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SUMMARY

Cranes occupy a crucial role within the industry. They are used throughout the

world in thousands of shipping yards, construction sites, and warehouses. However,

payload oscillation inherent to all cranes makes it challenging for human operators

to manipulate payloads quickly, accurately, and safely. Manipulation difficulty is

also increased by non-intuitive crane control interfaces. Intuitiveness is characterized

by ease of learning, simplicity, and predictability. This thesis addresses the issue of

intuitive crane control in two parts: the design of the interface, and the design of the

controller.

Three novel types of crane control interface are presented. These interfaces allow

an operator to drive a crane by moving his or her hand freely in space. These control

interfaces are dependent on machine vision and radio-frequency-based technology.

The design of the controller based on empirical means is also discussed. Various

control architectures were explored. It was concluded that a controller with an input

shaper within a Proportional Derivative feedback loop produced the desirable crane

response. The design of this controller is complemented with a structured design

methodology based on root locus analysis and computer numerical methods.

The intuitive crane control systems were implemented on a 10-ton industrial bridge

crane; simulation and experimental results are presented for validation purposes.
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CHAPTER I

INTRODUCTION

Cranes play a key role in maintaining the economic vitality of modern-day industry.

Their importance can be seen at shipyards, construction sites, warehouses, and in a

wide variety of material-handling applications. The effectiveness of crane manipula-

tion is an important contributor to industrial productivity, production efficiency, and

workplace safety.

One inherent property of cranes that is detrimental to safe and efficient operation is

the natural tendency for the payload to oscillate like a pendulum, double pendulum,

or with even more complex oscillatory dynamics [44]. Significant effort has been

made to develop control schemes to reduce the oscillatory response from both issued

commands and external disturbances [44, 32, 42, 43, 34, 5, 21, 29, 15, 38, 39, 6,

1, 33, 27, 24]. Operators who manipulate a crane utilizing appropriate oscillation-

suppression technology generate safer and more efficient crane motions than operators

without such compensation [29, 12, 13, 14].

While significant strides have been made to improve the operational efficiency

of cranes by controlling their dynamic oscillatory response, relatively little consid-

eration has been given to the way in which operators issue those commands [40].

Most operators drive cranes with push-button control pendents, joysticks, or control

levers, such as those shown in Figure 1. These interfaces are not intuitive to many

operators because they must first establish a “mental map” from the actuation of a

button/joystick/lever to the actual crane motion that will be generated. For exam-

ple, the operator must know that pushing button “A” will make the crane travel in

the forward direction. As the operator moves through the workspace and changes

1



(a) Control
Pendent

(b) Joystick (c) Control
Levers

Fig 1. Typical Crane Control Interfaces
(Photos Courtesy of Magnetek Inc.)

Controller Crane

Operator

Interface

Operator feedback:
sight, sound, touch etc

Designable Crane Control
Components

Total Crane Control

Fig 2. Crane Operator, Interface, and Controller

orientation, he or she must continuously update this “mental map”. Furthermore,

the interface is used to specify the motion of the overhead trolley, not the payload.

Therefore, the operator must also account for the difference between the commanded

motion of the trolley, which can be several meters overhead, and the delayed oscilla-

tory response of the payload.

Figure 2 is a block diagram that illustrates the fundamental components of crane

control. The operator commands the crane by manipulating some form of interface.

Examples include pushing buttons on control pendents or pushing levers on a control

box. The interface then interprets this interaction and issues a command signal to

2



the controller. Typically this signal is electrical, and could be in the form of analog

AC, or digital high/low. The controller then processes this command signal using

some type of algorithm, such as Proportional Integral Derivative (PID), ramp-up

ramp-down, or a straight feed-through. The resulting command signal is then sent to

the crane, where the motors are energized and the actuators are actuated to generate

crane movement.

The crane will then behave according to the physical dynamics of the system - for

example the trolley may respond like a sliding mass and the hook and payload may

behave like a double pendulum. It is of interest to note that there exists a feedback

loop. The behavior of the crane is observed (usually via sight) by the operator; the

operator then reacts accordingly by interacting with the interface, thereby closing the

loop. The components of Total Crane Control, indicated by the larger dashed box,

are the operator, interface, and the controller. However, since we cannot “design”

the operator, only a subset of this, the interface and the controller, is included in the

smaller dashed box, which indicates the components that are designable by control

engineers.

This thesis is organized around the two fundamental components of crane-control

design: This chapter introduces the reader to the concept of intuitive crane control,

and how this thesis addresses and implements this concept. Previous work from

academia and industry are also discussed. Chapter 2 examines the interfaces de-

veloped for intuitive crane control. Chapter 3 describes the design of the controller

component; theoretical and experimental results are also included. The thesis con-

cludes in chapter 4.

3



1.1 Intuitive Crane Control

As mentioned earlier, the design of crane control can be separated into two major

components - the design of the interface, and the design of the controller. The inter-

face should be intuitive to the crane operator. An “intuitive” control system is hard

to define rigorously, but it is often characterized by:

• Ease of Learning - The ease of which a novice operator is able to learn to use

the interface (an interface with a fast learning curve typically has a form of

interaction that the operator is already familiar with).

• Simplicity - The absence of a complex “mental map” that translates the inter-

action with the interface to crane motion.

• Predictability - The crane motion responds in a repeatable and predictable way

to operator commands.

This thesis presents three novel interfaces that allow an operator to drive a crane

simply by moving a hand-held device in 3-D space. This type of hand-motion interface

addresses the issue of intuitiveness because it easy to learn, as gesturing with the hand

to convey an intended motion is familiar to most people. Additionally, this interface

is simple, as it does not have a complex “mental map” between the interface and

the crane response. This is virtually a seamless “interface-less” interface, as the

“mental map” for this interface is simply a direct feed-through. For example, there

is no transformation mapping from “pushing button A” to “forward crane motion”.

Instead, the mapping is a direct feed through; when the operator moves the hand-held

device to a certain position, the crane will respond by moving to the same position.

The issue of generating predictable crane behavior is largely handled by the second

fundamental component of crane-control design - the controller block in Figure 2. The

oscillatory nature of cranes makes the behavior hard to predict for a novice operator.

4



Wand

Operator

Hook

(b) Operator with Wand Control

(a) Wand

Fig 3. Wand Control

However, by implementing a technique known as input shaping (discussed in more

detail in section 3.3.1), the oscillatory dynamics are greatly reduced and the crane

behavior becomes similar to a rigid body with a time lag. For a human operator,

rigid body behavior is much easier to predict than oscillatory behavior. The result

of an intuitive interface is that it reduces the manual dexterity required for safe and

efficient operation.

The three intuitive interfaces presented in this thesis are:

1. Wand control - Shown in Figure 3. The wand is a retro-reflective ball mounted

to the end of a hand-held pole. A machine vision system is used to determine

the position of the wand in real-time. The position of the wand is then used as

the command signal to drive the crane.

2. Glove control - Shown in Figure 4. The glove is monotonically black, which is

contrasted with a circular retro-reflective marker attached to the top-side of the

glove. A machine vision system is used to determine the position of the glove

in real-time. The position of the glove is then used as the command signal to

drive the crane.

5



(a) Glove

(b) Operator with Glove Control

Operator

Hook

Trolley

Hook

θ

Camera

e1

Glove

e2

(c) Schematic diagram of Glove Control

Fig 4. Glove Control

Trolley

Hook

Camera

e1

Tag

Ubisense
Sensor

Operator

Hook

RFID Tag

(b) Operator with RF-Based Control

(a) RFID Tag

(c) Schematic diagram of RFID
Hand-Motion Control

Fig 5. Radio-Frequency-Based Control

3. Radio-Frequency(RF) based control - Shown in Figure 5. A Real-Time-Location-

System (RTLS) based on Radio-Frequency Identification (RFID) technology is

used to track the position of a small tag held in the operator’s hand. The

position of the tag is then used as the command signal to drive the crane.

In this thesis, the wand, the glove, and the RFID tag are also known by the collective

term “hand-held device”.

6



1.2 Previous Work

In the field of Human Computer Interaction (HCI) research, there has been great

interest in the area of computer User Interfaces (UI), and how people interact with

digital media. In many ways, the design of an intuitive crane-control interface parallels

the design of UI, in that the goals of the interface are the same: easy to learn, simple,

and predictable. The designs of UI are often similar to the interfaces described in

this thesis: seamlessly “interface-less” interface that leans heavily on the physical,

tangible, and manipulable world (for example, grasping an apple from the table);

as opposed to relying on the user to understand the concept of abstraction that is

commonly seen in Graphical User Interfaces (GUI) today (for example, the use of

toolbar buttons to represent various software functionalities).

Johnny Lee of Carnegie Mellon University first gained widespread fame on the

internet for his videos on “hacking” the Wiimote for low-cost UI’s. The Wiimote

is a video game controller that comes standard with the Nintendo Wii video game

console. He utilized the infrared (IR) sensors (which are capable of detecting multiple

targets simultaneously) in the Wiimote to track the movement of fingers, which are

illuminated by an IR-LED array and reflective material attached to the fingers. This

idea is used for a low-budget implementation of a multi-“touch” user interface, as

shown in Figure 6a. The same concept can be used to create an interactive whiteboard

using an IR pen and a projector, as shown in Figure 6b. Similarly, IR-LED’s can be

mounted to a pair of glasses to track the movement of the head, as shown in Figure 6c.

The display can be modified according to head movement and is a low-cost alternative

to expensive Virtual Reality (VR) systems.

Lee’s research follows a similar theme of using cameras, projectors, light pens,

and light sensors to create foldable, movable, and interactive displays on surfaces

[18, 19, 17, 20]. Interestingly, in Lee’s research group, Raskar et al. combined RFID

tags and photo sensors to project information in the physical world so that objects

7



(a) Nintendo Wii
(Photos courtesy of Nintendo Inc.)

(b) Apple iPhone
(Photo courtesy of Apple Inc.)

(a) Finger Tracking (b) Interactive Surface
Whiteboard

(c) VR Head tracking

Color Markers

Camera

Projector

(b) Wire-Rope based

(a) Rigid-Arm basedTrolley

Overhead Track

Suspension
Cable

Hook

Control
Grip

Hoisting/
Lowering

Fig 6. Johnny Lee’s Wiimote Projects(Photos courtesy of johnnylee.net)

(a) Nintendo Wii
(Photos courtesy of Nintendo Inc.)

(b) Apple iPhone
(Photo courtesy of Apple Inc.)

(a) Finger Tracking (b) Interactive Surface
Whiteboard

(c) VR Head tracking
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Camera

Projector

(b) Wire-Rope based
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Control
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Fig 7. Sixth Sense - A Wearable Gestural Interface
(Photos courtesy of Pranav Mistry)

become self-describing and interactive with the user [31].

The Sixth Sense, shown in Figure 7 and created by Maes et al., is a wearable

gesture-based interface consisting of a camera, a projector, and colored markers worn

on the fingers. Images are displayed on any stable surface by the projector. The user

is able to interact with the image using finger gestures, which the camera is able to

detect due to the colored markers [26].

In similar work, Jeffrey Han focused on implementing low-cost solutions to large-

scale, multi-touch, rear-projection displays [4]. Multi-touch displays are display sur-

faces whereby user(s) are able to manipulate the displayed objects by touching the

screen in a gestural way. For example, rotating an object can be accomplished by

moving one finger in a circular motion around another finger.
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(a) Nintendo Wii
(Photos courtesy of Nintendo Inc.)

(b) Apple iPhone
(Photo courtesy of Apple Inc.)

(a) Finger Tracking (b) Interactive Surface
Whiteboard

(c) VR Head tracking

Fig 8. Siftables(Photos courtesy of David Merrill)

The “Siftables”, created by Merrill et al. [25] and shown in Figure 8, are displays

mounted inside small plastic blocks that have numerous sensors. They also have

networking capabilities that allow them to communicate with other Siftables. It makes

for a more intuitive interface that exploits human’s natural skill of manipulating

objects with their hands to effortlessly sift and sort information. For example, a flow

chart can be created by arranging Siftables in a geometric pattern; to add more color

to a picture, one can emulate pouring paint into a container by tilting one Siftable

that represents color, into a neighboring Siftable that represents the picture.

There is also related research that focused on industrial applications. Kazerooni

et al. [9, 11] championed “Extenders”, in which both a human and a robot apply

significant force to a payload, with the robot amplifying the human effort, much like

the way power steering amplifies the steering effort exerted by a driver. A working

prototype of an arm-based extender was built for the application of material handling.

The “Magic Glove” [10], is a concept that is similar to the glove control interface

discussed in this thesis. A key difference is that the magic glove utilizes pressure

sensors to measure the amount of force applied to a payload. This information is then
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sent as an RF signal to actuators that provide a proportionate amount of assistance

to the wearer.

The Laboratory for Intelligent Mechanical Systems (LIMS) at Northwestern Uni-

versity specialize in Intelligent Assist Devices (IAD’s) and Collaborative Robots, or

Cobots [2, 23, 30]. IAD’s are similar to extenders in that they sense human-intent

and then provide assisting forces to help the operator manipulate a payload. Cobots

are designed as material-handling robots that also have the capability to provide 1-D

frictionless virtual walls, so that operators are constrained to move the payload along

a programmable path. This was implemented in a car assembly plant where payloads

must be orientated and moved through a complex trajectory to their final position.

Several commercial companies focus on ergonomic and intuitive material handling

solutions. Cobotics Inc. (acquired by Stanley Assembly Technologies in 2002), was

a start up company that specialized in IAD’s and spun off from the LIMS group at

Northwestern University. The iTrolley product range by Stanley Assembly Technolo-

gies is based on the concept of IAD’s. The rigid-arm variant, shown in Figure 9a,

senses operator intent with a pressure-sensitive grip. The wire-rope variant, shown

in Figure 9b, uses angle sensors on the wire/rope to detect operator intent when he

or she pushes on the suspended payload.

Stanley Assembly Technologies also manufacture the iLift product range, which is

a type of hoist, or air-balancer. Gorbel also manufactures air-balancers in a product

line they call “Intelligent Lifting Devices”, shown in Figure 10. Air-balancers are

a variant of cranes in that only the vertical direction (hoisting and lowering) are

motorized (motors are housed inside the trolley). Lateral movement is provided by

the operator pushing on the payload (which is attached to the hook) directly, as the

trolley is free-wheeled on the overhead tracks. In this sense, the movement of the

payload is intuitive as there is no button pushing that is translated into movement.

The operator raises or lowers the control grip to hoist or lower the payload. Payloads
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(Photos courtesy of Nintendo Inc.)
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Fig 9. iTrolley IAD(Pictures courtesy of Stanley Assembly Technologies)
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(Photo courtesy of Apple Inc.)
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Fig 10. Gorbel Intelligent Lifting Device(Picture courtesy of Gorbel)

are typically in the order of a few hundred kilograms, and applications are often in

small areas where operators are required to lift loads repetitively. Air-balancers also

have a float-mode feature, where the motors exert just enough lifting force to offset

the weight of the payload. The operator can apply small amounts of additional force

in the vertical direction so that payloads can be precisely orientated and positioned.

Several consumer products also focus on intuitive user interfaces. The work in this

thesis, compared to traditional crane control interfaces, is analogous to the comparison

between the Nintendo Wiimote and traditional video game controllers. Traditional

video game controllers are typically hand-held and contain numerous joysticks and

buttons. A mapping exists that transform an interaction with the controller, to an

action in the video game; for example, “push button A” corresponds to “swing the

baseball bat”. The Wiimote, shown in Figure 11a, is the hand-held controller of

the popular Nintendo Wii video game console. It contains IR and inertial sensors

that detect the movement of the player’s hand. Using this device, the mapping from

interface to video game action is virtually reduced to a straight feed-through. Players
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Fig 11. Intuitive Interfaces from Consumer Products

physically “swing the Wiimote” to exact an action of “swinging the baseball bat” in

the context of the game. The Apple iPhone, shown in Figure 11b, is an example of

intuitive interface for mobile phones. Rather than traditional button keypads, the

iPhone utilizes a touch screen with multi-touch capabilities. Certain tasks become

easier to use, such as zooming in and out of a picture by simply “pinching” the screen

using two fingers.

