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SUMMARY 

 

This study extends a recently-developed [1] cellular automata (CA) elastodynamic 

modeling approach to arbitrary two-dimensional geometries through development of a 

rule set appropriate for triangular cells. The approach is fully object-oriented (OO) and 

exploits OO conventions to produce compact, general, and easily-extended CA classes. 

Meshes composed of triangular cells allow the elastodynamic response of arbitrary two-

dimensional geometries to be computed accurately and efficiently. As in the previous 

rectangular CA method, each cell represents a state machine which updates in a stepped-

manner using a local “bottom-up” rule set and state input from neighboring cells. The 

approach avoids the need to develop partial differential equations and the complexity 

therein. Several advantages result from the method’s discrete, local and object-oriented 

nature, including the ability to compute on a massively-parallel basis and to easily add or 

subtract cells in a multi-resolution manner. The extended approach is used to generate the 

elastodynamic responses of a variety of general geometries and loading cases (Dirichlet 

and Nuemann), which are compared to previous results and/or comparison results 

generated using the commercial finite element code, COMSOL. These include harmonic 

interior domain loading, uniform boundary traction, and ramped boundary displacement. 

Favorable results are reported in all cases, with the CA approach requiring fewer degrees 

of freedom to achieve similar or better accuracy, and considerably less code 

development. 



 

1 

CHAPTER 1 

INTRODUCTION 

 

 Numerical methods for computing wave propagation in elastic solids present 

challenges due to difficulties associated with accurate and stable tracking of 

discontinuous wave fronts. In seismic problems involving regular domains, the staggered 

grid variant of the finite difference time domain (FDTD) approach is the de facto 

standard due to several characteristics: 1) the field variables are represented by what 

amounts to a discontinuous discretization, 2) boundary conditions can be formulated in a 

straight-forward manner, and 3) problems can be efficiently parallelized [2]. However, 

the finite difference approach does not adequately accommodate arbitrarily-shaped 

domains, and thus in the analysis of engineering structures, the finite element method has 

been more commonly applied to study wave propagation in computational solid 

mechanics (CSM).  

 

In a recent paper [1], a cellular automata (CA) approach has been developed for modeling 

wave propagation in elastic media. The approach shares an idea central to all cellular 

automata modeling, which is domain discretization using uniform cells (usually 

rectangular or hexagonal) whose state is updated via simple rules. The rules typically 

operate on state information collected from local, neighbor cells. The elastodynamic CA 

approach is discontinuous like the finite difference method, and thus accurately captures 

propagating wave fronts. In fact, for a uniform rectangular grid, the method reproduces 

the same update equations as the central difference FDTD method[1]. Furthermore, the 
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CA approach has the potential to compute with cells of varying shapes, to include 

triangular cells. With a triangular rule set, the CA approach could employ cell assembly 

to compute on arbitrary geometries, much like the finite element method, while 

conceivably retaining the advantages of the FDTD method in resolving wave fronts. This 

would mean a very versatile method capable of complex geometries that makes FE a 

dominant tool in solid mechanics while retaining the accuracy that makes FD a dominant 

tool in wave modeling. 

 

With the motivation established, this research sets out to extend the CA approach to 

compute arbitrary two-dimensional geometries using triangular cells. The extension 

requires 1) formulating a rule set for triangular-shaped cells and 2) implementing an 

object-oriented simulation approach for cell assembly and state calculations. Results from 

the new simulator are compared to earlier CA results [1], and to results generated using 

the commercial finite element package, COMSOL.  

Literature Review 

In the CA method, a domain is divided into discrete automatons, or cells, each holding a 

state. This state is discrete and  evolves during steps in time via, typically, simple rules 

which take into account neighbor interactions. In other simulations, such as FD, only 

space and time are discrete, yet “in CA the space, time, and state of the physical system 

are discretized” [3]. CA is well-established for studying system dynamics in a diverse 

variety of disciplines. The first CA simulations proposed and implemented are often 

credited to John von Neumann [4]. A familiar example is Conway’s Game of Life [5], in 

which each cell in the domain perpetuates or dies depending on the state of its eight 
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neighbors. Although von Neumann imagined a deterministic rule set, a probabilistic rule 

set is also possible and able to be implemented [6]. Some CA models constrain the state 

variables to a fixed set  (sometimes referred to as totalistic CA) limiting the cell to 

program specific characteristic, such as alive or dead in the Game of Life, where as other 

implementations may adopt a continuous range of values[7] (continuous CA).  

 

CA has been used in a variety of modeling applications because of the elegant manner in 

which formulation of a local set of simple interactions can solve for complex global 

behavior [8] — this global behavior is often termed ‘emergent.’ Such rules are derived 

from known relationships (such as geometrical constraints, conservation of energy, etc.) 

and statistical relationships/models as well as other intuitive relationships. Such intuitive 

relationships and statistical examples include the rate at which HIV infection affects T-

cell count [9], spread of brushfires [10], and traffic models [11]. In the case of HIV 

infection an intuitive relationship was found and the spread properly modeled with 4 

simple rules and 4 possible states. In this case the authors observed for the first time a 

correct simulation of T-cell infection in which new parameters were not introduced 

during the running of the simulation. The brushfires were modeled via CA to account for 

a very heterogeneous landscape in which each quadrant could have individually specified 

burn rates and fuel abundance. 

 

Applications of known relationships include modeling earthquakes. In a paper by Olami 

[12] an extremely simple model is used to produce results that are acceptable and agree 

with data, and this method is in some ways advantageous over the complex differential 
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equations typically used. Yet another paper [13] used CA to show that the earthquakes 

are due to a critical point system and are in some instances predictable; instead of a 

critically stressed system, which doesn’t allow for predictions.  CA has also been used in 

thermal modeling [14], carbon nanotubes via energy minimization [15], and EM wave 

propagation [16] which has Boolean state variables, indicating that while a finer mesh is 

required even binary state variables can provide accurate modeling of wave propagation. 

Common uses for CA involve modeling grain growth in recrystallization of metals [3, 17-

20] and computational fluid dynamics (CFD) with the implementation of Lattice 

Boltzmann techniques [21, 22] and Navier-Stokes [23]. CA is popular in CFD for its 

ability to handle highly complex fluid flow. Both techniques, CFD and grain growth, 

have been combined with FE for its CSM modeling capabilities to model compound 

systems such as blood flowing through a heart [22] (because of the high Reynolds 

number and fine time step needed) and stress related to grain boundary growth [19, 20, 

24]. 

 

Benefits of CA 

A principle reason to use CA in simulations is its efficiency and speed [3, 8, 15, 25, 26]. 

The domain is able to be updated at a fast rate due to CA’s massively parallel nature [27-

29]. For example, in [8], a one-to-one mapping of 16384 cells to 16384 processors is used 

to demonstrate that CA allows for simultaneous updating in large-scale problems. This is 

possible “since information processing in [CA] systems is intrinsically parallel they are 

naturally amenable to implementation on massively parallel computers with minimal loss 

in efficiency for coordination requirements” [28]. This is in contrast to FE methods in 
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which, while they can be broken down into sub-domains, there is a diminishing return 

since more work is required for any increase in number of sub-domains. Computers have 

seen an increase in processors and parallelizability making CA an attractive option since 

parallel computing, coupled with simplicity of models, means simulations can be run on 

desktop computers [30]. Furthermore, CA computational cost is linear with respect to the 

number of cells [15, 24, 31]. By comparison [31] shows (implicit) FE has a quadratic 

relationship to the number of cells/nodes and [15] argues Molecular Dynamics has an 

exponential relationship; hence the value in showing the viability of CA in carbon 

nanotubes, since multi-walled tubes would be cost prohibitive with a Molecular Dynamic 

scheme.  

