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SUMMARY 

Gyroscopes are angular velocity sensors that are used for measuring rate or angle of 

rotation. The application domain of silicon microgyroscopes is quickly expanding from 

automotive to aerospace and consumer electronics industries. Examples include anti-skid 

and safety systems in cars, inertial measurement units (IMUs), image stabilization in 

digital cameras, and smart user interfaces in handheld devices. As potential high volume 

consumer applications for micromachined gyroscopes continue to emerge, design and 

manufacturing techniques that improve the performance, reliability and shock 

survivability of gyroscope while providing multi-axial functionality become increasingly 

important. 

Today, state-of-the-art silicon micromachined vibratory gyroscopes can achieve high 

performance with low operational frequency (3-30kHz) at the cost of large form factor, 

high operating voltages and very low pressure package environment. Additionally, 

temperature compensation is required to guarantee stable performance over temperature. 

These all add up to make the finished product elaborate and costly. In this dissertation, 

capacitive bulk acoustic wave (BAW) silicon disk gyroscopes are introduced as a new 

class of micromachined vibratory gyroscope to investigate the operation of Coriolis-

based gyroscopes at high frequency and further meet consumer electronics market 

demands. Capacitive BAW gyroscopes, operating at high frequency of 1-10MHz, are 

stationary devices with vibration amplitudes less than 20nm, resulting in high operational 

bandwidth and high shock tolerance, which are generally unavailable in low frequency 

gyroscopes. BAW gyroscopes require low operating voltages, which simplifies the 

interface circuit design and implementation in low-voltage CMOS technologies. They 
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also demonstrate appropriate thermally-stable performance in air, which eliminates the 

need for vacuum packaging and temperature compensation, resulting in superior 

reliability and reduced cost.  

This dissertation presents the design, implementation and characterization of z-axis 

capacitive BAW disk gyroscopes in (100) and (111) single crystal silicon. A revised high 

aspect-ratio poly- and single crystalline silicon (HARPSS) process was utilized to 

implement these devices in thick silicon-on-insulator (SOI) substrates (35-60µm) with 

very small capacitive gap sizes (~200 nm). The prototype devices show ultra-high quality 

factors (Q) in excess of 200,000 and large bandwidth of 15-30Hz under very high-Q 

mode-matched condition. The measured rate sensitivity for a 6MHz-disk gyroscope with 

Qmatched-mode of 235,000 was 270µV/°/sec in (100) silicon.  

Another major contribution of this dissertation is to optimize the design and 

implementation of BAW disk gyroscopes for self-matched mode operation. Operating a 

vibratory gyroscope in matched mode is a straightforward way to improve performance 

parameters. But, it is very challenging to achieve without applying large voltages, which 

are difficult to generate with CMOS electronics. In this work, self-matched mode 

operation was provided by enhanced design of the perforations of the disk structure. In 

addition, the operating frequencies of the secondary elliptic modes were high enough to 

marginalize air damping losses. At the same time, the high operating frequency offers a 

very large device bandwidth of ~ 400Hz when these devices are operated in air. The rate 

sensitivity of the optimized device in air was measured to be 65µV/°/sec for a 7.3MHz 

device with Qmatched-mode of 15,000. In addition, these most advanced devices were 

characterized over a typical consumer electronics temperature range. It was observed that 
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the modes remained matched and the measured Q and scale factor demonstrate the high 

performance stability of BAW gyroscopes even at elevated temperatures.  

To complete this thesis, a gyroscope with planar-axis sensitivity (x-axis) is developed as 

an extension of the z-axis BAW gyroscope design. The x-axis gyroscope uses out-of-

plane modes of a silicon disk structure. A rate sensitivity of 73µV/°/sec around the x-axis 

was measured for this device with a Qmatched-mode of 17,000 in (100) silicon. A multi-axis 

single-proof-mass gyroscope was introduced to measure the rotation rate around the x or 

y-axis and the z-axis by operating in in-plane and out-of plane modes. Like the single-

axis devices, these gyroscopes were also optimized to achieve self-matched mode 

operation. The optimized multi-axis gyroscope exhibits matched in-plane mode and out-

of-plane modes.   

In conclusion, the experimental results establish the suitability of BAW gyroscopes for 

consumer electronic applications. 



 1

CHAPTER 1 

INTRODUCTION 

1.1 APPLICATION AND MARKET DEMAND 

A gyroscope is a sensor that measures the rate or angle of rotation. Micromachined 

gyroscopes have the potential to dominate the rate-sensor market mainly due to their 

small size, low power and low cost. The application domain of micromachined 

gyroscopes is quickly expanding from automotive to aerospace and consumer electronic 

industries [1]. A multitude of applications exist in the automotive sector including 

navigation, anti-skid, roll-over detection, next generation airbag and anti-lock brake 

(ABS) systems [2]. Micro-gyroscopes can also be used for inertial navigation. Inertial 

navigation is the process of determining an object's position based on measurements 

provided by accelerometers and gyroscopes contained within the object. An inertial 

measurement unit (IMU) typically uses three accelerometers and three gyroscopes 

oriented along their respective sensing axes to gather information about an object’s 

direction and heading. IMUs are vital components in aircraft, GPS-augmented 

navigation, and personal heading references [3]. In addition, there are numerous 

emerging consumer applications for micro-gyroscopes, including image stabilization in 

digital cameras, smart user-interfaces in handhelds, gaming and inertial pointing devices 

[4]. As potential high volume consumer applications for micromachined gyroscopes 

continue to emerge, design and manufacturing techniques that improve their 
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performance, shock survivability, and reliability without driving up the cost are becoming 

increasingly important. 

Today, state-of-the-art micromachined vibratory gyroscopes operate in flexural modes, 

which typically occur in the frequency range of 3-30 kHz [5]. In these gyroscopes, 

resolution, the primary performance parameter, is limited by the mechanical noise floor 

(Brownian noise). The Brownian noise depends inversely on the drive amplitude (qdrive) 

and the square roots of the resonant frequency (ω0) and the mass (M). Although all three 

above parameters should be maximized to lower the mechanical noise floor, the linear 

relationship between the electronic noise floor and resonance frequency has driven 

classical optimizations towards focusing on only the mass and drive amplitude [6-9]. 

Increasing the mass and drive amplitude results in large form factors and exceedingly 

high operating voltages. 

The next most critical gyroscope performance parameters are scale factor and bias drift. 

These are directly affected by the mechanical quality factor (Q) which is a measure of 

energy dissipation in a vibratory structure. A gyroscope with a higher Q is universally 

desired since a higher Q in a gyroscope translates into larger scale factor and better bias 

stability. Although low frequency gyroscopes can achieve quality factors on the order of 

50,000 in high vacuum (1-10mTorr) and room temperature, their quality factors are 

severely limited by air damping and thermoelastic damping (TED) [10]. The quality 

factor of these devices in low vacuum or at atmospheric pressure falls to less than 100. 

On the other hand, even in high vacuum, thermoelastic damping presents a dominant loss 

mechanism at elevated temperature [11]. These factors are enough to predicate the high 

performance of low frequency gyroscopes upon a narrow operating environment (high 
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vacuum pressure and room temperature). Thus, these devices must be packaged in a high 

vacuum, making the finished device costly. Also, corresponding to their required 

performance, these devices might need to be integrated with a temperature controller. 

This adds further cost and more complexity to these products.  

Major evolutions in low frequency flexural gyroscopes have refined the performance of 

these devices to inertial grade [11-12], but at the cost of large form factors, high 

operating voltages, and expensive, constrained environmental conditions. Although these 

issues might not be crucial in high-precision markets such as the defense, navigation and 

space industries, they likely present prohibitive concerns in high volume markets such as 

consumer electronics [13]. At the same time, numerous consumer applications require 

gyroscopes with fast response time and high shock survivability, which is generally 

unavailable in current low frequency gyroscopes. All these demands call for innovative 

designs and major advances in fabrication technology to offer more broadly practical 

gyroscopes.  

Besides single-axis gyroscopes, multi-axis silicon gyroscopes find growing applications 

in consumer electronics and handheld devices. They are increasingly required to have 

high performance, small size, and low power consumption. To date, commercialized 

multi-axis vibrating gyroscopes [14, 15] utilize multiple proof masses for detecting 

rotation rates around multiple axes. Consumer applications require stable high 

performance multi-axis gyroscopes with small form factor, fast response time and high 

shock survivability, which is generally unavailable at low cost in low frequency vibrating 

gyroscopes. Thus, proposing multi-axis gyroscopes that fulfill the above requirements in 

reduced cost would make a difference in the consumer electronic industry.  
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1.2 MOTIVATION 

The objective of this thesis is to investigate the operation of Coriolis-based vibratory 

gyroscopes at high frequency. To do this, a new class of micromachined gyroscope, a 

capacitive silicon bulk acoustic wave (BAW) gyroscope, is introduced and further 

developed in this dissertation.   

A capacitive BAW gyroscope provides a novel approach to break through the Brownian 

noise constraint on the resolution in current low-frequency gyroscopes. The mechanical 

noise floor is improved by  

(1) increasing the resonant frequency by 2 to 3 orders of magnitude to 2-8 MHz, 

instead of increasing the mass and drive amplitude, and  

(2) substantially increasing and thermally stabilizing the Q by utilizing stiff bulk 

acoustic modes, which experience significantly less thermoelastic damping 

compared to flexural modes.  

The very high value and low thermal sensitivity of Q in the bulk acoustic modes will 

further translate into superior bias stability, even at elevated temperatures. 

The elimination of the Brownian noise constraint in BAW gyroscopes removes high mass 

and large vibration amplitude as central design goals, freeing these devices to be designed 

for minimal form factors and operating voltages. The proposed BAW gyroscopes have a 

smaller form factor compared with current commercialized gyroscopes (e.g., ADXRS150 

by Analog Devices [16] and IDG1004 by InvenSense [17]). Operating gyroscopes in 

their BAW modes makes them substantially stiff with vibration drive amplitudes less 

than 20nm. Due to their very small drive amplitudes, they require very low operating DC 
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voltages (Vp<5V) as well as AC actuation voltages (160mV). This facilitates the interface 

circuit design and implementation of these devices in standard 5V CMOS. In addition, 

the large stiffness of BAW gyroscopes makes them less sensitive to environmental 

pressure, obviating the need for vacuum encapsulation. This simplifies wafer-scale 

packaging for reduced manufacturing cost.  

Additional concerns in gyroscope applications include device bandwidth (f0/2Q), shock 

survivability and flicker noise (1/f0). Due to the high frequency operation of BAW 

modes, these devices offer large device bandwidth, ~15-30Hz, under high-Q, matched-

mode condition, while flexural modes, due to their significantly lower frequencies, limit 

the device bandwidth to sub-Hz values in their high matched mode Q. In consumer 

electronic gyroscopes applications, reliability is strongly determined by shock resistance. 

Since BAW gyroscopes are solid-state devices with very large stiffness and small drive 

amplitude, they exhibit superior shock resistance. Furthermore, flicker noise which 

occurs in the operating resonance frequency of less than 100kHz is not a concern in high 

frequency BAW gyroscopes. 

The next goal of this dissertation is to optimize the design and implementation of BAW 

disk gyroscopes to achieve self-matched mode, operation in air, and very large 

bandwidth. The self-matched mode operation is provided through an enhanced design of 

the perforations of the disk structure, removing considerable complexity from the 

interface circuitry. Operating these devices in the MHz frequency range of their matched-

mode in air can also offer very large bandwidth of ~400Hz. In addition, the operating 

frequency of the secondary elliptic modes in these optimized disks is high enough to 

mitigate air damping losses. This eliminates the need for vacuum packaging, resulting in 
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better long-term reliability and substantially reduced cost. Furthermore, these optimized 

devices demonstrate very high thermal stability of their matched-mode Q and scale 

factors, resulting in no need for a temperature controller.  

The ultimate aim of this dissertation is to design and implement multi-axis gyroscopes. A 

z-axis BAW gyroscope is extended into a multi-axis gyroscope. This novel approach can 

potentially achieve multi-axis gyroscopes using a single-disk and eliminate the issues 

with integration of multiple proof masses, resulting in a very small form factor. Also, 

from the z-axis BAW gyroscope design, the multi-axis devices inherit high shock 

tolerance and large frequency bandwidth. The multi-axis disk gyroscopes operate in in-

plane and out-of plane modes to enable measurement of rotation rate around x-axis or y-

axis as well as z-axis. The operating frequency is in the range of 1-8MHz for both in-

plane and out-of plane modes. Due to their high frequency of operation, these devices 

also show reduced susceptibility to common damping mechanisms. This affords them 

very high, thermally-stable quality factors without the typically required high vacuum 

environment, and the associated packaging, manufacturing, and reliability complications. 

In this dissertation, the design, implementation and characterization of micromachined 

capacitive bulk acoustic wave silicon disk gyroscopes were investigated. In order to fully 

realize the potential of BAW gyroscopes as attractive replacements to current gyroscopes 

in consumer electronic application, the overall performance of these devices are precisely 

studied and discussed in this dissertation.  
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1.3 DISSERTATION ORGANIZATIONS 

This dissertation is organized in seven chapters. CHAPTER 1 outlines the application 

and market demand for micromachined gyroscopes and presents the motivation behind 

this work. CHAPTER 2 reviews the history of micromachined vibratory gyroscopes 

presented in literature and studies the multi-axis gyroscopes as well as the 

commercialized MEMS gyroscopes. CHAPTER 3 starts by introducing capacitive 

silicon bulk acoustic wave (BAW) gyroscopes and continues with an explanation of their 

principles of operation. The focus of this chapter is the design and modeling of BAW 

disk gyroscopes, operating in their elliptic degenerative modes. At the end, thermoelastic 

damping is modeled and the QTED is estimated for these devices employing multiphysics 

in COMSOL. CHAPTER 4 introduces the fabrication features and process flow to 

enable the implementation of BAW disk gyroscopes in SOI substrates. Also, the critical 

fabrication steps were explained in details. CHAPTER 5 starts by explaining the 

experimental test setups and procedures used for the measurements. The measurement 

results for BAW gyroscopes implemented in both (111) and (100) single crystal silicon 

are further presented. This includes the frequency responses of these devices as well as 

the performance characterization. In addition, the optimized design and implementation 

of BAW gyroscopes in single crystal silicon are presented in this chapter. This is aimed at 

minimizing the frequency separation between the two modes, consequently facilitating 

the matched-mode operation along with the operation in air. CHAPTER 6 introduces a 

novel high frequency multi-axis capacitive gyroscope. This is an adaptation of the BAW 

gyroscope design for measuring the rotation rates around the x or y and z axes. The multi-

axis disks were further optimized for minimal frequency separation in their both in-plane 
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and out-of plane modes and their measured results are also presented in this chapter. 

CHAPTER 7 provides an overview of the contributions of this research and possible 

future directions in the area of the device performance optimization.  
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CHAPTER 2 

REVIEW OF GYROSCOPES 

2.1 HISTORY  

Gyroscopes are a class of inertial sensors used to measure the rate or angle of rotation. 

The gyroscope effect was discovered in 1817 by Johann Bohnenberger but invented and 

named in 1852 by Léon Foucault for an experiment involving the rotation of the Earth 

[18]. Generally speaking, three major classes of gyroscopes have been developed and 

widely used: mechanical, optical and vibratory gyroscopes. In this section, a brief 

analysis of each gyroscope class is provided and their drawbacks for consumer 

electronics applications are discussed.    

2.1.1 MECHANICAL GYROSCOPES 

A gimbaled gyroscope is a mechanical device comprised of a spinning wheel mounted on 

two gimbals, allowing the rotation of an object along the three-axis. A high speed, 

rotating inertial disk is loosely coupled to the frame. When a rotation is applied to the 

frame, a torque (rotation) is created in the spinning disk due to conservation of angular 

momentum. The induced torque is monitored by a meter which counteracts the torque 

with springs or a similar restoring force. A three-axis gimbaled may allow a mounted 

object to remain in a horizontal plane regardless of the motion in support [19]. Figure 2-1 

shows a schematic of a gimbaled gyroscope and the principle of operation to measure roll 

rotation [20, 21].  
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(a) 

 
 

 

(b) 

Figure 2-1: (a) A gimbaled spinning wheel gyroscope, (b) illustration of detecting roll 
rotation in a gimbaled [20, 21].  

It is worth nothing that a mechanical gyroscope measures angle of rotation, however 

optical and vibratory gyroscopes measure the angular velocity (rotation rate). The main 

disadvantage of the mechanical gyroscopes is that they require moving parts. This 

introduces friction and wear into the system, in turn inducing long-term performance 

drifts. To minimize these effects, high-precision bearings and special lubricants are 

required. This adds to the overall cost to the manufacture and maintenance of the device. 

Also, the existence of moving parts in gimbaled gyroscopes makes them too bulky and 

expensive for many low-cost emerging applications. 

2.1.2 OPTICAL GYROSCOPES 

Fiber optic gyroscopes (FOG) and ring laser gyroscopes (RLG) can be categorized as 

optical gyroscopes, in which the interference of light is used to detect mechanical 

rotation. In fiber optic gyroscopes (FOG), two light beams travel along the fiber in 

opposite directions. Due to the Sagnac effect [22] the beam traveling against the rotation 

experiences a slightly shorter path than the other beam. The phase-shift introduced 
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between the beams causes interference patterns in the combined beam, and its intensity 

behaves as a function of the applied rotation rate. Figure 2-2 illustrates the Sagnac effect 

in a Fiber optic gyroscope [22] and an example of FOG [23].  

  
(a) 

 
(b) 

Figure 2-2 : (a) Illustration of the Sagnac effect utilized in optical gyroscopes, (b) A 
schematic of IFOG [22, 23]. 

A Ring laser gyroscope (RLG) is composed of segments of transmission paths configured 

as either a square or a triangle and connected with mirrors. One of the mirrors is partially 

silvered, allowing light through to the detectors. A laser is launched into the transmission 

path in both directions, establishing a resonating standing wave over the length of the 

path. As the apparatus rotates, light in one branch travels a different distance than the 

other branch. This changes the phase and resonant frequency of one direction with 

respect to the light traveling in the other direction, creating a rotation-modulated 

interference pattern at the detector. The angular position is measured by counting the 

interference fringes. Figure 2-3 shows schematic diagram of a solid-state laser in a ring 

laser gyroscope [24] along with an example of ring laser gyroscope [25]. 



 12

Unlike mechanical gyroscopes, optical gyroscopes contain no moving parts and require 

only a few seconds to start up. However, optical gyroscopes rely on the complicated 

assembly of several external components such as lasers, and power-intensive detection 

mechanisms, resulting in high assembly and maintenance cost. In addition, the accuracy 

of an optical gyroscope is largely dependent on the length of the light transmission path 

(larger is better), which is constrained by the size of the device. The optical gyroscopes 

generally are notorious for their high power consumption and low reliability.  

 
(a) 

 
(b) 

Figure 2-3: (a) Schematic diagram of a RLG, (b) An example of RLG [24, 25]. 

2.1.3 VIBRATORY GYROSCOPES 

The traditional gimbaled spinning wheel and optical gyroscopes are two well-known 

approaches to high precision in gyroscopes; however these devices are currently too 

expensive and bulky for many emerging low-cost applications. Another popular class of 

successful gyroscope designs is known as vibratory gyroscopes; these occupy the focus 

of this dissertation. Vibrating mechanical elements are used to sense the rotation rate by 

measuring Coriolis accelerations. This eliminates any need for moving parts, allowing a 

simple device structure. In addition, vibratory gyroscopes are excellent candidates for 
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miniaturization using micromachining techniques due to the absence of rotating parts 

(e.g. bearings) in their structure. Thereby, they can be readily miniaturized and batch 

fabricated to produce low-cost, small-size and low-power devices. Additionally, vibratory 

gyroscopes offer the possibility of sensing rotation about more than one axis, with 

smaller form factors and power consumption than other types of gyroscopes. Examples of 

vibratory gyroscopes are piezoelectric gyroscopes [26], hemispherical resonator 

gyroscopes [27], tuning fork gyroscope [28] and vibratory wheel gyroscopes [29], which 

are discussed in the following sections.  

2.2 PRINCIPLE OF OPERATION  

All vibratory gyroscopes use vibrating mechanical elements to sense the Coriolis 

acceleration arising from rotation in rotating reference frames. Coriolis acceleration 

results from the motion orthogonal to the angular velocity (Ω) of a rotating system. For a 

particle with linear velocity vr , this is expressed as Coriliosar : 

Ω×−=
rrr vaCorilios 2  (2-1) 

From this acceleration, a fictitious force known as “Coriolis force” is derived. This force 

is exerted on a moving body in the local rotating frame. As (2-1) shows, this acts 

orthogonal to the body’s velocity direction and is proportional to the applied rotation rate. 

This effect is named after Gaspard-Gustave Coriolis, a French scientist, who described it 

in 1835, though the mathematics appeared in the tidal equations of Laplace in 1778 [30].  

Figure 2-4 shows the Coriolis force results from a linear motion orthogonal to an applied 

rotation.  
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Figure 2-4: The illustration of a Coriolis force results from a linear motion orthogonal to 
the axis of rotation [30]. 

A typical vibratory rate gyroscope consists of a mass-spring system that has two or more 

orthogonal vibration modes, as shown in Figure 2-5. The mass is excited at the resonant 

frequency of a selected mode, the so-called drive mode, in the reference frame of the 

device. When the device and its reference frame reference experience rotation, a 

corresponding Coriolis force induces oscillation in any modes orthogonal to the drive 

mode. Sensors measure the latter motion directly, but the signal they provide is 

proportional to the rate of rotation. 
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Figure 2-5: The illustration of a single proof-mass vibratory gyroscope. 
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The equation of motion for a mass-spring system moving in a non-inertial reference 

frame can be found using Lagrange dynamic method. In order to do that, the potential 

and kinetic energy as well as the generalized forces, such as damping forces, need to be 

derived for the system. Subsequently, the equation of motion (EOM) for a single-mass 

vibratory gyroscope in the local frame of reference can be expressed in the general form 

of [31]:   

( ) )sin(2 0
2 tFyMyxMxKxCxM drivedrivezzzxx ω=Ω−Ω−Ω−++ &&&&&  (2-2) 

( ) 022 =Ω−Ω−Ω−++ xMxyMyKyCyM zzzyy &&&&&  (2-3) 

Where M, C and K are respectively the mass, damping coefficient and total stiffness; Ωz, 

F0drive and ωdrive are the applied rotation rate around z-axis, drive force, and the angular 

frequency of the drive signal, respectively.  

The terms yM z &Ω− 2  and xM z &Ω− 2  are the rotation-induced Coriolis force components and 

constitute the dynamic coupling between the vibratory modes, which are utilized for 

angular rate measurements in a vibratory gyroscope.  

The angular acceleration terms ( zΩ& ) in the EOM is usually ignored. This is because the 

ratio of angular acceleration to the Coriolis acceleration is inversely proportional to the 

natural frequency of the modes. Since the operating frequencies are in the range of kHz, 

the angular acceleration is insignificant in comparison with the Coriolis acceleration even 

when a large rotation rate is applied. Also, the Coriolis signal is modulated with a fixed 

drive frequency (ωdrive), permitting frequency-selective removal of the angular 

acceleration signal components.  
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At the end, a mechanism is needed to apply an excitation force such as 

)sin(0 tFF drivedrivedrive ω=  to maintain the drive mode oscillation. And a second mechanism 

must be implemented to measure excitation of the sense mode. A number of schemes, 

such as piezoelectric, capacitive electrostatic or electromagnetic actuation, have been 

used to implement the drive and sense mechanisms for Coriolis-based microgyroscopes. 

The subject matter of this dissertation refers mainly to the case of capacitive-based 

silicon vibratory microgyroscopes. 

2.3 PERFORMANCE PARAMETERS  

Several specifications are used to determine the performance of a vibratory gyroscope. 

These performance metrics are briefly discussed below. 

2.3.1 RESOLUTION  

Resolution is the minimum rotation rate that can be distinguished from the noise floor of 

the system, typically rationalized per square root of bandwidth of detection. This is 

expressed in units of (°/s/√Hz) or (°/hr/√Hz). The overall resolution of a micro-

gyroscope, the total noise equivalent rotation (TNEΩ), is determined by two uncorrelated 

components:  

• the mechanical (or Brownian) noise equivalent rotation (MNEΩ), originating in the 

micromachined mechanical structure, and  

• the electronic noise equivalent rotation (ENEΩ), originating in the interface 

circuitry.  

The minimum resolvable rotation rate is expressed as: 
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2
min

2
minmin )Electronic(Brownian)((Total) Ω+Ω=Ω (2-4) 

Brownian motion of a structure, which is a result of molecular collisions with the 

surrounding medium, represents the mechanical noise component of the resonating 

mechanical element in a gyroscope [32]. By equating the displacement caused by 

Brownian motion to the displacement induced by Coriolis acceleration, one can derive 

the mechanical resolution of a vibratory micro-gyroscope for matched-mode operation.  

BW
MQω

T
q

(Brownian)Ω
EFF

B

drive 0

0
min

4k1
∝  (2-5) 

Where qdrive is the drive amplitude; ω0, M, and QEFF are the natural angular frequency, the 

effective mass and effective quality factor at the sense mode, respectively; kB is the 

Boltzmann constant (1.38×10-23 J/K), BW is the measurement bandwidth (Hz) and T0 is 

the absolute temperature.   

The electronic noise floor is dependent upon the noise of the interface circuitry. 