This chapter introduced the reader to the concept of intuitive crane control. Pre-

vious work related to the concepts described in this thesis were also discussed. The

next chapter discusses the first component in the design of crane control - the interface

between the operator and the controller.
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CHAPTER II

MACHINE VISION AND RADIO-FREQUENCY-BASED

INTERFACES

The intuitive crane control interfaces presented in this thesis rely heavily on the use

of sensors to detect operator commands. Of the three control interfaces discussed in

section 1.1, machine vision is critical for two: the wand and glove control. RF-based

crane control relies on the use of RF sensors. The fundamental role of these interfaces

is to acquire the position of the hand-held device, which is then used as the command

signal to drive the crane.

The goal of this chapter is to first present the hardware used for the experimental

setup. Then, to comprehensively describe the hardware, software, and algorithms of

the machine vision module. The chapter concludes with a description of the interface

for the RF-based crane control.

2.1 Crane Hardware

A 10-ton bridge crane was used as the experimental test-bed for the work detailed in

this thesis. A representation of a typical bridge crane is shown in Figure 12. Bridge

cranes are load-lifting systems consisting of four main components: a hoist cable

and hook, a trolley, a bridge, and a runway. The payload is attached to the hook,

which is suspended from the trolley by the hoist cable. The trolley is the load-lifting

component and moves on (and parallel to) a beam called the bridge. The bridge moves

on (and parallel to) a stationary runway. The runway is usually comprised of two

supporting members that are permanently affixed to a structure, such as the walls of

a warehouse. The bridge and the runway are oriented orthogonally. The combination
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Fig 12. Typical Bridge Crane

of the degrees of freedom along the bridge and the runway, and the hoisting capability

of the trolley, provide a large three-dimensional workspace reachable by the payload.

The 10-ton bridge crane at the Georgia Institute of Technology is shown in Figure

13. The bridge and runway span a 5.5 m by 40 m area. The trolley is mounted to

the bridge, which is suspended above the ground at a height of 6.1 meters.

A schematic of the hardware components of the 10-ton crane are shown in Figure

14. The crane uses two 460-volt AC induction motors to drive the bridge and one

to drive the trolley. Two Siemens Vector Masterdrives control the bridge and trol-

ley motors. The drives are programmed to track a velocity reference signal sent as

an analog voltage from a Siemens CPU 314C-2DP Programmable Logic Controller

(PLC). Under manual operation, the PLC generates these reference signals when an

operator depresses any of the four directional (forward, reverse, left, or right) buttons

on the control pendent. Hoisting of the hook, however, is controlled by on/off relays.

Under advanced-control operation, for example when input shaping is turned on, the
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Fig 14. Hardware Configuration of the 10-ton bridge crane
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PLC intercepts the signals from the control pendent to generate the shaped signals,

which are then sent to the motor drives.

Position measurements of the trolley location are provided by two Banner LT3

Long-Range laser sensors along the bridge and trolley axes. The range sensor emits

light pulses in the measurement direction. A stationary retro-reflecting surface re-

flects the emitted pulses back to the sensor, where they are processed to determine

the absolute distance. Hook position measurement is provided by a Siemens Simatic

VS723-2 intelligent camera mounted on the center of the trolley. The camera points

downwards at the hook and provides a workspace field of view of approximately 3m

by 3m (from a height of 6m above the floor). The PLC is the central component

that communicates with all other modules of the crane - motor drives, camera, laser

sensors, control pendent, and the Siemens PG field laptop. Communication is es-

tablished via a Siemens network module that uses the Industrial Ethernet protocol

(Profinet). Both wired and wireless forms of communication are available. The PLC

has a cycle rate of 35 ms.

2.2 Machine Vision Hardware

As mentioned earlier, a Siemens Simatic VS723-2 intelligent camera mounted on the

trolley is used to determine the position of the suspended hook, as shown in Figure 15.

To improve the quality of the acquired images, a LED light array was installed next

to the camera to illuminate the workspace, as shown by the left picture in Figure 16.

A close-up view of the VS723-2 is shown on the right of Figure 16. Figure 17 shows

a board with retro-reflective material arranged in a special pattern that is attached

to the top of the hook. This assists image processing algorithms to track the hook.

The reflective fiduciary markers enable the camera to easily segment desired regions

from the background, and algorithms based on known geometry (explained in section

2.4.1) are used to calculate the position of the hook center.
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Trolley mounted cameraFig 16. Trolley Mounted Camera - Closeup View
(Photo on the Right Courtesy of Siemens)

The Siemens Intelligent Camera VS723-2 is a complete image-processing system

that consists of the light-capturing components, onboard processor, and memory, in

one self-contained unit. The unit is compact, with dimensions of 60mm x 112mm x

30mm. It has a gray-scale 1/3” CCD array with a resolution of 1024 x 768 pixels. The

onboard processor is a Hitachi SH4 clocked at 200MHz and capable of 360 million

instructions per second. Additionally, 8 MB of non-volatile Flash and 32 MB of

volatile DRAM memory are available. Communication is available using a standard

ethernet RJ45 port and 8 configurable digital input/outputs; power is provided by

an RJ-45 port with a rated voltage of 24V DC.
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2.3 Machine Vision Software - Spectation

Spectation is the Siemens software used to communicate with Siemens intelligent

cameras. The hierarchical structure of a typical project in Spectation is shown in

Figure 18. The organization is divided into four layers (labeled by the numbers on

the right in Figure 18), and each layer handles a different aspect of the entire image-

processing algorithm. The four layers are:

1. System Layer - This layer includes user-specifiable constant parameters con-

cerning the direct function of the camera, such as exposure time and trigger

source.

2. Inspection Layer - This layer contains inspection programs that are used to

analyze an image and return an inspection result. An inspection starts auto-

matically after a image is acquired or can be called from a background script.

3. Softsensor Layer - This layer contains the two main types of tools required

to analyze an image - soft sensors and foreground scripts. Soft sensors are

application-specific, graphical-based tools that provide commonly-used, basic
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Fig 18. Structure of a Spectation Project

image-processing capabilities. As each image is a 2-D array of pixel intensity

values; basic image processes involve the manipulation of this array. For exam-

ple, these include the detection of blobs, ridges, edges, etc. Foreground scripts

allow the user the flexibility to construct more complex inspection programs. A

typical use for foreground scripts is to take the results from multiple soft sen-

sors, perform mathematical operations on the results, and communicate with

the background script.

4. Background Layer - This layer contains background scripts, which serve in a

supervisory role to handle digital I/Os, call inspection programs and modify

their parameters, and manage communications. Communication with external
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Fig 19. Spectation Worksapce

devices such as a PLC or a computer can be established using either TCP

(Transmission Control Protocol) or UDP (User Datagram Protocol). Data can

only be exchanged between the background script and an inspection program

via memory registers, which act as global variables.

Figure 19 shows the GUI of the Spectation software. It contains a standard

toolbar for commonly used software features, as well as an option to choose the active

background script stored in memory. There are buttons for selecting softsensors and

a window for adjusting softsensor parameters. Images acquired by the camera can

be displayed in real-time, along with text-based real-time debugging information.

Finally, the results from inspection programs can be returned in tabular or graphical

form.

The two soft sensors that are relevant to this thesis are the “blob generator” and

the “blob selector”. As mentioned earlier, soft sensors provide basic image-processing

tools that typically perform some operation on an image. A “blob” is a region of

interconnected pixels that have similar intensity values. The “blob generator”, shown
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Fig 20. Spectation Softsensor Blob Generator - Detects and “Generates”
Blobs

in Figure 20, is a softsensor that detects and generates these blobs based on user-

specified conditions. Typical conditions include minimum average blob intensity or

minimum blob size. Once the blobs are generated, their information are passed to the

“blob selector”, which selects blobs of interest by imposing more stringent conditions.

Examples include blob eccentricity, position, or angle. In Figure 20, the square depicts

the area of the image over which the blob generator is active. The regions inside the

square represent blobs that were generated by the blob generator.

2.4 Machine Vision Algorithms

The machine vision system used in this research has two primary goals:

1. To track the position of the hook (relative to the trolley mounted camera).

2. To acquire the operator command signal (for wand and glove control). This

signal is given by the position of the wand or glove.

The camera must be able to accomplish both goals in real-time and send the

information to the PLC controller. This section will discuss the algorithms that were

implemented to achieve the above goals.
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2.4.1 Determining the Hook Position

Previous work [3] focused on tracking the position of the hook in a robust manner,

and is briefly summarized here. A fundamental first step of tracking with machine

vision is to highlight the target in such a way that it can be easily distinguished

from the background and noise. One simple way to achieve this is with the use of

retro-reflective fiduciary markers attached to the target. A light source illuminates

the fiduciary marker thereby making it appear as a bright spot (or a blob with high

pixel intensities) to the camera. This procedure allows the camera to easily isolate

and track the target, without the need for complex computing algorithms.

Early versions of the fiduciary marker designs had simple geometries consisting

of only a few markers. One such example is shown on the left column of Figure

21. The upper left picture shows the physical view of looking down at the hook

from the trolley. The lower left picture shows the image as captured by the camera.

The problem with using only a few markers was that it was susceptible to spurious

sources such as other reflective surfaces around the workspace. Reliable Operation

during day time was also marred by reflected sunlight and other ambient sources of

lighting. These lights appear as regions of high pixel intensities to the camera. The

problems were exacerbated by the fact that the suspension cables would obstruct the

view of the fiduciary markers when the hook was swinging.

To improve the robustness of hook tracking, the number of fiduciary markers was

increased to six. The markers were arranged in a hexagonal pattern, as shown in the

right column of Figure 21. Again, the top right picture shows the physical view while

the lower right picture shows the image as captured by the camera. The centers of

the six circular markers coincide with the vertices of a regular hexagon, and therefore

all lie on the same circumcircle, as shown in Figure 22. The circumcenter, labeled as

as [xc, yc] in Figure 22, can be determined from the positions of a subset of the six

markers, with the minimum number in the subset being three. This subset is shown
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by the shaded circles in Figure 22, labeled Blob 1, Blob 2, and Blob 3. Picking any

two pairs from the minimal subset of three markers (now referred to as blobs), the

intersection of their perpendicular bisectors (labeled as B1 and B2 in Figure 22 ) is

the circumcenter. The equations of the perpendicular bisectors joining the centers of

these blobs, [x1, y1] to [x2, y2], and [x2, y2] to [x3, y3] are given by:

(y1 − y2)

(
X − 1

2
(x1 + x2)

)
− (x1 − x2)

(
Y − 1

2
(y1 + y2)

)
= 0 (1)

(y2 − y3)

(
X − 1

2
(x2 + x3)

)
− (x2 − x3)

(
Y − 1

2
(y2 + y3)

)
= 0 (2)

where X and Y are variables. Then, two linear equations with two unknowns can be

formed: (y1 − y2) −(x1 − x2)

(y2 − y3) −(x2 − x3)


 X

Y

 =

 1
2
(y1 − y2)(x1 + x2)− 1

2
(x1 − x2)(y1 + y2)

1
2
(y2 − y3)(x2 + x3)− 1

2
(x2 − x3)(y2 + y3)


(3)

Using Cramer’s rule we can solve for the coordinates of X and Y that satisfy
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both equations simultaneously. These coordinates are the same as the circumcenter,

[xc, yc], and is the intersection of the two bisectors:

xc =

−[1
2
(y1 − y2)(x1 + x2)− 1

2
(x1 − x2)(y1 + y2)](x2 − x3)

+[1
2
(y2 − y3)(x2 + x3)− 1

2
(x2 − x3)(y2 + y3)](x1 − x2)

−(y1 − y2)(x2 − x3) + (y2 − y3)(x1 − x2)
(4)

yc =

−[1
2
(y1 − y2)(x1 + x2)− 1

2
(x1 − x2)(y1 + y2)](y2 − y3)

+[1
2
(y2 − y3)(x2 + x3)− 1

2
(x2 − x3)(y2 + y3)](y1 − y2)

−(y1 − y2)(x2 − x3) + (y2 − y3)(x1 − x2)
(5)

The implemented algorithm calculates an average circumcenter using all possible

combinations of three-blob subsets. The robustness of this algorithm comes from the
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fact that any three blobs can be used to calculate the circumcenter. Considering that

there are six blobs available, there is a 100% redundancy factor. This redundancy

has two primary benefits:

1. The hook can still be tracked even if some of the blobs are obstructed from view

by the suspension cables or other obstacles.

2. The effect of spurious blobs are mitigated, but not eliminated, as the hook

position is calculated from the average of all circumcenters. It is expected that

at any one time there would only be one or two spurious blobs, which are

outweighed by the six true, hexagonally arranged blobs.

Due to the fact that the markers appear larger when the hook is raised closer

to the camera, a relationship can be formed relating the hook height to the size of

the circumcircle radius, labeled as r in Figure 22. Knowing the height of the hook,

the cable length can be determined, which yields important information such as the

natural frequency of the pendulum-like crane system.

2.5 Discerning the Hook Blobs from the Wand/Glove Blob

In the above sections, previous work on the camera was described. For the remainder

of this chapter, we discuss the contributions of this thesis.

Under wand and glove control, the camera must not only track the position of

the hook, but also concurrently track the position of the wand/glove. As shown in

Figures 3 and 4, the purpose of the hand-held device is to provide an input signal

to the control system based on the operator’s hand motion. The hand-held device is

essentially a fiduciary marker that is designed to be easily manipulated in 3-D space

by a human operator.

There are three different types of images that are captured by the camera. Figure

23(a) shows the case when the hand-held device is not present. Figure 23(b) shows the
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case when the hand-held device (in this case, the wand) is present, and Figure 23(c) is

when the hand-held device is present but partially occluded by the suspension cables.

As can be seen from the images, the blob resulting from the wand is similar to the

blobs resulting from the fiduciary markers used for hook tracking. Apart from some

minor differences such as blob area and average intensity value, there is not a single

distinguishing characteristic that can segregate the hook blobs from the wand/glove

blob. Therefore, there is a need to find a robust method to discern between the two

types of blobs.

A well known technique called the K-means clustering algorithm [22] was selected

for the task of discernment. This technique is based purely on the position of the

blobs. Effectively it assumes all blobs are identical, despite the fact that this is not

strictly true. As mentioned above, while it is possible to discern the wand/glove blobs

from the hook blobs based on size and average pixel intensity, these variables are not

ideal for robust discernment because during crane operation, these variables undergo

large fluctuations. For example, the area of the wand/glove blob varies depending on

the vertical elevation of the wand/glove. The average pixel intensity values will vary

greatly depending on the angle of illumination on reflective surfaces by the trolley

mounted LED lights.

Thus, if discernment is to be purely based on the blob positions, it effectively
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becomes a cluster grouping problem, where the goal is to group blobs together based

on their relative distance to other blobs. Figure 24 shows the ideal discernment

where the wand/glove blob is separated (represented by the dashed line) from the

hook blobs. Notice that all blobs are identical. The only distinguishing factor is the

position of each blob.

