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ABSTRACT 

The silicon wafers in the photovoltaic and microelectronics industries are sliced using 

the wire saw process. The process has a higher yield, lower kerf loss, and lower surface 

damage with respect to inner diameter saw. Higher diameter and thinner wafers can be 

obtained using the wire saw process. Almost all kinds of brittle materials, including high 

density or foam ceramics, glasses, sapphire, and rocks, can be cut by wire saw.  

The early slurry-based wire saw process consisted of a bare steel wire and abrasive 

carrying slurry, which leads to a rolling and indenting materials removal mechanism. Fixed- 

abrasive wire saw process, consisting of diamond grit impregnated steel wire leads to fixed- 

abrasive machining, was developed. The fixed-abrasive wire saw process is more efficient in 

comparison to the slurry-based wire saw process. The fixed-abrasive wire saw process is the 

subject of this study and is referred to as “the wire saw process” hereafter.  

Although it offers many advantages, the wire-saw process induces roughness and 

waviness damages on the cut surface. Post processes including grinding and polishing are 

used to remove these damages, which increases manufacturing costs. Roughness and 

waviness damage models relating the process parameters to the damage are needed to 

minimize the damage. The scope of this work is to develop roughness and waviness damage 

models that relate the process parameters to these damages.   

An experimental parametric study is conducted for surface roughness, varying the 

feed speed, wire speed, wire tension, and wire properties using different wires. The 

parametric study shows that the surface roughness decreases with wire speed, increases with 

feed speed, and is independent of wire tension. The SEM images of the cut surface reveal 

that the material removal is in ductile mode while there is brittle fracture in the form of grain 

removal, which leads to roughness damage. The material removal mechanism is the same as 

the ductile-regime machining of brittle materials reported in the literature.  

Stress based and fracture mechanics based damage models are derived for roughness 

damage induced by wire saw cutting. The models have a good performance in predicting the 

roughness damage obtained from experimental work. Both models show that if the feed 
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speed-to-wire speed ratio increases, roughness will increase, while if this ratio is kept 

constant, the roughness will be constant. In order to increase the efficiency of the wire saw 

process by increasing feed speed, the wire speed should be increased proportionally to the 

feed speed so that the roughness will be kept constant.  

Both of the roughness models state that if abrasive grit radius and spacing increases, 

roughness damage will increase. An experimental parametric study including tests done with 

three different wires is conducted. The parametric study shows that the roughness damage 

increases with increasing grit radius and spacing. Wires having high grit density and smaller 

grits are beneficial for surface quality.  

The amount of material that has to be removed by post processes is governed by the 

surface-damage depth. The bonded-interface sectioning technique (BIS) is employed with 

wire saw tests. An experimental parametric study relating process parameters to surface 

damage depth is conducted. The surface-damage depth is measured using SEM imaging. The 

SEM images show that the surface damage is occurring due to grain removal by brittle 

fracture. The fracture-damage model captures the variation of surface-damage depth well. 

The surface-damage depth increases with increasing ratio of feed speed to wire speed. The 

average surface damage depth is 15 μm. An average depth of 15 μm should be removed in 

order to remove the process-induced damage totally.  

Long waviness induced by the wire-saw process is the most detrimental surface 

damage. Long waviness formation is investigated by experimental parametric study and 

analytical modeling. A string model is used to model the bow of the wire marks on the cut 

surface. The string model is capable of predicting the bow of the wire marks obtained by 

experimental study. The increase of tension decreases the wire bow amplitude, while increase 

in feed speed increases the wire bow amplitude, which is predicted by the string model and 

observed in the experiments.  

The work done by free-standing wire, work done by oblique cutting forces and work 

done by wire tension on the wire, governs the long waviness formation. The equivalence of 

these energetic terms leads to two mechanisms. These mechanisms are used to explain the 
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evolution of the long waviness profile and peak-to-valley value with respect to process 

parameters. The increase of wire tension leads to a wavy surface with a lower peak-to-valley 

value, while decreasing wire tension will lead to a step like surface with a high peak-to-

valley value. The peak-to-valley value increases with increasing feed speed. The amount of 

post processes increases with an increasing peak-to-valley value, which will increase costs. 

In order to increase the efficiency without increasing the peak-to-valley value, the wire 

tension can be increased with increasing feed speed.  
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CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 

Machining of brittle single crystals has gained serious attention to minimize 

subsurface machining induced damage to improve reliability as well as reduction of kerf loss 

and wasted scraps. The wide utilization of silicon wafers in photovoltaic solar cell and in 

microelectronics industries requires parallel processes for the wafer cutting process. 

Commonly, inner diameter (ID) saws and parallel wire saws are utilized in the wafer cutting 

process. Wire saws enjoy several advantages over ID saws. These advantages include higher 

productivity, less wafer-surface damage, and lower kerf loss (Zhu and Kao 2005). Moreover, 

there is no limitation on the ingot diameter that can be cut. Recently, wire saws have been 

used to cut sapphire, silicon carbide, lithium niobate, wood, rock, and almost all kinds of 

ceramics including foam ceramics (Zhu and Kao 2005; Clark et al. 2003b; Ge et al. 2004). 

The wire saw process represents 30% of the total silicon wafer production cost, which 

directly affects the industry. There is a need to optimize the process by developing models 

relating process parameters to the outputs (Moller 2004).   

In multi-wire technology, a single wire is winded to a tension control unit and four (or 

more) guide pulley webs, grooved with constant pitch. Several hundreds of parallel wires are 

run together and collected at an up-take spool as seen in Fig. 1.1. A slurry filled with abrasive 

grits is supplied by a slurry manifold while the wire is oscillating between the supply and 

take-up spools. The ingot is sliced into hundreds of wafers as it is fed into the wire web. The 

wafers in the solar cell industry are cut by running the wire in only one direction at a high 

speed between 5 to 20 m/s, while the wafers in the micro-electronics industry are cut by 

running the wire in both directions with a lower speed (oscillating the wire from one spool to 

another). Wafers obtained by oscillating wire have a smoother and more even surface 

compared to wafers obtained by running the wire in only one direction (Moller 2004). 

The early wire saw process for wafer production, developed in the 1990s, consisted of 

a bare steel wire and abrasive carrying slurry, resulting in free abrasive machining using 

elasto-hydrodynamic forces (Clark et al. 2003a; Bhagavat et al. 2000). In general, wire speed 

is between 5 to 15 m/s and wire tension is 20 to 30 N. The feed into the ingot results in a wire 

bow so that the wire makes 2o to 6o bow angle with the horizontal (Bhagavat et al. 2000).  
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The abrasive particles can be SiC or diamond. The mean grain size of abrasive 

particles can be 5 to 30 μm with a 30 to 60% volume fraction in the slurry. Average wire 

diameter is 180 μm, leading to a kerf loss of 200 to 250 μm (Moller 2004). The bow and 

tension of the wire are balanced with hydrodynamic pressure of the slurry which is trapped 

between the wire and work piece. The axial speed of the wire creates a velocity profile in the 

slurry. The hydrodynamic pressure and velocity profile of the slurry causes the abrasive 

particles to indent into the work piece and roll, which is called a rolling-indenting process as 

seen in Fig. 1.2. The rolling-indenting material removal mode is also called free abrasive 

machining (FAM), (Bhagavat et al. 2000). Wafer thicknesses are around 250 and 350 μm 

while a thickness of 100 μm can be obtained. The slurry can be water-based or oil-based. Oil-

based slurry causes the wafers to stick to each other, and it is hard to separate them, while 

removal of the oil from the wafer surface is another problem. Disposal of the oil-based slurry 

after use is also a problem. Hydrogen gas is produced due to interaction of water-based slurry 

and silicon, which may cause an explosion. However, from an environmental point of view, 

considering the high amount of slurry disposed during the process, water-based slurries can 

be a choice for the future of the wire saw process (Moller 2004).  

In order to increase the productivity and to be able to cut harder ceramics, diamond 

impregnated wire, which leads to fixed abrasive machining, was developed (Clark et al. 

2003a).   

Literature on wire saw research has addressed three main topics: material removal 

mechanisms, kinematics of wire and slurry hydrodynamics, and parametric studies between 

the process parameters and the quality of the resulting surface. A literature review of wire- 

saw research is presented in the next section. 

 

1.1. Literature Review on the Wire Saw Process 

There are several material removal models based on how the abrasive particle 

interacts with the surface. These models include i) free abrasive machining and ii) fixed 

abrasive machining. These models are presented in the following section.  
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1.1.1. Material Removal Models 

Moller (2004) developed material removal mechanisms for free abrasive machining 

using fracture mechanics and hydrodynamic behavior of slurry. The contact modes of wire-

abrasive grit-work pieces are defined as semi-contact and non-contact case. If the slurry film 

thickness between the wire and work piece is smaller than the average abrasive grit size, the 

grit is in contact with both wire and abrasive, which is named the semi-contact case. If the 

grit is rolling freely between the wire and work piece and in contact only with either wire or 

work piece at a time, it is called a non-contact case. The material removal correlations for 

semi-contact and non-contact cases were developed. If the elastic displacement of the wire is 

significant and slurry viscosity changes are negligible, this regime is defined as isoviscous-

elastic regime (IE). If the slurry film thickness is much more than the elastic displacement of 

the wire, it is called isoviscous-rigid regime (IR). The slurry film thickness and shear stress 

are defined for both regimes. The increase of abrasive grit size increases the material removal 

rate (MRR) while also increasing surface roughness of the final product. The grain shape is 

also important in wire saw MRR. If the grains have a high aspect ratio (elongated grains), 

they will not rotate in the laminar flow of slurry, which will decrease MRR, while grains 

having an aspect ratio close to one will rotate more. New grits with sharp corners will 

increase MRR. The increase of viscosity of slurry due to debris from the work piece may 

cause agglomeration and reduce MRR. The wire saw process induces a wavy topology on the 

mm length scale, waviness on the 100 μm length scale, and roughness in the μm length scale. 

The origin of such large-scale defects, grooves and wavy topology are not yet well 

understood (Moller 2004).  

Bhagavat et al. (2000) defined the material removal rate as a function of the imparted 

energy to the abrasive by hydrodynamic forces. The hydrodynamic film characteristics are 

calculated using the finite element method, which couples Reynold’s equation of 

hydrodynamics with the elasticity equation of wire. Such analysis provides the pressure 

distribution and film thickness profiles of slurry film within the cut trench. For a 100 mm 

ingot length, the pressure starts from zero at the inlet and gradually increases to a maximum 

value, where it starts to decrease towards the downstream exit region as seen in Fig. 1.3(a). 
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The gradual decrease of pressure near the exit is disturbed by a stage in the pressure profile 

that is due to the continuity of slurry flow. The pressure profile is almost constant in the 

transverse direction except near the entrance and exits where it decays to zero. The thickness 

profile of the slurry film shows that the film thickness is large at the inlet, where it starts to 

decrease gradually towards the exit as seen in Fig. 1.3(b). The high slurry film thickness at 

the inlet is due to high wire compliance at the inlet, while the low slurry film thickness at the 

middle is explained due to low wire compliance in this region. The minimum slurry film 

thickness at the exit is explained by low slurry pressure. The increase of slurry viscosity and 

wire speed Vx increases the slurry film thickness, while the increase of the wire bow angle 

decreases the film thickness due to an increase in stiffness of the wire and load on the film. 

The obtained minimum film thickness for a 50 mm ingot was approximately 130 μm, which 

is much greater than abrasive grit size. Thus, the mode of cutting is free abrasive machining 

in which the grits roll and indent the work piece to induce material removal. This is also 

validated by the microscopic images of a wire saw sliced wafer which has equal-sized pits 

due to single material removal of floating abrasives as in Fig. 1.4(a). The polished surface of 

a wafer shows scratches due to direct contact of abrasive pressed by the tool onto ingot as 

presented in Fig. 1.4(b). Due to the decrease of slurry film thickness towards the exit, the 

cutting conditions may change for large diameter ingots and poor surface finish occurs. 

Oscillating wire saw machining is necessary for uniform and efficient cutting of large 

diameter ingots. The wire saw machining is taking place in a isoviscous-elastic regime (IE). 

The material removal is proportional to slurry viscosity μ, size of abrasive Dg, slurry pressure 

ps, square of wire speed Vx, and inversely proportional to square of slurry thickness hs as 

presented in Eq. 1.1 (Bhagavat et al. 2000, Bhagavat and Kao 1999).  
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Models for the material removal rate for rolling-indenting and scratch-indenting cases 

were developed for free abrasive wire saw machining by Yang and Kao (2001). The models 

are a function of process parameters and work piece mechanical properties. The models are 

just compared with respect to each other, while comparison to experimental data is not done 

(Yang and Kao 2001).  

Liu et al. (2004) stated that the material removal mechanism of bead-impregnated 

wire saw cutting of rock is a Hertzian type fracture in which the fracture occurs due to the 

tensile field behind the sliding bead.  

 

1.1.2. Wire Vibration 

Wei and Kao (1998) conducted stiffness analyses of a straight and bowed wire. 

Flexibility influence function (which is inverse of stiffness) is derived for straight and bowed 

wires. The stiffness is a function of wire tension, the location at which stiffness is obtained, 

and the external force acting on the wire and the wire radius of curvature. Closed-form 

solution for vibration displacement of axially moving wire is presented. The closed-form 

solution is used to obtain the closed-form solution of wire vibration due to forces applied by 

abrasive grits, which are rolling and indenting into the work piece. A harmonic excitation of 

100 grits is taken and normalized vibration amplitude with respect to time and cut length is 

presented. If the wire speed Vx reaches a critical value Vxc (for industrial applications the 

critical speed is Vxc=300 m/s), the natural frequencies vanish and divergence instability 

occurs. The industrial wire saw speeds are less than 30 m/s, and therefore divergence 

instability is not a problem (Wei and Kao 1998).  

Closed-form solution and finite element results for wire vibration under single and 

multiple excitations were presented by Wei and Kao (2000). The multiple excitations were 

due to forces applied by abrasive grits on the wire. The finite element results were in 

agreement with closed-form solutions for wire vibration amplitudes. One hundred multiple 

excitations were applied to the wire in the contact span with a varying excitation frequency. 

When the excitation frequency is close or same as the first natural frequency of wire, the 

vibration amplitude is obtained as infinity. The vibration amplitude is the same for the speeds 
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below 25 m/s and increases very small amount for higher speeds. The vibration amplitude 

decreases considerably when the tension is over 10 N. Beyond this range, the vibration 

amplitude changes nonlinearly with tension, such that further increase of tension does not 

decrease vibration amplitude proportionally. Also, the wire tension is limited by the wire 

yield strength. The increase of damping decreases vibration amplitude of the wire (Wei and 

Kao 2000). 

Zhu and Kao (2005) modeled wire vibration in the wire saw process by coupling the 

dynamic equation of a stationary wire with Reynold’s equation for the incompressible flow 

of slurry. The linearization of the coupled equations is done over an equilibrium position of 

the wire in the contact span. A Galerkin-based model discretization, which minimizes the 

error between the actual and discretized field, was employed for modal analyses. The 

verification of Galerkin-based model was done by using a finite element model applying 

direct time integration, which uses Newmark’s method. Parametric study was carried out for 

wire vibration on a contact span of wire with work piece Lo, wire axial speed Vx, wire tension 

T, wire bow angle, and the dynamic viscosity of wire (Zhu and Kao 2005). The eigen values 

obtained by changing one parameter were used in a parametric study to determine the effect 

of this parameter on wire vibration. The model showed that as the contact span decreases, 

wire vibration amplitude increases. Also, the decrease of contact span may cause 

discontinuities in hydrodynamic film, which may lead to scratching of the wafer surface by 

the wire. The combination of the vibration and breakage of slurry film can cause scratches, 

especially at the entrance and exit sides of a circular wafer where contact spans at these sites 

are lowest. Poor surface finish and scratches were observed on entrance and exit sides of a 

circular wafer where contact span is small. The parametric study for speed of wire Vx showed 

that the speed does not affect the vibration amplitude much. The practical speeds of wire 

saws in industry are well below the critical speed for instability. Reducing the speed to a very 

low value may cause interruption in the floating-machining environment and wire breakage 

may occur. Due to the parametric study, the increase of tension decreases wire vibration by a 

considerable amount. The total force acting on the sample by the wire is determined by the 

wire tension and the bow angle. The increase of the bow angle decreases the wire vibration. 

