
ABSTRACT

HITE, JASON MICHAEL. Bayesian Parameter Estimation for the Localization of a Radioactive
Source in a Heterogeneous Urban Environment. (Under the direction of John Mattingly).

This dissertation presents a new approach to localizing an unknown source of radiation in
an urban environment using a distributed detector network. The method employs Bayesian
statistical parameter estimation techniques, relying on an approximation for the response of a
detector to the source using a simplified model of the underlying transport phenomena based on
ray-tracing, combined with a Metropolis-type sampler that is modified to propagate the effect of
fixed epistemic uncertainties in the material cross sections of objects in the scene. This method is
first demonstrated with simulated measurements generated primarily using a geometry derived
from a real city block, with the algorithm able to localize an 8.7mCi source to within a few
meters based on observations from 6 detectors with a 10 s count time. These results also show
that the effect of uncertainties in the material cross sections on the precision of the localization
is relatively weak, implying that precise estimates of the composition of objects in the scene
are not necessary.

Results from these simulated tests were used to design a field measurement campaign con-
ducted in cooperation with Oak Ridge National Laboratory in a scene mimicking a typical ur-
ban setting. After extending the simplified detector model to account for the orientation of the
detectors, analysis of these measurements shows that the algorithm is able to localize a 37mCi

source to within ∼2m for 30min measurements in two separate trials, though the results also
suggest that count times as short as 5min are sufficient.

As an extension of this analysis, subsequent work also investigates several questions raised
following these experiments. First, a method was developed to automatically detect and clas-
sifying anomalies in time-series count rate data caused by unexpected phenomena, e.g. objects
moving in the scene. Next, a study of the relationship between the signal-to-noise ratio of the
detectors and the precision of the localization was conducted in order to establish rough limits
on the strength of the source required to achieve localization. Lastly, the results of localization
using an even further simplified transport model for the detector counts that treats all objects
in the scene as totally opaque are given. These results show that this detector model is still able
to achieve acceptable localization in many cases, with the advantage that it does not require
any estimation of the cross section of objects in the scene.
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Chapter 1

Introduction

This dissertation describes a new method for locating an unknown source of radiation in a
heterogeneous environment. A source is assumed to exist in the search area1 (referred to as the
scene) and is observed by a network of radiation detectors, which records counts due to both
the source and to natural background radiation present in the scene. Using these measurements,
we seek to estimate the location of the source, as well as to quantify the uncertainty in this
estimate. This process is often referred to as source localization, and I am especially concerned
with localizing a source in a scene which is on the scale of a typical city block or larger.
Figure 1.1 shows an example, where a detector network is sited in an urban scene with a
complex, heterogeneous environment.

1It is worth highlighting that I am are pre-supposing the presence of an unknown source in the scene. Detecting
the presence of a source is a distinct problem with a different set of challenges, and is constrained primarily by
tradeoffs between the probability of detecting the presence of a source anywhere in the scene and the rate of false
positives. Localization follows the detection of a source, and seeks to determine the exact position of the source
with a given precision.
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Figure 1.1: Example source localization problem, with a detector network distributed over a
city block. We wish to determine the location of the source using only count rates measured by
the detectors.

As a simple example, I will demonstrate what is perhaps the simplest method for localizing a
source, generally known as trilateration. Assume for simplicity that the source and detectors are
constrained to a plane and that the environment is a vacuum with no background. In this case,
the mean count rate recorded by the i-th detector, di due to an isotropic and monoenergetic
source of known activity I, located at position r, is given by2

di(r, I) = εi ·
I

4π‖r− ri‖22
, (1.1)

where ri is the detector location and εi is the total efficiency of the detector, with i = 1, 2, ..., ND.
Let us denote the distance between the source and detector as δi = ‖r − ri‖2, where ‖ ◦ ‖2
is the Euclidean norm of a vector. Given a particular d̂i measured by the detector, we can
solve Eq. (1.1) for δi = 2

√
πd̂i/Iεi. Given several detectors, we can draw a set of circles,

each centered on ri with radius δi; the source is then localized by finding the intersection
of these circles (Fig. 1.2). More precisely, we can solve the linear least-squares problem given

2We can extend the method shown here to estimate the activity of the source, but the system of equations
which arises is non-linear and the resulting analysis is not as illustrative for the purposes of this basic example.
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by Eq. (1.2), which will have a unique solution when ND ≥ 3 3 [25].

2 (ri − rND
)ᵀ r = ‖ri‖22 − ‖rND

‖22 − δ2i + δ2ND
i = 1, 2, . . . , ND − 1 (1.2)

Figure 1.2: Illustration of trilateration; source is located at the point where circles overlap.

However, applications involving radioactive sources are subject to Poisson counting statis-
tics, with the actual counts recorded by the detector varying about the mean value calculated
from Eq. (1.1). This is illustrated in Fig. 1.3, where each circle is now less distinct, correspond-
ing to statistical uncertainty in the measured count rates. The circles have no clear point of
intersection and instead there is a region where the source lies. The least squares solution (and
estimates of uncertainty) can still be found by solving Eq. (1.2), but will be sensitive to the
random statistical fluctuations in the measurements.

3By calculating the numerical rank of the linear system defined from Eq. (1.2) we can show that the source
must lie within the convex hull of the detector locations, defined as the union of all triangles with vertices
belonging to the set of detector locations. Degenerate cases also exist, for example if all the detectors are placed
at the same location.

3



Figure 1.3: Illustration of trilateration with uncertainty; source lies somewhere inside the black
circle.

This simple example also ignores the possibility of objects in the scene, which will attenuate
the radiation emitted by the source at different rates, as well as the presence of background
radiation, which adds random noise to the measurements. Accounting for the presence of at-
tenuators greatly complicates estimation of the detector responses, generally resulting in a non-
linear (as well as non-smooth and non-convex) system of equations which must be solved using
advanced iterative techniques [41]. Prior work in this area has tended to focus on source local-
ization in the absence of attenuators (or ignoring their effect), while the method presented in
this dissertation incorporates a simplified model for the transport of radiation in a heteroge-
neous medium.

1.1 Motivation and Applications

The focus of this research is on applications in the area of nuclear security, particularly on the
recovery of lost or stolen sources of ionizing radiation. A database compiled by the Nuclear
Threat Initiative (NTI) [44] lists over 250 incidents related to the diversion or theft of nuclear
material between 2005 and 2012 that were classified as proliferation-significant. Additional high-
profile incidents such as the 1987 loss of a 1400Ci cesium-137 source in Goiânia, Brazil [38] or

4



the more recent 2013 theft of a cobalt-60 source used for medical teletherapy near Hueypoxtla,
Mexico [27] highlight the need for methods that can aid in the identification and location of
radioactive sources over a large area.

My analysis is focused primarily on searching for sources which are significant sources of
gamma radiation. This is due to the scale of interest; at the scale of a city block most other forms
of radiation will quickly be attenuated to levels that are not measurable with readily-available
detectors. The experiments described in subsequent chapters have generally employed millicurie
amounts of cesium-137 with a characteristic gamma ray energy of 662 keV, arising from β-
decay to an excited state of barium-137 and the subsequent relaxation to the ground state.
While cesium-137 is itself a source of concern, with the NTI reporting at least 4 proliferation-
significant incidents involving cesium-137 in 2012, I also consider it as a stand-in for other
sources of interest, including special nuclear material (SNM). Figure 1.4 plots simulations of
the count rates recorded in a 2”×4”×16” NaI detector at standoff distances of 10m and 50m,
with simulations performed using GADRAS-DRF [31]. Count rates are shown for the 37mCi source
used for the experiments in Chapter 5, as well as for IAEA-defined significant quantities (SQ)
of weapons-grade plutonium (WGPu) and highly-enriched uranium (HEU)4, with all sources
simulated without shielding. These result indicate that the test source used produces count rates
comparable to 1 SQ of WGPu at both distances, though the activity of a similar significant
quantity of HEU is much lower. Note, however, that unlike cesium-137, the gamma spectra
of SNM sources are polyenergetic and so direct comparisons between the two are difficult.
Nevertheless, the count rates shown in Fig. 1.4 provide a qualitative comparison between the
cesium source used in the experiments and SNM.

41 SQ of WGPu is defined as 8 kg, while an SQ of HEU is 25 kg. These definitions are independent of the
exact isotopic composition of the material [20].

5



(a) 10m standoff distance

(b) 50m standoff distance

Figure 1.4: Count rates for various sources of interest, simulated using GADRAS-DRF for a 2”×
4”× 16” NaI detector.
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1.2 Prior and Related Work

Localizing an emissive source based on the measured signal strength of a network of detectors
is a topic that has been widely investigated, with a large variety of algorithms described in the
literature. As was briefly mentioned earlier, the simplest method is via trilateration, where
the signal strength reported by each detector is used to infer a distance from the source to the
detector. This creates a set of overlapping circles, each centered on a detector, with radius given
by the predicted distance from the source to the corresponding detector. The source is then
localized by finding the point of intersection for the set of circles.

This method is perhaps best illustrated in ref. [36], which uses trilateration with a 1/distance2

model for the detector count rates to estimate the source location, and a variance-weighted
average to estimate source activity. The authors demonstrate that the algorithm is able to
accurately localize a 0.95µCi cesium source, though the distance scale of the experiments is
small (∼1m) and the scene is free of obstructions. Trilateration is also well-known outside
of the nuclear engineering community, with ref. [25] presenting an overview of applications to
the localization of nodes in a wireless network; it also forms the basis of the Global Positioning
System [23, Ch. 2].

Many other authors present work that can be interpreted in a similar framework to that
of ref. [36], where localization is fundamentally achieved using a 1/distance2 model for the
count rates recorded by each detector as a function of source location and intensity, see for
example refs. [5, 32, 33, 34]. One shortcoming is that these formulations do not attempt to
account for the presence of attenuating material in the scene, with the 1/distance2 model
equivalent to assuming the scene is a homogeneous or a vacuum. More cluttered scenes may
however contain objects such as buildings or vehicles, which significantly affect the count rates
measured by detectors– an effect that is not accounted for by 1/distance2 models. To my
knowledge, work on localization using models that account for variable attenuation is relatively
sparse. An example that does attempt to incorporate attenuation is ref. [46], which discusses
the effect of attenuators on the detector response in a localization scheme based on maximum
likelihood estimation (discussed shortly), however it is unclear from the text how the authors
calculated the corresponding attenuation coefficients.

Ref. [22] presents a more sophisticated approach using high-fidelity adjoint radiation trans-
port to compute detector responses. Of particular interest, the authors compare the results
using adjoint transport to those using an uncollided flux model equivalent to the one described
in Section 3.3 for a cargo monitoring scenario. In contrast to the results we will see in following
chapters, the authors conclude that the uncollided flux model is insufficient and produces erro-
neous localization. This is likely due to the scale of their test problem, which is on the order of
2m×2m, a scale on which the source and detector may not be treated as points and where the
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contribution of scattered gammas to the detector response is substantial.
Another distinguishing characteristic of existing localization algorithms is in the statistical

parameter estimation techniques used. The classic solution to the statistical parameter estima-
tion problem is the maximum likelihood estimate (MLE), which is defined as the collection
of source parameters that maximizes the statistical likelihood of observing the measured de-
tector responses. MLE methods are very popular in many applications due to their robustness
and the reliability of modern numerical optimization algorithms. They have seen wide applica-
tion, with ref. [33] demonstrating the use of an MLE for a detector response model dependent
on the source activity and the distance from the source to the detector. Recent work has also
applied MLE to the complementary problem of estimating the spatial and temporal distribu-
tion of background and subsequently using this estimate to detect an anomalous source using
a mobile detector network [26].

Bayesian techniques have also seen a growth in usage in recent years, enabled largely by the
increasing computational resources available to researchers. Ref. [19] provides an early example,
deriving a maximum a posteriori estimator (conceptually similar to an MLE, but formulated
in a Bayesian context) of the source location intended for use in real-time tracking. Using a
Gaussian noise state model, the authors show that their estimator is able to track a cesium-137
source in real-time as it moves throughout a 10m×15m room. The results presented therein
show the algorithm has good performance, being able to track the source to within a few inches
as it is moved around, but does not include a detailed description of the experiments. Most
notably, the source activity is not stated, though from the distance scale involved it would be
reasonable to assume a source in the 100µCi to 500µCi range was used.

There also exists a separate class of Bayesian algorithms collectively known as particle fil-
ters. This approach can be understood as a type of genetic algorithm, where several “particles”
are distributed throughout the search space, with each particle representing a candidate source
location. Measured data is used to determine the fitness of each particle by computing its like-
lihood and the system is evolved to produce a new generation of particles; over several gener-
ations, the particles tend to cluster around the true source location. This method has proven
especially useful in online monitoring, with ref. [35] demonstrating the algorithm applied to a
vehicle portal monitoring scenario.

Other authors have chosen to focus on different aspects of the localization problem. One
of the most interesting examples is given in refs. [32, 33], which describe the use of Bayesian
model selection techniques to distinguish the presence of multiple sources in the scene and
localize them via an algorithm known as reversible-jump Markov chain Monte Carlo.
This algorithm can be understood as an extension of the algorithm described in Chapter 2,
with an added model selection step that allows the chain to dynamically jump between models
which include differing numbers of sources. In ref. [32], the authors demonstrate that their
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method is able to detect and characterize 4 sources simultaneously without prior knowledge of
the number of sources, though the presence of attenuating objects in the scene is not considered.

Ref. [42] also provides valuable insight into some of the practical aspects of operating a
detector network for source localization. This work proposes methods for dealing with the spatial
errors present in measurements recorded by a detector network, as well as for variations in the
efficiency of individual detectors. Such errors arise from issues of time synchronization between
detectors as well as errors in the position information derived from GPS measurements, and are
expected to occur in any real-world measurements. These practical considerations are important
to field deployment of any wide-area localization algorithm, particularly when using low-cost
mobile radiation detectors where high-accuracy GPS location information is not available, as
well as in sensor networks that rely on multiple different types of detector.

1.3 Novel Contributions

Section 1.2 shows that the use of Bayesian parameter estimation techniques, including the use
of methods based on Markov chain Monte Carlo, are not new, though such work is at least fairly
recent. The primary novelty of this work lies in the combination of such methods with a detector
model that accounts for variable attenuation of gamma rays through a heterogeneous scene.
Further, this dissertation also provides a methodology to account for arbitrary uncertainties
in the composition of objects in the scene and their propagation onto the resulting prediction
of the source location– a feature which is, to the best of my knowledge, entirely unique. This
capability is extremely important to the practical deployment of such an algorithm, given the
impracticality of precisely estimating the composition of all objects in a complex scene in situ.
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Chapter 2

Bayesian Statistics and MCMC

In this chapter, I will outline the mathematical theory underlying the method for source local-
ization that is the focus of this dissertation. I will begin with a description of Bayesian statis-
tics while noting some of the difficulties involved with their direct application, followed by a
description of the key properties of Markov chains. I will then show how these properties can
be used to construct a procedure known as Markov chain Monte Carlo (MCMC), which
enables the practical usage of Bayesian techniques, and conclude with some discussion of their
convergence. In subsequent chapters I will specialize this methodology to the problem of source
localization, as well as reexamine the material discussed here in more qualitative terms.