The K-means clustering algorithm is depicted in Figure 25. As we are only search-

ing for two clusters of blobs (the wand/glove, and hook blobs), K is set to two, so

the algorithm will produce two cluster groupings. The algorithm starts by randomly

picking K blobs as the initial coordinates of cluster centers, depicted as crosses in

Figure 25(a). Then, the algorithm starts the iterative process where it calculates the

Euclidean distance between each blob and each cluster center, and assigns a cluster

label to each blob corresponding to whichever cluster center it is closest to. Cluster

1 blobs are solid and cluster 2 blobs are white in Figure 25(b). The coordinates of

new cluster centers are then calculated using the mean X and Y coordinates from

all the blobs in that cluster. Following this, the algorithm reiterates. The algorithm

stops when the maximum number of iterations is reached or when the cluster centers

stop moving. Even without the maximum iteration stopping condition, the K-means

algorithm is guaranteed to terminate in finite time.

The camera will report successful detection of wand/glove if and only if one of
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Fig 25. K-means Clustering Algorithm

the cluster contain only one blob, as shown in Figure 25(c). This condition will be

satisfied if the lone blob is beyond the minimum distance from the main cluster of

blobs. The minimum distance is given by r, the radius of the circumcircle in Figure

22. The pseudo-code for the general K-means blob algorithm is:

Choose K

Randomly choose K blobs and assign their centers

as the cluster centers, Cj.

Loop

Partition the blobs into K clusters, Gj, according to the

Cj that they are closest to.

For each Gj, compute the mean of its elements and assign

it as the new cluster center Cj.

Stop when cluster centers stop moving.

The simplicity of this algorithm is ideal, as it minimizes the computational over-

head required for real-time operation.
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2.6 Improving Processing Speed by Using Dual Image Ac-
quisition Windows

As mentioned earlier, the two goals of the machine vision system are 1) tracking the

hook, and 2) tracking the wand/glove. The challenge, however, is that the simul-

taneous tracking of two independently moving objects not only lengthens the image

acquisition times from the CCD array, but also increases the computational overhead

on the camera processor.

Figure 26 shows the image acquisition and processing times for the Siemens VS723-

2 smart camera. The X-axis indicate the side length (in pixels) of a square image

acquisition window. The acquisition time is defined as the time it takes to capture all

the pixels inside the defined acquisition window. That is, the time starting from the

initial trigger and ending at the time at which all the intensity values of the pixels

within the window are stored in memory. The total processing time is defined as

the acquisition time plus the time it takes to execute the blob generator (see section

2.3) over the entire window. Clearly, there is an exponential relationship between

the image processing time and the window size. The acquisition times also increase

with the window size, albeit in a linear fashion. It is beneficial to minimize the image

processing time as much as possible so that camera tracking can be updated at the

fastest possible rate, thereby minimizing the possibility of tracking failure. However,

as the wand/glove moves around the visible workspace, as was shown in Figure 23,

the size of a single image acquisition window must increase in order to track both the

wand/glove and the hook. Consequently, this motion will have detrimental effects on

the total image processing time.

One solution is to track the wand/glove and the hook using two independent

image acquisition windows. The windows are centered on each tracked target and

their areas are set such that they cover an area slightly larger than the target. In this

way, the size of the acquisition windows are kept at a minimum. The benefit of using
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Fig 26. VS723-2 Image Acquisition and Processing Times

independent image acquisition windows is two fold:

1. Image processing time is reduced as the image area that is processed is less.

2. The majority of the area that is visible to the camera is ignored because only two

small, independent tracking windows are considered. This reduces the impact

of spurious signals that may be present around the workspace.

The operation of the camera is divided into three operational modes, as shown

in Figure 27. Effectively, the camera becomes a finite state machine that switches

between states when certain conditions are met.

In state 0, which is the default state after camera start up and initializations, the

camera will only use one image acquisition window that spans the entire visible area.

It will search within this window for the hexagonal patterned hook blobs using the

algorithm described in section 2.4.1. If the hook is successfully located, the camera

will switch to state 1.

In state 1, the camera is actively tracking the hook and is also searching for

the wand/glove blob in the vicinity around the hook. One acquisition window is

again used in state 1. However, it is centered around the hook position (center of the
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hexagon) and its side lengths are reduced such that it covers an adequate area around

the hook in order to search for the wand/glove blob. The camera will determine the

presence of a wand/glove blob using the K-means clustering algorithm described in

section 2.5. Once the wand/glove is detected, the camera switches to state 2.

In state 2, there are two independent acquisition windows that track the positions

of the hook and the wand/glove. These windows are centered about their respective

targets with side lengths that fit tightly around the diameter of each target. If the

hook position is lost at any time during state 1 or state 2, the camera will switch

back to state 0 to relocate the hook.

A flow chart of the camera algorithm is displayed in Figure 28. After some ini-

tialization routines such as resetting memory registers, the camera establishes com-

munication with the PLC in UDP protocol. UDP is chosen over TCP protocol for

its faster speed and smaller bandwidth overhead. After establishing a communica-

tion link, the camera enters an infinite loop (indicated by the bordered box) where

it executes different parts of the algorithm depending on which of the three states it

is in. This is visible in the flow chart where the program splits into three different
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branches after querying the state of the camera.

During state 0, the leftmost branch of the flow chart, the acquisition window is

set to maximum with the goal of locating the hook. If the hook is found, then the

camera changes to state 1 and the hook position information is sent to the PLC. If

no hook is found, then the camera remains in state 0.

In state 1, represented by the middle branch on the flow chart, the acquisition win-

dow is set to cover the proximate area around the hook. Following this, the K-means

clustering algorithm is used to locate the presence of the wand/glove. However, the

clustering algorithm only checks for the presence of multiple clusters, and does not

guarantee the presence of the hook. Therefore, the hook-locating algorithm is exe-

cuted next. If no hook is found, regardless of the presence/absence of the wand/glove,

then the camera switches to state 0. If no wand/glove is found, but the hook is still

present, then data on the hook location is still sent to the PLC and the camera re-

mains in state 1. If both wand/glove and hook are present, then data on both hook

and wand/glove is sent to the PLC and the camera switches to state 2.

In state 2, which is located on the far right section in the flow chart, a binary

state variable “Inspection Mode” is used to alternate the image-processing between

the two independent acquisition windows. As parallel processing is not an available

option with the onboard processor, the camera must process each acquisition window

in a sequential manner. If Inspection Mode equals 2, then the camera is set to

process the acquisition window that tracks the wand/glove. If a wand/glove blob is

detected, then it is subject to a consistency check. This check ensures that important

blob characteristic parameters have not changed substantially from the last cycle.

Some examples of these parameters include the blob area, size, and geometry such as

eccentricity. Upon a successful consistency check, information about the wand/glove

is saved. If no wand/glove is found, or if the consistency check fails, then a status flag

denoting wand/glove not found is set to true. Then, the Inspection Mode is always
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Fig 28. Operational Flow Chart of the Camera Algorithm
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set back to 1 and the acquisition window responsible for tracking the hook is executed

next.

The procedure of execution for Inspection Mode 1 and Camera State 2 begins

with acquiring and processing the acquisition window responsible for tracking the

hook. Then, the hook-search routine is performed. If no hook is found, then the

camera changes state to 0. If the hook is present but no wand/glove is found, then

the camera is set to state 1 and only the hook data is sent to the PLC. If both hook

and glove/wand are present, the camera remains in state 2, Inspection Mode is set to

2 for the next cycle, and both hook and wand/glove data are sent to the PLC.

With the above algorithms implemented on the Siemens VS723-2 smart camera,

and while the camera is in state 2, the system is able to acquire, process, and send

data to the PLC in under 70 ms for each acquisition window. The cycle rate is set

at 140 ms. When the system is in state 1, the cycle rate is maintained at 140 ms

even though the total processing time is actually much less. It is prudent to maintain

consistent inter-state and intra-state cycle rates for the following reasons:

1. Communication with the PLC is established via two-way UDP protocol. Even

though UDP protocol is connectionless, a mismatch in the rate at which data is

sent and received between the two devices will result in lost packets of data or

excessive flooding. As mentioned before, the PLC cycle time is 35 ms, which is

four times faster than the camera. Therefore, the PLC receives data from the

camera every four PLC cycles.

2. A consistent cycle rate is essential to maintain the fidelity of the hook predictor

that is based on crane dynamics. This hook predictor will be described in

section 2.7.

However, when the camera is in state 0, the cycle rate is 1000 ms. The requirement

for a consistent cycle rate is relaxed because the camera needs to search the entire
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image for the hook. Furthermore, no data is sent to the PLC during state 0.

The camera cycle rate is compared with the period of hook oscillation in order to

assess if the camera update speed is adequate. Assuming a typical crane operation

where the suspension length is 5 meters, the period of oscillation is approximately 4.5

seconds. In this case, when the camera is tracking the hook, a cycle rate of 140 ms is

only 3.1% of the period of oscillation. In other words, the camera refreshes 32 times

every period. If the hook is hoisted such that the suspension length is 2 meters (this

height is near the limit at which the camera is still able to reliably track the hook

at the extremities of its oscillation within its visible workspace), then the period of

oscillation is approximately 2.84 seconds. In this case, the 140ms cycle rate is about

4.9% of the period of oscillation. The camera refreshes 20 times every period. In both

cases, the camera refresh rate more than satisfies the Nyquist criterion for minimum

sampling rate. For all practical purposes, this is fast enough for real-time tracking.

2.7 Predictive Tracking

So far, algorithms have been described for determining the location of the hook and

distinguishing between the wand/glove blob and the hook blobs. Processing speed has

been improved and robustness increased with the use of two acquisition windows (as

opposed to one window) for the independent tracking of the hook and the wand/glove.

Each acquisition window is centered around the target that they are tracking, and the

size of each acquisition window is minimized in order to reduce processing time. As

the targets move around the visible workspace, the acquisition windows must follow

their positions in a timely and accurate manner to maintain successful tracking.

For this reason, tracking performance can be improved if the motion of the tracked

target can be predicted. Accomplishing this will involve 1) predicting the future

position of the moving object at least one sample time ahead, and 2) moving the

center of the acquisition window to the predicted position. A simple method is to use
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a predictive filter that calculates the future position based on the current and last

observations. The X and Y coordinates (in unit pixels) are separated for simplicity:

X̂(n+ 1) = X(n) + [X(n)−X(n− 1)] (6)

Ŷ (n+ 1) = Y (n) + [Y (n)− Y (n− 1)] (7)

Where n corresponds to the index of the image frame, i.e. X̂(n + 1) refers to the

predicted X position in the next time step, X(n) refers to the observed X position in

the current time step, and X(n− 1) refers to the observed X position in the last time

step. Alternatively, the predictive filter can be constructed based on the weighted

sum of the previous M observations:

X̂(n+ 1) =
M∑
i=0

wiX(n− i), (8)

where wi denotes the ith weight. A notable downside of this method is that increasing

the value of M will increase the lag of the prediction. This is because the algorithm

essentially acts as a smoother based on previous observations. The main draw of

this type of predictive filter is its simplicity. However, it fails to utilize the readily-

available knowledge and data on the dynamic movements of the tracked objects. For

example, in the absence of disturbances, the oscillatory movement of the pendulum

hook is well known and highly predictable. Knowledge of pendulum dynamics can

easily be exploited to construct a more accurate predictor. The movement of the

wand/glove is more difficult to predict because its dynamic motions are driven by a

human operator. However, it is still constrained by real world dynamics and can be

modeled as an inertial mass subjected to a finite force.

We explore a smarter predictor for the hook. To do so, the dynamic nature of the

pendulum hook must first be understood.
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2.7.1 Crane Dynamics

This section derives the equations of motion for a planar trolley and suspended

hook/payload system. It parallels the work in [41].

Planar motion of the mechanical system can be modeled as a multi-body system

consisting of two rigid bodies, as shown in Figure 29. As the bridge crane’s trolley

is able to move in both X and Y axes, we assume that the dynamics are identical

but independent and decoupled between the two axes. The mass of the trolley and

the mass of the payload are labeled as mt and mp, respectively; acceleration due to

gravity is represented as g; a viscous damping force, which acts on the payload, can

be described by the damping coefficient b; and the length of the cable is labeled as

L. For simplicity, the cable length is assumed to vary slowly with time, thus the time

derivatives of this quantity are neglected. The trolley position, x, will be considered

as the controlled variable. An obvious benefit to such a choice for the system input

is that a model of crane motors and industrial drives is unnecessary at this juncture.

These systems will later be considered when determining appropriate reference signals

for the crane.

With the crane modeled this way, the system reduces to one degree of freedom

with the cable angle, θ, used as the generalized coordinate. Using the Lagrangian

formulation to derive the system equations, we begin with the kinetic energy of the

trolley and the payload:

Tt =
1

2
mtẋ

2 (9)

Tp =
1

2
mpv

2
p (10)

where v2
p is the squared velocity of the payload. v2

p may be computed from the position
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Fig 29. Multi-Body Model of the Crane Along One Axis

vector, rp, of the payload as follows:

v2
p = ṙp · ṙp (11)

ṙp =
drp
dt

(12)

rp = (x+ Lsinθ)̂i+ (−Lcosθ)ĵ (13)

Substituting (11) through (13), and summing (9) with (10), the total kinetic energy

is given by:

T =
1

2
mtẋ

2 +
1

2
mp

[
(ẋ+ Lθ̇cosθ)2 + (Lθ̇sinθ)2

]
(14)

With reference to the potential energy datum shown in Figure 29, the potential

energy U of the system is given by:

U = −mpgLcosθ (15)

The Lagrange equation for the generalized coordinate, θ, is:

d

dt

∂T

∂θ̇
− ∂T

∂θ
+
∂U

∂θ
= Qθ (16)

39



where Qθ is the generalized force acting on the system. The left hand elements of

(16) are computed as:

d

dt

(
∂T

∂θ̇

)
= mp(−Lẋθ̇sinθ + L2θ̈ + Lẍcosθ) (17)

∂T

∂θ
= mp(−Lẋθ̇sinθ) (18)

∂U

∂θ
= mpgLsinθ (19)

The right hand element of (16) comes from a virtual work formulation of the

non-conservative forces acting on the system:

δW = F · δrp = (Qθ)δθ, (20)

where F is the non-conservative force vector:

F = (−bθ̇cosθ)]̂i+ (−bθ̇sinθ)ĵ. (21)

Substituting (21) into (20) and using the expression for rp from (13), we see that:

δW = (−bLθ̇)δθ. (22)

Therefore,

Qθ = −bLθ̇. (23)

Substituting (17) through (19) and (23) into the Lagrange equation, (16), the

differential equation governing the motion of the system is:

θ̈ +

(
b

Lmp

)
θ̇ +

( g
L

)
sinθ =

(
−cosθ
L

)
ẍ. (24)

We can use the small angle approximation to linearize the system to:

θ̈ +

(
b

Lmp

)
θ̇ +

( g
L

)
θ =

(
−1

L

)
ẍ. (25)
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Recognizing that (25) represents a second-order damped oscillatory system, we

may write:

b

Lmp

= 2ζωn (26)

g

L
= ω2

n (27)

−1

L
= −ω

2
n

g
. (28)

As it is common to issue desired velocity signals directly to the motor drives, we

wish to obtain a final system representation relating the trolley velocity to the angle

of the cable. For this reason, we substitute v̇t for ẍ. Assuming zero initial conditions,

and using the relations in (26) through (28), we obtain the following transfer function

relating the cable angle to the velocity of the trolley:

Θ(s)

Vt(s)
=

(
−ω2

n

g

)
s

s2 + 2ζωns+ ω2
n

. (29)

A control canonical state space representation of the system is obtained directly

from the coefficients of the transfer function. By letting q1 and q2 be the states of the

system, we have:

q̇ =

 0 1

−ω2
n −2ζωn

 q +

 0

1

 vt(t), (30)

and

θ(t) =

[
0 −ω2

n

g

]
q. (31)