However, if the bow angle is increased over a critical value, slurry film may break down, 
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which may lead to wire-work piece direct contact and wire breakage and scratches on the 

wafer. Slurry viscosity does not affect the vibration amplitude of the wire (Zhu and Kao 

2005). 

 

1.1.3. Parametric Studies on the Wire Saw Process 

Process monitoring of the wire saw process for forces, wire speed, feed rate, wire 

bow, and wire tension was developed by Clark et al. (2003a). The wire tension on both sides 

of the work piece is derived as a function of wire bow angles on both sides of the work piece 

and horizontal and vertical cutting forces. The developed process monitoring was used as 

part of a parametric study on the wire saw process (Clark et al. 2003a).   

Clark et al. (2003b) conducted the parametric study relating process parameters with 

forces, surface roughness, and wire wear for cutting foam ceramics and wood. Three types of 

wood (pine, oak, and fir) and three types of foam ceramics (SiC, transformation toughened 

zirconia (TTZ), and zirconia toughened alumina (ZTA)) were cut with a fixed a diamond 

wire. Wire endurance tests were then done by cutting pine wood sixteen times with the same 

wire. The first three cuts with a new diamond wire had approximately the same amplitude of 

vertical and horizontal cutting forces, while vertical cutting forces are always higher than the 

horizontal cutting forces. The first cut had a vertical cutting force of 2.4 N, while the 

sixteenth cut has 7.4 N, which shows an increase of three times in the vertical cutting force 

due to wire wear. The vertical-to-horizontal-force ratio remained between 1.8-2.8. The force 

ratios for cubic boron nitride (CBN) grinding of zirconia are between 3-15, for CBN grinding 

of tool steel are 3-10, for CBN grinding of silicon nitride are 4-9, and for diamond grinding 

of silicon nitride are 5-5.5. The low force ratio obtained in wire saw cutting means an 

efficient cutting condition for wire saw cutting of wood. In the endurance tests of wire while 

cutting pine, the cutting forces increase and surface roughness remains constant as the cut 

number increases. The increase of cutting speed for pine and oak cutting does not affect 

cutting forces and force ratio except increasing the cutting speed to Vx=9 m/s for pine. At 

Vx=9 m/s for pine cutting, the cutting forces and force ratio are smaller with respect to forces 

and force ratio obtained with lower speeds (Vx=4.5-6 m/s). The speed of the rocking motion 

of wire does not affect the cutting forces for pine and oak woods. The variation in cutting 
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conditions due to cutting a harder material were tested by cutting earlywood (softer) and 

latewood (harder) of Douglas fir wood. The horizontal cutting force does not change while 

the wire bow increases almost two times when cutting harder latewood. The increase of wire 

bow increases the vertical force two times, as the wire tension, feed, and wire speed are the 

same. Thus, the vertical-to-horizontal-force ratio is higher for cutting harder latewood. The 

surface roughness of pine cuts does not change with changing wire speed Vx and wire rocking 

frequency. SEM micrographs of diamond wire used in cutting oak wood show that the metal 

bond holding the abrasive grits gets abraded and plastically deformed. For the same cutting 

conditions, the force ratio of SiC cutting is one order of magnitude higher than TTZ and ZTA 

cutting. Increasing the wire speed from 4.5 to 6 m/s decreases the cutting forces for TTZ and 

ZTA. The diamond wire saw cutting is found to be very suitable for cutting foam ceramics, 

while wire life for wood cutting is low. Using a mist of water during cutting wood improves 

wire life considerably (Clark et al. 2003b).  

Hardin et al. (2004) conducted a parametric study for slicing single crystal SiC with a 

fixed abrasive diamond wire, relating wire speed, rocking frequency, and down feed rate with 

specific normal force and specific tangential force, normal-to-tangential-force ratio, surface 

roughness, and subsurface damage. Cutting forces were measured by a piezoelectric 

dynamometer and divided to wire diameter and cut length to get specific normal and 

horizontal forces. Hardin found that the increase of wire feed speed increases specific normal 

force, while it does not affect specific tangential force. The force ratio increases as feed 

speed increases while the surface roughness is independent of feed. The low force ratio 

shows that wire saw cutting of SiC is an efficient process. The increase of wire speed does 

not show a clear trend for tangential force and surface roughness. The surface roughness 

obtained without a rocking motion of the wire is higher than the roughness obtained by 

rocking the wire. The frequency of the rocking motion does not affect the tangential force 

and surface roughness.  

 Closed-loop diamond impregnated wire saw cutting of Al2O3 and TiC ceramics 

showed that cutting forces, surface roughness, and wire wear decrease as the wire speed is 

increased while a higher feed rate increases the cutting forces, surface roughness, and wire 

wear (Meng et al. 2006). 
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Critical load and indentation hardness for ductile regime material removal for brittle 

materials were presented by Meng et al. (2004). The depth of cut for a wire saw as a function 

of wire speed, feed speed, density of grains on the wire saw per area, radius of wire, and 

included angle of grains was derived. It is stated that, theoretically, increasing wire speed and 

density of grains on the wire and decreasing the feed rate will allow ductile regime cutting. A 

ductile regime cutting of granite is presented, which complies with the derived theory (Meng 

et al. 2004). 

An endless diamond wire saw with electroplated diamond is used to cut granite by Ge 

et al. (2004). The feed is applied as a constant weight load. Cutting forces are measured by a 

dynamometer. As grain size of diamond increased cutting forces increased, efficiency 

increased. The increase of wire speed increases efficiency and decreases cutting forces. The 

increase of feed load increases efficiency and cutting forces. The increase of hardness of 

material decreases efficiency and increases cutting forces. Use of coolant increases efficiency 

while cut forces decreases (Ge et al. 2004).  

Effects of different process parameters on the performance of the diamond wire 

sawing processes are investigated by using the Taguchi method applied on a set of tests by 

Pei-Lum et al. (2006). Use of small grain size (20-30 μm), high wire speed (5 m/sec), and 

low feed rate (2 μm/sec) yields better surface roughness. Large grain size (30-40 μm), high 

wire speed (5 m/sec), and feed rate (10 μm/sec) with water slurry lead to higher value of 

MRR. Feed rate is dominant on MRR. Fast wire speed, high feed rate, and slurry (water) lead 

to increased wear of wire. Using slurry causes larger removal rate and larger wear of wire. 

Wire tension does not affect the performance (Pei-Lum et al. 2006).  

 

1.1.4. Other Research Work on the Wire Saw Process 

Li et al. (1998) proposed a contact stress model of an abrasive indenter on a surface. 

The rolling-indenting process of an abrasive on a surface is considered in modeling the 

stresses. The stresses were expressed with dimensionless stress measures as functions of 

normalized geometric parameters. The stresses arising from normal and tangential forces 

were superposed. The maximum normal stress occurs at the contact point where an 

irreversible deformation zone is formed. The maximum shear stress occurs under the 
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indentation point and causes a peeling effect. The optimal abrasive geometry is defined as a 

cube (Li et al. 1998).  

Kim and Kim (2005) stated that if mechanical damage exceeds a critical value, 

dislocation loops are formed, and if it is below the critical value, stacking faults are formed 

during oxidation at the surface of silicon. Small mechanical damage induced by scratching 

with sand paper or silica wet blasting induces stacking faults during oxidation of the silicon 

crystal. Severe mechanical damage produced by heavy scratching with sand paper and by the 

wire cutting process creates dislocation loops in the silicon crystal during oxidation treatment 

(Kim and Kim 2005).  

The shadow Moiré technique was used to get wafer surface topology by Kao et al. 

(1998). He-Ne laser was used to make a shadow using fine grating on the wafer surface. The 

fringe patterns occur due to interference between the grating and its shadow is formulated. 

This is a non-contact technique which allows getting the entire wafer surface topology 

without moving the wafer (Kao et al. 1998).  

 Experiments have been conducted in dry and wet, muddy conditions to determine the 

friction coefficient between a rubber-coated drive pulley and the diamond wire. The average 

friction coefficient in wet and muddy conditions is μ=0.32 (Dunda 1998). 

The effect of wire tension and feed rate on low frequency waviness was investigated 

in experimental and analytical work by Bastawros et al.(2006). An increase in wire tension 

decreases the amplitude of waviness, while an increase of feed rate increases the amplitude 

of waviness (Bastawros et al. 2006).  

The multiple simultaneous indentation response of brittle materials was simulated 

using FEM by Bhagavat and Kao (2007). Abaqus software was used for analyses. As the 

spacing between the abrasives decreases, the load required to achieve a certain depth 

decreases, while the amount of elastic recovery increases causing more material removal due 

to increased formation of lateral crack. The decrease of abrasive spacing increases sink-in, 

which causes a decrease in the friction between the abrasive and the work piece. The load 

required to indent to a certain depth is higher for a tip having a radius with respect to a tip 

having an infinite sharpness. The indentation profiles are axisymmetric. The trend of change 
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of mean contact pressure with increasing depth is constant for all spacing (Bhagavat and Kao 

2007).  

The non-centrosymmetric nature of lithium niobate causes different hardness and 

fracture toughness on opposite faces of a wafer. Nano-indentation was used in three common 

directions to study hardness anisotropy by Bhagavat and Kao (2005). The opposite faces with 

same indentation directions have different hardness. Indentation size effect is seen such that 

as maximum load increases, hardness decreases. Lithium niobate has a pop-in phenomenon 

due to crystal orientation, while no-pop out is observed. The pop-in phenomenon is an abrupt 

increase in displacement with almost no change of applied force. The motion of dislocations 

is the reason of pop-in phenomenon (Bhagavat and Kao 2005).  

The direction of approach (DOA) was determined for different surface normals of 

wafers maintaining surface quality, MRR, on both sides of wafers by Bhagavat and Kao 

(2006). When the DOA is perpendicular to a cleavage direction, then the longitudinal 

direction of the wafer aligns with the cleavage direction, which increases the tendency of 

wafer breakage, resulting in lower yield of wafers. If an appropriate DOA is chosen, this can 

be avoided. DOA recommendations are made for three most commonly sliced orientations of 

silicon: (110), (100), (111) (Bhagavat and Kao 2006). 

The machining-induced temperature variation can cause warping of wafers in the 

wire saw process. The ingot’s temperature variation during wire saw cutting was modeled 

using the finite element method by Bhagavat and Kao (2008). The model integrates heat flux 

and natural convection boundary conditions. Time-dependent boundary conditions and 

geometry are considered in the model. The model is compared to experimental results in the 

literature. A method which includes control of boundary conditions for reducing warping due 

to temperature variations was proposed (Bhagavat and Kao 2008). 

In all of these efforts, analytical damage models relating roughness and waviness 

damage with process parameters for the wire saw process have not been studied. Also, the 

surface damage depth due to the wire saw process, which determines the amount of post 

processing to remove the damage, has not been investigated. These are the subjects of this 

study.  
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Damage to silicon wafers resulting from the wire saw process is important as the 

photovoltaic and semiconductor industry has strict tolerances for surface quality. The wire 

saw process induced damage is the main concern of this study. In modeling damage due to 

any machining process, the indentation and scratch damage models are the starting point. The 

damage mechanisms of brittle materials are presented in the following section.  

 

1.2. Damage Models for Brittle Materials 

Although the cracking sequence of brittle materials under indentation varies with 

material properties, load amplitude, and several different indentation parameters, a general 

cracking sequence can be defined using Yoffe’s (1982) model as follows. The indentation is 

done in loading and unloading half cycles which drive different cracks. During the loading 

half cycle, a plastic zone under the indenter expands as the load increases as seen in Fig. 1.5. 

The horizontal tensile stresses under the plastic zone initiate and expand median cracks. The 

median crack extends vertically as the load increases. In some materials, dependent also on 

the load range, surface radials can initiate during the loading half cycle. During unloading, 

the elastic field recovers the displacements while the plastic field restraints the recovery, 

which causes lateral crack initiation and extension parallel to the surface. The lateral cracks 

may turn to surface and reach the free surface if enough crack driving force is available. The 

vertical extension of median crack stops during unloading and surface radials, and median 

cracks can unite to form a half-penny-shape crack at the end of unloading.   

The threshold load below which plastic deformation and above which lateral cracking 

causes material removal is determined in terms of material parameters, hardness, fracture 

toughness and Young’s modulus by Evans and Marshall (1980). If the applied load is smaller 

than the threshold load, the plastically deformed material is removed by plastic cutting so the 

residual forces due to the plastic zone diminish and, hence, lateral cracking does not occur 

(Evans and Marshall 1980). Over the fracture threshold load, the fracture can be suppressed 

by high hardness or high toughness. Below the fracture threshold load, where plastic 

deformation occurs, material removal depends on hardness. Materials having high hardness 

and high toughness are wear resistant. The threshold load decreases as hardness increases; 

thus, material fails in a brittle lateral crack mode. Loads very close to the threshold load may 
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cause higher wear for materials having high hardness (Evans and Marshall 1980). The lateral 

crack length in a brittle fracture is determined in terms of material parameters by Evans and 

Marshall (1980). The material removal volume of a sliding particle is developed using lateral 

crack length expressions. The comparison of the developed expressions to tests is successful. 

The average temperature rise due to indentation was modeled, and it was mentioned that the 

temperature increase has a minor importance unless the material has a large thermal 

expansion coefficient and a low specific heat (Evans and Marshall 1980).   

A fracture-mechanics-based model relating radial and median cracks occurring in the 

far field of sharp indenter tip was developed by Lawn et al. (1980). The complex 

elastic/plastic field under the indenter is decomposed into elastic and plastic components. 

The elastic component drives the median crack during the loading half cycle while 

suppressing the development of radial crack. The residual component is mostly effective in 

the unloading half cycle where the median crack unites with the surface radials and reaches a 

half-penny crack shape. The effect of residual field is applied by considering an expanding 

plastic field. The obtained crack length has two fitting parameters that are calibrated using 

soda-lime glass. The calibrated model is capable of predicting the crack extension behavior 

of other brittle materials. The model is a function of hardness-to-modulus ratio along with 

toughness (Lawn et al. 1980).  

A model for predicting lateral crack depth and extension was derived by Marshall et 

al. (1982). The residual forces due to plastic impression are the driving forces of lateral 

cracks during the unloading half cycle. The equilibrium lateral crack length was found to be a 

function of the hardness-to-modulus ratio, toughness, included angle of the indenter, and the 

load. The model has two fitting parameters which are used for verification. Verification of 

the model was done by comparing the model with experimental observations for different 

materials. The volume removed during erosion of brittle materials is derived using the lateral 

crack model (Marshall et al. 1982).  

The volume of the plastic zone is related to the indentation volume and pressure. The 

Hill’s solution of expanding spherical cavity in an infinite media is adjusted for the free 

surface of the indentation problem (Chiang et al. 1982a). The plastic zone dimension 
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predictions obtained from the derived model comply with the experimental observations. The 

tensile stress locations obtained from the model comply with the definitions of radial, 

median, and lateral cracks. The model predicts compressive stresses in the plastic zone, 

which terminates crack extension; peak tensile stress at the elastic-plastic interface, which is 

the point for crack initiation; and tensile stress fields in the elastic region, which is the source 

of crack extension (Chiang et al. 1982a). The fracture initiation for elastic/plastic 

indentations is investigated considering two sources of origination; preexisting flaws due to 

machining or stress singularities created by shear bands. Radial crack initiation is predicted 

from existing flaws (Chiang et al. 1982b). The model proposed by Chiang et al. (1982a, b) 

needs an iterative solution.  

Yoffe (1982) has developed an elasto-plastic indentation damage model for brittle 

materials. The model defines the stresses in the plastic zone as p and q, vertical and 

horizontal stress, respectively. These stresses are compressive in nature. The relation between 

p and q is derived using the minimum strain energy theorem as the equilibrium position will 

be a minimum energy state. The estimates of the q are q=0.2p for silica, 0.33p for soda-lime 

glass, and 0.5p for common metals. As the load increases, yielding takes place and the mean 

pressure remains the same. The yielding under the indenter is propagating as concentric 

hemispheres are yielding one after another and reaching the same stress state. The glasses 

yield step-by-step: at every step a new larger circular elastic/plastic boundary forms. For 

metals, the plastic zone may start outside the contact impression. During unloading and at a 

fully unloaded configuration, the plastic zone formed in glasses will tend to protect their 

shape while the surrounding elastic media will tend to recover the deformations, which will 

cause cracking. The stresses outside the plastic zone, in the elastic region, are a superposition 

of the Boussinesq solution and the Blister field. The Boussinesq solution gives the 

displacements and stresses due to a normal force on an elastic, isotropic half space. The 

Blister field is obtained by combining a symmetrical center of pressure with a double force in 

the z direction (normal to the free surface). The strength of the Blister field is small for 

compressible material indented with a large-angle indenter. The corners of a Vickers indenter 

will increase the stresses that cause radial cracks even with a low Blister field strength. After 

fully unloading, tensile stresses that will cause lateral cracks parallel to that surface are 
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observed, while tensile stresses close to the surface will create new radials and connect the 

radial cracks with median cracks to form a half-penny shape (Yoffe 1982). 