Note that the material presented in this chapter is not novel, and is included for the sake
of completeness of presentation. In particular, I have drawn heavily on ref. [40] and ref. [24] in
compiling the material shown here, while providing my own perspective on the portions relevant
to the problem of source localization.

2.1 Bayes’ Rule

Imagine that we are presented with a random variable X, with corresponding sample space
S. X is characterized by an unknown probability density function (PDF) p(x). Here, p(x) is
a probability measure defined on event space F , where F is the σ-algebra of S (the set of all
subsets of S measurable under p). We will assume that we are provided with realizations of X,
say {xi}N−1

i=0 , which can be observed without knowing p(x). Intuitively you might suspect that
if we continue to observe realizations of X we may be able to reconstruct p in a form that is
representative of the behavior we have observed.

Bayesian statistics provides a systematic approach for performing this reconstruction based
on the interpretation of probability as representing our “state of knowledge” about a random
variable. Each xi is interpreted as providing information about p(x) and for each observation
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we “update” our state of knowledge to incorporate the new information. First, consider that we
begin with an initial state of knowledge encoded as a PDF, which I will refer to as the prior
or prior density and denote as p0(x). We seek the posterior density, p(x |x0), which is the
conditional probability of x given that we have observed x0, incorporating the observation x0

into our knowledge about X.
To determine how we might compute p(x |x0), first recall one of the fundamental axioms of

probability. Consider two arbitrary events A,B ∈ S, then [3, Eq. 16.39]:

Pr [A ∧B] = Pr [A] · Pr [B |A]

= Pr [B] · Pr [A |B] .
(2.1)

That is to say, the probability that A and B occur is the product of the probability of A and the
conditional probability of B given A, i.e. the probability B occurs given that A has occurred
(and vice-versa). We can equate the right-hand sides of Eq. (2.1) and solve for Pr [A|B]:

Pr [A] · Pr [B|A] = Pr [B] · Pr [A|B]

Pr [A|B] =
Pr [A] · Pr [B|A]

Pr [B]
.

(2.2)

Equation (2.2) is often known as Bayes’ rule and provides exactly what we are after– the
conditional probability of observing A given that we have previously observed B. Expressed in
terms of probability densities and substituting our prior and posterior for X:

p(x|x0) =
p(x0|x) · p0(x)∫

S p(x0|x) · p0(x) dx
. (2.3)

2.2 Markov Chains

The expression for the posterior density given in Eq. (2.3) can be calculated directly at least in
principle, but historically the difficulty of integrating over the full event space has limited its di-
rect application. Recent years have seen developments that enable direct evaluation of Eq. (2.3)
(see [40, Ch. 10, 11]), however it has been more commonly addressed via Markov-chain Monte
Carlo (MCMC). Instead of evaluating Eq. (2.3), MCMC methods perform a random walk which
is constructed in such a way as to generate samples from the posterior distribution.

We will discuss MCMC in Section 2.3, but first we must cover some of the preliminary
theory of Markov chains. We will start by defining one of the most fundamental concepts in
this chapter, that of a stochastic process. This is an indexed and ordered sequence of random
variables, where each random variable takes on values from a common state space.
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Definition 2.2.1 (Stochastic process). Let X = {Xt ; t ∈ T } denote a sequence of random
variables on a common probability space (S,F , p), where S is the sample space of X, F is
the σ-algebra of S (known as the event space of X), p is a probability measure over F , and T
is a totally ordered index set. The sequence X is known as a stochastic process or random
process. If the index set T is taken as a subset of the integers then X is known as a discrete
time stochastic process, whereas if it is taken as a sub-interval of the real numbers then X is
referred to as a continuous time stochastic process. Similarly, if the state space S is finite
or countably infinite then X is known as a discrete state stochastic process, otherwise it is
typically referred to as a continuous state stochastic process.

We call each index in the set T a step in the process; this notation was selected because
it is most common that these steps correspond to a procedure where we sequentially observe
the evolution of a random system in time. In this context we typically refer to the actual value
observed at step t ∈ T , xt ∈ S (a realization of Xt) as the state of X at step t, while S is the
state space of X .

In the interest of simplicity, we will limit our discussion here to finite state and countable
time stochastic processes, where S is a finite set and T is countable. Similar results hold in
in continuous time and countably infinite state spaces but the analysis is significantly more
involved, so we will rely on the theory of discrete processes to illustrate the concepts [39]. We
are also primarily interested in one particular type of stochastic process, the Markov chain.
Loosely speaking, Markov chains are stochastic processes that lack “memory”– their state at
time t depends only on the state at time t− 1. More formally:

Definition 2.2.2 (Markov Chain). Let X = {Xt ; t ∈ T } be a stochastic process on a given
probability space (S,F , p). We consider here only the case that X is a discrete time and finite
state stochastic process. X is called a Markov chain if it possesses the Markov property,
namely that, for all t ∈ T :

Pr [Xt = xt |X0 = x0, X1 = x1, . . . , Xt−1 = xt−1] = Pr [Xt = xt |Xt−1 = xt−1] . (2.4)

A Markov chain is a random sequence characterized by a state space S, which is the common
event space of the sequence of random variables, as well as a set of transition probabilities,
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gij := Pr [Xt+1 = xj |Xt = xi]. These gij ’s may in general depend on t but I will assume it does
not, which is referred to as a time-homogeneous Markov chain. Intuitively, this implies
that at any point we can “reset” the chain and begin again from any particular state, since

gij : = Pr [Xt+1 = xj |Xt = xi]

= Pr [X1 = xj |X0 = xi] .
(2.5)

Since we have assumed finite S we can form the matrix of gij ’s, G = [gij ], which is called
the transition kernel of the chain. If we let p(0) be a row vector1 representing the probability
mass function of X0, then we can calculate p(1) = p(0)G to determine the probability mass func-
tion of X1. If we further define the k-step transition probability gkij := Pr [Xt+k = xi |Xt = xj ],
with corresponding Gk, then we can calculate the probability mass function for any step Xt as
follows:

p(t) = p(t−1)G

=
(
p(t−2)G

)
G

· · ·

= p(0)Gt .

(2.6)

We are most interested in the properties of the chain relating to the evolution of the proba-
bility mass as t is advanced. These are dictated primarily by the transition probabilities, hence
we will study the relationship between G and p(t) in some detail. Our main item of interest is
the stationary distribution of the chain, which (if it exists) is a distribution that is a fixed
point of G.

Definition 2.2.3 (Stationary Distribution). For a Markov chain with state space S and
transition kernel G, a given probability mass function p is said to be a stationary distribution
if it is an invariant probability measure under multiplication with G, i.e. pG = p and p is a
valid probability distribution.

We are also interested in the limiting behavior of the chain and how p(t) evolves as t→∞.
Consider the sequence of state distributions for the chain, p(0),p(1), . . . ,p(t), . . ., with

πππ : = lim
t→∞

p(t) , (2.7)

1Common notation is to represent probability densities as row vectors, hence the left-multiplication. I main-
tain this convention for compatibility with other references.
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where convergence is understood to be in the weak sense (convergence in distribution). The
existence of this limit is not guaranteed, though when it does exist the following relations must
hold [40, Sec. 4.6]:

πππ = lim
t→∞

p(t)

= lim
t→∞

p(0)G(t)

= lim
t→∞

p(0)G(t+1)

=
(
lim
t→∞

p(0)G(t)
)
G

= πππG .

(2.8)

Thus if the limit exists then πππ is also a stationary distribution of the chain. As mentioned,
this limit is not guaranteed to exist and even when it does the resulting stationary distribution
may not be unique. The remainder of our analysis will be spent establishing when the limit
in Eq. (2.7) exists and when it converges to a unique stationary distribution. We will later
exploit this relationship in Section 2.3 to construct a sampling process that is able to produce
samples from the stationary distribution of the chain, given that it has been run long enough
to converge.

To this end, we now introduce several key concepts for the analysis of Markov chains that
we will use to characterize circumstances when the chain converges and when the resulting
stationary distribution is unique. First is that of reachability:

Definition 2.2.4 (Reachability and communicating classes). For two states xi, xj ∈ S,
xi is said to be reachable from xj if there exists a positive integer K such that:

Pr [XK+1 = xj |X0 = xi] > 0 . (2.9)

For the discrete case, this implies gKij > 0.
If state xj is reachable from state xi, they are said to communicate, denoted xi → xj .

If two states are mutually reachable it is often denoted xi ↔ xj . A subset of the state space
C ⊆ S is called a communicating class if xi, xj ∈ C implies xi ↔ xj . A communicating class
is called closed if the probability of transitioning from state xi ∈ C to any state xj ∈ S \ C is
zero (that is, it is impossible to leave the class).

It is common to visualize discrete Markov chains as directed graphs, where nodes represent
states and edges correspond to transition probabilities (an edge between xi and xj has weight
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equal to gij). Figure 2.1 uses this technique to provide an illustrative example of Definition 2.2.4.

x0 x1 x2
0.5

0.5

0.75

0.25

0.25

0.75

Figure 2.1: States x1 and x2 are reachable from x0, x0 is not reachable from x1 or x2, x1 and
x2 form a closed communicating class.

When all states are mutually reachable, the chain is said to be irreducible (otherwise it
is reducible). The reason for this naming is depicted in Fig. 2.2– once the chain enters the
closed subcycle highlighted in red in Fig. 2.2a it becomes trapped and the chain is effectively
equivalent to the subcycle. Since it is inevitable that the chain will eventually enter this closed
subcycle as t → ∞, it should be intuitive that the long term behavior of the chain is related
to its reducibility. In contrast, the inclusion of a single return path as in Fig. 2.2b makes the
entire chain irreducbile since there is now a nonzero probability of visiting any node.

Definition 2.2.5 (Irreducible). A Markov chain is said to be irreducible if, for every
xi, xj ∈ S, xj is reachable from xi, i.e. xi ↔ xj (equivalently, S is its smallest possible closed
communicating class). Otherwise it is reducible.
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(a) Chain contains a closed subcycle (red), so it is reducible.
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(b) Inclusion of a single return path (blue) makes the entire chain irreducible.

Figure 2.2: Graphs depicting reducible and irreducible Markov chains.

Our next consideration is the case that the chain contains pairs of states that are revisited
at regular intervals, at which point it is said to be periodic. More formally, define period of
a chain as follows:
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Definition 2.2.6 (Period of a Markov chain). The period of a Markov chain, L is

L := gcd {l ; Pr [Xl = xi|X0 = xi] > 0}

= gcd
{
l ; glii > 0

}
.

(2.10)

For L > 1, the chain is said to be periodic; for L = 1 the chain is called aperiodic.

x0

x1 x2

x3

0.5 0.5

1.0 1.0

1.0

Figure 2.3: Example of a periodic chain, the example trajectory shows that states x0 and x3
are visited with a period of 3.

An example of a periodic chain is given in Fig. 2.3, where the transition probabilities are
constructed in such a way as to ensure that two of the nodes will be visited at recurring intervals.
If the chain contains periodic cycles then the limit in Eq. (2.7) will clearly not converge, hence
we will require that a chain be aperiodic as a necessary condition for convergence [40]. The
chain shown in Fig. 2.3 actually has a stationary distribution π = [ 1

4
1
4

1
4

1
4 ], but we can see

in Fig. 2.4 that the probability mass oscillates and does not converge to π.
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Figure 2.4: Limiting behavior of probability mass in a periodic chain.

Combined, these two properties establish when a chain has a unique stationary distribution,
which also coincides with its limiting distribution:

Theorem 2.2.1 (Necessary and sufficient conditions for existence of and convergence
to a unique stationary distribution). A Markov chain with transition kernel G that is both
aperiodic and irreducible possesses a unique stationary distribution πππ. Further, πππ is also the
unique limiting distribution for the chain, that is

lim
t→∞

p(t) = πππ ,

for every initial probability distribution p(0).

Proof. The classic proof for this theorem in the finite case is based on Perron’s theorem for
positive matrices [30, Sec. 8.2] and can be found in multiple texts, e.g. ref. [40, Thm. 4.61]2.

As a final consideration, note that while Theorem 2.2.1 establishes the conditions when
the stationary distribution exists and is convergent, it does not provide a convenient means
to actually construct this distribution. We will instead define a specific subclass of Markov
chains called reversible Markov chains. These are chains that satisfy the detailed balance

2Note also that a more general version of this theorem also holds for countably infinite state spaces if one
also adds the condition of positive recurrence for all states. Loosely speaking, this requires that, on average,
the chain visits any given state within a finite number of steps. Ref. [24, Thm. 21.12] establishes that a positive
recurrent, aperiodic and irreducible Markov chain with countably infinite state space converges to a unique
stationary distribution πππ(x).
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condition of Definition 2.2.7 and are called reversible because their definition implies that their
behavior is independent of the “direction” that steps are taken (e.g., t increasing or t decreasing).
Proposition 2.2.1 establishes that irreducible and aperiodic chains satisfying detailed balance
will converge to a unique stationary distribution3. In Section 2.3, we will exploit this fact to
construct a Markov chain that is guaranteed to converge uniquely to the posterior distribution
we seek in Eq. (2.2).

Definition 2.2.7 (Reversible Markov chain). A Markov chain with transition kernel G (and
corresponding transition probabilities gij) is said to be reversible if there exists a probability
distribution4

p =
[
p0 p1 . . . p|S|−1

]
, (2.11)

such that, for all steps t and all states xi, xj ∈ S, the chain satisfies the detailed balance
condition:

pi · gij = pj · gji . (2.12)

3This relationship is not symmetric, there exist irreducible and aperiodic chains with a unique stationary
distribution that do not obey detailed balance, however detailed balance is a sufficient condition for our purposes.

4|S| denotes the cardinality of S.
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Proposition 2.2.1 (Alternative conditions for existence of and convergence to a
unique stationary distribution). An irreducible, aperiodic and reversible Markov chain pos-
sesses a unique stationary distribution πππ. πππ is also the unique limiting distribution of the chain.

Proof. Reversibility of the chain implies that there exists a probability distribution πππ that
satisfies the criteria of detailed balance. Summing probabilities, we have:∑

i

πi · gij =
∑
i

πj · gji

= πj
∑
i

gji

= πj ,

hence πππ is a stationary distribution of the chain. Theorem 2.2.1 shows that the stationary
distribution of an aperiodic and irreducbile chain is unique and is also the unique limiting
distribution of the chain.

2.3 Markov Chain Monte Carlo

The idea of using Markov chains constructed in such a way as to have a specific stationary
distribution, a process known as Markov chain Monte Carlo (MCMC), can be traced to
the same origin as standard Monte Carlo techniques: the Manhattan Project. The first article
describing what we now know as an MCMC algorithm is generally credited to Metropolis et.
al [29], and describes a random walk method for computing expectations of the Boltzmann
distribution. In 1970, the original statement of the algorithm was generalized by Hastings in
ref. [15], an article which is usually considered as the progenitor of all modern MCMC methods.

