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Ĥ The estimation of the Hessian matrix inverse K−1.
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SUMMARY

The function of a protein is largely dictated by its natural shape called the “na-

tive conformation.” Since the native conformation and the global minimum energy

configuration highly correlate, predicting this conformation is a global optimization

known as the “protein folding problem.” It is computationally intensive due to the

high-dimensional and complex energy landscape. Typical conformation algorithms

combine a probabilistic search with analytical optimization [56]. The analytical por-

tion typically takes longer than the probabilistic part since more function evaluations

are required, which are algorithm bottlenecks.

To reduce the computational cost, this research studies the effects of exponen-

tial energy landscaping (XEL) on three analytical optimization algorithms: New-

ton’s method, a quasi-Newton algorithm (QNA), and the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm. The XEL changes the heights and the depths of the ex-

trema but keeps their location the same, which eliminates the troublesome process of

remapping minima onto the original landscape. The Newton-XEL is found to have a

similar convergence property as Newton’s method by showing that their error residues

are of the same order. Found by observation, stability and convergence are improved

when the error residue is bounded. While XEL is found to have no effect on the sim-

ilarity of resulting configurations to the native conformation, results show that the

XEL can improve the speed in terms of average iterations in the QNA by 47% and in

the BFGS by 41%. In terms of the average score improvement, which indicates how

the energy of the resulting configuration is compared to that of the initial configura-

tion, the XEL can improve the quality of resulting configurations in the QNA by 12%

and in the BFGS by 10%. Since both results were not achieved simultaneously, the

xxiii



adaptive exponential energy landscaping (AXEL) is developed. The results lead to

the conclusion that a trade-off between quality and speed must be considered when

XEL is implemented. To improve speed by 15% to 47% and efficiency by 13% to

75%, XEL with n within 2−9–2−5 should be used and to improve quality by 4% to

7%, AXEL with Scheme E that keeps the error residue bounded should be used.
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CHAPTER I

INTRODUCTION

1.1 Motivation

The chemicals that play the primary role in performing, catalyzing, or supporting

the biological functions of organisms are proteins [35]. As researchers have known for

many years, the functionality of proteins is largely determined from their structural

conformations. For example, in the human immune system, an antibody has a shape

that only a certain antigen can fit. In drug design, the functions of new proteins

are traditionally determined by conducting numerous experimental trials. However,

if the protein conformation is known in advance the number of experimental trials

can be reduced by using computer simulation to determine substances whose shapes

may potentially react to the protein. This process could increase the success rate of

pharmaceutical trials.

Since the native conformation and the global minimum energy configuration highly

correlate, predicting the protein conformation is a global minimization problem. It is

a computationally intensive task due to the high-dimensional and the complex energy

landscape. Because on average a protein molecule has several thousands atoms, it can

have several hundreds degrees of freedom even with a reduced model. This creates

the large energy landscape and an extremely intensive search is generally required.

Additionally, a very rough energy landscape also makes the minimization difficult

because of more local minima. With atomic energy associated to each atom pair, the

energy of the protein drastically varies as the protein configuration changes. In [11]

the protein conformation prediction process takes about 150 CPU days for each small

protein.
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1.2 Protein Structure

A protein molecule is a chain of amino acid units known as residues [36]. The sequence

of amino acids is called a protein sequence. Twenty types of amino acids are identified

by their side chains, indicated by Ri in Figure 1.1, which illustrates a series of four

residues. These side chains connect to alpha-carbon atoms of the amino acids and

have zero to four degrees of rotational freedom. The configurations of the side chains

depend on the values of their rotation angles, known as the Rotamer angles.

Figure 1.1: A series of three peptide planes.

Between the pairs of residues strong chemical bonds are formed between nitrogen

and carbon atoms called “peptide bonds.” Each of these bonds creates a relatively

rigid plane between two residues, called a “peptide plane.” The peptide plane consists

of alpha-carbon (Cα), carbon (C), and oxygen (O) atoms from one residue and ni-

trogen (N), hydrogen (H), and alpha-carbon atoms from another. Between each pair

of peptide planes, the molecule can rotate along the N–Cα and Cα–C bonds. The

values of these rotation angles, φ and ψ, called “dihedral angles,” largely determine

the shape of a protein.
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1.3 Protein Folding Process

Protein folding is the process by which a protein chain transforms into a stable con-

formation [34, 35, 36]. The process often starts when a protein chain is stretched out

and non-functional, in a “de-natured” state. The protein is unstable and will natu-

rally fold to obtain the stable “native state” due to atomic forces. In the native state

the protein chain is naturally clustered and has minimum potential energy. Some

proteins can have more than one native conformation in different environments or

solvents. However, when the environmental properties are constant the protein al-

ways folds into one native conformation. Interestingly, the folding path by which this

conformation is reached does not have a monotonically-decreasing potential energy.

Instead, the protein often encounters energetic barriers before it reaches the confor-

mation that has minimum potential energy. In overcoming these energy barriers the

protein has to fold into a higher energy configuration and move against atomic forces.

This motion is a result of non-zero kinetic energy occurring as a consequence of a

decrease in potential energy. Researchers believe that these energy barriers separate

the native state from the de-natured state and prevent the protein from unfolding in

response to small disturbances [28].

1.4 Methods of Protein Conformation Prediction

Also known as the protein folding problem, the protein conformation prediction prob-

lem is the challenge of determining the native conformation of a new protein. This

problem is approached with several methods of conformation prediction, including

molecular dynamics simulation and optimization.

1.4.1 Molecular Dynamics

The effort to determine the conformation of the native state has involved the use of

molecular dynamics (MD) simulation [14] which simulates the motion of a molecule.
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The time step of an accurate simulation must be very small, typically on the order

of femtoseconds (10−15 s). In contrast, the folding process takes a much longer time,

typically on the order of milliseconds or seconds. Therefore, the MD simulations are

computationally expensive [60]. This technique can locate the final conformation for

a very small molecule but it is inefficient for larger proteins [7]. Since the smallest

amino acid has 10 atoms and roughly 25 degrees of freedom that allow bond stretching,

angle bending, and torsional motions, an atomic-level model of a small protein with

100 residues approximately contains at least 2,500 degrees of freedom. As a result,

dynamic simulation is impractical because of time constraints. Many studies address

this problem through reducing the degrees of freedom of the protein molecule model

[53, 54]. Since the motions of atoms on a peptide plane relative to one another are

very small, one way to significantly reduce the degrees of freedom is to treat the

peptide planes as rigid bodies. This model only allows motions through changes in

the dihedral and the Rotamer angles. Because each residue has two dihedral angles,

the main chain of an n-residue protein model has 2n degrees of freedom. Although this

reduction of computational costs could be an order of magnitude, the MD simulation

is still not practical for solving the folding problem of large proteins.

Another inaccuracy arises from the empirical multidimensional energy function,

also called a force field model, which is used to calculate atomic energies and forces.

Expressing the potential energies of a protein molecule as a function of the molecular

structure, the force field model yields a reduction of the computational costs compared

to a quantum mechanics approach but is less accurate [44].

1.4.2 Robot Model

In addition to computational cost reduction, another advantage of modeling a mol-

ecule as a chain of rigid bodies is that robotic kinematics, dynamics, and controls

methods can be applied if the protein molecule is considered as a nanomanipulator
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[3, 34, 36, 61]. A serial manipulator has revolute-joint angles and rigid links corre-

sponding to dihedral angles and peptide planes respectively. An example of robotic

studies is the work by Sharma et al. [61] who identify the protein reachable workspace

using protein kinematics. However, an application of this workspace analysis may not

be available in the near future because independently manipulating each individual

joint of the molecule is not yet possible. Other studies [29, 30, 71, 75] present more

sophisticated models that reduce the degrees of freedom further by identifying the

rigid parts of the known protein chain due to constraints such as covalent and hydro-

gen bonds and only allow motions at the flexible parts of the chain. These techniques

are helpful for the study of the operational protein motion such as binding, but they

do not help the study of the folding process from the de-natured state because the

constraints are unknown.

1.4.3 Optimization

Since at the native state proteins are in a minimum energy configuration, most re-

search on protein conformation prediction uses optimization algorithms that search

the conformational space to locate the conformation with the minimum energy. The

current statistics on the PDB data show that on average a protein has 587 residues

and the maximum protein size is 18,540 residues [1]. In this high-dimensional space,

an extremely intensive search is therefore required. Additionally, the difficulties of

the search arise due to the imprecise and highly complex force field model.

Although there are numerous algorithms for the protein-folding problem, all are

variations of an analytical or statistical optimization algorithm, or a combination

of both. The most popular statistical optimization algorithm used in the protein-

folding problem is likely the Monte Carlo (MC) method [44], which is the basis of

most probabilistic searches [56]. MC simulation generates a collection of statistical

configurations (or decoys) by adding random changes to the current configuration
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and accepting or rejecting them under the Metropolis criterion [44]. For a large

protein, the MC algorithm can be inefficient because most generated configurations

will be rejected. Therefore, a combination of MC and other optimization techniques is

generally used in practice. For example, the Rosetta software [56], which is discussed

in more detail in Chapter 5, randomly chooses pre-generated changes that are more

energetically suitable for parts of the protein sequence to increase the acceptance rate.

One example of an analytical optimization algorithm, the method of steepest de-

scent (SD), that is used in conjunction with the robotic model of the protein molecule

is the work by Kazerounian et al. [34]. Noting that the minimum-energy conforma-

tion has zero torques about the dihedral angle axes, they developed the successive

kineto-static compliance (SKSC) method which is a simple control law that alters

the protein configuration until zero torques are reached. The algorithm is capable of

finding a configuration with joint torques close to zero; however, this configuration

does not guarantee the native state but rather a local minimum at which the torques

are also zero. Due to the complexity of the energy landscape, this criterion is not

sufficient for finding the global minimum energy. Their extended work [9] modifies the

energy landscape by using segmental manipulation and progressive side-chain scaling.

Although the new algorithm yields better results, the final configurations are still not

in the native configuration.

1.5 Bottleneck

Analytical optimization algorithms can locate a local solution faster than probabilis-

tic optimization algorithms, but the analytical optimization algorithms by themselves

are unsuccessful in a global search because of the high-dimensional and complex en-

ergy landscape. Therefore, most protein conformation prediction algorithms combine

a probabilistic search and analytical optimization algorithms [56]. The combined

algorithms probabilistically generate several initial configurations (decoys) for local
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searching so to cover more areas in the energy landscape. Each local search progresses

by slightly changing the shape of each decoy to yield an initial guess and finds a lo-

cal minimum near the perturbed configuration. Then the resulting configuration is

perturbed again to yield another initial guess. This cycle of perturbation and mini-

mization is usually repeated hundreds of times and is called “refinement”. There are

usually several rounds of refinement and only most promising decoys are refined in

further rounds.

Because more function evaluations are required, the analytical optimization algo-

rithms usually take longer than the probabilistic portion and they become bottlenecks

in the protein conformation prediction process. The efficiency of the analytical min-

imization becomes more problematic due to the following reasons: 1) high degrees

of freedom in the protein molecule yields a high-dimensional minimization problem

which is difficult and time consuming, 2) the refinement process involves several hun-

dreds cycles of minimizations, and 3) to cover a large search area several thousands

of decoys are needed even for a small protein and these decoys go through refinement.

As the protein gets larger this problem gets magnified. To put it into perspective,

in a high-resolution structure prediction [11] 20,000 to 30,000 decoys are generated

for each small protein with 85 or fewer residues and the entire process for each pro-

tein takes 150 CPU days. To reduce the computational cost, the efficiency of the

analytical algorithms needs to be addressed.

1.6 Contribution

This work investigates the effects of the method of energy landscaping on three an-

alytical algorithms: Newton’s method, a quasi-Newton algorithm (QNA) and the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The investigated landscap-

ing, called the method of Exponential Energy Landscaping (XEL) [58], changes the

7



heights and the depths of the extrema but keeps their location the same, which elim-

inates the troublesome process of remapping minima onto the original landscape.

The simulation results show that in general the method of XEL uniformly affects

the performance of all investigated algorithms. Since different degrees of the energy

landscape modification yield different performances, an adaptively modified energy

landscape (AXEL) scheme has been developed to dynamically modify the energy land-

scape based on the current performance of the algorithm. For minimization on some

of the AXEL, varying-n XEL algorithms have been developed, taking into account

the effect of the changing energy landscape. The effects of AXEL schemes on the XEL

and the varying-n XEL variations of the three above algorithms are investigated.

The goal of this work is to improve the speed and quality of the analytical op-

timization algorithms using an exponential energy landscaping. With this energy

landscaping, the computational cost can be reduced by up to 47% and a protein con-

formation with up to 30% lower energy can be located. Although both results were

not achieved simultaneously, the exponential energy landscaping can speed up the

prediction process in balancing quality of resulting configurations and computational

cost.

1.7 Organization

This thesis is organized into six chapters. Chapter I discusses the motivation of the re-

search, introduces the protein structure and the protein folding problem, and briefly

reviews the methods of protein conformation prediction. Chapter II presents the

literature review of several aspects in the protein conformation prediction problem,

such as problem formulation and algorithms. Chapter III discusses the theoretical

background for two analytical optimization algorithms, Newton’s method and quasi-

Newton methods, and their applications to the protein folding problem. Chapter

IV presents and discusses the method of exponential energy landscaping and the
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adaptively modified energy landscape. Chapter V presents simulation results, ob-

servations, and discussions. Lastly, Chapter VI presents a conclusion and discusses

future work.
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CHAPTER II

LITERATURE REVIEW

Protein analysis can be basically categorized into two problems. The first is to identify

the sequence of amino acids in a protein when the conformation is known [82], and

the second is to identify the conformation of a protein when the sequence is known.

Both conformation and sequence predictions are studied in single proteins as well as

in protein-protein interactions.

The methods of predicting protein conformation are classified into three groups:

comparative modeling, fold recognition, and ab initio methods. Both comparative

modeling and fold recognition methods assume that the conformation of an unknown

protein is comparable to that of a known protein with a similar sequence. Utilizing the

protein database (PDB), which contains comprehensive data of studied proteins, both

methods compare the sequence of the unknown to that of known proteins. Because the

comparative modeling applies homology to identify sequence similarity, the predicted

conformation is more accurate if the homologous relationship is established. Rating

the compatibility of the unknown protein to known structures, the fold recognition

methods are more applicable if the sequence similarity can not be established.

Unlike the other two methods, the ab initio method does not use conformational

information from the PDB but uses a force field model which has parameters empir-

ically developed from the PDB. The ab initio method usually determines conforma-

tion using a molecular dynamic simulation or an optimization search. To improve the

performance of dynamic simulations and optimization approaches, researchers have

focused on improving both the molecular and energy models and the dynamics and

optimization algorithms.
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This literature review is organized as follows: Sections 2.1 and 2.2 discuss work on

models, namely energy and reduced molecular models respectively. Sections 2.3 and

2.4 discuss work on conformation prediction methods, namely molecular dynamics and

optimizations respectively. Then Section 2.5 discusses work on energy landscaping

that improves optimization, and lastly Section 2.6 concludes the literature review.

2.1 Energy Models

In addition to the molecular models, a protein simulation requires an energy model

that describes potential energies between atoms. These energies are important for

evaluating a protein configuration in the protein prediction process. Moreover, atomic

forces can be determined from the negative of energy gradients.

Two basic energy modeling approaches are physics based and knowledge based

[65]. While the physics-based approaches are governed by the laws of physics, the

knowledge-based approaches use potential energies with sequence-independent and

sequence-specific terms that are empirically derived from the protein structures in the

PDB library. In protein conformation prediction the knowledge-based approaches are

more successful than the physics-based approaches [65] as they can obtain a configura-

tion closer to the native state; however, the resulting configurations are not necessary

the native conformation. Research on energy-landscape sculpting and an improved

structure selection has produced encouraging results, but further improvements are

still needed [65].

2.1.1 Force Field Model

Molecular chemists have modeled intra-molecular reactions with force field models,

which govern the dynamic motion of the folding process in order to calculate the

potential energy and internal forces of the protein. Expressing the potential ener-

gies of a protein molecule as functions of the molecular structure, the force field

model reduces the computational costs over a quantum mechanics approach but is
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less accurate [44]. In attempts to describe the quantum mechanics of a molecule,

parameterized functions in the force field model are empirically found. Although the

force field model can sometimes yield results that are as accurate as those obtained

from quantum mechanics, it cannot produce accurate values for properties affected

by electronic distribution in the molecule, such as electrostatic energy.

Typically force field models fall into two types, all-atom and coarse-grained mod-

els. The all-atom force field model describes potential energies that include bond,

bending (bond angle), torsion, van der Waals, and electrostatic energies. Since at

least one of these energies occurs between every pair of atoms, this model is used

with a molecular model that explicitly describes the positions of most atoms. In

contrast, when the molecular model has several atoms lumped into larger elements

and when atom positions are not explicit, a coarse-grained force field model is used.

This model describes the potential energies between the larger elements and these

terms are different from the energy terms in the all-atom force field model. Moreover,

parameters in individual functions describing each potential energy in one all-atom

force field model are not transferable to another force field model because the param-

eterization of all potential energies in a model are dependent [60].

The most widely accepted all-atom force field models are those of Charmm [12] and

Amber [16] which are frequently used as bases for other advanced models. Improving

the energy calculation for large molecules, a modified force field [20] reduces the

number of atoms by replacing aliphatic and aromatic CH3, CH2, and CH groups with

several types of single, united atoms. Similarly, the new-generation Amber united-

atom force field model [77] reduces the force calculations in dynamic simulations by

assuming that the positions of hydrogen atoms bonded to an aliphatic carbon atom are

the same as the position of the carbon atom. Further improvement can be obtained

using the coarse-grained molecular model, which reduces the degrees of freedom of

a protein more than the united-atom model. However, the coarse-grained force field
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model for one type of element is not transferable to another. While all-atom force

field models can be used with any molecular models in which explicit atom positions

can be found, the coarse-grained force field models do not have the same flexibility.

2.2 Reduced Molecular Models

2.2.1 HP Model

To reduce the complexity of the protein-analysis problem, researchers generally use a

reduced protein model. For example, sequence identification performed by searching

in a sequence space is a hard combinatorial optimization problem because its sequence

space has 20N possible sequences for a protein with N amino acids. Therefore, most

studies of this problem have been done with smaller search spaces using HP and

lattice models. The HP model reduces the sequential space by classifying amino acids

into only two groups, hydrophobic (H) and polar (P); a residue-level, self-avoiding,

compact lattice model reduces the conformation space by allowing a residue to have

at most three interactions with other residues for a 2D model and five interactions for

a 3D model [43]. The force model also becomes much simpler. However, even with

these models the combinatorial optimization search is difficult. Koh et al. [41, 42]

avoided this difficulty by defining a continuous state energy function of the simplified

protein so that a continuous optimization algorithm could be used. Besides sequence

identification, HP and lattice models are widely used in a conformation-identification

problem, such as protein folding [78]. However, they are not applicable to tertiary

structure identification because of their coarse resolution.

2.2.2 Residue-Level Models

The residue-level model is based on an assumption that the peptide planes are rigid.

Modeling a protein as a series of rigid bodies connected by revolute joints makes it

possible to use the kinematic model of a serial manipulator that is used in robotics

[36, 81]. For example, Kazerounian et al. explicitly described the kinematics of the

13



protein, including both a main chain and side chains [36], using the zero-reference

position notation [25, 26] which defines joint angles from a user-defined zero position.

This notation supposedly requires less computation than other notations. They have

proposed improved intrinsic molecular parameters, such as bond angles and lengths,

which are more suitable for the residue level rigid-chained protein model [69]. They

have also developed an inverse kinematics algorithm to calculate dihedral angles [68].

Their algorithm is compared with other algorithms by deriving atom coordinates

from the forward kinematics of their rigid-chain molecular model. However, since

other methods do not use the same molecular model to derive dihedral angles, this

comparison may be biased. Using one form of Denavit-Hartenberg parameter notation

in robotics and modeling larger atom clusters as rigid bodies, Zhang and Kavraki [81]

developed a method to derive a molecular conformation. Although this method is

supposedly fast, its advantage over the others is not clear because the study did not

directly compare the results using the same large clustered atom model.

Besides a reduction in the degrees of freedom, the residue-level model also reduces

computational cost by simplifying the force field models [36]. Because of the rigidity

assumption, bond lengths, bending angles, and torsion angles are assumed to be un-

changed. The Amber force field terms are reduced to van der Waals and electrostatic

energies because other energies are constant and they do not affect atomic forces.

The mathematical formulation of the Amber force field [34] is

Eij =
∑
vdW

(
Aij
R12
ij

− Bij

R6
ij

)
+
∑
elect

(
qiqj
εRij

)
(2.1)

where Eij is the potential energy between atoms i and j, A and B are experimentally

determined constants, Rij is the distance between the two atoms, qi and qj are the

charges on each atom, and ε is the dielectric constant.
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2.2.3 Macro-Level Models and Rigidity Analysis

While residue-level models greatly reduce the degrees of freedom of a protein chain,

macro-level models have been developed to further reduce the degrees of freedom of

a known protein. This reduction is done by identifying the rigid parts of the protein

chain using a rigidity or flexibility analysis. A simple method for determining rigid

clusters is to compare the different conformations of the same protein in the PDB

library. A rigid cluster is a region where the dihedral angles are the same in all

conformations. Using this method and a rigid-body-based model, Kim et al. [39]

generated a feasible path between two conformations. A more sophisticated rigidity

analysis uses a graph theoretical technique. Analyzing a molecule modeled as a

bar-joint network, Thorpe et al. [30, 71] used the “pebble game” to identify the

over- or under-constrained regions of a network that correspond to rigid and flexible

regions of the molecule. They have also developed the computer program FIRST

(Floppy Inclusion and Rigid Substructure Topography) [29], which identifies rigid

clusters and flexible substructures in macromolecules. After the rigid regions (called

“ghost templates”) are defined their new computational method FRODA (Framework

Rigidity Optimized Dynamic Algorithm) [75] can be used to dynamically determine

the protein motions. Although the rigidity analysis is a great tool to reduce the

computational time in simulations it requires information from the PDB.

2.3 Molecular Dynamics (MD)

2.3.1 Traditional Molecular Dynamics

Two common ab initio techniques for the protein-folding problem are the molecular

dynamics (MD) simulation and the optimization search. Although in theory MD

simulations can be used to locate the native state, they are typically used to study

detailed kinetics or dynamics of the protein folding mechanism [14]. The main limita-

tion of MD simulations for protein folding is the required computational power [7, 14].
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Since a typical MD simulation is done iteratively by computing the atomic forces on

each atom, the acceleration, and then the displacement numerous calculations are re-

quired for each iteration, even for a small protein. Moreover, another computational

problem is caused by the requirements of a small time step and a lengthy simula-

tion. Since the force functions are highly non-linear the time step of MD simulation

must be small, typically in fs for the constant-acceleration approximation between

increments to be accurate [60]. Because the protein-folding process usually takes a

relatively long time, typically in ms or s, the simulation of protein folding is nearly

impossible. Because of these limitations, most MD simulations of the folding process

are implemented in small fragments of protein molecules [14] and the MD simula-

tions of full-size proteins are generally used in studies of protein motions. Because

the MD simulation of the folding process of a full-size protein requires significant

computational time, it can not be done in a reasonable amount of time with current

computational power.

2.3.2 Internal Coordinates

By introducing internal coordinates, or configuration variables, many robotic dynam-

ics algorithms can be applied in order to reduce the computational cost in molecular

dynamics computations. As bond angles and lengths are fixed, the cost reduction

is due to the decreasing number of the degrees of freedom of a protein chain. Also

efficient forward dynamics algorithms [23, 24, 31, 53, 55] are already developed in

robotics. For example, a traditional inertia-matrix algorithm (IMA) solves an equa-

tion of motion, Hq̈ = τ−C, where H is a joint-space inertia matrix (JSIM), q̈ is a joint

acceleration vector, τ is a joint force vector, and C is a bias vector containing velocity

related terms. While an efficient method to calculate H, such as a composite-rigid-

body algorithm (CRBA), is available the IMA still has a computational complexity

of O(N3), of which N is the degrees of freedom of the protein molecule. A complexity
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of only O(N) can be achieved with an articulated-body algorithm (ABA) which de-

scribes an applied force as a linear function of an acceleration for an unconstrained or

floating chain of bodies. As a result, the CRBA becomes less efficient than the ABA,

when N > 9 [21, 24]. Another JSIM calculation in the IMA that is more efficient than

CRBA is a sparse factorization algorithm [23]. This exploits the sparsity of the JSIM

of a branched kinematic tree such as a protein structure and the fact that sparsity

and symmetry are preserved. Although the reduced complexity is between O(N) and

O(N3), the IMA is still less efficient than the ABA because the ABA can be applied

to a branched chain structure without increasing complexity. Another drawback of

the IMA is that the JSIM becomes ill-conditioned as N increases [22].

Jain et al. [31] suggested a fast recursive IMA for molecular dynamics simulations

called “Newton-Euler Inverse Mass Operator (NEIMO) dynamics.” Assuming that

the base of the molecule has six degrees of freedom, which is equivalent to floating,

NEIMO can be proved equivalent to the ABA using spatial operators [24, 31], which

has only O(N) complexity. In [47], NEIMO is implemented in several polypeptides

along with the cell multipole method (CMM). The CMM improves the computational

time of non-bonded interactions. By dividing the molecule into small cells, the al-

gorithm evaluates the non-bonded interactions only if the atoms are in the same or

adjacent cells; otherwise the interactions are estimated. The CMM is more accurate

than the cut-off method, in which the non-bonded interactions of distant atoms are

ignored. Both NEIMO and CMM reduce the computational time and increase the

simulation time step, but not significantly enough to solve the protein-folding prob-

lem in large proteins. Since proteins and their solvents in typical chemistry experi-

ments are in contact with a constant-temperature heat bath, [72] presents constant-

temperature constrained molecular dynamics simulated by solving NEIMO-Nosé and

NEIMO-Hoover equations. In [8], NEIMO is used to study the α-helix formation,

17



which provides some useful insight in protein folding. With a rigid-link method iden-

tical to NEIMO, Rapaport [53] also folds some α-helices. However, in addition to a

high-energy initial configuration, the simulated annealing technique [40] is used as the

temperature of the simulated system is reduced by velocity scaling. The simulated

annealing technique is explained in Section 2.4.2. Although this algorithm results in

a higher success rate of 85% compared to NEIMO, the torsional potential derived

from the native configuration of an α-helix may be a main contribution.

2.3.3 Normal Mode Analysis

Since the force field model requires a large number of computations, a normal mode

analysis (NMA) has been widely used to approximate interactions between atoms or

residues as the dynamics of a molecule can be represented by the sum of vibration

modes. The NMA assumes that point masses are restrained to Cα atoms at which the

side chains are located, and it models a protein molecule as a cluster of rigid bodies

connected by springs but not dampers. Although the real motion of the protein is

highly damped, the NMA has been widely used. Alexandrov et al. [2] have statisti-

cally analyzed the applicability of the NMA to protein-conformation prediction and

found little correlation between a single normal-mode or lowest-frequency vibration

and protein motion.

One type of the NMA is the elastic-network model in which all springs have

equal stiffness and only bodies within a cutoff distance are considered connected.

The work of Kim et al. [38] on C-alpha coarse-grained elastic network interpolation

shows a feasible path between two conformations. Changes between intermediate

conformations are chosen such that potential energy is minimized. An extension

of this work, rigid-cluster coarse-grained elastic network interpolation (ENI) [39],

uses a macro-level protein model whose clusters are formed by rigidly-attached point

masses. Since the number of rigid bodies in the protein chain decreases and because
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only six linear springs on each cluster are necessary to represent rigid-body motions,

the number of interactions significantly decreases. The hybrid ENI has rigid clusters

for the rigid parts of the chain and point masses on Cα atoms for fairly flexible parts.

Although various NMA models may prove useful in the simplification of the atomic

interactions they are not applicable to protein folding [2].

2.4 Optimizations

2.4.1 Classical Optimization Methods

Since the MD simulation cannot solve the protein-folding problem with currently

available computation resources, an optimization algorithm that searches for a min-

imum energy conformation is frequently used [60]. However, the performance of an

optimization algorithm greatly depends on the formulation details of the problem,

such as potential functions, the protein model, and the type of a protein, so a per-

formance comparison between algorithms is sometimes difficult. Although numerous

algorithms were identified for the protein-folding problem, all are variations of an

analytical or statistical optimization algorithm, or a combination of both.

Examples of analytical optimization algorithms are a gradient method called “the

method of steepest descent (SD),” Newton’s method, and Newton-based methods.

While the SD is simple to implement and not computationally expensive its con-

vergence is slow. Newton’s method provides a quadratic convergence rate which is

superior to the linear rate found in the SD method [18, 49]. However, the second

derivative of the potential energy can be computationally expensive for the all-atom

model and in many cases it may not be available [60]. Both SD and Newton’s method

are more robust when a one-dimensional optimization called a “line search” (described

below) is implemented, but the computation time can significantly increase. A line

search is not necessary in some methods such as the quasi-Newton (QN), the non-

linear conjugate gradient (CG), the truncated Newton (TN), and the traditional SD
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methods because they are designed to provide a proper step size. QN methods such

as the Davidon-Fletcher-Powell (DFP) and the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) methods, except for the limited-memory type, require extensive memory

storage. This problem does not occur in the CG and TN methods; however, the

CG method converges more slowly than the QN method and the implementation

of the TN method is more complex. Compared with the other methods mentioned

above Newton’s method is the most reliable with the fastest convergence despite its

expensive computation.

2.4.1.1 Line Search

After a descent direction in which the cost function locally decreases is determined

by the SD, the Newton’s, or the QN methods, a line search along this direction de-

termines a scalar multiplier here called a “line search gain” that locally minimizes

the cost function [6, 60]. An example of a very simple line search is a bracketing

algorithm [6] that advances the search step with a varying or a constant interval in

monotonically decreasing direction until the function no longer decreases. Unlike the

bracketing algorithm that expands the search interval, interval reduction methods,

such as the Fibonacci and the golden section methods, reduce the search interval

until a stopping criterion is met. Requiring a minimum inside an initial search in-

terval, these algorithms ensure that reduced intervals contain a minimum as well.

The Fibonacci and the golden section methods reduce the interval such that a ratio

between consecutive intervals equal to the ratio between two consecutive Fibonacci

numbers or the golden ratio, respectively. A more robust algorithm is an integration

of a bracketing algorithm and the golden section method. With a bracketing tech-

nique this integrated algorithm identifies an initial interval by using the golden ratio

to determine an advancing step and the interval is reduced by the golden section

method. Because of a slow convergence this algorithm requires a large number of
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function evaluations and can be computationally expensive. To improve efficiency it

is combined with a polynomial fit-sectioning algorithm. For example, Brent’s method

performs quadratic fitting on a bracketed interval and determines a minimum from

the obtained quadratic equation when applicable and it uses golden section method

otherwise. Less frequently used than a quadratic fit, a cubic and a higher polyno-

mial fits require more points or derivative information so they are inefficient if not

inapplicable when the derivative along the descent direction is unavailable.

2.4.2 Monte Carlo

One of the most popular statistical optimization algorithms used in the protein-

folding problem is the Monte Carlo (MC) algorithm [44]. MC simulation generates

statistical ensembles (or configurations) by adding random changes to the current

position. These changes are between the maximum displacements ±δrmax and the

acceptance of the new configuration is determined by the Metropolis criterion [48].

If the new configuration has a lower potential energy it will be accepted as a new

current position. If it has a higher potential energy it will be rejected except when

the Boltzmann factor is greater than or equal to a random number between 0 and

1. The Boltzmann factor is defined as exp (−∆E/kBT ), where ∆E is the energy

difference, kB is the Boltzmann constant, and T is the temperature. This exception

allows the higher-energy ensembles to be accepted at some probability. The smaller

the value of ∆E, the higher the probability of acceptance. As the Boltzmann factor

determines the probability of an ensemble, the δrmax controls the rate of change in

the ensemble generation. When δrmax is small, the simulation will generate many

acceptable ensembles but they may not be far away from the initial position. When

δrmax is large, the simulation will generate very different ensembles but most of them

may be rejected. Therefore, the difficulty of the MC algorithm is finding an efficient

value of δrmax for each protein.
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As most generated ensembles will be rejected, especially for a large protein, the

MC algorithm can be inefficient. Therefore, a combination of MC and other tech-

niques is generally used in practice. For example, a hybrid MC algorithm [60] uses

MD to bias the ensemble generation and the MC criterion to accept or reject the new

ensemble. Another example [44] is MC algorithm with simulated-annealing technique

[40], inspired by manufacturing process that strengthens materials. The simulated-

annealing process for conformation prediction starts at a high temperature and ends

at absolute zero. While also applicable to MD and MC with other algorithms, this

technique uses MC algorithm to find a thermal equilibrium configuration at each tem-

perature. Once the temperature drops to the absolute zero, the molecule should be at

the global minimum energy conformation. However, this conformation is not guaran-

teed because at each temperature step thermal equilibrium must be achieved and an

infinite number of steps are required. Therefore, in practice several different runs are

done to increase the probability of finding the global minimum energy conformation.

2.4.3 De Novo Methods

Compared to ab initio techniques for solving the protein-folding problem de Novo,

or knowledge-based methods, that use information from the PDB have better perfor-

mance. Here two representative examples are discussed.

2.4.3.1 TASSER

Zhang and Skolnick [84, 83, 85] reduce the degrees of freedom of a protein by struc-

ture alignment that utilizes the PDB to identify templates or secondary structures

of a protein. A part of an unknown protein with a 35% sequence identity to a sec-

ondary structure of a known protein in the PDB yields a template which assumes the

shape of that structure. Then several of these templates construct an initial template

alignment that was used as an initial structure of a conformation search done by MC

sampling. The internal configurations of the templates are kept constant while the
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configuration of the residues in the gapped region (between templates) is generated

using the ab initio lattice modeling approach. A representative benchmark study [85]

on 1,489 single-domain, medium-size proteins in the PDB with 41 to 200 amino acids

shows that a template with the root-mean-square deviation (RMSD) from the native

state of 2.5 Å can always be found. While the average RMSD value of the full-length

models is 2.25 Å, 97% of them have RMSD values below 4 Å. Another benchmark

study [84] is on 745 medium-to-large-size proteins with 201 to 300 residues. The re-

sults show that the templates of 365 cases have an RMSD value of 6.5 Å or less with

70% alignment coverage. Furthermore, 408 of the full-length models have the RMSD

values lower than 6.5 Å.

