
ABSTRACT

HART, NATHAN HENRY. A Residual-Based A Posteriori Spatial Error Estimator for the SN
Neutron Transport Equation. (Under the direction of Yousry Azmy.)

Error estimators determine the reliability of discretized numerical methods; as numerical

simulations evolve to represent more and more complex systems, validation of the approxima-

tions becomes essential, and this step is often overlooked. Within a specific energy and SN

angular discretization of the neutron transport equation, estimators of the spatial discretiza-

tion error are relied upon for adaptive mesh refinement and propagation of error analysis. A

posteriori estimators have the benefit of high accuracy, but they often sacrifice computational

resources to achieve this. In this work, a mathematically sound two-step estimator is introduced

and applied to test problems. The “residual source estimator” uses an approximation of the

residual as a fixed source for a transport-like problem, in which the discretization error is es-

timated using the same transport routines as the discretized angular flux solution. A detailed

derivation of the residual, an approximation of the residual by Taylor series expansion, and an

approximation of higher-order derivatives using low-order solutions are detailed to demonstrate

practical application of such an estimator.

The resultant error estimation for the Discontinuous Galerkin Finite Element Method of

order 0 discretization is compared for several cases with varying optical thickness (total cross-

section), scattering ratio, and solution regularity. The residual source estimator is compared

against two estimators that have been shown to perform well: the “Ragusa-Wang” estimator and

the “DAZ” estimator/indicator. By using the Method of Manufactured Solutions, true reference

solutions provide an objective basis for determining the quality of the estimator. The local

behavior of estimators relative to the true error is observed via an “effectivity index”, and global

quantities, namely, the global effectivity index, fraction of local estimates that overestimate the

true error, fraction of local estimates within some accuracy bound, and standard deviation of

the effectivity index give some indication of the advantages of each estimator.

The performance of the residual source estimator is encouraging. For problems with solu-

tions in H1 (true solution discontinuous in its first derivative along the singular characteristics),

the residual source estimator is generally accurate, precise, and computationally affordable com-

pared to similarly performing estimators. For problems with solutions in H0 (true solution itself

is discontinuous along the singular characteristics), the residual source estimator is competitive

versus other estimators, but it suffers in problems that are adversely affected to a significant

level by the discontinuity.
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Chapter 1

Background

1.1 A Posteriori Spatial Discretization Error Estimation

Several a posteriori error estimators have been developed for solving differential equations

with the finite elements method. Generally these are developed with effective adaptive mesh

refinement (AMR) as the main purpose. This review is intended to summarize the findings that

led to or prompted further study of this topic in this work.

Madsen derived an a posteriori error bound for numerical approximations to the steady-

state, one-speed transport equation in rectangular geometry for the L2 and L1 norms, provided

the absorption cross-section is bounded below away from zero [1]. This estimator uses linearity

to apply the transport operator to the error function, thereby extending a bound on the true

solution to a bound on the error. The resulting error estimator process requires a “smoothing”

of the numerical solution, which Madsen assumes to be a point-wise discretization. This global

bound was demonstrated to decrease with mesh refinement in Madsen’s original work, though no

reference solutions were provided as an empirical validation. O’Brien later heuristically applied

this global bound as a local indication of the solution error, confirming the global error bound

and empirically demonstrating a local bound [2].

Babuška and Rheinboldt developed an a posteriori error estimate for one-dimensional model

problems involving a linear, self-adjoint operator of the second order with Dirichlet boundary

conditions that was later expanded to eigenvalue and parabolic problems [3]. This estimate

provided global asymptotic upper and lower bounds on the error in the energy norm by deriving

local indicators as a function of the residual (integrated by Gaussian quadrature). Similar

asymptotic error estimates can be derived for other norms as well [3]. These estimators were

seen to increase in efficiency (effectivity) as the mesh was refined. This process was later applied

to adaptive mesh refinement with compelling results [4].

Gratsch and Bathe outlined several error estimators in the context of the global energy-

norm for elliptic linear problems [5]. Some estimators were derived to bound the error globally

while some were merely intended to accurately portray the error profile as indicators. They

explored three types of estimators: 1) an explicit error estimator that bounds the global energy
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norm of the error from above by direct computation of interior element residuals and jumps

at the element boundaries, 2) implicit error estimators that involve the solution of auxiliary

boundary value problems using cell-wise or subdomain-wise residuals, and 3) a recovery-based

error estimator, in which an “improved” approximation to the gradient is calculated, and the

gradient from the FEM calculation is subtracted from it to estimate the error. While many of

the estimators were intended to bound, the authors acknowledge that upper and lower bounds

on the error are not useful if the difference between the two are too large, which is the case in

their work. Additionally, they find that all error bounds analyzed are not actually guaranteed

to bound the error in practice.

Ragusa and Wang have worked extensively on h-, p-, and hp-adaptivity in AMR for neutron

transport. These adaptivity methods increase spatial accuracy of the discrete solution progres-

sively by refining the spatial mesh, spatial discretization method order, and a combination of

both, respectively. In one work, they implemented an hp-adaptivity scheme for multigroup dif-

fusion that captured the advantages of both h- and p-adaptivity schemes, namely appropriate

refinement in regions where the solution is not smooth and a higher convergence rate in regions

where the solution is smooth, respectively [6]. As a result, this method was shown to converge

regardless of the choice of initial mesh, which is not always true for p-adaptivity strategies, and

to converge at a higher rate than a purely h-adaptivity strategy [6]. In neutron transport they

have developed and implemented an h-adaptivity scheme utilizing a two-mesh difference-based

error estimator in which a solution on a uniformly-refined mesh, integrated over angle as scalar

flux or current, is effectively utilized as a reference solution for the coarse mesh solution [7].

This was inspired by [8] in which a full goal-oriented hp-adaptivity scheme was also proposed

requiring refinement of the mesh and degree of polynomial approximation in finite elements

to acquire a reference solution. The additional transport solve on the refined mesh required

by Ragusa and Wang’s estimator was preconditioned with a projection of the unrefined mesh

solution onto the refined mesh to decrease computational cost. When applied to problems with

a higher-order discontinuous-Galerkin finite element method discretization it proved to be an

effective AMR driver.

Wang and Ragusa performed a comparative analysis of the AMR performance of three error

quantities [9]: a difference-based variant of a two-mesh error estimate [7] (referred to in O’Brien

and Azmy’s work as “Ragusa-Wang” estimator [10]), a projection-based variant of a two-mesh

error estimate, and a jump-based error indicator related to the interface residual in [11]. In

their analysis, they find that the difference-based variant of a two-mesh error estimate is most

accurate. Their analysis also included an examination of goal-oriented error estimates applied

to AMR, in which the adjoint transport equation is solved given a quantity of interest (i.e.,

localized reaction rates) and used in conjunction with an a posteriori error estimate to give

an importance-weighted error estimate. Goal-oriented AMR was found to outperform standard

AMR when solution magnitudes were low in regions containing quantities of interest.

Fournier, et al. also analyzed a cell boundary jump-discontinuity-based estimator, similar to
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the one used by Wang and Ragusa [9], rooted in finite volume methods to drive AMR routines

[12]. This estimator was shown to accurately portray the error distribution in the domain, even

at singular characteristics, although a normalization factor was used. This was compared vis-a-

vis the “Radau Estimator”, [13], which had trouble identifying the SC-intersected cells as high

error cells.

O’Brien and Azmy performed a comparative analysis of the accuracy of three a posteriori

error quantities [10]: the O’Brien residual source estimator [2], the Ragusa-Wang estimator

[7], and jump-discontinuitiy indicator [12], though functionally similar to that presented in [9].

This analysis was further explored in O’Brien’s M.S. thesis [2] with the addition of the Madsen

estimator [1] and a cell-centered two-mesh estimator. It was found that in terms of accuracy

the Ragusa-Wang estimator was superior to all other estimators considered at the cost of a

larger computation time. The Method of Manufactured Solutions (MMS) was used to generate

reference solutions to the spatially continuous SN transport equation. O’Brien also showed that

the Madsen error estimator was impractically too large compared to the true error, bringing

into question its use as anything but the most cautious bound.

1.2 Residual-Based Error Estimators

The use of the “residual” of the discretization in spatial error estimates is a well-established

concept. In most works the “residual” is considered to be the “leftover term” that remains when

the discrete solution is inserted into the continuous bilinear problem.

Bank and Weiser proposed three a posteriori global error estimators in the energy-norm for

elliptic PDEs using finite element methods on triangular meshes. These estimators were based

on solving local Neumann problems in each element [14], which requires solving the bilinear form

for the discretization error using some residual as an input, though they distinguish between the

element residual and the inter-element jump discontinuity in the gradient of the solution. The

resulting estimators are derived to give upper and lower bounds on the global error. However,

when numerical results were gathered on a test problem, only the third estimator derived was

shown to converge to the true error norm with mesh refinement, bringing the utility of the

other two estimators into question. Additionally, only the first estimator was actually shown to

bound the global error from above for the cases examined.

Kuzmin and Korotov introduce a residual-based, goal-oriented error estimate for steady

convection-diffusion equations [15]. This relates the error in a quantity of interest as a function

of the upper bounds for the magnitudes of various weak form residuals. These residuals require

knowledge of the discrete forward solution, the discrete adjoint solution, and the true continuous

adjoint solution. This requires one to generate another (higher-order) approximation of the true

adjoint solution, as the discrete adjoint solution cannot be used as an approximation in this

context, lest the estimator return trivial results [15]. This estimator was tested for a one-

dimensional convection-diffusion equation, and it was found to provide an excellent estimate
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for select test problems.

Segeth introduces the “explicit residual a posteriori error estimator” in the local energy-

norm for linear second order elliptic PDEs discretized on regular triangular meshes. The estima-

tor equation has three distinct parts: the first part relates the residual of the “strong” solution

and the “boundary terms”, the second expresses that the gradient of the discrete solution may

have jump-discontinuities across boundary edges, and the third expresses that the discrete so-

lution may not satisfy the boundary conditions exactly. This estimator provides a “two-sided”

local estimate of the error and is useful in theory, but it requires calculation of constants that,

in general, must be approximated [16]. This estimator has shown to asymptotically converge

to the true error, but accurate error estimation relies on the calculation of constants that, by

nature, are unknown.

Gratsch and Bathe also examined several residual-based estimators for elliptic ODEs [5].

The explicit error estimator uses the local L2 norm of the residual in conjunction with jump

discontinuities to place a cautious bound on the error. Because the explicit error estimators rely

on unknown constants, an accurate representation of the error magnitude cannot be guaranteed.

However, this makes them suitable for AMR, which places more emphasis on the relative mag-

nitude of the local error estimate throughout the domain rather than the absolute magnitude.

The implicit estimators use the residual and jump discontinuities as sources for element-wise

or subdomain-wise problems, the solution of which is an error estimate. These estimators do

not have unknown constants. The element-wise residual method has been shown to only bound

the error from above if the local problem is computed exactly. The subdomain-wise residual

method show good results in terms of effectivity indices on upper and lower bounds of the error,

and the estimator is reliable on coarse meshes as well [17].

Duo, Azmy, and Zikatanov introduced and implemented a local a posteriori error indicator

in [18] for AMR. Similar to O’Brien’s heuristic application of Madsen’s global bound as a local

error indicator, this error indicator was heuristically derived from a global error estimator valid

for problems with solutions in Hr, where r ≥ 1, derived by Duo [19]. This global estimate was

derived by using the Cauchy-Schwarz inequality to bound the global error norm from above

by an expression that utilizes the norm of the estimated residual and inter-element jumps of

varying polynomial order, similar to that in [5]. This required approximating a higher-order

AHOT-N solution via a succession of local single sweep problems for each cell in the mesh.

For two-dimensional Cartesian geometry, Duo introduced a shielding benchmark for AMR as

well as a MMS-AHOT-N interface to provide true, continuous reference solutions for evaluating

estimator performance [18, 19]. The resultant global estimator proved to bound the global error

from above and converge with the same order as the error, but it was exceedingly cautious for

problems of spatial order Λ = 0. It did not locally bound the error, but it was an effective AMR

driver for the shielding benchmark.

Fournier, Le Tellier, and Suteau implemented an a posteriori error estimator for neutron

transport in the context of AMR for DGFEM discretizations [20]. The estimator is based
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on a cell-by-cell Taylor series expansion of the true error inserted into the bilinear DGFEM

transport operator, resulting in an error estimator dependent on Radau polynomials one order

higher than that of the method [13]. The estimator also requires one to project the residual on

a given polynomial factor to obtain solutions βx and βy essential to calculating the estimate.

The estimator is valid for conforming meshes with uniform polynomial basis order, but they

implement a modification for use on non-conforming meshes and varying polynomial basis

order. They examined its accuracy relative to the true error on a non-scattering, zero fixed

source problems, and they observed strong agreement in regions in which the true solution was

infinitely differentiable but poor agreement near SCs.