By observing the relationship between q2 and θ established in (31), one may

recognize that the state is equal to−θL. That is, −q2 represents the relative horizontal

displacement between the trolley and the payload. The state variable, q1, has less

physical meaning; −q1 is a quantity whose derivative yields the relative displacement

between the trolley and the payload.
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2.7.2 Predictive Tracker based on Hook Dynamics

The process for creating the predictive hook tracker starts with discretizing the con-

tinuous crane velocity transfer function in (29) with a sampling rate equivalent to the

camera’s refresh rate. As there are dynamic variables such as the sampling rate Ts,

the damping ratio ζ, and the natural frequency ωn, we use the Tustin’s approximation

to obtain simple algebraic rules to construct the difference equation. The Tustin’s

approximation (otherwise known as the Bilinear transform) converts from the S do-

main to the Z domain using the substitution s = 2(z−1)
Ts(z+1)

. Making this substitution

into (29) we get:

Θ(z)

Vt(z)
=

−200
981

Tsω
2
n(1− z−2) (4 + ω2

nT
2
s + 4ζωnTs) + (2ω2

nT
2
s − 8)z−1

+(4− 4ζωnTs + ω2
nT

2
s )z−2


, (32)

which has the corresponding difference equation:

θ(n) =
1

4+ω2
nT

2
s+4ζωnTs

{(−200
981

Tsω
2
n)Vt(n) + (200

981
Tsω

2
n)Vt(n− 2)

−(2ω2
nT

2
s − 8)θ(n− 1)− (4− 4ζωnTs + ω2

nT
2
s )θ(n− 2)}

. (33)

Using a time shift and approximating Vt(n + 1) with Vt(n), which is valid as the

camera’s sampling rate is much faster than the highest frequency that the trolley is

capable of moving at, the difference equation for the predictive filter based on hook

dynamics can be obtained:

θ̂(n+ 1) =
1

4+ω2
nT

2
s+4ζωnTs

{(−200
981

Tsω
2
n)Vt(n) + (200

981
Tsω

2
n)Vt(n− 1)

−(2ω2
nT

2
s − 8)θ(n)− (4− 4ζωnTs + ω2

nT
2
s )θ(n− 1)}

. (34)

Note that the values for θ(n−k), for k = 0, 1 are not obtained from past predictions

but instead from past observations - measurements made by the camera. The trolley

velocity is obtained from encoders on the motor and is sent to the camera from the

PLC via a two way UDP communication protocol. The predicted pixel position of

the hook is then calculated from:
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1. θ̂(n+ 1) from (34);

2. X0, the expected pixel position of the hook when θ is zero (calculated from the

hook height);

3. A constant gain, Kcamera, which relates pixel position to angular displacements

in the camera view.

In the X direction, the predictor is defined by:

X̂(n+ 1) = θ̂(n+ 1)Kcamera +X0. (35)

2.7.3 Comparison Between the Dynamics-Based Predictor and the Sim-
ple Predictor for Hook Tracking

Given a choice between the simple predictor (Defined by (6) and (7)), and the

dynamics-based predictor (Defined by (35)), it would be useful to obtain a quan-

titative measure that compares the performance between the two predictors when

they are both applied to the task of tracking the hook. The simple predictor is easy

to implement, but lacks accuracy. The dynamics-based predictor will yield more con-

sistent tracking, but at the cost of being more computationally intensive, which puts

more overhead on the already-limited capabilities of the camera’s onboard-processor.

The question we would like to answer is: given a user-specified tolerable amount of

predictor error, under what conditions would the simple predictor perform just as

well as the dynamics-based predictor?

To answer this question, a measure to quantify the performance of the predictor

must first be defined. To this end, we define an error measure Errorpixels to quantify

the predictor performance in pixels:

Errorpixels = X(n+ 1)actual − X̂(n+ 1)predictor, (36)

where X(n+ 1)actual and X̂(n+ 1)predictor corresponds to the actual position and the

predicted position of the hook (in pixels) in the X direction, respectively. A similar

43



measure is used for the Y direction.

The variables that influence predictor performance must first be identified. The

fidelity of tracking is predominantly determined by how much the hook moves across

the camera’s visible workspace between each sample time. Thus, the sample time is

the first major factor that influence predictor performance - the hook will have moved

relatively few pixels in one cycle if the camera refresh rate is fast. A slow camera

refresh rate will not only suffer from sparse data and relatively few observations, but

aliasing may also be present.

The second factor is the speed of hook movement. The suspension length de-

termines the speed at which the hook moves across the camera’s view. If the cable

length is short, the frequency of oscillation will be high. Additionally, the hook is

close to the camera with a short hook length, which means that even small lateral

hook movements will translate to large pixel movements in the camera view.

A Matlab simulation was used as the test-bed to compare predictor performance.

As mentioned earlier, crane trolley movement and crane maximum speed will have

significant impact on the speed of hook movement, and thus on the performance of

the predictor. To ensure a fair comparison, the input to the Matlab crane model

was a step command in velocity with an amplitude equivalent to the maximum speed

(0.3577 m/s) of the 10-ton crane at Georgia Tech. First, a dynamic simulation subject

to the above step input was performed and a time history of the pixel positions of the

hook was recorded at each sample time. This was repeated for cable lengths ranging

from 2 to 6 meters, and for sampling times of 0.05 to 0.5 seconds. This yielded a

4-D matrix containing the time history of actual hook pixel positions, Xactual, as it

appeared to the camera, for a range of cable lengths and sampling times.

The second part was to simulate the simple predictor (6) and the dynamics-based

predictor (35). For each cable length and sample time, we obtained a time history of

the predicted pixel positions of the hook for both types of predictors, i.e. X̂(n+1)simple
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and X̂(n+1)dynamics. Note that the predictor difference equations require current and

past observations X(n) and X(n − 1). These values were obtained from Xactual. In

other words, we assumed the predictor has successfully tracked the hook up to the

current cycle, and the variables we wish to compare are X̂(n+ 1)predict, the predicted

position, versus X(n+ 1)actual, the actual position, with the error function defined by

(36).

We also assumed the dynamic-based predictor used the actual values for ζ and ωn

(refer to (34)). Of course, the real values for these two parameters will not be known

exactly for a real crane, so this assumption yields the most ideal dynamics-based

predictor performance. This is desirable, as this will yield conservative estimates

when the performance of the simple predictor (which does not rely on any knowledge

about the hook dynamics) is compared against the performance of the ideal dynamics-

based predictor. The velocity of the trolley, Vt, which was the step input that was

issued to the model, was also known to the dynamics-based predictor.

The predictors were simulated to produce a 4-D matrix containing the time history

of predicted hook pixel positions, X̂(n+ 1)predict, for a range of cable lengths (2 to 6

meters) and sampling times (0.05 to 0.5 seconds). This was compared with the 4-D

matrix of actual hook pixel positions, Xactual, produced earlier. The result of this

comparison is a 4-D matrix containing the time history of Errorpixels, for the same

range of cable lengths and sampling times.

The maximum error was taken from each set of time histories from the Errorpixels

4-D matrix and plotted against cable length and sample time, as shown in Figure 30.

Superimposed on Figure 30 is an additional mesh corresponding to the acceptable

level of pixel error - arbitrarily defined here as 10 pixels. Clearly, there is more

predictor error when the sampling time is long and the cable length is short. The

dynamics-based predictor shows excellent performance, as a large proportion of the

predictor error lies beneath the acceptable limit. The same cannot be said, however,
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Fig 30. Predictor Error Comparison - Isometric View. Acceptable error
= 10 pixels

for the simple predictor. Figure 31 shows the top view of the same graphs, which

clearly delineates the areas where the predictor error exceed the acceptable limit.

Interestingly, for our wand/glove application, which has a sampling time of 0.14

seconds, the simple predictor’s performance satisfies our arbitrary limit. That is to

say, there is no perceivable advantage to use the dynamics-based predictor over the

simple predictor. Experimentally, this limit of 10 error pixels is more than adequate

to ensure good tracking.

The utility of Figures 30 and 31 comes from the fact that a user can easily dis-

tinguish the regions of operation where a simple predictor will suffice and regions

where the advanced dynamics-based predictor is required. Furthermore, this method

for comparing predictor performance can easily be generalized for other classes of

predictors by modifying the predictor difference equations, and for different cranes

and crane movements by modifying parameters such as the damping ratio, crane

maximum speed, camera sampling time, hook cable length, and input profiles to the

model.
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Fig 31. Predictor Error Comparison - Top View. Acceptable error = 10
pixels

2.8 Radio-Frequency-Based Crane Control

Reliance on machine vision makes the tracking of the wand and glove susceptible

to occlusions by the hook cables, as it was shown in Figure 23. It is also suscepti-

ble to other corruptive sources such as ambient light and spurious signals generated

by reflective surfaces. Furthermore, simultaneous tracking of the crane hook and

the wand/glove places significant computational requirements on the processor of

the camera. An alternative interface is proposed that uses radio frequency wireless

technology as the means for the operator to issue command signals.

In contrast to the wand and glove control, the interface for the RF-based crane

control does not rely on machine vision to detect the position of the hand-held device.

The hand-held device for this interface is a small RFID tag, which was shown in Figure

5. Its position is acquired with the use of multiple RF-based sensors placed around

the workspace. The position of the tag is then used as the command signal to drive

the crane.

The RF-based system used in this thesis is the academic version of the commercial
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off-the-shelf product from Ubisense. The technology uses Ultra-Wide-Band (UWB)

Radio Frequency signals. UWB RF has the advantage that spurious surface-reflected

signals can easily be distinguished from signals that traveled on the true, direct tag-

to-sensor paths. This allows an accuracy of 0.15 meters in 3-D, whereas traditional

non-UWB, RF-based location technologies deliver typically only 3 to 10 meters of

accuracy. The Ubisense kit consists of four 7000 series sensors, ten Ubisense RFID

tags, and related software. The four sensors are mounted 6m above the floor to cover

a 8m by 6m section of the workspace used by the 10-ton bridge crane in the Georgia

Institute of Technology’s MaRC building. The schematic of the RF-based system is

illustrated in Figure 32. The tag emits UWB RF signals, which is then received by

the sensors. Using the signals’ Time Difference of Arrival (TDoA) and the Angle of

Arrival (AoA) data as it reaches the sensors, the location of the tag in 3-D space can

be determined.

The advantage of using RFID technology over machine vision is that it has a lower

requirement for a clear line-of-sight from the hand-held device to the sensors. Under

wand/glove control, the only sensor available is the camera, and if the line-of-sight

from the wand/glove to the camera is broken (e.g. occlusion by the hook cables),

tracking fails. Under RF-based control, there are four sensors available to track the
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RFID tag. There is also a redundancy, as the tag needs a direct line-of-sight to just

three sensors for accurate tracking. More sensors could be added for robustness and

reliability. Tracking is still possible even if there are no direct lines-of-sight to any

sensor because Ubisense algorithms can still calculate the tag position from reflected

signals. Thus, it is unlikely that tracking would ever fail when under RF-based

control. Furthermore, RF-based control will work within the larger workspace that

is defined by the corner positions of the RF-sensors. This workspace covers a much

greater area than the area that is visible to the camera. Both the wand and glove

interfaces are limited to the the visible workspace of the camera.

Additional features are also available under RF-based control, as the crane op-

erator will be able to send miscellaneous commands such as hoisting and lowering

using the buttons on the tag. The tag uses the UWB channel for real-time location

and a separate RF channel for the bi-directional communication with the sensors.

These are used for the buttons and LED lights on the tag. The buttons can also be

used to signal an emergency stop. This has a safety advantage over the vision-based

wand/glove control because it offers the operator a means to directly stop the crane.

Under wand/glove control, the command signal to move the crane will always exist

if a wand/glove blob is visible to the camera. However, any reflective surface that

produces blobs that are similar to the wand/glove blob can also generate a com-

mand signal. The camera cannot distinguish between this spurious surface and the

wand/glove. Thus, in the presence of such a surface, the operator has no means to

stop the crane.

In its current state, under RF-based control, the position of the hook is tracked

by the camera and the tag is tracked by the RF sensors. However, the RF system is

expandable. The position of the hook can also be tracked using RF by attaching a

separate tag to it. Furthermore, if the hook is carrying a payload, then the position

of the payload can also be tracked. With machine vision, the payload cannot be
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tracked by the overhead camera because it is occluded by the hook. For crane-type

applications, it is typically very difficult to locate the position of the payload without

the use of expensive sensors. RF-based tracking and locating is a cheaper and more

elegant alternative.

2.9 Summary

This chapter began with a description of the 10-ton crane hardware that was used

for the experimental verifications of this thesis. The reader was then introduced to

the hardware, the software, and the algorithms behind the machine vision module,

which served as the backbone to the interface of wand and glove control. The chapter

concluded with a description of the RF system used for the RF-based crane control.

The contributions of this thesis that were discussed in this chapter are summarized

below:

1. The use of two camera acquisition windows for the independent tracking of hook

and wand/glove; this facilitated the fast camera cycle time that is necessary for

real-time tracking.

2. The use of the K-means algorithm to distinguish between hook and wand/glove

blobs.

3. The use of predictors to increase the accuracy and efficiency of tracking the

hook.

4. The RF-system that was installed for the RF-based crane control.
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CHAPTER III

CONTROLLER DESIGN FOR INTUITIVE CRANE

CONTROL

Chapter 2 described the technology and algorithms behind the hand-motion control

interfaces. The goal of the interface is to acquire the position of the hand-held device.

Figure 33a shows that under wand/glove control, both the positions of the hook and

the wand/glove are tracked by the camera. Figure 33b shows that under RF-based

control, the RFID tag is tracked by the RF sensors while the hook is still being tracked

by the camera.

Figure 33 also illustrates the position of the hand-held device being compared

with the position of the crane trolley to produce an error measurement, e1. This

measurement generates a command signal that needs to be processed by the controller

in order to produce a suitable crane trolley motion, and subsequently the desired hook

trajectory.

However, the desired hook trajectory is hard to define in the context of intu-

itive crane control because it is highly subjective. What may be intuitive to one

person may seem counter-intuitive to another. Some may prefer a rapid and imme-

diate response, while others may prefer a more relaxed and placid approach. Despite

individual preferences, one feature that is universally desirable is the reduction of

residual oscillations commonly associated with crane-type systems. To address this,

input shaping was employed.

This chapter describes the control architectures that were designed to address the

task of generating the desired hook trajectory. The architectures investigated were 1)

Proportional Derivative (PD) with low gains, 2) PD with high gains, and 3) PD with
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input shaping. Simulation and experimental results are presented. Because the un-

derlying controller is the same regardless of the interface (glove, wand, or RF-based),

the generic umbrella term “Hand-Motion Control” will be used interchangeably with

the ‘glove/wand/RF-based controller’ in this chapter.

3.1 Standard Pendent Control

Before describing the specifics of the hand-motion controller, it is worthwhile to ex-

plain the control architecture of the standard pendent-based crane control. Figure

34 shows the control block diagram. By depressing any of the buttons on the control

pendent (e.g. forward, backward, left, right) the pendent issues a reference velocity

command, VR to the block labeled “Motor, Trolley”, which describes the dynamics

of the two components. “Motor” is a subsystem describing the inertial mass of the

rotor inside the induction motor, the motor drive, and feedback provided by the mo-

tor encoders. To control the speed of the motor shaft such that the velocity of the

entire trolley assembly, VT , tracks VR, the motor drive has its own PI (Proportional

Integral) controller that controls the voltage and frequency of the driving circuit.