2.4.3.2 Rosetta

Rosetta [11, 56] predicts the protein conformation using a de Novo method that con-

structs several configurations called “decoys” from pre-generated fragments and then

a refinement protocol optimizes the predicted conformation. As an energy function,

Rosetta uses a potential energy surface (PES) called “scoring function” which is de-

rived based on a Bayesian separation of the total energy [63, 64]. Using the Monte

Carlo-minimization approach [46], also called “basin-hopping” [73], the refinement

protocol applies a series of random changes and minimization to each decoy. More

details about this software and its method are discussed in Chapter 5. Bradley et

al. [11] achieves high-resolution structure prediction for sixteen small proteins which

have less than 85 residues. Five proteins have Cα-RMSD less than 1.5 Å and eight

proteins have 1.5 to 5.0 Å but no native side-chain packing. Since 20,000 to 30,000

generated decoys are necessary for each protein, this process is very computationally

expensive, as it takes about 150 CPU days per molecule. The improvement in the

efficiency of the refinement protocol can significantly impact the performance of the

method and reduce the computational time.
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2.4.4 Non-Traditional Optimization

Besides the family of Newton’s methods and MC algorithms, many studies have used

non-traditional approaches. For example, Yoon [78] applied integer programming

and constraint programming models to protein folding using HP and lattice models.

Although his models are not fast enough to be used in practice, they showed supe-

riority over comparison algorithms. Another exciting approach is a control approach

even though it has not been widely explored. Most control approaches applied to

protein folding are generic or evolutionary algorithms, as in [19], but a study of pro-

tein folding using other control techniques, such as classical and adaptive controls, is

rare. Canutescu and Dunbrack [15] use an interesting control approach in “protein

loop closure” which determines if a structure can geometrically close a protein loop.

Fixing one end of the structure to one end of the protein and changing the dihedral

angles of the structure one at a time, their cyclic coordinate descent (CCD) algorithm

verified if another end of the structure could possibly meet another end of the protein.

Since CCD algorithms check only the geometric feasibility of the structure but not

the energetic compatibility between the combined compounds, it is not applicable to

the protein-folding problem.

2.5 Energy Landscape Modification

The complexity of the energy function results in numerous local minima, at which the

optimization schemes get trapped. Addressing this challenge, some studies work on

the modification of the energy landscape so that it assists the minimization algorithm.

2.5.1 Hypersurface Deformation

An approach of energy landscape modification, called “hypersurface deformation”,

has been investigated for at least three decades [4, 5, 13, 50, 51, 59, 66, 74]. In general,

these algorithms smoothen the landscape by reducing the local minima, which aids
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the global minimum search. However, the obtained global minimum has to be mapped

back to the original surface, which can be troublesome and unreliable [73].

In a global optimization scheme, Azmi et al. [4, 5] use a non-integration based spa-

tial averaging to smooth the non-bonded interactions of the potential energy function

removing local minima while maintaining the basic structure of the energy land-

scape. However, the smoothing method alters the locations of the minima, so several

desmoothing steps that perform a local minimization on the original energy landscape

are required. Although this optimization scheme successfully predicts the conforma-

tion of a 70-residue helical protein, the smoothing method is not applicable to other

energy functions but only to Lennard-Jones and electrostatic energy functions.

Based on an idea that the energy landscape is a funnel with bumps, the Convex

Global Underestimator (CGU) global optimization algorithm [50] iteratively forms

a least-underestimated separable-quadratic surface under minima found by sampling

the energy landscape. After finding the global minimum on the obtained surface,

it locates the corresponding local minimum on the energy landscape. Then more

samplings are focused to an area near the minimum of the surface and the surface

is regenerated. The global minimum is found if it is equal to its corresponding local

minimum. The algorithm appears to work well on simple homopolymers and simpli-

fied Sun energy functions that are funnel-like. However, the method of determining

a successful run is questionable. Since the global minima for most proteins are un-

known, a run is considered successful if the predicted global minimum is within 1% of

the lowest energy value sampled from the energy landscape. Moreover, the CGU algo-

rithm becomes much less effective on real proteins and more complex energy functions

because the underestimated surface does not represent the energy landscape very well

[50].

Since most methods, such as in [50], require intensive samplings in order to find

the global solution, Burke and Yaliraki [13] use sum of squares (SOS) decomposition
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to transform a nonconvex function in Euclidean space to a nonnegative convex SOS

function in the vector space of monomials. Without sampling the global minimum, or

a solution close to the global minimum, can be found from the SOS function which is

a much easier minimization problem. Global minimization on several potentials with

similar shapes to a potential energy surface is presented. However, since these poten-

tials are represented only as polynomial equations, this work may not be applicable

to the actual energy functions unless their polynomial forms can be approximated.

2.5.2 Energy Landscape Flattening

Encouraging the advancing of the Monte Carlo optimization step, parallel hyperbolic

sampling (PHS) flattens the energy landscape by shortening high energy barriers

with little effect on lower energy barriers [87]. With the same computation time,

the PHS results in lower energy configurations than the replica sampling algorithm

[27, 70], which changes the state of the low-energy configuration so that the Monte

Carlo step can pass over high-energy barriers. This work, however, does not study

a comparison between the flattened and unmodified energy landscape. Also, since

the PHS can be used with only the Monte Carlo method, other methods of energy

landscape modification are required for other optimization algorithms.

2.6 Conclusion of the Literature Review

Due to the inapplicability of the molecular dynamic simulation, several optimization

algorithms including both probabilistic and analytical methods are used in the pro-

tein folding problem instead. While analytical methods can locate local solutions

very well, by themselves they are not successful in a very complex and nonlinear op-

timization problem. Therefore, the ability to search a global space with probabilistic

methods is a very useful addition to the analytical methods. Hence, the most suc-

cessful algorithms, de Novo algorithms, perform exceptionally well because they use

the knowledge obtained from the protein database and combine both probabilistic
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and analytical methods.

Although the de Novo methods can be enhanced by improving the efficiency of

either the probabilistic methods or the analytical methods, improvements in the lat-

ter methods are more significant because of two following reasons: 1) they are the

bottleneck of the de Novo methods as they take a longer time, 2) they involve in the

majority of the process as they are intensively used in refinement protocols which

repeatedly perform local minimization. Reducing the computational time required

for the analytical algorithms will significantly improve the overall processing time of

the de Novo methods.

The literature review shows that the energy landscape modification is a promising

method that can be used to improve the efficiency of the analytical algorithm. Yet

the method has never been thoroughly investigated. The hypersurface deformation

method suggests that the energy landscape modification is beneficial but altering

the minima’s locations requires other troublesome tasks. Without the alteration, the

energy landscape flattening provides an improvement to the Monte Carlo method but

not analytical algorithms. In most research on the energy landscape modification a

comprehensive study is needed to fully understand its effect.

In conclusion, the objective of this research is to develop a method of energy

landscaping that enhances the efficiency of the analytical algorithms for the protein

prediction problem. Since Newton’s method provides the basis for several powerful

analytical methods that are commonly used in conformation prediction, it is chosen

to be investigated along with two quasi-Newton methods. A comparative study of

the effect of an energy landscaping method on several variations of these algorithms

is performed.
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CHAPTER III

NEWTON’S METHOD AND QUASI-NEWTON

METHODS APPLIED TO PROTEIN FOLDING

PROBLEM

This chapter discusses basic concepts of Newtonian optimization and its application to

the protein folding problem. Sections 3.1 and 3.2 discuss the derivation of Newton’s

method and two quasi-Newton methods for an optimization problem. Section 3.3

discusses how these methods are applied to the protein folding problem. Lastly,

Section 3.4 summarizes and concludes the chapter.

3.1 Newton’s Method

Newton’s method is often used to locate the root of a function, but for minimization

problems it is used to locate the roots of the derivatives of the cost function f giving

a stationary value of the cost function. Newton’s method can be derived from the

Taylor series expansion of the cost function derivative,

∂f(θk + h)

∂θ
=
∂f(θk)

∂θ
+
∂2f(θk)

∂θ2
h+

1

2
hT
∂3f(θk)

∂θ3
h+ . . .

where h ≡ ∆θ is a small change in the vector variable θ. Dropping the third- and

higher-order terms and setting
∂f(θk + h)

∂θ
= 0 gives

0 =
∂f(θk)

∂θ
+
∂2f(θk)

∂θ2
ĥ

where ĥ is an approximation of h. Rearranging gives

ĥk = −K−1
k

∂f(θk)

∂θ
(3.1)
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where ĥk is the kth descent direction of the Newton’s method, here called “Newton

step,” and Kk ≡
∂2f(θk)

∂θ2
is the Hessian matrix. The (k+ 1)th approximated solution

becomes

θk+1 = θk + ĥk

Newton’s method fundamentally gives a solution to the quadratic approximation

of a function [18]. Therefore, it can achieve a quadratic convergence rate superior to

the linear rate found in the gradient methods, such as the steepest descent method

[18, 49]. Generally, the Newton’s method can locate a solution only if it is close to the

starting point. Also if the Hessian matrix is not positive definite or if it is singular

the Newton step may worsen the optimization or the Newton step may not exist [6].

To avoid divergence, Newton’s method is commonly implemented with a line search

[6, 49].

3.1.1 Line Search

Usually implemented with Newton-based algorithms, a line search determines a line

search gain or a scalar multiplier of the step.

αk = line search(ĥk)

where αk is the gain that minimizes f(θk +αĥk). The revised (k+ 1)th approximated

solution becomes

θk+1 = θk + αkĥk (3.2)

where αkĥk is the total step.

It is impractical to globally minimize f(θk +αĥk) so the gain only gives a solution

on a limited interval. Many robust line search algorithms define an initial value of

α equal to 1 so the magnitude of the Newton step |ĥk| sets the size of the initial

search interval which means different values of |ĥk| yield different searched locations.

Since the gain only locally minimizes f in the direction of the Newton step, different
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Pseudo-code: Newton’s method with a line search

Initialize ε, θ0, and θ1

Calculate f(θ0)

for k = 1, . . ., kmax do

Calculate f(θk),
∂f(θk)

∂θ
, and

∂2f(θk)

∂θ2

if

∣∣∣∣f(θk)− f(θk−1)

f(θk−1)

∣∣∣∣ < ε then

break // Convergence criterion met.

end if

ĥk = −
(
∂2f(θk)

∂θ2

)−1
∂f(θk)

∂θ
// Determine the Newton step

αk = line search(ĥk) // Determine the line search gain

θk+1 = θk + αkĥk // (k + 1)th solution

end for

Figure 3.1: A pseudo-code for Newton’s method with a line search

searched locations can result in different gains as they correspond to different local

minima. Figure 3.1 shows a pseudo-code for the Newton’s method with a line search.

3.2 Quasi-Newton (QN) Methods

Since the calculation of the Hessian matrix K can be computationally expensive or

is often unavailable, quasi-Newton (QN) methods use only the first derivative to

estimate K by satisfying the secant equation,

∂f(θk+1)

∂θ
− ∂f(θk)

∂θ
= K̂ĥ (3.3)

where K̂ is the estimated Hessian matrix. Equation (3.3) is underdetermined so

many methods apply other criteria to find the solution. Minimizing the Frobenius
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norm ‖Kk+1 −Kk‖F, Broyden’s method [17] recursively estimates K,

K̂k = K̂k−1 −
(
ĥTk−1ĥk−1

)−1 (
γk−1 + K̂k−1ĥk−1

)
ĥTk−1 (3.4)

where

γk−1 ≡
∂f(θk)

∂θ
− ∂f(θk−1)

∂θ

is the change in the gradient of the cost function f . The QN step becomes

ĥk = −K̂−1
k

∂f(θk)

∂θ

θk+1 = θk + αkĥk

Figure 3.2 displays a pseudo-code for a QN method with a line search that uses

Broyden’s method to estimate K.

While Broyden’s method works fairly well, it does not guarantee a symmetric

and positive definite K̂ [17]. Since the Hessian matrix is alway symmetric and often

positive definite, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm ensures

these properties as it estimates K−1 by satisfying the quasi-Newton condition [6]

Ĥkγk = ĥ

where Ĥ is an estimation of K−1. Widely used in an nonlinear optimization, the

BFGS algorithm is one of the most powerful analytical optimization algorithms when

used with a line search. The BFGS algorithm recursively calculates Ĥ as,

Ĥk = Ĥk−1 −

(
Ĥk−1γk−1ĥ

T
k−1 + ĥk−1γ

T
k−1Ĥk−1

ĥTk−1γk−1

)
+

(
1 +

γTk−1Ĥk−1γk−1

ĥTk−1γk−1

)
ĥk−1ĥ

T
k−1

ĥTk−1γk−1

The kth BFGS step ĥk is defined as

ĥk = −Ĥk
∂f(θk)

∂θ

θk+1 = θk + αkĥk

Initializing Ĥ0 to be positive definite, BFGS algorithm guarantees positive definite

Ĥ’s. However, its direction can not guarantee to lower a function value because the
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actual Hessian matrix may not be positive definite. Another drawback is that the

QN methods may be slow to converge. The Hessian matrix is usually not constant

and if the magnitude of the QN step ĥk is too large K̂ may fail to converge. Because

of these drawbacks QN methods are usually implemented with a line search for best

results.

Figure 3.3 gives a pseudo-code for the QN method and uses the BFGS algorithm

Pseudo-code: QN method with a line search and Broyden’s method

Initialize ε, θ0, θ1, and K̂0

Calculate f(θ0) and
∂f(θ0)

∂θ

for k = 1, . . ., kmax do

Calculate f(θk) and
∂f(θk)

∂θ

if

∣∣∣∣f(θk)− f(θk−1)

f(θk−1)

∣∣∣∣ < ε then

break // Convergence criterion met.

end if

Calculate K̂k // Broyden’s method

ĥk−1 = θk − θk−1

γk−1 =
∂f(θk)

∂θ
− ∂f(θk−1)

∂θ

K̂k = K̂k−1 −
(
ĥTk−1ĥk−1

)−1 (
γk−1 + K̂k−1ĥk−1

)
ĥTk−1

ĥk = −K̂−1
k

∂f(θk)

∂θ
// Determine the QN step

αk = line search(ĥk) // Determine the line search gain

θk+1 = θk + αkĥk // (k + 1)th solution

end for

Figure 3.2: A pseudo-code for the QN method with a line search and Broyden’s
method
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Pseudo-code: BFGS algorithm with a line search

Initialize ε, n, θ0, θ1, and Ĥ0

Calculate f(θ0) and
∂f(θ0)

∂θ

for k = 1, . . ., kmax do

Calculate f(θk), and
∂f(θk)

∂θ

if

∣∣∣∣f(θk)− f(θk−1)

f(θk−1)

∣∣∣∣ < ε then

break // Convergence criterion met.

end if

Calculate Ĥk

ĥk−1 = θk − θk−1

γk−1 =
∂f(θk)

∂θ
− ∂f(θk−1)

∂θ

Ĥk = Ĥk−1 −

(
Ĥk−1γk−1ĥ

T
k−1 + ĥk−1γ

T
k−1Ĥk−1

ĥTk−1γk−1

)

+

(
1 +

γTk−1Ĥk−1γk−1

ĥTk−1γk−1

)
ĥk−1ĥ

T
k−1

ĥTk−1γk−1

ĥk = −Ĥk
∂f(θk)

∂θ
// Determine the BFGS step

αk = line search(ĥk) // Determine the line search gain

θk+1 = θk + αkĥk // (k + 1)th solution

end for

Figure 3.3: A pseudo-code for BFGS algorithm with a line search

to estimate K−1 with a line search.

3.3 Application to the Protein Folding Problem

When optimization algorithms are applied to the protein folding problem, the cost

function is the molecular energy function or force field, sometimes called the “score”
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or “score function.”

3.3.1 Energy and Derivatives Evaluation

In addition to van der Waals and electrostatic energies described in Equation (2.1),

a force field for protein conformation prediction could include parameterized poten-

tials that encourage a formation of secondary structures. These energy terms are of

functions of different variables from molecular geometry such as the distance between

atoms and molecular characteristics such as the amino acid type. Optimization with

respect to the molecular geometry variables is a difficult constrained minimization

problem so it usually done with respect to the dihedral angles and/or the Rotamer

angles also called internal coordinates which is a non-constrained minimization prob-

lem. A closed form of the energy function in terms of these angles is however un-

available so transforming the angle information into molecular geometry information

is needed before the function can be evaluated.

The expression of the first and second derivatives of the energy function with

respect to internal coordinates are difficult to derive. Because energy functions are of

functions of the distance between atoms, the chain rule is used. The first derivative

calculation requires the derivatives of the distance between each atom pairs with

respect to internal coordinates ∂Rij/∂θk, where Rij is the distance between ith and

jth atoms and θk is the kth angle in internal coordinates. These terms are difficult

and inefficient to calculate because of two following reasons [45]: the number of atom

pairs in a molecule are almost the square of the number of atoms and ∂Rij/∂θk is

not zero if angle k is on the part of the chain joining ith and jth atoms. Also, since

an average protein chain has several hundreds degrees of freedom, the calculation of

the transformation becomes very inefficient. In practice only the first derivative is

evaluated with various methods available [60] and the second derivative is estimated.
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For energies described by molecular geometry such as the van der Waals and elec-

trostatic energies, the first derivative of the energy (2.1) with respect to the distance

Rij between two atoms gives the attractive force Fij acting on each atom [44]. The

derivative of the energy with respect to each dihedral angle or Rotamer angle is the

resulting torque with the same direction as the rotation vector of the angles con-

tributed by these atomic forces. This is the sum of the dot product of the force and

the resulting vector of a cross product between the rotational unit vector of the angle

and the vector from the rotational vector to the force vector. The expression of the

derivative of other energy terms are also available [44]. In this work the energy func-

tions are from known simulated energy surfaces with known derivatives and from the

Rosetta software package that also provides the first derivatives but not the second

derivative.

The minimization variables of the energy function can be the dihedral angles, the

Rotamer angles, or both. For coarse resolution minimization, which is usually done

at the beginning of the prediction, the Rotamer angles are fixed at their most sta-

ble values and only the dihedral angles are subject to minimization. For full atom

refinement, the Rotamer angles and/or the dihedral angles are subject to minimiza-

tion. From this point forward this distinction will not be made as the variables of the

energy function will be the dihedral angles only.

3.3.2 Newton’s Method

Applying Newton’s method to the molecular potential-energy function f(θ) = E gives

the dihedral angle update vector ĥ for energy minimization of a protein molecule. The

first and the second order derivatives of the cost function are

∂f(θ)

∂θ
≡ ∂E(θ)

∂θ
= −τ

∂2f(θ)

∂θ2
≡ ∂2E(θ)

∂θ2
= −∂τ(θ)

∂θ
= K
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where θ is the dihedral angle vector, E is the potential energy, the negative gradient

of E is the torque vector τ (τi is positive in the same direction as θi), and the Hessian

of E is the stiffness matrix K. The Newton step (3.1) becomes

ĥk = K−1
k τk (3.5)

For an analogous one dimensional rotational mass-spring system, this stiffness

matrix becomes the stiffness K of a torsion spring at a joint connecting a body to

the base, Figure 3.4. Away from the equilibrium state θ = 0, the potential energy E

stored in the spring is E =
1

2
Kθ2 and the torque on the body is τ = −Kθ. If the body

rotates in the direction of the torque, opposite to the direction of the displacement

angle, the potential energy in the spring decreases. This is analogous to Newton step

(3.5) where the joint torques are scaled by the inverse of the stiffness matrix.

Figure 3.4: A simple rotational mass-spring system.

Some molecular energy functions contain non-energy terms that are empirically

derived from statistical data in the protein database or from experimental data. Al-

though the first and the second derivatives of these potentials are not torques or

stiffnesses and may not have physical meanings, they are torque-like vectors and

stiffness-like matrices, respectively. Therefore, the Newton update can still be ap-

plied to the score functions by expanding the definition of the derivative terms, τ and

K, to include torque- and stiffness-like quantities.
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3.3.3 QN Methods

Applied to the energy function E the QN step becomes

ĥk = K̂−1
k τk (3.6)

and γ is changed to

γk−1 =
∂E(θk)

∂θ
− ∂E(θk−1)

∂θ
= −∆τk−1

where ∆τk−1 ≡ τk − τk−1 is the change in the torque vector. so Broyden’s method is

rewritten as

K̂k = K̂k−1 +
(
ĥTk−1ĥk−1

)−1 (
∆τk−1 − K̂k−1ĥk−1

)
ĥTk−1 (3.7)

From this point forward the “quasi-Newton algorithm (QNA)” implies QN step for

the potential-energy function (3.6) that uses Broyden’s method (3.7) to estimate the

stiffness matrix.

Applying the BFGS to the energy function E yields

Ĥk = Ĥk−1 −

(
Ĥk−1∆τk−1ĥ

T
k−1 + ĥk−1∆τTk−1Ĥk−1

ĥTk−1∆τk−1

)

+

(
∆τTk−1Ĥk−1∆τk−1

ĥTk−1∆τk−1

− 1

)
ĥk−1ĥ

T
k−1

ĥTk−1∆τk−1

(3.8)

The BFGS step ĥk is defined as

ĥk = Ĥkτk (3.9)

Equation (3.8) updates Ĥ using the current information of the energy function and

the initial Ĥ0 is usually defined as an identity matrix.

3.4 Conclusion for Newton’s Method and quasi-Newton
Methods Applied to Protein Folding Problem

The derivation and the application to the protein folding problem of Newton’s

method, the QNA, and the BFGS algorithm have been discussed. In protein folding
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Pseudo-code: Newton’s method with a line search applied to the protein folding
problem

Initialize ε, θ0, and θ1

Calculate E0

for k = 1, . . ., kmax do

Calculate Ek, τk, and Kk

if

∣∣∣∣Ek − Ek−1

Ek−1

∣∣∣∣ < ε then

break // Convergence criterion met.

end if

ĥk = K−1
k τk // Determine the Newton step

αk = line search(ĥk) // Determine the line search gain

θk+1 = θk + αkĥk // (k + 1)th solution

end for

Figure 3.5: A pseudo-code for Newton’s method with a line search applied to the
protein folding problem
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the estimation of the Hessian matrix K̂ or its inverse Ĥ is most likely inaccurate and

even the matrix K itself is not always positive definite due to the complex energy

landscape. Even though a line search is used to ensure that the optimization moves

toward a lower energy, the convergence can still be slow. For faster convergence a

method of energy landscaping is presented in Chapter 4. Figures 3.5 thru 3.7 give

pseudo-codes summarizing a Newton’s method, the QNA, and the BFGS algorithm

with a line search applied to the protein folding problem.

Pseudo-code: QNA with a line search applied to the protein folding problem

Initialize ε, θ0, θ1, and K̂0

Calculate E0 and τ0

for k = 1, . . ., kmax do

Calculate Ek and τk

if

∣∣∣∣Ek − Ek−1

Ek−1

∣∣∣∣ < ε then

break // Convergence criterion met.

end if

Calculate K̂k

ĥk−1 = θk − θk−1

∆τk−1 = τk − τk−1

K̂k = K̂k−1 +
(
ĥTk−1ĥk−1

)−1 (
∆τk−1 − K̂k−1ĥk−1

)
ĥTk−1

ĥk = K̂−1
k τk // Determine the QNA step

αk = line search(ĥk) // Determine the line search gain

θk+1 = θk + αkĥk // (k + 1)th solution

end for

Figure 3.6: A pseudo-code for QNA with a line search applied to the protein folding
problem
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Pseudo-code: BFGS algorithm with a line search applied to the protein folding
problem

Initialize ε, n, θ0, θ1, and Ĥ0

Calculate E0 and τ0

for k = 1, . . ., kmax do

Calculate Ek, and τk

if

∣∣∣∣Ek − Ek−1

Ek−1

∣∣∣∣ < ε then

break // Convergence criterion met.

end if

Calculate Ĥk

ĥk−1 = θk − θk−1

∆τk−1 = τk − τk−1

Ĥk = Ĥk−1 −

(
Ĥk−1∆τk−1ĥ

T
k−1 + ĥk−1∆τTk−1Ĥk−1

ĥTk−1∆τk−1

)

+

(
∆τTk−1Ĥk−1∆τk−1

ĥTk−1∆τk−1

− 1

)
ĥk−1ĥ

T
k−1

ĥTk−1∆τk−1

ĥk = Ĥkτk // Determine the BFGS step

αk = line search(ĥk) // Determine the line search gain

θk+1 = θk + αkĥk // (k + 1)th solution

end for

Figure 3.7: A pseudo-code for BFGS algorithm with a line search applied to the
protein folding problem
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CHAPTER IV

ENERGY LANDSCAPING

This chapter presents a method of energy landscaping called the “exponential energy

landscaping (XEL)” method. Unlike the hypersurface deformation discussed in the

literature review this method only changes the heights and the depths of the extrema

but not their locations. Section 4.1 presents the XEL method and its application to

the Newton, the QNA, and the BFGS methods. Section 4.2 details characteristics of

XEL algorithms and presents application guidelines. Section 4.3 derives two types of

optimization algorithms for an adaptively modified energy landscape (AXEL). Lastly,

Section 4.4 summarizes and concludes the chapter.

4.1 Exponential Energy Landscaping (XEL)

4.1.1 Method

With XEL the goal is to transform the energy landscape to facilitate the optimiza-

tion search without changing the location of its minima and maxima. While these

extrema in XEL are at the same locations they have different values. This avoids

the troublesome remapping steps seen in hypersurface deformation algorithms. The

modified energy function E∗ is described by a nonlinear nth-ordered exponential of

the energy function E,

E∗ = sign (E) |E|n (4.1)

where n, the exponential order of the energy function, is a positive real number, n > 0.

The |E|n term modifies the magnitude of the energy value and the sign (E) keeps

the sign of the modified function the same as the energy function. This definition

of the modified energy function is superior to En for two reasons. First, when n is
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noninteger E∗ is well defined for all energy values, unlike En. For example E0.5 is

undefined for negative E’s. Secondly, E∗ always preserves the locations of the extrema

because it is always an odd function that preserves the sign of E. Unlike E∗, when

n is an even integer En becomes an even function and a negative E gives a positive

En value. This means negative minima and maxima become positive maxima and

minima, respectively, and minima appear where sign (E) changes.

Figure 4.1 illustrates XEL with the different values of n. When n < 1 the minima

and the maxima are less defined as the energy landscape is flattened. This results in

a smoother energy landscape and a larger step, which is shown in Section 4.2.4. A

larger step can speed optimization at the beginning when the starting location is far

from a minimum. The optimization path is also less likely to get stuck at shallow

minima. On the contrary, when n > 1 the minima and the maxima are more defined

Figure 4.1: Comparison of unmodified energy landscape with n = 1, XEL with
n = 2, and XEL with n = 0.5. The n = 2 XEL accentuates the extrema while the
n = 0.5 XEL flattens the landscape.
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as energy landscape is sharpened. This results in the more prominent minimum and

the smaller step. This may be preferable toward the end of the optimization to ensure

that the deeper minimum can be found.

Note that in the small range of |E| < 1 the effects of n on extrema are opposite to

what described above. Figure 4.2 illustrates these effects. For n < 1, |E|n > |E| which

means the energy landscape is sharpened. On the contrary, for n > 1, |E|n < |E|

which means the energy landscape is flattened. Fortunately, because the value of the

energy can be changed up to only ±1 these opposite effects are not pronounced as

they are unnoticeable in Figure 4.1. Also since most energy values on the energy

landscape are less than 0, these opposite effects are less likely to happen during the

optimization process.

The next three sections discuss the derivation of optimization algorithms with
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Figure 4.2: Comparison of unmodified energy landscape with n = 1, XEL with
n = 2, and XEL with n = 0.5 in the range of |E| < 1. The n = 0.5 XEL accentuates
the extrema while the n = 2 XEL flattens the landscape.
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the XEL. These algorithms are implemented in simulations and are compared to

unmodified algorithms.

4.1.2 Newton’s Method with Exponential Energy Landscaping (Newton-
XEL)

The Newton-XEL is derived from the Taylor’s series expansion of the first derivative

of the modified energy landscape E∗. Let h∗ be a step that gives a minimum energy

or zero gradient of the modified energy landscape. The Taylor series expansion of the

derivative of the modified energy function becomes

0 =
∂E∗(θk + h∗)

∂θ
=
∂E∗(θk)

∂θ
+
∂2E∗(θk)

∂2θ
h∗ +

1

2
h∗ T

∂3E∗(θk)

∂3θ
h∗ + · · ·

Dropping the high-order terms and rearranging gives the Newton-XEL step

ĥ∗ = −
(
∂2E∗(θk)

∂2θ

)−1
∂E∗(θk)

∂θ
(4.2)

where ĥ∗ is an estimation for h∗.

Next the first and the second derivatives of E∗ are determined. Since

f(θ) = E∗ = sign(E) |E|n = E |E|n−1 = E
√
E2

n−1

the first derivative becomes

∂f(θ)

∂θ
=
∂E∗

∂θ
=
∂E

∂θ

√
E2

n−1
+ E

∂
(√

E2
n−1
)

∂θ

= −τ
√
E2

n−1
+ E(n− 1)

√
E2

n−2
(

1

2
√
E2

)
2E(−τ)

= −
(√

E2
n−1

+ (n− 1)
√
E2

n−1
)
τ

= −n
√
E2

n−1
τ

= −n |E|n−1 τ

= −βτ

= −τ ∗ (4.3)

44



where β ≡ n |E|n−1 and τ ∗ ≡ βτ is a torque vector of E∗. The second derivative

becomes

∂2f(θ)

∂θ2
=
∂2E∗

∂θ2
= −n

∂
(√

E2
n−1
)

∂θ
τ +
√
E2

n−1 ∂τ

∂θ


= −n

(
−(n− 1)

√
E2

n−3
E(ττT ) +

√
E2

n−1
(−K)

)
= n
√
E2

n−1

(
(n− 1)

E
√
E2

2 ττ
T +K

)

= n |E|n−1

(
(n− 1)

E

E2
ττT +K

)
= β

(
(n− 1)E−1ττT +K

)
≡ K∗ (4.4)

where K∗ is the Hessian matrix of E∗.

Substituting the first and the second derivative terms into Equation (4.2) the

Newton-XEL step becomes

ĥ∗ = (K∗)−1 τ ∗ (4.5)

Thus K−1 in Newton’s method (3.5) is generalized to (K∗)−1 which changes the direc-

tion and the magnitude of τ ∗ to give ĥ∗. Note that for n = 1, τ ∗ becomes τ , (K∗)−1

becomes K−1, and ĥ∗ becomes ĥ. While K−1 and (K∗)−1 yield different magnitudes

of ĥ and ĥ∗, they unexpectedly yield the same direction. This characteristic and

its proof are discussed in more detail in Section 4.2.2 in which it is also shown that

the directions are distinct for the QNA and the QNA-XEL cases. The QNA-XEL

is discusses below. Figure 4.3 gives a pseudo-code for the Newton-XEL with a line

search.
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Pseudo-code: Newton-XEL with a line search

Initialize ε, n, θ0, and θ1

Calculate E0

for k = 1, . . ., kmax do

Calculate Ek, τk, and Kk

if

∣∣∣∣Ek − Ek−1

Ek−1

∣∣∣∣ < ε then

break // Convergence criterion met.

end if

βk = n |Ek|n−1

K∗
k = βk

(
(n− 1)E−1

k τkτ
T
k +Kk

)
τ ∗k = βkτk

ĥ∗k = (K∗
k)−1 τ ∗k // Determine the Newton-XEL step

αk = line search(ĥ∗k) // Determine the line search gain

θk+1 = θk + αkĥ
∗
k // (k + 1)th solution

end for

Figure 4.3: A pseudo-code for Newton-XEL with a line search. Note that for
Newton-XEL (Hessian only), described in Section 4.1.4, τ ∗k = τk.

4.1.3 Quasi-Newton Algorithm with Exponential Energy Landscaping
(QNA-XEL)

The QNA-XEL is similar to the Newton-XEL update except that the Hessian matrix

K is estimated. The QNA-XEL step is

ĥ∗ = β−1
(

(n− 1)E−1ττT + K̂
)−1

βτ

=
(
K̂∗
)−1

τ ∗ (4.6)

where

K̂∗ ≡ β
(

(n− 1)E−1ττT + K̂
)

(4.7)

46



is the estimated Hessian matrix of the modified energy landscape. Note that when

n = 1 the QNA-XEL step (4.6) becomes the QNA step (3.6). Broyden’s method (3.7)

can be used to estimate K̂ in the K̂∗ but it reduces the effect of XEL on the QNA

because it does not allow the direction of the QNA-XEL step to differ from the QNA

step which is discussed in Section 4.2.2. The Broyden-XEL described below is used

to estimate K̂∗ instead.

4.1.3.1 Broyden’s method with XEL (Broyden-XEL)

The Broyden-XEL has a different ∆τ term defined by replacing E in Equation (3.7)

with E∗,

∆τ ∗k−1 = −∂E
∗(θk)

∂θ
−
(
−∂E

∗(θk−1)

∂θ

)
= τ ∗k − τ ∗k−1 (4.8)

where ∆τ ∗ is a change in the torque vector of E∗. Since τ ∗ = βτ , terms in ∆τ ∗

are similar to ∆τ but weighted by β’s of the current and previous configurations,

which contain the information about the energy landscape. In addition to ∆τ ∗, the

other two modified terms are K̂∗ and ĥ∗ which are substituted into (3.7) to yield the

Broyden-XEL update for K̂∗

K̂∗
k = K̂∗

k−1 +
(
ĥ∗k−1

T
ĥ∗k−1

)−1 (
∆τ ∗k−1 − K̂∗

k−1ĥ
∗
k−1

)
ĥ∗k−1

T
(4.9)

Note when n = 1 (4.9) reduces to (3.7).

As discussed in Section 4.2.2, the direction of the QNA-XEL step is different

from that of the QNA step. From this point forward QNA-XEL is (4.6) that uses

Broyden-XEL (4.9) to estimated K̂∗ and QNA-XEL (Broyden’s method) is (4.6) that

uses Broyden’s method (3.7) to estimate K̂. Figure 4.4 gives a pseudo-code for the

QNA-XEL with a line search.
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Pseudo-code: QNA-XEL with a line search

Initialize ε, n, θ0, θ1, and K̂∗
0

Calculate E0, and τ0

for k = 1, . . ., kmax do

Calculate Ek, and τk

if

∣∣∣∣Ek − Ek−1

Ek−1

∣∣∣∣ < ε then

break // Convergence criterion met.

end if

Calculate K̂∗
k

ĥ∗k−1 = θk − θk−1

βk = n · |Ek|n−1

βk−1 = n · |Ek−1|n−1

∆τ ∗k−1 = βkτk − βk−1τk−1

K̂∗
k = K̂∗

k−1 +
(
ĥ∗k−1

T
ĥ∗k−1

)−1 (
∆τ ∗k−1 − K̂∗

k−1ĥ
∗
k−1

)
ĥ∗k−1

T

τ ∗k = βkτk

ĥ∗k =
(
K̂∗
k

)−1

τ ∗k // Determine the QNA-XEL step

αk = line search(ĥ∗k) // Determine the line search gain

θk+1 = θk + αkĥ
∗
k // (k + 1)th solution

end for

Figure 4.4: A pseudo-code for QNA-XEL with a line search. Note that for QNA-
XEL (Hessian only), described in Section 4.1.4, τ ∗k = τk.
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4.1.4 Broyden-Fletcher-Goldfarb-Shanno Algorithm with
Exponential Energy Landscaping(BFGS-XEL)

Implementing XEL in BFGS changes the objective function from E to E∗ and there-

fore τ becomes τ ∗. The BFGS-XEL step becomes

ĥ∗k = Ĥ∗
kτ

∗
k (4.10)

where Ĥ∗ is the estimated inverse of the Hessian matrix of E∗. Substituting the terms

for E∗, ∆τ ∗ (4.8) and ĥ∗ into (3.8) yields the BFGS-XEL update for Ĥ∗

Ĥ∗
k = Ĥ∗

k−1 −

(
Ĥ∗
k−1∆τ ∗k−1 ĥ

∗
k−1

T
+ ĥ∗k−1 ∆τ ∗k−1

T Ĥ∗
k−1

ĥ∗k−1

T
∆τ ∗k−1

)

+

(
∆τ ∗k−1

T Ĥ∗
k−1∆τ ∗k−1

ĥ∗k−1

T
∆τ ∗k−1

− 1

)
ĥ∗k−1 ĥ

∗
k−1

T

ĥ∗k−1

T
∆τ ∗k−1

(4.11)

Used with a line search the BFGS-XEL update becomes

θk+1 = θk + αkĤ
∗
kτ

∗
k

= θk + αkβkĤ
∗
kτk

since τ ∗ = βτ . Define α∗
k ≡ αkβk is the new gain found by a line search without

an explicit value of βk. In theory αk and α∗
k would globally minimize the energy

function and yield the same total steps since Ĥ∗
kτ

∗
k and Ĥ∗

kτk have the same direction.