 

Another principle advantage that CA has is the ability to model heterogeneity [6, 10, 27].  

Since CA is based on a local rule set and each cell is autonomous, it “…is extremely 

flexible in adapting to anything singular, discontinuous or even inhomogeneous” [23]. 

This provides for accurate modeling of inhomogeneous and anisotropic models without 

the need for smoothing. This is unlike FD which requires smoothing of material 

properties [8] which can lead to instability in inhomogeneous cases [26]. This also allows 

CA to perform well in contact modeling [30, 32]  which is typically a smoothed partial 

differential equation [30].  

 

In addition to being able to avoid smoothing of functions and to allow for heterogeneities 

and discontinuities, CA is able to assure local continuity [25]. This is because CA 

amounts to a fictitious micro world and not a continuous analytical model [23]. Each cell 

is connected and part of the domain, so local continuity of the system is preserved; 
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however, since there is no global equation, no governing analytical equation spanning the 

domain, there can be discontinuities and variety in parameters and state variables. In an 

optimization in the orientation of composite fibers [25] the CA model was able to assure 

continuity in the fiber orientation which was not achievable by just looking at principle 

stress with FE. Since CA is discrete and can 1) represent or 2) be linked with a 

continuum, it can model complex systems that break, crumble, and move. 

Implementation of movable CA based on stress-strain relationships allowed for the 

accurate modeling of fracture [33]. A limitation of CA can be the challenge in forming 

the proper governing rule set for the local area. 

 

The combination of these two advantages can lead to the development and handling of 

complex systems in a timely matter, making real time implementation possible. In [32] a 

haptic system relying on the mechanical modeling of soft tissue deformation is created. 

CA is used because mass-spring and FE are not able to handle the nonlinearities of 

deformation and material properties, since the system supports anisotropic and 

inhomogeneous materials. Also, the heat equation and weighting factors are included. 

Results show that the cells are able to preserve continuous nature in addition to 

nonlinearities and inhomogeneities of the system while achieving the required amount of 

resolution in real time. 

Cellular Automata in Solid Mechanics 

A limitation of CA can be the difficulty in the governing rule sets; due to this there has 

been limited use with CA in CSM. For example, in the modeling of earthquakes both 

spring-block [12] and a power-law-time-to-failure function [13] were used to derive rule 
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sets.  Most rely on a uniform grid, typically square cells [3, 8, 16-18, 24-26, 28, 31], 

although some simulations apply node-truss implementation [14, 29] sometimes adapting 

it to triangular elements [14], polar geometry blocks [28],  and hexagons [20, 24, 34]. 

Hexagonal meshing can benefit from better isotropy which translates into a lower 

stability requirement [34], as opposed to square cells which constrain the calculation to 

travel strictly in two directions. While irregular geometry can be modeled with a node 

centered cell with truss connectivity of elements, turning a truss that connects to a cell 

outside the domain off, this still is based on a regular grid and does not account for truly 

arbitrary configurations used in FE analysis. Thus far no known implementation has been 

able to handle the meshed domains that make FE so popular in CSM. 

 

One of the driving factors in applying CA to CSM is the draw of a computational method 

that is popular for solving solid mechanics and fluid dynamics. Many FV papers [35-38] 

discuss the prominence of FV in CFD and the desire to extend the method to CSM with 

the end goal of being able to model a complex problem that has fluid and solids 

interacting. A common solver could reduce the problem of boundary and numerical tool 

interaction to merely how boundaries are treated. FV is implemented in both node 

centered and cell centered schemes although [35] claims that cell centered yields a higher 

solution quality. While the implementation breaks the domain into finite volumes it still 

does not have the parallelizability of CA (it is still matrix dependent), it does not have the 

autonomous nature that CA has, and does not have the emergent characteristics of CA. 

 



 8 

Some attempts to adapt CA to solid mechanics have included derivation of a rule set via 

energy minimization [28], the use of fluid CA with extremely high viscosity [23] to 

account for shear, this method which begins to show potential but lacks accurate 

response. [31] Presents a method which shows good results but is limited to a membrane 

analysis due to inability to properly account for Poisson effects. The node truss technique 

is often a Jacobi and Gauss Seidel implementation; these are relaxation methods and 

attempt to model deformation [14]. Some CA inspired CSM models have been linked to 

other solvers such as FD  and FE [31], showing promising results. 

 

 In a paper that links FD with CA [39], a boundary interaction was looked at and showed 

no reflection of the wave as it passed through a shared interface, indicating successful 

joining of the two methods into a continuous domain. The implementation involved two 

different scales of CA with respect to the FD grid, indicating that CA is capable of multi-

resolution [39]. CA has had application in mesoscale modeling [7, 33] and in multi-scale 

schemes [17, 19] where CA provides grain growth on the micro scale and interacts with 

FE which provides the stress on the macro scale. CA has also provided the sound 

interaction response with and FE analysis of a sound barrier to determine the system 

response [26]. Some attempts to join FE and CA have gone so far as to mesh the two 

methods into one hybrid system [7, 14]. Yet, in these applications rule sets are derived 

from a numerical approximation of the global equations [6-8, 14, 28, 31], the same top-

down approach used in FE, FD, and FV as opposed to the bottom-up approach based on 

local rules that makes CA so adaptable, and none are able to adapt to an arbitrary 

environment.  
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Extending Cellular Automata 

This work develops a novel CA-based triangular cell class, together with specialized 

boundary cells, without reusing or reinterpreting any of the previous analysis techniques 

(FD, FE, or FV). As is well known, this shape is useful for representing domains of 

arbitrary geometry (see Figure 1) which in part accounts for the popularity of FE. Since 

each cell is an autonomous state machine, it can be represented as a single object. This 

lends itself well to object-oriented (OO) programming practices, which has the added 

benefits of straight-forward implementation using a modern programming language 

(C++, Java, etc.) and compatibility with parallel processing. The state held by the cell 

includes such information as material properties, cell geometry, neighbor lists, external 

forces, and centroidal displacements. Neighbors are easily referenced via pointers so that 

the order in which the cells are stored is unimportant, eliminating the grid dependency 

that was used in the previous study [1]. The order in which cells update is also 

unimportant, furthering the compatibility with parallel computing and multi-resolution 

analysis. Chapter 2 develops the rule set and computational aspects of the project, 

Chapter 3 then compares the new formulation and algorithm to the previous work and to 

a commercial FE package COMSOL to evaluate the codes implementation and accuracy. 

 

Figure 1: Arbitrary triangular mesh of a two-dimensional domain with an included hole. 
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CHAPTER 2 

METHOD DEVELOPMENT  

In this section, the previous rectangular approach is extended to triangular elements via 

development of an appropriate rule set. Figure 2 demonstrates that, contrary to the square 

case, which has highly-regular geometry, triangular cells require additional 

considerations.  First, each triangle has a unique set of face lengths and angles.  In 

addition, a line connecting two cell centroids might not be normal to the face the cells 

share.  This complicates the evaluation of the normal and shear strains.  Finally, the 

triangular mesh may produce many neighbors sharing a single vertex, whereas in the 

rectangular case this was limited to three.  The importance of this latter consideration 

becomes evident when attempting to evaluate the Type I and Type II strains previously 

identified in the rectangular approach.   

 

Figure 2: Illustration of geometrical differences between regular cell and arbitrary triangular cells. With 

square cells all lines perpendicular to the face pass through adjacent centroids, whereas the lines are 

discontinuous for triangular cells. 
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As mentioned, in CA each cell stores its own unique state. For this simulation the state 

variables are displacement, velocity, applied stress (u, v, σ), other stored parameters are 

material properties (ρ, µ, λ), cell geometry (centroid, face angles and lengths, area), and 

neighbor references. All variables are stored relative to a global x-y axis. The state 

variables of material properties and cell geometry are fixed; they are defined for each cell 

and stored at setup. The displacement and applied stress are determined at every step of 

the simulation and updated based on the rule set using the cell’s previous state, the von 

Neumann neighbors, and the immediate Moore neighborhood. As illustrated in Figure 2 

not all Moore neighbors are used in this computation; only those that are also von 

Neumann neighbors of the target cell’s von Neumann neighbors. 