Later authors would continue to develop the theory underlying MCMC, but by-and-large it
would languish for over 30 years, due mostly to the limited computational resources available to
researchers during this period. In 1990, Gelfand and Smith published Sampling-based approaches
to calculating marginal densities [7], which proved to be the genesis of a massive wave of
applications using MCMC. It was also realized that MCMC techniques were applicable to
the computation of Bayesian posterior densities of the form discussed in Section 2.1, sparking
a similar revolution in the practical usage of Bayesian statistics, which had also suffered from
the limited computational resources available up to that point. It is from this lineage that the
methods outlined in this dissertation originate.
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Note: The information in this brief historical overview is sourced primarily from ref. [37].
Interested readers should refer to that article for a more detailed overview of the history of
MCMC.

2.3.1 The Metropolis-Hastings Algorithm

With the preliminaries out of the way, we now turn to constructing a procedure that will allow us
to draw samples from the posterior distribution in Eq. (2.3), called the Metropolis-Hastings
algorithm (MH). To see how the MH algorithm comes about, we will begin with a Markov chain
that is irreducible, aperiodic and reversible. We know from Proposition 2.2.1 that this chain
must possess a stationary distribution, which we have taken to calling πππ. We can rearrange the
detailed balance condition of Definition 2.2.7 to find:

πi · Pr [X1 = xj |X0 = xi] = πj · Pr [X1 = xi |X0 = xj ]

Pr [X1 = xj |X0 = x0]

Pr [X1 = xi |X0 = xj ]
=

πj
πi

gij
gji

=
πj
πi

.

(2.13)

We assume that the transition probabilities can be factored into the product of a proposal
probability Q(xi |xj) and an acceptance function α(xi, xj), i.e.

gij = Q(xi |xj) · α(xi, xj) . (2.14)

Inserting this into Eq. (2.13) yields:

Q(xi |xj)
Q(xj |xi)

α(xi, xj)

α(xj , xi)
=

πj
πi

∴
α(xi, xj)

α(xj , xi)
=

πj
πi

Q(xj |xi)
Q(xi |xj)

.

(2.15)

For the MH algorithm, choose α(xi, xj) as

α(xi, xj) = min

{
1,

πj
πi

Q(xj |xi)
Q(xi |xj)

}
. (2.16)

I have described the MH algorithm as a rejection sampler; at each step we propose a new
value by randomly sampling it from Q. We then compute the Metropolis ratio via Eq. (2.16)
and if α = 1 we automatically accept the proposed value. Otherwise, we reject the proposed
value with probability 1− α and begin again. This procedure is detailed in Algorithm 1.
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Algorithm 1 The Metropolis-Hastings Algorithm
Sample xt+1 from π, given current sample xt and proposal distribution Q(x |xt).

1: procedure Metropolis(xt;π,Q(x |xt))
2: x∗  Q(x, xt) . Draw candidate x∗ from Q

3: α1 ← π(x∗)
π(xt)

. Compute Metropolis ratio5

4: α2 ← Q(xt |x∗)
Q(x∗ |xt)

. Correction for asymmetry in Q

5: α← α1 · α2

6: if α ≥ 1 then
7: xt+1 ← x∗ . Increase in probability - accept unconditionally
8: return xt+1

9: else
10: β  U(0, 1)
11: if β ≤ α then . Accept with probability proportional to α

12: xt+1 ← x∗; Accept x∗

13: else
14: Reject x∗; Restart
15: end if
16: end if
17: end procedure

Proposition 2.3.1. The sequence X = {xt}Tt=1 generated by the procedure in Algorithm 1
forms a Markov chain.

Proof. It should be clear that Algorithm 1 forms a random process. Let Xt denote the random
variable corresponding to the state at time t. Slightly abusing notation, also let Qt refer to
the random variable with probability distribution Q(x |xt). Consider the probability that Al-
gorithm 1 jumps from state xt at step t to xt+1 at step t+ 1:

Pr [Xt+1 = xt+1|Xt = xt] = Pr [Xt = xt|Xt−1 = xt−1, . . . , X1 = x1]

· Pr [Sample xt+1 from Qt] · Pr [Accept xt+1] . (2.17)

It is also clear from the statement of Algorithm 1 that Pr [Sample xt+1 from Qt] and Pr [Accept xt+1]

are independent of Xt−1, . . . , X1 since α depends only on evaluating π and Q pointwise. We

5π(x) is a slight abuse of notation - in the discrete case it denotes the entry of πππ corresponding to the
probability of state x.
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will use induction to show that the remaining term is independent of the states before step t:

• Base case

Assume the process begins at initial state x0 for t = 0 and moves to state x1 at t = 1.
By Eq. (2.17),

Pr [X1 = x1 |X0 = x0] = Pr [X0 = x0] · Pr [Sample x1 from Qt] · Pr [Accept x1] , (2.18)

which obviously depends only on x0

• Inductive case

For the general case, we wish to show:

Pr [Xt = xt |Xt−1 = xt, . . . , X0 = x0] = Pr [Xt = xt |Xt−1 = xt−1]
?⇒

Pr [Xt+1 = xt+1 |Xt = xt, . . . , X0 = x0] = Pr [Xt+1 = xt+1 |Xt = xt] . (2.19)

Applying Eq. (2.17):

Pr [Xt+1 = xt+1 |Xt = xt, . . . , X1 = x1] = Pr [Xt = xt |Xt−1 = xt−1, . . . , X1 = x1]

· Pr [Sample x2 from Qt] · Pr [Accept x2] . (2.20)

We have assumed Pr [Xt = xt |Xt−1 = xt, . . . , X1 = x1] = Pr [Xt = xt |Xt−1 = xt−1], hence
the conclusion follows immediately.

It remains to show that Algorithm 1 produces samples from the stationary distribution of
the chain, which established in Proposition 2.3.2. Note that for Proposition 2.3.2 to hold, we
also require that the chain be aperiodic and irreducible, which suggests certain restrictions on
acceptable proposal distributions. Specifically, the matrix G of transition probabilities defined
from Eq. (2.14) must represent an irreducible and aperiodic stochastic process. Ref. [40, Thm.
4.58-4.60] establishes that if G strictly positive, then it is reversible and aperiodic. If we assume
that α(xi, xj) defined in Eq. (2.16) is strictly positive, our primary requirement is that the
proposal distribution Q(xi|xj) is strictly positive at all points in the domain (Q(xi|xj) > 0

for all xi, xj). This is obviously a very mild restriction, hence we are free to use almost any
proposal distribution in Algorithm 1.

23



Proposition 2.3.2. Algorithm 1 converges to the unique stationary distribution πππ.

Proof. Observe that the transition probability in Algorithm 1 can be expressed as follows:

gij = Pr [Xj = xj |Xi = xi]

= Q(xj |xi) ·min

{
1,

πj
πi

Q(xi |xj)
Q(xj |xi)

}
.

(2.21)

We proceed by showing that the detailed balance condition of Definition 2.2.7 is satisfied for πππ:
for every i, j,

πi · gij
?
= πj · gji .

Recall the identity:

a ·min

{
1,

b

a

}
= min{a, b} = b ·min

{
1,

a

b

}
,

and hence

πi ·Q(xj , xi) ·min

{
1,

πj
πi

Q(xi |xj)
Q(xj |xi)

}
= πj ·Q(xi, xj) ·min

{
1,

πi
πj

Q(xj |xi)
Q(xi |xj)

}
πi · gij = πj · gji .

(2.22)

The conclusion then follows from Theorem 2.2.1.

Algorithm 1 describes a scheme for sampling from some arbitrary distribution π(x) by
sampling from another distribution, Q, and then evaluating π pointwise. While potentially
useful in its own regard, we still have not addressed how it might be applied to evaluating Bayes
rule. The difficulty of evaluating Eq. (2.3) lies in the normalization term,

∫
S p(x0|x) · p0(x) dx,

which requires integration over the entire parameter space. Direct computation of this integral
typically suffers from a variety of issues, foremost being that it is often numerically challenging.

Instead of evaluating Eq. (2.3) directly, consider that instead of π(x), we substitute some
function F in Algorithm 1 that is proportional to π(x):

F (x) = ε · π(x) , (2.23)

for some unknown constant ε 6= 0.

Proposition 2.3.3. Replacing π with F in the calculation of α1 in Algorithm 1 does not change
the stationary distribution.
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Proof. The following relation holds from the same identity used in Proposition 2.3.2:

F (xi) ·Q(xj |xi) ·min

{
1,

F (xj)Q(xi|xj)
F (xi)Q(xj |xi)

}
= F (xj) ·Q(xi|xj) ·min

{
1,

F (xi)Q(xj |xi)
F (xj)Q(xi|xj)

}
�ε · π(xi) ·Q(xj |xi) ·min

{
1, �

επ(xj)Q(xi|xj)
�επ(xi)Q(xj |xi)

}
= �ε · π(xj) ·Q(xi|xj) ·min

{
1, �

επ(xi)Q(xj |xi)
�επ(xj)Q(xi|xj)

}
π(xi) ·Q(xj |xi) ·min

{
1,

π(xj)Q(xi|xj)
π(xi)Q(xj |xi)

}
= π(xj) ·Q(xi|xj) ·min

{
1,

π(xi)Q(xj |xi)
π(xj)Q(xi|xj)

}
.

(2.24)
Thus π(x) satisfies the conditions for detailed balance and is the stationary distribution for the
chain.

Proposition 2.3.3 shows that if we are able to construct a function that is proportional to
π(x) then we can produce a sequence of samples from π, even when the proportionality constant
is unknown. In Chapter 3 we will examine how to construct such a function in a way that allows
us to draw samples from the posterior distribution of Eq. (2.3) while avoiding the computation
of the costly normalization term.

2.4 Special Considerations

In this section we will discuss two additional topics relating to the practical application of
MCMC methods. We will briefly examine the convergence rate for the sample chains and the
associated difficulties of assessing convergence, followed by an outline of an extension of Algo-
rithm 1 that improved performance. Owing to the depth of these topics, we will only briefly
summarize these issues and I will refer the reader to appropriate literature for further informa-
tion.

2.4.1 Convergence Rate and Burn-in

We have seen that Algorithm 1 is guaranteed to converge to its stationary distribution from
any initial distribution under fairly weak assumptions, however what is not guaranteed is the
rate at which it converges. In general it is in fact impossible to rigorously assess convergence
and instead it is typical to rely on heuristic monitoring of the chains combined with statistical
analysis of the samples.

To provide some intuition of how to judge convergence, we will consider a few examples by
examining their trace plots, which plot the time step versus the sampled state. For a chain
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that is properly converged to the stationary distribution, we expect that the samples are being
drawn from a distribution that is by definition independent of the sample number.

Figure 2.5a shows the expected behavior when a chain has converged– samples are being
drawn from a constant distribution. In contrast, Fig. 2.5b shows a chain that has not yet
converged, with a clear trend to the sample trajectory6, while Fig. 2.5c illustrates the behavior
as the chain reaches convergence (around sample number 8000). Visual analysis of trace plots is
often used for heuristically assessing the convergence of a chain, with the chain being judged to
have converged when the sample trajectories appear similar to Fig. 2.5a. Figure 2.5d indicates a
potential pitfall of this method (and with any global method)– the chain can become trapped in
a local minimum and appear to have converged, only to abruptly jump to a different minimum.
Despite this, visual inspection is likely the most common approach used in practice and, when
combined with specific knowledge of the problem at hand, is reasonably effective.

6A trajectory is simply a sequence of realizations drawn from a particular stochastic process.
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(a) (b)

(c) (d)

Figure 2.5: Trace plots showing typical behavior of chains as they approach convergence

A more quantitative approach is the Gelman-Rubin test, which provides a metric that
can be used to determine convergence [10]. This metric is computed by examining several
independent trajectories drawn from the same chain with random initial states and subsequently
comparing the intra-chain variances. These variances are used to compute a potential scale
reduction factor, R̂. If enough samples have been drawn that the independent chains have
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mixed (forgotten their starting states and reached the stationary distribution) then R̂ will have
a value near 1; otherwise the chains have not converged. A common heuristic is that chains
have converged when R̂ < 1.1 [11].

(a) Converged (b) Not converged

(c) Converges around 8000 samples (d) Pathological case, local extrema

Figure 2.6: Behavior of Gelman-Rubin scores for chains in Fig. 2.5
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Chapter 3

Methodology for Source Localization

In this chapter, I will formulate the problem of estimating the true source location rtrue and
intensity Itrue in the context of Bayesian parameter estimation methods. Assume that we have
a network of ND detectors with known and fixed positions. The response of this detector net-
work is considered to be a vector-valued random variable D, where we assume that each Di,
corresponding to the counts measured by the i-th detector (1 ≤ i ≤ ND), is an independent
Poisson-distributed random variable. We are provided with a vector of count data that is mea-
sured in the field by the detector network, denoted D, which is a single realization of D. We
then seek to compute the posterior density P (r, I |D) (henceforth, the posterior), which is
the probability that a given (r, I) is the true source location and intensity, conditioned on the
observations D. It is desirable that this method also account for the presence of heterogeneous
attenuators in the scene, hence it must include a dependence on the composition of objects in
the scene and their effect on the count rates measured by the detectors.

The posterior can be expressed directly via Bayes’ formula as a normalized product of a
prior density P0(r, I) and a likelihood function LD(r, I ; Σ) [40]:

P (r, I |D) =
LD(r, I ; Σ) · P0(r, I)∫ Imax

Imin

∫
X LD(r′, I ′ ; Σ) · P0(r′, I ′) dr′ dI ′

. (3.1)

P0(r, I) is a probability distribution representing our knowledge about the source location and
intensity before any measurements are recorded, while X and (Imin, Imax) denote the limits for
the position and intensity of the source. In all of the experiments described in this dissertation
I will use a uniform prior distribution, corresponding to the assumption that initially we only
know a general region of interest where the source is located and nothing more. Such a prior is
usually referred to as uninformative since it assumes that all points in the search space are
equally probable. LD(r, I ; Σ) is called the likelihood function and employs a statistical model
of the detector response to approximate the probability that the measurements D would be
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observed if the source is located at r with intensity I. In this model I assume that the detector
responses are governed by Poisson counting statistics and depend on the source location and
intensity, as well as Σ(r′), the total macroscopic cross-section of materials in the scene at location
r′.

For the remainder of this chapter we will focus on the various components required to con-
struct P (r, I |D) in practice. I will begin with a summary of the material presented in Chapter 2,
which describes a technique to produce samples from an arbitrary probability distribution using
rejection sampling in a process called Markov-chain Monte Carlo (MCMC). Practically, Eq. (3.1)
is difficult to evaluate directly, so instead I will show how to use MCMC to draw a sequence of
samples from the posterior. MCMC requires that we construct a statistical model of the counts
measured by the detector network to compute the likelihood, hence in the following two sections
I will present a simplified deterministic transport model for the detector counts and subsequently
use this to construct a statistical model for the measurement data with corresponding likelihood
function. I will also describe how to extend the MCMC algorithm to account for fixed epistemic
uncertainties in the material cross sections and propagate these onto the posterior estimate for
the source location, an effect that has not be accounted for in prior work. Finally, I will give
the complete form of the source localization algorithm, including an extended version of the
Metropolis algorithm that improves the performance of the sampling process.