However, in practice αk and α∗
k only locally minimizes the energy function so they

could yield different total steps since Ĥ∗
kτ

∗
k and Ĥ∗

kτk have different magnitudes.

To study an impact of the different magnitudes of the step on the quality of

resulted configurations and speed, a variation of the BFGS-XEL of which the step

equals Ĥ∗
kτk is investigated. Letting τ ∗ = τ keeps the same notation and the variation
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of the BFGS-XEL step (4.10) becomes

τ ∗k = τk

ĥ∗k = Ĥ∗
kτ

∗
k

α∗
k = line search(ĥ∗k)

θk+1 = θk + α∗
kĥ

∗
k

Letting τ ∗ = τ is basically substituting only the estimated inverse of the Hessian

matrix for E∗. From this point forward the variation of the BFGS-XEL is referred

to as BFGS-XEL (Hessian only). Similarly, by letting τ ∗k = τk, the Newton-XEL and

the QNA-XEL become Newton-XEL (Hessian only) and QNA-XEL (Hessian only).

Note that at the end of this chapter Tables 4.2 through 4.5 on pages 83–86 summarize

all presented methods.

Comparing the Newton-XEL,

ĥ∗ = (K∗
k)−1 τ ∗k

= β−1
(
(n− 1)E−1τkτ

T
k +K

)−1
βτk

=
(
(n− 1)E−1τkτ

T
k +K

)−1
τk (4.12)

to the Newton-XEL (Hessian only),

ĥ∗ = (K∗
k)−1 τ ∗k

= β−1
(
(n− 1)E−1τkτ

T
k +K

)−1
τk

The Newton-XEL (Hessian only) contains an extra term β−1 which increases the

influence of n on the magnitudes of the step. Since β = n |E|n−1, β−1 =
1

n
|E|1−n

which is inversely dependent on n so the magnitudes of the Newton-XEL step (Hessian

only) are expected to be larger when n < 1 and smaller when n > 1. This is consistent

with the influence of n on the magnitudes of the XEL step discussed in Section 4.2.4

and the simulations discussed in Section 5.

Figure 4.5 gives a pseudo-code for the BFGS-XEL with a line search.
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Pseudo-code: BFGS-XEL with a line search

Initialize ε, n, θ0, θ1, and Ĥ∗
0

Calculate E0 and τ0

for k = 1, . . ., kmax do

Calculate Ek, and τk

if

∣∣∣∣Ek − Ek−1

Ek−1

∣∣∣∣ < ε then

break // Convergence criterion met.

end if

Calculate Ĥ∗
k

ĥ∗k−1 = θk − θk−1

βk = n · |Ek|n−1

βk−1 = n · |Ek−1|n−1

∆τ ∗k−1 = βkτk − βk−1τk−1

Ĥ∗
k = Ĥ∗

k−1 −

(
Ĥ∗
k−1∆τ ∗k−1 ĥ

∗
k−1

T
+ ĥ∗k−1 ∆τ ∗k−1

T Ĥ∗
k−1

ĥ∗k−1

T
∆τ ∗k−1

)

+

(
∆τ ∗k−1

T Ĥ∗
k−1∆τ ∗k−1

ĥ∗k−1

T
∆τ ∗k−1

− 1

)
ĥ∗k−1 ĥ

∗
k−1

T

ĥ∗k−1

T
∆τ ∗k−1

τ ∗k = βkτk

ĥ∗k = Ĥ∗
kτ

∗
k // Determine the BFGS-XEL step

αk = line search(ĥ∗k) // Determine the line search gain

θk+1 = θk + αkĥ
∗
k // (k + 1)th solution

end for

Figure 4.5: A pseudo-code for BFGS-XEL with a line search. Note that for BFGS-
XEL (Hessian only) τ ∗k = τk.
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4.2 Discussion on XEL

This section compares the Newton-XEL to the Newton steps with a basic assumption

that these steps exist, i.e., K and K∗ are invertible. Section 4.2.1 presents a sufficient

condition for the positive definite Hessian matrix of the Newton-XEL step which

is important for minimization. Section 4.2.2 shows that the Newton-XEL and the

Newton steps are parallel and only the magnitude of Newton-XEL step is dependent

on n. Section 4.2.4 shows that the magnitude of the Newton-XEL step is inversely

related to n. Section 4.2.5 finds that the error residues from both algorithms are

the same order. Section 4.2.6 discusses how the XEL method weights terms in the

Hessian matrix and its estimation. Lastly, Section 4.2.7 concludes the discussions and

summarizes the list of guidelines for changing n.

4.2.1 A Positive Definite Property of the Newton-XEL Hessian Matrix

Derived from the quadratic approximation of a function, Newton’s method assumes

that the function is convex with a global minimum if the Hessian matrix is positive

definite and the Newton step gives the solution of the quadratic approximation. Al-

though the actual function may not be convex and the Newton step may not give

a local solution to the actual function, the positive definite property of the Newton

Hessian matrix K implies that the Newton step is in descending direction.

This section shows that if the Hessian matrix of the Newton’s method K is positive

definite then so is K∗ (the Hessian matrix of the Newton-XEL method) when an

additional condition is satisfied. A positive definite K satisfies

xTKx > 0; ∀x 6= 0, x ∈ <N

where N is the dimension of the energy landscape. Since KT = K, it follows from

K∗ = β
(
(n− 1)E−1ττT +K

)
[4.4]
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that K∗ = K∗ T and is thus symmetric. K∗ is positive definite if

xT (K∗)x > 0; ∀x 6= 0, x ∈ <N (4.13)

Substituting in (4.4) and expanding gives

β(n− 1)E−1
(
τTx

)T
τTx+ βxTKx > 0

Noting that β = n |E|n−1 > 0 because n > 0, that τTx is a scalar so(
τTx

)T
τTx =

∣∣τTx∣∣2 ≥ 0

and that xTKx > 0 then Equation (4.13) is satisfied when

(n− 1)E−1 ≥ 0

Note that this is only a sufficient condition for K∗ to be positive definite. Further,

since n 6= 1 corresponds to the modified energy landscape, (n − 1)E−1 6= 0 and the

equality is dropped. Also, E−1 is undefined when E = 0 so the sufficient condition is

stated as,

(n− 1)E−1 > 0, E 6= 0 (4.14)

This condition can be satisfied in either of two ways:

E > 0 and n > 1 or (4.15a)

E < 0 and n < 1 (4.15b)

For an adaptively modified energy landscape algorithm, Equation (4.15) gives a

guideline for determining n so that K∗ is positive definite. During the beginning

of the conformation prediction process the energy is high and often positive, but as

it progresses the energy decreases and often becomes negative. This suggests that

n > 1 should be used at the beginning and n < 1 should be used toward the end of

the process. However, enforcing the rule may not be very beneficial for the Newton-

XEL method because it is derived under an assumption that K is positive definite so

if K is not positive definite, K∗ may not be.
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Similarly it can be shown that the same condition applies to the estimated Hessian

matrices of the QNA and the QNA-XEL (Broyden’s method). With the same above

reasoning, the Hessian matrix of the QNA-XEL (Broyden’s method) K̂∗ is positive

definite when the Hessian matrix K̂ is positive definite and Equation (4.15) is satisfied.

However, enforcing the rule may not be very beneficial for the QNA-XEL (Broyden’s

method) because the actual K may not be positive definite and thus the QNA-XEL

(Broyden’s method) step may not be in descending direction. A more effective way

to ensure the descending direction is using a line search which has been discussed in

Section 3.1.1.

4.2.2 Direction of Newton-XEL Step

This section discusses the effect of XEL on the direction of the Newton-XEL step.

Expanding the Newton-XEL step gives

ĥ∗ =
(
(n− 1)E−1ττT +K

)−1
τ [4.12]

With the term (n− 1)E−1ττT added to K, the Newton-XEL step would be expected

to be in different direction from the Newton step. However, only the magnitudes differ

so they are actually parallel. Section 4.2.2.1 gives a derivation of the Newton-XEL

step for a two dimensional (2D) energy landscape which is shown equal to the Newton

step multiplied by a constant. Section 4.2.2.2 gives a proof for the N dimensional

case.

4.2.2.1 Derivation of the 2D Newton-XEL step

Consider the K∗ term in the Newton-XEL step. Since

K∗ = β
(
(n− 1)E−1ττT +K

)

=


β

(
n− 1

E

(
∂E

∂θ1

)2

+
∂2E

∂θ1
2

)
β

(
n− 1

E

∂E

∂θ1

∂E

∂θ2

+
∂2E

∂θ1∂θ2

)

β

(
n− 1

E

∂E

∂θ1

∂E

∂θ2

+
∂2E

∂θ1∂θ2

)
β

(
n− 1

E

(
∂E

∂θ2

)2

+
∂2E

∂θ2
2

)

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the inverse is,

(K∗)−1 =
1

det (K∗)

·


β

(
n− 1

E

(
∂E

∂θ2

)2

+
∂2E

∂θ2
2

)
β

(
−n− 1

E

∂E

∂θ1

∂E

∂θ2

− ∂2E

∂θ1∂θ2

)

β

(
−n− 1

E

∂E

∂θ1

∂E

∂θ2

− ∂2E

∂θ1∂θ2

)
β

(
n− 1

E

(
∂E

∂θ1

)2

+
∂2E

∂θ1
2

)


The Newton-XEL step is

ĥ∗ = (K∗)−1 τ ∗

=
1

det (K∗)
·


β2

(
∂2E

∂θ2
2

(
−∂E
∂θ1

)
− ∂2E

∂θ1∂θ2

(
−∂E
∂θ2

))

β2

(
− ∂2E

∂θ1∂θ2

(
−∂E
∂θ1

)
+
∂2E

∂θ1
2

(
−∂E
∂θ2

))


and factorizing gives

ĥ∗ =
β2

det (K∗)
·


∂2E

∂θ2
2

− ∂2E

∂θ1∂θ2

− ∂2E

∂θ1∂θ2

∂2E

∂θ1
2



−∂E
∂θ1

−∂E
∂θ2


Since

det(K) ·K−1 =


∂2E

∂θ2
2

− ∂2E

∂θ1∂θ2

− ∂2E

∂θ1∂θ2

∂2E

∂θ1
2


and

τ =


−∂E
∂θ1

−∂E
∂θ2


then

ĥ∗ =
β2 det(K)

det (K∗)
K−1τ

=
β2 det(K)

det (K∗)
ĥ (4.16)

55



Since the constant term
β2 det(K)

det (K∗)
only affects the length of the vector K−1τ , the

direction of ĥ∗ only depends on K−1 not n and the Newton-XEL step is parallel to

the Newton step. This means that XEL can have less effect on Newton’s method

than on other algorithms and that changing the n value may not significantly impact

the Newton-XEL optimization path. Results presented in Chapter 5 show that on a

special energy landscape case the Newton-XEL paths are not varied by modifying n

at all.

Affecting only the magnitude of the Newton step, XEL acts similarly to a line

search which finds a gain that is a scalar multiplier to the Newton step. One difference

is that the line search goes through multiple iterations to find an “optimal” gain that

minimizes the energy along the Newton step while the Newton-XEL only goes through

one iteration and may not give an optimal gain. Thus, XEL can not replace a line

search but can be used to improve performance of the Newton’s method and a line

search. The Newton-XEL with a line search may give the same results as the Newton’s

method with a line search, but not always, especially on a rough energy landscape.

This is because these methods give different magnitudes of the step and therefore a

line search can result in different gains corresponding to different local minima.

Similar to the Newton-XEL step, the QNA-XEL (Broyden’s method) step, (4.6)

and (3.7), on the 2D energy landscape can be derived to show that its direction de-

pends on only the estimated Hessian matrix K̂, i.e., ĥ∗ =
β2 det(K̂)

det(K̂∗)
K̂−1τ . Therefore,

it has the same direction as the QNA step, (3.6) and (3.7), and it is independent of

n.

The QNA-XEL uses the Broyden-XEL (4.9) which is dependent on n to estimate

K̂∗. To show that the direction of the QNA-XEL step is dependent on n, the 2D case
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of the kth QNA-XEL step is derived. Consider K̂∗
k

K̂∗
k = K̂∗

k−1 +
(
ĥ∗k−1

T
ĥ∗k−1

)−1 (
∆τ ∗k−1 − K̂∗

k−1ĥ
∗
k−1

)
ĥ∗k−1

T

= K̃ + ∆τ ∗k−1h̃

where K̃ ≡ K̂∗
k−1−

(
ĥ∗k−1

T
ĥ∗k−1

)−1

K̂∗
k−1

(
ĥ∗k−1 ĥ

∗
k−1

T
)

with elements K̃i, i = 1, · · · , 4,

and h̃ ≡
(
ĥ∗k−1

T
ĥ∗k−1

)−1

ĥ∗k−1

T
with elements h̃i, i = 1, 2, ∆τ̃i be elements of ∆τ ∗k−1.

K̂∗
k

−1
can be written as

K̂∗
k

−1
=

1

det
(
K̂∗
k

)
 K̃4 + ∆τ̃2h̃2 −K̃2 −∆τ̃1h̃2

−K̃3 −∆τ̃2h̃1 K̃1 + ∆τ̃1h̃1


Let τ̃i be elements of τ ∗k the QNA-XEL step becomes

K̂∗
k

−1
τ ∗k =

1

det
(
K̂∗
k

)
 K̃4τ̃1 + ∆τ̃2h̃2τ̃1 − K̃2τ̃2 −∆τ̃1h̃2τ̃2

−K̃3τ̃1 −∆τ̃2h̃1τ̃1 + K̃1τ̃2 + ∆τ̃1h̃1τ̃2



=
1

det
(
K̂∗
k

)
 K̃4τ̃1 − K̃2τ̃2 + (∆τ̃2τ̃1 −∆τ̃1τ̃2) h̃2

−K̃3τ̃1 + K̃1τ̃2 − (∆τ̃2τ̃1 −∆τ̃1τ̃2) h̃1


Since the scalar ∆τ̃2τ̃1 − ∆τ̃1τ̃2 which depends on n can not be factored out and it

does not equal zero, the direction of the QNA-XEL step is dependent of n. This is

expected to be true for the N dimensional case.

4.2.2.2 N dimensional Newton-XEL step

For an N dimensional energy landscape the Newton-XEL step is shown to always

be parallel to the Newton step so the value of n does not affect the direction of the

Newton-XEL step.

Proof that the Newton-XEL step is parallel to the Newton step:

Let ĥ and ĥ∗ be the Newton and the Newton-XEL steps of the N dimensional energy

landscape respectively,

ĥ = K−1τ [3.5]
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ĥ∗ = (K∗)−1 τ ∗ [4.5]

= β (K∗)−1 τ

Eliminating τ gives

ĥ∗ = β (K∗)−1Kĥ (4.17)

Using K∗ in (4.4) and then (3.5) gives

ĥ∗ =
(
(n− 1)E−1ττT +K

)−1
Kĥ

=
(
(n− 1)E−1

(
K−1τ

)
τT + I

)−1
ĥ

=
(

(n− 1)E−1ĥτT + I
)−1

ĥ

However, ĥ is an eigenvector of
(

(n− 1)E−1ĥτT + I
)−1

, and thus also its inverse so,

(
(n− 1)E−1ĥτT + I

)
ĥ = (n− 1)E−1ĥτT ĥ+ ĥ

= λĥ

where

λ = (n− 1)E−1(τT ĥ) + 1 (4.18)

and where τ and ĥ are column vectors and τT ĥ is a scalar. Thus

ĥ∗ = λĥ (4.19)

and ĥ∗ is a scalar multiple of ĥ so the Newton-XEL step is parallel to the Newton

step.

Clearly when n = 1, so the energy landscape is not modified, then λ = 1 and

the Newton-XEL step becomes the Newton step. The scalar multiplier λ has several

properties discussed next in Section 4.2.3.
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4.2.3 Properties of the Scalar Multiplier λ

This section discusses several properties of λ, which are used to derive the relationship

between n and the magnitude of Newton-XEL step in Section 4.2.4 and the error

residue in the Newton-XEL method in Section 4.2.5. As Section 4.2.2.2 previously

defined λ as an eigenvalue of a matrix, here Section 4.2.3.1 shows that λ is also an

eigenvalue of another matrix βK (K∗)−1. Section 4.2.3.2 derives the other eigenvalue

of βK (K∗)−1. Lastly, Section 4.2.3.3 discusses the relationship between λ and a

positive definite property of K and K∗.

4.2.3.1 Eigenvalue λ

Here λ is found to be an eigenvalue of βK (K∗)−1. Since

ĥ∗ = λĥ

substituting ĥ∗ and ĥ from (4.5) and (3.5) and multiplying by K yield

βK (K∗)−1 τ = λτ

and thus τ is an eigenvector of βK (K∗)−1 corresponding to an eigenvalue λ.

4.2.3.2 Other eigenvalues

This section finds other eigenvalues of βK (K∗)−1 first for the 2D case and then a

proof is given for the N -dimensional case. From the derivation of the 2D Newton-XEL

step (4.16) the λ for this case is

λ =
β2 det(K)

det (K∗)

By the property of the determinant of a matrix product [67] this is equal to

λ = β2 det
(
K (K∗)−1) = det

(
βK (K∗)−1)

Since the product of the eigenvalues equals the determinant of the matrix [67], the

other eigenvalue of the 2D matrix βK (K∗)−1 is 1. The same can be shown for
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β (K∗)−1K since

λ = det
(
β (K∗)−1K

)
The other eigenvalue of the 2D matrix β (K∗)−1K is also 1.

For the N -dimensional βK (K∗)−1, the only additional eigenvalue is 1 with N − 1

corresponding eigenvectors. This is shown in the following proof.

Proof that in N dimensions an eigenvalue 1 has N − 1 corresponding eigenvectors:

To show that 1 is an eigenvalue of βK (K∗)−1 matrix, it is equivalent to show that 1 is

an eigenvalue of the inverse matrix β (K∗)K−1 with N−1 corresponding eigenvectors.

For 1 to be an eigenvalue the following characteristic equation must be satisfied,

det
(
β (K∗)K−1 − I

)
= det

(
β
(
(n− 1)E−1ττT +K

)
K−1 − I

)
= 0

or

det
(
β(n− 1)E−1ττTK−1

)
= 0

Determinant properties for the product of a matrix and a scalar [67] give

(
β(n− 1)E−1

)N
det
(
ττT

)
det
(
K−1

)
= 0

This is satisfied identically since ττT is a rank one matrix so det
(
ττT

)
= 0. Therefore,

1 is an eigenvalue of (K∗)K−1.

To find a corresponding eigenvector to 1 it must satisfy

(
β (K∗)K−1 − I

)
x = 0(

β
(
(n− 1)E−1ττT +K

)
K−1 − I

)
x = 0

β(n− 1)E−1ττTK−1x = 0

Let y = K−1x then (
ττT

)
y = 0
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so y is in the null space of
(
ττT

)
and has N − 1 unique solutions. Since K has full

rank x also has N−1 unique solutions which means the β (K∗)K−1 matrix has N−1

eigenvectors corresponding to 1.

Hence, the βK (K∗)−1 matrix also has 1 as the other eigenvalue with N − 1

corresponding eigenvectors.

A similar proof that matrix β (K∗)−1K has 1 as the eigenvalue with N − 1 corre-

sponding eigenvectors can be given as well.

4.2.3.3 A relationship between λ and a positive definite property

This section shows how λ is related to a positive definite property. Since the product

of all eigenvalues is the determinant of the matrix,

λ = det
(
βK (K∗)−1)

=
βN det(K)

det (K∗)
(4.20)

= βN
N∏
i=1

µi/
N∏
i=1

µ∗
i

where µ’s are eigenvalues of K and µ∗’s are eigenvalues of K∗. Since a positive definite

matrix has all positive eigenvalues, their product is positive. With βN always positive,

for both K and K∗ to be positive definite λ must be positive. This is a necessary

but not a sufficient condition because both det(K) and det (K∗) can be negative or

either matrix can have an even number of negative eigenvalues. Note that Equation

(4.20) gives a closed form of λ consistent with the 2D case.
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4.2.4 Magnitude of Newton-XEL Step

This section derives another form of λ that reveals a relationship between the magni-

tude of the Newton-XEL step and n. From the property of eigenvectors and eigenval-

ues the inverse matrix β−1 (K∗)K−1 has τ and
1

λ
as an eigenvector and an eigenvalue,

β−1 (K∗)K−1τ =
1

λ
τ

which reduces to [
(n− 1)E−1(τTK−1τ)−

(
1

λ
− 1

)]
τ = 0

since τTK−1τ is a scalar. Vanishing of the scalar coefficient yields

λ =
1

1 + (n− 1)E−1(τTK−1τ)
(4.21)

Compared to Equation (4.18), this gives a clearer relationship between λ and n.

While λ depends on the current properties of the energy landscape (E, τ , and K) it

also has an inverse relationship with n. Because λ is undefined when the denominator

is zero, the inverse relationship would be true on the continuous intervals of λ. Since

the Newton-XEL step is directly related to λ (4.19), it has an inverse relationship

with n. As n gets smaller the magnitude of the Newton-XEL step becomes larger

and vice versa. Although it is not proven here, this relationship is expected to carry

over to other Newtonian XEL methods (QNA-XEL and BFGS-XEL) and has been

supported by simulation results.

Equation (4.21) can also confirm that for both K and K∗ to be positive definite

λ must be positive. When K is positive definite so is K−1 and thus τTK−1τ > 0.

Also, when both K and K∗ are positive definite, then from (4.14) (n − 1)E−1 > 0

and therefore λ > 0.

4.2.5 Error residue from Newton-XEL step

This section compares the error residue of the Newton-XEL step to that of the Newton

step. They are found to be of the same order.
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First, the error residue from Newton step is determined. Let h be a step from

θk that gives a minimum energy or zero gradient of the unmodified energy landscape

at θk + h. The Taylor series expansion of the derivative of the unmodified energy

function becomes

0 =
∂E(θk + h)

∂θ

=
∂E(θk)

∂θ
+
∂2E(θk)

∂2θ
h+

1

2
hT
∂3E(θk)

∂3θ
h+O(h3)

= −τ +Kh+
1

2
hT
∂3E(θk)

∂3θ
h+O(h3) (4.22)

The error residue ρ from using Newton step ĥ = K−1τ , which approximates h, is

ρ =
1

2
ĥT
∂3E(θk)

∂3θ
ĥ+O(ĥ3)

= O( ĥ
2
) (4.23)

Second, the error residue from Newton-XEL step is found. Let h∗ be a step from

θk that gives a minimum energy or zero gradient of the modified energy landscape at

θk+h∗. The Taylor series expansion of the derivatives of the modified energy function

becomes

0 =
∂E∗(θk + h∗)

∂θ

=
∂E∗(θk)

∂θ
+
∂2E∗(θk)

∂2θ
h∗ +

1

2
h∗ T

∂3E∗(θk)

∂3θ
h∗ +O(h∗ 3) (4.24)

Since the minima on the modified and the unmodified energy landscape are at the

same locations, θk + h = θk + h∗ and therefore

h = h∗

Substituting h∗ for h in Equation (4.22) yields

0 = −τ +Kh∗ +
1

2
h∗ T

∂3E(θk)

∂3θ
h∗ +O(h∗ 3) (4.25)
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In the energy landscaping approach, the Newton-XEL step is used to minimize the

energy on the unmodified energy landscape. The error residue from using Newton-

XEL step can be found by substituting the Newton-XEL step ĥ∗ for h∗ in Equation

(4.25). Since ĥ∗ = λĥ from Equation (4.19), the Newton-XEL error residue ρ∗ be-

comes

ρ∗ = −τ +Kλĥ+
1

2

(
λĥ
)T ∂3E(θk)

∂3θ
λĥ+O( ĥ

3
)

ρ∗ = −τ + λKĥ+
λ2

2
ĥT
∂3E(θk)

∂3θ
ĥ+O( ĥ

3
)

Substituting ĥ = K−1τ in the second term gives

ρ∗ = −(1− λ)τ +
λ2

2
ĥT
∂3E(θk)

∂3θ
ĥ+O( ĥ

3
) (4.26)

Rearranging Equation (4.21) gives

1− λ = λ(n− 1)E−1
(
τTK−1τ

)
which is substituted into Equation (4.26) to yield

ρ∗ = −λ(n− 1)E−1
(
τTK−1τ

)
τ +

λ2

2
ĥT
∂3E(θk)

∂3θ
ĥ+O( ĥ

3
)

Using I = K−TKT , the error residue becomes

ρ∗ = −λ(n− 1)E−1
(
τTK−TKTK−1τ

)
τ +

λ2

2
ĥT
∂3E(θk)

∂3θ
ĥ+O( ĥ

3
)

Since ĥ = K−1τ and K is symmetric,

ρ∗ = −λ(n− 1)E−1
(
ĥTKĥ

)
τ +

λ2

2
ĥT
∂3E(θk)

∂3θ
ĥ+O( ĥ

3
)

= O( ĥ
2
) (4.27)

The Newton-XEL error residue in Equation (4.27) is of the same order as the

Newton error residue in Equation (4.23). Since the Newton-XEL method is Newton’s

method applied to the modified energy landscape, the convergence property of the
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Newton-XEL should be the similar to that of Newton’s method which is confirmed

by the equal order of the error residues of both methods.

Because the error residue of Newton-XEL is directly dependent on λ, a bounded

λ would encourage stable optimization and convergence. Therefore, a guideline for

choosing n in an adaptively modified energy landscape is to satisfy

|λ| < δ (4.28)

where δ is a bounding constant. This guideline is expected to be applicable to the

QNA-XEL and the BFGS-XEL as well.

4.2.6 Weights on Different Energy Landscape Information

This section discusses how the XEL method gives different weights to the different

information on the energy landscape in the XEL Hessian matrices and their estima-

tion.

4.2.6.1 The Newton-XEL and the QNA-XEL (Broyden’s method) Hessian ma-
trices

Consider the Newton step in Equation (3.5) and the Newton-XEL step in Equation

(4.5).

ĥ = K−1τ [3.5]

ĥ∗ = (K∗)−1 τ ∗ [4.5]

=
(
(n− 1)E−1ττT +K

)−1
τ

The term (n− 1)E−1ττT added to the Hessian matrix K contains the current energy

value and gradient information of the energy landscape and the n value basically

determines how much weight is given on this term. The higher the n value, the

higher the weight.

Instead of K, the QNA-XEL (Broyden’s method) method uses the estimated Hes-

sian matrix K̂, which is recursively estimated from the previous Hessian matrix and
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the change of the energy gradients. Giving more weight to the (n − 1)E−1ττT term

gives more weight to the current information. This helps when the estimation of K

is not very accurate, which occurs at the beginning of the minimization or during

the optimization of a bumpy energy landscape. Another good aspect of raising the

weight or increasing n is that the step size is reduced. Forcing the optimization to

move slower improves the accuracy of Hessian matrix estimation because the Hessian

matrix does not vary as much from step to step. This is supported by simulation

results from the Newton-XEL, the QNA-XEL, and the BFGS-XEL as they show that

when n > 1 the quality of resulted configurations is better than when n < 1.

4.2.6.2 The QNA-XEL and the BFGS-XEL Hessian matrix and Hessian matrix
inverse estimation

The value of n affects the calculation of the estimated Hessian matrix K̂∗ and the

estimated inverse of the Hessian matrix Ĥ∗ in the QNA-XEL and the BFGS-XEL

because ∆τ ∗k−1 = βkτk − βk−1τk−1 (4.8) and β = n |E|n−1. The terms βk and βk−1

are weights between the current (kth iteration) and the previous ((k − 1)th iteration)

information of the energy landscape. To give more weight to the current landscape

information, n must be chosen so that βk > βk−1.

When n > 1 the exponent n − 1 is positive and therefore βk > βk−1 if |Ek| >

|Ek−1| > 1. This condition is satisfied when Ek > Ek−1 > 1 or Ek < Ek−1 < −1.

Thus, at an increasing positive E or a decreasing negative E, n > 1 should be used.

The opposite happens when n < 1; the exponent n − 1 is negative and therefore

βk > βk−1 if |Ek−1| > |Ek| > 1. This condition is satisfied when Ek−1 > Ek > 1

or Ek−1 < Ek < −1. Thus, at a decreasing positive E or an increasing negative E,

n < 1 should be used.

The described weighting however has possible undesirable outcomes. First, it re-

quires constant monitoring of the landscape condition which perhaps increases com-

putational cost. Second, in a rugged energy landscape, it results in changing n back
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and forth which may cause instability. Lastly, giving more weight to the current

information with an increasing energy it rewards the optimization path to the non-

descending direction.

To avoid these outcomes, another weighting gives more weight to a point with

lower energy. This is, βk > βk−1 when Ek < Ek−1 or βk < βk−1 when Ek > Ek−1.

At the beginning of protein prediction simulation the energy values are higher

and usually positive. If 1 < Ek < Ek−1, |Ek| < |Ek−1| and for βk > βk−1 the

exponent n − 1 must be negative so n < 1 should be used. This applies to the case

of 1 < Ek−1 < Ek as well. On the contrary, at the end of the simulation the energy

values are lower and usually negative. If Ek < Ek−1 < −1, |Ek| > |Ek−1| and for

βk > βk−1 the exponent n− 1 must be positive so n > 1 should be used. This applies

to the case of Ek−1 < Ek < −1 as well.

To adaptively change the value of n, the effects of XEL on the Hessian matrix

estimation suggest to use n < 1 at the beginning of the simulation (E > 0) and n > 1

near the end of the simulation (E < 0). This agrees with a previous assumption in

Section 4.1 that n < 1 should be implemented during the beginning of the simulation

because it flattens the landscape and n > 1 should be implemented near the end of

the simulation because it makes the global minimum more prominent.

4.2.7 Conclusion for Discussion on XEL

Section 4.2 has discussed the effects of XEL on several quantities and has suggested

guidelines for changing n. First, the positive definite property of the Newton-XEL

Hessian matrix is discussed. The conditions of n and energy values that make the

matrix positive definite are given. Then the Newton-XEL step is shown to be the

scalar multiple of the Newton step (ĥ∗ = λĥ). That is, they are parallel. Moreover,

the scalar λ is an eigenvalue of a matrix βK (K∗)−1 which leads to a proof that λ

is inversely related to n. Next, the error residue of the Newton-XEL is found to be
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of the same order as that of the Newton’s method which shows that the Newton-

XEL can have a similar convergence property as the Newton’s method. The error

also suggests that |λ| should be bounded. Lastly, the XEL method is found to give

different weights on terms in the Hessian matrix and its estimation.

Guidelines for adaptively modified energy landscaping suggested in Section 4.2

are summarized in Table 4.1. For Newton-XEL and QNA-XEL, Guideline i. gives

conditions for obtaining a positive definite XEL Hessian matrix in different energy

values (Section 4.2.1) and Guideline ii. gives conditions for increasing or decreasing

the magnitude of the Newton-XEL step in any situation (Section 4.2.4). Guideline

ii. is expected to be applicable to BFGS-XEL methods as well. Guideline iii. gives a

condition for improving stability and convergence in any situation and it is expected

to be applicable to all methods (Section 4.2.5). Guideline iv. gives a condition for

improving quality when K̂ is inaccurate (Section 4.2.6.1). Lastly, Guideline v. gives

conditions for increasing weight on the lower energy point in different energy values

(Section 4.2.6.2).

Table 4.1: Guidelines for adaptively modified energy landscaping.

Guideline For Situation Condition Applied to

i.
Positive definite E > 0 n > 1 Newton-XEL

XEL Hessian matrix E < 0 n < 1 QNA-XEL

ii.
Smaller |ĥ∗|

Any
Larger n

All
Larger |ĥ∗| Smaller n

iii.
Improving stability

Any Bounded |λ| All
and convergence

iv.
Improving quality Inaccurate K̂∗

Larger n
QNA-XEL

of configurations or Ĥ∗ BFGS-XEL

v.
More weight on E < 0 n > 1 QNA-XEL

lower energy E > 0 n < 1 BFGS-XEL
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Most guidelines are consistent with each other, but some are not. Guideline

iii. suggests the magnitude of λ should be less than the bounding value, which can

be achieved by increasing n according to Guideline ii. Doing so can improve the

inaccurate Hessian matrix estimation, according to Guideline iv. Since Guidelines i.

and v. give conflicting conditions, one of them will be applied at a time.

4.3 Adaptive Exponential Energy Landscaping (AXEL)

Since different values of the exponent variable n affect the XEL algorithms, n should

be chosen to improve performance. Section 4.3.1 derives two optimization algorithms

for AXEL: the adaptive-n and the varying-n XEL algorithms. The difficulty of im-

plementing the adaptive-n XEL algorithms is discussed which leads to the conclusion

that only the implementation of the varying-n XEL algorithms is feasible and there-

fore presented here. Section 4.3.2 introduces and categorizes AXEL schemes to be

used with the varying-n XEL or the XEL algorithms depending on the type of scheme.

Together the varying-n XEL or the XEL algorithms and the AXEL schemes compose

the method of AXEL referred to simply as AXEL.

4.3.1 Optimization with AXEL

The AXEL step can be derived such that 1) it updates both dihedral angles and the n

value or 2) it only updates the dihedral angles. In 1) the adaptive-n XEL algorithms

simultaneously calculate the updates for dihedral angles and n. In 2) the update

for n is determined separately by an AXEL scheme (discussed in Section 4.3.2), and

then the varying-n XEL algorithms calculate the update for the dihedral angles with

the new n. Both adaptive-n and varying-n XEL algorithms are derived for Newton’s

method, the QNA, and the BFGS algorithm.