 

An overview of the method in which each cell updates its state is now given with a 

detailed derivation following. Each step begins by transforming the x and y displacement 

components into tangential and normal components along one of three faces using the 

stored face angle. Strains are obtained by numerically estimating derivatives of the 

displacements across the face; the displacements are obtained by using the target cell and 

local neighbors.  Similar to the previous work on rectangular cells, these derivatives are 

classified as either Type I or Type II, as described below. Using Hooke’s law, the stresses 

on the face are then calculated and stored; these stress values, when multiplied by the 

area of the face, yield forces that can be transformed back to the underlying x,y 

coordinate system. This allows for the determining of the overall forces on the cells. 

After new stresses for each face have been obtained, application of Newton’s Second 

Law leads to semi-discrete differential equations governing the cell’s velocity change.  A 

suitable temporal discretization of these equations yields the final rule set. The new 
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displacements are stored until all cells have been updated in what amounts to a double 

buffering technique suitable for parallelization. 

Arbitrary Geometry 

As mentioned, each face has a unique orientation that the strains are calculated for. To 

facilitate strain computations in the two-dimensional case, an angle θ is set as the angle 

between the x-axis and the face normal (-π ≤ θ ≥ π) as shown in Figure 3. The direction 

perpendicular (normal) to the face (defined as en) is in the θ direction and subscripts 

identify the three faces. The direction parallel (tangent) to the face (et) is in the θ + 
π
/2 

direction. Note that the calculation for the strains and stresses are like those of a square 

element as per typical mechanics; however, each face is independent. Hence, the shear 

stress along the face does not relate to the shear stress along any other face. However, in 

order to satisfy equilibrium, it is a requirement that the shear and normal stresses on a 

face be the same for both neighbors that share the face. 

 

Figure 3: θ for each face is determined by the line from centroid and perpendicular to the face relative to 

the x-axis. From this the rotation tranformation is determined for the normal and tangent directions. 

 

Strain calculations require displacements in the en and et directions, which are denoted by 

un and ut, obtained from the stored cell state by a simple rotation transformation:  
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          where,            
cos( ) sin( )

sin( ) cos( )
R

θ θ

θ θ
 

=  − 
                   (1) 

Once un and ut have been computed, the strains can be calculated according to the 

definition of strain, a geometrical relationship used to formulate the wave equation: 

, ,
u u u u

n t t n
nn tt ntn s n s

ε ε ε

θ θ θ θ

 ∂ ∂ ∂ ∂
 = = = +
 ∂ ∂ ∂ ∂
 

                                   (2) 

Evaluation of these expressions requires numerical differentiation in either the normal 

( n∂ ) or tangential ( s∂ ) directions. As in the previous work [1], the derivatives are 

defined as Type I (across the face) and Type II (parallel to the face). Figure 4 shows that 

Type I models tensile stress and direct shear, whereas Type II models the interactions 

from Poisson effects and indirect shear, things that happen along the face not just across 

it. It should be noted that these interactions are representative of what the cells are 

movements would be if they were unattached. Since the model is of a continuum and 

there is no fracture or cracks allowed the cells are not displacing with respect to one 

another. The visualization aides in the physical interpretation of the strains but it should 

be kept in mind that this is the not the actual deformation; especially in the case of the 

rotation of cells, as rotation doesn’t cause shear, but a difference in the displacement 

across the top and bottom of a face would cause shear along the face as if the cell were 

trying to shear away from its neighbor. 
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Figure 4: Visualization of strains. Type I strains involve translation where as Type II strains come from 

such things as elongation or rotation of cells. 

 

For evaluation of the Type I derivatives the von Neumann neighbor is adequate; however, 

Type II evaluation requires inclusion of Moore neighbors. This is because knowledge of 

the cell’s deformation requires more than just information about the cell’s displacement; 

it is more dependant upon displacements of the cells around it. Therefore, Type II 

calculations require information about the domain above and below the face, not just on 

either side of it. Type II calculations are made by combining and averaging four Type I 

calculations, as shown in Figure 5. Type I calculations to the other von Neumann and 

Moore neighbors will give a balanced approximation of the Poisson effects which 

account for the stretching or rotating of an element. 
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Figure 5: Illustration of the Type I and Type II strain calculations for both the square and triangular cases 

across a particular face. Also neigbors and terms used are identified.  
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directions are in regard to the target cell because each cell is autonomous, thus the frame 

of reference is always the target cell. Using the ∆n and ∆s as the distance between the 

centroids of the neighbors in the normal and tangential directions respectively as shown 

in Figure 5, a discrete rule set can now be written where the Type I calculations become: 

N T
u u u
t t t

n n
θ

∂ −
⇒

∂ ∆
       similarly,         

N T
u u u

n n n

n n
θ

∂ −
⇒

∂ ∆
               (3a, 3b) 

 For the Type II calculations, two Type I calculations are combined to span the difference 

across either a neighbor or a target. These calculations are then averaged to find the 

difference in the tangential direction at the face. The Type II equations take the form:  

 
( ) ( ) ( ) ( )1

2

N T N T M N M N
u u u u u u u uu t t t t t t t tt

T T N Ns s s s sθ

+ − + − − − − − − −∂  
⇒ + ∂ ∆ + ∆ ∆ + ∆ + − + − 

           (4)  

This can be simplified since the target cell’s value cancels so the Type II equation 

becomes  

1

2

N N M Mu u u u u
t t t t t

T T N Ns s s s sθ

+ − + − ∂ − −
 ⇒ +
 ∂  ∆ + ∆ ∆ + ∆

+ − + − 

                                    (6) 

 Substituting the Type II calculation into equation (2) yields 

N T
u u

n n
nn n

ε
−

=
∆

                                                                                         (7a) 

1

2

N N M M
u u u u
t t t t

tt T T N N
s s s s

ε
+ − + − − −

 = +
 
 ∆ + ∆ ∆ + ∆

+ − + − 

                                                  (7b) 

1

2

N T N N M M
u u u u u u
t t n n n n

nt T T N Nn s s s s
ε

 + − + − − − −  = + +  ∆  ∆ + ∆ ∆ + ∆ + − + −  

                          (7c) 



 17 

The stresses σnn, σtt, and σnt are evaluated according to Hooke’s Law: σ =E*ε. The 

reactions at the face only include the normal stress σnn and shear stress σnt; σtt is not 

present. For isotropic elastic materials the equations are: 

( 2 )
nn nn tt

σ λ µ ε λε= + +                                               (8a) 

nt nt
σ µε=                                                          (8b) 

The stress is multiplied by the surface area to obtain forces. Since σtt is not present, there 

are only two forces defined as— *
n nn

F w lσ=  and *
t nt

F w lσ=  where w is the width in the z 

direction and l is the length. Now that the derivatives and relationship have been defined 

the equations can be further manipulated to obtain the rule set that the computer 

implements. It will also be shown that when using square geometry the arbitrary rule set 

recovers the equations from the previous work. The first step in implementing the 

solution is substitution to find the equation for the forces. This involves using Hooke’s 

Law, a material relationship used in deriving the wave equation. 

