≈ ×  rad/s for the three smaller γ  values and 13

max 6.0 10ω ≈ ×  rad/s for 

p0.5γ ω= . The peak frequencies in the spectral heat flux are at the same location as that 

where 1ε ′ ≈ −  shown in Fig. 6.1(a). The large energy transfer near maxω  is due to the 

excitation of surface plasmon polaritons, although the polariton resonance frequency may 

be slightly different from maxω . At very large frequencies, the energy transfer is reduced 

due to the dielectric behavior of the materials as mentioned before. At very low 

frequencies, ε ε′′ ′>>  but this does not result in a large heat flux at 1 nmd ≥ . Notice that 

the scattering rate determines the width of the spectral heat flux curve. From Fig. 6.2, for 

smaller scattering rates, the spectral heat flux has a sharper peak but narrower width. 

Considering that it is the area under the spectral heat flux curve that represents the total 

heat flux, an optimal value of γ  should be obtained in order to maximize the energy 

transfer. Note that the spectral plots of ε ′  and ε ′′  predict the location of the peak and the 

shape of the spectral heat flux curve, respectively. It should be noted that the trend 

discussed above based on 10 nmd =  is generally applicable to the situations when 

1 nm 100 nmd≤ ≤ .  

 Figure 6.3 is a flow chart showing the methodology adopted in this study in order 

to determine the optimum plasma frequency and scattering rate. The optimization 

technique adopted in this study can be further understood from Fig. 6.4 which is a 

contour plot of heat flux with p/γ ω  and pω  when 1ε∞ = . The emitter and the receiver 
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Figure 6.2 Spectral heat flux for different γ  at d = 10 nm, with 1ε∞ =  and 

14
p 10  rad/sω = . The temperatures are T1 = 300 K and T2 = 0 K. 

 

are maintained at 300 K and 0 K respectively and the vacuum gap is set at 10 nm. Figure 

6.4(a) is the plot of heat flux over a large range of p/γ ω  and pω values. From Fig. 6.4(a), 

it is seen that the heat flux is optimum when p0.15 / 0.2γ ω< < and 13 14
p8.5 10 10ω× < <  

where the unit of pω  is rad/s. Within this range of scattering rate and plasma frequency, 

the heat flux varies within 2.5% of the maximum. The heat flux is then calculated for the 

selected range of scattering rate and plasma frequency at smaller resolution which is 

shown in Fig. 6.4(b). From Fig. 6.4(b), it is seen that the heat flux is maximum when 

13
p 9.5 10 rad/sω ≈ × and the scattering rate is around 131.6 10 rad/s× . Similar optimization 

procedure is adopted for all other cases considered in this study. 



 77

 

 

Figure 6.3 Flowchart showing the optimization methodology adopted in this study where 

r is the ratio of scattering rate to the plasma frequency. 

 

 Figure 6.5 plots the overall heat transfer as a function of p/γ ω  for several values 

of pω  when d = 10 nm and 1ε∞ = . Here again, T1 = 300 K and T2 = 0 K. For comparison, 

the overall heat flux is normalized with respect to that between two blackbodies at T1 and 

T2, respectively. The overall energy transfer is maximum when pω  is from 138 10×  rad/s 

to 1410  rad/s and p/γ ω  is from 0.1 to 0.2. While a maximum heat flux exists for a given 

ε∞ , it can be seen that the peak is not very sharp, and hence, γ  and pω  may be varied in 
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Figure 6.4 Contour plot of heat flux with respect to p/γ ω  and pω . In Fig. 6.4(b) the 

resolution in p/γ ω  and pω  is increased in order to obtain the maximum heat flux. 

 

(a) 

(b) 
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Figure 6.5 Overall heat flux between two semi-infinite media at T1 = 300 K and T2 = 0 K 

as a function of r at different pω  when d = 10 nm and 1ε∞ = . The calculated heat flux is 

normalized with respect to the heat transfer between two blackbodies maintained at T1 

and T2, respectively. 

 

a large range and can still result in large near-field radiation enhancement. Good 

conductors do not result in large near-field enhancement at room temperature since their 

15
p 4 10  rad/sω > × . Notice that the overall heat flux at p/γ ω  = 0.1 is more than one 

order of magnitude greater than that at p/γ ω  = 0.001, though the latter has a higher peak 

in the spectral heat flux. This shows that a higher but narrower peak does not necessarily 

result in large energy transfer. Thus, a very small scattering rate is not good for heat-

transfer enhancement in the near field. A very large scattering rate will also reduce the 
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overall heat flux because of the low peak spectral heat flux as well as the reduction in 

maxω . 

 Figure 6.5 provides a range in which the optimal values of pω  and γ exist for 

1ε∞ = . Within this range, the heat flux is calculated with different combinations of pω  

and γ using small intervals to determine their optimal values. Τhe process is then repeated 

for 5ε∞ =  and 10. Here onwards, optima of pω  and γ  are referred to as p,optω  and optγ , 

respectively. The heat flux calculated for different ε∞  at the corresponding p,optω  is 

shown in Fig. 6.6 as a function of p/γ ω . Each curve has a maximum maxq′′  

corresponding to optγ  and these maxima are marked as A, B, and C sets, whose 

parameters are summarized in Table 6.1. It can be seen that a larger ε∞  always results in 

a smaller heat flux. When ε∞  increases, p,optω  increases but optγ  decreases. The heat 

flux exhibits a plateau around p,optω  and optγ . The uncertainty of q′′  is estimated to be 

1%. The sensitivity of q′′  to the change of pω  or γ  is investigated by varying these 

parameters individually. It is found that a 10% change in pω  or a 20% change in γ  away 

from the corresponding optimal value will result in about 1% reduction in the heat flux. 

However, the effect is not linear and, generally speaking, if one wishes to achieve a heat 

flux that exceeds max0.95 q′′ , then pω  can be varied within 20%  of p,optω  and γ can be 

varied within 40% of optγ , since q′′  is less sensitive to γ  than pω .  

