
ABSTRACT

MARTIN, ELIJAH HENRY. Electric Field Measurements of the Capacitively Coupled Magnetized
RF Sheath Utilizing Passive Optical Emission Spectroscopy. (Under the direction of Steven Shannon.)

A major challenge facing magnetic confinement fusion is the implementation of reliable plasma

heating systems. Ion cyclotron resonance heating (ICRH) is a key technique utilized to achieve

the ion temperatures necessary for desirable fusion reaction rates. ICRH systems are designed to

couple energy into the core plasma ions through a resonant interaction with an electromagnetic

wave in the radio frequency range. The interaction of the wave with the scrape off layer plasma

establishes an electric field which terminates directly on the plasma facing surfaces and is referred

to as the near-field. In order to bridge the gap between the theoretical and actual performance of

ICRF antennas, experimental measurement of this electric field is highly desired. However, due to

the large amount of power launched by ICRF antennas only non-local measurements have thus

far been obtained. The research presented in this dissertation is centered on the development of

a non-perturbative diagnostic to locally measure the near-field with high spatial and temporal

resolution.

The main objective of the research presented in this dissertation is to develop and validate a

spectroscopic diagnostic capable of measuring local time periodic electric fields. The development

phase of the diagnostic consisted of atomic physics formulation and was carried out in two steps. The

first involved the calculation of the electronic structure of the one and two-electron atom utilizing

the hydrogenic wave function. The second involved the calculation of the spectral line profile

based on the electric dipole connection operator. The validate phase of the diagnostic consisted of

implementation of the atomic physics to measure the electric field topology associated with the

capacitively coupled magnetized RF sheath using passive OES. The experimental measurements

are then compared to a simple one-dimensional analytical model providing the validation of the

developed atomic physics.
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CHAPTER

1

INTRODUCTION

Fossil fuels are the primary source of energy for current society. In 2012 approximately 18 TW

of power was consumed by the world population, of which 15.5 TW was the result of fossil fuel

combustion [8, 64]. While the remaining recoverable reserves are a matter of debate it is clear that

supply will be unable to meet the demands for the entirety of the 21st century. Thus it is imperative

to explore long term sources of energy that can fulfill the global requirements. Given the current

technology nuclear fission and fusion are the only candidates that meet the criteria. However without

a change in the direction of the current nuclear fission program to include breeding and reprocessing

the supply of fissile material will eventually be exhausted. The most attractive possibility for long

term energy stability is the nuclear fusion of light nuclei. This is due to the fact that the fuel is

essentially inexhaustible and has a large energy density. Nuclear fusion has the additionally benefit

of having non-radioactive waste products. There are various schemes which nuclear fusion can

be realized such as magnetic, inertial, and electrostatic confinement to give a few examples. The

international community has deemed magnetic confinement, specifically the tokamak, as the most

widely acceptable path to foreseeable near term nuclear fusion by the commitment to ITER [4]. As

such this dissertations primary purpose is to aid the advancement of magnetic confinement fusion.

Magnetic confinement fusion faces many challenges such as control of transport, instabilities,

and plasma-wall interactions. This dissertation is focused on addressing plasma-wall interactions,

specifically those driven by ion cyclotron resonance heating (ICRH). Typically an electric field

is the driving mechanism for plasma-wall interactions. In the case of ICRH systems the electric
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field near the plasma facing components is responsible and is known as the so called near-field.

In order to understand this interaction, experimental measurement of the near-field is highly

desired. However, due to the enormous amount of power propagating through this region non-

perturbative diagnostics must be utilized and are non-trivial. The work conducted and presented in

this dissertation is centered on the development of a non-perturbative diagnostic based on passive

optical emission spectroscopy (OES). The diagnostic is capable of determining local time periodic

electric fields from a fit to the time averaged spectral line profile of select hydrogenic or helium-like

electronic transitions. In order validate and thus have confidence in the spectroscopic diagnostic

an experiment was designed and conducted in which the electric field of the capacitively coupled

magnetized radio frequency (RF) sheath was determined. This particular RF sheath was selected

because the electric field dynamic and topology is similar to that of the near-field of ion cyclotron

resonant frequency (ICRF) antenna. In summary the primary objective of this dissertation is the

development and validation of a diagnostic which can be utilized to aid the design of ICRH systems

such that the required and optimal performance can be realized.

This dissertation is organized as follows: Chapter 1 provides an introduction to the dissertation.

A description of ICRH in the thermonuclear reactor and the associated performance limiting factors

is discussed. To mitigate the parasitic effects of the near-field a non-perturbative spectroscopic

diagnostic was developed and validated; a brief discussion is provided. Chapter 2, introduces the

capacitively coupled magnetized RF sheath and discusses its relevance to the near-field of ICRF

antenna. Additionally a simple analytical model is presented to compare with the experimentally

determined electric field measurements. In Chapter 3, the spectroscopic technique and the asso-

ciated atomic physics constituting the theoretical framework of the diagnostic is formulated and

developed. The specific electronic transitions utilized in the implementation of the diagnostic to

measure the capacitively coupled magnetized RF sheath electric field is presented. In Chapter 4,

the experimental apparatus, DStarVE, utilized to generate the capacitively coupled magnetized RF

sheath is discussed. In addition the supporting non-spectroscopic diagnostics used to determine

the DStraVE plasma parameters are formulated and presented. In Chapter 5, the characterization

of the investigated DStarVE discharges and the systematic spectroscopic analysis of the time aver-

aged line profiles are presented. The spectral analysis results in the time dependent electric field

topology of the capacitively coupled magnetized RF sheath and is utilized to validate the diagnostic.

In Chapter 6, the capacitively coupled magnetized RF sheath electric field topology and radiator

distribution function associated with the investigated DStarVE discharges is presented. These pa-

rameters were determined by fitting the time averaged spectral line profile. In Chapter 7, the passive

spectroscopic technique and corresponding results obtained through its validation utilizing the

capacitively coupled magnetized RF sheath is summarized. The capability of the theoretical spectral

line profile modeling is explored and the implementation of an active spectroscopic technique for

measurement of the ICRF antenna near-field is discussed.
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This chapter provides an introduction to the primary objective of the work conducted and

presented in this dissertation. The approach taken to achieve the desired objective, through de-

velopment and validation of a non-perturbative spectroscopic diagnostic, will be discussed. The

chapter is structured as follows: Section 1.1 introduces the concept of ICRH in magnetically confined

thermonuclear plasmas and the associated performance limiting factors. Section 1.2 introduces the

spectroscopic technique and the atomic physics formulating the basis of the diagnostic. Section 1.3

introduces the experiment and methodology utilized to validate the spectroscopic diagnostic.

1.1 ICRH in Magnetically Confined Thermonuclear Plasma

In this section an overview of ICRH in magnetically confined thermonuclear plasma associated

with the tokamak will be discussed. Comprehension of ICRH physics begins with a brief overview of

the magnetically confined thermonuclear reactor. The tokamak geometry will be considered here.

The tokamak is a device in which a plasma is confined in the shape of a torus by a magnetic field

and heated to thermonuclear conditions. For the plasma equilibrium to be stable the magnetic field

must be helical. This is achieved by the superposition of poloidal and toroidal magnetic field, Bp

and Bt respectively. To generate the poloidal magnetic field a plasma current Ip is driven utilizing

both inductive and non-inductive methods. The toroidal magnetic field is generated by external

coils placed symmetrically around the torus. Figure 1.1 gives a diagram of the confined plasma of a

tokamak indicating the poloidal and toroidal directions. Figure 1.1 is taken from [3].

Figure 1.1: Confined plasma of a tokamak indicating the poloidal and toroidal directions.
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In addition to confinement the plasma must be heated to thermonuclear conditions such that the

cross section for fusion is favorable, 10 to 20 keV. This is achieved by various methods such as Ohmic

heating, neutral-beam injection, and electromagnetic wave absorption [149]. In this dissertation

the later will be considered in the form of ICRH. A major challenge facing magnetic confinement

fusion and the success of ITER is the implementation of reliable plasma heating systems. ICRH

systems are designed to couple energy into the core plasma ions through a resonant interaction

with electromagnetic radiation in the RF range, 10 to 100 MHz for reactor-like plasma parameters

[140, 149]. The RF electromagnetic radiation is launched from ICRF antennas which are properly

shielded with a Faraday screen. Figure 1.2 gives an in-vessel view of the Alcator C-Mod ICRH system

showing the current strap, Faraday screen, and antenna box. Figure 1.2 is derived from [2, 108].

Antenna Box

Current Strap

Faraday Screen

Figure 1.2: Alcator C-Mod ICRH system indicating the various plasma facing components.

The current strap is powered by an RF generator and thus radiates the electromagnetic wave.

The Faraday screen is designed to eliminate electrostatic or capacitively coupling between the

current strap and the plasma. The antenna box is designed to limit plasma from entering the region

between the current strap and Faraday screen. The plasma facing material armoring the antenna

box is in direct contact with the scrape off layer (SOL) plasma. Therefore the material must be able

to withstand high a heat load and particle flux to prevent melting and erosion respectively. High-Z

refractory metals such as molybdenum and tungsten are typically used because they have high

melting temperatures and low physical sputtering yields. However, low-Z carbon based materials

have been traditionally used to maintain a low Z effective in the core plasma.

ICRH is seen to be a key technique in which the required ion temperatures for favorable fusion
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reactions can be reached. The ITER experiment [4]has been deemed by the international community

to be the next step towards an economically viable power producing thermonuclear reactor. ITER

utilizes a magnetic confinement technique, the tokamak, and will require 20 MW of ICRH power to

achieve is scientific mission [1]. Therefore a detail understanding of the performance limiting factors

and how to provide mitigation is crucial. Previous operation of ICRH systems at major installations

around the world such as the National Spherical Torus Experiment (NSTX) [154], the Joint European

Experiment (JET) [79], and Tore Supra [40] have shown that a universal and consistent performance

limiting factor is the so called near-field associated with ICRF antenna. The near-field refers to the

electric field in the vicinity of the ICRH system hardware facing the plasma. The interaction of the

near-field with a material surface manifests as an RF sheath having an electric field that terminates

directly on the Faraday screen and antenna box structures. When the RF sheath electric field has a

direction parallel to the normal of the material surface a large heat and particle flux is driven, thus

resulting in local power deposition in the SOL plasma and the interacting material surface. This

has been shown to cause melting, sputtering, and arcing and severely limits the performance of the

ICRH system [37, 53]. Figure 1.3 gives a cross section of a confined tokamak plasma indicating the

magnetic surfaces and ICRF antenna location.

Figure 1.3: Cross section of confined tokamak plasma indicating magnetic surfaces and ICRF
antenna location.

It is necessary that the ICRF antenna launch tens of megawatts of power across the SOL plasma

into the core for reactor-like scenarios. Once the electromagnetic radiation is past the SOL the physics

associated with the dissipation of the wave energy is fairly well understood [140, 40]. A simulation of
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the ICRF wave propagating and absorbing in the core of an ITER plasma and is shown in Figure 1.4

[82]. The simulation was conducted with the state of the art AORSA globalwave solver [81, 80].

However, in the SOL coupling of wave energy into the near-field is not well understood. Therefore

to continuously launch the required megawatts of power across the SOL, mitigation of the ICRF

antenna near-field must be achieved and thus requires an understanding of the underlying physics.

The diagnostic developed here will be capable, for the first time, of experimentally determining the

needed data for our theoretical understanding of near-field physics.
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Vessel
Wall Antenna
Vessel
Wall Antenna

Figure 1.4: Visualization of 3D ICRF wave fields in the equatorial plane of ITER showing the vacuum
vessel and ICRF antenna structures, taken from [82].

The physics associated with ICRF wave propagation, absorption, and mode conversion is quite

complicated and is covered in detail elsewhere [140, 25, 58], a basic overview is provided here. ICRF

antenna are capable of exciting both the fast and slow wave, where the nomenclature fast/slow

references the behavior of the wave normal surface [140]. The antenna is ideally designed to launch

only the fast wave. The slow wave is excited if the antenna’s current strap is not aligned such that the

wave electric field is perpendicular to the magnetic field. This misalignment induces an electric field

in the parallel direction which excites the slow wave. In addition the fast wave can mode convert

into the slow wave upon interaction with a material surface [104]. Chapter 2 will discuss the near

field of ICRF antenna and the applicability of modeling using the capacitively coupled magnetized

RF sheath.

6



1.2 Atomic Spectroscopy

To mitigate the parasitic effects of the ICRF antenna near-field the fundamental physics governing

its behavior must be understood. To bridge the gap between the theoretical and actual performance

of reactor-like ICRF antenna, experimental measurements of the near-field are desired. Due to the

large energy flux in front of the antenna, local measurements with physical probes are not possible.

Therefore this research is centered on the development of a non-perturbative diagnostic based

on OES to locally measure the near-field. In this section, the atomic physics associated with this

diagnostic is presented.

Optical measurement of electric field properties is based on quantifying the transition frequency

of the photon emitted during de-excitation of an electron. The foundation of this diagnostic is

the calculation of the theoretical spectral line profile. This requires a mathematical description of

the electronic structure of the atom. In this dissertation the influence of arbitrary static magnetic

and time periodic electric field vectors with be considered. To simplify the problem the magnetic

field vector is defined to lie along the z -axis. Due to its static nature, the coordinate system can be

rotated to achieve the definition and results in no loss of generality. The electric fields of interest,

namely those of the capacitively coupled RF sheath and the near-field of ICRF antenna, are typically

non-monochromatic [125, 95, 103]. Therefore the electric field vector is represented as a Fourier

cosine series with NH components. In this dissertation, the one and two-electron atom will be

considered, however the wave functions of the two-electron atom are approximated as those of

the one-electron atom. For the purposes considered here this is a good approximation and will

discussed further in Section 3.3.

The calculation of the theoretical spectral line profile can be carried out in a three step process.

First the solution to the appropriate Schrödinger equation is found. This results in a set of ener-

gies and wave functions associated with the perturbed quantum states of the atom. Second a new

Schrödinger equation is formulated from the original by the addition of a connection operator. Uti-

lizing the set of perturbed wave functions as the new basis the transition probabilities are calculated.

Third the continuous theoretical spectral line profile is calculated from the energies and transition

probabilities given the instrument and radiator distribution functions.

Due to the time periodic nature of the Schrödinger equation Floquet’s theorem [18] is imple-

mented and an eigenvalue/eigenvector problem is formulated. The eigenvalue and eigenvector

pairs represent the energies and wave functions of the perturbed quantum states of the atom. For

the electron in the upper level to decay to the lower level and emit a photon the atom must be

perturbed electromagnetically. In this research spontaneous emission is the dominate de-excitation

mechanism and therefore the electric dipole connection operator is utilized. The transition proba-

bilities are calculated by solving a new Schrödinger equation given by the old with the addition of

the connection operator. The solution is found by a expansion in the perturbed wave functions. The
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discrete theoretical spectrum consists of a series of delta functions with an intensity given by the

transition probability. The continuous theoretical spectrum is calculated by convolving the discrete

spectrum with the instrument and radiator distribution functions.

To solve the Schrödinger equation a basis must be chosen to work within. A logical choice is the

coupled basis due to the fact they are eigenfunctions of the unperturbed Hamiltonian. In choosing

the coupled basis, the assumption is made that the L-S coupling scheme is appropriate, which is a

good assumption for low Z atoms [76].

To extract the electric field from the measured spectral line profile a fit must be performed

utilizing the theoretical calculations. The fitting algorithm implements a brute force method in

which the entire space associated with the fit variables is discretized evenly within each dimension.

The algorithm methodology is as follows: the χ associated with each point in the discretized space

is calculated, the point in which the minima occurs is selected. The boundaries associated with

the space are then reduced to those points adjacent to the selected point. The new space is then

discretized and the χ at each point is calculated in which the minimum value is again taken. This

process is iterated until the desired precision in the fit variables is achieved.

1.3 Diagnostic Implementation and Validation

The development of a diagnostic on a tokamak is highly undesirable due to the large operational

costs and limited availability of run time. Therefore a small scale laboratory experiment was designed

to serve as a test stand in which the edge environment of the tokamak could be simulated. In this

section the OES technique and experimental apparatus, presented in detail in Chapters 3 and 4

respectively, are described.

The primary focus of implementing this diagnostic is to validate the atomic physics associated

with the theoretical modeling of the spectral line profile and to demonstrate proof of principal

on a simple ’bench top’ experiment. Passive time averaged OES was selected for implementation

because the experimental setup is simplistic and the equipment was available. The technique is

passive in the sense that the observed emission arises from natural processes occurring within the

plasma, namely collisional excitation and spontaneous decay [59]. The spectral resolution of passive

techniques is low but is acceptable when considering the purpose of the work and the expected

electric field intensities, 1 to 10 kV/cm. Successful implementation will intrinsically lead way into

more elaborate active laser based techniques having superior spatial and spectral resolution [10, 16].

The spectral line profile is measured by observing the grating diffracted emission with a spec-

troscopic camera. As described in Section 3.5 the Hβ (n = 4→ 2) transition of hydrogen and the

53D → 23P transition of neutral helium were selected for study by optimizing the electric field

sensitivity and emission intensity. Additionally the π andσ polarized components were measured

independently. As discussed in Section 5.4 when both polarizations are fit together as an object the
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accuracy of the extracted electric field parameters is increased.

The diagnostic was implemented to measure the electric field topology of the capacitively

coupled magnetized RF sheath for two reasons. The first is due to the fact that the RF sheath has

been well studied both experimentally and theoretically and second, upon interaction with a material

surface the ICRF antenna near-field manifests as an RF sheath. The experimental apparatus was

given the name DStarVE, an acronym standing for Dynamic Stark Verification Experiment. The basis

of DStarVE consists of an electrode biased at 13.56 MHz immersed in a magnetized plasma generated

by excitation of an electron cyclotron wave (ECW) at 2.45 GHz. Capacitively coupled plasma sources

typically operate in low density regimes due to power going into electron and ion heating rather

then ionization [97, 62, 110]. Thus to simulate the edge environment of the tokamak where the

plasma density is on the order of 1018 m−3 [153, 93] an additional plasma source is necessary. To

access this density regime an electron cyclotron resonance (ECR) based source is utilized. Typically

the ordinary circular polarized wave is excited, which cannot propagate above the cutoff density,

nc = 7.2 · 1016 m−3 at 2.45 GHz. The whistler wave does not experience a cutoff and therefore is

excited to achieve the desired density.

Two experimental configurations are investigated: electric and magnetic field vectors parallel and

perpendicular. The study of these two field configurations is of particular importance. The parallel

field configuration has been well studied both experimentally [17] and theoretically [95, 125, 103, 146]

and thus will be the focus for diagnostic validation. The perpendicular field configuration is desired

due to the fact that it is representative of that associated with the ICRF antenna near-field.

A total of 28 discharges, with varying experimental conditions, were investigate and characterized

in terms of electrical parameters, plasma parameters, and RF sheath electric field. The electrical

parameters were measured by use of the DC and I-V probes as described in Section 4.1. The plasma

parameters were measured by the use of the capacitive and RF compensated Langmuir probes as

described in Section 4.3. The RF sheath electric field was determined through a fit to time averaged

π andσ spectral line profiles obtained by the spectroscopic system described in Section 4.2.
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CHAPTER

2

THE CAPACITIVELY COUPLED

MAGNETIZED RF SHEATH

In Chapter 1 the scope of this dissertation was outlined. The basic operation of ICRF antenna in the

tokamak was introduced and the underlying problem of the near-field was addressed. Chapter 1

concluded that experimental measurements of the near-field are necessary for progressive of ICRH

operations. The non-perturbative passive OES diagnostics which will be utilized for these measure-

ments was outlined. An experiment was presented which will serve to validated the diagnostic by

measurement of the capacitively coupled magnetized RF sheath electric field topology.

In this chapter the capacitively coupled magnetized RF sheath is introduced. The selection of the

RF sheath for validation and implementation of the spectroscopic diagnostic and its relevance to the

thermonuclear reactor is discussed. A simple analytical model of the RF sheath is presented which

will be utilized to validate the experimental spectroscopic measurements. The chapter is structured

as follows: Section 2.1 introduces the capacitively coupled magnetized RF sheath and provides

a discussion on why it is of interest. Section 2.2 presents an analytical model of the capacitively

coupled magnetized RF sheath in the parallel field configuration. Section 2.3 provides a discussion

on the relevance of the RF sheath to ion cyclotron resonance heating.

The capacitively coupled magnetized RF sheath is studied having two experimental config-

urations: electric and magnetic field vectors parallel and perpendicular. The governing physics

associated with the parallel field configuration is equivalent to the unmagnetized case and has been
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well studied both experimentally [17, 43, 57] and theoretically [95, 125, 103, 146]. Due to the fact

theoretical models of the electric field topology exist in this configuration the diagnostic can be

validated. The perpendicular field configuration is of interest due to the fact that it is representative

of that associated with the ICRF antenna near-field.

2.1 Introduction

In this section an introduction to the RF sheath will be given. To most easily comprehend RF sheath

physics it is appropriate to begin with the static case, the direct current (DC) sheath. The DC sheath

is intrinsically generated by a plasma due to its interaction with a material surface and is referred

to as a thermal sheath if the material surface is unbiased. In most plasmas the mobility of the

charged species is vastly different. In this dissertation we will consider the electropositive plasma

in which the ionic species are positive and have mobilities two to three orders of magnitude lower

then the electrons. The difference in mobility is driven by two factors: mass and thermal velocity of

the species. Compared to the electron the ionic species is more massive by at least three orders of

magnitude and therefore experiences a higher impedance to motion by its inertia. Additionally, the

ionic species typically has a temperature two orders of magnitude lower the that of the electrons.

The mass and energetics of these species leads to large differences in the thermal velocity which

can be correlated to the mobility. The thermal sheath is therefore established to retard or confine

the more mobile species, the electrons.

Considering the case where the electron mobility is dominate, a potential is established in the

plasma on the order of a few k Te to confine the electrons and is refereed to as the plasma potential

φp . In the bulk of the plasma quasi-neutrality, ne ≈ ni , must be maintained due to the inability

of the charged species to sustain charge separation. Therefore the plasma potential is dropped in

the thermal sheath over a few Debye lengths λD , the characteristic scale length in which charge is

shielded. The resulting electric field has an intensity on the order of k Te /λD and points toward the

material surface. A basic diagram of a thermal sheath generated from the interface of a plasma with

a grounded material surface is given in Figure 2.1. There are two distinct regions in a thermal sheath:

the presheath and sheath. The presheath is a nearly quasi-neutral region defined by a weak electric

field directed towards the sheath. In the presheath the ions are accelerated to the Bohm velocity

ub =
�

k Te

mi

�1/2

, (2.1)

which is required to maintain conservation of flux in the sheath and is known as the Bohm criterion

[98]. However, self consistent kinetic descriptions of the presheath indicate that this criterion is over

simplified [12]. Once the Bohm velocity is reached, substantial charge separation occurs and the

division between the presheath and sheath is defined. The presheath can extend 100’s of Debye
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lengths. The sheath is a region of positive charge density, ni � ne , and provides the majority of the

electric field required to retard the electrons. The presheath is a fundamental component to all

sheaths but is neglected here because the corresponding electric field is weak and is not measurable

with passive OES. The presheath will only be considered in the fact that it decreases the plasma

density at the presheath/sheath interface when compared with the bulk plasma. The density at the

presheath/sheath interface can be estimated for a collisionless plasma as

ns = nb e −
eφp
k Te (2.2)

from the Boltzmann relation.

Bulk Plasma Presheath Sheath nBulk Plasma Presheath Sheath n
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n ni Surfacen ≈nin =ni ne ni Surfacene nine ni

zzz zozb

EE

E≈0E=0 E>0 GroundedE≈0E=0 E>0 Grounded
C d tiConductingg

SurfaceSurface

zzo
zzb

Figure 2.1: Thermal sheath generated at the interface with a grounded surface.

Biasing the surface at low voltages, <100 V, below the plasma potential leads to an extension

of the scale length of the sheath. In this case there is essentially no alteration of the fundamental

physics because power absorption in the sheath is negligible. However biasing beyond this range

can lead to significant alterations due to power absorption and secondary electron production. This
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results in similar sheath characteristics to that associated with the DC discharge [98].

The RF sheath is generated by biasing the material surface, the electrode, with a potential whose

magnitude varies periodically. In this dissertation only sinusoidal potentials in the RF range of

frequencies will be considered. In the 10’s of MHz range and below both the electrons and ions

can respond to the RF sheath electric field. However the ions response is more limited due to its

inertia. The RF sheath can be generated by either electromagnetic or electrostatic coupling to the

electrode. Electromagnetic coupling is inductive and results in an electric field having a direction

perpendicular to the normal of the electrode surface. In this scenario the RF sheath can operate

in a regime that is nearly detached from the electrode surface. This is because the corresponding

electric field drives particle motion perpendicular to the normal of electrode surface resulting in

minimal power deposition at the electrode surface. For this reason the electromagnetic RF sheath is

the desired mechanism in which power is coupled into the bulk plasma and its existence on ICRF

antenna plasma facing surfaces is not a significant concern.

Electrostatic coupling is capacitive and therefore results in a sheath electric field having a

direction parallel to the normal of the electrode surface. The electrostatic RF sheath resembles a

capacitor in the sense that a large fraction of power is transmitted through a displacement current.

Therefore this type of RF sheath is referred to as being capacitively coupled and will be the focus

in this dissertation. The direction of the RF sheath electric field vector is such that the coupled

material surface experiences a substantially increased heat and particle flux. These parasitic effects

can severely restrict operational limits as will be discussed in Section 2.2. Thus the capacitively

coupled RF sheath is not desired on the ICRF antenna plasma facing surface.

Most RF discharges are asymmetric in the sense that more electrode surface area is grounded

then powered. Additionally, the power delivery system is typically capacitively coupled to the elec-

trode. In this situation conservation of current is maintained by the natural development of a

negative DC bias voltage on the powered electrode. For the extreme asymmetric discharge the DC

bias voltage is approximately equivalent to the magnitude of the applied RF voltage. This is the

case of the experiment presented in Chapter 4. A typical voltage waveform for a largely asymmetric

discharge over one RF period is given by Figure 2.2. Additionally, the corresponding width of the

RF sheath zo as a function of phase is presented. The voltage waveform at the RF electrode is such

that the electric field in the sheath is essentially always directed towards the wall. As was found for

the thermal sheath this is established to retain the more mobile electrons. The unipolar RF sheath

electric field continuously accelerates the ions towards the electrode surface. Therefore because the

RF sheath electric field is time dependent the ion and electron density is as well.

Figure 2.3 presents the RF sheath associated with three points in the phase: t1, t2, and t3 of the

RF voltage waveform given by Figure 2.2. At the first point in phase t1 the applied RF voltage at the

electrode is zero. The RF sheath at this instance has a minimum in its width zo and is approximated

as a thermal sheath. As the voltage is increased on the electrode surface the RF sheath expands. At
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the phase associated with t3 the sheath has reached its maximum width. During this first half of

the waveform t1 ≤ t ≤ t3 the RF sheath is in an expansion phase. Consequently an electron beam

is directed towards the bulk plasma due to electrons reflecting in the strong potential of the RF

sheath. This is easily realized by the fact that e |VR F | quickly increases well beyond k Te by orders of

magnitude. The energetic gain acquired is referred to as collisionless heating [97]. Through kinetic

simulations it was found that the beam-like formation of electrons causes intense ionization [146].

zot1 t2
t

t3 t4 t5

t1 t2 tt3 t4 t5
VRF t1 t2 t3 t4 t5

(a)

zot1 t2
t

t3 t4 t5

t1 t2 tt3 t4 t5
VRF t1 t2 t3 t4 t5

(b)

Figure 2.2: (a) Voltage waveform at RF biased electrode for asymmetric discharge and (b) corre-
sponding width of the RF sheath zo as a function of phase.

During the second half of the waveform t3 ≤ t ≤ t5 the RF sheath is contracting and the electrons

experience a cooling effect because of similar interactions as those described above. Both the heating

and cooling effects experienced by the electrons during an RF waveform are due to the exponentially

decaying density in the RF sheath. The electron energy distribution function in the sheath is non-

Maxwellian due to the electron interaction with the moving sheath boundary [155]. Although the

electron density decays exponentially once past the sheath boundary zo its time dependent nature

of the ensures optical emission in the entire sheath region. Typically intense emission is seen during

the expansion phase due to electron heating and can be highly time dependent depending on the

electronic transition [63].

In the tokamak a substantial magnetic field is always present to provide confinement of the

plasma. The RF sheath can be significantly altered depending on the magnetic field orientation with

respect to the electric field of the RF sheath. In this dissertation two magnetic field configurations

will be considered. The first is magnetic and electric field parallel and the second is magnetic and

electric field perpendicular. In the first case the magnetic field does not alter the RF sheath electric

field. This is due to the fact that the electric field accelerates the particles parallel to the magnetic
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field, Ē × B̄ = 0. The particles only orbit the magnetic field based on their velocity distribution

function perpendicular to the magnetic field. The RF sheath in the parallel field configuration has

been well studied experimentally [17, 43, 100, 57] and theoretically [95, 124, 125, 65].

nn
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Figure 2.3: RF sheath corresponding to the points in phase t1, t2, and t3 of the RF voltage waveform
given by Figure 2.2a.

In the perpendicular field configuration the particles experience the full Ē × B̄ force, resulting

in a significantly altered RF sheath [32, 123, 15]. The ion dynamics play a much more essential role

then in the parallel field configuration because the electron mobility is substantially decreased by

the magnetic field. In this configuration the sheath width is dominated by the Larmor radius of the
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ions [32, 31, 138]. Additionally it was found that the electron density decreases more rapidly moving

towards the bulk plasma [137]. This is due to the fact the Larmor radius of the electrons is much

smaller then the sheath width and thus acts to restrict their motion. The thermal sheath width has

been shown to increase as a function of magnetic field strength [9]. However, the behavior for an RF

sheath is uncertain but expected to depend on the magnetic field intensity.

2.2 ICRF Antenna Near-Field

In this section the interaction of the ICRF antenna near-field with a material surface and its relevance

to the capacitively coupled magnetized RF sheath is discussed. The ICRF antenna near-field is

generated by circulating RF currents on the Faraday screen/antenna box and excitation of the slow

wave. Circulating RF currents on the Faraday screen/antenna box capacitively couple to the SOL

plasma in a manner resembling that associated with the capacitively coupled discharge [33]. This

resulting in similar RF sheath characteristics. The interaction of the slow wave with a material

surface also leads to capacitive coupling and the formation of an RF sheath. However, the sheath

characteristics are expected to be somewhat altered due to the wave nature of the interaction. A

contour plot of the simulated electric field (kV/cm) at the Faraday screen of a typical two current

strap ICRF antenna is given in Figure 2.4 [36]. The magnitude and direction of the circulating RF

currents on the Faraday screen/antenna box are indicated by the size and direction, respectively, of

the arrows.

Figure 2.4: Simulated electric field (kV/cm) at the Faraday screen of a typical two current strap
ICRF antenna [36]. The circulating RF currents on the Faraday screen/antenna box are indicated by
the arrows.
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The ICRF antenna can launch two types of waves: the so called fast and slow wave. The fast

wave is the desired mode for power coupling. The slow wave is excited by either mode conversion

or misalignment of the antenna geometry with the magnetic field. The fast wave is used to heat the

core plasma ions and has an electric field perpendicular to the static magnetic field. However, upon

interaction with a material surface mode conversion can take place [104, 48, 47]. In the misalignment

case an electric field is induced in the parallel direction which excites the slow wave. The slow wave

can only propagate in the low density region of the plasma, below the density associated with the

lower hybrid resonance nLH . Above this density the slow wave is strongly evanescent. Additionally,

below the cut-off density given byωp e =ω the slow wave becomes evanescent. Therefore the slow

wave can only propagate in the following density regime

np e < ne < nLH . (2.3)

The slow wave propagates in the form of resonance cones [105] until a material surface is reached.

At which point the parallel electric field drives an RF sheath at the material surface. This interaction

is modeled as having a static DC potential proportional to the parallel electric field and the sheath

thickness estimated by the Child-Langmuir Law [106, 105, 89]. These models do not include the

time dependent properties of the RF sheath and therefore neglect an important part of the physics

governing the interaction. Other models have been developed to calculate and predict the near-field

sheath [50, 49, 51, 56, 36] but do not capture the RF sheath physics fully.

Due to the large energy flux radiated by the ICRF antenna measurement of the near-field cannot

be conducted locally by physical probes. However, non-local measurements of the plasma potential

can be made and correlated to the near-field. The correlation is valid if the magnetic field connects

the measurement point to the ICRF antenna near field. Many experiments have been conducted on

Alcator C-Mod that show an increased plasma potential of >100 V on magnetic field lines connected

to the ICRF antenna. This was found to be a factor of ten greater than ohomically heated discharges

[108]. Additionally, many other experiments have shown that an increased plasma potential is

measured when the ICRH operates and SOL plasma alteration [27, 109, 38]. An increased plasma

potential has been shown to lead to enhanced impurity production [157, 99, 83]. In Tore Supra hot

spots have been observed on the ICRF antenna which are attributed to the RF sheath and can lead

to limited operation [35, 53]. In JET magnetic connection of the ICRF antenna to the LH system has

shown to negatively impact current drive [87]. Simulations have shown that these parasitic effects of

the near-field will led to a parallel heat flux of approximately 16 MW/m2 for the ITER ICRF antenna

at full power, an unacceptably high value [39].
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2.3 Analytical Modeling

Analytic models that are available to calculated the electric properties associated with the RF sheath

in the parallel field configuration include: the Lieberman model [98, 95], the Metze, Ernie, and

Oskam (denoted MEO) model [96], and the Riley model [125]. The Lieberman model was developed

in the limit that the ions were completely inertial, that is they only respond to time averaged electric

field. The MEO model takes the opposite limit of Lieberman’s model and assumes the ions are

inertialess and thus respond instantaneously to the electric field. The Riley model was developed to

provide a bridge between these extreme limits. The Riley model assumes that the ions respond to a

dampened electric field and is considered a generalization of the MEO model. The Riley model will

be presented here because the inertial response of the ions is expected to be an important factor in

the sheath dynamics.

In this derivation the plasma is considered to be one-dimensional with time independent

bulk plasma quantities. The electrons are taken to be in a Boltzmann distribution and respond

instantaneously to the electric field. The ions are assumed to be cold and respond instantaneously

to a damped potential. The electric field E (z , t ) is determined from the negative gradient in the

potential V (z , t ) as given by

E (z , t ) =−
∂

∂ z
V (z , t ) . (2.4)

The electric field is defined by the differential form of Gauss’s law

∂

∂ z
E (z , t ) =

e

εo
[ni (z , t )−ne (z , t )] , (2.5)

where ni (z , t ) and ne (z , t ) represent the ion and electron density in the sheath. The Boltzmann

distribution of electrons at a temperature of k Te is given by

ne (z , t ) = ne (zo )e
e

k Te
(V (z ,t )−V (zo )) , (2.6)

where ne (zo ) is the time independent electron density at the boundary of the bulk plasma and the

sheath. The quantity zo is the spatial location at which this boundary occurs. All parameters are

time independent at zo and therefore the variable t is suppressed. The ions are assumed to respond

to a dampened potential Ṽ (z , t ) defined by

∂

∂ t
Ṽ (z , t ) =

V (z , t )− Ṽ (z , t )
τR

. (2.7)

The dampened potential is a relaxed form of the actual and is controlled by the time constant
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τR . An estimate of τR can be obtained by calculating the approximate time the ion requires to

transverse the RF sheath [125]. In this research τR is set to a fit parameter when the comparison to

the experimental data is made. The solution to Eq. 2.7 is found through integration and is given by

Ṽ (z , t ) = Ṽ (z , 0)e −
t
τR +

1

τR
e −

t
τR

∫ t

0

V (z , t ′)e
t ′
τR d t ′ . (2.8)

The solution to the dampened potential requires an initial condition and thus must be solved

iteratively. For the first iteration the initial condition Ṽ (z , 0) is set to zero, for successive iterations

Ṽ (z ,0) = Ṽ (z ,τ) is utilized because the waveform is periodic with a period τ. The ion density is

determined from the conservation of flux

ni (z , t )ui (z , t ) = ni (zo )ui (zo ) (2.9)

and energy

1

2
Mi u 2

i (z , t ) + e Ṽ (z , t ) =
1

2
mi u 2

i (zo ) + e Ṽ (zo ) , (2.10)

where mi and ui are the mass and velocity of the ion respectively. The potential at the interface

of the bulk plasma and the sheath is assumed to have a small time dependent component and is

neglected, therefore the damped potential is also time independent at zo . The unknown parameters

of equations Eq. 2.9 and Eq. 2.10 are ni (z , t ) and ui (z , t ), therefore they can be solved simultaneously

to yield an expression for ni (z , t )

ni (z , t ) = ni (zo )
�

1−
2e

M k Te

�

Ṽ (z , t )− Ṽ (zo , t )
�

�−1/2

, (2.11)

M =
ui (zo )

ub
.

Where M is the Mach number and ub is the Bohm velocity. The electron and ion density given by

Eq. 2.6 and Eq. 2.11 are substituted into Eq. 2.5 to yield

∂

∂ z
E (z , t ) =

e ne (zo )
εo

�

�

1−
2e

M 2k Te

�

Ṽ (z , t )− Ṽ (zo )
�

�−1/2

− e
e

k Te
(V (z ,t )−V (zo ))

�

. (2.12)

Eq. 2.4, Eq. 2.8, and Eq. 2.12 form a set of coupled partial differential equations to be solved for

the sheath potential V (z , t ), damped sheath potential Ṽ (z , t ), and sheath electric field E (z , t ). In

order to solve this system of equations the assumption is made that both V (z , t ) and Ṽ (x , t ) can be

separated in space and time. Utilizing this assumption the spatial dependence of these variables

is equivalent given the functional form of Ṽ (z , t ) expressed in Eq. 2.8. Thus the following can be
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written

Ṽ (z , t ) =R (t )V (z , t ) , (2.13)

R (t ) =
Ṽ (0, t )
V (0, t )

.

The potential at the RF electrode V (0, t ) is a boundary condition and is measured experimentally

thus Ṽ (0, t ) is known, as well as R (t ). Substituting Eq. 2.13 into Eq. 2.12 yields

∂

∂ z
E (z , t ) =

e ne (zo )
εo

�

�

1−
2e

M 2k Te

�

R (t )V (z , t )− Ṽ (zo )
�

�−1/2

− e
e

k Te
[V (z ,t )−V (zo )]

�

. (2.14)

Eq. 2.4 and Eq. 2.14 form a set of coupled partial differential equations to be solved for the sheath

potential and electric field V (z , t ) and E (z , t ) respectively. To solve this set the boundary condition

E (0, t )must be calculated. This is done by integrating Eq. 2.14 from z = zo to z = 0

E (0, t ) =

�

E (zo )
2+

ne (zo )k Te

εo

�

M 2

R (t )

�

�

1−
2e

M 2k Te

�

R (t )V (0, t )− Ṽ (zo )
�

�−1/2

−1

�

+ e
e

k Te
[V (0,t )−V (zo )]−1

��1/2

. (2.15)

The electric field at the interface of the bulk plasma and sheath E (z0, t ) is assumed to be negligible

and is thus set to zero. Given the nonzero boundary conditions E (0, t ), V (0, t ), and V (zo ) Eq. 2.4

and Eq. 2.14 are solved for the spatial and temporally dependent sheath potential and electric field

V (z , t ) and E (z , t ) respectively.

The effect of the ion dynamics in this model can be determined through the dampening time

constant τR . The simulation results for two cases will be presented: τR � τ and τR � τ, where τ

is the period of the voltage waveform of the electrode. The first case simulates ions that respond

instantaneously to the electric field. The second case simulates ions that only respond to the time

average of the electric field. At the bulk plasma and sheath interface the electron density was taken

as ne (zo ) = 1017 m−3 with an temperature of k Te = 4 eV. The voltage at this interface was taken

as V (zo ) = 20 V and has a negligible impact on the solution. The voltage waveform applied to the

electrode V (0, t ) is sinusodial with a DC component and is given by Figure 2.5. The frequency of the

voltage waveform was taken to be 13.56 MHz giving a period of τ= 73.7 ns. The simulated electric

field topology and dynamic for τR = 4 and 300 ns is given in Figure 2.6a and Figure 2.6b respectively.
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Figure 2.5: Voltage waveform at the electrode used for the RF sheath simulations.
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Figure 2.6: RF sheath electric field as a function of phase and space for (a)τR = 4 ns and (a)τR = 300
ns.

A comparison of Figure 2.6a with Figure 2.6b shows that the most significant effect of the ion

dynamics is to extend the sheath and consequently reduce the electric field magnitude. It was found

that the RF sheath was extended over 1 mm by completely removing the inertia of the ions such

that they would respond instantaneously to the electric field. Due to the fact the voltage waveform

applied to the electrode is equivalent for both cases, the extension of the RF sheath leads to an

decrease in the electric field intensity. To quantify the temporal and spatial response of the electric

field a fit was performed to the simulated data utilizing a Fourier expansion given by

E (z , t ) = E0(z ) +
NH
∑

n=1

En (z )c o s (nωt +θn ) . (2.16)

For reasons discussed in Section 5.4 the electric field is constrained to have only negative values. To
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achieve this the waveform is clamped at zero (see Figure 3.25).

Figure 2.7 and Figure 2.8 provide the fit associated with a Fourier expansion having only one

harmonic, NH = 1, for the electric field presented in Figure 2.6a and Figure 2.6b respectively. A Fourier

expansion having only one harmonic was consider to determine how non-sinusodial the electric

field waveform is as a function of space. It was found that for the non-inertial case the waveform

did not fit well close to the electrode. However, for the completely inertial case the waveform fit well

within the entire sheath. This difference leads to the conclusion that ion motion in the sheath leads

to harmonic generation in the electric field waveform.
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Figure 2.7: (a) Electric field parameters and associated (b) R2 fitting parameter as a function of
space for τR = 4 ns.
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Figure 2.8: (a) Electric field parameters and associated (b) R2 fitting parameter as a function of
space for τR = 300 ns.

Figure 2.8a and Figure 2.8b provide the fit associated with a Fourier expansion having three

harmonics, NH = 3, for the electric field presented in Figure 2.6a and Figure 2.6b respectively.
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A harmonic spectrum with four components, including the DC component, was found to very

accurately represent both cases. It was found that for the both cases the DC component of the fitted

electric field spectrum is relatively robust regardless of the fidelity of the fit, however the same was

not found for the fundamental. In conclusion the major difference in the temporal behavior is the

non-sinusodial behavior introduced by the ion dynamics.
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Figure 2.9: Electric field parameters for (a) τR = 4 ns and (b) τR = 300 ns as a function of space.
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CHAPTER

3

PASSIVE OPTICAL EMISSION

SPECTROSCOPY

In Chapter 2 it was determined that the capacitively coupled magnetized RF sheath was the most

appropriate candidate to validate the passive OES diagnostic. Chapter 2 provides an introduced

and a basic description of the associated RF sheath physics. In addition, the relevance of the RF

sheath to the near-field of ICRF antenna was discussed. The chapter was concluded with a simple

analytical model of the capacitively coupled RF sheath.

In this chapter the spectroscopic technique and the associated atomic physics constituting the

theoretical framework of the diagnostic are formulated and developed. The chapter is structured

as follows: Section 3.1 introduces the effect of the electric field on the quantum states of a one-

electron atom and provides a discussion on the previously conducted work. Section 3.2 presents

and discusses the available passive Optical Emission Spectroscopy (OES) techniques. Section 3.3

presents the atomic physics associated with the calculation of the theoretical spectral line profile.

Section 3.4 presents the methodology and algorithm implemented to fit the experimental spectral

line profile. Section 3.5 provides a discussion on the selection of the hydrogen and helium electronic

transitions utilized for the validation of the diagnostic.

Passive OES is defined as the study of radiated energy naturally omitted from matter. Specifi-

cally for this dissertation, the radiation intensity as a function of wavelength for select electronic

transitions. This is referred to as the spectral line profile. The OES technique utilized in this research
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is based on measuring the spectral line profile by observing the grating diffracted emission with a

spectroscopic camera.

The technique is passive in the sense that the observed emission arises from natural processes

occurring within the plasma, namely collisional excitation and spontaneous decay [59]. Due to

reasons that will be described in Section 3.5 the Hβ (n = 4→ 2) transition of hydrogen and the

53D → 23P transition of neutral helium were selected for the development of the diagnostic.