Lathouwers introduces a goal-oriented spatial adaptivity scheme for SN transport on un-

structured triangulared meshes [21]. The a posteriori global error estimator used is derived

to calculate the error in a computed response functional by summing up elemental error in-

dicators. These local indicators are of a form similar to that in [18], except a bound is not

applied to remove the practical dependence on the adjoint solution. As a result, the adjoint

and forward solutions are used as inputs for the dual-weighted residuals that drive AMR. As

the problems were refined, the global error estimator asymptotically reached perfect agreement

with the true error in quantity of interest. Lathouwers points out that the adjoint solution could

be made cheaper by reducing the order of the adjoint problem (i.e., reducing number of cells

or computational order) with minimal loss in indicator effectiveness.

Jeffers, et al., presented a goal-based h-adaptivity scheme for the 1-D diamond difference

spatial discretization of the SN transport equation [22]. This required establishing a quantity-

of-interest (i.e., reaction rate, keff -eigenvalue) and using the adjoint solution computed in the

same manner as the forward solution to generate local dual-weighted residuals (DWRs) for use

as error indicators in an AMR process. Jeffers, et al. posit the possibility of using a higher-order

adjoint solution as a weighting function, though this generally did not give better convergence

to the AMR process. This estimator also tended to be locally cautious.

O’Brien introduced a residual-based, two-step estimator in which the residual, defined as

the deviation from equality when the numerical solution is inserted into the spatially-continuous

transport equation, is calculated a posteriori, integrated over angle, and used as an isotropic

source in a fully-converged transport-like problem, where the discretized transport equation

is used as an approximation of the spatially-continuous transport equation, to solve for the

error estimate [2]. The additional computational cost of the required extra solution was deemed

acceptable provided the estimator was competitive with Ragusa and Wang’s mesh-based two-

step estimator [7]. However, it was found that this estimator did not give reliable estimates of

the true error, as the effectivity values were not centered at exact agreement, and the estimator

accuracy did not get improve with higher order spatial discretization.
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1.3 Estimators vs. Indicators vs. Bounds

The literature is oftentimes vague or conflicting when referring to error estimation quantities.

Sometimes the explicit distinction of an error bound is made when referring to a quantity that

provides an upper or lower bound on the error. However, it is also common for such quantities to

be called estimators. A distinction is regularly made between estimators and indicators, quickly

followed by a proverbial “throwing up hands” and relinquishing an attempt at consistent usage.

An attempt here will be made to clarify terminology and reasoning for the purpose of precise

interpretation of this work.

Traditionally in the finite elements method the terminology “error estimate” refers to a

mathematically proven bound on the error norm derived via some error analysis [23]. This can

relate the error to a convergence rate with respect to the true solution [24]. In this sense, Mad-

sen’s global error bound is really an estimator [1], and Duo, Azmy, and Zikatanov’s distinction

between the global error bound as an estimator versus the heuristically derived local indicator

is correct [18]. However, strict adherence to this definition might suggest that error quantities

that do not have mathematically proven bounds, such as Ragusa and Wang’s [7] and O’Brien’s

[2] are not estimators.

Gratsch and Bathe define an “error estimate” as a “quantity that is an approximation to

the actual unknown error” versus upper or lower bounds which are “quantities that are always

larger, respectively, or smaller, respectively, than the actual unknown error” [5]. They further

expand on the error estimate definition as providing “an estimate and ideally bounds for the

solution error in a specified norm. . . ” [5]. While not explicitly defining an “indicator”, Gratshe

and Bathe do note that indicators are useful “[to] only obtain an indication of the error or

to drive a mesh adaptivity scheme. . . ” [5]. While Ragusa and Wang do not explicitly define

the difference between an estimator and an indicator, they are careful to distinguish that the

jump-based indicator is heuristic and not intended to provide a reliable estimate of the error [9].

However, they ultimately drop the distinction for simplicity’s sake. O’Brien makes an important

distinction on the two observed definitions of “error estimate”. The first is that the estimator

is a ”global error that is usually a totality, in some norm, of the indicators”, where indicators

are ”the error associated with a particular element” [2]. The second is that the estimator is ”a

more rigorous estimate of the error” and an indicator ”merely gives signs indicative of the size

of the error” [2].

This work adopts a stance that such quantities fall into two categories: error estimators and

error indicators. An estimator is a quantity that ideally provides an accurate representation of

the magnitude of the error, whether that be the error itself or a reliable bound. This definition

is consistent with the traditional FEM usage of “error estimate” to denote a mathematically

proven bound and with Gratsch and Bathe’s definition of the estimate. This means that the

terminology encompassing error estimate and error bound is not mutually exclusive, and the

boundedness is merely considered a property of an estimator, such as in [18]. An indicator
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is a quantity that gives some indication of the behavior of the error, whether that be the

magnitude, shape, or other quality, but cannot be reliably expected to quantify the error itself.

This definition is consistent with Gratsch and Bathe and O’Brien as well as the usage of the

term in the literature.

1.4 Motivation

This work attempts to introduce a practical new a posteriori spatial discretization error estima-

tor for SN neutron transport methods that borrows from concepts introduced in earlier works.

Many of the estimators presented previously have proven to be computationally inexpensive but

inaccurate or, conversely, accurate and precise but computationally costly. An estimator that

has a sound mathematical basis (i.e., not developed heuristically) is introduced in this work

and shown to be competitive vis-a-vis other established estimators in terms of accuracy and

precision as well as being only moderately computationally burdensome. This estimator uses

the residual in a process similar to O’Brien, and Bank and Weiser by using it as a source for the

bilinear form of the DGFEM transport equation[2, 14]; although unlike in Bank and Weiser’s

work this problem is solved as a global problem rather than locally. Unlike O’Brien’s, this

residual is defined as the deviation from equality when the projected true solution is inserted

into the discretized transport equation; we also retain the residual’s anisotropy rather than

condensing it into an isotropic quantity. This residual is approximated by using Taylor series

expansions to provide the approximation of the true solution, and the higher-order derivatives

are “reconstructed” a posteriori with the solutions from the DGFEM equation.

This work outlines the definition of the residual, derives the transport-like ”residual source

estimator”, and demonstrates empirically the sound mathematical reasoning of the estimator

using MMS. The process of approximating the residual a posteriori using a Taylor series expan-

sion approximation of the true solution is also outlined. The behavior of this new estimator is

observed for a variety of cases using true MMS-calculated solutions for reference. The residual

source estimator is then compared against two estimators introduced by Ragusa and Wang and

Duo, Azmy, and Zikatanov, in addition to an en route residual-based indicator.
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Chapter 2

Introduction

2.1 The Neutron Transport Equation

All the methods, derivations, and results presented in this work are applied to the steady-state

neutron transport equation in 2-D Cartesian coordinates with one-group treatment. Boundary

conditions are restricted to fixed incoming angular flux.

Table 2.1 S4 Level-Symmetric Quadrature/Octant

n wn µn ηn
1 0.08333 0.35002 0.35002
2 0.08333 0.35002 0.86889
3 0.08333 0.86889 0.35002

The method of angular discretization is the discrete ordinates (SN ) method, specifically

S4 with level symmetric quadrature, Table 2.1 [25], and scattering is restricted to isotropic

scattering. All media are homogeneous and non-multiplying. Most of these restrictions are due

to the limitations of our version of MMS, which will be covered later, and while extensions

beyond these restrictions should be possible and even trivial in some cases, rederivation of the

forthcoming residual source estimator would be required. The neutron transport equation as

described is given by the following equations:

~Ωn · ∇ψn(x, y) + σtψn(x, y) = σs

N∑
m=1

wmψm(x, y) + q(x, y), (x, y) ∈ D, n = 1, . . . , N, (2.1)

ψn(x, y) = ψ[BC](x, y), n̂ · ~Ωn < 0, (x, y) ∈ ∂D, (2.2)

where D ∈ [0, X] × [0, Y ] is the domain, ∂D is the domain boundary, and the scalar flux is
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defined as

φ(x, y) ≡
N∑
m=1

wmψm(x, y). (2.3)

In 2-D Cartesian geometry, we represent the ordinate unit vector as ~Ωn = (µn, ηn) and the

gradient operator as the vector ∇ = ( ∂
∂x ,

∂
∂y ). The total cross-section σt controls the optical

thickness and is given as a unitless number. The scattering ratio c refers to the ratio of the

scattering cross-section to the total cross-section σs/σt. For the purposes of this work, Eq. 2.1

and 2.2 are considered to be the “true” neutron transport equation, and any error calculated

will be relative to the spatially continuous exact solution of that equation.

2.2 DGFEM-Λ

The neutron transport equation, even after the many levels of approximation from the previous

section are applied, generally cannot be solved in its spatially continuous form. As a result, a

spatial discretization method must be utilized to make the equation solvable. This work uses

the Discontinuous Galerkin Finite Element Method of order Λ (DGFEM-Λ) because it has been

used in previous related works and because it has some key advantages over other methods.

One advantage is that it can be refined by increasing the order Λ. Another advantage is that

it has the potential to capture discontinuities in the solution and its derivatives. Yet another

advantage is the already strongly developed mathematical theory of FEM.

First, the notation of DGFEM must be established. The domain partitioned into a discrete

mesh is represented by a set of cells, K(i,j) ∈ [xi−1, xi] × [yj−1, yj ], where i = 1, ..., NX and

j = 1, ..., NY , and the boundary of a discrete cell is ∂K(i,j). Oftentimes the spatial variables

are scaled such that the bounds of the cells are [−1, 1] × [−1, 1]. This gives spatial variables

x̃i = 2(x − xc,i)/∆x and ỹj = 2(y − yc,j)/∆y, where (xc,i, yc,j) is the midpoint of cell K(i,j),

and ∆x and ∆y are the dimensions of the cell in the x and y direction, respectively. Because

DGFEM is a discontinuous method, the external and internal traces of the cell boundary or

quantity are indicated by + or −, respectively. In this work only uniform rectangular partitions

are considered, and, in fact, all problem configurations considered in this work have NX = NY .

The mesh size is representative of the thickness of cells and is given by h ≡ max(i,j){∆xi,∆yj}.
The inner product in the x and y dimensions is given by Eq. 2.4 while the inner product in a

single dimension x (or y) is given by Eq. 2.5 (or the analogous integral in y),

(f(x, y), g(x, y)) ≡
∫

∆xi

dx

∫
∆yj

dy f(x, y)g(x, y), (2.4)

〈f(x), g(x)〉x ≡
∫

∆xi

dx f(x, y)g(x, y). (2.5)

Equation 2.1 is multiplied by some test function in a local test function space, v(x, y) ∈
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V (K(i,j)), and integrated over the element K(i,j) to give,

µn

[〈
v(i,j)(x−i , y), ψ(i,j)

n (x+
i , y)

〉
y
−
〈
v(i,j)(x−i−1, y), ψ(i,j)

n (x+
i−1, y)

〉
y

]
+ ηn

[〈
v(i,j)(x, y−j ), ψ(i,j)

n (x, y+
j )
〉
x
−
〈
v(i,j)(x, y−j−1), ψ(i,j)

n (x, y+
j−1)

〉
x

]
− µn

(
∂v(i,j)

∂x
, ψ(i,j)

n (x, y)

)
− ηn

(
∂v(i,j)

∂y
, ψ(i,j)

n (x, y)

)
+
(
v(i,j), σtψ

(i,j)
n (x, y)−

(
σsφ(x, y)(i,j) + q(i,j)(x, y)

))
= 0. (2.6)

The external trace of the flux on the outgoing edges is set equal to the internal trace of the

flux on the outgoing edges, a process called “upstreaming”[26]. The test space for DGFEM-Λ

is defined as

V (K(i,j)) = {vg,h(x, y) = Pg(x̃i)Ph(ỹj) | ∀g, h = 0, ...,Λ} , (2.7)

and the trial space, the finite representation of the solution, is given by

ψn(x, y) =
Λ∑
k=0

Λ∑
l=0

sgn(µn)ksgn(ηn)l(2k + 1)(2l + 1)Pk(x̃i)Pl(ỹj)ψ
(i,j)
n,k,l, (2.8)

where Pg(x̃), etc., are Legendre polynomials of order g. Legendre moments of the angular flux

solution, ψ
(i,j)
k,l are given by

ψ
(i,j)
n,k,l ≡

1

∆x∆y
(Pk(x̃i)Pl(ỹj), ψn(x, y)) . (2.9)

Generally, Eq. 2.9 can be used to represent moments of any other quantity defined over the

cell’s volume, such as the fixed source. In this work the DGFEM equations are solved by the

source iteration (SI) method with relative iterative tolerance of 10−10 or until the number of

iterations is equal to 400.

2.3 Method of Manufactured Solutions

Since this work is focused on error estimation, it is imperative that reference solutions be

accurate. Oftentimes reference solutions are computed via a highly refined solution; however,

this work implements the Method of Manufactured Solutions (MMS), a method that allows for

the calculation of true, continuous solutions to the transport equation [19]. The version of MMS

used in this work finds solutions by setting the combined source, Q(x, y) = σsφ(x, y) + q(x, y),

to a constant and solving for the angular flux via the Method of Characteristics (MoC), Eq. 2.10

[19]. Because the cross sections and combined source are uniform, the resultant angular flux
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equations can be solved analytically with no approximation in space.