( )2F wl
n nn nn tt

wl
F wl
t nt nt

σ λ µ ε λε

σ µε

 + +   
    = =
         

                            (8) 

( )2
2

N T N N M M
u u u u u u
n n t t t tF wl

n T T N Nn s s s s

λ
λ µ

 + − + − − − −  = + + +  ∆  ∆ + ∆ ∆ + ∆ + − + −  

            (9a) 

1

2

N T N N M M
u u u u u u
t t n n n nF wl

t T T N Nn s s s s
µ
 + − + − − − −  = + +  ∆  ∆ + ∆ ∆ + ∆ + − + −  

                 (9b) 

During the setup the computer reads in a list of nodes and mapping of which nodes make 

up an element. From this information centroids, face lengths and angles, and neighbors 

can be determined. However, since the vectors linking centroids are not always parallel to 

the line perpendicular to the face, the offset must be taken into account as seen in Figure 
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6. Since the deformation of the cells is assumed negligible by the small strain 

approximation, this calculation is only performed at setup when an adjusted r matrix is 

created and stored. 

 

Figure 6: Illustration of the parameters to get ∆n and ∆s from centroid and face angle information. 
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( )
( ) ( )

2
cos( ) 2 cos cos

2 2

N T N N M M
u u u u u u

n n t t t tF wl
n T T N Nr r r

λ
λ µ

φ θ π πφ θ φ θ

  + − + −− − −  
= + + +  − − + − +  

  

 (10a) 

( ) ( )
1

cos( ) 2 cos cos
2 2

N T N N M M
u u u u u u
t t n n n nF wl

t T T N Nr r r

µ
φ θ π πφ θ φ θ

  + − + −− − −  
= + +  − − + − +  

  

               (10b) 

This formulation takes into consideration the discontinuities inherent in the triangular 

formulation without interpolation which could be detrimental in the analysis of wave 

propagation. The forces in the x and y directions are obtained by the reverse of the earlier 

rotation transformation, which is the transverse of the rotation matrix, giving 

F F
x nT

R
F F

y t

   
   =
     

                                                  (11) 

Once this has been accomplished for each face the forces acting on a cell are once again 

in the global coordinate system. Since the directional method takes into account the 

direction of the force, the force balance in the x-direction is Fx
Total

 = ΣFx + Fx-load, where 

Fx-load is any external loading applied to the cell. This a mechanical relationship used in 

formulation of the wave equation. Using forward Euler as a first order temporal update 

approximation for the balance of momentum, the velocity update equations become: 

11k k Total
v v F
x x xd wAρ

+ = +                                       (12a) 

11k k Total
v v F

y y yd wAρ
+ = +                                                         (12b) 

Where d is the discrete number of steps per unit time, ρ is the density, w is the width of 

the domain and A is the area of a cell. The superscripts k naturally represent an iteration 

of the simulation. Displacement can be obtained from velocity using the same 

approximation yielding: 
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11 1k k k
u u v

x x xd

+ += +      and,     
11 1k k k

u u v
y y yd

+ += +            (13a,13b) 

Equations (10-13) formulate the rule set by which each cells state is updated; solving for 

applied stress, velocity, and displacement of each cell. This rule set was derived using the 

three fundamental relationships (geometrical, material, mechanical) in formulating the 

wave equation for elastodynamics but in a bottom-up formulation, never deriving the 

global analytical equation that top-down formulation requires.  

 

Verification of Arbitrary Rule Set 

Now the rules by which all the state variables (u, v, σ) are updated have been completely 

defined for an irregular cell with arbitrary orientation. Since this is an extension of 

previous work when applied to the square case, this formulation should perfectly recover 

the equations set forth therein. For the square case, cos( ) cos( ) 1
2 2

π πφ θ φ θ− + = − − =  since 

the cell centers where displacements are stored are at
2

πθ − . The r values are all the same 

in the square case due to the uniform geometry. This simplifies the equations 

considerably, and they can be written as:  

 

( )
N T N + N - M + M -

u - u u - u u - uln n t t t tF = wl l +2m + +
n r 2 2r 2r

  
  
  

  
  

         (14a) 

      
1

2 2 2

N T N N M M
u u u u u u
t t n n n nF wl

t r r r
µ
 + − + −  − − −  = + +  

  
  

                  (14b) 
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The above expression holds for any face in the square case. A face-by-face analysis is 

derived in appendix A utilizing a grid indexing scheme that yields the resulting x-

direction forces: 

( ) ( ) ( ) ( ) ( ) ( ) ( )1, , , 1 , 1 1, 1 1, 1
2

2 2 2

x x y y y yi j i j i j i j i j i jright

x

u u u u u u
F w y

x y y

λ
λ µ + + − + + + − − − − 

= ∆ + + +    ∆ ∆ ∆  
(15a) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1, , , 1 , 1 1, 1 1, 1
2

2 2 2

x x y y y yi j i j i j i j i j i jleft

x

u u u u u u
F w y

x y y

λ
λ µ − − + − − − + − − − 

= ∆ + + +    ∆ ∆ ∆  
(15b) 

 
( ) ( ) ( ) ( ) ( ) ( ), 1 , 1, 1, 1, 1 1, 11

2 2 2

x x y y y yi j i j i j i j i j i jtop

x

u u u u u u
F w x

y x x
µ + + − + + − + − − − 

= ∆ + +    ∆ ∆ ∆  
           (15c) 

( ) ( ) ( ) ( ) ( ) ( ), 1 , 1, 1, 1, 1 1, 11

2 2 2

x x y y y yi j i j i j i j i j i jbottom

x

u u u u u u
F w x

y x x
µ − − + − − + − − − − 

= ∆ + +    ∆ ∆ ∆  
         (15d) 

These forces are now in the same notation and format as the formulation used in [1]. 

Presentation of the previous grid based rule set follows to allow for verification of 

recovery of regular geometry implementation. 

( ) ( ) 1, 1 1, 1 , 1 , 1

1, ,

2

2 2 2

i j y i j y i j y i j yright

x i j x i j x

u u u u
F w y u u

x y y

λ µ λ + + + − + −
+

 − − +
= ∆ − + +  ∆ ∆ ∆  

          (16a) 

( ) ( ) 1, 1 1, 1 , 1 , 1

, 1,

2

2 2 2

i j y i j y i j y i j yleft

x i j x i j x

u u u u
F w y u u

x y y

λ µ λ − + − − + −
−

 − − +
= ∆ − + +  ∆ ∆ ∆  

            (16b) 

( ) , 1 , 1, 1 1, 1 1, 1,1

2 2 2

i j x i j x i j y i j y i j y i j ytop

x

u u u u u u
F w x

y x x
µ + + + − + + − − − − 

= ∆ + +  
∆ ∆ ∆  

   (16c) 

( ) , , 1 1, 1 1, 1 1, 1,1

2 2 2

i j x i j x i j y i j y i j y i j ybottom

x

u u u u u u
F w x

y x x
µ − + − − − + − − − − 

= ∆ + +  
∆ ∆ ∆  

 (16d) 

 

Notice that when the comparison is done for left and bottom faces, the directional method 

differs from the earlier derivation by a negative sign. This is because the previous study 

computes the force balance with the understanding of the stress directions, so the force 

balance is Fx
Total

 = Fx
right

 + Fx
top

 – Fx
left

 – Fx
bottom

. However, the directional method takes 
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into account the direction of the force, so the force balance is Fx
Total

 = ΣFx. Hence, the 

two methods are equivalent. 

 

Object Oriented Approach 

In addition to expanding the cells to accommodate arbitrary geometry, the CA approach 

was also adapted to a truly OO environment. Since every cell in CA is autonomous, a cell 

object can be created to store all of the parameters. This object is included in a list of 

objects that makes up the domain. As long as the neighbor cells are referenced properly 

the order of the cells is not important, the order of the computation is not important, and 

while each cell must be a standard format (storing all essential information) it can be 

completely different with respect to the properties. OO programming allows the basic cell 

to be sub classed into different types, such as domain cells or boundary cells. This can be 

taken further in later work with CA to accommodate other shapes, types, loading 

configurations, or boundary interactions such as fluid – solid interactions or crack growth 

treatment. 

