
   

ABSTRACT 
 
JESSEE, MATTHEW ANDERSON.  Cross-Section Adjustment Techniques for BWR 
Adaptive Simulation.  (Under the direction of Paul J. Turinsky and Hany S. Abdel-Khalik). 
 
 
 Computational capability has been developed to adjust multi-group neutron cross-

sections to improve the fidelity of boiling water reactor (BWR) modeling and simulation. 

The method involves propagating multi-group neutron cross-section uncertainties through 

BWR computational models to evaluate uncertainties in key core attributes such as core k-

effective, nodal power distributions, thermal margins, and in-core detector readings. 

Uncertainty-based inverse theory methods are then employed to adjust multi-group cross-

sections to minimize the disagreement between BWR modeling predictions and measured 

plant data. For this work, measured plant data were virtually simulated in the form of 

perturbed 3-D nodal power distributions with discrepancies with predictions of the same 

order of magnitude as expected from plant data. Using the simulated plant data, multi-group 

cross-section adjustment reduces the error in core k-effective to less than 0.2% and the RMS 

error in nodal power to 4% (i.e. – the noise level of the in-core instrumentation). To ensure 

that the adapted BWR model predictions are robust, Tikhonov regularization is utilized to 

control the magnitude of the cross-section adjustment. In contrast to few-group cross-section 

adjustment, which was the focus of previous research on BWR adaptive simulation, multi-

group cross-section adjustment allows for future fuel cycle design optimization to include the 

determination of optimal fresh fuel assembly designs using the adjusted multi-group cross-

sections. 

 The major focus of this work is to efficiently propagate multi-group neutron cross-

section uncertainty through BWR lattice physics calculations. Basic neutron cross-section 



 

  

 

uncertainties are provided in the form of multi-group cross-section covariance matrices. For 

energy groups in the resolved resonance energy range, the cross-section uncertainties are 

computed using an infinitely-dilute approximation of the neutron flux. In order to accurately 

account for spatial and energy resonance self-shielding effects, the multi-group cross-section 

covariance matrix has been reformulated to include the uncertainty in resonance correction 

factors, or self-shielding factors, which are used to calculate the self-shielded multi-group 

cross-sections used in the lattice physics neutron transport model. This is shown to change 

the U-238 capture cross-section uncertainty contribution to Beginning-of-Life (BOL) lattice 

k-infinity by 14% (i.e. - 0.291% relative standard deviation in k-infinity (self-shielded) 

compared to 0.255% (infinitely-dilute)).  

 Using the reformulated multi-group cross-section covariance matrix, Efficient 

Subspace Methods (ESM) are used to propagate multi-group cross-section uncertainty 

through the lattice physics calculation. ESM algorithms have been developed by H.S. Abdel-

Khalik and P.J. Turinsky to calculate low-rank approximations to large, dense sensitivity and 

covariance matrices used in data adjustment and uncertainty propagation applications. Using 

ESM, the singular value spectrum of the multi-group cross-section covariance matrix reveals 

an effective rank of the order of 103. Using this singular value decomposition of the multi-

group cross-section covariance matrix reduces the number of lattice physics calculations per 

lattice from ~107 to ~103. In addition, a BOL sensitivity analysis using generalized 

perturbation theory at the lattice physics level is shown to further reduce the rank by a factor 

of 5. 
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1. Introduction 

1.1. Importance of BWR Modeling and Simulation 

 High-fidelity computational modeling and simulation plays a critical role in the 

design, licensing, and operation of a nuclear power plant. For Boiling Water Reactors 

(BWRs), core simulators aid in determining the fuel assembly loading pattern (LP) and 

control rod program (CRP) over the planned operating horizon of the plant. Likewise, lattice 

physics codes are used to determine fuel rod loading and the mechanical design of BWR fuel 

assemblies. In addition to these design-based models, safety analysis codes simulate accident 

scenarios, such as Loss-of-Cooling-Accidents (LOCA), to set key design limits as part of the 

plant licensing procedure. Finally, on-line core simulators monitor reactor operation and 

provide support for the successful control and protection of the power plant. The fidelity of 

these four computational models impacts the reactor economy through the introduction of 

design margins (i.e. – distance to design limits) for the fuel assembly and core design. Large 

model prediction uncertainties increase design margins, which in turn, increases fuel cycle 

costs and limits the plant’s power rating. On the other hand, decreasing model prediction 

uncertainties acts to decrease design margins, which beneficially impacts the reactor 

economy through reducing fuel cycle and/or operating cost or the initial capital investment 

for a new nuclear power plant.  

 Understanding the key sources of BWR model prediction uncertainty is important in 

deciding where additional efforts should be undertaken to reduce these uncertainties.  The 

three major sources of BWR model prediction uncertainty can be classified as input data, 
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modeling, and computational uncertainty.  Input data uncertainties include uncertainties in 

basic input data (e.g. - nuclear data) and uncertainties in semi-empirical model parameters 

(e.g. – drift flux parameters in two-phase flow models). For both basic input data and model 

parameters, uncertainties are typically due to experimental measurement inaccuracies. In 

addition to input data uncertainties, modeling uncertainties exist due to either limiting 

computing resources to model the problem at the fundamental level, or the lack of knowledge 

of certain physical phenomena (e.g. – semi-empirical modeling). For example, 3-D few-

group nodal diffusion methods are used in design-based core simulators as compared to a 

detailed 3-D multi-group transport model. Finally, computational uncertainties arise from the 

use of numerical methods to solve the governing system of equations of the computational 

model. These uncertainties include the effects from floating-point arithmetic error, truncation 

error, and residual errors associated with matrix-iterative methods employed by BWR 

computational models. 

1.2. Motivation for Research 

 In the effort to quantify BWR model prediction uncertainty due to input data 

uncertainty, Abdel-Khalik and Turinsky show in [1] that uncertainties in neutron cross-

sections (i.e. – nuclear data characterizing the probabilities of interaction between a neutron 

and the nucleus of an atom) significantly contribute to model prediction uncertainties for a 

BWR core loaded with low-enriched uranium fuel. Furthermore, they propose that BWR 

model prediction uncertainty can be reduced by using collected BWR plant data, referred to 

as core observables, to adjust neutron cross-sections based on their prior uncertainties. Using 
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the adjusted neutron cross-sections in subsequent simulation improves the prediction of core 

attributes (i.e. – computed metrics such as thermal limits that are not directly measured, but 

inferred from the values of the core observables). Increasing the fidelity in core attributes 

predictions is used to a) change the current operating strategy to increase fuel utilization, 

operating flexibility, or plant power rating, b) increase design freedom for future fuel cycle 

strategies, c) enhance future BWR plant design, and d) indicate where future experimental 

efforts should be focused to decrease core attributes uncertainties. This concept of Adaptive 

Core Simulation (ACS) is the continued focus of this work. 

 ACS is classified as a discrete inverse problem commonly referred to as a parameter 

estimation problem or data adjustment problem. These types of problems are closely related 

to the field of sensitivity and uncertainty analysis. Before the objectives of this work are 

presented, a summary of previous work on ACS is given. Following the outline of research 

objectives, previous applications of data adjustment in reactor physics are reviewed along 

with relevant inverse theory methods and methods of sensitivity and uncertainty analysis. 

First, an outline of BWR reactor physics design calculations is provided to facilitate the 

discussion of previous work. 

1.3. Overview of BWR Design Calculations 

 The flow diagram in Figure 1-1 shows the sequence of calculations for BWR reactor 

design. In this diagram, basic neutron cross-section data is provided in Evaluated Nuclear 

Data Files (ENDF) [3]-[4] in the form of point-wise (i.e. - continuous energy) cross-sections 

and resonance parameters used to characterize the sharp energy variation of the cross-section 
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in the resolved resonance energy range and unresolved resonance energy range. This data is 

processed by a cross-section preparation code (e.g. – AMPX [5] or NJOY [6]) into multi-

group cross-section libraries suitable for lattice physics calculations. The energy detail of the 

multi-group cross-section library depends on the resonance treatment of the lattice physics 

code, but is typically ~102 energy groups. The lattice physics code uses the multi-group 

cross-section library to model the time-dependent neutron transport over a 2-D radial slice of 

a BWR fuel assembly (i.e. - lattice). In the lattice physics calculation, self-shielded multi-

group cross-sections are generated for each fuel pin in the fuel assembly based on the fuel pin 

geometry, the moderator density, and number densities of key resonance-absorbing isotopes. 

Using the self-shielded multi-group cross-sections, the 2-D multi-group neutron flux 

distribution is calculated over the fuel lattice. The neutron flux distribution is then used to 

calculate fission and absorption rates in each fuel pin which are in turn used in a fuel pin 

depletion model. This series of calculations is repeated over a series of time steps (i.e. - 

burnup steps) to model the time-dependent neutron transport and nuclide transmutation in a 

BWR lattice. At each time step, the 2-D multi-group neutron flux is used to generate lattice-

averaged few-group cross-sections and in-core detector responses for the core simulator. For 

BWRs, the few-group cross-section library is functionalized in terms of burnup, moderator 

void fraction history, fuel color, and branch condition. 

 The core simulator uses the few-group cross-sections to calculate key core attributes 

and core observables such as Local Power Range Monitor (LPRM) and Traversing Incore 

Probe (TIP) detector readings. Core simulators contain three to four tightly-coupled physics 

models: 1) 3-D few-group coarse mesh neutron diffusion model, 2) two-phase flow heat 
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transfer model, 3) nuclide depletion model, and possibly 4) semi-empirical fuel performance 

model. At each time step, the 3-D few-group neutron flux distribution is determined over the 

entire BWR core. This neutron flux distribution is then used to calculate 3-D power 

distributions, thermal margins, and other core metrics used by core designers and plant 

operators to describe reactor performance. 

 Over the last thirty years, the BWR calculation sequence has reached a stage of 

maturity in sophistication and applicability with advancements in computing power and 

resources. This sequence of calculations is not expected to change in the near-term future for 

advanced BWR reactor designs. Although modeling improvements and refinements are 

continuous, the fidelity of these models should benefit by using adaptive techniques to reduce 

input data uncertainty.  

1.4. Previous Work on Adaptive Core Simulation 

 In the dissertation by Abdel-Khalik [1], the major focus was on the development of 

Efficient Subspace Methods (ESM); algorithms that determine low-rank approximations to 

large, dense matrix operators. For BWR ACS, the sensitivity matrix that maps changes in 

few-group cross-sections to changes in core observables is large (i.e. – 106 by 105) and ill-

conditioned. ESM was used to determine an accurate low-rank approximation to the 

sensitivity matrix using only 102 core simulations. In each simulation, the few-group cross-

sections were stochastically perturbed based on a Gaussian probability distribution. The core 

observable sensitivity profiles along these sampled directions were then used as a basis for 

few-group cross-section adjustment. In the Master’s Thesis of Abdel-Khalik [2], it was 
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observed that small changes in core observables lead to large changes in the adjusted few-

group cross-sections. This ill-posed nature is common among data adjustment problems and 

generally leads to the use of regularization techniques for robust data adjustment. In [2], 

Abdel-Khalik introduces the use of Tikhonov regularization [7] to recast the problem into a 

well-posed one. The Tikhonov regularization parameter is determined experimentally by 

“trial and error” based on the characteristic L-curve for discrete inverse problems [8]. The 

few-group cross-section covariance matrix used to constrain the few-group cross-section 

adjustment was quantified by propagating the multi-group cross-section covariance matrix 

through the lattice physics calculation. 

 In the paper by the author, Turinsky, and Abdel-Khalik [9], the few-group cross-

section covariance matrix was reevaluated using a refined lattice physics model and a new 

multi-group cross-section covariance matrix that contained uncertainties to key isotopes such 

as gadolinium and zirconium that were not provided in the original work. ESM was used to 

quantify uncertainty in core attributes while minimizing the number of lattice physics 

calculations and core simulations to 103 and 102, respectively. Few-group cross-section 

uncertainties were calculated for only one lattice case—that is, a set of burnup dependent 

few-group cross-sections for a given fuel color and thermal hydraulic condition. The few-

group cross-sections uncertainties for other lattice cases were assumed to be fully correlated 

to the evaluated lattice case. 

 In the Master’s thesis of Briggs [10], few-group cross-sections were adjusted based 

on assumed measured observables from multiple fuel cycles. This multi-cycle plant adaption 

used the ESM approach in [1], and accounted for the change in Beginning-of-Cycle (BOC) 
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burnt-fuel isotope concentrations due to the few-group cross-section adjustment. The 

sensitivities of core observables with respect to few-group cross-sections from previous fuel 

cycles were utilized in the plant adaption rather than just a single reload cycle. 

1.5. Scope of Research 

 For this work, it is the author’s goal to develop the capability to adjust multi-group 

cross-sections used in the lattice physics calculation for BWR ACS rather than few-group 

cross-sections used in the core simulator calculation. In the ideal case, the cross-section 

adjustment is performed at the ENDF level so that a wide range of “experiments” are 

included (e.g. – criticality experimental benchmarks, and plant data from other reactor types). 

However, this approach is impractical due to the vast amount of evaluated nuclear data and 

varying degree of cross-section representations. Multi-group cross-section libraries are 

generally prepared with the end-application in mind, such as light water reactor multi-group 

cross-section libraries or fast reactor cross-section libraries. Therefore, multi-group cross-

section adjustment still allows for plant data from numerous BWR plants to be utilized to 

increase the robustness of the adaption. 

 Multi-group cross-section adjustment also impacts fuel assembly design for future 

fuel cycles. Using plant data from the current fuel cycle (and possibly from previous fuel 

cycles and/or other BWRs), the multi-group cross-sections are adjusted and their uncertainty 

decreased. Using the adjusted multi-group cross-sections and their decreased uncertainties, 

the fuel rod loading of future fuel assemblies and core LP and CRP are now optimized so that 

predicted core attributes are known with less uncertainty. In the previous work, only the few-
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group cross-sections were adjusted. This restricted the scope of future fuel cycle optimization 

to the core level rather than the fuel assembly level, or more specifically the lattice level. In 

other words, the few-group cross-sections adjusted during plant adaption must be reused in 

future fuel cycle design. Future fuel cycles must then utilize the same fuel assembly designs 

as used in previous fuel cycles. Although desirable with regards to equilibrium fuel cycle, 

this restriction in design freedom opposes recent gains in fuel cycle optimization that 

introduces multiple fresh fuel assembly designs to the reload cycle [11], and potentially 

offsets the improvement in model fidelity. 

 Multi-group cross-section adjustment also influences the mechanical design of the 

fuel assembly (e.g. - fuel pin radius or fuel pin pitch). However, geometric changes in the 

fuel assembly influence the unit cell calculations in the lattice physics model. As explained 

later, the unit cell calculation is modified to propagate resonance parameter uncertainties 

through the lattice physics calculation. For this work, the use of adjusted multi-group cross-

sections for future fuel cycle optimization is only applicable for lattices with the same 

geometry (e.g. - GE14 10 x 10 lattice designs [12]). Extension of the adjusted multi-group 

cross-sections to mechanical fuel design optimization is discussed in Section 3.2. 

 The multi-group cross-section adjustment addresses two important issues in the 

previous work on ACS. First, the few-group cross-section covariances are now quantified for 

a larger set of fuel colors and thermal hydraulic conditions. This provides a more 

representative measure of uncertainty for the few-group cross-sections used by the core 

simulator model. Using the ESM-based approach, the number of lattice physics calculations 

required is approximately N*103 where N is the number of lattice cases and the number 103 
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depends on the number of degrees of freedom associated with the multi-group cross-section 

covariance matrix. In previous work by the author, Abdel-Khalik, and Turinsky [9], N was 

assumed equal to 1, but is realistically ~103 for current core designs. Since 106 lattice physics 

calculations are computationally intractable, one of the objectives of this work is to 

determine the number of active degrees of freedom (i.e. – multi-group cross-sections with 

high uncertainty and high sensitivity) that are passed through the lattice physics calculation 

and core simulation. This is performed using both the ESM approach and sensitivity and 

uncertainty analysis of the lattice physics calculation using generalized perturbation theory 

(GPT). This approach reduces the number of lattice physics calculations per lattice case by 

nearly an order of magnitude. For this work, 10 lattice cases are chosen to provide a better 

understanding of the few-group cross-section uncertainty for the large range of lattice cases 

required by the core simulator. 

 Second, core attributes uncertainties due to important resonance parameters’ 

uncertainties are more accurately quantified. In the previous work on ACS, the multi-group 

cross-section covariance libraries (44GROUPV5COV and 44GROUPANLCOV [13]) were 

calculated using the multi-group cross-section preparation code PUFF-III [14].1 PUFF-III 

calculates multi-group cross-section covariance matrices for resonance-absorbing isotopes 

using an infinitely-dilute approximation. Therefore, these covariance matrices apply only to 

infinitely-dilute multi-group cross-sections, and were not previously treated as such. For this 

work, resonance parameter uncertainties are provided for key resonance-absorbing isotopes 

                                                 

1 The original covariance library 44GROUPV5COV did not contain uncertainty data for important elements 
such as gadolinium and zirconium. The covariance library 44GROUPANLCOV contains approximate 
covariance evaluations for these elements produced by Argonne National Laboratory (ANL) [15]. 
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(e.g. U-238, Pu-239, Pu-240, Pu-242, Am-241, and Gd isotopes), and their uncertainty 

contribution is quantified accounting for spatial and energy resonance self-shielding. 