Cook and Pharr (1990) presented a detailed review of the literature on indentation 

crack systems of glasses and ceramics. Detailed indentation experiments on glasses and 

ceramics have been conducted to gather load-displacement data to capture the crack initiation 

and propagation during indentation cycles. The indentation crack system is classified into 

five categories. The cone cracks which initiate perpendicular to surface during loading are 

observed in anomalous amorphous glasses, as seen in Fig. 1.6. Radials and secondary radial 

cracks, which are perpendicular to the free surface, may initiate during loading or unloading 

depending on the material. Median cracks develop under the plastic zone during loading as 

seen in Fig. 1.6. Half-penny cracks are a combination of surface radials and median cracks. 

Lateral and shallow lateral cracks are parallel to the free surface as seen in Fig. 1.6. A stress-

based indentation damage model for brittle materials was presented by Cook and Pharr 

(1990). The stress state during loading and unloading is a superposition of the Boussinesq 

solution and the Blister field. The Blister field was the one derived by Yoffe (1982). The 

crack initiation and propagation sequence of brittle materials are predicted by the model 

(Cook and Pharr 1990).  

 A stress-based damage model for sliding micro indentation was developed by Ahn et 

al. (1998). The stress state is derived as a superposition of the Boussinesq solution for a point 

normal load, the Cerruti solution for tangential load, and a sliding Blister field derived by 

Yoffe (1982). The model predicts that lateral cracking occurs due to the inelastic Blister 

field, while median cracking occurs due to applied forces as seen in Fig. 1.7. The crack-

driving stresses are a function of applied load for both lateral and median cracks. Lateral 

cracks will grow only at loads higher than a threshold and after unloading from the peak 

load. When the load is removed, the lateral crack initiates just under the last position of the 

indenter and propagates backwards towards the starting point of sliding, where it stops (Ahn 

et al. 1998).  

A stress-based damage model was developed for scratch-induced damage in brittle 

solids by Jing et al. (2007). The stress-based model combines the Sliding Blister Field Model 
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and the Expanding Cylindrical Cavity Model to predict the initiation and propagation of 

damage due to scratching of brittle materials. The strength of the Blister field and the 

inelastic zone size are obtained in terms of material properties, the geometry of the indenter, 

and the loading conditions. The maximum principal tensile stress direction is used to predict 

the crack initiation and propagation sites (Jing et al. 2007).  

Micro-fracture and material removal due to scratching of alumina was studied 

experimentally by using a bonded-interface sectioning technique by Xu and Jahanmir (1995). 

The subsurface damage and material removal modes were investigated with respect to grain 

size, load, and number of passes in a single point scratching of alumina. A model relating 

material removal rate to applied load and material properties was derived (Xu and Jahanmir 

1995).   

The impact damage and erosion resistance of brittle materials was studied by Sheldon 

and Finnie (1966). The volume removed by impact to a brittle material is obtained as a 

function of material properties, average radius of impacting particle, and its velocity. The 

Weibull fracture strength distribution is used in the model. The model was compared with 

impact tests using both angular silicon carbide particles and steel balls. The model is capable 

of predicting trends for the effect of particle radius and velocities (Sheldon and Finnie 1966).  

Impact damage of brittle materials by hard projectiles was studied by Evans et al. 

(1977). The damage is investigated by observing the extent of radial fracture and depth of 

lateral fracture. Dynamic stress analyses and fracture mechanics concepts are used to explain 

the damage. The toughness of the target, velocity, and radius of the projectile determine the 

extent of the radial crack, while lateral-crack depth is determined by the hardness of the 

target and velocity, and the radius and density of the projectile. The strength degradation and 

erosion was discussed using the models for impact damage (Evans et al. 1977).   

 The erosion of brittle materials was modeled using the Monte Carlo method by 

Verspui et al. (1999). The model relates the erosion rate and surface roughness to material 

properties of target and abrasive particles. Indentation fracture mechanics concepts are used 

to relate the damage to parameters, which were defined by Marshall et al. (1982). Particle 
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size and velocity distributions are assumed to be Gaussian. The assumption of a lateral crack 

starting at the bottom of the indentation gives better results. Impacting projectile radius and 

velocity are important parameters affecting the results. The erosion rate predicted complies 

with abrasive water jet machining of glass. The surface roughness predicted is larger than the 

experimental surface roughness, which may be due to the stylus radius used in roughness 

measurements (Verspui et al. 1999).  

 The damage models presented so far have been used to model material removal rate 

and damage in machining of brittle materials. Although the literature presented so far is also 

related to machining damage of brittle materials, it will be valuable to review this part in a 

more detailed approach. The review of literature on models about machining brittle materials 

is presented in the next section.  

 

1.3. The Machining of Brittle Materials 

A stress-based damage model for grinding-induced damage was developed and 

verified by experimental observations by Chandra et al. (2000). The model is used in 

exploring the applicability of intermittent unloading in grinding of brittle materials. 

Intermittent unloading develops by vibrating the work piece by a magnetostrictive actuator. 

This unloading is used to develop a lateral crack that will terminate the extension of the 

median crack deep into the work piece during engagement of later grits with higher forces. 

The limiting of the median crack length reduces process-induced damage, while the lateral 

crack is involved in material removal (Chandra et al. 2000).  

The grinding mechanisms and strength degradation is studied using two approaches 

by Malkin and Ritter (1989): the “machining” approach and “indentation fracture mechanics” 

approach. The machining approach is conducted with cutting-force measurements, specific 

energy considerations, surface morphology of the product, and grinding detritus. The 

indentation fracture mechanics approach is used to determine the volume of material 

removed, the threshold load for lateral cracking, and the radial crack size (Malkin and Ritter 

1989).  
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Material removal and the roughness of the lapping process are modeled using the 

concept of lateral fracture and three-body abrasion via rolling and indenting of abrasives by 

Buijs and Korpel-van Houten (1993a). The models are a function of Young’s modulus, 

hardness, toughness, lapping plate velocity, and total load applied on the plate. The model 

allows determination of an average normal force per abrasive that can be determined from 

Preston’s coefficient and the characteristics of the work piece and abrasive (Buijs and 

Korpel-van Houten 1993a).   

A model for lapping of glass, which relates material removal rate, surface roughness, 

subsurface damage, and load per particle to particle shape, size, material parameters of the 

work piece and lapping plate pressure and relative velocity between the plate and work piece, 

was developed by Buijs and Korpel-van Houten (1993b). The material removal rate and 

damage in the final product are modeled using the indentation fracture mechanics model of 

Lawn et al. (1980). If the removal rate, surface roughness, or damage penetration is known, 

the other two can be calculated (Buijs and Korpel-van Houten 1993b).  

The oxide layer and water-based slurry produce a softer hydroxylated interface layer 

that is removed in the chemical mechanical polishing (CMP) process. The removal of the 

hydroxylated layer is a perfectly plastic material removal. The material removal rate (MRR) 

in the CMP process is modeled using spherical or sharp particle contact. Also, stiff pad and 

high abrasive concentration (wafer and pad are not in contact) and soft pad and low abrasive 

concentration (extended contact between pad and wafer) are considered. Comparison of the 

model to nano-indentation and CMP experiments on glass and other materials validate the 

model. The comparison with experimental data shows that most of the CMP operations are in 

the soft pad and low abrasive concentration mode (extended contact between pad and wafer) 

(Fu et al. 2001).   

Reducing the in-feed rate below a limit in grinding of brittle materials causes a 

transition of material removal mode from brittle to ductile. The ductile mode of machining 

brittle materials is known as ductile regime grinding. The ductile regime grinding of brittle 

materials is defined as the final product will have less than 10% surface fracture, which 

means there is still brittle failure defined as a percent of surface area. The 10% surface 
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fracture is chosen by the author arbitrarily for brittle-to-ductile transition. The surface 

finishes obtained by ductile regime grinding are similar to polishing or lapping, while 

grinding is a deterministic process that allows contour accuracy and complex shapes. A stiff 

grinding machine is introduced by its working principals for ductile regime grinding. The 

critical in-feed rate, below which 10% of surface fracture can be obtained, is developed using 

critical depth of fracture equations. The derived equation is fit to experimental results and the 

trend is verified (Bifano et al. 1991).   

Yoshioka et al. (1985) stated that a ductile regime grinding machine has been 

developed, which can be used for grinding brittle materials in a plastic deformation mode. 

The machine has high stiffness and high precision in truing and dressing the grinding wheel. 

The obtained surface roughness is 2 nm for quartz crystal (Yoshioka et al. 1985). 

The availability of ductile-regime machining of brittle materials can be valid also for 

the wire saw process in which the wire, as a compliant tool, coupling with low feed rates may 

result in ductile-regime machining. The next section is devoted to machining of ductile 

materials and general wear models.  

 

1.4. Ductile Mode Material Removal and Wear Models 

The surface ploughing with a pyramidal indenter was studied using the upper bound 

method by Wathaire et al. (1981). The model determines the normal and tangential forces, 

the geometrical parameters of the track, and the strain and strain rate of the ploughed 

material. The model agrees with the experiments done with half-included-angle indenters 

between 35o-70o. It is found that the chips are formed by indenters with small angles, while 

large-angle-indenters develop frontal ridges (Wathaire et al. 1981). 

A model for three dimensional cutting using an irregular pyramidal abrasive was 

developed by Torrance (1987). The predictions of the model were compared with 

experimental results. The results obtained from the model are as follows: 1. A blunt abrasive 

that is held rigidly cuts more efficiently than a flexibly mounted abrasive; 2. The minimum 
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possible specific energy for the abrasion of a metal with conventional abrasives is 4.5 times 

the shear yield strength of work piece.; and 3. In order to reduce the specific energy for 

cutting, abrasive shape can be modified (Torrance 1987).  

The contact and rubbing of flat surfaces were studied by Archard (1953). The 

electrical conductance of two surfaces is obtained by considering single and multiple areas of 

contacts. The contact resistance of clean metals is determined by low frequency waviness of 

the surface. The nominally mating surfaces might have elastic deformations due to contact 

resistance measurements while the friction between the surfaces might be determined by the 

plastic deformation of the small asperities. A simple theory for wear was developed. The 

theory states that the wear rate is proportional to load while being independent of contact 

area. If yield strength of material and the probability of wear are constant, the wear rate is 

independent of contact area. The model used to represent the surfaces does not affect the 

wear rate (Archard 1953).  

A new theory of elastic contact was established by Greenwood and Williamson 

(1966). Contact deformation depends on the surface topography. Separation depends on 

nominal pressure, number of micro-contacts, and total area of contact depend on load only. A 

plastic index is defined as hardness ratio (Plastic index=Elastic Hardness / Real Hardness). 

Contact between solids is controlled by two material properties—plane stress elastic modulus 

and hardness—and three topographic properties—surface density of asperities, standard 

deviation of height distribution, and mean radius of peaks. Gaussian distribution fits well for 

roughness. The plasticity index, and thus elastic or plastic contact, depends on surface 

topography, which depends on surface processing techniques. The contact between surfaces 

is generally plastic, while elastic contact can also be observed in engineering practice 

(Greenwood and Williamson 1966).  

Wear maps, a function of nominal pressure and sliding velocity, were introduced by 

Williams (1999). The wear map for carbon steel shows that, at low speeds, the wear is 

mechanical and independent of speed; at high speeds, the wear is severe oxidational wear, 

which is a function of both speed and pressure. Mechanical wear processes are defined as 

abrasion due to polishing, ploughing, and micromachining; erosion due to cavitations and 
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liquid-solid impact; and adhesion and surface fatigue due to ratcheting, delamination, and 

pitting. Two and three dimensional abrasive wear models in the literature are discussed 

(Williams 1999).  

A simulation model was developed to predict the friction and wear in rolling-sliding 

contact by Telliskivi (2004). Archard’s law was used for wear prediction. Deformation and 

relative motion of every part is predicted during analysis. The disc-on-disc test for dry wear 

is simulated. The Winkler mattress method is used to solve the deformation field. The 

tangential stress field is calculated from the normal pressure field, the penetration, and the 

general rigid-body movement for every sub-region. Tangential reaction and the displacement 

field in contact are predicted by influence functions from the potential theory. Elastic 

displacements are subtracted from the relative motion of the body to find sliding distance. 

There are elastic deformations both in the sticking and sliding regions. The model predictions 

are satisfactory for wear and rolling friction when compared with disc-on-disc test (Telliskivi 

2004).  

 

1.5. Motivation and Proposed Work 

The silicon wafers used in the photovoltaic and microelectronics industries are 

obtained using the wire saw process or the inner diameter (ID) saw. The wire saw process is 

advantageous over the ID saw because the wire-saw process has a higher yield, lower kerf 

loss, and lower surface damage. The wire saw process can be used to cut all kinds of brittle 

materials with low surface damage and higher yield.  

In the 1990s, the wire saw process consisted of a bare steel wire and abrasive carrying 

slurry, which leads to rolling and indenting material removal. The bow and tension of the 

wire transfers a hydrodynamic pressure on the abrasive grits through the slurry. The velocity 

profile of the slurry trapped between the wire and sample, occurring due to wire speed, is 

providing the motion of the abrasive grits. The combination of hydrodynamic pressure and 

the motion of the grits results in rolling-indenting motion of grits, which causes material 

removal in free-abrasive machining. The increase of wire bow or tension may cause 
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disruptions in the hydrodynamic film, which leads to bare wire-sample direct contact. This 

direct contact creates scratches on the sample, while causing wire breakage. In order to keep 

the hydrodynamic film, the wire velocity in the abrasive-carrying wire-saw process is high.  

Diamond-grit coated steel in the wire-saw process was developed due to the 

disadvantages of the abrasive-slurry wire-saw process. The diamond-grit coated wire-saw 

process leads to fixed abrasive machining. This process has a higher yield and less wire 

breakage in comparison to the abrasive-carrying slurry wire-saw process. In this work, the 

abrasive-grit coated wire-saw process is investigated.  

The wire saw process induces roughness and long waviness damage on the cut 

surface. These damages decrease the quality of the wafers and have to be removed by post 

processes including grinding, lapping, and polishing. However, these post processes increase 

wafer manufacturing costs.  

Although the wire-saw process has been used by the photovoltaic and semiconductor 

industries, a roughness damage model that relates process parameters to damage occurring on 

the cut surface has not been established in the literature. The reasons of the long waviness 

formation and mechanisms controlling the long waviness have also not been studied. In 

addition, the correlation of surface damage depth with process parameters has not been 

investigated elsewhere.  

The overall goal of this study is to understand the surface roughness and long 

waviness damage for the abrasive wire cutting and to establish the role of the process 

parameters. Once these mechanisms are understood, a mechanistic framework will be 

established and calibrated to provide capabilities for predictive tools that can be used in 

design space exploration. In particular, the current efforts will focus on:  

1. Understanding mechanisms of surface roughness damage. 

2. Measurement and analyses of surface-damage depth with respect to process 

parameters.   

3. Understanding mechanisms of long waviness formation. 

The specific goals of this study is to conduct parametric studies on the process 

parameters, including the wire speed, down-feed speed, and wire tension, as well as the role 

of consumables on the quality of the cut surface. Thus, detailed analysis of the wire 
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properties including grit size, spacing, and wire diameter will be examined. The explored 

trends will be utilized to calibrate the developed model’s surface roughness and long 

waviness damage.  

Several tools will be utilized to achieve the above goal, including: 

1. A lab-scale single wire-saw machine.  

2. Dynamic load cells and data acquisition system. 

3. Surface analysis using non-contact optical profilometer and scanning electron 

microscopy (SEM).  