ψn(x, y) =

ψ
[N,S]
n

(
x− sgn(µn)|µnηn |ȳ

)
e
− σt
|ηn|

ȳ
+ Q

σt
(1− e−

σt
|ηn|

ȳ
), for ȳ < | ηnµn |x̄,

ψ
[W,E]
n

(
y − sgn(ηn)| ηnµn |x̄

)
e
− σt
|µn|

x̄
+ Q

σt
(1− e−

σt
|µn|

x̄
), for ȳ > | ηnµn |x̄,

(2.10)

where x̄ = 1−sgn(µn)
2 X + sgn(µn)x and ȳ = 1−sgn(ηn)

2 Y + sgn(ηn)y. The fixed source q(x, y) can

be found by finding the scattering source that results from the MoC solution and subtracting

it from the combined source [19],

q(x, y) = Q− σsφ(x, y) = Q− σs
N∑
m=1

wmψm(x, y). (2.11)

This fixed source as computed by Eq. 2.11, is used as an input to the discrete transport equation,

the solution to which can be compared against the true MMS-derived solutions, Eq. 2.10. The

value of the fixed source is set equal to σt to prevent negative flux and sources. In practice the

true MMS solutions and fixed source are projected onto the same space as the discrete transport

equation for easy storage and direct comparison.

The discontinuities inherent to problem boundary conditions will affect the regularity of the

solution along the singular characteristics (SCs)[19], lines across which the solution is discon-

tinuous in the same derivative as the BCs. In 3-D geometry, the irregularities appear as a plane

emanating from a discontinuity rather than lines [27], and in 1-D this feature does not exist. In

the problems presented in this work, the north and south boundary conditions will be reflections

of each other, and the east and west boundaries will be likewise. No discontinuities will occur

on a midpoint of the boundary, i.e., the only discontinuities in the boundary conditions will

exist at the corners. This means that one SC per ordinate will emanate from each of the four

corners of the problem with slope equal to ηn/µn, see Figure 2.1[2].

The true solution of the transport equation belongs in the Sobolev space,

ψn(x, y) ∈ Hr(D) = {ψn(x, y), Dαψn ∈ L2(D), |α| ≤ r}, n = 1, . . . , N, (2.12)

where r corresponds to the lowest derivative Drψn(x, y), in multi-index notation [23], that is

regular. In problems presented in this work, the space the solution belongs to depends on BCs,

and henceforth, a problem where the solution belongs to Hr(D) will be described as an “Hr”

problem. It has been shown that arbitrarily high degrees of solution regularity can be achieved

with MMS by modifying the boundary conditions, including infinitely regular [27]. However,

because it is impossible to introduce conditions in a real life problem that would elicit degrees

of regularity higher than r = 1, only H0 and H1 problems are considered in this work.

The boundary conditions that yield these parameters are shown in Table 2.2. The function

F (Q, σs) is a simple function that ensures that Eq. 2.11 does not go negative at any point in
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Figure 2.1 SCs for Level Symmetric S4 Quadrature

ψ[N,S] ψ[W,E]

H0 0 F (Q, σs)
H1 0 0

Table 2.2 MMS Boundary Conditions

the domain, thereby introducing a non-physical solution to the problem [2]. It is given as

F (Q, σs) =
Q− σs
σs

.

Recall that Q = σt. Note that the source and boundary condition’s dependence on the total

and scattering cross sections means that changes to these parameters cannot be done without

changing the resulting fixed source of the MMS problem.

2.4 Discretization Error

The spatial discretization error is the difference between the solution to the discretized transport

equation and the true solution to the SN transport equation projected onto the discrete mesh.

Mathematically this is defined as

εΛ
h ≡ ψΛ

h −
[
ΠΛ
hψ
]
, (2.13)

where ΠΛ
h indicates projection onto the mesh with size h and onto the DGFEM-Λ space, and

ψΛ
h is the numerical solution to the discretized DGFEM-Λ SN transport equation on the mesh

with size h. Note that the discretization error is a local, cell-wise polynomial and is unique for

each mesh size and DGFEM-Λ solution space.
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Traditionally, due to the memory requirements of storing the angular quantities in addition

to the practical focus on the scalar flux in transport problems, transport solutions and derivative

quantities (i.e., reaction rates, leakage rates, etc.) are presented as scalar quantities. To remain

consistent with this practice, as well as to remove intra-cell spatial dependencies of the reported

local error, the error is presented in two local norms: the “angular” L2 and “scalar” L2 norms.

The “angular” L2 norm is simply the norm of the angular flux error,

E(i,j)
ang. =

√√√√ N∑
n=1

wn

∫
∆xi

dx

∫
∆yj

dy ε2
n(x, y)

=

√√√√ N∑
n=1

wn

∫
∆xi

dx

∫
∆yj

dy
(
ψΛ
h,n(x, y)−

[
ΠΛ
hψn

]
(x, y)

)2
. (2.14)

We have found this to be a more accurate error norm. However, as mentioned previously, the

angular solution to the transport equation is often not reported by transport codes, and previous

works have traditionally defined “error” as the scalar flux error. Therefore, the “scalar” L2 norm

is presented as a measure consistent with this quantity,

E(i,j)
sca. =

√√√√∫
∆xi

dx

∫
∆yj

dy

(
N∑
n=1

wnεn(x, y)

)2

=

√∫
∆xi

dx

∫
∆yj

dy
(
φΛ
h (x, y)−

[
ΠΛ
hφ
]

(x, y)
)2
. (2.15)

Calculating these norms in the global sense is relatively simple, and the global “angular” and

“scalar” L2 norms are given in Eqs. 2.16 & 2.17, respectively,

Eang. =

√√√√NX∑
i=1

NY∑
j=1

E
(i,j)2
ang. , (2.16)

Esca. =

√√√√NX∑
i=1

NY∑
j=1

E
(i,j)2
sca. , (2.17)

When presented as norms of the error estimate, where the error estimate is given by ‘ε’,

the norms given by Eqs. 2.14-2.17 will be represented with a lowercase ‘e’. For brevity, error

and error estimates formulated with an “angular” or “scalar” L2 norm will be short-handed as

angular or scalar estimates. Previous works ([3, 10, 12]) have presented the level of agreement

between the true error and error estimate in terms of an “effectivity index”, θ(i,j), which, for
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either norm type, is the ratio of the estimated error norm to the true error norm,

θ
(i,j)
ang./sca. =

∣∣∣∣∣∣
e

(i,j)
ang./sca.

E
(i,j)
ang./sca.

∣∣∣∣∣∣ . (2.18)

The global effectivity index is merely the same expression as Eq. 2.18 with global norms in the

ratio rather than local. It is advantageous to report the effectivity index on a log10-scale to em-

phasize the order of magnitude differences in both senses, overestimation and underestimation.
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Chapter 3

Residual Source Estimator

3.1 Derivation of the Residual and Estimator

The residual in some form or another has been used to estimate the error in finite elements

methods in many works, e.g., [3, 5, 18]. The “residual” as defined in this work is not necessarily

identical to how it has been defined in other works. A broad definition of the residual is the

deviation from the particle balance equation, Eq. 2.1, induced by applying a discretization to

either the solution or the operator. More specifically, the definition of the residual in this work

is the quantity that remains when the true solution to the continuous transport equation is

projected onto the DGFEM-Λ space and operated on by the complete discretized DGFEM-Λ

transport operator. To mathematically define this, the continuous transport operator and dis-

cretized transport operator are recast as Eqs. 3.1 and 3.2, respectively, where ordinate subscripts

and explicit spatial dependencies are dropped for brevity and S represents the SN scattering

operator.

Lψ = Sψ + q (3.1)

LΛ
hψ

Λ
h = SψΛ

h + ΠΛ
h q (3.2)

Projecting the true solution of Eq. 3.1 onto the h-mesh and the DGFEM-Λ space, and inserting

the result into Eq. 3.2 gives the mathematical definition of the residual.

RΛ
h ≡ S

[
ΠΛ
hψ
]

+ ΠΛ
h q − LΛ

h

[
ΠΛ
hψ
]

(3.3)

Note that the residual has h and Λ sub and superscripts, respectively, due to the fact that

the residual as defined in this work exists on the discrete mesh in the DGFEM-Λ space. Also

important to note is that the residual is an angular quantity and could be negative.

To derive an estimator based on the residual, the observation is made that ΠΛ
h q appears in

both Eqs. 3.2 and 3.3. This observation leads to

RΛ
h = S

[
ΠΛ
hψ
]

+ LΛ
hψ

Λ
h − SψΛ

h − LΛ
h

[
ΠΛ
hψ
]
.
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Because both the scattering operator and the discretized transport operator are linear, the

difference between the discrete and continuous solutions can be equated to the spatial dis-

cretization error and elicit the relationship

RΛ
h = −SεΛ

h + LΛ
hε

Λ
h .

With some minor rearranging and a realization that the boundary conditions of the discrete

problem are known quantities and, therefore, the true solution projected onto the mesh and

DGFEM-Λ space, the transport-like Eqs. 3.4 and 3.5 for the spatial discretization error are

found.

LΛ
hε

Λ
h = SεΛ

h +RΛ
h , (x, y) ∈ D, n = 1, . . . , N, (3.4)

εn(x, y) = 0, n̂ · ~Ωn < 0, (x, y) ∈ ∂D. (3.5)

These equations can be solved analogously to the DGFEM-Λ equations with the same method

used for converging the scattering source, i.e., source iterations. If one had knowledge of the

true residual, the true spatial discretization error on mesh h could be computed exactly, with no

error aside from machine precision and that incurred by finite iteration of the scattering source.

However, knowledge of the true residual of course implies knowledge of the true solution and,

therefore, the true error, reducing this to a trivial exercise of circular logic. Nevertheless, in the

next section, the true residual will be used as a fixed source for a transport calculation in the

manner described in an attempt to prove the validity of this idea.

Equations 3.4 and 3.5 are the footing of the residual source estimator (LeR). While most

error estimators and indicators attempt to directly estimate the error in the solution, the

residual source estimator is the process by which a residual approximation results in an error

estimate. The significance of this difference will be seen in Chapter 5.

3.2 Empirical Proof of Validity

A few test problems are selected to show that the residual source estimator using the residual

calculated via MMS as an input (LeR/MMS) will result in the true error, thus empirically

proving the principle underlying the residual source estimator approach. The features of the

true residual and true error will also be observed. The first problem is an H1 problem with

σt = 1.0, c = 0.9, and NX = NY = 32.

When plotting a histogram of the local effectivity index for the angular and scalar estimators

in log10-scale, one would expect to see a straight vertical line at log10 θ
(i,j)
ang./sca. = 0 if the error

from the residual source estimator is identical to the true, directly-calculated error. Figures 3.1

and 3.2 exhibit this with some minor deviation due to iterative or round-off error. With con-

fidence that the residual source estimator with the MMS-calculated residual returns the true

error, the MMS-calculated residual can be taken to be the true residual, and the proposed

process of the residual source estimator taken to be of sound logic.
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Figure 3.1 log10 θ
(i,j)
ang. Histogram for LeR/MMS

Figure 3.2 log10 θ
(i,j)
sca. Histogram for LeR/MMS

17



Figure 3.3 log10 |R0
h(x, y)| in Quadrant 1,

µn = ηn = 0.35002, NX = NY = 32
Figure 3.4 log10 |R0

h(x, y)| in Quadrant 1,
µn = 0.35002, ηn = 0.86889, NX = NY = 32

Figure 3.5 log10 |R0
h(x, y)| in Quadrant 1,

µn = 0.86889, ηn = 0.35002, NX = NY = 32

Key observations can be made by examining the true residual for the ordinates in Quadrant

1 where µn > 0 and ηn > 0, Figures 3.3-3.5. The residual exists in the same space as the fixed

source and angular flux; therefore, it can be easily plotted, as in DGFEM-0 it is represented as

a piecewise constant value for each ordinate. The SC that extends from the problem’s origin is

the most noticeable feature, and this results in a larger residual due to the discontinuity in the

true solution’s derivative. Figure 3.3 shows that cells that border cells intersected by the SC also

exhibit larger residual values. This is because, recalling Eq. 3.2, the DGFEM operator requires

integrating the solution in the neighboring upwind cells, which may be discontinuous. Another

key feature is a large residual on the inflow boundaries. This is because only the point-wise

angular flux is defined at the boundary. Away from these two features, the residual is small and

decreases with distance from the inflow boundary. This is because the solution is flatter and is

captured better by a DGFEM-0 approximation.

The local angular L2 and local scalar L2 norms of the solution error in this example are
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Figure 3.6 Local log10-Angular L2 Norm of
Solution Error, NX = NY = 32

Figure 3.7 Local log10-Scalar L2 Norm of
Solution Error, NX = NY = 32

shown in Figures 3.6 and 3.7, respectively. The two key features evident in these plots are the

increased error along the SC’s and the increased error close to the boundaries due to larger

gradients resulting in poorer representation by a DGFEM-0 approximation. The next problem

configuration considered is identical except for being more refined, NX = NY = 512.