 Similar to previous work, it is assumed that BWR model prediction uncertainties are 

dominated by neutron cross-section uncertainties. The uncertainty in key core attributes due 

to neutron cross-section uncertainty is comparable in magnitude to the observed 

discrepancies between experimental measurements and plant predictions. Furthermore, the 

uncertainty quantification calculations using a simplified fuel pin model are comparable in 

magnitude to the same calculations using the lattice physics model and core simulator. These 

consistent comparisons validate the claim that neutron cross-section uncertainties dominate 

the uncertainties due to modeling errors. 

 In the following section, historical approaches to plant adaption are reviewed along 

with previous applications of data adjustment in reactor physics. Following the literature 

review, this thesis is organized into four sections. First, methods of uncertainty analysis 

based on sensitivity analysis and data adjustment are provided for BWR reactor physics 

calculations in Chapter 2. In Chapter 3, the generation of the few-group cross-section 

covariance matrix is discussed. This includes a detailed review of the modified resonance 

self-shielding model implemented into the lattice physics code TRITON [16] to propagate 

resonance parameter uncertainties to few-group cross-section uncertainties. In Chapter 4, 

results of numerical experiments are provided to show the improvement in BWR modeling 

fidelity based on the proposed adjustment techniques. This is followed by concluding 

remarks and recommendation for future work in Chapter 5. 
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1.6. Literature Review 

 The purpose of this work is to increase the fidelity of BWR computational models 

through the use measured plant data to adjust multi-group cross-sections. Measured BWR 

plant data is provided in the form of LPRM and TIP detector readings. For a typical GE 

BWR/6 reactor core, a string of four LPRM detectors is positioned in the center of four fuel 

assemblies, in the opposite corner of the control rod blade (see Figure 1-2). The four 

detectors are positioned at different elevations to monitor the axial power profile. The 

average of the LPRM signals (i.e. – Average Power Range Monitor (APRM) readings) are 

displayed in the control room panels and a subset of these readings are input to the reactor 

protection system. LPRMs are recalibrated every 5 to 6 weeks using TIP measurements [17]. 

TIP measurements are recorded at 100-150 different axial elevations to recalibrate both the 

LPRM measurements and the on-line core simulator predictions. A BWR typically uses 4 to 

5 TIP machines to service one quarter of the detector channels along with a common channel 

for calibration. The TIP measurement channels coexist along the LPRM detector strings. 

  Since on-line core simulators employ 3-D coarse-mesh nodal methods, the LPRM 

detector response is reconstructed from the node-averaged powers or fluxes of the 

surrounding nodes (typically 4 to 8). One of the original published papers for on-line core 

simulator adaption was by Crowther in 1981 for the GE 3D Monicore core monitoring 

system. In [18], Crowther uses a nodal k-infinity correction technique to adjust coarse-mesh 

coupling coefficients in the FLARE type [19] nodal diffusion calculation. This correction is 

used to improve the agreement between the on-line core simulator prediction and the 

measured TIP data within a specified tolerance. 
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 Although current BWR adaption methods are highly proprietary with few published 

papers, they generally employ similar semi-empirical adjustment techniques verified through 

operating experience [20]. These approaches differ from the proposed adaptive method of 

uncertainty-based cross-section adjustment. The proposed approach, formally presented in 

Section 2.3, requires 1) the sensitivity matrix mapping changes in predicted LPRM readings 

with respect to changes in multi-group cross-sections, 2) the prior covariance matrices of the 

multi-group cross-sections and measured LPRM readings2, and 3) the Generalized Linear 

Least Squares (GLLS) algorithm for cross-section adjustment. Therefore, the proposed 

adaptive method is rooted in a rigorous mathematical formulation that has been previously 

applied in other fields of nuclear engineering. 

 Data adjustment methods have been used extensively for fast reactor design, 

criticality safety, and reactor shielding. In the 1970s, Weisbin and Marable et al. ([21]-[22]) 

developed cross-section adjustment methods for fast reactor design in conjunction with the 

development of the FORSS code system for sensitivity and uncertainty analysis [23]. In [22], 

measured integral parameters from fast reactor critical benchmark experiments are used to 

adjust multi-group cross-section libraries used for liquid metal fast breeder reactor design. 

Covariance data for both the multi-group cross-sections and the integral experiments are used 

in the data adjustment. Similar to other work on fast reactor analysis [24]-[27] and recent 

parametric studies for Generation IV reactor concepts by Aliberti et al [28], only a few 

number of “observables” or integral parameters (e.g. multiplication factor and breeding ratio) 

                                                 

2 In a more general formalism of the generalized linear least squares problem, covariance information exists 
between the input data and output data. For BWR ACS, the prior multi-group cross-section covariance matrix is 
uncorrelated to the prior measured LPRM covariance matrix.  
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are used to consistently adjust a large number of multi-group cross-sections. Because of the 

small number of observables and that the benchmark experimental system has negligible 

burnup effects, cross-section sensitivities are calculated using first-order eigenvalue 

perturbation theory (FOEPT) [29] and generalized perturbation theory (GPT) [30]-[34]. For 

this work, these methods have limited applicability for three reasons. First, the number of 

observables (~105 LPRM detector readings) is too large to employ a conventional GPT-based 

approach. Second, BWR design calculations, as shown in Figure 1-1, are loosely-coupled 

multi-level nonlinear computational models. Although the theory of adjoint-based sensitivity 

analysis for nonlinear models is well-developed [35]-[36], it requires considerable effort to 

“back-fit” existing forward models with linearized first-order adjoint capability. Finally, the 

computational run-time to determine the first-order adjoint is of the same order as to solve 

the forward model. In other words, 105 adjoint calculations are just as infeasible as 106 

forward calculations in a conventional forward sensitivity study. 

 GPT-based and FOEPT-based sensitivity methods are reasonably employed to model 

critical benchmark experiments because computational models can closely emulate the 

physics of the experiment. For more complicated experiments, approximation techniques 

have been developed that improve the accuracy of data adjustment for a faster simplified 

model. These so-called bias factor (BF) and generalized bias operator (BO) methods have 

been used extensively in the past [37]-[38]. However, these methods generally require a 

thorough testing of the simplified model that is used to approximate the more sophisticated 

model and generally require expert judgment to interpret the quality of the adjustment. For 

this work, it is the authors attempt to use the same computational models in the sensitivity 
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and uncertainty analysis as in the best-estimate analysis rather than employ BF and BO 

approaches. 

 In the last 15 to 20 years, automated differentiation (AD) tools have been developed 

to calculate sensitivity matrices used for data adjustment. Two main developments have been 

the OpenAD/F software [39] by Argonne National Laboratory and the Gradient Enhanced 

Software System (GRESS) [40] used in the TSUNAMI sensitivity and uncertainty analysis 

code package from Oak Ridge National Laboratory [41] . AD tools generally applied to the 

same sets of problems as the previous outlined work. That is, for experiments with few input 

data and many observables or vice versa. Since sensitivity generation is fully automated, AD 

tools can be applied to highly sophisticated models or sequence of models. For this work, AD 

tools were not explored because of the major code modification necessary for the AD 

compiler. 
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Figure 1-1 Computational sequence for BWR reactor physics design calculations.

Evaluated Nuclear Data (ENDF)  
-Point-Wise Cross-Sections 

-Resonance Parameters 

CROSS-SECTION PREPARATION CODE 
(AMPX or NJOY) 

-Multi-Group Cross-Sections 
-Resonance Parameters 

-Bondarenko Interpolation Tables 

LATTICE PHYSICS CODE 
(TRITON or CASMO) 

-Fuel Pin Neutronic Model 
-Fuel Lattice Neutronic Model 

-Fuel Pin Depletion Model 

-Lattice-averaged few-group cross-sections 
(Burnup, void, color, branch, reaction type, 

isotope dependent) 

-Core Observables (LPRM/TIP Detector 
Readings, keff = 1) 

-Core Attributes (Thermal Margins, Nodal 
Power Distributions) 

CORE SIMULATOR CODE 
(FORMOSA-B) 

-Core-wide Neutron Diffusion Model 
-Two-Phase Flow Subchannel Model 

-Coarse-Mesh Micro-Depletion Model 
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Figure 1-2 Detectors Layout (courtesy of Abdel-Khalik). 
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2. Mathematical Methods for BWR Adaptive Simulation 

 

 This chapter outlines the mathematical theory and methods for BWR ACS. The two 

main methods employed are uncertainty analysis based on first-order sensitivity analysis (i.e. 

– the “sandwich rule”), and the generalized linear least-squares approach to inverse 

problems. For this work, these methods are referred to as the uncertainty propagation method 

and data adjustment method, respectively. A review of the uncertainty propagation method is 

given in Section 2.2, and the data adjustment method is presented in Section 2.3 based on 

Tarantola [42]. In each section, the theory of each method is outlined followed by the 

implementation for BWR ACS.  

2.1. Mathematical Notation 

 The following notation is used consistently throughout this work. Any modified or 

auxiliary notation is provided in subsequent chapters if needed. 

C  Matrix. Subscripts are used for descriptiveness (e.g. - FGC  - “few-group 
cross-section covariance matrix”). Superscripts are used for matrix 

operations (e.g. - 
T

FGC  or 
1

FG

−

C ).  

,i jC  the i-th row and j-th column element of matrix C . Descriptive subscripts 

are listed before element indices (e.g. , ,FG i jC ). 

,i ∗C  the i-th row vector of matrix C . 

, j∗C  the j-th column vector of matrix C . 
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x  Vector. Subscripts are used for descriptiveness and superscripts are used 
for vector operations (e.g. - T

FGx ). 

kx  the k-th element of vector x . Descriptive subscripts are listed before the 
element index (e.g. ,FG kx ). 

2, ,b xα  Scalars. Greek letters are reserved for cross-sections unless noted 
otherwise. 

( )y x=Θ  Nonlinear operator. Subscripts are used for descriptiveness. Parentheses 
are used to list the independent variables that are “mapped” by the 
operator (e.g. - ( )z x y=Θ ,  - “operator Θ  maps x  and y  to z ”). 
Nonlinear operators are frequently referred to simply as Θ , where the 
notation for the domain and range of the operator is suppressed. 

,〈⋅ ⋅〉  Inner product.  (e.g. - , Tx y x y〈 〉 =  and , Tx y x y〈 〉 =
C

C  for symmetric, 

positive definite C ). 

⋅  Norm.  Matrix norms are induced vector norms unless noted otherwise. 

Subscripts are used in traditional manner (e.g. - 
p

⋅ - p-norm and  
2 ,x x x= 〈 〉
A A

 for symmetric, positive definite A ). 2-norm is implied 
unless noted otherwise. 

 

2.2. Uncertainty Propagation 

2.2.1. Theory 
 

 The uncertainty propagation method known as the “sandwich rule” is used to 

calculate the covariance matrix of a set of observables given a) the covariance matrix of the 

input parameters, and b) the sensitivity matrix characterizing the change in observables with 

respect to the change in input parameters [43]. The sandwich rule is derived from the general 

case of uncertainty propagation concerning a nonlinear computational model with input 
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parameters uncertainties described by possibly non-Gaussian probability density functions 

(PDFs). The mathematical expectation of an arbitrary function ( )g x  of a vector of 

continuous input parameters x  is given as [44]: 

 

 
1 2[ ( )] ( ) ( )

( ) ( )

nE g x dx dx dx g x f x

dx g x f x

∞ ∞ ∞

−∞ −∞ −∞

∞

−∞

=

=

∫ ∫ ∫
∫

 (2.1) 

 

where [ ( )]E g x  is the expected value of ( )g x  and ( )f x  is the multivariate PDF that 

characterizes the input parameter uncertainty. Introducing the computational model as a 

nonlinear operator: 

 

 ( )y x=Θ  (2.2) 

 

where x  is an n-th dimensional vector of input parameters, and y  is an m-th dimensional 

vector of observables, then the expected mean and expected covariance of the observables is 

given as: 

 

 
[ ] ( ) ( )

1, 2, ,
i iE y dx x f x

for i m

∞

−∞
=

=
∫ Θ

…
 (2.3) 
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, [( [ ])( [ ])]

( ( ) [ ])( ( ) [ ]) ( )

, 1, 2,

i j i i j j

i i j j

E y E y y E y

dx x E y x E y f x

for i j m

∞

−∞

= − −

= − −

=
∫

C

Θ Θ

…

 (2.4) 

 

In Eq. (2.3) and Eq. (2.4), ( )ixΘ  denotes the i-th observable of the nonlinear operator ( )xΘ . 

The first-order approximation of the computational model is now introduced as:  

 

 0 0( ) ( )y x x x≅ + −Θ Θ  (2.5) 

 

where 0x  stores the mean values of the input parameters and Θ  is the model sensitivity 

matrix, defined as: 

 

 

 
0

,

1, 2, ,
1, 2, ,

i
i j

j x

i my for
j nx
=∂

=
=∂

Θ  (2.6) 

 

Substituting the first-order approximation of the computational model into Eq. (2.3), the 

mean values of the observables 0y  is derived as: 
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,0, 0 0,
1

,0 0,
1

,0 0, 0, 0
1

[ ( ) ( )] ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

n

i ji i j j
j

n

i ji j j j j
j

n

i ji j j i
j

y dx x x x f x

x dx f x dx x x f x

x x x x

∞

−∞
=

∞ ∞

−∞ −∞
=

=

= + −

= + −

= + − =

∑∫

∑∫ ∫

∑

Θ Θ

Θ Θ

Θ Θ Θ

 (2.7) 

 

 0 0( )y x⇒ =Θ  (2.8) 

 

Likewise, the observables covariance matrix yC  is derived as: 

 

 

, , , ,0, 0,
1 1

, , 0, 0,
1 1

, , , ,
1 1

[ ( )][ ( )] ( )

( , )( )( )

n n

y i j i k j lk k l l
k l

n n

i k j l k l k l k k l l
k l

n n

i k j l x l k
k l

dx x x x x f x

dx dx f x x x x x x

∞

−∞
= =

∞ ∞

−∞ −∞
= =

= =

= − −

= − −

=

∑ ∑∫

∑ ∑ ∫ ∫

∑ ∑

C Θ Θ

Θ Θ

Θ Θ C

 (2.9) 

 

 
T

y x⇒ =C ΘC Θ  (2.10) 

 

where xC  is the input parameters covariance matrix. Eq. (2.10) is referred to as the 

“sandwich rule” and is used to propagate cross-section uncertainties for BWR ACS. Using 

the derivation above, the following statements can be made regarding model nonlinearity and 

the observables PDF: 
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1) If Θ  is linear and the input parameters PDF is Gaussian, then the observables PDF 
is Gaussian and is fully characterized by 0y  and xC determined by Eq. (2.8) and 
Eq. (2.10). 

 
2) If Θ  is linear and the input parameters PDF is non-Gaussian, then the first and 

second moments (i.e. mean and covariance) of the observables PDF are determined 
exactly by Eq. (2.8) and Eq. (2.10). However, 0y  and xC do not fully characterize 
the observables PDF due to the nonzero higher order moments of the input 
parameters PDF. 

 
3) If Θ  is nonlinear and the input parameters PDF is Gaussian, then the first and 

second moments of the observables PDF are approximately determined by Eq. (2.8) 
and Eq. (2.10). If Θ  has weak nonlinearity effects, then the Gaussian PDF 
characterized by 0y  and xC  is an accurate approximation of the observables PDF. 

 
4) If Θ  is nonlinear and the input parameters PDF is non-Gaussian, then the first and 

second moments of the observables PDF are approximately determined by Eq. (2.8) 
and Eq. (2.10). Further calculations are necessary to determine more accurate first 
and second moments of the observables PDF and possibly important higher order 
moments. 

 
 
 For BWR ACS, only the mean value of cross-sections and their covariances are 

provided in ENDF cross-section files. Cross-section uncertainty contains both stochastic 

errors due to statistical counting uncertainties in cross-section measurements and systematic 

errors (i.e. operator errors) that are usually harder to estimate [45]. More understanding of the 

systematic errors is necessary before characterizing the cross-section PDF as Gaussian. As 

shown in later sections, the lattice physics computational model and core simulator model 

have very small nonlinearity effects. Therefore, the application of the sandwich rule for 

BWR ACS accurately determines the first and second moments of the core observables (or 

core attributes) PDF. The first and second moments can be used to calculate a Gaussian PDF 
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that closely approximates the exact core observables PDF assuming that the systematic errors 

in cross-section measurements are small. 