4. In situ digital imaging to monitor the evolution of wire bow angle. 

 

1.6. Dissertation Organization 

The remainder of the thesis is organized so that the goals listed above are addressed. 

The experimental setup and preliminary experimental results are presented in Chapter 2. The 

experimental parametric study relating wire characteristics with roughness damage is 

presented in Chapter 3. Chapter 3 also includes the roughness damage models and 

verification of the roughness damage models with experimental results. The experimental 

parametric study relating the wire tension and feed speed with long waviness formation is 

presented in Chapter 4. The analytical model enlightening the long waviness formation is 

also presented in Chapter 4. The experimental parametric study relating surface-damage 

depth with process parameters is presented in Chapter 5. The design space exploration, which 

includes the affect of different process parameters on different damage systems, is also 

presented in Chapter 5. Finally, overall conclusions of this work and future work are 

presented in Chapter 6.  
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Fig. 1.1. Industrial wire saw process (Bhagavat et al. 2000). 

 

 
Fig. 1.2. Rolling indenting material removal in wire saw process (Bhagavat et al. 2000).  
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Fig. 1.3. Free abrasive wire saw process a) The slurry pressure profile b) Slurry film 

thickness profile (Bhagavat et al. 2000).  

 

 
Fig. 1.4. Surfaces of a) Wire saw sliced wafer with free abrasive machining b) Polished wafer 

(Bhagavat et al.2000). 
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Fig. 1.5. Indentation damage in brittle materials.    

 

 
Fig. 1.6. Indentation cracks in brittle materials A) Cone crack, B) Radial crack, C) Median 

crack, D) Half- penny crack E) Lateral crack (Cook and Pharr 1990). 
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Fig. 1.7. Damage due to scratching of brittle materials (Ahn et al.1998).  
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CHAPTER 2. EXPERIMENTAL PROCEDURE AND PRELIMINARY RESULTS 

Wire saw experiments are conducted on alumina blocks, as a representative brittle 

ceramic material. The dynamic cutting forces, wire curvature, wire axial speed, Vx, and feed 

rate, Vz, are measured during the wire saw cutting tests. The cutting-induced surface 

waviness and roughness are analyzed for each combination of process parameters. Detailed 

scanning electron microscope (SEM) analyses are carried out to understand the variation of 

the machining-induced surface and sub-surface damage with the process parameters. Details 

of the experimental setup and the corresponding measurements for the range of the 

investigated process parameters are presented in this chapter. 

 

2.1. Wire Saw Process, Wire Speed, and Feed Speed Measurements 

A single spool to spool the wire-saw machine1 is used in the experiments. The wire is 

advanced in one direction and then reversed back to 95% of its length, and this allows a 5% 

refresh rate of the wire per each reversal cycle. The process parameters that can be controlled 

are the wire-rocking angle, the wire speed, Vx, down feed speed, Vz, wire tension, T, and the 

length of wire used in one reversal of wire, Lw. The tension is controlled by wire tension 

pulleys powered by air pressure while the rocking motion is controlled by wire guide pulleys 

as can be seen in Fig. 2.1.  

In all experiments, the following parameters have been held constant. A fixed wire 

length/cut cycle of 300 ft is utilized. Thus, in every forward advance of the wire, a length of 

Lw=300 ft (91.4 m) is transferred from one spool to the other. A water-based coolant 

(Sawzit)2 at a ratio of 50:1 is used during cutting.  

The wire axial speed is a function of spool diameter as the machine controls the speed 

via the angular speed of the spool. The average wire speed is calibrated via the rotational 

speed of the guide pulley. The rotational speed is measured by a stroboscope (model Strobex 

236)3. 
1 Millennium model wire saw machine produced by Diamond Wire Technology in Colorado, Springs. 
 2 Product of Synthetic Lubricants, Inc. 
 3 Product of Chadwick-Helmuth Inc., California.   
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For every test, twenty stroboscope measurements of the wire guide-pulley rotational 

speed are acquired in rev/min. The average of these measurements is multiplied by a 

conversion factor to obtain the speed in meters per second (m/s) as presented in Eq. 2.1. The 

factor in Eq. 2.1 is obtained using the diameter of the guide pulley. 

 

( / ) 0.0053 ( / min)x xV m s V rev= ×                   (2.1) 

 

The down-feed rate Vz is calibrated by tracking the position of the machine yoke 

relative to a stationary reference on the machine frame. As the yoke goes down, the relative 

position changes. The time for the yoke to travel 5 mm is measured during each test.  

 

2.2. Diamond Grit-Coated Steel Wires 

Four different diamond-grit-coated steel wires are used in this study. The wire 

diameter, Dw, grit size, Dg, and grit spacing, Lg, of the wires are obtained from the SEM 

images, utilizing the Matlab image-processing toolbox. The measured values of Dw, Dg, and 

Lg for each wire are listed in Table 2.1. Typical SEM images of the utilized wires are 

presented in Fig. 2.2. 

Diamond-grit-coated steel wire DWS2 has an average diameter of Dw=296 μm. The 

average abrasive diamond size is Dg=66 μm. The average spacing of abrasive grits is Lg=215 

μm. The DWS2 is an old wire used in the wire-saw process. The empty places of pulled-out 

diamond grits can be seen in Fig. 2.2(a).  

Diamond-grit-coated steel wire DWS3 is a product of Well Diamond Wire Saws Inc. 

The DWS3 has an average diameter of Dw=304 μm. The average abrasive diamond size is 

Dg=78 μm. The average spacing of abrasive grits is Lg=280 μm. The DWS3 is manufactured 

by mechanically impregnating the diamonds into the wire. The impregnation process might 

be successful for some grits, while others just leave an indentation mark on the wire and 

could not be affixed as seen in Fig. 2.2(b). 

Diamond-grit-coated steel wires DWS4 and DWS5 are products of Saint-Gobain 

Abrasives Inc. The DWS4 and DWS5 are manufactured by nickel electroplating on steel. 

The grits are affixed into the electroplated nickel layer while the core remains intact as seen 
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in Fig. 2.3 [1]. The DWS4 and DWS5 have average diameters of Dw=204 μm and Dw=252 

μm; average grit sizes of Dg=23 μm and Dg=27 μm; and average grit spacing of Lg=177 μm 

and Lg=69 μm, respectively. The grit spacing is higher in DWS4 than DWS5 as seen in Fig. 

2.2(c)-(d). 

 

2.3. Wire Bow Angle Measurements 

A megapixel digital camera (Kodak Easy Share DX 7630) of 2856 × 2142 pixels is 

used to measure the wire bow angle. The images of the wire and sample are collected during 

the test and analyzed using the Matlab image-processing toolbox to obtain the wire bow 

angle, α, between the wire and the effective cutting direction. A typical image obtained 

during a test is presented in Fig. 2.4, for the analysis of α. The slope is at the inlet and exit of 

the wire; α1 and α2 are obtained. For the effective wire bow angle, α is their average. A total 

of 10 to 15 images are collected in each test, after attaining a steady state wire bow. The 

average of these measurements represents an average value for α for such test conditions. 

The wire bow angle α reaches its steady state value after a certain depth of cut and stays 

constant for the rest of the cut if all of the cutting parameters, including cut length, are 

constant. Fig. 2.5 shows a sketch of the wire inclination angles and their correlations to the 

wire curvature.  

 

2.4. Dynamic Force Measurements 

Two piezoelectric dynamic load cells (PCB- 208C01 ICP) are used to measure the 

dynamic cutting forces. The force sensor has a piezoelectric quartz element that converts 

force to electric charge. The electric charge is regulated to a current with the built-in 

electronics of the force sensor. The force sensors have a measurement range of 44 N for 

tension and compression. The force sensor’s output is amplified by a two-channel-step-Amp 

(PCB- 482 A05 ICP) and signal conditioner. The resulting combination of force sensor and 

step-Amp would provide a sensitivity of 112.4 mV/N. 

Two force sensors are installed orthogonal to each other using a load case. Forces in 

two orthogonal directions can be measured using the setup presented in Fig. 2.6. The load 

setup is calibrated for each direction and a calibration matrix is obtained, which is used to 
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convert the signal in mV to the corresponding force in N. The calibration procedure followed 

here is proposed by [2].  

A Toshiba Tecra 700CT laptop computer is used as data logger. A dynamic data 

acquisition card (Data Physics: ACE FFT PC)1 and the corresponding dynamic signal 

analyzer software are used to record the force signals. The system has a 50 kHz 

bandwidth/channel.  

The forces are saved in 160 msec windows with resolution of 19.5 μsec. Multiple 

saves are acquired during each test and the best saves are selected for further spectral 

analysis by Matlab.  

 

2.4.1. Calibration of Load Cell Setup 

The two dimensional load cell setup calibration is presented in this section, following 

the procedure established by [2]. The aim of the calibration is to find the cross-sensitivity 

matrix, S, which relates forces to voltage as seen in Eq. 2.2. Using the inverse of S matrix the 

voltage can be related to forces as seen in Eq. 2.3. The terms of the S matrix can be 

determined as in Eqs. 2.4-7.  

 

z zz xz

x zx xx

v S S Fz
v S S Fx
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
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                         (2.2) 
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1Produced by Data Physics Inc., (San Jose, California). 
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Szx is calculated by applying the load in the direction of vertical load cell while the 

voltage is measured in the horizontal load cell (LCX). In order to determine the terms of Szz 

and Szx, the following procedure is applied.  

Adjusting the vertical load cell (Load Cell Z, LCZ) downward, and hanging 50, 90, 

130, 170, and 210 grams, the calibration test was conducted by suddenly lifting the weights, 

thus imposing compression to the vertical load cell (LCZ), which is vertical as seen in Fig. 

2.7. Three tests are done with each weight. The Szz and Szx values for each test are calculated 

using Eqs.2.4-2.5. The average of the Szz =111 mV/N and Szx =1.76 mV/N are obtained.   

Similar measurements are done for the horizontal load cell. The distance between the 

line of action of the horizontal cutting force and the axes of the horizontal load cell (LCX) is 

continually changing as the cut is advancing. In order to measure the variation of the cross 

sensitivity coefficients due to this change in distance, different calibration tests are conducted 

at different distances hw which is the distance between the bottom of the sample in a regular 

cutting test and the point of application of load. The calibration configuration is shown in 

Fig. 2.8. The average of Sxx and Sxz are presented in Table 2.2 for each hw. The overall 

average values are Sxx=29.89 mV/N and Sxz=-129.9 mV/N. As the variation of calibration 

coefficients is small for different hw as seen in Table 2.2, the calibrations coefficients are 

taken constant.  
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The Sij values determined in Eq.2.3. can be used in obtaining dynamic forces in 

vertical (Fzd) and horizontal (Fxd) directions.  

 

2.5. Surface Roughness Measurements and SEM Imaging 

The surface roughness of the cut surfaces are measured using an optical non-contact 

profilometer, Zygo New View 6000, manufactured by Zygo Corporation. A 10x lens is used 

for the measurements. The profilometer has a resolution of depth on the order of three 

nanometer; the resolution in the horizontal plane is 1.1 μm, while the field of view used is 

0.7x0.53 mm.  

The profilometer takes continuous measurements, each having a dimension of 

0.7x0.53 mm, and stitches them together into one data set. Three stitch measurements, each 

of 0.7x3 mm dimensions, are applied in the direction of cutting for each sample on the left–

middle-right of cut surface. After the measurements are taken, the data is processed using the 

software MetroPro Version 8.1.5 developed by Zygo Co. A high-pass filtering is applied to 

remove the surface waviness. Arithmetic average deviation from the centerline (best fit 

plane) is obtained. The average of three measurements is taken as surface roughness, Ra.  

A Scanning Electron Microscope (SEM) JEOL JSM-606LV is used to analyze the 

cutting-induced surface damage. The SEM images are taken from the lower half of the 

sample, on the center line of the cut surface.  

 

2.6. Sample Preparation 

Alumina ceramic samples having tensile strength of σfr=300 MPa, Poisson’s ratio of 

ν=0.22, and fracture toughness KIC =4 MPam1/2 [3] are used in both roughness and waviness 

tests. The roughness tests are on samples with cut length Lo =15~20 mm and cut height Hs 

=7.1 mm. These samples are cut from long bars using a low-speed ceramic cutter. The 

samples are then cleaned with acetone and dried with air. A double-sided adhesive tape is 

used to affix the sample onto the load-cell assembly as shown in Fig. 2.6. The load-cell setup 

is covered with latex and protective materials to protect it from slurry. 
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The waviness tests are done with cut length, Lo=25 mm, and cut height, Hs=100 mm. 

The samples are affixed to an aluminum bar using crystal bond along the cut direction to 

reduce system vibration, as shown in Fig. 2.9. 

 

2.7. Preliminary Results 

The scope of this study is to investigate the role of the wire saw process parameters 

on the quality of the produced surfaces, as measured by the resultant surface roughness and 

waviness. Some typical measurements are given in this section along with the acquired 

experimental trends with the process parameters. The surface waviness has a wavelength of 

λ=20-30 mm and amplitude of 20-60 μm as seen in Fig. 2.10. The surface roughness is 

presented in Fig. 2.11. 

The experimental results obtained from wire saw cutting of ceramics are presented in 

this section. Each section presents the variation of output with respect to one process 

parameter. 

  

2.7.1. The Effect of Wire Speed  

The variation of process output with wire speed Vx is presented in this section. The 

increase of Vx decreases the wire bow angle per unit cut length, α/Lo as seen in Fig. 2.12. 

From equilibrium, the total force acting on the sample, Fzs, the corresponding average 

distributed load, w, and the average force/grit, Fzg, are given by Eqs. 2.8-10, respectively.  

 

2 sinzsF T α=       (2.8) 
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Here N is the number of active cutting particles within the cut length, N=Lo/Lg. Lo is 

the cut length and Lg is the distance between cutting grits. As Vx increases, α decreases and 

thereby w decreases as shown in Fig. 2.13. As Vx increases, the wire bow α decreases and the 

cutting force on a single grit Fzg decreases as in Eq. 2.10; thus, the surface roughness 

decreases as seen in Fig. 2.14. 

 

2.7.2. The Effect of Feed Speed  

The increase of feed speed Vz increases wire bow α and the distributed load on the 

sample w (Eq. 2.9). Experimental trends are summarized on Figs. 2.15-17. As the feed speed 

Vz increases, the wire bow α increases, the total force on the sample Fzs increases (Eq. 2.8), 

and the cutting force on a single grit Fzg increases (Eq. 2.10). As a result, the surface 

roughness increases as seen in Fig. 2.17.  

 

2.7.3. The Effect of Wire Tension 

 The increase of wire tension T decreases the wire bow α as seen in Fig. 2.18. As 

tension T increases, the wire bow α decreases and the distributed load on the sample w 

remains constant due to Eq. 2.9 as seen in Fig. 2.19. The increase of tension T decreases the 

bow angle α and the force on a single grit Fzg remains constant due to Eq. 2.10; thus, the 

surface roughness does not change with respect to tension T as seen in Fig. 2.20. The surface 

roughness is independent of tension.  

 

2.7.4. The SEM Imaging Results 

The SEM imaging showed that the dominant material removal mechanism is the 

trans-granular failure in which grains are cut through. Inter-granular brittle fracture is also 

observed. Both failure mechanisms can be seen in Fig. 2.21. 
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[2] W. Che, A Study on material detachment mechanism in CMP process, M.Sc. Thesis, 
Iowa State University, 2002. 



41 
 

[3] Material Property Data, http://www.matweb.com/index.aspx, (accessed March 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



42 
 

 

Fig. 2.1. Single wire, spool-to-spool wire saw machine (DWT Inc., Millennium Model). The 
wire track is marked by the dashed line.  
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Fig. 2.2. SEM images of diamond impregnated wires a) DWS2 old wire b) DWS3 from Well 
Inc. c) DWS4 from Saint-Gobain Abrasives Inc. d) DWS5 from Saint-Gobain Abrasives Inc.  

 

 

Fig. 2.3. Cross section of a typical diamond impregnated wire [1].  

 

(a) (b)

(d)(c)
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Fig. 2.4. Optical image showing the wire inclination angle with the cutting direction at the 
entrance and exit from the specimen.  

 

 

Fig. 2.5. Wire bow angle and wire curvature.  
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Fig. 2.6. Dynamic load cell configuration.  