69



4.3.1.1 Adaptive-n XEL algorithms

Adaptive-n Newton-XEL

When the energy landscape is adaptively modified, the function of the modified energy

depends not only on the dihedral angles but also on the n value. The Taylor series

expansion for the modified energy landscape about the independent variables θ and

n is

E∗(θk + h∗θ, nk + h∗n) = E∗ +

(
∂E∗

∂θ

)T
h∗θ +

(
∂E∗

∂n

)T
h∗n +O

(
h∗θ

2
)

+O
(
h∗n

2
)

(4.29)

where h∗θ and h∗n are changes in dihedral angles and n respectively. Taking the partial

derivative with respect to θ of both sides gives

∂E∗(θk + h∗θ, nk + h∗n)

∂θ
=
∂E∗

∂θ
+
∂2E∗

∂θ2
h∗θ +

∂2E∗

∂θ∂n
h∗n +O

(
h∗θ

2
)

+O
(
h∗n

2
)

Once the higher order terms are dropped, the step for dihedral angles that approxi-

mates
∂E∗(θk + h∗θ, nk + h∗n)

∂θ
= 0 is

0 =
∂E∗

∂θ
+
∂2E∗

∂θ2
ĥ∗θ +

∂2E∗

∂θ∂n
ĥ∗n (4.30)

ĥ∗θ = −
(
∂2E∗

∂θ2

)−1(
∂E∗

∂θ
+
∂2E∗

∂θ∂n
ĥ∗n

)
(4.31)

where ĥ∗θ is the step for dihedral angles, which is the approximation of h∗θ.

Since Equation (4.30) contains two unknowns another equation is needed to si-

multaneously solve for ĥ∗θ and ĥ∗n. This is obtained from taking the partial derivative

with respect to n of the Taylor series expansion for E∗(θk, nk), Equation (4.29),

∂E∗(θk + h∗θ, nk + h∗n)

∂n
=
∂E∗

∂n
+
∂2E∗

∂n∂θ
h∗θ +

∂2E∗

∂n2
h∗n +O

(
h∗θ

2
)

+O
(
h∗n

2
)

Once the higher order terms are dropped, the step for the exponenet n that approxi-

mates
∂E∗(θk + h∗θ, nk + h∗n)

∂n
= 0 is

0 =
∂E∗

∂n
+
∂2E∗

∂n∂θ
ĥ∗θ +

∂2E∗

∂n2
ĥ∗n (4.32)

ĥ∗n = −
(
∂2E∗

∂n2

)−1(
∂E∗

∂n
+
∂2E∗

∂n∂θ
ĥ∗θ

)
(4.33)
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where ĥ∗n is the step for n, which is the approximation of h∗n.

To solve for h∗θ and h∗n simultaneously, stacking and rearranging Equations (4.30)

and (4.32) gives

−


∂E∗

∂θ

∂E∗

∂n

 =


∂2E∗

∂θ2

∂2E∗

∂θ∂n

∂2E∗

∂n∂θ

∂2E∗

∂n2


 ĥ∗θ

ĥ∗n


Defining

Θ ≡

 θ

n



κ∗ ≡


∂2E∗

∂θ2

∂2E∗

∂θ∂n

∂2E∗

∂n∂θ

∂2E∗

∂n2

 (4.34)

∂E∗

∂Θ
≡


∂E∗

∂θ
∂E∗

∂n

 (4.35)

gives the adaptive-n Newton algorithm on AXEL

−∂E
∗

∂Θ
= κ∗ĥ∗Θ

ĥ∗Θ = − (κ∗)−1 ∂E
∗

∂Θ
(4.36)

where ĥ∗Θ ≡

 ĥ∗θ

ĥ∗n

 is the adaptive-n Newton step on AXEL.

The terms in the matrix κ∗ and the vector
∂E∗

∂Θ
are found from Equations (4.3)

and (4.4),

∂E∗

∂θ
= −τ ∗ = −βτ [4.3]

and

∂2E∗

∂θ2
= K∗ = β

(
(n− 1)E−1ττT +K

)
[4.4]
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The term
∂2E∗

∂n∂θ
, which is equivalent to

∂2E∗

∂θ∂n
, is derived by taking the partial deriva-

tive of
∂E∗

∂θ
with respect to n,

∂2E∗

∂n∂θ
=

∂

∂n

∂E∗

∂θ
=
∂(−βτ)

∂n

Since β = n |E|n−1 and τ does not depend on n,

∂2E∗

∂n∂θ
= −∂(n |E|n−1)

∂n
τ

= −

(
|E|n−1 + n

∂(|E|n−1)

∂n

)
τ

= −
(
|E|n−1 + n |E|n−1 ln |E|

)
τ

= − (1 + n ln |E|) |E|n−1 τ (4.37)

The terms
∂E∗

∂n
and

∂2E∗

∂n2
follow as,

∂E∗

∂n
=
∂
(
E |E|n−1)
∂n

= E · ln |E| · |E|n−1 (4.38)

and

∂2E∗

∂n2
=

∂

∂n

(
∂E∗

∂n

)

=
∂
(
E · ln |E| · |E|n−1)

∂n

= E (ln |E|)2 |E|n−1 (4.39)

Therefore, substituting Equations (4.4), (4.37), and (4.39) into (4.34) and (4.35) yields

κ∗ =

 β
(
(n− 1)E−1ττT +K

)
− (1 + n ln |E|) |E|n−1 τ

− (1 + n ln |E|) |E|n−1 τT E (ln |E|)2 |E|n−1

 (4.40)

and

∂E∗

∂Θ
=

 −βτ
E · ln |E| · |E|n−1

 (4.41)
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Equations (4.36), (4.40), and (4.41) define the adaptive-n Newton-XEL step.

Adaptive-n QNA-XEL

Two different algorithms for adaptive-n QNA-XEL can be obtained by estimating

two matrices that define the Hessian matrix. Similar to the adaptive-n Newton-XEL,

the first adaptive-n QNA-XEL is given by

ĥ∗Θ = − (κ̂∗)−1 ∂E
∗

∂Θ
(4.42)

and

κ̂∗ =

 β
(

(n− 1)E−1ττT + K̂
)

− (1 + n ln |E|) |E|n−1 τ

− (1 + n ln |E|) |E|n−1 τT E (ln |E|)2 |E|n−1

 (4.43)

where κ̂∗ is an estimation of κ∗ and K̂ is an estimation of K which was previously

described by the Broyden’s method as

K̂k = K̂k−1 +
(
ĥ∗θ

T

k−1 ĥ
∗
θ k−1

)−1 (
∆τk−1 − K̂k−1 ĥ

∗
θ k−1

)
ĥ∗θ

T

k−1 [3.7]

Note that ĥ∗θ k here is equal to ĥk in Equation (3.7).

The Broyden-XEL Equation (4.9) can also be used to calculate K̂∗ but the ∆τ ∗

and β terms have to be similarly redefined,

K̂∗
k = K̂∗

k−1 +
(
ĥ∗θ

T

k−1 ĥ
∗
θ k−1

)−1 (
∆τ ∗ kk−1 − K̂∗

k−1 ĥ
∗
θ k−1

)
ĥ∗θ

T

k−1 (4.44)

where

∆τ ∗ kk−1 = βkkτk − βkk−1τk−1

βkk = nk |Ek|nk−1

βkk−1 = nk |Ek−1|nk−1

This definition of βk and ∆τ ∗ k uses the current value of n as if n is constant. Allowing

only changes in θ to affect the K̂ calculation is appropriate since K̂ is an estimation

of the stiffness matrix that is only of function of θ.
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Alternatively, the second adaptive-n QNA-XEL uses Broyden’s method to esti-

mate the entire κ∗ matrix as

κ̂∗k = κ̂∗k−1 −
(
ĥ∗Θ

T

k ĥ
∗
Θ k

)−1
(
∂E∗ (Θk)

∂Θ
− ∂E∗ (Θk−1)

∂Θ
+ κ̂∗k−1 ĥ

∗
Θ k

)
ĥ∗Θ

T

k (4.45)

However, estimating only K̂ and calculating other terms individually may give a more

accurate estimation of κ∗.

Adaptive-n BFGS-XEL

Similar to previous BFGS algorithms, the adaptive-n BFGS-XEL algorithm estimates

(κ∗)−1.

ĥ∗Θ k = Ĥκ
k

∂E∗ (Θk)

∂Θ
(4.46)

γ∗k−1 =
∂E∗ (Θk)

∂Θ
− ∂E∗ (Θk−1)

∂Θ

ĥ∗Θ k−1 = Θk −Θk−1

Ĥκ
k = Ĥκ

k−1 −

Ĥκ
k−1γ

∗
k−1 ĥ

∗
Θ

T

k−1 + ĥ∗Θ k−1 γ
∗
k−1

T Ĥκ
k−1

ĥ∗Θ
T

k−1 γ
∗
k−1


+

1 +
γ∗k−1

T Ĥκ
k−1γ

∗
k−1

ĥ∗Θ
T

k−1 γ
∗
k−1

 ĥ∗Θ k−1 ĥ
∗
Θ

T

k−1

ĥ∗Θ
T

k−1 γ
∗
k−1

(4.47)

where Ĥκ is the estimation of (κ∗)−1.

Discussion on adaptive-n algorithms

In addition to the dihedral angles, all adaptive-n XEL algorithms introduce the vari-

able n for optimization. This additional variable inevitably increases the complexity

of the problem. Unlike the algorithms with a fixed n, the optimization in adaptive-n

XEL algorithms is done on an adaptively modified energy landscape. This means the

value of the modified energy or the cost function is driven by not only the dihedral

angles but also by changes in n. In fact, the change in n can have a larger impact

on the energy value than changes in the dihedral angles. For n > 1, increasing n
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deepens the valleys on the energy landscape. Therefore, while the modified energy

value appears to be reduced because of changing n, the dihedral angles may be varied

only slightly, or not at all. This presents an optimization difficulty, which is seen

in some preliminary simulations implementing these adaptive-n algorithms. Results

from these simulations show that the optimization paths sometimes move with very

small steps and occasionally diverge.

Although an adaptive algorithm for determining n value is desired, simultaneously

optimizing n and dihedral angles may not be a good solution. The next section derives

the varying-n XEL algorithms that determine the change in n and then separately

determine the changes in the dihedral angles.

4.3.1.2 Varying-n XEL algorithms

Since the protein conformation prediction problem is already difficult, the strategic

goal of the varying-n XEL algorithms is not to aggravate the complexity of the prob-

lem while taking into account the effect of the changing n. The n value is changed

according to different AXEL schemes discussed in Section 4.3.2.

Varying-n Newton-XEL

Consider the step for dihedral angles that approximates
∂E∗(θk + h∗θ, nk + h∗n)

∂θ
= 0,

ĥ∗θ = −
(
∂2E∗

∂θ2

)−1(
∂E∗

∂θ
+
∂2E∗

∂n∂θ
ĥ∗n

)
[4.31]

Clearly, when n is constant or ĥ∗n = 0, this step becomes the Newton-XEL step in

Equation (4.5). Although E∗ is now a function of variables n and θ, the locations of

the minima where
∂E∗

∂θ
= 0 remain the same. Therefore, ĥ∗θ can be used to locate

the minimum on the unmodified energy landscape
∂E

∂θ
= 0.
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Substituting all necessary terms into Equation (4.31) yields the varying-n Newton-

XEL step,

ĥ∗θ = −
(
β
(
(n− 1)E−1ττT +K

))−1
(
−βτ − (1 + n ln |E|) |E|n−1 τ ĥ∗n

)
= β−1

(
(n− 1)E−1ττT +K

)−1 · β ·
(

1 +

(
1

n
+ ln |E|

)
ĥ∗n

)
τ

=
(
(n− 1)E−1ττT +K

)−1
(

1 +

(
1

n
+ ln |E|

)
ĥ∗n

)
τ

= (K∗)−1

(
1 +

(
1

n
+ ln |E|

)
ĥ∗n

)
τ ∗ (4.48)

Compared to the Newton-XEL step ĥ∗ (4.5), the varying-n Newton-XEL step in

(4.48) has an additional term,

(
1

n
+ ln |E|

)
ĥ∗n, which reflects the change in the

energy landscape due to the changing n. Since 1 +

(
1

n
+ ln |E|

)
ĥ∗n is a scalar, the

varying-n Newton-XEL step is a scalar multiple of the Newton-XEL step. Recalling

Equation (4.19) gives

ĥ∗θ =

(
1 +

(
1

n
+ ln |E|

)
ĥ∗n

)
ĥ∗

=

(
1 +

(
1

n
+ ln |E|

)
ĥ∗n

)
λĥ

= λΘĥ

where λΘ ≡
(

1 +

(
1

n
+ ln |E|

)
ĥ∗n

)
λ is a scalar multiplier of the Newton-XEL with

Θ as an independent variable. Since the varying-n Newton-XEL step is a scalar

multiple of the Newton step, its error residue can be shown to be of the same order

as Newton error residue. Similar to a guideline that limits |λ| (4.28),
∣∣λΘ
∣∣ < δ can

be followed.

Varying-n QNA-XEL

Similarly, the varying-n QNA-XEL step is defined as

ĥ∗θ =
(

(n− 1)E−1ττT + K̂
)−1

(
1 +

(
1

n
+ ln |E|

)
ĥ∗n

)
τ

=
(
K̂∗
)−1

(
1 +

(
1

n
+ ln |E|

)
ĥ∗n

)
τ ∗ (4.49)
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where K̂∗ is calculated using the redefined Broyden-XEL Equation (4.44). Again, the

varying-n QNA-XEL step has the additional term

(
1

n
+ ln |E|

)
ĥ∗n compared to the

QNA-XEL step.

Varying-n BFGS-XEL

The varying-n BFGS-XEL step is defined as

ĥ∗θ = Ĥ∗
(

1 +

(
1

n
+ ln |E|

)
ĥ∗n

)
τ ∗ (4.50)

where Ĥ∗ is the estimation of

(
∂2E∗

∂θ2

)−1

previously defined in Equation (4.11). For

the varying-n case the β and ∆τ ∗ terms have to be redefined as,

ĥ∗θ k−1 = θk − θk−1

βkk = nk · |Ek|nk−1

βkk−1 = nk · |Ek−1|nk−1

∆τ ∗ kk−1 = βkkτk − βkk−1τk−1

Ĥ∗
k = Ĥ∗

k−1 −

Ĥ∗
k−1 ∆τ ∗ kk−1 ĥ

∗
θ

T

k−1 + ĥ∗θ k−1 ∆τ ∗ kk−1

T
Ĥ∗
k−1

ĥ∗θ
T

k−1 ∆τ ∗ kk−1


+

 ∆τ ∗ kk−1

T
Ĥ∗
k−1 ∆τ ∗ kk−1

ĥ∗θ
T

k−1 ∆τ ∗ kk−1

− 1

 ĥ∗θ k−1 ĥ
∗
θ

T

k−1

ĥ∗θ
T

k−1 ∆τ ∗ kk−1

(4.51)

Again, compared to the BFGS-XEL, the varying-n BFGS-XEL contains the addi-

tional term

(
1

n
+ ln |E|

)
ĥ∗n. It turns out that this term is very important to protein

predictions that use a varying n during the minimization process. In fact, a compar-

ative study shows that when n is not constant the varying-n BFGS-XEL can locate

a conformation with up to 9% lower energy than that located by the BFGS-XEL.

Figures 4.6, 4.7, and 4.8 give pseudo-codes for the varying-n Newton-XEL, the

varying-n QNA-XEL, and the varying-n BFGS-XEL, respectively, used with a line

search and an AXEL scheme.
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Pseudo-code: Varying-n Newton-XEL with a line search

Initialize ε, n1, and θ1

Calculate E0

for k = 1, . . ., kmax do

Calculate Ek, τk, and Kk

if

∣∣∣∣Ek − Ek−1

Ek−1

∣∣∣∣ < ε then

break // Convergence criterion met.

end if

nk+1 = AXEL scheme() // Determine the new exponent with an AXEL

scheme

ĥ∗n k = nk+1 − nk
βk = nk |Ek|nk−1

K∗
k = βk

(
(nk − 1)E−1

k τkτ
T
k +Kk

)
τ ∗k = βkτk

ĥ∗θ k = (K∗
k)−1

(
1 +

(
1

nk
+ ln |Ek|

)
ĥ∗n k

)
τ ∗k

// Determine the varying-n Newton-XEL step

αk = line search( ĥ∗θ k) // Determine the line search gain

θk+1 = θk + αk ĥ
∗
θ k // (k + 1)th solution

end for

Figure 4.6: A pseudo-code for varying-n Newton-XEL with a line search. Note that
for varying-n Newton-XEL (Hessian only) τ ∗k = τk.
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Pseudo-code: Varying-n QNA-XEL with a line search

Initialize ε, n1, θ0, θ1, and K̂∗
0

Calculate E0, and τ0

for k = 1, . . ., kmax do

Calculate Ek, and τk

if

∣∣∣∣Ek − Ek−1

Ek−1

∣∣∣∣ < ε then

break // Convergence criterion met.

end if

nk+1 = AXEL scheme() // Determine the new exponent with an AXEL

scheme

ĥ∗n k = nk+1 − nk
Calculate K̂∗

k

ĥ∗θ k−1 = θk − θk−1

βkk = nk · |Ek|nk−1

βkk−1 = nk · |Ek−1|nk−1

∆τ ∗ kk−1 = βkkτk − βkk−1τk−1

K̂∗
k = K̂∗

k−1 +
(
ĥ∗θ

T

k−1 ĥ
∗
θ k−1

)−1 (
∆τ ∗ kk−1 − K̂∗

k−1 ĥ
∗
θ k−1

)
ĥ∗θ

T

k−1

τ ∗k = βkkτk

ĥ∗θ k =
(
K̂∗
k

)−1
(

1 +

(
1

nk
+ ln |Ek|

)
ĥ∗n k

)
τ ∗k

// Determine the varying-n QNA-XEL step

αk = line search( ĥ∗θ k) // Determine the line search gain

θk+1 = θk + αk ĥ
∗
θ k // (k + 1)th solution

end for

Figure 4.7: A pseudo-code for varying-n QNA-XEL with a line search. Note that
for varying-n QNA-XEL (Hessian only) τ ∗k = τk.
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Pseudo-code: Varying-n BFGS-XEL with a line search

Initialize ε, n1, θ0, θ1, and Ĥ∗
0

Calculate E0 and τ0

for k = 1, . . ., kmax do

Calculate Ek, and τk

if

∣∣∣∣Ek − Ek−1

Ek−1

∣∣∣∣ < ε then

break // Convergence criterion met.

end if

nk+1 = AXEL scheme() // Determine the exponent with an AXEL scheme

ĥ∗n k = nk+1 − nk
Calculate Ĥ∗

k

ĥ∗θ k−1 = θk − θk−1

βkk = nk · |Ek|nk−1

βkk−1 = nk · |Ek−1|nk−1

∆τ ∗ kk−1 = βkkτk − βkk−1τk−1

Ĥ∗
k = Ĥ∗

k−1 −

Ĥ∗
k−1 ∆τ ∗ kk−1 ĥ

∗
θ

T

k−1 + ĥ∗θ k−1 ∆τ ∗ kk−1

T
Ĥ∗
k−1

ĥ∗θ
T

k−1 ∆τ ∗ kk−1


+

 ∆τ ∗ kk−1

T
Ĥ∗
k−1 ∆τ ∗ kk−1

ĥ∗θ
T

k−1 ∆τ ∗ kk−1

− 1

 ĥ∗θ k−1 ĥ
∗
θ

T

k−1

ĥ∗θ
T

k−1 ∆τ ∗ kk−1

τ ∗k = βkkτk

ĥ∗θ k = Ĥ∗
k

(
1 +

(
1

nk
+ ln |Ek|

)
ĥ∗n k

)
τ ∗k

// Determine the varying-n BFGS-XEL step

αk = line search( ĥ∗θ k) // Determine the line search gain

θk+1 = θk + αk ĥ
∗
θ k // (k + 1)th solution

end for

Figure 4.8: A pseudo-code for varying-n BFGS-XEL with a line search. Note that
for varying-n BFGS-XEL (Hessian only) τ ∗k = τk.
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4.3.2 AXEL Schemes

The simulation of conformation prediction typically consists of two parts, probabilistic

search and minimization. AXEL schemes can be categorized into two groups based

on when n changes. Some of these schemes change n during the minimization, so they

are applicable to varying-n XEL algorithms. Others change n less frequently outside

the minimization stage and therefore they are more applicable to XEL algorithms.

I. Global: n changes depending on the global location of the probabilistic search

which is the searched location with respect to the global solution. For example,

as the search progresses the searched location is expected to be closer to the

global solution so larger n may be needed to improve quality. These changes of

n happen during the course of the simulation, but n’s are constant during each

minimization step. XEL algorithms are used in minimization.

i. Periodic: n changes at specific times. The performance of the XEL simu-

lations are compared to determine which n performs the best during the

beginning, the middle, and the end of the simulation. The AXEL scheme

changes the n value accordingly.

II. Local: n changes depending on the local location of the search. These changes

happen during the course of each minimization step. Varying-n XEL algorithms

are used in minimization.

i. Periodic: n changes at specific times.

ii. Occasional: n changes when criteria are met.

Global and local schemes are implemented so that the global and local effects of

the AXEL on the prediction simulation can be studied. While global schemes are

only applicable to a protein prediction algorithm that involves several minimization
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steps for many starting configurations, local schemes are applicable to an algorithm

with one minimization step as well.

4.4 Conclusion for the Energy Landscaping

The method of XEL has been presented and discussed, and five guidelines on how to

change the landscape are suggested. The derivations of Newton’s method, the QNA,

and the BFGS method for XEL and AXEL have been presented. Lastly, the AXEL

schemes used with the varying-n XEL algorithms are categorized. The method of

adaptively modified energy landscape comprises of the varying-n XEL or the XEL

algorithms and the AXEL schemes. Tables 4.2 through 4.5 summarize all presented

methods from Chapters 3 and 4. Note that in some equations subscript k is omitted

for displaying purposes.
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Table 4.2: A summary of presented methods: Newton, Newton-XEL, QNA, and
QNA-XEL (1 of 4)

Method Equation

Newton ĥk = K−1
k τk [3.5]

Newton-XEL

K∗
k = βk

(
(n− 1)E−1

k τkτ
T
k +Kk

)
[4.4]

τ ∗k ≡ βkτk (or τ ∗k ≡ τk, Hessian only)

ĥ∗k = (K∗
k)−1 τ ∗k [4.5]

QNA

K̂k = K̂k−1 +
(
ĥTk−1ĥk−1

)−1

·
(

∆τk−1 − K̂k−1ĥk−1

)
ĥTk−1 [3.7]

ĥk = K̂−1
k τk [3.6]

QNA-XEL

K̂∗
k = K̂∗

k−1 +
(
ĥ∗k−1

T
ĥ∗k−1

)−1

·
(

∆τ ∗k−1 − K̂∗
k−1ĥ

∗
k−1

)
ĥ∗k−1

T
[4.9]

τ ∗k ≡ βkτk (or τ ∗k ≡ τk, Hessian only)

ĥ∗k =
(
K̂∗
k

)−1

τ ∗k [4.6]

QNA-XEL
(Broyden’s method)

K̂k = K̂k−1 +
(
ĥ∗k−1

T
ĥ∗k−1

)−1

·
(

∆τk−1 − K̂k−1 ĥ
∗
k−1

)
ĥ∗k−1

T
[3.7]

K̂∗
k = βk(n− 1)E−1

k τkτ
T
k + K̂k [4.7]

ĥ∗k =
(
K̂∗
k

)−1

τ ∗k [4.6]
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Table 4.4: A summary of presented methods: Adaptive-n XEL algorithms (3 of 4)

Method
(cont.)

Equation (cont.)

Adaptive-n
Newton-

XEL

κ∗ =

[
β
(
(n− 1)E−1ττT +K

)
− (1 + n ln |E|) |E|n−1 τ

− (1 + n ln |E|) |E|n−1 τT E (ln |E|)2 |E|n−1

]
[4.40]

ĥ∗Θ = − (κ∗)−1 ∂E
∗

∂Θ
[4.36]

Adaptive-n
QNA-XEL

a) Broyden’s
method for K̂
b) Redefined

Broyden-XEL
c) Broyden’s

method for κ̂∗

κ̂∗ =

β ((n− 1)E−1ττT + K̂
)
− (1 + n ln |E|) |E|n−1 τ

− (1 + n ln |E|) |E|n−1 τT E (ln |E|)2 |E|n−1

 [4.43]

a) K̂k = K̂k−1+
(
ĥ∗θ

T

k−1 ĥ
∗
θ k−1

)−1 (
∆τk−1 − K̂k−1 ĥ

∗
θ k−1

)
ĥ∗θ

T

k−1[3.7]

b) K̂∗
k = K̂∗

k−1 +
(
ĥ∗θ

T

k−1 ĥ
∗
θ k−1

)−1

·
(

∆τ ∗ kk−1 − K̂∗
k−1 ĥ

∗
θ k−1

)
ĥ∗θ

T

k−1 [4.44]

c) κ̂∗k = κ̂∗k−1 −
(
ĥ∗Θ

T

k ĥ
∗
Θ k

)−1

(
∂E∗ (Θk)

∂Θ
− ∂E∗ (Θk−1)

∂Θ
+ κ̂∗k−1 ĥ

∗
Θ k

)
ĥ∗Θ

T

k [4.45]

ĥ∗Θ = − (κ̂∗)−1 ∂E
∗

∂Θ
[4.42]

Adaptive-n
BFGS-XEL

Ĥκ
k = Ĥκ

k−1 −

Ĥκ
k−1γ

∗
k−1 ĥ

∗
Θ

T

k−1 + ĥ∗Θ k−1 γ
∗
k−1

T Ĥκ
k−1

ĥ∗Θ
T

k−1 γ
∗
k−1



+

1 +
γ∗k−1

T Ĥκ
k−1γ

∗
k−1

ĥ∗Θ
T

k−1 γ
∗
k−1

 ĥ∗Θ k−1 ĥ
∗
Θ

T

k−1

ĥ∗Θ
T

k−1 γ
∗
k−1

[4.47]

ĥ∗Θ k = Ĥκ
k

∂E∗ (Θk)

∂Θ
[4.46]

where
∂E∗

∂Θ
=

[
−βτ

E · ln |E| · |E|n−1

]
[4.41]
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∗ θ
k
−

1
ĥ
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CHAPTER V

SIMULATION RESULTS AND DISCUSSIONS

To investigate the effects of the method of exponential energy landscaping (XEL) on

Newton’s method, the quasi-Newton algorithm (QNA), and the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm, several simulations are performed with two dif-

ferent implementations.

(i) The investigated algorithms are implemented without a probabilistic search on

a simulated two-dimensional energy landscape.

(ii) The investigated algorithms are implemented with a probabilistic search on a

multi-dimensional energy landscape.

While the variations of the QNA-XEL and the BFGS-XEL algorithms are imple-

mented in both (i) and (ii), the variations of the Newton-XEL are only implemented

in (i) because the second derivatives on a multi-dimensional energy landscape are not

available in the platform used for (ii). Observing the results from the simulations

in (i), adaptive exponential energy landscape (AXEL) schemes are developed and

implemented in (ii).

The performance comparison of different simulations is done in terms of quality

and speed evaluated through different quantities for different implementations.

(i) For quality comparisons the converged energy and the number of paths that

locate the global minimum are evaluated, and for speed comparisons the number

of iterations is evaluated.

(ii) For quality comparisons the score improvement, the lowest score, and the simi-

larity to the native conformation are evaluated, and for speed comparisons the
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number of iterations is evaluated. In addition to quality and speed, efficiency

defined as a ratio between quality and speed is evaluated.

Section 5.1 presents results from the following algorithms implemented in (i):

Newton-XEL, Newton-XEL (Hessian only), QNA-XEL, QNA-XEL (Hessian only),

BFGS-XEL, and BFGS-XEL (Hessian only). The XEL algorithms are derived from

both the first derivative and the Hessian matrix of the XEL but the XEL (Hessian

only) algorithms are derived from the Hessian matrix only. Section 5.2 presents results

from the following algorithms implemented in (ii): QNA-XEL, QNA-XEL (Hessian

only), BFGS-XEL, and BFGS-XEL (Hessian only). Section 5.3 discusses simulations

and results from AXEL. Lastly, Section 5.4 concludes the chapter.

5.1 XEL Algorithms without Probabilistic Search

To study the effect of XEL on Newton’s method, QNA, and BFGS, optimization

paths are generated for each XEL algorithm on two simulated two-degree-of-freedom

energy landscapes: simple and complex energy landscapes. As shown in Figure 5.1,

the simple energy landscape (a) is a fourth order polynomial function with only one

minimum which is a global minimum and the complex landscape (b) is a parabolic

based surface with multiple local minima and one global minimum. The simple energy

landscape and its derivatives as functions of the dihedral angles θ are described below.

The functions of the complex energy landscape and its derivatives are not displayed

because of their lengths.

E(θ1, θ2) = 0.0128(θ1
4 + θ2

4)− 16

∂E(θ1, θ2)

∂θ
=

 0.0512 θ1
3

0.0512 θ2
3


∂E2(θ1, θ2)

∂θ2
=

 0.1536 θ1
2 0

0 0.1536 θ2
2

 (5.1)
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where E is the energy function and θi’s are dihedral angles. Note that dihedral angles

exist only on a protein chain or a polypeptide and the smallest polypeptide has two

residues with four degrees of freedom. Therefore, there are no dihedral angles in 2D

system but torsion angles. However, these angles are called dihedral angles here for

consistency.

Figure 5.1: The simple energy landscape (a) and the complex landscape (b) used
to generate optimization paths for all algorithms.

A grid search is done as paths are generated for 25 different locations equally

distributed on the surface shown in Figure 5.2. Seven values of n used in these

simulations are 0.125, 0.25, 0.5, 1 (unmodified case), 2, 3, and 4. The range of n

values is selectively investigated because it sufficiently represents the performance

of the algorithms. Also, as n becomes lower than 0.125 the optimization algorithm

diverges and as n becomes higher than 4, total steps become too small to reach a

solution in a reasonable time.

In addition to different optimization algorithms, two line search algorithms are

used to demonstrate that a line search can have a significant impact to the XEL.
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Figure 5.2: Twenty-five starting points for paths generation. Each line indicates
the initial optimization step, which moves from the the dot to another end of the line.

The first implemented line search is an integrated golden section and quadratic in-

terpolation bracketing algorithm with Brent’s method [52]. This algorithm uses a

bracketing algorithm combined with the golden section and quadratic interpolation

to initialize a search interval and uses the Brent’s method to locate the minimum.

The second implemented line search is a heuristic exhaustive line search algorithm.

This algorithm divides and checks the energies of a search interval and if an optimal

line search gain can not be located it iteratively increases the range of the search up

to five times the size of the computed step.

Two sets of the convergence criteria are used: 1) for the simple energy landscape

the minimization stops when the magnitude of the gradient is less than 0.001, and

2) for the complex energy landscape the minimization stops when the magnitude of

the gradient is less than 0.1. Since the simple energy landscape is very flat near the

global minimum, the stricter criterion is in place so that it would allow the paths to

reach the minimum. The magnitude of the gradient is chosen to be the measure of

convergence because the usual measure, the relative change of the energy function

between the current and the previous step, can mistakenly assume paths with a very

small step as converged.
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As mentioned, the performance comparison of different simulations is discussed in

terms of quality and speed. Before the quality and speed are fully discussed, Section

5.1.1 discusses the characteristics of paths generated by the XEL algorithms with

different values of n. Section 5.1.2 discusses the quality and speed of XEL algorithms

by comparing the energy to which the paths converge and the number of iterations

to the unmodified case. Section 5.1.3 compares the quality in terms of the ability of

the algorithms to locate a global minimum.

5.1.1 Path Comparison

To study the effects of XEL on each algorithm, paths generated by Newton-XEL,

Newton-XEL (Hessian only), QNA-XEL, QNA-XEL (Hessian only), BFGS-XEL, and

BFGS-XEL (Hessian only) are evaluated. The equations of these algorithms are

summarized in Tables 4.2 and 4.3, pages 83–84.

5.1.1.1 Newton-XEL and Newton-XEL (Hessian only)

Simple energy landscape

With a bracketing and Brent line search on the simple energy landscape, Newton-

XEL and Newton-XEL (Hessian only) (4.5) paths, if exist, from all cases are the

same as they are able to locate the minimum in one total step. This can be observed

from Figures 5.3 and 5.4 with representative examples of paths from Newton-XEL

and Newton-XEL (Hessian only) respectively. Note that Figures 5.3 c) and 5.4 c) do

not have a path but only the starting points. Since n affects only the magnitude of

the Newton step, as described in Section 4.2.2, and the Newton step of this energy

landscape is coincidently parallel to a line from the current position to the global

minimum, every Newton-XEL step always points to the global minimum. Although

the magnitudes of these steps are different, the bracketing and Brent line search helps

locating the minimum in one total step. If the Newton step does not always point to

the global minimum, the Newton-XEL steps with different magnitudes would yield
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different increments and more divergent paths of the Newton-XEL would have been

observed. The absence of deviation in both Newton-XEL and Newton-XEL (Hessian

only) paths demonstrates that the effect of XEL on the Newton’s method can be very

limited due to the lack of directional effects of XEL on the Newton’s method.

Figures 5.3 c) and 5.4 c) show that at some starting points no path is generated.

This is because at least one of the second derivatives (5.1) with respect to θ1 or θ2

is zero and therefore the Hessian matrix is not invertible at these starting points.

This happens in 9 out of 25 starting points. This demonstrates one restriction of the

Newton-XEL, which is inherited from the Newton’s method.

With a heuristic exhaustive line search, Newton-XEL and Newton-XEL (Hessian

only) paths on the simple energy landscape also make a straight line to the global

minimum but with multiple total steps. This can be observed from Figures 5.5 and 5.6

with representative examples of paths from Newton-XEL and Newton-XEL (Hessian

only) respectively. While the special characteristic of the energy landscape is that

straight paths are taken to the minimum, most paths are actually composed of small

total steps which are different from those with the bracketing and Brent line search

that have only one total step. Because the heuristic exhaustive line search preserves

the effect of n on the magnitude of the step, the line search results in different gains

for different values of n.

With a heuristic exhaustive line search, most Newton-XEL and Newton-XEL

(Hessian only) paths are the same except some n = 0.125 paths from Newton-XEL

(Hessian only) that overshoot the minimum at the first total step and locate it soon

thereafter (Figure 5.6 e). This is because with the Newton-XEL (Hessian only) n has

a greater effect on the magnitude so the n = 0.125 total step becomes much larger

than that of the Newton-XEL.

92



F
ig

u
re

5
.3

:
P

at
h
s

fr
om

1st
th

ro
u
gh

5th
st

ar
ti

n
g

p
oi

n
ts

a)
th

ro
u
gh

e)
on

a
si

m
p
le

en
er

gy
la

n
d
sc

ap
e

ge
n
er

at
ed

w
it

h
N

ew
to

n
-X

E
L

.
f)

th
ro

u
gh

j)
sh

ow
m

or
e

d
et

ai
l

of
th

e
p
at

h
s

on
a)

th
ro

u
gh

e)
,

re
sp

ec
ti

ve
ly

.
P

at
h
s

ar
e

ge
n
er

at
ed

b
y

a
b
ra

ck
et

in
g

an
d

B
re

n
t

li
n
e

se
ar

ch
.