Assuming the input-referred noise (Inoise) has a white spectrum near the resonant 

frequency; electronic noise of the interface circuitry for matched-mode operation is 

expressed in [33] as:  

BWI
AQqCV

dc)(electroniΩ noise
gEFFdrivesp 0

0
min ∝  (2-6) 

where d0, Cs0, Ag and Vp are respectively the capacitive gap, sense capacitance, angular 

gain and polarization voltage. It is evident that drive amplitude, device mass, sense gap, 

angular gain and effective quality factor, all play key roles in determining the overall 

noise floor.  
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The noise floor of a gyroscope is often expressed in terms of angle random walk (ARW). 

This is a measure of the angular error buildup with time that is due to white noise in the 

angular rate signal. This error is typically expressed in degrees per square root of hour 

(°/√hr). The relation between the noise floor per unit bandwidth and the ARW is given by: 

( ) ( ) 60/// ×°=° hrARWHzhrfloorNoise  (2-7)

It is worth noting that the resolution of current low frequency gyroscopes is limited by 

the Brownian noise, and not by the electronic noise.             

2.3.2 SCALE FACTOR 

The scale factor of a micro-gyroscope is the ratio of a change in the output signal to a 

change in the input applied rotation. Scale factor is generally evaluated as the slope of the 

straight line that can be fitted by the method of least squares to input-output data [34], 

and is generally expressed as (2-8)  in units of Volt/°/sec. In capacitive gyroscopes, sense 

mode vibration, presumably Coriolis-induced, is detected through changes in the sense 

capacitance.  Accordingly, the expected scale factor is given as follows, 

00)(
2

ωdCC
qQCV

factorScale
parasitics

driveEFFsp

+
=  (2-8)

where Vp, Cs, Cparasitic, and d0 are respectively the polarization voltage, the capacitance at 

the sense, the parasitic capacitance and the capacitive gap at the sense. 

In a vibratory gyroscope, sensitivity (sense mode deflection) is proportional to the 

effective quality factor (QEFF) and the drive amplitude at the driven axis (qdrive), but is 

inversely proportional to the operating frequency (ω0). QEFF in turn is significantly 

dependent on the separation between the drive and sense resonant mode frequencies. If 
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matched-mode operation is attained, the sensitivity is significantly enhanced due to the 

QEFF increase. For a given resonant frequency, having a higher gap-aspect ratio at the 

sense capacitance gives larger changes in the sense capacitance, thereby generating a 

larger electrical signal for a given input rotation rate. As a result, high effective quality 

factors (QEFF), large drive amplitudes, low parasitics, and high gap-aspect ratio at the 

sense electrode all contribute to a high gyroscope scale factor.  

2.3.3 ZERO RATE OUTPUT (ZRO) AND DRIFT  

Zero rate output (ZRO) is the measure of an output signal from a gyroscope in the 

absence of an input rotation rate. The drift of the ZRO over time, expressed in (°/hr), is 

known as bias drift, and is an important performance metric that ultimately determines 

the long-term stability of a gyroscope. The zero rate output can originate from 

geometrical irregularities in the vibrating structure or the sense and drive electrodes as 

well as from electrical coupling between these electrodes. By electrically and 

mechanically decoupling the sense and drive modes, and by minimizing the fabrication 

process errors, ZRO can be significantly reduced [34, 35].  

Exploiting the relationship between bias drift and noise floor, a measure of the power 

spectral density (PSD) was used to measure bias drift. Generally, the zero rate output 

(ZRO) of the device is sampled for a period of time. An Allan variance analysis is 

performed on long-term ZRO recordings to characterize the long-term stability of the 

matched-mode device [33, 36]. The minima of the Allan variance plot represent the bias 

stability. Large sensitivity, high quality factor (Q) and matched-mode operations are key 

parameters in improving the bias drift. 
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2.3.4 BANDWIDTH AND DYNAMIC RANGE 

The bandwidth of the microgyroscope determines the response time of the system. 

Response or settling time is the time required for the output to settle to within a certain 

range of the expected value for an input step function. In a vibratory gyroscope, the 

sensor bandwidth (BW) is related to the resonant frequency (ω0) and quality factor (Q) 

by: 

Q
BW

2
0ω

=  (2-9)

       
High bandwidth is always desirable for a gyroscope. Some applications such as 

automotive and consumer electronic require very fast response time (at least τ< 0.03 Sec, 

BW=33Hz) and other applications like inertial navigation can tolerate longer response 

times. To date, the most advanced gyroscopes suffer from very small bandwidth, 

necessitating complex circuits to compensate for their long response time. This 

introduces not only additional sources of errors but also additional cost, driving a strong 

preference for achieving large bandwidth from the mechanical structure (i.e. via ω0 and 

Q). 

Dynamic range refers to the range of input values over which the output is detectable. It 

is typically computed as the ratio between the maximum input rotation rate (full scale 

rate) that the sensor can tolerate and the system noise floor.  

In general, gyroscopes can be classified into three different categories based on their 

performance: inertial-grade, tactical-grade, and rate-grade devices. Table 2-1 summarizes 

the required performance specification for each aforementioned class of gyroscopes.  
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Table 2-1: Performance requirements for different classes of gyroscopes. 
Device Parameter Rate Grade Tactical Grade Inertial Grade 

Angle random walk  (deg/√hr) > 0.5 0.5 – 0.005 < 0.001 
Bias drift  (deg/hr) 10 – 1000 0.1 – 10 < 0.01 
Scale factor accuracy (%) 0.1 – 1 0.01 – 0.1 < 0.001 
Full scale range (deg/sec) 50 – 1000 > 500 > 400 
Maximum shock in 1msec (G) 103 103 – 104 103 

Frequency bandwidth (Hz) > 70 ~ 100 ~ 100 

2.4 CLASSIFICATIONS OF VIBRATORY GYROSCOPES 

Vibratory gyroscopes are based on a transfer of energy between two vibration modes of a 

structure, and can operate in either matched-mode or split-mode condition. Under a 

matched-mode condition, the sense mode is designed to have the same (or nearly the 

same) resonant frequency as the drive mode. Hence, the rotation-induced Coriolis signal 

is amplified by the mechanical quality factor (Q) of the sense mode. In a split-mode 

condition, the drive and sense modes have separate resonant frequencies, and the sense 

mode is a controlled mode for measuring the Coriolis acceleration [38, 39]. Due to Q 

amplification, gyroscopes operated under matched-mode configuration offer higher 

sensitivity and better resolution. Matched-mode devices are classified into two types 

depending upon the nature of their operating modes. Type I devices rely on non-

degenerative vibration modes. Tuning fork [8, 40] and frame [41] gyroscopes are 

examples of type I gyroscopes. In contrast, degenerative vibration modes are employed 

by type II gyroscopes, whose subclasses comprise shell, cylindrical, ring /star and disk 

gyroscopes [7, 9, 42].   
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2.5 REVIEW OF MICROMACHINED SILICON GYROSCOPES 

Micromachining is a recently developed method to simultaneously scale down the size 

and cost of devices, often attracting high volume applications. The first batch-fabricated 

silicon micromachined vibratory gyroscope was demonstrated by the Charles Stark 

Draper Laboratory in 1991. This silicon bulk mechanical device was a double-gimbal 

vibratory gyroscope supported by torsional flexures [43].  In this design, an outer gimbal 

was electrostatically excited at constant amplitude using drive electrodes. In the presence 

of rotation normal to the plane of the device, this oscillatory motion was transferred to the 

inner gimbal along the stiff axis of the inner flexures.  

Two years later, in 1993, the Charles Stark Draper Laboratory reported a silicon-on-glass 

tuning fork gyroscope [44] fabricated through the dissolved wafer process [45]. This 

gyroscope was electrostatically vibrated in its plane using a comb drive actuators. The 

applied rotation signal normal to the drive mode would then excite the out-of-plane 

rocking mode of the structure which was capacitively monitored.  

Since 1993, silicon micromachined vibratory gyroscopes have been broadly developed 

and reported, as discussed later in this section. A diverse set of micromachining 

fabrication technology such as surface-micromachining, bulk-micromachining, and 

mixed-mode micromachining has been employed to implement several architectures such 

as frame, tuning fork and shell-type structures.  

Surface micromachined devices dominated initial MEMS gyroscope research primarily 

because of their potential for simple integration with interface electronics. However, they 

were found to suffer from thin-film residual stress, squeeze-film damping and high 

thermomechanical noise associated with their low mass [46]. The need to address the 
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surface micromachined gyroscopes’ issues has directly led to research in bulk-

micromachined gyroscopes. Bulk-micromachined devices can provide large capacitance 

or piezoresistive readouts due to their large electrode areas. The issues in bulk 

micromachining such as high aspect ratio trench etching, wafer bonding, and vacuum 

packaging have been addressed and resolved in recent years with the advancement in 

micromachining tools and technology. Another major development in bulk 

micromachined gyroscopes has been the adoption of silicon on insulator (SOI) wafer-

based fabrication. The thick, single crystalline silicon device layer of SOI wafers 

provides large mass and sensing area, dually improving gyroscopes’ performance. Next 

in this section, a brief history of several main gyroscope architectures including frame, 

tuning fork, and shell types, is presented. Following that, existing multiple-axis 

approaches and commercialized gyroscopes are presented.  

2.5.1 MICROMACHINED FRAME DESIGN 

Micromachined vibratory gyroscopes using frame structures offer the possibility of 

measuring the in-plane rotation rate (x-y axis) as well as out-of-plane rotation rate (z-

axis). In 1996, Clark and Howe (University of California at Berkeley) reported a frame 

structure surface micromachined z-axis gyroscopes [47]. Making use of Analog Devices 

BiMEMS process [48] they electrostatically tuned the sense mode and nulled the 

quadrature errors. In 2000, Mochida (Murata) and Song (Samsung) both utilized bulk 

micromachining to implement single crystal silicon frame structures capable of detect x-

axis rotation rates [49, 50]. In 2002, Geiger (HSG-IMIT) explored x-axis frame 

gyroscopes utilizing surface micromachined polysilicon [51]. Examples of the frame 

structure gyroscopes are shown in Figure 2-6.  
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(a) 

 
(b) 

Figure 2-6: Examples of frame gyroscopes: (a) Bulk-micromachined gyro with 
independent beams for the drive and sense modes [49], (b) Surface-micromachined gyro 
by HSG-IMIT with decoupled angular velocity detector [51]. 

2.5.2 MICROMACHINED TUNING FORK AND COUPLED-MASS DESIGNS 

In terms of performance (sensitivity and resolution), the field of micromachined vibratory 

gyroscopes is led by devices based on tuning fork and coupled mass theory, due to their 

large mass and very large drive amplitude. In 1997, Lutz (R. Bosch) employed a dual-

mass approach to measure z-axis rotation rate [52], using a fabrication process based on 

surface micromachining of 12µm thick polysilicon. In 1998, Kourepenis (Draper Labs) 

developed and reported a tuning fork gyroscopes (TFG) consisting of a silicon structure 

suspended above a glass substrate supporting metallized electrodes [53]. In 2002, BAE 

(Jet Propulsion Laboratory, JPL) utilized the coupled-mass approach along with a silicon 

base-plate and bulk micro-metal post [54]. A SEM view of this device is shown in Figure 

2-7(a). They achieved a resolution of 6°/hr/√Hz, which was the highest reported 

resolution at that date. In 2004, Acer and Shkel proposed a novel 4-DOF micromachined 

gyroscope system utilizing dynamical amplification to achieve large oscillation 

amplitudes without resonance. They mechanically decoupled the drive direction 
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oscillations from the sense direction oscillations [55]. Figure 2-7(b) shows a SEM image 

of this 4-DOF microgyroscope.   

Later, the most advanced bulk micromachined gyroscope was the matched mode z-axis 

tuning fork design reported by the IMEMS group at Georgia Tech in 2006 [8]. The 

matched-mode tuning fork gyroscope (M2-TFG) is fabricated on 50-µm thick SOI 

substrate, and exhibits an overall rate sensitivity of 24.2mV/º/sec and a measured bias 

instability of 0.96 º/hr.  In 2007, R. Neul (Bosch) also used coupled-mass theory and 

surface micromachined thick epi-poly to enable measuring z-axis rotation rate [56]. They 

reported 0.12°/hr/√Hz resolution, the highest recorded resolution. SEM views of bulk-

micromachined matched-mode tuning fork gyroscope [8] and surface-micromachimed 

thick epi-poly gyroscope [56] are shown in Figure 2-8. 

 
(a) 

 
(b) 

Figure 2-7: Examples of coupled-mass gyroscopes: (a) JPL’s microgyroscope [54], (b) 
4-DOF microgyroscope with improved oscillation amplitude and decoupled drive and 
sense oscillations [55]. 
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(a) 

 
(b) 

Figure 2-8: Examples of tuning fork gyroscopes: (a) Bulk-micromachined matched-mode 
tuning fork gyroscope [8], (b) Surface-micromachined thick epi-poly gyroscope [56]. 

2.5.3 MICROMACHINED SHELL-TYPE DESIGN 

Current shell-type micromachined vibrating gyroscopes have mostly used ring structures. 

The planar nature of rings makes them more compatible with micromachining techniques 

and materials. In 1990, Burdess and Kanani developed a solid state piezoelectric cylinder 

gyroscope [57]. The cylinder is set into mechanical vibration at its first inextensible mode 

through piezoelectric action. Voltages applied to electrodes on the surface of the cylinder 

are used to generate the necessary excitation. When a rate of turn is applied about an axis 

parallel to the central axis of the cylinder the nodes of this mode move by an amount 

proportional to the applied rate. This movement is detected by sensing electrodes on the 

surface of the cylinder. In 1994, Putty and Najafi (University of Michigan) explored the 

micromachined vibrating ring gyroscope that uses an electroformed nickel ring as 

gyroscope elements to measure the rotation rate around z-axis. Electrostatic driving and 

sensing was employed in this design, and the fine-tuning of vibration modes was made 

possible through a plurality of electrodes [42]. In 1997, Hopkins (British Aerospace 
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Systems and Equipment, BASE) developed a silicon vibrating structure gyroscope (Si-

VSG) using a ring structure. This was driven and sensed electromagnetically to measure 

z-axis rotation rate [58]. In 1998, Burdess and Harris (University of Newcastle, UK) 

applied electromagnetic driving and sensing similar to Hopkins’s method to surface 

micromachined ring gyroscopes [59]. In 1999, McNie’s group (Defence Evaluation and 

Research Agency, UK) developed high aspect ratio ring gyroscopes fabricated in (100) 

SOI substrates. DRIE of a SOI substrate was used to form the ring as well as the drive 

and sense electrodes [60]. Later in the same year, Zarabadi (General Motors Research 

Labs) investigated a device that combined comb drive actuation with a ring as the 

resonant element. In this device, pairs of comb drives are arranged cyclically around the 

ring to provide the electrostatic actuation and sensing of the flexural modes of vibration 

[61]. In 2000, Ayazi and Najafi (University of Michigan) developed LPCVD polysilicon 

vibrating ring gyroscopes with electrostatic driving and sensing [62]. Examples of the 

shell-type gyroscopes are shown in Figure 2-9. 

 
(a) 

 
(b) 

Figure 2-9: Examples of shell-type gyroscopes: (a) Ring micro-gyro employing 
electromagnetic driving and sensing [58], (b) LPCVD polysilicon vibrating ring 
gyroscope with electrostatic driving and sensing employing bulk micromachining [62]. 
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2.6 MULTI-AXIS MICROMACHINED GYROSCOPES 

The vast majority of the macromachined and micromachined vibratory rate gyroscopes 

reported to date have been single axis devices. Dual axis operation has been investigated 

for coupled-mass and frame designs. In 1997, Juneau and Pisano (U.C. Berkeley) 

reported a dual axis gyroscope comprising a suspended polysilicon disk structure 

supported by a set of four compliant beams above a substrate, capable of measuring in-

plane rotation (x and y axes). The primary rotational mode, about the polar axis of the 

disk, is driven using the comb drives. Sensing of the secondary modes, rotational modes 

excited in the presence of rotation about either in-plane axis, is achieved capacitively 

[63]. A very similar device by An and Song (Microsyst. Lab., Samsung Adv. Inst. of 

Technol., Yongin, South Korea) is reported in 1998, using a polysilicon disk, electrostatic 

comb drives, and capacitive sensing. The fabrication process was based on surface 

micromachining of 2µm thick polysilicon [64]. In 2004, Xie and Fedder (Carnegie 

Mellon University) developed and reported x-z axis frame gyroscopes based on DRIE 

postprocessing of CMOS wafers [65]. Besides dual axis gyroscopes, in 2001, Gallacher 

and Burdess (University of Newcastle UK) developed the principles of multi-axis 

vibrating ring gyroscopes and, in 2006, reported the frequency results of these devices 

[66, 67]. They introduce employing Coriolis coupling between in-plane and out-of plane 

flexural modes in a ring. Succeeding their introduction of multi-axis gyroscopes, there is 

a wide field open for the practical examination of these devices. Examples of multi-axis 

micromachined gyroscopes are shown in Figure 2-10.     
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 (a) 
 

(b) 

Figure 2-10: Examples of dual-axis gyroscopes: (a) A suspended polysilicon disk structure 
measuring the rotation rate around x and y axis. [63], (b) A post CMOS processing x-z axis 
frame gyroscopes [65]. 

2.7 COMMERCIAL MICROMACHINED GYROSCOPES 

The rise of several successful commercial MEMS gyroscopes was led by the automotive 

industry’s rapid exploitation of such practical, miniature devices. The first of these was 

an integrated z-axis gyroscope announced in 2002 by Analog Devices Inc. (ADI), 

offering a very high resolution of 0.05 deg/sec/√Hz [16]. Later, Robert Bosch announced 

a z-axis angular rate sensor with analog output (SMG061) with 1.5 °/sec/√Hz resolution 

and >25Hz frequency bandwidth [68]. In 2006, Silicon Sensing introduced a high 

resolution gyroscope product (SiRRS01) to the market, with bias instability of 3 °/hr [69]. 

The SiRRS01 evolved from the vibrating structure gyroscope developed by BAE 

Systems, which had been in service since 1990. Afterward, Northrop Grumman 

Corporation introduced a MAG-16 MEMS gyroscope to measure the z-axis rotation rate 

as a low cost solution for a wide range of military and commercial applications.  It 
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claimed a bias instability of 10 °/hr [70]. Later on, in 2007, InvenSense Inc. offered the 

first commercialized dual-axis integrated gyroscope (IDG-300) that supports the high 

volume, low price and small size requirements of consumer products [71]. The IDG-300 

gyroscope uses two sensor elements, each with vibrating dual-mass bulk-machined 

silicon configurations, that together sense rotation about the x and y axes (in-plane 

sensing). These integrated dual-axis micro-gyroscopes offer vibration rejection and high 

cross-axis isolation. A summary list of commercialized gyroscopes is presented in Table 

2-2. 

Table 2-2: A Summary of commercial MEMS gyroscopes. 
Incorporate. ADI Bosch Silicon Sensing Northrop Grumman InvenSense 

Spec.                
 
           Prod. 

ADXRS614 
z-axis 

SMG061 
z-axis 

SiPRS01 
z-axis 

MAG-16MEMS 
z-axis 

IDG-300 
x/y-axis 

Range 
(°/sec) 

50 240 110 150 50 

Sensitivity 
(mV/°/sec) 25 7 18.18 36 4 

BW 
(Hz) 

2000 30 50 350 140 

Noise density 
(°/sec/√Hz) 0.04 1.5 0.35 0.03 0.014 

Nonlinearity 
(% FS) 

0.1 0.5 1 <1 <1 

Size 
(mm2) 6.85×6.85×3.8 NA 31.8×31.8×17.3 57.87×57.87×15 6×6×1.5 

 
As shown in Table 2-2, most of available commercialized gyroscopes measure single-

axis rotation rate. However, InvenSense offers MEMS gyroscopes that measure the 

rotation rate around x-axis and y-axis, with the smallest size and highest resolution of 

0.014 °/sec/√Hz. The highest sensitivity belongs to Northrop Grumman’s and ADI’s 

products with a typical resolution of ~2 °/√hr. The ADI products offer the highest 

bandwidth. The commercialized gyroscopes from Silicon Sensing and Northrop 



 31

Grumman are too large to be applicable in most of consumer electronics. As a result, 

InvenSense and ADI offer compact gyroscopes, clearly targeting automotive and 

consumer electronic applications. To date, there is no three-axis gyroscope available in 

the market that simultaneously offers small form factor, low price, and high performance. 

This would be very attractive for incorporation into consumer electronics, particularly in 

more tactile-centric applications such as handheld devices and gaming.  
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CHAPTER 3 

BAW GYROSCOPE DESIGN  

3.1 OVERVIEW 

This chapter focuses on the design and modeling of capacitive silicon disk gyroscopes 

operating in their elliptic degenerative modes. Capacitive BAW disk gyroscopes, 

operating in their MHz-frequency bulk acoustic modes, are designed to operate in their 

primary and secondary elliptic degenerative modes in (111) and (100) single crystal 

silicon, respectively. Finite element analysis is employed to model the resonating disks to 

study the effect of perforations on the frequency separation between the selected 

degenerative modes. A comprehensive study of degenerative elliptic modes is performed 

in which the normal modal model is derived using the Lagrange method. Based on this 

modal analysis, the angular gain is estimated for both primary and secondary elliptic 

modes. In addition, an electrostatic tuning method is developed to match the frequencies 

of the degenerative modes. Sensitivity and resolution for these gyroscopes are derived 

and analyzed, and the key limitations are discussed. Finally, thermoelastic damping is 

modeled for these devices. Theoretical values for QTED as well as the effect of 

perforations in the disk on QTED are further studied. 

3.2 PRINCIPLE OF OPERATION 

A schematic view of a Coriolis-based silicon BAW disk gyroscope [72] is shown in 

Figure 3-1. The BAW gyroscope consists of a center-supported silicon disk with 
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capacitive drive, sense and control electrodes. The locations of the electrodes are chosen 

depending on the mode of operation and the crystal orientation of the silicon. Electrodes 

are located at the anti-nodes of the resonant modes. This provides maximal transduction 

and also facilitates matched-mode operation.  

The capacitive BAW disk gyroscope is supported by a small island of buried oxide layer 

(BOX), shown in Figure 3-1 as the center support. The symmetry of the structure 

guarantees that the support is self-aligned to the disk center during the BOX etch step. 

Boron-doped polysilicon traces attached to the center of the disk, to which they are also 

self-aligned, provide a DC bias voltage to the disk. In addition, to release these devices in 

SOI and facilitate the BOX etch, release holes are added to the disk (though not shown in 

Figure 3-1). 

 
 

 

Figure 3-1: Schematic diagram of the capacitive BAW disk gyroscope in (100) silicon. 
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In order to excite BAW modes, large electrostatic forces are required, which in turn 

necessitate large capacitive coupling. High gap-aspect ratio along with very small 

capacitive gaps provide large capacitive coupling. These needs are met by implementing 

the devices on thick SOI substrates (in the range of 30 to 60µm) with sub-micron 

capacitive gaps (of typically 200nm).  

To actuate the capacitive BAW disk gyroscope, an AC signal is applied to the drive 

electrode at the selected resonant frequency, along with the application of DC bias to the 

disk itself. While the disk is driven at its first degenerative elliptic mode, the gyroscope is 

rotated. Coriolis acceleration transfers energy between the two degenerative elliptic 

modes. As energy builds up in the second mode and this mode vibrates at the sense 

electrode, output current is generated. A custom-built interface circuit amplifies, 

demodulates and filters the sense current to yield rotation-induced Coriolis signal [74]. 

The principal features of the design are the axisymmetry of the disk along with the 

cyclic-symmetric arrangement of the release holes. These features allow important modes 

of vibration to exist in degenerate pairs [60]. To facilitate the mode matching process and 

consequently improve the performance, two degenerative modes with the same resonance 

frequency are used as the drive and sense modes [42]. However, perforations in the disk 

as well as fabrication errors inevitably introduce an appreciable amount of frequency 

separation. One or more electrodes, designated as “tuning electrodes,” can be used to 

electrostatically tune the two modes and reduce the frequency split between them.  

Quadrature errors can also be cancelled with the application of proper DC voltages to 

other electrodes. 
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In this dissertation, capacitive BAW disk gyroscopes are designed to operate in their 

degenerative elliptic modes in the frequency range of 2-10MHz in (100) and (111) single 

crystal silicon substrates. Selection of these modes is discussed in the following. 

3.3 DESIGN OF (100) SCS GYROSCOPES 

First, (100) SCS substrates are investigated because they are widely available and CMOS 

compatible. In (100) single crystal silicon, an anisotropic material, the primary elliptic 

vibration mode is accompanied by its degenerative mode at a 45° offset. ANSYS 

simulation results for an 800µm diameter (100) SCS solid disk indicate a frequency split 

of ~1MHz between two primary degenerative modes, as shown in Figure 3-2 (a). This 

makes them unsuitable for gyroscope applications. Figure 3-2 (b) shows ANSYS 

simulation results for secondary elliptic modes of the same device in (100) silicon. The 

secondary elliptic modes of a (100) silicon disk, which are 30º offset, have nearly 

identical frequencies (∆f ≤ 100Hz). This implies that for (100) SCS, secondary elliptic 

modes should be employed to enable matched-mode operation. 

Implementation of a solid disk requires a backside etch step, presenting the need for both 

topside and backside packaging. To eliminate the latter, perforations were added to the 

disk, enabling its release from the front side of SOI wafer. However, adding perforations 

to the disk introduces frequency shift between the modes. Finite element analysis was 

used to model the introduced frequency split as well as to guide the optimization of the 

release holes accordingly. 
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(a) 

 

  
(b) 

Figure 3-2: ANSYS simulation results of: (a) primary elliptic modes with ∆f=1.08MHz; 
(b) secondary elliptic modes with ∆f=70Hz in an 800µm diameter solid disk gyroscope in 
(100) silicon. 