“Trolley” describes the dynamic properties of the entire trolley assembly that moves

along the bridge and runway. The true underlying dynamics of the entire “Motor,

Trolley” is complex, high-ordered, and contain several notable non-linearities such
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as motor saturation, rate limit on the motor velocity, a switching-element [41] that

prevents the motor from reversing while it is still in forward motion, and dead-zone

due to friction. However, for our purposes, it can be adequately approximated with

a second-order model:

VT (s)

VR(s)
=

ω2
n,MT

s2 + 2ζn,MTωn,MT s+ ω2
n,MT

(37)

where ωn,MT and ζn,MT denote the natural frequency and damping ratio with exper-

imentally obtained values of 6.98rad/s and 0.86, respectively.

“Hook Dynamics” in Figure 34 is the second-order system that describes the

position of the hook relative to the trolley (XH), with respect to the velocity of the

trolley (VT ). This has a form similar to (29), except that it is multiplied by the length

of the hook cable, L, (under small angle assumption) so that XH(s) replaces θ(s) as

the output variable:

XH(s)

VT (s)
= L

(
−ω2

n

g

)
s

s2 + 2ζωns+ ω2
n

. (38)

Typical responses to ramp-plateau inputs using the pendent controller are shown

in Figure 35. A ramp-plateau input in position (equivalent to a pulse input in velocity)

is the equivalent of pushing a button on the pendent for a specified amount of time,

which commands the crane trolley to move a certain distance. Due to the pendulum-

like nature of the hook dynamics, this type of movement will, in general, induce

significant residual oscillations. Figure 35 shows the hook response to trolley move

distances of approximately 2 meters and 3 meters. Note that the amplitude of residual

hook oscillations is dependent on the magnitude of the trolley move distance.
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3.2 Proportional Derivative Hand-Motion Controller

Figure 36 shows the control block diagram for the Proportional Derivative (PD) hand-

motion controller. The trolley position, obtained by integrating the velocity of the

trolley, VT , is subtracted from the position of the hand-held device to yield an error

signal, e1. Note that the position of the hook is actually the output variable that

we wish to ultimately control. Therefore, it may seem conceptually sound to use the

position of the hook, XH , in the feedback loop. There are four reasons why we do

not do this:

1. The transfer function of the “Hook Dynamics” block, given by (38), shows

that it has stable poles. This means that the hook will always come to rest

directly beneath the trolley. Therefore, accurate positioning of the trolley leads

to accurate positioning of the hook, if the hook does not oscillate.

2. Excluding the “Hook Dynamics” block from the feedback loop also simplifies

analysis of the overall system, which allows for a more easily implementable

controller.
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3. The tracking of the hook (by machine vision) is not as robust or reliable as the

tracking of the trolley (by laser range sensors). Measuring the hook position

with the camera may fail if the hook is occluded by obstacles, such as the

suspension cables.

4. The camera is a non-collocated sensor, which is well known for causing a range

of stability issues [?]. To prevent potentially unstable crane movements when

tracking fails, the hook position should not be used for feedback.

The error, e1, was also shown conceptually in Figure 33. This error signal is

converted by the “Converter” block from a distance measurement to digital units

that corresponding to the PLC’s internal representation of the reference velocity, VR

(ranging from −100 to 100). The “Converter” block is a piecewise function given by:

VR =

 100× e1
emax

: abs(e1) ≤ emax

sign(e1)× 100 : e1 > emax

(39)

where, emax is an arbitrarily set maximum saturating error distance.

The reference velocity signal, VR, is sent to the PD controller to produce VPD. In

essence, the role of the proportional component is to drive the crane faster when the

hand-held device is farther from the trolley. The derivative component is a means

to capture the movement speed of the hand-held device. If the the device is moving

away from the trolley at a high speed, we wish for the crane to move faster in order

to catch up.
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We do not include an integrator (i.e. an “I” component, e.g. PID) in the controller

because there is already an integrating component in the feedback loop, where the

trolley velocity, VT , is integrated to yield the trolley position. This integration is

enough to ensure that the value of the steady state error, e1, is zero for a step input,

according to the final value theorem. Additionally, due to sensor noise, the inclusion

of an extra integrator within the controller will result in integrator windup, which

can potentially drive the system to a limit cycle.

VPD is passed through an artificial saturator (to prevent large amplitude signals

from damaging the motors) to produce VS, which is then sent to the “Motor, Trolley”

and “Hook Dynamics” blocks in a similar fashion to that shown in Figure 34. Under

this control architecture, the PD controller continuously drives the error signal e1 to

zero. The resulting effect is that the crane trolley follows the hand-held device around

the workspace.

3.2.1 Wand Control Operator Study

To investigate the effectiveness of the PD hand-motion controller, an operator study

using the wand, as shown in Figure 3, was conducted. The feedback gains were set to

1.2 and 0.6 for the proportional and derivative gains, respectively. They were chosen

by empirical means such that the motion of the hook was appropriately responsive

to operator commands, while at the same time did not yield large and unstable

oscillations. Twelve novice crane operators were included in the study. Each operator

drove the crane through the obstacle course illustrated in Figure 37 using the following

three control interfaces:

1. Pendent control where the direction labels written on the push buttons cor-

responded to the operator’s orientation. For example, pushing the “LEFT”

button yields a crane motion to the left relative to the operator.

2. Pendent control with reversed orientation. For example, pushing the “LEFT”
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button yields a crane motion to the right relative to the operator. This control

method is intended to study the effects of the change in the mental map that

an operator must make when his or her orientation changes.

3. Wand control.

The goal was to move the crane hook from start to finish as quickly as possible

without colliding with the barriers. The barriers in the obstacle course were about 4

feet in length and were arranged in a non-45-degree angle relative to the trolley and

bridge axes of the bridge crane.

Figure 38 shows the course completion times for each operator. The pendent con-

trol with “reversed” orientation was the most difficult. It had an average completion

time of over 100 seconds. The average completion time for wand control was approxi-

mately 50 seconds, which was half the time of the average time using normal pendent

control. One-way ANOVA analysis of the data shows that the mean completion time

of the wand control is significantly different from that of the pendent control meth-

ods. Furthermore, from a post-hoc Tukey analysis, there is a 95% confidence that the

lower mean completion times using the wand are not due to chance.

Figure 39 shows the number of collisions each operator made while completing

the obstacle course. Most operators had few or no obstacle collisions while using
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wand control. The average number of collisions was only 0.92. With pendent control,

obstacle collisions were nearly unavoidable. The average number of collisions with

normal pendent control was approximately 5; with reversed orientation, the average

increased to approximately 7. One-way ANOVA analysis of the data shows that the

mean number of collisions for the wand control is significantly different from that of

the pendent control methods. Furthermore, from a post-hoc Tukey analysis, there is

a 95% confidence that the lower mean number of collisions using the wand is not due

to chance.

The higher average completion time and average collisions under the reversed

pendent control is an indication of the increased difficulty under this control interface.

When the operator’s orientation in the workspace is changed, they are forced to

update their interface-to-crane-motion “mental map”.

In order to understand why wand control achieves such superior performance, it is

helpful to examine the time responses of the crane. Figure 40 shows the time responses

of the trolley and hook in the bridge axis direction for three of the test subjects using

normal pendent control. Figure 41 shows the data for the same operators in the trolley

axis direction. Clearly, pendent control without oscillation compensation produces
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Fig 40. Trolley and Hook Response Using the Pendent, Bridge Axis
Direction

significant hook oscillations.

Figure 42 shows the time response of the trolley, hook, and wand positions in the

bridge axis direction for a typical case using wand control. The data has been plotted

using the same scales as the corresponding data for normal pendent control in Figure

40. This format makes it immediately obvious that with wand control, the movement

is completed much faster and with less hook oscillation.

59



-2

-1.5

-1

-0.5

0

0.5

1

0 20 40 60 80 100 120 140

Op1 Trolley
Op1 Hook
Op2 Trolley
Op2 Hook
Op3 Trolley
Op3 Hook

Tr
ol

le
y 

an
d 

H
oo

k 
Po

sit
io

n 
(m

)

Time (sec)

Fig 41. Trolley and Hook Response Using the Pendent, Trolley Axis
Direction

-0.5

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120 140

Op 1 Trolley (Wand Control)

Op 1 Hook (Wand Control)

Op 1 Wand (Wand Control)

Po
sit

io
n 

A
lo

ng
 B

ri
dg

e A
xi

s (
m

)

Time (sec)

Fig 42. Trolley and Hook Response Using Wand, Bridge Axis Direction

Figure 43 shows a close-up view of the data. This plot clarifies the low oscillation

amplitude and also shows the slight lag between the wand position and the trolley and

hook. Figure 44 shows the same test subject’s data in the trolley axis direction. In

contrast to the pendent control responses that were shown in Figure 41, the amplitude

of hook swing is small, yielding a smoother hook response.
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Fig 44. Trolley and Hook Response Using Wand, Trolley Axis Direction

Figure 45 shows typical two-dimensional hook responses from a single operator

using both the normal pendent control and the wand control. It is evident that

wand control allows the hook to be controlled more precisely. The reduction in

the amplitude of hook swing and the overall smoothness of hook travel are major

contributors to fewer obstacle collisions and more efficient navigation through the

obstacle course.
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As part of the study, operators were asked to fill out a questionnaire giving qualita-

tive analysis of the crane’s performance, as well as suggesting potential improvements

to the system. It was unanimously agreed amongst the operators that it was more

intuitive and easier to use the wand control interface in comparison to traditional

push buttons. Furthermore, completion of the obstacle course, payload oscillation

reduction, and ease of learning were all rated highly for wand control. One of the

criticisms of the system was aimed at the PD controller that commands crane move-

ments. Many operators found the response too sluggish. It was also noted that with

the PD controller, it was possible to induce large hook oscillations by moving the

wand in an oscillatory motion about the hook.

3.3 PD with Input-Shaping Hand-Motion Controller

While it is clear that the Proportional Derivative controller described in section 3.2

performs better than the standard pendent, it lacks a component designed specifically
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to reduce residual hook oscillations. To this end, input shaping was added to the

control system. Figure 46 shows the block diagram for a controller with PD feedback

and Zero Vibration (ZV) input-shaping components.

The control architectures shown in Figure 46 and Figure 36 are very similar. The

only difference is the insertion of the “ZV Input Shaper” block. The saturated velocity

signal, VS, is passed to the input shaper block to produce the shaped velocity signal,

VZV , which is sent to the motors and trolley.

As will be explained in the following sections, the idea behind the insertion of a ZV

input shaper is to remove all energy at the oscillatory frequency from the command

signal before it is issued to the plant. Thus, the “ZV Input Shaper” block was designed

specifically to cancel the oscillatory frequency of the “Hook Dynamics” block.

The ordering of the blocks is important for successful oscillation reduction. In

order for an input shaper to work inside the feedback loop, the final actuating signal

(the quantity that enters the “Motor, Trolley” block) must preserve its oscillation-

canceling properties. If the input shaper is placed anywhere before a non-linear

element, such as the “Saturator” block, then the shaped signal may be corrupted

before it reaches the “Motor, Trolley” block [8].

The other possibility is to place the input shaper outside the feedback loop, i.e.

immediately after the “Hand-held Device Position” block, such that the shaped signal

is created before it enters the feedback loop. The difficulty with this method, however,

is that one would need to design an artificial saturator and place this between the
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“Hand-held Device Position” block and input shaper blocks. This saturator would

need to have appropriate saturation limits such that the shaped signal would not

be corrupted by any of the non-linear elements (such as the “Converter” block and

“Saturator” block in Figure 46) that are inside the loop. Therefore, placing the input

shaper outside of the loop greatly increases the design complexity.

Furthermore, placing the input shaper outside the loop requires the absolute po-

sition of the hand-held device. Under wand and glove control, the position of the

hand-held device is provided by the trolley-mounted camera. This means that for

these two interfaces, the variable “e1” is measured directly by the camera, i.e. the

hand-held device position is measured relative to the trolley. It is possible to use the

camera measurement and the trolley positional measurement (from the laser range

sensors) to reconstruct the absolute position of the hand-held device, however this

needlessly complicates the system. Under RF-based control, the RF-sensors measure

the absolute position of the RFID tag. Despite this, placing the input shaper out-

side the loop would still require a fundamentally different control architecture. The

simplicity of using one controller architecture for all control interfaces is appealing.

This section begins with an introduction to input shaping, followed by an em-

pirical design process that advances from a controller with only PD components, to

a controller with PD and input-shaping components. Simulation and experimental

evidence are included.

3.3.1 Input Shaping

This introduction to input shaping is based on the work from [37, 35, 41]. In the

past, a variety of techniques such as input shaping and closed-loop feedback control

have been developed for controlling the dynamic response of flexible systems. One

such flexible system is a crane, with typical responses that were shown in Figure 35.

64



A feedback controller’s inherent strength lies in the fact that it can detect er-

rors and respond accordingly. Such a controller is well suited to precisely position

the final location of a crane’s bridge or trolley. If, however, the feedback controller

must minimize hook oscillation, the control task becomes much more problematic.

Accurate sensing of the hook must be implemented, which is often costly or difficult.

When sensing of the hook is available, the feedback utilized to control the oscillation

responds only if oscillation exists. In this way, the controller is inherently reactive.

Another technique used for negating a system’s flexible modes is input shaping.

Input shaping does not require the feedback mechanisms of closed-loop controllers.

Instead, the control scheme reduces oscillations in an anticipatory manner, as opposed

to the reactive manner of feedback. Vibration suppression is accomplished with a

reference signal that anticipates an error before it occurs, rather than with a correcting

signal that attempts to restore the system back to a desired state. In the context of

crane control, this means that sensing of the hook oscillation is not necessary. As a

result, input shaping is easier to implement than feedback control.

In general, input shaping is the process by which a reference command for a system

is modified. The type of command modification depends on the desired effects on the

system response. If the system exhibits flexible dynamics, then it is often desirable to

modify the reference command so that the flexible modes will be minimally excited.

In broad terms, input shaping involves modifying a reference command in such a

way that resonant modes of a system combine destructively, resulting in low residual

oscillation.

To demonstrate destructive interference, consider the system response of a lightly

damped second-order system, such as a crane, to a series of two impulses, as shown

in Figure 47. Figure 47 shows the system response to the impulses if they were

each applied alone. Figure 48 shows the combined system response. These figures
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demonstrate that when an impulse of appropriate magnitude is applied one-half-

period after the first impulse, the responses of the system combine destructively,

resulting in zero oscillation.

The input-shaping process is an extension of the concept illustrated in Figure 48

that can shape any arbitrary reference command to result in zero residual oscillation

rather than just a sequence of impulses. This extension is made by convolving the

sequence of impulses, known as an input shaper, with an arbitrary reference signal

to produce a shaped command that is then used to drive the system. This process is

illustrated in Figure 49. Once the sequence of impulses is convolved with the original

command, the shaped command has the same oscillation-reducing properties as the

original set of impulses.

The amplitudes and time locations of the impulses that will limit the unwanted
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dynamic response are determined by solving a set of constraint equations. The con-

straint equations are usually categorized as residual oscillation constraints, robustness

constraints, impulse constraints, and time optimality.

To constrain the residual oscillation, we need an expression for the residual oscil-

lation amplitude as a function of the impulse sequence. If we assume the system can

be modeled as a second-order harmonic oscillator, or a superposition of second-order

systems, then we start with the response from a single impulse:

y0(t) =
A0ω√
1− ζ2

e−ζω(t−t0)sin
(
ω
√

1− ζ2(t− t0)
)

(40)

where A0 is the amplitude of the impulse, t0 is the time the impulse is applied, ω is

the natural frequency, and ζ is the damping ratio.