 A better understanding of the maximum heat transfer in terms of the optimized 

parameters in the Drude model can be obtained by examining the spectral dependence of 
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dielectric function and energy flux. Figures 6.7(a) and (b) plot ε ′  and qω′′  for sets A, B,  

 

                        Table 6.1. List of parameters for different materials or sets 

Material 
or Set ∞ε  0 (rad/s)ω  p (rad/s)ω  (rad s)γ  

A  1 — 9.4 1310×  1.6 1310×  

B  5 — 1.6 1410×  5.76 1210×  

C  10 — 2.1 1410×  3.15 1210×  

D 3.01 7.56 1310×  2.0 1410×  1.06 1310×  

E 1 7.56 1310×  1.45 1410×  2.15 1310×  

GaAs 11 5.05 1310×  7.21 1310×  3.77 1110×  

MgO 3.01 7.56 1310×  1.96 1410×  1.44 1210×  

SiC 6.7 1.49 1410×  2.71 1410×  9.0 1110×  

Si-19 11.7 — 8.92 1310×  6.12 1310×  

Si-20 11.7 — 2.82 1410×  9.34 1310×  
 

and C with ε∞  = 1, 5, and 10, respectively. Note that the values of maxω  (i.e., the 

frequency corresponding to the peak of qω′′  in Fig. 6.7(b) are very close for different ε∞  

values. However, as plotted in Fig. 6.7(a), the slope of the ( )′ε ω  curve near maxω  is 

higher with larger ε∞ , resulting in a narrower qω′′ . When 1ε∞ = , there exists a negative 

ε ′  over a broad spectral range and this leads to the greatest enhancement in the total heat 

flux. In fact, maxω  can be approximately obtained by setting 1′ = −ε  in Eq. (6.5a), that is, 
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Figure 6.6 Normalized overall heat flux as a function of p/γ ω  calculated at p,optω   

 
2
p 2

max 1
ω

ω γ
ε∞

= −
+

  (6.6) 

It is clear that as ε∞  becomes larger, p,optω  has to increase but optγ  has to decrease in 

order to keep maxω  nearly the same to match with the Planck oscillator function ( , )TωΘ . 

The decrease in optγ  with increasing ε∞  results in a narrower peak in the spectral energy 

flux as shown in Fig. 6.7(b). Consequently, the maximum heat flux decreases as ε∞  

increases. 

 

6.2.2 Effect of Temperature 

  All the cases discussed before in this Chapter are calculated at 1 300 KT = . When 

the temperature changes, the distribution of the mean energy of the Planck’s oscillator 
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Figure 6.7 Spectral plot of dielectric function and energy flux calculated at p,optω  and 

optγ  for sets A, B, or C as listed in Table 6.1: (a) the real part of dielectric function, and 

(b) spectral energy flux. 
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( , )TωΘ , will also change. The maximum of ( , )TωΘ  when plotted against ω  is located 

at 0ω =  since ( , )TωΘ  is a decreasing function of ω . A recent study proposed the use of 

logarithmic frequency, log10(ω), or wavelength, log10(λ), for the Planck blackbody 

distribution, so that Wien’s displacement law is consistent in both the wavelength and the 

frequency domain (Zhang and Wang, 2009). Similarly, when the near-field heat transfer 

is considered, by converting ( , )TωΘ  in terms of the logarithmic frequency, the 

distribution function becomes ( , )Tω ωΘ , which has a peak located at Tω  (corresponding 

to a Tλ ) as shown in Fig. 6.8. Let 
0

( ) ( , )X s dω ω β β∞
= ∫  with a peak at mω ω=  and is 

independent of temperature for given parameters in the dielectric function, the heat 

transfer can be enhanced by tuning pω  to make mω  approach Tω . Here, the parameters 

in the Drude model are treated as adjustable in order to find the optimal set, therefore, 

( )X ω  is independent of temperature although for real materials, these parameters depend 

on temperature. In Fig. 6.8, three curves of X(ω) were calculated based on the parameters 

of dielectric functions corresponding to p,optω  at different temperatures. Notice that when 

the temperature becomes higher, Tω  shifts to higher ω. This indicates that at higher 

temperatures, mω  should increase for the two peaks to almost overlap, resulting in 

maximum qω′′  at max m Tω ω ω≈ ≈ . The relationship between maxω  and p,optω  can be 

approximated by rearranging Eq. (6.6) as 

 
2

optmax

p,opt p,opt

1
1

γω
ω ε ω∞

⎛ ⎞
= − ⎜ ⎟⎜ ⎟+ ⎝ ⎠

  (6.7) 
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where opt p,opt/γ ω  does not change when temperature increases indicating that 

max p,opt/ω ω  is independent of temperature for a given ε∞ . If the heat flux is optimized 

at max Tω ω≈ , then max /Tω  should remain constant; subsequently, p,opt / Tω  should 

stay the same. This suggests that p,opt ( )Tω  should be proportional to temperature and 

can be calculated based on the value at 300 K using p,opt p,opt( ) (300 K) / 300T Tω ω= . 

From Zhang and Wang (2009), the peak wavelength of ( , )Tω ωΘ  can be calculated from 

T 9034.6 m KTλ μ= ⋅ . Therefore, for 1T  = 300, 1000, and 2000 K, Tω  should be around 

6.25×1013, 2.08×1014, and 4.17×1014 rad/s, respectively. The values of maxω  calculated 

from Eq. (6.7) are 6.43×1013, 2.13×1014, and 4.18×1014, which are 3% higher. Because of 

the scaling, here, it is interesting to point out that at T = 300 K, λT is around 30 μm, which 

is nearly three times longer than that predicted by the conventional displacement law.  

 

Figure 6.6 Plot of ( , )Tω ωΘ  and ( )X ω  versus 10log ( )ω  at T = 300, 1000, and 2000 K.  
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6.2.3 The Lorentz Model 

 Consider the near-field heat transfer between two MgO plates as an example. 

Note that MgO is a polar material whose dielectric function can be approximated by the 

Lorentz model given in Eq. (6.4) with 3.01ε∞ = , 7.62=γ  cm−1, p 1040=ω  cm−1 , and 

0 401=ω  cm−1 (Palik, 1985). Here, only a single oscillator is included, by neglecting the 

weaker phonon oscillator in MgO. The calculated radiative flux between two plates is 

shown in Fig. 6.7 for MgO along with a few sets of parameters. When ∞ε  and 0ω  are 

fixed to those of MgO, the near-field heat transfer is maximized at p 1056=ω  cm−1 and 

56=γ  cm−1. This set of parameters is referred to as set D. When 1∞ =ε  and 0 401=ω  

cm−1, the optimal values of pω  and γ  are 770 and 114 cm−1, respectively. In this case, 

the near-field heat transfer is about three times greater than that between MgO. This set is 

denoted by E, and the parameters of sets D and E are also listed in Table 6.1. For 

comparison, the near-field heat transfer for set A, which gives the largest enhancement 

for the Drude model is also plotted in Fig. 6.9. 

In order to understand the influence of different parameters in the Lorentz model 

on the total heat transfer, p,optω  and optγ  are determined using the above-mentioned 

procedure for the Drude model and tabulated in Table 6.2 for fixed 0ω  and ε∞ . The heat 

fluxes corresponding to p,optω  and optγ  are plotted in Fig. 6.10 as a function of 0ω . For 

each ∞ε , the radiative heat transfer is maximum when 0 0=ω  suggesting that the Drude 

model, when optimized, offers the greatest near-field enhancement for a given ∞ε . 

Similar to the Drude model, the maximum heat flux for fixed 0ω decreases with an  
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Table 2. Values of p,optω  and optγ  with different 0ω  values for 1∞ =ε , 5, and 10. 
 