93



F
ig

u
re

5
.4

:
P

at
h
s

fr
om

1st
th

ro
u
gh

5th
st

ar
ti

n
g

p
oi

n
ts

a)
th

ro
u
gh

e)
on

a
si

m
p
le

en
er

gy
la

n
d
sc

ap
e

ge
n
er

at
ed

w
it

h
N

ew
to

n
-X

E
L

(H
es

si
an

on
ly

).
f)

th
ro

u
gh

j)
sh

ow
m

or
e

d
et

ai
l

of
th

e
p
at

h
s

on
a)

th
ro

u
gh

e)
,

re
sp

ec
ti

ve
ly

.
P

at
h
s

ar
e

ge
n
er

at
ed

b
y

a
b
ra

ck
et

in
g

an
d

B
re

n
t

li
n
e

se
ar

ch
.

94



F
ig

u
re

5
.5

:
P

at
h
s

fr
om

1st
th

ro
u
gh

5th
st

ar
ti

n
g

p
oi

n
ts

a)
th

ro
u
gh

e)
on

a
si

m
p
le

en
er

gy
la

n
d
sc

ap
e

ge
n
er

at
ed

w
it

h
N

ew
to

n
-X

E
L

.
f)

th
ro

u
gh

j)
sh

ow
m

or
e

d
et

ai
l

of
th

e
p
at

h
s

on
a)

th
ro

u
gh

e)
,

re
sp

ec
ti

ve
ly

.
P

at
h
s

ar
e

ge
n
er

at
ed

b
y

a
h
eu

ri
st

ic
ex

h
au

st
iv

e
li
n
e

se
ar

ch
.

95



F
ig

u
re

5
.6

:
P

at
h
s

fr
om

1st
th

ro
u
gh

5th
st

ar
ti

n
g

p
oi

n
ts

a)
th

ro
u
gh

e)
on

a
si

m
p
le

en
er

gy
la

n
d
sc

ap
e

ge
n
er

at
ed

w
it

h
N

ew
to

n
-X

E
L

(H
es

si
an

on
ly

).
f)

th
ro

u
gh

j)
sh

ow
m

or
e

d
et

ai
l

of
th

e
p
at

h
s

on
a)

th
ro

u
gh

e)
,

re
sp

ec
ti

ve
ly

.
P

at
h
s

ar
e

ge
n
er

at
ed

b
y

a
h
eu

ri
st

ic
ex

h
au

st
iv

e
li
n
e

se
ar

ch
.

96



Complex energy landscape

With the bracketing and Brent line search on the complex energy landscape, n has lit-

tle effect on paths from Newton-XEL and Newton-XEL (Hessian only) as they rarely

differ. This can be observed from Figures 5.7 and 5.8 with representative examples of

paths from Newton-XEL and Newton-XEL (Hessian only) respectively. Paths from

Newton-XEL (Hessian only) show more variation than those from Newton-XEL which

demonstrates that n has more effect on Newton-XEL (Hessian only) than Newton-

XEL. This is because the extra term β−1 in Newton-XEL (Hessian only) and with

the exponent n − 1 in β = n |E|n−1 magnifies the dependency of n is magnified as

discussed briefly in Section 4.1.4. Results here show that n < 1 yields a longer total

step than n > 1 but the effects of n are not as pronounced as expected because the

bracketing and Brent line search reduces the effect of n on the magnitudes of the step.

With the heuristic exhaustive line search, paths from different values of n on the

complex energy landscape show more variation than those with the bracketing and

Brent line search. This can be observed from Figures 5.9 and 5.10 with representative

examples of paths from Newton-XEL and Newton-XEL (Hessian only) respectively.

Again this is because the heuristic exhaustive line search does not significantly reduce

the effect of n on the magnitude of the step. Paths from Newton-XEL (Hessian only)

have larger total steps when n < 1 which allow paths to travel farther and more

frequently reach the global minimum. However, with smaller total steps Newton-

XEL paths tend to converge to the closest local minima.
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5.1.1.2 QNA-XEL and QNA-XEL (Hessian only)

Simple energy landscape

With the bracketing and Brent line search on the simple energy landscape, QNA-XEL

and QNA-XEL (Hessian only) (4.6) paths with different values of n differ significantly

from each another. This can be observed from Figures 5.11 and 5.12 with represen-

tative examples of paths from QNA-XEL and QNA-XEL (Hessian only) respectively.

Because both algorithms use Broyden-XEL (4.9), the step is significantly varied by

the different values of n. However, the total steps are not varied by the different

values of n because its effect is reduced by the bracketing and Brent line search.

Figures 5.11 and 5.12 also show that paths from QNA-XEL and QNA-XEL (Hes-

sian only) are identical. Even though each algorithm gives a different magnitude of

the step, the bracketing and Brent line search results in the same total step. The

figures also show that many paths do not converge to the minimum. The paths stop

before they reach the minimum because a new step can not be calculated when the

line search gives a zero line search gain. This occurs when the step is almost perpen-

dicular to the gradient which means the line search has a very small search interval

so it converges with zero gain.

With a heuristic exhaustive line search, QNA-XEL and QNA-XEL (Hessian only)

paths differ with n. This can be observed from Figures 5.13 and 5.14 with represen-

tative examples of paths from QNA-XEL and QNA-XEL (Hessian only) respectively.

Paths from both algorithms show that when n > 1 the paths proceed directly toward

the global minimum, similar to the Newton-XEL paths. This shows that the esti-

mation of the Hessian matrix, K̂∗, is very accurate. Since both the actual modified

Hessian matrix, K∗, and the initial estimation of the Hessian matrix K̂∗
0 for this en-

ergy function are diagonal, they are initially close. Because n > 1 paths have smaller

total steps and the K∗ is not varied too much along the path, it can be estimated

more accurately.
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Paths with a heuristic exhaustive line search also show that for n ≤ 1 K̂∗ becomes

inaccurate due to the larger total step at the beginning of the path. As a result,

paths are sometimes almost perpendicular to the negative gradient direction and

occasionally diverge. As the QNA-XEL path becomes almost parallel to the negative

gradient, the total step becomes very small because of the line search limiting the

gain to a point with lowest energy. This means the change in gradient becomes very

small and K̂∗ is hardly updated. If K̂∗ is close to the actual K∗, the small total step

may not cause any problem. However, unlike at the beginning of the n > 1 paths,

K̂∗ here is far from the actual K∗, so it takes a long time for K̂∗ to converge to

K∗ with too small a step size. These characteristics are not observed on paths with

the bracketing and Brent line search because the magnitudes of their steps are not

significantly varied by the different values of n. While most paths with the bracketing

and Brent line search end at a close proximity of the minimum, they have many fewer

total steps compared to paths with a heuristic exhaustive line search which implies

higher speed.

While paths of the QNA-XEL (Hessian only) do not significantly vary from those

of the QNA-XEL, Figure 5.14 shows that when n = 0.125 the step can diverge. This

suggests that the QNA-XEL (Hessian only) may be less stable than the QNA-XEL

for n < 1 as the total step can become too large.
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Complex energy landscape

With the bracketing and Brent line search on the complex energy landscape, QNA-

XEL and QNA-XEL (Hessian only) (4.6) paths with different values of n can differ

significantly. This can be observed from Figures 5.15 and 5.16 with representative

examples of paths from QNA-XEL and QNA-XEL (Hessian only) respectively. This is

again because both algorithms use Broyden-XEL and the step is significantly varied

by different values of n. Although QNA-XEL and QNA-XEL (Hessian only) give

different magnitudes of the step which is varied by different values of n, the total

steps and paths are similar because of the bracketing and Brent line search.

With a heuristic exhaustive line search, paths resulting from different values of

n also differ from each other. This can be observed from Figures 5.17 and 5.18

with representative examples of paths from QNA-XEL and QNA-XEL (Hessian only)

respectively. Similar to Newton-XEL paths on a complex energy landscape, QNA-

XEL paths have smaller total steps for n > 1 and tend to converge to the closest

local minima. On the contrary, paths have larger total steps for n < 1 and travel

farther and more frequently reach the global minimum. However, when the total steps

become too large paths are almost perpendicular to the gradient direction because

of inaccurate K̂∗. This case can be identified by the portions of paths that are

perpendicular to the gradient and have small total steps which occurs more often as

n gets smaller. For n = 0.125, paths sometimes diverge.

QNA-XEL and QNA-XEL (Hessian only) paths with a heuristic exhaustive line

search show more deviation than those with the bracketing and Brent line search

which implies that the heuristic exhaustive line search allows the magnitude of the

step to have more effect on the paths. Paths with the heuristic exhaustive line search

also have more total steps which implies that the heuristic exhaustive line search is

less efficient than the bracketing and Brent line search.
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5.1.1.3 BFGS-XEL and BFGS-XEL (Hessian only)

Simple energy landscape

With a bracketing and Brent line search on the simple energy landscape, BFGS-XEL

and BFGS-XEL (Hessian only) (4.10) paths with different values of n can differ from

one another. This can be observed from Figures 5.19 and 5.20 with representative

examples of paths from BFGS-XEL and BFGS-XEL (Hessian only) respectively. The

total step sizes of paths from both algorithms are not varied by the different values

of n and their paths are identical due to the bracketing and Brent line search.

With a heuristic exhaustive line search, paths with different values of n on the

simple energy landscape also differ from one another. This can be observed from

Figures 5.21 and 5.22 with representative examples of paths from BFGS-XEL and

BFGS-XEL (Hessian only) respectively. Unlike the Newton-XEL and the QNA-XEL

paths on the simple energy landscape, after a few initial total steps in the BFGS-XEL

paths the total step sizes are not varied with different values of n. After a few initial

iterations, most n ≥ 1 paths point straight toward the global minimum, but n < 1

paths do not. This indicates that n ≥ 1 cases have more accurate estimations of the

Hessian inverse, Ĥ∗ than those of the n < 1 case which means that larger n can be

used to improve the accuracy of Ĥ∗.

With a heuristic exhaustive line search, paths from BFGS-XEL and BFGS-XEL

(Hessian only) are significantly different. The step sizes of BFGS-XEL (Hessian only)

paths are more influenced by n as the total steps are larger when n < 1 and less when

n > 1. This difference is more pronounced than that between Newton-XEL and

Newton-XEL (Hessian only) and between QNA-XEL and QNA-XEL (Hessian only).

BFGS-XEL and BFGS-XEL (Hessian only) paths with a heuristic exhaustive line

search also show more deviation than those with the bracketing and Brent line search

which implies that the heuristic exhaustive line search allows the magnitude of the

step to have more effect on the path. Paths with the heuristic exhaustive line search
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also have more steps which implies that the heuristic exhaustive line search is less

efficient that the bracketing and Brent line search.

Complex energy landscape

With the bracketing and Brent line search on the complex energy landscape, BFGS-

XEL and BFGS-XEL (Hessian only) paths with different values of n differ from one

another. This can be observed from Figures 5.23 and 5.24 with representative exam-

ples of paths from BFGS-XEL and BFGS-XEL (Hessian only) respectively. While

the step size appears to be in independent of n, the deviation between paths from

BFGS-XEL and BFGS-XEL (Hessian only) is little noticeable.

With a heuristic exhaustive line search on the complex energy landscape, paths

with different values of n differ from one another. This can be observed from Figures

5.25 and 5.26 with representative examples of paths from BFGS-XEL and BFGS-

XEL (Hessian only) respectively. Unlike Newton-XEL and the QNA-XEL paths on

a complex energy landscape, the relationship between the step size and n on the

BFGS-XEL paths is less distinguishable.

With a heuristic exhaustive line search, BFGS-XEL and BFGS-XEL (Hessian

only) paths also show slightly more deviation than those with the bracketing and

Brent line search which implies that the heuristic exhaustive line search allows the

magnitude of the step to have more effect on paths. Paths from both line search

algorithms appear to have about the same number of steps which implies that both

line search algorithms have about the same effect on the the BFGS-XEL and BFGS-

XEL (Hessian only) in terms of speed.
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5.1.1.4 Conclusion of path comparison

The characteristics of paths on the simple and the complex energy landscape from the

Newton-XEL, Newton-XEL (Hessian only), QNA-XEL, QNA-XEL (Hessian only),

BFGS-XEL, and BFGS-XEL (Hessian only) with a bracketing and Brent line search

and a heuristic exhaustive line search are compared and summarized on Table 5.1.

Results show that paths are dependent on n with an exception of Newton-XEL paths

on a simple energy landscape. The step size can show some dependency on n but

it can be reduced by the bracketing and Brent line search and it is less apparent

on the complex landscape. The XEL (Hessian only) algorithms yield different paths

from the XEL algorithms because they give different magnitudes of the step but the

effect can be reduced by the bracketing and Brent line search. The number of steps

from paths with the bracketing and Brent line search are less than those from paths

with the heuristic exhaustive line search which means the bracketing and Brent line

search is more efficient. Lastly, the QNA-XEL and the BFGS-XEL paths suggest

that n > 1 results in more accurate Hessian matrix estimation which is in agreement

with Guideline iv. in Table 4.1.

To compare the quality and speed of different algorithms, the next section com-

pares energy and number of iterations as the percentage of paths with lower, equal,

or higher values compared to n = 1.

5.1.2 Comparison of Energy and Number of Iterations to the Unmodified
Case

For each simulation, the converged energy and the number of iterations (or steps)

are evaluated and compared to those of the unmodified case (n = 1) to assess quality

and speed. The percentage of paths from each XEL algorithm with different n cases

that has lower, equal, or higher energy or number of iterations than those of n = 1 on

each energy landscape are determined. The values are considered “equal” if they are

within ±5% of those of n = 1, “lower” if they are lower than the range, and “higher”
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if they are above the range. Results are shown in Figures 5.27 through 5.38.

5.1.2.1 Newton-XEL and Newton-XEL (Hessian only)

Figures 5.27 through 5.30 display the percentage of paths from Newton-XEL and

Newton-XEL (Hessian only) with different n cases that have smaller, equal, or higher

number of iterations or energy than those of n = 1 on the simple and the complex

energy landscape. While paths resulting in Figures 5.27 and 5.28 are generated by

a bracketing and Brent line search, paths resulting in Figures 5.29 and 5.30 are

generated by a heuristic exhaustive line search. The higher percentage of paths with

smaller energy or number of iterations implies better quality and speed.

With a bracketing and Brent line search, the Newton-XEL (Figure 5.27 a and c)

on the simple energy landscape have the same quality and speed for all n as all paths

have equal energy and number of iterations compared to n = 1. On the complex

energy landscape (Figure 5.27 b and d) quality and speed become slightly worse.

Although up to 20% of paths for all n cases from the Newton-XEL have lower energy

than n = 1, 12% to 40% have higher energy and up to 30% have higher number of

iterations.

With a bracketing and Brent line search, the Newton-XEL (Hessian only) (Figure

5.28 a and c) on the simple energy landscape also have the same quality and speed for

all n as all paths have equal energy and number of iterations compared to n = 1. On

the complex energy landscape (Figure 5.28 b and d) quality becomes slightly better

in some n cases and speed becomes slightly worse. When n < 1, 8% to 16% of paths

have higher energy than n = 1 but 24% to 36% have lower energy, and when n > 1,

24% to 30% have higher energy and 12% to 16% have lower energy. For all n cases

12% to 32% of paths have a higher number of iterations while only 4% to 12% have

lower number of iterations. Results from Newton-XEL (Hessian only) show slightly

more deviation for different values of n because n has more effect on the magnitude

125



0.125 0.25 0.5 2 3 4
0

20

40

60

80

100
d) Number of iterations (complex)

n

%
 o

f p
at

hs
 (

Ite
ra

tio
ns

)

Lower Equal Higher

0.125 0.25 0.5 2 3 4
0

20

40

60

80

100
b) Energy (complex)

%
 o

f p
at

hs
 (

E
ne

rg
y)

n

0.125 0.25 0.5 2 3 4
0

20

40

60

80

100
c) Number of iterations (simple)

%
 o

f p
at

hs
 (

Ite
ra

tio
ns

)

n

0.125 0.25 0.5 2 3 4
0

20

40

60

80

100
a) Energy (simple)

%
 o

f p
at

hs
 (

E
ne

rg
y)

n

Figure 5.27: Newton-XEL: The percentage of paths that yields the lower, the equal,
or the higher number of iterations in c) and d) or energy in a) and b) compared
to n = 1. Shown in a) and c) are the percentage of paths on the simple energy
landscape and in b) and d), on the complex energy landscape. Paths are generated
by a bracketing and Brent line search.
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Figure 5.28: Newton-XEL (Hessian only): The percentage of paths that yields the
lower, the equal, or the higher number of iterations in c) and d) or energy in a) and
b) compared to n = 1. Shown in a) and c) are the percentage of paths on the simple
energy landscape and in b) and d), on the complex energy landscape. Paths are
generated by a bracketing and Brent line search.
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Figure 5.29: Newton-XEL: The percentage of paths that yields the lower, the equal,
or the higher number of iterations in c) and d) or energy in a) and b) compared to
n = 1. Shown in a) and c) are the percentage of paths on the simple energy landscape
and in b) and d), on the complex energy landscape. Paths are generated by a heuristic
exhaustive line search.
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Figure 5.30: Newton-XEL (Hessian only): The percentage of paths that yields the
lower, the equal, or the higher number of iterations in c) and d) or energy in a) and
b) compared to n = 1. Shown in a) and c) are the percentage of paths on the simple
energy landscape and in b) and d), on the complex energy landscape. Paths are
generated by a heuristic exhaustive line search.
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of the step of the Newton-XEL (Hessian only) than that of the Newton-XEL.

With a heuristic exhaustive line search, the Newton-XEL (Figure 5.29 a and c)

on the simple energy landscape has the same quality for all n but higher speed for

n < 1 and lower speed for n > 1. All paths have equal energy compared to n = 1

but 16% to 48% of n < 1 paths have a lower number of iterations while 48% of n > 1

paths have a higher number of iterations. The lower speed is due to the small step

size of n > 1 cases. On the complex energy landscape (Figure 5.29 b and d) quality

and speed become slightly worse. Although up to 16% of paths for all n cases from

the Newton-XEL have lower energy than n = 1 and up to 24% have lower number of

iterations, 12% to 32% have higher energy and 16% to 44% have higher number of

iterations. The lower speed is again due to the small step size of n > 1 cases.

With a heuristic exhaustive line search, the Newton-XEL (Hessian only) (Figure

5.30 a and c) on the simple energy landscape have the same quality for all n but higher

speed for n < 1 and lower speed for n > 1. All paths have equal energy compared

to n = 1 but 64% of n < 1 paths have a lower number of iterations while 64% of

n > 1 paths have a higher number of iterations. On the complex energy landscape

(Figure 5.30 b and d) quality becomes better for n < 1 cases and worse for n > 1 and

speed becomes significantly worse. As n < 1, 28% to 60% of paths have lower energy

than n = 1 but as n > 1, 44% to 48% have higher energy. Their poorer performance

is due to their smaller step size, which does not allow paths to travel beyond local

minima. While some n < 1 paths have a lower number of iterations, 100% of the

n > 1 paths have a higher number of iterations. While the low speed in the n > 1

paths is due to their small step size, the reduction in speed in n < 1 cases is due to

their large step size and an increase in the complexity of the energy landscape. Since

a larger step tends to overshoot a minimum, n < 1 paths take several iterations to

reach a minimum as they keep passing it which is inefficient. This is less severe in

the simple energy landscape because its global minimum is very flat. When a path
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gets in the proximity of the global minimum, the convergence criterion is met and the

path stops. Since the complex energy landscape is rougher than the simple energy

landscape, the path needs to get much closer to the minumum before the convergence

criterion is met.

The results show that Newton-XEL (Hessian only) are more dependent on n than

those of Newton-XEL. Results also show that the bracketing and Brent line search

may be a better choice of a line search because it can slightly improve quality without a

substantial reduction of speed. While the heuristic exhaustive line search can achieve

better quality and speed in some cases, it can also significantly worsen the quality

and speed of the results.

5.1.2.2 QNA-XEL and QNA-XEL (Hessian only)

Figures 5.31 through 5.34 display the percentage of paths from QNA-XEL and QNA-

XEL (Hessian only) with different n cases that has smaller, equal, or higher number

of iterations or energy than those of n = 1 on the simple and the complex energy

landscape. While paths resulting in Figures 5.31 and 5.32 are generated by a brack-

eting and Brent line search, paths resulting in Figures 5.33 and 5.34 are generated

by a heuristic exhaustive line search. The higher percentage of paths with smaller

energy or number of iterations implies better quality and speed.

With a bracketing and Brent line search, the QNA-XEL (Figure 5.31 a and c)

on the simple energy landscape has slightly better quality for all n, lower speed for

n < 1, and about the same speed for n > 1 compared to n = 1. As 8% to 16% of

paths of most n cases have lower energy compared to n = 1, only a few n cases have

8% to 16% of paths with higher energy. In terms of speed 16% to 48% of paths for

all n cases have higher number of iterations but up to 40% of paths with n > 1 have

lower number of iterations. On the complex energy landscape (Figure 5.31 b and d)

quality on average is about the same as n = 1 but speed becomes worse. On average
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Figure 5.31: QNA-XEL: The percentage of paths that yields the lower, the equal, or
the higher number of iterations in c) and d) or energy in a) and b) compared to n = 1.
Shown in a) and c) are the percentage of paths on the simple energy landscape and
in b) and d), on the complex energy landscape. Paths are generated by a bracketing
and Brent line search.
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Figure 5.32: QNA-XEL (Hessian only): The percentage of paths that yields the
lower, the equal, or the higher number of iterations in c) and d) or energy in a) and
b) compared to n = 1. Shown in a) and c) are the percentage of paths on the simple
energy landscape and in b) and d), on the complex energy landscape. Paths are
generated by a bracketing and Brent line search.
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Figure 5.33: QNA-XEL: The percentage of paths that yields the lower, the equal, or
the higher number of iterations in c) and d) or energy in a) and b) compared to n = 1.
Shown in a) and c) are the percentage of paths on the simple energy landscape and
in b) and d), on the complex energy landscape. Paths are generated by a heuristic
exhaustive line search.
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Figure 5.34: QNA-XEL (Hessian only): The percentage of paths that yields the
lower, the equal, or the higher number of iterations in c) and d) or energy in a) and
b) compared to n = 1. Shown in a) and c) are the percentage of paths on the simple
energy landscape and in b) and d), on the complex energy landscape. Paths are
generated by a heuristic exhaustive line search.
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quality is about the same as n = 1 because up to 44% of paths yield lower energy but

up to 36% of paths have higher energy. In terms of speed while up to 72% of all paths

have a higher number of iterations, only 36% of n > 1 paths have a lower number of

iterations. Results show that n > 1 yields slightly better quality and higher speed

than n < 1 for QNA-XEL with a bracketing and Brent line search.

With a bracketing and Brent line search, results from the QNA-XEL (Hessian

only) (Figure 5.32 a and c) are almost identical to those from the QNA-XEL which is

consistent with observations made in the previous section. The QNA-XEL (Hessian

only) on the simple energy landscape has slightly better quality for all n and lower

speed for n < 1 and about the same speed for n > 1 compared to n = 1. On the

complex energy landscape (Figure 5.32 b and d) quality on average is about the same

as n = 1 but speed becomes worse. Results also show that n > 1 yields slightly better

quality and higher speed than n < 1 for QNA-XEL (Hessian only) with a bracketing

and Brent line search.

With a heuristic exhaustive line search, the QNA-XEL (Figure 5.33 a and c) on

the simple energy landscape has the same quality for n > 1, slightly worse quality for

n < 1, and lower speed for all n compared to n = 1. As 32% to 40% of n < 1 paths

have higher energy than that of n = 1, all n > 1 paths have the same energy. This is

because some n < 1 paths can not reach the global solution before the convergence

criterion is met. Due to an inaccurate estimated modified Hessian matrix K̂∗ and a

very small step size, K̂∗ does not get improved so the paths are almost perpendicular

to the gradient and advance with very small steps. It is possible that if the convergence

criterion becomes stricter, these paths may eventually reach the global minimum. In

terms of speed, while only 32% of n < 1 paths have a lower number of iterations, 48%

of n < 1 paths and 96% of n > 1 paths have a higher number of iterations.

With a heuristic exhaustive line search, the QNA-XEL on the complex energy

landscape (Figure 5.33 b and d) has the same quality for n < 1 but worse quality for

136



n > 1 and lower speed. While up to 40% of n < 1 paths have higher energy, up to

44% have lower energy so on average the quality is about the same as n = 1. For

n > 1 the quality is worse as up to 52% of the paths have higher energy than n = 1.

Speed is significantly worse than n = 1 as 60% to 100% of all paths have a higher

number of iterations. The lower speed is due to inaccuracy of K̂∗ in n < 1 cases and

too small step size in n > 1 cases.

With a heuristic exhaustive line search, results from QNA-XEL (Hessian only)

(Figure 5.34 a and c) are considerably similar to those from QNA-XEL. On the

simple energy landscape QNA-XEL (Hessian only) has the same quality compared to

n = 1 for n > 1 but slightly worse quality for n < 1 and lower speed for all n except

for n = 0.125. On the complex energy landscape (Figure 5.34 b and d) it has slightly

better quality for n < 1 but worse quality for n > 1 and lower speed.

Results show that the heuristic exhaustive line search can significantly reduce the

quality and the speed of QNA-XEL and QNA-XEL (Hessian only).

5.1.2.3 BFGS-XEL and BFGS-XEL (Hessian only)

Figures 5.35 through 5.38 display the percentage of paths from BFGS-XEL and BFGS-

XEL (Hessian only) with different n cases that have smaller, equal, or higher number

of iterations or energy than those of n = 1 on the simple and the complex energy

landscape. While paths resulting in Figures 5.35 and 5.36 are generated by a brack-

eting and Brent line search, paths resulting in Figures 5.37 and 5.38 are generated

by a heuristic exhaustive line search. The higher percentage of paths with a lower

energy or a smaller number of iterations implies better quality or speed.

With a bracketing and Brent line search, the BFGS-XEL (Figure 5.35 a and c)

on the simple energy landscape has the same quality and speed for all n compared

to n = 1. In terms of quality all paths have equal energy compared to n = 1. In

terms of speed 8% to 24% of most paths have a higher number of iterations but the
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Figure 5.35: BFGS-XEL: The percentage of paths that yields the lower, the equal,
or the higher number of iterations in c) and d) or energy in a) and b) compared
to n = 1. Shown in a) and c) are the percentage of paths on the simple energy
landscape and in b) and d), on the complex energy landscape. Paths are generated
by a bracketing and Brent line search.
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Figure 5.36: BFGS-XEL (Hessian only): The percentage of paths that yields the
lower, the equal, or the higher number of iterations in c) and d) or energy in a) and
b) compared to n = 1. Shown in a) and c) are the percentage of paths on the simple
energy landscape and in b) and d), on the complex energy landscape. Paths are
generated by a bracketing and Brent line search.
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Figure 5.37: BFGS-XEL: The percentage of paths that yields the lower, the equal,
or the higher number of iterations in c) and d) or energy in a) and b) compared to
n = 1. Shown in a) and c) are the percentage of paths on the simple energy landscape
and in b) and d), on the complex energy landscape. Paths are generated by a heuristic
exhaustive line search.
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Figure 5.38: BFGS-XEL (Hessian only): The percentage of paths that yields the
lower, the equal, or the higher number of iterations in c) and d) or energy in a) and
b) compared to n = 1. Shown in a) and c) are the percentage of paths on the simple
energy landscape and in b) and d), on the complex energy landscape. Paths are
generated by a heuristic exhaustive line search.
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same paercentage have lower number of iterations. On the complex energy landscape

(Figure 5.35 b and d) quality on average is about the same as n = 1 but speed is

better. In terms of quality up to 32% of all paths have lower energy but the same

approximate percentage of paths have higher energy. In terms of speed while up to

only 28% of all paths have a higher number of iterations, up to 40% of n < 1 paths

and up to 80% of n > 1 paths have a lower number of iterations. Results show

that n > 1 can yield significantly higher speed than n < 1 for BFGS-XEL with a

bracketing and Brent line search.

With a bracketing and Brent line search, results from the BFGS-XEL (Hessian

only) (Figure 5.36 a and c) are substantially similar to those from the BFGS-XEL

which is consistent with observations made in the previous section. The BFGS-XEL

(Hessian only) on the simple energy landscape has the same quality and speed for all

n compared to n = 1. On the complex energy landscape (Figure 5.36 b and d) on

average quality is about the same as n = 1 but speed is better. Results show that

n < 1 yields slightly better quality than n > 1 while n > 1 yields higher speed than

n < 1 for BFGS-XEL (Hessian only) with a bracketing and Brent line search.

With a heuristic exhaustive line search, the BFGS-XEL (Figure 5.37 a and c) on

the simple energy landscape has the same quality for all n compared to n = 1, lower

speed for n < 1, and higher speed for n > 1. In terms of quality all paths have equal

energy compared to n = 1. In terms of speed up to 56% of n > 1 paths have a lower

number of iterations but only 24% have higher number of iterations. For n < 1 up

to 80% have higher number of iterations. The low speed in n < 1 is caused by the

inaccuracy of the estimated modified Hessian inverse Ĥ∗ so n < 1 paths take longer

to converge. On the complex energy landscape (Figure 5.37 b and d) the BFGS-XEL

have about the same quality on average but lower speed for n > 1 and higher speed

for n < 1. While up to 40% of all paths have either higher or lower energy so on

average the quality is about the same as n = 1. In terms of speed up to 60% of the
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paths have higher energy than n = 1 but up to 56% of n < 1 paths have a lower

number of iterations. The effect of n on speed on the complex energy landscape is

opposite to that on the simple energy landscape.

With a heuristic exhaustive line search, the BFGS-XEL (Hessian only) (Figure

5.38 a and c) on the simple energy landscape has the same quality for all n compared

to n = 1, lower speed for n > 1, and higher speed for n < 1. In terms of quality

all paths have equal energy compared to n = 1. In terms of speed up to 80% of

n > 1 paths have a higher number of iterations but only 8% have higher number of

iterations. For n < 1 up to 80% have lower number of iterations. The low speed in

n > 1 is possibly caused by the step size being too small. On the complex energy

landscape (Figure 5.38 b and d) the BFGS-XEL (Hessian only) have better quality

for n < 1 but slightly worse quality for n > 1 and lower speed. In terms of quality up

to 52% of n < 1 paths have lower energy but up to only 16% have higher energy and

up to 36% of n > 1 paths have higher energy but up to only 24% have lower energy.

In terms of speed n = 0.5 yields higher speed but up to 100% of paths in most n

cases have a higher number of iterations. The results show that n < 1 yields better

results than n > 1 for the BFGS-XEL (Hessian only) with a heuristic exhaustive line

search.

The bracketing and Brent line search yields more consistent results for different

values of n than the heuristic exhaustive line search and it yields better quality and

speed on average.
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5.1.2.4 Conclusion of iterations and energy comparison to the unmodified case

The energy and the number of iterations for each path generated by Newton-XEL,

Newton-XEL (Hessian only), QNA-XEL, QNA-XEL (Hessian only), BFGS-XEL, and

BFGS-XEL (Hessian only) with different values of n are compared to those of n = 1.

The results are the percentage of paths with smaller, equal, or higher energy and

number of iterations are presented from which the quality and the speed of each

algorithm are evaluated. Tables 5.2 and 5.3 summarize the quality and the speed of

XEL and XEL (Hessian only) algorithms with n < 1 and n > 1. Quality or speed

is “Significantly better” when the averaged percentage of paths with lower energy

or number of iterations is ≥ 50% higher than the averaged percentage of paths with

higher energy or number of iterations, “Better” when it is ≥ 30% higher, and “Slightly

better” when it is ≥ 10% higher. Quality or speed is “Significantly worse” when the

averaged percentage of paths with lower energy or number of iterations is ≥ 50% lower

than the averaged percentage of paths with higher energy or number of iterations,

“Worse” when it is ≥ 30% lower, “Slightly worse” when it is ≥ 10% lower. Otherwise

quality or speed is “Same.”

Results in Tables 5.2 and 5.3 show that the XEL and the XEL (Hessian only)

algorithms yield the same quality on the simple energy landscape which demonstrates

that the difference in the magnitudes of the step of these algorithms does not effect

the quality on a smooth landscape.

The results are inconclusive for which value of n yields better performance for all

algorithms. While n > 1 yields better quality on the simple energy landscape, n < 1

yields better quality on the complex energy landscape. Although in each algorithm

different values of n yield higher speed, n > 1 yields higher speed when used with the

bracketing and Brent line search and n < 1 yields higher speed when used with the

heuristic exhaustive line search. However, on average the bracketing and Brent line

search performs better than the heuristic exhaustive line search.
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On the complex energy landscape the BFGS-XEL and the BFGS-XEL (Hessian

only) with the bracketing and Brent line search yield the best overall quality and speed

without sacrificing one or another. Thus, they would be the methods of choice at least

for these results. The fact that they perform well on the complex energy landscape

can imply that they are more robust than the other algorithms and therefore they

are most likely to perform better in the real energy landscape.
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5.1.3 Global Search Performance

Since Newton’s method, the QNA, and the BFGS algorithm are local optimization

algorithms, XEL algorithms are not expected to solve the global minimization. How-

ever, the XEL may improve the performance in a global search by transforming the

energy landscape such that it assists the optimization. Here the global search perfor-

mance is defined as an ability to locate the global solution. This ability contributes

to the quality because a more successful global search yields a lower energy which im-

plies higher quality. To compare the global search performance the number of paths

that are able to locate the global minimum from Newton-XEL, Newton-XEL (Hessian

only), QNA-XEL, QNA-XEL (Hessian only), BFGS-XEL, and BFGS-XEL (Hessian

only) are compared. Figures 5.39 and 5.41 present results from XEL algorithms and

Figures 5.40 and 5.42 present results from XEL (Hessian only) algorithms. Results

in Figures 5.39 and 5.40 are generated by a bracketing and Brent line search, results

in Figures 5.41 and 5.42 are generated by a heuristic exhaustive line search. Higher

number of paths may indicate higher ability to locate the global minimum which is

desired.

With a bracketing and Brent line search, every path generated by the Newton-

XEL and the BFGS-XEL on the simple energy landscape (Figure 5.39 a) successfully

locates the global minimum, but some n cases of QNA-XEL do not. Note that

Newton-XEL has only 21 paths because some starting points have zero Hessian matrix

and yield no path. High number of paths can locate the global minimum because of

the simplicity of the energy landscape. On the complex energy landscape (Figure 5.39

b) far fewer paths from all algorithms can locate the global minimum. All algorithms

where n 6= 1 have fewer successful paths than n = 1 and in QNA-XEL and BFGS-XEL

n > 1 cases have more successful paths than n < 1.