The shape of the spectral line profile contains information regarding the local environment

in which the radiating atom is present such as the electric and magnetic field vectors and the

plasma kinetics [67, 59]. The purpose of the research described in this dissertation is to develop

and present a diagnostic in which a time periodic electric field vector can be determined from an

analysis of the shape of the spectral line profile. The primary focus in developing the diagnostic is

to validate the atomic physics associated with the theoretical modeling of the spectral line profile

and to demonstrate proof of principal on a simple ’bench top’ experiment. Therefore, the atomic

physics and fitting software were developed such that extension beyond the selected electronic

transitions and the implementation of high resolution techniques would be natural.

Passive OES was selected for the development because of the relatively inexpensive equipment

cost and simplistic experimental set-up. The spectral resolution of passive OES techniques is low but

is acceptable when considering the purpose of the work and the expected electric field intensities,

1 to 10 kV/cm, reinforcing its attractiveness for atomic physics validation and proof of principal

demonstration. Successful implementation will intrinsically lead way into more elaborate active

laser based techniques having superior spatial and spectral resolution [10, 16].

3.1 Introduction

Optical measurement of electric field properties is based on quantifying the transition frequency of

the photon emitted during de-excitation of an electron. In this section the effect of the electric field on

the one-electron atom with degenerate magnetic substates is introduced. The simplified electronic

structure enables analytic calculation of the spectra allowing concepts to be conveyed easily. The

phenomena behind the diagnostic is the dynamic Stark effect and describes the perturbation

of electronic structure of the atom due to a time dependent electric field. To convey underlying

concepts a detailed analytical treatment is provided in this section.

The effect of a static electric field on the one electron atom was first measured experimentally

by Stark [139]. In this work the shift in the transition frequency was found to be orders of magnitude

greater than that predicted. Theoretical advancements in the treatment were initially made using

the Bohr-Sommerfeld theory [54]. Later, following the development of the mathematical basis of

modern quantum mechanics, [132] the Schrödinger equation was implemented by Epstein [55] and

Pauli [114] yielding excellent agreement with the experimental observations. The Stark effect has
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since been well studied theoretically and experimentally. A summary of this work is presented in a

monograph by Ryde [128].

The Schrödinger equation of the one electron atom with degenerate magnetic substates in the

presence of a static electric field with intensity ED C along the z -axis is given by

iħh
∂ Φ

∂ t
=H oΦ+ e z ED CΦ . (3.1)

Where Φ is the wave function and H o is the unperturbed Hamiltonian. Ignoring the electron spin,

relativity, and quantum electrodynamics, H o is given by

H o =−
ħh 2

2me
∇2−

e 2

4πε

1

r
.

Epstein showed that a solution to Eq. 3.1 could be found with first order perturbation theory in the

parabolic basis |nn1n2m >. Utilizing the electric dipole connection operator ε̄ · r̄ and the solution

to Eq. 3.1 the first order correct spontaneous emission spectrum can be determined and is given by

Inn∗ (ω̃) =
∑

n1n2

∑

n∗1 n∗2

I nn1n2
n∗n∗1 n∗2

δ(ωnn∗ +αD C X − ω̃) , (3.2)

I nn1n2
n∗n∗1 n∗2

=<φnn1n2m |ε̄ · r̄ |φn∗n∗1 n∗2 m∗ >2

m = n −n1−n2−1

αD C =
6πεoħh ED C

Z e me

X = n (n1−n2)−n∗(n∗1 −n∗2) .

Where ε is the polarization vector of the emitted photon andωnn∗ is the angular frequency of the

unperturbed n∗→ n . Specifically, the quantity Inn∗ is the discrete spectral line profile associated

with the n∗ → n transitions. The transition intensity is given by I nn1n2
n∗n∗1 n∗2

and is a function of the

quantum numbers of both the upper and lower levels. Ryde has calculated and presented tabulated

values of the I nn1n2
n∗n∗1 n∗2

in the literature for n ≤ 3 and n∗ ≤ 5 [128, 127]. The spontaneous emission

spectrum, under the action of the static Stark effect, has two properties of particular interest. First

the frequency associated with the transitions are shifted with a linear dependence on the electric

field magnitude through the parameterαD C . Second the intensity associated with the transitions are

independent of the electric field. As indicated by I nn1n2
n∗n∗1 n∗2

the transition intensity is only dependent

on the electronic structure of the atom and the polarization vector ε of the observed photon.

In contrast, the dynamic Stark effect is defined as the atom under the action of a time dependent
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electric field. In particular for this work we will only consider time periodic electric fields. The first to

study the dynamic Stark effect was Blochinzew [21] in which the one-electron atom with degenerate

magnetic substates under the action of a monochromatic electric field was investigated. Defining

the electric field to lie along the z -axis with intensity ER F and angular frequencyω the Schrödinger

equation is given by

iħh
∂ Φ

∂ t
=H oΦ+ e z ER F cos(ωt )Φ . (3.3)

In the parabolic basis Blochinzew arrived at a solution to Eq. 3.3 within the framework of first

order perturbation theory utilizing separation of variables and an expansion of the time dependent

component. Using the electric dipole connection operator and the solution to Eq. 3.3 the first order

correct time averaged spontaneous emission spectrum can be determined and is given by

Inn∗ (ω̃) =
∑

n1n2

∑

n∗1 n∗2

I nn1n2
n∗n∗1 n∗2

∞
∑

s=−∞
J 2

s (αR F X )δ (ωnn∗ + sω− ω̃) , (3.4)

αR F =
6πεoħh ER F

Z e meω
.

Where Js is the s t h Bessel function of the first kind. The most outstanding feature of the spontaneous

emission spectrum is that it consists of an infinite number of transitions whose frequency is now

dependent on the electric field angular frequencyω instead of its magnitude. As given by the argu-

ment of the delta function of Eq. 3.4 the transitions are centered about the unperturbed transition

frequency spaced at integer multiples ofω given by the index s . Thus Blochinzew mathematically

discovered that the dynamic Stark effect was due to a multi-photon process where photons associ-

ated with the electric field are emitted/absorbed with the photon associated with the electronic

transition [145, 11, 111].

Here the transition intensity is given by the product of I nn1n2
n∗n∗1 n∗2

and the square of the Js Bessel

function. Thus the transition intensity is nonlinearly dependent on the electric field magnitude

through the parameter αR F associated with the argument of the Bessel function. As the summation

of Eq. 3.4 is carried out towards infinity, the value of J 2
s (αR F χ) tends to decrease. While these values

do not decrease monotonically there exists a predictable value of s in which the infinite sum can be

truncated. Effectively, the spontaneous emission spectrum consists of a finite number of transitions

separated by the s th multiple of the frequency in which the electric field is oscillating. Due to this

structure the s 6= 0 components are referred to as satellites in the literature.

In comparing the static and dynamic Stark effects, Eq. 3.2 and Eq. 3.4 respectively, it is seen that

the behavior is nearly opposite. For the static electric field it was found that the transition frequency

was linearly dependent on the electric field magnitude. Conversely, for the dynamic electric field the
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transition frequency is now independent of the magnitude and linearly dependent on the frequency.

Therefore under the static Stark effect the position, in frequency space, of the transition correlates

with the electric field magnitude. Similarly for the dynamic Stark effect a correlation exists but now

with the electric field frequency instead of the magnitude. For the static electric field the transition

intensity was found to be independent of the electric field parameters. Conversely, for the dynamic

electric field the transition intensity is now nonlinearly dependent on the electric field magnitude.

To demonstrate the dynamic Stark effect, Figure 3.1 presents both the discrete and continuous

theoretical time averaged spectral line profiles associated with the Hβ transition with degenerate

magnetic substates. The electric field is modeled with a magnitude of 5 kV/cm and a frequency of

20 GHz. The discrete spectral line profile is given in the absence of broadening mechanisms such as

instrument and Doppler. The discrete profile is completely theoretical due to the fact broadening

mechanisms will always be present even if only by the uncertainty principal. The discrete spectral

line profile is typical show to indicate the wavelength and intensity associated with the transitions.

The continuous spectral line profile is measured experimentally and is calculated by convolving the

discrete with the broadening mechanisms.
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Figure 3.1: Theoretical Hβ spectral line profile in the presence of an electric field with a 5 kV/cm
magnitude and a frequency of 20 GHz.

Figure 3.1 depicts that the spacing between the discrete transitions is exactly 20 GHz illustrating the

multi-photon nature of the dynamic Stark effect. The index s of Eq. 3.4 is truncated at a value of five

due to negligible intensity of higher order satellites.

The dynamic Stark effect has been extensively studied theoretically utilizing various analytic

and numerical methods. The analytic methods are based on partial fraction expansion [11] and

perturbation theory [13]. Additionally a monograph recently written by Oks [111] investigates a vast

range of electric field scenarios in terms of intensity, frequency, and topology analytically utilizing

perturbation based methods. The numeric method is based on the Floquet theorem and a Fourier
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series expansion [70].

Extensive experimental observation of the satellite structure of the hydrogen Lyman and Balmer

series spectral lines and select neutral helium transitions have been carried out [112, 85, 72, 71, 73]

where Ad hoc methods were used to determine the electric field parameters of interest. Due to the

relatively complex theory and the computation resources required to simulate the spectral line

profile there exists a limited number of experimental investigations where the electric field param-

eters were determined systematically from a fit [70, 22, 75, 74]. The majority of the experimental

endeavors have been carried out for high frequency electric fields in the GHz range due to the fact

individual satellites can be observed with passive OES techniques. It has been shown that excellent

agreement exists between the theory and experiment in the GHz range of frequencies with the

numerical theoretical treatment being the most accurate [70]. The frequency of the electric field

in which this research is focused, the RF range of 10 to 50 MHz, is a relatively unexplored regime

of the dynamic Stark effect both theoretically and experimentally. This dissertation presents the

systematic theoretical investigation of the dynamic Stark effect in the RF range of frequencies. The

numerical method of Hicks et al. [70] is implemented because it is the most accurate and easily

generalizable to non-monochromatic electric fields.

3.2 Experimental Technique

In this section the available experimental passive techniques, phase resolved and time averaged OES,

are discussed. The time averaged technique was selected for this research based on the capabilities

of the available spectroscopic equipment. The logic associated with this choice will be presented.

The electric fields of interest, namely those of the capacitively coupled RF sheath and the near

field of an ICRF antenna, are typically non-monochromatic [125, 95, 103]. Taking advantage of the

time periodic nature, an electric field of arbitrary spatial dependence can be compactly parametrized

by representing it as a Fourier cosine series as given by

Ē (t ) = Ē0+
NH
∑

n=1

Ēn c o s (nωt +θn ) . (3.5)

The diagnostic was developed such that the electric field vectors, Ēn , and phase angles,θn , associated

with the spectrum consisting of NH harmonics could be determined by analysis of the spectral line

profile. The spatial dependence of the parameters has been suppressed for compactness.

As indicated by the modeling presented in Section 2.3 the RF sheath electric field can be ac-

curately represented with a spectrum containing three harmonics. The numerical modeling of

the theoretical spectral line profile is conducted in such a way to allow for a general time periodic

electric field and thus is not limiting. On the other hand, depending on the OES technique, the

29



routines utilized to fit the experimental data can be highly limiting in the number of harmonics that

can be accurately determined. For the phase resolved technique this limitation is negligible but for

the time averaged technique it is substantial.

The fitting routine limitation is essentially due to the broadening mechanisms of the spectral

line profile with a slight dependence on the computational time. Assuming no spatial variation of

the electric field along the line of sight, the spectral resolution of the OES technique and the Doppler

effect are the primary broadening mechanisms determining the truncation value of NH .

The experiment described in this dissertation was designed such that the electric field did not

vary significantly along the line of sight in which emission was collected. This was done such that

the truncation value of NH would be solely dictated by the instrument and Doppler broadening. In

the tokamak a significant challenge will be associated with the collection of emission such that the

electric field does not vary significantly along the line of sight. This challenge is primarily due to

the small physical dimensions of the RF sheath, on the order of 1 mm due to the high density in

the tokamak, and complex geometry. In addition limitations of viable experimental real estate on

the machine are problematic. Due to the above, implementation of a passive OES based diagnostic

in a tokamak is seen to be formidable and thus requiring a more elaborate scheme to measure the

spectral line profile such as a laser based technique [10, 16]. The premise of the research presented

in this dissertation is twofold: first provide a test for the theoretical modeling of the spectral line

profile and second to investigate basic capacitively coupled magnetized RF sheath physics. The

theoretical modeling of the spectral line profile and the fitting routines utilized to extract the electric

field parameters are essentially universal with regard to the spectroscopic technique.

Two techniques are available to obtain the spectral line profile: phase resolved and time averaged

OES. The applicability is determined by the emission intensity of the transition of interest. Both

methods involve fitting theoretical to experimental spectral line profiles by minimizing the reduced

χ fitting parameter and will be discussed in Section 3.4.

The first technique is based on measuring the spectral line profile as a function of time within

the period of the electric field waveform. The phase resolved spectral line profile is obtained by

integrating optical emission over a window that is small compared to the period, typically τ/10

to τ/20 gives adequate temporal resolution. In order to perform phase resolved spectroscopy one

must have the capability of producing a TTL waveform which is phase locked to that of the electric

field. This TTL waveform is responsible for triggering the spectroscopic camera. Due to the fact the

electric field waveform is unknown another source must be utilized. The RF voltage and current

waveforms driving the discharge are inherently phase locked to the electric field waveform and thus

are acceptable sources. In addition, if these waveforms are not available those of the reflected or

forward power may be used. A schematic depicting the triggering of the spectroscopic camera is

given by Figure 3.2. The details of the experimental setup will be presented in Section 4.2.
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Figure 3.2: Schematic of intensified CCD triggering for phase resolved OES.

An acceptable signal to noise ratio typically requires the accumulation of millions of acquisitions,

which reveals the importance of triggering the spectroscopic camera consistently at the desired

phase for each acquisition. To obtain the spectral line profile at various phases within the RF period

a variable phase delay is inserted after the camera is triggered and is programmable in the software.

Given the experimental phase resolved spectral line profiles, IE (ti ,λ), the electric field waveform

is determined by a fit to the theoretical phase resolved spectral line profiles, I (ti ,λ). The fit is different

depending on the ordering of the RF period and the lifetime of the excited state. If the RF period is

much less then the lifetime of the excited state the electric field is determined from a simultaneous

fit to the phase resolved spectra as given by

χ
�

{I (ti ,λ), IE (ti ,λ) ; ti ∈ [0,τ]}i=1..N

� F I T−−→ E (t ) f o r τ�τ∗ . (3.6)

If the RF period is much greater then the lifetime of the excited state the phase resolved spectra may

be fitted individually as given by

¦

χ (I (ti ,λ), IE (ti ,λ))
F I T−−→ E (ti ) ; ti ∈ [0,τ]

©

i=1..N
f o r τ�τ∗ . (3.7)

In this case the instantaneous electric field waveform is determined from the compilation of the

instantaneous electric field values.

Phase resolved OES is ideal due to the fact that the fitting routines pose no limitations. This is

due to the fact that the time dependence of the electric field is contained within the collection of

phase resolved spectra associated with the various investigated phases. Thus the limiting factor

concerning the number of harmonics that can be extracted is not determined by the broadening

mechanisms but by the integration time. The major drawback to the phase resolved technique is

that the intensity of the observed emission must be very high in order to obtain an adequate signal

to noise ratio.

The second technique is based on measuring the time averaged spectral line profile. Here the

integration time is set to be much larger than the RF period such that the collected emission can be
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approximated as the time average over one period. The electric field is determined by fitting the

time averaged theoretical and experimental spectra as described by

χ (I (λ), IE (λ))
F I T−−→ E (t ) . (3.8)

The calculation of a time dependent quantity from a time integrated measurement is defined

as a inverse integral problem. Due to the problem nature and broadening mechanisms the fitting

routines are highly limited in the number of harmonics that can be accurately determined. In order

to perform the fit the theoretical time averaged spectral line profile, I (λ) , must be calculated which

is carried out differently depending on the ordering of the RF period and the lifetime of the excited

state. If the RF period is much less then the lifetime of the excited state then the emission intensity

is constant. The time averaged spectral line profile is calculated by integrating the theoretical phase

resolved spectral line profile over an RF period as given by

I (λ) =

∫ τ

0

I (t ,λ)d t f o r τ�τ∗ . (3.9)

If the RF period is much greater then the lifetime of the excited state then the emission intensity

is potentially a function of time. The characteristic lifetime for spontaneous emission of the upper

level associated with the Hβ and the 53D → 23P He I transitions is 33 and 105 ns respectively [152].

Comparing these characteristic lifetimes with the 74 ns RF period it is expected that the emission

intensity of the Hβ transition will be time dependent while that of the 53D → 23P He I will not. The

experimental investigation of the time dependence of the emission intensity of both transitions

will be discussed in detail in Section 5.3 to aid comprehension the experimental measurement of

the emission intensity of the Hβ transition is presented in Figure 3.3 with the RF biased electrode

voltage.
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Figure 3.3: Time dependent emission intensity of Hβ in the RF sheath plotted against the RF biased
electrode voltage.
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Two observations can be drawn from Figure 3.3: first the intensity of the Hβ transition is a strong

function of time within the RF sheath. Second the intensity is intrinsically phase locked to the

RF voltage waveform and thus that of the electric field. To calculate the theoretical time averaged

spectral line profile it is made evident from Figure 3.3 that the phase resolved spectral line profile

must be averaged over an RF period utilizing the appropriate weight function as given by

I (λ) =

∫ τ

0

A(t )I (t ,λ)d t f o r τ�τ∗ . (3.10)

Where the weight function is given by the time dependent emission intensity, A(t).

A comparison of Eq. 3.6 and Eq. 3.7 with Eq. 3.10 reveals that the phase resolved technique is

superior to that of the time averaged. Utilizing the phase resolved technique the electric waveform

can be determined from either a simultaneous fit to a set of N spectra, Eq. 3.6, or directly from the

instantaneous electric field values obtained by fitting the N spectra independently, Eq. 3.7. The time

averaged technique requires that the electric field waveform be determined from a fit to a single

spectrum. Utilizing equation Eq. 3.6 or Eq. 3.10 the electric field waveform is determined from a

simultaneous fit to the spectra. If the electric field waveform is represented in the time domain the

number of required fit variables is equivalent to the number of temporal points, typically 20 to 30.

However this can be reduced to 2H +1, typically 11 to 13, by representing the electric field waveform

in the frequency domain. This reduction greatly reduces the computational time associated with

the fit. Thus the electric field is represented as a Fourier cosine series in the fitting routines.

In the limit that Eq. 3.7 is appropriate the electric field waveform is determined point by point

in time by individually fitting the spectra. This requires only a single fit variable, the instantaneous

electric field intensity. Assuming an acceptable signal to noise ratio the electric field waveform

is determined most efficiently from Eq. 3.7. This is due to the large decease in the number of fit

variables.

The accuracy of Eq. 3.6 and Eq. 3.7 in the determination of the electric field waveform is ap-

proximately equivalent and is primarily set by the integration time and the number of acquired

spectra. For Eq. 3.10 this accuracy is set by the broadening mechanisms associated with the spectral

line profile, namely that of instrument and Doppler. Due to the expected degree of broadening the

value of NH that can be accurately determined from Eq. 3.10 will be highly limited. Therefore it is

preferred to use a phase resolved technique in which the electric field waveform can be determined

from Eq. 3.7. To determine if a phased resolved technique can be utilized the signal to noise ratio

must be investigated.

To achieve an equivalent spectrum intensity utilizing the phase resolved technique in compari-

son with that of the time averaged, a minimum total integration time of τ
τP R
τT A is required. Where

τP R and τT A are the phase resolved and time averaged integration times respectively. In addition
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this assumes that the spectroscopic camera can be triggered at a frequency equal to that of the

electric field waveform, which is typically not the case. The phase resolved capable spectroscopic

camera available has a maximum trigger rate of 1 MHz, thus at a minimum the total integration

time must be multiplied by 13.56. For a typical phase resolved integration time of τP R =τ/10 a total

acquisition time of approximately 136τT A is required for equivalent spectrum intensity. According

to Knoll [88] the signal to noise ratio for a typically CCD can be approximated by

SN R =
φPτI E G

�

φPτI E G 2+ eD C PτI + e 2
AD

�1/2
. (3.11)

Whereφ is the photon flux at the detector, P is the number of binned pixels, τI is the integration

time, E is the quantum efficiency, G is the detector gain, eD C is the dark charge accumulation per

pixel per unit time, and eAD is the standard deviation associated with digitization.

The numerator and denominator of Eq. 3.11 represent the total number of counts obtained after

digitization and the associated standard deviation respectively. The denominator terms from left to

right represent the standard deviation associated with Poisson statics, dark charge accumulation, and

digitization respectively. A comparison of the signal to noise ratio for the two available spectroscopic

cameras is made. The first camera is the Princeton Instruments PI-MAX III with an intensified CCD,

this camera is capable of both phase resolved and time averaged measurements. The second camera

is the Princeton Instruments PyLoN liquid nitrogen cooled CCD, this camera is only capable of time

averaged measurements. A detailed description of the spectroscopic cameras is given in Section

4.2. For the spectral line profile measurements presented in this dissertation the photon flux at the

detector is typically 1 s−1 pixel−1. 100 vertical pixels are binned yielding an incident photon rate of

100 s−1. Table 3.1 gives the parameters associated with the PI-MAX III and PyLoN cameras.

Table 3.1: Spectroscopic camera parameters.

Parameter PI-MAX III PyLoN

E 0.15 0.9

G 30 1

eD C (e−/pixel/sec) 1.7 0.004

eAD (e−) 8 4

As shown by Table 3.1 the cameras have significantly different noise characteristics. The dark

charge accumulation associated with the PI-MAX III camera is 425 times larger then that of the

PyLoN. The signal to noise ratio is presented in Figure 3.4 for the PI-MAX III and PyLoN cameras

utilizing an incident photon rate of 100 s−1 and the parameters presented in Table 3.1. The signal to
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noise ratio converges asymptotically to a value on the order of 2 for the PI-MAX III camera and 100

for the PyLoN camera. The maximum signal to noise ratio determines whether the phase resolved

technique can be effectively utilized to determine the electric field waveform. The required signal to

noise ratio for the fitting routines is typically 20 thus indicating that the phase resolved technique

implemented by the PI-MAX III camera will not be possible. To meet the desired signal to noise ratio

the time averaged technique will be implemented utilizing the PyLoN camera.
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Figure 3.4: Signal to noise ratio for the (a) PI-MAX III and (b) PyLoN spectroscopic cameras.

Due to the fact that the time averaged technique must be implemented it is desired to increase

the certainty in the fit. This is done by increasing the number of unique spectra that can be fit

simultaneously. To achieve this two methods are investigated: obtain multiple spectral line profiles

associated with different electronic transitions and/or measure the polarized spectral line profile

for the two linearly independent polarizations. These polarized spectra are referred to as the π and

σ components, in which the polarization vector of the photon is parallel and perpendicular to the

field respectively.

Due to the spectral resolution required to extract an electric field with intensity on the order of 1

kV/cm only a 100 Å window is observable in the spectrum. In addition, the transitions of interest

are isolated within the range of 100 Å. To measure the spectral line profile of multiple transitions the

grating angle must be changed. The experimental operational time associated with the measurement

of a spectral line profile is expected to be on the order of ten minutes. Thus due to time constraints

no more than two spectral line profiles can be measured having similar experimental conditions.

The simplest solution given this restraint is to observe the π and σ components independently.

Implementation of this only requires a rotation of an element contained within the collection optics.

In addition the radiator distribution function associated with the π andσ components is typically

equivalent while this is not the case for different transitions.
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3.3 Atomic Theory

This section presents the Schrödinger equation for the one-electron atom in the presence of ar-

bitrary static magnetic and time periodic electric field vectors. The solution will be derived and

discussed. The atomic theory utilized to calculate the discrete spectral line profile will be developed.

Additionally, a method to approximate the continuous spectral line profile is presented.

The operator connecting the upper and lower levels via emission of a photon is assumed to

have a negligible effect on the quantum states. Thus the calculation of the theoretical spectral line

profile can be carried out in a three step process, simplifying the problem. First the solution to

the appropriate Schrödinger equation is found, resulting in a set of energies and wave functions

associated with the perturbed quantum states of the atom. Second a new Schrödinger equation is

formulated from the original by the addition of a connection operator. Utilizing the set of perturbed

wave functions as the new basis the transition probabilities are calculated. Third the continuous

theoretical spectral line profile is calculated from the energies and transition probabilities given the

instrument and radiator distribution functions.

The Schrödinger equation for the one-electron atom in the presence of arbitrary static magnetic

and time periodic electric field vectors is given by

iħh
∂ Ψ̃

∂ t
= H̃ (t )Ψ̃ . (3.12)

The time periodic Hamiltonian H̃ (t ) is given by

H̃ (t ) =H +H B +
1

2

NH
∑

n=0

H En
�

ei(nωt+θn )+e−i(nωt+θn )
�

,

H =H o +H
′

H B =
µβ

ħh
Bz (Jz +Sz )

H En = e Ēn · r̄ .

Where H is the complete unperturbed Hamiltonian encompassing the electron spin, relativity, and

quantum electrodynamics. When considering the helium atom additional terms are added to H o

which are associated with second electron and its interaction with the first. As will be discussed

at the end of this section the functional form of H is irrelevant because of the vector space the

problem is solved in. H B is the Hamiltonian associated with a static magnetic field defined along

the z -axis. The Hamiltonian associated with the time periodic electric field vector is the remaining
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term in H̃ (t ). In order to simplify the solution to Eq. 3.12 the magnetic field vector was defined to lie

along the z -axis. Due to the static nature of the magnetic field vector the coordinate system can be

rotated to achieve the definition, thus resulting in no loss of generality. The time periodic nature

of the Hamiltonian H̃ (t ) allows for Floquet’s theory [18] to be implemented and consequently the

reduction of Eq. 3.12 to an eigenvalue/eigenvector problem. The eigenvalue and eigenvector pairs

represent the energies and wave functions of the perturbed quantum states of the atom.

In order for de-excitation to occur the upper level must be perturbed electromagnetically. For

passive OES techniques this perturbation is carried out by the vacuum fields predicted by quantum

electrodynamics and is called spontaneous emission. For typical laboratory plasmas it can be

assumed that the spontaneous emission connection operator can be replaced with the dipole

approximation [67]. The transition probabilities are calculated from a new Schrödinger equation

obtained from Eq. 3.12 with the addition of the dipole connection operator as given by

iħh
∂ Θ

∂ t
=
�

H̃ (t ) + Ĥ
�

Θ . (3.13)

The Hamiltonian associated with the dipole connection operator is given by Ĥ . Only the relative

intensity of the spectral line profile is desired thus all constants associated with this operator are

dropped giving

Ĥ ∝ ε̄ · r̄ .

The solution to Eq. 3.13 is found by expanding the Θ wave functions in terms of linear combi-

nations of the Ψ wave functions. The energies and transition probabilities determined from the

solution to Eq. 3.12 and Eq. 3.13 respectively represent the discrete theoretical spectrum, which con-

sists of a series of delta functions. The continuous theoretical spectrum is calculated by convolving

the discrete spectrum with the instrument and radiator distribution functions.

To solve Eq. 3.12 a basis must be chosen within which to work. A logical choice would be the

coupled basis due to the fact they are eigenfunctions of the complete unperturbed Hamiltonian H .

In choosing the coupled basis the assumption is made that the L-S coupling scheme is appropriate,

this is a good assumption for low Z atoms [76]. The wave function associated with the coupled basis

represented in the so called bar and ket notation is given by

Φ= |n , l , s , j , m j > , (3.14)

j ∈ |l − s | , |l − s |+1 .. |l + s |

m j ∈− j ,− j +1 .. j .
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Where n is the principal quantum number and can take on any positive non-zero value. The orbital

and spin angular momentum quantum numbers are given by l and s respectively. For atoms

containing multiple electrons the orbital and spin angular momentum quantum numbers are

calculated by summing the projected values of all electrons and taking the absolute value. j is the

total angular momentum quantum number and m j is its projection.

The wave functionΦ can be expressed analytically for the one electron atom and is obtained from

the unperturbed Schrödinger [19]. The Schrödinger equation associated with the two electron atom

is substantially more difficult to solve, currently the wave function is not expressible analytically.

In order to calculate the theoretical spectral line profile for the 53D → 23P He I transition an

approximation to the wave function must be made. Typically one electron is always present in the

ground state of the neutral helium atom. When both electrons are in excited states the probability of

ionization by the Auger effect is much greater than a radiative transition to a bound state in neutral

helium. This can be realized because any state in helium in which both electrons are excited has

an energy greater then the ground state of singly ionized helium and the free electron pair. Due to

the above and the large energy difference in the ground and first excited states hydrogenic wave

functions will be utilized as the approximation [19, 46, 70].

The energies associated with the unperturbed quantum states of many atoms have been exper-

imentally measured with a high degree of accuracy and tabulated by the United States National

Institute of Standards and Technology (NIST) [5]. Utilizing the coupled basis set

HΦi = EiΦi (3.15)

can be written and the eigenvalues E
′

i associated with the unperturbed Hamiltonian can be taken

from NIST tables. Where i represents the complete set of quantum numbers. The unperturbed

energy eigenvalues for the n ≤ 6 magnetic substates of hydrogen and helium are given in Appendix

A.

3.3.1 Floquet Method

The time periodic nature of the Hamiltonian H̃ (t ) allows Eq. 3.12 to be solved utilizing Floquet’s

theorem [18] and a Fourier series expansion of time periodic coefficients. The solution to be found

will be perturbative in the sense that only states within a given n-level are allowed to mix. This is

an excellent approximation for the expected electric field intensities of <15 kV/cm [128]. Floquet’s

theorem asserts that a differential equation with time periodic coefficients will have a solution of

the form given by

Ψ̃(t ) = T (t )e −iλ̃t . (3.16)
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Where the spatial dependence of the variables is suppressed for compactness while the temporal

dependence in retained for effect. The spatially dependent time periodic coefficients T (t ) are

expanded in the coupled basis set giving

T (t ) =
N
∑

j=1

τ j (t )Φ j . (3.17)

Substitution into Eq. 3.16 yields

Ψ̃k (t ) =
N
∑

j=1

τk j (t )Φ j e −iλ̃k t (3.18)

for k = 1..N , where k refers to the k t h function in the new N -dimensional basis set. The spatially

independent time periodic coefficients τ(t ) are expanded in a Fourier series giving

τk j (t ) =
∞
∑

s=−∞
c s

k j e −isωt . (3.19)

Substitution into Eq. 3.18 and defining λ̃k =
Ẽk
ħh yields

Ψ̃k (t ) =
∞
∑

s=−∞

N
∑

j=1

c s
k jΦ j e −

i
ħh (Ẽk+sħhω)t . (3.20)

The set of wave functions given by Eq. 3.20 represents the new basis set and are expressed as a linear

combination of the coupled basis set. The solution to Eq. 3.12 will require the expansion coefficients,

c s
k j , and the eigenvalues, Ek , to be found. Eq. 3.20 is substituted into Eq. 3.12 to yield

∞
∑

s=−∞
(Ẽk + sħhω)e −isωt

N
∑

j=1

c s
k jΦ j =

∞
∑

s=−∞

�

e −isωt
N
∑

j=1

c s
k j HΦ j + e −isωt

N
∑

j=1

c s
k j H BΦ j

+
1

2

NH
∑

n=0

e −i(s−n )ωt e iθn

N
∑

j=1

c s
k j H EnΦ j +

1

2

NH
∑

n=0

e −i(s+n )ωt e −iθn

N
∑

j=1

c s
k j H EnΦ j

�

. (3.21)

Allowing the Hamiltonians H , H B , and H En to operate on the coupled basis set wave function

Φ j yields

HΦ j = E jΦ j , (3.22)

H BΦ j =
N
∑

m=1

E B
j mΦm , (3.23)

and
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H EnΦ j =
N
∑

m=1

E En
j mΦm (3.24)

respectively. E j is the energy of the quantum state associated with the j t h wave function of the

unperturbed atom. E B
j m is the energy coupled between the quantum states associated with the

j t h and m t h wave functions due to the magnetic field, Bz . E En
j m is the energy coupled between the

quantum states associated with the j t h and m t h wave functions due to the n t h harmonic of the

electric field vector, Ēn . The calculation of the quantities E B
j m and E En

j m is non-trivial and thus is

presented in Appendix B. Upon substitution of Eq. 3.22 through Eq. 3.24 yields

∞
∑

s=−∞
(Ẽk + sħhω)e −isωt

N
∑

j=1

c s
k jΦ j =

∞
∑

s=−∞

�

e −isωt
N
∑

j=1

c s
k j E jΦ j + e −isωt

N
∑

j=1

c s
k j

N
∑

m=1

E B
j Φm

+
1

2

NH
∑

n=0

e −i(s−n )ωt e iθn

N
∑

j=1

c s
k j

N
∑

m=1

E En
j mΦm +

1

2

NH
∑

n=0

e −i(s+n )ωt e −iθn

N
∑

j=1

c s
k j

N
∑

m=1

E En
j mΦm

�

. (3.25)

Utilizing the orthogonality of the coupled basis set Eq. 3.25 can multiplied by Φl and integrated over

all space to yield a set of N algebraic equations given by

∞
∑

s=−∞
(Ẽk + sħhω)e −isωt c s

k lΦl =
∞
∑

s=−∞

�

e −isωt c s
k l ElΦl + e −isωt

N
∑

j=1

c s
k j E B

j lΦl

+
1

2

NH
∑

n=0

e −i(s−n )ωt e iθn

N
∑

j=1

c s
k j E En

j l Φl +
1

2

NH
∑

n=0

e −i(s+n )ωt e −iθn

N
∑

j=1

c s
k j E En

j l Φl

�

(3.26)

for l = 1..N . In order for Eq. 3.26 to be satisfied at all time t the coefficients of equal powers of the

exponential e isωt must equate. Equating the coefficients results in the following set of equations

(Ẽk + sħhω)c s
k lΦl = c s

k l ElΦl +
N
∑

j=1

c s
k j E B

j lΦl +
1

2

NH
∑

n=0

�

e iθn

N
∑

j=1

c s+n
k j E En

j l Φl

+ e −iθn

N
∑

j=1

c s−n
k j E En

j l Φl

�

(3.27)

for s = −∞..∞. This infinite set of algebraic equations must be truncated in order to obtain a

solution. To truncate we assume that the expansion coefficients are zero for |s |> s̃ as given by

c s
k j = 0 for |s | ≥ s̃ , k = 1..N , l = 1..N . (3.28)

The appropriate value of s̃ will be discussed below. The set given by Eq. 3.27 is rearranged and
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truncated to yield a set of 2s̃ +1 equations given by

Ẽk c s
k lΦl = (−sħhω+El )c

s
k lΦl +

N
∑

j=1

c s
k j E B

j lΦl +
1

2

NH
∑

n=0

�

e iθn

N
∑

j=1

c s+n
k j E En

j l Φl

+ e −iθn

N
∑

j=1

c s−n
k j E En

j l Φl

�

. (3.29)

Eq. 3.29 can be compactly written utilizing matrix notation, absorbing the j and l indices yields

Ẽk Ψ̃
s
k = (−sħhωI +E +E B ) · Ψ̃ s

k +
1

2

NH
∑

n=0

E En · [e iθn Ψ̃
s+n
k + e −iθn Ψ̃

s−n
k ] . (3.30)

The vector Ψ̃
s
k is given by

Ψ̃
s
k =







c s
k 1Φ1

...

c s
k NΦN







and the matrices E , E B , and E En are given by

E =







E
′

1 · · · 0
...

...
...

0 · · · E
′

N






, E B =







E B
11 · · · E B

N 1
...

...
...

E B
1N · · · E B

N N






, and E En =







E En
11 · · · E En

N 1
...

...
...

E En
1N · · · E En

N N







respectively. Absorbing the s index Eq. 3.30 is expressed in its final form:

H̃ Ψ̃k = Ẽk Ψ̃k . (3.31)

The eigenvector Ψ̃k is given by

Ψ̃k =







Ψ̃
−s̃
k
...

Ψ̃
s̃
k







and the Hamiltonian matrix H̃ is given by
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H̃ =























s̃ħhωI +E D · · · 1
2 e iθH E EH · · · · · · 0

1
2 e −iθ1 E E1 (s̃ −1)ħhωI +E D · · · 1

2 e iθH E EH · · · 0
...

...
...

...
...

...
...

...
...

...
...

...

0 · · · 1
2 e −iθH E EH · · · (−s̃ +1)ħhωI +E D 1

2 e iθ1 E E1

0 · · · · · · 1
2 e −iθH E EH · · · −s̃ħhωI +E D























,

where the matrix E D is given by

E D = E +E B +
1

2
E E0

�

e iθ0 + e −iθ0
�

.

When considering transitions in which the emission intensity is time dependent θ0 will be

utilized to correlate the electric field and emission intensity waveforms. Otherwise, θ0 has no

effect on the solution and is thus typically taken to be zero. Eq. 3.31 is an eigenvalue problem,

the Hamiltonian matrix H̃ has N distinct eigenvalue and eigenvector pairs given by Ẽk and Ψ̃k

respectively. The size of the H̃ matrix is given by (2s̃ + 1)N × (2s̃ + 1)N and is dependent on two

parameters s̃ and N , the index at which the Fourier series is truncated and the number of magnetic

substates within the n level interest respectively. Possible values of N are given in Table 3.2 for

hydrogen and neutral helium for n ≤ 6.

The concepts associated with Eq. 3.31 and its solutions are most easily conveyed graphically.

Therefore the field geometry given by

B̄z = 1000 Gauss Ez (t ) = 2+ cos(ωt ) + cos(2ωt +π/3) kV/cm (3.32)

will be considered and applicable to the figures contained within the remainder of the this section.

The angular frequency of the electric field is varied depending on the presented figure.

Table 3.2: Number of states N for the given radial quantum number n .

n Para-helium (s=0) Hydrogen (s=1/2) Ortho-helium (s=1)

1 1 2 3

2 4 8 12

3 9 18 27

4 16 32 48

5 25 50 75

6 36 72 108
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The location of the non-zero elements associated with the H̃ matrix of Eq. 3.31 for n = 4 in

hydrogen with H = 2 and s̃ = 4 is given by Figure 3.5. Positive and negative matrix elements are

indicated with red and black markers respectively. In terms of the global s block structure Figure 3.5

shows that the Hamiltonian matrix has a banded 2H +1-diagonal structure.
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Figure 3.5: Non-zero matrix elements of H̃ for the n = 4 level of hydrogen with s̃ = 4 using the field
geometry given by Eq. 3.32.

Where the s blocks themselves are N ×N matrices. By a comparison to Eq. 3.31 it is visually shown

that the band along the diagonal consists of matrix elements associated with the magnetic and static

electric field and the off-diagonal bands consists of matrix elements associated with the dynamic

electric field only. The s blocks that have been truncated are easily identifiable due to the banded

structure of the matrix. Ignoring truncation each band should have the same number of s blocks.

The number of magnetic substates within a given n level is constant. Thus the new quantum

mechanical system associated with the magnetic and electric field perturbation will consist of N

new basis functions given by linear combinations of the old, the coupled basis. Due to the fact

that the coefficients τ (t ) j k were expanded in a Fourier series the solution to Eq. 3.31 consists

of (2s̃ + 1)N eigenvalue/eigenvector pairs and is thus over defined. Therefore only N of these

eigenvalue/eigenvector pairs are distinct which results in 2s̃ +1 equivalent sets, ignoring truncation

error. The relationship between the 2s̃ +1 sets of equivalent eigenvalues and eigenvectors is

Ẽk ′ = Ẽk +mħhω (3.33)

and

Ψ̃
s
k ′ = Ψ̃

s+m
k (3.34)
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respectively, where m = [−s̃ − s ..s̃ − s ]. These expressions are derived in the absence of truncation

error, as s tends towards its extreme values they become invalid.

The atom in a oscillating electric field consists of a combination of real and virtual states. The real

states are those that exist by virtue of the atom alone. Virtual states are those that exist to mediate

potential interactions with an external perturbation, specifically here the oscillating electric field,

that would otherwise be forbidden. At sufficiently high frequencies the real states are those having

s = 0 and the virtual states are those having s 6= 0. In this case the real states have no interaction

with the oscillating electric field. The virtual states however interact such that s photons associated

with the oscillating electric field are absorbed or emitted during a transition involving the state. As

the frequency is decreased the real and virtual states can potentially interact resulting in s 6= 0 real

states and mixing.

In order to correctly describe the quantum mechanical system a single set of N eigenvalue

and eigenvector pairs must be selected out of the possible (2s̃ + 1)N . Typically it was found that

the truncation error can be minimized by selecting the set corresponding to s = 0. As described

below this would seemingly be a trivial task given the relationships of Eq. 3.33 and Eq. 3.34. Ignoring

truncation error the (2s̃ +1)N eigenvalue and eigenvector pairs can be easily sorted into the 2s̃ +1

sets utilizing the following method. Identical eigenvalues are sorted into N groups each with 2s̃ +1

members by Eq. 3.33 and ordered numerically. The 2s̃ + 1 sets are then formed by selecting the

eigenvalue and corresponding eigenvector out of all N groups having identical locations in the

ordering. The set corresponding to s = 0 are composed of those members located at the center

location in the ordered N groups.

Unfortunately due to truncation error both Eq. 3.33 and Eq. 3.34 do not hold for the extreme

values of s to such a degree that the method discussed above cannot be used even with the addition

of Eq. 3.34. A significant research effort was carried out to ensure this. A method in which a set of N

distinct eigenvalue and eigenvector pairs can be selected is non-trivial and has not been adequately

addressed in the literature [70, 129, 117]. This is due to the large values of ω investigated, which

resulted in trivial mixing of states and natural grouping. In order to select a consistent set one of

two approaches must be followed based on the quantity4Ẽ given by

4Ẽ =
�

Ẽk ; k ∈ [1, N ]
	�

�

ma x
−
�

Ẽk ; k ∈ [1, N ]
	�

�

mi n
for m = 0 . (3.35)

In order to calculate the quantity4Ẽ a prior knowledge of the s = 0 set of eigenvalues is required,

thus a conservative approximation must be made. The quantity4Ẽ is approximated utilizing a set

of eigenvalues obtained from the Schrödinger equation given by
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iħh
∂ Φ∗

∂ t
=H ∗Φ∗ , (3.36)

H ∗ =H +H B +H E

H E =
n=H
∑

n=0

�

e
�

�Ex ,n

�

� x + e
�

�Ey ,n

�

� y + e
�

�Ez ,n

�

�z
�

.

Utilizing similar techniques as presented above an eigenvalue problem is formulated and given by

H ∗Φ∗k = E ∗kΦ
∗
k . (3.37)

The Hamiltonian matrix H ∗ is given by

H ∗ =







E1+E B
11+E E

11 · · · E B
N 1+E E

N 1
...

...
...

E B
1N +E E

1N · · · EN +E B
N N +E E

N N







where the terms E E
j m are given by

H EΦ j =
N
∑

m=1

E E
j mΦm (3.38)

and are calculated utilizing the procedure given in Appendix B. The set of N eigenvalues E ∗k are

utilized to approximate those of Ẽk in Eq. 3.35 such that4Ẽ can be calculated. This approximation

is typically a significant over estimate of the true value of4Ẽ and therefore is conservative.

The accuracy of the Floquet method is completely determined by s̃ , the value in which the series

of Eq. 3.19 is truncated. The Floquet method is valid regardless of the parameters associated with the

magnetic and electric field vectors including the angular frequencyω. As will be derived in Section

3.3.2 the validity of the spectral line profile calculation will be dependent on the ordering ofω and

the lifetime of the excited state. The appropriate value of s̃ for an accurate solution of Eq. 3.12 is

highly dependent on the magnetic and electric field vectors and the transition of interest. Typically

s̃ is estimated by the expression 24Ẽ /ħhω during tracking, with a minimum value set to four. For

spectral line profile calculations expressions for s̃ have been presented in the literature [129].

If4Ẽ < ħhω then the eigenvalues are naturally separated into 2s̃ + 1 sets. The eigenvalues of

H̃ are calculated forω/2π = 200 GHz and presented in ascending numerical order in Figure 3.6.

When naturally separation occurs the s = 0 set is taken as the center N eigenvalues when order

numerically, these eigenvalues are represented by the colored markers. All eigenvalues presented in
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the remainder of this section are offset by a constant value such that the s = 0 set is center about

zero. Figure 3.6 conveys Eq. 3.33 nicely, that is the 2s̃ + 1 sets of eigenvalues are offset by integer

multiples of ħhω.
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Figure 3.6: Eigenvalues in ascending order associated with H̃ forω/2π= 200 GHz using the field
geometry given by Eq. 3.32.