 1
0 (cm )ω −  1

p,opt (cm )ω −  1
opt  (cm )γ −  

0    500    86 

100    540    90 

200    615    98 

400    770    114 

600    895    124 

1ε∞ =  

800    1020    138 

0    840    30 

100    900    30 

200    1030    34 

400    1300    40 

600    1480    40 

5ε∞ =  

800    1655    40 

0    1120    17 

100    1220    18 

200    1390    19 

400    1710    21 

600    2000    22 

10ε∞ =  

800    2110    22 
 

increase in ∞ε  due to a reduction of optγ  that narrows the spectral width. Both p,optω  and 

optγ  increase as 0ω  becomes larger. The calculation of ( )X ω  shows that mω  also 

increases with 0ω , resulting in a further shift of mω  away from Tω  and consequently a 

decrease in the total heat flux.  
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Figure 6.9 Near-field heat flux calculated between two dielectrics using the Lorentz 

model for MgO and sets A, D, and E. 

 

There are trade-offs among the peak location or resonance frequency, peak 

magnitude, and peak width. Compared to the Drude model, it is more complicated to 

optimize the Lorentz model at different temperatures due to restrictions imposed by the 

finite value of 0ω . Hence, the previous conclusion regarding the temperature dependence 

of the optimized parameters in the Drude model does not apply to optimization of the 

Lorentz model. The properties of some common materials whose dielectric functions can 

be described by the Drude or Lorentz model are listed in Table 6.1. The near-field heat 

flux between these materials is illustrated in Fig. 6.11. Set A provides the greatest near-

field enhancement and the heat flux is nearly an order of magnitude larger than that for 

any of the real materials listed in Table 6.1. At room temperature, mλ = 10.5, 15.2, and 



 89

 

 

Figure 6.10 Plot of max bq q′′ ′′  calculated using the Lorentz model, as a function of 0ω  for 

different ε∞  values. The optimal parameters are listed in Table 6.2. 

 

34.5 μm for SiC, MgO, and GaAs, respectively. Note that mλ  for GaAs is closest to Tλ , 

however, MgO gives the greatest near-field enhancement because it has the smallest ε∞  

and the largest γ that yields the broadest peak in the spectral heat flux (Wang et al., 

2009). For doped Si, the large plasma frequency is balanced by the large scattering rate 

which makes the heat transfer comparable to polar materials. However, proper tuning of 

the plasma frequency is necessary to achieve large radiative transfer. In addition, the 

relatively large ε∞  limits the near-field enhancement for doped Si. 
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Figure 6.11 Comparison of the near-field radiative transfer between different materials or 

sets at d = 10 nm with T1 = 300 K and T2 = 0 K.  

 

An optimization of near-field radiation between two parallel plates is conducted 

using fluctuational electrodynamics by tailoring the parameters in the Drude and Lorentz 

model. The effect of different adjustable parameters on the radiative heat transfer is 

investigated and optimal sets of parameters that maximize the near-field heat transfer are 

determined. It is seen that the real and imaginary parts of the dielectric function 

determine the location and width of the spectral heat flux peak, respectively. A smaller 

ε∞  will result in an ε ′  close to −1 over a larger spectral region and is desired for near-

field enhancement. For the Drude model, with increasing temperature, p,optω  increases 

while opt p,optγ ω  remains constant for maximum radiative transfer. For the Lorentz 
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model, the maximum near-field heat flux monotonically decreases with increasing 0ω  for 

a given ε∞ . In other words, the Drude model ( )0 0ω =  when optimized provides the 

greatest near-field enhancement for any given ε∞ . The results from this study will 

facilitate material selections for measurements of near-field radiative transfer and for 

future applications in imaging, energy conversion, and nanofabrication. 
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CHAPTER 7 
 

ULTRASMALL PENETRATION DEPTH AND ENERGY 

STREAMLINES IN NANOSCALE RADIATIVE TRANSFER 

 
Following the discussion on the fundamentals of nanoscale thermal radiation in 

Chapter 4 and maximum achievable near-field heat transfer in Chapters 5 and 6, the 

unusual penetration depth and energy streamlines are analyzed in this chapter. In the first 

half of the chapter, the ultrasmall penetration depth is investigated for near-field thermal 

radiation. It is seen that in the near-field, the penetration depth can be of the same order 

as the vacuum gap which may result in a 10 nm thick SiC behaving as semi-infinite at 10 

nm vacuum gap. In the second half of this chapter, energy streamlines in near-field 

radiation are revisited. Accurate analytical expressions are derived for streamlines in the 

emitter, vacuum gap, and the receiver. It is seen that the lateral shift of streamlines inside 

the emitter can be greater than the vacuum gap which disproves previous understanding 

of lateral shift based on the lateral displacement suffered by the streamline as it crosses 

the vacuum gap. Based on the ultrasmall penetration depth and the lateral shift of 

streamlines, it is possible to define the dimensions of the emitter and receiver required for 

the accurate measurement of near-field thermal radiation between two parallel plates. 

 

7.1 Ultrasmall Penetration Depth 

Traditionally, radiation penetration depth in a solid, also called skin depth or 

photon mean free path, is defined as (Siegel and Howell, 2002). 

 ( )/ 4=λδ λ πκ  (7.1) 



 93

It is a measure of how deep the incident radiation can penetrate into the medium. A film 

whose thickness is 5-10 times the skin depth can be treated as opaque in most 

applications. Throughout the ultraviolet to infrared region, λδ  of a good conductor (such 

as Ag or Au) is usually small, in the order of 10 nm at room temperature. For an 

evanescent wave, such as that induced under the total internal reflectance setup when 

light is incident from an optically denser medium to a rarer medium, the skin depth may 

be defined according to the 1/ e  attenuation of the field as  

 1/ Im( )δ γ=   (7.2) 

The electric and magnetic fields will decay exponentially and become negligible at a 

distance greater than about one wavelength. Hence, the skin depth is several tenths of a 

wavelength (Zhang, 2007). 

 Recently, some studies have shown that even with a thickness much smaller than 

the conventional penetration depth, a thin coating can effectively enhance near-field 

radiative transfer (Biehs, 2007; Francoeur et al., 2008; Fu and Tan, 2009). Biehs (2007) 

demonstrated that putting a thin metallic film on a dielectric substrate will improve the 

near-field heat transfer between two dielectrics due to excitation of surface plasmon 

polaritons in the metallic film. Francoeur et al. (2008) analyzed the near-field heat 

transfer between bulk SiC and another bulk dielectric, coated with a thin SiC film. The 

calculated energy transfer is enhanced by three times compared with that without the SiC 

film, due to surface phonon polaritons coupling inside the thin film. Recently, Fu and Tan 

(2009) studied the near-field heat transfer between two plane surfaces when one of the 

surfaces is coated with a dielectric film that supports surface phonon polaritons. They 

found that adding the dielectric coating can either diminish or enhance the energy transfer 
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depending on the radiative properties of the emitter and the receiver. In fact, in the near-

field, the skin depth not only depends on the frequency, materials, and geometric 

arrangement, but also depends on the separation distance between the two media, in 

which thermal radiation is emitted and received. The underlying physics of such 

phenomenon is explained in this chapter by observing the influence of surface waves on 

the skin depth associated with nanoscale radiation.  