 

The developed simulation has a basic Cell class which stores the material properties (ρ, µ, 

λ), cell geometry (centroid, face angles and lengths, area), and state (displacement, 

velocity, applied stress). The generic Cell class also has methods which govern the 

updating and sharing of these parameters. The Cell is sub-classed into domain cells, both 

triangular and quadrilateral, as well as boundary cells (discussed later). The generic class 

is abstract, meaning it cannot be instantiated. This guarantees that each cell has the same 

methods yet must be of a certain type; a cell cannot be vague and undetermined. 
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Since each cell has the same methods in spite of specific parameters or type, this allows 

the simulation to run smoothly, as each cell is called in the same way. Since each cell 

must be created and its parameters must be set, the initial setup is a bit computationally 

intensive. However, this same domain list can be stored. This is analogous to LU 

decomposition in that the factoring of the matrix requires more work up front but the 

same setup can be saved for later runs, reducing the cost overall. A further advantage to 

CA and OO implementation is that since the cells are autonomous and individual the 

process is parallelizable, both in setup and during the simulation. 

 

A breakdown of the simulation is included in Figure 7. The simulation begins with a 

setup method calling for a list of Cells. This could be read from a file of a saved list or, as 

shown, a mesh file. From the element and node information the setup class determines 

each cell’s geometry, then its immediate neighbors, and the program then is able to 

organize the neighbors and establish matrices of pointers and r values. The r values are 

the distances between centroids needed for the computation. For cells which lie on a 

boundary and do not have a full compliment of neighbors, boundary conditions are 

applied via the addition of boundary cells which are discussed shortly. Each cell, 

including boundary cells, is saved into an array that is passed back to the main 

simulation. 

 

During the analysis stage each cell is told to run its step method which finds all the 

applied stress, either by computing the face stress via or receiving it from a neighbor. 

This is simply done by checking to see if the neighbor cell has been updated already and, 
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if so, the target updates by using the negative of the neighbor’s stress vectors, allowing 

for the calculation to be performed only once per face. If a load is applied the setup 

determines which cell is loaded and the simulation computes what the load is, thereby 

making the same domain applicable to a variety of load cases.  If a load is applicable it is 

passed to the cell to be used in conjunction with the face stresses to update its 

displacement. The new displacement is stored and the cell is now set to “updated” so 

other cells can use the stresses it calculated. Once all the cells have been updated the code 

stores the new displacement as its current displacement. This is a standard double buffer 

routine ensuring old and new data aren’t being mixed. Output is stored based on user 

defined frequency or time steps.   
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Figure 7: Logic path of OO approach 
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Boundary Treatment 

Any cell that lacks a neighbor is assigned a boundary cell depending on orientation. A 

regular triangle is added with the side lengths matching the domain cell as in Figure 8; 

centroids and other parameters are calculated accordingly. To accommodate boundary 

conditions two types of boundary cells are used: Neumann, which models applied 

displacement, and Dirichlet, which models applied stress.  

 

Figure 8: Method of applying a boundary cell. Any cell that fails a neighbor check gets a cell added to it 

with parameter set reflecting either a displacement fixed (Neumann) or stress fixed (Dirichlet). 

 

The Neumann cells account for the fixed boundary requirement and also provide the 

initial displacement condition. When the cell is initiated it also requires a displacement: 

<0, 0> is fixed, <1, 0> is unit displacement in the x, etc. When the program runs, the 

cell’s displacement never updates, since it is fixed and the cell never computes the 

boundary stress. The computation also needs two additional cells for the Type II 

calculation, but as indicated in Figure 8 the necessary geometry is calculated, yet the cells 

are never created. This can occur because any additional boundary cells would also not 
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need to be updated and share the same material properties, so the pointers for the Type II 

calculation refer back to the base boundary cell. 

 

The Dirichlet cells allow for no stress or traction at the surface and are initialized 

accordingly. Since the stress is set when initiating the cell, the parameter that stores 

whether the cell has computed face stresses is set to true, and it doesn’t require imaginary 

neighbors. This is due to the domain cell adjacent to it obtaining the face stress and 

therefore never goes through the Type II (or Type I) calculation for that face. The 

Dirichlet cell is involved in a Type II calculation; thus it requires neighbors to update 

position as the program runs. The calculation is as outlined in previous CA work [1]; 

when the notation is modified to match the arbitrary geometries and loading parameters 

the displacement equations become: 

( ) ( ) ( ) ( )
* *

2 2 * N N

n ndirichlet N M Mnu u u u
n n t ts s

σ λ
λ µ λ µ + +

∆ ∆ + −≅ − + −
+ + ∆ + ∆

             (17a) 

( )*

N N

n ndirichlet N M Mtu u u u
t t n ns s

σ

µ + −

∆ ∆ + −≅ − + −
∆ + ∆

                         (17b) 

Where 
n

σ and 
t

σ denote the applied normal and tangential tractions, respectively. This 

now accounts for boundary treatment in a straightforward manner similar to how the 

domain cells are loaded. The implementation is simple in OO programming which CA is 

well suited for. The algorithm is now suitably developed and the accuracy and versatility 

of the method can be compared to other codes for solving waves in elastodynamics. 
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CHAPTER 3 

VALIDATION AND DISCUSSION 

To verify the accuracy of the results the program is compared to results obtained using 

previous CA results [1] and finite element package COMSOL. The first test case 

compares the updated algorithm to that obtained from a previous non-OO cellular 

automata. This test uses the same parameter values and loading—differentiated Gaussian 

pulse—as discussed in the previous work, but the new results utilize full OO 

implementation and directional derivatives. The same load scenario is then looked at 

again with triangular elements to judge the effects that irregular geometry has on the 

response. Arbitrary meshes generated by COMSOL are used to evaluate the accuracy of 

harmonic loading and boundary traction. The same mesh was used by both the COMSOL 

and CA. Further comparisons to COMSOL are made with regard to loading and 

numerical approximations. 

Rectangular Recovery 

In [1] the CA code use the parameters of a 200*100 grid with 10 steps per unit time with 

a differentiated Gaussian pulse loaded on the center square on the top row of cells. 

Square cells are used and a free boundary condition is applied to the top surface including 

the corners. All other boundary conditions are set as fixed. The results were compared at 

step 160. For consistency the same loading, cell geometry, boundaries, and step time will 

be applied in the new implementation and looked at here. Both programs output results to 

a file that Matlab could then read, and the imagesc command was used to create a color 

scale plot for easy visualization. The displacements in both the x and y directions are 

shown and compared in Figures 9 and 10 respectively. 
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Figure 9: Comparison of x-displacement output. a) is output of OO implementation b) is output of grid 

based implementation c) is the difference of the two outputs on the same scale as the response d) is the 

difference scaled to visible range 

 

The differences are presented at two different scales: 1) the Matlab default scale 

maximum and minimum values are bounds, 2) adjusted scales to match the order of 

magnitude of the displacement. A percent error calculation indicated that the maximum 

percent error is 3.3e
-9

. It is hypothesized that the error is due to the precision of the stored 

values. While it was hoped the calculation would be exact, this validates the OO 
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approach as a mathematically sound way of doing the CA approach set forth in (Leamy, 

2008) since the square case yields the same equations and results. 

 

 

Figure 10: Comparison of y-displacement output. a) is output of OO implementation b) is output of grid 

based implementation c) is the difference of the two outputs on the same scale as the response d) is the 

difference scaled to visible range 
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boundary conditions will not be presented, yet in the process of matching the output of 

the two codes interesting examples appeared showing just how sensitive the simulation is 

depending on exactly how the conditions are applied. For this reason the output recorded 

during the debugging process is presented here. 