2.2.2. Implementation 
 

 For BWR ACS, the uncertainty propagation method outlined above is used to 

propagate cross-section covariance data through each stage of the BWR calculation sequence 

shown in Figure 1-1. Using Eq. (2.10), the following relationships are derived: 

 

 
T

MG XP ENDF XPC = S C S  (2.11) 

 

 
T

FG LP MG LPC = S C S  (2.12) 

 

 
T

CO CS FG CSC = S C S  (2.13) 

 

 In Eqs. (2.11)-(2.13), ENDFC  is the ENDF cross-section covariance matrix, XPS  is the 

cross-section preparation code sensitivity matrix, MGC  is the self-shielded multi-group cross-

section covariance matrix, LPS  is the lattice physics sensitivity matrix, FGC  is the few-group 

cross-section covariance matrix, CSS  is the core simulator sensitivity matrix, and COC  is the 

core observables covariance matrix. The sizes of these matrices are approximately 106 x 106, 

106 x 107, 107 x 107, 107 x 106, 106 x 106, 106 x 105, and 105 x 105 respectively. It is evident 
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that these equations are not used directly because of a) the size of the various matrices, b) the 

computational burden of each matrix multiplication, and c) the computational burden of 

evaluating each sensitivity matrix. In addition, conventional forward and adjoint sensitivity 

methods are not used due to the storage and computational burden of both approaches. For 

this work, Efficient Subspace Methods are used as developed by Abdel-Khalik in [1].  

2.2.3. ESM Implementation  
 

 Efficient Subspace Methods (ESM) calculate accurate low-rank approximations for 

sensitivity and covariance matrices using singular value decomposition (SVD). ESM only 

requires the action of the sensitivity matrix operating on a vector (i.e. – matrix-vector 

product) and possibly the action of the transpose of the sensitivity matrix operating on a 

vector (i.e. – transpose matrix-vector product). One possible method to calculate a matrix-

vector product is by the forward perturbation approach. That is, given any vector nq R∈  and 

computational model Θ , vector mq R∈Θ  is calculated as: 

 

 0 0( ) ( )x q xq ε
ε

+ −
≅
Θ ΘΘ  (2.14) 

 

where the sensitivities are evaluated at 0x . The transpose matrix-vector product for the 

sensitivity matrix is referred to as ( )
T

pΘ  for some input vector mp R∈  and is commonly 

calculated using first-order adjoint methods [36].  
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 Throughout this work, the following definitions for singular value decomposition are 

used from [46]1: 

 

 , ( ) ,m x n rank r r n m= < <Θ Θ  (2.15) 

 SVD: 
T

m xnm xn m x m n x n=Θ U Σ V  (2.16) 

 Thin SVD: 
T

n xnm xn m x n n x n=Θ U Σ V  (2.17) 

 Compact SVD: 
T

r x rm x n m xr r x n=Θ U Σ V  (2.18) 

 Truncated-SVD:
T T

t xt tt m xt t x n t t= =Θ U Σ V U Σ V  (2.19) 

 

where the truncated-SVD tΘ  is rank-t, where  t < r, and is the minimizer of 

 

 
2

min , ( )t for any with rank t= − =
A

Θ Θ A A A  (2.20) 

 

The 2-norm error in tΘ  is equal to the t+1-singular value of Θ  (i.e. - 1, 1t t+ +Θ ). ESM 

determines the truncated-SVD of Θ  provided that the matrix-vector product and the 

                                                 

1 Rank can be defined here as exact mathematical rank or numerical rank.  For BWR ACS, only a few singular 
values and singular vectors of the sensitivity and covariance matrices are needed since the singular values 
relative to the largest singular value decrease in magnitude rapidly ([1] and [9]). Therefore, the use of rank in 
this work implies the number of singular values and singular vectors used in the calculation unless noted 
otherwise. 
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transpose matrix-vector product are available.2 Since the transpose matrix-vector product is 

unavailable for both the lattices physics model and the core simulator model, the ESM 

approach utilizes the truncated-SVD of the self-shielded multi-group cross-section 

covariance matrix to minimize storage and calculation burden. Introducing the truncated-

SVD of MGC  with t-singular values as: 

 

 ,, ,

T
MG tMG MG t MG t≅C U Σ U  (2.21) 

 

then the few-group cross-section covariance matrix FGC  is given as (cf. - Eq. (2.12)): 

 

 
,, ,

T
FG LP MG LP

T T
MG tLP MG t MG t LP

=

≅

C S C S

S U Σ U S
 (2.22) 

 
1/ 2 1/ 2

, ,, ,

, ,

( )( )T
MG t MG tFG LP MG t LP MG t

T
LP t LP t

=

=

C S U Σ S U Σ

R R
 (2.23) 

 

Using this approach, FGC  is calculated with t matrix-vector products of LPS  (i.e. - 

1/ 2
,,( )MG tLP MG tS U Σ ). The matrix ,LP tR  denotes the matrix storage of the t matrix-vector 

                                                 

2 In the original development of ESM in [1], Abdel-Khalik distinguishes the exact transpose matrix-vector 
product from an auxiliary transpose matrix-vector product that spans the subspace of the right-singular vectors 
with nonzero singular values (see . The former can be formally derived by the first-order adjoint equations for 
each of the m observables while the latter requires expert judgment as to where the dominant subspace 
“projection” occurs in each computational model. The reader is referred to Section A.V (pp. 179-194) of [1] for 
further detail on the transpose vector product approximation.  
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products. Since there are ~106 few-group cross-sections, the matrix-matrix multiplication 

, ,
T

LP t LP tR R  is impractical. However, important elements of FGC  (e.g. – diagonal elements), 

are calculated by: 

 

 , ,, , ,
1

i k j ki j

t

LP t LP tFG
k=

=∑C R R  (2.24) 

 

 The matrix ,LP tR  is directly used to calculate the core observables covariance matrix. 

Given the truncated-SVD of ,LP tR  with rank-t2, which is less than rank-t:  

 

 2 22, , ,,

T
LP t LP t LP tLP t≅R U Σ Ψ  (2.25) 

 

then COC  is calculated as (cf. - Eq. (2.13)): 

 

 
, ,

T
CO CS FG CS

T T
LP t LP tCS CS

=

=

C S C S

S R R S
 (2.26) 

 2 2 2 22 2

2 2

, , , ,, ,

, ,

( ) ( )
T T

LP t LP t LP t LP tCO CS LP t CS LP t

T
CS t CS t

=

=

C S U Σ Ψ Ψ S U Σ

R R
 (2.27) 
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In Eq. (2.27), COC  is calculated with t2 matrix-vector products of CSS . Since the right 

singular vectors 2,LP tΨ  are not needed in Eq. (2.27) (i.e. - 2 2, ,
T
LP t LP t =Ψ Ψ I ), matrix 2,CS tR  

stores only 22 ,,( )LP tCS LP tS U Σ . However, 2,LP tΨ  is needed for data adjustment and is 

explained in Section 2.3.2. Important elements of COC  are calculated by: 

 

 
2

2 , 2 ,, , ,
1

i k j ki j

t

CS t CS tCO
k=

=∑C R R  (2.28) 

 

 In summary, the ESM approach of uncertainty propagation for BWR ACS requires 1) 

the calculation of the truncated-SVD of MGC , 2) the selection of rank-t, 3) t-matrix vector 

products of LPS , 4) the truncated-SVD of ,LP tR , 5) the selection of rank-t2, and 6) t2  matrix-

vector products of CSS . These steps are outlined in more detail in Chapter 3. 

2.3. Data Adjustment 

2.3.1. Theory 
 

 The data adjustment method for BWR ACS follows the generalized linear least-

square approach given in [42]. The following information about the input parameters and 

observables is given a priori: 

 

0x  prior input parameters 
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xC  prior input parameters covariance matrix 

my  prior observables (i.e. - measured observables) 

myC   prior observables covariance matrix (i.e. - the uncertainty in the 
measured observables). 

( )y x=Θ  the computational model 

 

The goal is to adjust 0x  to a new value, denoted x , that minimizes3: 

 

 
2 2

11 0min{ ( ) }
m

m xx y
x y x x x −−= − + −

CC
Θ  (2.29) 

 

Using the first-order approximation to the nonlinear computational model Θ : 

 

 0 0( )y y x x≅ + −Θ  (2.30) 

 

then Eq. (2.29) becomes: 

 

 
2

2
10 0 01min{ ( ) }

m

m xx y
x y y x x x x −

−= − − − + −
CC

Θ  (2.31) 

 

                                                 

3 In this formulation, the prior input parameters uncertainty is uncorrelated to the prior observables uncertainty. 
This a valid assumption for BWR ACS, because neutron cross-sections are measured independently from 
measured plant data. Some formulations consider nonzero correlations between the prior input parameters 
uncertainty and prior observables uncertainty. In addition, other formulations consider only the prior 
observables uncertainty and the second term in Eq. (2.31) is not considered.  
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The solution to Eq. (2.31) is given in [42] as:  

 

 

1 1 1

0 0

0 0

1 1

1

1

( ) ( )

( ) ( )

( )

m m

m

T T

y x y m

T

x y x

T

y x

x x y y

y x y x x

− − −

− −

−

−

= + + −

= ≅ + −

= +

=

Θ C Θ C Θ C

Θ Θ

C Θ C Θ C

C ΘC Θ

 (2.32) 

 

where x  is the posterior input parameters, y  is the posterior observables, xC  is the posterior 

input parameters covariance matrix, and yC  is the posterior observables covariance matrix. 

The posterior values in Eq. (2.32) are determined by the normal equation solution of the 

generalized linear least-squares equation. 

2.3.2. ESM Implementation 
 

 For BWR ACS, the goal is to adjust the set of self-shielded multi-group cross-

sections to minimize the disagreement between measured core observables and predicted 

core observables.  The following information is given a priori: 

 

0MGx  prior self-shielded multi-group cross-sections 

0FGx  prior lattice-averaged few-group cross-sections 

MGC  prior self-shielded multi-group cross-sections covariance matrix 

mCOy  prior core observables (i.e. - measured observables) 
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mCOC   prior core observables covariance matrix (i.e. - the uncertainty in the 
measurements of core observables). 

LPΘ  lattice physics computational model 

CSΘ  core simulator computational model 

0COy  prior core observables as predicted by computational model 

n dimension of 
0MGx  (~107)  

m dimension of 
mCOy  (~105) 

 

The first-order approximation to the computational model is given as: 

 

 
0 0

( )CS LPCO CO MG MGy y x x= + −S S  (2.33) 

 

where LPS  and CSS  are the sensitivity matrices of the lattice physics model and core 

simulator model respectively. The data adjustment problem is now given as (cf. – Eq. (2.31)): 

 

 
0 0 0

2 2
11min{ ( ) }

m
MG m

CS LPMG CO CO MG MG MG MGx MGCO
x y y x x x x −−= − − − + −

CC
S S  (2.34) 

 

where MGx  is the posterior self-shielded multi-group cross-sections. Eq. (2.34) represents an 

ill-posed data adjustment problem for the following two reasons. First, the prior self-shielded 

multi-group cross-sections covariance matrix MGC  is replaced by its truncated-SVD (i.e. - 

,, ,

T

MG tMG t MG tU Σ U ), so 
1

MG

−

C  does not exist. The second term in Eq. (2.34) is now redefined as 
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0 0

†( ) ( )MG MG MG MGMG
Tx x x x− −C , where the Moore-Penrose pseudoinverse matrix of MGC  has 

been introduced (i.e. - 
† 1

,, ,

T

MG tMG MG t MG t

−

C U Σ U ). Introducing the pseudoinverse of MGC  leads 

to an infinite number of possible solutions for the data adjustment problem. To ensure that 

the least-squares solution is unique (i.e. – well-posed), the self-shielded multi-group cross-

section adjustment is constrained to the subspace spanned by the t singular vectors of ,MG tU . 

Second, LPS  and CSS  are ill-conditioned (i.e. – small singular values) and 
mCOy  contains 

inherent noise that is several orders of magnitude larger than the small singular values 

associated with the ill-conditioned sensitivity matrices. This can lead to unphysical cross-

section adjustments along singular vectors corresponding to the small singular values of the 

sensitivity matrices. Regularization techniques need to be employed to recast the ill-

conditioned, ill-posed data adjustment problem into a well-posed one.. 

 For BWR ACS, the following modifications are made to Eq. (2.34) to produce a well-

posed data adjustment problem: 
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(2.35) 

 

where ,( )MG tR U  represents the range of matrix ,MG tU  and have introduced α2 the Tikhonov 

regularization parameter [7]. The first term on the right-hand side of Eq. (2.35) is referred to 
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as the misfit chi-square 2
mχ , and the second term is referred to as the regularization chi-

square 2
rχ . The n by n matrix 

1

mCO
−

C  is replaced with its pseudoinverse 
†

mCOC  by introducing 

the following compact SVD of the prior core observables covariance matrix:4 

 

 
† 1

mm m m

mm m m

T
COCO CO CO

T

COCO CO CO

−

=

=

C U Σ U

C U Σ U
 (2.36) 

 

Because the self-shielded multi-group cross-section adjustment 
0MG MGx x−  is constrained to 

,( )MG tR U , the following change in variables is introduced: 

 

 
0

1/ 2

, , ( )
T

MG MG MGMG t MG tz x x
−

= −Σ U  (2.37) 

 
0

1/ 2

,,MG MG MGMG tMG tx x z= +U Σ  (2.38) 

 

where MGz  is defined as the data adjustment vector. From Eq.(2.37), the j-th element of 

vector MGz  represents the magnitude of self-shielded multi-group cross-section adjustment 

along the j-th singular vector of ,MG tU , divided by the square root of the j-th singular value. 

                                                 

4 mCOC  is treated as a diagonal matrix. With real plant data, mCOC  is expected to be block diagonal, with each 
block containing measurement correlations because of periodic LPRM/TIP calibration [17]. Therefore, n2 
storage requirement (with n ~ 105) is not expected. The pseudoinverse representation is adopted to plan for any 
future rank deficiency in the prior core observables covariance matrix because of measurement correlations. 
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The physical interpretation of this change in variables is explained in the following example. 

Suppose that MGC  is a diagonal matrix where the diagonal elements represent the variance of 

each self-shielded multi-group cross-section. The j-th singular vector of MGC  is the standard 

basis vector je  and the j-th singular value is the variance of the j-th self-shielded multi-group 

cross-section. Eq. (2.37) and Eq. (2.38) become: 
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= 〈 − 〉 =  (2.39) 

 
0 0, , , ,( )MG j MG j MG j MG jx x SD x z= +  (2.40) 

 

where 
0 ,( )MG jSD x  is the standard deviation in the j-th self-shielded multi-group cross-section. 

Eq. (2.40) states that if ,MG jz  equals one, then the j-th self-shielded multi-group cross-section 

is adjusted by one standard deviation. In the general case of Eq. (2.37), ,MG jz  represents the 

number of “standard deviations” the self-shielded multi-group cross-sections are adjusted 

along the orthornomal direction specified by the j-th singular vector of MGC . Because of the 

truncated-SVD representation of MGC , the dimension of MGz  is only t as compared to n in 

the above example. Using this change in variables, Eq. (2.35) reduces to: 
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where MGz  is the posterior data adjustment vector. The approach to solving Eq. (2.41) builds 

upon the ESM solution method for uncertainty propagation. Using matrices 2,LP tΨ  and 

2,
T
CS tR  from Section 2.2.3, the following thin SVD is defined: 
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 (2.42) 

Using the thin SVD in Eq. (2.42), it is shown in Appendix A that the solution to Eq. (2.41) is 

the following (cf. - Eq. (2.32)):5 
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 (2.43) 

                                                 

5 In this formulation, the Tikhonov regularization parameter is assumed be nonzero.  If the Tikhonov 

regularization parameter is zero, the matrix 
2

2 1( )α −+Σ I  is replaced by the pseudoinverse 
2

†( )Σ . 
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where MGx  is the posterior self-shielded multi-group cross-sections, FGx  is the posterior few-

group cross-sections, COy  is the posterior core observables, ,MG postC is the posterior self-

shielded multi-group cross-section covariance matrix, ,FG postC  is the posterior few-group 

cross-section covariance matrix, and ,CO postC  is the posterior core observables covariance 

matrix. In Chapter 4, posterior values MGx , FGx , COy , ,MG postC , ,FG postC , and ,CO postC  are 

given for a BWR case study along with selection of the Tikhonov regularization parameter. 
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3. Cross-Section Uncertainty Propagation 

   

 In this section, the uncertainty propagation calculations outlined in Chapter 2 are now 

described in more detail. These calculations involve 1) propagating ENDF cross-section 

covariance data to calculate the self-shielded multi-group cross-section covariance matrix, 2) 

propagating the self-shielded multi-group cross-section covariance matrix through the lattice 

physics model TRITON, and 3) propagating the few-group cross-section covariance matrix 

through the core-simulator model FORMOSA-B [47]. In step 1), PUFF-IV processes the 

ENDF covariance files to calculate an infinitely-dilute multi-group cross-section covariance 

matrix. Additional calculations are necessary to quantify the uncertainty in self-shielded 

multi-group cross-sections used in the lattice physics calculation. To perform these 

calculations, the resonance treatment model in TRITON was modified to quantify this 

uncertainty contribution due to spatial and energy resonance self-shielding effects for each 

fuel pin. In Section 3.1, the modified resonance self-shielding model is presented and the 

uncertainty propagation calculations are described.  

 As a result of the calculations described in Section 3.1, the truncated-rank of the self-

shielded multi-group cross-section covariance matrix is 2223. This rank is still too large to 

compute the few-group cross-section covariance matrix for a representative number of lattice 

cases (i.e. a set of burnup dependent few-group cross-sections for a given fuel color and 

thermal hydraulic condition). To reduce the number of lattice physics forward perturbation 

calculations, a GPT-based approach was employed to approximate the action of the lattice 
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physics sensitivity matrix on the self-shielded multi-group cross-section covariance matrix. 