With a bracketing and Brent line search, the results of the Newton-XEL (Hessian

only), the QNA-XEL (Hessian only), and the BFGS-XEL (Hessian only) on the simple

148



0.125 0.25 0.5 1 2 3 4
15

20

25
a) simple energy landscape

n

P
at

hs

Newton−XEL
QNA−XEL
BFGS−XEL

0.125 0.25 0.5 1 2 3 4

5

10

15

20

n

P
at

hs

b) complex energy landscape

Newton−XEL
QNA−XEL
BFGS−XEL

Figure 5.39: The number of paths on a simple or a complex energy landscape gen-
erated by Newton-XEL, QNA-XEL, or BFGS-XEL that locate the global minimum.
Paths are generated by a bracketing and Brent line search.
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Figure 5.40: The number of paths on a simple or a complex energy landscape
generated by Newton-XEL (Hessian only), QNA-XEL (Hessian only), or BFGS-XEL
(Hessian only) that locate the global minimum. Paths are generated by a bracketing
and Brent line search.
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Figure 5.41: The number of paths on a simple or a complex energy landscape gen-
erated by Newton-XEL, QNA-XEL, or BFGS-XEL that locate the global minimum.
Paths are generated by a heuristic exhaustive line search.
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Figure 5.42: The number of paths on a simple or a complex energy landscape
generated by Newton-XEL (Hessian only), QNA-XEL (Hessian only), or BFGS-XEL
(Hessian only) that locate the global minimum. Paths are generated by a heuristic
exhaustive line search.

152



energy landscape (Figure 5.40 a) are the same as those of the Newton-XEL, the

QNA-XEL, and the BFGS-XEL. On the complex energy landscape (Figure 5.40 b)

far fewer paths from all algorithms can locate the global minimum. All algorithms

where n 6= 1 have fewer successful paths than n = 1 and in Newton-XEL (Hessian

only) and BFGS-XEL (Hessian only) n < 1 cases have more successful paths than

n > 1 but in QNA-XEL (Hessian only) n > 1 cases have more successful paths than

n < 1.

With a heuristic exhaustive line search, every path generated by the Newton-

XEL and the BFGS-XEL on the simple energy landscape (Figure 5.41 a) successfully

locates the global minimum, but QNA-XEL with n < 1 have 15 to 17 paths that do

so. The high number of paths that reach the global minimum is due to the simplicity

of the energy landscape. Some QNA-XEL paths never reach the minimum because

an inaccurate estimated modified Hessian matrix gives a step almost perpendicular

to the gradient that yields a very small step size. As the result the path never reaches

the minimum before the simulation reaches the maximum iteration. On the complex

energy landscape (Figure 5.41 b) far fewer paths from all algorithms can locate the

global minimum. In each algorithm only a few values of n 6= 1 have more successful

paths than n = 1. In QNA-XEL n < 1 cases have more successful paths than n > 1

but in BFGS-XEL n > 1 cases have more successful paths than n ≤ 1 and in Newton-

XEL all cases have about the same number of paths. As n < 1 QNA-XEL has a larger

step size and while n < 1 cases have more successful paths than n > 1 QNA-XEL

with n = 0.125 have fewer successful paths than n = 0.5 or 0.25. This suggests that

a larger step size gives a more favorable condition for a global minimum search but a

step size too large can cause K̂∗ to diverge.

With a heuristic exhaustive line search, the results of the Newton-XEL (Hessian

only), the QNA-XEL (Hessian only), and the BFGS-XEL (Hessian only) on the simple
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energy landscape (Figure 5.42 a) are the same as those of the Newton-XEL, the QNA-

XEL, and the BFGS-XEL. On the complex energy landscape (Figure 5.42 b) far fewer

paths from all algorithms can locate the global minimum. For all algorithms n < 1

cases have more successful paths than n ≥ 1 cases.

Results are inconclusive as to whether the XEL has positive or negative impact on

the global search. The XEL does not change the performance in a global search for the

Newton-XEL, the Newton-XEL (Hessian only), the BFGS-XEL, and the BFGS-XEL

(Hessian only) on the simple energy landscape. The XEL may reduce or improve

the performance on the complex energy landscape, but more often it reduces. The

XEL with n < 1 reduces the performance in a global search in the QNA-XEL and the

QNA-XEL (Hessian only) except when they are used with the heuristic exhaustive line

search on the complex energy landscape. With the bracketing and Brent line search

the performance is slightly varied by the values of n but with the heuristic exhaustive

line search the variation can be significant. The XEL impact on the global search

performance is further investigated in the optimization with a probabilistic search

presented in Section 5.2.

5.1.4 Conclusion of XEL Algorithms without Probabilistic Search

To study the effect of the XEL on Newton’s method, the QNA, and the BFGS,

the Newton-XEL, the Newton-XEL (Hessian only), the QNA-XEL, the QNA-XEL

(Hessian only), the BFGS-XEL, and the BFGS-XEL (Hessian only) are implemented

without a probabilistic search on a simulated two-dimensional energy landscape with

a bracketing and Brent or a heuristic exhaustive line search. The results are evaluated

in terms of quality and speed by comparing the converged energy and the number of

iterations. The paths generated by the investigated algorithms are compared and the

the impact of the XEL on the global search is investigated.

A path comparison shows that paths and step sizes are dependent on n but this
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dependency can be reduced by the shape of the energy landscape or a line search

algorithm. Paths tend to have longer steps when n < 1 but shorter steps when n > 1

which is in agreement with Guideline ii. in Table 4.1. Some QNA-XEL or BFGS-XEL

paths show that poor Hessian matrix estimation can result in poor speed and even

divergence while n > 1 results in a more accurate estimation. This is in agreement

with Guideline iv. and Guideline iii. since increasing n results in better convergence

and small steps which implies a bounded magnitude of λ.

The percentages of paths that have lower, equal, or higher energy or number of

iterations compared to n = 1 show that n > 1 yields better quality on the simple

energy landscape but n < 1 yields better quality on the complex energy landscape.

Since n > 1 gives a more accurate Hessian matrix estimation, paths can converge

quickly to a minimum. This works well on the simple energy landscape with only

one minimum but on the complex energy landscape a local minimum nearest to the

starting point may not have the low energy and therefore n > 1 may not result in

a lower energy and n < 1 with longer steps tends to converge a lower minimum

energy by covering more distance. This suggests that n < 1 should be used at the

beginning of optimization for farther exploration and n > 1 should be used at the

end for convergence. This is in agreement with Guideline v. in Table 4.1.

On average the bracketing and Brent line search yields better quality and speed

than the heuristic exhaustive line search and thus it is implemented in the opti-

mization with a probabilistic search presented next in Section 5.2. The algorithms

investigated in the next section are the QNA-XEL, the QNA-XEL (Hessian only),

the BFGS-XEL, and the BFGS-XEL (Hessian only). Results in this section show

that with the bracketing and Brent line search the QNA-XEL and the QNA-XEL

(Hessian only) yield better quality and speed when n > 1, the BFGS-XEL yields the

same quality with different values of n but slightly higher speed when n > 1, and

the BFGS-XEL (Hessian only) yields better quality when n < 1 and slightly higher
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speed when n > 1. These will be compared with those in Section 5.2.

Lastly, results show that the XEL impact on the global search is inconclusive.

This impact is further investigated in Section 5.2
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5.2 XEL Algorithms with Probabilistic Search

This section investigates the effects of XEL on the optimization algorithm combined

with a probabilistic search. The QNA-XEL, the QNA-XEL (Hessian only), the

BFGS-XEL, and the BFGS-XEL (Hessian only) are implemented with the brack-

eting and Brent line search on the protein conformation prediction software Rosetta.

The Newton-XEL and the Newton-XEL (Hessian only) is not studied because the

second order derivatives are not be available in this platform.

5.2.1 Rosetta

Using both analytical and probabilistic methods, Rosetta is a computer program that

predicts protein conformation as it constructs decoys or initial configurations from

pre-generated fragments (decoy generation) and refines them by perturbing and then

minimizing the predicted configurations (refinement protocol) [11] which is called the

Monte Carlo-minimization approach.

Decoy generation consists of three components: fragment generation, scoring func-

tions, and fragment assembly. A decoy is generated during the fragment assembly

by piecing the generated fragments together which is guided by the scoring function.

Fragments are the structural templates of small windows of a protein sequence and

potential shapes that can be assumed by corresponding windows of the protein mol-

ecule. Windows are defined as 3- or 9-residue sections of a protein sequence. By

comparing the protein sequence to the protein database, fragments are generated for

all possible windows in the protein sequence, which are then ranked according to

sequence and secondary structure similarity.

The second component essential for both decoy generation and refinement proto-

col are the scoring functions. Two types of scoring functions, centroid and full atom,

are available for course-grained and atomic-level descriptions of the molecule struc-

ture. Despite their differences, both include energy functions, such as van der Waals
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interactions and electrostatics, and non-energy potentials, such as the Ramachandran

torsion preferences [10].

Lastly, during fragment assembly a decoy is constructed as the parts of the mole-

cule corresponding to randomly chosen sequence windows assume the shapes of frag-

ments randomly chosen from high-ranking fragments. After each fragment is inserted,

the scoring functions of the entire protein are evaluated, and using the Monte Carlo

method this insertion is kept or discarded. At the beginning of the fragment assembly

fewer scoring functions are strategically evaluated to encourage local folding of the

molecule and toward the end of the process all scoring functions are evaluated to

encourage compact packing.

After the decoys are generated, a refinement protocol perturbs each decoy configu-

ration with several small moves and performs a minimization after each perturbation

using an analytical optimization algorithm. Here, the QNA-XEL, the QNA-XEL

(Hessian only), the BFGS-XEL, and the BFGS-XEL (Hessian only) along with the

bracketing and Brent line search are implemented in the centroid refinement protocol

and compared to the QNA and the BFGS algorithm. After each perturbation and

each minimization, the Monte Carlo method is used to determine if the new configura-

tion should be accepted or rejected. If accepted, the next set of the perturbation and

minimization is done on the new configuration. Otherwise, the next set is done on the

previous configuration. The centroid refinement protocol which uses score functions

describing scores between residues is chosen to show proof-of-concept because it is

less computational expensive than the full atom refinement protocol which is used in

[11].

Shown as a flowchart in Figure 5.43, the Rosetta centroid refinement protocol

repeats the following two steps six times: 1) minimize the energy on the entire chain,

2) perturb and minimize the energy on portions of the chain several times depending

on the chain length. The minimization in both 1) and 2) uses the QNA-XEL, the
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Figure 5.43: Rosetta centroid refinement protocol. The QNA-XEL, the QNA-XEL
(Hessian only), the BFGS-XEL, and the BFGS-XEL (Hessian only) are implemented
during the minimization process.
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QNA-XEL (Hessian only), the BFGS-XEL, and the BFGS-XEL (Hessian only) to

locate the configuration with the minimum score, which is the weighted sum of the

scoring functions and implies an energy function E. Each minimization converges

and stops when the change in the score is less than 0.5% or when iterations reach a

maximum of 200.

Simulations are performed on several proteins, each analyzed with several values

of n including n = 1 which corresponds to the unmodified energy landscape. Proteins

used in the simulation are those provided in the Rosetta software package and the

Robetta server [37], which contains fragment files and other necessary files to generate

decoys, some of which are not in the protein database. Five small proteins analyzed

here are 1ubq, 1d3z, dom6, hetr, and mdmi, which have 76, 82, 126, 149, and 304

residues, respectively. Various sizes are chosen to determine if the size of the protein

effects the results and the range is limited to the size of an average protein because

of the available computational resources.

For each protein 50 different decoys are generated and used as starting configu-

rations in the refinement for each n value. Because of the probabilistic nature of the

methods used in decoy generation and the perturbation in the refinement protocol,

the number of decoys is chosen so that the sample size is sufficient to produce results

that represent the performance of the optimization algorithm while small enough for

the available computational resources. Simulations on 50 decoys for each n case take

3:40 to 32:18 hours depending on the protein on an AMD AthlonTM XP 3200+ (2.1

GHz) or AMD AthlonTM 64 Processor 3500+ (2.2 GHz) computers. Typical runtime

for an accurate prediction of the conformation of a protein is 150 days.

The results are evaluated in terms of quality, speed, and efficiency. For quality an

average score improvement, a lowest score, and similarity to the native conformation

are determined from output scores and configurations. These quantities are defined

and discussed in Sections 5.2.2, 5.2.3, and 5.2.6 respectively. The similarity of output
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configurations to the native conformation are evaluated in terms of TM score [88],

GDT score [79, 80], MaxSub score [62], and RMSD [32, 33]. These quantities are dis-

cussed in Section 5.2.6. For speed an average iteration is determined from the number

of total iterations. This quantity is defined and discussed in Section 5.2.4. Efficiency

is determined from the average score improvement and the average iteration. This

quantity is defined and discussed in Section 5.2.5. Section 5.2.7 discusses results from

a further analysis studying the effect of XEL when its simulations are ran with the

same number of iterations as that of the unmodified case.

5.2.2 Score Improvement

This section gives the evaluation of the QNA-XEL, the QNA-XEL (Hessian only),

the BFGS-XEL, and the BFGS-XEL (Hessian only) on quality by determining the

score improvement quantities described below.

After the refinement process, the scores E of the obtained configurations are eval-

uated. The average of score improvement AveSI is defined as the average of the score

improvements SI which are the differences between scores of the resulting configura-

tions (outputs) and those of the decoys (inputs):

AveSI =
1

N

N∑
i=1

SIi (5.2)

SIi = Em,i − E0,i

where N is the number of decoys (N = 50), SIi is the score improvement of the ith

decoy, Em,i is the output score or the score at the mth or last iteration for the ith decoy,

and E0,i is the input score or the score at the 0th iteration for the ith decoy. Since the

refinement protocol is a minimization process, the score of a resulting configuration is

considered “improved” when its value is less than that of the input decoy. Therefore,

the lower SI and AveSI values imply better results.

The results from different cases of n are compared to those from unmodified cases
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(n = 1) by subtracting the AveSI values of unmodified cases from those of the XEL

cases:

%∆AveSIn =
AveSIn − AveSIn=1

|AveSIn=1|
× 100 (5.3)

where %∆AveSIn is the percent difference of the average score improvement com-

pared to the unmodified case, AveSIn is the AveSI value of the XEL case, and

AveSIn=1 is the AveSI value of unmodified case. The lower %∆AveSIn indicates

that the XEL case yields greater improvement and therefore a better result.

5.2.2.1 QNA-XEL and QNA-XEL (Hessian only)

Figures 5.44 and 5.45 display AveSI versus various values of n for each protein for

the QNA-XEL and the QNA-XEL (Hessian only), respectively. The black dashed

horizontal lines indicate the AveSI from the n = 1 cases and the red dotted lines

above and below the black dashed lines indicate ±5% deviations. Some red dotted

lines may not be visible if all data lie inside the upper or lower boundary. Some black

dashed lines may not be visible if the data points for n = 1 are at the lower ends of the

data ranges. Note that lines connecting data points in all figures presented here by

no means imply any relationships nor trends, but they are only used for clarity. The

values of n are shown on the x-axes which are neither a linear nor logarithmic scale.

The range of n values is selectively investigated because it sufficiently represents the

performance of the algorithms. Also, as n becomes lower than 2−9 the performance

in terms of the score improvement reduces and as n becomes higher than 10, the

optimization algorithm diverges.

For the QNA-XEL Figure 5.44 shows that all test proteins have the lowest AveSI

when n = 1, 2, or 6 and that all n > 1 cases yield better results than those of the

n < 1 cases. While the unmodified case (n = 1) yields the best or the second best

results in all proteins, most n > 1 cases are within the ±5% deviations which implies

similar performance. For the QNA-XEL (Hessian only) Figure 5.45 shows that the
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Figure 5.44: QNA-XEL: The average of the score improvement (AveSI) versus
various values of n in a) 1d3z, b) 1ubq, c) dom6, d) hetr, and e) mdmi proteins.
Lower values indicate greater improvements. The red dotted lines above and below
black dashed horizontal lines indicate 5% deviations above and below the AveSI of
the n = 1 cases.
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Figure 5.45: QNA-XEL (Hessian only): The average of the score improvement
(AveSI) versus various values of n in a) 1d3z, b) 1ubq, c) dom6, d) hetr, and e)
mdmi proteins. Lower values indicate greater improvements. The red dotted lines
above and below black dashed horizontal lines indicate 5% deviations above and below
the AveSI of the n = 1 cases.
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Figure 5.46: QNA-XEL: The percent difference between the average score improve-
ment of the various values of n and those of unmodified energy landscape (n = 1)
case, ∆AveSIn. Negative values indicate that the XEL yields better results than the
unmodified case. Lower values indicate greater improvements.

test proteins have the best results when n = 4, 6, or 10 and all but one n > 1 cases

yield better results than those of n < 1 and n = 1 cases. In fact, proteins 1ubq, 1d3z,

dom6, and hetr have more than 5% lower AveSI than n = 1.

Note that when n = 1 both the QNA-XEL and the QNA-XEL (Hessian only)

become the QNA and therefore they should yield the same results. However, results

may be slightly different since the results of n = 1 shown in each algorithm are

from different runs and there is the probabilistic nature of the methods used in the

perturbation in the refinement protocol. This also applies to the BFGS-XEL and the

BFGS-XEL (Hessian only).

Figures 5.46 and 5.47 display the percent difference of the average score improve-

ment compared to the unmodified case %∆AveSIn for the QNA-XEL and the QNA-

XEL (Hessian only), respectively. Negative values indicate that the XEL yields better
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Figure 5.47: QNA-XEL (Hessian only): The percent difference between the average
score improvement of the various values of n and those of unmodified energy landscape
(n = 1) case, ∆AveSIn versus various values of n. Negative values indicate that the
XEL yields better results than the unmodified case. Lower values indicate greater
improvements.

results than the unmodified case. Lower values indicate greater score improvements.

For the QNA-XEL Figure 5.46 illustrates consistent results throughout all test pro-

teins as n < 1 yields worse results than n ≥ 1 and n > 1 yields results within

±5% of those from n = 1. No correlation between the protein size and the value of

%∆AveSIn can be established. For the QNA-XEL (Hessian only) Figure 5.47 illus-

trates consistent results throughout all test proteins which are similar to those from

the QNA-XEL but n > 1 generally yields lower results than n = 1 and in some cases

more than 10% lower. For n > 2 the value of %∆AveSIn seems dependent on the

protein size as larger proteins yield lower %∆AveSIn except for the protein mdmi.
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Figure 5.48: BFGS-XEL: The average of the score improvement (AveSI) versus
various values of n in a) 1d3z, b) 1ubq, c) dom6, d) hetr, and e) mdmi proteins.
Lower values indicate greater improvements. The red dotted lines above and below
black dashed horizontal lines indicate 5% deviations above and below the AveSI of
the n = 1 cases.
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Figure 5.49: BFGS-XEL (Hessian only): The average of the score improvement
(AveSI) versus various values of n in a) 1d3z, b) 1ubq, c) dom6, d) hetr, and e)
mdmi proteins. Lower values indicate greater improvements. The red dotted lines
above and below black dashed horizontal lines indicate 5% deviations above and below
the AveSI of the n = 1 cases.
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5.2.2.2 BFGS-XEL and BFGS-XEL (Hessian only)

Figures 5.48 and 5.49 display AveSI versus various values of n for each protein for

the BFGS-XEL and the BFGS-XEL (Hessian only), respectively. The black dashed

horizontal lines indicate the AveSI from the n = 1 cases and the red dotted lines

above and below the black dashed lines indicate ±5% deviations. Some red dotted

lines may not be visible if all data lie inside the upper or lower boundary. Lower

values indicate greater improvement.

For the BFGS-XEL Figure 5.48 shows that all test proteins have the lowest AveSI

when n = 2, 4, or 6 and that most n > 1 cases yield better results than those

of the n < 1 cases and lie within ±5% boundaries of n = 1 which implies similar

performance. For the BFGS-XEL (Hessian only) Figure 5.49 shows that the test

proteins have the best results when n = 2 or 4 and most n < 1 cases yield worse

results than those of n ≥ 1. In fact, all but one n < 1 case yields worse results than

those of the n = 1 cases.

Figures 5.50 and 5.51 display the percent difference of the average score improve-

ment compared to the unmodified case %∆AveSIn for the BFGS-XEL and the BFGS-

XEL (Hessian only), respectively. For the BFGS-XEL Figure 5.50 illustrates consis-

tent results throughout all test proteins as n < 1 yields worse results than n ≥ 1 and

most n > 1 yields results within ±5% or lower than those from n = 1. For n > 2

the value of %∆AveSIn tends to be dependent on the protein size as larger proteins

yield lower %∆AveSIn except for protein mdmi. For the BFGS-XEL (Hessian only)

Figure 5.51 illustrates consistent results throughout all test proteins which are similar

to those from the BFGS-XEL but all n > 1 cases yields results within ±5% of those

from n = 1. No correlation between the protein size and the value of %∆AveSIn can

be established.
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Figure 5.50: BFGS-XEL: The percent difference between the average score improve-
ment of the various values of n and those of unmodified energy landscape (n = 1)
case, ∆AveSIn. Negative values indicate that the XEL yields better results than the
unmodified case. Lower values indicate greater improvements.

5.2.2.3 Conclusion of score improvement

The AveSI from configurations generated by the QNA-XEL, the QNA-XEL (Hessian

only), the BFGS-XEL, and the BFGS-XEL (Hessian only) with different values of n

in proteins 1ubq, 1d3z, dom6, hetr, and mdmi are compared. Results show that

for all algorithms n > 1 yields better quality than n < 1 and in many cases yield

better quality than n = 1. The same conclusion can also be drawn from results in

Figures A.2 through A.8 a) through c), g), and h) in Appendix A which present the

percentage of decoys with lower, equal, or higher score than those of n = 1 for all

test algorithms. This is also in agreement with a conclusion from Section 5.1 and

Guideline iv. in Table 4.1.

Note that although results in this section show that n < 1 yields worse quality

than n = 1, the worst case has only 15% higher AveSI.
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Figure 5.51: BFGS-XEL (Hessian only): The percent difference between the average
score improvement of the various values of n and those of unmodified energy landscape
(n = 1) case, ∆AveSIn. Negative values indicate that the XEL yields better results
than the unmodified case. Lower values indicate greater improvements.

5.2.3 Lowest Score

In addition to performance in terms of quality, the lowest score indicates performance

in terms of global search performance or ability to find the global solution. Since

results can not be directly compared to the native state or the global solution, the

lowest score Elowest among the final scores of all decoys are evaluated and compared.

Additionally, the percent difference of the lowest score %∆Elowest compared to n = 1

is determined which is defined as

%∆Elowest =
(Elowest)n − (Elowest)n=1

|(Elowest)n=1|
× 100 (5.4)

where (Elowest)n is the lowest score of the XEL case and (Elowest)n=1 is the lowest score

of the unmodified case. Lower values of Elowest and %∆Elowest imply better quality

and global search performance.
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5.2.3.1 QNA-XEL and QNA-XEL (Hessian only)

The lowest scores from different values of n in proteins 1ubq, 1d3z, dom6, hetr, and

mdmi are compared in Figures 5.52 and 5.53 for the QNA-XEL and the QNA-XEL

(Hessian only), respectively. The red dotted lines indicate ±5% deviations of the

lowest scores from the n = 1 cases indicated by black dashed horizontal lines. Some

red dotted lines may not be visible if all data lie inside the upper or lower boundary.

Some black dashed lines may not be visible if the data points for n = 1 are at the

lower ends of the data ranges.

For the QNA-XEL Figure 5.52 shows that three of five test proteins have the

lowest score when n = 10 and the others have the lowest score when n = 2−3 or 10.

The deviation of the lowest score between different values of n is higher than that

of the AveSI but on average in most proteins n > 1 has lower lowest score than

n < 1 which agrees with results presented in the previous section. For the QNA-XEL

(Hessian only) Figure 5.53 shows that two test proteins have the best results when

n = 1 and the others have the lowest score when n = 2−7, 6, or 10. Again, the

deviation of the lowest score between different values of n is higher than that of the

AveSI but on average in most protein n > 1 has lower lowest score than n < 1.

Figures 5.54 and 5.55 display the percent difference of the lowest score %∆Elowest

compared to n = 1 for the QNA-XEL and the QNA-XEL (Hessian only), respectively.

Negative values indicate that the XEL yields better results than the unmodified case.

Lower values indicate better performance. For the QNA-XEL Figure 5.54 illustrates

that in all test proteins n 6= 1 yields worse results than n = 1 on average but three

cases yield significantly better results than others. In protein hetr when n = 6,

8, or 10 the lowest score can be more than 20% lower than that of n = 1. The

range of %∆Elowest is between -31% to 28%, most values fall within ±15% range. No

correlation between the protein size and the value of %∆AveSIn can be established.

For the QNA-XEL (Hessian only) Figure 5.55 illustrates that in all test proteins
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Figure 5.52: QNA-XEL: The lowest scores (Elowest) versus various values of n in
a) 1ubq, b) 1d3z, c) dom6, d) hetr, and e) mdmi. Lower values indicate better
performance. The red dotted lines above and below black dashed horizontal lines
indicate 5% deviations above and below the lowest scores from the n = 1 cases.
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Figure 5.53: QNA-XEL (Hessian only): The lowest scores (Elowest) versus various
values of n in a) 1ubq, b) 1d3z, c) dom6, d) hetr, and e) mdmi. Lower values indicate
better performance. The red dotted lines above and below black dashed horizontal
lines indicate 5% deviations above and below the lowest scores from the n = 1 cases.
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Figure 5.54: QNA-XEL: The percent difference of the lowest scores (%∆Elowest)
compared to n = 1 in a) 1ubq, b) 1d3z, c) dom6, d) hetr, and e) mdmi. Lower values
indicate better performance.

n 6= 1 yields worse results than n = 1 on average. The worst cases of the QNA-XEL

(Hessian only) have worse results than those in the QNA-XEL. The range of %∆Elowest

is between -31% to 88%, most values fall within ±20% range. No correlation between

the protein size and the value of %∆Elowest can be established.

5.2.3.2 BFGS-XEL and BFGS-XEL (Hessian only)

The lowest scores from different values of n in proteins 1ubq, 1d3z, dom6, hetr, and

mdmi are compared in Figures 5.56 and 5.57 for the BFGS-XEL and the BFGS-XEL

(Hessian only), respectively. The red dotted lines indicate ±5% deviations of the

lowest scores from the n = 1 cases indicated by black dashed horizontal lines. Some

red dotted lines may not be visible if all data lie inside the upper or lower boundary.

For the BFGS-XEL Figure 5.56 shows that three of five test proteins have the

lowest score when n = 4 and the others have the lowest score when n = 2 or 8. The
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Figure 5.55: QNA-XEL (Hessian only): The percent difference of the lowest scores
(%∆Elowest) compared to n = 1 in a) 1ubq, b) 1d3z, c) dom6, d) hetr, and e) mdmi.
Lower values indicate better performance.

deviation of the lowest score between different values of n is higher than that of the

AveSI but on average in most proteins n > 1 yield slightly lower lowest score than

n < 1 which agrees with results presented in the previous section. For the BFGS-XEL

(Hessian only) Figure 5.57 shows that each test protein has the lowest score when

n 6= 1. Again, the deviation of the lowest score between different values of n is higher

than that of the AveSI but for proteins 1d3z, hetr, and mdmi, most lowest scores are

lower or inside the boundaries.

Figures 5.58 and 5.59 display the percent difference of the lowest score %∆Elowest

compared to n = 1 for the BFGS-XEL and the BFGS-XEL (Hessian only), respec-

tively. Negative values indicate that the XEL yields better results than the unmodified

case. Lower values indicate better performance. For the BFGS-XEL Figure 5.58 il-

lustrates that in all test proteins n 6= 1 yields worse results than n = 1 on average

but one case yields significantly better results than others. In protein hetr when
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Figure 5.56: BFGS-XEL: The lowest scores (Elowest) versus various values of n
in a) 1ubq, b) 1d3z, c) dom6, d) hetr, and e) mdmi. Lower values indicate better
performance. The red dotted lines indicate ±5% deviations of the lowest scores from
the n = 1 cases.
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Figure 5.57: BFGS-XEL (Hessian only): The lowest scores (Elowest) versus various
values of n in a) 1ubq, b) 1d3z, c) dom6, d) hetr, and e) mdmi. Lower values indicate
better performance. The red dotted lines indicate ±5% deviations of the lowest scores
from the n = 1 cases.
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Figure 5.58: BFGS-XEL: The percent difference of the lowest scores (%∆Elowest)
compared to n = 1 in a) 1ubq, b) 1d3z, c) dom6, d) hetr, and e) mdmi. Lower values
indicate better performance.

n = 8 the lowest score can be almost 30% lower than that of n = 1. The range of

%∆Elowest is between -30% to 31%, most values fall within -10% to 20% range. No

correlation between the protein size and the value of %∆AveSIn can be established.

For the BFGS-XEL (Hessian only) Figure 5.59 illustrates that in all test proteins

n 6= 1 yields about the same results than n = 1 on average. The worst cases of the

BFGS-XEL (Hessian only) have better results than those in the BFGS-XEL. The

range of %∆Elowest is between -26% to 25%, most values fall within ±15% range. No

correlation between the protein size and the value of %∆Elowest can be established.

5.2.3.3 Conclusion of lowest score

The lowest score from configurations generated by the QNA-XEL, the QNA-XEL

(Hessian only), the BFGS-XEL, and the BFGS-XEL (Hessian only) with different

values of n in proteins 1ubq, 1d3z, dom6, hetr, and mdmi are compared. On average
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Figure 5.59: BFGS-XEL (Hessian only): The percent difference of the lowest scores
(%∆Elowest) compared to n = 1 in a) 1ubq, b) 1d3z, c) dom6, d) hetr, and e) mdmi.
Lower values indicate better performance.

n 6= 1 yields higher lowest scores than n = 1 which could be up to 38% higher and

n < 1 yields higher lowest score than n > 1.

Table 5.4 summarizes the lowest score for each protein along with the correspond-

ing n value for all test algorithms. All but two cases are the XEL cases, twelve out of

all twenty cases are n > 1, and five cases are n = 10 . This indicates a positive effect

of the XEL especially with n > 1 or n = 10 on finding global solutions. Comparing all

algorithms, the BFGS-XEL and the BFGS-XEL (Hessian only) are the best in finding

global solutions as each gives configurations with the lowest score in two proteins.

5.2.4 Average Iterations

For the evaluation of speed, the number of total iterations during the minimization

process is determined instead of the actual time of the iterations. This is because

Rosetta outputs the time for the entire process while only the time for the analytical
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Table 5.4: The n case in which the lowest score of each protein is found.

Quantities
1ubq 1d3z dom6 hetr mdvi

(76) (82) (126) (149) (304)

QNA-XEL
Lowest Score -38.17 -28.58 -38.32 -25.10 -62.68

n 10 2−3 10 10 2−7

QNA-XEL
(Hessian only)

Lowest Score -39.76 -30.62 -36.34 -29.15 -63.12

n 1 6 2−7 10 1

BFGS-XEL
Lowest Score -39.12 -30.82 -37.86 -30.26 -59.64

n 2 4 4 8 4

BFGS-XEL
(Hessian only)

Lowest Score -37.39 -28.61 -39.69 -26.10 -66.48

n 2−1 2 10 2−5 2−3

minimization is of the interest and it was not possible to separate this out. In addition,

the numbers of total iterations are independent of the CPU speed which varies by

computer.

Average iteration AveIt is the average of these numbers over the number of decoys

N ,

AveIt =
1

N

N∑
i=1

mi (5.5)

where mi is the total iterations for the ith decoy. The results from XEL cases are

compared to those from unmodified cases by calculating differences between the AveIt

values of unmodified cases and those of the XEL cases relative to the AveIt values

of unmodified cases. The percent difference of the average iteration compared to

unmodified case %∆AveIt is defined as

%∆AveItn =
AveItn − AveItn=1

|AveItn=1|
× 100 (5.6)

where AveItn is the AveIt value of the XEL case and AveItn=1 is the AveIt value

of unmodified case. A negative %∆AveItn indicates that the XEL case has a smaller

AveIt value than the unmodified case and therefore a better result. This means

simulations in the XEL case run on average with fewer total iterations.
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5.2.4.1 QNA-XEL and QNA-XEL (Hessian only)

The AveIt from different values of n in proteins 1ubq, 1d3z, dom6, hetr, and mdmi

are compared in Figures 5.60 and 5.61 for the QNA-XEL and the QNA-XEL (Hessian

only), respectively. A lower value implies higher speed. The red dotted lines above

and below black dashed horizontal lines indicate 5% deviations above and below the

average iteration of the n = 1 case. Some red dotted lines may not be visible if all

data lie inside the upper or lower boundary. Some black dashed lines may not be

visible if the data points for n = 1 are at the higher ends of the data ranges.

For the QNA-XEL Figure 5.60 shows that in most cases the XEL requires fewer

iterations than the unmodified case. On average n < 1 cases require slightly fewer

iterations than n > 1 cases. When n < 1 AveIt decreases as n decreases but when

n < 2−3 it decreases at a lower rate. When n > 1 AveIt decreases as n increases.

Almost all proteins have the maximum AveIt when n = 1 but protein hetr has the

maximum AveIt when n = 2. For the QNA-XEL (Hessian only) Figure 5.61 shows

results similar to the QNA-XEL but when n > 1 AveIt decreases at a slower rate as

n increases. For almost all proteins, the maximum AveIt is at n = 2, but for protein

1ubq the maximum AveIt is at n = 1.

The %∆AveItn from different values of n in proteins 1ubq, 1d3z, dom6, hetr, and

mdmi are compared in Figures 5.62 and 5.63 for the QNA-XEL and the QNA-XEL

(Hessian only), respectively. A lower value implies higher speed. For the QNA-

XEL Figure 5.62 demonstrates no correlation between the size of proteins and the

%∆AveItn values. The results also show that the XEL can reduce the number of

iterations by up to 40% when n < 1 and up to 30% when n > 1. For the QNA-XEL

(Hessian only) Figure 5.63 shows results similar to the QNA-XEL but when n > 1

the %∆AveItn is higher than that in the QNA-XEL on average. The results also

show that the XEL can reduce the number of iterations by up to 47% when n < 1

and up to 22% when n > 1.
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Figure 5.60: QNA-XEL: Average iterations (AveIt) versus various values of n in a)
1d3z, b) 1ubq, c) dom6, d) hetr, and e) mdmi. Lower numbers mean simulations run
with fewer iterations. The red dotted lines above and below black dashed horizontal
lines indicate 5% deviations above and below the average iteration of the n = 1 case.
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Figure 5.61: QNA-XEL (Hessian only): Average iterations (AveIt) versus various
values of n in a) 1d3z, b) 1ubq, c) dom6, d) hetr, and e) mdmi. Lower numbers mean
simulations run with fewer iterations. The red dotted lines above and below black
dashed horizontal lines indicate 5% deviations above and below the average iteration
of the n = 1 case.
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Figure 5.62: QNA-XEL: The percent difference of average iterations (%∆AveItn)
compared to the unmodified case (n = 1) versus various values of n. Lower values
mean simulations run with fewer average iterations.