Figure 3.8 log10 |R0
h(x, y)| in Quadrant 1,

µn = ηn = 0.35002, NX = NY = 512
Figure 3.9 log10 |R0

h(x, y)| in Quadrant 1,
µn = 0.35002, ηn = 0.86889, NX = NY = 512

Figures 3.8-3.10 for the refined mesh problem show that the true residual in cells unaffected

by SCs or boundaries seems to decrease with decreasing mesh size, but the residual converges

to a constant with decreasing mesh size otherwise. While hard to see with this resolution, there

still exists a strip of larger residual values along the inflow boundary.

The associated local angular L2 and local scalar L2 norms of the solution error are shown

in Figures 3.11 and 3.12, respectively. These plots show both local error norm convergence with

19



Figure 3.10 log10 |R0
h(x, y)| in Quadrant 1,

µn = 0.86889, ηn = 0.35002, NX = NY = 512

Figure 3.11 Local log10-Angular L2 Norm of
Solution Error, NX = NY = 512

Figure 3.12 Local log10-Scalar L2 Norm of
Solution Error, NX = NY = 512

decreasing mesh size and the increasing prominence of the SC’s relative to other features as the

mesh is refined.

3.3 Observed Convergence of Residual and Error

It is valuable to examine the local convergence of the residual in an H1 problem with decreasing

mesh size to confirm the assertions made in the previous subsection.

The local L∞ spatial norm for a cell in the domain is plotted with decreasing mesh size in

Figure 3.13 and shown to converge with O(h) as mesh size is decreased.

The local L∞ spatial norms for cells on the boundary and SC intersected areas, plotted

in Figures 3.14 and 3.15, respectively, show convergence to a constant with O(h). Because

in the DGFEM-0 space the residual is represented by a piecewise constant function in space,

the convergence of the local L∞ norm in space also represents the pointwise convergence. We
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Figure 3.13 Local L∞ spatial norm residual convergence in domain

Figure 3.14 Local L∞ spatial norm residual
convergence on boundary

Figure 3.15 Local L∞ spatial norm residual
convergence on SC-influenced cell

can therefore say that the convergence in the local L2 norm is going to be bounded above

by the convergence in the local L2 spatial norm, which will be O(h), O(1), and O(1) for the

domain (sans boundary-neighboring and SC-influenced cells), incoming boundary layer, and

SC-influenced cells, respectively.

The global convergence in both L2 norms (angular and scalar) of the error and residual are

shown in Figures 3.16 and 3.17, respectively. The residual converges with approximate O(h
1
2 ),

and the error converges with an error that approaches O(h) (angular error convergence order

closer toO(h0.8) for this problem), as expected from theory [24]. Observing the local convergence

of the residual allows us to estimate and confirm the global convergence of the residual. In a

given ordinate the number of cells on the incoming boundary will be NX +NY −1. The number

of cells affected by a SC and not also on an incoming boundary will linearly scale with the

number of cells. For example, in a square domain with NX = NY , given an ordinate where

µn = ηn, the number of cells affected by a SC and not also on an incoming boundary is
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Figure 3.16 Global L2 norm residual convergence

Figure 3.17 Global L2 norm error convergence

(NX − 1) + (NX − 2) + (NY − 2) = 3NX − 5.

Therefore, as h → 0, it can be approximated that the number of cells on the boundary

is proportional to 1
h and the number of cells on the SC and not also on the boundary is also

proportional to 1
h . For small h the number of cells not on the boundary or the SC is proportional

to 1
h2

. It is known from observing the local convergence of the residual that cells that are on

the boundary or the SC converge with O(h) in the local L2 norm, whereas the cells that do
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not fall on these points converge with O(h2). The global convergence of the residual can then

be calculated:

‖R‖2ang. =

NX∑
i=1

NY∑
j=1

‖R‖(i,j)2ang.

≤
∑

(i,j)∈BC∪SC

‖R‖(i,j)2ang. +
∑

(i,j) 6∈BC∪SC

‖R‖(i,j)2ang. .

If it is assumed that h is sufficiently small, then to a first-order approximation the equivalency

holds,

‖R‖2ang. ≤
∑

(i,j)∈BC∪SC

h2C(i,j)2 +
∑

(i,j)6∈BC∪SC

h4C(i,j)2

≤max
(i,j)

{
C(i,j)2

} ∑
(i,j)∈BC∪SC

h2 +
∑

(i,j)6∈BC∪SC

h4


≤max

(i,j)

{
C(i,j)2

} [
νh+ ξh2

]
,

where ν and ξ are generic proportionality constants. This gives the equivalency,

‖R‖2ang. ≤ max
(i,j)

{
C(i,j)2

}
max{ν, ξ}

[
h+ h2

]
,

and because h << 1, the following bound is found,

‖R‖ang. ≤ Γh
1
2 ,

where Γ =
√

2 max(i,j)

{
C(i,j)2

}
max{ν, ξ}.

The scalar L2 norm can be shown to have the same bound in an analogous manner. This

shows that, even though the error theoretically converges with O(h) for an H1 problem, the

residual in the same space as the distributed source will properly converge with O(h
1
2 ). In

Section 4.1.1 truncated equations for the residual will be found that confirm the empirically

observed local convergence this analysis is based on. For H0 problems we have observed the

local pointwise convergence of the residual to be O(h−1) on cells that border SC-intersected

cells, meaning the local residual increases with mesh refinement. If a similar process to the one

shown in this section is done, the global residual can be shown to increase with O(h
−1
2 ) in the

L2 norm for H0 problems. Because having a residual convergence order that is different than the

error convergence order, let alone increasing with mesh refinement, seems counter-intuitive, it is

important to stress that the “residual” as defined in this work is not necessarily the “residual”

that would bound the convergence of the numerical solution.
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Chapter 4

Approximating the Residual

The residual source estimator in its approximate form is the solution to the equation

LΛ
h ε

Λ
h = SεΛh +RΛ

h , (4.1)

where RΛ
h is the approximated residual and εΛh is the error estimate. When approximating the

residual, it is necessary to go outside the space of the solution to try and recapture some of the

missing components of the true solution that have been truncated by the discretization method

[5, 19]. As a result, all residual approximations strive to capture higher order derivatives or

moments.

The primary approximation method of the residual introduced in this work is based on a

Taylor Expansion. The process for deriving an a posteriori estimator will be to approximate the

true solution with a Taylor Expansion about a cell corner, use this expression to approximate

moments, use these moments to find direct approximate expressions for the residual, and, finally,

use DGFEM-0 solutions to approximate the derivatives appearing in the residual expressions.

4.1 Taylor Expansion Approximation

4.1.1 Derivation

The first step in deriving the residual approximation is to approximate the true solution with a

Taylor Expansion. Given a cell K(i,j) and direction ~Ωn, the cell “origin”, (xi, yj), is that cell’s

upwind corner. Dropping direction subscripts for brevity, the Taylor Expansion representation

of the true solution is given as

ψ
(i,j)
TE (x, y) = ψ(xi, yj) + δxψx(xi, yj) + δyψy(xi, yj)

+
δ2
x

2
ψxx(xi, yj) + δxδyψxy(xi, yj) +

δ2
y

2
ψyy(xi, yj) + . . .+O(δβ), (4.2)
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where δx = (x−xi), δy = (y−yj), and the truncation order β is chosen to appropriately capture

the necessary order of accuracy for the applicable method order. For DGFEM-0, it will be seen

that order β = 3 is sufficient. Here it is important to note that this expression does not hold

along singular characteristics, as the solution or derivatives are undefined on the discontinuities,

depending on the order of the true solution’s regularity.

Next, the necessary moments for solving the DGFEM-0 equations must be derived from the

Taylor Expansion. The zeroth moment in cell K(i,j) is found by integrating Eq. 4.2 over the cell

bounds, producing

ψ
(i,j)
0,0 ≈

sgn(µ)sgn(η)

∆x∆y

∫ xi+sgn(µ)∆x

xi

dx

∫ yj+sgn(η)∆y

yj

dy ψ
(i,j)
TE (x, y)

= ψ + sgn(µ)
∆x

2
ψx + sgn(η)

∆y

2
ψy + sgn(µ)

∆x2

6
ψxx

+ sgn(µ)sgn(η)
∆x∆y

4
ψxy + sgn(η)

∆y2

6
ψyy, (4.3)

where the (xi, yj) coordinates on the true angular flux value and derivatives that serve as Taylor

Expansion coefficients are dropped for brevity. The moments in upwind cells K(i−sgn(µn),j) and

K(i,j−sgn(ηn)) are likewise

ψ
(i−sgn(µ),j)
0,0 ≈ sgn(µ)sgn(η)

∆x∆y

∫ xi

xi−sgn(µ)∆x
dx

∫ yj+sgn(η)∆y

yj

dy ψ
(i,j)
TE (x, y)

= ψ − sgn(µ)
∆x

2
ψx + sgn(η)

∆y

2
ψy + sgn(µ)

∆x2

6
ψxx

− sgn(µ)sgn(η)
∆x∆y

4
ψxy + sgn(η)

∆y2

6
ψyy, (4.4)

and

ψ
(i,j−sgn(η))
0,0 ≈ sgn(µ)sgn(η)

∆x∆y

∫ xi+sgn(µ)∆x

xi

dx

∫ yj

yj−sgn(η)∆y
dy ψ

(i,j)
TE (x, y)

= ψ + sgn(µ)
∆x

2
ψx − sgn(η)

∆y

2
ψy + sgn(µ)

∆x2

6
ψxx

− sgn(µ)sgn(η)
∆x∆y

4
ψxy + sgn(η)

∆y2

6
ψyy, (4.5)

respectively. Note that even though the integration is over different bounds, the point at which

the Taylor Expansion is centered is still the “origin” of cell K(i,j). A similar treatment is applied

to the scattering and fixed sources, and these moments are then inserted into the DGFEM-0
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equations to find an approximate expression for the residual in cell K(i,j):

R
(i,j)
0,0 = σsφ

(i,j)
0,0 + q

(i,j)
0,0 − σtψ

(i,j)
0,0

− |µ|
∆x

[
ψ

(i,j)
0,0 − ψ

(i−sgn(µ),j)
0,0

]
− |η|

∆y

[
ψ

(i,j)
0,0 − ψ

(i,j−sgn(η))
0,0

]
.

Plugging in Eqs. 4.3-4.5 to the above expression gives

R
(i,j)
0,0 = σs

(
φ+ sgn(µ)

∆x

2
φx + sgn(η)

∆y

2
φy

)
+

(
q + sgn(µ)

∆x

2
qx + sgn(η)

∆y

2
qy

)
− σt

(
ψ + sgn(µ)

∆x

2
ψx + sgn(η)

∆y

2
ψy

)
− |µ|

∆x

[
sgn(µ)∆xψx + sgn(µ)sgn(η)

∆x∆y

2
ψxy

]
− |η|

∆y

[
sgn(η)∆yψy + sgn(µ)sgn(η)

∆x∆y

2
ψxy

]
+O(h2).

O(h2) accuracy is considered sufficient for two reasons: the empirically observed residuals

of cells not influenced by SCs or on the incoming boundary layer exhibit O(h) convergence in

the local L∞ norm, and the global error theoretically converges to zero with O(h) accuracy

[24]. Essentially, it is not expected to obtain better residual convergence than the DGFEM-0

solution, especially since the residual will eventually be calculated with DGFEM-0 quantities.

The expression is not accurate when intersected by a SC or directly downwind of a cell inter-

sected by a SC in an H0 or H1 problem, however, because discontinuities in the solution and its

first-order derivative will reduce the order of accuracy of the Taylor Expansion approximation

of the solution. Terms are grouped to give the residual approximation

R(i,j)
0,0 = −{σtψ + µψx + ηψy − σsφ− q}

+ sgn(µ)
∆x

2
(σsφx + qx − σtψx − sgn(η)|η|ψxy)

+ sgn(η)
∆y

2
(σsφy + qy − σtψy − sgn(µ)|µ|ψxy) .

The first term in the above equation is equal to zero per Eq. 2.1, giving the residual approxi-

mation for cell K(i,j)

R(i,j)
0,0 = sgn(µ)

∆x

2
(σsφx + qx − σtψx − sgn(η)|η|ψxy)

+ sgn(η)
∆y

2
(σsφy + qy − σtψy − sgn(µ)|µ|ψxy) . (4.6)

Equation 4.6 is not guaranteed to be accurate on SC’s. Improving the approximations that

led to Eq. 4.6 in order to improve the Taylor Expansion’s accuracy on SC-intersected cells is

outside the scope of this work. The leading order term agrees with the O(h) convergence in the
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local L∞ norm observed in the empirically calculated true residual. The residual for a cell that

shares a face with the [W,E] boundary takes the form

R
(i∈[W,E],j)
0,0 = σsφ

(i∈[W,E],j)
0,0 + q

(i∈[W,E],j)
0,0 − σtψ(i∈[W,E],j)

0,0

− |µ|
∆x

[
ψ

(i∈[W,E],j)
0,0 − ψ[W,E]

l=0

]
− |η|

∆y

[
ψ

(i∈[W,E],j)
0,0 − ψ(i∈[W,E],j−sgn(η))

0,0

]
.