This GPT-based approach is used to reduce the number of lattice physics forward 

perturbations calculations to 481 per lattice case. These calculations are summarized in 

Section 3.2. 

 As a result of the calculations described in Section 3.2, the truncated-rank of the few-

group cross-section covariance matrix is 362. This implies that 362 core simulator forward 

perturbation calculations are necessary to calculate the core observables covariance matrix. 

The analysis of these calculations for a BWR/4 reload core design is deferred to Chapter 4. 

3.1. Multi-Group Cross-Section Covariance Matrix 

3.1.1. PUFF-IV Methodology 
 

 Quantifying multi-group cross-section uncertainty due to ENDF cross-section 

uncertainty constitutes a major contribution to BWR ACS in this work. Repeating from 

Chapter 2, this calculation is given as: 

 

 
T

MG XP ENDF XPC = S C S  (3.1) 

 

where ENDFC  is the ENDF cross-section covariance matrix, XPS  is the cross-section 

preparation code sensitivity matrix, and MGC  is the self-shielded multi-group cross-section 

covariance matrix. The ENDF cross-section files contain 1) the point-wise cross-section data, 

2) resonance parameter data that characterizes the sharp energy variation of the cross-section 
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in the resolved resonance energy range, 3) point-wise cross-section covariance data, and 4) 

the resonance parameter covariance data. The point-wise cross-section data are represented in 

vector form as PWσ  where each element corresponds to a unique point-wise cross-section for 

a given reaction type and isotope at a specific neutron kinetic energy. Similarly, the point-

wise cross-section covariance data is represented in matrix form as PWC . Since cross-

sections for each isotope are measured independently (with the possible exception of ratio 

measurements to determine fission cross-sections), PWC  is sparse, block diagonal in 

structure with each diagonal block corresponding to a given isotope. Likewise, the resonance 

parameter data is represented as RPx  and RPC . Combining the covariance data from both of 

these matrices, ENDFC  is given as: 

 

 
0

0

PW
ENDF

RP

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

C
C

C
 (3.2) 

 

Although PWC  and RPC  are represented as uncorrelated in Eq. (3.2), each matrix 

characterizes two components of the uncertainty in the resolved resonance energy region. 

From the PUFF-IV code manual [45], the point-wise cross-section covariance data in the 

resolved resonance energy region characterize the cross-section correlations attributed to the 

interaction of cross-section resonances over many energy ranges (i.e. – long-range 

components). The short-range components of the cross-section covariance data are attributed 

to the uncertainty of individual cross-section resonances as well as the interaction of cross-
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section resonances in the neighborhood of an individual resonance. Combining the long-

range and short-range covariance components by Eq. (3.2) completely describes the cross-

section uncertainty over the full cross-section energy range. 

 Cross-section preparation codes generate multi-group cross-sections by 1) 

constructing the neutron cross-section component described by the resonance parameters 

over an ultra-fine energy mesh (i.e. - ~105 energy grid points), 2) adding the resonance 

parameter cross-section component to the point-wise cross-section component, and 3) 

homogenizing the combined cross-section using an ultra-fine neutron flux spectra. This 

calculation is represented by the following: 

 

 ( ( ))ID PW RPID xσ σ= +H P Π  (3.3) 

 

where IDσ  is the multi-group cross-section vector, IDH  is the energy-averaging 

homogenization operator, P  is a prolongation operator the maps PWσ  from the ENDF point-

wise energy mesh to the ultra-fine energy mesh, and Π  is the nonlinear operator that maps 

cross-section resonance parameters to cross-section values on the ultra-fine energy mesh.  

 Similar to multi-group cross-section preparation codes, PUFF-IV calculates multi-

group cross-section covariance matrices by applying the sandwich rule to the ENDF cross-

section covariance matrix and the computational model in Eq. (3.3). The multi-group cross-

section covariance matrix IDC  is given by the following: 
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where IDPW =S H P  and IDRP =S H Π . PUFF-IV has many options to analytically calculate 

the sensitivity matrix Π  for the nonlinear operator Π  evaluated at the prior mean values of 

the resonance parameters. In the last expression in Eq. (3.4), the matrix LRC  is used to 

represent 
T

PW PW PWS C S . This matrix represents the long-range uncertainty contribution to the 

multi-group cross-section covariance matrix as well as the uncertainties in multi-group cross-

sections for energy ranges above and below the resolved resonance energy region.  

 PUFF-IV was used to calculate the 44GROUPV6REC multi-group cross-section 

covariance file that is used for this work. A complete description of 44GROUPV6REC is 

given in [48]. In generating the 44GROUPV6REC covariance file, a 1/E neutron flux 

spectrum was used to homogenize the ultra-fine cross-sections. The subscript “ID” in IDσ , 

IDH , and IDC  is used to denote the infinitely-dilute approximation used in generating multi-

group cross-section covariance matrices. It is well known that infinitely-dilute multi-group 

cross-sections can differ with multi-group cross-sections that account for spatial and energy 

resonance self-shielding by several orders of magnitude. Consequently, the self-shielded 

multi-group cross-section covariance matrix MGC  can differ from IDC . Unfortunately, the 

self-shielded neutron flux spectra that accounts for spatial and energy resonance self-
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shielding effects for each fuel pin depends on local thermal hydraulic conditions and fuel pin 

number densities. It is computationally infeasible to calculate MGC  for each fuel pin at each 

burnup step for each lattice case using problem-dependent self-shielded neutron flux spectra.  

In the following section, the Nordheim Integral Treatment is presented to calculate MGC  for 

a single unit cell (i.e. - fuel pin/clad/coolant “unit” used to construct the lattice). The 

modified resonance self-shielding model presented in Section 3.1.3 is used to consistently 

perturb the self-shielded multi-group cross-sections for any unit cell in the lattice physics 

uncertainty calculations. 

3.1.2. Nordheim Integral Treatment 
 

 In the Nordheim Integral Treatment Method presented in the NITAWL code manual 

[49], the unit cell is represented by two spatial regions: the absorber region containing the 

resonance absorber (i.e. – resonance-absorbing isotope) and the external moderator region.  

By using first-flight escape probabilities to describe the neutron transport into and out of each 

region, as well as the reciprocity relationship between the first-flight escape probabilities in 

these two regions, the following equation can be shown to describe the energy-dependent 

neutron flux in the absorber region over a given cross-section resonance1: 
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1 The reader is referred to [49] and its references for more detail on derivation and computational solution of Eq. 
(3.5), as well as the determination of the Dancoff-correction factor.   



CHAPTER 3:CROSS-SECTION UNCERTAINTY PROPAGATION 43 

 

where ( , )E Tφ  is the self-shielded neutron flux over the cross-section resonance energy 

range, ( , )t E TΣ  is the total macroscopic cross-section of the absorber region, *
0 ( , )P E T  is the 

Dancoff-corrected escape probability of the absorber region, , ( , )s j E TΣ  is the macroscopic 

scattering cross-section of mixture-j in the absorber region, W(E) is the neutron slowing-

down source in the external moderator region, and jα  is the parameter used to describe the 

neutron energy loss due to elastic scattering. In this formulation, jα  is equal to 4Aj/(Aj+1)2, 

where Aj is the effective nuclide mass of mixture-j. (Note that this definition of alpha is 

actually 1 minus alpha in many sources [49].) The temperature dependence is explicitly 

shown in the variables above to indicate the use of Doppler-broadened cross-sections. 

 Eq. (3.5) is referred to as the Nordheim Integral Equation, and is used to determine 

the self-shielded neutron flux for both clad-region resonance absorbers and fuel-region 

resonance absorbers.  For clad-region resonance absorbers, the absorber region in Eq. (3.5) is 

the clad volume and the external moderator region is the fuel and coolant volume.  Likewise 

for fuel-region resonance absorbers, the absorber region is the fuel volume and the external 

moderator is the clad and coolant volume. Once the self-shielded neutron flux is determined 

for all cross-section resonances for a given resonance absorber, the self-shielded multi-group 

cross-sections for that resonance absorber are determined by the following equations: 

 

 , , , , , ,ref

shielded
x g T x g T x g Tσ σ ∞= + Δ  (3.6) 
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where , ,
shielded
x g Tσ is the self-shielded multi-group cross-section, , , refx g Tσ ∞  is the reference infinitely-

dilute multi-group cross-section, , ,x g TΔ  is the multi-group cross-section resonance self-

shielding correction factor, ( , )i E Tφ  is the self-shielded neutron flux at the i-th cross-section 

resonance, and , ( , )x i E Tσ  is the Doppler-broadened Single-Level Breit Wigner (SLBW) 

microscopic cross-section at the i-th cross-section resonance at fuel temperature T. The 

multi-group cross-section terms , ,
shielded
x g Tσ , , , refx g Tσ ∞ , and , ,x g TΔ , are given for fission, capture, 

and scattering reactions and for all energy groups in the resolved resonance energy region. 

The summation in Eq. (3.7) is taken over all cross-section resonances within the energy range 

of group g for a given resonance absorber. The variable , ,x g TΔ  is simply referred to as the 

resonance correction factor and is similar to the Bondarenko self-shielding factors used in 

many lattice physics codes. 

 The self-shielded multi-group cross-section equation (Eq. (3.6)) and the energy-

averaging homogenization equation to determine , ,x g TΔ  (Eq. (3.7)) are closely related to the 

energy-averaging homogenization equation used by the multi-group cross-section preparation 

code (Eq. (3.3)). To see this, Eq. (3.6) is rewritten in matrix-vector form as: 
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where ( )RPxΔΗ  is a nonlinear operator that maps the cross-section resonance parameters RPx  

to the resonance correction factor vector Δ . Linearizing Eq. (3.8) about the prior mean 

values of the point-wise cross-sections (
0PWσ ) and resonance parameters (

0RPx ), then the 

first-order approximation is given as: 
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where ΔΗ  is the sensitivity matrix for the nonlinear homogenization operator ΔΗ . 

Alternatively, the linearized system of equations is written as: 
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 (3.10) 

 

where the self-shielded multi-group cross-section vector MGσ  is now formally defined as the 

set of infinitely-dilute multi-group cross-sections and the set of resonance correction factors. 
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The sandwich rule is now applied to Eq. (3.10) to determine the self-shielded multi-group 

cross-section covariance matrix MGC  as: 
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 (3.11) 

 

where IDC  is the infinitely-dilute multi-group cross-section covariance matrix given by 

44GROUPV6REC, 
T

RPΔ ΔΗ C Η  represents the uncertainty in resonance correction factors due 

to the uncertainty in resonance parameters, and the off-diagonal terms 
T

RP RP ΔS C Η  and 

T

RP RPΔΗ C S  represent the correlations between the uncertainties in resonance correction 

factors and infinitely-dilute multi-group cross-sections induced by the uncertainties in 

resonance parameters. 

 The covariance matrix given by Eq. (3.11) characterizes the uncertainty for only one 

unit cell and for one resonance absorber. The dimension of this covariance matrix is 

(44Nx*2) x (44Nx*2) where Nx is the total number of reaction types for the resonance 

absorber and the number of energy groups is 44. Considering a second unit cell that contains 

a different number density of the resonance absorber or is at a different thermal-hydraulic 

condition, the self-shielded neutron flux computed by the Nordheim Integral Equation is 
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different than the first unit cell. This leads to a different resonance correction factor. 

Likewise, the self-shielded multi-group cross-section covariance matrix for the second unit 

cell is different due to different sensitivities to the resonance parameters. However, the 

uncertainties in self-shielded multi-group cross-sections for each unit cell are correlated with 

one another. This is evident by rewriting Eq. (3.10) and Eq. (3.11) for a two unit cell system: 
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 (3.12) 
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 (3.13) 

 

where MGC  has dimension (44Nx)*3 x (44Nx)*3. This process is naturally extended to an Nu 

unit cell system where MGC  has dimension (44Nx)*(Nu +1) x (44Nx)* (Nu +1).  

3.1.3. Modified Resonance Self-Shielding Model 
 

 The modified resonance self-shielding model has been developed so that resonance 

correction factors are accurately approximated by linear interpolation. In other words, the 

Nordheim Integral Treatment is used to calculate resonance correction factors for a finite set 



CHAPTER 3:CROSS-SECTION UNCERTAINTY PROPAGATION 48 

 

of unit cells, which are then used as an interpolation mesh for all other unit cell calculations. 

The dimension and spectral properties of MGC  are determined by the number of unit cells 

used to construct the interpolation table.  

 The resonance correction factors Δ  are functionalized in terms of six system 

parameters that describe the local conditions of the unit cell. The six system parameters are 

the temperature of the resonance absorber (T), the Dancoff correction factor (C), the 

macroscopic potential scattering cross-section of the internal moderators ( ,2pΣ  and ,3pΣ ), the 

mass of the second internal moderator ( 3M ), and the number density of the resonance 

absorber ( 1N ): 

 

 ,2 ,3 3 1( , , , , , )p pf T C M NΔ = Σ Σ  (3.14) 

 

 The subscript indexing of the independent variables was chosen to be consistent with 

the notation used in the NITAWL code manual. For this work, the first internal moderator is 

always Oxygen, and the mass of Oxygen is not included in the functionalization. The mass of 

the second internal moderator depends on the number density of all the other moderating 

isotopes in the absorber region. 

 Lattice physics calculations were performed using the Nordheim Integral Treatment 

to determine the number of data points, or interpolation mesh, to accurately approximate Δ .  

Three lattice designs (i.e. - 1 reflector, 1 vanished, and 1 dominant lattice) were depleted at 

nominal void fractions of 0%, 40%, and 80%.  At each burnup step, 6 thermal hydraulic 
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branch conditions were also simulated. From this set of lattice physics calculations, the six 

independent variables of Eq. (3.14) were stored for each unit cell calculation along with the 

resonance correction factor for each reaction type and energy group. From this data, the 

following conclusions were made for each of the six independent variables in Eq. (3.14): 

 

− Temperature (T) - Nine fuel temperatures are required ranging from 293K to 879K. 
The fuel temperatures were chosen such that linear interpolation in terms of 

T accurately determines lattice k-infinity (i.e. – neutron multiplication factor) to 
within 50 pcm. Two clad temperatures were chosen for clad-region resonance 
absorbers. 

 
− Dancoff correction factor (C) - Four Dancoff correction factors are used for the fuel-

region resonance absorbers. These values correspond to the four thermal hydraulic 
conditions of the coolant (0%, 40%, and 80% void fraction at 560K and 0% void 
fraction at 293K). For clad-region resonance absorbers, the fuel is treated as part of 
the external moderator region in determining the Dancoff correction factor. The 
Dancoff correction factor varies slightly due to changes in fuel-region nuclide 
concentrations. Two Dancoff correction factors are needed for linear interpolation at 
each of the four thermal hydraulic conditions of the coolant.2 

 
− Macroscopic potential scattering cross-section of the first internal moderator ( ,2pΣ ) -

For fuel-region resonance absorbers, the macroscopic potential scattering cross-
section of Oxygen ( ,p OΣ ) varies slightly with burnup since Oxygen nuclides in the 
fuel-region are tracked in the depletion calculation. Only two values of ,p OΣ  are used 
to linear interpolate the resonance correction factors. Since the clad-region nuclide 
concentrations are not tracked in the depletion calculation, only one value of ,2pΣ  is 
needed for clad-region resonance absorbers. 

 
− Macroscopic potential scattering cross-section of the second moderator ( ,3pΣ ) - ,3pΣ  

changes with burnup due to changes in the fuel-region nuclide concentrations.  
                                                 

2 As a default, TRITON calculates Dancoff correction factors by assuming an infinite repetitive lattice of 
identical fuel pins.  For strong neighbor effects (e.g. - water holes, control rods, etc.), TRITON does allow for 
user-defined Dancoff correction factors, but this requires external calculations to determine the neighbor effects 
for each fuel pin. For this work, we assume that the infinite repetitive lattice assumption is reasonable for 
calculating sensitivity coefficients for BWR ACS.  For future work, it is expected that accounting for neighbor 
effects would minimally impact the functionalization described here. 
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However, because of the large number density of uranium-238 (U-238), ,3pΣ  is 
dominated by the macroscopic potential scattering cross-section of U-238.  Since the 
U-238 number density varies slightly with burnup, only two values of ,3pΣ  are needed 
for fuel region resonance absorbers other than U-238. For U-238, ,3pΣ  shows more 
burnup dependence as well as dependence on initial burnable poison (BP) 
concentration. Twenty values of ,3pΣ  are used to accurately determine the shielded 
multi-group cross-section with linear interpolation for U-238. For clad-region 
resonance absorbers, only one value of ,3pΣ  is needed. 

 
− Mass of the second moderator ( 3M ) - The functional dependence on the mass of the 

second moderator is similar to ,3pΣ .  Only two values of 3M  are needed for linear 
interpolation for fuel-region resonance absorbers other than U-238.  U-238 requires 
five values for accurate linear interpolation. Only one value for 3M  is necessary for 
clad- region resonance absorbers. 