In order to minimize the effect of perforations on frequency split, some basic design rules 

were investigated and are discussed in the following. First, the orientations of the 

perforations need to be compatible with the anti-nodes and nodes of the vibration 

patterns. For example, to operate the disk in the secondary elliptic modes of (100) SCS, 

the perforations should be located at every 30° (or a fraction of 30°), to have the equal 

effects on both degenerative modes, resulting in minimizing the frequency split between 

two modes. Second, perforations tend to distort the mode shapes. This effect can be 

mitigated by choosing the shape, size, and configuration of the perforations appropriately. 
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A variety of configurations such as radial grooves, tangential grooves and holes with 

different sizes were modeled. According to ANSYS simulations, holes are preferable 

over grooves with respect to lessening mode shape distortion and frequency separation. 

Further optimizations addressed the holes’ distributions and sizes. To do this, two major 

categories of equally-spaced rings of release holes were developed. The first category 

includes non-uniform sized holes along the radial direction of the disk. This approach 

placed the holes exactly at every 30° and 15°, coincident with the mode shapes’ nodal 

lines. The second category is comprised of uniform small sized holes, located mostly at 

the fraction of 30° offset. Both structure types are symmetric about the x and y axis.   

A variety of uniform hole sizes were designed and simulated in ANSYS to evaluate the 

frequency split between the modes.  The results are shown in Figure 3-3.  

 

 Figure 3-3: ANSYS simulation results of secondary elliptic modes in 800µm diameter 
disk gyroscopes in (100) silicon, showing the effect of release hole sizes on the frequency 
splits between two modes and the operating frequencies. 

As expected, the disks with uniform small release holes exhibit very small frequency split 

(∆f<150Hz). This is because the frequency behavior of a disk with uniform small holes 
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closely mirrors that of the solid disk. ANSYS simulation results demonstrate frequency 

splits of 700Hz and 110Hz, respectively, for large non-uniformed holes and for 6µm 

diameter uniform holes, shown in Figure 3-4. 

  
(a) 

 

  
(b) 

Figure 3-4: ANSYS simulation results of secondary elliptic modes in 800µm diameter 
disk gyroscopes including: (a) large non-uniform sized holes with ∆f=700Hz; (b) 6µm 
diameter uniform sized holes with ∆f=110Hz. 

It is worth noting that the distance between the holes at the center of the disk needs to be 

large enough to ensure that the buried oxide center support survives the release etch. The 

center post diameter is designed to be at most one twentieth of the disk diameter, to 

minimize the losses through support [74-75] and to enhance the Q of the device. In all 
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ANSYS models, 50,000 elements were used to minimize the simulation errors in 

frequency split values.  

In accordance with the’ modes shapes in (100) SCS substrates, capacitive electrodes 

should be placed every 30º circumferentially around the disk to maximize the sense and 

drive transduction. 

3.4 DESIGN OF (111) SCS GYROSCOPES  

If an isotropic material (such as (111) SCS or polysilicon [76-77]) is used, the two 

primary elliptic degenerative modes, spatially 45º apart, have identical resonance 

frequencies (∆f=70Hz), Figure 3-5. This implies that BAW gyroscopes implemented in 

(111) SCS substrates should be operated in their primary elliptic modes instead of 

secondary elliptic modes [78]. It is worth noting that (111) SCS substrates can be 

assumed to have isotropic material properties only for the in-plane vibration motion. 

Again, to eliminate the backside packaging requirement, perforations need to be added to 

the disk.  The same perforation design method employed for (100) SCS disks is applied 

to (111) SCS disks. However, in (111) SCS substrates, release holes need to be placed 

and repeated symmetrically every 45º, instead of every 30º as required in (100) SCS 

substrates. ANSYS simulation results for primary elliptic modes in 800µm diameter 

(111) SCS perforated disks show frequency splits of 720Hz and 130Hz, respectively, for 

large non-uniform-size holes and for 6µm uniform holes, shown in Figure 3-5.  In (111) 

silicon disk gyroscopes, the capacitive electrodes should be located at every 45º to 

maximize the sense and drive transduction area and subsequently enhance the sensitivity. 
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(a) 

 

     
(b) 

 

   
(c) 

Figure 3-5: ANSYS simulation results of primary elliptic degenerative modes for: an 
800µm diameter: (a) solid disk with ∆f=70Hz, (b) large non-uniform sized holes with 
∆f=720Hz, (c) 6µm-diameter uniform sized holes with ∆f=130Hz in (111) silicon 
substrate. 
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3.5 DERIVATION OF NORMAL BULK MODE EQUATIONS 

Although some work has been done to investigate the in-plane extensional modes of disk 

structures [79], modal analysis for degenerative elliptic modes is not documented.  In this 

section, the equations of motion for solid disks operating in their elliptic modes are 

derived, and the response to an applied rotation rate is calculated. To simplify the modal 

equations, solid disk structures, without any perforations, are assumed in the following 

analysis.  

In general, displacement of a linear elastic body due to vibration can be written as a linear 

combination of its normal mode shape functions and its amplitudes [80]. For a disk 

gyroscope, we are interested in either primary or secondary elliptic modes in (111) SCS 

and (100) SCS substrates, respectively. The chosen elliptic mode actually consists of two 

degenerative modes, utilized as drive and sense modes. Accordingly, the vibration 

displacement of each point on the disk is a summation of both degenerative mode 

displacements as:  

2211

2211

θθθ φφ
φφ

qqu
qqu rrr

+=
+=

 (3-1) 

where ur and uθ  are the radial and circumferential components of the displacement vector 

in a vibrating disk and φr and φθ are the mode shape functions in the radial and 

circumferential directions, respectively. And, q1, q2 are the amplitudes of the two 

degenerative modes. Subscripts 1 and 2, respectively, represent the first degenerative 

mode (drive) and second degenerative mode (sense). The mode shape functions for a 

solid disk [79], operating in its bulk modes, are:  
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Where m is the mode order, equal to 2 for the primary elliptic modes and 3 for the 

secondary elliptic modes. The normalized displacements in the radial and circumferential 

directions, Ur and Uθ [81] are given in (3-3). 
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The normalized displacements are expressed in terms of Bessel functions of the first kind 

(Jm) as well as km and hm, which are both dimensionless frequency parameters as follows:   

)υρ(E
Rω=km 2

0

1/ −
 (3-4) 

υ)+(E
Rω=hm 12ρ/

0  (3-5) 

where R and ω0 are the disk radius and natural frequency, respectively. The material 

properties of the device are defined by E, ρ, and υ which are Young’s modulus, density 

and Poisson ratio, respectively.  Besides the frequency parameters (km and hm), ξm is the 

next parameter in (3-3) that needs to be addressed. ξm is the ratio of the constants in 

elastic waves as explained in detail in [79].  
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This depends on the Poisson ratio and the operating mode number (m) in the resonating 

structure. With km, hm and ξm known, the normalized displacements (Ur and Uθ) can be 

calculated, completely defining the mode shape functions (φr and φθ).  

Next, the expressions for the amplitude of the two modes (q1, q2) should be determined to 

fully quantify the displacements (ur and uθ). To accomplish this, the normal mode 

differential equations need to be solved.  One of the well-known methods that can be 

employed is the Lagrange method, which is a purely scalar treatment for dynamic 

systems. In this method, the total differential of conservative energies is equated with the 

sum of any non-conservative forces (generalized forces), and these terms are expressed in 

generalized coordinates (qi) [82]. As a result, the kinetic energy (Ti) and potential energy 

(Ui) along with the generalized forces (Di) are derived for degenerative modes in BAW 

gyroscopes and employed in (3-7) to define the motion equations.  
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3.5.1 KINETIC ENERGY 

The kinetic energy can originate from both a vibration motion and a rigid body motion 

(rotational motion) of a resonating disk structure. If the effects of rotary inertia are 

neglected, the kinetic energy of an elemental section of a disk is determined by the 
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absolute velocity of its center. The velocity of an infinitesimal element of a disk 

corresponding to an applied rotation rate Ωz is given by: 

zuuv Ω×+= &  (3-8) 

where u is the total displacement of an infinitesimal element. And the kinetic energy of 

the disk with volume (V) follows as: 

∫= dVT 2

2
1 νρ  (3-9) 

Substituting the radial and circumferential displacements and velocities into (3-8) and 

subsequently (3-9), the kinetic energy of the disk can be simplified and summarized as:  
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where M1 and M2 are respectively the effective mass while the disk is vibrating at its 

drive and sense elliptic modes and they are expressed in (3-11) and (3-12) . And γ is the 

Coriolis coupling between the two modes as stated in (3-13). 

( )∫ dV+ρ=M θ1r1
22
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( )∫ dV+ρ=M θ2r2
22
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( )∫ −= dVrr 1221 θθ φφφφργ  (3-13) 

where φr1, φr2, φθ1 and φθ2 are the mode shape functions and can be determined from (3-2) 

for a disk operating in its BAW modes. The effective mass of a BAW disk gyroscope can 

be evaluated from M1.  
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3.5.2 POTENTIAL ENERGY 

The total potential energy in micromachined vibratory gyroscopes consists of a 

mechanical component (Um) and an electrical component (Ue). The mechanical potential 

energy originates from the in-plane extensional motion of BAW modes, while the 

electrical potential energy comes from the applied electrostatic forces. The mechanical 

component of the potential energy can be expressed in terms of the stored strain energy 

as follows: 

∫ )dVτγ+τγ+τγ+σε+σε+σ(ε=U θzθzrzrzrθrθzzθθrrm 2
1

(3-14) 

where σ and τ are the normal and shear stress and ε and γ are the normal and shear strain, 

respectively. Since elliptic degenerative modes only involve in-plane motion, normal and 

shear stresses in z direction were negligible. In addition, the effects of shear stress in the r 

and θ directions were not considered for simplicity. The mechanical potential energy 

equation can be simplified as: 

∫ )dVσε+σ(ε=U θθrrm 2
1  (3-15) 

According to Hooke’s law, normal strains can be written in the form of normal stresses 

[83] in radial (εr) and circumferential (εθ) directions in (3-16) and (3-17). Substituting 

these into the mechanical potential energy equation yields (3-18). 
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Also, normal stresses of BAW modes in radial and circumferential directions can be 

defined in terms of displacements (ur, uθ), Young’s modulus (E) and Poisson ratio (ν) 

from [84].  
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Afterwards, normal stresses from (3-19) are substituted into (3-18) in terms of radial and 

circumferential displacements and subsequently displacements from (3-1) are replaced 

with mode shape functions and amplitudes. Finally, the mechanical potential energy is 

summarized in terms of amplitudes and mechanical stiffness:    
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where Km1 is the mechanical stiffness of the disk due to the vibration at the drive mode: 
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Km2 can be defined the same as Km1 but with r1 and θ1 replaced by r2 and θ2, respectively.   
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The electrical component of potential energy originates from the application of the 

electrostatic forces between the disk and surrounding electrodes. The total electrical 

potential energy can be found by adding the electrostatic energies corresponding to drive, 

sense and tuning voltages, producing,  
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where Cd and Cs represent the drive and sense capacitances and Vd and Vs denote the 

voltages at the drive and sense electrodes, respectively. Also, VTd and VTs are the tuning 

voltages for the drive and sense, respectively. The voltages in (3-22), are related to device 

terminal voltages, as: 

acdpd vVV −−=  (3-23) 

ps VV =  (3-24) 

driveTpTd VVV −−=  (3-25) 

senseTpTs VVV −−=  (3-26) 

where Vp, νd-ac, VT-drive and VT-sense are, respectively, the polarization voltage applied to the 

disk, the AC signal applied to vibrate the disk at the drive mode, and the DC voltages 

used to electrostatically tune the drive and sense modes. The general form of a 

capacitance between an electrode and a disk is expressed in (3-27) and the schematic is 

shown in Figure 3-6. 
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where h, R, d0 and ∆d are the disk thickness, disk radius, the initial gap between the 

electrode and the disk and the capacitive gap changes, respectively. Also, ∆θn is the angle 

that each electrode spans and θn is the angle from the x-axis to the center of the nth 

electrode.  

 

 

Figure 3-6: The schematic view of a capacitive disk gyroscope operating at its secondary 
elliptic modes.  

Symmetrical electrodes around the disk result in equal capacitive area and initial 

capacitive gaps for drive, sense and tuning capacitances. However, the change in the 

capacitive gap (∆d) depends on the mode of vibration and the location of the electrode. In 

addition, the capacitive gap (d0) is much smaller than the radius (R) of the disk gyroscope 

(d0<<R), making any circumferential displacement very small compared to the radial 
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displacements. Thus, only the radial displacement is considered for the change in the 

capacitive gap as following:  

2211 rrrrr qqud φφ +==∆  (3-28) 

Given that the drive electrode is located at the anti-node line of the drive mode and at the 

node line of the sense mode, this implies that (φr1>>φr2) at the drive electrodes and 

similarly (φr2>>φr1) at the sense electrodes. However, due to fabrication non-idealities, 

the maximum mode shapes displacement might be slightly misaligned with the center of 

an electrode, which can be aligned by cancelling the quadrature errors. Substituting the 

mode shape functions (φr1 and φr2) into (3-28) and integrating over the electrode length, 

the total capacitances between the disk and the drive electrode vibrating at its elliptic 

modes can be expressed as:  
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The total capacitances at the drive and sense electrodes as well as voltages from (3-23) to 

(3-26) can be substituted into the potential energy expression in (3-22). This gives (3-31), 

expressing the total electrical stiffness of the disk in its first elliptic mode (the drive 

mode). For the second elliptic mode (the sense mode), the electrical stiffness is the same 

as Ke1 in (3-31) but the drive voltages (Vd and VTdi) should be replaced with the sense 

voltages (Vs and VTsi).   
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3.5.3 VISCOUS DAMPING 

In BAW gyroscopes, each degenerative mode is associated with its own damping forces, 

which are treated as non-conservative forces D1 and D2 in Lagrange’s equations: 
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where C1 and C2 are the damping coefficients. The damping forces are not generally 

aligned with normal vibration modes [80]. However, it is assumed that they are aligned 

with the electrode centers for simplicity.  

3.5.4 EQUATIONS OF MOTIONS  

Given the kinetic energy (T), potential energy (U=Um+Ue) and the generalized forces (D) 

of the BAW gyroscope in terms of the generalized coordinates (qi), the system of motion 

equations is derived using the Lagrange’s method [85]. Thus, the coupled second-order 

differential equations used to model the disk gyroscope are expressed in (3-33) and can 

be solved for q1 and q2. 
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M1, M2, γ, Km1 and Ke1 are respectively defined in (3-11), (3-12), (3-13) and (3-21). C1 

and C2 are the damping coefficient for the drive and sense modes, respectively. Also, F1 

originates from the electrical potential term and is derived and expressed as: 
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In addition, F2 is the same as F1 except that drive voltages (Vd and VTdi) should be 

replaced with the sense voltages (Vs and VTsi).   

3.6 ANGULAR GAIN ESTIMATION 

One of the critical parameters in the design of a Coriolis gyroscope is the angular gain. 

When rotation is applied to the sensor, the node lines of the vibration pattern lag behind 

the rotation of the sensor. The angular gain (Ag) is defined as the ratio of the change in 

the vibration pattern angle to the applied angle of rotation (Ωz). The angular gain depends 

on the sensor structure as well as the type of resonant modes in operation. In order to 

calculate the angular gain, matched elliptic mode frequencies with zero damping are 

assumed. Also, the angular acceleration coupling is negligible compared to the Coriolis 

coupling. With these assumptions, the normal mode equations (3-33) are simplified to: 
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If a constant rotation rate (Ωz) is applied to the gyroscope, the drive and sense amplitudes 

(q1, q2) are obtained by solving (3-35): 
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where A is a constant amplitude term and ω is defined as: 
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where ω0, Ωz, γ and M are, respectively, the resonant frequency, an applied rotation rate 

around the z-axis, the Coriolis coupling in (3-13) and the effective mass in (3-11) .    

The drive mode amplitude (q1) is assumed to have the maximum amplitude (A) at 0°. This 

is because the electrode located at 0° is aligned with the anti-node of the drive mode. 

With the application of a constant rotation rate (Ωz), the vibration pattern also rotates at a 

related constant rate. After a certain time (t), the drive mode transfers to the sense mode 

due to the mode’s degenerative interrelation and the following is applied from (3-39): 

2
πγ

=Ω t
M z  (3-39) 

 

At this time, the amplitude of the sense mode will reach its maximum value and the 

sensor has rotated through an angle of β. 
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2γ
πM=tΩ=β zanglerotation −

 (3-40) 

While the sensor rotates through β, Coriolis force shifts the vibration pattern through an 

angle (θ) from the drive mode to its degenerative mode (sense mode). The degenerative 

mode of primary elliptic mode in (111) SCS is at 45° spatially apart. However, the 

secondary elliptic mode in (100) SCS has a vibration pattern of 30°. Taking the ratio of 

the vibration pattern angle (θ) to the angle of rotation in the sensor (β), the angular gains 

for a disk operating in its elliptic mode can be stated as: 
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where M and γ are respectively expressed in (3-11) and (3-13) and m is the mode number.  

To evaluate the angular gain (Ag) for primary and secondary elliptic modes, the mode 

shape functions (3-2) are integrated over the disk volume to determine the Coriolis 

coupling coefficient (γ) and the effective mass (M). Given the disk radius (R) and the 

material properties (E, ν) of the disk as well as the resonance frequency of operation (ω0),  

frequency parameters (km) and (hm) are further estimated. Subsequently, the ratio of 

elastic wave constants ξm is estimated by solving the Bessel function of frequency 

parameters. The maximum normalized displacements Ur and Uθ are calculated, and the 

mode shape functions are determined in terms of (r,θ) and integrated over the disk 

volume. Finally, the angular gain values are calculated. All of the design parameters are 

summarized in Table 3-1 for a solid disk operating in either primary or secondary elliptic 
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modes. As can be seen, the estimated angular gain of a solid disk structure is ~1.9 times 

larger for primary elliptic modes than for secondary elliptic modes. The Matlab code used 

to estimate the design parameters are presented in Appendix B. 

Table 3-1: The design parameters in BAW solid disk gyroscopes. 

 
It is worth noting that our derivation is based on employing an isotropic material, but 

(100) SCS is anisotropic. To facilitate estimating the design parameters for a (100) SCS 

disk operating in its secondary modes, equivalent isotropic material properties should be 

approximated. As reported in [79], (100) SCS disk can be treated as an isotropic disk 

with the material properties in the direction of anti-node lines of the mode shape. Using 

this assumption in [79], they achieved less than 0.1% difference in the resonance 

frequency between the theoretical and numerical simulation. In [79], they modeled for 

primary elliptic modes, in which each mode’s anti-node lines are crystallographically 

Material/mode 
(111) SCS 

Primary elliptic mode 
(m=2) 

(100) SCS 
Secondary elliptic mode 

(m=3) 

Poisson’s ratio (ν) 0.262 0.177 
Young modulus (E, GPa) 168.9 148.43 

Mass density (ρ, Kg/m3) 2330 2330 
Frequency parameter (km) 1.4243 2.2990 
Frequency parameter (hm) 2.3447 3.5836 

Const. elastic waves ratio (ξm) 2.2330 1.1378 
ANSYS                   5.01 ANSYS                      7.51

Frequency (MHz) 
Theoretical              5.00 Theoretical                 7.42

Dimensionless maximum  
radial displacement (Ur) at r=R 1.5105 0.9430 

Dimensionless maximum 
circumferential displacement (Uθ) at r=R 0.4621 0.0705 

Effective mass (M, Kg) 2.0676e-8 1.4694e-008 

Coriolis coupling coeff. (γ, Kg) 1.8954e-8 1.0203e-008 

Angular gain (Ag)  0.4584 0.2314 
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equivalent. The same method can be employed for a (100) SCS disk operating in its 

secondary elliptic modes. However, in each of those modes the anti-node lines are not in 

the same crystallographical line, one aligned with <110> and two aligned with <1 3.75 

0> directions. As a result, the material properties for three anti-node lines were calculated 

using [86] and averaged together (arithmetic mean) to estimate equivalent isotropic 

material properties. This assumption was verified, in ANSYS simulation results and 

theoretical calculations, against an anisotropic ANSYS simulation. The frequency 

responses of a disk operating in its secondary elliptic modes were modeled using an 

anisotropic material properties for (100) SCS and an equivalent isotropic material 

properties. The difference between the frequencies of the two models was observed to be 

~1% for both degenerative modes and the frequency separations between the two 

degenerative modes were identical. Accordingly, in our calculations, the equivalent 

isotropic material properties (with E of 143.43 and υ of 0.177) are assumed for all design 

parameters in (100) SCS disks operating in its secondary elliptic modes.  

3.7 FREQUENCY TUNING METHOD 

Electrostatic tuning is a well-established technique for matching the resonant frequencies 

in capacitive-based micromachined gyroscopes. This is vital to lessening the effects of 

non-idealities and reaching the superior performance delivered by matched-mode 

operation. Developing a frequency tuning procedure for BAW gyroscopes requires 

analysis of the effect of electrostatic forces on the resonance frequencies of the 

degenerative modes. In this study, a tuning scheme is provided only for secondary elliptic 
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degenerative modes in (100) SCS. A similar method can be applied for tuning of primary 

elliptic degenerative modes in (111) SCS.   

To electrostatically tune and match two modes, three approaches can be employed. First 

is tuning only the drive mode and matching it with the frequency of the sense mode [10]. 

Second is tuning the sense mode and matching it with the frequency of the drive mode. 

Third is tuning of both drive and sense modes simultaneously.  The last approach lowers 

the required tuning voltages significantly, and this is the focus of this work.  

Assume that a BAW disk gyroscope is driven in its secondary elliptic modes by an 

electrode located on the x-axis and the response is sensed at an electrode located on the y-

axis, shown in Figure 3-7. 
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(a) Drive mode    (b) Sense mode 

Figure 3-7: The schematic view of secondary elliptic modes (a) drive mode excited at x-
axis with antinode lines located at electrodes 1, 3, 5, 7, 9 at kπ/3 with k=0,1…12, (b) 
sense mode detected at y-axis with antinode lines located at electrodes 2, 4, 6, 8, 10 at 
kπ/6 with k=0,1…12. It is worth noting that electrodes 3 and 12 are used to drive and 
sense the modes. Electrode 9 is also employed for monitoring the drive output signal.  

Assume that the drive mode has a lower initial frequency than the sense mode 

(f0drive<f0sense). Consequently, the frequency of the drive mode should be increased while 
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the sense mode’s frequency needs to be decreased. It is well-known that the frequency is 

related to the electrical stiffness from [87] as following: 

M
KKf em −

=
π2
1

0  (3-42) 

 
where Ke, Km and M are the mechanical stiffness, electrical stiffness and the effective 

mass of resonant structure, respectively. The latter two’s invariance, for a given device, 

makes Ke the sole dynamic determinant of f0. In order to reach matched mode, Ke for both 

drive and sense modes should be adjusted appropriately. 

The general expression for the electrical stiffness of a disk operating in its elliptic modes 

is presented in (3-31). Setting m equal to 3 (for secondary elliptic mode) and θn to the 

appropriate values for the antinode lines of the drive and sense modes, the electrical 

stiffnesses Ke1 for the drive mode and Ke2 for the sense mode, are simplified as:       
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 As one can observe, for a specific device dimension, the electrical stiffness depends 

solely on the tuning voltages. In particular, the electrical stiffness of a mode is 

independent of the direction of the tuning electrode, as long as it is located at an antinode 

of the mode.  Since the resonant frequency is inversely proportional to the electrical 

stiffness, the stated goals of raising the drive frequency while lowering the sense 

frequency are achieved by choosing VT-drive>0 and VT-sense<0.  The cases in which the 
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untuned drive frequency is higher than the sense frequency, analogously, are 

accommodated by choosing VT-drive<0 and VT-sense>0. 

Furthermore, the electrical stiffness of either the drive or sense mode from (3-43) or 

(3-44) can be substituted into (3-42).  The derivative of the frequency with respect to the 

applied tuning voltages can then be derived and expressed as follows: 
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where h, R, ∆θn, Ur and d0 are, respectively the disk thickness, disk radius, electrode 

angular span, maximum normalized displacement, and the capacitive gap. Also, M, f0 and 

m are the effective mass, the operating frequency and the mode number, respectively. 

This equation can be further simplified by replacing the effective mass (M) and the 

(R∆θn) as an electrode length (Le), thus  
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Where Ceffec-mass is the effective mass coefficient that can be determined by taking the 

ratio of the effective mass (M) from (3-11), which is normalized to the maximum 

normalized displacement (Ur at r=R), to the total mass of the disk. Also, from (3-46), the 

frequency tuning is linearly proportional to the electrode length, the square of the 

maximum normalized displacement and the tuning voltages; however it is inversely 

proportional to the square of the disk radius, mass effective coefficient, the operating 

frequency and the cubed of capacitive gaps. This implies that the frequency tuning is 

heavily dependent on the capacitive gap and is not affected by the disk thickness. As a 

result, sub-micron capacitive gaps should be employed in BAW gyroscopes to expedite 
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frequency tuning and limit tuning voltages.  In addition, maximal electrode length lowers 

the tuning voltages further.    

 3.8 SENSITIVITY ANALYSIS 

 Coriolis-induced sense mode vibrations are detected through change in the capacitance at 

the sense electrodes to determine the sensitivity of a micromachined vibratory gyroscope. 