Note that incoming flux does not have x-dependency, hence the specification that l = 0. Similar

to approximating the residual in the domain, Eqs. 4.3 and 4.5, along with the appropriate

equation for the boundary moment, are inserted in the above equation to get the following

equation, where a bar denotes that the quantity is known exactly from the BC’S:

R
(i∈[W,E],j)
0,0 = σs

(
φ+ sgn(µ)

∆x

2
φx + sgn(η)

∆y

2
φy

)
+

(
q + sgn(µ)

∆x

2
qx + sgn(η)

∆y

2
qy

)
− σt

(
ψ̄ + sgn(µ)

∆x

2
ψx + sgn(η)

∆y

2
ψ̄y

)
− |µ|

∆x

[
sgn(µ)

∆x

2
ψx + sgn(µ)

∆x2

6
ψxx + sgn(µ)sgn(η)

∆x∆y

4
ψxy

]
− |η|

∆y

[
sgn(η)∆yψ̄y + sgn(µ)sgn(η)

∆x∆y

2
ψxy

]
+O(h2).

Once again, the O(h2) accuracy is only valid when the cell or a cell directly downwind is

not intersected by a SC. Dropping the leading order term since it satisfies the exact transport

equation at the point (xi, yj) and grouping terms gives the estimate

R(i∈[W,E],j)
0,0 = −

{
σtψ̄ + µψx + ηψ̄y − σsφ− q

}
+ sgn(µ)

|µ|
2
ψx + sgn(µ)

∆x

2

(
σsφx + qx − σtψx −

|µ|
3
ψxx − sgn(η)|η|ψxy

)
+ sgn(η)

∆y

2

(
σsφy + qy − σtψ̄y − sgn(µ)

|µ|
2
ψxy

)
.

Before the equation can be further simplified, it must be recognized that while this equation

is valid, since the fixed source and scattering source exist on the internal trace of the boundary,

the approximation requires modification, since neither quantity exists on the external trace

of the boundary. Therefore, the combined source is substituted with its transport equation

equivalent, and the equation is simplified to give the equation for the residual in a cell whose

boundary includes the [W,E] global boundary

R(i∈[W,E],j)
0,0 = sgn(µ)

|µ|
2
ψx + sgn(µ)

∆x

2

(
|µ|
(

sgn(µ)− 1

3

)
ψxx

)
+ sgn(η)

∆y

2

(
sgn(µ)

|µ|
2
ψxy + sgn(η)|η|ψ̄yy

)
. (4.7)
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Using an analogous derivation, the equation for the residual in a cell whose boundary in-

cludes the [N,S] global boundary is

R(i,j∈[N,S])
0,0 = sgn(η)

|η|
2
ψy + sgn(µ)

∆x

2

(
sgn(η)

|η|
2
ψxy + sgn(µ)|µ|ψ̄xx

)
+ sgn(η)

∆y

2

(
|η|
(

sgn(η)− 1

3

)
ψyy

)
. (4.8)

These equations show that the residual on a cell that borders the global boundary converges

with O(1) in the local L∞ norm, in agreement with the empirical results reported in Section 3.3.

Using an analogous procedure, the residual in a cell that shares boundaries with both the

[W,E] and [N,S] global boundaries (i.e., a corner cell) is given by

R
(i∈[W,E],j∈[N,S])
0,0 = σsφ

(i∈[W,E],j∈[N,S])
0,0 + q

(i∈[W,E],j∈[N,S])
0,0 − σtψ(i∈[W,E],j∈[N,S])

0,0

− |µ|
∆x

[
ψ

(i∈[W,E],j∈[N,S])
0,0 − ψ[W,E]

l=0

]
− |η|

∆y

[
ψ

(i∈[W,E],j∈[N,S])
0,0 − ψ[N,S]

k=0

]
.

After substituting in Eq. 4.3 the equation becomes

R
(i∈[W,E],j∈[N,S])
0,0 = σs

(
φ+ sgn(µ)

∆x

2
φx + sgn(η)

∆y

2
φy

)
+

(
q + sgn(µ)

∆x

2
qx + sgn(η)

∆y

2
qy

)
− σt

(
ψ̄ + sgn(µ)

∆x

2
ψ̄x + sgn(η)

∆y

2
ψ̄y

)
− |µ|

∆x

[
sgn(µ)

∆x

2
ψ̄x + sgn(µ)

∆x2

6
ψxx + sgn(µ)sgn(η)

∆x∆y

4
ψ̄xy

]
− |η|

∆y

[
sgn(η)

∆y

2
ψ̄y + sgn(η)

∆y2

6
ψ̄yy + sgn(µ)sgn(η)

∆x∆y

4
ψ̄xy

]
+O(h2).

Note that while this equation as written is O(h2) accurate, this feature, as with the other

expressions, may be lost when intersected by a SC. By definition, the corner cell must be

intersected by a SC in all problems except those that are infinitely differentiable. Grouping

terms gives the estimate

R(i∈[W,E],j∈[N,S])
0,0 = −

{
σtψ̄ + µψ̄xηψ̄y − σsφ− q

}
+ sgn(µ)

|µ|
2
ψ̄x + sgn(η)

|η|
2
ψ̄y

+ sgn(µ)
∆x

2

(
σsφx + qx − σtψ̄x −

|µ|
3
ψ̄xx − sgn(η)

|η|
2
ψ̄xy

)
+ sgn(η)

∆y

2

(
σsφy + qy − σtψ̄y − sgn(µ)

|µ|
2
ψ̄xy −

|η|
3
ψ̄yy

)
.

The combined source is substituted, and the equation is simplified to give the estimate for the
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residual in a corner cell

R(i∈[W,E],j∈[N,S])
0,0 = sgn(µ)

|µ|
2
ψ̄x + sgn(η)

|η|
2
ψ̄y

+ sgn(µ)
∆x

2

(
|µ|
(

sgn(µ)− 1

3

)
ψ̄xx + sgn(η)

|η|
2
ψ̄xy

)
+ sgn(η)

∆y

2

(
sgn(µ)

|µ|
2
ψ̄xy +

(
sgn(η)− 1

3

)
ψ̄yy

)
. (4.9)

Now residual approximations exist for all three types of cells, domain cells, boundary cells,

and corner cells, in terms of the point-wise true solution. With MMS these values are possible

to obtain; however, to make a truly a posteriori estimator, they must be approximated. Because

the fixed source, q(x, y), is known exactly as part of the problem configuration, it needs not be

approximated. The approximation of these quantities with DGFEM-0 solutions will be detailed

in Section 4.2.

4.1.2 Resultant Residual and Error Approximation

With the introduction of this approximation, it is worthwhile to look at the resultant residual

and error estimation and compare them to their true counterparts to identify where this first

level of approximation will excel or fail. We consider the Taylor Expansion with MMS Quanti-

ties (TE-MMS) residual and resultant error estimation (LeR/TE-MMS) for the same cases as

with the true residual to identify potential problem areas that may arise when a completely a

posteriori estimator is implemented.

Figure 4.1 log10

∣∣∣R0
h(x, y)−R0

h,TE-MMS(x, y)
∣∣∣ in

Quadrant 1, µn = ηn = 0.35002,
NX = NY = 32

Figure 4.2 log10

∣∣∣R0
h(x, y)−R0

h,TE-MMS(x, y)
∣∣∣ in

Quadrant 1, µn = 0.35002, ηn = 0.86889,
NX = NY = 32

Figures 4.1-4.3 show the log10-scale difference between the estimated and true residual for
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Figure 4.3 log10

∣∣∣R0
h(x, y)−R0

h,TE-MMS(x, y)
∣∣∣ in

Quadrant 1, µn = 0.86889, ηn = 0.35002,
NX = NY = 32

Quadrant 1 for an H1 problem with σt = 1.0, c = 0.9, and NX = NY = 32. These plots show

that the TE-MMS residual provides good agreement with the true residual on the boundaries

and in the domain. However, approximation is poor along SC-influenced cells. This is because

the discontinuities in the first derivative of the true solution are not properly accounted for in

the Taylor Expansion approximation of the true solution.

Figure 4.4 log10 θ
(i,j)
ang. for LeR/TE-MMS,

NX = NY = 32
Figure 4.5 log10 θ

(i,j)
sca. for LeR/TE-MMS,

NX = NY = 32

Plotting the log10 θ
(i,j)
ang./sca. in the domain, where θang./sca. is computed from the error esti-

mated with the LeR/TE-MMS estimator, Figures 4.4 and 4.5, shows where potential problem

regions may exist in estimating the error. Problem regions exist towards the center of the

domain where the effects of SCs seem to magnify poor estimations in the error.
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Figure 4.6 log10 θ
(i,j)
ang. for LeR/TE-MMS,

NX = NY = 512
Figure 4.7 log10 θ

(i,j)
sca. for LeR/TE-MMS,

NX = NY = 512

We can get a clearer picture by refining the mesh to NX = NY = 512, Figures 4.6 and 4.7.

These plots show obvious problem regions concentrated around the SCs due to the numerical

spread of error from the poorly-approximated residual on the SC-intersected and neighboring

cells. We know from Figures 3.6 and 3.7 and Figures 3.11 and 3.12 for NX = NY = 512 that

the areas around the SCs are also regions of large error.

Figure 4.8 log10(θ
(i,j)
ang.) Histogram for LeR/TE-MMS, NX = NY = 512
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Figure 4.9 log10(θ
(i,j)
sca. ) Histogram for LeR/TE-MMS, NX = NY = 512

Also useful is plotting histograms of log10 θ
(i,j)
ang./sca. to determine the distribution of the

estimator’s accuracy over cells in the mesh. We can see from Figure 4.8 that the majority

of angular effectivities are concentrated about a very tight window close to log10(θ
(i,j)
ang.) =

0, meaning exact agreement. There exists a smaller peak of values at a slight over estimate

(log10(θ
(i,j)
ang.) ≈ 0.2) that correspond with the interference-like pattern in the center area of the

plot. Finally, the long string of underestimated values that stretch to log10(θ
(i,j)
ang.) ≈ −1.2 belong

to the SCs and nearby cells. In Figure 4.9, the histogram of scalar effectivities, the pattern is

somewhat similar, but the scalar L2 norm clearly generally results in much larger over and

underestimation; although, the bulk of values are still within one order of magnitude from

exact. Note that the number of cells with very large effectivities is so small that they are nearly

invisible in Figure ??. The color-coding in the histogram plots corresponds to the absolute

difference between the true error and estimated error. This is to point out areas where the true

error is close to zero and the estimated error is also low but not low enough to give a good

effectivity value (e.g., if E = 10−8 and e = 10−6 this will give an effectivity of log10 θ
(i,j) = 2,

which suggests poor performance, even though the error estimate is sufficiently small to consider

it a good approximation).
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4.2 Approximating Derivatives

4.2.1 Derivation

To make a truly a posteriori estimator, the residual approximation must be based on DGFEM-0

solutions exclusively. Therefore, it is necessary to replace the pointwise MMS quantities with

DGFEM-0 quantities. Because the residual is orthogonal to the solution space, however, all

required derivative values in DGFEM-0 are zero (recall that DGFEM-0 approximates the so-

lution as piecewise constant), meaning derivatives must be approximated. This is not entirely

different than the process required in recovery-based error estimators, in which an “improved”

approximation of gradients is used to reconstruct the error [28][5]; although in this case we at-

tempt to reconstruct the residual. In this work the derivatives are approximated by integrating

the Taylor Expansion across neighboring cells to the origin of the subject cell to find moment

expressions and use those moment expressions to solve for the derivatives. The four resultant

O(h3) moment equations are

ψ
(i,j)
0,0 ≈ ψ + sgn(µn)

∆x

2
ψx + sgn(ηn)

∆y

2
ψy + sgn(µn)

∆x2

6
ψxx

+ sgn(µn)sgn(ηn)
∆x∆y

4
ψxy + sgn(ηn)

∆y2

6
ψyy,

ψ
(i−sgn(µn),j)
0,0 ≈ ψ − sgn(µn)

∆x

2
ψx + sgn(ηn)

∆y

2
ψy + sgn(µn)

∆x2

6
ψxx

− sgn(µn)sgn(ηn)
∆x∆y

4
ψxy + sgn(ηn)

∆y2

6
ψyy,

ψ
(i,j−sgn(ηn))
0,0 ≈ ψ + sgn(µn)

∆x

2
ψx − sgn(ηn)

∆y

2
ψy + sgn(µn)

∆x2

6
ψxx

− sgn(µn)sgn(ηn)
∆x∆y

4
ψxy + sgn(ηn)

∆y2

6
ψyy,

and

ψ
(i−sgn(µn),j−sgn(ηn))
0,0 ≈ ψ − sgn(µn)

∆x

2
ψx − sgn(ηn)

∆y

2
ψy + sgn(µn)

∆x2

6
ψxx

+ sgn(µn)sgn(ηn)
∆x∆y

4
ψxy + sgn(ηn)

∆y2

6
ψyy.