 
− Number density of the resonance absorber ( 1N ) - The variations of number density 

concentration are different for each fuel-region resonance absorber and can change up 
to 6 orders of magnitude. The resonance correction factors are fitted using linear 
interpolation over 5-15 values of log10( 1N ). Only one value of 1N  is required for 
clad-region resonance absorbers. The log10 fit is consistent with the functionalization 
of the background cross-section in lattice physics codes that use Bondarenko factor 
interpolation tables. 

 

 The number of mesh points required for each input parameter for each resonance 

absorber in the lattice physics model is summarized in Table 3.1. Table 3.1 also gives the 

mesh points for resonance absorbers in surrounding structural materials. TRITON treats each 

resonance absorber in the surrounding structural materials as infinite media. Thus, resonance 

calculations for these nuclides only need to be done once and used for all burnup steps, void 

fractions, and branch conditions. The overhead computing cost to build the interpolation 

table requires ~105 unit cell calculations using NITAWL. This is two orders of magnitude 

smaller than the number of required calculations if the Nordheim Integral Equation is solved 
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for each unit cell, burnup step, and lattice case. For each interpolation point, the computed 

resonance correction factor for fission, capture, and scattering multi-group cross-sections are 

stored and then used in the interpolation procedure in the modified resonance self-shielding 

model. 

 Comparisons of k-infinity as a function of burnup were made between TRITON 

calculations using NITAWL and the modified resonance self-shielding model. Each model 

was used to calculate burnup-dependent k-infinities for a dominant and vanished lattice 

design at three different void fractions. The chosen lattice designs had different enrichment 

and BP loadings than the lattices used to determine the interpolation mesh. The maximum 

reactivity difference over all test cases was -15 pcm at BOC, -20 pcm at the Gadolinium 

peak, and 35 pcm at End-of-cycle. The average run-time to generate self-shielded multi-

group cross-sections for a single unit cell was 0.1 seconds for the modified resonance self-

shielding model and 9 seconds using NITAWL. These calculations were performed using a 

2.8 GHz Intel Xeon processor.  

3.1.4.  Uncertainty Propagation 
 

 In this section, the generation of the self-shielded multi-group cross-section 

covariance matrix is described. First, uncertainty data from the 44GROUPV6REC covariance 

file is used to construct the infinitely-dilute multi-group cross-section covariance matrix. The 

44GROUPV6REC covariance file contains covariance data for 77 isotopes used in the lattice 

physics model. For these isotopes, 221 covariance matrices are given in 44 x 44 energy group 

structure that characterize the uncertainty for a specific cross-section reaction type. The 
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isotope and reaction type for each covariance matrix is listed in Table 3.2. In addition to this 

set of covariance matrices, 118 covariance matrices are provided that characterize the 

covariances between different reaction types of the same isotope. These correlations between 

different reaction types arise from either the resonance model for each isotope or from the 

nature of the cross-section measurement. In previous work on BWR ACS ([1] and [9]), the 

44GROUPANLCOV and 44GROUPV5COV covariance files contained covariances of 

cross-section reaction-types across different isotopes. These covariances do not exist in the 

44GROUPV6REC covariance file. 

 Due to the lack of covariance data for resonance parameters, only 13 of the 77 

isotopes contain resonance parameter covariance data: Gd-152, Gd-154, Gd-155, Gd-156, 

Gd-157, Gd-158, Gd-160, U-235, U-238, Pu-239, Pu-240, Pu-242, and Am-241. For the 

remaining 54 isotopes, the multi-group cross-section uncertainty in the resolved resonance 

region is either zero or is approximated by processing tabulated resonance parameter 

uncertainty information given in [50]. For these 54 isotopes, the uncertainty in the resonance 

correction factor is fully-correlated to the uncertainty in infinitely-dilute multi-group cross-

sections. This is a reasonable assumption for minor actinides and fission product isotopes that 

can be modeled as infinitely-dilute at low burnup or for high-energy cross-section resonances 

where the neutron flux depression across the resonance is minimal. The uncertainties in self-

shielded multi-group cross-sections in the unresolved resonance region are assumed to be 

fully correlated to the uncertainty in infinitely-dilute multi-group cross-sections. This is due 

to the lack of covariance data for the Bondarenko self-shielding factors in the unresolved 

resonance region. This is a reasonable assumption given that BWR core observables are not 
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expected to be highly sensitive to multi-group cross-sections in the unresolved resonance 

region. 

 The self-shielded multi-group cross-section covariance matrix MGC  is partitioned into 

a 170 x 170 block diagonal form. The first 157 diagonal blocks correspond to infinitely-

dilute multi-group covariance matrices for the 54 isotopes without resonance parameter 

covariance data. The eigenvalue decomposition (EVD) of these 157 blocks reveal several 

negative eigenvalues that are orders of magnitude smaller than the largest positive eigenvalue 

for each block. Since the uncertainty contribution for these negative eigenvalues is 

negligible, each matrix block is reconstructed using only the positive eigenvalues and their 

associated eigenvectors. All positive eigenvalues less than the absolute value of the largest 

negative eigenvalue are also removed. The reconstructed matrix blocks are symmetric, 

positive semi-definite, and are now described in terms of SVD rather than EVD. The 

truncated-rank of this section of MGC  (i.e. – the first 157 diagonal blocks) is 728, which is an 

order of magnitude smaller than the dimension of this section of MGC  (7788 x 7788).  

 The 13 remaining diagonal blocks of MGC  correspond to the 13 isotopes that have 

cross section resonance parameter data. These matrix blocks contain covariance data for both 

the infinitely-dilute multi-group cross-sections and the resonance correction factors as 

described in Section 3.1.3. The number of unit cells for each isotope is given in Table 3.1. 

Using the Pu-242 covariance matrix block as an example, IDC  is 220 x 220 (i.e. fission, 

capture, elastic, inelastic, and n2n cross-sections), RPC  is 232 x 232, RPS  is 220 x 232, 

Nu=2600, and 
i
ΔΗ  is 220 x 232 for i=1,2,…,Nu. The final size of MGC  for Pu-242 is 572,220 
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x 572,220. The resonance parameter covariance matrix is given for 67 cross-section 

resonances in SLBW format where there is no covariance given between resonance 

parameters at different resonance energies. In SLBW format, covariance data is available for 

the resonance energy, the neutron line width, the capture line width, and the fission line 

width. The sensitivity matrix RPS  is determined by the forward perturbation approach where 

each of the 232 resonance parameters are perturbed independently and the change in the 

infinitely-dilute multi-group cross-section is determined. Similarly, the sensitivity matrix 
i
ΔΗ  

is computed by perturbing each resonance parameter and determining the change in the 

resonance correction factor for the i-th unit cell. In total, the MGC  matrix block for Pu-242 

requires 232 NITAWL calculations to compute RPS , and 232 NITAWL calculations to 

compute 
i
ΔΗ  for each of the 2600 unit cells. The first 150 eigenvalues and eigenvectors of 

MGC  are computed using the MATLAB function eigs. The eigs function only requires 

the action of MGC  operating on a vector. This matrix-vector product is efficiently calculated 

by the much smaller matrices IDC  RPC , RPS , and 
i
ΔΗ . 

 Similar to the first 157 matrix blocks, the EVD calculations in MATLAB reveal 

negative eigenvalues that are much smaller than the largest positive eigenvalue for each of 

the remaining covariance blocks. The negative eigenvalues are removed from these 

covariance blocks and the truncated-SVD of MGC  contains 2223 singular values and 

associated singular vectors.  The size and rank of each matrix block is summarized in Table 

3.3, and the singular values of MGC  are plotted in Figure 3.1. 
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 It is important to note that the resonance parameter covariance matrix for the 

Gadolinium isotopes, U-235, U-238, and Pu-239 are given in Reich-Moore (RM) format. The 

RM format allows for possible interference effects among neighboring resonances. 

Therefore, the resonance parameter covariance matrix RPC  is dense as compared to the 

sparse, block diagonal matrix structure in the SLBW format. For this work, it is assumed that 

the use of RPC  in RM format is valid even though the NITAWL computational model 

computes resonance correction factors for SLBW cross-section resonances. This assumption 

is discussed in more detail in Chapter 5. For fissile isotopes in RM format, the two fission 

channel line widths are added together to form an equivalent SLBW fission width. 

 The impact of resonance parameter uncertainty on lattice k-infinity uncertainty is 

shown to be higher when accounting for spatial and energy resonance self-shielding affects 

as opposed to simply using the infinitely-dilute multi-group cross-section uncertainties. For 

example, one of the major contributors to lattice k-infinity uncertainty is the U-238 capture 

cross-section. The U-238 multi-group capture cross-section in energy group form is given as 

a function of neutron energy in Figure 3-1. In addition, the absolute standard deviation for 

this cross-section is graphed in Figure 3-2, the relative standard deviation (RSD) is given in 

Figure 3-3, and the lattice k-infinity relative sensitivity coefficient for this cross-section is 

given in Figure 3-4. The lattice k-infinity sensitivity coefficients are computed for a 

dominant lattice modeled at Beginning-of-Life (BOL) with 40% nominal void fraction. In 

these figures, the infinitely-dilute multi-group cross-section is denoted “ID” and the self-

shielded multi-group cross-section is denoted “SS”. The infinitely-dilute cross-section is 

shown to be one to two orders of magnitude higher than the self-shielded cross-section. 
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Likewise, the absolute standard deviation of the infinitely-dilute cross-section is one to two 

orders of magnitude higher than the uncertainty in the self-shielded cross-section. Because 

neutron resonance capture is deemphasized due to spatial and energy resonance self-

shielding effects, the absolute standard deviation of the self-shielded cross-section is 

expected to be lower than the absolute standard deviation of the infinitely-dilute cross-

section. However, the RSD of the self-shielded cross-section is shown to be higher than the 

RSD of the infinitely-dilute cross-section for some energy groups. For energy group 17 (i.e. – 

neutron energies above 30 eV and below 100 eV), the self-shielded cross-section RSD is 

5.5%. The uncertainty in the infinitely-dilute group-17 capture cross-section is 3.0%. This 

increase in RSD has been verified by using the analytic expressions of resonance capture 

integrals in terms of SLBW resonance parameters in [51] to compare the RSD in infinitely-

dilute cross-sections with the RSD in self-shielded cross-sections using the narrow resonance 

infinite mass approximation. 

 The increase in the RSD of the self-shielded multi-group cross-section is shown to 

increase the uncertainty in lattice k-infinity. Figure 3-4 displays the lattice k-infinity 

sensitivity coefficients for U-238 self-shielded multi-group capture cross-sections in the 

resolved resonance energy range. Because U-238 low-lying resonances have large capture 

line widths, the k-infinity sensitivity coefficients have negative sign. For energy group 17, 

the relative sensitivity coefficient is negative 2.80%. This energy group covers three 

important low-lying resonances of U-238: 1) the 36.67 eV cross-section resonance (with 

5.98% capture line width uncertainty), 2) the 66.01 eV cross-section resonance (with 6.85% 

capture line width uncertainty), and 3) the 80.73 eV cross-section resonance (with 14.1% 
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capture line width uncertainty). Accounting for the spatial and energy resonance self-

shielding effects on the multi-group cross-section uncertainty, the group-17 U-238 capture 

cross-section uncertainty contribution to lattice k-infinity uncertainty is 0.154%. Using the 

infinitely-dilute multi-group cross-section uncertainties (i.e. – assuming the self-shielding 

effects are negligible), the uncertainty contribution to lattice k-infinity uncertainty is only 

0.084%. Although the group-17 k-infinity uncertainty contribution differs by 45%, the 

difference in the energy-integrated uncertainty contribution for the U-238 capture cross-

section is much smaller (i.e.  0.291% (self-shielded) compared to 0.255% (infinitely-dilute)). 

This analysis shows that spatial and energy resonance self-shielding effect must be accounted 

for in propagating cross-section uncertainty, and that group-wise uncertainty contribution can 

very significantly. 

3.2. Generation of the Few-Group Cross-Section Covariance 
Matrix 

 Quantifying few-group cross-section uncertainty due to multi-group cross-section 

uncertainty is addressed in the dissertation of Abdel-Khalik [1] and by the author, Abdel-

Khalik and Turinsky in [9]. Using the same ESM-based approach, the calculations in this 

work address three inadequacies of the previous work. First, the uncertainty contribution 

from multi-group cross-section uncertainty in the resolved resonance energy range is 

correctly quantified. Recalling from Section 2.2.3, the few-group cross-section covariance 

matrix FGC  is computed by running a series of lattice physics calculations in which the self-

shielded multi-group cross-sections are perturbed along the singular vectors of MGC . In the 
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previous work, the pre-shielded multi-group cross-sections were perturbed along the singular 

vectors of the infinitely-dilute multi-group cross-section covariance matrix given by the 

44GROUPV5COV and 44GROUPANLCOV covariance files. The self-shielded multi-group 

cross-sections in the resolved resonance energy range are computed by Eq. (3.6), which 

overwrites the pre-shielded multi-group cross-section with the infinitely-dilute multi-group 

cross-section minus the resonance correction factor. Therefore, the few-group cross-section 

uncertainty quantification calculations in the previous work do not account for multi-group 

cross-section uncertainty in the resolved resonance energy range for any resonance absorbing 

isotope listed in Table 3.1. The calculations in the previous work do account for the 

following: 1) the uncertainty in all reaction types that are unaffected by spatial and energy 

resonance self-shielding effects (e.g. – chi, nu-bar, (n,n’), (n,2n), etc.), 2) the uncertainty 

attributed from all non-resonance absorbers (e.g. – H-1 and O-16), and 3) the uncertainty in  

the resonance absorbers’ multi-group cross-sections in the thermal and unresolved resonance 

energy ranges.  

 Second, the few-group cross-section uncertainty quantification calculations in this 

work account for multiple lattice cases, which are defined as a set of burnup dependent few-

group cross-sections for a given fuel color and thermal hydraulic condition. Recalling from 

Section 2.2.3, the few-group cross-section uncertainty propagation equation is given as: 
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where ,, ,
T

MG tMG t MG tU Σ U  is the truncated-SVD of MGC . The lattice physics sensitivity matrix 

LPS  is 106 x n where n is the number of rows of MGC . Similar to the matrix partitioning of 

MGC  for Nu unit cells, FGC  is partitioned into an Nl x Nl matrix where Nl is the number of 

lattice cases used to describe the few-group cross-sections. To see this, Eq. (3.15) is rewritten 

for Nl=3 as: 
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where ,
i
LP tR  is the lattice physics response matrix for the i-th lattice case and i=1,2,or 3. If 

~103 few-group cross-sections are computed for each lattice case, then the dimensions of 

,
i
LP tR  for this example are 103 x t and the computing cost to construct FGC  is 3*t lattice-

physics calculations. For the BWR/4 reload core design analyzed in this work and in 

previous work, Nl is equal to 777 (i.e. – 37 fuel colors * 3 void fractions * 7 thermal 
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hydraulic or control rod conditions). This implies 777*t lattice physics calculations are 

required for the computation of FGC . Since this number of lattice physics calculations is too 

large using current computing resources, ,
i
LP tR  is only calculated for a few lattice cases. In 

[1], Abdel-Khalik calculated ,
i
LP tR  for 2 lattice cases and the computed lattice physics 

response matrices was assumed fully correlated to lattice cases of similar type. The 

44GROUPV5COV covariance file was used to construct MGC , and the truncated-rank t was 

equal to 200. In [9], ,
i
LP tR  was calculated for 1 lattice case and then assumed a fully 

correlated lattice physics response matrix to all lattice cases. The 44GROUPANLCOV 

covariance file was used and t was equal to 900. In both cases, the correlation was based on 

the relative change in few-group cross-sections in response to multi-group cross-section 

perturbations (e.g. - a 10% change in 25
2fσ  in lattice case i implies a 10% change in 25

2fσ  for 

similar lattice j). 

 For this work, 10 lattice physics response matrices are computed and then assumed 

fully correlated to the remaining lattice cases. The chosen lattice cases include one bottom 

axial blanket modeled at 0% void fraction, one dominant lattice modeled at 40% void 

fraction (i.e. - nominal calculation + 6 branch calculations), one vanished lattice modeled at 

80% void fraction, and one top axial blanket modeled at 80% void fraction. This subset of 

lattice cases should provide a representative measure of the few-group cross-section 

uncertainty that is to be propagated through the core simulation calculations. 
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 The final contribution in this work in calculating FGC  is reducing the required 

number of lattice physics calculations using a GPT-based sensitivity analysis to determine 

the number of important singular vectors of the self-shielded multi-group covariance matrix 

that significantly contribute to the uncertainty in few-group cross-sections. In the previous 

work [9], expert judgment was used in determining that 900 singular vectors of MGC  

contributed to the few-group cross-section covariance matrix. Only principle directions for 

fissile isotopes, Gd, H-1, O-16, and Zr were considered. Without prior knowledge of the few-

group cross-section sensitivity coefficients along each singular vectors of MGC , a 

conservative singular value cutoff criteria was used in previous work in order to prevent 

removing a singular vector with large few-group cross-section sensitivity and small singular 

value (i.e. - 900 1/σ σ =1e-6). The GPT-based approach is used to generate sensitivity 

coefficients for peak pin power, detector fission power, and k-infinity for each singular 

vector of MGC . The magnitudes of the sensitivity coefficients are scaled by the square root of 

the singular values of MGC , and then used as a qualitative measure of the “worth” of the 

singular vector in terms of peak pin power uncertainty, detector fission power uncertainty, or 

k-infinity uncertainty. These three responses were chosen because of their similarity to key 

core attributes such a core k-effective, LPRM detector response, cold shutdown margin, and 

thermal limits that depend on peak pin power. 