A sinusoidal electrostatic force is applied to the assigned drive electrode to vibrate the 

disk in its first degenerative elliptic mode (the drive mode). The vibration energy is 

stored in this mode and the disk continues to vibrate indefinitely, provided that there is no 

damping or rotation. When rotation is applied, the Coriolis acceleration transfers the 

stored vibration energy between the two degenerative modes until all the energy is 

transferred to the second mode (sense mode). Consequently the Coriolis induced sense 

mode vibration change the capacitive gap at the sense electrode, which can be measured 

as devices’ rotation response. Next, a number of rotation rates are applied and the 

responses are measured. The Scale factor is generally evaluated as the slope of the 

straight line that can be fitted to a plot of output signal versus input rotation rate. 

In this study, we consider an ideal device with matched mode frequencies and symmetric 

damping. As the angular acceleration coupling is insignificant in comparison with 

Coriolis coupling, and as centrifugal stiffness is very small compared to mechanical and 

electrical stiffness, they are both assumed to be neglected in (3-33). Consequently, the 

drive and sense mode second-order differential equations are simplified to:  
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(3-47) 

A sinusoidal drive signal is applied to the single drive electrode while the polarization 

voltage is applied to the center of the disk through the poly trace.  This electrostatic force 

between the disk and the drive electrode vibrates the disk in its elliptic mode. 

Consequently, the drive mode amplitude (q1) can be written as:    

t)(ωA=q 011 sin  (3-48) 

where A1 and ω0 are, respectively, the amplitude constant and the natural frequency of the 

disk at the driven elliptic mode.  

Substituting the drive mode amplitude (q1) and applying the first and second derivatives 

of q1 into (3-47), the electrostatic drive force can be expressed as:  

t)(A
Q

Mω=Fd 01

2
0 cos ω  (3-49) 

For a gyroscope operating in matched mode, the response of the sense mode to rotation 

occurs at the same frequency and phase as the drive mode. Thus, the amplitude of the 

sense mode response (q2) can be expressed as:  

)sin( 022 tAq ω=  (3-50) 

Leveraging the previous definition of angular gain, the sense mode equations in (3-47) 

can be written in terms of the angular gain for primary and secondary elliptic modes as:  
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The sense to drive mode amplitude ratios for primary and secondary elliptic modes are 

taken, using q1 and q2 and their derivatives in (3-51) and (3-52), as:  
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Accordingly, the sense mode amplitude is linearly proportional to the matched-mode 

quality factor (Q), angular gain (Ag) and the drive mode amplitude (q1), and it is also 

inversely proportional to the operating resonance frequency (ω0). Therefore, as high 

frequency gyroscopes raise ω0, a high matched-mode quality factor is required to 

preserve the sense mode amplitude and consequently the device’s sensitivity. 

To determine the sensitivity of a BAW gyroscope, the total capacitance change at the 

sense electrode due to an applied rotation rate should be evaluated. The total capacitance 

at the sense electrode, using Taylor series, can be stated in (3-55). In which the only 

linear part of capacitance change has been considered. If it is desired, the higher term 

from Taylor series can be replaced and subsequently the non-linear term of capacitance 

changes could be evaluated.        
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After integration and simplification of (3-55) , the sense capacitance (Cs) can be written 

in terms of an initial capacitance (Cs0) and the change in capacitance (δCs) due to the 

vibrational motion.   

sss δC+C=C 0  (3-56) 
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It is worth noting that sin(mθ) is equal to 1 for both primary and secondary elliptic modes 

due to the multiplication of the mode number (m) by the vibration pattern angle (θ). Also, 

the sense mode amplitude (q2) can be substituted from (3-53) and (3-54) into (3-58), 

giving the sensitivity for primary and secondary elliptic modes as:  
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As it can be observed, the sensitivity is linearly proportional to the angular gain. As 

calculated, Ag in (111) silicon BAW disk gyroscopes operating in the primary mode is ~ 

1.9× larger than the identical device in (100) silicon operating in the secondary elliptic 
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mode. Thus, higher sensitivity can be achieved for devices implemented in (111) SCS. 

However, (100) silicon substrates have advantages in terms of CMOS compatibility and 

substrate availability compared to (111) silicon substrates.  

In any case, the change of the sense capacitance due to the applied rotation is very small 

and it needs to be amplified properly to be readable. Therefore, each sense electrode is 

accompanied by a low noise trans-impedance amplifier (TIA) and two cascaded voltage 

amplifiers. The fully amplified signal is a cross-product of two signals (carrier and 

Coriolis), and can thus be treated as an amplitude-modulated (AM) signal. It is then 

demodulated to extract the rotation rate (Coriolis signal) by mixing the carrier signal 

from the drive loop with the AM output. Finally, a low-pass filter is used to separate the 

Coriolis signal from the mixer output [73]. Figure 3-8 shows the configuration for 

detecting the rotation response from the output signal at the sense electrode. 

 

Figure 3-8: Readout circuitry used for measuring the rotation rate in capacitive BAW 
disk gyroscopes. 
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Utilizing the above circuit, the high-frequency BAW gyroscope sensitivity in terms of 

output voltage is discussed here.  The output voltage due to an applied z-axis rotation rate 

can be derived using the chain rule: 

δC
v

Ω
δC=

Ω
v out

z
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out ×  (3-61) 

The capacitance change due to the rotation rate is given in (3-59)  and (3-60), and the 

fully-amplified output voltage may also be stated as: 

vfsout ARI=v  (3-62) 

Where Rf and Av are the gain of the TIA and the total gain of the cascaded voltage 

amplifiers, respectively. In addition, the output current at the sense electrode can be 

expressed as the total change of the charge over time:  
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The sense current Is is substituted into (3-62), which is then substituted into the second 

term in (3-61). Finally, the sensitivity of the disk gyroscope in terms of output voltage is 

summarized as following for either primary or secondary elliptic modes.     
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It is worth nothing that utilizing the above sense amplifier configuration makes the 

sensitivity of BAW disk gyroscopes independent of the resonance frequency. To improve 

the sensitivity of BAW gyroscopes, high matched-mode Q as well as larger sense 

capacitance and smaller capacitive gaps are desired. 
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3.8 RESOLUTION ANALYSIS 

Resolution, defined as the minimum detectable rotation rate, is a major performance 

parameter in a gyroscope [9]. The total resolution has two principal components: the 

Brownian noise, originating from the mechanical motion of the resonating structure, and 

the electronic noise, originating from the interface circuitry. 

2
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2
minmin )()()( ElectronicBrownianTotal Ω+Ω=Ω  (3-65) 

Brownian motion of the structure, which is the result of molecular collisions with the 

surrounding medium, represents the mechanical noise component (mechanical noise 

equivalent, MNEΩ). By equating the displacement caused by Brownian motion [32, 88] 

to the displacement induced by Coriolis acceleration (3-53) and (3-54), the mechanical 

resolution of BAW gyroscopes in a matched-mode operation can be derived as:   
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Where q1 is the drive amplitude; ω0, M, and Q are the natural frequency, effective mass 

and effective quality factor at the sense mode, respectively; kB is the Boltzmann constant, 

and T0 is the absolute temperature.   

The effective mass for disk gyroscopes operating in their BAW modes can be calculated 

by the integral for the kinetic energy in (3-11) and normalizing the result to the 

dimensionless maximum displacement at the disk edge [79, 89]. This is evaluated and 

reported later in this section. 

Furthermore, the electronic noise (electronic noise equivalent, ENEΩ) arising from the 

interface circuitry should be considered. In order to do this, it is assumed that the output 
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noise (Inoise) has a white spectrum near the resonant frequency.  Then, the electronic noise 

of the interface circuitry for either the primary or secondary elliptic modes at matched-

mode operation can be stated in below: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ∆

=

= 2
sin4 0

2
0

min θε mhRUQAqV

BWId
c)(electroniΩ

Rrgdrivep

noise  
(3-67) 

where Inoise is the interface circuitry noise, referred to the input. As can be observed in 

(3-67), the electronic noise is linearly proportional to input-referred noise and is inversely 

proportional to the sense capacitance, the matched mode Q, angular gain and polarization 

voltage. This indicates that very large sense capacitance, very large Qmatched-mode, and ultra 

low input-referred noise can significantly lower the electrical noise in these gyroscopes.     

3.9 PERFORMANCE DISCUSSION 

In order to fully realize the potential of BAW gyroscopes as attractive replacements to 

current gyroscopes, the overall performance of these devices should be precisely 

understood. Toward this end, the design and performance parameters for a typical BAW 

gyroscope are evaluated using the derived analytical and summarized in Table 3-2.  

As shown in Table 3-2, the sensitivity of a device implemented in (100) SCS is ~4.5 

times smaller than the similar device implemented in (111) SCS. This is mainly due to 

the higher angular gain Ag of (111) devices compared to (100) devices (~1.9×).  It can 

also be partially attributed to the ~1.5times higher frequencies of secondary elliptic 

modes than the primary elliptic modes. In addition, the maximum displacement (Ur=R) in 

(111) SCS is ~1.6times larger than in (100) SCS. Using the sensing mechanism (Fig. 6) 
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makes the amplified sensitivity independent of the resonance frequency. This results in 

amplified sensitivity in a (100) SCS device to be only 3× smaller than a (111) SCS 

device.  

Table 3-2: Analytical estimation of performance parameters in BAW disk gyroscopes. 

Material/mode 
(111) SCS 

Secondary elliptic mode 
(m=2)  

(100) SCS 
Secondary elliptic mode 

(m=3) 
Disk diameter (µm) 800 800 

Disk thickness (µm) 40 40 

Electrode length (Le) (µm) 175 175 
Capacitive gap (nm) 200 200 
Drive amplitude (nm)  20 20 
Effective quality factor (Q) 100,000 100,000 
Operating frequency (MHz) 5.01 7.52 
The maximum normalized 
displacement at r=R   (UR) 1.5105 0.9430 

Effective mass coefficient 0.4413 0.3137 

Angular gain (Ag) 0.4584 0.2314 

Polarization voltage (V) 10 10 
Inoise (pA/√Hz) 2.5 2.5 
Frequency bandwidth (Hz) 25 38 
Sensitivity  (aF/°/sec) 4.76 1.06 

MNEΩ (°/sec/√Hz) 0.00077 0.00099 

ENEΩ (°/sec/√Hz) 0.0017 0.0053 

Total noise (°/sec/√Hz) 0.0018 0.0054 
 

Although (111) SCS gyroscopes can offer higher Ag and Ur=R, we are not accounting for 

factors that will improve the sensitivity of (100) SCS devices. For instance, in Table II, it 

is assumed the same electrode length for both devices in (100) and (111) SCS substrates. 

However, the electrodes for (111) SCS need to be repeated every 22.5° instead of 30° in 
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(100) SCS, implying that the electrodes are 1.4× smaller in length in (111) SCS than 

(100) SCS. In addition, all the design performance parameters calculated here are based 

on using a single sense electrode. If a fully differential architecture is employed, the 

sensitivity would be increased significantly. For a (111) SCS device operating in its 

primary elliptic modes, the performance can be improved by 4×; however this can be 

improved by 6× in a (100) SCS device operating in its secondary elliptic modes. This is 

due to available number of anti-node lines for each elliptic mode. Considering the above, 

the sensitivity and the resolution of (100) SCS BAW gyroscopes can be improved by an 

additional 3×, offering similar performance to BAW gyroscopes in (111) SCS.  

Furthermore, total resolution relies on both Brownian noise and electronic noise evenly. 

The mechanical noise floor in  BAW gyroscopes is improved by increasing the resonant 

frequency by 2 to 3 orders of magnitude (to 2-8 MHz) and by utilizing stiff bulk acoustic 

modes which substantially increase and thermally stabilize the Q. As a result, Brownian 

noise is not a constraint on the resolution in high frequency BAW gyroscopes, as shown 

in Table 3-2, and electronic noise tends to be what limits the sensors. The electronic noise 

depends linearly on electronic input-referred noise (Inoise) and inversely on the gap aspect 

ratio (AR) and the matched-mode Q. The electronic noise can be improved by  

1) developing a high gap aspect-ratio (AR>200) process,  

2) designing a high matched-mode quality factor (Q>100,000) structure, and  

3) utilizing an ultra low noise amplifier (In<1pA/√Hz).  
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The above parameters can play a significant role in lowering the electronic noise and 

subsequently improving the resolutions in BAW gyroscopes. The performance 

parameters are measured in Chapter 5 and compared with the analytical values. 

3.10 THERMOELASTIC DAMPING  

Thermoelastic damping (TED) is a dominant loss mechanism in flexural-based 

gyroscopes, introducing highly temperature-dependent performance deterioration that 

circumscribes these sensitive devices' thermal stability [90-92]. Thus, designing 

micromachined gyroscopes such that their Qs are not immediately affected by TED is 

always desirable. To do this, the effect of thermoelastic damping (TED) is studied for 

solid and perforated disk structures operating at their primary and secondary elliptic 

modes as well as breathing modes. 

3.10.1 THERMOELASTICITY THEORY   

As a starting point, it is noted that the total Q of a resonating structure [93] generally can 

be expressed as:   
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Where QAir
-1, QTED

-1, QSupport
-1 and Qother

-1 are, respectively, defined as air damping losses, 

thermoelastic damping losses, the losses through support and “other” losses not included 

in the preceding terms.  The latter might originate from, for example, surface roughness 

or intrinsic material energy dissipation. As one can expect, each of the Qs on the right 

hand side of (3-63) has less impact upon the overall Q when it is larger. This implies that 
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the total Q would be less dominated by QTED if the QTED value was very large compared 

to the rest of the Qs.  

To determine the QTED for a disk operating in BAW modes, the coupled deformation and 

temperature PDEs were estimated and solved for their eigenvalues [94]. Consequently, 

for each resonant mode, QTED was evaluated as the ratio of the imaginary part to the real 

part of the corresponding eigenvalue. The general coupled deformation and temperature 

partial deferential equations are stated in (3-69): 

( ) ( )

0
)21(

0
)21(

)(

2

2
2

2

=
∂
∂

∇
−

−
∂
∂

−∇

=∇
−

+∇∇+−∇−
∂
∂

T
uET

t
TcTk

TEuu
t
u

init
r

rr
r

ν
α

ρ

ν
αλµµρ

 
(3-69) 

Then, the coupled deformation and temperature PDEs are normalized and simplified in  

(3-71) from [95]: 
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where η, ū, T , τ and φ are, respectively, the thermoelastic coefficient, the dimensionless 

displacement, dimensionless temperature, normalized time and normalized coordinates.  

These terms are defined as: 



 71

00

,
T
TT

u
uu ==  (3-71) 

where u and T are the displacement and temperature vectors as a function of position and 

time. Also, u0 and T0 are related to each other as the coupling coefficient term:  

initcTT
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0  (3-72) 

in which κ, c, Tinit and µ are respectively the thermal conductivity, the specific heat 

capacity, the room temperature and the Lame coefficient. The Lame coefficient can be 

expressed in terms of Young’s modulus (E) and Poisson ratio (υ) as E/2(1+υ).  The scale 

factors for the normalized position and time coordinates can be stated as:   

xk=φ where ρµ
κ
ck =  (3-73) 

0ωτ t= where  
κ
µω c
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where ρ and ω0 are respectively the mass density and the natural angular frequency. The 

same scale factor is used for y and z position directions. And finally the thermoelastic 

coefficient (η) is defined as below [95]: 
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where α is the thermal expansion coefficient and the other terms are as previously 

defined. Afterwards, the dimensionless displacement in any direction (ū) can be written 

in terms of dimensionless position (φ, ϕ, ψ) and dimensionless time (τ).  

At this point, it can be assumed that both ū and T are separable in terms of time and 

position: 
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where λττ ef =)( in which λ is the eignvalue. 

The goal is to develop a system of thermoelastic equations and solve for eignvalues (λ) of 

each resonant mode. Given the real and imaginary part of eignvalues, the QTED can be 

determined from (3-77).   
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Since exact, closed-form solutions to thermoelastic equations are only available for 

simple geometries (i.e. flexural beams) [96, 97], finite element analysis (3D multiphysics 

mode in COMSOL) is used to model QTED in disk gyroscopes operating in their bulk 

acoustic modes.  
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3.10.2 FINITE ELEMENT MODELING   

The scaled thermoelastic equations were solved in COMSOL multiphysics, yielding both 

eigenvalues and eigenvectors. The general form of COMSOL eigenvalue solver is as 

following: 

uduauuuc aλβγα =∇++−+∇∇− ).( 111  (3-78) 

Where c1, α1, γ1, a, β and da are all 7×7 matrices of coefficients and λ is the eigenvalue to 

be solved for; u is the displacement matrix that contains the eigenvectors for 

displacement, velocity and temperature of each node in the model geometry.  c1 solely 

depends on the elastic terms, i.e. Young’s modulus (E) and Poission ratio (υ). And a and 

da are matrices with constant values. These matrices along with their values for BAW 

disk structures are defined in detail in Appendix A. On the other hand, the thermoelastic 

coefficients appeared in the α1 and β matrices.  These are defined in terms of η as 

expressed in (3-75) and these matrices are also detailed in Appendix A. Given the 

material properties of BAW gyroscopes, these matrices components can be evaluated and 

entered into the COMSOL multiphysics. Then (3-78) can be solved for their eignvalues 

of the chosen modes.  

It is worth noting that the real part (damping) of the complex eigenvalues is much smaller 

than the imaginary part (resonant frequency), due to the smaller effect of damping 

compared to elastic oscillation in a low-loss material like SCS.  Thus, as a matter of 

practical implementation, the imaginary part is swapped with the real part in the 

COMSOL formulation to make finding the eigenvalues easier [95].  
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These equations are first solved for disk structures resonating in their primary and 

secondary elliptic modes. The steady-state temperature distributions and QTED for primary 

and secondary elliptic modes in an 800µm diameter solid disk structure are shown in 

Figure 3-9.  

As one can observe, the QTED in these modes for an 800µm diameter disk is very large 

and it has the value in the range of low hundreds of millions. This implies that in a solid 

disk operating in its primary and secondary elliptic modes, the QTEDs can respectively 

contribute only ~0.027ppm and 0.006ppm on the total Q.  

 
(a) (b) 

Figure 3-9: Steady-state vibration-induced temperature distribution in an 800µm diameter 
solid disk for (a) primary elliptic mode and (b) secondary elliptic mode, simulated in 
COMSOL. 

Furthermore, thermoelastic losses are modeled for a variety of disk geometries. Figure 

3-10 shows that decreasing the disk diameter lowers QTED in BAW modes. This clearly 

indicates that the total Q becomes more reliant on the QTED when the disk dimensions are 

reduced, driving the resonant frequencies higher. Interestingly, the rate of the decrease in 

QTED=170e6QTED=37e6 
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QTED for primary elliptic mode is less than the QTED for secondary elliptic modes. This 

may be simply due to the higher frequency operation of secondary elliptic modes. 

In addition, the effect of varying the disk thickness is investigated. The thickness was set 

to a variety of diameters, ranging from 0.1× the disk diameter (called the full-thickness 

case) to 0.1× the disk radius (known as the half-thickness case). The thicknesses 

investigated were confined to this range to ensure that the BAW modes were not distorted 

due to improper aspect ratios. Due to the in-plane motion of elliptic modes, it was 

expected that TED would not vary with thickness. As shown in Figure 3-11, the QTED in 

solid disks operating at their secondary elliptic is the same for both full and half thickness 

cases.  However, in disks with diameters larger than 100 µm, simulations showed that 

QTED for primary elliptic modes decreases significantly when the thickness is halved, 

Figure 3-11.  

 

Figure 3-10: The estimated QTED for solid disk structures in the range of 500kHz to 2GHz 
for primary and secondary elliptic modes as well as breathing mode, simulated in 
COMSOL. 
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Figure 3-11: The effect of disk thickness on QTED in solid disks operating at their primary 
and secondary elliptic modes.  

Next, symmetrical release holes are added to the disk, as dictated by fabrication needs 

(Chapter 4). Including perforations in the disk introduces localized dynamic strain 

concentrations, which induce temperature gradients and result in additional TED losses. 

In order to study the effect of release hole sizes on QTED, 800µm diameter disks with a 

variety of holes sizes were modeled in COMSOL. In each model, the perforation sizes are 

uniform across the disk and equally spaced. As shown in Figure 3-12, QTED drops 

substantially for perforated disks with large release holes. This establishes that 

optimization of QTED for perforated disks favors very small release holes (<8µm). Also, 

according to the simulation results, beyond a certain release hole size, the rate of decrease 

in QTED becomes less pronounced, perhaps because the operating frequency also begins to 

decrease. The lower operating frequency can neutralize the effect of sharp stress 

distributions on QTED in these devices. Also, it was observed that for disks without any 

perforations, the QTED of secondary elliptic mode is ~4.5× larger than the primary elliptic 

mode. However, when perforations are introduced, the QTED of the secondary elliptic 

mode reduces to that of the primary elliptic modes. Furthermore, due to the common 
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axisymmetry between the breathing mode and the release holes pattern, the QTED in this 

mode is much higher than elliptic modes with perforations present. Although breathing 

modes are not suitable for disk gyroscopes, they could be utilized for disk resonators.         

 

Figure 3-12: The effect of release holes’ sizes in QTED for primary and secondary elliptic 
modes as well as breathing mode in 800µm diameter disks, simulated in COMSOL. 

The steady-state temperature distributions and QTED for primary and secondary elliptic 

modes in 800µm diameter disks with differing release holes designs are shown in Figure 

3-13. As it can be observed, the QTED in disks with 5µm holes is ~50times larger than the 

QTED in disks with non-uniform holes.   

Additionally, QTED in both solid and perforated disks are modeled over a temperature 

range of -5°C to 55°C in COMSOL. Figure 3-14 shows that the thermoelastic damping 

mechanism is stronger at elevated temperature.  In both solid and perforated 800µm 

diameter disk structures, QTED was found to drop by ~27% over the 60°C temperature 

range. It is worth noting that the variation of the thermophysical properties of single 

crystal silicon with temperature is included in this model, taken from the data in [98, 99]. 
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(a) 
 

(b) 

Figure 3-13: Steady-state vibration-induced temperature distribution in 800µm diameter 
disks with (a) non-uniform holes, (b) uniform 10µm holes operating in  primary and 
secondary elliptic modes, simulated in COMSOL. 

In order to identify the effect of QTED on the total Q in these devices, the measured total Q 

can be characterized over the same temperature range of 60°C, which is discussed in 

Chapter 5. If the percentage of the measured total Q reduction for this temperature range 
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is smaller than the QTED reduction, this demonstrates that the Q in these devices is not 

mainly limited to QTED.  

 

 

Figure 3-14: The temperature characterization of QTED over a temperature range of -5°C 
to 55°C in 800µm diameter solid disk, showing that QTED is dropped 27% over the 60°C 
temperature range.   

The conclusions drawn in this section can serve as guidelines for future disk designs 

where the temperature dependence of a QTED-dominated resonance is to be avoided. For 

solid disks, the ultra-high QTED suggests that TED may never be a concern.  However, for 

perforated disks, thermoelastic multiphysics simulation identifies that size of release 

holes effects on the QTED and lower QTED observed for larger release holes. As a result, 

QTED is very large for small perforated disk gyroscopes operating in their elliptic modes, 

and thus TED is not a dominating loss mechanism in these devices.  
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CHAPTER 4 

MICRO-FABRICATION PROCESS 

4.1 FABRICATION FEATURES  

4.1.1 MATERIAL SELECTION  

It is well-known that single crystal silicon (SCS) is inherently a low mechanical loss 

material compared to piezoelectrics or metals. In resonating structures, this can offer very 

high quality factor (Q), which is always desired in vibratory gyroscopes to enhance scale 

factor and resolution. As discussed in Chapter 3, due to MHz frequency of BAW modes 

high matched-mode Q is a key to achieve high scale factor in BAW gyroscopes. Also, a 

high Q can assist the high frequency in BAW gyroscopes to reduce the noise floor 

without the need for large excitation amplitude, which lowers the operating voltages 

significantly.   

Capacitive coupling can be used as a transduction mechanism to excite silicon structures. 

To excite the disk in its stiffness BAW modes large electrostatic forces are required, 

which in turn necessitates large capacitive coupling. High gap-aspect ratio and very small 

capacitive gaps can provide large capacitive coupling. 

4.1.2 HIGH ASPECT RATIO AND NARROW CAPACITIVE GAP  

Scale factor and resolution in BAW gyroscopes are linearly proportional to the gap aspect 

ratio, as derived in Chapter 3. This implies that a high gap aspect ratio can considerably 

improve the performance parameters in these devices. Also, high gap-aspect ratio is 
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needed to provide large enough electrostatic forces to drive the disk at MHz frequencies 

in its stiff BAW modes.   

One well-known approach to high gap-aspect ratio is etching high aspect-ratio trenches, 

using bulk micromachining techniques [100]. However, silicon etching equipment, such 

as the STS ICP, can only achieve trench aspect ratios of ~30/1 [101]. It is always better to 

have a higher gap-aspect ratio and not limited by the fabrication equipments. To meet this 

demand, a high-aspect ratio poly- and single crystalline silicon process (HARPSS) was 

developed by Farrokh Ayazi [102] and later modified by Siavash Pourkamali [103]. In 

this process, a thin sacrificial LPCVD oxide (SACOX) is deposited inside silicon 

trenches. The trenches are refilled with LPCVD polysilicon to form the electrodes, and 

the SACOX is etched later to form a capacitive gap. This process enables a gap-aspect 

ratio limited only by silicon oxide to silicon etch selectivity (~150/1). In this dissertation, 

the revised HARPSS process is utilized and further optimized for center-supported BAW 

disk gyroscopes in thick silicon on insulator (SOI) substrates [104]. A gap aspect ratio of 

200/1, ~7× higher than conventional etching equipment, is targeted for the BAW 

gyroscopes in this work.  