5.2.4.2 BFGS-XEL and BFGS-XEL (Hessian only)

The AveIt from different values of n in proteins 1ubq, 1d3z, dom6, hetr, and mdmi are

compared in Figures 5.64 and 5.65 for the BFGS-XEL and the BFGS-XEL (Hessian

only), respectively. A lower value implies higher speed. The red dotted lines above

and below black dashed horizontal lines indicate 5% deviations above and below the

average iteration of the n = 1 case. Some red dotted lines may not be visible if all

data lie inside the upper or lower boundary. Some black dashed lines may not be

visible if the data points for n = 1 are at the higher ends of the data ranges.

For the BFGS-XEL Figure 5.64 shows that in most cases the XEL requires fewer

iterations than the unmodified case. On average n < 1 cases require slightly fewer

iterations than n > 1 cases. When n < 1 AveIt decreases as n decreases, but when

n > 1 AveIt decreases as n increases. Almost all proteins have the maximum AveIt
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Figure 5.63: QNA-XEL (Hessian only): The percent difference of average iterations
(%∆AveItn) compared to the unmodified case (n = 1) versus various values of n.
Lower values mean simulations run with fewer average iterations.

when n = 2 but protein 1ubq has a maximum AveIt when n = 1. For the BFGS-XEL

(Hessian only) Figure 5.65 shows results similar to the BFGS-XEL but when n > 1

AveIt decays at a slower rate as n increases. For smaller proteins with the number

of residues less than 100, 1ubq and 1d3z, the maximum AveIt’s are at n = 1, but for

the larger proteins the maximum are at n = 2. For protein mdmi when n > 1 AveIt

is higher than n = 1.

The %∆AveItn from different values of n in proteins 1ubq, 1d3z, dom6, hetr, and

mdmi are compared in Figures 5.66 and 5.67 for the BFGS-XEL and the BFGS-XEL

(Hessian only), respectively. A lower value implies higher speed. For the BFGS-

XEL Figure 5.66 demonstrates some correlation between the size of proteins and

the %∆AveItn values. In most n cases, the graphs of 1d3z and 1ubq, which have

the smallest numbers of residues, frequently exhibit the most improvement, and the

graph of mdmi, which has the largest number of residues, frequently exhibits the
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Figure 5.64: BFGS-XEL: Average iterations (AveIt) versus various values of n in a)
1d3z, b) 1ubq, c) dom6, d) hetr, and e) mdmi. Lower numbers mean simulations run
with fewer iterations. The red dotted lines above and below black dashed horizontal
lines indicate 5% deviations above and below the average iteration of the n = 1 case.
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Figure 5.65: BFGS-XEL (Hessian only): Average iterations (AveIt) versus various
values of n in a) 1d3z, b) 1ubq, c) dom6, d) hetr, and e) mdmi. Lower numbers mean
simulations run with fewer iterations. The red dotted lines above and below black
dashed horizontal lines indicate 5% deviations above and below the average iteration
of the n = 1 case.
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Figure 5.66: BFGS-XEL: The percent difference of average iterations (%∆AveItn)
compared to the unmodified case (n = 1) versus various values of n. Lower values
mean simulations run with fewer average iterations.

least improvement. This suggests %∆AveItn values may increase as the protein sizes

increase. The results also show that the XEL can reduce the number of iterations by

up to 40% when n < 1 and up to 34% when n > 1. For the BFGS-XEL (Hessian

only) Figure 5.67 shows results similar to the BFGS-XEL but when n = 8 and 10 the

%∆AveItn are higher than those in the BFGS-XEL. The results also show that the

XEL can reduce the number of iterations by up to 40% when n < 1 and up to 20%

when n > 1.

5.2.4.3 Conclusion of average iterations

Results from all algorithms are quite similar as most cases have a lower number of

iterations than n = 1 and n < 1 has a lower number of iterations than n > 1.

This implies that the XEL results in higher speed with n < 1 yielding higher speed

than n > 1 and that the XEL has consistent effects on the number of iterations
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Figure 5.67: BFGS-XEL (Hessian only): The percent difference of average iterations
(%∆AveItn) compared to the unmodified case (n = 1) versus various values of n.
Lower values mean simulations run with fewer average iterations.

in the QNA-XEL, the QNA-XEL (Hessian only), the BFGS-XEL, and the BFGS-

XEL (Hessian only). However, this finding is not consistent with that in Section

5.1.1 which shows that with the bracketing and Brent line search the QNA-XEL, the

QNA-XEL (Hessian only), the BFGS-XEL, and the BFGS-XEL (Hessian only) have

slightly higher speed when n > 1. This inconsistency may be because the simulated

energy landscapes do not represent the score function of a protein molecule.

Reducing the number of iterations by up to 40% roughly means reducing the

runtime by 40% because the runtime for the BFGS and the BFGS-XEL with n = 1

are roughly the same. This is very beneficial since the protein conformation prediction

process can take several months even for a small protein. For example, a high-

resolution structure prediction algorithm [11] refining 20,000 to 30,000 models of

several 49 to 88 residue long molecules takes about 150 CPU days per molecule. 40%

reduction means the runtime reduces by 60 CPU days.
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5.2.5 Efficiency

To consider both score improvement and total iterations in the performance evalua-

tion, efficiency, en, is defined as the value of average score improvement per thousand

iterations,

en =
AveSIn

AveItn/1000
(5.7)

Since negative AveSIn’s mean results are improved from input decoys, the negative

efficiency indicates the improvement rate and lower values mean higher rates. In all

simulations presented here the AveSIs are negative so all values for e are negative.

The percent differences between the values of efficiency in the various values of n

and those in the unmodified cases, %∆en, are displayed in Figure 5.75,

%∆en =
en − en=1

|en=1|
× 100 (5.8)

where en=1 is the efficiency of the unmodified case. Lower values indicate that the

XEL cases have better performance than the unmodified case. This means the same

number of iterations in XEL-implemented simulations yields more score improvement.

5.2.5.1 QNA-XEL and QNA-XEL (Hessian only)

The efficiency en from different values of n in proteins 1ubq, 1d3z, dom6, hetr, and

mdmi are compared in Figures 5.68 and 5.69 for the QNA-XEL and the QNA-XEL

(Hessian only), respectively. A lower value implies better efficiency. The red dotted

lines indicate ±5% deviations of the efficiency from the n = 1 cases indicated by black

dashed horizontal lines. Some red dotted lines may not be visible if all data lie inside

the upper or lower boundary. Some black dashed lines may not be visible if the data

points for n = 1 are at the higher ends of the data ranges.

For the QNA-XEL Figure 5.68 shows that efficiency is dependent on the size of the

protein as it decreases when the protein chain length increases. This means a larger

protein results in better efficiency. The better efficiency in a larger protein is because

191



2 2 2 2 2 1 2 4 6 8 10
−16
−15
−14
−13
−12
−11

a) 1ubq (76)

e n

n −9  −7  −5  −3  −1 2 2 2 2 2 1 2 4 6 8 10
−15

−14

−13

−12

−11

b) 1d3z (82)

e n

n −9  −7  −5  −3  −1

2 2 2 2 2 1 2 4 6 8 10

−21
−20
−19
−18
−17
−16

c) dom6 (126)

e n

n −9  −7  −5  −3  −1 2 2 2 2 2 1 2 4 6 8 10

−26

−24

−22

d) hetr (149)

e n

n −9  −7  −5  −3  −1

2 2 2 2 2 1 2 4 6 8 10
−28

−26

−24

−22

−20
e) mdmi (304)

e n

n −9  −7  −5  −3  −1

Figure 5.68: QNA-XEL: The efficiency (en) versus various values of n in a) 1ubq,
b) 1d3z, c) dom6, d) hetr, and e) mdmi. Lower values mean better performance. The
red dotted lines above and below black dashed horizontal lines indicate 5% deviations
above and below the efficiency of the n = 1 case.
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Figure 5.69: QNA-XEL (Hessian only): The efficiency (en) versus various values
of n in a) 1ubq, b) 1d3z, c) dom6, d) hetr, and e) mdmi. Lower values mean better
performance. The red dotted lines above and below black dashed horizontal lines
indicate 5% deviations above and below the efficiency of the n = 1 case.
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Figure 5.70: QNA-XEL: The percent difference of the efficiency (%∆en) compared
to those in the unmodified cases (n = 1) versus various values of n. Lower values
mean better performance.

a larger gap of scores between an input decoy and a semi-folded configuration. An

input decoy of a larger protein is more likely to be a bad approximation because of a

larger conformational space and thus a refinement protocol can significantly improve

the score which yields better efficiency. On average n < 1 cases have better efficiency

than n > 1. When n < 1 efficiency is improved as n decreases but not at n = 2−9.

When n > 1 efficiency is also improved as n increases but at a lower rate. Proteins

1ubq, 1d3z, and dom6 have the worst efficiency when n = 1 and proteins hetr and

mdmi have the worst efficiency when n = 2. For the QNA-XEL (Hessian only) Figure

5.69 show results similar to those in the QNA-XEL but with better efficiency.

The %∆en from different values of n in proteins 1ubq, 1d3z, dom6, hetr, and

mdmi are compared in Figures 5.70 and 5.71 for the QNA-XEL and the QNA-XEL

(Hessian only), respectively. A lower value implies better efficiency.

For the QNA-XEL Figures 5.70 shows that the efficiency can be up to 52% better
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Figure 5.71: QNA-XEL (Hessian only): The percent difference of the efficiency
(%∆en) compared to those in the unmodified cases (n = 1) versus various values of
n. Lower values mean better performance.

than that of n = 1 which means with the same number of iterations as n = 1 the

score improvement can be lower by 50%. When n > 1 the efficiency can be up to 40%

better than that of n = 1. No correlation between the size of proteins and the values

of %∆en can be found but a smaller protein tends to have higher improvement in

efficiency than a larger protein. For the QNA-XEL (Hessian only) Figures 5.71 shows

results similar to those of the QNA-XEL but efficiency can be up to 75% better than

that of n = 1. When n > 1 efficiency can be up to 30% better than that of n = 1.

Some correlation between the size of proteins and the values of %∆en can be seen

as a smaller protein has higher improvement in efficiency than a larger protein when

n < 2−1 or n > 6 except for protein hetr.
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5.2.5.2 BFGS-XEL and BFGS-XEL (Hessian only)

The en from different values of n in proteins 1ubq, 1d3z, dom6, hetr, and mdmi are

compared in Figures 5.72 and 5.73 for the BFGS-XEL and the BFGS-XEL (Hessian

only), respectively. A lower value implies better efficiency. The red dotted lines

indicate ±5% deviations of efficiency from the n = 1 cases indicated by black dashed

horizontal lines. Some red dotted lines may not be visible if all data lie inside the

upper or lower boundary. Some black dashed lines may not be visible if the data

points for n = 1 are at the higher ends of the data ranges.

For the BFGS-XEL Figure 5.72 shows that the value of efficiency is dependent on

the size of the protein as the value decreases when the protein chain length increases.

On average the n < 1 case has better efficiency than the n > 1 case in proteins

1ubq, 1d3z, and dom6 but both cases have about the same efficiency in proteins

hetr and mdmi. When n < 1 efficiency is improved as n decreases but when n > 1

efficiency is improved as n increases. The worst efficiency is when n = 1 or 2. For the

BFGS-XEL (Hessian only) Figure 5.73 show results slightly different from those of

the BFGS-XEL. While in the BFGS-XEL (Hessian only) efficiency is also improved

as the protein chain length increases, n < 1 case has much better efficiency than

n > 1 case.

The %∆en from different values of n in proteins 1ubq, 1d3z, dom6, hetr, and

mdmi are compared in Figures 5.74 and 5.75 for the BFGS-XEL and the BFGS-XEL

(Hessian only), respectively. A lower value implies better efficiency.

For the BFGS-XEL Figure 5.74 shows that efficiency can be up to 50% better

than that of n = 1 and when n > 1 efficiency can be up to 35% better than that

of n = 1. No correlation between the size of proteins and the values of %∆en can

be found but a smaller protein tends to have better efficiency than a larger protein.

For the BFGS-XEL (Hessian only) Figure 5.75 shows results similar to those of the

BFGS-XEL but efficiency can be up to 52% better than that of n = 1 and when
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Figure 5.72: BFGS-XEL: efficiency (en) versus various values of n in a) 1ubq, b)
1d3z, c) dom6, d) hetr, and e) mdmi. Lower values mean better performance. The
red dotted lines above and below black dashed horizontal lines indicate 5% deviations
above and below the efficiency of the n = 1 case.
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Figure 5.73: BFGS-XEL (Hessian only): efficiency (en) versus various values of
n in a) 1ubq, b) 1d3z, c) dom6, d) hetr, and e) mdmi. Lower values mean better
performance. The red dotted lines above and below black dashed horizontal lines
indicate 5% deviations above and below the efficiency of the n = 1 case.
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Figure 5.74: BFGS-XEL: The percent difference of the efficiency (%∆en) compared
to those in the unmodified cases (n = 1) versus various values of n. Lower values
mean better performance.

n > 1 efficiency can be up to 20% better than that of n = 1. No correlation between

the size of proteins and the values of %∆en can be seen but a smaller protein tends

to have better efficiency than a larger protein.

5.2.5.3 Conclusion of efficiency

Results show that the XEL can improve the efficiency in the QNA-XEL by up to

52%, in the QNA-XEL (Hessian only) by up to 75%, in the BFGS-XEL by up to

50%, and in the BFGS-XEL (Hessian only) by up to 52%. In all algorithms efficiency

is dependent on the size of the protein as it is improved when the protein chain length

increases. On average when n < 1 the efficiency is better than when n ≥ 1 which

implies that better efficiency can be achieved by using n < 1.
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Figure 5.75: BFGS-XEL (Hessian only): The percent difference of the efficiency
(%∆en) compared to those in the unmodified cases (n = 1) versus various values of
n. Lower values mean better performance.

5.2.6 Similarity to the native configuration

In addition to quality, speed, and efficiency, the similarity of output configurations

to the native conformation are evaluated in terms of TM score [88], GDT score [79,

80], MaxSub score [62], and RMSD [32, 33] using TM-score software package [86].

The RMSD (Relative Mean Square Deviation) value commonly used to evaluate the

similarity is usually not sufficient [88] because the value depends on the protein length

and percent alignment which is the compared portions of the output configuration and

the native conformation. The TM, the GDT, and the MaxSub scores are developed

to improve a correlation between high similarity and a high score. These scores are

range between 0 and 1 and a value closer to 1 implies a configuration more similar

to the native state. The TM score has a better correlation than the GDT and the

MaxSub scores [88].
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Figure 5.76: BFGS-XEL (Hessian only): The scores versus TM scores of resulting
configurations with various values of n for protein 1ubq. Lower score means bet-
ter quality. TM score closer to 1 means a configuration more similar to the native
conformation.
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Figure 5.77: BFGS-XEL (Hessian only): The scores versus GTD scores of resulting
configurations with various values of n for protein 1ubq. Lower score means better
quality. GTD score closer to 1 means a configuration more similar to the native
conformation.
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Figure 5.78: BFGS-XEL (Hessian only): The scores versus MaxSub scores of re-
sulting configurations with various values of n for protein 1ubq. Lower score means
better quality. MaxSub score closer to 1 means a configuration more similar to the
native conformation.
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Figure 5.79: BFGS-XEL (Hessian only): The scores versus RMSD values of re-
sulting configurations with various values of n for protein 1ubq. Lower score means
better quality. RMSD value closer to 0 means a configuration more similar to the
native conformation.
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Figures 5.76 through 5.79 present the TM scores, the GDT scores, the MaxSub

scores, and the RMSD values of the resulting configurations of protein 1ubq with

BFGS-XEL (Hessian only) and various values of n. Results from each value of n

(shown as stars) are compared to those from n = 1 (shown as circles). A TM, a

GDT, or a MaxSub score closer to 1 means a configuration more similar to the native

conformation. A TM score greater than 0.4 implies a meaningful prediction. An

RMSD value closer to 0 means a configuration more similar to the native conforma-

tion. Note that only protein 1ubq is evaluated because other proteins do not have

the structural information of native conformations available.

Results in Figures 5.76 through 5.79 show that the TM scores, the GDT scores,

the MaxSub scores, and the RMSD values from n 6= 1 and n = 1 are similar since

the circles (n = 1) and the stars (n 6= 1) cover similar areas. This means n 6= 1

yields configurations similar to the native conformation as those of n = 1. Figures

5.76 through 5.78 show that as n increases the stars move slightly downward and to

the right. This implies that the quality of resulting configurations is improved as n

increases.

5.2.6.1 Conclusion of similarity to the native configuration

Overall results show that XEL has little effect on the similarity to the native con-

figuration. Since XEL yields better speed, this means XEL would be expected to

yield configurations with the same quality as those of the unmodified case in terms

of similarity with fewer iterations.

5.2.7 Further analysis: Same-iteration comparison

The XEL algorithms yield lower quality than the unmodified cases as their average

score improvement AveSI and lowest score Elowest are typically higher than those

for n = 1. However, these quantities could possibly be improved if XEL simulations

are allowed to run with the same number of total iterations from all decoys as the

205



unmodified cases but with more perturbations or decoys. For example, in protein

1ubq running simulations with 29 additional decoys yields the same number of total

iterations as the n = 1 case. This claim is investigated on the BFGS-XEL (Hessian

only) with n = 2−9 and two proteins, 1ubq and dom6. As additional simulations

are run, more decoys (Decoys+) or more perturbations (Perturb+) are added so that

the resulting number of total iterations are nearly equal to the n = 1 case (less than

1% difference). The results from the runs with more decoys and perturbations are

compared to the results from the BFGS-XEL (Hessian only) with n = 2−9 presented

in previous sections and referred to below as the n = 2−9 run without additional

iterations or n = 2−9 (50) in figures.

Figures 5.80 presents a) the percent difference of the average score improvement

%∆AveSI, b) the percent difference of the lowest score %∆Elowest, c) the percent

difference of the average iteration %∆AveIt, and d) the percent difference of the effi-

ciency %∆en from special runs with more decoys (Decoys+) and more perturbations

(Perturb+) and the BFGS-XEL (Hessian only) without additional iterations. All

runs use n = 2−9 and are performed for proteins 1ubq and dom6. Lower percentage

implies better performance.

Figures 5.80 a) shows that more decoys does not improve the values of %∆AveSIn

in the case of either protein but more perturbations improves the values of %∆AveSIn

in the case of both proteins by 9% and 6% from those in the n = 2−9 run without

additional iterations. This shows that the values of %∆AveSIn is sensitive to the

average number of total iterations per decoy (AveIt). Since adding more decoys

does not change the AveIt value (Figure 5.80 c) and the values of %∆AveSIn in the

n = 2−9 run without additional iterations is possibly a good representative value for

that AveIt, more decoys has almost no effect on the values of %∆AveSIn. With more

perturbations the values of %∆AveSIn are improved since adding more perturbations

increases the AveIt.
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Figure 5.80: Same-Iteration: a) the percent difference of average score improvement
%∆AveSI, b) the percent difference of lowest score %∆Elowest, c) the percent dif-
ference of average iteration %∆AveIt, and d) the percent difference of the efficiency
%∆en from special runs with n = 2−9 and either more decoys (Decoys+) or more
perturbations (Perturb+) and the BFGS-XEL (Hessian only) without additional it-
erations. All runs use n = 2−9 and are performed for proteins 1ubq and dom6. Lower
percentage means better results.
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Figure 5.80 b) shows that more decoys does not improve or worsen the values

of %∆Elowest in the case of either protein which suggests that adding more decoys

would not change the lowest score. This result agrees with an additional test that

runs 1000 decoys with n = 2−9 and 614 decoys of n = 1. Results also show that

more perturbations improves the value of %∆Elowest in protein dom6 by 21% but

worsens the value of %∆Elowest in protein 1ubq by 5% from those in the n = 2−9

run without additional iterations. Increasing the number of perturbations can yield

a lower or a higher lowest score than those of the n = 2−9 run without additional

iterations because of the probabilistic nature of the perturbations. Unlike the more

perturbation case with new simulations on all original 50 decoys, the more decoy case

adds new simulations on additional 29 decoys to the n = 2−9 run with original 50

decoys so the lowest score of the more decoy case can only be lower or equal to that

of the original n = 2−9 run.

Figure 5.80 c) shows that the values of %∆AveIt in the more decoy case do not

change but in the more perturbation case the values of %∆AveIt increases to 0%

which means AveIt of the more perturbation case is equal to that of n = 1. The

change in the more perturbation case is because the number of total iterations is now

nearly equal to that of n = 1.

Lastly, Figure 5.80 d) shows that more decoys do not significantly improve or

worsen the values of %∆en from those in the n = 2−9 run without additional iterations

but more perturbations worsen the values of %∆en such that they are about equal

to those for n = 1. While adding more decoys does not change efficiency, increasing

perturbations does yield worse efficiency. As the simulation progresses efficiency

becomes worsened because the values of the score improvement between consecutive

iterations are most likely larger at the beginning of the simulation than those toward

the end of the simulation. Thus, this suggests that more perturbations should not be

added to a simulation for better efficiency.
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Figure 5.81: BFGS-XEL (Hessian only): The scores versus the TM, the GTD, the
MaxSub scores and the RMSD values of resulting configurations for protein 1ubq.
These quantities are from special runs with n = 2−9 and either more decoys (De-
coys+) or more perturbations (Perturb+). They are compared to those of n = 1
without varying the numbers of original decoys or perturbations. Lower score means
better quality. The TM, the GTD, or the MaxSub score closer to 1 means a config-
uration more similar to the native conformation. RMSD value closer to 0 means a
configuration more similar to the native conformation.
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Figure 5.82: BFGS-XEL (Hessian only): The scores versus the TM, the GTD, the
MaxSub scores and the RMSD values of resulting configurations for protein 1ubq.
These quantities are from special runs with n = 2−9 and either more decoys (De-
coys+) or more perturbations (Perturb+). They are compared to those of n = 2−9

without varying the numbers of original decoys or perturbations. Lower score means
better quality. The TM, the GTD, or the MaxSub score closer to 1 means a config-
uration more similar to the native conformation. RMSD value closer to 0 means a
configuration more similar to the native conformation.
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For similarity evaluation the TM, the GTD, the MaxSub scores and the RMSD

values of the resulting configurations from special runs with more decoys and more

perturbations for protein 1ubq are evaluated. Figures 5.81 and 5.82 compare these

quantities from special runs with n = 2−9 and either more decoys (Decoys+) or more

perturbations (Perturb+) to those of the n = 1 case and the n = 2−9 respectively

for which the original numbers of decoys and perturbations are not altered. Results

from special runs with more decoys (Decoys+) and more perturbations (Perturb+)

are shown as triangles, those from n = 1 are shown as circles, and those from n =

2−9 are shown as stars. A TM, a GDT, or a MaxSub score closer to 1 means a

configuration more similar to the native conformation. An RMSD value closer to 0

means a configuration more similar to the native conformation.

Figure 5.81 shows that with more decoys (Decoys+) the results are similar to

those of n = 1 but cover slightly larger areas. With more perturbations (Perturb+)

the results are also similar to those of n = 1. Figure 5.82 shows that the additional

decoys do not have a high similarity and more perturbations do not improve or worsen

the similarity in resulting configurations.

5.2.7.1 Conclusion of further analysis: same-iteration comparison

Overall adding more decoys does not change the quality, speed, or the efficiency of the

BFGS-XEL (Hessian only) but increasing perturbations can improve quality in terms

of the average score improvement and the lowest score while worsening speed and

efficiency. Note that only one value of n and two proteins are used in this analysis.

Running similar tests with other values of n and more proteins will increase the

confidence of this conclusion.

5.2.8 Conclusion of XEL Algorithms with Probabilistic Search

The QNA-XEL, the QNA-XEL (Hessian only), the BFGS-XEL, and the BFGS-XEL

(Hessian only) are implemented with the bracketing and Brent line search in an

211



optimization with a probabilistic search under the Rosetta platform. Simulations are

run on 50 decoys from five proteins with 11 values of n including n = 1 which is the

unmodified case. The results are evaluated in terms of quality, speed, and efficiency.

In terms of quality the average score improvement AveSI and the lowest scores

Elowest are determined. Results show that n > 1 yields a lower AveSI, which means

higher quality, than n < 1 and sometimes than n = 1. This is in agreement with a

conclusion from Section 5.1 and Guideline iv. in Table 4.1. A larger n has smaller

steps so the matrix estimation becomes more accurate which results in better quality.

However, when n is too large, the quality becomes unexpectedly worse. This is

because with steps too small a relative change in the score becomes so small that it

satisfies a stopping criterion before converging to a solution and results in a worse

quality.

Results also show that on average n 6= 1 yields a higher Elowest than n = 1 but

some cases of n 6= 1 can yield a lower Elowest than n = 1. A lower Elowest implies higher

quality and global search performance. The results are in agreement with those from

Section 5.1. This suggests that a lower Elowest can be achieved, but simply having a

constant exponent n for the duration of the optimization may not allow a lower value

of Elowest to be achieved. The adaptive exponential energy landscaping (AXEL) that

changes n during the course of simulation is presented in Section 5.3.

For speed and efficiency evaluation the average iteration AveIt and the efficiency

en are determined. Results show that n < 1 yields a lower AveIt and a lower en

than n > 1 which implies better speed and efficiency. This however does not agree

with the results seen in Section 5.1 which show that with the bracketing and Brent

line search n > 1 has slightly better speed than n < 1. This inconsistency may be

because the simulated simpler energy landscapes do not represent the score function

of a protein molecule.

n < 1 yields better speed because the steps become larger so n < 1 paths travel
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Table 5.5: The range of the percent difference of the average iteration %∆AveIt
yielded by different algorithms with different values of n. Lower values imply better
speed. The ranges are displayed from worse to better speed. Negative value means
better speed than n = 1 and positive value means worse speed.

n QNA-XEL
QNA-XEL

BFGS-XEL
BFGS-XEL

Overall
(Hessian only) (Hessian only)

(%) (%) (%) (%) (%)

2−9 -29 to -42 -34 to -47 -24 to -41 -24 to -40 -24 to -47

2−7 -28 to -41 -34 to -44 -20 to -37 -21 to -36 -20 to -44

2−5 -25 to -36 -32 to -42 -18 to -33 -15 to -28 -15 to -42

2−3 -21 to -28 -27 to -34 -8 to -27 -12 to -22 -8 to -34

2−1 -8 to -15 -14 to -19 -2 to -11 -2 to -11 -2 to -19

2 3 to -3 8 to -1 9 to -3 7 to -2 9 to -3

4 0 to -10 7 to -6 6 to -10 3 to -10 7 to -10

6 -3 to -14 3 to -8 1 to -17 2 to -18 3 to -18

8 -12 to -21 -7 to -15 -6 to -24 1 to -17 1 to -24

10 -18 to -28 -9 to -22 -15 to -32 1 to -20 1 to -32

to the minima faster. However, this reasoning does not explain why n > 1 yields

better speed than n = 1. Keep in mind that n > 1 steps may be shorter but it does

not imply that the number of iterations will increase. Since the matrix estimation is

more accurate with n > 1, the path converges to the closest solution which means

the path travels a much shorter distance so it does not require as many steps. Also

with steps too small a relative change in the score becomes so small that a stopping

criterion is satisfied before converging to a solution. Therefore, n > 1 yields better

speed than n = 1.

Comparing results from the XEL and the XEL (Hessian only) shows that differ-

ent magnitudes of the steps yield similar trends but some deviations can be seen.

Although the term β−1 in the XEL (Hessian only) gives significantly different mag-

nitudes, the results are similar because the bracketing and Brent line search reduces

their effect.
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Table 5.6: The range of the percent difference of the average score improvement
%∆AveSI yielded by different algorithms with different values of n. Lower values
imply higher quality. The ranges are displayed from lower to higher quality. Negative
values mean higher quality than n = 1 and positive values mean lower quality.

n QNA-XEL
QNA-XEL

BFGS-XEL
BFGS-XEL

Overall
(Hessian only) (Hessian only)

(%) (%) (%) (%) (%)

2−9 15 to 7 11 to 7 13 to 6 13 to 4 15 to 4

2−7 11 to 7 12 to 7 11 to 7 9 to 4 12 to 4

2−5 13 to 6 10 to 6 13 to 4 12 to 4 13 to 4

2−3 13 to 4 12 to 5 11 to 2 7 to 1 13 to 1

2−1 10 to 5 8 to 3 10 to 1 6 to -1 10 to -1

2 4 to -3 1 to -4 -1 to -10 -1 to -4 4 to -10

4 4 to 0 -2 to -12 4 to -10 2 to -4 4 to -12

6 6 to -5 -5 to -12 1 to -9 4 to -1 6 to -12

8 5 to 0 -3 to -9 3 to -5 5 to -1 5 to -9

10 8 to 0 -1 to -10 8 to 1 4 to -2 8 to -10

Results shows that when the XEL is implemented a trade-off between quality and

speed must be considered. Tables 5.5 and 5.6 are look-up tables for the range of the

percent difference of the average iteration and the average score improvement yielded

by different algorithms with different values of n. Table 5.5 shows that when the

QNA-XEL is implemented n = 2−9 yields the best speed which is 29% to 42% higher

than the unmodified case; however, Table 5.6 shows that although an improvement

in speed is achieved quality may be reduced by 7% to 15%. If the BFGS-XEL is

implemented and higher quality is desired, Table 5.6 suggests that n = 2 should be

used because it gives 1% to 10% higher quality, but the trade-off in speed may be up

to 9% as shown in Table 5.5.

Results show that XEL significantly improves the efficiency of the analytical min-

imization, especially with the values of n in the 2−9–2−5 range. Figures 5.70 and

5.71 show that efficiency in the QNA-XEL and the QNA-XEL (Hessian only) can be
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Table 5.7: The average TM, GDT, MaxSub scores, and RMSD values for XEL
with various values of n and two special runs with more decoys or perturbations. All
results are for protein 1ubq and from BFGS-XEL (Hessian only). The two special
runs use n = 2−9. A TM, a GDT, or a MaxSub score closer to 1 means an average
configuration more similar to the native conformation. An RMSD value closer to 0
means an average configuration more similar to the native conformation. The values
corresponding to the best results are in boldface.

n Score
TM GTD MaxSub

RMSD
score score score

2−9 -14.3 0.482 0.530 0.441 6.60

2−7 -15.5 0.487 0.535 0.448 6.51

2−5 -14.7 0.482 0.532 0.443 6.60

2−3 -16.9 0.479 0.526 0.439 6.57

2−1 -18.5 0.490 0.535 0.454 6.49

1 -18.5 0.482 0.533 0.437 6.41

2 -18.7 0.478 0.528 0.439 6.58

4 -18.4 0.481 0.532 0.440 6.56

6 -17.1 0.476 0.527 0.435 6.54

8 -16.9 0.482 0.532 0.441 6.52

10 -17.2 0.490 0.536 0.454 6.49

More
-14.1 0.464 0.514 0.423 7.14

decoys

More
-17.3 0.472 0.523 0.431 6.57

perturbations

improved by 25% to 51% and 32% to 75%. Figures 5.74 and 5.75 show that efficiency

in the BFGS-XEL and the BFGS-XEL (Hessian only) can be improved by 13% to

49% and 13% to 52%.

Another measure of quality is the similarity between resulting configurations and

the native conformation. The TM, the GTD, the MaxSub scores and the RMSD

values of resulting configurations for protein 1ubq are evaluated. Results show that

XEL does not improve or worsen the similarity to the native conformation in terms

of the TM, the GDT, the MaxSub scores, and the RMSD values. Table 5.7 presents

average TM, GDT, MaxSub scores, and RMSD values for XEL with various values
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Table 5.8: The percent difference of average TM, GDT, MaxSub scores, and RMSD
values compared to n = 1 for XEL with various values of n and two special runs with
more decoys or perturbations. All results are for protein 1ubq and from BFGS-XEL
(Hessian only). The two special runs use n = 2−9. A negative value means better
performance than n = 1.

n
Score TM GTD MaxSub RMSD
(%) score (%) score (%) score (%) (%)

2−9 22.7 0 0.56 -0.92 2.96

2−7 16.2 -1.04 -0.38 -2.52 1.56

2−5 20.5 0 0.19 -1.37 2.96

2−3 8.65 0.62 1.31 -0.46 2.50

2−1 0 -1.66 -0.38 -3.89 1.25

2 -1.08 0.83 0.94 -0.46 2.65

4 0.54 0.21 0.19 -0.69 2.34

6 7.57 1.24 1.13 0.46 2.03

8 8.65 0 0.19 -0.92 1.72

10 7.03 -1.66 -0.56 -3.89 1.25

More
23.78 3.73 3.56 3.20 11.39

decoys

More
6.49 2.07 1.88 1.37 2.50

perturbations

of n and two special runs with more decoys or perturbations as described in Section

5.2.7. Table 5.8 presents the percent difference of these values compared to n = 1.

These values are calculated such that a negative value means better performance than

n = 1.

Table 5.7 shows that n = 1 yields a better average score and an average RMSD

value than the other runs, but it yields similar and sometimes lower average TM,

GDT, and MaxSub scores than other runs. Table 5.8 shows that average TM, GDT,

and MaxSub scores for n 6= 1, including the special runs, are within 4% of those

for n = 1 and 90% of these quantities are within 2%. This means for n 6= 1 the

configurations are similar to those for n = 1 with fewer iterations. Note that although

these results give an insight about the similarity of the resulting configurations, results
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from many more decoys will increase the confidence in this conclusion because of the

probabilistic nature of the process.

While results show that n < 1 can yield up to 47% better speed than n = 1, it can

yield up to 15% lower quality in terms of the average score improvement. The benefits

from better speed however may exceed this drawback and may be more desirable. In

a practical protein prediction, running refinements on more decoys is more preferable

than running longer refinements the same decoys because it means the higher chance

of locating the global minimum energy conformation. Moreover, since the scoring

functions are far from perfect [57, 76], most of the successful resulting conformations

are merely close to the native conformations, and sometimes the lowest energy results

from simulations are discarded because they contain inaccurate or incorrect folds [11].

Since XEL has shown almost no effect on the similarity of resulting configurations,

XEL can yield configurations as similar to the native conformation as the unmodified

case with less conformation cost. This means that XEL can significantly improve the

protein prediction simulation even though it yields less average score improvement.

Results from same-iteration comparison show that when n = 2−9 increasing the

number of decoys does not lower the average score improvement or the lowest score

and suggest that increasing the perturbations is not desirable. While this implies that

simply increasing the number of decoys does not improve the quality, the confidence

in this conclusion is low because only one case of n and two proteins are investigated.

A study on more proteins and with more cases of n is needed for a more definite

conclusion.

To improve quality without sacrificing speed, the AXEL presented in Section 5.3

is investigated.
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5.3 BFGS with AXEL

Since when n < 1 the landscape is flattened and when n > 1 the global minimum

becomes more prominent, different values of the exponent n yield different effects

on the performance of the XEL. This is reflected on results from Section 5.2 which

show that n > 1 yields better quality than n < 1 but worse speed and efficiency.