If4Ẽ ≤ ħhω then a more complicated approach must be taken due to the fact the eigenvalues are

no longer naturally separated. The eigenvalues of H̃ are calculated forω/2π= 20 GHz and presented

in ascending numerical order in Figure 3.7, with the s = 0 set given by the colored markers.
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Figure 3.7: Eigenvalues in ascending order associated with H̃ forω/2π= 20 GHz using the field
geometry given by Eq. 3.32.

Comparing Figure 3.6 with Figure 3.7, where the frequency differs by an order of magnitude,

it is evident that the eigenvalue sets are no longer naturally separated. As discussed above and
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represented by Eq. 3.33 the eigenvalue sets are separated by ħhω and thus as the frequency deceases

the spacing decreases proportionally, inevitably causing mixing as depicted by Figure 3.7. In addition,

the effect of truncation can be seen in the eigenvalues at the extremes in Figure 3.7. The method

utilized to select the s = 0 set when4Ẽ ≤ ħhω is based on tracking the eigenvalues from a frequency in

which naturally grouping of the sets occurs. Tracking is initiated by increasing the angular frequency

such that4Ẽ < ħhωG ,ωG is calculated by

ωG = A
4Ẽ

ħh
. (3.39)

Where A is a constant typically set to 1.2. At the frequency ωG the eigenvalues are naturally

separated into 2s̃ +1 sets, as depicted by Figure 3.6. The s = 0 set is then selected and tracked as

the frequency is incrementally decreased toω. Each tracking step requires the calculation of the

H̃ matrix eigenvalues due to the factω is changed. Relatively fast routines exist to carry out this

computation when the eigenvectors do not need to be calculated, therefore making this method

feasible on standard machines. For the field configuration under consideration Eq. 3.39 gives a value

of 97 GHz forωG /2π, the tracking process to a frequency of 20 GHz is depicted by Figure 3.8. The

colored lines are associated with the s = 0 set with the black markers indicated s 6= 0 eigenvalues.

Figure 3.8: Eigenvalues associated with H̃ forω/2π ∈ [20, 97] GHz using the field geometry given
by Eq. 3.32.

Figure 3.8 indicates the necessity for tracking as shown by the interaction of the real and vir-
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tual states. This results in complex coupling and thus far unpredictable patterns in the mixing of

eigenvalue sets. As will be discussed below the tracking algorithm varies the step size and the value

of s̃ as a function of frequency. In addition it was found that during tracking the value of s̃ could

be substantially less, typically by a factor of two, then that needed for accurate spectral line profile

calculations. At a frequency of 97 GHz the value of s̃ was three as the eigenvalues were tracked to 20

GHz this value was incrementally increased to ten, illustrating the relationship betweenω and s̃ .

To better portray the coupling of the real and virtual states Figure 3.9 presents only the s = 0 set of

eigenvalues associated with Figure 3.8.

At frequencies well aboveωG the s = 0 and s 6= 0 states are purely real and virtual respectively,

here the eigenvectors Ψ̃k only contain characteristics of the corresponding states. This is illustrated

by the fact that initially the s = 0 eigenvalues are constant with respect to the frequency with those

of the s 6= 0 sets being linearly dependent as depicted in Figure 3.8 and Figure 3.9. As the frequency

is decreased toωG and below the states can potentially interact resulting in a coupling between the

real and the virtual states. That is the eigenvectors Ψ̃k associated with the interacting states now

contain both real and virtual characteristics. The simplest example is given in Figure 3.9 at 92 GHz

where the maximum eigenvalue of the s = 0 set interacts with the minimum eigenvalue of the s = 1

set.

20 30 40 50 60 70 80 90
−200

−100

0

100

200

Frequency (GHz)

E
ig

en
va

lu
e 

(μ
eV

)

Figure 3.9: Eigenvalues of the s = 0 set associated with H̃ forω/2π ∈ [20,97] GHz using the field
geometry given by Eq. 3.32.

Initially these states are purely real and virtual respectively, however after the interaction it is found

that the states completely change characteristics resulting in a purely virtual s = 0 state as indicated
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by the linear dependence on frequency. As the frequency is decreased further multiply states can

interact collectively resulting in complex coupling as presented by Figure 3.10 where states within

the s = 0, 1, and 2 sets mix. Here the eigenvalues associated with Figure 3.8 are plotted over a select

energy and frequency range.
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Figure 3.10: Select eigenvalues associated with H̃ forω/2π ∈ [30, 31.5] GHz using the field geometry
given by Eq. 3.32.

Due to the fact the eigenvalues are typically strong functions of frequency tracking is imple-

mented by predicting its value and derivatives, with respect to frequency, by linear extrapolation. The

eigenvalue is selected by minimizing difference between the linearly extrapolated and actual values.

The tracking algorithm determines how many derivatives to track per frequency step based on there

magnitudes. For slowly varying eigenvalues the addition of derivative predicting is unnecessary,

however during interactions it has proven to be invaluable. The frequency step size is calculated

per step and is changed to maintain a desired error level associated with the linearly extrapolated

values. As can be seen by Figure 3.10 when states strongly interact the step size must be significantly

reduced to maintain the track.

The interaction of states can be easily identified by the eigenvalue derivatives with respect to

frequency. The second derivative represents the rate of change in the slope and is thus the strongest

indicator. The first and second derivatives of the eigenvalues of H̃ in the [30,31.5] GHz frequency

range are presented in Figure 3.11. If the interaction is only between two states the second derivatives

are equal and opposite in sign, as depicted by Figure 3.11b. In addition the sum of all first and second

derivatives within the same s order is constant and zero respectively.
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Figure 3.11: (a) First and (b) second derivatives of the eigenvalues associated with H̃ forω/2π ∈
[30, 31.5] GHz using the field geometry given by Eq. 3.32.

As depicted by the presented figures, the tracking process requires small frequency steps and

is thus computationally intensive especially for4Ẽ � ħhω. The presented computation required

approximately one thousand steps to track the eigenvalues to 20 GHz, resulting in a compute time

on the order of minutes. In order to carry the computation down into the MHz range of frequencies

requires hundreds of thousands of steps increasing the compute time to formidable levels. In

addition for more complex field geometries such as non-parallel magnetic and electric field vectors

the state interactions become much stronger further increasing the computational time. Thus to fit

the experimental data a fast and efficient method must be developed due to the fact thousands of

spectral line profiles are calculated per fit.

In summary time dependent Schrödinger equation given by Eq. 3.12 is reduced to an eigenvalue

problem utilizing Floquets theorem and a Fourier series expansion of time periodic coefficients.

The corresponding solution is perturbative in the sense that mixing of the magnetic substates only

within the n level is allowed. For a non-perturbative solution all discrete and continuous states

must be considered. Due to the formidable computation time required to arrive at this solution an

approximate method is developed and presented in Section 3.3.3.

3.3.2 Calculation of the Spectral Line Profile

This section presents the calculation of the spectral line profile given the energies and wave functions

associated with the upper and lower levels. The spectral line profile is calculated in two steps:

first the discrete spectra is found by solving the Schrödinger equation given by Eq. 3.13, second

the continuous spectra is generated from the discrete given the broadening mechanisms. The

connection operator Ĥ is the electric dipole approximation of the exact spontaneous emission

operator given by
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Ĥ ∝∇· ε̄e ik̄ ·r̄ =∇· ε̄
�

1+ ik̄ · r̄ + ...
�

. (3.40)

Where ε is the polarization vector of the emitted photon. The electric dipole operator is derived

by expanding the exponential of Eq. 3.40 in a Taylor series. Only the first term in the Taylor series

expansion is kept and the∇ operator is replaced with r̄ , by use of the relationship −iħh∇= iωme r̄ .

Only the relative intensity of the spectral line profile is desired thus all constants can be dropped.

Although the angular frequency of the emitted photonω is different for the transitions composing

the spectral line profile the variation with respect to the magnitude is insignificant and is thus

treated as a constant. Following substitution and truncating after the first term yields

Ĥ ≈∇· ε̄∝ r̄ · ε̄ . (3.41)

The electric dipole approximation of the spontaneous emission connection operator is valid for

most laboratory plasmas with substantial collisionality [67].

The derivation of the time dependent and time averaged discrete spectral line profiles is pre-

sented below. The wave functions Ψ̃ of Eq. 3.12 form a complete set, thus the expansion given

by

Θ(t ) =
N
∑

l=1

Γl (t )Ψ̃l (t ) (3.42)

can be made. Where Θ is the wave function associated with the Schrödinger equation, given by

Eq. 3.13, describing the perturbed atom undergoing an electronic transition. Substituting Eq. 3.42

into this Schrödinger equation yields

iħh
N
∑

l=1

dΓl
dt
Ψ̃l =

N
∑

l=1

Γl Ĥ Ψ̃l . (3.43)

Eq. 3.43 is multiplied by Ψ̃∗k and integrated over all space to arrive at

iħh
dΓk
dt
=

N
∑

l=1




Ψ̃k

�

�Ĥ
�

� Ψ̃l

�

Γl , (3.44)

governing the time dependence of the expansion coefficients Γk .

The assumption is made that the system is initially in state Θ = Ψ̃i . The probability that the

system in state i at time τwill by time t transition to state k by emitting a photon is |Γk (t )|2. The

time interval t −τ is taken to be small compared to the lifetime of the state i such that the solution

of Eq. 3.44 can be solved utilizing first order time dependent perturbation theory. The expansion

coefficients Γk are then written as
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Γk (t ) = Γ
0
k + Γ

1
k (t ) + . . . where Γ 0

k =δk i . (3.45)

Upon substitution of Γk into Eq. 3.44 and equating the first order terms yields

Γ 1
k (t ) =−

i

ħh

∫ t

τ




Ψ̃k

�

�Ĥ
�

� Ψ̃i

�

dt ′ . (3.46)

The wave functions Ψ̃i and Ψ̃k are given by

Ψ̃i (t
′
) =

s̃
∑

s=−s̃

N
∑

j=1

c s
i jΦ j e −i(ω̃i+sω)t ′ and Ψ̃k (t

′
) =

s̃
∑

s=−s̃

N
∑

m=1

c s
k mΦm e −i(ω̃k+sω+ω̂)t ′

as defined by Eq. 3.20, where ω̂ is the angular frequency of the emitted photon and ω̃i = Ẽi /ħh .

Performing the integration yields

Γ 1
k (t ) =−

2i

ħh

N
∑

j=1

N
∑

m=1




Φm

�

�Ĥ
�

�Φ j

�

s̃
∑

s1=−s̃

s̃
∑

s2=−s̃

c s2
k m
∗
c s1

i j e −
i
2 (ω̃i k+(s1−s2)ω−ω̂)(t+τ)

·
sin

�

1
2 (ω̃i k + (s1− s2)ω− ω̂)(t −τ)

�

ω̃i k + (s1− s2)ω− ω̂
, (3.47)

where ω̃i k = ω̃i − ω̃k . Taking the magnitude squared of the first order correct expansion coefficient

Γ 1
k yields the transition probability as given by

�

�Γ 1
k (t )

�

�

2
=

4

ħh 2

N
∑

j=1

N
∑

m=1

N
∑

j ′=1

N
∑

m ′=1




Φm

�

�Ĥ
�

�Φ j

�


Φ j ′
�

�Ĥ
�

�Φm ′
�

·
s̃
∑

s1=−s̃

s̃
∑

s2=−s̃

s̃
∑

s ′1=−s̃

s̃
∑

s ′2=−s̃

c s2
k m
∗
c s1

i j c
s ′2

k m ′c
s ′1

i j ′

∗
e −

i
2 (s1−s2−s ′1+s ′2)ω(t+τ)

·
sin

�

1
2 (ω̃i k + (s1− s2)ω− ω̂)(t −τ)

�

ω̃i k + (s1− s2)ω− ω̂
sin

�

1
2 (ω̃i k + (s ′1− s ′2)ω− ω̂)(t −τ)

�

ω̃i k + (s ′1− s ′2)ω− ω̂
. (3.48)

The transition probability as a function of the emitted photon frequency consists of a series

of peaks centered about ω̃i k + (s1 − s2)ω having widths of approximately 1/(t −τ). It is assumed

that the time t −τ is much larger then the fundamental period of the electric field such that the

peaks are narrow relative to the interpeak spacingω. In this limit the transition probability can be

approximated by

�

�Γ 1
k (t )

�

�

2 ≈
∫ s̃

∑

s1=−s̃

s̃
∑

s2=−s̃

δ(ω̃i k + (s1− s2)ω− ω̂)S
s1,2

k i (t )dω̂ . (3.49)
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Where S
s1,2

k i is the number of photons emitted by transitions from state i → k into the solid angle dΩ

with angular frequency ω̂≈ ω̃i k + (s1− s2)ω during the time interval [τ, t ] and is given by

S
s1,2

k i (t ) =
1

ħh 2

N
∑

j=1

N
∑

m=1

N
∑

j ′=1

N
∑

m ′=1




Φm

�

�Ĥ
�

�Φ j

�


Φ j ′
�

�Ĥ
�

�Φm ′
�

·
s̃
∑

s ′1=−s̃

s̃
∑

s ′2=−s̃

c s2
k m
∗
c s1

i j c
s ′2

k m ′c
s ′1

i j ′

∗ e −i(s1−s2−s ′1+s ′2)ωτ− e −i(s1−s2−s ′1+s ′2)ωt

i(s1− s2− s ′1+ s ′2)ω
ρ(ω̂)dΩ . (3.50)

Where ρ(ω̂) is the density of photon states per steradian. As discussed above when deriving Ĥ

the relative spectral line profile is of interest therefore all constants are dropped including ρ(ω̂).

It has been assumed that the time t −τ is much smaller then the lifetime of the excited state and

much larger then fundamental period of the electric field. This implies that the Eq. 3.49 is valid in

the limit that the period of the electric field is much smaller then the lifetime of the excited state.

The emission intensity per unit solid angle per unit time is given by differentiating the integrand of

the transition probability as given by

Ik i (ω̂, t )≡
d

dΩ

d

d t

�

s̃
∑

s1=−s̃

s̃
∑

s2=−s̃

δ(ω̃i k + (s1− s2)ω− ω̂)S
s1,2

k i (t )

�

.

Carrying out the differentiation the time dependent emission intensity for the i → k transition is

found and is given by

Ik i (ω̂, t )≈
N
∑

j=1

N
∑

m=1

N
∑

j ′=1

N
∑

m ′=1




Φm

�

�Ĥ
�

�Φ j

�


Φ j ′
�

�Ĥ
�

�Φm ′
�

s̃
∑

s1=−s̃

s̃
∑

s2=−s̃

δ(ω̃i k + (s1− s2)ω− ω̂)

·
s̃
∑

s ′1=−s̃

s̃
∑

s ′2=−s̃

c s2
k m
∗
c s1

i j c
s ′2

k m ′c
s ′1

i j ′

∗
e −i(s1−s2−s ′1+s ′2)ωt . (3.51)

The time averaged intensity is obtained by averaging Eq. 3.51 over the electric field period and is

given by

Ik i (ω̂)≈
N
∑

j=1

N
∑

m=1

N
∑

j ′=1

N
∑

m ′=1




Φm

�

�Ĥ
�

�Φ j

�


Φ j ′
�

�Ĥ
�

�Φm ′
�

s̃
∑

s1=−s̃

s̃
∑

s2=−s̃

δ(ω̃i k + (s1− s2)ω− ω̂)

·
s̃
∑

s ′1=−s̃

s̃
∑

s ′2=−s̃

δ(s1− s2− s ′1+ s ′2)c
s2

k m
∗
c s1

i j c
s ′2

k m ′c
s ′1

i j ′

∗
. (3.52)

The time dependent and time averaged discrete spectral line profiles are obtained by summing

over all the magnetic substates as given by
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ID (λ̂, t ) =
N
∑

i=1

N
∑

k=1

Ik i (λ̂, t ) (3.53)

and

ID (λ̂) =
N
∑

i=1

N
∑

k=1

Ik i (λ̂) (3.54)

respectively. The units of angular frequency have been converted to wavelength by ω̂= 2πc /λ̂. The

matrix elements associated with the electric dipole operator



Φm

�

�Ĥ
�

�Φ j

�

are calculated as outlined

in Appendix B with the quantity e Ēn replaced by the polarization vector ε̄.

The polarization vector is calculated based on the observation geometry as given by Figure 3.12,

where the radiating atom is located at the origin of the coordinate system.

 

 

ϕ 
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Figure 3.12: Observation geometry and polarization vector coordinate system.

The total emission originating from the atom is unpolarized and isotropic if the magnetic substates

are statistically populated. If an observer is viewing the atom along a cord defined by the polar angle

θ and the azimuthal angleφ the collected emission will be polarized. The polarization vector of the

photons propagating along the observation cord is projected into the directions ε̄α and ε̄β which in

addition to the observation cord form an orthogonal set. Due to the orthogonality the product of

the two matrix elements must be summed over both vectors as given by




Φm

�

�Ĥ
�

�Φ j

�


Φ j ′
�

�Ĥ
�

�Φm ′
�

=



Φm

�

�ε̄α · r̄
�

�Φ j

�


Φ j ′
�

�ε̄α · r̄
�

�Φm ′
�

+



Φm

�

�ε̄β · r̄
�

�Φ j

�


Φ j ′
�

�ε̄β · r̄
�

�Φm ′
�

. (3.55)

The vectors ε̄α and ε̄β are given in terms of the angles associated with the observation cord as given

by
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ε̄α =−cosφ cosθ x̂ − sinφ cosθ ŷ + sinθ ẑ

ε̄β =−sinφ x̂ + cosφ ŷ .

Typically the angles θ andφ are fixed. Thus to take advantage of the spectral line profile depen-

dence on the polarization vector a polarizer is utilized. The polarizing optical element is defined as

transmitting along the ε̄′α and ε̄′β orthogonal directions with transmission coefficients T1 and T2

respectively. These new vectors lie in the plane defined by the original, ε̄α and ε̄α, and are rotated by

the angle χ as given in Figure 3.10.

 

 
χ 

ϵα

ϵβ

ϵβ

ϵα

Figure 3.13: Rotation of polarization vector coordinate system.

The product of the two matrix elements must be summed over the rotated vectors:

D

Φ j2

�

�

�Ĥ
�

�
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ED

Φ j ′1

�

�

�Ĥ
�

�

�Φ j ′2

E

=
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�

�

�ε̄′α · r̄
�

�

�Φ j1

ED

Φ j ′1

�

�

�ε̄′α · r̄
�

�

�Φ j ′2

E

+
D

Φ j2

�

�

�ε̄′β · r̄
�

�

�Φ j1

ED

Φ j ′1

�

�

�ε̄′β · r̄
�

�

�Φ j ′2

E

. (3.56)

The new vectors ε̄′α and ε̄′β are given in terms of the polarizer angle χ and the original vectors:

ε̄′α = T1

�

ε̄α cos(χ) + ε̄β sin(χ)
�

ε̄′β = T2

�

−ε̄α sin(χ) + ε̄β cos(χ)
�

.

For the purposes of this dissertation we define the π components of the spectral line profile such

that the polarizer is parallel to the electric field and the σ components of the spectral line such
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the polarizer is perpendicular to the electric field, regardless of the orientation of the magnetic

field. This is due to the fact that the spectral line profile is not significantly effected by a 1000 Gauss

magnetic field given the associated broadening mechanisms.

Due to reasons discussed in Section 3.2 the time averaged spectral line profile is of interest for

the experimental measurements and thus only the corresponding theoretical calculations will be

presented. Unless otherwise stated the spectral line profile is taken to be time averaged for the

remainder of this dissertation. For the purpose of concept development the field geometry given by

B̄ = 1000 ẑ Gauss Ē (t ) = 5 cos(ωt ) ẑ kV/cm (3.57)

will be considered and applicable to the figures contained within the remainder of the this section.

The angular frequency of the electric field is varied depending on the presented figure.

Figure 3.14 gives the discrete spectral line profile at 20 GHz for the π components of the Hβ
transition as calculated by Eq. 3.54. The frequency was chosen such that the satellite structure could

be identified. For the given field geometry seven satellites are present to the left and right of the line

center. Each satellite is composed of many transitions at various wavelengths and is due to the fine

structure effects and magnetic field.
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Figure 3.14: Time averaged discrete Hβ π profile with a field geometry given by Eq. 3.57 with
ω= 20 GHz.

The continuous spectral line profile is obtained by convolving the discrete with both the in-

strument function of the spectroscopic system and the radiator distribution function. The radiator

distribution function is taken to be Gaussian with an arbitrary number of groups as given by
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IR (λ) =
NR
∑

i=1

IR i e
−
�

λ−λR ip
2σR i

�2

. (3.58)

The instrument function is experimentally measured and as will be shown in Section 4.2.2 is accu-

rately represented with a bi-Gaussian function. For the sake of generality the instrument function is

represented as a summation of Gaussian functions as given by

II (λ) =
NI
∑

i=1

II i e
−
�

λ−λI ip
2σI i

�2

. (3.59)

The continuous spectral line profile is found by the convolution of ID (λ̂) with IR (λ) and II (λ) as

given by

I (λ) =

∫ ∞

−∞

∫ ∞

−∞

�

ID (λ̂)IR (Λ− λ̂)dλ̂
�

II (λ−Λ)dΛ . (3.60)

An analytical expression can be obtained for Eq. 3.60 due to the fact the discrete spectrum consists

of Dirac delta functions and the radiator distribution and instrument functions are decomposed

into a summation of Gaussian functions. Performing the integration yields

I (λ) =
N
∑

i=1

N
∑

k=1

NR
∑

m=1

NI
∑

n=1

Ik i (λ̂)IR m II n e
−
�

λ−λR m−λI n−λ̂p
2σmn

�2

. (3.61)

Where the broadening parameterσmn is given by

σmn =
�

k TR m

MR c 2
λ̂2+σI n

2
�1/2

,

where MR is the mass of the radiating atom or ion. The radiator distribution function broadening

parameterσR i is given in terms of the radiator temperature k TR i associated with the i t h group [67].

The continuous and discrete spectral line profiles associated with the π components of the Hβ
transition are presented in Figure 3.15 and Figure 3.16 for an electric field frequency of 20 and 5

GHz respectively. The discrete spectral line profile is plotted with negative intensities such that the

effect of the broadening mechanisms can be seen. The radiator distribution function is taken to be

at zero temperature and the instrument function is Gaussian withσI 1 = 0.005 Å. The broadening

parameters were chosen such that the satellites would be visual if they were naturally separated.

As was seen in Figure 3.14, which presented only the discrete spectral line profile of Figure 3.15,

seven satellites to the left and right of the line center are visible in the continuous spectral line profile.

In addition each satellite has a unique structure which becomes more prominent as the broadening

parameter is decreased. At 5 GHz the satellites are not separated in either the continuous or discrete
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spectral line profile, as shown by Figure 3.16. Here the spread in energy associated with the fine

structure effects and magnetic field is greater then the overall satellite spacing ħhω, thus resulting in

overlap and a non-distinguishable satellite structure.
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Figure 3.15: Time averaged continuous and discrete Hβ π profiles with a field geometry given by
Eq. 3.57 withω= 20 GHz.
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Figure 3.16: Time averaged continuous and discrete Hβ π profiles with a field geometry given by
Eq. 3.57 withω= 5 GHz.

As discussed above the separate measurement of the π andσ components of the spectral line

profile is expected to increase the certainty in the extracted fit variables. This is due to the fact

that the π andσ components are effected differently by the magnetic and electric fields. The Hβ
and the 53D → 23P He I π andσ components of the spectral line profile will be presented for an
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electric field frequency of 13.56 MHz. Only a discussion on the differences associated with the π

and σ components will be provided here, the overall line shape is discussed in Section 3.5. The

expected radiator distribution and instrument function parameters associated with the experimental

measurements will be utilized to calculate the continuous spectral line profile and are given in

Table 3.3.

Table 3.3: Radiator and instrument parameters.

Parameter Hβ 53D→ 23PHe I

NR 1 1

IR 1 (a.u.) 1 1

λR 1 (Å) 0 0

k TR 1 (eV) 1 0

Parameter Hβ 53D→ 23PHe I

NI 1 1

II 1 (a.u.) 1 1

λI 1 (Å) 0 0

σI 1 (Å) 0.11 0.11

The radiator distribution function is a single temperature for both the Hβ and the 53D → 23P

He I transitions with temperatures of 1 and 0 eV respectively. The instrument function is Gaussian

and equivalent for both transitions. Figure 3.17 presents the spectral line profile for the π and σ

components of the Hβ transition.
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Figure 3.17: π and σ polarization of the Hβ spectrum with a field geometry given by Eq. 3.57 at
ω= 13.56 MHz.

The magnetic substates associated with the transitions giving rise to the π polarized photons have

energies that scale more strongly with the electric field then those of the σ, a factor of 2 for the

n = 4 level. In fact for all hydrogen-like transitions the π profile is always significantly more effected

by the electric field then the σ profile. In terms of the magnetic field the opposite is the case,
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those associated with theσ components are more strongly effected. As depicted by Figure 3.17 the

difference between the profiles is significant and is thus expected to be a great benefit when fitting

the data.

Figure 3.18 presents the spectral line profile for the π and σ components of the 53D → 23P

He I transition. As was found above, the magnetic substates associated with the π components

have energies that scale more strongly with the electric field then those of theσ. The difference in

the scaling is much less significant when compared to hydrogen resulting in π andσ profiles with

very similar characteristics. As the electric field intensity increases the differences in the profiles

become more pronounced. This is due to the fact that the scaling is proportional to the electric field

intensity squared where that of hydrogen is linear. Thus for helium-like transitions greater electric

field intensities are required for substantial differences in the profiles.
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Figure 3.18: π andσ polarization of the 53D → 23P He I spectrum with a field geometry given by
Eq. 3.57 withω= 13.56 MHz.

In summary the spectral line profile as calculated by Eq. 3.54 is valid for the lifetime of the excited

state τ∗ much greater then the period of the electric field waveform τ. The lifetime of the Hβ and

53D → 23P He I excited states is 33 and 105 ns respectively, both are on the order of the electric field

waveform period 74 ns. Thus the validity of this approximation must be addressed. In addition the

computational difficulties associated with tracking the eigenvalues of Eq. 3.31 to the MHz range

of frequencies is formidable. The validity of our approximation and the extensive computational

time required to implement the Floquet method is addressed in the quasistatic approximation of

Eq. 3.12 and is presented in the following section.

60



3.3.3 Quasi-static Approximation

This section presents and explores the validity of the quasi-static solution to the Schrödinger equa-

tion given by Eq. 3.12. The quasi-static solution is approximate and valid in the limit that the lifetime

of the excited state is much less then the period of the electric field waveform: τ∗�τ. As discussed

above the Floquet method is exact, ignoring truncation error, and is thus valid regardless of this

ordering. It is in the approximation of the transition probability given by Eq. 3.49 which is invalidated

in this limit. Additionally, regardless of the above this approximation is valid in the limit that the

dominate spectral broadening parameter is much greater then the satellite spacing.

Solving the Schrödinger equation given by Eq. 3.12 in the MHz range of frequencies utilizing the

Floquet method is unrealistic due to the immense computationally time required to calculate and

track the eigenvalues. Therefore, to explore solutions significantly less computational intensive the

quasi-static approximation is investigated. This approximation is made by a time discretization of

the Hamiltonian H̃ (t ) resulting in the set of non-coupled time independent Schrödinger equations

iħh
∂ Ψ̃

∂ t
= H̃ (td )Ψ̃ td ∈ [0,τ] for d = [1, ND ] . (3.62)

The time periodic Hamiltonian H̃ (t ) is discretized evenly over ND cells within a period of the electric

field waveform. The only time dependent quantity associated with H̃ (t ) is the electric field. Therefore

the discretization is completely carried out by discretizing the electric field waveform as presented

in Figure 3.19. The solid line is the exact waveform while the markers indicate the discretized values.
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Figure 3.19: Discretization of electric field waveform for the quasi-static approximation of H̃ (t ).

The quasi-static approximation is interpreted as the limit in which the quantum states respond

instantaneously to the time dependent perturbations. As such, these states at any point in time are
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approximated by the solution of the time independent Schrödinger equation associated with the

instantaneous values of the time dependent quantities. The discretized Schrödinger equation of

Eq. 3.62 is therefore representative of the system at time ti under the influence of a static electric field

given by Ē (ti ). However, it should be noted that this approximation of the quantum states at time

ti is not representative of the exact obtained utilizing the Floquet method, in fact the differences

can be quite extreme. The quasi-static solution is not meant to approximate the energy and wave

function of the quantum states but only the dominant transition probabilities. Thus it is only in the

calculation of the continuous spectral line profile that the quasi-static solution is accurate.

The set of ND time independent Schrödinger equations are solved in a similar manner to that

presented in Section 3.3.1 resulting in a reduction to a set of eigenvalue problems as given by

H̃ d
Ψ̃

d
k = Ẽ d

k Ψ̃
d
k . (3.63)

Where the instantaneous Hamiltonian H̃ i
at time ti is given by

H̃ d =







E1+E B
11+E E d

11 · · · E B
N 1+E E d

N 1
...

...
...

E B
1N +E E d

1N · · · EN +E B
N N +E E d

N N







having eigenvectors Ψ i
k given by

Ψd
k =







c d
k 1Φ1

...

c d
k NΦN






.

The matrix elements E E d

j m associated with the instantaneous electric field Ēd are given by

E E d

j m = 〈Φm |H E d
|Φ j 〉 . (3.64)

The matrix elements are calculated utilizing the procedure given in Appendix B, substituting for the

approximate Hamiltonian H E i
as given by

H E d
= e Ē (td ) · r̄ .

Following the calculation of the matrix elements of H̃ d
the N eigenvalue and eigenvector pairs,

Ẽ d
k and Ψ̃

d
k respectively, associated with each of the ND Schrödinger equations can be found. Utilizing

the method presented in Section 3.3.2 with the appropriate eigenvalue and eigenvector pairs the

emission intensity of the i → k transition at time td can be calculated and is given by
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I d
k i (ω̂)≈δ(ω̃

d
l k − ω̂)

N
∑

j=1

N
∑

m=1

N
∑

j ′=1

N
∑

m ′=1




Φm

�

�Ĥ
�

�Φ j

�


Φ j ′
�

�Ĥ
�

�Φm ′
�

c d
k m
∗
c d

i j c d
k m ′c

d
i j ′
∗

. (3.65)

The time dependent discrete spectral line profile is obtained by summing over all magnetic substates

as given by

ID (λ̂, td )≈
N
∑

i=1

N
∑

k=1

I d
k i (λ̂) . (3.66)

That of the time averaged is obtained by performing the same summation in addition to summing

over the set of ND time discretized solutions. The time averaged discrete spectral line profile as

given by

ID (λ̂)≈
N
∑

i=1

N
∑

k=1

ND
∑

d=1

I d
k i (λ̂) . (3.67)

Where the units of angular frequency have been converted to wavelength by ω̂= 2πc /λ̂.

The discrete spectral line profiles given by Eq. 3.66 and Eq. 3.67 have no physical significance

due to the fact that the energy and wave function of the quantum states are inaccurate. Additionally,

when τ∗ ≤ τ the transition probability becomes continuous and can no longer be approximated

as a series of delta functions as given by Eq. 3.49. Therefore in this limit the discrete spectral line

profile becomes continuous autonomously. Thus, only when the discrete is convolved with the

radiator distribution and instrument functions is a physically significant profile gained. In the limit

that τ∗�τ the continuous spectral line profile obtained utilizing the quasi-static approximation is

found to be accurate where that associated with the Floquet method is not.

To explore the possibility of the quasi-static solution yielding accurate estimates of the continu-

ous spectral line profile regardless of the ordering ofτ∗ andτ the quasi-static solution was compared

to that obtained utilizing the Floquet method. Figure 3.20 presents the quasi-static solution plotted

with that obtained utilizing the Floquet method at various frequencies with a field geometry given

by Eq. 3.57. The discrete spectral line profile was calculated utilizing Eq. 3.54 and Eq. 3.67 for the

Floquet method and the quasi-static approximation respectively, with the continuous calculated by

Eq. 3.60. The expected radiator distribution and instrument function parameters associated with

the experimental measurements were utilized as given by Table 3.3. The quasi-static solution is

independent of frequency and only depends on the magnitudes and phase angles associated with

the harmonic spectrum of the electric field waveform. In contrast the solution obtained utilizing

the Floquet method is in addition to the mentioned parameters dependent on the frequency.
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Figure 3.20: Comparison of the quasi-static solution with that of the Floquet method at various
frequencies for the Hβ π profile with a field geometry given by Eq. 3.57.

As depicted by Figure 3.20 the continuous spectral line profile obtained utilizing the Floquet

method converges to that of the quasi-static approximation as the frequency is decreased. For

the case under consideration the convergence is nearly complete at 5 GHz, thus regardless of the

ordering of τ∗ and τ both methods will result in the same solution for frequencies below 5 GHz.

The convergence of these methods is purely based on the broadening parameter magnitudes of

the radiator distribution and instrument functions. The profile associated with the Floquet method

always has a satellite-like structure where the visibility of this structure depends on the ordering of

the dominant broadening parameterσ and the spacing of the satellites. In the limit thatσ is much

greater then the satellite spacing

σ�
�

�

�

�

λ̂−
2πc

ω̂±ω

�

�

�

�

(3.68)

the structure is completely removed by the broadening mechanisms and the profile converges to

that of quasi-static approximation.

The convergence of the profiles is completely contingent of the broadening mechanisms remov-

ing the satellite structure due to the fact that the quasi-static solution is incapable of producing such

a structure. The value ofω at which this convergence takes place is dominated by the broadening

mechanisms but is also dependent on both the magnetic and electric field vectors and the quantum

states associated with electronic transition. For the frequency in which this work is concerned,

13.56 MHz, the spectral line profiles of interest have converged given the spectroscopic instrument

function regardless of the radiator distribution function. Thus the quasi-static approximation is
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utilized exclusively when fitting the experimental data.

In summary the quasi-static solution to the Schrödinger equation given by Eq. 3.12 is only

appropriate for the calculation of the continuous spectral line profile in either of the following

two limits. The first states that the lifetime of the exited state must be much less then the period

of the electric field waveform: τ∗ � τ. The Floquet method always yields exact solutions to the

Schrödinger equation, ignoring truncation error, but in this limit the associated spectral line profile

as calculated in Section 3.3.2 is inaccurate. The second states that the broadening parameters must

be much greater then the satellite spacing as given by Eq. 3.68. In this limit both the quasi-static

approximation and the Floquet method yield the same continuous spectral line profile. Typically

the quasi-static calculation requires significantly less computational time, by orders of magnitudes,

and is thus preferred if applicable.

3.4 Spectral Line Profile Fitting

This section presents the methodology utilized to fit the theoretical to the experimental spectral

line profile. In order to conduct the fit an algorithm was devised and a program was written, this

section contains the details associate with that work. The fitting algorithm is based on minimizing

the reduced χ statistical parameter given by

χ =

�

1

NP −1

NP
∑

i

�

WE i
Ii − IE i

σE i

�2
�1/2

. (3.69)

Where NP is the number of experimental data points, Ii is the intensity of the i t h theoretical data

point, and WE i , IE i andσE i are the weight, intensity and standard deviation associated with the i t h

experimental data point. The reduced χ was formulated to allow for weighting of individual data

points through the parameter WE i . This allows for emphasis to be placed on various parts of the

spectral line profile. The weights are normalized such that

NP
∑

i

NP

WE i
= 1 .

This is done to ensure the absolute value of χ maintains its significance. The ideal value of χ is unity

indicating a perfect fit, values much greater and less then unity indicate an underdetermined and

overdetermined model respectively.

The fitting algorithm implements a brute force method in which the entire space associated

with the fit variables is discretized evenly within each dimension. The algorithm methodology is as

follows: the χ associated with each point in the discretized space is calculated, the point in which

the minima occurs is selected. The boundaries associated with the space are then reduced to those
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points adjacent to the selected point. The new space is then discretized and the χ at each point is

calculated in which the minimum value is again taken. This process is iterated until the desired

precision in the fit variables is achieved. Figure 3.21 gives a schematic of the fit process implemented

by the algorithm for a one dimensional space consisting of the fit variable E0, three iterations are

carried out.

Example: Left Boundary: 0 

  Right Boundary: 1 

  Discretization: 5 

 

        

 

In the above example the reduced chi squared value is calculated at the 
indicated values of X.  The value of X associated with the minimum 
reduced chi squared is selected for the fit.  The resolution of the fitted 
variable X can be increased by performing the above operation a user 
defined number of times or iterations. 

 

Example: Left Boundary: 0 

  Right Boundary: 1 

  Discretization: 5 

  Iterations: 3 
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Figure 3.21: Schematic of fit algorithm method.

The precision of the algorithm associated with the i t h fit variable is taken as the cell width

associated with the corresponding dimension in the discretized space and is given by

σi =
B2i −B1i

ND i

�

2

ND i

�NI T −1

. (3.70)

Where B1i and B2i are the boundaries of the i t h fit variable, ND i is the degree of discretization for the

i t h fit variable, and NI T is the number of iterations. The number of iterations is typically selected

such that the uncertainty in the fitted variable is dominated by the spectral noise and not Eq. 3.70.

Typically for problems having a space with high dimensionality gradient based methods utilizing

global search algorithms are implemented [119]. Therefore, along with the presented brute force

algorithm these methods were pursued but dismissed because the computational time was not

significantly decreased. In addition these elaborate methods do not search the entire space and

can potentially be trapped in a local minima. The brute force algorithm searches the entire space

and is therefore guaranteed to located the global minimum given adequate discretization. It was

found that this problem has a large number of local minima and thus revealing the logic behind the

algorithm selection.

The fitting of the spectral line profiles must be conducted in a two tier process due to the

presence of spectral noise and because the measured data is pixelated. The minimization algorithm

discussed above is implemented in both tiers. In the first tier the algorithm is implemented on the

fit variables associated with the physical quantities, such as the electric field parameters Ei and θi .

Thus a theoretical spectral line profile must be calculated for each point in this discretized space. In
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order to calculate the associated χ implementation of the minimization algorithm at a second tier

level is required. In this tier the experimental and theoretical spectral line profiles are fit by shifting

and scaling the experimental data. Once the minimization algorithm is complete in the second tier

theχ is assigned to the specific point in the discretized space associated with the physical quantities

in the first tier. Therefore the sole purpose of the second tier is to determine the most appropriate χ

given the theoretical spectral line profile.

There are two fit variables in the second tier SH and SV corresponding to shifting of the wave-

length, the horizontal axis, and scaling of the intensity, the vertical axis, respectively. The discretiza-

tion parameters and the number of iterations associated with the second tier minimization is

constant for all fitting presented in this dissertation and are given in Table 3.4.

Table 3.4: Second tier discretization parameters and uncertainty.

Parameter SV SH

ND 10 10

B1 93.0 % -0.1 Å

B2 107.0 % 0.1 Å

σ 0.011 % 0.016 Å

The second tier implementation of the minimization algorithm is required due to the spectral noise

and pixelation. The presence of spectral noise inhibits accurate normalization of the experimen-

tal data and as such requires determination through the scaling fitting parameter SV . Accurate

wavelength calibration becomes formidable on the order of and less then the pixel width. Thus

pixelation necessitates that the absolute wavelength calibration of the experimental data be carried

out through the shifting fitting parameter SH .

The experimental spectral line profile is measured at discrete points according to the pixels

associated with the CCD. If the CCD has a pixel width of∆λP then the intensity associated with i t h

pixel is given by the integral

IE i =

∫ λP i+∆λP

λP i−∆λP

IE (λ)dλ . (3.71)

Where λP i is the wavelength associated with the i t h pixel. In order to develop the data fitting

concepts a typical experimentally determined spectra line profile is presented. The data selected

was obtained in the RF sheath immediately adjacent to the RF biased electrode where the electric

field is expected to be at a maximum. The fit was conducted and the electric field and radiator

distribution function parameters were determined. Figure 3.22 presents the Hβ π andσ spectral
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line profiles giving the error associated with each pixelated intensity.
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Figure 3.22: Experimental Hβ (a) π and (b)σ spectral line profiles.

To calculate χ the theoretical profile must first be pixelated by application of Eq. 3.71. The

continuous and pixelated theoretical Hβ π andσ spectral line profiles are presented in Figure 3.23.

The electric field and radiator distribution function parameters determined from the fit to the

experimental profiles presented in Figure 3.22 were used in this calculation.
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Figure 3.23: Continuous and pixelated theoretical Hβ (a) π and (b)σ spectral line profiles.

Typically the pixelated values are very similar to the continuous, as seen by Figure 3.23. Only

when the spectral features are on the order of a pixel width do noticeable differences occur. Given

the appropriate values of the electric field fit variables the discrete theoretical spectral line profile is

calculated by Eq. 3.66 and Eq. 3.10 if the emission intensity is time dependent and by Eq. 3.67 if it is

not. The continuous profile is calculated by Eq. 3.60 utilizing the radiator distribution function fit

variables values. The fit variable values used to calculate the discrete and continuous profiles are
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determined by the first tier minimization algorithm.

The second tier minimization algorithm requires pixelation of the theoretical spectral line profile

for each value of the shift fit variable. This is due to the fact that the grid over which the pixelation

occurs is being altered. Applying the second tier minimization algorithm to the experimental and

theoretical spectral line profiles given in Figure 3.22 and Figure 3.23 respectively results in scaling

and shifting fit variables with values given by Table 3.5. The fitted profiles are presented in Figure 3.24.

As discussed above theπ andσ profiles are fit together as an object. This is carried out by minimizing

the summation of the χ ’s associated with the two spectral line profiles. The specific model utilized

to fit the Hβ and 53D → 23P He I spectral line profiles will be discussed in detail in Section 5.4.

Table 3.6 provides a list of the possible fit variables associated with the physical quantities of the

first tier minimization.

Table 3.5: Second tier fit results associated with the spectral line profiles presented in Figure 3.24.

π profile σ profile

SH -0.024 Å -0.022 Å

SV 103.6 % 100.9 %

χ 1.41 1.17
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Figure 3.24: Fitted experimental and theoretical Hβ (a) π and (b)σ spectral line profiles.

As given by Eq. 3.5 the electric field is modeled as a Fourier cosine series having NH harmonics.

The number of harmonics that can be accurately determined by the spectral line fitting program

will be discussed in Section 5.4. The radiator distribution function is modeled as a two temperature

Maxwellian. The electric field is perpendicular to the line of sight thus the Doppler shift is assumed
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to be negligible and therefore is not included as a fit variable. Only the intensity associated with the

second radiator distribution function group is a fit variable because the data is normalized.

Table 3.6: Available first tier fit variables.

Fit Variable

E0 to EH

θ1 to θH

k TR 1 to k TR 2

IR 2

The electric field parameter θ1 does not have a unique value unless the emission intensity is

a function of time. This is due to the fact that the electric field waveform is determined from a

time averaged quantity. If the emission intensity is a function of time then its measurement must

be made in order to calculate the time averaged spectral line profile as given by Eq. 3.10. The

measured emission intensity waveform is intrinsically correlated to that of the electric field through

the unknown parameter θ1. Therefore it is only when the emission intensity is time dependent that

a unique value of θ1 can be determined.

As discussed above the quasi-static method is utilized to calculated the spectral line profile. The

electric field and emission intensity waveforms associated with the fit presented in Figure 3.24 are

given in Figure 3.25. The markers and dashed lines indicate the locations at which the waveforms

were discretized, the value of ND was 30.
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Figure 3.25: Electric field and Hβ emission intensity waveforms associated with the fit presented
in Figure 3.24.
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The modern CPU contains multiple cores and thus makes hardware implementation of parallel

processing trivial. The spectral line fitting program was written in light of this to take advantage of the

CPU’s parallel computing capabilities. The most time consuming fit variables to search through are

those of the electric field parameters. As such the space associated with these variables is distributed

evenly to the available parallel processing nodes, typically eight for the fitted data presented in this

dissertation. The space associate with the remaining fit variables is distributed to all nodes and is

searched through in serial.

The electric field fit variables are the most time consuming to search through because at each

discretized point in the space a new discrete spectral line profile must be calculated. Therefore

to further decrease the computation time a library was formulated containing the discrete π and

σ spectral line profiles of the Hβ and 53D → 23P He I transitions. The library contains profiles

associated with static electric field intensities of 0 to 20 kV/cm in 5.0 V/cm steps. The fitting algorithm

calls the profile associated with the static electric field having a value closest to that of the discretized

electric field waveform. A call to the library greatly reduces the computation time due to the fact a

discrete spectral line profile requires a couple seconds to compute.

In summary the fitting program implements a brute force algorithm in a two tier scheme to

fit the theoretical spectral line profile to that of the experimental. The minimization algorithm is

deemed a brute force method due to the fact the entire space associated with the fit variables in

searched. This was found to be required due to the large number of local minima associated with

the quantity χ being minimized. Additionally a two tier process was required due to spectral noise

and pixelation of the experimental data.