Besides high gap aspect ratios, very small capacitive gaps, in the range of a few hundred 

nanometers, are required to provide large electrostatic forces in BAW gyroscopes. If a 

small enough capacitive gap is not provided, the disk’s resonant modes may still be 

excited, but only with very large operating voltages (Vp>50V). Also, using very small 

capacitive gaps provides for very small vibration amplitudes (in the range of a few tenth 

of nm).  This further lowers operating voltages (Vp<5V) and simultaneously improves the 

shock tolerance of these devices.  
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On the other hand, matched-mode operation is always desired in micromachined 

gyroscopes to enhance the performance parameters. In capacitive gyroscopes, 

electrostatic tuning is a well-established method for achieving this. In this method, DC 

voltages adjust the electrical stiffness, and consequently the resonant frequency, of each 

mode, until the two modes’ frequencies match. For BAW gyroscopes, the electrical 

stiffness for both drive and sense mode were derived and expressed in Chapter 3. The 

electrical stiffness of each degenerative mode for a specific device design depends solely 

on the applied DC voltages. However, the optimization of the device design parameters 

can assist by lowering the required DC tuning voltages. Toward this end, the relationship 

between the frequency and tuning voltages, derived in Chapter 3, is simplified and 

presented here.  
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Where Le, R and d0 are respectively electrode length, disk radius and the capacitive gaps 

and are the design parameters. And the constants ε0, Ur, Ceffec-mass are respectively the 

dielectric constant, normalized maximum displacement and the effective mass 

coefficient, all detailed in Chapter 3. Also, Vtuning and f0 are respectively the tuning 

voltage and the operating frequency.     

As can be observed in (4-1), frequency tuning is linearly proportional to the tuning 

voltage, the electrode length and the square of the normalized maximum displacement. 

However, it is inversely proportional to the operating frequency, the square of the disk 

radius and the cube of the capacitive gap. This implies that very large tuning voltages 

would be required if the small gaps are not provided for tuning electrodes. Furthermore, it 
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is evident from (4-1) that the tuning voltages not affected by the disk thickness. This 

clearly indicates that a fabrication process offering a high gap aspect ratio but not also 

offering small gaps would not be sufficient for BAW gyroscopes’ tuning needs. As a 

result, these devices are designed to be implemented on thick SOI substrates (30-60µm) 

with small capacitive gap of typically ~200nm. It would be preferable to further reduce 

the capacitive gaps, but contemporary fabrication limits circumscribe the achievable gap 

aspect ratio.   

4.1.3 CENTER SUPPORT 

The total quality factor in a resonating structure can be determined from [105] as stated 

in:  

1
111111

−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+++++=

OtherQIntrinsicQSurfaceQSupportQTEDQAirQ
Q (4-2) 

As it was discussed in Chapter 3, disk gyroscopes operating in their BAW modes are not 

mainly limited by thermoelastic damping. In addition, the air damping is less significant 

in these devices than in low frequency gyroscopes, due to the high resonant frequencies 

of BAW modes. This implies that the quality factor of these devices should be mainly 

dependent on their support losses rather, than on TED or air damping, as is the case for  

low-frequency gyroscopes.  

As a result, it is desirable to have minimum support loss to achieve very high quality 

factor. Support losses depend on the support size, the support material and the location of 

the support [75]. With smaller support size, less energy is dissipated through the support 

region while the disk is vibrating. Also, it is preferable to have higher-strength material 
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for the disk than for the support material (Edisk >Esupport). This serves to confine more 

energy in the resonating structure, transferring less into the support in each vibration 

cycle. Furthermore, the support should be placed at vibration nodes to minimize the 

energy coupled into the support. In a disk structure vibrating at its elliptic modes, there 

are 6 node lines for each degenerative mode. However, the vibration node lines of each 

degenerative mode coincide with antinode lines of the other degenerative mode.  This 

means that placing support at one mode’s node line would cripple the other degenerative 

mode, drastically lowering the Q of that mode. On the other hand, the centre of the disk is 

always a node point while the disk operates at any elliptic modes. Since both 

degenerative modes need to be utilized in BAW gyroscopes, the support clearly must be 

placed at the center of the disk. It is worth noting that the center support diameter should 

be small enough in relation to the disk diameter to act as a point. Larger center supports 

add additional symmetrical losses on both degenerative modes.  

To meet all the above requirements for low loss support, the BAW disk gyroscope is 

supported at the center by a very small island of the buried oxide layer (BOX) in the SOI 

substrate. The symmetry of the perforated disk guarantees that the support is self-aligned 

to center of the disk structure by the BOX etch step. The center post diameter is designed 

to be at most one twentieth of the disk diameter to minimize any losses through support 

[75, 104]. Also, doped polysilicon traces attached to the center of the disk, to which they 

are self-aligned, provide DC bias voltage to the disk along with mechanical support from 

the top side.  
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4.1.4 PERFORATIONS 

Perforations, as designed in Chapter 3, are added to the disk to eliminate the need for 

backside etching and further backside packaging. All release holes need to be self-aligned 

with the resonating structures to avoid any asymmetry issues, which can introduce some 

frequency separation and non-symmetric losses. This is achieved using a thick silicon 

oxide mask (initial oxide) to define the resonating disk structure and the perforations as 

well as the center for poly trace connection in the disk, simultaneously. The silicon oxide 

mask has a high selectivity to silicon.  This is necessary to withstand not only the etching 

of release holes in the silicon substrate but also the etching of the polysilicon inside the 

trenches and release holes. In addition, it is critical to ensure that the distribution of 

perforations allows releasing the disk conformally. Finally, the distance between the 

release holes at the center of the disk needs be large enough to ensure the buried oxide at 

the center of the disk survives the release etch.  

4.2 FABRICATION PROCESS 

The BAW gyroscopes were fabricated in thick SOI wafers (30-50µm thick) using a 

modified HARPSS process [73].  A process flow is shown in Figure 4-1. The process 

starts with growth of a 2µm thick silicon oxide on the silicon substrate (wet oxidation at 

1000°C). This thick silicon oxide was patterned to define the resonating perforated disk 

structures and act as a mask for proceeding steps. The location of the center support 

region is also determined by this step, ensuring that it is self-aligned with the disk. Then, 

deep trenches are etched through the SOI device layer at the release hole locations and 

around the disk, the latter isolating the resonating structure. It is worth noting that the 
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Bosch process is employed to etch the trenches in SOI substrate and that extensive 

characterization and modification of the recipe parameters was necessary to optimize the 

trench profiles for smooth sidewalls and straight profiles with minimum scalloping and 

footing, as detailed in the next section.  

Next, a thin layer of sacrificial LPCVD silicon oxide (SACOX) is grown (dry-oxidation 

at 950°C or LPCVD oxide at 825°C) and boron doped (at 1050°C, 1hour). This layer will 

form the capacitive gaps later. After this, the trenches are refilled with LPCVD 

polysilicon (at 588°C and 250mTorr with 100SCCM SiH4) and boron doped (resistivity 

<0.1ohm-cm), creating the electrodes inside the trenches. The LPCVD polysilicon is then 

etched from the surface, uncovering the SACOX. The SACOX is patterned and removed 

from the surface everywhere except around the disk edge and perforation edges. The 

remaining SACOX protects the edges of the resonating structure during poly etching 

inside the trenches, which is the next step. Then, the second LPCVD polysilicon layer is 

deposited, boron doped, and annealed (at 1050°C, 2hours). Polysilicon is patterned on the 

surface to define the pads as well as the poly traces, which are self-aligned to the center 

of the disk. A Bosch process is employed and characterized to etch polysilicon inside the 

trenches as well as parts of the silicon substrate to define the electrodes and isolate each 

electrode and its pad from the rest. At the same step, polysilicon and silicon are removed 

inside the release holes. Finally, the device is released in hydrofluoric acid (HF). A small 

island of buried oxide layer (BOX) within the SOI substrate is to be left by this step to act 

as a center support, calling for careful timing of HF release. In addition, the symmetry of 

the structure guarantees that the support is self-aligned to the center of the disk structure 

during the BOX etch step. The polysilicon trace on the surface is required to provide DC 
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bias to the disk. Also, each poly electrode partially extends out on the disk structure to 

provide an out-of-plane shock stop for the device. The described process is compatible 

with Analog Device’s SOIMEMS process [106, 107] and can be integrated with CMOS 

electronics by adding some pre- and post-CMOS fabrication steps. 

 

 
(a) Grow and pattern the initial oxide 

(~2µm). 
(b) Etch the trenches; Deposit/grow 

(~200nm) SACOX to deform the 
capacitive gap and boron dope. 

  

(c) Deposit LPCVD polysilicon to refill 
the trenches and boron-dope. 

(d) Etch LPCVD polysilicon on the surface 
and pattern SACOX. 

 

 

(e) Deposit LPCVD polysilicon, boron-
dope and anneal. 

(f) Pattern polysilicon on the surface; Etch 
polysilicon inside the trenches and part 
of the silicon substrate. Release the 
device in HF. 

Thick Sio2

SACOX BOX 

LPCVD Polysilicon Single Crystal Silicon Thick Sio2

SACOX BOX 

LPCVD Polysilicon Thick Sio2

SACOX BOX 

LPCVD Polysilicon Single Crystal Silicon 

 

Figure 4-1: The process flow of center-supported silicon BAW disk gyroscopes on SOI 
wafer. 

Release Holes Vp Through Poly Trace 

BOX Central Support 

Release Holes Self-Aligned Center Support 
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4.3 FABRICATION PROCESS PARAMETERS 

In the aforementioned HARPSS fabrication process, silicon oxide etching, trench etching 

in SOI substrates and poly etching inside the trenches are the main fabrication steps. A 

summary of fabrication parameters for these steps are discussed in this section.  

4.3.1 SILICON OXIDE ETCHING PARAMETERS   

Silicon oxide etching was carried out in the Plasma-Therm-ICP tool in MiRC Cleanroom. 

The Plasma-Therm ICP offers higher selectivity and better anisotropic profile for oxide 

etching in comparison to Plasma-Therm RIE. Also, the etch rate is ~3times faster in 

Plasma-Therm ICP. The appropriate recipe parameters for oxide etching are summarized 

in Table 4-1. It must be noted that the process parameters were frequently calibrated to 

obtain the desired oxide profile and sidewall roughness.  

Table 4-1: Process parameters for silicon oxide etching in Plasma-Therm ICP. 
 

 

 

 
 

Positive photoresist (SC-1827 or SPR220) is used as a mask. The mask selectivity is a 

function of the process parameters which was found to be ~ 2/1 for this recipe. A SEM 

view of patterned 2µm thick silicon oxide is shown in Figure 4-2 using the parameters in 

Table 4-1. As it can be observed, the profile is still tapered and this can be further 

improved by using an advanced Trion-ICP tools. This provides better anisotropic silicon 

oxide profile with a faster each rate.            

Parameters Values 
C4F6:                              20sccm
CF4:                               40sccm
O2:                                   3sccmGases 

Ar:                                 15sccm
Pressure 5mTorr 
Power RF: 300W                ICP: 250W

Etch rate ~1100Å/min 
(Thermal oxide) 
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Figure 4-2: A SEM view of a silicon oxide etching profile.    

4.3.2 SILICON ETCHING PARAMETERS   

Trench etching is the most important fabrication step in the revised HARPSS process 

flow. A Bosch process is utilized and modified to etch the trenches in SOI substrates. The 

trench profile should be as straight as possible with the minimum bow and scalloping. 

This is needed to eliminate a large void when the trenches are refilled with LPCVD 

polysilicon. Also, re-entrance trench profile (i.e., wider at the bottom) creates issues with 

the poly etching inside the trenches at the bottom. As it was explained, the trenches are 

etched in the device layer on SOI substrate in which the buried oxide acts as a stopping 

layer. Due to the existence of oxide at the bottom of the trenches, footing would be an 

issue at the bottom of trenches. To avoid this, a low frequency module (380 kHz) should 

be employed. STS-ICP is the only available tool in MIRC Cleanroom that can offer low 

frequency module for silicon etching using Bosch process. Numerous trench etching 

characterizations were performed and the trench profiles were monitored under Hitachi 

SEM. After each characterization, the recipe parameters were modified to improve the 

trench profiles. The recipe modification steps continue to achieve the desired trench 



 90

profiles. Table 4-2 summarizes the process parameter for etching silicon in SOI 

substrates as a starting point. It is worth noting that the process parameters are frequently 

calibrated to obtain the desired trench profile and sidewall roughness. This recipe offers 

the selectivity of (75/1) for (Positive-Resist/Si) and the selectivity of (150/1) for (Sio2/Si) 

in the STS-ICP available in MIRC clreanroom.    

Table 4-2: Process parameters for silicon etching in STS-ICP (starting point). 
Parameter Etching Cycle Passivation Cycle 

C4F8 Flow Rate 0     sccm 100 sccm 
SF6 Flow Rate 130 sccm 0      sccm 
O2 Flow Rate 13    sccm 0      sccm 

Pressure  10-15mTorr 
Generator Power 
(13.56MHz source) 600W 600W 

Platen Power 
(380kHz source) 16W 0W 

Cycle Time 5s 4s 
 
A SEM view of a trench profile with ~0.15µm bow from each side is shown in Figure 

4-3. The trench opening of 6µm is characterized for 50µm deep on a test silicon wafer.  

 
 

Figure 4-3: A SEM view of a straight trench profile with ~0.15µm bow from each side.    
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4.3.3 POLYSILICON ETCHING PARAMETERS   

The next important step is poly etching inside the trenches using Bosch process. 

Polysilicon were etched inside the trenches using the modified Bosch recipe which can be 

achieved by further optimization of recipe parameters expressed in Table 4-2. It must be 

noted that higher platen power (20-22W) and larger etch/passivition cycle time (6.5/5) 

can be employed to ensure that the poly is completely etched all the way to the bottom of 

the trenches. This step should be characterized on SOI substrates rather than test wafers 

to monitor that the trenches are free from poly debris in the vicinity of SACOX on the 

trench sides and buried oxide at the bottom of the trenches. It must be noted that the 

existence of any poly debris/residues inside the trenches creates the electrical short 

between the electrodes or between the disk and the electrodes. If it is necessary, the dies 

can be wet-oxidized (0.2-0.3µm thick silicon oxide) to eliminate the existence of any 

poly debris inside the high-aspect ratio trenches.         
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CHAPTER 5 

CHARACTERIZATION RESULTS 

5.1 OVERVIEW 

This chapter presents the characterization results of fabricated capacitive bulk acoustic 

wave (BAW) disk gyroscopes in (111) and in (100) single crystal silicon (SCS). First, 

measurement results of disk gyroscopes in (111) SCS substrates are presented and 

discussed. Next, disk structures with non-uniform and uniform sized perforations are 

experimentally characterized in (100) SCS substrates. The frequency responses and 

performance parameters were measured for these devices, both in vacuum and in air. The 

Qs and scale factors of these prototype gyroscopes were characterized over a temperature 

range of 60°C, showing these devices’ high thermal stability. Also, these results 

demonstrate that these devices do not require the vacuum environment that low 

frequency, flexural-based gyroscopes do. This simplifies the wafer-level encapsulation of 

these devices, resulting in better long-term reliability and reduced cost. In addition, very 

large bandwidth, in the range 30-400Hz, was achieved for these devices in matched-mode 

operation in vacuum and air, making them to be suitable for the relatively fast response 

time needs of consumer electronics applications. Furthermore, utilizing uniform small 

sized holes enables matched-mode operation without requiring the application of 

electrostatic tuning voltages, reducing the complexity of the interface circuit and 

simplifying the system level architecture.   



 93

5.2 EXPERIMENTAL SETUP AND PROCEDURE 

A number of (111) and (100) single crystal silicon disk gyroscopes were fabricated and 

their performance parameters (i.e. scale factor and bias drift) were characterized. The 

experimental setup used for the measurement is illustrated in Figure 5-1.  

  

  
      (a) Operation in vacuum    (b) Operation in air 

Figure 5-1: The measurement set-up used for BAW gyroscopes.  

The MEMS gyroscope chip was mounted on a printed circuit board (PCB) including a 

drive loop and sense amplifiers [73], shown in Figure 5-2. All coupled drive, sense and 

tuning electrodes as well as polarization voltage (Vp) pads are connected to the board by 

wirebonding.  

Rate table  + 
Temperature controller

Data acquisitions 
systems 

Power 
Supply 



 94

 

Figure 5-2: The PCB used for mounting the MEMS die and the discrete drive and sense 
loops. 

The entire board was placed inside a vacuum chamber and coaxial cables were used to 

connect a network analyzer (Agilent 4395A) to the device in a two-port configuration. A 

sinusoidal drive signal, generated by the network analyzer, was applied to the drive 

electrode. Accompanying that, an independently set DC polarization voltage was applied 

to the disk through poly traces, and the rest of tuning electrodes were grounded. The 

output signal from the sense electrode was interfaced with the sense amplifiers on the 

PCB and the output returned to the network analyzer.  The network analyzer compiled a 

frequency response curve, and from the Qs of these devices and the frequency split 

between the two degenerative modes was subsequently identified. Then, proper DC 

voltages were applied to the tuning electrodes to electrostatically tune and match the 

modes. Meanwhile, quadrature errors were cancelled by the application of appropriate 

DC voltages to the assigned electrodes. Next, a known rotation rate was applied to the 

whole system using a rate table (Ideal Aerosmith, 1291BR controller). The output rate 

signal (Coriolis signal) was extracted from the carrier signal using the sense loop, and 

recorded with an oscilloscope (Agilent DSO6014A). The output voltages were measured 

MEMS Gyroscope Die

Sense loopDrive loop
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for a number of applied rotation rates to determine the scale factor of these devices. After 

measuring the scale factor and matched-mode Q, the next most critical gyroscope 

performance parameters are scale factor stability and bias drift. These are directly 

affected by the stability of the mechanical quality factor. This stability can be evaluated 

over a constant pressure and temperature for a long term run. The zero rate output (ZRO) 

is sampled using digital multi-meter (Agilent 34401A, 6-1/2 digit multimeter) and an 

Allen variance method is employed to measure the bias drift from the collected zero rate 

output (ZRO) data.    

5.3 RESULTS OF (111) SCS GYROSCOPES 

A SEM view of a fabricated 800µm diameter (111) SCS disk gyroscope on a 35µm thick 

SOI wafer is shown in Figure 5-3. To operate the disk in its primary elliptic modes in 

(111) silicon, an isotropic material [76, 77], the release holes as well as the electrodes are 

placed and repeated symmetrically at every 45°. The poly traces provide the polarization 

voltage to the disk. The thickness of the disk is equal to the SOI device layer thickness 

(35µm), while the capacitive gap between the electrodes and the disk is 180nm. Also, 

each polysilicon electrode partially extends over the disk to provide an out of plane shock 

stop. 
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 Figure 5-3: SEM views of an 800µm diameter (111) silicon disk gyroscope with 180nm 
capacitive gap in a 35µm thick disk. 

The frequency response of the primary elliptic modes for an 800µm diameter (111) 

silicon disk gyroscope with the application of Vp=3V is shown in Figure 5-4 (a). The two 

primary elliptic degenerative modes of the fabricated device were observed at 4.23MHz 

with a frequency split of 700Hz, which is in good agreement with ANSYS simulation 

results. As a result, assuming isotropic material properties for (111) SCS disks operating 

in their in-plane elliptic modes is verified with measured results. In 1mTorr vacuum, the 

measured Qs were 186,000 and 180,000 at the sense and drive modes, Figure 5-4 (b). The 

corresponding Q values in 1Torr vacuum were also high (179,000 and 172,000) for this 

device.   

Poly 
Trace 

Symmetrical 
Release Holes 
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(a) 

 

    
(b) 

Figure 5-4: Frequency response of primary elliptic degenerative modes of an 800µm 
diameter (111) silicon disk gyroscope at 4.24MHz in 1mTorr vacuum with Vp=3V and 
∆f= 700Hz, showing the Q of 186,000 at sense mode in 1mTorr vacuum. 

The large measured frequency split of 700Hz between the two modes was lowered to 

450Hz with the application of very small electrostatic tuning voltages (VT<10V), Figure 

5-5. 

Freq=4.24 MHz 
QSense= 186,000 

BW=12Hz 
In 1 milli-Torr vacuum 

Freq=4.24 MHz 
QDrive= 180,000 

BW=12Hz 
In 1 milli-Torr vacuum 

56 dB ∆f =700 Hz 
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(a) (b) (c) 

Figure 5-5: Collection of plots showing electrostatic frequency tuning of an 800µm 
diameter BAW disk gyroscope in (111) SCS: (a) VP=5V, VT-drive=5V, VT-sense=5V, (b) 
VP=5V, VT-drive=5V, VT-sense=6V and (c) VP=5V, VT-drive=-3V, VT-sense=8.5V.    

Further tuning was not possible because the device developed an electrical short at the 

tuning electrode due to the application of large tuning voltages.  

The frequency separation between two modes can be addressed not only by electrostatic 

tuning but also by optimizing the design and fabrication process. This facilitates the mode 

matching procedure, most importantly requiring smaller tuning voltages. Even without 

optimization, it is expected that the lower frequency separation can be achieved by 

lowering the operating frequency. As a result, a 1200µm diameter (111) SCS disk 

gyroscope operating at ~3MHz is characterized.  

The SEM view of a fabricated 1200µm diameter (111) gyroscope on 35µm thick SOI is 

shown in Figure 5-6. The close-up view of an electrode area shows the gap-aspect ratio of 

~200. 

The frequency response of the primary elliptic modes for the 1200µm diameter disk 

gyroscope in (111) SCS is observed at 2.92MHz. The primary elliptic modes of this 

device were observed to be less than 100Hz apart without applying any tuning voltage, as 

shown in Figure 5-7. The Qeffective-sense of this device was 66,000 and 58,000, in 1mTorr 

and 1Torr vacuum, respectively.  

∆f=675Hz ∆f=550Hz ∆f=450Hz 
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Figure 5-6: SEM views of a 1200µm diameter (111) silicon disk gyroscope and the close 
up view of an electrode area showing 180nm capacitive gap in a 35µm thick disk. 

A number of rotation rates around the z-axis were applied to a 1200µm diameter disk 

gyroscope and the device’s response was measured, shown in Figure 5-8. The measured 

rate sensitivity was 320µV/°/sec with Qeffective-sense of 66,000 and VP=10V.  The signal 

conditioning circuitry used in this experiment was based on discrete electronic 

components.   
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Figure 5-7: Frequency response of primary elliptic modes in a 1200µm diameter (111) 
silicon disk gyroscope at 2.9MHz in: (a) 1mTorr vacuum with Vp=5V; (b) 1Torr with 
Vp=7V.  

 

Figure 5-8: The measured rate sensitivity results around z-axis from a 1200µm diameter 
(111) SCS disk gyroscope with discrete electronics, showing the rate sensitivity of 
320µV/°/sec at Vp=10V.  

Next, scale factor stability and bias drift, the most critical performance parameters, were 

characterized in these gyroscopes. The scale factor stability is directly affected by the 

(a) (b) 

Freq=2.917 MHz 
Qsense-effective= 66,000 

BW=22Hz 
In 1 milli-Torr vacuum

Measured Rate Sensitivity 
320 µV/°/sec 

Freq=2.9 MHz 
Qsense-effective= 58,000 

BW=25 Hz 
In 1 Torr vacuum 

Qeffective-sense=66,000 
 Vp =10V 
∆f<100Hz 
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stability of Qeffective-sense over time. It was observed that the measured Qeffective-sense 

remained constant over a period of 24 hours at a fixed temperature (room temperature) 

and pressure. The zero rate output (ZRO) of the device was logged over this period. An 

Allan variance analysis [33] was performed on the collected data to characterize long-

term stability. The root Allan variance plot for the 1200µm diameter (111) SCS disk 

gyroscope is shown in Figure 5-9 and inset shows a time-slice of the ZRO data. From this 

graph, the angle random walk (ARW) is determined by the t=1s value of the plot with a -

1/2 slope. The measured ARW of the device is 0.28 °/√hr, implying the output referred 

total equivalent noise of 16.8 °/hr/√Hz. The minimum of the Allan variance plot gives the 

value of bias drift, which is measured for this sensor to be 17°/hr. If desired, quadrature 

error can be further minimized by applying DC voltages to the other electrodes, which 

would improve both sensitivity and bias stability in these devices. 
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Figure 5-9: Root Allan variance plot of a 1200µm diameter (111) SCS disk gyroscope at 
zero rate output (ZRO). The inset shows the time domain plot of the ZRO of disk 
gyroscope.  
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5.4 RESULTS OF (100) SCS GYROSCOPES 

A number of disk gyroscopes with nonuniform release holes were fabricated and 

characterized on a variety of thick (100) SOI substrates (30µm-60µm). Among them, the 

measurement results of 40µm-thick disk gyroscopes are presented in this section. A SEM 

view of a fabricated 800µm diameter (100) disk gyroscope with nonuniform perforations 

on 40µm-thick SOI is shown in Figure 5-10.  

 

 

Figure 5-10: SEM view of an 800µm diameter (100) Si disk gyroscope with 200nm 
capacitive gap and 40µm thick disk.  

As discussed in Chapter 3, anisotropic behavior of (100) SCS leads to release holes and 

electrodes being placed and repeated symmetrically every 30°. The close-up view of the 
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electrode shows a capacitive (electrode-disk) gap of 200nm, giving a gap aspect ratio of 

200 in the 40µm thick device layer. In addition, the poly electrode is extended 10µm over 

the top of the disk to form a shock stop. Boron-doped polysilicon traces are connected to 

the center of the disk to provide DC bias to the disk.    