3.1 Markov-Chain Monte Carlo Sampling

Direct evaluation of Eq. (3.1) is typically impractical due to the difficulty of evaluating the
integral normalization term in the denominator. Instead, we can employ a Metropolis sampler
of the type described in Chapter 2 to draw samples from the posterior via rejection, a process
typically referred to as Markov Chain Monte Carlo. This sampler avoids computing the integral
in Eq. (3.1) by only evaluating ratios of P (r, I |D) at different points in the domain, causing
the integral terms to cancel.

The basic form of the localization algorithm is listed in Algorithm 2, which uses the
Metropolis-Hastings algorithm to generate a sequence of NS samples from the posterior dis-
tribution in Eq. (3.1), where the t-th sample is referred to as the state of the sampler at step
t. Metropolis-type samplers allow us to produce samples from an arbitrary probability distri-
bution (called the target distribution) by performing rejection sampling on an unrelated
proposal distribution that depends only on the state of the chain at step t, which for the
purposes of this dissertation I will restrict to be normal1. It is clear that we need to construct

1As shown in Chapter 2, the proposal distribution is not generally required to be normal. A normally
distributed proposal is however sufficient for our needs and is also a natural choice when using the Adaptive
Metropolis algorithm discussed in Section 3.5.
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a sampler where the target distribution is the posterior density P (r, I |D) in Eq. (3.1), which
can be done by exploiting the properties of Markov chains. At each step in the chain, a candi-
date pair x∗ = (r∗, I∗) is drawn from the proposal distribution, then accepted or rejected based
on the ratio of P evaluated at the candidate point x∗ versus at the last accepted sample xt. I
have previously shown from the theory of Markov chains that this procedure will produce sam-
ples from P (r, I |D) after an initial settling period colloquially known as “burn-in”, referring
samples that are drawn before the chain has had time to forget its initial state (see ch. 4, 8 of
ref. [40]). We can then draw as many samples as needed in order to reconstruct P (r, I |D).

Algorithm 2 The Metropolis Algorithm for a Bayesian Posterior
1: procedure Sample(NS , r0, I0,C)
2: r← r0, I ← I0

3: S ← {}, t← 1

4: while t ≤ Ns do
5: r∗, I∗  N [[ rI ] ,C] 2

6: α← min
{
1, P0(r∗,I∗)

P0(r,I)
· LD(r∗,I∗;Σ)

LD(r,I;Σ)

}
7: β  U [0, 1]
8: if β ≤ α then
9: S ← append (S, {r∗, I∗})

10: r← r∗, I ← I∗

11: t← t+ 1

12: else
13: continue
14: end if
15: end while

16: return S
17: end procedure

As an alternative to the more formal presentation in Chapter 2, to intuitively understand
why this produces samples from the target posterior distribution given by Eq. (3.1), let us
further examine the value of the Metropolis ratio α on line 6 of Algorithm 2. If we solve Eq. (3.1)

2N [r,C] denotes a (multi-)normal distribution with mean r and (co-)variance C. Similarly, U [a, b] denotes a
uniform distribution on the interval [a, b].
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for LD(r, I ; Σ) and substitute into the expression for α:

α = min

{
1,

P0(r
∗, I∗)

P0(r, I)
· LD(r∗, I∗; Σ)

LD(r, I; Σ)

}
= min

{
1,�

����
P0(r

∗, I∗)

����P0(r, I)
· ����P0(r, I)

�����
P0(r

∗, I∗)
· P (r∗, I∗ |D)

P (r, I |D)

}
= min

{
1,

P (r∗, I∗ |D)

P (r, I |D)

}
.

Therefore accepting r∗, I∗ with probability α is equivalent to accepting with a probability equal
to the ratio of the posterior distribution at the candidate values versus at the previous sample.
This allows us to avoid directly calculating P (r, I |D) (which is unknown) by instead evaluating
the likelihood and prior, which can be computed using a statistical model for the observations
and the measurement data. When the proposed candidates are more probable than the current
state (α = 1) the candidates are always accepted and the chain advanced. Conversely, if the
candidates are less probable then the current state (α < 1) we do not immediately reject them;
instead we reject with a probability that is inversely proportional to the decrease in the posterior
probability. This process therefore tends to accept samples from areas of the posterior which are
higher in probability (at a rate that is proportional to P (r, I |D)), while still allowing the chain
to occasionally explore the lower probability areas of the distribution. Ultimately, the theory
of Markov chains guarantees that the resulting samples will, after an initial period while the
chain stabilizes, be distributed according to the posterior.

3.2 Statistical Model for Detector Response

In the formulation for the statistical model of the detector counts, I assume that the response
of the detector to the source is a Poisson-distributed random variable with mean di(r, I ; Σ),
where the exact form of di(r, I ; Σ) will be discussed in Section 3.3. I also allow for a random
contribution from background to the counts measured by the i-th detector that is independent
of the source, represented by the random variable Bi. I typically assume Bi is also Poisson
distributed with a mean bi, which is allowed to vary with detector location3, and hence the
statistical model for the counts measured by the i-th detector Di is

Di = Po [di(r, I; Σ)] + Bi
= Po [di(r, I ; Σ)] + Po [bi]

= Po [di(r, I ; Σ) + bi] ,

3That is, bi is the mean of the background at the location of the i-th detector. It is only necessary to
characterize background at the detector locations, not at all points in the scene.

32



with every Di assumed to be mutually independent.
As shown in chapter 4 of ref. [40], when the measurements are mutually independent the

likelihood function is simply the product of the probabilities of observing the individual mea-
surements. Therefore

LD(r, I; Σ) =

ND∏
i=1

Pr [Di [r, I; Σ] = Di]

=

ND∏
i=1

(di(r, I; Σ) + bi)
Di

Di!
exp (−di(r, I; Σ)− bi)

=

(
ND∏
i=1

(di(r, I; Σ) + bi)
Di

Di!

)
· exp

(
−

ND∑
i=1

di (r, I; Σ) + bi

)
.

(3.2)

If I further employ a normal approximation, such that Di
dist−−→ N

[
di + bi, (di + bi)

2
]
, we obtain

the likelihood function in Eq. (3.3):

LD(r, I; Σ) =

ND∏
i=1

1√
2π(di(r, I; Σ) + bi)

· exp

(
−(Di − di(r, I; Σ)− bi)

2

2(di(r, I; Σ) + bi)

)

=

(
ND∏
i=1

1√
2π(di(r, I; Σ) + bi)

)
· exp

(
−

ND∑
i=1

(Di − di(r, I; Σ)− bi)
2

2(di(r, I; Σ) + bi)

)
.

(3.3)

A common rule is that such an approximation is valid when the expected value exceeds 30,
which is the case in all of the experiments I will describe in subsequent chapters.

3.3 Detector Response Model

Evaluation of LD(r, I ; Σ) during the sampling process requires a computational model of the
counts recorded by the detector network as a function of the source location and intensity. This
model will be evaluated repeatedly during the sampling procedure (hundreds of thousands of
times in our application), and in a way that is primarily serial by construction4. This requires a
computationally inexpensive model for the underlying transport process; I choose to employ a
point source/detector transport model, which only computes the uncollided flux arriving at the
detector [17]. I assume that the detectors are sufficiently small that at typical standoff distances
(tens to hundreds of meters), a gamma ray that is initially emitted within the detector solid angle
and subsequently scatters is very unlikely to reach the detector, hence the detector response is

4There has been some success in designing parallel Metropolis samplers beyond simply running multiple
independent chains, for example refs. [43, 21]. However, many of these modifications either achieve only modest
parallel utilization or rely on assumptions that are not valid in this application.
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dominated by the uncollided flux arriving at the detector. Gamma rays may backscatter off of
materials near the detector, however the backscatter contribution will be roughly proportional
to the uncollided contribution.

Under these assumptions, the simplified detector response model takes the form of expo-
nential attenuation given in Eq. (3.4), with parameters defined in Table 3.1 [6, 16]. Note that
this model includes a parametric dependence on Σ(r′). Clearly the detector response will be
influenced by these cross-sections, however as discussed Section 3.4 these are treated separately
in the sampling algorithm since they are considered to be fixed epistemic uncertainties arising
from our imprecise knowledge of the cross-section of materials in the scene.

di(r, I ; Σ) = I∆ti · εint
i ·

Ai

4π‖r− ri‖22
· exp

(
−
∫
r→ri

Σ(r′) ds

)
(3.4)

Table 3.1: Model parameters.

Parameter Meaning

∆ti Measurement time (s)
εint
i Detector intrinsic efficiency (%)
Ai Detector face area (m2)
ri Detector position vector (m)

Σ(r′) Total macroscopic cross-section at r′ (1/m)

To implement Eq. (3.4), I employ a simple scheme based on ray tracing. Assume the geome-
try of the scene can be decomposed into a set of disjoint polygons, which we denote as X . Each
polygon corresponds to the exterior perimeter of an object in the scene, with the j-th object
being assigned a constant macroscopic cross section Σj . This Σj is calculated using an estimate
of the material composition of the object and homogenized over its volume while accounting for
the estimated internal dimensions of the object; for the moment I will assume it is exact, though
this will be addressed further in Section 3.4. The implementation then proceeds by drawing
a ray between the source and detector locations, computing the intersection of this ray with
the geometry, looking up the associated material and detector properties, and finally substitut-
ing into Eq. (3.4). This process is repeated for each detector in order to generate the response
of the full network. The implementation of the ray-tracing calculations for the attenuation is
specified in Algorithm 3, with a simple graphical illustration shown in Fig. 3.1.
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Algorithm 3 Ray tracing algorithm for attenuation factor.
1: function RayTrace(r, ri; X ,Σ)
2: L← 0

3: for all Pj ∈ X do . Linear search over geometry5

4: for all pk ∈ Pj ∩ (r→ ri) do
5: `← ‖pk‖2
6: L← L+ ` ·Σj

7: end for
8: end for

9: return L

10: end function

(a) Compute intersection of ray with geometry (b) Evaluation of Eq. (3.4)

Figure 3.1: Visual illustration of the ray tracing procedure

5I did not require the polygons corresponding to the objects in the scene to be convex, implying that the
intersection of a ray with one of the polygons may contain several non-overlapping segments, hence the inner
for loop in Algorithm 3.
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3.3.1 Effect of Detector Orientation

Equation (3.4) relies on an approximation for the solid angle of the i-th detector, Ωi(r), as
viewed from the location of the source:

Ωi(r) ≈
Ai

‖r− ri‖22
.

This assumes that the detector face area exposed to the source, Ai, is approximately constant
regardless of detector orientation. Such an assumption is true for a spherical detector and
approximately true for a cubic detector; however, the experiments described in Chapter 5 used
NaI detectors with crystal dimensions of 2” × 4” × 16”. The solid angle subtended by each of
these detectors therefore depends strongly on the orientation of the detector in space about its
own center and relative to the source location r.

I will first demonstrate the simplest possible approach, using a constant face area computed
by averaging the face areas of each detector; equivalently I assume that each detector has a
face profile whose area is the average face area of that detector. In Chapter 5 we will see that
this produces significant errors in the estimated source location, caused by variations in the
measured count rates due to varying geometric efficiencies, εgeo

i := Ωi/4π, an effect that cannot
be accounted for by this simplistic model.

Therefore I will extend the detector model to also account for variations in the detector solid
angle using the method of Van Oosterom and Strackee [45], which provides an exact expression
for the solid angle subtended by an arbitrarily oriented right triangle as viewed from a specified
position in free space. Equation (3.4) then becomes

di(r, I ; Σ) = I∆ti · εint
i ·

Ωi(r)

4π
· exp

(
−
∫
r→ri

Σ(r′) ds

)
, (3.5)

where Ωi(r) is computed by summing the solid angles of each face of the detector exposed to
the source, calculated using the expression given in eq. (8) of ref. [45].

3.4 Propagation of Cross Section Uncertainties

As shown in Section 3.3, the prediction for the counts observed by the detector network depends
on the macroscopic cross sections of objects in the scene, which are typically poorly known,
inaccurate and imprecise. Instead I must rely on estimates, Σ0, which are calculated from the
best available estimates of the material composition and object dimensions. I then assign a wide
uncertainty range onto the nominal cross sections, which is representative of our fundamental
inability to provide an accurate estimate of their true values. The standard formulation of
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the Metropolis sampler that we have discussed thus far is unable to account for these fixed
uncertainties and would also attempt to “update” the uncertainty of Σ based on the measured
count rates.

I propagate fixed uncertainties in the cross section values onto the posterior distributions for
the source location and intensity by sampling cross section values from a user-specified proposal
distribution, fΣ, accepting or rejecting sampled cross section values according to the Metropolis
ratio α in the same manner as for source position and intensity. The user can provide an fΣ that
encodes their confidence in the estimated cross section values and see that confidence reflected in
the resulting posterior. For the purposes of the work in this dissertation, I generally will choose
fΣ to be a broad uniform distribution, centered on Σ0. This is implemented in the Section 3.5
by using fΣ as the proposal distribution when sampling new values for Σ.

Note that due to the nature of the problem, true values of Σ are non-identifiable and hence
the marginal posteriors for these parameters will not change during the calibration process. This
is a consequence of the fact that multiple combinations of different cross section values can
produce the same observed detector response, so there is no unique set of cross section values
that can be identified based on measurements. The calibration process includes the effect of the
cross section uncertainties encoded in the prior, but there will not be any refinement in their
sampled posterior distribution since these values are non-identifiable. Thus, I choose to discard
samples for the cross section that are drawn by the chain, since they do not provide any new
information beyond what is already encoded in fΣ.

3.5 Adaptive Metropolis

I will also employ one further modification to the standard Metropolis algorithm in order to
improve the convergence rate, which is known as the Adaptive Metropolis algorithm6, and func-
tions by adapting the proposal covariance using the sequence of previously accepted candidates.
This method violates the typical assumptions of Markov chains ensure ensure convergence since
the proposal distribution no longer depends only on the current state, however in refs. [13, 1] the
authors use more sophisticated analysis based on the theory of mixingales to show that conver-
gence is still asymptotically guaranteed.

Practically speaking this requires several modifications to the basic formulation described
in Algorithm 2. Firstly, the adaptive method most often implies the use of a (multivariate)
normal proposal distribution, which is initialized with covariance matrix C0. Each time a sample
is accepted the proposal covariance is updated using the empirical covariance computed from
the history of samples that have been accepted by the chain, so that as the chain evolves the

6There are several methods known as “adaptive Metropolis”, but typically in literature “the Adaptive
Metropolis algorithm” refers to the one described here, first presented in ref. [13].
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proposal distribution adapts to the shape of the target distribution. To efficiently compute the
empirical covariance a recursive expression is used to calculate the covariance online instead of
using the standard offline formula, which is significantly more computationally intensive (see
the definitions of UpdateMean and UpdateCovariance in Algorithm 4). In practice it is also
common to delay the start of the adaptation process until after a certain number of samples
have been accepted, as well as to limit the adaptation to only the k most recently accepted
samples, but for simplicity this is not shown in Algorithm 4.