 

 

Fig. 2.7. Load cell calibration for the cross sensitivity matrix coefficients Szz and Szx.  
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Fig. 2.8. Load cell calibration for the cross sensitivity matrix coefficients Sxx and Sxz.  

 

 

Fig. 2.9. Sample anchoring for a waviness test setup.  
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Fig. 2.10. Surface profile measurements of wire saw induced waviness.  

 

 

Fig. 2.11. 3D surface reconstruction showing wire saw induced roughness as measured by 
surface profilometer (Vx =2m/s, Vz= 6.4 μm/sec, T=26.7 N).  
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Fig. 2.12. Variation of wire bow angle per unit cut length α/Lo as a function of wire speed Vx 
(Vz= 5 μm/sec, T=13 N).  

 

 

Fig. 2.13. Variation of distributed load, w as a function of Vx  (Vz= 5 μm/sec, T=13 N). 
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Fig. 2.14. Variation of surface roughness as a function of wire speed Vx (Vz= 5 μm/sec, T=13 
N).  

 

Fig. 2.15. Variation of wire bow angle per unit cut length α/Lo as a function of feed speed Vz 
(Vx =1.8 m/sec, T=13 N).  
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Fig. 2.16. Variation of distributed load w as a function of feed speed Vz (Vx =1.8 m/sec, T=13 
N).  

 

Fig. 2.17. Variation of surface roughness as a function of feed speed Vz (Vx =1.8 m/sec, T=13 
N).  
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Fig. 2.18. Variation of wire bow angle per unit cut length α/Lo as a function of wire tension T 
(Vx=1.8 m/sec, Vz= 5 μm/sec).  

 

Fig. 2.19. Variation of distributed load w as a function of wire tension T (Vx=1.8 m/sec, Vz= 5 
μm/sec).  
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Fig. 2.20. Variation of surface roughness as a function of wire tension T (Vx=1.8 m/sec, Vz= 5 
μm/sec).  

 

 

Fig. 2.21. The SEM image of a cut surface (Vx=1.3 m/sec, Vz= 5 μm/sec, T=13 N). 
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Table 2.1. Diamond impregnated wire properties.  

Wire 
Name

Diameter 
Dw (μm)

STD 
Dw  

(μm)

 Grit 
Size 
Dg  

(μm)

 STD 
Dg  

(μm)

Grit 
Radius 
R (μm)

Lg Grit 
Spacing  
(μm)

STD Lg  

(μm)
sqrt(R*Lg) 
(μm) 

DWS2 296 10 66 21 33 215 69 84
DWS3 304 3 78 9 39 280 117 104
DWS4 204 1 23 3 11.5 177 46 45
DWS5 252 3 27 5 13.5 69 18 31  
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Table 2.2. The cross calibration Sxx and Sxz values.  

hw  (mm) Sxz (mV/N) Sxx (mV/N)
3.6 -122.07 29.96

5.12 -124.22 28.28
7.83 -136.69 30.28
8.9 -136.61 31.04

average -129.90 29.89

Averages
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Abstract 

The wire saw is widely used for silicon wafer production with high yield and low 

surface damage. The wire saw can be used to machine brittle materials in the ductile regime 

where a high yield and low surface damage is desired. In this study, a damage model for the 

wire saw process-induced roughness damage is developed. The model is capable of 

predicting the damage observed in experimental work. Wire saw process design 

recommendations are presented for increasing the surface quality.  

 

3.1. Introduction 

Silicon wafers used in the solar cell and microelectronics industries can be cut from 

silicon crystals using inner diameter (ID) saws or wire saws. Wire saws have advantages over 

ID saws. These advantages are higher productivity, less wafer-surface damage, and lower 

kerf loss [1]. Moreover, the diameter of wafer that can be sliced by a wire saw is higher than 

that obtainable by an ID saw.  

Wire saws are used to cut sapphire, silicon carbide, lithium niobate, wood, rock, and 

almost all kinds of ceramics, including foam ceramics [1, 2, 3].  

Moller [4] stated that the wire saw process is responsible for 30% of the total silicon 

wafer-production cost, which directly affects industry. There is a need to optimize the 

process by developing models relating process parameters to product quality and process 

efficiency measures [4].        
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Early wire saw processes for wafer production developed in the 1990s consisted of a 

bare steel wire and abrasive-carrying slurry, resulting in free-abrasive machining using 

elasto-hydrodynamic forces [5, 6]. The abrasive particles can be SiC or diamond. The mean 

grit size of abrasive particles can be 5 to 30μm with a 30% to 60% volume fraction in the 

slurry. Average wire diameter is 180 μm, leading to a kerf loss of 200 to 250 μm. The slurry 

can be water based or oil based. Oil-based slurry causes the wafers to stick to each other, and 

it is hard to separate them, while removal of the oil from the wafer surface is another 

problem. Disposal of the oil-based slurry after use is also a problem. Hydrogen gas produced 

from the interaction of water-based slurry and silicon may cause explosions. However, from 

an environmental point of view, considering the high amount of slurry disposed of during the 

process, water-based slurries are generally preferred [4].  

Clark et al. [5] stated that in order to increase the productivity and to be able to cut 

harder ceramics, diamond-impregnated wire, which leads to fixed-abrasive machining, was 

developed [5].   

In wire sawing with free abrasives, wire speed is between 5 to 15 m/s and wire 

tension is 20 to 30 N. The feed into the ingot results in a wire bow so that the wire makes 2o 

to 6o with the horizontal [6]. In the fixed-abrasive machining wire-saw process, the wire 

speed is lower as material removal is not occurring by hydrodynamic action.  

In multi-wire technology, a single wire is winded to a tension control unit and four 

guide pulleys, which are grooved with constant pitch. Five to seven hundred parallel wires 

run together and are collected at a take-up spool. The ingot is sliced into hundreds of wafers 

as it is fed into the wire web. The wafers in solar-cell industry are cut by running the wire in 

only one direction at a high speed between 5 to 20 m/s, while the wafers in the micro 

electronics industry are cut by running the wire in both directions with a lower speed 

(oscillating the wire from one spool to another) [4]. 

Literature on wire saw research has been ongoing in three main areas: material 

removal mechanisms, kinematics of wire, and parametric studies between the process inputs 

and outputs.  

Li et al. [7] presented the stresses under an abrasive particle, which is rolling and 

indenting in a wire saw process. Material removal mechanisms for free-abrasive machining 
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were developed using fracture mechanics and hydrodynamic behavior of slurry by Moller 

[4]. The material removal rate is defined as a function of power supplied to the abrasive by 

hydrodynamic effect and the hydrodynamic film properties are calculated using the finite 

element method which couples Reynold’s equation of hydrodynamics with the elasticity 

equation of wire [6]. Liu et al. [8] stated that the material removal mechanism of bead- 

impregnated wire-saw cutting of rock is a Hertzian type fracture in which the fracture occurs 

due to the tensile field behind the sliding bead.  

Wei and Kao [9] worked on stiffness analyses of straight and bowed wires under 

tension. Vibration characteristics of wire with respect to wire speed, tension, and slurry 

viscosity was investigated. The increase of wire tension and slurry viscosity decreases 

vibration amplitude and kerf loss, while the wire speed has almost no affect when it is below 

25 m/s, [1, 10].   

Process monitoring of the wire saw process for forces, wire speed, feed rate, wire 

bow, and wire tension was developed by Clark et al. [5]. Parametric studies relating process 

parameters to forces, and surface roughness and wire wear for cutting foam ceramics and 

wood were conducted by Clark et al. [2]. Hardin et al. [11] conducted a parametric study for 

slicing single crystal SiC with a fixed-abrasive diamond wire, relating wire speed, rocking 

frequency, and down-feed rate with surface and subsurface damage. Closed-loop diamond- 

impregnated wire saw cutting of Al2O3 and TiC ceramics showed that cutting forces, surface 

roughness, and wire wear decreases as the wire speed is increased, while higher feed rate 

increases the cutting forces, surface roughness, and wire wear [12]. 

Hardness anisotropy of Lithium Niobate wafers has been investigated using nano-

indentation [13]. Bhagavat and Kao [14] determined the direction of approach for three most 

commonly sliced orientations of silicon considering crystal anisotropy. 

Damage evolution due to wire sawing of silicon wafers is of significant interest as the 

photovoltaic and semiconductor industries have strict tolerances for surface quality. The 

process-induced damage on brittle materials can be modeled starting with existing damage 

models of indentation of brittle materials. There exist several models for the failure 

mechanisms in brittle materials due to indentation [15-20].  
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Ductile regime grinding of brittle materials has been investigated experimentally by 

different researchers [21-26]. Bifano et al. [22] stated that when the feed is decreased below a 

certain amount in grinding, a transition of wear mechanism from brittle to ductile mode can 

be achieved.  

In this study, a damage model for wire saw process induced roughness damage is 

developed. The damage model is based on ductile mode material removal and brittle mode 

damage, as observed in SEM images of cut surfaces. The damage model predicts the 

experimentally measured damage successfully. The experimental work is presented in 

section 3.2. The model is presented in section 3.3. The results and discussion of the study are 

presented in section 3.4. The conclusions are presented in section 3.5. 

 

3.2. Experimental Process 

Wire saw experiments are conducted on alumina ceramic. The wire bow angle, wire 

axial speed, Vx and feed rate, Vz are measured during the wire saw cutting tests. The surface 

roughness of cut surfaces is also measured. The SEM imaging of cut surfaces is obtained. 

The equipment used in these measurements and the process parameters are presented in this 

section.  

 

3.2.1. Wire Saw Cutting and Wire Bow Angle Measurement 

A wire saw machine1 is used in the experiments. This spool-to-spool wire saw 

machine with rocking motion of the wire can be controlled by the wire speed, Vx, down-feed 

speed, Vz, and wire tension, T. The tension is controlled by wire tension pulleys powered by 

air pressure, while the rocking motion is controlled by wire guide pulleys as can be seen in 

Fig. 3.1. The cut length of wire, which is used during the cutting, is 300 ft (91.4 m). Thus, at 

every direction reversal, 300 ft of wire is transferred from one spool to the other.  

The wire speed is a function of spool diameter as the machine controls the speed via 

the angular frequency of the spool.  

 
1 Millennium model wire saw machine produced by Diamond Wire Technology in Colorado, Springs. 
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In order to get the actual average speeds, a Strobex Systems 236 model stroboscope2 

is used. The down-feed speed, Vz, is measured by tracking the position of a grid, which is on 

the yoke of the machine, with respect to a stationary point on the frame of the machine. As 

the yoke goes down, the grid moves relative to the fixed point on the frame of the machine. 

The time to travel 5 mm grids is measured during the tests.  

A water-based coolant-to-lubricant Sawzit3 ratio of 50/1 is used during cutting tests.  

Four different diamond grit coated steel wires are used in the wire saw experiments. 

The wire diameter (Dw), grit size (Dg), and grit spacing (Lg) information is obtained from 

SEM images of the wires and the average values are presented at Table. 3.1. The DWS2 is an 

old wire, which was used in the wire-saw process. The empty places of pulled-out diamond 

grits can be seen in Fig. 3.2 (a). The average half-included angle of the grits on DWS2 is 

ψ=71o. The diamond-grit-coated steel wire DWS3 is a product of Well Diamond Wire Saws 

Inc. The DWS3 is manufactured by mechanically impregnating the diamonds into the steel 

wire. The impregnation process might be successful for some grits, while others just leave an 

indentation mark on the wire and could not be affixed as seen in Fig. 3.2 (b). Diamond-grit-

coated steel wires DWS4 and DWS5 are products of Saint-Gobain Abrasives Inc. The DWS4 

and DWS5 are manufactured by nickel electroplating on steel. The grits are affixed into the 

electroplated nickel layer, while the core remains intact. The grit spacing is higher in DWS4 

than in DWS5 as seen in Fig. 3.2 (c)-(d). 

Alumina ceramic samples having tensile strength of σfr=300 MPa, Poisson’s ratio of 

ν=0.22, fracture toughness KIC =4 MPam1/2, Young’s modulus of E=370 GPa [27], and 

hardness of H=22 GPa [20] are used in the cutting tests. The cut length of the samples is 

between Lo =15~20 mm and the height is Hs =7.1 mm. A group of tests are done with DWS2 

with the wire speed varied over Vx=1.3, 1.8, 2.95, 3.5 m/s, the wire tension varied over 

T=13.3, 17.8, 22.4, 26.7 N, and the down feed varied over Vz=5, 6.35, 10.16 μm/sec. In order 

to explore the effect of different wires’ characteristics on surface quality, twelve tests are 

done with process parameters Vx=1.35, 2, 3, 4 m/s, Vz=6.35 μm/sec, and T=13.3 N using the 

wires DWS3, DWS4, and DWS5; four tests are conducted with each wire.  
2 Product of Chadwick-Helmuth Inc., California.   
 3 Product of Synthetic Lubricants, Inc. 
  



60 
 

A megapixel digital camera (Kodak Easy Share DX 7630) of 2856 × 2142 pixels is 

used to measure the wire bow angle seen in Fig. 3.3. The images of the wire and sample are 

collected during the test and analyzed using Matlab (Mathworks) to obtain the angle α 

between the wire and the horizontal. The average of the steady state wire bow angles, α, is 

attained to the test as the steady state wire bow angle of that test.  

 

3.2.2. Surface Roughness Measurements and SEM imaging 

The surface roughness of the cut surfaces are measured by using an optical non-

contact profilometer, Zygo New View 6000, manufactured by Zygo Corporation. A 10x lens 

is used for the measurements. The profilometer has a vertical resolution on the order of 3 

nanometer; the resolution in the horizontal plane is 1.1 μm, while the field of view used is 

0.7×0.53 mm.  

In a stitch measurement, the profilometer takes continuous measurements each 

0.7×0.53 mm and stitches them together into one data set. Three stitch measurements, each of 

0.7×3 mm dimensions, are applied in the direction of cutting for each sample on the left-

middle-right of the cut surface. After the measurements are taken, the data is processed using 

the software MetroPro Version 8.1.5 developed by Zygo Co. A high pass filtering is applied 

to remove the surface waviness. Arithmetic average deviation from the centerline (best fit 

plane) is obtained. The average of three measurements is taken as surface roughness (Ra) of 

the test.   

A Scanning Electron Microscope (SEM), JEOL JSM-606LV, is used to image the 

cut-surface topology. The SEM images are taken from the lower half of the sample, on the 

center line of the cut surface. It is seen from the images that there are two material removal 

mechanisms in affect. The dominant mechanism is the trans-granular failure in which grains 

are cut through. Inter-granular failure, in which grain boundary failure results in grain 

dislodgement in a brittle mode, is also observed. Both failure mechanisms can be seen in Fig. 

3.4.  
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3.3. Roughness Model Derivation  

Ductile material removal and brittle fracture is observed in SEM images. The 

proposed model is shown in Fig. 3.5. The material removal occurs in a ductile mode as seen 

in SEM images, while the damage occurs due to median cracking as in Fig. 3.5. As discussed 

by Evans and Marshall [15], removal of plastically deformed material in the cutting zone 

reduces residual stress. This reduces the tendency of lateral crack formation in brittle 

materials. The median crack depth, c, can be compared to measured roughness.  

Fu et al. [28] derived the force on a single grit in ductile mode material removal as 

presented in Eq. 3.1, where σy is yield stress, R is cutting particle radius, and h is cut depth 

for a single particle.  

  

z zg yF F Rhπσ= =                                                    (3.1) 

 

The mass continuity of the cutting process gives us Eq. 3.2.  

 

( ) ( ) ( ) ( )

o

g
z x

p o g g

L D h S
Ld Volume d dS h hV V

dt A dt L D dt L L

× × ×
= = = =

×
      (3.2) 

 

Volume is the total amount of material removed, Ap is the projected area of the cut 

trench, Lo is the cut length of sample, Lg is the distance between cutting particles, D is width 

of cut trench that can be taken as diameter of wire, S is sliding distance, Vx is the axial speed 

of wire, and Vz is the feed of wire. Solving the cut depth h from Eq. 3.2 yields Eq. 3.3. 
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  (3.3) 

 

The force on a single grit, Fzg, can be obtained in terms of process parameters by 

inserting Eq. 3.3 into Eq. 3.1 and Eq. 3.4 is obtained.  

 

= z
zg y g

x

VF RL
V

πσ ×                  (3.4) 

  

The damage resulting from wire saw cutting is correlated with median crack depth. 