3.5 Electronic Transition Selection

This section presents the sensitivity of a selected group of hydrogen and helium electronic transitions

on the simplified electric field associated with an RF sheath. The group of transitions were selected

based on those available for observation utilizing passive OES in the visible range of the spectrum.

The logic behind the selection of the Hβ and 53D → 23P He I transitions for the focus of this research

will be discussed.

The accuracy of the extracted electric field fit variables is increased with the number of spectral

line profiles able to be fit simultaneously as an object. As discussed in Section 3.2 this is to be achieved

by the measurement of the π andσ polarized emission independently, therefore both profiles will

be presented below for each investigated transition. Due to the anticipated long integration times

required to achieve an adequate signal to noise ratio, selection of an optimal transition is critical

for the successful application of this diagnostic. The transition was selected based on two criteria:

the sensitivity to the electric field and the magnitude of the emission intensity. The sensitivity of

the transition on the electric field increases with both the n of the upper and lower levels. To first
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order the scaling is linear and quadratic with the electric field magnitude for hydrogen and helium

respectively in the absence of a magnetic field. The emission intensity of the transition decreases

exponential with the quantum state energy and therefore increasing n [67]. Thus a transition will

be chosen by maximizing the n of both the upper and lower levels such that an adequate signal

to noise ratio can be achieved within the desired integration time on the order of minutes. The

transition sensitivity to the electric field is explored theoretically utilizing the developed atomic

theory presented in Section 3.3. The emission intensity of the transitions of interest are explored

experimentally.

The electric field waveform utilized for the modeling presented in this section is taken to have

a harmonic spectrum with NH = 1 and a frequency ofω/2π = 13.56 MHz. The magnitude of the

DC component E0 and the first harmonic E1 are equivalent which to first order approximates the

electric field of the capacitively coupled RF sheath [98]. The transitions are modeled for two electric

field waveforms:

ĒL (t ) = 0.5+0.5 cos(ωt ) ẑ kV/cm and ĒH (t ) = 5+5 cos(ωt ) ẑ kV/cm

having low and high intensities respectively. The magnetic field is taken to have only a z component

with a magnitude of 1000 Gauss.

The magnitude associated with the components of the electric field waveform ĒL (t ) was se-

lected to represent the desired minimum obtainable from a fit to the spectral profiles. A systematic

error analysis was conducted and presented in Section 5.4.1, the results of which determined this

value. The radiator distribution and instrument functions are taken to be representative of those

associated with the experimental measurements. The radiator distribution function is modeled as a

one temperature Maxwellian and the instrument function is taken to be Gaussian, the parameters

are given in Table 3.3.

3.5.1 Hydrogen

Hydrogenic transitions are an obvious candidate for implementation of this diagnostic for multiple

reasons. First, hydrogen is readily available and its isotopes are the fuel gas for typical thermonuclear

reactors. Second, the electric field perturbs the electronic structure of hydrogen more strongly then

any other atom. Third, the effect is relatively easy to quantify with high precision due to the fact

the wave functions are the only known analytically. The first three Balmer series transitions are of

interest Hα (n = 3→ 2), Hβ (n = 4→ 2), and Hγ (n = 5→ 2). These transition were selected due to

the fact they occur in the visible range of the spectrum and have the largest upper level value of n

with measurable intensities. The π andσ spectral line profiles associated with an electric field given

by ĒL (t ) and ĒH (t ) are given by Figure 3.26, Figure 3.27, and Figure 3.28 respectively.
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Figure 3.26: Hα spectral line profile associated with an electric field given by (a) ĒL (t ) and (b) ĒH (t ).
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Figure 3.27: Hβ spectral line profile associated with an electric field given by (a) ĒL (t ) and (b) ĒH (t ).
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Figure 3.28: Hγ spectral line profile associated with an electric field given by (a) ĒL (t ) and (b) ĒH (t ).
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In the presence of a static electric field the profile associated with the Balmer series transitions

undergoes a relatively symmetric splitting. This is due to the fact that the magnetic substates within

a given n level are nearly degenerate. As the broadening parameters are decreased the symmetry

becomes completely broken. For both the π andσ profiles of the Hβ transition a doubly peaked

profile is formed if the electric field magnitude is intense enough. The same result is also found for

the π profile of the Hα and Hγ transitions. However an additional feature is present in theσ profile

of these transitions. Here an intense component unaffected by the electric field is present resulting

in a triply peaked profile about the line center. For the Hα transition this component dominates the

spectrum leaving theσ profile essentially unaffected by the electric field.

The quasi-static approximation is utilized for the calculation and thus the profiles are arrived at

by averaging over those obtained in the presence of a static electric field. The values of which are

determined by a discretization of the waveform. Therefore following the description of the static

electric field effect the waveform ĒH (t )would produce a triply peaked profile about the line center.

Where the peak at the line center is either completely or partly due to the fact that the electric field

waveform spends an appreciable amount of time near zero. As seen by Figure 3.26 through Figure 3.28

only the π profile of Hβ and the π andσ profile of Hγ portray this structure, the remaining profiles

require a much stronger electric field. The symmetric splitting of the Balmer series transitions can

be easily masked by thermal broadening, especially at low electric field intensities such as ĒL (t ).

However, measurement of the polarizations independently can be a substantial deterrent. This is

due to the fact that the π profiles are significantly more effected by the electric field then those of

theσ, as discussed in Section 3.3.2. Therefore this measurement is an excellent indication of the

presence of an electric field in addition to increasing the certainty in the fit variables.

Comparing Figure 3.26 through Figure 3.28 it is seen that the Hα profiles have the weakest

dependence on the electric field. As discussed above this is due to the fact the upper level n value is

the smallest. Therefore either the Hβ or Hγ transition will be utilized depending on there emission

intensity. It was found experimentally that the Hγ spectral line profile has an unacceptable signal

to noise ratio given the allocated integration time. Thus the Hβ transition was selected for the

development of this diagnostic in hydrogen discharges.

3.5.2 Helium

Due to the fact that the electric field perturbs the profile of hydrogenic transitions almost symmetri-

cally an additional transition was investigated. That of a neutral helium was chosen for the reasons

stated below. First, while only found in thermonuclear reactors as a by product of fusion helium

gas injectors have been developed and implemented for various diagnostics. Second, the electric

field perturbs the spectral line profile highly asymmetrically. Third, for the electronic transitions

of interest the wave functions can be accurately represented by those of hydrogen as discussed in
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beginning of Section 3.3. The following three neutral helium transitions are of interest 41D → 21P ,

51D → 21P , and 53D → 23P . These transition were selected due to the fact they occur in the visible

range of the spectrum and have the largest upper level value of n with measurable intensities. The

π andσ spectral line profiles associated with an electric field given by ĒL (t ) and ĒH (t ) are given by

Figure 3.29, Figure 3.30, and Figure 3.31 respectively.

The electron-electron interaction in the helium atom removes the near degeneracy seen within

hydrogen for a given n level. Therefore, the neutral helium spectral line profiles of interest do not

experience a splitting but instead forbidden transitions are allowed and the wavelength of the line

center is shifted. The result is a multi-peaked profile which is highly asymmetric.

Due to the fact the quasi-static approximation is utilized to calculate the line profiles a descrip-

tion of the effect of the static electric field on the spectral line profile will aid in understanding

the effect of a dynamic electric field. In the presence of a static electric field the line center of all

investigated He I transitions is shifted to the red. Additionally forbidden transitions are allowed

and appear on blue side of the line center. Specifically, for the 41D → 21P He I transition two peaks

appear, for the 51D → 21P He I transition three peaks appear, and for the 53D → 23P He I transition

two peaks appear. These peaks associated with the forbidden transitions always have intensities

less then that of the line center for electric field intensities of interest ≤ 15 kV/cm. In addition the

intensities are all functions of the electric field intensity while the same is true for the wavelengths

some of the transitions have only a weak dependence. The far blue peak of the 41D → 21P He I

transition has a very low intensity for this field strength and is not of interest. The remaining peak

is stationary in terms of wavelength. For the 51D → 21P He I transition only the middle peak has

a wavelength that is dependent on the electric field magnitude, the other two peaks are approxi-

mately stationary in terms of wavelength. For the 53D → 23P He I transition the far blue peak the

wavelength is dependent on the electric field intensity while the remaining is not.

The previous description of the static electric field effect allows for that of the waveform ĒH (t )

to be realized. The electric field waveform ĒH (t ) spends a significant amount of time near zero

intensity thus the profiles will display a large peak at the unperturbed line center. In addition an

equivalent amount of time is spent at the waveform maximum which results in a peak to the red

of the line center. This peak is due to the shifting of the line center and not a forbidden transition.

The forbidden transition peaks that have wavelengths dependent on the electric field are smeared

out. This is seen in middle peak of Figure 3.30 and the far blue peak of Figure 3.31. The remaining

peaks have approximately stationary wavelengths and retain its shape even in the presence of a

time dependent field.

As discussed in Section 3.3.2 the difference in the π andσ profiles are not as significant as that

for Balmer series transitions, although, as the electric field is increased the differences become

significantly more prominent. As indicated by Figure 3.30 the 51D → 21P He I profiles have the

strongest differences. In general, it was found that the singlet lines (S = 1) had π and σ profiles
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exhibiting more signification differences then those of the triplet (S = 3).
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Figure 3.29: 41D → 21P He I profiles for an electric field given by (a) ĒL (t ) and (b) ĒH (t ).

4388.2 4388.4 4388.6 4388.8 4389 4389.2 4389.4 4389.6
0

0.2

0.4

0.6

0.8

1

Wavelength (Å)

In
te

ns
ity

 (
a.

u.
)

 

 

π polarization
σ polarization

(a)

4384 4385 4386 4387 4388 4389 4390
0

0.2

0.4

0.6

0.8

1

Wavelength (Å)

In
te

ns
ity

 (
a.

u.
)

 

 

π polarization
σ polarization

(b)

Figure 3.30: 51D → 21P He I profiles for an electric field given by (a) ĒL (t ) and (b) ĒH (t ).
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Figure 3.31: 53D → 23P He I profiles for an electric field given by (a) ĒL (t ) and (b) ĒH (t ).
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Comparing Figure 3.29 through Figure 3.31 it is seen that the 41D → 21P He I profiles have the

weakest dependence on the electric field. As discussed above this is due to the fact the upper level

n value is the smallest. Therefore either the 51D → 21P He I or 53D → 23P He I transitions will

be utilized depending on there emission intensity. However, it is desired that the 51D → 21P He I

transition be utilized because the electric field effects the profile strongest. The emission intensity

was measured experimentally as a function of pressure for these two transitions and is presented in

Figure 3.32. Due to the fact that the 53D → 23P He I transition has the greater emission intensity by

a factor of nearly 2.5 it was chosen for the development of this diagnostic for the helium discharges.
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Figure 3.32: Integrated spectral line profile as a function of pressure.
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CHAPTER

4

EXPERIMENTAL APPARATUS

In Chapter 3 it was shown that, from a signal to noise standpoint, that a time averaged passive OES

technique must be implemented to measure the spectral line profile. The majority of the chapter

was dedicated to the derivation of the corresponding atomic physics required to calculate the

theoretical spectral line profile. In addition, Chapter 3 presented the methodology and algorithm

implemented to fit the experimental data and a discussion on the selection of the Hβ and 53D → 23P

He I electronic transitions.

This chapter presents the experimental apparatus utilized to develop and implement time

averaged passive OES to measure the electric field of the capacitively coupled magnetized RF sheath.

The chapter is structured as follows: Section 4.1 presents and describes the experimental apparatus

utilized to generate the capacitively coupled magnetized RF sheath. Section 4.2 describes the system

utilized to obtain the spectroscopic data necessary to determine the RF sheath electric field. Section

4.3 describes the diagnostics utilized to characterize the discharge in terms of plasma parameters.

Section 4.4 describes the National Instruments hardware and software utilized to control and

automate the experiment.

The development of a diagnostic on a tokamak is highly undesirable due to the large operational

costs and limited availability of run time. Therefore a small scale laboratory experiment was designed

to serve as a test stand in which the edge environment of the tokamak could be simulated. The

basis of the experiment consists of an electrode biased at 13.56 MHz immersed in a magnetized

plasma generated by excitation of electron cyclotron waves. The RF biased electrode was designed
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to capacitively couple to the magnetized plasma thus forming the focus of the experimental research

efforts, the capacitively coupled magnetized RF sheath. The experiment was designed to generate

relatively strong electric fields, ≤ 15 kV/cm in magnitude, extending approximately 1 cm from the

RF biased electrode surface. Direct access to optical emission originating in the RF sheath region

is critical for the development of the diagnostic. This is due to the fact that unperturbed emission

can severely alter and mask the effects of the electric field on the spectral line profile. Typically

unperturbed emission is obtained from integration along the line of sight. In order to circumvent

this issue a limiter assembly was designed to mate directly to the RF biased electrode. This provides

an 8 mm in width and 2 mm in height plasma free channel surrounding the RF sheath along the

line of sight. It is along the width of this channel that the line of sight is scanned and the spatially

resolved spectral line profiles are obtained.

Two experimental configurations are investigated: electric and magnetic field vectors parallel and

perpendicular. The study of these two field configurations is of particular importance. The parallel

field configuration has been well studied both experimentally [17] and theoretically [95, 125, 103, 146]

and thus will be the focus for diagnostic validation. The perpendicular field configuration has

received significantly less attention and will therefore be the focus for diagnostic implementation.

In addition this focus is desired due to the fact that it is representative of that associated with the

ICRF antenna near-field.

4.1 Dynamic Stark Verification Experiment

This section presents and describes the experimental apparatus utilized to generate the capacitively

coupled magnetized RF sheath. The experimental apparatus was given the name DStarVE, an

acronym standing for Dynamic Stark Verification Experiment. The basis of DStarVE consists of an

electrode biased at 13.56 MHz immersed in a magnetized plasma generated by excitation of the

electron cyclotron wave (ECW) at 2.45 GHz. Capacitively coupled plasma sources typically operate

in low density regimes due to power going into ion heating rather then electron heating [97, 62, 110].

Thus to simulate the edge environment of the tokamak where the plasma density is on the order of

1018 m−3 an additional plasma source is necessary [153, 93]. ECW driven discharges can operate

above the density cutoff, nc = 7.2 · 1016 m−3 at 2.45 GHz, and thus are desirable.

The experimental apparatus was designed utilizing the Pro/ENGINEER software due to the need

for machining and fabrication of components. The vacuum chamber is a standard 6" cube, the

port labels are given in Table 4.1. Two field configurations are investigated: magnetic and electric

field vectors parallel and perpendicular. Figure 4.1 and Figure 4.2 give the cross section for the

experimental setup associated with the parallel and perpendicular field configurations respectively.

The port labels are equivalent for both field configurations while the coordinate system is changed.

This was done such that the axes in which the experimental measurements are being conducted
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is equivalent. The plasma parameters and spectroscopic data are scanned along the x and z -axes

respectively. The origin of the coordinate system is located at the center of the RF biased electrode

surface for both field configurations.

Table 4.1: Vacuum chamber port labels.

Label Location

1 Left

2 Top

3 Right

4 Bottom

5 Back

6 Front

1

2

3

4

z

x

Figure 4.1: Experimental setup for the parallel field configuration.

The magnetic field is generated by two water cooled toroidal coils placed collinearly about ports

1 and 3. The magnetic field coils are power by 1 kW Electrical Measurements Inc. power supplies.

The power supplies are driven by a ramped square waveform constructed in the DStarVE control

software and generated by a National Instruments PXI-6251 data acquisition board. The waveform

ramp up, steady state, and ramp down times are programmable. In order to achieve steady state the

ramp up time was set to 2 s to account for coil response. The steady state time was typically set to 10
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s but varied depending on the discharge operating parameters. The ramp down time was set to 0.5 s.

The amplitude of the waveform is programmable and was set to achieve a coil current of 180 A. This

results in a magnetic field intensity of 975 G at the RF biased electrode surface.

The magnetic field vector is along the negative z-axis for the coordinate system given in Figure 4.1.

The spacing between the toroidal coils is slightly larger then that required for a Helmholtz geometry.

This allows for a favorable magnetic field topology to excite the ECW [101]. Microwaves are launched

from microwave window at port 1 which is located at the center of the magnetic field coil. Research

grade hydrogen or helium gas flows into the vacuum chamber from port 5, the flow rate is controlled

manually be use of a needle valve. The vacuum chamber is pumped from port 4 by either a turbo

molecular or rotary vain pump depending on the working pressure. Optical access through the

vacuum chamber is granted by use of a quartz window located at port 6. The utilization of the ports

described above is universal with regard to the field configuration.

The simplest way to change the field configuration was to move the RF biased electrode. For

the parallel and perpendicular field configuration the RF biased electrode is located at port 3 and 2

respectively as depicted in Figure 4.1 and Figure 4.2.

1 3

4

2

z
y

Figure 4.2: Experimental setup for the perpendicular field configuration.
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The electron density and temperature and plasma potential waveform are measured by use of RF

compensated Langmuir and capacitive probes. The probes interface with the vacuum chamber by

use of a Wilson seal located at ports 2 and 6 for the parallel and perpendicular field configurations

respectively. These ports where chosen such that spatial scans could be conducted perpendicular

to the magnetic field vector. The location of the Wilson seal on ports 2 and 6 is equivalent such that

the measurement is made in the same spatial location relative to the RF biased electrode.

4.1.1 RF System

The RF electrode assembly and feedthrough are coaxial in geometry with an impedance of approxi-

mately 50 Ω. The coaxial RF electrode assembly consists of a copper inner conductor, boron nitride

dielectric, and aluminum outer conductor. At the plasma facing surface the inner conductor, referred

to as the RF biased electrode, has a diameter of 2 cm. The RF biased electrode was designed to have

a small diameter to allow for a large RF current density. This in turn drives large RF sheath voltages

[98] producing the desired electric field intensity of ≤ 15 kV/cm. The outer conductor has an inner

and outer diameter of 3.8 and 4.4 cm respectively. At the plasma facing surface the outer electrode is

keyed to mate with the limiter assembly while maintaining accurate alignment. Accurate alignment

is necessary because the collection optics are aligned with respect to the RF biased electrode surface

utilizing a detector mounted on the limiter assembly. The outer conductor bolts directly to the port

flange. The inner diameter of the outer conductors mating surface is raised to provide a superior RF

contact. Electrical mating of this type is typically required due to the fact the RF current flows only

in the first few skin depths, 100 µm for aluminum at 13.56 MHz.

The RF electrode feedthrough also has a copper inner conductor and a aluminum outer con-

ductor, however the dielectric is different and consists of two sections. The first section is Teflon,

colored blue in Figure 4.1 and Figure 4.2, and provides both electrical isolation and the vacuum

seal. The second section is air such that the impedance is maintained at 50 Ω for the majority of the

feedthrough. The inner conductor on the atmospheric side bolts directly to the RF biased electrode

providing the electric connection and the compression required for the vacuum seal. The outer

diameter of the inner conductors mating surface is raised to provide a superior RF contact. The

vacuum seal is provided at two locations. First the Teflon component is vacuum sealed to the port

flange by O-ring compression provided by the outer conductor. Second the RF biased electrode is

vacuum sealed to the Teflon component by O-ring compression provided by bolting to the inner

conductor. The atmospheric side of the RF electrode feedthrough was designed to mate with an EIA

3 1/8" RF connector.

The RF electrode was biased at 13.56 MHz by use of an RF Plasma Products (RFPP) 500 W

RF generator. The power level of the generator was set manually utilizing a potentiometer. While

the output was determined by a logic pulse generated by a National Instruments PXI-6251 data
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acquisition board. The logic pulse is formed in the DStarVE control software with a programmable

delay time and pulse width. Typically the delay time was set to 2 s and the pulse width was set to 10

s. These characteristic times were determined by the ramp up and steady state times, respectively,

associated with the magnetic field.

A standard EIA 3 1/8" I-V probe is used to measure the RF voltage and current waveforms utilizing

capacitive and inductive pickups respectively. The I-V probe directly mounts to the RF electrode

feedthrough such that the waveforms are measured as close as possible to the RF biased electrode

surface. The I-V probe waveforms are digitized with a TDS 2024 oscilloscope terminated to 50 Ω.

The oscilloscope connects with the National Instruments platform by use of a GPIB interface. The

DStarVE control software reads the oscilloscope and preprocesses the data. Calibration and analysis

are conducted post-experiment in a computer program written in MATLAB.

The I-V probe was calibrated with a network analyzer with an 2 port S-parameter test set utilizing

the following procedure. Port 1 of the network analyzer was connected to one side of the probe body

via a 3 1/8" EIA to N-type adapter while the remaining side of the probe body was terminated to a

50 Ω load. The transmission coefficient, S12, was measured by connecting port 2 of the S-parameter

test set to either the capacitative or inductive probe. The frequency was swept from 5 MHz to 250

MHz. The magnitude and phase of the transmission coefficients are give below in Figure 4.3.
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Figure 4.3: EIA 3 1/8" I-V probe transmission coefficient (a) magnitude and (b) phase.

The capacitative and inductive probe signals are calibrated by first taking the Fourier transform. The

expansion coefficients are corrected utilizing the data given in Figure 4.3 and the inverse Fourier

transform is taken to arrive at the RF voltage and current waveforms. The I-V probe is located

approximately 15 cm from the RF biased electrode surface. It is expected that the fundamental will

be in the dominate component therefore due to the large wavelength, 22 m, the transformation of

the waveforms to the electrode surface is negligible.
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In order to match the load to the 50 Ω impedance of the RF generator and thus minimize

the reflected power an L-type RFPP matching network was utilized. The matching network is

located immediately after the EIA 3 1/8" I-V probe. The matching network was optimized for

capacitively dominated loads and consists of three components: a shunted variable load capacitor,

series inductor, and a series variable tune capacitor. The load capacitor CL can have a possible

capacitance of 800 to 1800 pF. The series inductor has a value of 5.6 µH. The tune capacitor CT and

can have a possible capacitance of 10 to 500 pF. The capacitance of CL and CT is controlled by use of

an RFPP controller. The controller outputs two voltage signals ranging from 0 to 5 V corresponding

to the capacitor positions. These signals are digitized by a National Instruments PXI-6251 data

acquisition board.

The DC voltage induced on the RF biased electrode is measured by use of an RF choked 1:404

voltage divider located in the matchbox after the tune capacitor. This signal is digitized by a National

Instruments PXI-6251 data acquisition board. The acquired data is preprocessed and calibrated by

the DStarVE control software.

The forward and reflected power were measured by two Bird Thruline -50 dB directional couplers

mounted in 50 Ω EIA 3 1/8" line located between the RF generator and matchbox. The directional

coupler waveforms are digitized with a TDS 2024 oscilloscope terminated to 50 Ω. The oscilloscope

connects with the National Instruments platform by use of a GPIB interface. The DStarVE control

software reads the oscilloscope and preprocesses the data. Calibration and analysis are conducted

post-experiment in a computer program written in MATLAB.

The directional couplers were calibrated utilizing the RF generator power meter as follows. The

EIA 3 1/8" line housing the directional couplers were feed with the RF generator and terminated

with a 50 Ω load. The directional coupler signal was measured with a digital oscilloscope and the

peak to peak value was recorded as a function of input power. The calibration curves are given in

Figure 4.4 for the forward and reflected directional couplers
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Figure 4.4: RF directional coupler calibration curves.
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A circuit diagram of the RF system is given in Figure 4.5 showing the location of the various mea-

surement points and the elements of the matching network.

5.6 μH

VA VA V A

Page 1 of 1

8/28/2013file:///C:/Users/Elijah/Desktop/RF_CIR.svg

Directional CouplersRF Matching Network I-V Probe Plasma
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Figure 4.5: Circuit diagram of the RF system.

Ideally a matching network has a purely imaginary impedance. In reality the inductive elements

give rise to a finite resistance causing unwanted power absorption. To determine the power absorbed

by the plasma the efficiency of the matching network must be determined. Given the transmission

S21 and reflection S11 coefficients in Decibels the matching network power efficiency is determined

by

PE =
2 ·10S21/10+10S11/10−1

10S21/10
. (4.1)

S21 and S11 were measured by connecting the output and input of the matching network to ports

1 and 2, respectively, of a network analyzer with an S-parameter test set. The S-parameters were

measured at 13.56 MHz for values of CL and CT corresponding to the tune space of interest. The

calculated power efficiency of the matching network is given in Figure 4.6.
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Figure 4.6: Power efficiency of matching network in tune space of interest.
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The Q-factor of the RF system is very high and thus CT is only swept over a very narrow range as

indicated by Figure 4.6. The match efficiency was found to be severely reduced for CL ≥ 1.5 such

that over 50 % of the power is deposited in the matching network.

If the RF system is in a matched state the load impedance can be determined from the reflection

coefficient S11 of the matching network. The impedance of the load zL is given by

zL =
�

1+S11

1−S11

�∗
zo , (4.2)

where zo = 50 Ω is the termination input impedance. The plasma impedance zP can then be

calculated form that of the load and the matching network efficiency as given by

zP =RP + iXP , (4.3)

RP =R e {zL}−2R e {zL} (1−PE )

XP = I m {zL} ,

where RP and XP are the plasma resistance and reactance respectively. The second term of RP is

due to the finite resistance associated with the matching network otherwise the plasma and load

resistance would be equivalent. Utilizing the S21 and S11 coefficients measured to calculate the match

efficiency the plasma impedance is calculated and presented in Figure 4.7. For the investigated

discharges the matching network efficiency and plasma impedance are calculated by interpolating

or extrapolating the data contained in Figure 4.6 and Figure 4.7 given the load and tune capacitor

positions.
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Figure 4.7: Plasma (a) resistance and (b) reactance for tune space of interest.
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4.1.2 Microwave System

The edge environment of a tokamak seen by ICRF antenna and the Faraday screen typically has

an electron density and temperature on the order of 1018 m−3 and 10 eV respectively [153, 93]. The

capacitively coupled plasma generated by the RF electrode assembly described above is incapable of

producing plasma with these parameters. Thus to simulate this environment an additional plasma

source is required.

To access these plasma parameters a source based on the absorption of the whistler wave in the

electron cyclotron range of frequency, an electron cyclotron wave (ECW), is utilized. The whistler

wave is applicable because its propagation is not limited by the cutoff density nc = 7.2 · 1016 m−3

associated with absorption of the ordinary circularly polarized wave at 2.45 GHz. It has been shown

that launching microwaves into a region in which a negative gradient in the magnetic field exists

leads to absorption of the whistler wave [101, 68]. This requires launching the microwaves from a

point in which the magnetic field magnitude is greater than that required for resonance, 875 Gauss

at 2.45 GHz [120, 23].

To achieve a negative gradient in the magnetic field topology the spacing of the coils is increased.

In the Helmholtz geometry the ratio of the coil radius to spacing is unity, here it is decreased to

0.8. The magnetic field coils are operated at 180 A, the associated magnetic field intensity is given

in Figure 4.8 utilizing the coordinate system of the parallel field configuration. The coil current

was determined experimentally from that in which the maximum density was achieved at a given

microwave power level. The magnetic field coils are centered about the positions (0,0,±12) cm.
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Figure 4.8: Magnetic field intensity for coil current of 180 A.

The microwave window is located in the throat of the magnetic field coil centered about a

position of (0,0,-12) cm. In order to achieve this port 1 was extended by 4.4 cm utilizing a custom

fabricated adapter as depicted in Figure 4.1. The microwave window seals to the adapter by O-ring

compression and mates the waveguide to port 1. The center of the RF biased electrode surface
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is located at a position of (0,0,0) cm for both parallel and perpendicular field configurations. The

magnetic field intensity decreases from 1225 Gauss at the microwave window to 975 Gauss at the

center of the RF biased electrode surface.

A Micro-Now Instrument Company 2.45 GHz 500 W generator is utilized to supply the mi-

crowaves. The generator was modified to operator in a pulsed mode. The power output by the

generator was set manually by a potentiometer on the front panel. While the output was determined

by a logic pulse generated by a National Instruments PXI-6251 data acquisition board. The logic

pulse is formed in the DStarVE control software with a programmable delay time and pulse width.

Typically the delay time was set to 1.5 s and the pulse width was set to 10.5 s. These characteristic

times are determined such that steady state conditions would be achieved by the time the RF power

supply was activated.

WR340 waveguide is used for the microwave components which are comprised of an isolator,

dummy load, directional coupler, three stub tuner, and vacuum compatible microwave window.

The output of the generator is an N-type termination. Thus a low loss N-type coaxial cable is utilized

to mate the microwave components. By use of the N-type coaxial cable the generator feeds the input

of a Raytheon isolator. The reflected port of the isolator is terminated to a dummy load with an

attenuation factor of -27 dB. The forward port of the isolator is connected to a waveguide containing

two -60 dB directional couplers, sampling the forward and reflected waves. The directional couplers

are terminated with 432A HP crystal detectors which are utilized to measure the forward and

reflected power, Figure 4.9 gives the calibration curves. The waveguide containing the directional

couplers is connected to a three stub tuner. The three stub tuner mates the microwave window to

the adapter mounted to port 1 utilizing O-ring compression and thus providing the vacuum seal.
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Figure 4.9: Microwave directional coupler calibration curves.

To calibrate the 432A HP crystal detectors the generator and dummy load were connected directly

to the waveguide containing the directional couplers. The order of the connection determined which
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crystal detector was being calibrated. The output signal of the crystal detector was measured with

an oscilloscope and recorded as a function of power determined from the meter on the generator.

Thus the power meter on the generator is assumed to be accurate. The 432A HP crystal detector

signals were digitized by a National Instruments PXI-6251 data acquisition board. The acquired

data is preprocessed and calibrated by the DStarVE control software.

4.1.3 Limiter Assembly

The spectral line profile obtained utilizing passive OES is an integration of the emission along

the optical line of sight. Typically the spatial dimension associated with the region in which the

electric field exist is small compared to the overall length of the line of sight. Therefore the resulting

spectral line profile is dominated by emission originating in the bulk plasma where the electric field

is negligible. This emission is referred to as unperturbed because the electric field magnitude is

essentially zero when compared to that of the RF sheath.

The intensity associated with the unperturbed emission is unknown and difficult to estimate.

Therefore without an accurate estimate of this dominating intensity, determination of the electric

field from the spectral line profile is severely compromised. In order to demonstrate the effect of

unperturbed emission on the spectral line profile the Hβ transition is modeled for three cases: zero,

equal, and ten times the intensity of unperturbed emission. The magnetic and electric field vectors

are modeled as

B̄ = 1000 ẑ Gauss Ē (t ) = 5+5 cos(ωt ) ẑ kV/cm ,

where ω/2π = 13.56 MHz. The radiator distribution and instrument functions are taken to be

representative of those associated with the experimental measurements. The radiator distribution

function is modeled as a one temperature Maxwellian and the instrument function is taken to be

Gaussian, the parameters are given in Table 3.3. The spectral line profiles are given in Figure 4.10.

Figure 4.10 shows that the unperturbed emission severely alters the spectral line profile and be-

gins to mask the electric field effect especially for theσ profile. The modeled electric field magnitude

corresponds to the 10-15 kV/cm maximum intensity expected in the experimental work, at this value

its effect can still be seen. However for lower electric field intensities the effects will be completely

masked by the unperturbed emission rendering the spectral line profile unusable. The intensity

of the unperturbed emission associated with DStarVE is predicted be one to ten times, given the

dimensions of the RF biased electrode. Therefore removal along the line of sight is necessary in this

work.

In order to collect emission originating solely from the RF sheath region a limiter was designed

to provide a plasma free channel adjacent to the RF sheath along the line of sight of the collection

optics. The dimensions of the channel are 9 mm in width and 2 mm in height. The channel walls are
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blacked out to reduce collection of reflected emission. Additionally, to minimize reflections at the

channel boundary only the first 8 mm of RF sheath is investigated. This is expected to be adequate

based on the estimated 10 mm RF sheath width [98].
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Figure 4.10: Theoretical Hβ (a) π and (b)σ profiles with and without superposition of unperturbed
emission.

The limiter assembly consists of a support structure, limiter, and a detector. The support structure

is aluminum and mates concentrically to the outer conductor of the RF electrode assembly. This

mating scheme provides a flush surface to mount the limiter and detector. The support structure is

keyed to ensure alignment of the limiter assembly with respect to the RF biased electrode surface.

This is required because the collection optics are aligned with respect to the RF biased electrode

surface utilizing the detector mounted on the support structure. The limiter consists of two sections,

the first is composed of aluminum and extends from the quartz window of port 6 to the outer

conductor of the RF electrode assembly. The second is composed of machinable glass ceramic and

extends from the aluminum limiter components to the RF biased electrode surface. The limiter

component interfacing with the RF sheath was chosen to be a ceramic such that a grounded surface

would not be immediately adjacent to the RF biased electrode. The channel provided by the limiter

components is extended past the RF biased electrode surface in the same two component scheme.

The detector immediately follows the far limiter components along line of sight.

The ceramic limiter components were designed such that the magnetic field lines intersecting

with the RF sheath would remain perpendicular to the normal of their surface. This criteria ensures

that plasma tied to the magnetic field lines intersecting the RF sheath is not limited. In order to

meet this criteria the ceramic limiter components must be designed differently for the parallel and

perpendicular field configurations. The limiter assemblies associated the parallel and perpendicular

field configurations are given by Figure 4.11 and Figure 4.12 respectively. The support structure
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is the dark gray, the aluminum limiter components are orange and yellow respectively, and the

detector is light gray. The limit channel is seen in the cross-section view given by Figure 4.11b and

Figure 4.12b for parallel and perpendicular field configurations respectively.

(a)

(b)

Figure 4.11: Parallel field configuration limiter assembly (a) viewed along negative z -axis and (b)
cross-section viewed along the positive x -axis.

In the parallel field configuration the ceramic limiter is symmetric about the z-axis and limits the

plasma concentrically about the RF biased electrode surface. In the perpendicular field geometry the

ceramic limiters are not symmetric and only limit plasma directly adjacent to the aluminum limiter

components. In these experimental setups a highly peaked density profile would be expected in the

RF sheath due to the small diameter of the RF biased electrode and surrounding ceramic limiter.

However the magnetic field is assumed to relax the density profile significantly. This assumption

will be investigated experimentally by use of the RF compensated Langmuir probe described in

Section 4.3.1, the results will be presented in Section 5.1.

The detector located on the far side of the limiter assembly was designed to allow alignment of

the collection optics such that the corresponding line of sight is perpendicular to the normal of the

RF biased electrode surface to within 0.2 degree. The detector consists of a photodiode mounted

to the far end of two 200 µm in width linear apertures. The linear apertures are separated by 6

cm and are located 2.8 mm from the RF biased electrode surface on the z -axis. The detector is

based on the principal of line of sight. Therefore linear apertures were implemented in the design

to limit the photodiodes field of view such that it is nearly perpendicular to the normal of the RF

biased electrode surface. The linear aperture width and separation dictate the uncertainty in the

alignment and were determined from ray trace simulations described in Section 4.2.1. The cross
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section of the detector can be seen in Figure 4.11a and Figure 4.11b for parallel and perpendicular

field configurations respectively, the photodiode is not shown.

(a)

(b)

Figure 4.12: Perpendicular field configuration limiter assembly (a) viewed along negative z -axis
and (b) cross-section viewed along the positive y -axis.

The collections optics are mounted on a translation and rotational stage, alignment is achieved

by utilizing these two degrees of freedom to maximize the signal associated with the photodiode

during back illumination. During alignment the photodiode signal is very weak due to diffraction

and collimation caused by the linear apertures. Therefore a two stage operational amplifier was built

with a gain of approximately 106 to measure the signal. The output of the operational amplifier is

digitized by a National Instruments PXI-6251 data acquisition board. A LabVIEW code was written to

average the signal over many samples and display the result such that the alignment of the collection

optics can be conducted in real time. The alignment of the collection optics will be further discussed

in Section 4.2.1.

The cross section of the limiter assembly mated to the RF electrode assembly is depicted in

Figure 4.13 viewed from port 3 and Figure 4.14 viewed from port 4 for the parallel and perpendicular

field configurations respectively. A typical line of sight as viewed by the collection optics is given by

the black dashed line. The 2 cm emission region associated with the RF sheath is shaded rose. The

line of sight is translated along the z -axis, with4z indicating the possible observation locations.
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z

Figure 4.13: Experimental Setup for the parallel field configuration.

z

Figure 4.14: Experimental Setup for the perpendicular field configuration.
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4.2 Spectroscopic System

This section describes the spectroscopic system which consists of the collection optics, spectrometer,

and CCD detector. The collection optics were designed to observe optical emission with high spatial

resolution, ≤500 µm at the full width half maximum (FWHM) of the beam. The collection optics

mate to the spectrometer via fiber optic cable. The spectrometer is a Czerny-Turner type with a focal

length of 0.5 m. Depending on the nature of the experiment the detector is either a liquid nitrogen

cooled back illuminated or intensified CCD and directly mounts to the spectrometer.

4.2.1 Collection Optics

The collection optics were designed to observe a beam of emission with high spatial resolution, ≤
500 µm FWHM, by use of a collimating lens and two linear apertures. A nearly collimated beam is

collected by use of f = 70 mm achromatic lens focused on a 200 µm in diameter fiber optic. The

desired spatial resolution is achieved by limiting the collected emission by the two linear apertures

appropriately sized and spaced [148]. The linear apertures are mechanical having possible widths

ranging from 25 µm to 2500 µm. The layout of the collection optics including the limiter assembly

channel and RF biased electrode is given in Figure 4.15.
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Figure 4.15: Collection optics for beam profile simulation.

As depicted by Figure 4.15 the ordering of the collection optics elements is as follows: first aper-

ture, Glan-Thompson polarizer, second aperture, collimating lens, and fiber optic. The first aperture

has a width of 375 µm and dominates the resolution of the observed beam. A Glan-Thompson
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polarizer is located after the first aperture and is utilized to measure the π and σ polarizations

independently. The location of the polarizer in the optical train is unimportant as long as it occurs

before the fiber optic. The second aperture has a width of 1000 µm and has a small effect on the

resolution. The main purpose of the second aperture is to attenuate stray light due to reflections.

The spacing between the first and second apertures is 45 cm. The collimating lens focuses the light

that is not attenuated by the second aperture to the fiber optic cable. The fiber optic cable mates the

collection optics to the spectrometer and is attached to the collection optics via an SMA connector.

The collection optics are completely contained within Thorlabs lens tubes thus eliminating the

collection of stray emission. The Glan-Thompson polarizer is mounted inside of a rotatable lens

tube thus allowing for the π andσ polarizations to be measured independently by a rotation of the

lens tube of 90 degrees. The collection optics are mounted on a rotational and translation stage

allowing for alignment and scanning.

A 2D ray tracing code was written in MATLAB to aid the design process. The spacing and widths

of the linear apertures associated with both the collection optics and limiter assembly detector were

determined from simulation. However due to diffraction, appropriate widths for the collection optics

linear apertures were determined from experimental measurements. The effect of the misalignment

of the collection optics elements at its most severe level was included in the simulations. Figure 4.16

gives the modeled collection optics with the launched rays in its final configuration, absorbed and

collected rays are given in black and magenta respectively. The z -axis has been shifted such that it

is centered about the limiter assembly channel. The y-axis is shifted to far edge of the RF biased

electrode.
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Figure 4.16: Collection optics beam profile simulation via 2D ray tracing.
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The optimum spacing of the apertures was found to be approximately 45 cm from maximizing

resolution and intensity given a reasonable physical size constraint.

The beam profile is simulated by launching rays from the emission region, the rays that enter

the fiber optic are counted and there position of origin is stored. The beam profile is integrated

along the y -axis, the divergence of the beam along this axis will be discussed below. The simulated

beam profile is given in Figure 4.17.
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Figure 4.17: Simulated beam profile of collection optics.

Due to misalignment the simulated beam profile is not symmetrical and not centered about the

z -axis, the FWHM is approximately 500 µm. In order to determine the most appropriate values for

the widths of the linear apertures the beam profile was measured as a function of the aperture width.

The collected beam profile is approximated by that obtained by back illuminating the collection

optics with a white light source. A CCD array positioned 12 cm from the first aperture, a distance

equivalent to the center of the RF sheath, was utilized to measure the beam profile. Figure 4.18 gives

the measured beam profile for the final configuration of the collection optics and the beam profile

broadening parameters as a function of the first aperture width with the second having a value of

1000 µm.

The second aperture width does not effect the beam resolution significantly and thus only

the final configuration is presented. Figure 4.18a shows that the measured beam profile is highly

peaked in comparison to the simulated, this results in a 225 µm FWHM. In addition the measured

beam profile has very broad wings extending ± 1500 µm from the center. The above characteristics

indicate that diffraction effects are significant. Figure 4.18b shows that there is a minimum in the

curves occurring at an aperture width of 375 µm . This minimum is due to the diffraction limit at

small aperture widths and represents the maximum obtainable spatial resolution. The beam profile

was observed at the ends of the emission region, positions of 11 and 13 cm from the first aperture,

such that the divergence could be measured. It was found that the divergence of the beam profile
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for the final configuration was approximately 50 µm.
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Figure 4.18: (a) Measured beam profile of the collection optics and (b) the Full Width at X Maximum
(FWXM) of beam profile as a function of the first aperture width.

The collection optics are mounted onto a translational and rotational stage which is in turn

mounted to the bench top. The translation stage allows emission to be collected as a function of

z -axis position. The rotational stage allows for the collection optics to be aligned perpendicular

to the z -axis. The alignment of the collection optics is carried out utilizing the limiter assembly

detector. With the collection optics aligned, the translation stage is calibrated with respect to the

RF biased electrode surface and is at a position of z = 2.8 mm. As discussed in Section 4.1.3 the

collection optics are aligned by back illuminating with a bright white light source. The photodiode

signal is maximized as a function of stage angle and translation position. At a given translation

position the collection optics are rotated until the maximum signal generated by the photodiode

has been reached. This process is continued for various z -axis positions which are accessed by

the translation stage. The collection optics are aligned when the photodiode signal has reached its

maximum point. The ray tracing code was utilized to simulate the alignment of the collection optics,

again including misalignments at the most severe level. The aligned collection optics showing the

launched rays is given in Figure 4.19, absorbed and collected rays are given in black and magenta

respectively. The z -axis has been shifted such that it is centered about the limiter assembly detector.

The y-axis is shifted to the location in which the rays are launched.

In the simulation the rays were launched from the fiber optic. The limiter assembly detector is

the last component on the right side of Figure 4.19, the exiting rays are counted and assumed to be

proportional to the photodiode signal. Figure 4.20 presents the photodiode signal from the simulated

alignment and the footprint in the emission region corresponding to the aligned collection optics at

the various translational stage positions.
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Figure 4.19: Collection optics for alignment simulation.
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Figure 4.20: (a) Simulated photodiode signal for alignment of collection optics and (b) Footprint of
beam profile associated with the aligned collection optics at the various translation stage locations.

The legend of Figure 4.20 gives the position of the translation stage on the z-axis. The collection

optics can be locally aligned at the various positions of the translational stage, given by the maximum

of the peaks of Figure 4.20a. The corresponding beam footprint in the RF sheath emission region

is given in Figure 4.20b. Due to the simulated misalignment of the collection optics elements the

position of the rotational and translational stages are non-zero, in addition the beam footprint is

skewed. Diffraction effects and the relatively weak signal of the photodiode limit the alignment to

within ± 0.1 degree and was confirmed experimentally. Thus at the most extreme misalignment
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the beam footprint is skewed by ≤ 100 µm with an offset on the z -axis of ≤ 250 µm. Therefore the

divergence in the beam profile in the emission region is estimated at 150 µm and the accuracy in the

z -axis position is estimated at approximately 250 µm. The relative accuracy in the z -axis position is

25 µm and determined by the increments on the translation stage.

The reflected emission was measured to make sure that the blacked out limiter assembly channel

surfaces where absorbing stray emission. The reflected emission was simulated by illuminating the

RF biased electrode along the z -axis with an intense white light source, this required removed of

the flange at port 1. The reflected emission intensity was found to be approximately two orders of

magnitude lower then the intensity associated with the spectral line profile. Figure 4.21 gives the

normalized intensity of the collected reflected emission.
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Figure 4.21: Stray light measured by the collection optics.

4.2.2 Spectrometer and Detector

The system consists of a diffraction grating spectrometer and a spectroscopic CCD camera. The

camera is mounted directly to the spectrometer. The collection optics are connected to the spec-

trometer by use of a 200 µm in diameter fiber optic and is mounted flush with the side entrance slit

of the spectrometer.