Therefore, the energy landscape should be dynamically modified as the optimization

search progresses.

To improve the overall performance the AXEL is composed of two parts, the AXEL

schemes that describe how n changes during the course of conformation prediction,

and the XEL or the varying-n XEL algorithms that are used in minimization. The

AXEL schemes are categorized by when the exponent n changes as described in

Section 4.3.2. The AXEL is investigated with several AXEL schemes on the BFGS-

XEL (Hessian only) and the varying-n BFGS-XEL algorithm. Sections 5.3.1 and

5.3.2 present AXEL results from global and local AXEL schemes, respectively. Lastly,

Section 5.3.3 concludes the BFGS with AXEL section.

5.3.1 Global schemes

Global AXEL schemes change the exponent n depending on the global location of

the probabilistic search but n’s are constant during each minimization portion of the

simulation. Referring to Figure 5.43 that presents the refinement protocol of Rosetta,

the global AXEL schemes change n before the minimization that allows all dihedral

angles on the entire chain to change, or the minimization that allows only perturbed

dihedral angles to change, or both. Since n is constant during the minimization, XEL

algorithms are used with the global AXEL schemes. In this section the following

global AXEL schemes are investigated with the BFGS-XEL (Hessian only):

Scheme A) This scheme is used as the control case for the global scheme. Two cases

of Scheme A are implemented. First, n is randomly modified six times at points

218



before the minimization that allows all dihedral angles on the entire chain to

change. Second, n is randomly modified at points before the minimization that

allows only perturbed dihedral angles to change. The results are presented in

Section 5.3.1.1.

Scheme B) The values of n to be used during the beginning, the middle, and the

end of the simulation are determined from the linear regressions of the negative

natural log of the absolute running average efficiency and the natural log of

unnormalized iterations. The results are presented in Section 5.3.1.2.

Scheme C) The values of n to be used during the beginning, the middle, and the

end of the simulation are determined from the linear regressions of the negative

natural log of the absolute running average efficiency and the natural log of

normalized iterations. Results presented in Section 5.3.1.2.

Scheme D) n 6= 1 is used during the first half of the simulation. Then n = 1 is

used during the second half of the simulation and the convergence criterion is

reduced by half. The results are presented in Section 5.3.1.3.

5.3.1.1 Scheme A: Random n

In this section two cases of Scheme A that randomly changes n are implemented.

In Case (i) n is randomly modified six times at points before the minimization that

allows all dihedral angles on the entire chain to change. In Case (ii) n is randomly

modified at points before the minimization that allows only perturbed dihedral angles

to change. Figure 5.83 presents a) the percent difference of average score improve-

ment (%∆AveSI), b) the percent difference of the lowest score (%∆Elowest), c) the

percent difference of the average iteration (%∆AveIt), and d) the percent difference

of the efficiency (%∆en) from the AXEL with Scheme A. Lower values mean better

performance and negative values mean better performance than n = 1.

219



(i) (ii)

4

6

8

10

a) %∆AveSI
n

%
∆A

ve
S

I n (
%

)

Random n
(i) (ii)

−20
−10

0
10
20

b) %∆E
lowest

Random n

%
∆E

lo
w

es
t (

%
)

(i) (ii)
−30

−25

−20

−15

c) %∆AveIt
n

%
∆A

ve
It n (

%
)

Random n
(i) (ii)

−30

−25

−20

−15

d) %∆e
n

%
∆e

n (
%

)

Random n

1ubq (76)
1d3z (82)
dom6 (126)
hetr (149)
mdmi (304)

Figure 5.83: Scheme A: a) the percent difference of average score improvement
%∆AveSI, b) the percent difference of lowest score %∆Elowest, c) the percent dif-
ference of average iteration %∆AveIt, and d) the percent difference of the efficiency
%∆en. Case (i) has n randomly modified at points before the minimization that
allows all dihedral angles on the entire chain to change and Case (ii) has n randomly
modified at points before the minimization that allows only perturbed dihedral angles
to change. Lower values mean better performance and negative values mean better
performance than n = 1.
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Results (Figure 5.83 a) show that there is no relationship between the rate of the

varying n and the improvement or worsening of the values of %∆AveSI compared

those previously seen in Section 5.2. The values of %∆Elowest (Figure 5.83 b) are

also within the same range as those previously seen but in protein 1d3z Scheme A

is able to yield 10% lower %∆Elowest by changing n only a few times. The values

of %∆AveIt (Figure 5.83 c) are also within the same range as those previously seen

but higher than the best case of those previously seen. The values of %∆en (Figure

5.83 d) are also within the same range as those previously seen but generally have

%∆en values higher. Since the results yield about the same values of %∆AveSI and

%∆Elowest but lower values of %∆AveIt and %∆en compared to those previously

seen, this suggests that changing n blindly can worsen speed and efficiency without

any improvement in quality.

5.3.1.2 Schemes B and C: Running average efficiency

To investigate if efficiency can be further improved, Schemes B and C are developed.

The values of n to be used in these schemes are the values that give the best running

average efficiency, defined below, during the beginning, the middle, and the end of

the simulation. Schemes B and C determine n from the linear regressions of the

negative natural log of the absolute running average efficiency (− ln |erunning| defined

below) versus the natural log of unnormalized iterations and versus the natural log

of normalized iterations, respectively.

The efficiency en in Equation (5.7) is the overall efficiency computed at the end of

the simulation. To understand the effect of n on the performance during the different

periods of simulations, the running average efficiency erunning is evaluated.

(erunning)j,i =
(min ([E1,i . . . Ej,i])− E0,i)

mj,i/1000
; i = 1 . . . 50. (5.9)

where (erunning)j,i is the running average efficiency at the jth configuration of the ith

decoy, E1,i is the score of the first configuration (input) of the ith decoy, Ej,i is the
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Figure 5.84: The running average efficiency, erunning, versus iterations for protein
1d3z with various values of n. Lower values mean better running average efficiency.

score of the jth configuration of the ith decoy, and mj,i is the number of iterations

of the jth configuration of the ith decoy. Then the average set of running average

efficiency erunning for all 50 decoys is found. Since the set of running average efficiency

for each decoy is not available for every iteration and it corresponds to a different

set of iterations for different decoy, cubic spline data interpolation is used to obtain

the running average efficiency from the same iteration set so that an average can be

calculated.

Illustrating a relationship between erunning and iteration for various values of n

of a representative example, 1d3z protein, Figure 5.84 shows that all n cases give

almost identical logarithmic relationships. When these relationships are plotted in

log scales, they become linear as shown in Figure 5.85 which illustrates that n that

yields the best values of erunning has its graph lower than the others. Identifying the

best values of n at the beginning, the middle, or the end of the simulation directly

from these graph can be difficult because they are not perfect lines. Therefore, the
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Figure 5.85: The running average efficiency, erunning, (log scale) versus iterations
(log scale) with various values of n for protein 1d3z. Lower values mean better running
average efficiency.

best values of n are determined from the linear regressions of these graphs. Two sets

of the regressions which look similar to Figure 5.85 give n values for Schemes B and

C.

Scheme B determines the values of n that give the best erunning from the linear

regressions between − ln |erunning| and the natural log of iterations during the begin-

ning, the middle, and the end of simulations for protein 1ubq, 1d3z, dom6, hetr, and

mdmi. Scheme C determines values of n that give the best erunning from the linear

regressions between − ln |erunning| and the natural log of normalized iterations. With

unnormalized iterations in Scheme B the beginning, the middle, and the end periods

of each simulation are defined by certain numbers of iterations, but with the normal-

ized iterations in Scheme C the periods are defined by the length of the simulation

itself. A chosen value of n yields the lowest regression line during each period which

means the best performance.
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Table 5.9: The values of n for Schemes B and C which give the best efficiency during
the beginning, the middle, and the end of simulation periods for each protein from
unnormalized and normalized iteration plots.

Period Scheme 1ubq 1d3z dom6 hetr mdvi

Beginning
B 2 1 2 2 2
C 2−9 2−9 2−9 2−5 2−9

Middle
B 2 2 1 2 2
C 2−9 2−7 2−9 2−9 2−9

End
B 6 8 1 2−3 2−5

C 2−9 2−7 2−9 2−9 2−9

The values of n of Schemes B and C that give the best erunning during the be-

ginning, the middle, and the end of the simulations for each protein are displayed in

Table 5.9. n = 2 is often chosen for Scheme B and n = 2−9 is often chosen for Scheme

C. These values of n are used during their corresponding periods in the BFGS-XEL

(Hessian only). Figure 5.86 gives a) the percent difference of average score improve-

ment (%∆AveSI), b) the percent difference of the lowest score (%∆Elowest), c) the

percent difference of the average iteration (%∆AveIt), d) and the percent difference

of the efficiency (%∆en) from the AXEL with Schemes B and C, respectively.

Figures 5.86 a) and b) show that Scheme B yields similar performance as n = 1

cases in terms of quality but Scheme C yields lower quality. Figure 5.86 a) shows

that AveSI’s from Scheme B are comparable to those from n = 1 cases (within 0

to -3%), but those from Scheme C are 4 to 15% higher. This means obtaining the

values of n from the normalized iteration data does not improve the performance of

the algorithm regarding to the AveSI values. Figure 5.86 b) shows that most lowest

scores from Scheme B are comparable to those from n = 1 cases (within 0 to 5%)

but for protein hetr Scheme B gives 15% lower lowest score. Scheme C gives a higher

lowest score than Scheme B in small proteins but up to a 12% lower lowest score for

larger proteins.
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Figure 5.86: Schemes B and C: a) the percent difference of average score improve-
ment %∆AveSI, b) the percent difference of lowest score %∆Elowest, c) the percent
difference of average iteration %∆AveIt, and d) the percent difference of the efficiency
%∆en. Lower values mean better performance and negative values mean better per-
formance than n = 1.
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Figures 5.86 c) and d) demonstrate that Scheme B yields the same performance

as n = 1 case in terms of speed and efficiency but Scheme C yields better speed and

efficiency. In Scheme C, obtaining n’s from the normalized iteration data yields the

best speed and efficiency because most obtained n’s are equal to 2−9, which is the

case that yields the best speed and efficiency in BFGS-XEL. In fact, three proteins,

1ubq, dom6, and mdmi have n = 2−9 during the entire simulations. In Scheme B,

obtaining n’s from the unnormalized iteration data does not yield as good speed and

efficiency because most obtained n’s are 2, which yields about the same speed and

efficiency as the n = 1 case.

The results from Schemes B and C show that determining the best n for each

simulation period from the running average efficiency may not be suitable for the

AXEL. Since the running average efficiency are cumulative, the n that gives the best

result at the current simulation period is most likely the same as the best n at the

last period. Having repeated n’s yields almost the same results as the BFGS-XEL,

in which n is constant.

5.3.1.3 Scheme D: Stricter convergence criterion

Scheme D changes both n and the convergence criterion. During the first half of the

simulation n 6= 1 is used, and during the second half of the simulation n changes to

1 and the convergence criterion is reduced by half. Two values of n 6= 1 are used:

n = 2−9 and n = 10. Since the XEL algorithm yields higher efficiency than the

unmodified case, this scheme is investigated to determine if quality can be improved

by reducing speed with a stricter convergence criterion.

Figure 5.87 presents a) the percent difference of the average score improvement

(%∆AveSI), b) the percent difference of the lowest score (%∆Elowest), c) the percent

difference of the average iteration (%∆AveIt), and d) the percent difference of the

efficiency (%∆en), respectively. Lower values mean better performance and negative
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Figure 5.87: Scheme D: a) the percent difference of average score improvement
%∆AveSI, b) the percent difference of lowest score %∆Elowest, c) the percent dif-
ference of average iteration %∆AveIt, and d) the percent difference of the efficiency
%∆en from two values of starting n. Lower values mean better performance and
negative values mean better performance than n = 1.

values mean better performance than n = 1.

Figures 5.87 a) and b) indicate that Scheme D performs as well as the n = 1 case

in terms of quality. Figure 5.87 a) shows that almost all cases of Scheme D gives

AveSI within ±5% of AveSIn=1 which is a significant improvement for the n = 2−9

case compared to the constant n = 2−9 case. Most cases with the starting n = 10 give

lower AveSI than cases with n = 2−9, which yield up to 6% reduction in %∆AveSI.

For the %∆Elowest, Figure 5.87 b) shows that while only a few cases of Scheme D give

slightly over 5% higher Elowest than those of n = 1, most cases have Elowest within
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±5% of (Elowest)n=1 and other two cases have Elowest 12.5% and 26% lower than those

of n = 1.

Figures 5.87 c) and d) indicate that Scheme D performs better than the n = 1

case in terms of speed and efficiency. Figure 5.87 c) shows that most cases of Scheme

D have lower numbers of iterations than n = 1. All cases with n = 2−9 have lower

%∆AveIt than cases with n = 10, but these numbers are higher than those of BFGS-

XEL cases (Figure 5.67). This is due to the reduction of the convergence criterion

during the second half of the simulation, which increases the number of iterations.

Similar to %∆AveIt, all %∆en for n = 2−9 cases are lower than those of n = 10 cases,

but these numbers are higher than those of of BFGS-XEL cases (Figure 5.75). The

results of Scheme D demonstrate that the improvement of quality can be achieved

by sacrificing speed and that the value of n at the beginning of the simulation have

significant effect on the performance.

5.3.2 Local schemes

In local AXEL schemes, n changes depending on the information derived from the

energy landscape which conditionally happens during the minimization. Since n varies

during the minimization, the varying-n XEL algorithms are used with the local AXEL

schemes. This section presents the results from simulations in which the varying-n

BFGS-XEL is implemented. Several local AXEL schemes are investigated but only

the following representative examples are presented in this section:

Scheme E) n changes such that the error residue is bounded. The results are pre-

sented in Section 5.3.2.1.

Scheme F) n changes when one of the criteria is met. Figure 5.89 gives the pseudo

code for Scheme F). The results are presented in Section 5.3.2.2.

Note that a scheme that randomly changes n is not used as a control case for the

local AXEL schemes because the changes can be too large and cause the minimization
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to diverge.

5.3.2.1 Scheme E: Bounded error residue

Following Guideline iii. in Table 4.1 several schemes that change n such that the

scalar multiplier λ (Equation 4.21) is bounded have been investigated, but they yield

unsuccessful results and often diverge. Scheme E follows a slightly different approach

by changing n such that the magnitude of the term λ(n − 1)E−1 is less than 1. As

this term multiplies the first-order term of the XEL error residue ρ∗ (Equation 4.27),

a bounded λ(n − 1)E−1 implies a bounded |ρ∗|. Although ρ∗ is not derived for the

varying-n BFGS-XEL, by substituting Ĥ for K−1 in λ the modified λ(n− 1)E−1 are

used. This is because the behaviors of the modified λ(n − 1)E−1 are assumed to be

similar to the λ(n− 1)E−1 of the Newton-XEL.

Figure 5.88 presents a) the percent difference of the average score improvement

(%∆AveSI), b) the percent difference of the lowest score (%∆Elowest), c) the percent

difference of the average iteration (%∆AveIt), and d) the percent difference of the

efficiency (%∆en). In Case (i) there is no limit for the value of n and in Case (ii) only

the value of n between 2−9 and 10 is allowed. Lower values mean better performance

and negative values mean better performance than n = 1.

Figure 5.88 a) and b) shows that Scheme E slightly improves the quality and can

yield higher quality in some proteins. As the values of %∆AveSI of hetr can be lower

than -7%, the values of %∆Elowest of hetr and 1d3z are -15% and 25%. On average

the values of %∆AveSI and %∆Elowest are slightly lower than those yielded by a

constant n.

Figure 5.88 c) and d) shows that Scheme E only slightly worsens speed and effi-

ciency compared to n = 1 as almost all values of %∆AveIt and %∆en are within the

±5% from zero. While the values of %∆AveIt (Figure 5.88 c) are about the same as

those seen in the worst case of the constant n (Figure 5.66), the values of %∆en are
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Figure 5.88: Schemes E: a) the percent difference of average score improvement
%∆AveSI, b) the percent difference of lowest score %∆Elowest, c) the percent dif-
ference of average iteration %∆AveIt, and d) the percent difference of the efficiency
%∆en from Schemes E cases. Case (i) has no limit for n and Case (ii) only allows the
values of n to be between 2−9 and 10. Lower values mean better performance and
negative values mean better performance than n = 1.

slightly lower than those seen in the worst case (Figure 5.74) because of lower values

of %∆AveIt.

The results show that on average Scheme E yields slightly higher quality for all

proteins and worsens speed and efficiency no more than the worst case of the constant

n cases.

5.3.2.2 Scheme F: Path and landscape characteristic criteria
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Pseudo-code: Varying-n BFGS-XEL with Scheme F and a line search

Initialize ε, n1, θ0, θ1, Ĥ∗
0 , and µi where i = 1, . . . , 6

Calculate E0 and τ0

for k = 1, · · · , kmax do

Calculate Ek, and τk

if

∣∣∣∣Ek − Ek−1

Ek−1

∣∣∣∣ < ε then

break // Convergence criterion met

end if

Determine nk+1 and ĥ∗n k
if k > µ1 then

// Change n only after µth
1 iteration

if
τk · τk−1

|τk| |τk−1|
> µ2 then

// An angle between the consecutive gradient is too large

Increase n // Take a smaller step

else if
|Ek − Ek−1|
|Ek−1|

< µ3 & |τk| > µ4 then

// Change in energy is small but the gradient is large

Decrease n // Take a larger step

else if
ĥ∗θ k−1 · τk∣∣∣ ĥ∗θ k−1

∣∣∣ |τk| < µ5 then

// The step is almost perpendicular to the gradient

Increase n

else if
k

µ6

= 0 then

Decrease n // Increase step size every µth
6 iteration

end if

end if

Calculate Ĥ∗
k

τ ∗k = βkkτk

ĥ∗θ k = Ĥ∗
k

(
1 +

(
1

nk
+ ln |Ek|

)
ĥ∗n k

)
τ ∗k // Varying-n BFGS-XEL step

α∗
k = line search( ĥ∗θ k) // Determine the gain with a line search

θk+1 = θk + α∗
k ĥ

∗
θ k // (k + 1)th solution

end for

Figure 5.89: A pseudo-code for Scheme F with varying n BFGS-XEL
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Scheme F changes n in a systematic manner which is based on the observations

from Section 5.1. Following Guideline iv. n is increased when the estimated modified

Hessian inverse Ĥ∗ is inaccurate. Therefore, n > 1 is used at the beginning of

the simulation and n is changed only after the certain number of iterations. Three

criteria are used to determine how and when to change n. (1) If the energy landscape

changes too much, which occurs when the size of an angle between the current and the

previous gradient exceeds a certain criterion, the step size is reduced by increasing n.

(2) If the step size becomes too small, which occurs when a change in score is smaller

than a criterion but a magnitude of the gradient is larger than a criterion parameter,

the step size is increased by decreasing n. (3) When the Ĥ is not accurate, the

step size is decreased by increasing n. Ĥ is considered inaccurate if the the step is

almost perpendicular to the current gradient, therefore n is increased when an angle

between the gradient and the step exceeds a criterion parameter. When none of the

criteria are met, a larger step size is preferred for better speed, so n is decreased every

certain number of iterations. Figure 5.89 gives a pseudo code for Scheme F). Two

sets of criterion parameters i) and ii) shown in Table 5.10 are implemented and their

results are presented in Figure 5.90. These parameter sets are those that yields the

best results in preliminary tests implemented without the probabilistic search. Most

parameters are kept the same as they do not significantly affect the results. Although

Set ii) has some stricter criterion parameters, their results are similar.

Table 5.10: Two sets of criterion parameters for Scheme F.

Set µ1 µ2 µ3 µ4 µ5 µ6

i) 3 0.707 (45◦) 0.1 (10%) 0.5 0.259 (75◦) 5

ii) 3 0.866 (30◦) 0.1 (10%) 0.5 0.5 (60◦) 5

Figure 5.90 presents a) the percent difference of the average score improvement

(%∆AveSI), b) the percent difference of the lowest score (%∆Elowest), c) the percent
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Figure 5.90: Scheme F: a) the percent difference of average score improvement
%∆AveSI, b) the percent difference of lowest score %∆Elowest, c) the percent dif-
ference of average iteration %∆AveIt, and d) the percent difference of the efficiency
%∆en from two sets of criterion paremeters. Lower values mean better performance
and negative values mean better performance than n = 1.

difference of the average iteration (%∆AveIt), and d) the percent difference of the

efficiency (%∆en). Lower values mean better performance and negative values mean

better performance than n = 1.

Figure 5.90 a) and b) indicates that on average Scheme F yields lower quality than

the n = 1 case. As proteins 1ubq and 1d3z yield more than 5% higher AveSIn=1,

almost all proteins yield 5% higher %∆Elowest. The achieved quality is similar to that

seen in the constant n < 1 case (Figures 5.50 and 5.58).

Figure 5.90 c) and d) indicates that Scheme F yields significantly better speed
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and efficiency than the n = 1 case. Both %∆AveIt and %∆en are dependent on the

size of protein chains. That is they decrease as the size of protein chains increases.

The achieved speed and efficiency are similar to that seen in the constant n < 1 case

(Figures 5.66 and 5.74).

The results of Scheme F demonstrate that systematically changing n yields about

the same results as the constant n < 1 case and two sets of the criterion parameters

yields almost identical results. This is most likely because n is decreased more often

than increased, stricter parameters µ3 and µ4 and larger µ6 may yield different results.

These parameters do not seem to affect the results in the preliminary test because

the simulated energy landscapes most likely do not represent the score function of

the protein molecule.

5.3.3 Conclusion of BFGS with AXEL

This section presents results of the AXEL applying to the BFGS algorithm. Several

global and local AXEL schemes are implemented with the BFGS-XEL (Hessian only)

or the varying-n BFGS-XEL and results are presented.

While the results from the global and local AXEL schemes do not give any insight

into the global and the local effects of the AXEL on the prediction simulation, they

show that the AXEL can improve quality or speed but rarely both at the same time.

With Scheme A, results show that randomly changing n can worsen speed without

improving quality. With Schemes B and C results show that choosing n for different

period of the simulation from the running average efficiency is not suitable for the

AXEL. Results from Scheme D show that higher quality can be achieved by sacrificing

speed and that the value of n at the beginning of the simulation has a significant effect

on the performance. The results show that Scheme E yields the best results in terms

of quality than the other schemes as a lower AveSI than that of the constant n case

can be achieved in all proteins while the AveIt is not more than 5% of the n = 1
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case. Lastly, the results from Scheme F demonstrate that systematically changing n

yields about the same results as the constant n < 1 case.

While most schemes yield the performance that can be achieved by constant n,

Scheme E yields at least 4% lower AveSI for all proteins which are not achieved by any

constant n. Although only the varying-n BFGS-XEL is implemented with Scheme E,

the better improvement seen here is expected to be found in other algorithms because

of the consistency seen in results from cases with the constant n.

5.4 Conclusion of Simulation Results and Discussions

The effects of the XEL on the Newton’s method, the QNA, and the BFGS method

are investigated with two implementations. First, the investigated algorithms are

implemented without a probabilistic search on a simulated two-dimensional energy

landscape and second they are implemented with a probabilistic search on a multi-

dimensional energy landscape. The AXEL is implemented with a probabilistic search

on a multi-dimensional energy landscape.

Results from both implementations show that better quality or speed can be

achieved by the XEL, but not both at the same time. Both results show that the

quality can be achieved with n > 1 which is in agreement with Guideline iv. presented

in Table 4.1. In terms of speed the results from the two implementations do not agree

since n > 1 yields better speed in the first implementation but n < 1 yields better

speed in the second implementation. In terms of the global search performance or

ability to locate the global solution, on average the XEL yields higher lowest score

than that of n = 1 case which implies worse global search performance.

The results from the XEL implementation with a probabilistic search show that

a trade-off between the quality and speed must be considered when the XEL is im-

plemented. Tables 5.5 and 5.6 on pages 213–214 are provided to be used as look-up

tables. The results also show that XEL has no effect on the similarity of the resulting
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configurations to the native conformation.

The results from the AXEL shows that quality or speed can be improved but

rarely both at the same time. Scheme E yields at least 4% lower AveSI for all

proteins compared to the XEL with constant n; however, the rest of AXEL yields

roughly the same results. Results lead to three recommendations for better quality in

terms of average score improvement, better speed in terms of the average iteration,

and better efficiency.

To improve speed by 15% to 47%, the XEL with n within 2−9–2−5 should be

used. This range is suggested because of the consistent improvement of speed in all

algorithms. Table 5.5 shows that for the QNA-XEL and the QNA-XEL (Hessian

only) speed can be 25% to 42% and 32% to 47% better than the unmodified case

and for the BFGS-XEL and the BFGS-XEL (Hessian only) speed can be 18% to 41%

and 15% to 40% better. The XEL with n within 2−9–2−5 is suggested for the first

round of the refinement to evaluate a large set of decoys so that a better subset can

be obtained for further refinement.

To improve quality by 4% to 7%, the AXEL with Scheme E should be used.

Although only the varying-n BFGS-XEL were implemented, Scheme E is expected to

yield similar improvement with the varying-n QNA-XEL. The varying-n XEL with

Scheme E is suggested for the further round of the refinement for improved quality.

To improve efficiency by 13% to 75%, the XEL with n within 2−9–2−5 should

be used. Figures 5.70 and 5.71 show that the efficiency in the QNA-XEL and the

QNA-XEL (Hessian only) cases can be 25% to 51% and 32% to 75% better than the

unmodified case. Figures 5.74 and 5.75 show that the efficiency in the BFGS-XEL

and the BFGS-XEL (Hessian only) cases can be 13% to 49% and 13% to 52% better

than the unmodified case. The same range of n is recommended for improving speed.
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CHAPTER VI

CONCLUDING REMARKS

This thesis develops and demonstrates the exponential energy landscaping (XEL) and

the adaptive exponential energy landscaping (AXEL) for an analytical optimization

algorithm in protein conformation prediction. The effects of XEL are investigated on

Newton’s method, the quasi-Newton algorithm (QNA), and the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm. The AXEL is a combination of a scheme for

adaptively modifying energy landscape and the XEL algorithms.

XEL shares traits with hypersurface deformation [4, 5, 50] and the energy land-

scape flattening [87] in terms of modifying the energy landscape. However, the XEL

has the following attributes that set it apart from the aforementioned techniques:

• XEL is applicable to any energy function.

• XEL is only applicable for an analytical optimization algorithm.

• XEL does not require remapping to the original surface.

This work addresses the bottleneck in protein conformation prediction which is the

analytical optimization algorithm and provides a solution for improving speed and

efficiency. The work also provides a potential solution for improving quality.

6.1 Contributions

This work makes the following contributions that are different from previous work:

1. A theoretical basis for applying a method of the XEL to analytical

optimization algorithms.

• The XEL that does not change the minima of the landscape and is appli-

cable to any energy function is developed.
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• The Newton’s method, the QNA, and the BFGS algorithm with XEL are

derived.

• Two methods of adaptive energy landscaping are derived: adaptive-n XEL

algorithms and varying-n XEL algorithms with AXEL schemes.

2. Analyses for theoretical validation and characterization of the XEL.

• The positive definite property of the Newton’s method with XEL (Newton-

XEL) is studied and conditions that give a positive definite Hessian matrix

of the Newton-XEL are found.

• The XEL is found to affect only the magnitude of the Newton step but not

the direction. The scalar multiplier is found to be eigenvalue of a matrix

and its properties are used to derive the error residue of the Newton-XEL.

• The error residue of the Newton-XEL is found to be on the same order of

that of Newton’s method which implies that they have similar convergence

property.

• The scalar multiplier λ is also found to be inversely dependent of the

exponent n.

• The exponent n is found to weight the energy landscape information in

relation to the unweighted Hessian matrix.

• Guidelines for changing the exponent n in AXEL are developed.

3. Simulation validation of the application and the effect of the XEL.

• XEL is found to be significantly affected by different line search algorithms.

• XEL is found to significantly improve efficiency in the analytical portion

of the protein prediction.

• When XEL is implemented a trade-off between speed and quality must be

considered.

238



• XEL is found to have little effect on the similarity of resulting configura-

tions to the native conformation.

• AXEL is mostly found to yield similar performance as XEL.

• Recommendations for improving speed, quality, or efficiency are presented.

This work is complementary to [87]; both are applicable to any energy function and

do not require remapping but [87] applies landscaping to the Monte Carlo method, a

probabilistic optimization algorithm. Comparing this work to [87] can be done only

by comparing the effects of landscaping on the optimization algorithm which was not

studied in [87].

To put the above contributions into context, a brief summary is given here. Chap-

ter 1 discusses that the bottleneck in protein conformation prediction is the analytical

optimization algorithm and it should be addressed. Chapter 2 presents the literature

review of several aspects in the protein conformation prediction problem. This leads

to the objective of this research which is to develop a method of energy landscaping

that enhances the efficiency of the analytical algorithms for the protein prediction

problem. Chapter 3 presents the derivation and the application to the protein folding

problem of the investigated algorithms which are Newton’s method, the QNA, and

the BFGS algorithm.

Chapter 4 presents the XEL, the AXEL, and their derivation on investigated op-

timization algorithms. The XEL modifies the energy landscape such that the minima

stay at the same locations. The Newton’s method, the QNA, and the BFGS algo-

rithm are applied to the modified energy function and yield Newton-XEL, QNA-XEL,

and BFGS-XEL algorithms. The Newton-XEL direction which determines the direc-

tion of the optimization step is proved to be parallel to the Newton direction. The

convergence property of the Newton-XEL method is found to be similar to that of

Newton’s method as their error residues are on the same order. Several properties of

the Newton-XEL yield guidelines for changing the exponent n of the XEL to achieve
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certain operational characteristics such as improved stability or larger optimization

step.

In the AXEL, the investigated algorithms are applied to the adaptively modified

energy function, which is also of a function of n, and they yield adaptive-n XEL and

varying-n XEL algorithms. Adaptive-n XEL algorithms simultaneously calculate the

changes in n and the dihedral angles resulting in difficulties in reaching convergence.

Varying-n XEL algorithms only calculate the change in dihedral angles based on the

changes of n determined by the AXEL schemes. The AXEL schemes are categorized

by when n changes as either global or local schemes.

Chapter 5 first presents and discusses the effects of the XEL on the Newton’s

method, the QNA, and the BFGS method on two implementations, with and without

a probabilistic search. Then the AXEL implemented on the BFGS with a probabilistic

search is presented and discussed. The results are evaluated in terms of quality, speed,

and efficiency. While quality in terms of similarity are not affected by XEL, XEL can

achieve better quality in terms of average score improvement or better speed in terms

of average iteration. A better quality compared to unmodified case can be achieved

with n > 1 and a better speed can be achieved with n < 1. However, the AXEL

results show that both quality or speed can rarely be improved at the same time.

This indicates that the trade-off between quality and speed must be considered when

the XEL is implemented. The results lead to the following recommendations: (Note

that quality is in terms of average score improvement and speed is in terms of the

average iterations.)

To improve speed by 15% to 47%, the XEL with n within 2−9–2−5 should be used.

Quality may be worsened by 4% to 15% on that range of n.

To improve quality by 4% to 7%, the AXEL with Scheme E should be used. Speed

may be worsened up to 6%.

To improve efficiency by 13% to 75%, the XEL with n within 2−9–2−5 should be

240



used.

Since in protein folding the conformation space is very large, sampling must be

extensive to increase the possibility of covering the area that contains the global

minimum. As a result, the process usually starts with several thousand decoys even

for a small molecule. The first few rounds of the refinement are used to differentiate

the good from the bad decoys. It is usually low resolution and does not required high

quality. After the first or the second round of refinement, the best decoys are picked

for the further round of refinement that usually requires higher quality. The XEL

with n within 2−9–2−5 is suggested for the first few rounds of the refinement and the

AXEL with Scheme E is suggested for the higher refinement round.

While several investigated algorithms are derived and implemented, this work is

not intended to compare the performance across different algorithms, but to compare

the XEL algorithm to the unmodified case.

6.2 Future Work

Since the XEL is much more successful in increasing speed than quality, future work

should be intermediately focused on further improving the quality and later focused

on improving both simultaneously by developing an AXEL scheme. One approach

can be the improvement or the variation of Scheme E. Another approach can be an

improved global AXEL scheme as the current schemes yields the same performance as

the constant n cases. Another study can combine the XEL to landscaping on the prob-

abilistic optimization algorithm, such as energy landscape flattening, while another

study can revisit the adaptive-n XEL approach by integrating a robust weighting

algorithm.

With more computational resources at hand, a study of the global effect of the

XEL can be done by implementing the XEL to a full-scale protein prediction process
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which includes several rounds of full-atom refinement. Implementing XEL on the full-

atom refinement will allow the effect of different energy functions to be studied. Since

the improvement of the speed tends to be reduced for a larger protein, more proteins

with higher residues will allow the effect of the protein size on the performance of XEL

to be studied. Also the effect of different secondary structural contents in proteins on

the performance of XEL can be studied. For example, proteins with large and small

numbers of α-helix contents can be compared with those with large and small numbers

of β-strand contents and with each other. While this work gives an insight about the

similarity of the resulting configurations, future work should evaluate the similarity

from the results of many more decoys and proteins. This will allow a conclusion to

be drawn with more confidence because of the probabilistic nature of the process.

This work investigates the effects of the XEL on a few Newtonian algorithms. A

study can be done to determine if other algorithms such as the Davidon-Fletcher-

Powell (DFP) or the Broyden family can be improved by the XEL. Another study

can compare the performance across these algorithms including the QNA and BFGS

algorithm investigated here. Another study can investigate gradient-based optimiza-

tion algorithms, such as the conjugate gradient method, that do not need Hessian

calculation or estimation.

The energy landscape can be lowered or raised by a constant such that all energy

values become negative or positive. A study can investigate the effects of lowering

and raising the landscape on the performance of XEL in different algorithms.

A study of the application of the XEL on probabilistic methods can be investi-

gated. An application of the XEL to the Monte Carlo method can possibly be done

by modifying the energy term in the Boltzmann factor. With the exponent of n < 1

the Boltzmann factor becomes smaller which gives the same effect as flattening the

energy landscape.
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APPENDIX A

SUPPLEMENTARY DOCUMENTS

Appendix A provides supplementary data to Chapter 5, Section A.1.

A.1 QNA-XEL and BFGS-XEL Combining with Probabi-
listic Search

A.1.1 QNA-XEL and QNA-XEL (Hessian only)

Figures A.1 and A.2 present the percentage of decoys found by the QNA-XEL with

lower, equal, or higher score or number of iterations than those of n = 1 for protein

1ubq, 1d3z, dom6, hetr, and mdmi. Figures A.3 and A.4 present results found by the

QNA-XEL (Hessian only).

A.1.2 BFGS-XEL and BFGS-XEL (Hessian only)

Figures A.5 and A.6 present the percentage of decoys found by BFGS-XEL with

lower, equal, or higher score or number of iterations compared to n = 1 for protein

1ubq, 1d3z, dom6, hetr, and mdmi. Figures A.7 and A.8 present results found by

BFGS-XEL (Hessian only).
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