5.4.1 FREQUENCY CHARACTERIZATION AND MODE MATCHING   

The secondary elliptic modes of this device were observed at 5.94 MHz with a frequency 

split of 450Hz (Figure 5-11), which is in good agreement with ANSYS simulation 

results, presented in chapter 3. 

 

 

Figure 5-11: The frequency response of the secondary elliptic modes of an 800µm 
diameter (100) SCS disk gyroscope with nonuniform perforations, showing the resonance 
frequency of 5.94MHz with ∆f=450Hz in 1mTorr vacuum with Vp of 6V.  

Freq=5.95 MHz 
QDrive= 200,560 

BW=15Hz 
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Freq=5.95 MHz 
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BW=14Hz 
In 1milli-Torr vacuum 

40 dB
∆f =450 Hz
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The Qs were measured and recorded to be 200,560 and 207,660 for drive and sense 

modes, respectively, in 1mTorr vacuum (Figure 5-11). The corresponding Q values in 

1Torr vacuum were still very high and were recorded to be 185,280 and 192,060 for drive 

and sense, respectively.   

A very small frequency split of ~75ppm compared to the center operating frequency 

(5.95MHz) is measured for this device, however still further frequency tuning and 

matching is required to improve the device performance. To accomplish this, the 

frequency split between the modes is electrostatically tuned and matched, employing the 

tuning method discussed in Chapter 3 of this thesis. Given that the frequency of the drive 

mode is lower than the sense mode’s frequency (fdrive=5.9492 < fsense=5.9496MHz), the 

tuning voltages of VT-drive>0 and VT-sense<0 is applied to the tuning electrodes. The 

frequency responses of the modes after the application of optimal tuning voltages are 

recorded and shown in Figure 5-12. Even with the two modes’ frequencies being 

matched, the quadrature error still needs to be cancelled. This was done by the 

 
(a) (b) (c) 

Vp=6V 
VT-drive=6V, VT-sense=6 V 

Vp=9V  
VT-drive=9V, VT-sense= -16 V 

Vp=13.2V  
VT-drive=9 V, VT-sense= -25 V 

Figure 5-12: Collection of plots showing electrostatic frequency tuning and matched-
mode of an 800µm diameter BAW disk gyroscope in (100) SCS.    

∆f =450Hz ∆f =0Hz 
Q= 181,000 ∆f =60Hz
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application of the appropriate electrostatic forces to align the antinode lines of modes 

with the electrodes centers.  

A matched-mode Q of 235,810 was recorded after minimizing the quadrature error as 

shown in Figure 5-13. 

 

Figure 5-13: The matched-mode operation of an 800µm diameter (100) SCS disk 
gyroscope with the application of Vp=13.2V, VT-drive=9V, VT-sense=-26V, Vquadrature=±14V 
after minimizing the quadrature errors. 

5.4.2 PERFORMANCE CHARACTERIZATION  

The performance parameters such as scale factor and bias drift are measured and 

discussed in this section. The zero rate output (ZRO) of 800µm diameter disk gyroscope 

at matched mode is measured and shown in Figure 5-14. The bottom trace is the ZRO at 

the sense electrode and the top trace shows the output of the drive mode. An output of 

1.32V peak-to-peak was measured at the drive electrode, which translates into 5.2nm 

drive amplitude. Also, a phase shift of ~90° is measured between the drive and sense 

modes after quadrature cancellation.    

Freq=5.95 MHz 

Qmatched-mode= 236,000  

BW=12 Hz 

In 1milli-Torr vacuum

Phase shift ~360°
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Subsequently, rotation around the z-axis is applied to this device and the demodulated 

output sinusoidal signal is measured. Figure 5-14 shows the demodulated response of the 

device to the applied 50°/sec z-axis rotation rate at matched-mode. The scale factor is 

measured from only one sense electrode both for split-mode and matched-mode 

operation, and the results are shown in Figure 5-15.  

  
(a)      (b) 

Figure 5-14: (a) Zero rate output of an 800µm diameter (100) SCS disk gyroscope at 
matched-mode (b) Rotation response of the prototype gyroscope to the applied 50°/sec z-
axis rotation rate at matched-mode. 

 

Figure 5-15: The measured rate sensitivity results from one sense electrode of the 800µm 
diameter disk gyroscope at split modes with ∆f=450Hz and ∆f=60Hz and at matched-
mode operation before quadrature cancellation with Vp=13.2V with discrete electronics.  

 63.1µV/°/Sec 

 99.6µV/°/Sec 

 208.9µV/°/Sec 

Drive out

ZRO 



 107

Before applying any tuning voltages, a rate sensitivity of 63.1 µV/°/sec was measured 

from the sense mode with ∆f=450 at Vp=6V. Then, the two modes were electrostatically 

tuned to ∆f=60 Hz with the application of Vp=9V and a rate sensitivity of 99.6 µV/°/sec 

was then measured. Finally, the two modes were completely matched and the rate 

sensitivity before quadrature cancellation was measured to be 208.9 µV/°/sec at 

Vp=13.2V with Qmatched-mode of 180,850 in 1mTorr vacuum.  

Later, the quadrature error was minimized and the matched mode Q was improved to 

235,810. A measured sensitivity of 268 µV/°/sec was achieved with discrete electronics 

and a Vp of 13.2V with Qmatched-mode of 235,000 in 1mTorr vacuum, as shown in Figure 

5-16. It is worth noting that the scale factor of these devices can be improved by ~5× if 

other sense electrodes located around the disk are coupled with the assigned sense 

electrode.     

 

 

Figure 5-16: The measured rate sensitivity results from one sense electrode of the 800µm 
diameter disk gyroscope at matched-mode operation after quadrature cancellation with 
Vp=13.2V and Q=236,000 with discrete electronics.  

Rate Sensitivity
267 µV/°/sec 



 108

Next, the zero rate output (ZRO) of the prototype device was sampled and an Allan 

variance analysis was performed to characterize the long-term stability of the matched-

mode device interfaced with the discrete electronics. The root Allan variance plot of the 

prototype disk gyroscope at matched-mode after balancing is shown in Figure 5-17.  

Allan variance plot obtained without applying any pre-whitening or filtering is shown in 

Figure 5-17. From this graph, the estimated angle random walk (ARW) is determined by 

the t=1s value of the plot with a -1/2 slope [108, 109]. The measured ARW of the device 

is 1.28 °/√hr, implying the output referred total equivalent noise density of 76.8 °/hr/√Hz. 

The minimum of the Allan variance plot gives the value of bias drift [109], which is 

measured for this sensor to be 77°/hr at the mode-matched operation.  

 
 

Figure 5-17: Root Allan variance plot of an 800µm diameter disk gyroscope with 
nonuniform perforations at zero rate output (ZRO) in 1mTorr vacuum. The inset shows 
the time domain plot of the ZRO of this prototype device. 
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5.4.3 PRESSURE CHARACTERIZATION  

The frequency response of degenerative elliptic modes for the same 800µm diameter disk 

gyroscope with nonuniform perforations was characterized at multiple vacuum pressures. 

The frequency of both drive and sense modes changed only ~0.001% over the pressure 

range of 0.8mTorr to 40Torr and the frequency separation between two modes remained 

constant at 450Hz from 0.8mTorr to 25mTorr, shown in Figure 5-18 (a). In addition, the 

Qs of the same prototype device were characterized over the same pressure range, as 

shown in Figure 5-18 (b). The Qs dropped less than 7% (from 200,000 to 186,000) over 

the pressure range 0.8mTorr to 1Torr at the operating frequency of 5.94MHz, showing 

the high stability of high Qs in these modes over this vacuum pressure range. Without a 

need for mTorr vacuum level, wafer-level packaging will be simplified.       

  

              

Figure 5-18: (a) The frequency response of the drive and sense modes and (b) Measured 
Q over the vacuum pressure range from 0.8mTorr to 40Torr in an 800µm diameter disk 
with nonuniform perforations.  

5.4.4 TEMPERATURE CHARACTERIZATION  

The temperature-induced frequency drift of an identical gyroscope, were measured using 

a temperature control chamber (Ideal Aerosmith, 1291BR controller). As shown in Figure 

(a) (b) 
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5-19, the measured frequency drift for both drive and sense modes has a linear trend with 

a slope of -26ppm/°C over the temperature range of -5°C to 55°C both in 0.1mTorr and 

2Torr vacuum. The frequency drift is mainly due to the temperature dependence of the 

Young’s modulus of silicon [79, 110]. This causes both degenerative modes to track each 

other as temperature changes, and do so with the same slope. This implies the stability of 

the frequency separation between two modes over a temperature range of 60°C. 

Furthermore, the Qs of both sense and drive modes were characterized over a temperature 

range from -5°C to 55°C. Figure 5-20 demonstrates that the Qs of this prototype device 

decreased ~4% in 1mTorr vacuum and 4.6% in 2Torr vacuum over the 60°C temperature 

range. The measured results demonstrates much smaller decrease in total Q compared to 

the simulated QTED at elevated temperatures, indicating that the Qs in BAW gyroscopes 

are not mainly limited by TED. The reduction of Q at elevated temperature in these 

devices (<5% over ∆T=60°C) can originate from expansion of support size at higher 

temperature as well as lower QTED at higher temperature.   

   

Figure 5-19: Measured temperature-induced frequency drift of secondary elliptic modes 
in an 800µm diameter (100) SCS disk with nonuniform holes: (a) in 1mTorr and (b) in 
2Torr vacuum. 

(a) (b) 

Slope = -26.3 ppm/°C 
Slope = -26.3 ppm/°C 
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Figure 5-20: The temperature characterization of Qs in an 800µm diameter disk operating 
at their secondary elliptic modes over a temperature range of -5°C to 55°C.   

5.5 RESULTS OF (100) SCS GYROSCOPES WITH 8µM PERFORATIONS   

The design of the perforations in the gyroscope disks, as discussed in Chapter 3, was 

optimized to significantly reduce the frequency split between two modes. Accordingly, a 

number of disk structures, incorporating uniform release holes with diameters between 

6µm and 10µm, were fabricated and tested. The measurement results of devices with 

uniform 8µm diameter holes are presented in this section.  

A SEM view of a fabricated 800µm diameter (100) disk gyroscope including uniform 

8µm diameter holes on 40µm thick SOI is shown in Figure 5-21. In this modified design, 

boron-doped polysilicon traces still provide DC bias to the disk, but the poly traces’ 

configuration was modified to prevent overlap with the release holes. Also, the capacitive 

gap of 180nm between the electrode and the disk in 40µm thick device was implemented, 

attaining a gap aspect ratio of 220.  
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Figure 5-21: SEM view of an 800µm diameter disk gyroscope including uniform 8µm 
diameter holes in (100) SCS substrate with the capacitive gap of 180nm in 40µm thick 
silicon disk.  

As one can observe, the release holes at the center of the disk are larger (18µm in 

diameter) and located at every 90°. This is to ensure the existence of a 30µm diameter 

buried oxide support at the center.   

5.5.1 FREQUENCY CHARACTERIZATION 

The frequency response of this prototype disk gyroscope was measured and shown in 

Figure 5-22. As expected, the two modes exhibited a narrowed frequency split of 

<120Hz. The secondary elliptic modes were observed to be matched at 7.27MHz in both 

1mTorr vacuum and air. The matched-mode Qs of 82,736 and 13,239 were measured, 

respectively, in 1 mTorr vacuum and air at Vp=12V. 
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Figure 5-22: The frequency response of the secondary elliptic modes of an 800µm 
diameter (100) SCS disk gyroscope including uniform 8µm diameter holes, showing the 
matched-mode Q of 82,736 and 13,239 in 1mTorr vacuum and air with Vp of 12V.  

5.5.2 PERFORMANCE CHARACTERIZATION  

The scale factor and bias drift were measured for the prototype device in air and the 

results were summarized in this section. First, zero rate output (ZRO) of this device was 

measured at matched mode in 1mTorr vacuum and air, as shown in Figure 5-23. The 

drive output signal of this device was measured to be 609mV and 238mV in 1mTorr 

vacuum and air, respectively at Vp=12V, which translates into 2.5nm and 0.97nm drive 

amplitude.  A number of rotation rates around the z-axis were applied to this device and 

the demodulated output sinusoidal signals were measured and recorded. The rate 

sensitivity was measured to be 28.8µV/°/sec in air at Vp =12V, shown in Figure 5-24. The 

inset in Figure 5-24 shows the demodulated output signal for the applied rotation rate of 

35°/sec with fCorilis of 0.75Hz and amplitude of 7.5°. 

Freq=7.276 MHz 
Qmatched-mode= 13,240  

BW=275 Hz 

In Air 

Freq=7.276 MHz 
Qmatched-mode= 82,736  

BW=44 Hz 

In 1 mTorr vacuum 
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(a)       (b) 

Figure 5-23: Zero rate output of an 800µm diameter disk gyroscope including uniform 
6µm diameter release holes at matched-mode. 

 

Figure 5-24: The measured rate sensitivity of an 800µm diameter disk gyroscope with 
uniform 8µm diameter holes in air at Qmatched-mode of 9,000 with Vp=12V.  

Similarly, the scale factor stability and bias drift were measured for this prototype device 

in air. It was observed that the matched mode Q remained constant over a period of 24 

hours at a fixed room temperature and pressure.  As before, the zero rate output (ZRO) of 

the prototype was sampled and an Allan variance analysis was performed to characterize 

the long-term stability of the matched-mode device. The root Allan variance plot of this 

device in air at matched mode is shown in Figure 5-25.  The measured bias stability of 

this device in air is estimated to be 2.55 °/sec with the Q of 9000 and Vp=12V.  
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Figure 5-25: Root Allan Variance plot of an 800µm diameter disk gyroscope with 
uniform 8µm diameter release holes at zero rate output (ZRO).  

5.5.3 TEMPERATURE CHARACTERIZATION  

A similar prototype device was characterized over a temperature range of -5°C to 70°C in 

air. The modes remained matched over this temperature range. Figure 5-26 shows the 

frequency response of the matched mode prototype device in air at -5°C and 55°C.  

  

Figure 5-26: Frequency response of matched-mode in air for the prototype device at -5°C 
and 55°C. 

The temperature-induced frequency drift of this device was measured to have a slope of -

25.7ppm/°C in air, Figure 5-27. Also, the matched-mode Q was characterized and 

Bias stability =2.55 °/sec 
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-5°C, In Air 
 
Freq= 7.251 
Qmatched-mode= 9717 
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55°C, In Air 
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measured for this temperature range, observing a ~7.7% reduction in the Qmatched-mode for a 

temperature range of 75°C, as shown in Figure 5-27. In addition, the frequency 

bandwidth of this prototype device was characterized in air for the same temperature 

range. Figure 5-28 demonstrates that the 3-dB and 1-dB frequency bandwidths increased 

by ~8% over the temperature change of 75°C. 

 

Figure 5-27: Temperature variation of matched-mode frequency and Q in air for an 
800µm diameter (100) SCS disk gyroscope with uniform 8µm diameters holes, showing 
a linear frequency drift profile with a slope of -25.7ppm/°C and a reduction of ~7.7 % in 
Qmatched-mode for ∆T=75°C in air. 

 

Figure 5-28: Temperature characterization of frequency Bandwidth in air for an 800µm 
diameter (100) SCS disk gyroscope with uniform 8µm diameters holes, showing an 
increase of ~7.48% and ~8.2% in 3-dB and 1-dB Bandwidth over 75°C temperature 
change, respectively. 

Slope= -25.7 ppm/°C 
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5.6 RESULTS OF (100) SCS GYROSCOPES WITH 6µM PERFORATIONS  

A SEM view of a fabricated 800µm diameter (100) disk gyroscope, with uniform 6µm 

diameter holes, implemented on 40µm thick SOI, is shown in Figure 5-29. Similarly, 

boron-doped polysilicon traces are connected to the center of the disk to provide DC bias 

to the disk. The close-up view of the electrode area shows a capacitive gap of 180nm 

between the electrode and the disk in 40µm thick device, again yielding a gap aspect ratio 

of 220.  

 

             

Figure 5-29: SEM view of an 800µm diameter disk gyroscope including uniform 6µm 
diameter holes in (100) SCS substrate with the capacitive gap of 180nm in 40µm thick 
disk.  
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5.6.1 FREQUENCY CHARACTERIZATION 

The frequency response of this prototype disk gyroscope was measured and shown in 

Figure 5-30. As expected, a very small frequency split, ∼100Hz, was found. The 

secondary elliptic modes were observed to be matched at 7.30MHz in 1mTorr vacuum 

and air. The matched-mode Qs of 73,000 and 14,435 respectively were measured in 

1mTorr vacuum and air at Vp=7V. 

  

Figure 5-30: The frequency response of the secondary elliptic modes in an 800µm 
diameter (100) SCS disk with uniform 6µm diameter holes, showing the matched-mode 
Q of 14, 435 in air with Vp of 7V.  

5.6.2 PERFORMANCE CHARACTERIZATION  

The scale factor and bias drift for an 800µm diameter disk with uniform 6µm diameter 

release holes were measured in air.  This section presents a summary of the results. The 

zero rate output (ZRO) of this device was measured at matched mode in air, as shown in 

Figure 5-31 (a). The drive amplitude from the drive output signal was measured to be 

0.7nm, which is very low. This could be increased significantly by using larger AC drive 

Freq=7.30 MHz 
Qmatched-mode= 14,435  

BW=253 Hz 
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Freq=7.30 MHz 
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BW=50 Hz 

In 1mTorr vacuum 
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signals, as well as by using a larger Vp. Also the demodulated sinusoidal signal produced 

by an applied 82°/sec rotation about the z-axis is shown in Figure 5-31 (b). 

Next, a number of rotation rates around the z-axis were applied to this device and the 

corresponding demodulated output sinusoidal signals were recorded. The rotation rate 

sensitivity was measured from only one sense electrode in air, as shown in Figure 5-32. 

The measured rate sensitivity of 64.5µV/°/sec is recorded with discrete electronics and Vp 

of 12.5V, with Qmatched-mode of 14,435. The inset in Figure 5-32 shows the demodulated 

output signal when the device is rotated at 70°/sec. 

   
   (a)       (b) 

Figure 5-31: (a) Zero rate output of an 800µm diameter disk gyroscope with uniform 
6µm diameter release holes at matched-mode operation, (b) Demodulated rotation 
response of the prototype gyroscope to the applied 188°/sec z-axis rotation rate in air. 

Similarly, the scale factor stability and bias drift were measured for this device in air. It 

was observed that the matched mode Q remained constant over a period of 24 hours at a 

fixed room temperature and pressure. The zero rate output (ZRO) of the prototype was 

sampled, and an Allan variance analysis was performed to characterize the long-term 

stability of the matched-mode device. The resulting root Allan variance plot is shown in 

Figure 5-33.  The measured bias instability of this device is estimated in air to be 1.02 
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°/sec with the Q of 14,435 and Vp=12.5V. A time-slice of the ZRO is also shown in the 

inset of Figure 5-33.   

 

 

Figure 5-32: The measured rate sensitivity results from one sense electrode of an 800µm 
diameter disk gyroscope including uniform 6µm diameter release holes in air at 
Qmatched-mode of 14,435 with Vp=12.5V and discrete electronics. 

 

Figure 5-33: Root Allan variance plot of an 800µm diameter disk gyroscope including 
uniform perforations at zero rate output (ZRO) in air at Vp=12.5V. The inset shows the 
time domain plot of the ZRO of disk gyroscope. 
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5.6.3 TEMPERATURE CHARACTERIZATION  

A similar prototype device is characterized in air over a 60°C temperature range. The 

matched-mode operation remained constant over this temperature range. The frequency 

was found to have a drift with temperature change at a slope of -21ppm/°C, as shown in 

Figure 5-34a. In addition, the matched-mode Q of this prototype device was characterized 

in air for the same temperature range. Figure 5-34b demonstrates a reduction of ~6.6% in 

Qmatched-mode for ∆T of 60°C.  

   
(a)        (b) 

Figure 5-34: Temperature variation of (a) matched mode frequency (b) matched mode Q 
in air for an 800µm diameter (100) SCS disk gyroscope including uniform 6µm 
diameters holes, showing a frequency drift profile with a slope of -21ppm/°C and ~6.6% 
drop in Q, for ∆T=60°C. 

Furthermore, the scale factor is characterized and measured in air at -5°C, 25°C and 

55°C, shown in Figure 5-35. The sensitivity declines by 15% over the temperature range 

of 60°C. It is worth noting that the source voltages (Vp and vac) are kept constant. The 

reduction in the sensitivity should track the reduction in the matched mode Q if all other 

key parameters, such as the source voltages, are kept constant. Since the measured 

sensitivity was based on driving the device in open-loop configuration, the small 

variation in the drive amplitude over the temperature was observed. Accordingly, the 

Slope= -21 ppm/°C 
 In Air ~6.6% drop in Q over ∆T =60°C 

In Air 
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drive output and the matched mode Q were recorded for this temperature range. The 

drive amplitude is then calculated from the the measured drive output. These values are 

summarized in Table 5-1. If these devices are driven in a closed loop control, the drive 

amplitude can be maintained constant, resulting in the lower sensitivity reduction due to 

the temperature change.      

 
Figure 5-35: The measured rate sensitivity results in air from one sense electrode of an 
800µm diameter disk gyroscope including uniform 6µm diameter release holes at T=-5°C 
and T=55°C with Vp=12.5V and vac=224mV using discrete electronics. 

Table 5-1: The key parameters in temperature characterization of scale factor in air. 
 
 
 
 
 

5.7 PERFORMANCE DISCUSSION 

The performance specifications for a 1200µm diameter (111) silicon disk and 800µm 

diameter disk gyroscopes with both nonuniform and uniform release holes are 

summarized in Table 5-2. As the data show, the measured frequency responses of these 

devices are within 2% of the ANSYS simulation results. This very small difference can 

Sensitivity (µV/°/sec) Temp (°C) Vp (V) qdrive (nm) Qmatched-mode (k) 
Measured Theory 

-5 12.5 0.558 14.95 51.4 62.2 
49 12.5 0.472 13.972 44.2 49.5 

In Air 
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be readily attributed to slight geometric differences between the fabricated and designed 

structures.  

In addition, the measured rate sensitivity data from 1200µm diameter (111) silicon disk 

gyroscopes, in 1mTorr vacuum, were ~10% lower than the analytical values. For 800µm 

diameter devices with nonuniform release holes and with uniform 6µm diameter release 

holes, the measured sensitivities are ~11.5% and 9% lower than the analytical values for 

1mTorr vacuum and in air, respectively. These results also demonstrate very good 

agreement between theoretical and measured values for scale factor. 

Furthermore, the total measured noise for 800µm diameter (100) silicon disk gyroscopes 

with nonuniform and uniform 6µm diameter release holes are ~1.6× and ~1.3× less than 

the theoretical values, respectively. However, the measured noise in a 1200µm diameter 

(100) silicon disk gyroscope with nonuniform release holes is ~1.3× lower than the 

theoretical value in 1mTorr vacuum. This difference might be due to unexpected 

environmental noise during the 24-hour ZRO recording period.         

It is worth noting that all the measured results are taken from devices operating in open-

loop configurations, with discrete-based interface circuitry fed by only a single sense 

electrode. If all available sense electrodes are coupled, and a fully differential, IC-based 

architecture is used, the BAW gyroscopes’ performances can be improved substantially 

(i.e. ~6×). If a closed-loop drive configuration is employed, the stability of these devices 

can be improved significantly by maintaining the drive amplitude constant while varying 

the temperature and environmental conditions. 
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Table 5-2: The performance specifications for BAW gyroscopes. 

5.8 SUMMARY 

A number of perforated disk gyroscopes, as designed in chapter 3, were implemented and 

operated in their both primary and secondary elliptic modes in, respectively, (111) SCS 

(111) SCS (100) SCS 
Device  

Parameters Non-uniform  
Perforated Disk 

(in 1mTorr Vacuum)

Non-uniform  
Perforated Disk 

(in 1mTorr Vacuum)

Uniform  
Perforated Disk

(in Air)  

ANSYS              2.93 ANSYS              6.12 ANSYS        7.48 Operating 
frequency (MHz) Measured         2.917 Measured           5.95 Measured     7.30 
Device diameter 

(µm) 1200 800  800 

Device thickness 
(µm) 35  40  40  

Capacitive gap 
(nm) 180  200  200 

Polarization 
voltage 

(V) 
10  13.2  12.5  

Measured Q 65,810 235,810 14,435 

Angular gain (Ag) 0.4584 0.2314 0.2314 

Measured drive 
amplitude  

(nm) 
7.66 5.19 0.70 

Voltage Gain 
(Av) 

23.2 23.2 720 

Inoise 
(pA/√Hz) 2.54 2.54 2.54 

Rf 
(Ω) 33,000 33,000 33,000 

Theoretical            359 Theoretical           293 Theoretical 69.0 Sensitivity 
(µV/°/sec) Measured              320 Measured              267 Measured    64.5 

Theoretical       0.0060 Theoretical        0.008 Theoretical  0.86Total noise 
(°/sec /√Hz) Measured         0.0047 Measured          0.021 Measured    0.95   

Bias Instability 17 °/hr 77 °/hr 0.95 °/sec 
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and (100) SCS substrates.  Among these, the measurement results for 800µm-diameter 

devices, fabricated on 40µm thick (100) SOI substrates, with non-uniform release holes 

and uniform 6µm diameter perforations are presented in this Chapter. First, the frequency 

responses of the elliptic degenerative modes are investigated to identify their quality 

factors (Q) as well as frequency separation (∆f) between drive and sense modes. The 

tuning method, as stated in the first part of this paper, is applied to electrostatically tune 

and match the two degenerative modes. Afterwards, the performance parameters, i.e. 

scale factor and bias instability, were measured for matched-mode operation in 0.1mTorr 

vacuum and at atmospheric pressure.  