  Let us consider near-field heat transfer between two parallel plates as shown in 

Fig. 2.1. Here also, the emitter is maintained at 300 K while the receiver is at 0 K. As 

observed in Chapter 5, at very small vacuum gaps, photon tunneling is mainly through 

the region where β >> ω/c and ( , )Z ω β  can be approximated as  

 
( ) ( )

2 2

22 2 2

4( , )
1 1

d

d

eZ
e

β

β

εω β
ε ε

−

−

′′
=

+ − −
 (7.3) 

Figure 7.1 plots ( , )Z ω β  versus the product of β  and d at the corresponding mω  for SiC 

and n-type doped Si with doping concentrations of 1019 cm−3 and 1020 cm−3. There exists 

a sharp peak at large dβ  for SiC, while a broader peak exists for heavily doped Si; this is 

due to the large scattering rate as well as the resulting large values of ′′ε  about mω  in the 

doped Si. A larger ′′ε  yields a broader peak in ( , )Z ω β  and a smaller value of mdβ (Basu 

and Zhang, 2009a). For very small gap, while mω  remains constant as d decreases, the 

energy transfer is shifted towards larger β  values, leading to greater near-field 

enhancement. For /j cβ ε ω>> , iγ β≈  or Im( )γ β≈ in all the three media. This 

suggests that there exists an evanescent wave (in medium 3) whose amplitude decays 

according to ( )z de β− − . Hence, the skin depth of the field becomes F 1/≈δ β  and the 
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power penetration depth becomes P 1/ (2 )≈δ β . The parameters corresponding to Fig. 7.1 

are tabulated in Table 7.1, where Pδ  is calculated at mβ  and normalized with respect to 

d. The classical penetration depth λδ  is on the order of 1 μm, which has previously been 

thought as the skin depth in near-field radiation (Francoeur et al., 2008; Fu and Tan, 

2009). If Pδ  is used instead, as suggested by Park et al. (2008) the penetration depth for 

SiC with a 10 nm gap is less than 2 nm. For 1019 cm−3 doped Si, Pδ  is around 170 nm 

when d = 10 nm. 

One of the objectives of this study is to determine the minimum thickness of a 

film so that it can be considered opaque for nanoscale thermal radiation. Two questions 

still remain. (1) What is the skin depth in the emitter? Intuitively, since both forward and 

backward waves have to be considered, the skip depth in the emitter would be different 

 

Figure 7.1 Graph of ( , )Z ω β  as a function of the product dβ  at the SPP resonance 

frequency (given in Table 1) for SiC and n-type Si  
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from that in the absorber. (2) What will be the penetration depth (or 1/e decay length) for 

the total heat flux? To answer these questions, the multilayer Green’s function discussed 

by Park et al. (2008) is modified to allow the calculation of the z-component of the 

Poynting vector, which is proportional to the heat flux, both inside the emitter and the 

receiver. Following the approach adopted by Park et al (2008), the dyadic Green’s 

function is  

 ( )
e

1
0

( , , ) ( , , )
4

i r ri d F z z e ββ βω β
π γ

∞
′−′ ′= ∫G x x  (7.3) 

When 0z >  (outside the emitter), the expression of F  is straightforward since 

the integration over the source can be carried out over 0z′−∞ < < . However, at a given 

depth z inside the emitter ( 0z < ), different expressions must be used for the semi-infinite 

source below z ( z z′−∞ < < ) and for the finite layer source above z ( 0z z′< < ). In other 

words, even though the source is homogeneous, one cannot use the conventional thin-

film optics formulation with a forward and a backward wave to describe the 

electromagnetic field inside the emitter.  

The spectral and total Poynting vector distributions are plotted in Fig. 7.2 for SiC 

and doped Si (1019 cm−3). The ordinate is normalized to the Poynting vector inside the 

vacuum gap, which is a constant (no absorption). The energy flux increases in the emitter 

towards the surface, as more and more energy is emitted, and decreases in the receiver 

away from the surface. When the abscissa is /z d , the results are nearly the same for 

1 nm 100 nmd< < . Surprisingly, the distributions are “symmetric” in the emitter and the 

receiver. It can be shown that the distribution function inside the receiver can be 

characterized by an exponential decay function 2 ( )z de β− − . However, the distribution 
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function inside the emitter cannot be expressed as simply proportional to 2 ze β  because of 

the complicated coefficients and number of terms involved.  

The 1/e decay line is shown as the horizontal dashed line so that the penetration 

depth can be easily assessed from these curves. Note that the calculated Poynting vector 

is integrated over all β  values. As mentioned earlier, when SPP is excited, the energy 

transfer is pushed towards large β  values; hence, the spectral penetration depth has a 

minimum near mω . The actual minimum depends on the integration of ( , )Z ω β β . It 

should be mentioned that Pδ  cannot be arbitrarily small. Therefore, when d is 

comparable to or less than the interatomic distance, the radiative transfer cannot be 

explained by the local electromagnetic theory.  

For SiC as shown in Fig. 7.2 (a), the penetration depth is approximately 0.19d at 

10.54 mμ , where SPP is excited. The actual minimum penetration depth is located at 

10.47 mμ , corresponding to the maximum of ( )X ω . The penetration depth increases 

towards longer or shorter wavelengths, and the overall penetration depth based on the 

total energy flux is 0.25d, which is about 30% greater than Pδ  evaluated at m mand ω β  

as shown in Table 1. For a thin vacuum gap, the SSP dispersion is shifted to large β  

values, resulting in a shorter penetration depth. Hence, a 10-nm coating of SiC can act as 

an optically thick medium when d = 10 nm as predicted by previous researchers (Biehs, 

2007; Francoeur et al., 2008; Fu and Tan, 2009). When d < 1 nm, the penetration depth is 

less than a monolayer, implying that the SiC emitter is completely a 2D solid. Obviously, 

in such case, one cannot use its bulk dielectric function and also cannot set cβ  as infinity.  

From Fig. 7.2(b), the penetration depth for doped Si at SPP resonance frequency 
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is 0.9d, which is much less than the corresponding Pδ  in Table 4. This can be explained 

with the help of Fig. 7.1 by observing that a significant portion of ( , )Z ω β  lies 

beyond mβ . Furthermore, for energy transfer, the integrand in Eq. (5.2) is not ( , )Z ω β  

but ( , )Z ω β β . The spectral penetration depth is the smallest at 25.0 mλ μ=  with a value 

of 0.85d. The overall penetration depth is 1.1d, which is 4.4 times that of SiC. As 

mentioned earlier, this is due to the large scattering rate (of doped Si), which causes a 

broad peak in the spectral heat flux qω′′ . Based on the total energy flux, a 5-nm doped-Si 

coating can be treated as essentially opaque for near-field thermal radiation with d = 1 nm 

(Basu and Zhang, 2009b). It should also be noted that nanoscale radiation is mostly 

enhanced when the emitter and the receiver are of same material, because this allows the 

excitation of SPPs at the same frequency. As mentioned before, the near-field heat 

transfer between SiC plates is on the same order as that between doped Si. Based on Fig. 