 The use of GPT to generate first-order accurate sensitivity coefficients has been 

extensively used in the field of reactor physics, and the underlying theory is given in 

numerous historical papers [30]-[34]. For this reason, the equations used to determine GPT 
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sensitivity coefficients and the solution methods to determine the generalized importance 

function for each response are not provided in this work.3  

 To generate sensitivity coefficients for the three responses above, four TRITON 

calculations in adjoint mode are required. (The fundamental mode calculation precedes the 

GPT calculation for each of the three responses). These four calculations were computed for 

numerous statepoints in the lattice physics calculation to account for the change in sensitivity 

coefficients to various physical conditions such as void fraction, fuel temperature, control rod 

insertion, and burnup. For burnup steps beyond BOL, the change in the sensitivity coefficient 

with respect to changes in the time-dependent nuclide concentrations was assumed to be 

zero. This assumption leads to large errors in the End-of-Life (EOL) sensitivity coefficients 

for important cross-sections such as the U-238 capture cross-section that strongly affects 

plutonium and minor actinide buildup. For this reason, the GPT sensitivity coefficients only 

at BOL were used to identify 481 singular vectors of MGC  that significantly contribute to the 

uncertainty in few-group cross-sections. If the EOL sensitivity coefficient error was small, 

the sensitivity coefficients can be used to reduce the number of lattice physics calculations 

since the changes in peak pin power, detector fission power, and k-infinity for the selected 

481 singular vectors are expected to by highly correlated. This is discussed in more detail in 

the recommendations for future work in Section 5.2. 

                                                 

3 The calculation of the critical eigenvalue sensitivity coefficient is generally not classified as a GPT problem, 
since it only requires the determination of the fundamental mode of the adjoint eigenvalue problem. For this 
work, the k-infinity sensitivity coefficient is defined as a generalized response using the critical-spectrum 
corrected neutron flux calculated in TRITON. Accounting for the critical-spectrum leakage effects, the 
generalized adjoint source to determine first-order accurate changes in k-infinity is nonzero, making the k-
infinity sensitivity analysis a GPT problem. 
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 Using the selected subspace of MGC  with truncated-rank t equal to 481, the few-

group cross-section covariance matrix is computed using Eq. (3.15) from the 4810 lattice 

physics calculations. The SVD of the few-group cross-section covariance matrix FGC  

reveals a rank reduction as uncertainty is propagated through the lattice physics calculation. 

The truncated-rank of FGC  (i.e. t2) was selected to be 362 by using an absolute singular 

value cutoff of 1e-8 in order to accurately approximate the relative standard deviation in k-

infinity to within 0.01%. This cutoff criterion is of the same order of magnitude as the 

modeling error uncertainty and the linearization error of the lattice physics model. Using 

Eq.(2.22), the core observables covariance matrix is calculated from the 362 core 

simulations. The singular value spectrum of each covariance matrix is given in Figure 3-6. 

The singular value spectrum denoted “MG2” represents the selected 481 singular values of 

the 2223 singular values of MGC , which is denoted “MG” on the graph. It is noted that 

several large singular values have been removed in the GPT analysis because of low 

sensitivities to lattice k-infinity, detector fission power, and peak pin power that would have 

otherwise been included in the calculations in previous work. The largest rank reduction 

occurs in propagating the uncertainty data provided in ENDF to the self-shielded multi-group 

cross-section matrix. For this calculation, the changes in infinitely-dilute multi-group cross-

sections due to changes in resonance parameters are highly correlated when many cross-

section resonance are located in the same energy group. The resonance parameter sensitivity 

coefficients to the resonance correction factors in the interpolation tables are also highly 

correlated. The rank reduction in the few-group cross-section covariance matrix is explained 
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by the strong correlations introduced by multi-group cross-section homogenization. The rank 

reduction in the core observables covariance matrix is not as significant as the cross-section 

covariance matrices. This is due to large similarities in the lattice physics sensitivity matrix 

and the core simulator sensitivity covariance matrix. For example, if the reactor core could be 

approximated as 2-D infinite sea of the identical fuel lattice, then the core simulator 

sensitivity matrix would be identical to the lattice physics sensitivity matrix and the rank 

reduction would be zero. 

 This concludes the ESM analysis of the uncertainty propagation calculations. In 

summary, calculating the core observables covariance matrix requires: 1) ~105 unit cell 

calculations to generate the interpolation table of resonance correction factors used in the 

modified resonance self-shielding model, 2) an additional ~107 unit cell calculations to 

compute the multi-group cross-section sensitivity coefficients to resonance parameters, 3) 

~103 lattice physics calculations, and 4) ~102 core simulator calculations. For the evaluation 

of core observables uncertainties of future fuel cycles, only a subset of these calculations 

must be recomputed. For example, if the fresh fuel assembly design for the next reload cycle 

is unaltered (i.e. - same mechanical design, initial enrichment loading, and initial BP loading 

as current or previous fuel assemblies), then only the ~102 core simulator calculations need to 

be recomputed using the adjusted few-group cross-sections and their posterior uncertainties. 

The lattice physics calculations only need to be recomputed if the fresh fuel assembly initial 

enrichment loading or initial BP loading is significantly different than current or previous 

fuel assembly designs. In this case, only the 481 lattice physics calculations need to be 

recalculated for the lattice designs associated with the newly-designed fresh fuel assemblies. 
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In addition, two scenarios exist in which the unit cell calculations must be recomputed: 1) the 

lattice physics modeling methodology is significantly changed (e.g. – additional 90% 

nominal void fraction calculations must be implemented to accurately model few-group 

cross-sections in high-void regions of the core), or 2) changes in the fuel pin geometry (e.g. - 

fuel radius, clad thickness, and lattice pitch). In the latter case, unit cell calculations are 

required to evaluate resonance correction factors that reflect the change in fuel pin geometry. 

In addition, the resonance correction factor sensitivity coefficients must be evaluated with 

respect to the posterior resonance parameter covariance matrix and posterior infinitely-dilute 

multi-group cross-section covariance matrix. Although the evaluation of the posterior 

resonance parameter covariance matrix and posterior infinitely-dilute multi-group cross-

section covariance matrix is beyond the scope of this work, these matrices can be readily 

evaluated from the adjusted resonance correction factors. 
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Table 3.1 Interpolation mesh for modified resonance self-shielding model. 
 

Isotope Absorber 
type 

# of T x C 
mesh 
points 

# of Σp,2
mesh 
points 

# of M1 
mesh 
points 

# of Σp,3
mesh 
points 

# of N1 
mesh 
points 

Total # 
of mesh 
points 

Cr-Nat 
clad 8 1 1 1 1 8 

structure 1 1 1 1 1 1 
Mn-55 structure 8 1 1 1 1 8 

Fe-Nat 
clad 8 1 1 1 1 8 

structure 1 1 1 1 1 1 
Ni-Nat clad 8 1 1 1 1 8 
Kr-86 fuel 25 2 2 2 7 1400 

Zr-Nat 
clad 8 1 1 1 1 8 

structure 1 1 1 1 1 1 
Zr-94 fuel 25 2 2 2 7 1400 
Mo-95 fuel 25 2 2 2 13 2600 
Tc-99 fuel 25 2 2 2 9 1800 

Rh-103 fuel 25 2 2 2 11 2200 
Ag-109 fuel 25 2 2 2 11 2200 

Sn-112 
clad 8 1 1 1 1 8 

structure 1 1 1 1 1 1 

Sn-114 
clad 8 1 1 1 1 8 

structure 1 1 1 1 1 1 

Sn-115 
clad 8 1 1 1 1 8 

structure 1 1 1 1 1 1 

Sn-116 
clad 8 1 1 1 1 8 

structure 1 1 1 1 1 1 

Sn-117 
clad 8 1 1 1 1 8 

structure 1 1 1 1 1 1 

Sn-118 
clad 8 1 1 1 1 8 

structure 1 1 1 1 1 1 

Sn-119 
clad 8 1 1 1 1 8 

structure 1 1 1 1 1 1 

Sn-120 
clad 8 1 1 1 1 8 

structure 1 1 1 1 1 1 

Sn-122 
clad 8 1 1 1 1 8 

structure 1 1 1 1 1 1 

Sn-124 
clad 8 1 1 1 1 8 

structure 1 1 1 1 1 1 
Xe-131 fuel 25 2 2 2 9 1800 
Cs-133 fuel 25 2 2 2 9 1800 
Nd-143 fuel 25 2 2 2 11 2200 
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Table 3.1 (continued). 

Isotope Absorber 
type 

# of T x C 
mesh 
points 

# of Σp,2
mesh 
points 

# of M1 
mesh 
points 

# of Σp,3
mesh 
points 

# of N1 
mesh 
points 

Total # 
of mesh 
points 

Nd-145 fuel 25 2 2 2 7 1400 
Nd-148 fuel 25 2 2 2 7 1400 
Sm-149 fuel 25 2 2 2 5 1000 
Sm-150 fuel 25 2 2 2 11 2200 
Sm-151 fuel 25 2 2 2 7 1400 
Sm-152 fuel 25 2 2 2 9 1800 
Eu-151 fuel 25 2 2 2 5 1000 
Eu-153 fuel 25 2 2 2 9 1800 
Eu-154 fuel 25 2 2 2 9 1800 
Eu-155 fuel 25 2 2 2 7 1400 
Gd-152 fuel 25 2 2 2 11 2200 
Gd-154 fuel 25 2 2 2 13 2600 
Gd-155 fuel 25 2 2 2 15 3000 
Gd-156 fuel 25 2 2 2 13 2600 
Gd-157 fuel 25 2 2 2 15 3000 
Gd-158 fuel 25 2 2 2 15 3000 
Gd-160 fuel 25 2 2 2 15 3000 

Hf- Nat 
clad 8 1 1 1 1 8 

structure 1 1 1 1 1 1 
U-234 fuel 25 2 2 2 7 1400 
U-235 fuel 25 2 2 2 11 2200 
U-236 fuel 25 2 2 2 7 1400 
U-238 fuel 25 2 5 20 2 10000 
Np-237 fuel 25 2 2 2 9 1800 
Pu-238 fuel 25 2 2 2 11 2200 
Pu-239 fuel 25 2 2 2 7 1400 
Pu-240 fuel 25 2 2 2 13 2600 
Pu-242 fuel 25 2 2 2 13 2600 
Am-241 fuel 25 2 2 2 11 2200 
Am-243 fuel 25 2 2 2 11 2200 
Cm-242 fuel 25 2 2 2 9 1800 
Cm-243 fuel 25 2 2 2 7 1400 
Cm-244 fuel 25 2 2 2 11 2200 

      Total 93335 
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Table 3.2 Cross-sections with quantified covariance data. 
 

Index Isotope Reaction Types 
1 H-1 (n,n), (n,g) 
2 B-10 (n,n), (n,a), (n,g) 
3 B-11 (n,n), (n,g) 
4 C-Nat (n,p), (n,d), (n,a), (n,n'), (n,n), (n,g) 
5 N-14 (n,n), (n,g) 
6 O-16 (n,n'), (n,g), (n,p), (n,d), (n,n), (n,a) 
7 Si-Nat (n,p), (n,a), (n,n), (n,n'), (n,g) 
8 P-31 (n,n), (n,g) 
9 Mn-55 (n,n), (n,g), (n,n'), (n,2n), (n,p), (n,d), (n,t), (n,He-3), (n,a) 

10 Kr-83 (n,g) 
11 Zr-Nat (n,n), (n,n'), (n,g) 
12 Zr-94 (n,n), (n,g) 
13 Nb-93 (n,n), (n,n'), (n,2n)(n,g) 
14 Mo-95 (n,n), (n,g) 
15 Tc-99 (n,n), (n,g) 
16 Ru-106 (n,g) 
17 Rh-103 (n,g) 
18 Rh-105 (n,g) 
19 Ag-109 (n,n), (n,g) 
20 Sn-112 (n,n), (n,g) 
21 Sn-114 (n,n), (n,g) 
22 Sn-115 (n,g) 
23 Sn-116 (n,g) 
24 Sn-117 (n,g) 
25 Sn-118 (n,n), (n,g) 
26 Sn-119 (n,n), (n,g) 
27 Sn-120 (n,n), (n,g) 
28 Sn-122 (n,g) 
29 Sn-124 (n,n), (n,g) 
30 Xe-131 (n,g) 
31 Xe-135 (n,g) 
32 Cs-133 (n,n), (n,g) 
33 Cs-134 (n,g) 
34 Cs-135 (n,g) 
35 Cs-137 (n,g) 
36 Ce-144 (n,g) 
37 Pr-143 (n,g) 
38 Nd-143 (n,n), (n,g) 
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Table 3.2 (continued). 

Index Isotope Reaction Types 
39 Nd-145 (n,n), (n,g) 
41 Nd-147 (n,g) 
42 Nd-148 (n,g) 
43 Pm-147 (n,n), (n,g) 
44 Pm-148 (n,g) 
45 Pm-149 (n,g) 
46 Sm-147 (n,n), (n,g) 
47 Sm-149 (n,n), (n,g) 
48 Sm-150 (n,n), (n,g) 
49 Sm-151 (n,n), (n,g) 
50 Sm-152 (n,n), (n,g) 
51 Eu-151 (n,n), (n,g) 
52 Eu-153 (n,n), (n,g) 
53 Eu-154 (n,g) 
54 Eu-155 (n,g) 
55 Gd-152 (n,n), (n,g), (n,n'), (n,2n), (n,p) 
56 Gd-154 (n,n), (n,g), (n,n'), (n,2n), (n,p), (n,a) 
57 Gd-155 (n,n), (n,g), (n,n'), (n,2n), (n,p) 
58 Gd-156 (n,n), (n,g), (n,n'), (n,2n), (n,p), (n,a) 
59 Gd-157 (n,n), (n,g), (n,n'), (n,2n), (n,p) 
60 Gd-158 (n,n), (n,g), (n,n'), (n,2n), (n,p), (n,a) 
61 Gd-160 (n,n), (n,g), (n,n'), (n,2n), (n,p), (n,a) 
62 Hf-Nat (n,n), (n,g) 
63 U-234 (n,n), (n,f), (n,g) 
64 U-235 (n,n'), (n,2n), (n,n), (n,f), (n,g), nu-bar, chi 
65 U-236 (n,n), (n,f), (n,g) 
66 U-238 (n,n'), (n,2n), (n,n), (n,f), (n,g), nu-bar, chi 
67 Np-237 nu-bar, (n,n), (n,f), (n,g) 
68 Pu-238 nu-bar, (n,n), (n,f), (n,g) 
69 Pu-239 (n,n'), (n,2n), (n,n), (n,f), (n,g), nu-bar, chi 
70 Pu-240 (n,n'), (n,2n), (n,n), (n,f), (n,g), nu-bar, chi 
71 Pu-241 (n,n'), (n,2n), (n,n), (n,f), (n,g), nu-bar, chi 
72 Pu-242 (n,n'), (n,2n), (n,n), (n,f), (n,g), chi 
73 Am-241 (n,n'), (n,2n), (n,n), (n,f), (n,g), nu-bar 
74 Am-243 (n,f), (n,g) 
75 Cm-242 (n,f), (n,g) 
76 Cm-243 nu-bar, (n,f), (n,g) 
77 Cm-244 (n,n), (n,f), (n,g) 
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Table 3.3 Rank and dimension of the self-shielded multi-group cross-section covariance 
matrix. 

 

Matrix 
Block Isotope 

RP 
uncertainty 

format 

truncated-rank
of block 

# of rows 
of block 

1-157 -- n/a 728 7788 
158 Gd-152 RM 77 193688 
159 Gd-154 RM 106 228888 
160 Gd-155 RM 143 264088 
161 Gd-156 RM 91 228888 
162 Gd-157 RM 102 264088 
163 Gd-158 RM 105 264088 
164 Gd-160 RM 112 264088 
165 U-235 RM 83 484220 
166 U-238 RM 150 2200220 
167 Pu-239 RM 150 308220 
168 Pu-240 SLBW 128 572220 
169 Pu-242 SLBW 150 572220 
170 Am-241 SLBW 98 484220 

    Total 2223 6336924 
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Figure 3-1 U-238 capture cross-section in the resolved resonance energy range. 
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Figure 3-2 Absolute standard deviation in U-238 multi-group capture cross-section. 
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Figure 3-3 Relative standard deviation in U-238 multi-group capture cross-section. 
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Figure 3-4 Lattice k-infinity relative sensitivity coefficient for U-238 capture multi-group 
cross-section.
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Figure 3-5 Singular values for self-shielded multi-group cross-section covariance matrix. 
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Figure 3-6 Singular values for all covariance matrices. 
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4. Results and Interpretations  

4.1. Uncertainty Propagation 

 The uncertainty propagation calculations for both the lattice physics model and the 

core simulator are described in Chapters 2 and 3. In this section, uncertainty values are 

presented for lattice k-infinity and key core attributes as a result of these calculations. For the 

lattice physics model, uncertainties in few-group cross-sections and lattice k-infinity are 

computed for 10 different lattice cases. For each lattice case, cross-section perturbations are 

introduced in the multi-group cross-section library, which includes perturbations to the 

resonance correction factors in the interpolation tables used in the modified resonance self-

shielding model. The cross-section perturbations are determined by the singular vectors of 

the self-shielded multi-group cross-section covariance matrix. After the perturbed lattice 

physics calculations are completed (481 for each lattice case), the standard deviation in 

lattice k-infinity is computed from Eq. (2.24). 