The prototype BAW gyroscopes show ultra high quality factors in excess of 150,000 and 

14,000 in vacuum and air, respectively. The high frequency of the modes results in a 

large device bandwidth (from 30Hz to 400Hz) under very high-Q matched-mode 

condition. For an 800µm-diameter device with non-uniform perforations, the rate 

sensitivity in vacuum was measured to be 270µV/°/sec, along with a Qmatched-mode of 

235,000. However, for an 800µm-diameter device with uniform 6µm diameter holes in 

air, the scale factor was measured to be 65µV/°/sec, with Qmatched-mode of 14,400. 

In addition, these devices were characterized over a typical consumer electronics 

temperature range of -5°C to 55°C. It was observed that the frequency separation 

between two modes remained constant and the modes remained matched.  Furthermore, 

the Q and scale factor of these prototypes devices were found to decrease ~6% and ~15% 

over this temperature range. The measured results demonstrate the high performance 

stability of BAW gyroscopes even at elevated temperature. 
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CHAPTER 6 

MULTI-AXIS BAW SILICON GYROSCOPE 

6.1 OVERVIEW 

To date, commercialized multi-axis vibrating gyroscopes [14, 15] have utilized multiple 

proof masses for detecting rotation rates around multiple axes. Consumer applications 

require stable, high-performance multi-axis gyroscopes with small form factor, fast 

response time and high shock survivability.  This set of attributes is widely unavailable at 

low cost in current low frequency vibrating gyroscopes, and can be well served by bulk 

acoustic wave (BAW) silicon gyroscopes. In an effort to meet these demands, the original 

z-axis design has been developed that enables measurement of rotation rate around the x 

or y axes, without utilizing additional disks. This novel approach eliminates the issues 

with integration of multiple proof masses, resulting in the smallest form factor. 

The multi-axis gyroscopes introduced here, operating in the frequency range of 1 to 

8MHz have large frequency bandwidth (10-30Hz) and superior shock tolerance.  Due to 

their high frequency of operation, these devices also show reduced susceptibility to 

common damping mechanisms. This gives them very high, thermally-stable quality 

factors without the typically required high vacuum environment, and the associated 

packaging, manufacturing, and reliability complications. 

This chapter introduces design and implementation of a capacitive gyroscope capable of 

sensing rotation rates around x and z-axes. We present an 800µm-diameter multi-axis 

disk gyroscope implemented in thick (100) silicon-on-insulator (SOI) substrate. A single 
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disk is operated separately in out-of-plane and in-plane modes, whose Coriolis coupling 

allows measurement of rotation rates around the in-plane and out-of-plane axes. The 

revised high aspect-ratio poly- and single crystalline silicon (HARPSS) fabrication 

process was used to implement the disk gyroscopes in 40µm thick SOI substrates. Very 

small gap sizes of 200nm are provided for both in-plane and out-of plane capacitive 

transduction sites. With vibration amplitudes less than 20nm in all directions, high 

frequency disk gyroscopes are semi-stationary devices requiring very small DC and AC 

actuation voltages.  

6.2 PRINCIPLE OF OPERATION 

As schematically shown in Figure 6-1, the Coriolis-based high frequency multi-axis 

gyroscope consists of a center-supported disk structure with capacitively-coupled in-

plane and out-of-plane drive, sense and control electrodes [111]. To measure rotation rate 

around the x or y axes, the disk’s degenerative out-of-plane modes are excited. This 

requires in-plane electrodes around the perimeter of the resonating disk structure. Also, 

using only a single disk to potentially measure rotation rate around x- and z-axes 

necessitates compatible electrodes for in-plane and out-of plane transduction. To achieve 

this, out-of-plane electrodes in z-axis BAW gyroscopes are extended over the disk to 

form the in-plane electrodes. The capacitive gap between the in-plane electrodes and the 

disk is ~200nm, the same as the gap between the out-of-plane electrodes and the disk.  In 

order to isolate in-plane electrodes from out-of-plane electrodes, and significantly reduce 

any parasitic coupling, a 2µm gap is designed between these electrodes.  
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Similar to z-axis BAW gyroscopes, the capacitive multi-axis BAW disk gyroscope is 

supported by a small island of buried oxide layer (BOX), shown in Figure 6-1. The 

symmetry of the structure guarantees that the support is self-aligned to the center of the 

disk during the BOX etch step. Boron-doped polysilicon traces attached at the center of 

the disk, to which they are self-aligned, provide a DC bias voltage to the disk. In addition, 

to implement these devices in SOI, release holes are added to the disk (though not shown 

in Figure 6-1).  

 

 

Figure 6-1: Schematic diagram of high frequency multi-axes disk Gyroscope in (100) 
silicon. 

To actuate the capacitive BAW disk gyroscopes in their out-of-plane modes, an AC 

signal at the selected resonant frequency is applied to a drive electrode, along with the 

application of DC bias to the disk itself. While the disk is driven in its first degenerative 

out-of-plane mode, the gyroscope is rotated around one of the in-plane axes (i.e. x-axis or 

y-axis). Coriolis acceleration transfers energy between the two out-of-plane degenerative 
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modes. As energy builds up in the second mode, output current is created at the sense 

electrode. An interface circuit amplifies, demodulates and filters the sense current to yield 

the rotation-induced Coriolis signal. 

6.3 DESIGN OF MULTI-AXIS (100) SCS DISK 

To design a multi-axis disk gyroscope implemented in (100) silicon wafers as an 

extension of a single-axis gyroscopes, a set of design rules should be considered which 

will be discussed in this section. First, the out-of-plane mode shapes should be 

compatible with the in-plane mode shapes to enable operation of both modes in a same 

disk. Second, the cross talk sensitivity between the two in-plane rotation rate (Ωx and Ωy) 

should be avoided.         

To address the former, the anti-node lines of both in-plane and out-of-plane modes should 

be the aligned to allow the existence of compatible perforations and electrodes in a single 

disk.  It is worth noting that in multi-axis BAW gyroscopes, fabrication limits prevent the 

disk from having perforations underneath the in-plane electrodes. In addition, 

perforations in the disk should be carefully designed to ensure the minimum frequency 

separations between the in-plane degenerative modes and between the out-of plane 

degenerative modes. Also, the in-plane electrodes need to be located at anti-node lines of 

the out-of-plane modes to provide the large transduction area. These requirements limit 

the out-of-plane modes to have the same spatial symmetry as the in-plane mode. Due to 

the anisotropic nature of (100) SCS, only the high-order out-of plane modes are 

compatible with the secondary elliptical in-plane modes, which exhibit 30º spatial 

symmetry. 
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A further constraint on the choice of out-of-plane modes comes from the need for 

independent measurement of rotation rates around x- from y-axis. In order to eliminate 

the cross-sensitivity between x-axis and y-axis rotations, each in-plane sensing axis must 

coincide with the node-line of one mode and anti-node line of the other mode. For 

instance, to measure the applied x-axis rotation rate, the anti-node of the drive mode must 

coincide with the x-axis while the node-line of this mode is aligned with y-axis. When the 

rotation rate around the x-axis is applied, the energy transfers from the drive mode to 

sense mode and sense mode at y-axis is excited due to the Coriolis effect. In this case, 

with the simultaneous application of y-axis rotation rate, there will be no transfer of 

energy from the drive mode to the sense mode since the node-line of the drive mode is 

placed at y-axis. Thus, the proposed design will distinguish the in-plane rotation rates 

from each other. A similar method can be employed to measure the applied y-axis 

rotation rate. 

A number of disk structures with a variety of perforation arrangements are designed to 

operate in their degenerative out-of-plane and in-plane modes. Two major categories of 

release hole configurations were designed. In both categories, the perforations ultimately 

form equally-spaced concentric rings of holes, and produce structures that are symmetric 

about the x and y axis. The first category places holes of non-uniform diameter along 

radial lines of the disk, with the radial lines aligned to the node-lines of both the in-plane 

and out-of plane mode shapes. This entails radial lines located every 30° or 15°. The 

second category incorporates uniform-sized holes of smaller size and higher density. 

ANSYS simulations results, shown in Figure 6-2, demonstrate suitable degenerative out-

of plane and in-plane modes for an 800µm diameter disk with nonuniform holes in 40µm 
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thick (100) silicon substrate. The high-order degenerative out-of-plane modes for this 

device occurred at 1MHz with a frequency separation of <100Hz. However, the second 

elliptic in-plane modes of this device were observed at 6MHz with a frequency split of 

~1kHz. The larger frequency separation seen for the in-plane modes is attributed to the 

release holes being placed away from the disk edges, due to the in-plane electrodes.  

  
(a) 

  
(b) 

Figure 6-2: ANSYS simulations of an 800µm diameter 40µm-thick (100) Si disk 
structure with non-uniform sized release holes: (a) two degenerative out-of plane modes 
at 1MHz; (b) two degenerative in-plane modes at 6MHz. Both modes are spatially 30° 
apart. 

To study the effect of the disk perforations on the frequency splits between in-plane 

degenerative modes and between out-of-plane degenerative modes, finite element 
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modeling is employed. A variety of uniform hole sizes were designed and simulated in 

ANSYS, as shown in Figure 6-3. As expected, the disks with uniform smaller release 

holes exhibit smaller frequency splits. This is because the frequency behavior of disk 

with uniform small holes more closely mirrors that of the solid disk. For a 6µm diameter 

uniform release holes in an 800µm diameter disk in 40µm thick (100) silicon, ANSYS 

simulation indicates a frequency split of 30Hz between degenerative out-of-plane modes 

and a frequency split of 110Hz between degenerative in-plane modes (Figure 6-4).  

 
        (a) Out-of-plane modes         (b) In-plane modes 

Figure 6-3: ANSYS simulation results of secondary elliptic in-plane and out-of plane 
modes in 800µm diameter disk gyroscopes in 40µm thick (100) silicon, showing the 
effect of release hole sizes on the frequency splits between two modes and on the 
operating frequencies. 

It is worth noting that 50,000 elements were used for all ANSYS models.  This large 

number was chosen to minimize the simulation errors on the frequency split values. Also, 

the distance between the holes at the center of the disk needs be large enough to ensure 

the buried oxide at the center of the disk survives the release etch. The center post 

diameter is designed to be at most one twentieth of the disk diameter to minimize the 

losses through support [74, 75] and to enhance the Q of the device.   
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(a) 

  
(b) 

Figure 6-4: ANSYS simulations of an 800µm diameter 40µm-thick (100) Si disk 
structure with uniform 6µm diameter release holes: (a) two degenerative out-of plane 
modes at 1.2MHz with ∆f=30Hz; (b) two degenerative in-plane modes at 7.5MHz with 
∆f=100Hz. Both modes are spatially 30° apart. 

6.4 OUT-OF PLANE MODE SHAPE EQUATIONS  

In general, the displacement of a linear elastic body can be expressed as a linear 

combination of its normal mode shape functions and its amplitudes [80]. For a disk 

gyroscope, operating in its degenerative out-of-plane modes, the vibration displacement 

of each point on the disk is a summation of both degenerative mode displacements, as 

stated in (6-1).  
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Where q1 and q2 are the drive and sense amplitudes and φr, φθ and φz are respectively the 

radial, circumferential and axial mode shape functions. 

It is worth nothing that radial displacement for out-of-plane mode shapes is nearly zero 

and only the circumferential and axial displacements should be considered for this mode 

shape. The out-of-plane mode shape functions in circumferential and axial displacements 

are expressed in (6-2).     

( ) ( )
( ) ( )θφθφ

θφθφ θθθθ

mUmU
mUmU

zzzz cossin
sincos

21

21

==
−==

 (6-2) 

Where Uθ and Uz are the normalized displacements in the tangential and axial directions 

and m is the mode number and m=3 for the out-of-plane mode shapes used in the work. 

The normalized displacements for a disk vibrating in its flexural out-of-plane modes are 

stated in (6-3) from [112]. 
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The normalized displacements are expressed in terms of Bessel functions of the first kind 

(Jm) as well as trigonometric functions. Also, k and χ are related to each other from (6-5).  



 135

2
22

02

)1(
)1)(21( k

E
R

−
−

+−
=

ρω
ν

ννχ  (6-4) 

Where R and ω0 are respectively the disk radius and the natural angular frequency; 

However ρ, E and υ are respectively the mass density, the Young’s modulus and the 

Poisson ratio.  

Given disk thickness (h) and disk radius (R) as well as the operating frequency (ω0) and 

material properties of the disk (E, ρ, ν), k can be solved by trial and error from (6-5):  
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In which χ and β can be respectively substituted from (6-4) and (6-6).     
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After evaluating the k by numerical solution from (6-5), χ can be determined from (6-4) 

and both k and χ will be replaced into (6-3). As a result, the normalized displacements 

and subsequently the mode shape functions are fully identified. Given the mode shape 

functions as a function of r, θ and z, the effective mass (M) and Coriolis coupling (γ) can 

be evaluated respectively from (6-7) and (6-8) by integrating these mode shapes over the 

disk volume (V). 
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( )∫ dV+ρ=M θ1z1
22 φφ  (6-7) 

( )∫ − dVρ=γ θ1z2θ2z1 φφφφ  (6-8) 

Next, the angular gain can be estimated for the disk while operating at its out-of-plane 

mode using (3-41). Furthermore, the sensitivity of the multi-axis disk gyroscopes due to 

the in-plane applied rotation rate (Ωx or Ωy) can be analyzed in the similar method as 

expressed in Chapter 3 for the single-axis disk.  

6.5 FABRICATION 

The fabrication process flow for the high-frequency multi-axis disk gyroscopes 

developed in this work is shown in Figure 6-5. This process is similar to the fabrication 

process flow for z-axis BAW gyroscopes. The process starts with growth and patterning a 

2µm thick silicon oxide layer. The in-plane electrodes, perforations and center anchor are 

patterned in this first mask, to be self-aligned with the disk. Then the trenches are etched 

only around the disk and at the release holes. LPCVD silicon oxide is grown at 950°C to 

form the capacitive in-plane and out-of plane gaps. Then, LPCVD polysilicon are 

deposited (at 588°C and 250mTorr with 100sccm SiH4) and the trenches are refilled. 

After etching polysilicon on the surface, the SACOX is patterned and removed 

everywhere except around the disk and release hole edges and on the in-plane electrode 

area. This 200nm thick SACOX is protected on the surface to define the out-of-plane 

gaps between the disk and in-plane electrodes. Next, the second LPCVD polysilicon layer 

is deposited, boron-doped and annealed.  
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The polysilicon is patterned on the surface to form the poly traces, in-plane electrodes, 

and pads. Afterwards, the polysilicon as well as part of silicon substrate are etched inside 

the trenches, followed by a final release in hydrofluoric acid (HF).          

(a) Grow and pattern ~2µm thick oxide. (b) Etch the trenches in silicon. 

(c) Deposit and boron dope SACOX, refill 
the trenches with LPCVD polysilicon.  

(d) Etch polysilicon on the surface and 
pattern SACOX.  

  

(e) Deposit LPCVD polysilicon, boron 
dope and anneal. 

(f) Pattern and etch polysilicon and silicon 
inside the trenches and release in HF.  

Figure 6-5: Fabrication process flow for multi-axis single-disk gyroscopes in SOI 
substrates. 

The key difference between multi-axis and single-axis disk gyroscopes is that the poly 

electrodes are extended over the disk (typically 20-50µm) to form in-plane electrodes for 

driving and sensing the out-of-plane modes. The capacitive gap between the in-plane 

electrodes and disk is the same as the vertical gap, typically 200nm. The in-plane 

In-plane gap

In-plane electrode

Out-of plane electrode

Out-of plane gap
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electrodes are co-implemented with out-of plane electrodes using a connector section 

with large gaps of 2.5µm gap at the edge of the disk.  

6.6 MEASUREMENT RESULTS 

A number of high frequency multi-axis disk gyroscopes were fabricated in thick (100) 

SOI wafers using the revised HARPSS process. Figure 6-6 shows a SEM view of a 

center-supported multi-axis disk gyroscope implemented in (100) SCS. The SEM view of 

the in-plane and out-of-plane electrode area with 200nm capacitive gaps is shown in 

Figure 6-6. 

To excite in-plane and out-of plane modes, a sinusoidal drive signal was applied to a 

single drive electrode.  The output signal was monitored at a sense electrode located 90° 

away from the drive electrode. The frequency response of the out-of-plane modes, and x-

axis rotation response were measured for a variety of thick (100) silicon disk gyroscopes. 

Unlike in-plane degenerative modes, out-of-plane modes possess frequency response that 

depends on the thickness of resonating disk. As ANSYS simulations show, thicker disks 

operate at higher frequency in their out-of-plane modes. In this section, the measurement 

results for 60µm and 40µm thick (100) silicon devices are presented. 
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Figure 6-6: SEM view of an 800µm diameter (100) multi-axis silicon disk gyroscope. 
The poly trace on top provides DC bias to the center of the disk. The close-up SEM view 
shows the in-plane and out-of plane electrode area with 200nm capacitive gap.  

6.6.1 RESULT OF 60µM THICK (100) SCS DISK    

An 800µm diameter disk gyroscope implemented in 60µm thick (100) SCS substrates 

was characterized and the results are presented here. The out-of-plane modes of this 

gyroscope were observed at 1.5MHz (as predicted by ANSYS) with a frequency split of 

32Hz, as shown in Figure 6-7. The measured Q’s of a 60µm thick device, before 
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balancing, were recorded to be 70,000 and 62,000 in 1 mTorr and 1 Torr vacuum, 

respectively.   

  

Figure 6-7: The out-of-plane modes of an 800µm diameter (100) SCS disk gyroscope 
(60µm thick) at 1.5MHz in 1mTorr vacuum with ∆f=32Hz and Vp=9V. 

The small initial frequency separation of 32Hz between the drive and sense modes of this 

device was completely eliminated by the application of proper voltages to the tuning 

electrodes. The matched-mode quality factor of the device was found to be 72,000, as 

shown in Figure 6-8. At 1Torr, the corresponding matched mode measured Q was 

62,000. 

The zero rate output (ZRO) of the prototype gyroscope is recorded after balancing the 

two modes, shown in Figure 6-9 (a). As expected, the sense signal is 90o out of phase 

with the drive signal. The sensor output voltage was measured for various rotation rates 

around the x-axis. The demodulated rotation response to the applied 75°/sec x-axis 

rotation rate was measured and shown in Figure 6-9 (b).  

 Out-of-plane modes 
Freq= 1.49 MHz, 

∆f=32.5Hz 
(In 1 mTorr vacuum) 
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(a)      (b) 

Figure 6-8: The matched out-of-plane modes of an 800µm diameter (100) SCS disk 
gyroscope (60µm thick) at 1.5MHz with Vp=11V: (a) In 1mTorr vacuum; (b) In 1Torr 
vacuum. 

   
(a)           (b) 

Figure 6-9: (a) Zero rate output of the prototype gyroscope (b) Rotation response of 
60µm thick multi-axis disk gyroscope to the applied 75°/sec x-axis rotation rate.  

6.6.2 RESULT OF 40µM THICK (100) SCS DISK    

The out-of plane modes of an 800µm diameter disk gyroscope in 40µm thick (100) SCS 

were observed at 1MHz with nearly matched-mode Q of 60,000 1mTorr vacuum, Figure 

6-10. 
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Figure 6-10: The out-of-plane modes of an 800µm diameter (100) SCS disk gyroscope 
(40µm thick) at 1MHz in 1mTorr vacuum with Vp=3V. The inset shows the phase 
response for the matched out-of-plane modes.  

A very small frequency split of <30Hz was observed without tuning, and the two modes 

were matched with tuning voltages of only 3.5V. Also, there was a very large quadrature 

error between the two modes. The other assigned electrodes around the disk were thus 

utilized to minimize this quadrature error. The frequency response of the matched out-of-

plane modes were measured and recorded before and after balancing. A collection of 

frequency and the time responses are shown in Figure 6-11.      

360° phase shift
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Vp=2.2V, Vqaud-drive=0, Vqaud-sense=0 Vp=3.5V, Vqaud-drive= -0.5V, Vqaud-sense=0.5V 

126° Phase shift 88° Phase shift 

Figure 6-11: Collection of plots showing quadrature cancellation between two out-of-
plane modes.  

The ZRO of the prototype gyroscope after balancing is shown in Figure 6-12 (a). The 

bottom trace is the ZRO at the sense electrode and the top trace shows the output of the 

drive mode. Subsequently, the rotation rate around the x-axis was applied to this device 

and the output signal due to the application of 309°/sec around x-axis rotation rate was 

measured and shown in Figure 6-12 (b). The similar rotation response can be observed 

when the y-axis rotation rate is applied to the device.  
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Drive mode 

Sense mode 
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   (a)       (b) 

Figure 6-12: (a) Zero rate output of the multi-axis gyroscope implemented in 40µm thick 
(100) silicon substrate, (b) Rotation response of an 800µm diameter, 40µm thick multi-
axis disk gyroscope to the applied 309°/sec x-axis rotation rate.  

The sensor output voltage was measured for some applied angular speeds around the x-

axis. The scale factor was measured from only one sense electrode at matched mode 

operation after balancing, as shown in Figure 6-13. A sensitivity of 14.1µV/°/sec was 

measured from the sense mode with Vp =6V. 

 

Figure 6-13 : The measured rate sensitivity results from one sense electrode of an 800µm 
diameter disk gyroscope at matched-mode operation after quadrature cancellation with 
Vp=6V with discrete electronics.  
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Furthermore, an identical multi-axis disk gyroscope was operated in z-axis sensing mode 

(using the in-plane modes). Its performance was characterized and is presented here.  

The frequency response of this device when operating in its in-plane modes are shown in 

Figure 6-14. The Q of the drive and sense modes were measured to be 200,000 and 

14,000, respectively. Also, the initial frequency separation of 1250Hz was observed 

between two in-plane modes, which was in good agreement with ANSYS simulation 

results (from section 6-2). As expected, the multi-axis disks with nonuniform perforations 

showed large frequency separation between their in-plane degenerative modes.  

 

 

 

 

 

 

Figure 6-14: The in-plane modes of an 800µm diameter (100) SCS multi-axis disk 
gyroscope (40µm thick) at 5.92MHz in 1mTorr vacuum with Vp=10V with ∆f=1250Hz.  

The two in-plane modes of this device were electrostatically tuned and matched using the 

tuning method discussed in Chapter 3. Given that the frequency of the drive mode is 

lower than the sense mode frequency (fdrive=5.9227 < fsense=5.9235MHz), the tuning 

voltages of VT-drive>0 and VT-sense<0 were applied to the tuning electrodes. The frequency 

responses of the modes after the application of optimal tuning voltages are recorded and 

shown in Figure 6-15. As shown in Figure 6-15, large tuning voltages are required to 

In-plane Drive mode 
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BW=209Hz 
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match this large frequency split. The multi-axis disk design needs to be further optimized 

for minimum frequency separations so that lower tuning voltages may be used. 

The zero rate output (ZRO) of an 800µm diameter multi-axis disk gyroscope at matched 

mode was measured and shown in Figure 6-16. The bottom trace is the ZRO at the sense 

electrode and the top trace shows the output of the drive mode. Also, a phase shift of 

~90° is measured between the drive and sense modes.   

 

Figure 6-16: Zero rate output of an 800µm diameter multi-axis disk gyroscope at 
matched-mode in-plane modes. 

 

 
 

(a) (b) (c) 
Vp=10V 

VT-drive=10V, VT-sense=10 V 

Vp=12V  
VT-drive=12V, VT-sense= -12 V 

Vp=25V  
VT-drive=25V, VT-sense= -18 V 

Figure 6-15: Collection of plots showing electrostatic frequency tuning and matched-mode 
of in-plane modes in an 800µm diameter multi-axis disk gyroscope in (100) SCS.    
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 Subsequently, a number of rotation rates around the z-axis were applied to this device 

and the demodulated output sinusoidal signals were measured. The scale factor is 

measured from only one sense electrode, and the result is shown in Figure 6-17. A 

measured sensitivity of ~27µV/°/sec was achieved with Vp of 25V and Qmatched-mode of 

15,000 in 1mTorr vacuum, as shown in Figure 6-17. 

 

Figure 6-17: The measured rate sensitivity results from the matched in-plane modes in an 
800µm diameter multi-axis disk gyroscope with Vp=25V and Q=15,000 with discrete 
electronics.  

 
6.6.3 RESULTS OF OPTIMIZED DESIGN    

According to the ANSYS simulation results presented in section 6-2, a disk with uniform 

6µm diameter holes should have a frequency separation less than 100Hz between its in-

plane and out-of plane modes. To demonstrate this, 800µm diameter disks with uniform 

6µm diameter release holes were fabricated and their frequency responses were recorded. 

Figure 6-18 shows a SEM view of a center-supported multi-axis disk gyroscope with 
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6µm diameter perforations, implemented in 40µm thick (100) SCS. The capacitive gap 

between the in-plane electrode and the disk was the same as the out-of plane electrode 

and the disk, which was ~200nm. 

 

Figure 6-18: SEM view of an 800µm diameter (100) multi-axis silicon disk gyroscope 
with uniform 6µm diameter holes.  

The frequency response of the out-of-plane modes and in-plane modes were recorded and 

are shown in Figure 6-19. As expected, the two modes were matched and there might be 

a very small frequency split of less than 60Hz (from the measured f/Q) between two out-

of-plane modes and less than 104Hz (from the measured f/Q) between the in-plane 

modes. The measured frequency behaviors from the prototype optimized device in both 

in-plane and out-of-plane modes are in good agreement with ANSYS simulation results. 