7.2 it can be inferred that compared to doped Si, a smaller volume of SiC material can be 

used as the emitter due to the smaller penetration depth in the later. 

 

Table 7.1 Parameters at the SPP resonance frequency and the corresponding penetration 

depths. Note that /(4 )λδ λ πκ=  and P m1/(2 )δ β= . 

 

 

 

Material mω  (rad/s) ε ′  ε ′′  λδ  (μm)  mdβ  P / dδ  

Si (1019 cm−3) 137.15 10×  −1.08 8.84 0.94 0.03 16.67 

Si (1020 cm−3) 142.61 10×  −1.01 3.61 0.36 0.14 3.57 

SiC 141.79 10×  −1.06 0.13 0.80 2.67 0.19 
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Figure 7.2 The distributions of the spectral and total Poynting vector (z component) near 

the surfaces of the emitter and receiver normalized to that in the vacuum: (a) SiC; (b) 1019 

cm−3 doped Si. The wavelength corresponding to the resonance frequency listed in Table 

4 is also indicated. 
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7.2 Energy Streamlines in Near-field Radiation 

 

 In addition to the calculation of near-field energy transfer between the two media, 

it is important to understand the direction of energy flow between them in order to 

facilitate the different applications of near-field radiation. Unlike classical radiative heat 

transfer, the direction of energy propagation in nanoscale radiation cannot be determined 

using ray optics since the refraction angle is not defined in real space during photon 

tunneling (Lee et al., 2007). While the near-field energy transfer between two surfaces 

has been calculated as well as measured by researchers, there have been only a few 

studies which have investigated the energy propagation direction as well as the associated 

lateral shifts.  

Zhang and Lee (2006) determined the direction of energy propagation during 

photon tunneling by tracing the Poynting vector at fixed β values. Lee et al (2007) 

demonstrated that the Poynting vector is decoupled between different parallel wavevector 

components due to the randomness of thermal radiation. This finding enables one to 

calculate the energy streamlines (ESL) by tracing the Poynting vector at different β  

values. The concept of ESL is analogous to streamlines in fluid flow and was used by Lee 

et al (2007) to determine energy pathways in near-field radiation for the first time. 

Recently, Lee and Zhang (2008) calculated the energy streamlines as well as lateral shift 

for various β values between two SiC plates when SPP are excited. 

However, all the previous studies used simple thin-film optics to calculate the 

energy pathways without considering the fundamentals of thermal emission inside the 

emitter. Besides, in these studies (Lee et al., 2007; Lee and Zhang, 2008) the lateral shift 

has been defined as the lateral displacement suffered by the energy streamlines as they 
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reach the receiver surface after crossing the vacuum gap. Such a definition of lateral shift 

is questionable since the streamlines were not traced inside the emitter and the receiver.  

In this section, the issue of energy streamlines in near-field is revisited. Analytical 

expressions for streamlines inside the emitter, receiver and the vacuum gap are derived 

based on fluctutation electrodynamics. Differences in the streamlines calculated by 

adopting the thin-film approach employed by Lee et al (2007) and fluctuation 

electrodynamics are presented. The influence of surface waves on ESL is also 

investigated. For convenience, the receiver is maintained at 0 K implying that thermal 

emission takes place only from the emitter. In order to calculate the energy stream lines it 

is important to calculate the r and z components of the Poynting vector in the three 

media. 

 

7.2.1 Theoretical Formulation 

 In order to plot the streamlines in the emitter, receiver, the vacuum gap we need 

to find the Poynting vectors in the different media which requires obtaining the Green’s 

functions inside the three media. As mentioned in Chapter 2, the Green’s function is a 

spatial transfer function which provides the field due to a point source.  

 In order to accurately determine the Green’s function inside the emitter we need 

to correctly account for the direction of the emitted and reflected waves. Figure 7.3 shows 

a schematic of near-field heat transfer between two parallel plates separated by vacuum 

gap along with the different energy flow directions inside the emitter. Inside the emitter, 

at a given depth z, there are contributions from (i) upward waves from all planes z z′ < , 

(ii) directly generated downward waves from planes z z′ > , and (iii) downward wave  
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Figure 7.3 Schematic of near-field heat transfer between two parallel plates (1 and 2) 

showing the different modes of energy propagation inside the emitter. Note that the white 

dots refer to the detector and red dot refers to the source. The different energy 

propagation modes have been indicated as numbers in the figure. 

 

from all the upward waves suffering reflection at the interfaces of media 1 and 2 and 

vacuum gap. These are indicated in Fig. 7.3. Accordingly, the electric Green’s function 

inside the emitter can be expressed as  

 e e,p e,r( , , ) ( , , ) ( , , )ω ω ω′ ′ ′= +G x x G x x G x x  (7.5) 

where e,p ( , , )ω′G x x is for the wave propagation in an isotropic, homogenous, unbounded 

media with delta source at ′x and e,r ( , , )ω′G x x is the response due to the layered media 

above the emitter. In other words, e,p ( , , )ω′G x x accounts for the energy propagation due 

to modes (1) and (2) in Fig. 7.3 while e,r ( , , )ω′G x x accounts for (3). The two different 

Green’s functions are given by Sipe (1987) and Tsang et al (2000) 

 i ( )
e,p 0 1

i d( , , ) ( )
4

r rF e ββ βω β
π γ

∞ ′−′ = ×∫G x x   (7.6) 
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and ( ) 1i ( ')s p i ( )
e,r s s s s0 1

i d ˆ ˆˆ ˆ( , , ) e
4

z z r rr r eγ ββ βω
π γ

∞ ′− +− + − + −′ = +∫G x x e e h h  (7.8) 

Here, the unit vectors for the polarization states are defined by s sˆ ˆ ˆ ˆ+ −= = ×e e r z  and 

s 1 1
ˆ ˆˆ( ) / kβ γ± =h z r∓ with 1 1k cε ω= . Notice that z′  and z  denote the location of the 

source and the detector respectively. For Eq. (7.8), note that ˆ +h and ˆ+e change to ˆ −h and 

ˆ−e on reflection, and 1 1 1i ( ') i ( 0) i (0 )e e ez z z zγ γ γ ′− + − − −= ⋅ . sr and pr refer to reflection 

coefficients for TE and TM waves respectively including multiple reflections in the 

vacuum gap and are obtained using Fresnel coefficients (Zhang, 2007). From Maxwell’s 

equation, the magnetic Green’s function can be expressed as, 

 m e( , , ) ( , , )ω ω′ ′= ∇×G x x G x x  (7.9) 