Lawn et al. [16] derived the median crack length using fracture mechanics principles. The 

median crack length is presented in Eq. 3.5. Lawn et al. [16] calibrated the indentation 

coefficients 0.032 and 0.017 in Eq. 3.5 using indentation data of soda-lime glass and noted 

that they are applicable to all brittle materials. 

 

2
1 32 2

30.032 0.017 (cot )
c

E Pc
H K

ψ
⎡ ⎤⎡ ⎤

⎛ ⎞⎢ ⎥⎢ ⎥= + × ⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦⎣ ⎦

                   (3.5)  

                                      

Inserting Eq. 3.4 in place of P=Fzg in Eq. 3.5 gives us Eq. 3.6. 
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              (3.6) 

 

The median crack depth, which is the damage due to the wire saw process, is 

presented in terms of the process parameters in Eq. 3.6. The damage is a function of the half 

of the included angle of the grits, ψ; the modulus of elasticity of ingot, E; the hardness of the 

ingot, H; the fracture toughness of the ingot, Kc; and wire properties, feed speed, and wire 

speed.  

 

3.4. Results and Discussion 

Decreasing feed rate in grinding below a threshold yields ductile regime grinding of 

brittle materials [21-26]. In ductile regime machining of brittle materials, the material 

removal takes place with plastic deformation of the grains [21, 22, 24-26]. While the material 

removal is in ductile mode, brittle fracture is still observed in ductile regime grinding [22, 

26]. The material removal and damage formation in the wire saw process is analogous to 

ductile regime grinding as seen from SEM images of wire saw processed surfaces. A damage 

model is derived for roughness damage induced by wire saw process. The model is compared 

to experimental data in Fig. 3.6. The model has a good performance in predicting roughness 

damage due to the wire saw process.  

The damage model states that if the feed-speed-to-wire-speed ratio (Vz/Vx) is 

increased, the roughness damage will increase, while if this ratio is kept constant, roughness 

damage will be constant. The two experiments marked in Fig. 3.6 have different feed speeds 

and wire speeds but a very close (Vz/Vx) ratio, and their roughnesses are also very close to 

each other. In a wire saw process, if efficiency should be increased by increasing the feed 

speed, in order to keep the level of damage constant, the wire speed should be increased 

proportionally to the feed speed.  
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In order to explain the effect of wire tension on roughness damage, the change of 

forces with wire tension should be considered. The total force and distributed force acting on 

the sample by the wire due to wire bow and tension is presented in Eq. 3.7 and Eq. 3.8, 

respectively. The total force, Fzs, is distributed on the cutting grits as cutting forces per grit, 

Fzg, by Eq. 3.9. The N=Lo/Lg is the number of cutting particles in the cut length, Lo, and, Lg, is 

the distance between cutting grits. 

 

2 sinzsF T α=
                                   (3.7) 

 

2 sin

o

Tw
L

α
=

                                    
(3.8) 

 

2 sin 2 sin
zg g

o

T TF L
N L

α α
= =                           (3.9) 

 

The increase of wire tension, T, decreases the wire bow α as seen in Fig. 3.7. As 

tension, T, increases, the wire bow α decreases and the distributed load on the sample w, 

remains constant due to Eq. 3.8, as seen in Fig. 3.8. The increase of tension, T, decreases the 

bow angle α and the force on a single grit, Fzg, remains constant due to Eq. 3.9; thus, the 

surface roughness does not change with respect to tension, T, as seen in Fig. 3.9. The surface 

roughness damage is independent of tension.  

The damage model relates the roughness damage with wire properties approximately, 

as in Eq. 3.10. The roughness is expected to increase with the increase in the radius, R, of 

abrasive grits and the spacing between the abrasive grits, Lg.  

 

( )
2
3~ gc R L×                                      (3.10)  

 

Four roughness tests with different wire speeds but the same feed speeds and tensions 

are done with each of the last three wires in Table 3.1. The roughness versus wire speed for 
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each wire is presented in Fig. 3.10. For the same wire speed, the increase of (R.Lg)0.6 yields a 

higher roughness as seen in Fig. 3.10. Thus, the prediction of the model about the increase of 

roughness with grit radius and spacing is verified experimentally.   

 

3.5. Conclusion 

Experimental work on the wire saw process has been conducted with different 

process parameters. The SEM images of the cut surfaces showed that the materials removal 

is in ductile mode, while there is brittle fracture, which is analogous to ductile regime 

grinding of brittle materials. A roughness damage model is derived. The derived model is 

validated with experimental study. The model states that the roughness damage is 

proportional to feed speed to wire speed ratio. If the efficiency of the process should be 

increased without increasing the roughness damage, the feed speed should be increased 

proportionally with respect to wire speed. The wire properties have a marked effect on the 

roughness damage. Wires with smaller grit radius and spacing will lead to smaller roughness 

damage. High grit density wires with small grits are beneficial for surface quality.   
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Fig. 3.1. Single wire, spool-to-spool wire saw machine (DWT Inc., Millennium Model). The 

wire track is marked by the dashed line.  
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Fig. 3.2. SEM images of diamond impregnated wires a) DWS2 old wire b) DWS3 from Well 

Inc. c) DWS4 from Saint-Gobain Abrasives Inc. d) DWS5 from Saint-Gobain Abrasives Inc.  

 

 
Fig. 3.3. Wire bow angle and wire curvature in wire saw tests.  
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Fig. 3.4. The SEM image of a wire saw cut surface (Vx=1.3 m/sec, Vz= 5 μm/sec, T=13 N). 

 

 

 

 
Fig. 3.5. Wire saw roughness damage model showing ductile material removal and brittle 

fracture.  
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Fig. 3.6. Comparison of wire saw roughness damage model with respect to experimental 

results.  

 

 
Fig. 3.7. The variation of wire bow angle per unit cut length α/Lo as a function of wire 

tension T (Vx=1.8 m/sec, Vz= 5 μm/sec).  
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Fig. 3.8. The variation of distributed load w as a function of wire tension T (Vx=1.8 m/sec, 

Vz= 5 μm/sec).  

 

 
Fig. 3.9. The variation of surface roughness as a function of wire tension T (Vx=1.8 m/sec, 

Vz= 5 μm/sec).  
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Fig. 3.10. The variation of surface roughness as a function of Vx (Vz= 6.35 μm/sec, T=13N). 

The tests are done with different wires.  
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Table 3.1. Diamond wire properties.  

Wire 
Name

Diameter 
Dw (μm)

 Grit Size 
Dg  (μm)

Grit 
Radius 
R (μm)

Grit 
Spacing 
Lg (μm)

sqrt(R*Lg) 
(μm) Note 

DWS2 296 66 33 215 84 Old wire 
DWS3 304 78 39 280 104 Well Inc. 
DWS4 204 23 11.5 177 45 Saint-Gobain Inc.
DWS5 252 27 13.5 69 31 Saint-Gobain Inc.
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Abstract 

Silicon wafers in photo voltaic and semi conductor industries are sliced using a wire 

saw process. The wire saw process is also used to machine almost all kinds of brittle 

materials where a high yield and low surface damage is desired. The wire saw process 

induces long waviness on the cut surfaces. The long waviness has to be removed by post 

process techniques including grinding and lapping, which increases costs. In this study, the 

long waviness induced by the wire saw process is investigated. An analytical model for long 

waviness generation is developed. Experimental work is conducted with different process 

parameters. The analytical model is capable of explaining the long waviness generation 

observed in experimental work. Process design recommendations with minimal waviness and 

high efficiency are presented.  

 

4.1. Introduction 

The wire saw process is widely used in slicing silicon wafers in the photovoltaic and 

microelectronics industries. The advantages of the wire saw with respect to inner diameter 

saw are high productivity, less wafer surface damage, and lower kerf loss [1]. The wire saw 

process can also be used to cut all kinds of brittle materials including sapphire, silicon 

carbide, lithium niobate, rocks, high density ceramics, and foam ceramics [1,2,3].  
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In the 1990s, the wire saw process was consisting of a bare steel wire and abrasive 

carrying slurry, resulting in free-abrasive machining using elasto-hydrodynamic forces [4,5]. 

In order to increase the efficiency and to cut harder materials, diamond impregnated wire, 

which leads to fixed-abrasive machining, was developed [4]. The diamond-impregnated wire 

saw process also eliminated the disposal of high amounts of hazardous slurry, which was an 

output of the abrasive-carrying slurry wire saw process [6].  

The wire saw process makes up 30% of the total silicon wafer production cost, which 

affects the industry directly. The high cost of the process requires development of models 

relating process parameters with outputs [7].  

There have been three main topics in wire saw literature: material removal 

mechanisms, kinematics of wire, and parametric studies between the process inputs and 

outputs.  

The materials removal rate of the abrasive-carrying slurry wire saw process, which 

leads to free-abrasive machining, has been studied by different researchers [5,7]. Materials 

removal mechanisms for bead-impregnated wire saw cutting of rock is a Hertzian type 

fracture that occurs due to tensile field due to sliding bead [8].  

Wire vibration characteristics have been studied with respect to process parameters 

[1,9,10]. The influence of process parameters on slurry film pressure and thickness has been 

studied for the free-abrasive wire saw process [1,5]. 

 Experimental parametric studies relating surface damage with process parameters for 

cutting various materials have also been conducted [2,6,11]. Rigorous efforts have been 

devoted to removing wire saw induced waviness by post processing [12-17].  

In this study, the long waviness generation due to the wire saw process is 

investigated. An experimental study is conducted to explore the effects of process 

parameters. An analytical model for waviness generation is developed. The experimental 

process is presented in section 4.2, the model is presented in section 4.3, and results and 

discussion are presented in section 4.4. The conclusion is presented in section 4.5.   



77 
 

4.2. Experimental Design 

Wire saw experiments are conducted on alumina ceramic. The wire bow angle, wire 

axial speed, Vx, and feed rate, Vz, are measured during the wire saw cutting tests. The surface 

waviness of cut surfaces is also measured. The equipment used in these measurements and 

the process parameters are presented in this section.  

 

4.2.1 The Wire Saw Process and Wire Bow Angle Measurement 

A wire saw machine1 is used in the experiments. This spool-to-spool wire saw 

machine with rocking motion of the wire can be controlled by the wire speed, Vx, down-feed 

speed, Vz, and wire tension, T. The tension is controlled by wire tension pulleys powered by 

air pressure, while the rocking motion is controlled by wire guide pulleys as can be seen in 

Fig. 4.1. The cut length of wire, which is used during the cutting, is 310 ft (94.5 m). Thus, at 

every direction reversal, 310 ft of wire is transferred from one spool to the other.  

The wire speed is a function of spool diameter as the machine controls the speed via 

the angular frequency of the spool. In order to get the actual average speeds, a Strobex 

Systems 236 model stroboscope2 is used. The down-feed speed, Vz, is measured by tracking 

the position of a grid, which is on the yoke of the machine, with respect to a stationary point 

on the frame of the machine. As the yoke goes down, the grid moves relative to the fixed 

point on the frame of machine. The time to travel 5 mm grids is measured during the tests.  

Diamond-grit-coated steel wire, a product of Well Diamond Wire Saws Inc., is used 

in the experiments. The wire is manufactured by mechanically impregnating the diamond 

grits into the steel wire. The impregnation process might be successful for some grits, while 

others just leave an indentation mark on the wire and could not be affixed as seen in Fig. 4.2. 

 

 

 

 
1 Millennium model wire saw machine produced by Diamond Wire Technology in Colorado, Springs. 
2 Product of Chadwick-Helmuth Inc., California.   
 3 Product of Synthetic Lubricants, Inc. 
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  Alumina ceramic samples having a tensile strength of σfr=300 MPa, Poisson’s ratio of 

ν=0.22, fracture toughness KIC =4 MPam1/2, Young’s modulus of E=370 GPa [18], and 

hardness of H=22 GPa [19] are used in the cutting tests. The cut length of the samples is Lo 

=25 mm and the height is between Hs =60-90 mm. Three tests are done with the process 

parameters presented in Table 4.1. 

A Kodak Easy Share DX 7630 6.1 megapixel digital camera is used to measure the 

wire bow angle as seen in Fig. 4.3. The images of the wire and sample are collected during 

the test and analyzed using the Matlab image-processing toolbox to obtain the angle, α, 

between the wire and the horizontal. The average of the steady state wire bow angles, α, is 

attained to the test as the steady-state wire bow angle of that test.  

The Kodak digital camera is used also in getting the profile of the wire marks on the 

cut surface as seen in Fig. 4.4. The cut surface images are processed using the image- 

processing toolbox Matlab to obtain the wire-mark profile for each test.  

 

4.2.2. Surface Waviness Measurements  

The surface waviness of the cut surfaces are measured using an optical non-contact 

profilometer, Zygo New View 6000, manufactured by Zygo Corporation. A 2.5x lens with 2x 

zoom is used for the measurements. The profilometer has a vertical resolution on the order of 

3 nanometer; the resolution in the horizontal plane is 8.83 μm, while the field of view used is 

1.41×1.06 mm.  

In a stitch measurement, the profilometer takes continuous measurements of 

1.41×1.06 mm and stitches them together into one data set. Stitch measurements are applied 

in the direction of cutting at the center of the cut surface for each sample. After the 

measurements are taken, the data is processed using the software Metro Pro Version 8.1.5 

developed by Zygo Co. The best fit plane is removed and a low pass filter is applied to get 

the waviness profile of the cut surface.  

 

4.3. Wire Saw Process Induced Waviness Model 

 The wire bows in the plane of the cut (X-Z plane) and in the orthogonal (X-Y) plane. 

The definitions of the planes are presented in Fig. 4.5. The string deflection model is used to 
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explain the wire bow in the X-Z plane while energy competition between the oblique cutting, 

free standing, and wire tension is also used to explain the wire deflection in the X-Y plane.  

 

4.3.1. The String Deflection Model 

 The deformation of a wire that is tensioned in both ends and subject to a distributed 

load per unit length, w, in the middle is presented in Fig. 4.6. An infinitesimal region of the 

loaded string is presented in Fig. 4.7. The horizontal and vertical equilibrium equations for 

force is obtained using Fig. 4.7 and presented in Eq. 4.1 and Eq. 4.2, respectively.  

 

1 1 2 2cos cosT T Tθ θ= =         (4.1) 

 

2 2 1 1sin ( ) sinT w x x Tθ θ+ Δ =     (4.2) 

 

Solving Eq. 4.1 for T1 and T2 and inserting into Eq. 4.2 yields Eq. 4.3. 

  

2 1(tan tan ) ( ).T w x xθ θ− = − Δ     (4.3) 

 

The string deflection is δ(x) as seen in Fig. 4.6. The slope of the string at any point 

can be written as in Eq. 4.4.  

 

 

( )tan d x
dx
δθ =                        (4.4) 

 

Eq. 4.3 can be updated using Eq. 4.4.  

 

2 1
( ) ( )| |

( )

d x d x
dx dxT w x

x

δ δ⎡ ⎤−⎢ ⎥
= −⎢ ⎥Δ⎢ ⎥

⎣ ⎦

                  (4.5) 
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In the limit of Δx approaches to zero, Eq. 4.5 can be written as in Eq. 4.6. 

 
2

2
( ) ( )d xT w x

dx
δ

= −                   (4.6) 

 

The distributed load per unit length on the wire is presented in Eq. 4.7. 

 

0, 0
2
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o
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⎢ ⎥

− +⎢ ⎥= ≤ ≤
⎢ ⎥
⎢ ⎥+⎢ ⎥< ≤
⎢ ⎥⎣ ⎦

              (4.7) 

 

Using the boundary conditions δ(0)=0, δ(L)=0 and continuity of slope and deflection 

of wire, Eq. 4.6 can be solved. The wire deflection is presented in Eq. 4.8 [20]. The 

displacement at the mid span of the wire is presented in Eq. 4.9. The maximum wire bow 

deflection in the X-Z plane in the cut length seen in Fig. 4.6 is presented in Eq. 4.10. The w is 

the distributed load, Lo is the cut length of the sample where the distributed load is applied, T 

is the wire tension, and L is the span of the wire between guide pulleys, as seen in Fig. 4.6. 