The response from a sequence of impulses is just a superposition of the responses

given in (40). Using the simplification:

ωd = ω
√

1− ζ2, (41)

the response to a sequence of impulses after the time of the last impulse is:

y∑(t) =
n∑
i=1

Aiω√
1− ζ2

e−ζω(t−ti)sin (ωd(t− ti)) , (42)

where Ai and ti indicate the amplitude and time of the ith impulse and n is the total

number of impulses.
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Given (42), an expression for the amplitude of oscillation can be formed by using

the trigonometric identity:

n∑
i=1

Bisin(ωt+ φi) = A∑sin(ωt+ ψ), (43)

where,

A∑ =

√√√√( n∑
i=1

Bicos(φi)

)2

+

(
n∑
i=1

Bisin(φi)

)2

. (44)

The expression for the phase shift, ψ, is unimportant for our purposes here and

φi is the argument of the sine term in (42). From the expression in (42):

Bi =
Aiω√
1− ζ2

e−ζω(t−ti). (45)

To obtain the residual oscillation amplitude, we evaluate (44) at the time of the

last impulse, t = tn. Substituting (45) into (44) and bringing the constant portion of

the coefficients out of the square root term yields:

A∑ =
ω√

1− ζ2
e−ζωtn

√
[C(ω, ζ)]2 + [S(ω, ζ)]2, (46)

where,

C(ω, ζ) =
n∑
i=1

Aie
ζωti cos(ωti

√
1− ζ2) (47)

S(ω, ζ) =
n∑
i=1

Aie
ζωti sin(ωti

√
1− ζ2). (48)

To form a non-dimensional vibration amplitude, (46) is divided by the amplitude of

residual vibration from a single impulse of unity magnitude. The resulting expression

gives the ratio of vibration with input shaping to that without input shaping. This

percentage residual vibration (PRV) is given by [16]:

PRV = V (ω, ζ) = e−ζωtn
√

[C(ω, ζ)]2 + [S(ω, ζ)]2, (49)

Equation (49) represents the level of vibration induced by an impulse sequence

given any value of frequency and any damping ratio less than one. A constraint on
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residual vibration amplitude can be formed by setting (49) less than or equal to a

tolerable level of residual vibration at the modeled natural frequency and damping

ratio. For the simplest Zero Vibration (ZV) shaper, the tolerable amount of vibration

is set to zero. Additionally, the magnitudes of all impulses are required to be positive

and the number of impulses minimized. This results in a shaper of the form [37, 35]:

ZV =

 Ai

ti

 =


1

1+K
K

1+K

0 π

ω
√

1−ζ2

 , i = 1, 2 (50)

where,

K = e
−ζπ√
1−ζ2 . (51)

To gain more insight, one can analyze the ZV shaper’s performance with the use

of a sensitivity curve, as shown in Figure 50. The sensitivity curve for a ZV shaper

is shown by the solid line. The sensitivity curves for the Zero-Vibration-Derivative

(ZVD) and the Extra-Insensitive (EI) shapers are also shown. The vertical axis is

the Percent Residual Vibration (PRV ) and the horizontal axis is the actual natural

frequency, ω, normalized by the modeled frequency, ωm, which is used to design the

input shaper. The curve indicates how residual vibration amplitude changes as a

function of modeling errors in frequency. While a sensitivity curve itself is not a

measure of robustness, a qualitative picture of the robustness of a command can

be obtained from it and quantitative measures can be extracted from it. One key

quantitative measure of robustness derived from the sensitivity curve is Insensitvity.

Insensitivity is the width of the sensitivity curve at a tolerable vibration level, Vtol,

with respect to the parameter of interest. For example, Figure 50 shows the ZV

shaper has an Insensitivity at Vtol = 5%, I(5%), of 0.06.

Figure 35 showed that the magnitude of residual oscillations to a standard pendent

control (without any form of oscillation-compensation control) is dependent on the
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Fig 50. Sensitivity Curve for the ZV, ZVD, and EI Shapers

move distance. With a correctly designed input shaper however, reduced residual

oscillations are guaranteed for all move distances.

3.3.2 Simulation Results of PD, and PD with Input-Shaping Controllers

We now discuss an empirical approach based on engineering rules of thumb to design

the PD hand-motion controller and the PD with input-shaping controller. We begin

with the PD controller, discuss its limitations, and proceed to PD with input shaping.

The results presented used the glove control interface.

A model was constructed using Matlab Simulink to simulate the control archi-

tectures in Figure 36 and 46. Here, we assume the operator uses the glove control

interface, shown in Figure 4. The crane model used a hook cable length of 5 meters.

Glove trajectories were specified as ramps with gradients equivalent to the maximum

velocity of the Georgia Tech 10-ton crane (0.3577 m/s) and ending at a distance of 2

meters.

Figure 51 shows the simulation results for the PD hand-motion controller with low

gains (P=2, D=0). The response is sluggish, with a 10% to 90% rise time of nearly

9.3 seconds and a 2% settling time of around 55 seconds. The maximum percentage

overshoot is approximately 2%. The amplitude of residual oscillations is also low.

70



0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80

Glove

Trolley

Hook
D

is
t
a

n
c
e
 (

m
)

Time (s)

Fig 51. Simulation Result of the PD Controller with Low Gains

To increase the responsiveness of the hand-motion controller, the gains were in-

creased so that the motors saturated and the trolley was able to move at its maximum

velocity. Figure 52 shows the response for the hand-motion control with increased

gains (P=15, D=10). Under this set of gains, the crane is more responsive; as the

10% to 90% rise time is reduced by 53% to only 4.4 seconds. However, hook oscilla-

tions are now more significant, as the maximum percentage overshoot has increased

by more than eight-fold to 16.6%. Due to the large overshoot and lightly-damped

nature of the hook dynamics, the 2% settling time has increased by more than 100%

to 119 seconds.

It can be seen that there is an inherent trade-off with the PD hand-motion con-

troller. Low gains do not tend to induce large hook oscillation amplitudes, but the

response is sluggish. However, high gains have a faster response at the cost of large

amplitude hook oscillations. The goal of combining PD feedback with a ZV input

shaper is to create a controller with the desirable features of fast response and low

residual oscillations. The ZV input shaper was designed to cancel the oscillatory

nature of the suspended hook at a suspension length of 5 meters.

Figure 53 shows the improved response of the combined controller. The 10% to
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Fig 52. Simulation Result of the PD Controller with High Gains
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Fig 53. Simulation Result of the High-Gain PD with ZV Shaper
Controller

90% rise time remains largely unchanged at 4.6 seconds, while the 2% settling time

is reduced by ten-fold to only 18 seconds, which is much faster than hand-motion

control with low PD gains. The maximum percentage overshoot is only 7.8%.
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3.3.3 Experimental Results of the PD, and the PD with Input-Shaping
Controllers Using the Glove Interface

The hand-motion control system was implemented on the Georgia Tech 10-ton bridge

crane. The goal was to control the movement of the hook, with no payload attached.

This single pendulum system is representative of an important subset of crane appli-

cations. The glove trajectories produced by the human operator were similar to those

used in the simulations. The ramp gradient was roughly equivalent to the maximum

velocity of the crane and the move distance was approximately 2 meters.

Note that when the crane approaches the desired stopping location, the crane

operator drops his or her hand to stop the crane. When the hand is dropped, the

camera can no longer detect the presence of the glove. As a result, the control system

reacts by setting e1 to zero. This action will manifest itself as a spurious artifact

whereby the glove position discontinuously becomes equivalent to the trolley position

at the time at which the glove is dropped. Also, to accelerate the crane, the operator

does not need to be at zero distance (right next to the hook). He or she can expose

the glove to the camera at some distance away to initiate movement. Due to these

operational effects, the glove position contain discontinuous artifacts at the starting

and stopping stages of the motion.

Figure 54 shows the experimental results for the PD hand-motion controller with

a low proportional gain (P=2, D=0). The 10% to 90% rise time is around 10 seconds,

the maximum percentage overshoot is about 5%, and the 2% settling time is 50

seconds. Note that the glove was not moved through a perfect ramp in position, as in

the simulations. The operator was asked to move the crane in a point-to-point motion,

while moving the glove at a relatively constant speed. The operator did move the

glove at a roughly constant velocity during most of the test, but prematurely stopped

the glove before moving it rapidly to the final target location. This type of motion is

to be expected from real human operators and it occurred in all of the tests. However,
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Fig 54. Experimental Result of the PD Controller with Low Gains

this uneven command profile has very little effect on the performance of the control

system.

Figure 55 shows the experimental response of PD hand-motion control with high

gains (P=15, D=10). The 10% to 90% rise time was reduced by over 40% to 5.8

seconds, but the maximum percentage overshoot doubled to 10%. The hook took

longer than 53 seconds to settle within 2% of the desired stop location. Note that

with the higher gains, the hook tracks the glove position much more closely than with

the low gains shown in Figure 54.

The experimental results using the PD hand-motion controllers clearly demon-

strate the expected trade-off between using high gains and low gains. The use of

a PD controller with high gains will reduce rise time at the expense of increased

overshoot and settling time.

Figure 56 shows the experimental response of the combined PD and ZV-shaping

controller. The 10% to 90% rise time is 4.8 seconds, and there is virtually no overshoot

or residual vibration. For this reason, the 2% settling time is approximately 8 seconds

(an 84% improvement over PD with low gains).
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Fig 55. Experimental Result of the PD Controller with High Gains
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Fig 56. Experimental Result of the High-Gain PD with ZV Shaper
Controller

Clearly, the experimental and simulation results demonstrate that the hand-

motion controller with high PD gains and ZV shaper is able to produce a hook

response that is fast and without significant overshoot and residual vibration.

It is impossible to experimentally reproduce the perfect ramp input that was used

in simulations, and there is no reason to do so as real operators do not use such

perfectly formed commands. Therefore, the glove trajectories from the experiments
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Fig 57. Simulation Result Using the Glove Trajectory from Experiment

were used to drive the crane in simulation to provide further comparison between

theoretical and experimental results. Figure 57 shows the simulation results when

the glove position of Figure 56 is used to drive the crane. Note that the discontinuous

artifact caused by the operator dropping his hand was removed. As expected, there

is virtually no residual oscillations. It should be noted that the goal of this research is

to design a controller centered around the human operator. Therefore, to assess and

validate controller performance, simulation results were used as a guiding reference,

while actual experimental data were more highly valued.

To investigate the robustness of the controller on the real crane, similar movements

were repeated for hook cable lengths of 4 meters and 6 meters, without redesigning

the input shaper. This corresponds to an increase and decrease of cable length by 1

meter from the original 5 meter cable length, for which the input shaper was designed.

The experimental results for the 4m and 6m cable lengths are shown in Figures 58

and 59, respectively.

Clearly, the controller still displays effective suppression of residual oscillations

even when the cable lengths are changed. To gain more insight, one can analyze

the ZV shaper’s performance with the use of a sensitivity curve, which was shown in
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Fig 58. PD with ZV Shaper Controller with 4 Meters Hook Cable Length
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Fig 59. PD with ZV Shaper Controller with 6 Meters Hook Cable Length

Figure 50.

For this specific application, the ZV shaper designed for the 5 meters cable length

uses a modeled frequency, ωm, of 1.4rad/s. When the cable length is changed to

4 meters and 6 meters, the actual natural frequency, ω, changes to 1.57rad/s and

1.28rad/s, which corresponds to a normalized frequency of 1.12 and 0.91, respectively.

Referring to the ZV sensitivity curve in Figure 50, it can be seen that this is still
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reasonably good performance, as the PRV for both cases are under 20%. The case

of the 4 meter cable length has a slightly higher PRV , which explains the presence of

the visible, but nevertheless small amount, of residual oscillations in Figure 58. If the

crane was expected to undergo large changes in cable length, then more robust shapers

such as the ones (ZVD, EI) shown in Figure 50 should be used in the controller[35, 36].

3.3.4 Experimental Results of the PD with Input-Shaping Controller Us-
ing the RF-based Interface

Using the same PD with input-shaper controller, we now present experimental re-

sults using the RF-based interface to control the crane. The experimental results

presented thus far were based on hand-motion input trajectories that were short in

move distance and traversed in only one direction. It is of interest to examine the

crane response to a hand-motion trajectory that is more complex - one that lasts

longer and traverses through the horizontal plane.

The experiment was conducted using the unfiltered RFID tag location data. The

tag was moved at roughly walking speed in the horizontal plane around the edges of

a table with dimensions of 0.77m by 2.44m. The tag was held at the corners of the

table for short periods of time to allow the crane to catch up. The height of the tag

in the vertical direction was not considered as the tag was assumed to move only in

the horizontal plane.

Figure 60 shows the overhead view for one lap around the table. The graph

shows the actual tag/hand positions (corresponding to the table edge), the measured

tag/hand positions, and the crane hook response. The sensor noise is fairly large

as the average and standard deviation of the distance error (obtained by taking the

difference between the measured tag location and the nearest point on the table)

were 10.39 cm and 10.41 cm, respectively. Note that despite the highly-fluctuating

tag-location measurements, the crane does not respond in a similar manner. This

is because the crane trolley can be approximated as a second-order mass-friction
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Fig 61. RF-Based Control Crane Response along the Bridge Axis

system that has low-pass filtering properties. Nevertheless, achieving more accurate

and consistent tag location data would be desirable, especially when the operator

desires small or precise crane movements.

Figure 61 shows the trolley position, hook position, and the measured hand/tag

position along the bridge axis. Inevitably, the hook and trolley lag behind the hand,

as a non-zero value of e1 is needed to drive the system. However, the controller ensures

smooth tag-following crane movements with suppressed residual hook oscillations. It
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Fig 62. RF-Based Control Crane Response along the Trolley Axis

can be seen that the shape of the measured hand position is similar to the path of

the hook and trolley. Figure 62 shows similar information for the trolley axis.

The average and standard deviation of the absolute distance error between the

hook and the measured hand positions are 0.54m and 0.57m, respectively, for the

bridge axis. For the trolley axis, these are 0.32m and 0.31m, respectively. However,

if the spatial error is considered (calculated by shifting the hook response forward in

time to overlay the hand position, and then forming the absolute difference), then

the average and standard deviation are only 0.25m and 0.21m, respectively, for the

bridge axis. For the trolley axis these values are 0.17m and 0.16m, respectively.

Spatial error disregards the lag in hook response that is necessary for the controller,

and is an indicator of the crane’s ability to follow the shape of the desired trajectory.

The experimental results demonstrate good performance, as the crane hook is

able to follow the desired trajectory around the edges of the table. However, there

are issues that need to be addressed, such as the sensor noise. Work is in progress to

design appropriate filters for the raw tag-location data.
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3.4 Root Locus for Closed Loop Input Shaping

In section 3.3, we noted that the design process of the PD with input-shaping con-

troller was based on empirical means. The controller in question was shown in Figure

46. Although the input shaper was designed analytically to reduce the oscillation of

the hook; the PD gains were chosen based on engineering rules of thumb. What is

lacking is a rigorous, theoretical-based design methodology for the selection of appro-

priate PD gains.

Furthermore, little consideration was given to the stability of the feedback control

with input shaping in the loop. Stability is important because input shapers utilize

partial time delays. That is, input shapers delay a portion of the signal they are

shaping. The remainder of the signal is not delayed, although it may be scaled.

Considering how full time delays affect closed-loop stability, the use of partial delays

certainly presents a stability question.

This section will describe a method of using the root locus to analyze the stability

of systems containing closed loop input shapers. Furthermore, the root locus can be

used as an approximate guideline for the selection of stable PD gains. This work

utilizes the developments in John Huey’s PhD thesis [7]. The numerical method used

for drawing the root locus of systems with time delays is based on the work of Nishioka

et al. [28].