A Princeton Instruments Acton series SP2500i Czerny-Turner spectrometer is utilized to disperse

the emission. The spectrometer has a focal length of 500 mm with an aperture ratio of f/6.5. The

spectrometer has a motorized triple grating turret with the following gratings: a 100 lines/mm blazed

at 400 nm, a 1200 lines/mm blazed at 500 nm, and a 2400 lines/mm blazed at 400 nm. The entrance

slit to the spectrometer is mechanical and kept at 25µm when the shape of the spectral line profile is

of interest and 100 µm when the integrated area of the spectral line profile is of interest. Diffraction

based spectroscopy is extensively described in the literature [6].

The measurement of the time averaged spectral line profile required a low noise CCD due to the
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long integration times, typically 50 to 300 s as discussed in Section 3.2. A Princeton Instruments Py-

LoN 100BR eXcelon liquid nitrogen cooled spectroscopic CCD was utilized for these measurements.

The associated dark current at -120◦C is ≤ 1 e−/pixel/hour which allowed for a signal to noise ratio

required for the accurate fitting. To access the desired spectral resolution the width of the entrance

slit to the spectrometer was set to 25 µm and the 2400 lines/mm grating was used.

The instrument function associated with this spectroscopic setup for the Hβ transition at 4863

Å and the 53D → 23P He I transition at 4027 Å was determined utilizing an Ar/Ne lamp. The lamp

was mounted to the front entrance slit of the spectrometer which was set to have a width of 25 µm.

The line broadening associated with the Ar and Ne transitions are negligible compared with the

broadening associated with the spectroscopic system therefore the instrument function can be

determined from these lines.

The CCD is focused such that the highest spectral resolution is obtained. Typically this causes

the instrument function to be slightly asymmetric due to optical aberrations. It was found that the

instrument function is well represented by a summation of two Gaussian functions. Due to the

fact the instrument function is dependent on the wavelength the following procedure is utilized to

determine the instrument function. A bi-Gaussian function was fit to the three Ne I lines: 4044 Å,

4345 Å, and 5331 Å. The resulting parameters where then fit to a second order polynomial. At the

wavelengths of interest 4027 Å and 4863 Å the parameters were then interpolated. The bi-Gaussian

fit to the Ne I 4345 Å line is given in Figure 4.22.
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Figure 4.22: Bi-Gaussian fit to the 4345 Å Ne I line.

As given by Eq. 3.59 the parameters associated with the instrument function are II i , λI i , andσI i

where i = 1 and 2 for a bi-Gaussian. Figure 4.23 presents the instruments function parameters. The

markers indicate the values determined from the fit to the Ne I lines with the solid line representing

the second order polynomial fit.

The measurements of the time dependent spectral line profile required an intensified CCD due
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Figure 4.23: (a) II i , (b) λI i , and (c)σI i instrument function parameters.

to the short integration times, on the order of a ns. A Princeton Instruments PI-MAX III spectroscopic

CCD was utilized for these measurements. The particular PI-MAX III camera used in this work has a

minimum integration time of 3.6 ns and a maximum repetition rate of 1 MHz. The integrated area

of the line profile is desired here and thus the spectral resolution of these measurements can be

relaxed. The width of the entrance slit to the spectrometer was set to 100 µm and the 1200 lines/mm

grating was used.

In order to obtain the time resolved data typically 106 phase locked acquisitions were obtained

on the CCD before the data was read out and digitized. In order to acquire emission at the same

phase within the RF period the PI-MAX III camera is triggered indirectly from the RF voltage wave-

form. A signal approximately proportional to this waveform is obtained from the capacitive pickup

associated with the I-V probe, described in section 4.1.1, is utilized. The PI-MAX III requires a TTL

signal at a frequency ≤ 1 MHz thus this RF waveform is turned into a TTL signal by a comparator.

The TTL signal is then frequency divided by a factor of 16. The resulting signal is fed into a BNC

model 575 pulse generator which is utilized as a gate. This is done such that the PI-MAX III camera

is only triggered when the plasma has reached steady state. A logic pulse generated by a National

Instruments PXI-6251 data acquisition board determines the gate. The logic pulse is formed in the

DStarVE control software with a programmable delay time and pulse width. Figure 4.24 gives the

schematic of the triggering. The spectroscopic system for both configurations: time averaged and

time resolved was controlled by the Princeton Instruments Lightfield software.ORNL NCSU
Experimental Measurements – PROES

RF

~ 2 s

f 1 MH

Comparator
TTL

f/16 BNC Pulser
TTL

RF GATE

PI-MAXIII
TTL

fMAX=1 MHz

Figure 4.24: Schematic of phase locked setup.
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4.3 Plasma Diagnostics

This section describes the diagnostics utilized to characterize the plasma in terms of electron density,

electron temperature, and plasma potential. These plasma parameters are of interest because they

supply the boundary conditions associated with the analytical modeling of the RF sheath described

in Section 2.2. In addition they allow correlations to be made to the measured RF sheath electric

field.

In the RF range of frequencies and below the plasma parameters stated above can have a

substantial time dependence. However for the purposes of the work presented in this dissertation it

is assumed that the plasma potential is the only time dependent quantity. Due to its periodic nature

the plasma potential can be expanded in a Fourier cosine series

φp (t ) =φp 0+ φ̃p (t ) . (4.4)

Whereφp 0 and φ̃p (t ) are the time independent and dependent components respectively. The time

dependent component is given by

φ̃p (t ) =
∞
∑

n=1

φp n c o s (ωt +θn )

and has a time average of zero. Therefore the time averaged plasma potential is given by φp 0.

The electron density ne , electron temperature k Te , and time averaged plasma potential φp 0 are

determined from a fit to the I-V characteristic obtained with an RF compensated Langmuir probe.

The time dependent component of the plasma potential φ̃p (t ) is measured by a capacitive probe.

4.3.1 RF Compensated Langmuir Probe

In discharges driven in the RF range of frequencies the plasma parameters can have a substantial

time dependence, especially the plasma potential. In this frequency range a typical Langmuir probe,

regardless of the compensation, cannot be used to accurately determine these time dependent

parameters [20]. This is due to the fact that displacement currents are induced that cannot be

discriminated from the real current driven by the time dependent electron density and temperature.

Therefore in this frequency range a typical Langmuir probe should only be implemented to measure

the time averaged properties when the time dependence of these parameters is weak. The magnitude

of the time dependence of the plasma potential is not a limiting factor for the RF compensated

Langmuir probe. Here we assume that the electron density and temperature are time independent

and therefore the use of a Langmuir probe is justified.

The I-V characteristic of a typical Langmuir probe in a time independent plasma with an electron

density and temperature of 1018 m−3 and 5 eV respectively is given by Figure 4.25.
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Figure 4.25: I-V characteristic of typical Langmuir probe.

The I-V characteristic is categorized into three regions: ion saturation, electron retardation, and

electron saturation [143]. The ion and electron saturation regions correspond to collection of only

ion and electron species respectively. The electron retardation region is a transition region in which

both ion and electron species are collected. Typically the ions are cold and thus a discrete transition

from electron retardation to saturation occurs at the plasma potentialφp . An important point on

the I-V characteristic is the floating potentialφ f which occurs at I (φ f ) = 0. The floating potential

corresponds to a balance in ion and electron current to the probe.
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Figure 4.26: Effect of the time dependent plasma potential on I-V characteristic of the Langmuir
probe.

In order to accurate measure the electron density and temperature in a discharge having a

substantial time dependent plasma potential the Langmuir probe must be compensated. This is

achieved by biasing the Langmuir probe tip actively or passively at a potential equivalent to that of

the plasmas time dependent component. Thus when the compensation is complete no current is

drawn due to the time dependent component of the plasma potential because the Langmuir probe is
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oscillating in unison. Compensation is required because the I-V characteristic of an uncompensated

Langmuir probe will have an altered shape and a negatively shifted floating potential [143, 91].

Figure 4.26 depicts these effects on the I-V characteristic obtained in a plasma with an electron

density and temperature of 1018 m−3 and 5 eV respectively.

The alteration of the I-V characteristic can be summarized by the following three traits: negative

shift in the floating potential, decrease in the slope of the electron retarding region, and positive

shift in the plasma potential. These effects are easily realized by plotting the instantaneous I-V

characteristic at the extreme values of the plasma potential as given by Figure 4.27. The red and

black curves are associated with the instantaneous values of the time dependent component of the

plasma potential given by φ̃p (t±) =±5 V and φ̃p (to ) = 0 V respectively.

Figure 4.27 shows that the shape of the instantaneous I-V characteristics are equivalent and equal

to that associated with φ̃p (t ) = 0 V plotted on Figure 4.26. Additionally the I-V characteristics are

shifted on the voltage axis by the corresponding instantaneous value of the plasma potentials time

dependent component. The I-V characteristic measured by the uncompensated Langmuir probe

is obtained by averaging over time. This is carried out discretely by averaging the instantaneous

I-V characteristics. The traits described above can be easily conceptualized by averaging the three

curves presented by Figure 4.27.
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Figure 4.27: Instantaneous I-V characteristic of the Langmuir probe associated with φ̃p (t±) =±5 V
and φ̃p (to ) = 0 V.

In order eliminate these parasitic effects from the I-V characteristic the Langmuir probe must

be actively or passively compensated. Active compensation requires biasing the Langmuir probe tip

with a externally generated voltage waveform equivalent to that of the time dependent component of

the plasma potential. This is nontrivial to implement due to the required accurate measurement and

reconstruction of the time dependent component plasma potential which typically has significant

harmonic content [102]. Passive compensation is based on the same principal and can be imple-
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mented by high impedance circuit elements in combination with an internally generated voltage

waveform. Typically this is carried out by LC chokes resonant at the plasma potential frequency and

a self compensating electrode respectively [141, 28].

It has been shown that due to the sheath impedance compensation by LC chokes is insufficient

for low electron density plasmas or when the magnitude of the time dependent component of the

plasma potential is large [141]. This is due to the fact that the LC choke and sheath impedance

are in series and thus act as a voltage divider. Therefore as the sheath impedance is increased

compensation by LC chokes becomes ineffective because its impedance is limited to the MΩ range

due to stray capacitance [141]. In this situation compensation must be carried out by the use of a

self compensating electrode.

The Langmuir probe utilized for these experiments is only compensated with LC chokes due

to the small dimensions of the discharge. Effects from incomplete compensation on the plasma

parameters determined from the I-V characteristic will be investigated below. The schematic of the

RF compensated Langmuir probe utilized for this work is given in Figure 4.28.
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Figure 4.28: Schematic of RF compensated Langmuir probe.

The RF compensated Langmuir probe consists of two sections. This was done to minimize

shadowing of the ECW generated plasma from the RF biased electrode and perturbations. The first

section interfaces with the plasma and was designed to have the smallest diameter possible. This

section consists of a 0.125 mm in diameter tungsten wire sleeved in an alumina shroud having an

inner diameter of 0.3 mm and an outer diameter of 0.5 mm. The total length of this section is 6 cm. At

the end of the first section 1 mm of tungsten wire is exposed which consists of the current collecting

probe tip. For the perpendicular field configuration the probe tip was bent 90◦ such that probe tip

was aligned perpendicular to the magnetic field lines. The tip length was chosen to be approximately

eight times the diameter in order to minimized finite length effects on the I-V characteristic [77].

The second section is 25 cm in length and consists of a stainless steel tube with an outer diameter of

6.4 mm. This section houses the LC chokes and interfaces with the vacuum chamber by use of a

Wilson seal.
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The Langmuir probe was compensated with six LC chokes connected in series: three resonant

at 13.56 MHz and three resonant at 27.12 MHz. The transmission coefficient S12 of the RF compen-

sated Langmuir probe was measured using a network analyzer with an S-parameter test set. The

impedance was calculated from Eq. 4.2 using S11=1-S12 and is presented in Figure 4.29.
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Figure 4.29: Impedance of RF compensated Langmuir probe.

The impedance at 13.56 MHz is 2.3 MΩ and at 27.12 MHz is 850 kΩ. In order for the probe tip to

follow the time dependent component of the plasma potential the LC choke impedance must be

much greater then that of the sheath according to

|Zc | � |Zs |
�

eφp

k Te
−1

�

(4.5)

[141]. Where the sheath impedance is given by

|Zs |=Rs

�

1+ (ωCs Rs )
2
�−1/2

(4.6)

The sheath resistance Rs and capacitance Cs are approximated by

Rs =
2λ2

D

εo A

�

Mi

k Te

�1/2

(4.7)

and

Cs =
εo A

27/4λD

�

e

k Te

�

φp −V
�

�−3/4

(4.8)

respectively. Where the plasma potential φp and the probe potential V in the above are taken at

a time that results in the maximum and minimum values respectively. This is done such that the

minimum sheath capacitance is calculated which results in the largest sheath impedance. The
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sheath resistance and capacitance is calculated for the applicable range of electron density and

temperature and is presented in Figure 4.30. The Langmuir probe tip dimensions were taken as

those presented above.
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Figure 4.30: RF compensated Langmuir probe sheath (a) resistance and (b) capacitance.

The sheath capacitance is small enough that |Zs | ≈Rs is a very good approximation. Assuming

thatφp = 30 V and that k Te = 5 eV requires that the choke impedance be much greater then five times

the sheath impedance according to Eq. 4.5. The sheath resistance given in Figure 4.30a indicates

that the plasma density must be greater then 5 · 1016 m−3 for the LC chokes to effective compensate

the Langmuir probe.

The RF compensated Langmuir probe is powered by a Kepco bipolar power supply with a gain of

-9.9. The Kepco power supply is driven by either a modified triangle or square waveform depending

on the mode of operation. The two waveforms where used to measure the I-V characteristics and

ion saturation current respectively. The waveform is constructed by the DStarVE control software

and generated by a National Instruments PXI-6251 data acquisition board.

The modified triangle waveform consists of the standard having flattened maximums and

minimums, referred to as the dead time because the corresponding data is discarded. The sweep and

dead time are programmable and set to 70 and 10 ms respectively. These values give an acceptably

low displacement generated from the lead coaxial cable capacitance. The maximum and minimum

amplitude of the waveform is programmable and typically set such that the RF compensated

Langmuir probe would swing from -50 to 20 V. The square waveform has a programmable amplitude

and is typically set to -50 V. The delay and length of each waveform is programmable and set to

collect data during steady state operation.

The probe current is measured across a variable resistor, the voltage drop across this resistor

is fed into an Analog Electronic isolation amplifier with a gain of 33.3. The output of the isolation

107



amplifier is sampled and digitized by a National Instruments PXI-6251 data acquisition board.

The acquired data is preprocessed by the DStarVE control software and analyzed post-experiment

utilizing a computer program written in MATLAB. The schematic of the Langmuir probe circuit is

given in Figure 4.31.
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Figure 4.31: Schematic of RF compensated Langmuir probe experimental setup.

The electron density, electron temperature, and time averaged plasma potential where deter-

mined from the I-V characteristic by fitting the experimental data to the theory. The Langmuir

probe theory utilized to fit the data is that derived from Laframboise for non magnetized plasma

[92]. Laframboise conducted simulations of the ion and electron current to the ideal cylindrical

and spherical Langmuir probes. The electrons and ions were taken to have Maxwellian distribution

functions, for our purposes we will utilize the cold ion approximation k Ti ≈ 0. The simulation

results obtained by Laframboise have been semi-empirically fit and will presented below [86, 115].

Assuming that the RF compensation is complete, that isφp (t ) =φp 0, the probe current is given by

I = i−− i+ for V <φp

I = i− for V ≥φp . (4.9)

Where i− and i+ are the electron and ion current respectively. The electron and ion current are

dependent on the ratio of the probe tip radius to the Debye length, X = rp/λD . The electron current

is given by

i− = e ne A
�

k Te

2πme

�1/2
�

1+χe

e
�

V −φp

�

k Te

�ηe

. (4.10)

Where χe and ηe are empirical functions of X given by
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χe = e C1+C2X+e C3+C4 X+C5 X 2

and

ηe =C6+ e C7+C8X+C9X 2

respectively. For X ≤ 2.5 the ion current is given by

i+ = e ne A
�

2Zi

π2Mi
e
�

φp −V
�

�1/2

(4.11)

and is independent of X . For X ≥ 3.5 the ion current is given by

i+ = e ne Ap

�

Zi k Te

2πMi

�1/2

χi

�

e
�

φp −V
�

k Te

�ηi

. (4.12)

Where χi and ηi are empirical functions of X and are given by

χi = 1+C10X C11

and

ηi =C12 (X +C13)
C14

respectively. The ion current cannot be expressed in simple empirical expressions for 2.5≤ X ≤ 3.5.

The constants associated with the empirical functions are given in Table 4.2.

Table 4.2: Constants associated with the empirical fit to the Laframboise results.

Electron Current Constants Value

C1 -0.09165

C2 -0.5008

C3 -0.853076

C4 -0.275077

C5 -0.58100

C6 0.22905

C7 -1.328512

C8 -0.068044

C9 -0.006374

Ion Current Constants Value

C10 0.636996

C11 -0.655816

C12 1.5590047

C13 3.772423

C14 -0.6791809
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A magnetic field can significant alter the I-V characteristic of a Langmuir probe due to altered

orbital motion of the electrons and ions and strongly anisotropic transport coefficients [34]. The

extent to which the I-V characteristic is altered depends on the ratio of the electron and ion Larmor

radii to that of the Langmuir probe. There are three regimes: the weak, intermediate, and strong

magnetic field. In the weak magnetic field regime both the electrons and ions have Larmor radii

much greater then the Lagnmuir probe radius and the unmagnetized theory can be applied. In

the intermediate field regime only the electrons have a small Larmor radius in comparison to the

Langmuir probe radius and thus the unmagnetized theory can be applied to the ion current. In

the strong magnetic field regime both the electron and ion Larmor radii are small compared to the

Langmuir probe radius and the magnetized theory must be applied.

To determine the applicable theory utilized in fitting the I-V characteristic the Larmor radii of a

hydrogen ion, helium ion, and electron are calculated. The maximum magnetic field seen by the

Langmuir probe is 1020 Gauss and will be used for a conservative approach. The Larmor radius is

calculated for the hydrogen ions assuming they have a temperature of 1 eV. This non-zero value

is due to Frank-Condon dissociation of the molecule [14]. The Larmor radius is calculated for the

helium ions assuming that they are at room temperature due to the fact the ionization comes from

electron impact and the momentum transfer is negligible. The Larmor radius for the electrons is

calculated assuming a temperature of 3 eV. The Larmor radii are thus: 1.6, 0.5, and 0.065 mm for

hydrogen, helium, and the electron respectively. The probe radius is 0.125 mm thus giving ratios of

12.8, 4, and 0.52. Thus it is determined that we are in the intermediate magnetic field regime where

the ion orbits are not effected by the magnetic field but the electron orbits are. In addition caution

must be taken when the Langmuir probe is biased above the floating potential. This is due to the

fact that the electron Larmor radius is less then that of the Langmuir probe which can potentially

cause plasma perturbations [30].

The electron current to the probe in the intermediate magnetic field regime is assumed to be

proportional to the expression given by Eq. 4.9. This approximation is made due to the fact the

electron saturation current was found to scale proportionally with the square root of the electron

transport coefficient [29, 142]. The proportionality constant multiplied by the electron collection

current is absorbed by the probe area for simplicity and is referred to as the electron collection area

Ae . The electron transport coefficient is strongly dependent on the magnetic field intensity and the

electron temperature. Therefore the electron collection area is allowed to be a fit variable such that

the entire I-V characteristic can be utilized.

In order to fit the I-V characteristic of the Langmuir probe a computer program was written

in MATLAB. The fitting routine utilizes the theory presented above and the same algorithm as

described in Section 3.4. The fit variables are the electron density, electron temperature, and the

collection area for the electrons.

In order to estimate the error associated with an under compensated Langmuir probe the I-V
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characteristic of Figure 4.26 having φ̃p (t ) = 5 cos(ωt ) V is fit. The fit is presented in Figure 4.32.
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Figure 4.32: Fitted I-V characteristic from under compensated Langmuir probe.

The modeled and fit plasma parameters are presented in Table 4.3.

Table 4.3: Under compensated I-V characteristic fit results.

Plasma Parameter Modeled Fit Error

ne (1018 m−3) 1.0 0.96 4 %

k Te (e V ) 5.0 5.4 8 %

φ f (V ) 8.0 6.9 14 %

φp (V ) 24.2 24.4 1 %

The fitted results indicate that the electron temperature and floating potential are most severely

altered. It is expected that the error associated with electron density will be ≤ 10 % and the error

associated with the electron temperature to be ≤ 25 %. These conservative estimates are taken by

combining the error induced by incomplete RF compensation with that associated with having Ae

as a fit variable. The latter error will be discussed in Section 5.1.3.

4.3.2 Capacitive Probe

The plasma potential can directly measured by use of an emissive probe, however the response

in the RF range of frequencies is undesirable. A capacitive probe has an excellent response in this

range and is easily calibrated as a function of frequency [131, 27]. Assuming that the capacitance

between the plasma and probe tip is small the capacitive probe measures the time dependent
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component of the floating potential [130]. Furthermore if the electron density and temperature are

time independent, the floating and plasma potentials have equivalent time dependent components

[69]. Therefore the capacitive probe was selected for an indirect measurement of the time dependent

component of the plasma potential based on its frequency response.

The capacitive probe consists of an RG405/U semi-rigid coaxial cable having inner and outer

conductor diameters of 0.5 and 2.2 mm respectively. The coaxial cable is sleeved with an alumina

shroud with an inner diameter of 2.5 mm and an outer diameter of 3.9 mm. At the tip of the probe

the coaxial cable extends 3.5 mm past the alumina shroud, the dielectric and outer conductor were

removed and the inner conductor was sleeved with an alumina shroud having an inner diameter of 1

mm and an outer diameter of 1.6 mm. The tip was vacuum sealed with high temperature epoxy. The

atmospheric end of the probe was vacuum sealed with standard epoxy and mounted in a stainless

steel tube with an outer diameter of 6.4 mm. The stainless steel tube interfaced with the vacuum

chamber by use of a Wilson seal. The overall length of the probe was 20 cm. The atmospheric end of

the probe was terminated with a male BNC connector. This was done such that the 50 Ω impedance

would be maintained throughout the entire probe. Figure 4.33 gives the schematic of the capacitive

probe.

�

6.9 cm 3.5 mm

1.6 mm
3.9 mm

6.4 mm

Figure 4.33: Schematic of the capacitive probe.

The capacitive probe was calibrated similarly to the method implemented by Caughman [27]

using a network analyzer with an S-parameter test set. To calibrate, port 1 of the S-parameter test

set was connected to a coaxial cable terminating on the probe via a female to female adapter. This

coaxial cable is utilized to connect the probe to the oscilloscope during the measurements. It is

important to include the exact coaxial cable length in the calibration because of the anticipated

high harmonic content. The probe tip was inserted into a female N-type connector which in turn

was connected to port 2 of the S parameter test set. The transmission coefficient was measured as a

function of frequency ranging from 1 to 250 MHz. The calibration curves consist of the magnitude

and phase of the transmission coefficient and are given in Figure 4.34.
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As seen by Figure 4.34 the sensitivity of the capacitive probe increases by over three orders of

magnitude for the frequency range investigated. This indicates the importance of calibrating as a

function of frequency. The waveform measured by the capacitive probe is calibrated by first taking

the Fourier transform. The expansion coefficients are corrected utilizing the data given in Figure 4.34

and the inverse Fourier transform is taken to arrive at the calibrated waveform.
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Figure 4.34: Capacitive probe transmission coefficient (a) magnitude and (b) phase.

The capacitive probe waveform is sampled and digitized utilizing a TDS 2024 oscilloscope

terminated to 50 Ω. The oscilloscope connects with the National Instruments platform by use of

a GPIB interface. The DStarVE control software reads the oscilloscope and preprocesses the data.

Calibration and analysis of the data is conducted utilizing a computer program written in MATLAB

post-experiment.

4.4 Control and Data Acquisition

This section describes the hardware and software used to control the instrumentation and acquire

the desired signals. The system is governed by a National Instruments PXI-8105 controller based

on the PCI eXtensions for Instruments (PXI) platform. The utilized PXI hardware is as follows. A

PXI-6251 data acquisition board is used to sample and digitize the analog signals of interest and to

generate the waveforms driving the various experimental equipment and diagnostics. A PXI-GPIB

controller is utilized to control and read a TDS 2024 oscilloscope. A PXI-8252 IEEE 1394 host adapter

controls a camera used to monitor the discharge. To control the hardware and write the acquired

data to files a program was written in the National Instruments LabVIEW software. A graphical user

interface (GUI) was designed to access the set points.

The only components of the experiment that are actively cooled are the magnetic field coils. To

maintain steady state conditions over long run times the system must be pulsed with a low duty
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cycle, typically 25 % depending on the RF and microwave power levels. The shot time is dictated

by that required to obtain an adequate spectral line profile signal to noise ratio, typically 50 to 300

seconds. A shot is defined as the conglomeration of all the discharge pulses, referred to as trigger

events, utilized to determine the RF sheath electric field. The discharge pulse length was set to the

maximum value in which steady state conditions could be maintained over the pulse, typically 10

seconds. Thus between 5 and 30 trigger events are need per spectral line profile acquisition. As

will be discussed in Chapter 5 thirty spectral line profiles are utilized to determine the RF sheath

electric field. Therefore a shot typically consists of 150 to 900 trigger events. Depending on the RF

power level, microwave power level, and working pressure of the discharge being investigated a shot

requires four to eight hours of operational time. Thus the need for a pulsed automated system is

realized. A subsection of the GUI is presented in Figure 4.35, showing the system indicators and all

of the possible set points.

Figure 4.35: DStarVE LabVIEW control panel.

In addition the GUI provides monitoring of the discharge per trigger event by plotting the acquired

signals. The steady state condition is monitored over the entire shot by plotting the signal average

as a function of trigger event. Vacuum system pressure is monitored during the dead time.

Two analog waveforms were constructed within the DStarVE control software. The first driving

the magnetic field coil power supplies and the second driving that of the Langmuir probe. The
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magnetic field coil power supplies were controlled by a ramped square waveform described in

Section 4.1. The Langmuir probe power supply is driven by either a modified triangle or square

waveform described in section 4.3.1. Five logic waveforms were constructed with the software

controlling the microwave and RF power supplies output state, oscilloscope and spectroscopic

system triggering, and camera acquisition state. The delay and pulse width are programmable for

all of the logic waveforms with the exception of that of the oscilloscope whose pulse width is set to

1 ms. The number of trigger events per spectral line profile acquisition and corresponding dead

time are programmable. The analog and logic waveforms constructed by the control software are

presented in Figure 4.36 corresponding to a single trigger event.
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Figure 4.36: Control software generated signals.

Figure 4.36 gives the typical ordering of the waveforms. The magnetic field is given a couple of

seconds to reach steady state. Microwave power is turned on prior to the RF power to allow plasma

equilibrium to be reached. The spectroscopic system is triggered and Langmuir probe is powered

within the RF power pulse.

Sixteen analog signals are sampled and digitized. Twelve of which have a characteristic frequency

that can be captured within the sampling limits of the PXI-6251 while the remaining four must be

acquired with an oscilloscope. The analog signals obtained with the PXI-6251 were the chamber

pressure measured by ion and convectron gages, foreline pressure, current of magnetic field coils,

Langmuir probe current and voltage, reflected and forward microwave power, tune and load capaci-

tor positions, and the DC voltage of the RF biased electrode. These signals were sampled at 10 kHz.
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In order to filter the noise every 100 data points were averaged yielding an acquisition rate of 100

Hz. The analog signals obtained with the oscilloscope were the RF voltage and current waveforms

and reflected and forward RF power. The oscilloscope parameters were set within the GUI, typically

a timebase of 250 ns was utilized. The capacitive probe voltage was only measured for a limited

number of experiments. For this measurement the reflected RF power channel was replaced with the

capacitive probe. The oscilloscope data is read by the control software. The resulting sixteen signals

are acquired per trigger event and preprocessed in terms of calibrating, filtering, and organizing. At

the conclusion of the programed number of trigger events the stored preprocessed data is written

to text files. An additional text file is generated containing all of the experimental set points.
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CHAPTER

5

EXPERIMENT AND ANALYSIS

In Chapter 4 the experimental apparatus, DStarVE, utilized to generate the capacitively coupled

magnetized RF sheath was discussed. Following, the spectroscopic equipment utilized to implement

time averaged passive OES to measure the RF sheath electric field was presented and characterized.

In addition, Chapter 4 included the presentation and discussion of the diagnostics utilized to

characterize the discharge in terms of various electrical and plasma parameters. The conclusion

contained a description of the National Instruments hardware and software utilized to control and

automate the experiment.

This chapter presents the analysis and select results associated with the experiments conducted

on DStarVE. The primary purpose of these experiments is to measure the time dependent electric

field topology of the capacitively coupled magnetized RF sheath utilizing the time averaged spectral

line profile. The results presented in this chapter include those associated with the electrical and

plasma parameters, however the RF sheath electric field results are reserved for Chapter 6. The

chapter is structured as follows: Section 5.1 presents the experimental scenario and characterization

of a typical DStarVE discharge utilizing the capacitive and RF compensated Langmuir probes. Section

5.2 presents select time averaged spectral line profiles obtained in the RF sheath and the associated

fit preprocessing. Section 5.3 presents the phase resolved measurements utilized to determine

the time dependent emission intensity. Section 5.4 presents the methodology associated with the

analysis of the time averaged spectral line profiles.

A total of 28 discharges, with varying experimental conditions, were investigate and characterized
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in terms of electrical parameters, plasma parameters, and RF sheath electric field. The electrical

parameters were measured by use of the DC and I-V probes as described in Section 4.1. The plasma

parameters were measured by the use of the capacitive and RF compensated Langmuir probes as

described in Section 4.3. The RF sheath electric field was determined through a fit to time averaged

π andσ spectral line profiles obtained by the spectroscopic system described in Section 4.2.

To measured the topology of the RF sheath electric field the π andσ profiles where measured as

a function of z , the distance from the RF biased electrode surface. Fifteen spatial locations were

investigated along the z -axis evenly spaced from 0.8 to 7.9 mm for the parallel field configuration

and 0.9 to 8.1 mm for the perpendicular field configuration. Thus acquisition of thirty spectral line

profiles were required for each shot. To gain insight into the RF sheath electric field dependence on

the operating conditions a total of 28 discharges were investigated, 16 and 12 for the parallel and

perpendicular field configurations respectively. For the parallel field configuration two pressures

were investigated, for each pressure a high and low density case was investigated. Control of the

density was obtained through the microwave power level set point. For each pressure and density

regime two RF power levels were investigated. Finally, two working gases were considered: Hydrogen

and Helium. For the perpendicular field configuration the same experimental scenario was applied

for helium but only one pressure was investigated for hydrogen.

5.1 Discharge Characterization

This section describes the experimental scenario utilized to measure the RF sheath electric field

and presents the characterization of the investigated discharges in terms of electrical and plasma

parameters. In addition measurements obtained from the capacitive and RF compensated Langmuir

probes characterizing typical DStarVE discharges in terms of the spatial distribution of the plasma

parameters along the x -axis is presented. The uniformity of the plasma parameters along the x -axis

was investigated because of its effect on the electric field along the line of sight of the collection

optics. In addition the applicability and accuracy of the probe measurements is explored.

5.1.1 Experimental Scenario

A total of 28 discharges were investigated, each with varying experimental conditions, in which the

electric field of the RF sheath was measured. Two field configurations were investigated: the first

has a geometry such that the RF sheath electric field was parallel to the externally applied magnetic

field. The second had a geometry such that the RF sheath electric field was perpendicular to the

externally applied magnetic field. A total of 16 discharges, 8 hydrogen and 8 helium, were studied in

the parallel field configuration. A total of 12 discharges, 4 hydrogen and 8 helium, were studied in

the perpendicular field configuration.
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The experiments were designed such that similar conditions were investigated for both working

gases. This was carried out by choosing the pressure and DC bias voltage to be the independent

variables. To achieve this the RF power was set such that the desired DC bias voltage would be

established. The experimental scenario is as follows for the parallel field configuration: two pressures

were investigated 200 and 400 mTorr, for each pressure a high and low density case was investigated.

The low density case was obtained by operation of only the RF source while the high density case was

obtained by the addition of the ECR source. For each pressure and each density regime two RF power

levels were investigated. In the perpendicular field configuration the same experimental scenario

was investigated for helium with pressures of 100 and 200 mTorr. For the hydrogen discharges only

one pressure was investigate: 100 mTorr. Pressures above 200 and 100 mTorr were not able to be

investigated for helium and hydrogen respectively due to arcing on the RF biased electrode surface.

The neutral pressure is desired to be on the order of 1 mTorr in order better simulate the collision-

ality regime near the ICRF antenna and Faraday screen [107]. However, due to the required spectral

and spatial resolution the signal to noise ratio at these pressures was found to be extremely low

regardless of the integration time. To find the optimum working pressure the intensity of the spectral

line was measured as a function of pressure. It was found for the parallel field configuration that a

pressure of ≥ 200 mTorr was optimal in terms of signal to noise ratio and integration time. For the

perpendicular field configuration it was found that pressures ≥ 200 mTorr could not be investigated

due to the fact arcing on the RF biased electrode occurred, in addition matching became formidable.

The electrical and plasma parameters were measured for each of the 28 discharges, referred to as

shots, and are presented in Appendix C. These parameters were measured to aid in the interpretation

of the RF sheath electric field results and to provide the boundary conditions required for the

modeling presented in Section 2.2. The plasma parameters were measured with the RF compensated

Langmuir probe. The DC and RF components of the RF biased electrode voltage waveform were

measured with the DC bias and I-V probes respectively. The RF biased electrode current waveform

consists only of an RF component because of the series capacitor in the matching network and is

measured with the I-V probe. The RF biased electrode voltage and current waveforms are presented

in Figure 5.1 for shots 1 and 19 which correspond to hydrogen in the parallel and perpendicular

field configurations respectively. Figure 5.1 shows that a negative DC bias is established on the

RF biased electrode such that the waveform only spends a small portion of time above zero. This

occurs because the discharge is asymmetric in the sense that more electrode surface is grounded

then driven [98]. A comparison of the voltage waveform in the parallel and perpendicular field

configurations shows that the DC bias voltage is diminished in the latter configuration. To explore

the harmonic content of the waveforms the Fourier transform of these waveforms is taken and

presented in Figure 5.2.
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Figure 5.1: RF biased electrode voltage and current waveforms for shot (a) 1 and (b) 19.
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Figure 5.2: Harmonic spectrum of the RF biased electrode voltage and current waveforms for shot
(a) 1 and (b) 19.

The Fourier transform indicates that both the voltage and current waveforms are dominated

by the fundamental, this was always found to be the case. In the parallel field configuration both

waveforms have a spectrum with harmonics above the noise floor. The current waveform was

always found to have a higher intensities of the harmonics. In the perpendicular field configuration

essential all of the harmonics are suppressed and has been reported previously in the literature [15].

5.1.2 Capacitive Probe Measurement

The capacitive probe was first utilized to determine if the time dependent component of the plasma

potential is negligible in comparison with the voltage waveform at the RF biased electrode surface.

The DC and the time dependent components of the RF biased electrode voltage were measured

with the DC bias and I-V probes respectively. The capacitive probe measurements were conducted

at a spatial location of (0,0,30) mm. The absorbed RF and microwave power was PR F = 100 W and

PµW = 0 W respectively. The discharge pressure was P = 200 and 100 mTorr for the parallel and
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perpendicular field configurations respectively. Figure 5.3 and Figure 5.4 present these voltage

waveforms for the parallel and perpendicular field configuration for both hydrogen and helium

discharges.
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Figure 5.3: Time dependence of plasma potential and RF biased electrode voltage in the parallel
field configuration for (a) hydrogen and (b) helium discharges.
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Figure 5.4: Time dependence of plasma potential and RF biased electrode voltage in the perpen-
dicular field configuration for (a) hydrogen and (b) helium discharges.

Comparing the voltage waveforms of Figure 5.3 and Figure 5.4 the time dependent component of

the plasma potential is found to be less then the RF biased electrode voltage by more then two orders

of magnitude. Due to this large difference the time dependent component of the plasma potential

is negligible for both interpretation and modeling of the RF sheath electric field. Therefore the

capacitive probe will only be utilized for spatial characterization and to estimate the effectiveness

of the RF compensation of the Langmuir probe.

A comparison of the time dependent component of the plasma potential obtained in the parallel

field configuration with that in the perpendicular shows that the magnitude is decreased by a factor
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of 2 to 3. This arises from the anisotropic mobility of the electron and is expected due to the fact

that the capacitative probe is magnetically connected to the RF biased electrode in the parallel

field configuration and is not in the perpendicular. The greatly decreased electron mobility in the

perpendicular field configuration effectively allows for a larger voltage drop to occur in the RF sheath

thus decreasing the time dependent component of the plasma potential.

To check the uniformity of the discharge the capacitive probe was scanned along the x -axis at a

distance from the RF biased electrode surface of z = 30 mm with y=0 mm for both the parallel and

perpendicular field configurations. The experimental conditions were P = 200 and 100 mTorr for the

parallel and perpendicular field configurations respectively, with an absorbed power of PR F = 100 W

and PµW = 0 or 100 W. To present the data the Fourier transform of the waveform was taken and the

magnitude of the fundamental was selected. The Fourier transform at a position of x = 0 mm with

PµW = 0 is provided by Figure 5.5 for hydrogen and helium discharges in the perpendicular field

configuration.

As was evident by the waveforms, the Fourier transform clearly indicates the high level of

harmonic content in the spectra. The magnitude of the fundamental was always found to be the

strongest component with the first harmonic at least 6 dB down. The trend of the harmonic spectrum

is similar for both field configurations.
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Figure 5.5: Harmonic spectrum of time dependent component of the plasma potential for (a)
hydrogen and (b) helium discharges.

Figure 5.6 presents the magnitude of the fundamental as a function of x -axis position for the

parallel field configuration. Measurements were made every 1.6 mm although the 3.5 mm probe

tip length dictates the resolution. Therefore it is important to realize the profiles will be significant

altered in the sense that features will be averaged over a 3.5 mm window. The PµW =0 case of Figure 5.6

shows that the time dependence of the plasma potential is peaked and relatively constant over
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the RF biased electrode region, x =−10 to 10 mm, when considering the 3.5 mm resolution. With

the addition of microwave power the time dependence of the plasma potential is decreased and

the profile relaxes slightly. The profiles are peaked due to the fact that the probe tip is magnetic

connected to the RF biased electrode. Figure 5.7 presents the magnitude of the fundamental as a

function of x -axis position for the perpendicular field configuration.
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Figure 5.6: Magnitude of the fundamental of the plasma potential as a function of x -axis position
in the parallel field configuration for (a) hydrogen and (b) helium discharges.
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Figure 5.7: Magnitude of the fundamental of the plasma potential as a function of x -axis position
in the perpendicular field configuration for (a) hydrogen and (b) helium discharges.

The profiles given by Figure 5.7 show that the magnitude of the fundamental of the plasma

potential is relatively constant. As found above, with the addition of microwave power the magnitude

decreases. The profiles in the perpendicular geometry are not peaked for two reasons: first the probe
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tip is not magnetically connected to the RF biased electrode and second the E ×B force tends to

shear the plasma density [123, 15]. The plasma density is difficult to measure without the addition

of the ECR source due to the draining of the magnetic flux intersecting the Langmuir probe tip.

However carefully conducted measurements show that the absorption of microwave power typically

leads to an increase in plasma density, see Appendix C. Therefore Figure 5.6 and Figure 5.7 indicate

that the magnitude of the fundamental of the plasma potential is correlated not only to the RF

biased electrode voltage but also to electron density.

5.1.3 RF Compensated Langmuir Probe Measurement

The accuracy of the plasma parameters found from Langmuir probe data is highly dependent on LC

choke impedance being much greater then that of the sheath. As was discussed in Section 4.3.1 the

sheath impedance is a strong function of the electron density. Therefore the electron density will be

utilized to determine when the LC choke effectiveness diminishes beyond an acceptable level. The

magnitude of the time dependent component of the plasma potential was found not to exceed 30

V and thus will be used as a conservative estimate for the calculation. The acceptable amount of

RF voltage dropped in the sheath is taken to be 5 V, as simulated in Section 4.3.1 this gives rise to a

8 % error in k Te and 4 % error in ne . The LC choke impedance at 13.56 MHz was found to be 2.3

MΩ thus the sheath impedance must not exceed 90 kΩ assuming k Te = 5 eV. Therefore the electron

density must exceed 3 · 1016 m−3 in order to maintain the desired RF compensation. In reality the

magnitude of the time dependent component of the plasma potential is significantly less then 30 V,

especially for the perpendicular field configuration, resulting in a lower density requirement.

To explorer the effectiveness of the RF compensation, a discharge having a low electron density

was investigated. The I-V characteristic was measured in the parallel field configuration at a location

of (0,0,30) mm for PR F = 0 and 100 W and is presented in Figure 5.8. The working gas was hydrogen

at P = 200 mTorr with PµW = 100 W.
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Figure 5.8: I-V characteristic with PR F = 0 and 100 W.
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The I-V characteristics presented in Figure 5.8 are substantially different. The RF compensation

is expected to be significantly incomplete due to the large negative shift in the floating potential

and the large decrease in the slope of the transition region. The I-V characteristics were fit and are

presented in Figure 5.9. The PR F = 0 W discharge was found to have k Te = 1.9 eV while that of the

PR F = 100 W discharge was found to be 10.5 eV. The addition of RF power is suspected to increase

k Te and alter the electron energy distribution function due to stochastic heating in the RF sheath

[97]. However the increase in k Te from 1.9 eV to 10.5 eV is unrealistic and is partly contributed to

incomplete RF compensation. Only the Langmuir probe data for the hydrogen discharges in the

parallel field configuration are effected to this level. The remaining Langmuir probe data seems to

be adequately RF compensated.
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Figure 5.9: Fitted I-V characteristic with (a) PR F = 0 and (b) 100 W.

The electron collection area Ae is typically a fit variable due to the strong dependence of the

electron transport coefficient on the magnetic field intensity. However if the electron saturation

region of the I-V characteristic cannot be accessed as is the case for high ne the electron collection

area is held fixed at 0.23Ap , where Ap is the total surface area of the probe tip. This is due to the fact

that the ion saturation region has no dependence on Ae and the transition region is only weakly

dependent until that of electron saturation is approached.

To show the effect of the magnetic field on the electron transport coefficient an experiment was

conducted in which the I-V characteristic was measured as a function of magnetic field intensity.

The experiment was conducted in the perpendicular field geometry at a location of (0,0,30) mm

with power settings of PR F = 100 W and PµW = 0 W. The working gas was hydrogen at a pressure

of P = 100 mTorr. Figure 5.10 presents the experimental data for three magnetic field intensities

represented by the solid lines, plotted with the associated fit represented by the dashed lines.
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Figure 5.10: Effect of magnetic field on the I-V characteristic fit with (a) Ae as a variable and (b) Ae

as a constant.

The fits associated with Figure 5.10a and Figure 5.10b had the electron collection area as a fit variable

and a constant set to 0.64Ap , respectively. For the fits having Ae as a constant the projection area of

the probe tip is used. In addition only data below 10 V is utilized. The experimental data given in

Figure 5.10 shows that as the magnetic field is increased the electron saturation current significantly

decreases. It was found that the I-V characteristic could only be represented by the theory when Ae

was allowed to be a fit variable.

The electron collection area normalized to the probe area as a function of magnetic field intensity

is presented in Figure 5.11. The black and red curves correspond to the fits having Ae as a variable and

constant respectively. Figure 5.11 shows that as the magnetic field intensity increases the normalized

electron collection area monotonically approaches 0.23. Therefore when the electron saturation

current regime cannot be accessed in the I-V characteristic this value will be utilized.
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Figure 5.11: Normalized electron collection area as a function of magnetic field intensity.
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To determine the sensitivity on Ae the plasma parameters as a function of magnetic field intensity

are presented in Figure 5.12. The black and red curves represent the fitting scenarios having Ae as a

constant and a variable respectively.
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Figure 5.12: (a) ne , (b) k Te , and (c)φp 0 associated with the variable and constant Ae fit scenarios.

Figure 5.12 shows that the electron density is relatively insensitive to Ae . However the electron

temperature and plasma potential were found to be significantly more dependent on Ae , differing

nearly 15 % between the two fit scenarios. Therefore combining this error with that associated with

incomplete RF compensation, see Section 4.3.1, results in the conservative estimates of ≤ 10 % for

ne , ≤ 25 % for k Te , and ≤ 20 % forφp 0.

To determine the uniformity of the plasma parameters the Langmuir probe was scanned along

the x -axis at a distance from the RF biased electrode surface of z = 30 mm with y = 0 mm. Measure-

ments were made every 1.6 mm and therefore the profile is not expected to be altered significantly

by the 1.0 mm probe tip length. The scan was conducted in the parallel and perpendicular field

configurations for hydrogen and helium working gases with PR F = 0 and 100 W and PµW = 100 W.