 

A difference in when the boundary conditions are calculated is significant. The original 

[1] code calculated the free boundary cells’ displacement between time steps, as 

compared with the OO code which calculated the boundary conditions as part of the 

space. Because the CA method deals with, in the square case, the square’s eight 

neighbors, the area of cells that experience the pulse grows by one layer of cells with 

each step the code takes. With the boundary calculation between steps the top surface 

grew by two cells at each step. Figure 11 shows that the difference is now on the order of 

10
-6

 instead of 10
-20

. While small, the magnitude of the change in difference between old 

and new is still significant. This perhaps can be better seen in the percent error of the 

plots of the old and new methods. When the boundary is updated separately from the 

domain up to 20% error is common, and at certain points the error is larger than 100%, 

although this occurs where displacement is close to zero due to transitioning from 

positive to negative values. This demonstrating how sensitive the computation is to small 

differences in the procedure. The codes were adjusted to update in the same manner 

(during the step). 
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Figure 11: The difference in the a) x -displacement and b) y-displacement  when the boundary and domain 

cells update in different steps. 

 

 

Another subtle difference that depends on the boundary conditions at the corners was 

found. In the original [1] code the top corners along with the top surface were free while 

initially in the OO code the corners were all fixed. This did not have much impact on step 

160 as the wave had not yet traveled to and reflected off the sides. Taking this into 

consideration the program was run to step 500 to guarantee a visible impact of different 

corner boundary cells. Figure 12 gives an idea of what the displacement field looks like at 

step 500. The original code output is shown; in the interest of space the OO output is not 

shown but was used in finding the difference between the boundary conditions. The 

difference is significant and noticeable. While small it does indicate that there are 

cumulatively significant impacts depending on very small changes to the domain. Again 
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Figure 12: Difference in output based on corner cell agreement in x (left) and y (right) displacements. a) 

response at step 500 (t = 50 s) b) difference in response when corners are in agreement c) difference when 

corners are fixed in OO and free in grid-based. 
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There is still debate on how boundary conditions should be applied, especially at the 

corners, and when they should be computed. A common difficulty in modeling often 

deals with exactly how to apply boundary conditions. The presentation here was to 

demonstrate the sensitivity and the importance of matching the exact conditions that were 

used previously. This also could aid in understanding later problems and discrepancies in 

the codes; since boundary conditions effect a relative difference of approximately 1% 

results varying by that amount can be considered accurate with respect to the algorithm. 

This gives perspectives as to how significant later variance between results is.  Once the 

codes were matched, the output thereof shown previously, no significant differences were 

present and the error can be attributed to other numerical analysis issues such as 

underflow and machine epsilon.  

 

Triangular Geometry 

In order to evaluate the effectiveness of the code and to determine the effect of trianglar 

compared to rectangular elements, the first comparison utilizes the same 2-D domain 

with differentiated Gaussian pulse applied on a free surface. The triangular elements are 

created by dividing a square cell in two along alternating diagonals as seen in Figure 13. 

Also shown are the relevant neighbors of an element. This allows for a grid dependent 

system that has uniform yet irregular geometry. Simple geometry is used to obtain all the 

cell properties and, to define the neighbor relationships, based on the grid relationship 

(i,j+1), (i,j-1), and (i+f(i,j),j) where: 
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This relationship is very dependent on this geometry and does not occur when the 

preprocessing is computed based on a meshed domain.  

 

Figure 13: Demonstration of the repeating geometry used to test the triangular cell case. 

 

Results from both cases (squares and triangles) are compared using Matlab by outputting 

a matrix and utilizing the imagesc command to plot the results. In order to compare 

values the triangular elements are averaged back into square cells allowing for the 

comparison of absolute and relative error. Figure 14 shows the results are very similar yet 

there is a noticeable difference. Some symmetry is lost, which was expected due to a loss 

of symmetry in the division of the domain; a visible difference can be seen in the 

expanded portion in the y displacement plots. 
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Figure 14: Comparison of displacements of square cells (top) to triangular cells (bottom) with respect to x 

direction (left) and y direction (right). 

 

Results were generated with a variety of loading cases to explore the effects of loading 

and resolution. The loading cases involved loading one triangular cell with the full load, 

splitting the load between two triangular cells that made up the corresponding square cell, 

or splitting the load between two adjacent triangular cells that were reflections of one 

another’s positions. All cases yielded equivalent results with differences being an order 

of magnitude smaller (Figure 15). When symmetrical loading was applied, symmetry in 

the domain was recovered. When the loading is applied to the two triangular cells that 

create the load square the best agreement occurs between those cases. Also of note is 

when the cells were created as rectangles and averaged back into squares. The differences 
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were on the same order of magnitude but the computational time step had to be lowered 

indicating that triangles are more stable with respect to the computational wave speed 

than to the propagated wave speed. 

 

 

Figure 15:  The absolute error on the order of magnitude of the output(top), the relative error from -100% 

to 100%(middle), the relative error from -1% to 1% (bottom). 

 

The absolute error shown in Figure 15 indicates very good agreement between the 

squares case and the triangles case, as does the relative error. The majority of the 
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difference is less than 1%, particularly in the area of the blast. Now it can clearly be seen 

that the largest discrepancies occur where values are transitioning though zero. This is not 

surprising since precision can affect big discrepancies in the small numbers, the need to 

average, and the loss of symmetry in both the loading and the domain. Larger error on the 

left side of the plots than on the right indicates a loss of symmetry. Interestingly, the 

greatest region of large difference is where the waveform has yet to propagate. Because 

the percent error was calculated by subtracting the averaged triangles from the square 

case, the plot indicates that the square case has higher values than the triangular case, 

indicating that the triangular case is closer to the true value. This is likely to be due to 

resolution rather than geometry. The most important thing is that the results show that 

there is adequate agreement with non-regular triangular cells and that the method could 

be adapted with confidence to an arbitrary mesh. Loading cases and resolution both show 

sensitivity, but this is something all models and modelers must take into account. 

 

CA versus Finite Element 

While the triangular case illustrated that object-oriented triangular cells gave accurate 

results, the case was still based on a domain being broken up into a uniform grid of cells. 

To look at arbitrarily shaped cells a COMSOL mesh was read into the CA code, which 

can handle arbitrary geometry because the object-oriented approach requires no 

dependence on grid location, as is depends instead on determining neighbors. COMSOL 

also generated the benchmark results, allowing the results to be based on the same mesh. 

CA computed and stored each element as a triangular cell along with its cell properties, 

references to neighboring cells, and distance to neighbors. Load cells were determined by 
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whether a point was found inside the boundaries of a cell; thus exact agreement with 

COMSOL cannot be obtained since it requires the load to be at a node. Note that while 

the cells collectively covered the domain, the domain parameters themselves were never 

stored. 

 

COMSOL and CA results were post-processed in Matlab. The centroid of the cell was 

output along with the x (or y) displacement, though Matlab requires a uniform mesh to 

plot a 3-D color mapping of the results. The uniform mesh was created using COMSOL 

dimensions and user defined spacing with linear interpolation of points. The actual data 

points were then also plotted in green. Loading parameters are given in Table 1 for both 

harmonic and boundary loading.  

 

Table 1: Loading parameters for COMSOL vs. CA comparisons  

Loading parameters Harmonic Loading Boundary Loading  

E 200 2e8 

ν .25 .33 

ρ 4000 7850 

load location middle of domain (0,-2.5) left boundary (θ = π) 

load 100 sin(.6*t) σ = 1000  

time of comparison t = 16 t = .02 

 

Harmonic Loading 

There is good agreement in shape and magnitude shown in Figure 16 as values from 

COMSOL are .0712 m (max) and -.0713 m (min), while CA yields .0721 m and -.0733 
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m. The relative difference in the results is 2.81%. There is a very minor loss of symmetry 

due in large part to the point loading. COMSOL has improved symmetry but also has 

many more degrees of freedom for which it solves: 85546 compared to the 42472 

elements used in CA, double the amount of precision. 