 In Figure 4-1, the relative standard deviation (RSD) in lattice k-infinity is given as a 

function of burnup for a vanished lattice depleted at 80% nominal void fraction. In addition 

to the total standard deviation, the standard deviation is subdivided into contributions from 

different isotopes. Isotopic contributions to k-infinity uncertainty are provided for 1) U-235, 

2) U-238, 3) Gd-155 and Gd-157, and 4) Pu and minor actinide isotopes. (Note that the total 

RSD is equal to the square root of the sum of the squares of each isotope’s RSD). At zero 

burnup (i.e. – BOL), the total standard deviation is 0.57%, and U-235 and U-238 cross-

section uncertainties are the major contributors to the total uncertainty. This is attributed to 
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two different effects. First, large k-infinity sensitivity coefficients to U-235 and U-238 

capture and fission cross-sections exist even though the cross-section uncertainties for these 

reaction types are small (i.e. – less than two percent) in the thermal and resolved resonance 

energy region. Second, the U-238 inelastic scattering cross-section uncertainty is greater than 

twenty percent, which is large enough to significantly contribute to k-infinity uncertainty 

even though the k-infinity sensitivity coefficient to the U-238 inelastic scattering cross-

section is small. In addition, the BOL k-infinity uncertainty due to Gd-155 and Gd-157 is 

0.12%. Since Gd-155 and Gd-157 are strong thermal neutron absorbers, gadolinium is used 

as a burnable poison to hold down hot excess reactivity at low burnup. The uncertainty in k-

infinity due to these gadolinium isotopes is attributed to large k-infinity sensitivity 

coefficients to the Gd-155 and Gd-157 capture cross-sections in the thermal energy region. 

Because the BOL number density of Pu and minor actinides is zero, their cross-sections 

uncertainties do not contribute to the uncertainty in BOL k-infinity. 

 As the lattice is depleted, there are many nuclide transmutation effects that influence 

k-infinity uncertainty. First, the U-235 cross-section uncertainty contribution decreases with 

burnup since the U-235 number density (i.e. – sensitivity) decreases with burnup. Likewise, 

the Gd cross-section uncertainty contribution decreases to zero as the Gd-155 and Gd-157 

number densities decrease to zero. Since Pu and minor actinides number densities increase 

with burnup, their cross-section uncertainties increase the k-infinity uncertainty as function 

of burnup. The U-238 cross-section uncertainty contribution is rather constant with burnup 

(0.40% RSD in k-infinity at BOL, 0.36% at 16 Gigawatt-days per metric-tonne-U 

(GWD/MTU), and 0.41% at EOL) since the number density of U-238 does not significantly 
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decrease with burnup. In addition to these general trends in number density buildup and 

depletion, perturbations in U-238 and gadolinium cross-sections significantly influence the k-

infinity curve before the gadolinium peak, which is the burnup value at which the positive 

fuel reactive worth offsets the negative gadolinium or BP reactivity worth. For this lattice, 

the gadolinium peak occurs at 19 GWD/MTU. Before the gadolinium peak, the nonlinear 

curvature in the k-infinity uncertainty is influenced by many competing reactivity effects 

such as resonance and spatial self-shielding, spatially-dependent gadolinium depletion, and 

spatially dependent Pu buildup. 

 As for other lattices cases, the k-infinity uncertainty is similar to that given in Figure 

4-1, such as the k-infinity uncertainty for a dominant lattice depleted at 40% nominal void 

fraction in Figure 4-2. The Gd-155 and Gd-157 uncertainty contribution is lower at BOL for 

the dominant lattice modeled at 40% nominal void fraction compared to the vanished lattice 

modeled at 80% nominal void fraction. Since there are more fuel rods in the dominate lattice 

as compared to the vanished lattice, the gadolinium neutron absorption rate decreases. This 

leads to smaller k-infinity sensitivity coefficients to gadolinium cross-sections for the 

dominant lattice, which in turn leads to a smaller gadolinium uncertainty contribution. 

 Similar to lattice k-infinity uncertainty, uncertainties in key core attributes are 

calculated by propagating cross-section uncertainty through the core simulator model. For 

this work, the FORMOSA-B core simulator is used to model a GE BWR/4 core design with 

560 fuel assemblies. The core model consists of 36 burnup steps with an End-of-Cycle 

(EOC) burnup of 19948.3 GWD/MTU. The FORMOSA-B core simulator uses few-group 

cross-sections generated by the CASMO-3 lattice physics code [52]. Since the CASMO-3 
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lattice physics code was unavailable for this work, TRITON was used to generate the few-

group cross-section covariance matrix. However, the calculation methods employed by the 

CAMSO-3 lattice physics code are considerably different than that of the TRITON lattice 

physics code. This difference in methodology leads to small differences in the nominal few-

group cross-section values. Similar to previous work, it is assumed that the relative few-

group cross-section covariance matrix generated by the TRITON lattice physics code is equal 

to the relative few-group cross-section covariance matrix as would be calculated by the 

CASMO-3 code. This is a reasonable assumption since the concern here is accurately 

approximating the relative change in few-group cross-sections with respect to multi-group 

cross-section perturbations, which is less difficult than accurately predicting the nominal 

values of the few-group cross-sections. 

 To calculate core attribute uncertainties, the CASMO-3 few-group cross-sections are 

perturbed based on the singular vectors of the few-group cross-section covariance matrix 

generated by TRITON. Core simulator calculations are completed for each perturbed few-

group cross-section library (362 total), and the uncertainty in key core attributes are 

computed using Eq. (2.28). Figure 4-3 graphs the core k-effective RSD as a function of 

burnup. The total core k-effective is subdivided into isotopic contributions similar to the 

lattice k-infinity uncertainties in Figure 4-1 and Figure 4-2. The RSD in k-effective is 0.56% 

at BOC and increases to 0.63% at EOC. The k-effective uncertainty is dominated by U-238 

cross-section uncertainty at BOC and by plutonium and minor actinide cross-section 

uncertainty at EOC. The two main differences between core k-effective uncertainty and 

lattice k-infinity uncertainty are 1) the non-zero plutonium and minor actinide uncertainty 
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contribution at BOC, and 2) the decrease in U-235 and gadolinium cross-section uncertainty 

contribution. These effects are due to the reuse of once-burned and twice-burned fuel 

assemblies in a checkerboard fuel assembly loading pattern (LP). Consequently, the 

checkerboard LP tends to smooth out the k-effective uncertainty as a function of burnup. 

 In Figure 4-4, the standard deviation in nodal power at BOC is given as a function of 

axial position for a fresh fuel located near the center of the core. Similar profiles are given in 

Figure 4-5 at Middle-of-Cycle (MOC) and in Figure 4-6 at EOC. The nodal power 

uncertainty profiles are given in terms of the absolute standard deviation rather than RSD 

because the low-power axial blanket nodes (i.e. - nodes 1 and 25) have high relative standard 

deviations that graphically distort the measure of uncertainty in the high-power interior 

nodes. There are several reasons for the complex shape in the nodal power uncertainty 

profiles. First, the node-dependent few-group cross-sections and their uncertainties may 

differ due to changes in lattice design. The lattice design changes in nodes 1, 15, 25, and 

possibly node 10 if power-shaping BP rods are present in the fuel assembly. Second, the few-

group cross-sections vary due to different local thermal hydraulics conditions and exposure 

history. Finally, several nodal power uncertainty profiles exhibit a “double hump” because of 

a change in sign of the nodal power sensitivity coefficients moving from the bottom node to 

the top node. For example, U-238 capture cross-section perturbations tend to shift the relative 

nodal power towards the bottom or the top of the fuel assembly, depending on the direction 

of the cross-section perturbation. This leads to a positive sensitivity coefficient at the bottom 

of the fuel assembly and a negative sensitivity coefficient at the top of the fuel assembly (or 
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vice versa). The double hump effect occurs by calculating the square root of the sum of the 

squares of the sensitivity profile. 

 In addition to nodal power uncertainties, Figure 4-7 – Figure 4-9 graphs the 

uncertainty in thermal margins. The Average Linear Power Density Ratio (APRAT) 

uncertainty is given in Figure 4-7 for the same fuel assembly in the nodal power uncertainty 

figures. The APRAT ratio represents to the approach to limiting Average Planar Linear Heat 

Generation Rate (APLHGR). This thermal limit is determined by the maximum peak clad 

temperature during a Loss of Cooling Accident (LOCA). Similar to the APRAT margin, 

Figure 4-8 graphs the fraction to limiting power density (FLPD) margin and its standard 

deviation. The FLPD margin corresponds to the thermal limit on pin-wise linear heat 

generation rates due to pellet-clad interaction. Both the APRAT and FLPD margin 

uncertainties are highly correlated to the uncertainties in nodal power. In addition to these 

thermal margins, the uncertainty in Maximum Fraction to Limiting Critical Power Ratio 

(MFLCPR) is given in Figure 4-9. The MFLCPR thermal margin represents the approach to 

the critical heat flux limit, and is also highly correlated to the nodal power uncertainty. The 

MFLCPR thermal margin uncertainties are also dependent upon the axially integrated power 

uncertainty as a function of elevation via the critical heat flux correlation dependence on 

coolant quality. 

4.2. BWR Adaptive Simulation 

 The quantified uncertainties in BWR core observables can be used as a basis for self-

shielded multi-group cross-section adjustment to improve BWR modeling fidelity. To 
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display this capability, the virtual approach is employed as described in the previous work by 

Abdel-Khalik in [1] and [2]. For the virtual approach, the design basis core simulator, 

denoted DC, is adapted to a set of virtual core observables, denoted VC. The VC nodal 

power distributions and core k-effective are used to represent the measured core observables 

rather than LRPM/TIP detector readings and core k-effective equal to one. This is a valid 

assumption because the LPRM/TIP detector readings’ prediction uncertainties are highly 

correlated to the nodal power prediction uncertainties.1 For the rest of this work, the core 

nodal power distribution is referred to as a core observable rather than a core attribute.  

 The VC core observables are generated by perturbing the self-shielded multi-group 

cross-sections in a statistically consistent manner with their prior uncertainties. Specifically, 

the VC core observables, denoted 
mCOy , are calculated according to: 

 

 
0

1/ 2

,,,( ( ))CO CS LP MG MG t noiseMG tMG tm
y x z η= + +Θ Θ U Σ  (4.1) 

 
where ,MG tz  is the perturbation to the prior self-shielded multi-group cross-sections, and 

noiseη  is the noise applied to the VC nodal power distributions. In the first adaption 

experiment presented (i.e. – Case A), the perturbations in ,MG tz  are stochastically sampled 

from a normal probability density function with a mean value of zero and a standard 

deviation of one. To create the VC, each of the 2223 singular vectors are stochastically 

sampled while only 481 singular vectors are used to adjust the multi-group cross-sections of 

                                                 

1 For future work, the LPRM/TIP detector readings’ uncertainties will be directly evaluated using a realistic 
core simulator’s detector model. 
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the DC. The selected subspace of the self-shielded multi-group cross-section singular vectors 

is determined by the GPT sensitivity analysis outlined in Chapter 3. The noise vector is 

determined by stochastic sampling from a Gaussian distribution with of mean value of zero 

and a standard deviation of 0.04. This is representative of the noise level in the LPRM 

detector readings.  

 Figure 4-10 plots the prior and posterior error in k-effective for Case A as a function 

of burnup. In Figure 4-11, the nodal power RMS error is given as a function of burnup. The 

core k-effective error before the adaption (i.e. - <DC/VC> in Figure 4-10) is 550 pcm at 

BOC and increases to 1200 pcm at EOC. After the cross-section adjustment, the core-k-

effective error, denoted <AC/DC>, deceases to a value less than 100 pcm. The posterior error 

in k-effective is of the same order of magnitude as the linearization error for the lattice 

physics and core simulator models in assuming that changes in observables respond linearly 

to cross-section perturbations for each model. In Figure 4-11, the prior and posterior nodal 

power RMS error is denoted <DC/VC> and <AC/VC> respectively. The prior error is 

slightly larger than the noise level in simulated VC core observables’ measurements. The 

posterior error is essentially equal to the 4% noise in the VC core observables’ 

measurements. Removing the noise component from the nodal power distribution, the prior 

and posterior errors are given as <DC/VC*> and <AC/VC*>, respectively. The posterior 

error is less than 0.5% as a function of burnup as compared to the 1.0-1.3% nodal power 

error before the adaption. This shows that the cross-section adjustment acts as a powerful 

noise filter. For this case, the prior nodal power RMS is somewhat smaller than the expected 

error in LPRM detector readings. The Tikhonov regularization parameter is therefore set to 
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1.0. In other words, equal weighting is given to the misfit chi-square 2
mχ  and the 

regularization chi-square 2
rχ . The formulas for 2

mχ  and 2
rχ  are extracted from Eq. (2.35) as: 
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For Case A, 2
rχ  is equal to 5.645, which implies the self-shielded multi-group cross-sections 

are perturbed with an RMS of 0.11 standard deviations. 

 For the second adaption experiment (i.e. – Case B), ,MG tz  is determined using a 

different stochastic sample with a mean value of zero and a standard deviation of 2.5. The 

standard deviation was increased so that the nodal power RMS errors is more comparable 

with the errors of measured LPRM detector readings.  

Figure 4-12 plots the prior and posterior error in k-effective for Case B as a function of 

burnup. Before the adaption, the DC core k-effective error ranges from 1000 pcm at BOC to 

2500 pcm at EOC. Like the Case A experiment, the absolute error in the AC core k-effective 

is below 250 pcm. The nodal power RMS error is given as a function of burnup in Figure 

4-13. The DC nodal power RMS error ranges from 4.2% to 5.5% and the AC nodal power 

error is equal to the 4% noise level in the VC core observables’ measurements. In addition to 

the nominal values of the posterior core observables, the posterior core observables 

uncertainties have been quantified using Eq. (2.43). The posterior standard deviation in k-
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effective is less than 250 pcm, which is a substantial decrease from the 550-600 pcm prior 

standard deviation. The decrease in the posterior standard deviation for nodal power, 

APRAT, FLPD, and MFLCPR is of the same order of magnitude as the decrease in the nodal 

power RMS error. Because the thermal margin uncertainties are highly correlated to the 

uncertainties in nodal powers, their uncertainties can be significantly reduced even though 

they cannot be directly measured. The decrease uncertainty in thermal margins can be used to 

change operational strategies for the current fuel cycle and the design of future fuel cycles to 

increase fuel utilization, minimize fuel cycle costs, and to support power uprates. 

 For Case B, the Tikhonov regularization parameter is selected by the L-curve 

approach. To generate the L-curve, self-shielded multi-group cross-sections are adjusted 

using fourteen different values of 2α  ranging from 10-8 to 104. In Figure 4-19, the 

regularization chi-square 2
rχ  is plotted versus the misfit chi-square 2

mχ  for each value of 2α . 

At low values of 2α , the cross-section adjustment algorithm focuses on minimizing the 

misfit chi-square. As 2α  increases, the algorithm increasingly constrains the adjusted self-

shielded multi-group cross-sections to their prior values, which decreases the value of the 

regularization chi-square. A knee-type behavior is depicted in the figure where misfit chi-

square increases rapidly without any significant change in the regularization chi-square. The 

optimal value of the regularization parameter is chosen in the knee region where the adjusted 

core observables (AC) agree with the VC core observables, and the adjusted self-shielded 

multi-group cross-sections are closely restricted to their prior values. For Case B, 2α  is equal 

to 4.0, and the self-shielded multi-group cross-sections are perturbed with an RMS of 0.163 

standard deviations from their prior values.  
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Figure 4-1 Relative standard deviation in lattice k-infinity for a vanished lattice at 80% void 

fraction. 
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Figure 4-2 Relative standard deviation in lattice k-infinity for a dominant lattice at 40% void 
fraction. 
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Figure 4-3 Relative standard deviation in core k-effective as a function of burnup. 
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Figure 4-4 Absolute standard deviation in relative nodal power profile for a fresh fuel 
assembly at BOC. 
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Figure 4-5 Absolute standard deviation in relative nodal power profile for a fresh fuel 
assembly at MOC. 
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Figure 4-6 Absolute standard deviation in relative nodal power profile for a fresh fuel 
assembly at EOC. 
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Figure 4-7 Absolute standard deviation in APRAT for a fresh fuel assembly. 
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Figure 4-8 Absolute standard deviation in FLPD margin for a fresh fuel assembly. 
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Figure 4-9 Absolute standard deviation in MFLCPR for limiting CPR fuel assembly as a 
function of burnup. 
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Figure 4-10 Prior and posterior error in core k-effective (Case A). 
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Figure 4-11 Prior and posterior core nodal power RMS error (Case A). 
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Figure 4-12 Prior and posterior error in core k-effective (Case B). 
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Figure 4-13 Prior and posterior core nodal power RMS error (Case B). 
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Figure 4-14 Prior and posterior absolute standard deviations in core k-effective (Case B).
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Figure 4-15 Prior and posterior absolute standard deviations in nodal power (Case B). 
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Figure 4-16 Prior and posterior absolute standard deviations in APRAT margin (Case B). 
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Figure 4-17 Prior and posterior absolute standard deviations in FLPD margin (Case B). 
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Figure 4-18 Prior and posterior absolute standard deviations in MFLCPR margin (Case B). 
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Figure 4-19 L-Curve of Cross-Section Adjustment (Case B). 
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5. Conclusions and Recommendations for Future Work 

5.1. Conclusions 

 The goal of this work is to improve the fidelity of BWR computational models by 

developing the capability to adjust multi-group neutron cross-sections. BWR model 

predictions of LPRM detector response can disagree with measured LPRM detector readings 

with discrepancies larger than the noise level of the detector instrumentation. The magnitude 

of this error is comparable to the model prediction uncertainty due to multi-group cross-

section uncertainty. This implies that BWR model fidelity can be enhanced by data 

adjustment techniques provided that they are computationally efficient, accurate, and robust. 