It is noted that ψ + sgn(µn)∆x2

6 ψxx + sgn(ηn)∆y2

6 ψyy appears in all four equations, and it

is collapsed into a single variable Ψ, resulting in a total of four unknowns and four equations.
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Solving these equations gives O(∆2) expressions for the first-order derivatives,

ψx ≈
sgn(µn)

2∆x

(
ψ

(i,j)
0,0 − ψ

(i−sgn(µn),j)
0,0 + ψ

(i,j−sgn(ηn))
0,0 − ψ(i−sgn(µn),j−sgn(ηn))

0,0

)
(4.10)

ψy ≈
sgn(ηn)

2∆y

(
ψ

(i,j)
0,0 + ψ

(i−sgn(µn),j)
0,0 − ψ(i,j−sgn(ηn))

0,0 − ψ(i−sgn(µn),j−sgn(ηn))
0,0

)
(4.11)

and an O(h) expression for the ∂2

∂x∂y derivative,

ψxy ≈
sgn(µn)sgn(ηn)

∆x∆y

(
ψ

(i,j)
0,0 − ψ

(i−sgn(µn),j)
0,0

− ψ(i,j−sgn(ηn))
0,0 + ψ

(i−sgn(µn),j−sgn(ηn))
0,0

)
(4.12)

These equations are invalid for a cell that shares a face with the boundary. To account for

this, the original system of equations must be re-derived for such a cell. Beginning with a cell

sharing a face with the [W,E] boundary, the O(h3) equations are

ψ
(i∈[W,E],j)
0,0 ≈ ψ̄ + sgn(µn)

∆x

2
ψx + sgn(ηn)

∆y

2
ψ̄y + sgn(µn)

∆x2

6
ψxx

+ sgn(µn)sgn(ηn)
∆x∆y

4
ψxy + sgn(ηn)

∆y2

6
ψ̄yy,

and

ψ
(i∈[W,E],j−sgn(ηn))
0,0 ≈ ψ̄ + sgn(µn)

∆x

2
ψx − sgn(ηn)

∆y

2
ψ̄y + sgn(µn)

∆x2

6
ψxx

− sgn(µn)sgn(ηn)
∆x∆y

4
ψxy + sgn(ηn)

∆y2

6
ψ̄yy.

As before, a bar above a value indicates that it is known from the BC’s. The problem can be

immediately seen: there are three unknowns and only two equations. Because the residual on

a boundary layer cell has been shown to converge with O(1) in the L∞ norm it is considered

acceptable to reduce the accuracy of the equations to O(h2), giving the following equations:

ψ
(i∈[W,E],j)
0,0 ≈ ψ̄ + sgn(µn)

∆x

2
ψx + sgn(ηn)

∆y

2
ψ̄y,

and

ψ
(i∈[W,E],j−sgn(ηn))
0,0 ≈ ψ̄ + sgn(µn)

∆x

2
ψx − sgn(ηn)

∆y

2
ψ̄y.

The resulting O(h) accurate approximation for the x-derivative is

ψx ≈
sgn(µn)

∆x

(
ψ

(i∈[W,E],j)
0,0 + ψ

(i∈[W,E],j−sgn(ηn))
0,0 − 2ψ̄

)
. (4.13)

Similarly, for a cell sharing a face with the [N,S] boundary the O(h) accurate approximation
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for the y-derivative is

ψy ≈
sgn(ηn)

∆y

(
ψ

(i,j∈[W,E])
0,0 + ψ

(i−sgn(µn),j∈[W,E])
0,0 − 2ψ̄

)
. (4.14)

For a cell sharing a face with both [W,E] and [N,S] boundaries (i.e., on a corner) there is

no approximation of pointwise derivatives required, as all required corner values come from

the BC’s, provided the solution is sufficiently regular on the boundary. Note that, in general,

all approximations do not necessarily maintain their order of accuracy along cells that are

intersected by a SC, depending on the regularity of the solution.

4.2.2 Resultant Residual and Error Approximation

A comparison between the Taylor Expansion with approximated derivatives (TE-AD) residual

and true residual, as well as the residual source estimate with TE-AD residual as an input

(LeR/TE-AD) and true error, is now in order. Figures 4.10-4.12 show that the TE-AD resid-

Figure 4.10 log10

∣∣∣R0
h(x, y)−R0

h,TE-AD(x, y)
∣∣∣

in Quadrant 1, µn = ηn = 0.35002,
NX = NY = 32

Figure 4.11 log10

∣∣∣R0
h(x, y)−R0

h,TE-AD(x, y)
∣∣∣ in

Quadrant 1, µn = 0.35002, ηn = 0.86889,
NX = NY = 32

ual approximates the true residual less accurately than the TE-MMS residual, generally (see

Figures 4.1-4.3 for comparison). The absolute difference between the TE-AD and true residuals

is about 1.5-2 orders of magnitude larger than the difference between the TE-MMS and true

residuals. Because the true pointwise derivative of the scattering source is no longer perfectly

approximated the SCs from other ordinates manifest in the residual for a given ordinate (recall

that the true derivative of the combined source is zero for the problems in this work). Also

note that numerical spreading in the discrete solution along the SCs has lead to larger error in

the TE-AD residual near the SCs due to approximation of the pointwise derivatives with the

35



Figure 4.12 log10

∣∣∣R0
h(x, y)−R0

h,TE-AD(x, y)
∣∣∣

in Quadrant 1, µn = 0.86889, ηn = 0.35002,
NX = NY = 32

Figure 4.13 log10 θ
(i,j)
ang. for LeR/TE-AD

Estimator, NX = NY = 32
Figure 4.14 log10 θ

(i,j)
sca. for LeR/TE-AD

Estimator, NX = NY = 32

numerical solution.

The resultant error estimations plotted in the domain, Figures 4.13 and 4.14, appear similar

to the LeR/TE-MMS estimates, Figures 4.4-4.5, in terms of distribution, with areas of poorest

accuracy of the estimated error located on the SCs and in interference-like patterns around the

center of the domain.

Refining the mesh to NX = NY = 512 and examining the error estimation, Figures 4.15

and 4.16, shows the distribution of errors more clearly. Also, the upper and lower bounds on

the effectivity distribution are larger than the NX = NY = 32 case.

The histogram of the angular effectivity, Figure 4.17, shows the majority of values are

contained within a small window about log10(θang.) = 0. In this problem the angular effectivity

favors overestimation slightly, although all values are bound between about log10(θang.) = −0.3
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Figure 4.15 log10 θ
(i,j)
ang. for LeR/TE-AD

Estimator, NX = NY = 512
Figure 4.16 log10 θ

(i,j)
sca. for LeR/TE-AD

Estimator, NX = NY = 512

Figure 4.17 log10(θ
(i,j)
ang.) Histogram for LeR/TE-AD Estimator, NX = NY = 512

and log10(θang.) = 0.3. Versus the angular effectivity histogram for the LeR/TE-MMS estimate,

Figure 4.8, the LeR/TE-AD estimate is surprisingly robust. The “peak” of values centered

at exact agreement is higher than in the LeR/TE-MMS estimate, the minimum-to-maximum

log10-scale width of the effectivity distributions is smaller than the LeR/TE-MMS estimate,

and there exists no additional “sub-peak” for values contained in the interference-like region.

Intuitively, the residual with more approximations should be a poorer estimate, which begs

the question of why the LeR/TE-AD estimate is superior to the LeR/TE-MMS estimate?
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While the TE-MMS residual is generally a superior approximation away from SCs, the TE-

AD residual approximation is actually superior in cells that are influenced by SCs because the

derivatives are approximated by the numerical solution rather than a wholly incorrect (due to

the irregularity) pointwise derivative representation. Because the true residual is so large in

cells that are influenced by SCs, correctly approximating the residual in these cells carries more

importance than other cells.

Figure 4.18 log10(θ
(i,j)
sca. ) Histogram for LeR/TE-AD Estimator, NX = NY = 512

By examining the histogram of the scalar effectivity, Figure 4.18, one can reach a conclusion

similar to the one reached from the TE-MMS analysis, Figure 4.9. The scalar effectivity appears

similar to the angular effectivity, but it has long tails that stretch in either direction many orders

of magnitude. However, the vast majority of values are located within one order of magnitude

from exact agreement. Overall, these results show the efficacy of a truly a posteriori LeR/TE-

AD estimate.
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Chapter 5

Alternative Estimators

Ultimately, no estimator is expected to produce perfect agreement with the true error. Choosing

an error estimator for practical use would be up to a transport code user based on his or her

own subjective interests. However, in an attempt to give at least some idea of the residual

source estimator’s performance, two alternative estimators are compared to the residual source

estimator: the Ragusa-Wang (RW) estimator and the Duo-Azmy-Zikatanov (DAZ) estimator

and indicator. In a practical sense the estimators used in this work differ slightly from those

introduced by their creators in an effort to keep them consistent with the error norms used to

represent estimator and error behavior. Hence, after initially introducing the estimators, the

“RW-like” and “DAZ-like” estimators will be interchangeably referred to as “Ragusa-Wang”

and “DAZ” estimators, respectively.

5.1 Ragusa-Wang Estimator

The “Ragusa-Wang” estimator is a two-mesh estimator developed in the context of error es-

timation for adaptive mesh refinement (AMR) [7]. In the RW estimator the spatial mesh is

uniformly refined to create a problem with four times as many unknowns as the original prob-

lem in 2D (two times as many in 1D, eight times as many in 3D) that must be solved in the

same manner as the original problem to find the estimate. The solution on the refined mesh,

ψh/2, is essentially treated as an approximation of the reference solution. Their estimator is

introduced in [7] in the following form:

e
(i,j)
RW =

∫
∆xi

dx
∫

∆yj
dy
(
Ih − Ih/2

)2∫
D dA I

2
h

, (5.1)

where I is any angle-integrated quantity, such as scalar flux or current. Ragusa and Wang

include the denominator as a normalization term, since AMR is driven by relative solution

error rather than absolute [9]. To keep their estimator consistent with our definition of the
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error and error norms, it is reframed in the angular sense, Eq. 5.2, and the scalar sense, Eq. 5.3,

e
(i,j)
RW,ang. =

√√√√ N∑
n=1

wn

∫
∆xi

dx

∫
∆yj

dy
(
ψΛ
h,n(x, y)−

[
Πhψ

Λ
h/2,n

]
(x, y)

)2
, (5.2)

and

e
(i,j)
RW,sca. =

√∫
∆xi

dx

∫
∆yj

dy
(
φΛ
h (x, y)−

[
Πhφ

Λ
h/2

]
(x, y)

)2
, (5.3)

respectively. These expressions are identical in form to Eqs. 2.14 and 2.15, and the global

RW-like estimator in both forms is defined in an identical manner.

This estimator has been shown to give a superior estimate of the error when compared to

other estimators [9, 10], so it provides a good benchmark for the quality of the residual source

estimator. Also, like the residual source estimator, the RW estimator requires an additional

transport solve. While the additional transport solve is on a uniformly-refined mesh, the solution

can be preconditioned with an initial guess formed by prolongation of the h-mesh solution.

Figure 5.1 Convergence of Estimated Solution vs. True Solution

Previous works ([2, 9, 10]) have shown that the RW estimator will consistently underesti-

mate the true error, and this is because the DGFEM-0 solution will asymptotically approach

the true solution, meaning the difference between ψh and ψh/2 will always be less than the

difference between ψh and the true solution, see Figure 5.1. Note that E, the true error, is al-
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ways greater than eRW , the difference between two solutions [9, 29]. Provided the problem has

locally reached the asymptotic regime of solution convergence with respect to mesh size (i.e.,

ψΛ
h (x, y)−ΠΛ

hψ
Λ
h/2(x, y)) and the order of local convergence is known, this bias is quantifiable.

A heuristic analysis shows it to be,

ψΛ
h (x, y)−ΠΛ

hψ
Λ
h/2(x, y)

ψΛ
h (x, y)−ΠΛ

hψ(x, y)
=

(
ψΛ
h (x, y)−ΠΛ

hψ(x, y)
)
−
(

ΠΛ
hψ

Λ
h/2(x, y)−ΠΛ

hψ(x, y)
)

ψΛ
h (x, y)−ΠΛ

hψ(x, y)

≈Ch
p − Chp2−p

Chp
= 1− 2−p,

as cell thickness approaches zero, where p is the order of local asymptotic convergence. The

same process can be applied to the global error estimate as well, where p is instead the order

of global asymptotic convergence. It may be possible to use this a priori knowledge of the

RW estimator bias to apply a “correction factor” of sorts, but the two assumptions required

to implement this are quite difficult to achieve in problems that are not as ideal as the ones

presented in this work, so the RW estimator is presented as-is, without such correction.