Observe also the presence of constant ε in the expression for the updated covariance (line
31 of Algorithm 4), which serves to guarantee that the resulting covariance matrix is non-
singular7. Additionally, the constant sp (line 30 of Algorithm 4) is a scaling parameter which
controls chain mixing, with the specific value sp = 2.42/[number of parameters] being a common
choice which optimizes performance when the target and proposal distributions are normally
distributed [8, 13].

3.6 Complete Algorithm for Source Localization

I began by describing the basic implementation of the Metropolis algorithm in Algorithm 2,
followed by a description of how each component is specialized to the problem of source local-
ization. Now, in Algorithm 4 these results are combined into the complete form of the source
localization algorithm.

The sampler begins by initializing the chain with starting values for the source location and
intensity, r0 and I0, as well as providing an initial proposal covariance C0 and an uncertainty
distribution for the material macroscopic cross sections fΣ. The algorithm then proceeds by
randomly drawing new sample candidates for the location and intensity from the proposal dis-
tribution, as well as sampling new values for the cross sections. It then calculates the Metropolis
ratio α by comparing the likelihood at the most recently accepted location and intensity to the
likelihood at the proposed values, with the likelihood computed using the ray tracing scheme
in Algorithm 3 and the statistical model in Eq. (3.3). Lastly, the algorithm accepts the candi-
date values and updates the proposal covariance with probability proportional to α, otherwise
the candidates are rejected and the procedure repeated. This process continues until the de-
sired number of samples has been drawn by the chain, after which the posterior distribution
can be reconstructed from the samples.

7It is often safe to assume ε = 0 [40].
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Algorithm 4 Adaptive Metropolis sampler for source location and activity
1: procedure Sample(NS , r0, I0,C0, fΣ)
2: r← r0, I ← I0

3: r̄← r0, Ī ← I0,C← C0

4: S ← {}, t← 1

5: Σ  fΣ

6: while t ≤ Ns do
7: r∗, I∗  N [[ rI ] ,C]

8: Σ∗  fΣ
9: α← min

{
1, P0(r∗,I∗)·fΣ(Σ∗)

P0(r,I)·fΣ(Σ) ·
LD(r∗,I∗;Σ∗)
LD(r,I;Σ)

}
10: β  U [0, 1]
11: if β ≤ α then
12: S ← append (S, {r∗, I∗})
13: r̄∗, Ī∗ ←UpdateMean(t, r∗, I∗, r̄, Ī)
14: C←UpdateCovariance(t, r, I, r̄, Ī, r∗, I∗, r̄∗, Ī∗,C; ε)
15: r← r∗, I ← I∗

16: r̄← r̄∗, Ī ← Ī∗

17: Σ← Σ∗

18: t← t+ 1

19: else
20: continue
21: end if
22: end while

23: return S
24: end procedure

25: function UpdateMean(t, r∗, I∗, r̄, Ī)
26: r̄∗ ← r̄+ 1

t (r
∗ − r̄)

27: Ī∗ ← Ī + 1
t

(
I∗ − Ī

)
28: return r̄∗, Ī∗

29: end function

30: function UpdateCovariance(t, r, I, r̄, Ī, r∗, I∗, r̄∗, Ī∗,C; ε)
31: p← len (r) + 1

32: sp ← 2.42

p

33: C∗ ← t−1
t C+

sp
t

(
t
[
r̄
Ī

]
[ r̄ Ī ]− (t+ 1)

[
r̄∗

Ī∗
]
[ r̄∗ Ī∗ ] +

[
r∗
I∗
]
[ r∗ I∗ ] + εIp

)
34: return C∗

35: end function
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3.6.1 Relation to Maximum Likelihood Estimation

As mentioned in Chapter 1, a common alternative approach to source localization is to compute
the maximum likelihood estimate (MLE), which is defined as the r, I that maximize the
likelihood function LD:

(rMLE, IMLE) := argmax
r,I

LD(r, I ; Σ) . (3.6)

In frequentist inference the MLE is often used to provide an estimate of the model parameters
without invoking prior information. From a Bayesian perspective, the MLE is related to the
maximum a posteriori (MAP) estimate, defined as the r, I that maximize the posterior given
by Eq. (3.1):

(rMAP, IMAP) := argmax
r,I

P (r, I |D)

= argmax
r,I

LD(r, I ; Σ) · P0(r, I) .
(3.7)

As such, the MLE can be interpreted as a special case of the MAP estimate with a constant
(uniform) prior distribution P0, since multiplication by a constant does not change the location
of the maximum in the parameter space.

The output of the source localization algorithm is the full posterior distribution, but for the
sake of discussion I will typically identify the mode of the posterior as “the” predicted source
location since it is, by definition, the source location we are most confident is the true one
considering the count rates we observed. It is clear from Eq. (3.7) that the mode of the posterior
is also the MAP estimate. As noted previously, for the analysis in this dissertation I assume
uniformly distributed prior distributions for all parameters, hence the mode of the posterior
distribution is also the MLE. The distinction is that the MCMC localization algorithm provides
additional information since the full posterior distribution is available, whereas the MLE is
only a point estimate. The MLE is also incompatible with other forms of prior distribution,
which are of interest in situations where additional information about the source characteristics
is available.

3.6.2 Difficulties with Direct Numerical Optimization

The consideration of attenuators significantly complicates the application of many of the al-
ternative techniques for source localization described in Chapter 1, which generally do not ac-
count for variable attenuation in a heterogeneous environment. In particular, the most common
approach to compute the MLE defined in Section 3.6.1 is to perform a direct numerical max-
imization of the likelihood function8, but this becomes difficult when attenuators are included

8It is actually more common to minimize the negative log of the likelihood for numerical reasons, but the
problem is equivalent because the log function is monotonic.
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due to the non-smooth error surface that results. As an illustration, Fig. 3.2 plots the error sur-
face in terms of the sum-of-squares error (SSE) for the measurements collected in the first of
the experiments described in Chapter 5.

Figure 3.2: Sum-of-squares error as a function of source location for experiment 1 described
in Chapter 5. The peaks are clipped to show detail of the error surface.

The complexity of this error surface, which includes discontinuities along every object bound-
ary as well as singularities at the detector locations, makes it difficult to provide a direct
comparison to methods based on numerical optimization. For instance, in principle the MLE
produced by direct numerical optimization should agree with the mode of the posterior density
produced by our algorithm (see Section 3.6.1); however, when I implemented this the search
failed to converge in all cases using a variety of optimization algorithms including Nelder-
Mead, Broyden-Fletcher-Goldfarb-Shanno (BFGS), and Simulated Annealing. Interested read-
ers should see ref. [41] for more information regarding the numerical challenges involved, as
well as the application of more advanced hybrid optimization techniques to the same model as
in Section 3.3.

41



Chapter 4

Preliminary Experiments in
Simulated Geometry

In this chapter I will present the results of applying the localization algorithm described in Chap-
ter 3 to several test cases relying on simulated data. The objective of these studies is to inves-
tigate three fundamental questions regarding the localization algorithm:

1. Can the source be localized at all?

2. What effect does the simplified transport model have on the bias (accuracy) in the pre-
dicted source location?

3. What effect does imprecise knowledge of the composition of materials in the scene have
on the uncertainty (precision) in the predicted source location?

Each test case directly addresses one of these questions, and the results form a basis for the
design and execution of a measurement campaign in the field performed in collaboration with
Oak Ridge National Laboratory, which will be described in Chapter 5.

The first test case uses a geometry derived from a real city block, with cross sections gener-
ated randomly based on the typical composition of wood and concrete buildings, and detector
observations generated by randomly sampling directly from the statistical model in Section 3.2
with 300 counts per second background. This is the ideal case, where all phenomena affecting
the “measured” count rates are accounted for by the statistical model of the detection process,
hence it serves to demonstrate the basic feasibility of the localization algorithm.

We will then examine a situation where the measurement data is derived from high-fidelity
simulation using analog Monte Carlo in a simplified geometry to generate the detector responses,
while still relying on the ray-tracing model to predict the measured count rates. This introduces
discrepancies in the measurement data based on the physical gamma transport phenomena that
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are discounted by the model of the detector response, which the localization algorithm must be
able to accommodate in practice since it is not possible to use a more complicated radiation
transport model (see Section 3.1).

The final case introduces cross section uncertainties using the technique from Section 3.4. It
is impossible to accurately determine the cross section of objects in the field and so in practice
we must rely on highly uncertain estimates for cross sections of materials in the scene. The last
test case demonstrates the effect that the cross section uncertainties have on the final predicted
source location using the same simulated urban geometry as the first test.

4.1 Synthetic Model in Urban Geometry

To illustrate the method, I constructed a synthetic test case based on a simulated urban geom-
etry. Using geospatial data from the OpenStreetMaps database I randomly selected a city block
in downtown Washington DC that was approximately 250m×180m, pictured in Fig. 4.1. This
was then translated into a set of polygons representing each of the 70 buildings in the area.
A single source with nominal intensity 8.7mCi (∼100µg of cesium-137) was placed in one of
the buildings and 10 detectors were distributed randomly with uniform probability across the
region. This arrangement is shown in Fig. 4.1. Cross section data was generated at random,
constrained such that an average sized building was approximately 1-1.5 mean free paths thick1,
while synthetic detector measurements were generated by sampling directly from the statistical
model in Section 3.2 (i.e., sampled from a Poisson distribution with mean computed using the
ray-tracing model from Section 3.3 plus background). The detectors were modeled as 3” × 3”

NaI scintillators (Ai ∼ 58 cm2) with counting times of 10 s, while background was taken as a
Poisson distributed random variable with a mean intensity of 300 cps (typical of a 3”× 3” NaI
detector in the Southeast United States [18]).

1This is typical of a wood and concrete building, based on estimates using information from ref. [4, 28].
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Figure 4.1: Satellite image of test location, with modeled geometry overlayed in green, as well
as source (red) and detector (blue) locations.

The MCMC process was used to draw 105 samples, with the first half discarded as burn-
in. Analysis of the chains by visual inspection of the sample histories, autocorrelation plots,
and computation of Gelman-Rubin scores indicated that this was a very conservative choice,
providing a high level of confidence that the chains had converged and were producing samples
from the posterior2. Figure 4.2 shows the results from the test problem using synthetic data,
including marginal densities for r. It can be seen that the method is able to localize the source
to within roughly a 10m×10m region, with the mode of the posterior (corresponding to the
most likely predicted source location) being within approximately 1.5m of the true location.

2As mentioned in Chapter 3, the convergence of Metropolis samplers is only guaranteed asymptotically and it
is not generally possible to determine with certainty whether a finite sub-sequence of a given chain has converged.
This is true not only in esoteric situations but also in cases of practical interest [9], hence care is required to ensure
that the chain has converged and is producing samples from its true stationary distribution (the posterior). Note
that I performed similar convergence analysis for all results shown henceforth and in each case opted to draw at
least an order of magnitude more samples than the convergence diagnostics indicated were necessary to provide
a very high level of confidence that the samples were indeed drawn from the posterior.
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(a) Full Scene (b) Zoom

Figure 4.2: Posterior density for source location in synthetic experiments.

4.2 Comparison to High-Fidelity Simulation

I employed the simplified geometry shown in Fig. 4.3 for the generation of calibration data via
high-fidelity Monte Carlo transport simulations. Buildings were modeled as rectangular prisms
of concrete with densities adjusted to match an equivalent wall thickness of 0.5m, while the
ground was considered to be a 10m thick concrete slab. Four identical buildings were arranged
in a 2×2 grid, with all remaining interstitial space filled with dry air at standard temperature
and pressure. A 3D rendering of the geometry with the building dimensions included is shown
in Fig. 4.3a.

Nine point detectors were placed in the scene, with the source placed in the center of the
northeast building. The source and detectors were all placed 1m above ground according to
the arrangement in Fig. 4.3b. This geometry was constructed and simulated in MCNP6 [12] with
standard photon physics at an energy of 662 keV using 2 · 109 photons. Particle histories were
terminated when their energy fell below 10 keV or when they traveled farther than 95m from
the origin. Count rates were then computed from the detector tallies based on the same detector
and source parameters as in Section 4.1.

Note that variations due to background are not included in this experiment; hence, the
signal-to-noise ratio is effectively infinite, so a very narrow posterior is expected. The simulated
measurements differ significantly from the model described in Chapter 3 due to the inclusion
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of the contribution of scattering, which is an effect that is not included in the model for the
detector counts. The focus in this test is on the influence of the simplified physics model on the
localization results and hence background was omitted in order to isolate these effects.

(a) 3D profile view with dimensions (b) Overhead view with source location indicated

Figure 4.3: Model geometry used for simulations using MCNP.

Figure 4.4 shows that the resulting posterior for the source location is still able to identify
the source location to within approximately 5m. We can, however, observe that there is a
bias present, with the true source location falling outside of the uncertainty of the posterior
distribution. This is due to the physical effects (principally Compton scattering) simulated by
MCNP that are not represented by the detector model, which only accounts for the effect of
uncollided gammas. The results suggest that this bias is relatively small (a few meters), which is
on the same order of magnitude as other sources of error such as the cross section uncertainties
that we examine in the next test.
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(a) Full Scene (b) Zoom

Figure 4.4: Posterior density for localization based on simulations with MCNP.

4.3 Effect of Cross Section Uncertainties on Localization Error

To test the impact of the cross section uncertainty on the localization of the source, I designed
an experiment simulating a real-world search scenario in an urban environment using a scene
identical to the one in Section 4.1. I then introduced fixed cross section uncertainties into the
problem and propagated them using the method described in Section 3.4.

Synthetic detector responses were generated using the simplified ray tracing model and
the expected values of the building cross sections, applying random variations to the computed
responses according to Poisson counting statistics. These simulated measurements were provided
to the MCMC simulation described in Chapter 3, and the chains were run sufficiently long to
ensure convergence to the stationary distributions. The reference value Σ0

i for each cross section
was taken to be the true value, and simulations were run with ±5% and ±50% uniformly
distributed relative uncertainty in all cross sections. Priors were taken to be uninformative, i.e.
uniform over the bounds of the problem. This corresponds to the case that we initially know
nothing about the source beyond assuming it is located in the block shown in Fig. 4.1.

Figure 4.5 and Fig. 4.6 shows the resulting marginal posteriors for source location, with Fig. 4.5
showing the results with 5% uniform random variation in the building cross sections and Fig. 4.6
showing 50%. Table 4.1 also shows the corresponding uncertainty in the estimates for source
location. We see that the method is able to correctly localize the source in both cases to within
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a few meters, with 95% confidence of ∼4m for Fig. 4.5 and ∼14m for Fig. 4.6, both sufficient
to guide a subsequent, more targeted followup search.