The pressure for the parallel and perpendicular field configurations was P = 200 and 100 mTorr

respectively.

The electron density, electron temperature, and plasma potential as a function of x -axis position

are presented in Figure 5.13 for hydrogen in the parallel field configuration.
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Figure 5.13: Spatial distribution of (a) ne , (b) k Te , and (c) φp 0 for hydrogen in the parallel field
configuration.
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The plasma parameters are fairly constant for the PR F = 0 W case. However with the addition of RF

power the profiles become peaked with a significant variation over the RF biased electrode region,

x =−10 to 10 mm. The electron density was found to be in the range in which the RF compensation

becomes ineffective. Thus the parasitic effects of the time dependent component of the plasma

potential are expected to strongly alter the profiles.

The plasma parameters are presented in Figure 5.14 for helium in the parallel field configuration.
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Figure 5.14: Spatial distribution of (a) ne , (b) k Te , and (c) φp 0 for helium in the parallel field
configuration.

The plasma parameters are peaked for both the PR F = 0 and 100 W cases, with a significant variation

over the RF biased electrode region. The electron density was found to be nearly two orders of mag-

nitude greater then that of hydrogen and thus well above the range in which the RF compensation

becomes ineffective. The increase in the electron temperature and plasma potential are reasonable

and outside of the error range due to RF effects.

The electron collection area is given in Figure 5.15 for both hydrogen and helium discharges in

the parallel field configuration.
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Figure 5.15: Electron collection area for (a) hydrogen and (b) helium discharge.
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Figure 5.15 shows that the electron collection area is close to the expected value of 0.23Ap for

hydrogen. For helium the electron saturation current region could not be accessed and therefor the

constant value was used.

The electron density, electron temperature, and plasma potential are presented in Figure 5.16

for hydrogen in the perpendicular field configuration.

−10 −5 0 5 103

4

5

6

7

8

9

z−axis Position (mm)

n e (1
015

 m
−3

)

PRF=0 W
PRF=100 W

x

(a)

−10 −5 0 5 101

1.5

2

2.5

3

z−axis Position (mm)

kT
e (e

V
)

PRF=0 W
PRF=100 W

x

(b)

−10 −5 0 5 102

4

6

8

10

z−axis Position (mm)

φ p0
 (V

)

PRF=0 W
PRF=100 W

x

(c)

Figure 5.16: Spatial distribution of (a) ne , (b) k Te , and (c)φp 0 for hydrogen in the perpendicular
field configuration.

The plasma parameter profiles presented in Figure 5.16 are significantly different from those of the

parallel field configuration. The plasma parameters are relatively constant over the scanned space.

In addition the electron density is significantly lower then that of the parallel field configuration.

Due to the low electron density the effectiveness of the RF compensation is in question even though

the magnitude of the time dependent component of the plasma potential is decrease. However the

I-V characteristics do not show strong signs of RF effects and the electron temperature is relatively

unaffected between the PR F = 0 and 100 W cases.

The plasma parameters are presented in Figure 5.17 for helium in the parallel field configuration.
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Figure 5.17: Spatial distribution of (a) ne , (b) k Te , and (c)φp 0 for helium in the perpendicular field
configuration.
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As was the case for hydrogen, the helium profiles are significantly different then those obtained

in the parallel field configuration. The outstanding properties of the helium profiles are similar

to those of hydrogen, namely the relatively constant profiles and significantly decreased electron

density.

For both the hydrogen and helium discharges the decreased electron density is expected to be

caused by the RF electrode assembly impeding the absorption of microwaves. A comparison of

Figure 4.1 and Figure 4.2 representing the parallel and perpendicular field configurations respectively

shows that the latter has grounded surface near the resonance region. In addition the perpendicular

field configuration results in diminished electron transport coefficients along z -axis. This has been

shown to lead to a decrease in the electron density and temperature when compared to the parallel

field configuration [136]. The relatively flat profiles obtained for both working gases are expected to

be caused by the E ×B force tending to shear the plasma [123, 15].

The electron collection area is given in Figure 5.18 for both hydrogen and helium discharges in

the perpendicular field configuration. Figure 5.18 shows that the electron collection is close to the

expected value of 0.23Ap for both hydrogen and helium.
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Figure 5.18: Electron collection area for (a) hydrogen and (b) helium discharge.

In summary, the main difference between the parallel and perpendicular field configurations is

a significantly decreased electron density and flatter profiles. In addition the electron temperature

was significantly decreased for the hydrogen discharges in the perpendicular field configuration.

The decreased electron density is attributed to anisotropic transport coefficients in addition to

the change in the experimental setup. The flatter profiles are expected to be caused by the E ×B

force tending to shear the plasma. The decreased electron temperature is also be attributed to the

anisotropic transport coefficients in combination with a more accurate measurement.
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5.2 Time Averaged Optical Emission Spectroscopy

This section is focused on the presentation of the time averaged spectral line profiles utilized to

determine the RF sheath electric field. To decrease the computational time associated with fitting

the spectral line profiles the data is conditioned prior to the fit. The procedure implemented for the

prefit conditioning will be presented and discussed.

The spatial distribution of the electric field in the RF sheath was obtained by acquiring two time

averaged spectral line profiles at 15 uniformly spaced locations along the z -axis. The location of

the measurements ranged from 0.8 mm to 7.9 mm for the parallel field configuration and 0.5 to

7.6 mm for the perpendicular field configuration. A complete set of data required to determine the

spatial distribution of the electric field within the RF sheath is referred to as a shot. Therefore a shot

consists of the acquisition of 30 time averaged spectral line profiles, 15 for theσ polarization and 15

for the π polarization.

The integration time per spectral line profile ranges from 50 to 300 seconds depending on the

discharge parameters and observation location in the RF sheath. The integration time was set such

that the signal to noise ratio was ≥ 20. The RF power is typically pulsed for 10 seconds with a duty

cycle of 25 %. Pulsed operation is required due to the long integration times and lack of active

cooling.

The absorbed RF power, absorbed microwave power, pressure, RF voltage magnitude, DC bias

voltage, and the ion saturation current are presented in Figure 5.19 for shot 4.
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Figure 5.19: Time evolution of (a) absorbed RF power, (b) absorbed microwave power, (c) pressure,
(d) RF voltage magnitude, (e) DC bias voltage, and (f) ion saturation current.
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To ensure that steady state conditions are maintained the pressure, electrical parameters, and

electron density are monitored during the shot. To monitor the electron density the Langmuir

probe is biased at -50 V to collect ion saturation current and is located at a position of (0,30,30) mm.

The location of the probe was set to ensure the RF sheath electric field would not be perturbed.

Figure 5.19 shows that over the duration of the shot, nearly 2000 s, the discharge was maintained at

steady state conditions.

5.2.1 Hydrogen Discharge

In Section 3.5.1 it was determined that the Hβ (n = 4→ 2) transition would be utilized through

an optimization of electric field sensitivity and emission intensity. For all investigated discharges

having hydrogen as the working gas the spectral line profiles displayed similar characteristics within

the same field configuration. Thus, to discuss these characteristics and the prefit conditioning

shots 1 and 19 will be presented throughout this section. These shots were chosen due to the fact

they represent the parallel and perpendicular field configurations respectively and have similar

electrical characteristics (see Appendix C). The π andσ raw spectral line profiles are given below in

Figure 5.20 and Figure 5.21 for select positions in the RF sheath in the parallel and perpendicular

field configurations respectively.
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Figure 5.20: Hβ spectral line profile as a function of position in the RF sheath for the (a) π and (b)
σ components in the parallel field configuration.

The most outstanding feature of the spectral line profiles given by Figure 5.20 and Figure 5.21

are the ’wings’ that extend nearly ±6 Å from the line center. It is determined that these wings cannot

be due to an electric field, either macroscopic (Stark effect) or microscopic (Stark broadening). This

is because the required intensity for a macroscopic electric field would be on the order of 100 kV/cm.

To generate a microscopic electric field of similar magnitude would require an electron density
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on the order of 1022 m−3 [66]. In the most extreme conditions in DStarVE both of these values are

orders of magnitude higher then the predictions. The remaining possibility is broadening due to

the Doppler effect. In this case the neutral radiators would have, at a minimum, a two temperature

distribution consisting of thermal and superthermal groups on the order of 1 and 100 eV respectively.
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Figure 5.21: Hβ spectral line profile as a function of position in the RF sheath for the (a) π and (b)
σ profiles in the perpendicular field configuration

This extensive broadening described above has been significantly reported in the literature

and has also been attributed to Doppler broadening [60, 62, 42, 24, 156]. The cause of the neutrals

superthermal energy has been proposed to be from charge exchange/heavy particle collisions in the

sheath [60, 118] and sputtering of absorbed H atoms on the electrode surface by ion bombardment

[62, 118]. The thermal group has a temperature in the range of 0 to 5 eV and is typically composed

of many groups [14]. The non-zero temperature is due to the chemical energy associated with the

H2 molecular bond being converted into kinetic energy during dissociation induced by electron

impact following the Frank-Condon principal [14].

The superthermal emission is clearly distinguishable from that of the thermal. In addition the

broadening is severe enough to smooth out any electric field effects. Therefore removal prior to the

fitting process was investigated and is presented below. The spectral line profile at z=7.9 and 7.6

mm in the parallel and perpendicular field configurations respectively is presented in Figure 5.22. It

was found that the superthermal emission profile is relatively symmetric and that the molecular

transition intensity is weak. In the parallel field configuration the superthermal emission profile is

approximately Gaussian. Removal was achieved by subtracting a Gaussian function determined

from a fit to select data points from the spectral line profile.
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Figure 5.22: Hβ π profile at a position of (a) z=7.9 and (b) 7.6 mm in the parallel and perpendicular
field configuration respectively.

Figure 5.23 depicts this superthermal emission fit and removal process for the parallel field

configuration. Figure 5.23a presents the Gaussian function fit to the selected data points represented

by the blue markers. Figure 5.23b presents the spectral line profile pre and post-removal.
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Figure 5.23: Hβ π spectral line profile at a position of z = 7.9 mm in the parallel field configuration
showing the (a) superthermal emission fit and (b) removal.

Figure 5.23 shows that the superthermal emission is accurately fit and removed from the spectral

line profile. Over the wavelength range of interest, 4860.5 to 4864.4 Å, there are 22 possible molecular

hydrogen lines [41]. Figure 5.23 indicates the presence of several of these molecular lines, fortunately

the intensity of the majority of these transitions is negligible. The molecular line occurring at 4861.5

is of particular interest because it is distinguishable from the Hβ line for low electric field intensities

and occurs in the wavelength range of interest.
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In the perpendicular field configuration the superthermal emission profile was not found to

be Gaussian. This was expected if the superthermal was partly due to charge exchange/heavy

particle collisions due to the complex ion dynamics in the sheath from the E × B force [78]. To

estimate the superthermal emission profile select data points were fit to a bi-Gaussian function.

Figure 5.24 depicts the superthermal emission fit and removal process for the perpendicular field

configuration. Figure 5.24 shows that the fitted bi-Gaussian function accurately represents the

data points marked in blue. It is assumed that near the edges of the thermal emission profile the

bi-Gaussian approximation deviates only slightly from actual superthermal emission profile. The

molecular lines discussed above are not distinguishable here and will thus be ignored.
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Figure 5.24: Hβ π spectral line profile at a position of z = 7.6 mm in the perpendicular field
configuration showing the (a) superthermal emission fit and (b) removal.

In the parallel field configuration, although the intensity is weak, the molecular line occurring at

4861.5 Å is removed from the spectral line profile prior to the fit. For low electric field intensities

the molecular line is distinguishable from the main line and is removed by subtraction of a fitted

Gaussian function determined similarly to the method described above. Figure 5.25 depicts the

molecular line fit and removal process. The molecular line intensity was found to be approximately

3 % and thus is not expected to influence the fit significantly. However the removal was carried out

regardless of intensity for consistency. At higher electric field intensities the molecular line became

encompassed by the main line. To remove the molecular line in this case the parameters associated

with all available molecular line fits were averaged to calculate an approximate Gaussian function. It

was found that the fit parameters were not strong functions of position in the RF sheath. Additionally,

the intensity of select molecular transitions have been measured as a function of position in the RF

and have been shown to be relatively constant [61]. Removal of the superthermal emission and the

molecular line consist of the conditioning prior to the fit.
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Figure 5.25: Hβ π profile at a position of z = 7.9 mm in the parallel field configuration showing the
(a) molecular line fit and (b) removal.

Theπ components of the spectral line profile after data conditioning are presented in Figure 5.26

at spatial locations of z = 0.8 and 7.9 mm in the parallel field configuration and z = 1.0 and 7.6 mm

in the perpendicular field configuration.
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Figure 5.26: Hβ π profiles at a position of (a) z = 0.8 and 7.9 mm and (b) z = 1.0 and 7.6 mm in the
parallel and perpendicular field configurations respectively.

Figure 5.26 presents the typically characteristics of the π profile. In the parallel field configuration

the π profile is relatively smooth having a triangular shape in the intermediate electric field range

tending towards a Gaussian at low electric field intensities. At the extreme electric field intensities the

profile splits into three distinct peaks, one to the left and right of the line center. In the perpendicular

field configuration the profile tends to be rounded at the extreme electric field intensities never

splitting into a three peak profile. The profile also tends towards a Gaussian as the electric field

intensity decreases.
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The π and σ profiles of the Hβ transition are significantly different as was predicted by the

modeling presented in Section 3.5.1. Figure 5.27 presents theπ andσ profiles after data conditioning

for spatial locations of z = 0.8 and 1.0 mm in the parallel and perpendicular field configurations

respectively. Figure 5.27 shows that the π profile is effected more strongly by the electric field then

theσ profile. The significant difference in the π andσ profiles is exploited during data fitting. The

σ profile is relatively smooth and singly peaked for all investigated discharges. The π andσ profiles

are slightly asymmetric and skewed towards the red. The cause of which is assumed to be due to

non-statistical population density and impurity transitions and will be further explored in Section

5.4
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Figure 5.27: Hβ π and σ profiles at a position of (a) z = 0.8 and (b) 1.0 mm in the parallel and
perpendicular field configurations respectively.

The optical emission in the RF sheath is strongly spatially dependent. Figure 5.28 gives the spatial

dependence of the thermal emission intensity calculated by numeric integration for the parallel and

perpendicular field configurations. In the parallel field configuration the thermal emission intensity

approximately decreases linearly with z . In the perpendicular field configuration the profile is

significantly different. Here the profile is highly peaked within 3 mm of the RF biased electrode

surface and quickly decays with z . The highly peaked nature is due to the confinement of electrons

near the surface of the RF biased electrode by the magnetic field [98] and has been previously

measured [15]. A comparison of the intensity near z = 8 mm for the parallel and perpendicular field

configurations shows the ratio to be nearly an order of magnitude different. Although the electron

density is measured at z = 30 mm, this observation supports the large difference in electron density

between the field configurations.
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Figure 5.28: Hβ π and σ profile integrated area for thermal emission in the (a) parallel and (b)
perpendicular field configurations.

Figure 5.29 gives the spatial dependence of the superthermal emission intensity calculated by

analytic integration of the fitted functions for the parallel and perpendicular field configurations.
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Figure 5.29: Hβ π andσ profile integrated area for superthermal emission in the (a) parallel and
(b) perpendicular field configurations.

The profiles given in Figure 5.29 are similar to those corresponding to the thermal emission given in

Figure 5.28. For the perpendicular field configuration the profile is different in the sense that the

peak is significantly broadened. This broadening is explained because the Larmor radius of ions is

substantially larger then that of the electrons and thus they are less confined.

In statistical equilibrium the magnetic substates are equally populated through collisions. Here

the emission intensity arising from transitions radiating photons having π andσ polarizations are

equal. The charge exchange cross sections are highly dependent on the magnetic substate, namely
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on the angular momentum quantum number [84]. Therefore if the statistical population cannot be

reached the emission intensity of the π andσ profiles will not be equal. Non statistical populations

have been measured in active beam spectroscopy diagnostics on tokamak’s [45].

It is seen from Figure 5.28 and Figure 5.29 that the intensity of the π and σ profiles are only

slightly different in the parallel field configuration. In the perpendicular field configuration this

is not the case, the σ profile intensity is significantly larger then that of the π. This result is an

indication that for the perpendicular field configuration the magnetic substates are not statistically

populated. The above data was taken for PµW = 0 W, it was found that the injection of microwave

power caused the π intensity to dominate theσ intensity for the superthermal emission. This was

the only effect of microwave injection on the emission profiles. Due to the complex ion dynamics

the calculation of the magnetic substate population would require the coupling of a particle-in-cell

code with a corona-radiative model. Thus the assumption will be made that all substates associated

with photons having the same polarization will be in statistical equilibrium.

The ratio of the thermal to superthermal emission intensity was taken and is presented in

Figure 5.30.
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Figure 5.30: Ratio of thermal to superthermal Hβ π andσ profile integrated area in the (a) parallel
and (b) perpendicular field configurations.

Figure 5.30 shows that theπ andσ ratios are nearly equivalent for both field configurations. The ratio

in the parallel field configuration is relatively constant with a value of approximately 0.5 indicating

equal intensities of thermal and superthermal emission. In the perpendicular field configuration

the profile is highly peaked following that of the thermal emission, the ratio decays to a value of

approximately 0.15 as the bulk plasma is approached.

To determine where the superthermal emission was originating an experiment was conducted

in the parallel field configuration utilizing the Hα transition. The waveguide attached to port 1, see
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Figure 4.1, was removed and replaced with a quart window centered about x = 0 mm and y = 0

mm such that the view was along the z -axis. A collimator with an observation diameter of 1 cm

was positioned to view of the RF biased electrode along the z -axis. The experiment was designed to

determine if there was a measurable Doppler shift of the superthermal emission with respect to

the thermal. Two experiments were conducted. The first measured the Doppler shift as a function

of phase and the second measured the Doppler shift as a function of discharge parameters. For

the first experiment the phase within an RF period was scanned in 60 evenly spaced increments

spanning the entire RF period. The integration time was set to 3 ns. The discharge parameters where

P = 200 mT and PR F = 100 W. Figure 5.31 presents the Hα spectral line profile at a phase of 0 ns.

As found by similar experiments two superthermal Doppler shifted peaks exist, one to the left

and one to the right of the thermal peak [26]. The Doppler shifted peaks represented by the blue

markers were each fit to a Gaussian function independently, with the sum given by the red curve.

The peaks Doppler shifted to the left and right of the thermal peak are due to hydrogen atoms

having a velocity heading away and towards the RF biased electrode respectively. The electric field is

primarily pointing towards the RF biased electrode surface, reversing for only a short amount of time

with a small magnitude [113, 44]. Therefore there is essentially a continuous ion flux bombarding

the surface whose energy is time dependent. It can be concluded that the hydrogen atoms with a

velocity heading away from the electrode must be due to atoms being sputtered from the surface

induced by ion bombardment or reflection [62, 118].
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Figure 5.31: Phase resolved Hα spectral line profile obtained viewing the RF biased electrode along
the z -axis at a phase of 0 ns

Experiments have shown that bombarding a surface with hydrogen ions produces a fraction of

reflected excited neutral atoms with velocities similar to that of the incident [144, 150, 94]. The

hydrogen atoms with a velocity heading towards the electrode are due to charge exchange or

collision with the accelerating ions [60, 118]. Therefore the left and right Doppler shifted peaks will
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be associated with sputtering and charge exchange respectively.

Figure 5.32 gives the Doppler shift in terms of kinetic energy as a function of phase within the

RF period for sputtering and charge exchange.
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Figure 5.32: Energy as a function of phase for sputtered and charge exchanged hydrogen atoms.

It was found that the kinetic energy of the sputtered hydrogen atoms is relatively constant with

respect to phase. Conversely the hydrogen atoms that had undergone charge exchange have a

distinct and strong dependence on the phase. The sputtered hydrogen atoms are expected to have a

phase dependence but because the atoms are traveling into the bulk of the discharge it is effectively

averaged out through the measurement technique. The hydrogen atoms that have undergone charge

exchange would be susceptible to the same effect if not for the RF biased electrode surface. Here the

atoms that have not undergone radiative decay in the RF sheath will upon interaction with the RF

biased electrode surface. The transit time through the RF sheath for the charge exchanged neutrals

is on the order of 20 ns, therefore the radiative decay of such neutrals will be inherently phase locked

to the RF waveform.

The purpose of the second experiment was to investigate the effect of the superthermal hydrogen

atoms as a function of discharge parameter. The same experimental setup was utilized as describe

above while observing the time averaged spectral line profile. Figure 5.33 presents the energy of the

sputtered and charge exchanged hydrogen atoms as a function of discharge pressure and RF biased

electrode voltage. The sputtered hydrogen atoms were found to have a strong dependence on the

discharge pressure while the charge exchanged atoms do not. This behave supports the conclusions

drawn above on the production of superthermal neutrals. The charge exchange neutrals have only a

few mm to travel before colliding with the electrode surface therefore a weaker pressure dependence

should be observed due to the fact the mean free path is on the order of a mm. Both the sputtered

and charge exchanged atoms have approximately the same dependence on the RF biased electrode

voltage. It is expected that the relatively weak dependence on the RF biased electrode voltage is
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due to the collisionality. Figure 5.34 presents the energy of the sputtered and charge exchanged

hydrogen atoms as a function of discharge pressure.
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Figure 5.33: Energy as a function of RF biased electrode voltage for (a) sputtered and (b) charge
exchanged hydrogen atoms.

Figure 5.34 clearly shows the strong dependence on discharge pressure for the sputtered atoms, a

similar trend has been reported in the literature [62]. In summary, the conclusion that is drawn from

the experimental measurements presented above is that the origin of the superthermal hydrogen

atoms is due to the RF sheath electric field. Two processes contribute to the heating of the neutrals

resulting in two distinct distribution functions. Charge exchange and heavy particle collisions result

in energetic particles traveling towards the RF biased electrode surface. Sputtering of absorbed

hydrogen atoms and reflection of the bombarding ion flux results in energetic neutrals traveling

into the bulk discharge.
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Figure 5.34: Energy as a function of pressure for sputtered and charge exchanged hydrogen atoms.
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In conclusion, it is found that the radiator distribution function of the neutrals undergoing the

Hβ transition is that of a two group having thermal and superthermal energies. The superthermal

emission profile is clearly distinguishable from that of the thermal and is removed as part of the

data conditioning process prior to fitting. In addition it was found that molecular hydrogen lines

where present in the wavelength range of interest, one of which was removable.

5.2.2 Helium Discharge

In Section 3.3.2 it was determined that the 53D → 23P He I transition would be utilized through an

optimization of electric field sensitivity and emission intensity. For all investigated discharges having

helium as the working gas the spectral line profiles displayed similar characteristics within the same

field configuration. Thus, to discuss these characteristics and the data conditioning conducted

prior to the fit shots 9 and 27 will be presented throughout this section. These shots were chosen

because they represent the parallel and perpendicular field configurations respectively and have

similar electrical characteristics (see Appendix C). The π andσ raw spectral line profiles are given

in Figure 5.35 and Figure 5.36 for select positions in the RF sheath in the parallel and perpendicular

field configurations respectively. The raw spectral line profiles clearly depict the strong asymmetry

induced by the electric field, most prominent on the blue side of the line. The spectral line profiles

have three distinct features about the unperturbed wavelength which will be discussed below.

The radiator distribution function is not obvious as was the case for the Hβ transition. A su-

perthermal emission profile is not distinguishable and either is not present or is potentially masked

by that of the thermal. To correctly fit the data the existence of superthermal emission must be deter-

mined. Therefore an experiment was conducted in the parallel field configuration which consisted

of measuring the spectral line profile outside of the RF sheath.
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Figure 5.35: 53D → 23P He I spectral line profile as a function of position in the RF sheath for the
(a) π and (b)σ components in the parallel field configuration.
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Figure 5.36: 53D → 23P He I spectral line profile as a function of position in the RF sheath for the
(a) π and (b)σ components in the perpendicular field configuration.

Optical access was granted by use of the 1 3/4" quartz window located on port 2, see Figure 4.1. A

collimator was utilized to ensure emission was collected from only the bulk plasma. The discharge

parameters were P = 200 mTorr, PR F=100 W, and PµW =100 W. Figure 5.37 gives the experimental

data with the associated fit given by the black curve and markers.
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Figure 5.37: 53D → 23P He I spectral line profile at a position of z = 30 mm.

Utilizing the proper instrument function the spectral line profile was fit to a two group radiator

distribution function. The temperature and intensity of the thermal group was set to 0 eV and

100 percent respectively. The thermal group has a temperature of 0 eV because the excitation is

caused by electron impact which imparts negligible energy to the helium atom. The temperature

and intensity of the superthermal group were the fit variables. The Doppler shift for both groups

was set to zero because of the viewing geometry.

It was found that only a two group radiator distribution function would properly fit the data, even
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considering an electric field influence. The superthermal group was found to have an temperature

of 12.9 eV and an intensity of 54.7 %. The goodness of the fit and the symmetry of the spectral

line profile indicate that a superthermal group exists and will thus be considered when fitting the

data. The fact that the superthermal emission profile is masked by that of the thermal is due to

two reasons. The first comes from the fact that helium has approximately four times the mass of

hydrogen. Doppler broadening is proportional to m−1/2, therefore the effect will be decreased by a

factor of two in comparison. The second arises due to the fact the helium atom has more inertia.

The ions will have a dampened response to the RF electric field resulting in lower energy neutrals

after charge exchange or sputtering.

To determine if impurity lines exists in the wavelength range of interest the spectral line profile is

investigated at the extreme z -axis position. Figure 5.38 presents the π profile at a position of z = 7.9

mm and 7.6 mm in the parallel and perpendicular field configuration respectively.

4024 4025 4026 4027 4028
0

0.2

0.4

0.6

0.8

1

Wavelength (Å)

N
or

m
al

iz
ed

 In
te

ns
ity

(a)

4024 4025 4026 4027 4028
0

0.2

0.4

0.6

0.8

1

Wavelength (Å)

N
or

m
al

iz
ed

 In
te

ns
ity

(b)

Figure 5.38: 53D → 23P He I π profiles at a position of (a) z = 7.9 and (b) 7.6 mm in the parallel and
perpendicular field configuration respectively.

It was found that an impurity line exists at a wavelength of 4025 Å in the spectra and is attributed to

either a W I or Fe I transition [5]. The impurity is present due to ablation of the tungsten probe tip

associated with the Langmuir probe or of the stainless steel vacuum chamber walls. For low electric

field intensities the impurity line is distinguishable from the main line and is removed by subtraction

of a fitted Gaussian function. Figure 5.39 depicts the impurity line fit and removal process.

The intensity of the impurity is approximately 3 % and is not expected to influence the fit

significantly. Nevertheless, to be cautious the impurity line was removed. At higher electric field

intensities the impurity line became encompassed by the 53D → 23P He I line. To remove the

impurity line in this case the parameters associated with all available fits were averaged to calculate

an approximate Gaussian function to utilize in the subtraction. It was found that the fit parameters
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were not strong functions of position in the RF sheath. Removal of the impurity line consists of the

conditioning prior to the fit.
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Figure 5.39: 53D → 23P He I profile at a position of z = 7.9 mm in the parallel field configuration
showing the (a) impurity line fit and (b) removal.

The conditioned 53D → 23P He I π profile is presented in Figure 5.40 at spatial locations of

z = 0.8 mm and 7.9 mm in the parallel field configuration and z = 1.0 mm and 7.6 mm in the

perpendicular field configuration.
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Figure 5.40: 53D → 23P He I π profiles at z = 0.8 mm and 7.9 mm and (b) z = 1.0 and 7.6 mm in
the parallel and perpendicular field configurations respectively.

Three distinct features become present with increasing electric field intensity. Two of these features

occur on the blue side of the line and are manifested as peaks. As discussed in Section 3.5.2, the

intensity of these peaks are strongly dependent on the electric field intensity. However, at this
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spectral resolution only the wavelength of the far blue peak is appreciably dependent on the electric

field intensity. The remaining feature is the broadening on the red side of the line. If the electric field

is intense enough a split from the main line occurs forming an additional peak.

Unlike the Hβ transition the π andσ profiles of the 53D → 23P He I transition are similar as was

predicted by the modeling presented in Section 3.5.2. Figure 5.41 presents the π andσ profiles after

data conditioning for spatial locations of z = 0.8 mm and 1.0 mm in the parallel and perpendicular

field configurations respectively.
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Figure 5.41: 53D → 23P He I π andσ profiles at (a) z = 0.8 mm and (b) 1.0 mm in the parallel and
perpendicular field configurations respectively.

As expected theπ profile is more effected by the electric field then theσ profile. Although the profiles

have similar spectral characteristics the differences are expected to aid in the fitting of the data.

The optical emission in the RF sheath is strongly spatially dependent. Figure 5.42 presents the

spatial dependence of the total emission intensity calculated by numerically integrating the spectral

line profile after data conditioning for the parallel and perpendicular field configurations. It was

found that the total emission profiles in both field configurations trend very similar to those of

the Hβ transition. In the parallel field configuration the total emission intensity approximately

decreases linearly with z, leveling out near z = 6 mm. In the perpendicular field configuration the

profile is significantly different. Here the profile is highly peaked within 3 mm of the RF biased

electrode surface and quickly decays with z . A comparison of the intensity near z = 8 mm for the

parallel and perpendicular field configurations shows the ratio to be nearly an order of magnitude

different. Although the electron density is measured at z = 30 mm this observation supports the

large difference in electron density between the field configurations. The total emission intensity of

the π andσ profiles are approximately equal for both field configurations. This suggests that the

magnetic substates are equally populated and are thus in statistical equilibrium.
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Figure 5.42: 53D → 23P He I π andσ profile integrated area for total emission in the (a) parallel
and (b) perpendicular field configurations.

In conclusion, it is found that the radiator distribution function of the neutrals undergoing

the 53D → 23P He I transition is that of a two group having thermal and superthermal energies.

The superthermal emission profile is masked by that of the thermal and is not able to be removed

prior to fitting. In addition, it was found that either an W I or Fe I impurity line was present in the

wavelength range of interest. The impurity line is removed prior to the fitting and consists of the

data conditioning process.

5.3 Phase Resolved Optical Emission Spectroscopy

In this section the results associated with the experiments designed to measure the phase resolved

integrated area of the spectral line profile will be presented. As discussed in Section 3.2 due to insuf-

ficient optical emission the time averaged technique must be implemented. Thus, if the transition

emission intensity is time dependent, the phase resolved integrated area must be utilized to fit the

time average of the spectral line profile. The phase resolved integrated area is obtained by measure-

ment of the phase resolved spectral line profile and subsequent integration. The measurement is

conducted in this manner such that the thermal and superthermal emission can be separated. To

achieve an adequate signal to noise ratio the spectrometer diffraction grating was stepped down to

1200 line/mm and the entrance slit width was increased to 100 µm.

To determine if the emission intensity is time dependent the characteristic lifetime of the upper

level is examined. The Hβ and 53D → 23P He I transitions have a lifetime for spontaneous emission

of 33 and 105 ns respectively [152]. Comparing these characteristic lifetimes with the 74 ns RF

period it is expected that the emission intensity of the Hβ will be time dependent while that of

the 53D → 23P He I will not. To determine if this assumption is correct the emission intensity

was measured as a function of phase for both transitions and is presented in Figure 5.43. The
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spatial location of the measurement was z = 1.0 and the discharge parameters were P = 200 mTorr,

PR F = 100 W, and PµW = 100 W.
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Figure 5.43: Hβ and 53D → 23P He I π profile integrated area as a function of phase at z = 1.0mm
in the parallel field configuration>

It was found that the Hβ emission intensity was strongly time dependent while that of 53D → 23P

He I was not. Thus for the remainder of this dissertation the emission intensity of the 53D → 23P

He I transition will be assumed constant with respect to time.

The Hα transitions is approximately 3 to 5 times more intense then that of Hβ for the investigated

discharges. Therefore to further increase the signal to noise ratio the Hα transition will be considered

for the phase resolved measurements. Figure 5.44 presents the Hα and Hβ π integrated area as

a function of phase and space in the parallel field configuration. The discharge parameters were

P = 200 mTorr, PR F = 100 W, and PµW = 100 W.
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Figure 5.44: π profile integrated area as a function of phase and space for (a) Hα and (b) Hβ in the
parallel field configuration.
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It was found that the temporal and spatial dependence of the Hα π integrated area was very similar

to that of Hβ . Additionally the response of theσ integrated area was found to mimic that of the π.

Therefore to increase the signal to noise ratio, the π polarization of the Hα transition will be utilized

as the universal phase resolved data. Furthermore, to decrease the experimental acquisition time, it

is assumed that all investigated discharges regardless of the experimental parameters have a similar

temporal response. Variation in the spatial dependence is expected but has no consequence on the

fitting of the data. The discharge parameters for the remainder of the experiments presented in this

section are identical to those described above unless otherwise stated.

To gain insight into the behavior of the phase resolved emission intensity the RF biased electrode

voltage is plotted on the corresponding temporal axis and is presented in Figure 5.45. The discharge

pressure was P = 85 mTorr and experiment was conducted in the parallel field configuration.
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Figure 5.45: Hα π integrated area as a function of phase and space correlated to the RF biased
electrode voltage in the parallel field configuration.

Through the use of the correlated RF biased electrode voltage the features of the phase resolved

emission intensity can be identified. In the parallel field configuration the phase resolved emission

intensity has two distinct peaks. As seen by Figure 5.43 these peaks occur around 10 and 60 ns

respectively and are designated as the first and second respectively. The first peak in the emission

intensity is very intense and occurs near the maximum of the RF biased electrode voltage waveform.

The burst in emission is initiated by the reversal of the electric field occurring close to the electrode

surface [63]. Following the field reversal the RF sheath expansion begins. A beam of electrons is

formed and directed into the bulk plasma causing intense excitation and ionization. This phenomena

has been simulated [135, 146] and observed experimentally [133, 134, 63]. The second peak occurs
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after the minimum of the RF biased electrode voltage waveform and is typically of lower intensity

then that of the first. As the RF sheath expands the ions are accelerated towards the electrode surface

causing de-excitation and sputtering of excited hydrogen atoms upon bombardment [63].

A confirmation of the description given above can be gained by discriminating the thermal from

superthermal emission when integrating the line profile. Figure 5.46 presents the phase resolved

spectral line profile for a phase of 0 ns obtained at a position of z = 2.0 mm in the parallel field

configuration.
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Figure 5.46: Hα π profile measured at a phase of 0 ns and a position of z = 2.0 in the parallel field
configuration.

The line profile is fit to a bi-Gaussian function, as shown by the red curve of Figure 5.46. The thermal

and superthermal emission intensities are determined from the corresponding analytical areas. The

areas determined presented in Figure 5.47 as a function of phase in the parallel field configuration.
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Figure 5.47: Thermal and superthermal emission as a function of phase in the parallel field config-
uration.
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Utilizing Figure 5.47 the contour plot given by Figure 5.45 can be characterized in terms of the

temperature associated with the radiator. The temperature associated with the radiator alludes

to the process in which the excited state occurs. It is clearly seen that the first peak is associated

with the thermal emission which as described above occurs due to electron impact excitation. The

second peak is associated with the superthermal emission and is due to fast neutral atoms caused

by charge exchange or sputtering of hydrogen atoms from the RF biased electrode surface.

In the parallel field configuration the spatial distribution of the thermal and superthermal emis-

sion is clearly discernible. Therefore the spatial structure of the thermal and superthermal emission

is reconstructed from the data presented in Figure 5.45. Due to the complex electron and ion dynam-

ics in the perpendicular field configuration, identification of the thermal and superthermal features

are formidable. Therefore the first aperture of the collection optics was decreased to 750 µm and a

spatial scan was conducted. Figure 5.48 presents the reconstructed and measured superthermal

emission as a function of phase and space in the parallel and perpendicular field configurations

respectively.
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Figure 5.48: Superthermal emission as a function of phase and space (a) in the parallel and (b)
perpendicular field configurations.

In the parallel field configuration the spatial structure is fairly simple. Intense emission occurs

near the electrode surface and is attributed to de-excitation of excited neutrals bombarding the RF

biased electrode surface originating from charge exchange. The peak seems to be sloped indicating

a beam like structure of hydrogen atoms directed into the bulk plasma. The spatial structure in the

perpendicular field configuration is complex. Here the emission occurring near the electrode is

thought to be also due to bombarding excited neutrals but two peaks occur. Approximately at 50

ns a directed beam of emission is occurring, traveling into the bulk plasma. This is expected to be

cause by excited hydrogen atoms being sputtered from the RF biased electrode surface.
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The thermal emission is utilized in the fitting of the Hβ time averaged spectral line profiles.

Figure 5.49 presents the reconstructed and measured thermal emission as a function of phase and

space in the parallel and perpendicular field configurations respectively. The thermal emission

data is interpolated or extrapolated to the position in which the time averaged measurement is

conducted. The thermal emission spatial structure is simple for both the parallel and perpendicular

field configurations. In the parallel field configuration thermal emission arises from two phenomena

the electric field reversal and the sheath expansion. In the perpendicular field configuration only

a peak near the electrode surface is observable. This peak is expected to be caused by the electric

field reversal and the RF sheath expansion is not seen.
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Figure 5.49: Thermal emission as a function of phase and space (a) in the parallel and (b) perpen-
dicular field configurations.

5.4 Spectral Line Profile Analysis

In this section the methodology associated with the analysis of the time averaged Hβ and 53D →
23P He I spectral line profiles will be presented. The error associated with select fit variables was

simulated utilizing a typical signal to noise ratio. The results of the error analysis will be presented.

This section will conclude with a detailed description of the analysis associated with the systematic

fitting the spectra.

Utilizing the quasi-static approximation to calculate the theoretical spectral line profile fits

were obtained through implementation of the algorithm developed in section 3.4. The model used

to fit the Hβ and 53D → 23P He I spectral line profiles is presented in Table 5.1. The boundaries

associated with the fit variables were set to be centered about the previously determined value, with

respect to spatial location. The boundaries are given by 0.8 and 1.2 times the previously determined

value. Minimum boundary widths were set to ensure adequate sampling of the parameter space. For
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the initial fit associated with a shot the boundaries were determined by trail fits. The discretization

associated with the fit variables is given by ND . The number of iterations associated with the fit

algorithm was two and was set such that the corresponding error was negligible in comparison with

that arising from the spectral noise.

Table 5.1: Model associated with fitting of the spectral line profiles.

Fit Parameter Hβ ND 53D→ 23P He I ND

E0 (kV/cm) Variable 8 Variable 12

E1 (kV/cm) Variable 8 Variable 12

θ1 (radians) Variable 8 0 -

IR 1 (a.u.) 1 - 1 -

λR 1 (Å) 0 - 0 -

k TR 1 (eV) 0.25 - 0 -

IR 2 (a.u.) Variable 15 Variable 25

λR 2 (Å) 0 - 0 -

k TR 2 (eV) Variable 10 Variable 15

Typically the RF sheath electric field has a harmonic spectrum with three to four dominate

components. Due to the limited spectral resolution it was found that only the fundamental could be

obtained accurately in the fit. Therefore the modeled electric field contains only a single component

in the harmonic spectrum. Due to the time averaged nature of the measurement technique discrim-

ination of the sign of the electric field is not possible and therefore the waveform was clamped at

zero (see Figure 3.25). This is expected to have a negligible impact on the results due to the fact the

electric field reversal is expected to be small [44, 147]. The electric field is thus assumed to always be

negative, pointing towards the RF biased electrode surface.

As discussed in Section 5.3 it was found that the Hβ transition intensity was strongly time

dependent. To accurately correlate the modeled electric field with the time dependence of the

transition intensity the phase angle associated with the fundamental, θ1, was set to a fit variable.

The 53D → 23P He I transition intensity is time independent and thus the phase angle associated

with the fundamental cannot be uniquely determined. As discussed in Section 5.2 the radiator

distribution function for both transitions was found to be that of a two group. Due to the viewing

geometry the Doppler shift associated with all groups is assumed to be zero. For the Hβ spectral

line profile it was found that the superthermal group could be accurately removed prior to the fit.

Initially the thermal group was modeled having only a single fit variable the radiator temperature,

k TR 1. As will be discussed below it was found that a single group was inadequate of representing the
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thermal distribution function. Through fitting the spectral line profile in a zero electric field location

in the RF sheath it was determined that accurate representation could be achieved with two groups.

The multi-group thermal distribution is not unexpected as it has been experimental measured in

similar RF discharges far from the RF sheath region [14]. As was discussed and found by Baravian et

al. that the most prominent thermal group has a temperature of 0 to 0.5 eV, therefore the first group

radiator temperature, k TR 1, was set to 0.25 eV. This fit parameter was set to a constant because both

the intensity, IR 2, and radiator temperature, k TR 2, of the second group must be fit variables. Due

to the limited computation resources, the addition of fit variables would be formidable. The first

group radiator temperature is expected to be a function of position within the RF sheath but due to

its small value it is not expected to effect the fit results significantly.

The 53D → 23P He I spectral line profile was found to have a superthermal group that could not

be removed prior to the fit. Therefore the radiator distribution function associated with the fit must

contain both the thermal and superthermal groups. Due to the excitation mechanism the radiator

temperature associated with the thermal group, k TR 1, is set to zero and therefore no fit variables are

allocated to this group. The superthermal group has two fit variables the intensity, IR 2, and radiator

temperature, k TR 2. In section 5.2 it was shown that the superthermal group associated with Hβ
was well represented by a Gaussian in the parallel field configuration. In the perpendicular field

configuration a bi-Gaussian was required with nonzero Doppler shifts. The assumption is made for

the 53D → 23P He I spectral line profile that the superthermal group is Gaussian with a negligible

Doppler shift in both field configurations.

5.4.1 Calculation of the Fit Error

In this section the methodology and results associated with the error analysis will be presented.

The error associated with the fit variables is dominated by the spectral noise due to the fact fit

algorithm error is negligible. To estimate this error, noisy spectra were generated and fit. Typical

spectral noise was calculated from Eq. 3.11 using the parameters associated with the PyLoN camera

given in Table 3.1. The intensity of the transition was set to 1000 counts which resulted in an error of

approximately 5 %, roughly a factor of two higher then the actually level. The noise was multiplied by

a random number spanning -1 to 1 and added to the simulated spectral line profile. To generate the

required statistics twenty spectra where fit per investigated parameter. The error was estimated by

taking the 95 % confidence interval associated with the standard deviation of the fitted variable. Due

to the size of the parameter space and the large number of fits required per investigated parameter

simplified models must be chosen. Therefore only the error associated with select fit variables will

be presented.

Three fitting scenarios were investigated: theπ andσprofiles were fit together, theπprofiles were

fit separate, and theσ profiles were fit separate. This was conducted to determine the usefulness of
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polarization spectroscopy in aiding the extraction of the electric field parameters. The error analysis

associated with the Hβ and 53D → 23P He I spectral line profiles is presented below.

Hβ

Due to computing time constraints the exact model given in Table 5.1 could not be used to conduct

the error analysis for the Hβ spectra. For the error analysis, the following changes were made to the

model. The emission intensity was taken to be constant in time, thus the electric field parameter θ1

was set to zero and the thermal radiator distribution function was approximated with one group. The

error associated with the fit variables E0, E1, and k TR 1 is estimated at discrete values. The electric

field parameters spanned 0 to 6.0 kV/cm in twelve steps and the radiator temperature spanned 0.5

to 3.0 eV in six steps. The error associated with the radiator temperature in this simplified model

will be taken as the error associated with the radiator temperature of the second group, k TR 2.

The simulated Hβ spectra were fit with variable boundaries centered about the modeled value

with widths of 2 kV/cm and 2 eV for the electric field parameters and radiator temperature respec-

tively. The number of discretizations associated with the fit variables was ND = 8 and the number

of iterations associated with the fit algorithm was two. The simulated Hβ spectra are given in Fig-

ure 5.50 for electric field parameters E0 =−3.3 kV/cm and E1 = 3.3 kV/cm. The radiator temperature

is k TR 1 = 1.0 and 2.0 eV for Figure 5.50a and Figure 5.50b respectively. The theoretical noise free

spectra is given by the solid line. The pixelated spectra superimposed with the noise are given by

the markers, all twenty spectra are shown.
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Figure 5.50: Hβ π and σ profiles for E0 = E1 = 3.3 kV/cm and (a) k TR 1 = 1.0 and (b) 2.0 eV with
simulated noise.