5.2 Duo-Azmy-Zikatanov Estimator and Indicator

The “Duo-Azmy-Zikatanov” estimator is a residual-based estimator developed for AHOT-N

that has been shown to bound the global error from above in the L2 norm [18, 19]. The global

estimator is given by,

eDAZ = C
[ N∑

n

wn

NX∑
i=1

NY∑
j=1

ĥ2r
K(i,j)‖R(i,j)‖2

K(i,j)

1/2

+

N∑
n:~Ωn·n̂<0

wn

NX∑
i=1

NY∑
j=1

2ĥ2r−1
K(i,j)‖|n̂ · ~Ωn|1/2

{
ψ−Λ − ψ

+
Λ+l

}
‖
∂K

(i,j)
−

1/2 ]
, (5.4)

where l is some non-zero positive integer, r is the minimum degree of regularity in the domain

(i.e., represents a problem that is Hr), ĥK(i,j) is the diameter of cell K(i,j), and C is some

scaling constant, typically set to 1 [18]. All DAZ estimator and indicator results presented in

this work have set l = 1. Conceptually, this estimator works by bounding the global error

by an estimate of the residual (first term) and an estimate of the high-order terms omitted

when transferring information from cell-to-cell during the transport sweep (second term). To

approximate the residual and the inter-element jump, the original authors find a higher-order

pseudo-solution (HOPS) by doing NX ×NY local, single-cell sweeps with order Λ + l. The low

order solution provides each cell’s boundary conditions and the scattering source. In this work

the HOPS is found by performing a single full sweep over the mesh with order Λ + l using the

low order solution to generate the scattering source but keeping the cell incoming boundary flux
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synchronous. Heuristically applied as a local quantity, the DAZ indicator has the form Eq. 5.5,

where C is a constant independent of mesh size, but dependent on the interpolation in the finite

element space, the regularity of the true solution, and the H1 seminorm of the dual problem

and is assumed equal to 1 [19],

e
(i,j)
DAZ =

N∑
n

wn

(
ĥ2r
K(i,j)

∥∥∥R(i,j)
∥∥∥2

K(i,j)

)1/2

+

N∑
n:~Ωn·n̂<0

wn

(
2ĥ2r−1

K(i,j)

∥∥∥∥∣∣∣n̂ · ~Ωn

∣∣∣1/2 {ψ−Λ − ψ+
Λ+l

}∥∥∥∥
∂K

(i,j)
−

)1/2

. (5.5)

One way in which the DAZ estimator can be viewed is that it is a bound on the error

calculated via the Triangle Inequality applied to the residual (represented with an estimate)

and an estimate of the information not transmitted by inflow due to truncation of the DGFEM

representation. This concept is utilized in a local DAZ-like indicator in the angular sense,

Eq. 5.6,

e
(i,j)
DAZ,ang. =

√√√√ N∑
n

ĥ2r
K(i,j)wn

∫
∆xi

dx

∫
∆yj

dy
(
R(i,j)
n (x, y)

)2

+

√√√√√ N∑
n:~Ωn·n̂<0

2ĥ2r−1
K(i,j)wn

∫
∂K

(i,j)
−

dS
∣∣∣n̂ · ~Ωn

∣∣∣ {ψ−Λ,n − ψ+
Λ+l,n

}2
, (5.6)

where the residual estimate is calculated with a HOPS, calculated in the same manner as the

true DAZ estimator. This residual is different than from defined in Eq. 3.3, however, and it is

instead approximated as R(i,j) = ΠΛ+l
(
σsφ

HOPS
h + q

)
−ΠΛ (σsφh + q). The DAZ-like indicator

does not have a corresponding scalar estimator due to the jump discontinuities in the flux on

the incoming edges that is angularly dependent by definition. In the global sense, the DAZ-like

estimator has the form shown in Eq. 5.7,

eDAZ,ang. =

√√√√NX∑
i=1

NY∑
j=1

N∑
n

ĥ2r
K(i,j)wn

∫
∆xi

dx

∫
∆yj

dy
(
R(i,j)
n (x, y)

)2

+

√√√√√NX∑
i=1

NY∑
j=1

N∑
n:~Ωn·n̂<0

2ĥ2r−1
K(i,j)wn

∫
∂K

(i,j)
−

dS
∣∣∣n̂ · ~Ωn

∣∣∣ {ψ−Λ,n − ψ+
Λ+l,n

}2
. (5.7)

The primary difference between the form of the DAZ estimator and indicator, as presented

by Duo, Azmy, and Zikatanov, and the “DAZ-like” estimator and indicators presented here

is the ordering of the angular integration and taking the square root. Importantly, the DAZ

estimator requires r ≥ 1 to bound the solution error globally. This means that H0 problems
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are not proven to be bounded. While the solution regularity r is an input for the estimator,

r will be set to 1 in this work for an H0 problem for this reason, although this still does not

guarantee an error bound. The DAZ estimator and indicator are considered to be similar to the

residual source estimator because they are both rooted in estimation of the residual, although

the DAZ estimator is cheaper to compute and does not require an extra transport-like solution.

Distinction between “estimator” and “indicator” stems from the fact that the estimator has

been proven theoretically and empirically to provide a bound on the global error, while no such

proof exists for the local error [19].
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Chapter 6

Estimators Comparison and

Assessment for H1 Problems

The first set of cases examined are the problems that are in the class H1. We first qualitatively

observe the behavior of the error estimators in selected problems as a case study, and then we

quantitatively observe the behavior in terms of global metrics for a wider selection of problems.

The problem parameters that are modified throughout the reported comparisons are the optical

thickness (via σt), which effects the accuracy of the numerical solution and the influence of the

SCs, the cell size h via the number of cells NX ×NY , which will change the degree to which the

numerical solution has asymptotically converged to the true solution and the relative number

of cells that are influenced by (intersected by or are downwind from cells intersected by) SCs,

and the scattering ratio c, which effects the magnitude of the irregularity in the true solution

derivative and the number of source iterations required to reach iterative convergence. The

DGFEM order is fixed to 0, and all cases of the residual source estimator utilize the TE-AD

residual.

6.1 H1 Case Study

6.1.1 H1 Case 1

The first H1 case to consider has medium optical thickness (σt = 1.0) and a high scattering

ratio c = 0.9. This is the same case that has been examined up to this point. Initially, the mesh

is set to NX = NY = 32, as this mesh structure is coarse enough to be in the early stages

asymptotic convergence with mesh refinement yet gives an appropriate ratio of cells influenced

to cells uninfluenced by SCs.

First we compare of the angular effectivities plotted over the domain for the LeR/TE-AD,

RW, and DAZ estimators in Figures 6.1-6.3, respectively. From these plots it can be seen that

the distribution of error estimates for all estimators is generally in good agreement with the

true error distribution except for deviations along SCs and in “interference”-like regions. In
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Figure 6.1 log10 θ
(i,j)
ang. for LeR/TE-AD

Estimator, H1 Case 1, NX = NY = 32
Figure 6.2 log10 θ

(i,j)
ang. for RW Estimator, H1

Case 1, NX = NY = 32

Figure 6.3 log10 θ
(i,j)
ang. for

DAZ Indicator, H1 Case 1, NX = NY = 32

terms of accuracy, the LeR/TE-AD estimator is the only estimate that sees agreement with the

true error, i.e., log10 θ
(i,j)
ang. is close to 0. The DAZ indicator is the least accurate estimator, but

it achieves a local bound for this case as all the local error estimate values are overestimates.

Next we look at the results plotted in histogram form for these three estimator/indicators,

Figures 6.4-6.6, respectively. The LeR/TE-AD estimator is centered about exact agreement,

while the RW estimator has the expected level of bias (p for an H1 problem with DGFEM-0 is

1, giving a predicted bias of θ = 0.5, or log10 θ = −0.3). Nevertheless, the RW estimator gives a

good shape function (estimate of the error relative to mean estimated error, i.e., low variance),

as its width in log10-scale is 0.3 versus 0.4 for LeR/TE-AD or 0.35 for DAZ. Also, generally,

the absolute difference between the estimated and true error is only small where the effectivity

is closest to zero. That means no estimators are subject to the potential issue of extremely low

true errors magnifying the effectivity.
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Figure 6.4 log10 θ
(i,j)
ang. Histogram for LeR/TE-AD Estimator, H1 Case 1, NX = NY = 32

Figure 6.5 log10 θ
(i,j)
ang. Histogram for RW Estimator, H1 Case 1, NX = NY = 32

Figures 6.7 and 6.8 show the scalar LeR/TE-AD and RW estimators, respectively, plotted

over the domain. Generally the trends of the angular estimators are mirrored in the scalar
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Figure 6.6 log10 θ
(i,j)
ang. Histogram for DAZ Indicator, H1 Case 1, NX = NY = 32

Figure 6.7 log10 θ
(i,j)
sca. for LeR/TE-AD

Estimator, H1 Case 1, NX = NY = 32
Figure 6.8 log10 θ

(i,j)
sca. for RW Estimator, H1

Case 1, NX = NY = 32

estimators, such as under-estimation of the peak in the case of RW. From histograms of the

same two estimators, Figures 6.9 and 6.10, respectively, it can be seen that the price paid for a

reduction in memory storage requirements in the scalar norms is a worse representation of the

error. One potential advantage of the RW estimator is that it does not require modification of

existing codes to generate a scalar error estimate. The LeR/TE-AD estimator requires angular

quantities to build a residual, and the DAZ estimator needs angular quantities to build a

residual and the inter-element jumps, even if a scalar error estimate is desired. However, a
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Figure 6.9 log10 θ
(i,j)
sca. Histogram for LeR/TE-AD Estimator, H1 Case 1, NX = NY = 32

Figure 6.10 log10 θ
(i,j)
sca. Histogram for RW Estimator, H1 Case 1, NX = NY = 32
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scalar estimator has worse performance when compared to an angular estimator. Because this

trend is consistent for all cases, only the angular local behavior will be reported from here on

out for other H1 problems, since this work is primarily interested in error estimator accuracy,

which is captured best with angular estimators. However, scalar estimators are still valuable

from a user’s perspective, as they are easily relatable to error in scalar quantities such as scalar

flux and reaction rates.

Figure 6.11 log10 θ
(i,j)
ang. for LeR/TE-AD

Estimator, H1 Case 1, NX = NY = 512
Figure 6.12 log10 θ

(i,j)
ang. for RW Estimator, H1

Case 1, NX = NY = 512

Figure 6.13 log10 θ
(i,j)
ang. for

DAZ Indicator, H1 Case 1, NX = NY = 512

Next, the same case (σt = 1.0, c = 0.9) is refined to NX = NY = 512, and the angular effec-

tivities for all three estimators, Figures 6.11-6.13, respectively, are plotted over the domain. The
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features seen in the coarser mesh case are seen again here, although both estimators have much

better shape functions in the “interference-like” region in the center of the domain, likely because

numerical spreading of error from the SCs has subsided due to the greater number of cells in

these regions.

Figure 6.14 log10 θ
(i,j)
ang. Histogram for LeR/TE-AD Estimator, H1 Case 1, NX = NY = 512

The histograms are plotted, Figures 6.14-6.16. These plots exemplify the quality of the RW

estimator as a shape estimator, as the variance about the peak at the biased value is extremely

small. Also note that the RW estimator has a greater peak height than the LeR/TE-AD esti-

mator (∼ 3× 104 vs. ∼ 2.5× 104, respectively) and narrower log10-scale minimum-to-maximum

effectivity range (∼ 0.4 vs. ∼ 0.6, respectively) as indicators of a superior shape function. With

this problem and mesh, the majority of cells are in the asymptotic convergence regime with

respect to cell size. While not good as the RW estimator, the LeR/TE-AD estimator is also

excellent as a shape estimator, and it has the added benefit of being centered about exact

agreement with the true error. Because it is centered about the exact error, it is also more

cautious, which would be more useful from an error analysis standpoint. The DAZ indicator

remains locally cautious for this case.

The scalar performance for NX = NY = 512 is plotted for the LeR/TE-AD and RW

estimators, Figures 6.17 and 6.18, respectively, over the domain. The finer details are diluted

by the large orders of magnitude spread by the scalar estimators, but the severe departure from
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Figure 6.15 log10 θ
(i,j)
ang. Histogram for RW Estimator, H1 Case 1, NX = NY = 512

Figure 6.16 log10 θ
(i,j)
ang. Histogram for DAZ Indicator, H1 Case 1, NX = NY = 512

near-exact agreement is focused near the SCs.

The scalar estimator histograms are shown in Figures 6.19 and 6.20. We observe that apart
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Figure 6.17 log10 θ
(i,j)
sca. for LeR/TE-AD

Estimator, H1 Case 1, NX = NY = 512
Figure 6.18 log10 θ

(i,j)
sca. for RW Estimator, H1

Case 1, NX = NY = 512

Figure 6.19 log10 θ
(i,j)
sca. Histogram for LeR/TE-AD Estimator, H1 Case 1, NX = NY = 512

from the large over and underestimation of comparatively very few cells, the scalar estimators

are similar to the angular estimators in accuracy, although the effectivities are not consolidated

in as small a range as the angular estimator effectivities (i.e., peak is wider). Again, the LeR/TE-

AD estimator is centered at exact agreement, while the RW estimator is biased to underestimate

the error.