(a) Full Scene (b) Zoom

Figure 4.5: Posterior density for source location with 5% uncertainty in all cross sections.
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(a) Full Scene (b) Zoom

Figure 4.6: Posterior density for source location with 50% uncertainty in all cross sections.

Table 4.1: Predicted source locations and standard deviations for marginal posterior

δ rtrue (m) rpred (m) σr (m)

5%
(158.0, 98.0)

(158.0, 99.7) (1.55, 1.45)

50% (160.2, 97.3) (6.90, 7.19)

Of particular interest is the relatively small increase in the uncertainty of the estimated
source location as the cross section uncertainty is increased. The Bayesian method is still able
to identify the building the source is located in despite the large degree of uncertainty in the
cross sections of the buildings. This observation shows that the method is able to tolerate highly
imprecise foreknowledge of the cross sections and still produce a usably precise estimate of
the source location. This result is a direct consequence of the highly heterogeneous transport
medium inherent to this problem. The buildings in the scene are highly attenuating, while
the space between them is not, with the building cross sections exceeding the cross section of
air by about 3 orders of magnitude. Consequently, the posterior estimate of source location is
dominated by those detectors that have a near line-of-sight to the source, such that the width
of the posterior; i.e., the uncertainty in the estimated source location, is moderately insensitive
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to the large uncertainties in building composition and density. We will return to investigate this
effect in Chapter 6, using an even further simplified transport model that models objects in the
scene as entirely opaque, considering only the visibility of the source from the vantage point of
the detectors.

4.4 Informing the Design of a Field Experiment

At the beginning of this chapter I presented three basic research questions, representing the most
important issues that must be addressed in order to assess the localization algorithm proposed
in Chapter 3. Before proceeding, it is worthwhile to consider how the results shown thus far have
addressed these questions. It is important to emphasize that these results are based on synthetic
measurement data, with the results in Sections 4.1 and 4.3 using a statistical and physical
model that perfectly represents the simulated measurements, while those of Section 4.2 employ
a greatly simplified geometry. As such, we cannot yet consider these questions satisfactorily
answered based solely on these results. In later chapters, I will present the results of a more
comprehensive test, using count rates recorded by real detectors for an unknown source in the
field. Before proceeding to the description of these measurements in Chapter 5 and their results,
let me first summarize the salient aspects of these synthetic tests with respect to how they
influence the design of the field experiment.

Most importantly, we have seen that the algorithm is able to localize a source within a
complex geometry in the presence of uncertainties in the count rates (including random con-
tributions from background). This also holds true when simulating the effect of scattering, as
well as when large cross section uncertainties are included, all of which are factors that will
be relevant when using actual measurement data. Further, the uncertainties in the posterior
densities show that the algorithm is able to localize a source with activity in the tens of mCi
range with reasonable precision in a typical urban geometry, implying that a source of similar
strength would be a reasonable choice for the field test.

The results in Section 4.2 show that the algorithm is able to localize a source even when
the effect of scattering is included. Real measurements will include counts from gammas that
are emitted by the source and subsequently undergo scattering, a physical effect that is entirely
ignored by the detector model in Chapter 3. If this had not been the case, it would have been
necessary to develop a more complex model for the transport of gamma rays in the scene, e.g.,
by approximating near-field scattering in the vicinity of the detector, further increasing the
computational cost and complexity. However, the evidence presented thus far indicates that
this is not necessary and so I will proceed with the uncollided flux model when analyzing the
results of the field measurements.

Lastly, Section 4.3 demonstrates that the effect of uncertainties on the precision of the
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localization is relatively weak. In practice, it is difficult to obtain accurate estimates of the cross
section of objects like buildings or cars present in the scene, due primarily to poor knowledge
of their exact dimensions and composition. The weak dependence of the posterior localization
uncertainty on the cross section uncertainty provides evidence that the method is robust to even
large uncertainties in the material cross sections, and as such it will not be necessary to perform a
highly detailed characterization of the internal geometry and composition of objects present
at the location of the experiment. Instead, I will rely on survey measurements to determine
the exterior geometry of objects, combined with a rough estimate of material composition and
interior dimensions.

51



Chapter 5

Field Test

In May 2017, a test measurement campaign was conducted at the Energy Systems Test Com-
plex at ORNL, also known as the site of the former Experimental Gas-Cooled Reactor. The
measurement campaign took place outdoors in a cluttered environment, chosen to mimic a real-
world search in an urban setting. A Cs-137 source with a nominal activity of approximately
37mCi was placed in two different locations, shown in orange in Fig. 5.1. These source place-
ments divided the measurement campaign into two separate experiments, which I will refer to
as experiment 1 and experiment 2.

5.1 Description of Experiment

For each experiment, a set of 6 networked mobile detectors (described in Section 5.1.2) was used
to record count rates at 12 locations, both with and without the source present. Measurements
with the source and of background were each taken for approximately 30 minutes real-time,
and count rates were low enough that dead-time effects were negligible (typically < 0.1%).
The placement of these detectors is shown in Fig. 5.2, with all detector positions recorded
using precision differential GPS. Source-to-detector distances ranged from approximately 20m

to 200m. Additionally, all detectors were nominally oriented to be facing due north using hand
compasses, since the source location is treated as unknown. Manual orientations were error-
prone, with substantial deviations from north in many of the detectors; however, the actual
orientations were recorded using the detectors’ onboard compasses, mounted such that they
record orientation relative to the longest axis of the detector.
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Figure 5.1: Overhead view of experiment site, the two source locations are shown in orange,
while the overall experiment area is marked in red (satellite imagery courtesy of Google Maps).
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(a) Experiment 1.

(b) Experiment 2.

Figure 5.2: Detector and source placements for each experiment (satellite imagery courtesy of
Google Maps).

5.1.1 Detector Placement

The actual placements of the detectors in the field and their orientations as reported by the
onboard compasses are summarized in Table 5.1. Each location is given a name denoting the
experiment number, measurement set and detector number– for example, measurement 1A-2
refers to the position of detector number 2 (of 6) during the first set of measurements (set A) of
experiment 1. x and y coordinates are reported in meters, relative to 35◦56′12.1′′N 84◦16′36.8′′W

(WGS 84 Pseudo-Mercator/EPSG:3857 coordinate reference), with the positive x and y di-
rections being east and north, respectively. Orientations are reported as the angle between the
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longest axis of the detector and magnetic north, with positive angles in the counter-clockwise
direction. Table 5.1 also provides a qualitative description of how obscured the source was from
the position of each detector. These are organized into 4 categories, with “direct” indicating
detectors that had an unobstructed view of the source, while “highly occluded“ indicates de-
tectors with several mean free paths of material between themselves and the source. Detectors
designated as “occluded” had approximately 1-2 mean free paths of material between them-
selves and the source, while “lightly occluded” refers to detectors with lines of sight interrupted
by less than 1 mean free path of material.
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Table 5.1: Summary of actual source and detector placement during the experiment, including
a qualitative description of the visibility of the source for each detector.

Name x (m) y (m)
Distance to
Source (m)

Orientation
(deg. N)

Source Visibility

Source 114.9 88.9 – – –
1A-1 7.84 70.71 108.61 61 Highly occluded
1A-2 26.61 36.56 102.67 -15 Highly occluded
1A-3 62.47 88.61 52.46 2 Occluded
1A-4 60.08 88.61 69.20 18 Occluded
1A-5 87.34 63.13 37.79 -2 Direct
1A-6 130.68 65.92 27.87 0 Lightly occluded
1B-1 84.50 74.99 33.49 33 Highly occluded
1B-2 101.08 112.38 27.22 19 Lightly occluded
1B-3 149.72 113.99 42.82 15 Lightly occluded
1B-4 133.66 89.00 20.32 84 Direct
1B-5 164.86 60.81 57.27 21 Direct
1B-6 163.09 17.05 86.49 0 Highly occluded

Source 164.1 100.8 – – –
2A-1 190.23 105.89 26.65 -68 Highly occluded
2A-2 206.51 79.54 47.51 -65 Highly occluded
2A-3 193.30 65.78 45.68 -27 Occluded
2A-4 142.84 92.36 23.56 -16 Lightly occluded
2A-5 153.99 119.94 21.54 -137 Lightly occluded
2A-6 111.22 119.34 55.94 -84 Lightly occluded
2B-1 -9.46 57.86 178.83 -57 Highly occluded
2B-2 53.72 95.20 110.45 -103 Lightly occluded
2B-3 81.98 63.52 90.16 -80 Lightly occluded
2B-4 142.28 125.97 33.19 -29 Direct
2B-5 215.31 102.44 51.26 -97 Highly occluded
2B-6 160.91 66.12 34.59 -63 Highly occluded

5.1.2 Detector Characteristics

The detectors used for the experiment were provided by ORNL and were comprised of a 2”×
4” × 16” NaI scintillator coupled to an integrated photomultiplier tube and Canberra Osprey
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multichannel analyzer (MCA) (Fig. 5.3a). The output of the MCA was fed to an on board
computer, which reported the measured spectra back to a central base station over a WiFi
link. This wireless link also provided a centralized command and control system, allowing the
detectors to be synchronized and monitored from a single location.

Each detector was housed in a wheeled cart (Fig. 5.3b) so that it could be moved into place
between measurements. Every cart was equipped with a GPS antenna (the white disc in the
bottom right of Fig. 5.3a) and sensors to record environmental data including temperature,
pressure, and humidity, as well as the orientation of the cart. The carts were covered with a
Mylar sheet to reflect sunlight and minimize heating of the electronics.

(a) Detector and integrated PMT/MCA, note
the ink pen for scale.

(b) One of the detector carts during a measure-
ment.

Figure 5.3: Illustration of the detectors used for the experiment.

Calibrations for every detector were taken at the beginning and end of each experiment using
Eu-252, Co-60, Cs-1371 and Ba-133 laboratory test sources, as well as a camera lens containing a
significant amount of thorium. These were used to generate energy calibrations for each detector,
as well as to provide reference points for the automatic gain stabilization algorithm used by the
detectors. Examination of these calibrations after the conclusion of the measurement campaign
indicated that they experienced negligible calibration drift over the course of the experiments.

When modeling the detectors an intrinsic efficiency of 29% was used, determined from the
calibration spectra taken at the beginning and end of each experiment. Since the detectors were
all placed facing north, they were all modeled as having a face area of 224 cm2, corresponding
to the average face area of the 2” × 4” × 16” crystal in the detector (see Section 3.3.1). Dwell
times were taken to be the live-time recorded by each detector and were all approximately equal

1The Cs-137 calibration source was not the same as the target source used in the experiment.
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to the nominal real-time for each measurement (1800 s).

5.1.3 Site Characterization

In order to use the technique described in Chapter 3, it was necessary to construct a computer
model of the geometry of the scene. This was done by combining differential GPS (DGPS)
measurements and georeferencing them with satellite photography of the scene. The DGPS
system used for the measurements is notionally capable of sub-centimeter accuracy under ideal
circumstances; however, for most measurements reported accuracies of 3 to 10 cm were typical.
Manual measurements of several objects in the scene were also recorded using a tape measure
to validate the dimensions computed from the DGPS points.

The geometry and DGPS reference points are shown in Fig. 5.4. When constructing the
model, I decided to omit several objects in the scene. The detector response model of Section 3.3
only computes the uncollided flux arriving at the detectors, hence objects that do not lie between
a source and a detector have no effect on the model’s estimate of the count rate.

Material macroscopic cross-sections were assigned on a “best estimate” basis. Based on a
photographic survey and measurements derived from the DGPS data, I computed dimensions for
each object. Next, I consulted a standard handbook to determine material compositions [28] and
then used the NIST XCOM database to compute the nominal microscopic cross-sections2 [2].
Finally, the microscopic cross-sections were homogenized over the volume of the object to com-
pute macroscopic cross-sections, accounting for the estimated internal dimensions and voids.
These macroscopic cross-sections are visualized in terms of the corresponding mean free paths
in Fig. 5.4, with the color corresponding to the mean free path in that object, categorized into
four groups representing different qualitative levels of attenuation; e.g., black and red are strong
attenuators, while yellow and blue are less so. I emphasize that accurate selection of these values
is not critical since they only serve as a reference point for assigning the cross section uncer-
tainties. The localization algorithm randomly varies the macroscopic cross section values over
a wide range during the sampling process and does not rely on the reference values directly.

The model geometry is strictly two-dimensional, hence it does not account for changes in
elevation across the scene. The site where the experiment was performed is approximately flat,
with the exception of a downward drop-off in the grassy area located in the northeast section
of the site. During the second experiment, one of the detectors was positioned on this hill,
resulting in an elevation change of 1 to 2m relative to the source position (this placement is

2Microscopic cross-sections were taken to be the total interaction cross-section at 662 keV as we are only
concerned with computing the uncollided flux arriving at the detector. This violates our assumption that we
know nothing about the source, however, the selection of this value is not critical since we will be treating them
as highly uncertain in our later analysis. Furthermore, I analyzed the total counts acquired by each detector, not
the counts under the 662 keV photopeak.
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shown in Fig. 5.5). This was a deliberate choice, intended to introduce some of the variability
expected in a real-world deployment. Other minor variations in elevation were also present and
were similarly not accounted for in the geometry.

Figure 5.4: Model geometry of the site, colored by the calculated mean free path. The DGPS
reference points are also indicated by the black marks. Note that there are some small disagree-
ments with the objects visible in the satellite imagery, this is due to the satellite photos being
taken on a different day than that of the experiments.
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Figure 5.5: Elevation difference in experiment 2. The source is located just behind the fence
visible in the background.

5.2 Results and Analysis

Table 5.2 summarizes the measurements recorded during the experiments, while Fig. 5.6 plots
the net foreground and background count rates recorded during both experiments. Total counts
refer to the total counts recorded during measurements with the source present, while back-
ground counts were accumulated from measurements with the source absent, and net counts
are calculated from measurements with the source present subtracting the background counts
after normalization for differences in live time. Table 5.2 also shows the ratio of total counts
to background, which was approximately 3 to 13 for detectors near the source, while detectors
on the perimeter had total to background ratios between 1 and 2. As can be seen in Fig. 5.6,
detectors with a direct line-of-sight to the source recorded the highest number of counts and
hence contribute the most to the localization, while the Bayesian formulation guarantees ro-
bustness against detectors with lower count rates since their contributions to the localization
are weighted by their uncertainty.
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Table 5.2: Count rates recorded by the detectors. Entries marked with a (∗) denote measure-
ments with anomalous count rates (see Section 5.2.2). Total-to-background ratios and SNRs
are adjusted for live time.