 

 

Figure 16: Visual comparisons of COMSOL FE (left) vs. CA (right) for harmonic middle of domain point 

load showing three different orientations of the output. 
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Initial Boundary Stress Response 

For the boundary traction load case a rectangular domain with a circular hole was used. 

This allows for comparison of how CA solves irregular geometries which require an 

irregular mesh and thus an arbitrary rule set. The same loading condition can be set in 

both COMSOL and CA and is applied at the boundary. Opposite the loaded boundary is a 

fixed boundary with all other boundaries being free. The mesh size used was 1010 

elements which corresponds to 4244 degrees of freedom that COMSOL solves for. 

 

Plots of the results shown in Figure 17 illustrate very good agreement between CA and 

COMSOL results. Comparisons of the maximum values, 1.518 e-4 m for COMSOL and 

1.515e-4 m for CA, yield less than 1% relative difference. The slope of the plot and the 

variance in the displacement show very good agreement. Of primary interest is the area 

around the hole, since uniform grid analysis does not allow for that shape. Due to the 

more complex geometry there is a gradual increase in resolution, which is also not 

something that can be done readily with a grid based scheme. However, it can be seen 

that CA does a good job of modeling this with arbitrary geometry. Plots with meshes of 

varying degrees were also compared, but due to the simplicity of the load case little 

difference was seen. The most apparent difference is the number of data points solved 

seen; COMSOL, in addition to solving for more degrees of freedom, also interpolates 

values for plotting purposes, so it outputs approximately 8x the number of data points.  
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Figure 17: Views of boundary stress response at t= 0.02 for COMSOL FE (left) and CA (right) 

 

Further discussion of CA vs. COMSOL 

The comparisons of the two methods yielded favorable results and brought to light some 

additional considerations including the role of numerical damping in the system, the 

regularity of the mesh, and the handling of sharp discontinuities. 
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For stability purposes COMSOL includes some algorithmic damping; this can be 

adjusted by the user. Since there was no damping in the CA algorithm, material damping 

or otherwise, damping had to be adjusted in COMSOL. Even with material damping 

turned off COMSOL includes some algorithmic damping for stability purposes; this can 

also be adjusted by the user. The default value is set so that when working with the wave 

equation the algorithm is unconditionally stable. A finer time step and higher degree of 

the interpolating polynomial will decrease the effect of numerical damping.  

 

Figure 18: CA data points superimposed over COMSOL FE mesh with numerical damping (left) without  

numerical damping (right) for both harmonic (above) and boundary loading (below) 

 

The comparison in Figure 18 is with CA data points superimposed over a colored mesh 

based on COMSOL data, specifically to compare CA with the algorithmic damping in 
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COMSOL unadjusted. As can be seen the damping has a significant effect on the 

solution. The shape of the response isn’t affected in the harmonic case but a large 

difference in the magnitude is seen. This visualization also helps to indicate the 

agreement of the two methods when damping isn’t present. For the boundary loading 

case in addition to the magnitude, there is a difference in shape. Algorithmic damping 

indicates the end experiences uniform displacement, whereas with less damping more 

variance is present in the end. CA and COMSOL show good agreement with respect to 

displacement along the domain as well. This did cause a bit of instability in COMSOL. 

For the same resolution in time stepping the finest mesh COMSOL allows in the 

harmonic loading case began to exhibit some instability and a less refined mesh had to be 

used in the boundary loading case. While an in depth stability analysis was not performed 

for CA, and this was deliberately forcing COMSOL to allow the likelihood of instability, 

this result does indicate that CA has the potential to be as stable as certain finite element 

methods with respect to the wave equation. 

 

Another thing to consider is the regularity of the mesh itself, which is illustrated in Figure 

19. The green dots indicate cell centroids, and the squares are the Matlab-generated 

regular mesh. COMSOL solves using an interpolation scheme which benefits from 

regularity and uniform elements but does not require them. CA has been shown to have 

improved results with more regularity in its elements. The red ovals in Figure 19 indicate 

areas with a low concentration of centroids, and the blue ovals indicate high 

concentrations. Many squares have three to four centroids per location, while other 

squares have zero to one. The mesh is perfectly regular, while the dispersion of centroids 

is not. The symmetry and accuracy of the model would improve with an improved 
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meshing algorithm that could enforce more regularity in the cell geometry. Even with a 

non ideal mesh, CA exhibits very good performance with good agreement while having 

less resolution and simpler algorithms than COMSOL. 

 

Figure 19: Expanded version of the centroids of the elements compared with a regular mesh created by 

Matlab. 

  

 

The other type of boundary condition that can be applied is displacement. This differs 

greatly in that now a sharp discontinuity occurs at the boundaries. It can be argued that 

this is an unnatural application, with one end starting out at unit displacement while 

points immediately adjacent start out at zero. However, this application is also 

representative of how wave propagation works, in that a particle will have become part of 

a wave yet a neighbor particle will experience no displacement at all until the wave front 

has reached it. This is the problem with interpolating wave propagation as it anticipates 

the wave and does not allow for discontinuities across the domain. 
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The loading parameters used to generate the results in these figures are the same as those 

used in the initial stress boundary condition with the exception of the loading, which is 

changed to x = 1 (unit displacement). Several time steps were looked at, including the 

first time step at t = .0001 seconds shown in Figure 20. COMSOL shows a large negative 

value, which intuitively is incorrect since a positive displacement will not yield a 

negative displacement immediately next to it. CA does not yield negative values since the 

computation does not rely on smoothness; instead it can be considered as a piecewise 

continuous algorithm.   

 

Further analysis shows that the negative values that occur in COMSOL are not uniquely 

due to interpolation of data points as illustrated in Figure 20 during later time steps. At 

time .008 negative values are still visible. The shapes of the above waves differ slightly 

since in this case the numerical damping was not minimized in order to maintain stability; 

the complexity of the plot is due to the impulse of the excitation exciting all frequencies. 

The results indicate that the CA approach is able to handle at once the discontinuities of 

wave propagation without the ringing that occurs in other methods and the complex 

geometry that requires a non-uniform mesh. This occurrence of not being able to handle 

sharp discontinuities without overshoot is known as Gibbs phenomenon and is a common 

problem in FE modeling especially with wave propagation. While other results show 

good agreement between CA and other solving tools Figure 20 demonstrates why 

preference would be given to the CA method. This is again with fewer degrees of 

freedom than solved for with COMSOL.  
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Figure 20: Unit boundary displacement response from COMSOL FE (left) and CA (right) at t = .0001 s 

(top), t = .0008 s (middle), t = .008 s (bottom). 

 

While COMSOL is just one of many FE codes the results do indicate favorable results 

from CA. Given that the method was run on a mesh created for use with a FE method, 

solving for fewer degrees of freedom, it produced comparable results without the use of 

algorithmic damping and avoided errors resulting from Gibbs phenomenon; not universal 

problems in FE but common ones. 
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CHAPTER 4 

CONCLUSIONS 

 

The CA method is an extremely viable and adaptable method for analyzing 

elastodynamics. Elements work well as a cell class in OO programming that allows for 

the storing of the local cells’ state and no global domain parameters. OO implementation 

also makes it possible to adapt to arbitrary geometries and non-uniform elements that are 

not grid-dependent using the formulations and equations derived for irregular cell shapes. 

The more general equations also recover perfectly the formulation for rectangular shapes. 