Initially the error associated with the fit scenario where the π and σ profiles are fit together

as an object will be considered. Figure 5.51a through Figure 5.53a presents the 95 % confidence
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interval for E0, E1, and k TR 1 respectively as a function of the electric field parameters E0 and E1 for

k TR 1 = 1.0 eV. Figure 5.51b through Figure 5.53b presents the equivalent for k TR 1 = 2.0 eV. As shown

in Figure 5.51 the error associated with E0 is a strong function of E0 and only weakly dependent

on E1, becoming substantial below E0 = 2 kV/cm. For E1 the dependence is nearly reversed, here

the error is dependent on both E0 and E1 with a stronger dependence on E1. The error was found

to become substantial below E0 = 2.0 and E1 = 2.0 kV/cm as indicated by Figure 5.52. The error

associated with k TR 1 is dependent on both electric field parameters and becomes substantial above

the line |E0| = E1 as indicated by Figure 5.53. Similar trends were found for the two remaining

fit scenarios in which the π and σ profiles were fit independently. Overall it was found the error

associate with E0 and E1 becomes substantial at lower electric field magnitudes while that of k TR 1

becomes substantial at higher electric field magnitudes.
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Figure 5.51: E0 error as a function of electric field parameters E0 and E1 for (a) k TR 1=1.0 and (b)
2.0 eV.
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Figure 5.52: E1 error as a function of electric field parameters E0 and E1 for (a) k TR 1 = 1.0 and (b)
2.0 eV.
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Figure 5.53: k TR 1 error as a function of electric field parameters E0 and E1 for (a) k TR 1 = 1.0 and
(b) 2.0 eV.

The error associated with the investigated fit variables tends to increase with increasing radi-

ator temperature. To demonstrate this, the averaged error is plotted as a function of the radiator

temperature and is presented for E0, E1, and k TR 1 in Figure 5.54a through Figure 5.56a respectively.

The effectiveness in fitting the π and σ profiles together as an object is investigated by plotting

the averaged error ratio of π to π andσ andσ to π andσ fit scenarios. The averaged error ratio is

plotted as a function of the radiator temperature and is presented for E0, E1, and k TR 1 in Figure 5.54b

through Figure 5.56b respectively.

Overall, it was found that fitting theπ andσprofiles together decreased the error when compared

to fitting either profile independently. The error associated with fitting theσ profile independently

was found to be substantially larger then not only that of the π and σ fit scenario but also the π.

This is due to the fact the magnetic substates giving rise toσ polarized photons are significantly

less effected by the electric field then those of the π.
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Figure 5.54: (a) Averaged error from π andσ fit scenario and (b) averaged error ratio as a function
of radiator temperature for E0.
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Figure 5.55: (a) Averaged error from π andσ fit scenario and (b) averaged error ratio as a function
of radiator temperature for E1.
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Figure 5.56: (a) Averaged error from π andσ fit scenario and (b) averaged error ratio as a function
of radiator temperature for k TR 1.

As shown by Figure 5.54b the averaged π to π and σ error ratio is unity indicating that when

determining E0 both fit scenarios give equivalent results. This is not the case for the E1 and k TR 1

variables. When considering the addition of the electric field parameter θ1 as a fit variable and the

extension of the thermal radiator distribution function to two groups it is expected that the averaged

error ratios will be increased. Thus it is determined for the Hβ spectral line profile that fitting the π

andσ profiles together as an object is beneficial.

53D→ 23P He I

Due to time constraints the exact model given in Table 5.1 could not be used to conduct the error

analysis for the 53D → 23P He I spectra. For the error analysis the model was changed such that
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only the thermal group of the radiator distribution function was considered. Thus only the error

associated with the fit variables E0 and E1 is estimated. The error was calculated at discrete values

of the fit variables, spanning 0 to 6.0 kV/cm in twelve steps.

The simulated 53D → 23P He I spectra were fit with variable boundaries centered about the

modeled value with widths of 2 kV/cm. The number of discretizations associated with the fit variables

was ND = 8 and the number of iterations associated with the fit algorithm was two. The simulated

53D → 23P He I spectra are given in Figure 5.57 for electric field parameters E0 =−3.3 kV/cm and

E1 = 3.3 kV/cm. The theoretical noise free spectra is given by the solid line. The pixelated spectra

superimposed with the noise are given by the markers, all twenty spectra are shown.
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Figure 5.57: 53D → 23P He I π andσ profiles for E0 = E1 = 3.3 kV/cm with simulated noise.

Initially the error associated with the fit scenario where theπ andσ profiles are fit together as an

object will be considered. Figure 5.58a and Figure 5.58b present the 95 % confidence interval for E0

and E1 respectively as a function of the electric field parameters E0 and E1. Contrary to the findings

associated with Hβ , Figure 5.58 shows that the error associated with E0 and E1 behave similarly. The

error associated with the electric field parameters are found to be strong functions of E0 and only

weakly dependent on E1, becoming substantial below E0 = 2 kV/cm.

It was found that fitting the π andσ profiles together yielded only a negligible or small decrease

in error. When compared to fitting only the π profiles the error was found to be approximately

equivalent. When compared to fitting only theσ profiles a slight decrease in error was obtained,

the averaged error ratio ofσ to π andσ was 1.1 and 1.2 for E0 and E1 respectively. Therefore if the

superthermal group of radiators could be ignored acquisition and fitting of theσ profile in addition

to the π is unwarranted. As was presented above the superthermal emission was found to have

an intensity of 54.7 % when compared to the thermal and thus cannot be ignored. Therefore it is

expected that the addition of theσ profile will decrease the error associated with the fit and will be

implemented.
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Figure 5.58: (a) E0 and (b) E1 error as a function of electric field parameters E0 and E1.

5.4.2 Fitting the Spectral Line Profile

Hβ

To discuss the fit to the Hβ π and σ profiles shots 3 and 19 where selected for presentation, cor-

responding to the parallel and perpendicular field configurations respectively. Fitted spectra of

additional shots can be found in Appendix D. The discharge parameters of interest for shot 3 are

P = 200 mTorr, VD C =−2.7 kV, |VR F |= 2.6 kV/cm, and ne = 1.03 · 1017 m−3. The discharge parameters

of interest for shot 19 are P = 100 mTorr, VD C =−1.9 kV, |VR F |= 2.2 kV, and ne = 3.49 · 1015 m−3. The

remaining discharge parameters for these shots can be found in Appendix C. The electric field and

thermal distribution function parameters associated with the presented fits are given in Table 5.2

and Table 5.3 for shots 3 and 19 respectively.

Table 5.2: Fit parameters associated with the spectra presented for shot 3.

Position (mm) E0 (kV/cm) E1 (kV/cm) θ1 (◦) IR2 (%) kTR2 (eV)

0.8 -4.4 ± 0.1 7.4 ± 0.1 57.1 ◦ 139.8 4.2

7.9 11.9 ± 1.3 12.8 ± 1.5 10.0 ◦ 48.1 3.7

Table 5.3: Fit parameters associated with the spectra presented for shot 19.

Position (mm) E0 (kV/cm) E1 (kV/cm) θ1 (◦) IR2 (%) kTR2 (eV)

1.0 -2.5 ± 0.1 4.8 ± 0.2 3.8 144.5 4.9

7.6 6.7 ± 1.2 10.0 ± 1.2 14.5 44.7 4.3
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In general the theoretical spectra fit the experimental data well, with reduced χ ≈ 1.5 on average.

In the parallel field configuration the quality of the fit increased slightly with electric field intensity,

the opposite was found for the perpendicular field configuration. Overall there where no significant

trends associated with the reduced χ indicating that the model adequately captures the essential

physics. Only a single feature of the Hβ spectral line profile could not be adequately represented by

the model presented in Table 5.1. This feature is an asymmetry which skews the profile to the right

of center and is most prominent in the π profile for high electric field intensities.

To explore the asymmetry, the fitted Hβ π profile at positions of z = 0.8 and 1.0 mm are presented

in Figure 5.59a for shot 3 and Figure 5.59b for shot 19 respectively. Comparing the asymmetries

of the π profiles presented in Figure 5.59 a common feature is present, a small but distinct bump

at 4863 Å. This feature is present in all of the data with varying degrees of intensity, therefore it is

expected to be caused by a molecular or impurity line. For a majority of the data this feature is the

main proponent driving the spectral line profile asymmetry, as is the case for that presented in

Figure 5.59b.
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Figure 5.59: Fit to the Hβ π profile at a position of z = 0.8 and 1.0 mm for (a) shot 3 and (b) 19
respectively.

At higher electric field intensities an additional asymmetry becomes evident in the π profile. As

indicated by a comparison to the theoretical spectrum of Figure 5.59a the peak on the right wing

is found to be 6 % more intense then that of the left wing. Naturally the Hβ theoretical spectra are

slightly asymmetric having asymmetries on the order of only 1 %, for that presented in Figure 5.59a

the profile is skewed towards the left by approximately 0.2 %. Therefore the asymmetry is assumed

to be caused by the radiator distribution function, molecular lines, or a non-statistical population

of magnetic substates; not the electric field.

The superthermal emission is not expected to be the cause of the asymmetry in the parallel
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field configuration because the profile is not Doppler shifted and symmetric, see Figure 5.23. In

the perpendicular field configuration the superthermal emission profile was asymmetric thus

incomplete removal may contribute to asymmetries in the profile. As is shown in Figure 5.59b the

asymmetry in the spectrum is less prominent in the perpendicular field configuration then that of

the parallel. Therefore it is concluded that the superthermal emission is not the sole contributor.

It was found that the distinguishable molecular lines in the spectrum, such as the 4858 Å line seen

in Figure 5.23, have an intensity that is relatively constant with respect to position and polarization.

Therefore if the asymmetry is due to molecular lines they would be present in theσ profiles. The Hβ
σ profile at positions of z = 0.8 and 1.0 mm are presented in Figure 5.60a for shot 3 and Figure 5.60b

for shot 19 respectively. As indicated by a comparison to the theoretical spectra theσ profiles are

very symmetric, where the only distinguishable asymmetry is that at 4863 Å as discussed above.
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Figure 5.60: Fit to the Hβ σ profile at a position of z = 0.8 and 1.0 mm for (a) shot 3 and (b) 19
respectively.

To further investigate the possibility of molecular lines driving the large asymmetry seen only

in the π profile the molecular spectrum in the wavelength range of interest is calculated [41]. Fig-

ure 5.61a presents the π andσ experimental profiles for shot 3 at a position of z = 0.8 mm with the

molecular spectrum presented in Figure 5.61b.

As seen by the molecular spectrum the location of the transitions coincide with the observed

asymmetry while the intensities do not. Due to the fact the plasma kinetics have a strong role in

governing the molecular line intensity Figure 5.61b serves only as a first approximation. It is therefore

a possibility that the asymmetry is in fact due to molecular transitions although highly unlikely due

to the absence in theσ profile. In addition it is seen that a molecular transition does not occur at

4863 Å and thus this feature is attributed to an impurity. As was found in Section 5.2.2, the impurity

line present in the 53D → 23P He I spectra was found to be either a W I or Fe I transition. Referencing
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the NIST database it is found that the 4863 Å line could be attributed to either a W I or Fe I transition

as well [5].
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Figure 5.61: (a) Hβ π and σ profiles at a position of z = 0.8 mm for shot 3 and (b) simulated
molecular hydrogen profile.

The remaining logical possibility driving this asymmetry is a non-statistical population of the

magnetic substates. As shown by Figure 5.28 the integrated area of the π andσ profiles differs by

nearly 20 % at z = 0.8 mm in the parallel field configuration for shot 1 and over 40 % at z = 1.0 mm

in the perpendicular field configuration for shot 19. Thus revealing that magnetic substates are not

in complete equilibrium and therefore supporting this hypothesis. While no definite conclusion

can be drawn the non-statistical population of magnetic substates is the most logical explanation

for the asymmetry. Due to the fact the asymmetry is most prominent at the extreme electric field

intensities and only in the π profiles it is not expected to significantly alter the fitting results.

Comparing the spectral line profiles obtained in the parallel and perpendicular field configura-

tions it is seen that they portray differing characteristic shapes. This is partly due to the fact that the

intensity of the electric field is substantially higher in the parallel field configuration as presented in

Table 5.2 and Table 5.3. Higher electric field intensity manifests as increased splitting of the spectral

line profile, which in the case of the π profile associated with the parallel field configuration is

substantial enough to lead to peaked wings about the line center. In addition, a characteristic is

present that cannot be attributed to the intensity of the electric field, a broadening about the line

center. The spectra associated with the perpendicular field configuration are very broad at the line

center displaying a rounded peak, in contrast those associated with the parallel are narrow and

highly peaked. Two phenomena are responsible for this characteristic: the time dependent behavior

of the electric field and transition intensity. The electric field and transition intensity waveforms

associated with the fit to the spectral line profiles at a position of z = 0.8 mm for shot 3 and z = 1.0
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mm for shot 19 is presented in Figure 5.62a and Figure 5.62b respectively. Note that the electric field

and transition intensity waveforms are correlated through the phase angle θ1.

The time dependent behavior of the electric field is seen to be similar for both configurations,

although the approximation of the harmonic spectrum having only a single component does not

allow for substantial differences. The electric field waveforms are expected to be different. Implica-

tions of this approximation on the spectra will be discussed below. The time dependent behavior of

the transition intensity is found to be similar except in the value in which the intensity decays too.

In the perpendicular field configuration this value is nearly zero while that of the parallel is approxi-

mately 0.3. As seen by Figure 5.62 it is during this time period in which the intensity has decayed

to its constant value that the electric field intensity is zero. This finding suggests that the spectra

associated with the parallel field configuration should be weighted stronger when the electric field

intensity is zero, that is at the line center, then those the perpendicular. Thus explaining the differing

characteristic of the line center associated with the configurations. Note the peak of the transition

intensity coincides at the same phase within the electric field waveform for both configurations.
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Figure 5.62: Electric field and transition intensity waveforms associated with the fit to the Hβ π
andσ profiles at a position of (a) z = 0.8 mm for shot 3 and (b) z = 1.0 mm for 19.

The Hβ π andσ experimental profiles at positions of z = 7.9 and 7.6 mm are presented in Fig-

ure 5.63a for shot 3 and Figure 5.63b for shot 19 respectively. For select shots, such as those presented

here, at the extreme z -axis positions the π andσ profiles are nearly identical and non-Gaussian.

The electric field effects the π andσ components significantly different (see Figure 3.27), while the

radiator distribution function associated with the thermal group is approximately equivalent. There-

fore the effect of the electric field can be easily discriminated from that associated with the radiator

distribution function because the π andσ profiles are measured independently. As presented in

Figure 5.63a the π and σ profiles are equivalent, indicating that the electric field is negligible at

z = 7.9 mm for shot 3. Those presented in Figure 5.63b are slightly different, thus the electric field is
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expected to be nonzero with an intensity ≈ 1 kV/cm.

Initially the thermal radiator distribution function was taken to have only a single group. For

high electric field intensities this model was capable of accurately representing the data due to the

fact the electric field induced broadening overwhelmed that of the thermal radiator distribution

function. As the electric field decreased the single group model revealed its limitations through its

inability to fit the data accurately. Using the single group model, the fitted Hβ π andσ profiles at a

position of z = 7.9 mm are presented in Figure 5.64a and Figure 5.64b for shot 3 respectively. The

electric field parameters were found to yield a minimum waveform intensity of E0−E1 = 3.6 kV/cm,

significantly different from the expected value of 0 kV/cm.
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Figure 5.63: Hβ π and σ profiles at a position of z = 7.9 and 7.6 mm for (a) shot 3 and (b) 19
respectively.

Fit independently the broadening associated with both the π andσ profiles can be simulated by

an non-zero electric field intensity, as indicated by the high fit quality associated with the π profile.

It is only when the profiles are fit together as an object can the electric field be ruled out, therefore

revealing the usefulness of polarization spectroscopy. As shown by Figure 5.64 the single group

model is incapable of representing the broadening observed in both the π andσ profiles obtained

at the far end of the RF sheath.

As reported in the literature, multi-group thermal distributions have been observed experimen-

tally in RF discharges for the Balmar series transitions [14]. Therefore the model was extended such

that the thermal radiator distribution function was that of a two group. To preform the computations

in a reasonable amount of time the temperature associated with the first group was held constant

at 0.25 eV. As discussed above this is not expected to significantly effect the results because of the

limited range of possible values, 0 to 0.5 eV [14].
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Figure 5.64: Fit to the Hβ (a) π and (b)σ profiles for shot 3 at a position of z = 7.9 mm using the
one group model.

Using the two group model given in Table 5.1 the fitted Hβ π and σ profiles at a position of

z = 7.9 mm is presented in Figure 5.65a and Figure 5.65b for shot 3 respectively. The electric field

parameters were found to yield a minimum waveform intensity of E0 − E1 = 0.9 kV/cm with the

second group having a intensity of IR 2 = 48.1 % and a temperature of k TR 2 = 3.7 eV. As shown by

Figure 5.65 both fits are of high quality having electric field parameters nearly equal to zero, as

expected. Therefore it is assumed that the two group representation as given in Table 5.1 is adequate

in describing the thermal distribution function.
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Figure 5.65: Fit to the Hβ (a) π and (b)σ profiles for shot 3 at a position of z = 7.9 mm using the
two group model.

The reduced χ associated with the fits to the Hβ π andσ profiles is presented in Figure 5.66a for

shot 3 and Figure 5.66b for shot 19 respectively. In the parallel field configuration the reduced χ
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typically has its minimum close to the RF biased electrode surface, where the electric field intensity

is high. The reduced χ then increases on average as the electric field intensity decreases, although

this trend is rather weak. In the perpendicular field configuration the reducedχ is relatively constant

except close to the RF biased electrode where a peak is observed.

Beyond the error associated with the spectral noise and impurity line other possible sources are

the beam profile of the collection optics and the finite representation of the harmonic spectrum

of the electric field waveform. To determine if the collection optics has a significant effect on the

fit results the measured beam profile, presented in Figure 4.18a, was incorporated into the fitting

routines. Due to the fact that the spatial profile of the fit variables is required, fitting the data became

an iterative process substantially increasing the computational time. It was found that while the

reduced χ was slightly decreased the fit results where not significantly altered. The finite width of

the beam profile is not expected to contribute significantly and thus was approximated as a delta

function.

0 2 4 6 8
0

1

2

3

4

z−axis Position (mm)

χ

 

 

π Polarization
σ Polarization

(a)

0 2 4 6 8
0

1

2

3

4

z−axis Position (mm)

χ

 

 

π Polarization
σ Polarization

(b)

Figure 5.66: Reduced χ fitting parameter associated with the Hβ π andσ profiles as a function of
position for (a) shot 3 and (b) shot 19.

The majority of the non-quantitative error is expected to be due to the approximation of the

electric field harmonic spectrum having only one component. Indicated by the modeling presented

in Section 2.3 the spectrum is well represented by a single component near the RF biased electrode

where the electric field. As the distance from the RF biased electrode is increase the waveform be-

comes substantially non-sinusoidal therefore incapable of being represented by a single component.

In this region the electric field intensity is relatively weak and therefore the spectral line profile is

rather featureless. It is expected that the time averaged electric field is approximated well with the

model given here while the time dependence is not, especially at the far end of the RF sheath near

the sheath/presheath interface.
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53D→ 23P He I

To discuss the fit to the 53D → 23P He Iπ andσ profiles shots 11 and 27 where selected for presenta-

tion, corresponding to the parallel and perpendicular field configurations respectively. Fitted spectra

of additional shots can be found in Appendix D. The discharge parameters of interest for shot 11 are

P = 200 mTorr, VD C =−2.7 kV, |VR F |= 2.4 kV, and ne = 1.49 · 1017 m−3. The discharge parameters

of interest for shot 27 are P = 200 mTorr, VD C = −1.9 kV, |VR F | = 2.0 kV/cm, and ne = 1.01 · 1016

m−3. The remaining discharge parameters for these shots can be found in Appendix C. The electric

field and thermal distribution function parameters associated with the presented fits are given in

Table 5.4 and Table 5.5 for shots 11 and 27 respectively.

Table 5.4: Fit parameters associated with the spectra presented for shot 11.

Position (mm) E0 (kV/cm) E1 (kV/cm) IR2 (%) kTR2 (eV)

0.8 -5.1 ± 0.1 4.1 ± 0.1 15.5 30.0

7.9 -1.6 ± 0.4 1.5 ± 0.5 9.4 12.2

Table 5.5: Fit parameters associated with the spectra presented for shot 27.

Position (mm) E0 (kV/cm) E1 (kV/cm) IR2 (%) kTR2 (eV)

1.0 -4.0 ± 0.1 2.9 ± 0.1 4.9 42.4

7.6 -0.4 ± 0.8 2.1 ± 1.0 3.3 105.9

In general the theoretical spectra fit the experimental data well, with reduced χ ≤ 2 on average.

Typically the fit to the 53D → 23P He I profiles were of the same quality as those associated with Hβ ,

in addition the trends where found to be similar. In the parallel field configuration the reduced χ on

average increased with z . In the perpendicular field configuration the reduced χ was peaked near a

position of z = 1.5 mm and on averaged decreased with z . In general the fit quality increased and

decreased with increasing electric field strength in the parallel and perpendicular field configura-

tions respectively. Overall the features of the 53D → 23P He I spectral line profile were adequately

represented by the model presented in Table 5.1 with only a slight disagreement.

To explore a typical fit to the 53D → 23P He I spectra, the π profile at a position of z = 0.8

and 1.0 mm is presented in Figure 5.67a for shot 11 and Figure 5.67b for shot 27 respectively. For

high electric field intensity three prominent features are distinguishable: two peaks left and one

peak right of the line center. As shown by the modeled spectra presented in Figure 3.31b this is

indicative of a sinusoidal electric field. As the intensity decreases these features begin to merge
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together towards the line center. Overall it was found that these three features were adequately

captured by the fitted theoretical spectrum, with only a slight disagreement present. Regardless

of the electric field intensity the prominent difference between the experiment and the theory is

associated with the characteristics of the first peak left of the line center. It was found that the model

was incapable of representing the location and broadening of this spectral feature. The location was

found to be shifted to the right with respect to the fitted theoretical spectrum and the broadening

was found to be more extensive. In addition, at moderate to low electric field intensities this peak

was broadened such that it was completely absorbed by the main peak.
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Figure 5.67: Fit to the 53D → 23P He I π profile at a position of z = 0.8 and 1.0 mm for (a) shot 11
and (b) 27 respectively.

The 53D → 23P He Iσ profile at a position of z = 0.8 mm for shot 11 and z = 1.0 mm for shot 27 is

presented in Figure 5.68a and Figure 5.68b respectively. At high to moderate electric field intensities

it was found that the spectra obtained in the perpendicular field configuration had the largest

disagreement with respect to the theory. As seen by Figure 5.67b and Figure 5.68b this disagreement

is focused about the spectral feature discussed above.

Comparing the spectra obtained in the parallel and perpendicular field configurations it is seen

that they portray differing characteristic shapes, similar to the differences found for the Hβ spectra.

Here the profiles obtained in the perpendicular field configuration also experience a broadening

about the line center that leads to a rounded peak when compared with those of the parallel field

configuration. In addition the peak left of the line center is further broadened leading to a greater

disagreement with the theory as discussed above. As seen by Table 5.4 and Table 5.5 the electric

field intensity associated with the parallel and perpendicular field configurations is substantially

different. An increased electric field intensity leads to a greater distinction of spectral features but is

not fully capable of explaining the presented differences. Therefore the cause is assumed to be due
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to the time dependence of the electric field waveform because the transition intensity is constant in

time.
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Figure 5.68: Fit to the 53D → 23P He Iσ profile at a position of z = 0.8 and 1.0 mm for (a) shot 11
and (b) 27 respectively.

As seen by Table 5.4 and Table 5.5 the ratio of the E0 and E1 electric field parameters is different,

1.2 and 1.4 for the parallel and perpendicular field configurations respectively. Thus the time depen-

dence of the electric field waveform is driving the differences. As described above for the Hβ spectral

line profile the major source of non-qualitative error is associated with the approximation of the

harmonic spectrum of the electric field waveform having only a single component. Indicated by the

modeling presented in Section 2.3 near the RF biased electrode this approximation is fairly accu-

rate. As the distance increases the electric field becomes highly non-sinusoidal and thus cannot be

accurately represent as such, with a single component. In addition, due to the fact that the thermal

group of the radiator distribution function is cold, that is k TR 1 = 0.0 eV, and the superthermal group

has a relatively weak intensity the error associated with this approximation will be more evident.

The 53D → 23P He I π and σ profiles at a position of z = 7.9 mm is presented in Figure 5.69a

and Figure 5.69b for shot 11 respectively. At the far end of the RF sheath the electric field is expected

to be highly non-sinusoidal. The reduced χ associated with the fits presented in Figure 5.69 is

approximately 2 indicating a high fit quality. For low electric field intensities the line profile is

rather featureless therefore making unique solutions formidable. It is expected that many fits with

equivalent fit qualities can be found all with varying time dependence of the electric field.

The reduced χ associated with the fits to the 53D → 23P He I π andσ profiles is presented in

Figure 5.70a for shot 11 and Figure 5.70b for shot 27. In the parallel field configuration the reduced χ

typically has its minimum close to the RF biased electrode surface, where the electric field intensity

is high. The reduced χ then increases on average as the electric field intensity decreases, although
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this trend is rather weak. In the perpendicular field configuration the reducedχ is relatively constant

except close to the RF biased electrode where a peak is observed.
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Figure 5.69: Fit to the 53D → 23P He I (a) π and (b) σ profiles for shot 11 at a position of z = 7.9
mm.

Beyond the error associated with the spectral noise other possible sources are the beam profile

of the collection optics and the finite representation of the harmonic spectrum of the electric field

waveform. To determine if the collection optics has a significant effect on the fit results the measured

beam profile, presented in Figure 4.18a, was incorporated into the fitting routines. Due to the fact

that the spatial profile of the fit variables was required, fitting the data became an iterative process.

It was found that while the reduced χ was slightly decreased the fit results were not significantly

altered. Thus the finite width of the beam profile is not expected to contribute significantly. Therefore

the majority of the non-quantitative error is expected to be due to the approximative electric field

waveform having only one component.
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Figure 5.70: Reduced χ fitting parameter associated with the Hβ π andσ profiles as a function of
position for (a) shot 3 and (b) shot 19.
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Additionally, the trend in the reduced χ is similar to that associated with the intensity. It is

believed that the trend is partially due to the fact that the signal to noise ratio has the same trend. In

the perpendicular field configuration very intense emission occurs over a small distance in front of

the electrode thus the signal to noise ratio is greatly increased.
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CHAPTER

6

SPECTROSCOPIC RESULTS

In Chapter 5 the analysis and select results associated with the experiments conducted on DStarVE

was presented. In this chapter the experimental scenario was discussed and results associated with

the characterization of a typical DStarVE discharge utilizing the capacitive and RF compensated

Langmuir probes was given. Select time averaged spectra obtained in the RF sheath were presented

along with the methodology associated with the systematic analysis.

In this chapter the electric field and radiator distribution function parameters obtained from

fitting the Hβ and 53D → 23P He I spectral line profiles will be presented as a function of position

within the RF sheath. The chapter is structured as follows: Sections 6.1 and 6.2 present the results

portraying the underlying trends in the parameters for discharges in the parallel and perpendicular

field configurations respectively.

The electric field parameter E1 represents the magnitude of the fundamental component of

the waveform as shown by Eq. 3.5. Due to the fact the series is truncated after the fundamental its

polarity is ambiguous. For the purposes of presentation and ease of interpretation E1 is presented

as a positive number for hydrogen and a negative number for helium. The electric field parameters

E0 and E1 are be referred to as the DC and RF components, respectively. This is because E0 is the

magnitude of the static electric field component and E1 is the magnitude of the time dependent

electric field component at the fundamental frequency.
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6.1 Parallel Field Configuration

To discuss the spatial trends associated with the electric field and radiator distribution function

parameters shots 3 and 11 where selected for presentation. These shots correspond to hydrogen and

helium discharges, respectively, in the parallel field configuration and were chosen because they

were utilized in Section 5.4.2 to discuss the spectral line profile fitting. The discharge parameters of

interest for shot 3 are P = 200 mTorr, VD C = −2.7 kV, |VR F |= 2.6 kV, and ne = 1.03 · 1017 m−3. The

discharge parameters of interest for shot 11 are P = 200 mTorr, VD C =−2.7 kV, |VR F |= 2.4 kV, and

ne = 1.49 · 1017 m−3. The remaining discharge parameters can be found in Appendix C.

6.1.1 Electric Field

Hβ

The electric field parameters E0 and E1 and the minimum electric field intensity associated with the

waveform are given in Figure 6.1a and Figure 6.1b, respectively, for shot 3.
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Figure 6.1: (a) Electric field parameters E0 and E1 and (b) minimum electric field waveform intensity
as a function of position for shot 3.

The DC electric field component E0 was found to increase linearly with distance from the RF

biased electrode for the hydrogen discharges in the parallel field configuration. Although E0 contin-

ues to increase through zero the minimum intensity associated with the waveform approximately

increases monotonically to zero as presented by Figure 6.1b. Note that the electric field is negative

and clamped at zero, thus the minimum intensity associated with the waveform is the most extreme

value. Due to this constraint E1 implicitly must be greater then the E0 for E0 > 0.

While E0 is negative it was found that E1 was relatively constant, as indicated by Figure 6.1a for

z ≤ 2.8 mm. E1 then increases linearly with z up to the far end of the RF sheath, occurring at z = 6.0

mm in Figure 6.1a, after which deviation form linearity occurs. This behavior is clearly observed in
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the minimum intensity associated with the electric field waveform as presented in Figure 6.1b, here

a linear trend is observed for z ≤ 6.0 mm. As the far end of the RF sheath is approached both E0 and

E1 increase. This is the response generated by approximating a pseudo-sinusoidal waveform having

a narrow width.

As indicated by the modeling presented in Section 2.3 the RF sheath the electric field waveform

is expected to have substantial harmonic spectrum at both boundaries of the RF sheath. Therefore

it is assumed that for z ≥ 6.0 mm E0 and E1 have a larger error then indicated by Figure 6.1. This

error is made explicit in the phase angle θ1. The phase angle θ1 and the electric field waveform are

given in Figure 6.2a and Figure 6.2b, respectively, for shot 3.
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Figure 6.2: (a) Electric field parameter θ1 as a function of position and (b) contour plot of electric
field as a function of phase and position for shot 3.

It was found that beyond z = 6.0 mm θ1 diverged rapidly for shot 3 and was typically seen

when E1 deviated from its linear trend. This is expected to be due to the fact that representing the

harmonic series with a single component is inaccurate. Because θ1 is determined by correlating the

electric field waveform with that of the emission intensity the deviation is equivalent to weighting

low field intensities. As predicted by the modeling presented in Section 2.3 at the far end of the RF

sheath the electric field waveform deviates from the sinusoidal representation through a decease in

the width of the waveform. Therefore the divergence of the phase angle such that lower electric field

intensities are weighted stronger correlates with the modeling. As seen by Figure 6.2b the electric

field intensity decreases with z in addition the amount of time spent at non-zero field strength

decreases with z . The later is caused by the fact that the DC component is allowed to take on positive

values.

In order to provide validation the measured electric field described above is compared to the

analytical model presented in Section 2.3. The boundary conditions and plasma parameters required

for the modeling were taken from the experimentally determined values for shot 3 (Appendix C)

176



with the exception of the electron temperature. The RF sheath electric field was modeled having a

bulk plasma electron temperature of k Te = 5, 10, and 15 eV. To compare the experimental data to

the model, the minimum electric field waveform intensity was selected and is plotted as a function

of position in Figure 6.3.
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Figure 6.3: Experimental and modeled minimum electric field waveform intensity as a function of
position for shot 3.

Considering the approximations, the overall trend in the experimental data was found to be

well captured by the model. An electron temperature of 8 eV was found to be most representative,

this is nearly a factor of two lower then the measured value of 16.7 eV. As discussed in 4.3.1 the

electron temperature measured by the Langmuir probe is expected to be an overestimate and is

thus consistent with the modeling results.

53D→ 23P He I

The electric field parameters E0 and E1 and the minimum electric field intensity associated with

the waveform are given in Figure 6.4a and Figure 6.4b respectively for shot 11. As was found for

the hydrogen discharges E0 was found to increase linearly with z for the helium discharges in the

parallel field configuration. However E0 always took on negative values and never crossed zero. Due

to this fact E1 is presented as a negative number for comparison purposes. The trend associated

with E1 was found to closely mimic that of E0. Additionally, the magnitude of E1 was found to be

less then that of E0 indicating that the width of the electric field waveform is very broad. For the

hydrogen discharges the opposite case was found, representing an electric field waveform with a

narrow width. This observation represents the major difference of the RF sheath electric field of the

hydrogen and helium discharges. As was found by the modeling conducted in 2.3 this is attributed

to helium having more inertial. The minimum electric field intensity as presented by Figure 6.4b is
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seen to have the same behavior as E0 and E1, nearly linear over the investigated space.
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Figure 6.4: (a) Electric field parameters E0 and E1 and (b) minimum electric field waveform intensity
as a function of position for shot 11.

In order to provide validation the measured electric field described above is compared to the

analytical model presented in Section 2.3. The boundary conditions and plasma parameters required

for the modeling were taken from the experimentally determined values for shot 3 (Appendix C)

with the exception of the electron temperature. The RF sheath electric field was modeled having a

bulk plasma electron temperature of k Te = 1, 2.5, and 5 eV. To compare the experimental data to the

model, the minimum electric field waveform intensity was selected and is plotted as a function of

position in Figure 6.5.

0 2 4 6 8 10
−15

−10

−5

0

z−axis Position (mm)

M
in

im
um

 E
le

ct
ric

 F
ie

ld
 (

kV
/c

m
)

 

 

Experimental
Model − kT

e
=1 eV

Model − kT
e
=2.5 eV

Model − kT
e
=5 eV

Figure 6.5: Experimental and modeled minimum electric field waveform intensity as a function of
position for shot 11.

Considering the approximations, the overall trend in the experimental data was found to be well
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captured by the model. An electron temperature of 2 eV was found to be most representative,

this is over a factor of four lower then the measured value of 8.7 eV. As discussed in 4.3.1 the

electron temperature measured by the Langmuir probe is expected to be an overestimate and is

thus consistent with the modeling results.

6.1.2 Radiator Distribution Function

Hβ

The temperature k TR 2 and intensity IR 2 associated with the second thermal group of radiators is

presented in Figure 6.6a and Figure 6.6b respectively for shot 3.
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Figure 6.6: Second thermal group (a) temperature k TR 2 and (b) intensity IR 2 as a function position
for shot 3.

The temperature k TR 2 was found to have values between 2.5 and 4.5 eV for all hydrogen discharges

in the parallel field configuration. The associated trend was found to decrease slightly with z until

the far end of the sheath where an increase is observed. As indicated by Figure 6.6b this trend

was found to be weak. It is expected that within the error associated with this measurement k TR 2

can be considered constant. The intensity IR 2 however was found to be a strong function of z ,

specifically for shot 3 IR 2 decreased monotonically with z . The trend associated with IR 2 was found

to be dependent on the experimental parameters. In general a decreasing trend was observed. The

most notable experimental parameter having an influence on IR 2 was the addition of the ECW

source. It was found that IR 2 decreased with the absorption of microwave power. This reduction

had a noticeable effect of both the DC and RF components of the electric field.
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53D→ 23P He I

The temperature k TR 2 and intensity IR 2 associated with the superthermal group of radiators is

presented in Figure 6.7a and Figure 6.7b respectively for shot 11.
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Figure 6.7: Second thermal group (a) temperature k TR 2 and (b) intensity IR 2 as a function position
for shot 11.

The temperature k TR 2 was found to have values ≤ 30 eV for all helium discharges in the parallel

field configuration. These values are nearly a factor of three less then those associated with the Hβ
profile. The associated trend was found to be nearly constant until the far end of the sheath where

a slight peak was observed. It is expected that within the error associated with this measurement

k TR 2 can be considered constant. The intensity IR 2 however was found to be a strong function of z ,

specifically for shot 11 IR 2 decreased with z until the far end of the sheath. The trend associated

with IR 2 was found to be consistent over all of the experimental parameters.

6.2 Perpendicular Field Configuration

To discuss the spatial trends associated with the electric field and radiator distribution function

parameters shots 19 and 27 where selected for presentation. These shots correspond to hydrogen

and helium discharges, respectively, in the perpendicular field configuration and were chosen

because they were utilized in Section 5.4.2 to discuss the spectral line profile fitting. The discharge

parameters of interest for shot 19 are P = 100 mTorr, VD C =−1.9 kV, |VR F |= 2.2 kV, and ne = 3.49 ·1015

m−3. The discharge parameters of interest for shot 27 are P = 200 mTorr, VD C =−1.9 kV, |VR F |= 2.0

kV, and ne = 1.01 · 1016 m−3. The remaining discharge parameters can be found in Appendix C.
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6.2.1 Electric Field

Hβ

The electric field parameters E0 and E1 and the minimum electric field intensity are given in Fig-

ure 6.8a and Figure 6.8b respectively. Although a direct comparison to shot 3, representing the

parallel field configuration, cannot be made because the electron density is different by over an

order of magnitude the trends in the electric field parameters can be compared. In the perpendicular

field configuration it was found that both the DC and RF electric field components behave differently

when compared to those obtained in the parallel field configuration. It was found that both E0 and

E1 are nonlinear functions of z . E0 increases monotonically with z while E1 was found to have a

minimum approximately when E0 crosses zero. These trends are representative of all investigated

hydrogen discharges in the perpendicular field configuration.
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Figure 6.8: (a) Electric field parameters E0 and E1 and (b) minimum electric field waveform intensity
as a function of position for shot 19.

The behavior of E0 can be classified by two regions: before and after the zero crossing occurring

at z = 4.0 mm. In both regions the functionality with respect to z is approximately linear, the first

region is characterized by a slope with a smaller magnitude. At the zero crossing the slope increases

and begins to approach that associated with E0 obtained in the parallel field configuration. In the

first region E1 has a negative slope, at the zero crossing the slope changes signs and approaches a

magnitude approximately equal to that of E0. Comparing this behavior with that associated with

the parallel field configuration it is found that the electric field waveform is less peaked with a

broader width, more representative of a sinusoidal waveform. The minimum of the electric field

waveform is also nonlinear but can be approximated as a linear function within the error bars as

seen by Figure 6.8b. Additionally, it is seen that the electric field is still prominent at the maximum

measurement position indicating the large width of the RF sheath. This is due to the fact that the
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density is very low.

Unlike the parallel field configuration the harmonic spectrum is expected to be dampened in

the perpendicular field configuration. This is because of the retarding effect both experienced by the

ions and electrons, although the electrons experience this to a much larger extent. In addition this

is what is predicted by the modeling for particles having a larger inertia. This is first observed in the

fact that the E1 is substantially larger then E0 at all locations. In addition this is made more explicit

in the phase angle θ1. The phase angle θ1 and the electric field waveform are given in Figure 6.9a

and Figure 6.9b respectively for shot 19.
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Figure 6.9: (a) Electric field parameter θ1 as a function of position and (b) contour plot of electric
field as a function of phase and position for shot 19.

It was found that no divergence occurred in θ1. This is a clear indication that the harmonic

spectrum of the electric field waveform can be adequately represented by only a single component.

As predicted by the modeling presented in Section 2.3 inhibiting the movement of the ions decreases

the harmonic content. As seen by Figure 6.9b the electric field intensity decreases with z in addition

the amount of time spent at non-zero field strength decreases with z . The later is caused by the fact

that the E0 is allowed to take on positive values.

53D→ 23P He I

The electric field parameters E0 and E1 and the minimum electric field intensity associated with

the waveform are given in Figure 6.10a and Figure 6.10b respectively for shot 27. Although a direct

comparison to shot 11, representing the parallel field configuration, cannot be made because the

electron density is different by over an order of magnitude the trends in the electric field parameters

can be compared. It was found that both E0 and E1 have very similar trends to those associated with

the parallel field configuration. The only deviation observed was at the far end of the RF sheath for

z ≥ 4.0 mm, at this point E1 remained approximately constant. The minimum electric field intensity
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as presented by Figure 6.4b is seen to have the same behavior as that obtained in the parallel field

configuration.
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Figure 6.10: (a) Electric field parameters E0 and E1 and (b) minimum electric field waveform
intensity as a function of position for shot 27.

6.2.2 Radiator Distribution Function

Hβ

The temperature k TR 2 and intensity IR 2 associated with the second thermal group of radiators is

presented in Figure 6.11a and Figure 6.11b respectively for shot 19.
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Figure 6.11: Second thermal group (a) temperature k TR 2 and (b) intensity IR 2 as a function position
for shot 19.

The temperature k TR 2 was found to have values between 3 and 6 eV for all hydrogen discharges in

the perpendicular field configuration. The associated trend was found to be similar to that obtained

in the parallel field configuration. However, in the perpendicular field configuration the trend is
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much more pronounced and the minimum occurs at a smaller value of z . As was the case for the

parallel field configuration the intensity IR 2 was found to be a strong function of z . For all hydrogen

discharges in the perpendicular field configuration a maximum in the curve occurred close to the

RF biased electrode followed by a shape decay. The trend associated with IR 2 was also found to

be dependent on the experimental parameters, although a peaked profile was always observed.

The most notable experimental parameter having an influence on IR 2 was the addition of the ECW

source. It was found that the peak associated with the IR 2 profile was moved closer to the RF biased

electrode surface with the absorption of microwave power.

53D→ 23P He I

The temperature k TR 2 and intensity IR 2 associated with the superthermal group of radiators is

presented in Figure 6.12a and Figure 6.12b respectively for shot 27.
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Figure 6.12: Second thermal group (a) temperature k TR 2 and (b) intensity IR 2 as a function position
for shot 27.

The temperature k TR 2 was found to have values≤ 20 eV for all helium discharges in the perpendicular

field configuration. The trend was found to be peaked about the center of the RF sheath. Although, it

is expected that within the error associated with this measurement k TR 2 can be considered constant.

The intensity IR 2 however was found to be a strong function of z , specifically for shot 27 IR 2 had a

minimum about the RF sheath center. The trend associated with IR 2 was found to be consistent

over all of the experimental parameters.
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CHAPTER

7

CONCLUSIONS AND FUTURE WORK

Reliable operation of ICRF antennas at reactor-like powers can only be realized and advanced

through predictive modeling. Current models do not completely capture the physics associated

with the near-field, resulting in a distinct gap between theoretical and actual performance [39,

37]. In order to bridge this gap experimental measurements of the near-field are highly desired.

However, due to the large energy flux launched by ICRF antenna only non-local measurements

have thus far been obtained [90, 109, 27] resulting in an incomplete understanding of the physics.

The main objective of the research presented in this dissertation was to develop and validate a

non-perturbative spectroscopic diagnostic capable of measuring time periodic electric fields. As

will be described below the successful completion of this objective has been realized, allowing for

the first time experimental measurements of the near-field to be made.

The development phase of the diagnostic was carried out in two steps and consisted of atomic

physics formulation. The first step involved the calculation of the electronic structure of the one and

two-electron atom utilizing the hydrogenic wave function approximation. The second step involved

the calculation of the spectral line profile based on the electric dipole connection operator. Chapter

3 presents the systematic mathematical derivation of the formulae required for these calculations.

The validation phase of the diagnostic consisted of applying the atomic physics to measure

the electric field topology associated with the capacitively coupled magnetized RF sheath. Passive

OES was implemented and the π andσ polarized components were measured independently. The

theory associated with this phase is presented in Chapters 2 and 4, while the results are presented
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in Chapters 5 and 6.

The capacitively coupled magnetized RF sheath was selected to validate the spectroscopic

diagnostic due to its relevance to the near-field of ICRF antenna. In Chapter 2 a simple analytical

model of the capacitively coupled magnetized RF sheath in the parallel field configuration was

presented and used to provide the validation. In this model the effect of the ion inertia could be

simulated by allowing the ions to respond to a dampened sheath potential governed by a variable

time constant. It was found that an increase in inertia led to a larger sheath width and a decrease in

the harmonic content associated with the electric field waveform.

In Chapter 3 the atomic physics associated with this diagnostic was developed. Additionally,

the experimental technique and spectral fitting software used for validation was presented and

discussed. The capstone of Chapter 3 is a complete mathematical description of the spectra associ-

ated with one and two-electron atoms under the influence of arbitrary static magnetic and time

periodic electric field vectors utilizing a generalized observation geometry. It was found that using

the Floquet method the spectral line profile calculation was extremely computationally intensive

when considering electric field waveforms in the RF range of frequency. In order to speed up the

computation the quasi-static approximation was investigated and found to be accurate if either of

two limits is satisfied. The first states that the lifetime of the exited state must be much less then the

period of the electric field waveform: τ∗� τ. The second states that the broadening parameters

must be much greater then the satellite spacing.