Name
Total Live
Time (s)

Total
Counts

Background
Live Time (s)

Background
Counts

Total / Bg SNR3

1A-1 1,789.13 2,008,213 1,716.42 1,702,957 1.13 175.0
1A-2 1,789.52 1,836,856 1,790.66 1,615,817 1.14 174.8
1A-3 1,785.44 2,656,026 1,789.15 1,815,188 1.47 627.5
1A-4 1,789.72 1,772,977 1,746.49 1,373,245 1.26 308.3
1A-5 1,770.83 5,497,133 1,790.07 1,841,017 3.02 2723.8
1A-6 1,756.45 7,310,350 1,739.25 1,221,574 5.93 5471.1
1B-1 1,787.34 2,407,008 1,791.92 1,430,501 1.69 820.6
1B-2 1,764.57 6,513,106 1,789.12 1,954,174 3.38 3303.2
1B-3 1,783.96 3,053,585 1,790.91 1,632,757 1.88 1119.1
1B-4 1,710.37 15,719,863 1,792.64 1,272,534 12.95 13164.6
1B-5 1,781.88 3,474,658 1,790.64 1,699,812 2.05 1371.1
1B-6 1,763.21 2,852,067 1,784.61 2,570,414 1.12 196.1

2A-1∗ 1,782.81 3,347,193 1,793.62 1,150,058 2.93 2061.5
2A-2 1,786.82 2,385,999 1,789.80 1,674,788 1.43 552.2
2A-3 1,776.18 4,276,542 1,790.73 1,398,868 3.08 2452.7
2A-4∗ 1,722.84 13,224,755 1,791.80 1,357,271 10.1 10434.1
2A-5 1,738.96 11,710,996 1,788.52 2,055,420 5.86 6870.4
2A-6 1,776.83 3,932,848 1,788.74 1,814,991 2.18 1586.3
2B-1 1,790.52 1,736,153 1,791.23 1,620,411 1.07 91.4
2B-2 1,789.14 1,945,903 1,791.20 1,501,151 1.30 364.6
2B-3 1,788.92 1,967,095 1,790.03 1,641,784 1.20 254.8
2B-4 1,759.72 7,098,048 1,788.51 2,005,485 3.60 3648.3
2B-5 1,789.42 2,050,384 1,794.64 983,992 2.09 1079.5
2B-6∗ 1,785.37 2,594,652 1,789.89 1,702,360 1.53 688.0

3The definition for signal-to-noise ratio in the context of radiation detector measurements is somewhat
ambiguous. In Table 5.2, I choose to define the SNR as CNet/

√
CBg · `Tot/`Bg, where C denotes counts and `

the live time. That is, the ratio of the net counts to the standard deviation of the background noise, adjusted
for differences in live time between the foreground and background measurements.
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(a) Experiment 1.

(b) Experiment 2.

Figure 5.6: Foreground and background count rates in both experiments.

Figures 5.7 to 5.8 show the marginal posterior densities for the source position from experi-
ments 1 and 2 using the detector response model that does not account for detector orientation
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(see Section 3.3.1). These posteriors were generated by drawing 5 · 105 samples4, with conver-
gence being determined by examining both the chain autocorrelation and Gelman-Rubin scores.
The measurement data was taken to be the net counts recorded by each detector and did not
exploit any spectral features as it would require a priori knowledge of the source to identify the
relevant features of interest. Background was treated as a Poisson random field, with mean val-
ues at each detector location taken from the measurements made without the source present.
All cross-section values were assigned a uniformly distributed uncertainty within ±50% of their
respective nominal values.

In Fig. 5.7a and Fig. 5.8a we see that the method is able to identify the source location
with reasonable accuracy relative to the scale of the problem. On further inspection in Fig. 5.7b
and Fig. 5.8b we can see that there is a distinct bias in the estimated source position, one which
exceeds the posterior uncertainty that arises from the ad hoc estimation of the cross-sections
and measurement uncertainties. These biases, which are on the order of 3 to 4m, are small
enough that the estimates are sufficiently accurate to guide a more targeted search, which is
the primary objective. However, we shall proceed to examine them in more detail in order to
account for detector orientation.

(a) View of full scene. (b) Detail.

Figure 5.7: Marginal posterior density for source location r in experiment 1 with 50% relative
uncertainty in all cross-sections.

4All subsequent posteriors shown were also constructed using 5 · 105 samples.
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(a) View of full scene. (b) Detail.

Figure 5.8: Marginal posterior density for source location r in experiment 2 with 50% relative
uncertainty in all cross-sections.

5.2.1 Detector orientation

As discussed in Section 3.3.1, the geometric efficiency of the detectors used for the measurements
varies significantly with the orientation of the detector relative to the source. Figures 5.9 to 5.10
show the posterior densities obtained from the MCMC algorithm using the same parameters
as the plots in Figs. 5.7 to 5.8, but with the correction for detector orientation described
in Section 3.3.1 applied. Observe that the error in the source location is reduced to 1m to 2m

when the effect of detector orientation is included. Additionally, the true source location is now
much closer to lying within the range of uncertainty of the posterior distribution, indicating
that any biases caused by the low fidelity of the physical model and scene geometry are of a
similar magnitude to the uncertainty arising from counting statistics and material cross sections.
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(a) View of full scene. (b) Detail.

Figure 5.9: Marginal posterior density for source location r in experiment 1 with 50% relative
uncertainty in all cross-sections and including detector orientation.

(a) View of full scene (b) Detail

Figure 5.10: Marginal posterior density for source location r in experiment 2 with 50% relative
uncertainty in all cross-sections and including detector orientation.
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5.2.2 Count rate anomalies during measurements

By examining the footage taken from cameras situated throughout the experiment area, it was
discovered that a large vehicle in the eastern parking lot moved during the measurements for
experiment 2. The vehicle was located in close proximity to several of the detectors as well as
the source, hence its movement produced significant changes in the count rates that were not
included in the detector response model. Furthermore, the path traveled by the vehicle crossed
between two of the detectors and the source, resulting in a large drop in the count rates measured
when the vehicle interrupted their view of the source.

Figure 5.11 shows time series plots of the count rates measured by the three detectors
that were affected by the vehicle’s movement. Figure 5.11a shows the expected trend for a
non-anomalous measurement, with fluctuations about the mean value, but ultimately with
the majority of measurements falling within 1-2 standard deviations. Figure 5.11b shows the
detector that was situated near the initial position of the vehicle, with a large drop in the count
rate visible when the vehicle was passing between the source and detector, followed by an
increase in the average count rate after the vehicle had passed due to reduced attenuation.
Figure 5.11c shows the count rate recorded by the detector located near the final position
of the vehicle, with a sharp drop in the count rate as the vehicle moved between the source
and the detector, followed by an overall decrease in the count rate due to increased attenuation
in the presence of the vehicle. Finally, Fig. 5.11d shows the detector that was located on the
opposite side of the parking lot. Here the change in count rate is smaller than the other two
detectors, nevertheless there is a clear trend visible in the recorded count rates. All three cases
show statistically significant changes in the observed count rates when compared to the average
count rate over the full measurement period and as such I consider them outliers.
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(a) Detector 2-B1. (b) Detector 2-A4.

(c) Detector 2-B6. (d) Detector 2-A1.

Figure 5.11: Time series of fluctuating count rates recorded by three of the detectors in exper-
iment 2 (blue) versus the average count rate over the entire measurement (green).

The current implementation of the detector response model does not allow for time-dependent
changes in the geometry; instead I elected to discard the data recorded by these detectors.
This naturally results in higher uncertainty due to the decreased number of counts recorded
by the overall detector network, however the original experimental design included substantial
redundancy in the number of detectors in case of such an abnormality so it is expected that
localization is still possible even with the problematic measurements omitted. Figure 5.12 shows
the marginal posterior that results when excluding these measurements. Interestingly, when
compared to the results including the anomalous measurements, the accuracy of the localiza-
tion is actually slightly worse. This suggests that improvement which might be expected from
removing the anomalies is offset by the loss of information caused by the increased uncertainty
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of having a smaller number of total counts (the detectors removed were among those with the
highest total counts recorded). It also suggests that the method is fairly robust to these model-
ing discrepancies, though I caution that this may not be the case in other scenarios and further
experiments are required in order to fully understand this effect. We will discuss these anomalies
further in Chapter 6, where I propose a systematic methodology to detect and classify different
types of anomaly.

(a) View of full scene (b) Detail

Figure 5.12: Marginal posterior density for source location r in experiment 2 with 50% relative
uncertainty in all cross-sections, including detector orientation and with counts from anomalous
detectors removed.

5.2.3 Effect of Counting Time on Posterior Error

All measurements were taken for approximately 30min live-time, but shorter measurement
times can be simulated by assuming the counts recorded follow a Poisson distribution and
resampling measurement data based on the desired dwell time. I used this technique to run
the MCMC sampler separately for a series of experiments with increasing counting time to
examine its effect on the bias in the estimated source location.
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Figure 5.13: Error in estimated source location versus count time for experiment 1.

Figure 5.13 plots the Cartesian distance between the mode of the posterior distribution (the
most probable source location) and the true source location versus the count time5. There is
an overall trend of decreasing bias as the count time is increased, with a count time of 5min

resulting in a decrease in the bias to approximately 2m. Alternatively, count times beyond 5min

only show modest improvements in accuracy of approximately 1 to 2m, as well as little change in
uncertainty. Together, these observations suggest that a significant portion of the bias observed
is dependent on the counting time, but also that other independent sources of bias are present.

5.2.4 Other Sources of Error

Here, I will further identify several possible candidates as the cause(s) of the remaining bias.
The first is in the georeferencing of the satellite photography with the DGPS control points
taken. This process proceeds by referencing different locations in the overhead imagery with
known coordinates, which were recorded using the DGPS system described in Section 5.1.3.
An interpolating function is generated using these reference locations to associate geographic
coordinates with every point in the image, followed by a transformation to align the image with
the new coordinate system6. Since this transformation is generally non-linear (and non-affine)

5Error bars in Fig. 5.13 are estimated by taking the standard deviation of the distribution that results from
propagating samples drawn from the posterior density through the equation for the Euclidian distance to the
true source location. This is an imperfect measure of the error; as such, the error bars should be interpreted with
caution, particularly in those for lower count times where the posterior densities tend to show multiple distinct
modes.

6For an overview of the georeferencing process see ref. [14].
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it can introduce non-uniform errors, particularly when computing real-world distances between
different locations in the image. I hypothesize that small errors in the relative positions of
objects in the scene have an effect on the estimated source location, causing a deviation in
the location predicted by the posterior from the true source location relative to the position of
objects in the scene.

The second potential source of error is in the reconstruction of the geometry and is also
related to the georeferencing of the scene. The georeferencing error is an epistemic effect arising
from interpolation of the reference points and in particular affects the distances computed be-
tween locations, however, there is also an aleatory uncertainty arising from imperfect knowledge
of the dimension of objects in the scene. The exterior dimensions of objects were determined via
a combination of the DGPS points recorded and manual measurements and have an associated
uncertainty. Imperfect measurements may have yielded object dimensions that were too large
or too small, resulting in errors in the estimated source position. The exact location of vehicles
in the Eastern parking lot is especially relevant, as it was difficult to exactly determine their
positions and I had to rely on best estimates.

Lastly, a portion of the bias almost certainly resulted from physical effects that are not
accounted for in the detector response model. The model only computes the uncollided flux
arriving at the detector, whereas we used net counts recorded as the measurement data. The
net count rate obviously includes counts resulting from gammas that have undergone scattering,
principally in the vicinity of the detector, and the resulting discrepancy would cause bias if its
effect violated the assumption of independently distributed error in the statistical model.

5.2.5 Trilateration

For comparison, Tables 5.3 to 5.4 shows the results of applying trilateration to the data collected
during each experiment using the least-squares formulation described in ref. [25]. This is applied
without accounting for the presence of objects in the scene, equivalent to the model described
in Section 3.3 excluding the exponential term. The resulting least-squares problems were then
solved using a standard implementation of the Levenberg-Marquardt algorithm, with error
estimates computed via the common method of linearizing the response surface. Table 5.3
shows the predicted source location without considering detector orientation, while the results
in Table 5.4 are calculated using geometric efficiencies that have been adjusted for orientation.
Run times for these calculations are negligible (less than a second), but the resulting predictions
of the source location are significantly poorer than the results using MCMC.
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Table 5.3: Predicted source locations using simple trilateration with error estimates without
accounting for detector orientation.

Experiment x (m) y (m) σx (m) σy (m) Residual norm (m)

1 148.9 83.5 8.3 1.8 34.4
2 176.0 76.3 9.1 21.0 13.3

Table 5.4: Predicted source locations using simple trilateration with error estimates including
detector orientation. All distances are in meters.

Experiment x (m) y (m) σx (m) σy (m) Residual norm (m)

1 110.3 76.3 9.1 21.0 13.3
2 145.7 119.4 4.6 6.0 26.2
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Chapter 6

Effects of detector anomalies,
signal-to-noise ratio, and alternative
physics models

As is frequently the case, preliminary discussion of the results and analysis in Chapters 4
to 5 raised several research questions regarding the limits of the localization algorithm and
practical aspects of dealing with unexpected phenomena encountered in the field. Specifically,
the following three questions were identified:

1. How to detect the anomalous, non-stationary count rates during the measurements de-
scribed in Section 5.2.2?

2. What is the effect of source intensity on the precision and accuracy of the posterior?

3. What is the impact of using of an even simpler detector model which does not require the
estimation of the macroscopic cross sections of objects in the scene?

Section 6.1 will address the detection classification of count rate anomalies during measure-
ments. I present a technique based on a likelihood ratio test, which is able to classify a given
measurement according to a statistical model for ideal measurements versus models for different
types of anomaly. Section 6.2 then uses the synthetic test problem from Section 4.3 to charac-
terize the impact of source strength on the posterior density in order to estimate the behavior
of the algorithm near the lower limits of detectability. Lastly, Section 6.3 studies the impact of
a detector model that assumes all objects in the scene are fully opaque to gamma rays using a
simplified test geometry.
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6.1 Anomaly Classifier

In Chapter 5, we saw that some of the detectors exhibited anomalies in the count rates they
recorded. Under ideal conditions, we would expect that the mean count rate exhibited by the
detector would remain constant for a static scene, however several of the detectors observed
statistically significant changes in the mean count rate. Further, there were two distinct types
of trend visible in the measurements. In the first case, a step change was visible in the count rate,
caused by detectors being shielded from the source by vehicles moving through the scene during
the measurements. In the second case, there is a clear linear trend in some measurements; the
exact cause of these anomalies is unknown, but may be related to localized weather-dependent
changes in background.

Equations (6.1) to (6.3) provide statistical models for each of these scenarios, modeling the
counts collected by a detector with integration time ∆t. Equation (6.1) represents the ideal case,
where the count rate is fixed at a constant value of C. Equation (6.2) represents a count rate with
a linear trend, beginning at rate C and changing at a rate of M/∆t. Finally, Eq. (6.3) represents
a step change from rate C1 to C2 during the interval between time s1 and s2, assuming the
change is linear between C1 and C2 for s1 < t < s2. The behavior of these statistical models
and their parameters are illustrated in Fig. 6.1.