When the domain was broken up into triangular shapes the results were on the order of 

1% relative error with only slight loss of symmetry due to geometry. 

 

When compared to COMSOL, the CA implementation was able to use the same mesh 

and obtain favorable results with less complex equations and fewer degrees of freedom. 

The preliminary qualitative comparison indicates that both the harmonic load case and 

the applied boundary stress yield results that agree in shape and magnitude. This indicates 

correct formulation of the domain cell and properly applied loads at the boundaries. 

Interpolation is overcome by an increase in resolution, and symmetry is recovered. This 

translates to improved response regarding discontinuities inherent in wave propagation. 

CA does not exhibit the Gibbs phenomenon for suddenly applied displacements and does 

not anticipate the waves like interpolation. The accuracy of the results coupled with the 

efficiency available through parallelization and adaptability of the formulation to 
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arbitrary geometries and possible multi-resolution domains makes CA an attractive 

option as a computational solver in the realm of elastodynamics. 

Future work 

To further the utility and application of the CA method work could be done to make the 

code able to model multi resolution, incorporate fatigue, fracture including crack growth, 

and nonlinearities. Also within the scope of the work would be to include CA code to 

solve fluid dynamics so that a complex system involving fluid-structure interaction could 

be solved via the running of one code. This could easily be implemented via boundary 

cells and boundary cell interactions. Also possible is expanding the code to three 

dimensional capabilities.  
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APPENDIX A 

RECOVERING OF GRID NOTATION 

The following is a face by face analysis deriving the force equations when the rule set for 

arbitrary geometry is applied to a square index notation. 
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APPENDIX B 

PSEUDOCODE 

Key:     
BOLD CAPS  class 

�   calls a method from same class 

� calls method from a different class 

-  new method 

CAPS programming call out(i.e. for, if, else) 

() what is passed to the method 

CELL  

Stores all cell parameters (ID, updated, λ, µ, ρ, area, width, previous and new 

displacement, previous and new Velocity, stress, angles, centroid, verticies, face 

length, neighbors, r values). 

- step(  ∆t, (and external force) ) 

�   calculateNeigborForces() 

IF applicable adds in external force 

vn = vp + F/ρA∆t 

dn = dp + v/∆t 

updated = true 

- buffer() 

vp = vn              Switches old and new displacements 

dp = dn  

updated = false 
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- calculateTotalNeighborForces() 

IF: neighbor is updated 

σt = - σt 

σn = - σn 

ELSE: performs stress calc found in paper (obtains neighbors displacements, 

rotates them, calculates strains, stresses, and in turn forces) 

- get/set functions for parameters() 

 

DIRICHLET BC extends CELL 

 Stress set during initialization 

 Updated always = true 

- step() override 

�   calculateNewDisplacementAndVelocity() 

- buffer() override 

same except updated = true 

- calculateNewDisplacementAndVelocity() 

performs update calculation set forth in boundary discussion 

 

NEUMANN BC extends CELL 

 Displacement set on initialization 

- step() override 

does nothing (displacement not dependent on neighbors never calculates or 

stores stress) 
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TRIANGULAR CELL extends CELL 

 Restricts cells to three faces (all parameter matrices are sized accordingly) 

 

MESH INPUT class 

Material parameters λ, µ, ρ 

 loadCellIndex 

 SetupList  

 filename 

- setCellList() 

�   comsolMeshFileReader () 

�   createTriangularCellElements () 

�   determineLoadCell () 

�   writeBoundaryVisualization () 

return SetupList 

- getLoadCellIndex() 

returns loadCellIndex 

- comsolMeshFileReader() 

open “filename”.mphtxt 

parses file to get node matrix and element matrix 

- createTriangularCellElements () 

FOR: each element 

 gets nodal information 

 using nodal information find centroid, area, �   faceAngles (), facelengths 
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 sets geometry and cell properties λ, µ, ρ 

 adds Cell to SetupList 

�   determineNeighborsAndBoundaryConditions () 

�   setupNeighbors () 

�   determineRvalues () 

- calculateFaceAngles () 

calculates face angles from centroid and node information 

- determineNeighborsandBoundaryConditions () 

For: each element 

sorts through element matrix and adds as a neighbor any cell that shares 2 

nodes 

IF no cell shares 2 nodes �   addBoundaryCell 

- addBoundaryCell() 

adds a cell based on certain parameters specified by user 

� addNeumann (ux, uy)  

-or- 

�   addDirichlet (σt, σn) 

- addNeumann (ux, uy) 

creates and adds a equilateral triangle cell setting centroid, face angles, 

lengths, cell properties – stores displacement 

- addDirichlet (σt, σn) 

creates and adds a equilateral triangle cell setting centroid, face angles, 

lengths, cell properties – stores face stress 
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- inAmbit(targetValue, actualValue) 

method that allows for slight variations in computation of angles 

- setupNeighbors () 

passes a matrix of pointers that includes all cells needed for calculation 

obtained based on neighbor type and the order of face angles which is 

determined via �   sort () 

- sort () 

arranges cells in order based on face angle 

- next () 

0 to 1 to 2 to 0 (increments through the three neighbors in the forward 

direction used in sorting and setting up neighbors) 

- prev () 

2 to 1 to 0 to 2 (increments through the three neighbors in the reverse 

direction used in sorting and setting up neighbors) 

- determineRValues () 

sets R values based on cell centroids (now that pointer matrix has been stored) 

and primary neighbor cell type (boundary cells are treated special since they 

are created only as von Neumann neighbors and not Moore neighbors) 

- determineLoadCell () 

evaluates load cell based on if load point is within boundaries of cell 

- writeBoundaryVisualization () 
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creates a file for Matlab to which stores nodes, elements, and color scheme 

(which is based on cell type) and provides location of centroids for plotting. 

Visualization is commonly used for debugging 

- writeElementMatrix () 

writes nodes and elements for visualization based on displacement. (color 

scheme is created by simulation but element and node matrices are from setup) 

 

RUN_TRIANGLE_SIMULATION 

iteration, maxIterations, stepsPerUnitTime 

loadingParameters, cellList, loadCellIndex 

openOutputFiles 

- main() 

�   SetupCellArray () 

�   run() 

- setupCellArray() 

 � setCellList() from MESHINPUT  

 � getLoadCellIndex() from MESHINPUT 

- run() 

while < maxIterations 

 �   stepThroughCells () 

 �   updateValues () 

�   output() – at intervals specified by user 

�  closeFiles() 
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- stepThroughCells() 

FOR: every cell 

 IF: loaded 

  �   externalLoad() � step(∆t, externalLoad) from CELL  

 ELSE:  

  � step(∆t) from CELL 

- output() 

Various output profiles depending on user specified visualization 

�   mesh3D () 

�   surface() 

�   displacement () 

�   velocity() 

- surfacePlot() 

interprets displacements into color vizualization from Red (minimum) to 

Green (average) to Blue (maximum value) 

�   writeElementMatrix () from MESHINPUT 

RGB files 

- meshout3D() 

writes centroid and ux or uy to file 

- closeOutputFiles() 

Closes any output files 

- updateValues() 

�  buffer() from CELL 
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- externalLoad() 

calls specific loading scenario specified by user 

�   harmonic ()/gaussianPulse()/impulse() 

- impulseLoad() 

Force suddenly applied and removed at 1 or more iterations 

- differentiatedGaussianPulse() 

recreates load case in previous CA paper 

- harmonicPulse() 

Fx = sin(ωt/stepsPerUnitTime) 

- displacementWriter() 

time 

/x y

j

i u u

→ 
 
 
 ↓
 
 

 

writes a file with values separate in a matrix format for comparisions with 

previous grid based CA results 

- velocityWriter() 

same as above but with velocity 

- writeForcingProfile() 

Time 

Fx    Fy 
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