3.4.1 Pivoting Algorithm for the Root Locus of Linear Systems with Time
Delay

In the Laplace domain, a generic input shaper may be represented by the following:

I(s) = A1 +
n∑
i=2

Aie
−sti (52)

where Ai and Ti are the amplitude and time of the ith impulse. Given that the transfer

function of a system with an input shaper inside the feedback loop contains terms

with e−sti , it follows that a numerical method to solve for the root locus is preferred
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over one that relies on a closed form solution.

Nishioka et al. described a simple algorithm for deriving the root locus for linear

systems with time delays [28]. The general procedure will be briefly explained here.

Consider the linear feedback control system shown in Figure 63. The closed-loop

transfer function of the system is:

Y (s)/X(s) = G(s)/(1 +G(s)H(s)). (53)

Suppose that the open-loop transfer function contains a time delay similar to an

input shaper and can be written as:

G(s)H(s) = k
Q(s)

P (s)
exp(−µs) (54)

where s ∈ C (the set of complex numbers), k is the controller gain, µ is the delay

time, and Q(s) and P (s) are polynomials of s of degree n and r, respectively, where

n > r. The poles of the closed loop system are given by the roots of the characteristic

equation, which can be written as:

1 +G(s)H(s) = 0 (55)

P (s) + kQ(s)exp(−µs) = 0. (56)

Rearranging (56) for k:

k = −P (s)

Q(s)
exp(µs). (57)
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Here, we introduce the complex function K(s) that is equivalent to the right hand

side of (57):

K(s) = −P (s)

Q(s)
exp(µs). (58)

The root locus is the trace of the roots of (56) when k is increased from zero to

infinity. Put differently, the root locus is the union of the following two sets:

1. The set s ∈ C−Q−1(0) such that equation (58) is satisfied, and

2. Q−1(0), where Q−1(0) = {s : Q(s) = 0}.

It is necessary to break the root locus into two sets because the function K(s) is not

analytic on the region Q−1(0). It should be noted that the second set, Q−1(0), are

the roots of (56) when k = ∞. It is also equivalent to the set of open-loop zeros.

Expressed mathematically, the root locus is the set:

Γ = {s ∈ C−Q−1(0)} ∪ {Q−1(0)}. (59)

However, for real-world controller gains, we assert the condition that K(s) must

be real and greater than or equal to zero. That is, k ≥ 0; k ∈ R. Therefore the

real-world root locus is expressed as:

Γreal = {s ∈ C−Q−1(0); Im(K(s)) = 0, Re(K(s)) ≥ 0} ∪ {Q−1(0)}. (60)

A corollary from (60) is that for any two points on the s-plane, s1 ∈ C and s2 ∈ C,

if (Im(K(s1)) ≥ 0, Re(K(s1)) ≥ 0), and (Im(K(s2)) < 0, Re(K(s2)) ≥ 0), then the

line segment connecting points s1 and s2 intersects Γreal. This idea is illustrated

in Figure 64 where the s-plane is mapped to the K-plane. The root locus that lies

between s1 and s2 in the s-plane is mapped to the positive Re(K(s)) axis on the

K-plane. It follows that if s1 and s2 are sufficiently close, the root locus can be

approximated by the midpoint of the segment connecting the two points.

When mapped to the K-plane, Nishioka’s method of numerically drawing the

root locus is a “pivoting” process of determining the values of s where Re(K(s)) is
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Fig 64. Mapping from the s-plane to the K-plane

crossed. The algorithm for plotting the approximated root locus is summarized in

the following:

1. Construct a closely-spaced uniform grid of points in the s-plane

2. For each pair of neighboring points, s1 and s2, evaluate equation (58)

3. If Im(K(s1)) ≥ 0, Re(K(s1)) ≥ 0 and Im(K(s2)) < 0, Re(K(s2)) ≥ 0, then

smid, the midpoint that lies on the segment connecting s1 and s2, is a point on

the approximate root locus, Γapprx

4. Plot the closed-loop poles and open-loop zeros

3.4.2 ZV Input Shaper in the Laplace Domain

Now that a tool is available for generating the root locus of systems with time delays,

we focus on analyzing the input shaper in the Laplace domain.

An input shaper in the time domain is a series of i impulses with amplitudes given

by Ai. The first impulse has amplitude A1 and occurs at t = 0. The times at which

subsequent impulses occur after the initial impulse is given by ti. Thus, the input

shaper can be thought of as a sequence of time-delayed impulses. A ZV input shaper,

such as the one in (50), has two impulses, and is written in the Laplace domain as:

ISZV (s) = A1 + A2e
−st2 . (61)
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Using s = σ + jω, the zeros of ISZV can be determined by setting (61) to zero

and separating the second term on the right hand side into real and imaginary parts:

ISZV (s) = 0 = A1 + A2e
−σt2e−jωt2 . (62)

By collecting the real and imaginary parts, and noting that e−σt2 must be positive

and real, the following conditions must be satisfied:

A1 = A2e
−σt2 (63)

−1 = e−jωt2 . (64)

Solving for σ and ω, the locations of the shaper zeros are:

ω =
±nπ
t2

n = 1, 3, 5... (65)

σ = − 1

t2
ln

(
A1

A2

)
(66)

where σ and ω correspond to the real and imaginary coordinates in the Laplace

domain.

A ZV shaper will cancel a system’s flexible poles if the location of its zeros are

the same as that of the poles. In another words, if the system has natural frequency

ωsys and damping ratio ζsys, then A1, A2, and t2 must be set such that they satisfy

(65) and (66), with ω set to ωsys
√

1− ζ2, and σ set to −ζsysωsys.

It is important to note from (65) that a ZV input shaper has an infinite number

of zeros, as illustrated in Figure 65. This means that the shaper produces an infinite

column of zeros when plotted in the s-plane, with the first set of zeros (n = 1) usually

set to cancel the poles of the flexible system. It is also important to note that a ZV

shaper has no finite, open-loop poles, because from (61), ISZV = ∞ only if the real

part of s equals −∞.
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Fig 65. Shaper Zeros Canceling Flexible Poles

3.4.3 Root Locus of the PD with ZV Input-Shaping Hand-Motion Con-
troller

Before plotting the root locus of the PD with ZV input-shaping controller from Figure

46, it must first be modified. The resultant control block diagram is shown in Figure

66.

Firstly, the feedback loop in question is indicated by the dashed box, i.e. we are

interested in the closed-loop system given by VT (s)
Hand−HeldDevicePosition(s)

. The “Hook

Dynamics” block is disregarded since it is outside of the feedback loop. Although it

may seem unwise to ignore the hook dynamics (consider the case where the trolley

enters a limit cycle that has a frequency which resonates with the hook swing), the

root locus analysis still holds value because the stability of the trolley motion is taken

into account.

As will be explained later in this section, the value of this analysis using root

locus is not to determine the precise values of PD gains that will yield the best crane

response. Rather, the intent is to determine the approximate gains that will provide

stable trolley motion. Using these approximate gains as starting points, other gains
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that yield a more desirable hook response can then be determined using iterative

methods. Furthermore, the starting points will not be chosen near the boundaries of

trolley instability. Coupled with the fact that the hook generally comes to rest in its

equilibrium position beneath the trolley, a stable trolley is enough to ensure stability

of the hook.

The second modification to Figure 46 is that the original “PD” controller is re-

placed by the “KPD(PD)” block. This is necessary as the root locus traces the

poles of a system by varying one gain parameter. Therefore, the transfer function of

“KPD(PD)” is KPD(P +Ds), where KPD is the variable gain parameter. The P and

D gains are fixed at preset values.

Thirdly, because the described root-locus plotting algorithm only works for linear

systems, all non-linear elements must be either linearized, or removed completely.

One such non-linear element that must be removed from Figure 46 is the “Saturator”

block. Also, the “Converter” block from Figure 46 must be linearized. Thus, the

piecewise equation that described the original converter, (39), was modified to the

following:

VR(s)

e1(s)
=

100

emax
, (67)

where VR is the reference velocity signal, e1 the error distance, and emax is as before

in (39).
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The “Motor,Trolley” block is modified slightly from the original equation given in

(37). The implicit conversion from the the PLC’s digital representation of velocity (a

value ranging from −100 to 100), to the actual velocity (in m/s) must now be made

explicit in the transfer function, i.e.:

VT (s)

VZV (s)
=
Vmax
100

ω2
n,MT

s2 + 2ζn,MTωn,MT s+ ω2
n,MT

(68)

where Vmax corresponds to the maximum speed of the crane. Note that “Motor,Trolley”

already ignores non-linearities such as motor saturation, rate limiting, switching ele-

ment, and dead-zone. “Hook Dynamics” has the same transfer functions as before,

given by (38). The ZV input shaper is given by (61).

With the linearized system in Figure 66, the root locus can be plotted. The

open-loop transfer function of the closed-loop system we wish to analyze is given by:

GOL = (KPD(P +Ds))
(
A1 + A2e

−st2
)(1

s

Vmax
emax

) (
ω2
n,MT

s2 + 2ζn,MTωn,MT s+ ω2
n,MT

)
.

(69)

Figure 67 shows the root locus using P = 1 and D = 1, and varying KPD from 0

to 5000. Only the positive imaginary half-plane is shown. The closed-loop poles and

zeros are shown by crosses and circles, respectively. The imaginary axis is represented

by the dashed line.

As the input shaper generates an infinite column of zeros parallel to the imaginary

axis, the root locus contains an infinite number of branches (the branches are the trace

of closed-loop poles) that end at those zeros. This presents a difficulty, as it is not

obvious what axes range should be drawn to include all significant branches and zeros.

However, it is explained in [7] that below a sufficiently large radial distance from the

origin, the closed-loop poles arising from the input shaper move left (in the negative

direction on the real axis) as they get further from the real axis. This means that

the most significant closed-loop poles arising from an input shaper are those closest

to the real axis. Typically in a real system, the most significant poles are those that
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have lower frequencies (i.e. closer to the real axis); therefore with some foresight and

judgement, the axes range of the root locus should be chosen to include only a finite

number of these branches.

Figure 68 shows a close-up view on the branches near the imaginary axis. The

branches curve from beneath the zeros out towards the unstable region, before curving

back and terminating at the zeros. The system becomes marginally stable when

KPD = 50. This corresponds to the closed-loop pole that crosses the imaginary axis

at around imag(s) = 12. At this gain, the closed-loop poles for the branches near

imag(s) = 9 and imag(s) = 7 are also close to the imaginary axis, but do not cross

into the unstable region.

Figure 69 shows the computer-simulated trolley response when the linearized sys-

tem of Figure 66 is subjected to a step input, with P = 1, D = 1, and KPD = 50.

Clearly the trolley response shows growing instability. Figure 70 shows the close-up

view of the trolley response for a portion of the simulation. Two distinct frequencies

of oscillations are visible, one with a period of 0.5 seconds, which corresponds to the

unstable poles that occur at imag(s) = 12 in the root locus, and the other with a
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Fig 69. Linearized System Simulated Trolley Response for KPD = 50

period of 2.0 seconds.

It is of interest to examine the simulated step response of the non-linear system

from Figure 46 while using similar gains as the PD controller above. That is, we set

P = 50 and D = 50. The simulated response is shown in Figure 71. The response is

stable, however, as the close-up view of Figure 72 shows, there are minute oscillations

(peak to peak amplitude of less than 3mm) around the set point with a period of
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Fig 71. Non-Linear System Simulated Trolley Response for P = 50, D = 50

approximately 1 second.

Figures 71 and 72 demonstrate the limitations of the root locus. As root locus

can only be plotted for a linearized system, the stabilizing properties of non-linear

elements, such as the saturator, are ignored. The saturator has a tendency to stabilize

the system because it prevents excessive actuator effort. Furthermore, the two degrees

of freedom available when choosing the P and D gains separately is reduced to one
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when using the root locus, as the gains must be lumped into one variable, KPD.

Despite these limitations, stability analysis using the root locus is still valuable as it

provides an approximate upper limit on the range of stable gains. It is also useful as

it provides a starting point in the search for the PD gains that will yield desirable

crane responses using more detailed methods.

3.5 Numerical Methods for the Selection of PD Gains Us-
ing Matlab and Simulink

As seen in section 3.4, the utility of the root locus analysis is to provide approximate

values for the gains that result in unstable trolley behavior. In this section, we

present two numerical, iterative methods implemented in Matlab and Simulink. These

methods use the information from the root locus analysis to search for P and D gains

that will yield the most desirable crane response.

A model was constructed in Simulink that implements the block diagram shown in

Figure 46. This was the same model that was used to generate the simulation results

discussed in section 3.3.2. To search for the optimized PD gains, a cost function

must first be constructed to quantize the performance of the Simulink model. After
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a simulation is completed, the cost function is used to analyze the simulation results

and to return a scalar value. Numerical and iterative methods are then used to find

the optimal set(s) of PD gains that minimize the cost.

3.5.1 Cost Function for Quantifying the Controller Performance

The crux of numerical methods lies in the design of the cost function. Its design is

important, because it needs to capture all the characteristics of the crane response that

are considered “desirable” for an intuitive crane controller. However, as mentioned

in the beginning of this chapter, the desirable response is subjective to individual

preferences. This presents a difficulty, because there is not one, but many sets of PD

gains that produce “desirable” crane responses.

Presented here is an example of a simple cost function. We assume the input

to the hand-motion controller, i.e. the position of the hand-held device, is a ramp

with a gradient equivalent to the maximum velocity of the Georgia Tech 10-ton crane

(0.3577m/s). The ramp begins at t = t1 = 1s and ends when the position of the

hand-held device has traveled a distance of 2 meters, i.e. at t = t2 = 6.59s. This is

the same input trajectory that was used to generate the simulation results of section

3.3.2, and was seen (labeled as “Glove”) in Figures 51, 52, and 53.

The total cost function is a piece-wise function consisting of two parts, the ramp-

up cost and the settling cost. It compares the position of the hand-held device,

poshand−held device with the position of the hook, poshook:

Ramp Up Cost = Σ|poshand−held device(t)− poshook(t)| : t1 ≤ t < t2 (70)

Settling Cost = Σ|poshand−held device(t)− poshook(t)| : t2 ≤ t < tend (71)

Total Cost = Ramp Up Cost+ Settling Cost, (72)

where tend is the simulation end time, which was set to 30 seconds. The ramp-up cost

is the summation of the absolute difference between the position of the hand-held

device and the hook, during the ramp-up stage of the input. This was designed to
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penalize gains that produced a slow response to operator commands. The settling

cost is the summation of the absolute difference between the position of the hand-

held device and the hook, between the ramp end time and the simulation end time.

This was designed to penalize gains that produced long settling times. Gains that

have high settling costs typically produced responses that were oscillatory around the

settling point.

3.5.2 Numerical Methods for the Selection of PD Gains that Minimized
the Cost Function

Using the cost function in (72), we present two numerical methods that find the

optimal PD gains.

The first method uses fminsearch, a built-in Matlab function. This is an uncon-

strained minimum search method that searches over the two dimensional space of P

and D gains to find the combination that yields the lowest cost. It requires the user

to enter initial guesses. The choice for the initial guesses was provided by the judicial

use of the results from the root locus analysis, which was discussed in section 3.4.3.

As mentioned earlier, the root locus analysis provides an approximate upper limit

on the range of stable PD gains. The marginally stable gains found in section 3.4.3

were P = 50 and D = 50. We set our allowable search range of gains to: 0 < P < 50,

and 0 < D < 50. The algorithm for fminsearch stops after it reaches convergence to

a solution within the specified tolerance. Table 1 summarizes the results for various

start points. The processing time required to find the solution is listed for each case.