Similar to the electric Green’s function, the magnetic Green’s function can also be split in 

to two parts based on the different modes of energy propagation. Hence, 
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( )
11 i ( ')s p i ( )s s

m,r 0 1 1 1

ˆ ˆ ˆ ˆˆ ˆi ˆˆ( , , ) . e d
4

z z r rr r e
k k

γ ββ γ β γ β γω β β
π γ

∞ ′− + −⎡ ⎤− ⎛ ⎞ ⎛ ⎞+ −′ = +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

∫
r z z r z rG x x ss  (7.12) 

Once the electric and magnetic Green’s functions are obtained, the corresponding electric 

and magnetic fields are given by the following, 
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 3
0 e( , ) ( , , ) ( , )

V

i dω ωμ ω ω
′

′ ′ ′= ∫E x G x x j x x  (7.13) 

and  3
m( , ) ( , , ) ( , )

V

dω ω ω
′

′ ′ ′= ∫H x G x x j x x  (7.14) 

The electric and magnetic fields in the vacuum gap and the receiver can be obtained 

using the Green’s functions reported by Lee and Zhang (2008) and Fu and Zhang (2006) 

respectively. The Poynting vectors in r- and z- directions can then be calculated by using 

Eq. (2.3) and invoking the fluctuation dissipation theorem. Note that for convenience, 

cylindrical coordinate system is used for calculation of the Poynting vector. After 

simplification, the Poynting vectors in r and z- directions can be expressed as  

 ( ) ( )1
2 0

( , ), , , d
4r

TS z A zωω ω β β β
π

∞Θ
= ∫  (7.15) 

and  ( ) ( )1
2 0

( , ), , , d
4z

TS z B zωω ω β β β
π

∞Θ
= ∫  (7.16) 

where the functions ( ), ,A z ω β and ( ), ,B z ω β  take different forms in the different 

media. If both the emitter and the receiver are made of the same material then the 

expression for ( ), ,B z ω β  in the emitter is same as that in the receiver which results in 

( ),zS z ω  inside the emitter being identical to that in the receiver as seen in Fig. 7.2. 

Since the Poynting vector is decoupled for each β , it is possible to plot the streamlines at 

different β  values. Once, zS and rS  can be defined, the energy propagation angle can be 

obtained as 

 ( ) 1 ( , , ), , tan
( , , )

z

r

S zz
S z

ω βθ ω β
ω β

− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (7.17) 

In the next subsection, ESL are plotted for SiC and doped Si. 
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7.2.2 Results and Discussions 

 To start with, ESL computed with the help fluctuation electrodynamics is 

compared with that calculated using the thin film optics used by Lee et al (2007). Figure 

7.4 plots the energy streamlines using the two different approaches inside the emitter, 

vacuum gap, and the receiver when the material of both the emitter and the receiver is 

taken to be SiC. The streamlines are plotted at mω  for propagating waves ( )0.5 cβ ω=  

in Fig. 7.4(a) and for evanescent waves ( )50 cβ ω=  in 7.4(b). In both cases the vacuum 

gap is set to 100 nm and the streamlines are plotted for TM waves only. Inside the 

emitter, the streamlines calculated using thin film optics and FE are identical for 

propagating waves. However, for evanescent waves, the streamline calculated using FE 

decays much faster as compared to thin film optics.   

 While using thin film optics to calculate the streamlines, Lee et al (2007) have 

neglected the emission from the source when it is located above the detector. In other 

words, they have neglected the energy propagation mode denoted by (2) in Fig. 7.3. For 

propagating waves, the penetration depth is very large, on the order of few microns and 

very little energy is absorbed close to the surface of the emitter. Hence, contribution to 

the total emission from source when it is above the detector is negligible at a depth of 100 

nm. Consequently, streamlines calculated using thin film optics and FE are very similar 

for propagating waves. On the other hand, for evanescent waves the skin depth of thermal 

radiation is inversely proportional to β  and is of the same order as the vacuum gaps for 

very large β  as seen from section 7.1. This implies that thermally emitted waves from 

sources located deeper than the ultrasmall skin depth cannot reach the surface. Therefore, 

for evanescent waves, the source contributes predominantly to the thermal emission when  
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Figure 7.4 Comparison of energy streamlines calculated using thin film optics and 

fluctuational electrodynamics in SiC for (a) propagating waves and (b) evanescent waves. 
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it is located above the detector. The simple thin film optics formulation fails to capture 

this phenomenon and incorrectly predicts the streamlines inside the emitter. Since only 

medium 1 is emitting, the streamlines calculated using FE and thin film optics are almost 

identical inside the vacuum gap and the receiver. The small difference is due to the wrong 

calculation of coefficients for the electric and magnetic field inside the vacuum gap and 

the receiver while using thin film optics. 

 Figure 7.5 shows the energy streamlines calculated for different β ∗  values when 

the emitter and the receiver are considered to be of SiC. The streamlines are plotted at 

mω of SiC for propagating and evanescent waves in Figs 7.5(a) and (b) respectively and 

mcβ β ω∗ = . Both the vertical and horizontal axes are normalized with respect to the 

vacuum gap which is set to 10 nm and all the streamlines pass through the origin. Notice 

that for propagating waves, the energy streamlines in the vacuum gap are not exactly 

straight lines due to interference. As discussed by Lee et al (2007), for propagating waves 

all the streamlines are bounded within the conical surfaces bounded by the ESL at 

cβ ω= . It can be seen that negative refraction occurs at both the interfaces of SiC and 

vacuum gap due to opposite sign of their dielectric functions when surface waves are 

excited. 

 Compared to propagating waves, the streamlines inside the emitter and the 

vacuum gap are much more curved for evanescent waves due to stronger coupling of 

evanescent waves. The streamlines in the receiver are straight lines since it is assumed to 

be semi-infinite and no backward waves exist. Besides, the receiver is considered to be 

non-emitting. It must be mentioned that and Lee and Zhang (2008) calculated the 

streamlines only inside the vacuum gap and hence considered the lateral shift suffered by  
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Figure 7.5 The calculated energy streamlines inside the emitter, receiver, and the vacuum 

gap for SiC at SPP resonance when d = 10 nm for (a) propagating waves and (b) 

evanescent waves. 
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the ESL in the vacuum gap as the only guiding parameter for the design of energy 

conversion devices. Based on Fig. 7.5(b), it can be seen that such type of assumption is 

incorrect since the lateral shift of the streamlines is largest inside the emitter. Besides, 

compared to the vacuum gap the lateral shift inside the emitter is a stronger function of 

β ∗ . This will be discussed in greater details later. Notice that 450β ∗ =  corresponds to 

the maximum of m( , )Z ω β curve and will be referred to as mβ ∗ . 