The two modes were self-matched without the application of any tuning voltages. The 
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optimized multi-axis devices were further investigated for their performance parameters 

in their sensitive in-plane axes (x-axis).    

  
   (a)       (b)  

Figure 6-19: The frequency response of an 800µm diameter (100) SCS disk gyroscope 
with uniform 6µm diameter holes operating at: (a) out-of plane modes, (b) in-plane 
modes, showing the self-matched mode operation for both in-plane and out-of-plane 
modes.  

The ZRO of the prototype gyroscope was measured and shown in Figure 6-20 (a). The 

bottom trace is the ZRO at the sense electrode and the top trace shows the output of the 

drive mode. Subsequently, the rotation rate around the x-axis was applied to this device 

and the output signal due to the application of 23°/sec around x-axis rotation rate was 

measured and shown in Figure 6-20 (b). The similar rotation response can be observed 

when the y-axis rotation rate is applied to the device.  

The sensor output voltage was measured for some applied angular speeds around the x-

axis. The scale factor was measured from only one sense electrode at matched mode 

operation without the application of any tuning voltages, as shown in Figure 6-21. A 

sensitivity of 73µV/°/sec was measured from the sense mode with Vp =4V. 
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     (a)        (b) 

Figure 6-20: (a) Zero rate output of out-of-plane modes in the multi-axis gyroscope 
implemented in 40µm thick (100)SCS, (b) Rotation response of an 800µm diameter, 
40µm thick multi-axis disk gyroscope to the applied 23°/sec x-axis rotation rate.  

 

Figure 6-21: The measured rate sensitivity results from one sense electrode of an 800µm 
diameter disk gyroscope at matched-mode operation after quadrature cancellation with 
Vp=4V with discrete electronics.  

Scale factor stability and bias drift are the next most critical performance parameters in a 

gyroscope. The scale factor stability is directly affected by the stability of Qmatched-mode 

over time. It was observed that the matched out-of-plane Q remained constant over a 

period of 24 hours at a fixed room temperature and pressure. The zero rate output (ZRO) 
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of the device was sampled. Using the collected ZRO data an Allan variance analysis was 

performed to characterize the long-term stability of the matched-mode device interfaced 

with the discrete electronics. The root Allan variance plot of the prototype disk gyroscope 

is shown in Figure 6-22. The measured bias instability of this sensor around x-axis is 

estimated to be 0.85°/hr with Qmatched-mode of 17,000 and Vp of 4V.  

 

Figure 6-22 : Root Allan variance plot of an 800µm diameter disk gyroscope including 
uniform 6µm diameter perforations at zero rate output (ZRO) in 1mTorr vacuum.  

6.7 SUMMARY 

This chapter presented the design, implementation and characterization results of multi-

axis disk gyroscopes. The z-axis silicon BAW gyroscopes have been further developed to 

enable sensing of rotation rates around x-axis or y-axis as well as the z-axis. To achieve 
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this, these devices were operated in their compatible out-of plane and in-plane modes. 

The out-of plane modes were chosen to have the same spatial symmetry as the in-plane 

modes have. Also, the electrodes were extended over the disk to form the in-plane 

electrode for detecting the out-of plane modes. These devices were fabricated in a process 

flow similar to that used for the z-axis silicon BAW gyroscopes. However, the process 

flow was modified to achieve the same sub-micron capacitive gaps for both in-plane and 

out-of plane transductions. The measured results from the 60µm thick and 40µm thick 

devices were presented and the rate sensitivity around x-axis and z-axis were measured in 

these devices. Due to the existence of the in-plane electrodes, the outermost ring of 

release holes had to be removed. It was found that this introduced a large frequency 

separation between the two in-plane modes, consequently increasing the tuning voltages 

required to match the two modes. To mitigate this, the effect of perforations on the 

frequency split of both in-plane and out-of plane modes were studied and modeled in 

multi-axis devices. It was found that disks with uniform small-sized perforations (<8µm 

diameter) have minimal frequency separation between both in-plane and out-of plane 

modes. These optimized designs were implemented in 40µm thick SOI substrates and the 

frequency responses were presented here. The very small frequency separations were 

observed between two in-plane and two out-of plane modes. As a result, the multi-axis 

disks were matched on their both in-plane and out-of plane modes without the application 

of any tuning voltages. The scale factor of the self-matched mode was measured around 

x-axis from only one sense electrode to be 73µV/°/sec with the application of only Vp 

=4V. Also, this device exhibits a bias drift of 0.85°/sec with Qmatched-mode of 17,000 at Vp 

=4V. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE DIRECTIONS 

7.1 CONTRIBUTIONS 

In this dissertation, the design, implementation and characterization of micromachined 

capacitive bulk acoustic wave silicon disk gyroscopes were investigated. A list of the 

technical contributions made through the course of this work has been summarized as 

follows: 

1. Design and modeling of capacitive BAW silicon disk gyroscopes: Capacitive disk 

gyroscopes were designed to operate in their primary and secondary elliptic 

degenerative modes in (111) and (100) single crystal silicon. Finite element 

analysis was employed to model the resonating disks and to study the effect of 

perforations on the frequency separation between their degenerative modes. A 

comprehensive study of degenerative elliptic modes was performed, in which the 

normal modal model is derived using the Lagrange method. Based on the modal 

analysis, angular gain was estimated for both primary and secondary elliptic 

modes. In addition, an electrostatic tuning method was developed to match the 

frequencies of the degenerative modes. Sensitivity and resolution for these 

gyroscopes were derived and analyzed, and the key limitations were discussed.  

2. Modeling of Thermo-Elastic Damping in BAW Disk Gyroscopes: Finite element 

analysis (COMSOL Multiphysics) was uesd to model QTED, the thermo-elastic 

damping-limited Q, of BAW modes in silicon disk structures. Coupled 
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deformation and temperature partial differential equations (PDEs) were solved for 

eigenvalues and QTED was taken as the ratio of the imaginary part to the real part 

of the corresponding eigenvalue. Thermoelastic losses were modeled for a variety 

of disk geometries, and it was found that decreasing the disk diameter lowers 

QTED in elliptic modes. It was also found that the QTED in elliptic modes was not 

affected by disk thickness, an expected observation attributable to the in-plane 

motion of these modes. In addition, to understand the effect of release holes size 

on QTED, symmetrical uniform sized release holes were added to the COMSOL 

disk model. Perforations introduce localized dynamic strain concentrations, 

inducing additional temperature gradients and subsequently additional TED 

losses. In accordance, QTED was found to drop substantially for perforated disks 

with large release holes. It was observed that QTED of both primary and secondary 

elliptic modes are larger than 106 for a disk with perforation sizes < 8µm. This 

demonstrates that the total Q is not mainly limited by thermoelastic damping if 

the release holes are small enough. 

3. Development of a High-Aspect Ratio Fabrication Process with Self-Aligned 

Buried Oxide Center-Support: A high aspect ratio process is a key determinant of 

a micromachined gyroscope’s performance, particularly in capacitive disk BAW 

gyroscopes. In order to excite the disks at their MHz-frequency BAW modes, 

large electrostatic forces are required, which in turn necessitate large capacitive 

coupling. Large capacitive coupling is attained with high gap-aspect ratio and 

very small capacitive gap sizes. Thus, a high aspect ratio process was developed 

to implement these devices on thick SOI substrates (30-60µm) with sub-micron 
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capacitive gaps (<200nm). In addition, this process provides self-aligned 

perforations in the resonating disk, simultaneously eliminating asymmetry issues 

and reducing the frequency separation between degenerative modes. A small 

island of buried oxide layer (BOX) within the SOI substrate is used to support the 

disk at the bottom.  The center post diameter is approximately one twentieth of 

the disk diameter, calling for careful timing of the HF release.  Such small support 

is needed to minimize losses through it, providing high Q of the device. In 

addition, the symmetry of the HF etch step guarantees that the support is self-

aligned to the center of the disk. The boron-doped polysilicon traces on the disk 

surface provide it with DC bias. Also, each poly electrode partially extends over 

the top of the disk to provide an out-of-plane shock stop. While the entire 

fabrication process was challenging, it is worth noting that trench etching and 

polysilicon etching inside the smaller-sized release holes (<10µm) was 

particularly difficult to achieve. This required numerous characterizations and 

recipe optimizations to achieve straight profiles and smooth sidewalls with 

minimum footing and scalloping. 

4. Experimental Characterizations: Fabricated capacitive BAW disk gyroscopes, 

both in (100) and in (111) single crystal silicon, were experimentally 

characterized. The frequency response and performance parameters of these 

devices were measured in vacuum. The prototype devices showed ultra high 

quality factors (Q) in excess of 100,000 and large bandwidth, even under very 

high-Q matched-mode environment. The rate sensitivity was measured to be 

320µV/°/sec for a 3MHz (111) SCS disk gyroscope with Qmatched-mode of 66,000. 
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However, the measured rate sensitivity for a 6MHz (100) SCS disk gyroscope 

with Qmatched-mode of 236,000 was 270µV/°/sec. In addition, the Qs of these 

prototype gyroscopes were characterized over a temperature range of 60°C, 

showing high thermal stability, even at elevated temperatures. Also, this work 

demonstrated that in these devices, maintaining a high Q does not require the high 

vacuum environment that is needed for low frequency, flexural-based gyroscopes. 

This simplifies the wafer-level encapsulation of these devices, resulting in better 

long-term reliability and reduced cost. Furthermore, large frequency bandwidths, 

in the range 10-30Hz, were achieved for these devices in high matched-mode Q in 

vacuum, making them to be suitable for the relatively fast response time 

requirements of consumer electronics applications.  

5. Optimized Design and Implementation of BAW Gyroscopes: It is well-known that 

operating a vibratory gyroscope in matched mode, wherein the drive and sense 

mode frequencies overlap maximally, improves performance parameters. 

However, it is very challenging to electrostatically tune and match the two modes’ 

frequencies without applying large voltages, which are difficult to generate with 

CMOS electronics. To eliminate this issue, a self-matched-mode BAW gyroscope 

was designed and implemented. The self-matched-mode operation is provided 

chiefly through enhanced design of the disk perforations. The release holes are 

designed with uniform, small size, equal spacing, and a configuration that repeats 

every 30° (or fraction of 30°) around the disk. This substantially reduces the 

frequency split by more closely approximating the behavior of the solid disk 

gyroscope. In addition, the operating frequency of the secondary elliptic modes 
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was high enough to mitigate air damping losses. This eliminates the need for 

vacuum packaging, resulting in substantially reduced cost. A number of these 

optimized disk gyroscopes were fabricated on thick (100) SOI substrates using the 

modified HARPSS process. The matched secondary elliptical mode of an 800µm 

diameter disk with 6µm diameter release holes was observed at 7.3MHz with 

Qmatched-mode of 15,000 in air, providing ~400Hz device bandwidth. The measured 

sensitivity of this device in air to applied z-axis rotation was 65.4 µV/°/sec. In 

addition, the matched-mode Q and scale factor of the prototype  device were 

characterized over a temperature range of 75°C, demonstrating the high thermal 

stability of these devices.  

6. Design and Implementation of Multi-Axis High-frequency Disk Gyroscopes: 

Capacitive z-axis BAW gyroscopes are further extended to enable sensing of 

rotation rates around x and z-axis. This novel approach eliminates issues 

associated with integration of multiple proof masses, at the same time producing a 

very small form factor. Also, from the z-axis BAW gyroscope design, they inherit 

high shock tolerance and large frequency bandwidth. The multi-axis disk 

gyroscopes operate in compatible in-plane and out-of plane modes. The high 

aspect-ratio poly and single crystal silicon (HARPSS) fabrication process was 

revised and utilized to implement these devices in 40µm and 60µm thick SOI 

substrates. This distinctive process enables very small capacitive gap sizes of 

200nm for both in-plane and out-of plane transduction. With vibration amplitudes 

in the tens of nanometers in each sensitive axis, high frequency disk gyroscopes 

are semi-stationary devices requiring small DC and AC actuation voltages. In this 



 158

research, 800µm-diameter multi-axis disk gyroscopes with both non-uniform and 

uniform perforations were designed and implemented in 40µm-thick (100) 

silicon-on-insulator (SOI) substrate. The rate sensitivity of 800µm-diameter disk 

with non-uniform perforations around the x-axis and z-axis were measured in 

(100) silicon. In addition, the multi-axis disks with uniform 6µm diameter release 

holes were fabricated and characterized. They exhibit self-matched mode in their 

both in-plane and out-of plane modes. The measured rate sensitivity around the x-

axis of these disks was measured to be 73µV/°/sec at 1.2MHz-disk with Qmatched-

mode of 17,000 in (100) silicon. These multi-axis devices have the potential to 

measure the rotation rate around the all three sensitive axis using a single disk, 

which will be the focus of the future research.     

7.2 FUTURE DIRECTIONS  

Several features are still needed in both single-axis and multi-axis BAW gyroscopes 

before implementation into commercial products would be feasible. In this section, some 

of the main tasks are outlined and briefly discussed. 

7.2.1 WAFER LEVEL ENCAPSULATION AND PACKAGING OF BAW DISK GYROS 

To date, characterization results of BAW gyroscopes have been collected in a vacuum 

chamber or fully exposed to air. In order for the prototypes to be commercially viable, 

they need to be packaged to offer long-term reliability. As it was discussed in this 

research, two major classes of BAW disk gyroscopes were designed, implemented and 

characterized. The first class includes 6MHz disk gyroscopes with non-uniform 

perforations, which require low vacuum packaging in the range of 1-10Torr.  
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The second class, composed of 7.3MHz disk gyroscopes with uniform small perforations, 

do not need vacuum package. Generally speaking, these devices do not require the same 

high vacuum packaging as low-frequency flexural-based gyroscopes. This simplifies the 

requirement for packing of these devices, freeing them from long-term reliability issues 

such as out-gassing and manufacturing complexity. These devices can be wafer-scale 

packaged with low cost.  However, if low vacuum packaging (1-10Torr) is provided, the 

performance of these devices could be improved significantly. 

7.2.2 MULTI-AXIS SINGLE-DISK GYROSCOPES 

In this research, multi-axis devices were designed and modeled to enable measuring the 

rotation rate around the x-axis as well as the z-axis. The perforations in these devices 

were optimized to provide small frequency separation between both in-plane 

degenerative modes and out-of-plane degenerative modes. The sensitivity results of a 

multi-axis disk gyroscope to the input rotation rate around x-axis and z-axis was 

measured from one device at separate times. However, these devices can be further 

investigated to measure all three axes using a single disk. In order to fully investigate 

these devices, the normal modal equations need to be solved for out-of-plane modes to 

estimate the angular gain. Also, the exact form of sensitivity equation should be derived 

for x/y-axis. It is also desired to measure the sensitivity around the y-axis from these 

devices and compare to the x-axis measurement results and the cross-sensitivity should be 

further investigated. Subsequently, an appropriate interface circuit must be developed to 

separately detect and demodulate the three axis rotation rates. 
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7.2.3 CLOSED-LOOP OPERATION 

In order to improve the dynamic range and to maintain constant oscillation amplitude, 

these gyroscopes need closed-loop control of both drive and sense modes. Closed-loop 

operation entails force-balancing the resonating disk along the sense-axis, probably 

achieved with a negative feedback control loop. The feedback loop would measure the 

Coriolis-induced sense-mode deflections, and apply the necessary opposing forces to 

keep the resonating disk stationary (along the sense-axis). Preventing very large 

deflections should increase the sensor’s dynamic range, as it would limit the non-linearity 

of the capacitive transduction as well as of the mechanical springs.  

Also, BAW gyroscopes are driven without drive close loop control, which introduces 

drive amplitude instability if environmental condition changes. As reported in Chapter 5, 

the drive amplitude of the 7MHz disk gyroscopes with uniform small perforations was 

not constant over the temperature range. This contributed to the performance instability 

of these devices. Utilizing a close loop configuration for the drive mode offers the 

constant and controllable drive amplitude, improving the performance parameters. 

7.2.4 FULLY-DIFFERENTIAL INTERFACE ARCHITECTURE    

As mentioned earlier in this dissertation, all the measurement results were taken from a 

single sense electrode. The scale factor in BAW gyroscopes has the potential to be 

improved by a factor of ~6 in (100) SCS without changing the deivce design. To 

accomplish this, six electrodes need to be used for sense mode measurement.  From the 

single electrode presently used, the output signals from two electrodes located at 120° 

and 240° offset from the sense electrode need to be coupled (signal 1); simultaneously, 

the three output signals at the three electrodes located 60°, 180° and 300° away should be 
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coupled together (signal 2). Afterwards signal 1 should be subtracted from signal 2, 

enlarging the output signal ~6 times, due to the tapping of ~6 times larger capacitive 

coupling area. This results in much higher sensitivity and lower electronic noise. On the 

other hand, the same method can be applied for the drive mode as well, which could be 

used to increase the drive amplitude, and thus lower the Brownian noise floor and 

improve the sensitivity. The similar method can be employed for the devices operated in 

their primary elliptic modes in (111) SCS. The performance parameters can be improved 

by a factor of ~4 in (111) SCS in these devices due to the mode shapes’ configuration.   
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APPENDIX A 

THERMOELASTIC COEFFICIENTS  

To determine the eignvalues and consequently QTED of BAW disk structure, the 

multiphysics model in COMSOL3.4 is utilized. The available general format of 

thermoelastic equations in this model was expressed in (3-78). Before starting to 

determine each coefficient in this equation, the displacement matrix should be established 

with the displacement, velocity and temperature of each node. It is worth noting that the 

arrangement of each component in the displacement matrix is a determinant key in 

defining the location of non-zero components in the coefficient matrices. Accordingly, 

the displacement matrix in our model is defined as below:    

where φu , φu& , ϕu , ϕu&  and ψu , ψu& are respectively the displacement and velocity 

components in the normalized φ, ϕ and ψ directions and T is the temperature for each 

node in our geometry model.   

Employing the above displacement matrix, all the coefficient matrices are determined as 

following. The c1 is a 7×7 matrix in which each component is composed of 3×3 matrices. 

The elements in c1 introduce the elasticity factors into the thermoelastic modeling. The 

non-zero matrices are defined as following: 

 

⎥⎦
⎤

⎢⎣
⎡ Tuuuuuu ψψϕϕφφ &&&  (A-1) 
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where λ and µ are the lame coefficients and can be expressed as below: 

Where E and υ are respectively the Young’s modulus and the Poisson ratio. The α and β 

are both 7×7 matrices, in which each component is composed of 3×1 matrices. These 

matrices establish the thermoelastic coefficients into our model. The non-zero matrices 

are: 

where η is defined in Chapter 3, (3-75).  

The γ1 matrix is a 7×1 matrix and all the elements should be considered as zero in this 

model. The a and da are both 7×7 matrices of scalars as stated in the followings:   
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The imaginary numbers appear in (A-8) are placed in an arrangement to ensure that the 

imaginary and real parts of the eignvalues are swapped. This is needed so that the 

COMSOL3.4 can find the eignvalues easier.      

The next main term is to determine the boundary condition in our model. Three types of 

boundary conditions are available in the multiphysics model in COMSOL which they can 

be applied at the surface of the geometry under study.  

1- Anchored surface: This implies that displacements for a particular surface are zero.  

2- Free surface: This indicates that no normal force is applied to the surface. 

3- Mirror symmetric surface: This can be accomplished by choosing a plane where no 

displacement is allowed perpendicular to this plane while the motion is unconstraint in 

the plane itself. It is worth noting that all of these boundary conditions include a zero heat 

flow condition. For our model, it was assumed that the center of the disk is an anchored 

surface. The general format of boundary condition in COMSOL3.4 is expressed in (A-9). 



 165

uhguquucn T .).( 111 −=+−+∇ γα  where ruh =.  (A-9) 

where c1,α and u are the same matrices as in (A-2) and (A-5) and (A-1). And n is the 

normal vector to the surface of the geometry. For all boundary conditions, γ1, q, r, g 

matrices are set to zero, however h is a 7×7 matrix of scalars to determine the type of 

applied boundaries in the structure. In our model, a circular area with 40µm diameter is 

utilized as a center support. Accordingly, h is defined as in (A-10) for the center support 

area in BAW disk.  
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⎣

⎡

=

0000000
0100000
0010000
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0000100
0000010
0000001

h  (A-10) 

Given the material property of the disk, all the elements in the above matrices were 

evaluated and entered into our multiphysics model in COMSOL3.4. The model is solved 

for the eignvalues of each selected resonant mode, as presented in Chapter 3.  
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APPENDIX B 

MTALAB CODES TO ESTIMATE DESIGN PARAMETERS 

% Estimating km and hm 

function f=findk(k) 

m=3; 

v=0.17686; 

h=k.*(2./(1-v))^0.5; 

f= ((k.*besselj(m-1,k)./besselj(m,k))-m-h.^2/(2*(m^2-1)))... 

 .*((h.*besselj(m-1,h)./besselj(m,h))-m-h.^2/(2*(m^2-1)))... 

 -(m^2)*((h.^2)./(2*(m^2-1))-1).^2; 

figure (1) 

x=0.5:.0001:3; 

semilogy(x,findk(x)); 

figure (2) 

plot(x,findk(x)); 

k1= fzero(@(k) findk(k),2) 

 

% Estimating Ur and Uθ at r=R 

clear all; 

m=3; 

k=2.2990; 

v=0.177; 

R=400.*10^(-6); 

ro=2330; 

h=k.*sqrt(2./(1-v)) 

sie=(besselj(m,k)./besselj(m,h)).*(((2.*k.*besselj(m-1,k)./besselj(m,k))+h^2-
2.*m.*(m+1))./((((h.*besselj(m-1,h))./besselj(m,h))-(m+1)).*2.*m)); 

z=k; 

y=h; 

DIFFZ=(0.5).*(k./R).*(besselj(m-1,z)-besselj(m+1,z)); 

DIFFY=(0.5).*(h./R).*(besselj(m-1,y)-besselj(m+1,y)); 
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UR_R=(R.*DIFFZ+m.*sie.*besselj(m,y)) 

Utheta_R=(-m*besselj(m,z)-R*sie*DIFFY) 

 

% Estimating the effective mass function  

function f=difM(r,theta) 

m=3; 

k=2.299; 

v=0.17686; 

R=400.*10^(-6); 

ro=2330; 

h=k.*sqrt(2./(1-v)) 

i=1; 

sie=(besselj(m,k)./besselj(m,h)).*(((2.*k.*besselj(m-1,k)./besselj(m,k))+h^2-
2.*m.*(m+1))./((((h.*besselj(m-1,h))./besselj(m,h))-(m+1)).*2.*m)) 

%r=r/R (non-dimensionalized) 

z=k.*r./R; 

y=h.*r./R; 

DIFFZ=0.5.*(k./R).*(besselj(m-1,z)-besselj(m+1,z)); 

DIFFY=0.5.*(h./R).*(besselj(m-1,y)-besselj(m+1,y)); 

phi_r1=(R.*DIFFZ+(m.*R./r).*sie.*besselj(m,y)).*cos(m.*theta); 

phi_r2=-(R.*DIFFZ+(m.*R./r).*sie.*besselj(m,y)).*sin(m.*theta); 

phi_theta1=+(-(m.*R./r).*besselj(m,z)-R.*sie.*DIFFY).*sin(m.*theta); 

phi_theta2=+(-(m.*R./r).*besselj(m,z)-R.*sie.*DIFFY).*cos(m.*theta); 

f=((phi_r1).^2+(phi_theta1).^2).*r; 

 

% Estimating the coriolis coupling function  

function f=difBessel(r,theta) 

m=3; 

k=2.2990; 

v=0.17686; 

R=400.*10^(-6); 

ro=2330; 

h=k.*sqrt(2./(1-v)); 
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i=1; 

sie=(besselj(m,k)./besselj(m,h)).*(((2.*k.*besselj(m-1,k)./besselj(m,k))+h^2-
2.*m.*(m+1))./((((h.*besselj(m-1,h))./besselj(m,h))-(m+1)).*2.*m)); 

z=k.*r./R; 

y=h.*r./R; 

DIFFZ=0.5.*(k./R).*(besselj(m-1,z)-besselj(m+1,z)); 

DIFFY=0.5.*(h./R).*(besselj(m-1,y)-besselj(m+1,y)); 

phi_r1=(R.*DIFFZ+(m.*R./r).*sie.*besselj(m,y)).*cos(m.*theta); 

phi_r2=-(R.*DIFFZ+(m.*R./r).*sie.*besselj(m,y)).*sin(m.*theta); 

phi_theta1=(-(m.*R./r).*besselj(m,z)-R.*sie.*DIFFY).*sin(m.*theta); 

phi_theta2=(-(m.*R./r).*besselj(m,z)-R.*sie.*DIFFY).*cos(m.*theta); 

f=(((phi_r1.*phi_theta2)-(phi_r2.*phi_theta1)).*r); 

 

% Estimating the angular gain and effective mass 

clear all; 

close all; 

G1=dblquad(@(r,theta) (difBessel(r,theta)), 0.1*10^(-9), 400*10^(-6), 0, 2*pi); 

M1=dblquad(@(r,theta) (difM(r,theta)), 0.1*10^(-9), 400*10^(-6), 0, 2*pi); 

Ag=G1./(3.*M1); 

Ur=0.9430; 

Ut=0.0705; 

ro=2330; 

R=400e-6; 

h=40*10^(-6); 

M2=(M1*h*ro) 

G2=G1*h*ro 

U=sqrt(Ur^2+Ut^2) 

M3=(M2)*(1/U^2) 

G3=G2*(1/U^2) 

Ag2=G3/(3*M3) 

M4=ro*h*pi*(R^2) 

mcoef=M3/M4; 
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