The platform used was a 2GHz Intel Core 2 Duo PC running Windows Vista.

It is interesting to note that the initial guess has little effect on the optimal PD

values, which are approximately 7.33 for P, and 8.32 for D. However, the processing

time is longer if the initial guess is further from the final solution. Also, it appears

that there is only one minimum over the range of PD gains investigated. This may

be due to the simple design of our cost function. The benefit of using fminsearch is
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Table 1. Optimal PD Gains Found Using the fminsearch Method

Initial Guess Optimal P Optimal D Processing Time (s)
P = 10 D = 10 7.331 8.3189 86
P = 20 D = 20 7.331 8.3187 117
P = 30 D = 30 7.3308 8.3189 127
P = 40 D = 40 7.3305 8.3185 139
P = 49 D = 49 7.3309 8.3186 230

that it does not rely on numerical or analytic gradients and can handle discontinuities.

However, the algorithm is not guaranteed to find the global optimum.

Suppose that cost function and the dynamics of the entire hand-motion control

system were more complex; and this complexity produced multiple local minima over

the space of PD gains and costs. In this case, an alternative to fminsearch is to use

a method that relies on brute force. First, construct a grid over the allowable range

of P and D gains. The optimal PD gains are then selected by examining the costs

resulting from every P and D combination. The advantages of this method is that

it is guaranteed to find the “global” (global within the range of allowable PD gains)

minimum.

The brute force method was executed in the allowable range of 0 < P < 50, and

0 < D < 50;P ∈ I, D ∈ I. In total, approximately 2500 simulations were made,

taking around 40 minutes to complete on a 2GHz Intel Core 2 Quad PC running

Windows Vista. Figure 73 shows two views of the surface plot of the cost versus the

P and D gains. The vertical axis represents the logarithmic of the total cost, and the

horizontal axes represent the P and D gains ranging from 1 to 50. It is clear that

there is one minimum over this range (darkest color denote the lowest cost), and lies

in the region of P = 7, D = 8. The result from this brute force method confirms the

single minimum found using the fminsearch method.

The fminsearch method has the advantage of speed, but is not guaranteed to

find the global minimum over the allowable range of PD gains. However, this can be
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Fig 73. Cost vs. PD Gains Using the Brute Force Method

supplemented by the brute force method, which can be used to provide an overview of

the cost over the entire range of PD gains. However, the brute force method is costly

and inefficient. Also, the degree of accuracy of the brute force method is determined

by the grid spacing between successive PD gains. If there are multiple minima over

the allowable range, then the brute force method can be used to complement the

fminsearch method by providing appropriate initial guesses. In this way, accurate

solutions can be found for each local minimum.

Figure 74 shows the computer simulated hand-motion controller response using

the optimal gains from Table 1: 7.33 for P, and 8.32 for D. The 10% to 90% rise

time is approximately 4.87 seconds, the maximum percentage overshoot is about 2%,

and the 2% settling time is around 10 seconds. Figure 75 shows the experimental

response on the 10-ton bridge crane using the same optimal gains. The 10% to 90%

rise is approximately 5 seconds and there is virtually no overshoot. The 2% settling

time is around 10 seconds. The performance of the hand-motion controller using the

optimized PD gains is similar to that of using the PD gains determined by empirical

means, which were shown in Figures 53 and 56 of section 3.3.
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Optimized PD Gains
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Fig 75. Experimental Results of the Hand-Motion Controller with
Optimized PD Gains

3.5.3 Numerical Methods Using Alternative Cost Functions

To investigate the robustness of the numerical methods to different cost functions, we

present an illustrative example using a cost function that penalizes/rewards different

attributes of the crane response.

We set the hand-held device input trajectory to the same ramp-plateau as before.
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The trajectory stops at a distance of dstop = 2m. The ramp-up and settling costs are

calculated in a similar way to (70) and (71):

Ramp Up Cost = Σ|poshand−held device(t)− poshook(t)| : t1 ≤ t < tstop (73)

Settling Cost = Σ|poshand−held device(t)− poshook(t)| : tstop ≤ t < tend (74)

where tend is the simulation end time, which was set to 30 seconds. The variable t1 is

the time at which the ramp started (set to 1 sec), and tstop is the time at which the

hook position first reaches the stop distance, dstop.

Additionally, we include a cost that penalizes excessive actuator effort or high

energy requirement. As there is friction in the system, the total work done by the

actuators can be approximated by the total trolley move distance. This allow us to

form a simple energy cost function:

Energy Cost = Σ|postrolley(t+)− postrolley(t)| : 0 ≤ t < tend (75)

We also define three user-adjustable weighting terms to tune the contribution each

type of cost makes to the total cost function. The weighting for the ramp-up cost,

α, is calculated by normalizing the ramp-up duration of the hook response against

the total simulation time. The weighting for the settling cost, β, is calculated by

similar means using the settling duration. The weighting term, γ, scales the energy

cost according to the total simulation time. The three weighting variables and the

total cost are given by:

α = 1× (tstop − t1)
tend

(76)

β = 1× (tend − tstop)
tend

(77)

γ = 1× tend (78)

Total Cost = α(Ramp Up Cost) + β(Settling Cost) + γ(Energy Cost). (79)

Figure 76 shows two views of the cost surface over the range of 0 < P < 50,

and 0 < D < 50;P ∈ I, D ∈ I. This was generated using the brute force method.
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Fig 76. Two Views of the Cost Surface vs. PD Gains Using the
Alternate Cost Function

Fig 77. Top View of the Cost Surface vs. PD Gains Using the Alternate
Cost Function

The shape of this cost surface is significantly different than the cost surface shown

in Figure 73. Figure 77 shows the top view of the cost surface. The darkest regions

denote the lowest cost. Over this range, the lowest cost is given by the set of gains

P = 3 and D = 4.

Table 2 summarizes the results using the fminsearch method for various initial

guesses. The first four columns have the same meaning as in Table 1. Highlighted in
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Table 2. Optimal PD Gains Found Using the fminsearch Method for the
Alternate Cost Function

Initial Guess Optimal P Optimal D Process Actual
Time (s) Cost

P=3 D=3 4.2011 3.5462 139 6143
P=3 D=4 4.6230 4.5067 92 6149
P=4 D=3 4.0078 3.1478 89 6151
P=4 D=4 4.2166 3.5817 94 6143
P=10 D=10 4.2136 3.5746 185 6143
P=20 D=20 9.2404 27.6598 126 6259
P=30 D=30 9.2627 27.6267 162 6258
P=40 D=40 4.2143 3.5713 368 6143
P=49 D=49 31.9575 46.8810 143 6425

bold are the results when the gains from the brute force method (P = 3 and D = 4)

, are used as the initial guess for the fminsearch method. It can be seen that due to

the increased complexity of the cost function, multiple local minima exist. This is also

reflected by the irregular pattern in the total process time. The results suggest there

are local minima around P ≈ 4, D ≈ 3.5; P = 9.2, D = 27.6; and P = 32, D = 46.9.

Despite this, initial guesses that were close to P = 3 and D = 4 yielded similar

solutions.

The last column in Table 2 shows the actual cost from using the optimized PD

gains. Gains of around P ≈ 4, D ≈ 3.5 yielded the lowest costs of around 6140,

while the two local minimum near P = 9.2, D = 27.6 had a slightly higher cost of

approximately 6260. Interestingly, the local minimum at P = 32, D = 46.9 also

yielded a low cost of 6425.

It is important to note that the form of the cost functions we presented were chosen

according to our commonly desired performance requirements. Should there be a need

to penalize or reward other characteristics of the crane response, the control engineer

simply needs to choose another cost function that better captures the important

performance characteristics necessary for the intended application.

For example, high energy usage may also occur when the motors undergo high
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acceleration or deceleration. Therefore, terms related to trolley acceleration can be

used in the energy cost function. Cost functions that assume other input trajectories,

such as a step or more complex 2-D motions, may also be utilized. For example, the

ramp of the gradient can be modified to reflect a human operator’s walking speed, or

the stopping distance can be increased.

Alternatively, the engineer may choose to penalize only the spatial error (discussed

in section 3.3.4) between the positions of the hand-held device and the hook. Spatial

error disregards the lag in the hook response that is necessary for the controller, and

is an indicator of the crane’s ability to follow the shape of the desired trajectory.

3.6 Summary

This chapter presented hand-motion controllers for intuitive crane control. The chap-

ter began with a discussion on the performance of the standard pendent controlled

crane. Following this, the structure of and justification for the empirically designed

controller was presented. The first controller investigated was a PD controller with

low gains. Given the sluggish response, the controller was changed to use high gains.

The high-gain controller resulted in large oscillations, so a PD with high-gains and

ZV-input-shaper controller was developed. These controllers were evaluated by sim-

ulation and experimental results.

Noting that the empirically designed controller chose the PD gains based on en-

gineering rules of thumb, a structured methodology for determining the optimal PD

gains was then presented. The discussion began by using root locus to analyze sys-

tems with closed-loop input-shaping. The results of this analysis can be used to

generate a stable space of possible gains for two numerical methods that search for

the optimized PD gains. The methodology is summarized below:

1. Plot the root locus of the system. Linearize the system if necessary.

2. Obtain the set of marginally stable PD gains, PDRL, from the root locus.
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3. Design a suitable cost function, fcost(), that penalizes undesired crane responses.

4. Using PDRL as an approximate guideline, and the cost function fcost(), deter-

mine the optimized PD gains PDoptimized using one (or a combination) of the

following two numerical methods:

(a) fminsearch method - Searches for the set of PD gains that yield the local

minimum cost. This method is fast and efficient, but can only find the

local minimum.

(b) Brute force method - Determines the cost for every combination of PD

gains over a prescribed range. This method provides a general picture of

the cost over the range of PD gains. It is inefficient, but can indicate the

locations of local minima.
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CHAPTER IV

CONCLUSIONS AND FUTURE WORK

Cranes are crucially important elements in the industrial complex. They are used in

many areas such as shipping yards, construction sites, and warehouses, just to name

a few. However, payload oscillation inherent to all cranes makes it challenging for hu-

man operators to manipulate payloads quickly, accurately, and safely. Manipulation

difficulty is also increased by non-intuitive crane control interfaces. Intuitiveness is

characterized by ease of learning, simplicity, and predictability. This thesis addressed

the issue of intuitive crane control in two parts: the design of the interface, and the

design of the controller. Simulation and experimental results were presented.

Three novel types of crane control interfaces were presented in chapter 2 - wand,

glove, and RF-based control. These interfaces allow an operator to drive a crane by

moving his or her hand freely in space. The wand and glove control interfaces were

heavily dependent on machine vision. This thesis contributes a number of machine

vision algorithms in order to facilitate those interfaces. These algorithms include: i)

the use of two camera acquisition windows for the independent real-time tracking of

the hook and the wand/glove; ii) the K-means algorithm used to distinguish between

hook and wand/glove blobs; and iii) using software predictors to aid hook tracking.

The implementation of the RF-based control using an off-the-shelf product from

Ubisense was also described. The potential for RF-based control exceeds machine-

vision-based methods because of the added robustness and reliability in using RF

sensors and RF tags. Tracking is still possible when the direct sensor-to-tag line of

sight is broken. Furthermore, extra functionalities can be added using the two-way

communication channel between the sensors and the RF tag.
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The design of the hand-motion controller was discussed in chapter 3. The pro-

cess of empirically designing the controller was presented, and its performance was

documented with simulation and experimental results. The design process started

with a PD controller with low gains, followed by a PD controller with high gains, and

ended with a PD with ZV-input-shaper controller. The combination of aggressive

PD gains and ZV input shaping produced the desired characteristics of fast response,

short settling time, small amplitude overshoot, and low residual oscillations. We also

presented the results from an operator study that indicated crane control using an

intuitive interface was more effective than using a standard pendent interface.

A more structured methodology for determining the optimal PD gains was also

discussed. The discussion began with an analysis of systems with closed-loop input

shaping using root locus. This analysis has some caveats, among which is the inability

to account for non-linearities (such as saturators). For this reason, the results from

the root locus analysis should be used as guidelines for other methods that search for

optimized PD gains. Two such methods were discussed, both of which are numerically

based.

Crucial to the numerically-based methods was the design of the cost function.

The cost function returns a scalar value by analyzing the simulated response of a

computer model of the crane. Undesirable characteristics such as lag and large-

amplitude oscillations are assigned a higher cost. The goal of the numerical methods

is to find the set of PD gains that minimized the cost. The results of the root-locus

analysis are used as guidelines to define the suitable search space for these numerical

methods.

The first numerical method is derived from the Matlab function fminsearch,

which is fast, accurate, and capable of finding the local minimum. The second method

relies on brute force and calculates the cost for a large combination of P and D gains.

The two methods can be used in conjunction and each complements the deficiencies
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of the other. For example, the brute force method can be used gain an overview of the

search space and provide the approximate locations of multiple local minima. The

fminsearch can then be used to find accurate locations of those minima.

4.1 Future Work

The RF-based control interface has many interesting features and possible extensions

that have not been explored and optimized. As was discussed in section 3.3.4, there

is noticeable amount of noise in the measured tag locations. Although this does not

have a significant impact on the crane performance for the controllers presented in

this thesis, it is still desirable to have the best measurements available. Ongoing work

is addressing this issue by designing suitable filters.

The removal of RF-sensor noise will be important for additional functionalities

that exploit the RF-based technology. One such area is to expand the movement

capabilities of intuitive crane control by enabling movement in the vertical (hoist-

ing/lowering) direction, which the operator signals by moving the hand-held device

vertically up or down. There is an implemented version of the control system that is

capable of vertical movement, but is based on machine vision. It is dependent on the

fact that reflective markers on the wand or glove appear larger or smaller to the cam-

era as it moves up or down. This essentially requires the camera to detect movement

in the direction parallel to its focal axis, which is not ideal because a single camera

setup does not have true depth perception. The RF-based interface circumvents this

problem because the tag can be located in 3-D space.

The current controllers use a PD controller to drive the error between the hook

and the hand-held device to zero. The effect of this is that the hand-held device acts

as a crane-puller; i.e. the hook follows the operator. Further research could explore

the inverse of the puller, i.e. a crane-pusher, where the hand-held device exerts a

“repulsive force” on the crane. Additionally, a hybrid between the puller and pusher
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can be investigated. The crane will act as a puller when the hand-held device is

beyond a preset distance, D1, from the crane, and act as a pusher when the device is

within another preset distance, D2, from the crane. Effectively, the crane will move

to maintain its position in the dead-zone between D1 and D2, around the operator.

This feature will be useful for “hands-free” operation, where the operator can safely

have both hands manipulating the payload, while the crane automatically maneuver

itself in the dead space around the operator.

The simulation and experimental results of this thesis were all based on single

pendulum dynamics. That is, cranes with a suspended hook and no payload attached,

or a payload that behaves sufficiently like a single pendulum when attached to the

hook. Further research would analyze the likely double-pendulum dynamics that

can result from a crane with payload attachments. The research would also focus on

designing appropriate counter-measures (such as multi-mode or robust input shapers)

to address residual oscillations resulting from the new dynamics.

A final area of research pertains to the design of the cost function, which was used

for the numerical methods that finds optimized PD gains. As discussed in section

3.5.1, the cost function is crucial as it essentially defines the “desirable” characteristics

of the crane response. This thesis presented two simple cost functions with the aim

of demonstrating the use of the numerical methods. However, further research would

develop cost functions that capture “desirable” crane responses for a wide range of

applications. One example that was mentioned in section 3.5.1 is to penalize only

the spatial error, rather than the inevitable temporal lag in the crane response. The

spatial error and temporal lag can also be combined to produce a hybrid cost function.
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