 In Figure 7.6 the energy streamlines are plotted for 1019 cm−3 doped Si at 

corresponding mω values. For evanescent waves, when SPP are excited, the slope of the 

streamlines in the receiver is equal to ( )ε ε′ ′′ . Hence the slope of the streamlines in the 

receiver for evanescent waves in case of doped Si is much smaller as compared to that for 

SiC. It can be seen from Fig. 7.6(a) that the ESL inside the emitter for different β ∗ are 

nearly identical. Note that the amplitude of the waves inside the emitter decays as 

12Im( )ze γ− . For doped Si, at SPP resonance 1.08 8.84iε = − + . As a result for 1β ∗ < , 

1Im( )γ does not change much which results in the streamlines being identical. As seen 

from Fig. 7.6(b), the lateral shift of the streamline inside the emitter is smaller than that in 

the vacuum gap. This is opposite to that observed in case of SiC. While the lateral shift in 

the vacuum gap for both SiC and doped Si are comparable, the ESL inside the emitter 

decays much faster inside the emitter for SiC resulting in a larger lateral spread. 

m( , )Z ω β  for doped Si is maximum at 11.2β ∗ = . As seen from Fig. 7.1, a large 

scattering rate of doped Si results in a broader peak of m( , )Z ω β than that for SiC which 

causes the maximum value of β ∗ to be much smaller for the former. 
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Figure 7.6 Plot of energy streamlines for 1019 cm−3 n-type Si for (a) propagating waves 

and (b) evanescent waves when d=10 nm. 
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 Figures 7.7 (a) and (b) plot the z- component of the spectral Poynting vector 

inside the emitter, receiver, and the vacuum gap for SiC and 1019 cm−3 doped Si 

respectively at different β ∗ . As in Fig. 7.3, the ordinate is normalized with respect to the 

Poynting vector inside the vacuum gap and the 1/e decay line is shown to indicate the 

penetration depth. Note that the spectral Poynting vector obtained after integration over 

all the β values is also plotted and is indicated as “total” in the figures. For SiC, the field 

obtained after integration over all the β  is identical with that at mβ ∗  . However, for doped 

Si, the two fields are very different. Due to a smaller scattering rate, m( , )Z ω β has a very 

sharp peak at mβ ∗  which results in the two fields being identical. For doped Si, a 

significant portion of m( , )Z ω β lies beyond mβ ∗  causing the two fields to be different. 

Also, from Fig. 7.2, m( , )Z ω β for doped Si peaks at a much smaller mβ ∗  value compared 

to that for SiC. As a result, the field decays much faster for SiC.   

 Interestingly, the shape of ESLs inside the emitter for both doped Si and SiC can 

be explained with the help of Fig. 7.7. The field decreases faster as β ∗  increases and the 

decay is much faster for evanescent waves. This is expected since the amplitude of the 

field is proportional to 2 ze β− for evanescent waves and most of the energy is absorbed 

close to the surface of the emitter. As a result, from Eq. (7.15), the slope of the 

streamlines decreases as β ∗  increases. The thin film optics approach which does not 

correctly account for emission inside the emitter cannot predict the exponential decay of 

the Poynting vector. Furthermore, for SiC, if we consider the total energy to be absorbed 

within P4δ , the lateral dimension of the emitter should be around 9d.  
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Figure 7.7 Distributions of the spectral Poynting vector (z component) near the surfaces 

of emitter, receiver and the vacuum gap for (a) SiC and (b) 1019 cm−3 doped Si for 

different β ∗ . The Poynting vector calculated after integration over all β values is 

indicated as “total” in the figures. 
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In summary, the unusual penetration depth and the energy streamlines in near-

field thermal radiation are investigated in this chapter. The skin depth in near-field 

thermal radiation is a function of the vacuum gap as well as material properties. Even a 1-

nm-thick SiC film or a 5-nm-thick doped Si can act as an opaque layer if the gap width is 

at 1 nm. This unusual feature associated with nanoscale radiation arises from the 

excitation of surface waves. On the other hand, it is shown in this study that the thin film 

optics cannot be used to correctly predict the streamlines in near-field radiation. The 

emission as well as the direction of propagation of the waves inside the different media 

must be correctly accounted for in calculating the streamlines. Using fluctuation 

electrodynamics, analytical expressions are obtained for the field as well as the 

streamlines inside the emitter, vacuum gap, and the receiver. The lateral shift of 

streamlines in the emitter can be much greater than that in the vacuum gap for SiC. Based 

on the lateral shift and the penetration depth it is possible to correctly estimate the size of 

the emitter for it to be considered semi-infinite during near-field heat transfer. The insight 

obtained from this study can facilitate the selection of coating materials and thicknesses 

for scanning-tunneling near-field thermal imaging and nanofabrication. 
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CHAPTER 8 
 

CONCLUSION AND RECOMMENDATIONS 

This dissertation investigates the near-field heat transfer between two parallel 

plates at nanometer distances. Initially, an improved dielectric function of doped Si is 

developed after a careful review of different carrier ionization and mobility models. 

Drude model is employed for modeling the dielectric function of doped Si based on the 

selected carrier mobility and ionization models. The doped Si samples were modeled as 

multilayer structure of heavily doped Si thin films deposited on a thick lightly doped Si 

substrate and the radiative properties were calculated using thin film optics. The ion-

implanted doped Si samples were annealed in the RTA. The transmittance and 

reflectance of the annealed samples was measured up to a doping concentration of 

21 310  cm−  in the wavelength region from 2 to 20 mμ . The calculated results are in good 

agreement with the measurement, suggesting that the Drude model developed is 

appropriate in predicting the radiative properties of heavily doped Si near room 

temperature.   

 In the next step, the near-field heat transfer between doped Si plates with 

different doping levels using the improved dielectric function is studied. The influence of 

surface waves, doping level, vacuum gap, and different polarizations on the total and 

spectral heat transfer is investigated. By varying the doping level, the radiative properties 

of doped Si can be changed which results in different near-field effects at different 

doping levels. Interestingly, the near-field heat transfer is the least for 1021 cm−3 doped Si 

due to strong metallic behavior. Also, increase in doping level of Si increases the 

scattering rate which results in a smaller but broader peak of the spectral heat flux curve. 
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For doped Si, TM wave contribution is more significant till a doping level of 1020cm−3 

while for 1021cm−3 doped Si, the TE wave is more dominant till around 30 nm. 

Interestingly, while the near-field heat transfer due to TM wave varies as d−2, the TE 

wave contribution saturates in the near-field. Analytical expressions are provided for the 

LDOS in the vacuum gap when the effect of the receiver is considered. It is seen that the 

receiver tends to affect the LDOS only at distances around 0.6d. 