Dconst
i (tj ; C) ∼ Po

[
Rconst(tj) ·∆t

]
Rconst

i (tj) = C
(6.1)

Dline
i (tj ; M,C) ∼ Po

[
Rline(tj) ·∆t

]
Rconst

i (tj) = M · tj + C
(6.2)

Dstep
i (tj ; C1, C2, s1, s2) ∼ Po

[
Rstep(tj) ·∆t

]
Rstep

i (tj) =


C1 tj ≤ s1

C1 +
C2−C1
s2−s1

(tj − s1) s1 < tj < s2

C2 tj ≥ s2

(6.3)
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(a) Constant. (b) Linear. (c) Step.

Figure 6.1: Illustration of count rate models for different types of anomalies.

We wish to devise a method to determine which of these statistical models best represents
the counts recorded by a given detector. To do so, I will perform a likelihood ratio test,
which compares the ideal model (constant count rate, Dconst) to the models for anomalies
represented by Dline and Dstep. The case of constant mean count rate is what we would expect
to see in the absence of anomalies and hence we will treat it as the null hypothesis model, while
the alternative hypotheses are that the detector counts were generated from the anomalous
models. Let θMLE denote the parameter values for each of these models that maximize their
respective likelihood functions. The log-likelihood ratio of the m-th alternative model, Km, is
defined in Eq. (6.4):

Km := ln

(
Lm (θm

MLE)

Lconst
(
θconst

MLE
)) m ∈ {line, step}

= `m (θm
MLE)− `const (θconst

MLE
)
.

(6.4)1

Km > 1 indicates that the likelihood of the alternative model is higher than the null model,
while 0 < Km < 1 indicate that the null model is favored. Further, define:

K := max{Km}

Kp :=
K

Nt
,

(6.5)

where Nt is the total number of time bins for the data. K is thus the likelihood ratio for the
best (most likely) of the alternative models, and Kp is simply normalized to the number of time

1` denotes the log of the likelihood function, L.
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bins used when binning the count data so that scores may be compared across different bin
widths.

We may now use the value of Kp as a criterion to classify a measurement as belonging to
a particular type. Choose a threshold level ε (with ε > 1), and if Kp < ε we classify a set of
measurements according to the null model (constant count rate). Otherwise, we classify the
measurements as belonging to the class of the best alternative hypothesis (one of the types of
anomaly). Note that it is possible in principle to compute values of ε to rigorously guarantee a
desired significance level, but this requires construction of the probability distribution for Kp,
which is not straightforward in general. Based on the results of applying the method to the
measurements from Chapter 5, I choose ε = 2, which heuristically provides good discrimina-
tion of all anomalous cases that are readily identified by eye. Further analysis and experimental
measurements is required in order to evaluate how well this choice of ε generalizes to measure-
ments taken under different conditions.

The results of applying the classifier to the measurements from Chapter 52 are shown in Ta-
bles 6.1 to 6.2, while Figs. 6.2 to 6.7 show the model fits for several of the detectors along with
the likelihoods. This includes all three of the anomalous cases described in Section 5.2.2, which
are all clearly identified by the classification scheme. Figure 6.2 also shows a typical “ideal” mea-
surement, where the trend is clearly constant. Figures 6.3 to 6.4 depict cases with Kp near the
threshold value of ε = 2; we can see by eye that a possible linear trend is visible, and the classi-
fication results clearly indicate that such cases are on the borderline between different classes.
Finally, Fig. 6.5 is perhaps the most interesting case, with an apparent overall constant trend,
but with significant outliers in two bins near the beginning and end of the measurement. These
outliers can be deceptive to the eye, however the classification algorithm determines that these
outliers are not significant enough to conclude that the measurements deviate from constant.

2All tests were performed using a time binning of 1min, though the results were not overly sensitive to the
choice of ∆t. ∆t should be selected to reflect the characteristic duration of the anomalies in question.
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Table 6.1: Classifier results for Experiment 1.

Measurement
Best

Alternative
Kp Classification

1A-1 Linear 0.002 Constant
1A-2 Linear 0.021 Constant
1A-3 Linear 0.029 Constant
1A-4 Step 0.017 Constant
1A-5 Step 0.006 Constant
1A-6 Linear 0.035 Constant
1B-1 Step 1.198 Constant
1B-2 Step 0.236 Constant
1B-3 Step 1.585 Constant
1B-4 Linear 1.107 Constant
1B-5 Linear 1.557 Constant
1B-6 Step 0.799 Constant

Table 6.2: Classifier results for Experiment 2. Highlighted rows correspond to the anomalous
measurements identified in Section 5.2.2.

Measurement
Best

Alternative
Kp Classification

2A-1 Linear 2.321 Linear
2A-2 Linear 1.947 Constant
2A-3 Linear 0.090 Constant
2A-4 Step 29.345 Step
2A-5 Linear 1.080 Constant
2A-6 Linear 0.777 Constant
2B-1 Linear 0.087 Constant
2B-2 Step 0.130 Constant
2B-3 Linear 0.111 Constant
2B-4 Step 0.032 Constant
2B-5 Linear 1.080 Constant
2B-6 Step 5.437 Step
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Figure 6.2: 1A-1, Kp = 0.002. Constant.

Figure 6.3: 1B-5, Kp = 1.557. Constant, but borderline. Some linear trend is visible, but is
not significant enough to reject a constant trend.
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Figure 6.4: 2A-1, Kp = 2.321. Linear.

Figure 6.5: 2A-3, Kp = 0.090. Constant. Despite the clear drop in count rate near the start,
classification indicates overall trend is constant.
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Figure 6.6: 2A-4, Kp = 29.345. Step.

Figure 6.7: 2B-6, Kp = 5.437. Step.
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6.2 Dependence on Source Intensity

Here, we will investigate the behavior of the posterior distribution as the source intensity is
varied. I will use a test problem identical to the one described in Section 4.3, except that the
activity of the source will be scaled to a range of values between 1% and 200% of the activity
used in Section 4.3 (8.7mCi) while background is kept constant with a fixed mean of 300 cps.
This produces variations in the total signal-to-noise ratio (SNR), defined as the ratio of total
counts from the source Csrc over the uncertainty in the counts due to background3 √Cbg, where
counts are accumulated across all detectors:

SNR :=
Csrc√
Cbg

. (6.6)

Figure 6.8 plots the localization accuracy versus source activity, while Fig. 6.9 plots the
corresponding posterior distributions. We can see that reasonable localization is achieved down
to an activity of approximately 0.87mCi, while below that level the dispersion of the posterior
makes it difficult to resolve a distinct source location. Conversely, for source activities above
∼6.5mCi there is little improvement in the localization as the uncertainty is driven primarily
by the material cross section uncertainties.

3The definition of SNR in the context of radiation detection is somewhat ambiguous, with multiple possible
interpretations available. Equation (6.6) is derived assuming that the number of counts due to background is
known exactly, which is the case here since the measurements are generated from simulation.
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Figure 6.8: Plot of localization error with various source activities.
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(a) 1% (SNR: 0.14) (b) 10% (SNR: 1.41)

(c) 25% (SNR: 3.54) (d) 50% (SNR: 7.07)
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(e) 75% (SNR: 10.61) (f) 100% (SNR: 14.14)

(g) 150% (SNR: 21.76) (h) 200% (SNR: 28.29)

Figure 6.9: Posterior density with varying source intensity.

6.3 Occluded Detector Model

In Section 3.4, I noted that it is difficult to precisely determine the composition of objects in
the scene and developed a method to propagate uncertainties in the estimated cross sections of
objects through the MCMC sampler. In this section, I propose an alternative approach using
a detector response model that treats all objects in the scene as completely opaque to gamma

83



rays emitted by the source:

docc
i (r, I) =

I∆ti · εint
i ·

Ai

‖r−ri‖22
· exp

(
−Σair · ‖r− ri‖2

)
ri visible from r

0 otherwise .
(6.7)

Equation (6.7) uses exponential attenuation in air to compute the response of detectors with
line-of-sight to the proposed source location, while detectors that are obscured are assumed to
record no counts from the source. A ray tracing algorithm similar to that in Section 3.3 is used
to determine the thickness of attenuator interposed between ri and r, with a detector being
considered visible when this thickness is less than a chosen threshold. In the results that follow,
this threshold is chosen as 1m to allow for detectors that are only lightly obscured to still be
considered as visible.

The model in Eq. (6.7) has the advantage that it only requires an estimate for the total
cross section of air, which is relatively easy in comparison to estimating the cross section of
arbitrary objects in the scene. The primary drawback is that this model will obviously not be
able to locate sources situated inside of any buildings or objects in the scene as all detectors will
have zero response, regardless of the source location. However, we will see that this model still
produces good localization for relatively uncluttered scenes where the source is placed outside.

For the purposes of discussion, I will refer to the model in Eq. (6.7) as the occlusion or
occluded model, while the original uncollided flux model from Section 3.3 will be referred
to as the attenuation model. Figures 6.10 to 6.17 compare the results using the occlusion
model to the attenuation model for a simplified geometry using 6 detectors, with detector and
measurement parameters similar to those in the synthetic studies in Section 4.1. Cases using
the attenuation model assume cross sections are known exactly for the sake of comparison, with
the cross sections of the objects in the scene chosen to be typical of concrete buildings. Note
also that the scene geometry is static, however the positions of the source and detectors vary
slightly between cases in order to achieve differing degrees of obscuration.

Figures 6.10 and 6.11 show the posteriors resulting from an arrangement where 4 detectors
have line-of-sight to the true source location. The posterior generated using the attenuation
model is very similar to that which results when using occlusion model. In this case, the occlusion
model and attenuation model both predict similar count rates for the detectors which can see
the source, and the source lies within the area enclosed by these detectors, and so they produce
similar results. Figures 6.12 to 6.13 and Figs. 6.14 to 6.15 show more extreme cases, with only
2 and 1 detector(s) having line-of-sight, respectively. In these cases the difference between the
occlusion model and the attenuation model is more pronounced, though the occlusion model is
still able to provide some localization of the source, identifying that it is located between the two
western buildings. Perhaps most interesting of all is the case shown in Figs. 6.16 to 6.17, where
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no detectors are able to see the source directly. Despite this, the posterior using the occlusion
model is still able to provide some degree of localization, again constraining the source location
to the western area of the domain. In this pathological case, the occlusion model is still able to
exclude certain areas of the domain strictly on the basis of visibility.
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(a) Full Scene. (b) Zoom.

Figure 6.10: Occluded model, 4 detectors with line-of-sight to the source.

(a) Full Scene. (b) Zoom.

Figure 6.11: Attenuating model, 4 detectors with line-of-sight to the source.
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(a) Full Scene. (b) Zoom.

Figure 6.12: Occluded model, 2 detectors with line-of-sight to the source.

(a) Full Scene. (b) Zoom.

Figure 6.13: Attenuating model, 2 detectors with line-of-sight to the source.
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(a) Full Scene. (b) Zoom.

Figure 6.14: Occluded model, 1 detector with line-of-sight to the source.

(a) Full Scene. (b) Zoom.

Figure 6.15: Attenuating model, 1 detector with line-of-sight to the source.
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(a) Full Scene. (b) Zoom.

Figure 6.16: Occluded model, no detectors with line-of-sight to the source.

(a) Full Scene. (b) Zoom.

Figure 6.17: Attenuating model, no detectors with line-of-sight to the source.
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Chapter 7

Conclusions

In this dissertation, I have described a new method for localizing an unknown source of radiation
in a heterogeneous environment. I have provided a detailed description of the proposed method-
ology, which was implemented into a reusable tool for performing source localization. I used this
tool to test the limits of the algorithm in several different simulated scenarios, with the results
being used to design an experimental test in the field. These measurements were carried out in
cooperation with Oak Ridge National Laboratory in May of 2017, and they demonstrated that
the algorithm was capable of localizing a 37mCi source in a scene with composition and scale
comparable to a typical city block using real measurements.

The initial work of this research emphasized demonstrating the viability of the method and
exploration of its characteristics and limitations. This was performed primarily using synthetic
measurements generated using a geometry constructed based on real a city block. These syn-
thetic measurements were generated using the same statistical model for the detector response
that was used to model them in the localization algorithm and hence did not include the sort
of deviations one would expect in the field; nevertheless the results proved sufficient for demon-
strating the basic viability of the algorithm. Analysis was also performed using measurements
generated using MCNP (and so, with some of the expected features of real-world measure-
ments), which implied that these un-modeled phenomena would have a minor impact on the
results of the localization.

Results from the initial experiments were used to plan an experiment, which was performed
in cooperation with Oak Ridge National Laboratory at the site of the former Experimental Gas-
Cooled Reactor. A 37mCi source was placed at two locations in the scene and measured by a set
of six mobile detectors, resulting in two independent datasets that were used to test the efficacy
of the algorithm. Subsequent analysis suggested that an extension to the detector model was
required in order to account for the changes in geometric efficiency due to detector orientation,
and after implementing this correction the algorithm was able to localize the source to within
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∼2m for both cases using a 30min count time. Analysis also suggested that shorter count times
could be used, with count times in excess of 450 s producing little change in the posterior density.

Discussion of the results of the experiments in the field led to several further points of
investigation. Firstly, it was discovered that during the second set of measurements interference
by vehicles moving through the scene caused unaccounted-for variations in the detector count
rates. These variations were shown to have little effect on the localization, however as part of
this investigation a method was developed to automatically detect and classify various types
of anomaly. Second, studies were performed to examine the accuracy and precision of the
localization versus the activity of the source relative to background. These studies suggest that
the algorithm performs well for signal-to-noise ratio values down to ∼ 0.5. Finally, the last case
examined the use of a detector model which only modeled the occlusion of sources by objects
in the scene, treating any such objects as fully opaque. This model has the advantage of not
requiring estimates of the cross section of interposed objects and, despite some limitations, it
was shown that it is still able to achieve useful localization of the source.

7.1 Summary of Major Results

The focus of this research is on the formulation a Bayesian approach for the localization of a
source of gamma radiation in a heterogeneous urban environment. The major results of this
research are:

• Formulated a method for source localization based on Bayesian parameter estimation via
Markov-chain Monte Carlo sampling.

• Implemented a general framework for predicting the response of a network of detectors
in a heterogeneous geometry by ray-tracing.

• Extended the Metropolis sampler to propagate fixed parameter uncertainties in the ma-
terial cross sections onto the posterior density for the source location.

• Demonstrated the localization algorithm in two test problems with synthetic measurement
data and measurement data simulated using MCNP.

• Performed a study on the error introduced by uncertainty in the building cross sections
using synthetic measurement data, with results indicating that the uncertainty in the
predicted source location remains reasonable even with highly uncertain cross section
data.

• Designed and performed an experiment to test the localization algorithm in the field using
a Cs-137 source.
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• Implemented the effect of physical orientation of the detectors into the model for the
detector counts. Results using this model show a significant improvement in localization
accuracy.

• Analyzed the effect of count rate anomalies in some of the experimental measurements.

• Implemented a technique to automatically detect and classify count rate anomalies.

• Evaluated the effect of source activity on the accuracy and precision of localization as a
function of signal-to-noise ratio.

• Implemented a further simplified detector model that treats objects as fully opaque and
demonstrated that this model is still capable of localizing a source in some situations.
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