The wire deflection model presented in Eq. 4.8 will be compared to the 

experimentally obtained wire bow in the X-Z plane in the results and discussion section.  
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( ) (2 )
2 8

o
o

L wL L L
T

δ = −              (4.9) 

 
2

max ( ) ( )
2 2 8

o oL L L wL
T

δ δ δ −
= − =         (4.10) 

 

4.3.2. The Lateral Deflection Model in (X-Y) Plane 

The string model presented in Eqs. 4.8-4.9-4.10 is upper bound for the wire deflection 

in the X-Y plane. The wire deflection in the X-Y plane is controlled by the energy 

competition between the oblique cutting forces, wire tension, and free-standing wire loaded 

with a distributed load. The wire saw cutting occurs due to each individual grits’ cutting 

action in the cut length. Energetically, the cutting action of each grit is oblique cutting, which 

leads to divergence of the wire in the X-Y plane and forms the long waviness. The total 

oblique load, wy, acting on the wire is related to the normal load, wz, with a proportionality 

factor, β, as in Eq. 4.11. 

 

y zw wβ= ×              (4.11) 

 

Experimental observations showed that the deflection in the X-Y plane, δy, increases 

up to a limit as the cut depth, z, increases. As the deflection in the X-Y plane occurs due to 

oblique cutting action, the proportionality between the deflection in the X-Y plane, δy, and 

the cut depth, z, has the same constant of proportionality between the lateral oblique force, 

wy, and normal force, wz, as in Eq. 4.12. 

 

( / 2, )y L z zδ β= ×            (4.12) 

 

The value of the proportionality factor, β, will be determined from the surface profiles 

of each test using Eq. 4.12. 
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4.3.2.1. The Energy Terms for Surface Waviness Generation 

 The long waviness occurs due to wire drifting in the X-Y plane. The oblique cutting 

forces drifts the wire out of the cutting plane (X-Z), while the wire tension is applying a 

recovery work on the wire to bring the wire into the cutting plane (X-Z). The limiting energy 

for the maximum deflection can be found using the work done by the free-standing wire 

under oblique load, wy. Three energetic terms governing the behavior of the wire are 

introduced in this section. 

 

4.3.2.1.1. Work Done by Free Standing Wire (WDfsw ) 

 The upper bound of the work done by the free standing wire is calculated at 

maximum lateral deflection of wire in the X-Y plane, as in Eq. 4.13. The maximum 

deflection of the wire at mid span in Eq. 4.9 is used to calculate the final result in Eq. 4.13. 

 

2 22
*

2

( ) (2 )
8

o

o

L L

y o
fsw y y o

L L

w L
WD w x dx L L

T
δ

+

−

= = −∫     (4.13) 

 

4.3.2.1.2. Work Done by Oblique Cutting Forces (WDobl ) 

 The work done by the oblique cutting force drifts the wire in the X-Y plane. The 

work done by the oblique cutting force is calculated using lateral distributed load, wy, minus 

the lateral reaction, R(z), applied by the wall of the sample to the wire. The lateral reaction on 

the wire, R(z), changes with depth of cut as seen in Fig. 4.8. The lateral reaction has its 

maximum value at the beginning of the cut and diminishes to zero at maximum lateral 

deflection, δy,* obtained at the cut depth, z1. The lateral reaction is presented in Eq. 4.14. 

The work done due to oblique cutting is presented in Eq. 4.15. Using the Eq. 4.12 and Eq. 

4.15, Eq. 4.16 is obtained for work done by oblique cutting.  
 

1( ) (1 / )yR z w z z= −      (4.14) 
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( ) ( ) ( , ) ( ) ( / 2, )
oL

obl y y y o yWD z w R z x z dx w R z L L zδ δ⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦ ⎣ ⎦∫      (4.15) 

 
2

1( ) /obl o yWD z L w z zβ=      (4.16) 

 

4.3.2.1.3. Work Done by Wire Tension (WDT ) 

 The work done by the wire tension, T, to deflect wire back to the undeformed position 

in the X-Y plane is presented in Eq. 4.17. 

 

0 0

2 sin sin (1 cos )
2

f f

T f
LWD T d TL d TL

θ θ

θ θ θ θ θ= = = −∫ ∫   (4.17) 

 

The angle, θf, is between the wire and the horizontal line in the X-Y plane as seen in 

Fig. 4.6. The angle, θf, is a function of wire length and mid-span deflection as presented in 

Eq. 4.18. The work done by wire tension can be written using Eq. 4.12, Eq. 4.17, and Eq. 

4.18, as in Eq. 4.19. 

 

2

2 2cos
4 ( / 2, )f

y

L
L L z

θ
δ

=
+

        (4.18) 

 

2 2 2
1

4
T

LWD TL
L zβ

⎡ ⎤
= −⎢ ⎥

+⎢ ⎥⎣ ⎦
             (4.19) 

 

4.3.2.2. The Mechanisms Effecting Long Waviness  

The mechanisms effecting the long waviness formation via the energetic terms 

presented in the previous section are presented in this section.  
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4.3.2.2.1. Mechanism 1 

Mechanism 1 occurs when the oblique cutting forces drifts the wire in the X-Y plane 

until the critical cut depth, z1, is achieved. The work done by oblique, WDobl, cutting 

increases with depth of cut until critical cut depth, z1, at which the WDobl is equal to the work 

done by the free standing wire, WDfsw as presented in Eq. 4.20 and Fig. 4.9. At cut depths 

greater than z1, the wire will continue with the same lateral deflection until a process 

disturbance will change the oblique cutting conditions and drifts the wire back into cutting 

plane X-Z, as seen in Fig. 4.10. The rate of work done by oblique cutting is greater than the 

rate of work done by wire tension as presented in Eq. 4.21. The Mechanism 1 occurs when 

the wire tension is low which leads to a flexible wire. Mechanism 1 leads to tapered edges 

and high frequency roughness in the middle of the cut surface as seen in Fig. 4.10. 

 

obl fswWD WD=              (4.20) 

 

obl TWD WD
z z

∂ ∂
>

∂ ∂
              (4.21) 

 

4.3.2.2.2. Mechanism 2 

Mechanism 2 occurs when the oblique cutting forces drifts the wire in the X-Y plane 

until reaching the cut depth, z3, at which the work done by the oblique cutting is equal to 

work done by wire tension as seen in Eq. 4.22 and in Fig. 4.11. Work done by wire tension 

will reverse the oblique cutting direction, drifting the wire back into cutting plane X-Z and 

forming waviness as seen in Fig. 4.12. The repetition of this process will lead to waviness 

with a wavelength of 4.z3 as presented in Fig. 4.12. The rate of work done by oblique cutting 

is smaller than the rate of work done by wire tension as seen in Eq. 4.23. Mechanism 2 

occurs when the wire tension is high, which leads to a stiff wire. The amplitude of the 

waviness obtained in mechanism 2 will be smaller than the amplitude of the wire drift in 

mechanism 1.  

 

obl TWD WD=        (4.22) 
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obl TWD WD
z z

∂ ∂
<

∂ ∂
       (4.23) 

 

4.4. Results and Discussion 

The upper bound for the wire deflection in the cutting plane X-Z and oblique plane 

X-Y is derived using the string model. A lateral deflection model, including oblique cutting 

of abrasive grits, energetic terms effecting wire deflection, and the mechanisms based on the 

energetic terms and governing the surface profile, is derived.  

The profile of the wire marks obtained from the cut surfaces in X-Z plane are 

presented in Fig. 4.13. The discrete data points are measurements obtained from the cut 

surfaces of each test, while the continues curves are the string model predictions. The 

distributed load on the wire is obtained using Eq. 4.24. The wire bow angle, α, is measured 

from the images captured during the test. The T is the wire tension and Lo is the cut length. 

The distributed load, wire tension, cut length, and span length are inserted in Eq. 4.8 to 

obtain the string model predictions for the wire bow, as presented in Fig. 4.13. The string 

model estimations for the wire profile in the X-Z plane are satisfactory.  

 

2 sin

o

Tw
L

α
=         (4.24) 

 

The increase of tension two times decreases the wire bow amplitude almost by half, 

while increasing the feed speed increases the wire bow amplitude as seen in Fig. 4.13. These 

trends are captured by the string model very well, as seen in Fig. 4.13. 

The surface profiles obtained from profilometer measurements for each test are 

presented in Fig. 4.14, Fig. 4.15, and Fig. 4.16, respectively. The proportionality factor, β in 

Eq. 4.11 and Eq. 4.12 is determined from the slopes of the dashed lines representing the out- 

of-plane deflection of the wire due to oblique forces, as presented in Fig. 4.14, Fig. 4.15, and 

Fig. 4.16. The average of the slopes of these lines is attained as the factor β=0.0123. The 

energy plots of the tests are presented in Fig. 4.17, Fig. 4.18, and Fig. 4.19, respectively. All 
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of the energy plots show Mechanism 1 behavior, in which work done by oblique cutting is 

limited by the work done by the free standing wire, as in Fig. 4.9. Although all of the energy 

plots show Mechanism 1 behavior, the increase of wire tension or feed speed has a marked 

effect on the long waviness, which can still be explained by the waviness model. The 

increase of wire tension will lead to a stiff wire, which will lead to Mechanism 2, a wavy 

surface, while the increase of feed speed will increase the oblique cutting forces, which will 

lead to Mechanism 1. All the tests in this work have Mechanism 1 type energy plots as 

presented in Fig. 4.9. However, the increase of wire tension decreases the difference z2-z1 

which will drive the system towards Mechanism 2 and, ultimately, when z2-z1 =0, Mechanism 

2 will be obtained energetically, as in Fig. 4.11. There is not a strict boundary between the 

Mechanism 1 and Mechanism 2. While a system is energetically in Mechanism 1, because of 

high wire tension the z2-z1 difference will reduce, driving the system towards Mechanism 2 as 

in Fig. 4.20 for TC21 with respect to TC20. Increase of feed speed will increase the oblique 

cutting forces, driving the system towards Mechanism 1 and increasing the z2-z1 difference as 

seen in Fig. 4.20 for TC22 with respect to TC21. 

The test TC20 is done with wire tension T=13.3 N, while TC21 is done with T=26.7 

N; both tests have the same wire speed, Vx, and feed speed, Vz. The increase of wire tension 

decreases the difference z2-z1 for TC21 with respect to TC20, driving the TC21 towards 

Mechanism 2, as seen in Fig. 4.20. Test TC20, being closer to Mechanism 1, has a step-like 

surface, as in Fig. 4.14, which complies with the expectations for a step-like surface for 

Mechanism 1 as presented in Fig. 4.10. Test TC21, being closer to Mechanism 2 with respect 

to TC20, has a wavy surface as presented in Fig. 4.15. The peak-to-valley (PV) value, which 

is the height difference between the highest and lowest points on a surface profile, is also 

affected by the change in wire tension. Experiment TC20, having a lower wire tension of 

T=13.3 N, has a higher PV=199 μm, while experiment TC21, having a higher wire tension of 

T=26.7 N, has a lower PV=69 μm. The increase of wire tension, T, decreases the PV value, 

which is expected as Mechanism 1 creates a high amplitude step, while Mechanism 2 creates 

lower amplitude waviness.  

The test TC21 is done with a feed speed of Vz=6.4 μm/s, while the TC22 is done with 

a feed speed of Vz=12.7 μm/s; both have the same wire speed and tension. The increase of 
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feed speed increases the oblique cutting forces, driving the TC22 towards Mechanism 1. The 

increase of feed speed increases the difference z2-z1 for TC22 with respect to TC21, driving 

the TC22 towards Mechanism 1, as seen in Fig. 4.20. The peak-to-valley (PV) value is also 

affected by the change of feed speed. Experiment TC21, having a lower feed speed of Vz=6.4 

μm/s, has a lower PV=69 μm, while experiment TC22, having a higher feed speed of Vz=12.7 

μm/s, has a higher PV=86 μm. The increase of feed speed increases the PV value, which is 

expected as Mechanism 1 creates a high amplitude step, while Mechanism 2 creates lower 

amplitude waviness.  

Fig. 4.20 shows that as the difference, z2-z1, increases, the peak-to-valley, PV, value 

increases for all three experiments and system evolves towards Mechanism 1, while 

decreasing difference, z2-z1, leads to Mechanism 2. High wire tension will reduce the peak-to 

valley-value, while high feed rate will increase the PV value. The increase of peak-to-valley 

value will lead to more post grinding and polishing of the cut surface and an increase in 

expenses. In order to increase the efficiency without increasing the PV value, the wire tension 

can be increased proportional to feed speed.  

 

4.5. Conclusion 

The wire-saw process induced long waviness on the cut surface is investigated in this 

study. Experimental work including different wire tensions and feed speeds is conducted. 

The string model is used to model the bow of the wire marks on the cut surface and 

satisfactory results are obtained. The increase of tension decreases the wire bow amplitude, 

while increases in feed speed increases the wire bow amplitude, which is predicted by the 

string model and observed in the experiments.  

The long waviness formation is explained with energetic terms that define two 

mechanisms leading to different surface profiles. The defined mechanisms are used to 

explain the evolution of the surface profile and peak-to-valley value with respect to process 

parameters. The increase of wire tension will lead to a wavy surface with a lower peak-to 

valley-value, while decreasing wire tension will lead to a step-like surface with a high peak-

to-valley value. The increase of feed speed will lead to a high peak-to-valley value. The 

increase of peak-to-valley value will lead to more post grinding and polishing of the cut 
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surface and increases in expenses. In order to increase the efficiency without increasing the 

peak-to-valley value, the wire tension can be increased proportional to feed speed.  
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Fig. 4.1. Single wire, spool-to-spool wire saw machine (DWT Inc., Millennium Model) used 

in waviness tests. The wire track is marked by the dashed line. 
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Fig. 4.2. SEM images of diamond impregnated wire.  

 

 
Fig. 4.3. Optical image showing the wire inclination angle with the cutting direction at the 

entrance and exit from the specimen for a waviness test.  
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Fig. 4.4. Wire marks on a wire saw cut surface (TC22 Vx=2 m/s, Vz=12.7 μm/s, T=26.7 N).  

 

 
Fig. 4.5. The coordinate system defined for analyses of wire saw process.  

X

Y

Z
Vx

Vz



93 
 

 
Fig. 4.6. The model of a wire under tension and distributed load.  

 

 

 

 
Fig. 4.7. The forces acting on an infinitesimal string element.  
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Fig. 4.8. Variation of lateral reaction with cut depth.  

 

 
Fig. 4.9. Mechanism 1 energy plots.  
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Fig. 4.10. Surface profile due to mechanism 1.  

 

 

 

 
Fig. 4.11. Mechanism 2 energy plots.  
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Fig. 4.12. Surface profile due to mechanism 2.  

 

 
Fig. 4.13. Variation of wire bow as a function of wire tension and feed speed in cut plane X-

Z.  
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Fig. 4.14. Surface long waviness profile of TC20 test.  

 

 
Fig. 4.15. Surface long waviness profile of TC21 test.  
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Fig. 4.16. Surface long waviness profile of TC22 test.  

 

 
Fig. 4.17. Energy plots of TC20 test.  
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Fig. 4.18. Energy plots of TC21 test.  

 

 
Fig. 4.19. Energy plots of TC22 test.  
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Fig. 4.20. Domains for long waviness mechanisms.  
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Table 4.1. The long waviness experiments parameters.  

Vx 
(m/s)

Vz 
(μm/s)

T 
(N) 

Lo 
(mm)

wz 

(N/m)

wy = 
β*wz 

(N/m)
WD1 
(Nμm)

z1  

(mm)
z2 

(mm)
z2-z1 

(mm)
TC20 2 6.35 13 25 62.5 0.77 1.30 5.51 8.05 2.54
TC21 2 6.35 27 25 61.7 0.76 0.63 2.71 3.96 1.25
TC22 2 12.7 27 25 111.4 1.37 2.06 4.89 7.14 2.25  
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CHAPTER 5. WIRE SAW CUTTING INDUCED SURFACE DAMAGE AND 

DESIGN SPACE EXPLORATION 

The wire saw process induced surface and subsurface damage is explored, utilizing a 

bonded sample configuration, as a function of the process parameters (wire speed, down-feed 

speed, and wire tension). The developed insight is used in combination with the long-

waviness investigations, explored in Chapter 4, to explore the limits of the possible working 

range of the wire saw process. 

  

5.1. Wire Saw Process Induced Surface Damage Depth Investigation  

The damage induced by the wire saw process decreases the quality of the cut surface. 