Utilizing passive OES techniques to measure spectra under the influence of electric field wave-

forms in the RF range of frequencies the quasi-static approximation is found to be always valid. This

is due to the fact the broadening mechanics dominate the satellite structure. Therefore the quasi-

static approximation is used throughout this research. It was found that the Hβ and 53D → 23P He I

transitions were ideal for the validation phase due to there sensitivity to the electric field and the

magnitude of the emission intensity.

In Chapter 4 DStarVE was presented, a small scale laboratory experiment designed to serve as a

test stand in which the edge environment of the tokamak could be simulated. Two experimental

configurations were investigated: electric and magnetic field vectors parallel and perpendicular. The

study of these two field configurations is of particular importance. The parallel field configuration

has been well studied both experimentally [17] and theoretically [95, 125, 103, 146] and thus was the

focus for diagnostic validation. The perpendicular field configuration has received significantly less

attention and was studied because it is representative of the ICRF antenna near-field. The basis of

the DStarVE experiment consists of an electrode biased at 13.56 MHz immersed in a magnetized

plasma generated by excitation of electron cyclotron waves. The RF biased electrode was designed

to capacitively couple to the magnetized plasma thus forming the focus of the experimental research

efforts, the capacitively coupled magnetized RF sheath. The experiment was designed to generate

relatively strong electric fields, ≤ 15 kV/cm in magnitude, extending approximately 1 cm from the
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RF biased electrode surface.

In order to validate the atomic physics using passive OES direct access to optical emission

originating in the RF sheath region was necessary to eliminate unperturbed emission. This was

successfully achieved through the use of a limiter assembly. Utilizing DStarVE the π andσ spectral

line profiles where measured in the capacitively coupled magnetized RF sheath as a function of

position from the RF biased electrode with a spatial resolution of approximately 300 µm. In order to

aid the interpretation of the electric field results obtained from these spectroscopic measurements

additional diagnostics were developed in Chapter 4 to characterized the DStarVE discharges in

terms of operating, electrical, and plasma parameters.

In Chapter 5 the analysis and select results associated with the experiments conducted on

DStarVE was presented. The primary purpose of these experiments was to measure the time de-

pendent electric field topology of the capacitively coupled magnetized RF sheath utilizing the time

averaged spectral line profile. In order to supplement these spectroscopic based measurements and

to provide the boundary conditions for the analytical model presented in Chapter 2 the electrical and

plasma parameters were measured. A total of 28 discharges, with varying experimental conditions,

were investigate and characterized. A summary of the electrical and plasma parameters is provided

in Appendix C.

The model used to fit the spectral line profiles is as follows. The electric field waveform used for

both the Hβ and 53D → 23P He I spectra consisted of a static and fundamental component, that is

the harmonic spectrum had only a single component NH=1. It was found that higher harmonics

could not be accurately obtained due to the spectral resolution associated with passive OES. The

Hβ transition intensity was found to be strongly time dependent while that of the 53D → 23P He I

transition was not. Due to this fact only the phase angle associated with the fundamental, θ1, for Hβ
was set to a fit variable.

The radiator distribution function associated with the Hβ transition was found to consist of

both thermal and superthermal emitters. Due to the large temperature difference it was found that

the superthermal group emission could be accurately removed form the spectra prior to the fit.

Through fitting the Hβ spectra obtained in a region of negligible electric field it was found that a

one-group distribution function was incapable of representing the thermal group. Utilizing the

results of Baravian et al. [14] that of a two-group was implemented and found to be accurate. The

radiator distribution function associated with the 53D → 23P He I transition was also found to

consist of both thermal and superthermal emitters. However it was found that the superthermal

group was unable to be removed prior to the fit due to a rather low temperature when compared to

that of Hβ . The thermal group associated with the 53D → 23P He I transition was found to be well

represented by a one-group distribution function. A summary of select results associated with the

spectral fitting is presented in Appendix D.

In Chapter 6 the modeling results presented in Chapter 2 were confirmed experimentally by
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comparing the RF sheath electric field associated with the hydrogen and helium discharges. Addi-

tionally, it was found that the analytical model represented the experimental data associated with

the parallel field configuration well. Thus the validation of the diagnostic was considered successful.

The future work consists of implementation of an active OES technique to locally measure the

near-field with high spatial and temporal resolution. It was found that an active technique was

required over a passive technique due to the limited spectral and spatial resolution of the later.

The suggested active OES technique is based on Doppler-free saturation spectroscopy and yields a

measurement having superior spectral resolution. For hydrogen transitions this results in an electric

field measurement with an accuracy of 10 to 50 V/cm [7, 43]. Details of the underlying physics and

experimental setup can be found in the literature [151, 116], however a brief description is given

below. The technique is based on using a tunable wavelength laser beam to excite atoms from

the lower to upper levels associated with the transition of interest. In order for the measurement

to be Doppler-free the laser beam must differentially excite atoms having a velocity vector in a

plane perpendicular to the beam. This is achieved by splitting the original beam into so-called

pump and probe beams. These beams are then sent counter-propagating towards each other at a

slight angle such that they overlap at a single point in space. The overlap point is the location at

which the measurement is obtained, yielding a spatial resolution dictated by the beam width of

the laser. The spectrum is measured by recording the intensity of the probe beam while sweeping

the wavelength of the laser. The difference in the spectra obtained with the pump beam on and off

yields the Doppler-free spectra.

In conclusion a spectroscopic diagnostic capable of measuring time periodic electric fields was

successfully developed and validated. The development was carried out by deriving a mathematical

description of the spectra associated with one and two-electron atoms under the influence of

arbitrary static magnetic and time periodic electric field vectors utilizing a generalized observation

geometry. The validation was carried out by implementing passive OES to measure the electric

field topology associated with the capacitively coupled magnetized RF sheath. It was found that the

analytical model represented the experimental results well. The successful implementation of this

diagnostic using active OES can have a rather large significance for magnetic confinement fusion

through advancement of ICRF antenna predictive modeling.
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APPENDIX

A

UNPERTURBED ENERGY EIGENVALUES

In this appendix the NIST unperturbed energies Ei , where i represents the complete set of quantum

numbers in the coupled basis, are given for all magnetic substates of the hydrogen and helium atom

having n ≤ 6 [5]. The magnetic substates are degenerate in the m j quantum number which has

values of

m j ∈− j ,− j +1 .. j . (A.1)

A.1 Hydrogen

Table A.1: Hydrogen energy levels in cm−1 for n=1 through 3.

�

�n, s, l, j, mj

�

n=1 n=2 n=3
�

�n , 1
2 , 0, 1

2 , m j

�

0 82258.9543992821 97492.221701
�

�n , 1
2 , 1, 1

2 , m j

�

- 82258.919113 97492.2112
�

�n , 1
2 , 1, 3

2 , m j

�

- 82259.2850014 97492.319611
�

�n , 1
2 , 2, 3

2 , m j

�

- - 97492.319433
�

�n , 1
2 , 2, 5

2 , m j

�

- - 97492.355566
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Table A.2: Hydrogen energy levels in cm−1 for n=4 through 6.

�

�n, s, l, j, mj

�

n=4 n=5 n=6
�

�n , 1
2 , 0, 1

2 , m j

�

102823.8530211 105291.63094 106632.1498416
�

�n , 1
2 , 1, 1

2 , m j

�

102823.8485825 105291.62867 106632.1485242
�

�n , 1
2 , 1, 3

2 , m j

�

102823.8943175 105291.65209 106632.1620756
�

�n , 1
2 , 2, 3

2 , m j

�

102823.89425 105291.651993 106632.1620536
�

�n , 1
2 , 2, 5

2 , m j

�

102823.9094871 105291.659796 106632.1665697
�

�n , 1
2 , 3, 5

2 , m j

�

102823.90949 105291.65983494 106632.16656761
�

�n , 1
2 , 3, 7

2 , m j

�

102823.917091 105291.6637 106632.16882614
�

�n , 1
2 , 4, 7

2 , m j

�

- 105291.66373033 106632.16882188
�

�n , 1
2 , 4, 9

2 , m j

�

- 105291.666072 106632.17017701
�

�n , 1
2 , 5, 9

2 , m j

�

- - 106632.17017434
�

�n , 1
2 , 5, 11

2 , m j

�

- - 106632.17107779

A.2 Helium

Table A.3: Para-helium energy levels in cm−1 for n=1 through 3.

�

�n, s, l, j, mj

�

n=1 n=2 n=3
�

�n , 0, 0, 0, m j

�

0 166277.440141 184864.82932
�

�n , 0, 1, 1, m j

�

- 171134.896946 186209.364940
�

�n , 0, 2, 2, m j

�

- - 186104.9666893

Table A.4: Para-helium energy levels in cm−1 for n=4 through 6.

�

�n, s, l, j, mj

�

n=4 n=5 n=6
�

�n , 0, 0, 0, m j

�

190940.226355 193663.512095 195114.868700
�

�n , 0, 1, 1, m j

�

191492.711909 193942.462294 195274.9084660
�

�n , 0, 2, 2, m j

�

191446.4557405 193918.28990114 195260.77050808
�

�n , 0, 3, 3, m j

�

191451.89746084 193921.13088112 195262.431784358
�

�n , 0, 4, 4, m j

�

- 193921.621933101 195262.727124343
�

�n , 0, 5, 5, m j

�

- - 195262.795750108
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Table A.5: Ortho-helium energy levels in cm−1 for n=1 through 3.

�

�n, s, l, j, mj

�

n=1 n=2 n=3
�

�n , 1, 0, 1, m j

�

- 159855.9743297 183236.79170
�

�n , 1, 1, 0, m j

�

- 169087.8308131 185564.854540
�

�n , 1, 1, 1, m j

�

- 169086.8428979 185564.583895
�

�n , 1, 1, 2, m j

�

- 169086.7664725 185564.561920
�

�n , 1, 2, 1, m j

�

- - 186101.5928903
�

�n , 1, 2, 2, m j

�

- - 186101.5486891
�

�n , 1, 2, 3, m j

�

- - 186101.5461767

Table A.6: Ortho-helium energy levels in cm−1 for n=4 through 6.

�

�n, s, l, j, mj

�

n=4 n=5 n=6
�

�n , 1, 0, 1, m j

�

190298.113260 193346.991344 194936.119697
�

�n , 1, 1, 0, m j

�

191217.160290 193800.767563 195192.7772813
�

�n , 1, 1, 1, m j

�

191217.049963 193800.712118 195192.7455590
�

�n , 1, 1, 2, m j

�

191217.040967 193800.707595 195192.7429742
�

�n , 1, 2, 1, m j

�

191444.5006512 193917.16138710 195260.07720298
�

�n , 1, 2, 2, m j

�

191444.4821307 193917.15192855 195260.07173649
�

�n , 1, 2, 3, m j

�

191444.4809292 193917.15128741 195260.07135803
�

�n , 1, 3, 2, m j

�

191451.88970691 193921.12575310 195262.428373005
�

�n , 1, 3, 3, m j

�

191451.87394878 193921.11826439 195262.424216836
�

�n , 1, 3, 4, m j

�

191451.88108855 193921.12134275 195262.425821479
�

�n , 1, 4, 3, m j

�

- 193921.620238142 195262.726141773
�

�n , 1, 4, 4, m j

�

- 193921.614948739 195262.723082377
�

�n , 1, 4, 5, m j

�

- 193921.617719262 195262.724684231
�

�n , 1, 5, 4, m j

�

- - 195262.795042911
�

�n , 1, 5, 5, m j

�

- - 195262.793050975
�

�n , 1, 5, 6, m j

�

- - 195262.794095149
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APPENDIX

B

CALCULATION OF MATRIX ELEMENTS

In this appendix the calculation of the matrix elements E B
j m and E En

j m , associated with Eq. 3.23 and

Eq. 3.24 respectively, will be presented. E B
j m is the energy coupled between the quantum states

associated with the j t h and m t h wave functions due to a magnetic field along the z -axis with

magnitude Bz . The corresponding Hamiltonian operator is given by

H B =
µβ

ħh
Bz (Jz +Sz ) . (B.1)

E En
j m is the energy coupled between the quantum states associated with the j t h and m t h wave

functions due to a electric field vector Ēn . The corresponding Hamiltonian operator is given by

H En = e Ēn · r̄ . (B.2)

As indicated by Eq. 3.5, Ēn contains the magnitude of the n t h harmonic vector components of the

waveform Ē (t ) and is thus a time independent quantity. Therefore the operator H En is equivalent

to that of a static electric field.

The only assumption made when calculating the energy and wave function of the quantum

states is that states with differing radial quantum numbers n do not mix. The magnetic field operator

given by Eq. B.1 is incapable of mixing states with differing n values. Thus this assumption is not

limiting in terms of the magnetic field intensity. The electric field operator given by Eq. B.2 can mix

202



states with differing n values, however the mixing is very weak when the electric field magnitude is

≤ 100 kV/cm [128]. The electric field magnitudes of interest for this research and future work are

expected to be ≤ 15 kV/cm and thus the approximation is appropriate.

The calculation is greatly simplified by Racah algebra which takes advantage of the symmetry of

the unperturbed atom by working within the spherical basis [121, 122]. Utilizing this representation,

the scalar product of two tensors of rank k is given by

T (k ) ·U (k ) =
∑

q

(−1)q T (k )q U (k )
−q . (B.3)

Specifically for the derivations presented here k = 1 and thus the tensors T (1) and U (1) are vectors

and can be analogously represented as T̄ and Ū respectively. Here we will retain the boldface

representation for vector operators.

The Hamiltonian associated with the magnetic field given by Eq. B.1 and the electric field given

by Eq. B.2 can thus be written as

H B =
µβ

ħh
B (1)0 J (1)0 +

µβ

ħh
B (1)0 S (1)0 (B.4)

and

H En =−
1

2
e E (1)1n r (1)−1 +

1

2
e E (1)0n r (1)0 −

1

2
e E (1)−1n r (1)1 (B.5)

respectively. Where the following relationship exists between the spherical and Cartesian unit vectors

ε̂1 =
−1
p

2
(x̂ + i ŷ ) ε̂0 = ẑ ε̂−1 =

1
p

2
(x̂ − i ŷ ) .

In the deviations given below the Wigner-Eckart theorem will be utilized to reduce the expression

of the matrix element and thus will be presented here. The theorem states that the expectation value

of the q t h component of the spherical tensor operator T (k )q can be expressed as a product of two

factors as given by

〈n ′, l ′, s ′, j ′, m ′
j |T

(k )
q |n , l , s , j , m j 〉=

(−1) j
′−m ′

j

�

j ′ k j

−m ′
j q m j

�

〈n ′, l ′, s ′, j ′||T (k )||n , l , s , j 〉 . (B.6)

Where the term

�

j1 j2 j3

j4 j5 j6

�

(B.7)
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is refereed to as the 3j-symbol and can be calculated analytically [52]. The remaining term

〈n ′, l ′, s ′, j ′||T (k )||n , l , s , j 〉 (B.8)

is referred to as the reduced matrix element and is independent of the project quantum number m j .

Conservation of angular momentum necessitates that the following two criteria to be fulfilled else

the 3j-symbol is zero. The first requires that the top row of the 3j-symbol satisfy the equality

�

�

� j
′
−k

�

�

�≤ j ≤ j
′
+k (B.9)

for all possible permutations of j ′, k , and j . These quantities are said to form a triangle and this

relationship is denoted by4
�

j ′k j
�

[126]. The second requires that the bottom row of the 3j-symbol

sum to zero as given by

−m ′
j +q +m j = 0 . (B.10)

The reduced matrix element can be simplified depending on the spherical tensor operator T (k ).

If T (k ) operates on the l quantum number then s
′
= s and Eq. B.8 can be written as

〈n ′, l ′, s ′, j ′||T (k )||n , l , s , j 〉=

(−1)s+l+ j ′+k
�

(2 j +1)(2 j ′+1)
�1/2

¨

l ′ j ′ s

j l k

«

〈n ′, l ′, s ||T (k )||n , l , s 〉 . (B.11)

If T (k ) operates on the s quantum number then l
′
= l and Eq. B.8 can be written as

〈n ′, l ′, s ′, j ′||T (k )||n , l , s , j 〉=

(−1)s
′+l+ j+k

�

(2 j +1)(2 j ′+1)
�1/2

¨

s ′ j ′ l

j s k

«

〈n ′, l , s ′||T (k )||n , l , s 〉 . (B.12)

Where the term

¨

j1 j2 j3

j4 j5 j6

«

(B.13)

is refereed to as the 6j-symbol and can be calculated analytically [52]. The 6j-symbol can be expressed

in terms of the 3j-symbol therefore similar conservation laws apply. The 6j-symbol is zero unless

the triangle relations4
�

j1 j2 j3

�

and4
�

j4 j5 j6

�

are satisfied.
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B.1 Magnetic Field Matrix Elements

The matrix elements E B
j m are calculated by multiplying Eq. 3.23 by the wave function Φm and

integrating over all space. Utilizing the orthonormality of the basis set, E B
j m is given by

E B
j m = 〈Φm |H B |Φ j 〉 . (B.14)

The wave functions are given by

Φm = |n ′, l ′, s ′, j ′, m ′
j 〉

Φ j = |n , l , s , j , m j 〉 .

Where the subscripts associated with the matrix elements and wave functions should not be confused

with the quantum numbers. The Hamiltonian H B given by Eq. B.1 is substituted into Eq. B.14

resulting in

〈n ′, l ′, s ′, j ′, m ′
j |
µβ

ħh
B (1)0 J (1)0 |n , l , s , j , m j 〉+ 〈n ′, l ′, s ′, j ′, m ′

j |
µβ

ħh
B (1)0 S (1)0 |n , l , s , j , m j 〉 . (B.15)

The two terms of Eq. B.15 will be treated independently below for the convenience of presentation.

The coupled basis set are eigenfunctions of the operator J (1)0 having eigenvalues ħhm j . Thus the

first term of Eq. B.15 can be simplified as follows

〈n ′, l ′, s ′, j ′, m ′
j |
µβ

ħh
B (1)0 J (1)0 |n , l , s , j , m j 〉=µβB (1)0 m j . (B.16)

Where the selection rules for mixing must be satisfied

n ′ = n l ′ = l s ′ = s j ′ = j m ′
j =m j (B.17)

or else the first term is zero. Utilizing the Wigner-Eckart theorem given by Eq. B.6 the second term

of Eq. B.15 can be expressed as

〈n ′, l ′, s ′, j ′, m ′
j |
µβ

ħh
B (1)0 S (1)0 |n , l , s , j , m j 〉=

µβ

ħh
B (1)0 (−1) j

′−m ′
j

�

j ′ 1 j

−m ′
j 0 m j

�

〈n ′, l ′, s ′, j ′||S (1)||n , l , s , j 〉 . (B.18)

Requiring conservation of angular momentum by implementation of Eq. B.9 and Eq. B.10 the

following selection rules must be satisfied
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m ′
j =m j 1 ∈ | j ′− j | .. | j ′+ j |

or else the 3j-symbol and thus the second term is zero. The operator S (1) operates on the s quantum

number thus Eq. B.12 is utilized to express the reduced matrix element as follows

〈n ′, l ′, s ′, j ′||S (1)||n , l , s , j 〉=

(−1)s
′+l+ j+1

�

(2 j +1)(2 j ′+1)
�1/2

¨

s ′ j ′ l

j s 1

«

〈n ′, l , s ′||S (1)||n , l , s 〉 . (B.19)

The reduced wave functions |n , l , s 〉 are eigenfunctions of the operator S 1 having eigenvalues

ħh [(2s +1)(s +1)s ]1/2 thus the following can be written

〈n ′, l , s ′||S (1)||n , l , s 〉= ħh [(2s +1)(s +1)s ]1/2 . (B.20)

Where the following selection rules must be satisfied

n ′ = n s ′ = s

or else this quantity and thus the second term is zero. Substituting Eq. B.20 into Eq. B.19 and the

result into Eq. B.18 the final form of the second term is expressed as

〈n ′, l ′, s ′, j ′,m ′
j |
µβ

ħh
B (1)0 S (1)0 |n , l , s , j , m j 〉=µβB (1)0 (−1)s

′+l+ j+ j ′−m ′
j+1

·
�

(2 j +1)(2 j ′+1)
�1/2
[(2s +1)(s +1)s ]1/2

�

j ′ 1 j

−m ′
j 0 m j

�¨

s ′ j ′ l

j s 1

«

. (B.21)

Where the corresponding selection rules for mixing are summarized by

n ′ = n l ′ = l s ′ = s m ′
j =m j j ′ = j ±1 j ′ = j 6= 0 . (B.22)

Therefore the matrix element E B
j m is given by a summation of Eq. B.16 and Eq. B.21 utilizing the

selection rules for mixing given by Eq. B.17 and Eq. B.22 respectively.

B.2 Electric Field Field Matrix Elements

The matrix elements E En
j m are calculated by multiplying Eq. 3.24 by the wave function Φm and

integrating over all space. Utilizing the orthonormality of the basis set, E En
j m is given by
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E En
j m = 〈Φm |H En |Φ j 〉 . (B.23)

The wave functions are given by

Φm = |n ′, l ′, s ′, j ′, m ′
j 〉

Φ j = |n , l , s , j , m j 〉 .

Where the subscripts associated with the matrix elements and wave functions should not be confused

with the quantum numbers. The Hamiltonian H En given by Eq. B.2 is substituted into Eq. B.23

resulting in

−〈n ′, l ′, s ′, j ′, m ′
j |e E (1)1n r (1)−1 |n , l , s , j , m j 〉

+ 〈n ′, l ′, s ′, j ′, m ′
j |e E (1)0n r (1)0 |n , l , s , j , m j 〉

− 〈n ′, l ′, s ′, j ′, m ′
j |e E (1)−1n r (1)1 |n , l , s , j , m j 〉 . (B.24)

The three terms of Eq. B.24 are associated with the spherical basis vector components of the operator

H En and thus the expression for the matrix elements associated each term is of the same form.

Therefore only the derivation of the first term will be provided below with the final expression of the

second and third following.

Utilizing the Wigner-Eckart theorem given by Eq. B.6 the first term of Eq. B.24 can be expressed

as

−〈n ′, l ′, s ′, j ′, m ′
j |e E (1)1n r (1)−1 |n , l , s , j , m j 〉=

− e E (1)1n (−1) j
′−m ′

j

�

j ′ 1 j

−m ′
j −1 m j

�

〈n ′, l ′, s ′, j ′||r (1)||n , l , s , j 〉 . (B.25)

Requiring conservation of angular momentum by implementation of Eq. B.9 and Eq. B.10 the

following selection rules must be satisfied

m ′
j =m j −1 1 ∈ | j ′− j | .. | j ′+ j |

or else the 3j-symbol and thus the first term is zero. The operator r (1) operates on the l quantum

number thus Eq. B.11 is utilized to express the reduced matrix element as follows
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〈n ′, l ′, s , j ′||r (1)||n , l , s , j 〉=

(−1)s+l+ j ′+1
�

(2 j +1)(2 j ′+1)
�1/2

¨

l ′ j ′ s

j l 1

«

〈n ′, l ′, s ||r (1)||n , l , s 〉 . (B.26)

The term 〈n ′, l ′, s ||r (1)||n , l , s 〉 is referred to as the overlap integral and can be expressed in a simple

analytic form when n ′ = n as given by

〈n , l ′, s ||r (1)||n , l , s 〉=
6πεoħh 2

me e 2
(−1)l+l> l 1/2

> n (n 2− l 2)1/2 , (B.27)

where l> is the larger of l ′ and l [19, 67]. When considering n ′ 6= n the overlap integral can be

calculated from its general form [19]. The following selection rules must be satisfied

l ′ = l ±1

or else the overlap integral and thus the first term is zero. There is no criteria on n ′. Substituting

Eq. B.27 into Eq. B.26 and the result into Eq. B.25 the final form of the first term is expressed as

−〈n , l ′, s ′, j ′, m ′
j |e E (1)1n r (1)−1 |n , l , s , j , m j 〉=−

6πεoħh 2

me e
E (1)1n (−1)s+l>+2l+2 j ′−m ′

j+1

·
�

(2 j +1)(2 j ′+1)
�1/2

l 1/2
> n (n 2− l 2)1/2

�

j ′ 1 j

−m ′
j −1 m j

�¨

l ′ j ′ s

j l 1

«

. (B.28)

Where the corresponding selection rules for mixing are summarized by

l ′ = l ±1 s ′ = s m ′
j =m j −1 j ′ = j ±1 j ′ = j 6= 0 . (B.29)

Following the above derivation the expression for the second term of Eq. B.24 is

〈n , l ′, s ′, j ′, m ′
j |e E (1)0n r (1)0 |n , l , s , j , m j 〉=

6πεoħh 2

me e
E (1)1n (−1)s+l>+2l+2 j ′−m ′

j+1

·
�

(2 j +1)(2 j ′+1)
�1/2

l 1/2
> n (n 2− l 2)1/2

�

j ′ 1 j

−m ′
j 0 m j

�¨

l ′ j ′ s

j l 1

«

(B.30)

with corresponding selection rules for mixing given by

l ′ = l ±1 s ′ = s m ′
j =m j j ′ = j ±1 j ′ = j 6= 0 . (B.31)
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Finally, the expression for the third term of Eq. B.24 is

−〈n , l ′, s ′, j ′, m ′
j |e E (1)−1n r (1)1 |n , l , s , j , m j 〉=−

6πεoħh 2

me e
E (1)1n (−1)s+l>+2l+2 j ′−m ′

j+1

·
�

(2 j +1)(2 j ′+1)
�1/2

l 1/2
> n (n 2− l 2)1/2

�

j ′ 1 j

−m ′
j 1 m j

�¨

l ′ j ′ s

j l 1

«

(B.32)

with corresponding selection rules for mixing given by

l ′ = l ±1 s ′ = s m ′
j =m j +1 j ′ = j ±1 j ′ = j 6= 0 . (B.33)

Therefore the matrix element E En
j m is given by a summation of Eq. B.28, Eq. B.30, and Eq. B.32 utilizing

the selection rules for mixing given by Eq. B.29, Eq. B.31, and Eq. B.33 respectively.

As discussed in Section 3.3.2 the matrix elements



Φm

�

�Ĥ
�

�Φ j

�

associated with the electric dipole

connection operator are calculated utilizing a similar expression found above for E En
j m . This is due

to the fact that the Hamiltonian Ĥ = ε̄ · r̄ is of the same form of that given by Eq. B.2. In addition

to replacing the quantity e Ēn with the polarization vector ε̄ the more general form of the overlap

integral must be used due to the fact that n ′ 6= n . The overlap integral given by:

〈n ′,l ′, s ||r (1)||n , l , s 〉=
6πεoħh 2

me e 2
(−1)l+l> l 1/2

>

·
−1n1−l1

4(2l1−1)!

� (n2+ l1)!(n1+ l1−1)!
(n2− l1−1)!(n1− l1)!
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(B.34)

must be replaced by that of Eq. B.27, where 2F1(α,β ;γ;ν) is the Gaussian hypergeometric function.

The selection rules as discussed above are still applicable. The variables n1, n2, and l1 utilized in

Eq. B.34 are defined in Table B.1, with

nr 1 = n1− l1 nr 2 = n2− l1−1 .

Table B.1: Overlap integral variable definitions.

Variable l′ > l l′ < l

n1 n n ′

n2 n ′ n

l1 l ′ l

209



APPENDIX

C

SHOT DISCHARGE PARAMETERS

In this appendix the various set points, electrical parameters, and plasma parameters are tabulated

for each of the 28 discharges, referred to as shots, investigated. The definition of the variables used to

characterize the shot are given in Table C.1 for the set points and electrical parameters and Table C.2

for the plasma parameters.

Table C.1: Definitions of set points and the electrical parameters.

Variable Definition

P Discharge pressure

PµW Microwave power level

PRF RF power level

CL Load capacitor position

CT Tune capacitor position

PE Matching network power efficiency

XL Plasma reactance

RL Plasma resistance

VDC Electrode DC voltage

|VRF| Electrode RF voltage magnitude

|IRF| Electrode RF current magnitude
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Table C.2: Definitions of plasma parameter.
Variable Definition

ne Electron density

kTe Electron temperature

φf Floating potential

φp0 Plasma potential

Ae/Ap Ratio of electron collection area to probe tip area

Ai/Ap Ratio of ion collection area to probe tip area

The diagnostics and associated theory presented in Section 4.1 were used to measure and determine

the electrical parameters. The RF compensated Langmuir probe presented in Section 4.3.1 was used

to determine the plasma parameters through a fit to the I-V characteristic.

C.1 Parallel Field Configuration

Table C.3: Power and matching network set points for the hydrogen discharges.

Shot P (mTorr) PµW (W) PRF (W) CL (V) CT (V)

1 200 0 88 1.367 0.550

2 200 194 83 1.368 0.546

3 200 0 210 1.368 0.546

4 200 190 208 1.368 0.546

5 400 0 149 1.367 0.544

6 400 173 140 1.367 0.544

7 400 0 219 1.367 0.544

8 400 171 204 1.367 0.544

Table C.4: Power and matching network set points for the helium discharges.

Shot P (mTorr) PµW (W) PRF (W) CL (V) CT (V)

9 200 0 59 1.459 0.550

10 200 91 74 1.459 0.546

11 200 0 137 1.459 0.550

12 200 107 153 1.459 0.546

13 400 0 65 1.459 0.550

14 400 87 66 1.459 0.550

15 400 0 140 1.459 0.550

16 400 90 133 1.459 0.550
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Table C.5: Electrical parameters for the hydrogen discharges.

Shot PE (%) XL (Ω) RL (Ω) VDC (kV) |VRF| (kV) |IRF| (A)

1 67 -605 12 -1.9 1.9 8.2

2 68 -600 12 -1.9 1.8 7.9

3 68 -600 12 -2.7 2.6 11.6

4 68 -600 12 -2.7 2.6 11.4

5 68 -598 12 -1.9 1.9 8.4

6 68 -598 12 -1.9 1.8 8.0

7 68 -598 12 -2.6 2.5 11.2

8 68 -598 12 -2.3 2.1 9.6

Table C.6: Electrical parameters for the helium discharges.

Shot PE (%) XL (Ω) RL (Ω) VDC (kV) |VRF| (kV) |IRF| (A)

9 66 -606 12 -1.9 1.7 7.6

10 67 -601 12 -1.9 1.7 7.4

11 67 -606 12 -2.7 2.4 11.0

12 67 -601 12 -2.7 2.4 10.7

13 66 -606 12 -1.9 1.7 7.6

14 66 -606 12 -1.9 1.7 7.3

15 66 -606 12 -2.7 2.4 10.9

16 66 -606 12 -2.7 2.4 10.6

Table C.7: Plasma parameters for the hydrogen discharges.

Shot ne (m−3) kTe (eV) φf (V) φp0 (V) Ae/Ap Ai/Ap

1 5.33 ·1016 17.1 -34.3 -16.9 0.073 1.000

2 3.93 ·1016 6.3 -8.5 0.8 0.140 1.000

3 1.03 ·1017 16.7 -32.1 -13.5 0.085 1.000

4 7.42 ·1016 8.6 -13.8 -1.7 0.128 1.000

5 7.99 ·1016 18.5 -33.9 -12.3 0.091 1.000

6 5.24 ·1016 4.6 -4.2 3.4 0.175 1.000

7 8.05 ·1016 8.8 -14.8 -1.8 0.140 1.000

8 6.78 ·1016 8.3 -12.5 0.6 0.159 1.000
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Table C.8: Plasma parameters for the helium discharges.

Shot ne (m−3) kTe (eV) φf (V) φp0 (V) Ae/Ap Ai/Ap

9 8.00 ·1016 7.3 -18.5 -8.4 0.061 1.000

10 1.09 ·1018 4.4 4.2 15.5 0.230 1.000

11 1.49 ·1017 8.7 -20.0 -7.2 0.071 1.000

12 1.41 ·1018 5.3 3.7 17.3 0.230 1.000

13 1.27 ·1017 6.6 -14.9 -4.5 0.081 1.000

14 9.74 ·1017 2.6 5.1 11.9 0.230 1.000

15 2.10 ·1017 10.4 -12.3 5.3 0.094 1.000

16 1.01 ·1018 3.0 5.2 12.9 0.230 1.000

C.2 Perpendicular Field Configuration

Table C.9: Power and matching network set points for the hydrogen discharges.

Shot P (mTorr) PµW (W) PRF (W) CL (V) CT (V)

17 100 0 136 1.297 0.543

18 100 131 131 1.297 0.543

19 100 0 193 1.297 0.543

20 100 129 191 1.297 0.543

Table C.10: Power and matching network set points for the helium discharges.

Shot P (mTorr) PµW (W) PRF (W) CL (V) CT (V)

21 100 0 77 1.297 0.543

22 100 137 97 1.297 0.543

23 100 0 112 1.297 0.543

24 100 99 121 1.297 0.543

25 200 0 86 1.297 0.543

26 200 88 98 1.297 0.543

27 200 0 129 1.297 0.543

28 200 85 138 1.297 0.543
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Table C.11: Electrical parameters for the hydrogen discharges.

Shot PE (%) XL (Ω) RL (Ω) VDC (kV) |VRF| (kV) |IRF| (A)

17 69 -597 12 -1.5 1.8 7.8

18 69 -597 12 -1.5 1.7 7.5

19 69 -597 12 -1.9 2.2 9.6

20 69 -597 12 -1.9 2.1 9.3

Table C.12: Electrical parameters for the helium discharges.

Shot PE (%) XL (Ω) RL (Ω) VDC (kV) |VRF| (kV) |IRF| (A)

21 69 -597 12 -1.5 1.7 7.5

22 69 -597 12 -1.5 1.6 7.0

23 69 -597 12 -1.9 2.1 9.4

24 69 -597 12 -1.9 2.0 8.9

25 69 -597 12 -1.5 1.6 7.1

26 69 -597 12 -1.5 1.6 7.0

27 69 -597 12 -1.9 2.0 8.9

28 69 -597 12 -1.9 2.0 8.7

Table C.13: Plasma parameters for the hydrogen discharges.

Shot ne (m−3) kTe (eV) φf (V) φp0 (V) Ae/Ap Ai/Ap

17 3.19 ·1015 12.7 9.8 24.7 0.092 1.000

18 8.49 ·1015 1.7 4.4 7.4 0.200 1.000

19 3.49 ·1015 13 9.7 25.3 0.095 1.000

20 8.94 ·1015 1.9 5.2 8.3 0.182 1.000

Table C.14: Plasma parameters for the helium discharges.

Shot ne (m−3) kTe (eV) φf (V) φp0 (V) Ae/Ap Ai/Ap

21 5.82 ·1015 4.4 13.0 19.8 0.078 1.000

22 6.97 ·1016 3.3 2.7 11.0 0.256 1.000

23 1.20 ·1016 5.0 8.8 16.0 0.095 1.000

24 6.11 ·1016 4.7 2.4 13.2 0.199 1.000

25 8.87 ·1015 4.1 8.5 15.2 0.086 1.000

26 4.64 ·1016 4.0 3.0 11.2 0.150 1.000

27 1.01 ·1016 4.2 8.5 15.6 0.091 1.000

28 3.69 ·1016 3.3 3.9 11.7 0.208 1.000
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APPENDIX

D

SPECTRAL LINE PROFILES

This appendix presents the fitted Hβ and 53D → 23P He I π andσ spectral line profiles for select

shots. The π andσ profiles were fit together as an object utilizing the model presented in Table 5.1,

for specific details see Section 5.4.2. The electric field is assumed to always be negative, that is point

towards the RF biased electrode surface, therefore the waveform was clamped at zero [44, 147]. A

total of 8 shots were selected, 4 having hydrogen and 4 having helium as the working gas in which

the Hβ and 53D → 23P He I transitions were observed respectively. The four shots correspond to

discharges in the parallel and perpendicular field configurations having the ECW source on and off.

The discharge parameters of interest are presented in Table D.1 for the selected shots, see Appendix

C for the complete tables.

Table D.1: Select discharge parameters of the presented shots.

Shot Configuration Gas P (mTorr) PµW (W)

3 Parallel Hydrogen 200 0

4 Parallel Hydrogen 200 190

11 Parallel Helium 200 0

12 Parallel Helium 200 107

19 Perpendicular Hydrogen 100 0

20 Perpendicular Hydrogen 100 129

27 Perpendicular Helium 200 0

28 Perpendicular Helium 200 85
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To portray the quality of the fit as a function of z -axis position the π andσ profiles at three spatial

locations are presented. In the parallel field configuration spectra at positions of z = 0.8, 3.8, and

7.9 mm are presented. In the perpendicular field configuration spectra at positions of z = 1.0, 4.1,

and 7.6 mm are presented. Table D.2 through Table D.9 give the fit parameters associated with the

selected positions for the shots presented in Table D.1.

Table D.2: Fit parameters associated with the spectra presented for shot 3.

Position (mm) E0 (kV/cm) E1 (kV/cm) θ1 (◦) IR2 (%) kTR2 (eV)

0.8 -4.1 ± 0.1 7.4 ± 0.1 57.1 ◦ 139.8 4.2

3.8 2.0 ± 0.6 8.6 ± 0.7 51.0 ◦ 110.8 3.8

7.9 11.9 ± 1.3 12.8 ± 1.5 10.0 ◦ 48.1 3.7

Table D.3: Fit parameters associated with the spectra presented for shot 4.

Position (mm) E0 (kV/cm) E1 (kV/cm) θ1 (◦) IR2 (%) kTR2 (eV)

0.8 -3.8 ± 0.1 5.8 ± 0.1 48.4 ◦ 139.3 3.8

3.8 0.0 ± 0.4 5.9 ± 0.5 51.6 ◦ 165.5 3.6

7.9 8.4 ± 1.2 11.4 ± 1.3 56.7 ◦ 136.1 3.3

Table D.4: Fit parameters associated with the spectra presented for shot 11.

Position (mm) E0 (kV/cm) E1 (kV/cm) IR2 (%) kTR2 (eV)

0.8 -5.1 ± 0.1 4.1 ± 0.1 15.5 30.0

3.8 -3.5 ± 0.1 3.0 ± 0.1 13.8 18.2

7.9 -1.6 ± 0.4 1.5 ± 0.5 9.4 12.2

Table D.5: Fit parameters associated with the spectra presented for shot 12.

Position (mm) E0 (kV/cm) E1 (kV/cm) IR2 (%) kTR2 (eV)

0.8 -6.7 ± 0.1 6.1 ± 0.1 15.7 35.0

3.8 -2.0 ± 0.3 6.0 ± 0.4 13.1 30.7

7.9 0.0 ± 0.8 1.4 ± 1.1 9.4 11.8
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Table D.6: Fit parameters associated with the spectra presented for shot 19.

Position (mm) E0 (kV/cm) E1 (kV/cm) θ1 (◦) IR2 (%) kTR2 (eV)

1.0 -2.5 ± 0.1 4.8 ± 0.2 3.8 144.5 4.9

4.1 -0.3 ± 0.4 4.3 ± 0.5 8.0 165.9 3.5

7.6 6.7 ± 1.2 10.0 ± 1.2 14.5 44.7 4.3

Table D.7: Fit parameters associated with the spectra presented for shot 20.

Position (mm) E0 (kV/cm) E1 (kV/cm) θ1 (◦) IR2 (%) kTR2 (eV)

1.0 -2.7 ± 0.1 4.3 ± 0.2 -1.8 185.0 4.1

4.1 -0.5 ± 0.4 4.3 ± 0.5 13.6 127.9 3.1

7.6 5.2 ± 1.1 7.8 ± 1.2 5.7 50.7 4.5

Table D.8: Fit parameters associated with the spectra presented for shot 27.

Position (mm) E0 (kV/cm) E1 (kV/cm) IR2 (%) kTR2 (eV)

1.0 -4.0 ± 0.1 2.9 ± 0.1 4.9 42.4

4.1 -2.4 ± 0.2 1.9 ± 0.3 9.2 21.6

7.6 -0.4 ± 0.8 2.1 ± 1.0 3.3 105.9

Table D.9: Fit parameters associated with the spectra presented for shot 28.

Position (mm) E0 (kV/cm) E1 (kV/cm) IR2 (%) kTR2 (eV)

1.0 -4.3 ± 0.1 3.2 ± 0.1 7.8 43.6

4.1 -2.6 ± 0.2 2.6 ± 0.2 9.6 29.1

7.6 -1.2 ± 0.4 0.6 ± 0.8 9.0 40.1

The π and σ profiles obtained in the parallel field configuration are presented in Figure D.1

through Figure D.6 for the Hβ transition and Figure D.7 through Figure D.12 for the 53D → 23P He I

transition. The π and σ profiles obtained in the perpendicular field configuration are presented

in Figure D.13 through Figure D.18 for the Hβ transition and Figure D.19 through Figure D.24 for

the 53D → 23P He I transition. The black curve and markers represent the fitted continuous and

pixelated theoretical spectral line profile respectively.
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D.1 Parallel Field Configuration - Hβ
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Figure D.1: Fit to the Hβ (a) π and (b)σ profiles for shot 3 at a position of z = 0.8 mm.
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Figure D.2: Fit to the Hβ (a) π and (b)σ profiles for shot 3 at a position of z = 3.8 mm.
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Figure D.3: Fit to the Hβ (a) π and (b)σ profiles for shot 3 at a position of z = 7.9 mm.
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Figure D.4: Fit to the Hβ (a) π and (b)σ profiles for shot 4 at a position of z = 0.8 mm.
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Figure D.5: Fit to the Hβ (a) π and (b)σ profiles for shot 4 at a position of z = 3.8 mm.
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Figure D.6: Fit to the Hβ (a) π and (b)σ profiles for shot 4 at a position of z = 7.9 mm.
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D.2 Parallel Field Configuration - 53D→ 23P He I
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Figure D.7: Fit to the 53D → 23P He I (a)π and (b)σ profiles for shot 11 at a position of z = 0.8 mm.
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Figure D.8: Fit to the 53D → 23P He I (a)π and (b)σ profiles for shot 11 at a position of z = 3.8 mm.
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Figure D.9: Fit to the 53D → 23P He I (a)π and (b)σ profiles for shot 11 at a position of z = 7.9 mm.
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Figure D.10: Fit to the 53D → 23P He I (a) π and (b)σ profiles for shot 12 at a position of z = 0.8
mm.
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Figure D.11: Fit to the 53D → 23P He I (a) π and (b)σ profiles for shot 12 at a position of z = 3.8
mm.
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Figure D.12: Fit to the 53D → 23P He I (a) π and (b)σ profiles for shot 12 at a position of z = 7.9
mm.
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D.3 Perpendicular Field Configuration - Hβ
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Figure D.13: Fit to the Hβ (a) π and (b)σ profiles for shot 19 at a position of z = 1.0 mm.
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Figure D.14: Fit to the Hβ (a) π and (b)σ profiles for shot 19 at a position of z = 4.1 mm.
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Figure D.15: Fit to the Hβ (a) π and (b)σ profiles for shot 19 at a position of z = 7.6 mm.
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Figure D.16: Fit to the Hβ (a) π and (b)σ profiles for shot 20 at a position of z = 1.0 mm.
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Figure D.17: Fit to the Hβ (a) π and (b)σ profiles for shot 20 at a position of z = 4.1 mm.
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Figure D.18: Fit to the Hβ (a) π and (b)σ profiles for shot 20 at a position of z = 7.6 mm.
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D.4 Perpendicular Field Configuration - 53D→ 23P He I
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Figure D.19: Fit to the 53D → 23P He I (a) π and (b)σ profiles for shot 27 at a position of z = 1.0
mm.
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Figure D.20: Fit to the 53D → 23P He I (a) π and (b)σ profiles for shot 27 at a position of z = 4.1
mm.
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Figure D.21: Fit to the 53D → 23P He I (a) π and (b)σ profiles for shot 27 at a position of z = 7.6
mm.
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Figure D.22: Fit to the 53D → 23P He I (a) π and (b)σ profiles for shot 28 at a position of z = 1.0
mm.

4025.5 4026 4026.5 4027 4027.5 4028 4028.5
0

0.2

0.4

0.6

0.8

1

Wavelength (Å)

In
te

ns
ity

 (
a.

u.
)

 

 

Experimental
Theoretical

(a)

4025.5 4026 4026.5 4027 4027.5 4028 4028.5
0

0.2

0.4

0.6

0.8

1

Wavelength (Å)

In
te

ns
ity

 (
a.

u.
)

 

 

Experimental
Theoretical

(b)

Figure D.23: Fit to the 53D → 23P He I (a) π and (b)σ profiles for shot 28 at a position of z = 4.1
mm.
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Figure D.24: Fit to the 53D → 23P He I (a) π and (b)σ profiles for shot 28 at a position of z = 7.6
mm.
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