The study on near-field heat transfer for doped Si raises an important question 

about the upper limit on the near-field radiative heat transfer. The question is two-fold (i) 

what is the upper limit of near-field heat transfer? and (ii) what should be the criterion to 

determine the maximum near-field energy flux? Previous studies have calculated the 

maximum possible heat transfer only when 0d → and cannot be looked upon as the 

maximum near-field heat transfer at finite separation distances. In this dissertation, the 

maximum achievable energy transfer in the near-field is investigated at finite separation 

distances by considering identical frequency independent dielectric functions for both the 

emitter and the receiver. An upper bound is imposed to the parallel wavevector 

component in the analysis based on fluctuation-dissipation theory. Due to the cutoff in 

the wavevector, the energy transfer deviates from the d−2 dependence at sub-nanometer 

distances. It is observed that the maximum enhancement occurs when ε ′  is around −1 

which corresponds to SPP resonance. Furthermore, the maximum heat flux depends on 

the vacuum gap and ε ′′  value when ε ′  is set to −1.  Asε ′′ decreases, the spectral heat flux 

curve peaks towards longer β  values. Hence, setting a cutoff on the upper limit of β  has 

a greater influence on the near-field heat transfer for materials with a smallerε ′′ value. 
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The results obtained from the analysis of maximum near-field heat transfer helps 

in the parametric optimization of dielectric functions for determining the maximum 

achievable near-field heat transfer in real materials. The Drude model predicting the 

dielectric function of good conductors and the Lorentz model predicting the permittivity 

of dielectrics is considered for the optimization. The effect of different adjustable 

parameters in the two dielectric functions on the radiative heat transfer is investigated and 

optimal sets of parameters that maximize the near-field heat transfer are determined. It is 

seen that the real and imaginary parts of the dielectric function determine the location and 

width of the spectral heat flux peak, respectively. A smaller ε∞  will result in an ε ′  close 

to −1 over a larger spectral region and is desired for near-field enhancement. For the 

Drude model, with increasing temperature, p,optω  increases while opt p,optγ ω  remains 

constant for maximum radiative transfer. For the Lorentz model, the maximum near-field 

heat flux monotonically decreases with increasing 0ω  for a given ε∞ . In other words, the 

Drude model ( )0 0ω =  when optimized provides the greatest near-field enhancement for 

any given ε∞  and the near-field heat transfer is around one order of magnitude greater 

than that for any real material. Among the real materials, MgO provides greatest near-

field enhancement since it has the smallestε∞ and the largest γ resulting in the broadest 

peak in the spectral heat flux curve. 

While the objective of this dissertation is to study the near-field heat transfer 

between two semi-infinite parallel plates, it is important to estimate the physical 

dimensions of the emitter and the receiver for them to be considered semi-infinite. To this 

end, the unusual penetration depth and energy streamlines associated with near-field heat 
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transfer is investigated in this dissertation. Traditionally, the penetration depth in thermal 

radiation depends on the wave-length and extinction coefficient and is on the order of 1 

micron. However, in case of near-field radiation, the penetration depth depends on the 

vacuum gap in addition to the material properties and the wavelength. When the vacuum 

gap between two parallel plates decreases the energy transfer is pushed towards larger β  

which reduces the penetration depth of the absorbed radiation. Such unusual behavior of 

penetration depth results in a 10 nm thick SiC film behaving as completely opaque when 

the vacuum gap is on the order of 10 nm. Also, the ultrasmall penetration depth in near-

field radiation sets a limit on the minimum thickness of the emitter in order to avoid 

thermal emission from mono layers.  

It is shown in this dissertation that simple thin film optics cannot be used to 

calculate energy streamlines in near-field radiation and a more rigorous approach using 

fluctuation electrodynamics is required. While predicting the streamlines in the emitter, 

vacuum gap, and the receiver, the direction of thermal emission must be correctly 

accounted for. Based on the analysis performed in this dissertation, it can be inferred that 

the lateral displacement of the streamlines inside the emitter can be greater than that in 

the vacuum gap or the receiver. As a result, it may not be correct to predict the lateral 

shift of energy streamlines based on the emitter. With increasing β , the magnitude of the 

z component of the Poynting vector decreases. Therefore, the lateral shift of the 

streamlines inside the emitter increases with β . However, due to the very small 

penetration depth, most of the energy is absorbed very close to the surface and the lateral 

shift inside the emitter can be considered to be 9d.  
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In this dissertation, theoretical calculations of near-field heat transfer are limited 

to semi-infinite plane surfaces. There have also been a few studies on the near-field 

radiation between spheres due to the mathematical complexity involved in solving 

Maxwell’s equations for bodies with arbitrary geometries. It will be interesting to study 

the near-field heat transfer between structured surfaces like gratings which will benefit 

the field of nanooptoelectronics. The study on near-field heat transfer between two 

spheres can be extended to that between spheres with coatings for biomedical 

applications. Instead of a semi-infinite homogenous emitter, a multilayered emitter can be 

used especially in TPV systems to provide greater spectral control of the thermal 

emission and thus improve their performances. Further study is also required in order to 

fully understand the effect of vacuum gap on the dielectric function of the materials 

participating in near-field radiation, especially at distances less than 1 nm. Furthermore, 

with the help of fluctuational electrodynamics, analysis of entropy generation during 

nanoscale radiation will help improve the efficiencies of near-field energy systems. 

However, it is difficult to define radiation entropy in the near-field regime, where the 

local density of states of photons is greatly enhanced due to photon tunneling and 

excitation of surface waves. At present, a satisfactory thermodynamic second-law 

interpretation of near-field thermal radiation does not exist. Nonequilibrium entropy 

needs to be employed to develop thermodynamic relations for near-field radiation and to 

provide a second-law analysis of photon tunneling and surface polariton phenomena.  

Despite significant progress in understanding near-field thermal radiation, 

quantitative measurements remain a challenge at nanometer distances. It has only been in 

the past few years that there have been some meaningful measurement results in this 



 119

regard. In terms of difficulty, measuring near-field heat transfer between two flat surfaces 

is most challenging followed by that between sphere and flat surface and between two 

spheres. Surface roughness and non-parallelism of the heated plates make it very 

challenging to perform measurements between two flat plates at smaller vacuum gaps. 

Nevertheless, nanospacers such as dielectric nanowires or nanoparticles can be employed 

to achieve smaller vacuum gaps between two semi-infinite flat plates with little heat 

conduction. If one of the semi-infinite surfaces is replaced by a nanoparticle, then the 

heat flux is reduced and very sensitive instruments are required to detect the near-field 

enhancement. The problem associated with two semi-infinite surfaces or a nanoparticle 

and semi-infinite surface is overcome in the case of a microsphere and a flat surface. It is 

expected that this dissertation will aid in the material selection for optimization of near-

field radiation.  

 It should be emphasized that improvement in computational resources and recent 

developments in nano/microfabrication techniques and the unprecedented growth in 

materials science in the past decade hold great promise for the future investigation and 

applications of near-field thermal radiative transfer. The field of nanoscale radiation is 

rich and exciting: it requires a deeper understanding of the interplay among optical, 

thermal, mechanical, and electrical properties of materials and structures at the nanoscale 

and it can have promising applications in biological sensing, materials processing and 

manufacturing, and energy systems. 
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