The cutting process poses reliability concerns; it is the finishing process of the device (e.g 

actuators and sensors). Or, it may require additional post-processing steps that require 

additional capitals and result in additional scrap, which is the case for silicon wafers used in 

the semiconductor and photovoltaic industries. Post processes including grinding, lapping, 

polishing, and chemical etching to remove the wire saw induced damage and planarize the 

cut surface. There is a need to relate the process parameters to wire saw induced damage in 

order to improve the cutting process performance.  

In the wire saw process, the material removal is primarily in the ductile mode. 

Surface damage arises from brittle cracking that extends beyond the plastic zone below the 

abrasive particle, as discussed in Chapter 3. The extent of surface damage and cracking sets 

the depth of material to be removed during post processing, in order to remove all the 

damage induced by the wire saw process.  

Hardin et al. [1] used a Scanning Acoustic Microscope to measure the subsurface 

damage, but the interference of surface damage was a problem for truly identifying the extent 

of the subsurface damage. Xu and Jahanmir [2] used the bonded-interface sectioning (BIS) 

technique to examine the subsurface damage in scratching of alumina ceramics. The bonded-
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interface sectioning technique is used to measure the surface damage depth in this study. The 

experimental work is presented in section 5.1.1, and the results are presented in section 5.1.2. 

 

5.1.1. Experimental Setup 

A single-wire, spool-to-spool wire saw machine1 is used in the current investigation. 

A diamond-impregnated wire (DWS4) having a diameter of Dw=204 μm is used in the wire- 

saw cutting. The actual wire speed is measured by a stroboscope (Strobex 236)2. A Kodak 

digital camera (2856 × 2142 pixel) is used to obtain the wire bow images during the tests. A 

Scanning Electron Microscope (SEM) is used to obtain the surface damage depth. The details 

of these equipments are presented in Chapter 2.  

Coolant having water to lubricant Sawzit3 ratio of 50/1 is used during cutting tests. 

The cut length of wire used is 310 ft. Thus, at every direction reversal of wire, Lw=310 ft 

(94.5 m) of wire is transferred from one spool to the other. 

Two rectangular alumina ceramic samples are used for the tests. The mechanical 

properties of alumina ceramic are introduced in Chapter 2. The two-section polished 

surfaces, having initial roughness of 1.5 μm, are bonded together by crystal bond. The 

laminated sample is glued to an aluminum holding post as shown in Fig. 5.1. The test matrix 

is presented in Table 5.1. Different wire speeds of 2, 3 and 4 m/sec are utilized. A 

combination of down-feed speed of 6.35, 9 and 12.7 μm/sec and wire tension of 13.3, 18 and 

26.7 N are utilized at constant wire speed to explore the process domain.  

After the wire saw cutting tests, the samples are debonded by pickling in acetone. The 

interface surfaces of the samples are coated with 10 nm gold sputtered layer as seen in Fig. 

5.2. The sides of the cut trenches are investigated by SEM for wire saw process related 

surface damage.  

1 Millennium model wire saw machine produced by Diamond Wire Technology in Colorado, Springs. 
2 Product of Chadwick-Helmuth Inc., California.   
3 Product of Synthetic Lubricants, Inc. 
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The surface damage depth is measured by processing the SEM images using the 

image-analysis toolbox of Matlab.  

 

5.1.2. Results and Discussion 

The results of BIS will be presented in this section. The extent of the surface damage, 

Dd, is shown in Fig. 5.3 as the craves generated by dislodgement of an entire grain due to 

grain-boundary cracking. The variation of the intrinsic process parameters (normalized wire 

bow angle, α/Lo, and wire loading per unit length, w, and surface damage depth, Dd, with the 

change of explored process control parameters are presented in the next sections.  

 

5.1.2.1. Variation of the Intrinsic Process Parameters  

The variation of the intrinsic process parameters (which have been previously 

presented in Chapter 2) with the process control parameters (Vx, Vz, and T) are summarized 

again here for the set of samples utilized in the current BIS experiment. The test results are in 

agreement with the previously observed trends, wherein the normalized wire bow angle, α/Lo, 
decreases as Vx increases (Fig. 5.4a), which results in reduction of the wire loading per unit 

length, w, at constant tension (Fig. 5.4b). However, as the down feed, Vz, increases, the wire 

bow angle and the corresponding loading on the sample increases, as shown in Fig. 5. The 

role of the wire tension is shown in Fig. 6. Increasing the wire tension would increase the 

effective stiffness of the wire, and, thereby, the wire bow angle, α/Lo, would decrease as 

shown in Fig. 5.6(a). However, T has a compounding effect on w ( 2 sin ow T Lα= ); 

therefore, Fig. 5.6(b) shows an initial drop of w and then saturation as T increases.  

 

5.1.2.2. Variation of the Surface Damage Depth  

The surface damage depth, Dd, is expected to follow the trend of the imported force 

on the sample. Figs. 5.7-8-9 show such a trend. Dd decreases with increasing Vx due to the 

reduction of the cutting feed per individual abrasive grit (Fig. 5.7). As expected, Dd, 

increases with Vz due to the increase in the effective feed/grit (Fig. 5.8). The interesting result 

is that the wire tension showed no effect on the extent of Dd (Fig. 5.9). Such a result is very 
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significant when trying to minimize other damage modes, such as the long surface waviness 

discussed in Chapter 4.  

 

5.1.3. General Trend  

The experimental results show that the surface-damage depth decreases with 

increasing wire speed, increases with increasing feed speed, and is independent of tension. 

These results have the same trend of the surface roughness test results, presented in Chapter 

3. The measured surface-damage depth, Dd, is thus equivalent to the reported surface 

roughness. Recalling the damage model discussed in Chapter 3, the surface damage depth, 

Dd, has a similar functional dependence of Eq. 3.6 on the process parameters as seen in Eq. 

5.1. The proportionality constant, η, is introduced to achieve equality as in Eq. 5.2 and 

calibrated by fitting to a single experimental data point. In order to present the results in 

nondimensional form, a normalization parameter is defined in Eq. 5.3. A nondimensional 

damage index, Id, is defined in Eq. 5.4, which is used to obtain the experimental values of the 

damage index. Eq. 5.5, which defines the dependence of damage index to process 

parameters, is obtained using Eq. 5.2, Eq. 5.3, and Eq. 5.4. The experimental results of the 

damage index obtained from Eq. 5.4 and the model estimation of Eq. 5.5 are presented in 

Fig. 5.10.  
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As it has been shown earlier in Chapter 3, the velocity ratio is a key parameter for 

reducing the surface damage. In order to increase the efficiency of the process without 

increasing the damage, Vz and Vx should be increased proportionally such that their ratio 

remains unchanged. Tension does not affect the surface-damage depth. 

 

5.2. Design Space Exploration 

In many industries, including microelectronics, photovoltaics, and transducers, there 

is a strong demand to achieve the best possible surface quality, while reducing further 

processing and ingot waste. In order to achieve this demand, models that relate the process 

parameters to process-induced damage are of interest. In this study, roughness damage 

models that relate the process parameters with the surface roughness are developed. Also, a 

waviness-damage model that explains the evolution of long waviness with process 

parameters is derived. The models are verified with experimental results. In this section, the 

results of derived models will be distilled to explore the design space for minimal process- 

induced damage.  

The increase of feed speed increases surface roughness, while increases in wire speed 

decrease surface roughness. The surface roughness can best be associated with feed speed-to- 

wire speed ratio. As feed speed-to-wire speed ratio increases, surface roughness increases as 

presented in Fig. 5.11. In order to increase the efficiency of the process without increasing 

the surface roughness, the wire speed should be increased proportionally with feed speed. 

The surface roughness is independent of wire tension.  

The amplitude of long waviness increases with increasing feed speed, while the 

increase of wire tension decreases the long waviness amplitude as seen in Fig. 5.12. 
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The overall design space is presented in the flow chart in Fig. 5.13. The effect of 

process parameters on the process outputs, which are process-related damage, is presented in 

a global view.  
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Fig. 5.1. Bonded-interface section wire saw test setup.  

 

 

 
Fig. 5.2. Bonded-interface section test samples coated with gold sputtering for SEM imaging.  
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Fig. 5.3. SEM image showing surface damage depth of bonded-interface section (BIS) wire 

saw test (Vx = 2 m/s, Vz= 6.4 μm/sec, T=18 N).  
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Fig. 5.4. Variation of wire (a) bow angle (α/Lo) and (b) wire loading w, as a function of wire 

speed Vx for BIS tests (Vz= 6.4 μm/sec, T=13 N).  
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Fig. 5.5. Variation of wire (a) bow angle (α/Lo) and (b) wire loading w, as a function of feed 

speed Vz for BIS tests (Vx= 2 m/sec, T=13 N). 
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Fig. 5.6. Variation of wire (a) bow angle (α/Lo) and (b) wire loading w, as a function of wire 

tension T for BIS tests (Vx= 2 m/sec, Vz= 6.4 μm/sec).  
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Fig. 5.7. Variation of surface damage depth Dd as a function of wire speed Vx for BIS tests 

(Vz= 6.4 μm/sec, T=13 N). 

 

 
Fig. 5.8. The surface damage depth Dd as a function of feed speed Vz for BIS tests (Vx= 2 

m/sec, T=13 N).  
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Fig. 5.9. Variation of surface damage depth Dd as a function of wire tension T  for BIS tests  

(Vx= 2 m/sec, Vz= 6.4 μm/sec).  

 

 
Fig. 5.10. The variation of damage index Id as a function of Vz/Vx for BIS tests (T= 13 N). 
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Fig. 5.11. The variation of surface roughness as a function of feed speed to wire speed ratio.  

 

 

 

 
Fig. 5.12. The variation of long waviness amplitude as a function of feed speed and wire 

tension.  
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Fig. 5.13. Design space for wire saw process: Effects of wire speed, feed speed and wire 

tension on surface roughness Ra, surface damage depth Dd and long waviness amplitude A.   

 

 

 

 

 

 

 

 

 

 

 

High 
Vx

High 
Vz

High 
T 

Low Ra , Dd

High Ra , Dd

Low A

High A

Process 
Parameters 

Process 
Outputs

Yes

Yes

Yes

No

No

No



117 
 

 

Table 5.1. Bonded-interface section wire saw tests parameters and measured surface damage 

depth.  

Vx m/sec
Vz 

μm/sec
Tension 

N Vz/Vx*10^-6 Dd μm
STD Dd 
μm

TC32 1.9 6.4 13.3 3.3 15.2 4.4
TC33 2.9 6.4 13.3 2.2 12.6 4.3
TC34 4.0 6.4 13.3 1.6 8.7 2.1
TC35 2.1 12.7 13.3 6.0 19.1 5.5
TC36 2.0 6.4 18.0 3.2 15.1 4.5
TC37 2.0 6.4 26.7 3.2 14.8 3.6
TC38 2.0 9.0 13.3 4.5 17.6 3.5  



118 
 

CHAPTER 6. CONCLUSIONS and FUTURE WORK 

 

6.1. Conclusions 

The wire saw process is widely used to slice many ceramic crystals that are utilized in 

a wide range of engineering applications, from silicon wafers in the microelectronics and 

photovoltaic industries to piezo-crystals for actuators and sensors applications. The process 

has a higher yield, lower kerf loss, and lower surface damage in comparison to inner 

diameter saws. The wire saw process allows higher diameter and thinner wafer cutting. The 

process is also used in cutting almost all brittle materials including ultra-hard carbides, high 

density or foam ceramics, glasses, sapphire, and rocks. Cutting wood with wire saws is also a 

potential area that has been introduced in research.  

In this work, parametric experimental study is conducted on a model wire saw to 

correlate the process parameters to quality of the machined surface. An automated single 

wire saw machine that can allow the variation of the down feed speed, wire speed, and wire 

tension is utilized. Detailed analysis of the cut-surface topology is carried out using a surface 

profilometer and SEM imaging. The detailed parametric study is rationalized in several 

models that describe the relation between the process parameters and the process induced 

surface damage. The developed correlation is used to explore the limits of the design space 

and aid in planning and optimization of the process performance.  

The SEM surface analysis of bonded interface samples as well as the cut surfaces 

showed that the material removal is in ductile mode, while there is brittle fracture in the form 

of grain removal. Stress based and fracture mechanics based damage models are derived for 

roughness damage induced by the wire saw process. Both models compare well with the 

experimental trend. It is found that the surface damage is controlled by two ratios. The first is 

the velocity ratio (Vz/Vx), and the second is the yield stress to fracture stress multiplied by grit 

spacing and radius Dn=(σy.R.Lg/Kc)2/3. Surface roughness is proportional to both ratios. It is 

found that the major parameter that affects the surface quality is the wire speed, Vx. The 

increase of the wire speed will reduce the effective feed/abrasive grit and, thereby, reduce the 
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surface damage. Increasing feed speed will increase the surface roughness. A higher feed 

speed and, thereby, improved material removal rate can be achieved if the wire speed can be 

increased to keep the velocity ratio constant. It is found that the wire tension has no effect on 

the surface and subsurface damage. 

The role of abrasive diameter and loading is further investigated by examining the 

performance of three different wires with different grit size and spacing as a function of the 

process parameters by conducting four tests with each wire. The abrasive grit radius and 

spacing are measured from SEM imaging of the wires. The experimental results showed that 

the roughness damage increases with increasing grit radius and spacing, and the roughness 

damage models are verified. The wire properties have a marked effect on the roughness 

damage. Wires with smaller grit radius and spacing will lead to smaller roughness damage. 

High-grit density wires with small grits are beneficial for surface quality.  

For the long-wavelength waviness, the process is described based on the competing 

cutting energy on the specimen and the wire elastic strain energy, employing a string model 

representation for the wire. It is found that the long-wavelength waviness is bounded by the 

competition between the oblique cutting energy and the stored elastic strain energy of the 

wire. By controlling the relative magnitude of each of the these two energy buckets in 

relation to the stored strain energy of a free standing wire as the limiting case, a reasonable 

control on the surface waviness can be attained. When the work done by oblique cutting 

forces is bounded by the work done by the free standing wire, a large peak-to-valley 

amplitude would arise with big step-like surface features.  On the other hand, if the work 

done by oblique cutting forces is bounded by the work done by wire tension, a wavy surface 

having a lower peak-to-valley value will arise.  

The experimentally observed long waviness formation is explained with these 

energetic terms that define the mechanisms leading to different surface profiles. The defined 

mechanisms are used to explain the evolution of the surface profile and peak-to-valley value 

with respect to process parameters. The increase of wire tension will lead to a wavy surface 

with a lower peak-to-valley value, while decreasing wire tension will lead to a step-like 

surface with a high peak-to-valley value. The increase of feed speed will lead to a high peak- 

to-valley value. The increase of peak-to-valley value will lead to more post grinding and 
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polishing of the cut surface and increases in expenses. In order to increase the efficiency 

without increasing the peak-to-valley value, the wire tension can be increased proportional to 

feed speed.  

 

6.2. Future Work 

The dissertation focused on the wire-saw process induced surface roughness and a 

long waviness investigation. Experimental and analytical research is conducted to model the 

wire saw process induced damages. During the experiments, one of the main problems is the 

frequent wire breakage. In a lab type wire-saw machine, where there is only one wire 

running, the wire breakage leads to considerable loss of time until a new wire is winded and 

the set up is rearranged for a new test. In industrial applications, where several hundred wires 

are running in parallel, wire breakage will cause an important down time, which will increase 

costs. When the expensive wire is broken it generally cannot be used and has to be disposed. 

Moreover, the wire breakage can cause undesirable wafer breakage or, at least, scratches on 

the wafer surface. The wire in the saw process is under fatigue loading while running around 

the small diameter guide pulleys, in bending mode of loading. The wire tension is already on 

the order of wire tensile strength, which makes the fatigue loading detrimental. The multi- 

layer wire technology provides protection to the steel core, while propagation of fatigue 

cracks from coating to core is inevitable. Affixing abrasive grits creates initial defects that 

may propagate and cause failure during cutting. Future research can be done to improve the 

strength and durability of the fixed-abrasive wires.  

Heat generation during the wire saw cutting can be harmful for the slender wafers. 

The effects of heat generated during the wire saw process and mitigation of the diverse 

effects of the heat can be studied experimentally using real-time temperature monitoring of 

wafer cutting experiments. Process design concepts can be improved to overcome the heating 

effects.  
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