The previous work on BWR adaptive core simulation focused on the development of 

Efficient Subspace Methods (ESM) algorithms. These algorithms allow for fast, accurate, 

and robust plant adaption based on few-group cross-section adjustment. The use of the ESM 

algorithms to adjust multi-group cross-sections provides the additional capability to optimize 

lattice and fuel assembly designs for future fuel cycles. 

 In order to accurately quantify core observables uncertainty due to multi-group cross-

section uncertainty, the multi-group cross-section covariance matrix must account for spatial 

and energy resonance self-shielding effects. Uncertainties in neutron cross-section resonance 

parameters impact the uncertainties in the infinitely-dilute multi-group cross-sections. They 

additionally impact the uncertainty in the resonance correction factors, or self-shielding 

factors, which correct the infinitely-dilute multi-group cross-sections for resonance and 

spatial self-shielding effects. The vast amount of resonance parameters and the computational 
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run-time limit the applicability of forward or adjoint sensitivity and uncertainty analysis 

techniques for resonance parameter uncertainty propagation. Moreover, the computational 

run-time needed for the NITAWL resonance treatment model limits the applicability of 

ESM-based techniques, where the singular value decomposition of the resonance parameter 

covariance matrix can be used to decrease the number of lattice physics calculations. Because 

of the multitudes of resonance parameter covariance data and the limiting run-times, a new 

resonance treatment model was developed for the TRITON lattice physics code. The new 

resonance treatment model uses an interpolation table of resonance correction factors to 

quickly and accurately evaluate the self-shielded multi-group cross-sections used in lattice 

physics calculation. Interpolation tables of resonance correction factors are commonplace 

among many of the nuclear industry’s lattice physics codes. The functionalization of the 

interpolation tables with respect to fuel temperature and background scattering cross-sections 

varies among lattice physics codes, depending on the approximations employed in the 

resonance treatment model. For the TRITON lattice physics code, the NITAWL resonance 

treatment model is based on the Nordheim Integral Treatment method. In the modified 

resonance treatment model, the resonance correction factors are functionalized in terms of six 

system parameters that impact the Nordheim Integral Treatment calculation. Given this new 

interpolation table approach, the resonance parameter uncertainty analysis needs only to be 

performed one time for each mesh point in the interpolation table. Accounting for the 

uncertainty for each resonance correction factor in the interpolation table, the multi-group 

cross-section covariance matrix now includes the impact of the resonance parameters 

uncertainty during the resonance and spatial self-shielding calculation. Once the self-shielded 



CHAPTER 5:CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 108 

 

covariance matrix is calculated, ESM-based methods can be used to propagate multi-group 

cross-section uncertainty through the lattice physics calculation. 

 The uncertainties in key core attributes have been re-evaluated using the new 

formulation of the multi-group cross-section covariance matrix based on the ENDFB/6 cross-

section covariance data. The uncertainty in k-effective is approximately 0.55% while the 

uncertainty in nodal power distributions and thermal margins is approximately 1.2%. The 

uncertainty propagation calculations were performed using Efficient Subspace Methods 

developed by Abdel-Khalik and Turinsky. Using ESM, approximately 104 lattice physics 

calculations and 103 core simulation calculations are required for uncertainty propagation 

based on the singular value decomposition of the self-shielded multi-group cross-section 

covariance matrix. The number of required calculations was decreased by an order of 

magnitude by using a GPT-based sensitivity analysis as a scoping tool to remove 

unnecessary calculations along singular vectors that do not significantly contribute to core 

attributes’ uncertainties. 

 Numerical experiments were conducted to show the capabilities of the ESM-based 

multi-group cross-section adjustment algorithm for BWR Adaptive Core Simulation. These 

experiments reveal that the 4% noise in virtually simulated core observables does not 

degrade the fidelity and robustness of the cross-section adjustment beyond the scope of 

useful utility. These results are consistent with the few-group cross-section adjustments in the 

previous work on BWR ACS. In addition to the developed methods to adjust multi-group 

cross-sections, the evaluation of posterior covariance matrices within the ESM-based 

methodology has been rigorously formulated.  
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5.2. Recommendations for Future Work 

 The first and most important recommendation for future work regards the testing of 

the proposed cross-section adjustment techniques using real plant data as opposed to 

simulated plant data. Real plant data poses many challenges that the proposed adjustment 

techniques do not address. These include the quality of the measured data supplied by the 

plant and the treatment of systematic measurement errors, such as detector drift, in addition 

to the random measurement fluctuations that are currently treated. 

 The second area that needs further attention pertains to the resonance treatment model 

in TRITON. Resonance correction factors, or self-shielding factors, in the resolved resonance 

region are functionalized in terms of fuel temperature, Dancoff correction factor, number 

density of the resonance absorber, and other terms that depend on the potential scattering 

cross-sections of the isotopes in each fuel pin. Currently, TRITON calculates Dancoff 

correction factors by assuming an infinite repetitive lattice of identical fuel pins.  For strong 

neighbor effects (e.g. - water holes, control rods, etc.), the Dancoff correction factor can 

change significantly. Methods to account for neighbor effects vary for many of the nuclear 

industry’s standard lattice physics codes. Further investigation is necessary for 

implementation in the TRITON lattice physics code. Second, resonance interference effects 

are not considered in the interpolation table of resonance correction factors in the modified 

resonance self-shielding model. The CENTRM resonance processing module could be used 

in a series of benchmark calculations to determine the important resonance interference 

effects. From these benchmark calculations, the interpolation tables could be modified to 
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account for resonance interference. It is expected that both of these methods will minimally 

impact the uncertainty propagation and data adjustment calculations presented in this work. 

 The third improvement to this work pertains to accounting for the indirect uncertainty 

contribution due to the uncertainty in the Dancoff correction factor and the background 

scattering terms used in the resonance correction factor interpolation table. TRITON 

calculates the Dancoff correction factors using one-group total cross-sections from the 

standard composition library [52], and the background scattering terms from the potential 

scattering cross-sections of each isotope in the fuel pin. Accounting for this cross-section 

dependence, nonzero sensitivity coefficients now exist that reflect changes in self-shielded 

multi-group cross-sections across different isotopes. For example, a change in the hydrogen 

multi-group scattering cross-section induces a change in the Dancoff correction factor, which 

induces a change in the self-shielded multi-group cross-sections for U-238. The eigenvalue 

decomposition of the self-shielded multi-group cross-section covariance matrix will now 

have nonzero elements in the eigenvectors which correspond to these nonzero sensitivity 

coefficients. In addition, the one-group cross-sections on the standard composition library 

need to be consistently perturbed with the 44-group self-shielded multi-group cross-sections 

so that the burnup dependent few-group cross-section sensitivity coefficients will be 

correctly quantified. Since accounting for these effects increases the “denseness” of the self-

shielded covariance matrix (i.e – no longer block diagonal), it may be more tractable to use 

the implicit sensitivity coefficients generated by automatic differentiation tools in the 

TSUNAMI code package. Automatic differentiation tools may be necessary if TRITON is 

modified to account for neighbor effects of the Dancoff correction factor. 
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 The fourth improvement to this work pertains to regenerating the sensitivity 

coefficients of the self-shielded multi-group cross-sections with respect to Reich-Moore 

resonance parameters using the CENTRM resonance treatment model. CENTRM can 

calculate resonance correction factors for Reich-Moore cross-section resonance models while 

NITAWL can only treat Single-Level Breit Wigner (SLBW) or Multi-Level Breit Wigner 

cross-section resonance models. NITAWL was chosen over CENTRM for two reasons. First, 

sensitivity coefficients of self-shielded multi-group cross-sections with respect to SLBW 

resonance parameters could be directly computed by perturbing each resonance parameter 

one-at-a-time on the master cross-section library. CENTRM uses a different set of point-wise 

cross-section libraries where the Reich-Moore resonance parameters have been preprocessed 

into cross-section spectra with approximately ~70,000 energy groups. This preprocessor code 

was unavailable for this work to generate perturbed point-wise cross-section spectra for each 

Reich-Moore resonance parameter. Second, benchmark lattice physics calculations were 

computed using the 238-group cross-section library using both the NITAWL resonance 

treatment model and the CENTRM resonance treatment model. Comparisons of these 

calculations revealed similar k-infinity curves as a function of burnup with a k-infinity bias 

less than 100 pcm. Therefore, it was assumed that the sensitivity coefficients generated based 

on the NITAWL resonance treatment model would be as accurate as the CENTRM 

resonance treatment model. 

 The final recommendation of this work would be the implementation of first-order 

adjoint capability in the resonance treatment models and lattice physics model. This will 

allow for the use of the powerful ESM algorithms to calculate low-rank approximations of 
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each sensitivity matrix. For the resonance treatment model, this will allow for fast and 

accurate sensitivity coefficient evaluation of the thousands of Reich-Moore parameters used 

in Reich-Moore resonance treatment models. For the lattice physics model, time-dependent 

perturbation theory could be used to a) reduce the number of singular vectors of the self-

shielded multi-group cross-section covariance matrix that must be evaluated in the lattice 

physics calculation, and b) evaluate the importance of fission product yield uncertainties to 

few-group cross-section uncertainty. Higher-order GPT methods could also be used to 

potentially minimize the number of forward perturbation calculations needed to build the 

multi-group cross-section interpolation table and the few-group cross-section interpolation 

table. 
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APPENDIX A: DEVELOPMENT OF ESM DATA ADJUSTMENT SOLUTION 
 

 Repeating the main text, the well-posed data adjustment problem (Eq. (2.35)) is given 

as: 

 

 

0 0 0 0

0 0

0

2

,

†

†

min{[ ( )] [ ( )]

( ) ( )}

( )

MG

T
CS LP CS LPMG CO CO MG MG CO CO MG MGx

MG MG MG MG

MG tMG MG

COmm m

MG
T

x y y x x y y x x

x x x x

subject to x x R

α

= − − − − − − +

− −

− ∈

S S C S S

C

U

(A.1) 

 

where 

0MGx  prior self-shielded multi-group cross-sections 

MGx  posterior self-shielded multi-group cross-sections 

MGC  prior self-shielded multi-group cross-sections covariance matrix 

0FGx  prior lattice-averaged few-group cross-sections 

mCOy  prior core observables (i.e. - measured observables) 

mCOC   prior core observables covariance matrix (i.e. - the uncertainty in the 
measurements of core observables). 

LPS  lattice physics sensitivity matrix 

CSS  core simulator sensitivity matrix 

,MG tU  singular vectors of the self-shielded multi-group cross-sections 
covariance matrix 

0COy  prior core observables as predicted by computational model 

n dimension of 
0MGx  (~107)  

m dimension of 
mCOy  (~105) 
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t rank of MGC  approximated by truncated-SVD 

Using the compact SVD of mCOC ,  

 

 
† 1

mm m m

mm m m

T
COCO CO CO

T
COCO CO CO

−

=
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C U Σ U

C U Σ U
 (A.2) 

 

Eq. (A.1) is rewritten in block matrix form as: 
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2
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( )min{ ( ) }
0

( )

m m
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MG MG MGTx
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y yx x x

subject to x x R

α

−
−

−

⎡ ⎤⎡ ⎤− ⎢ ⎥⎢ ⎥= − −⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

− ∈

Σ U S SΣ U

Σ U

U

 (A.3) 

 

Because the self-shielded multi-group cross-section adjustment 
0MG MGx x−  is constrained to 

,( )MG tR U , the following change in variables is introduced: 

 

 
0 0

1/ 2

, , ( )
T

MG MG MG MGMG t MG tz z x x
−

− = −Σ U  (A.4) 

 
0 0

1/ 2

,, ( )MG MG MG MGMG tMG tx x z z= + −U Σ  (A.5) 
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The vector 
0MGz  denotes the prior data adjustment vector, which is always zero. The vector 

0MGz  is only defined for the sake of the following derivation. Using this change in variables, 

Eq. (A.3) reduces to: 

 

 0

0

21/ 21/ 2

2

( )min{ }m mm m m

MG

TT

CO CO
MG MGz

MG

CO LPCO CSCO CO y yz z
zα α

−− ⎡ ⎤⎡ ⎤− ⎢ ⎥⎢ ⎥= −
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

Σ U S SΣ U

I
 (A.6) 

 

where MGz  is the posterior data adjustment vector. 

 From Section 2.2.3, the following matrices are defined characterizing the action of 

the sensitivity matrices CSS  and LPS  on the singular vectors of the self-shielded multi-group 

covariance matrix 
1/ 2

,, MG tMG tU Σ :  

 

 
1/ 2

, ,,LP t MG tLP MG t=R S U Σ  (A.7) 

 2 22, , ,,

T
LP t LP t LP tLP t=R U Σ Ψ  (A.8) 

 2 22, ,,CS t LP tCS LP t=R S U Σ  (A.9) 

 

Eqs. (A.7)-(A.9) simplify the matrix 
1/ 2 1/ 2

,m m

T
CO MGCO CS LP MG t

−

Σ U S S U Σ  in Eq. (A.6) to the 

following: 
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 (A.10) 

 

Introducing the thin SVD: 
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 (A.11) 

 

the normal equation solution to Eq. (A.6) is written as: 
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Substituting 
0

0MGz =  into Eq. (A.12), the final expression for MGz  is given as:  

 

 0

0

2 1/ 2
2 1

1/ 2
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T T

MG CO CO

MG MG MG

CO CO

MG tMG t

z y y

x x z

α
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V Σ I ΣU Σ U
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 (A.13) 

The posterior lattice-averaged few-group cross-sections (i.e. - FGx ) and posterior core 

observables (i.e. - COy ) are determined by re-running the lattice physics model and core 

simulator model: 

 

 
( )

( ( ))
FG LP MG

CO CS LP MG

x x

y x

=

=

Θ

Θ Θ
 (A.14) 

 

or by using the sensitivity matrices to determine a first-order approximation: 

 

 0 0
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FG FG MG MG

CO FG MG MG

LP

LPCS

x x x x

y x x x

≅ + −

≅ + −

Θ
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 (A.15) 

 

Substituting Eqs. (A.5), and (A.7)-(A.9) into Eq. (A.15), the first-order approximation 

simplifies to: 
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 (A.17) 

 

The posterior data adjustment covariance matrix, denoted zC , is determined by the sandwich 

rule.  Eq. (A.12) is rewritten as: 
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MG

y y
z

z

−⎡ ⎤⎡ ⎤= ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
M M  (A.18) 

 

where matrix M  is defined as: 
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Using the uncertainty propagation method outlined in Section 2.2.1, zC  is given as: 
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where the prior core observables covariance matrix mCOC  and the prior data adjustment 

covariance matrix zC  are uncorrelated. The prior data adjustment covariance matrix zC  is 

the t by t identity matrix in order to satisfy: 
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 (A.21) 

 

Substituting Eq. (A.19) and Eq. (A.21) into (A.20) produces the following expression for zC : 
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In Eq. (A.23), the singular values of zC  are defined as: 
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As the Tikhonov regularization parameter approaches infinity, the singular values of zC  

approach one, and the posterior data adjustment covariance matrix` equals the identity matrix 

(i.e. – prior data adjustment covariance matrix).  In this case, the self-shielded multi-group 

cross-sections are not adjusted.  Using Eq. (A.5), the posterior self-shielded multi-group 

cross-section covariance matrix  ,MG postC  is given as: 
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 (A.25) 

The posterior lattice-averaged few-group cross-section covariance matrix ,FG postC  and 

posterior core observables covariance matrix ,CO postC  are given as: 
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T

FG post LP post MG post LP post

T T
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=

=

C S C S

C S S C S S
 (A.26) 

 

where the posterior sensitivity matrices (i.e. - ,CS postS  and ,LP postS ) are evaluated at the 

posterior cross-section values.  Assuming that the posterior sensitivity matrices are 

approximately the prior sensitivity matrices, Eq. (A.26) simplifies to the following: 
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