Now the global error norm with decreasing cell size is examined, as one of the chief reported

advantages of the DAZ estimator is providing an upper bound in the global norm [18]. The
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Figure 6.20 log10 θ
(i,j)
sca. Histogram for RW Estimator, H1 Case 1, NX = NY = 512

Figure 6.21 Angular Error/Estimator L2 Norm Convergence for H1 Case 1

angular error and estimates are plotted in Figure 6.21 while the angular effectivity indices are

plotted in Figure 6.22. One can see that the DAZ estimator bounds the true error in this case, in

agreement with the theory. The global norm of the RW estimator underestimates with a global

53



Figure 6.22 Angular Effectivity Convergence for H1 Case 1

norm close to log10 θang. = −0.3. For this case, in terms of global effectivities, the LeR/TE-AD

estimator is closest to the true error for all meshes but the trivial NX = NY = 1 mesh. The

true residual is plotted with the other estimates because we are interested in the possibility

of using an approximated residual as a computationally cheap error bound, since it is already

calculated on-the-way to an LeR/TE-AD estimate. Intuitively, based on traditional stability

arguments for numerical methods, it is believed that the residual should bound the error from

above globally. Hence, in Figure 6.22, we confirm that the true residual bounds the true error

from above, though the lower convergence order with respect to the true error convergence order

is also verified. Since we are interested in using the DAZ estimator as a bound, we extend the

mesh refinement of the DAZ plot to smaller mesh sizes, Figure 6.23, and note that even at finer

meshes the DAZ estimator bounds the true error from above. While further mesh refinement

would be of interest, it is worth noting that, in addition to the computational burden of running

even more refined meshes, eventually some error and estimator values would be expected to

diminish to the same order as the iteration tolerance, making this a fruitless exercise.

The scalar error and estimates are plotted in Figure 6.24 while the scalar effectivity indices

are plotted in Figure 6.25, with similar results to those in Figures 6.21 and 6.22. However, one

interesting exception is that the true residual does not bound the true error for NX = NY = 2.

This would suggest that the angular norm is required for the residual to bound the error.

However, after asymptotic convergence with mesh refinement is reached, the scalar norm appears

to converge with the same order as the angular norm, Figure 6.21. Like the angular versions,

the LeR/TE-AD estimator is most accurate among the three compared estimators, and the RW

estimator converges to a value close to log10 θsca. = −0.3.
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Figure 6.23 Angular Error/DAZ Estimator Global L2 Norm Convergence for H1 Case 1

Figure 6.24 Scalar Error/Estimator Convergence for H1 Case 1

Next, the computational cost for the estimators is plotted for the angular and scalar esti-

mators in Figures 6.26 and 6.27, respectively, with the cost of the discrete transport solution

also plotted as a reference. The computation times are calculated in the following ways. The

discrete solution time is the net time for the deterministic transport code to execute (read in-

put, solution algorithm, and write output times). The TE-AD residual time is the net time for

the residual to be calculated plus the time it takes to calculate the norms of the residual. The
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Figure 6.25 Scalar Effectivity Convergence for H1 Case 1

Figure 6.26 Computation Time for Angular Estimators, H1 Case 1

LeR/TE-AD time is the net time to calculate the residual, run the deterministic transport code

to solve for the error, and compress the error into error norms. The RW time is the net time to

project the h-mesh solution onto the h/2-mesh, run the deterministic transport code to solve

for the h/2-solution, and calculate the RW estimate in terms of the output norms. The DAZ

indicator/estimator is calculated in one process, which is the input of the transport solution,
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Figure 6.27 Computation Time for Scalar Estimators, H1 Case 1

the single higher-order sweep, and the calculation and output of the estimate.

One important comparison between the angular and scalar estimators is that there is nearly

no computational time difference between the two types of estimators. This is because the time

difference between scalar and angular estimators will only be manifest in the post-processing

routines which, relative to the cost of solving the transport equation, are small. Thus, the only

benefit to using a scalar estimator over an angular estimator, in terms of computational cost,

is that the data structure required to calculate a scalar estimator will be smaller, although

there are certainly other benefits unrelated to computational cost that have been mentioned

previously in Section 2.4. With regards to the relative cost of the estimators versus each other,

we notice that, as predicted, the TE-AD residual approximation as an indicator and DAZ

indicator/estimator are far cheaper, an order of magnitude or more, than the RW and LeR/TE-

AD estimators because they do not require an additional, multi-iteration transport solve. The

DAZ indicator/estimator’s cost will vary depending on the additional order ‘l’ added to calculate

the HOPS, and its cost should be on the order of the execution time of a single sweep for the low

order problem times a factor of (Λ+l+1)2

(Λ+1)2
plus the additional time for calculating the estimate

based on the HOPS. As expected, the LeR/TE-AD estimator calculation time is similar to that

of calculating the original discrete solution, although the additional computation time required

to calculate the residual and do the post-processing accounts for the slightly greater time when

compared to the discrete solution. The RW estimator is about three times more expensive than

the LeR/TE-AD estimator. While the solution time for the h/2-mesh solution will be roughly

four times longer (minus the time saved by preconditioning with the h-mesh solution) than

the solution time on the h-mesh, the input and output times of the code plus the pre- and

post-processing times of the error estimation reduces the relative net time for computation to
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less than four. Because the computation times have a predictable behavior (i.e., linearly scaling

with number of cells and number of iterations), computation time results will be omitted for

case-by-case problems for the remaining sections. However, note that one can expect transport

solution time to dominate and raise the estimator and discrete solution computation times (for

estimators that require transport solves) as c → 1, since a high scattering ratio will increase

the number of iterations required to achieve convergence.
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6.1.2 H1 Case 2

The next H1 case has large optical thickness (σt = 10.0) and a high scattering ratio c = 0.9. This

is a case where the true solution’s large gradients may affect the local behavior of the LeR/TE-

AD estimator (recall this estimator uses Taylor Expansions as approximations of derivatives).

A course NX = NY = 32 mesh is applied.

Figure 6.28 log10 θ
(i,j)
ang. for LeR/TE-AD

Estimator, H1 Case 2, NX = NY = 32
Figure 6.29 log10 θ

(i,j)
ang. for RW Estimator, H1

Case 2, NX = NY = 32

Figure 6.30 log10 θ
(i,j)
ang. for

DAZ Indicator, H1 Case 2, NX = NY = 32

A comparison of the local angular effectivities plotted is over the domain, Figures 6.28-6.30.

In the LeR/TE-AD and RW estimator plots the tell-tale signs of a large optical thickness can
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be seen, namely poor representation of the error on cells near the boundary. This is due to the

inability of DGFEM-0 to accurately approximate derivatives, which makes the RW estimator

and TE-AD approximation (thus the LeR/TE-AD estimate) less effective. This behavior is not

seen for the DAZ indicator, which progressively underestimates the error in cells closer to the

domain center.

Figure 6.31 log10 θ
(i,j)
ang. Histogram for LeR/TE-AD Estimator, H1 Case 2, NX = NY = 32

The histograms for the three estimators, Figures 6.31-6.33, give an understanding of where

the effectivities coalesce. The histograms show that the LeR/TE-AD and RW estimators serve

excellently as shape estimators for this case with a large number of effectivities being contained

within a narrow band, although the RW has the predicted bias towards underestimating the

true error. The local DAZ indicator has a very wide bound and is not as locally cautious as the

other two estimators in terms of the lowest value of underestimation.

The estimator behavior is plotted in the domain for a fine NX = NY = 512 mesh in Figures

6.34-6.36, and the effectivity histograms for this refined mesh are plotted in Figures ??-6.39.

The results on the fine mesh are similar to those on the coarse mesh, Figures 6.28-6.33. The

LeR/TE-AD estimator becomes slightly more accurate in terms of the standard deviation of

log10 θ
(i,j)
ang. as the mesh is refined, although as before it is seen that the minimum-to-maximum

width of log10 θ
(i,j)
ang. increases as the mesh is refined. In this case the LeR/TE-AD and RW

estimators are about equivalent as shape estimates in terms of peak height and maximum-
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Figure 6.32 log10 θ
(i,j)
ang. Histogram for RW Estimator, H1 Case 2, NX = NY = 32

Figure 6.33 log10 θ
(i,j)
ang. Histogram for DAZ Indicator, H1 Case 2, NX = NY = 32

to-minimum log10-scale effectivity range, but the LeR/TE-AD estimator has the advantage of

being accurate. Note that as the mesh is refined two separate peaks become apparent in the DAZ
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Figure 6.34 log10 θ
(i,j)
ang. for LeR/TE-AD

Estimator, H1 Case 2, NX = NY = 512
Figure 6.35 log10 θ

(i,j)
ang. for RW Estimator, H1

Case 2, NX = NY = 512

Figure 6.36 log10 θ
(i,j)
ang. for

DAZ Indicator, H1 Case 2, NX = NY = 512

indicator, Figure 6.39. The underestimation peak appears to be associated with cells inward in

the domain, while the overestimation peak is associated with cells near the problem boundary.

We note that for a problem with large optical thickness and scattering ratio, the single-sweep

HOPS will be a poor representation of a fully converged higher-order solution, though this is

not known to be related to the effect seen here.

Figures 6.40 and 6.41 show that the global LeR/TE-AD estimator is more accurate than

the RW estimator, although it still is not cautious, unlike the DAZ estimator, which is not

cautious locally in this case. Given the possibility of using the predicted bias to “correct” the

RW estimator, it can be seen that in this optically thick case, the RW estimator does not reach

its log10 θang. = −0.3 bias until the mesh is refined to about NX = NY = 32, the mesh at which

the true solution has approached asymptotic convergence with respect to mesh refinement. It

is noted that the residual in the angular norm bounds the true error, while in the scalar norm,
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Figure 6.42, it does not, although again this happens only in the NX = NY = 2 case.

Figure 6.37 log10 θ
(i,j)
ang. Histogram for LeR/TE-AD Estimator, H1 Case 2, NX = NY = 512
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Figure 6.38 log10 θ
(i,j)
ang. Histogram for RW Estimator, H1 Case 2, NX = NY = 512

Figure 6.39 log10 θ
(i,j)
ang. Histogram for DAZ Indicator, H1 Case 2, NX = NY = 512
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Figure 6.40 Angular Error/Estimator L2 Norm Convergence for H1 Case 2

Figure 6.41 Angular Effectivity Convergence for H1 Case 2
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Figure 6.42 Scalar Error/Estimator L2 Norm Convergence for H1 Case 2

Figure 6.43 Scalar Effectivity Convergence for H1 Case 2
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6.1.3 H1 Case 3

The last individual H1 case considered has large optical thickness (σt = 10.0) and a low scat-

tering ratio c = 0.1. A course NX = NY = 32 mesh is applied to the domain.

Figure 6.44 log10 θ
(i,j)
ang. for LeR/TE-AD

Estimator, H1 Case 3, NX = NY = 32
Figure 6.45 log10 θ

(i,j)
ang. for RW Estimator, H1

Case 3, NX = NY = 32

Figure 6.46 log10 θ
(i,j)
ang. for

DAZ Indicator, H1 Case 3, NX = NY = 32

We compare the angular effectivities plotted over the domain, Figures 6.44-6.46. Despite the

large optical thickness, the RW and LeR/TE-AD estimators maintain their expected behavior,

namely well-defined peaks that underestimate the true error norms in the case of RW but

are accurate in the case of LeR/TE-AD. We do note that in Figure 6.44 the LeR/TE-AD
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estimator has more overestimated values than in the other two H1 cases, Figures 6.1 and 6.28,

though the exact cause of this is not known. In the section that follows it will be seen that for

H1 problems the LeR/TE-AD estimator generally becomes more cautious as optical thickness

increases, although the scattering ratio also has a minimal effect. This is most likely a result

of a small true error from an accurate DGFEM-0 solution due to the low gradients in the true

solution. Effectivity values for the LeR/TE-AD estimator are contained in a small width about

the exact error.

Figure 6.47 log10 θ
(i,j)
ang. Histogram for LeR/TE-AD Estimator, H1 Case 3, NX = NY = 32

The histograms for the same cases, Figures 6.47-6.49, support the favorability of the LeR/TE-

AD estimator for this case and show that the majority of effectivities are located around a very

tight band about the perfect agreement value of log10 θ
(i,j)
ang. = 0.

The fine mesh domain plots and histograms, Figures 6.50-6.55, are similar to the previously

shown results. The majority of effectivities for the LeR/TE-AD estimator are contained within∣∣∣log10 θ
(i,j)
ang.

∣∣∣ ≤ 0.05, which corresponds to less than 13% deviation from the true error, although

it can be seen that many of these values are contained within an even tighter bound. The RW

estimator is contained in a tight band as well, but it remains victim to the predicted bias. The

DAZ indicator is locally cautious, and it gives a large range of effectivities compared to the

other two estimators.

Global effectivity convergence plots, Figures 6.56-6.59, are consistent with the behavior
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demonstrated in the previous two cases, namely that LeR/TE-AD is most accurate, RW has a

predictable underestimation bias, and DAZ bounds from above. However, it is noted that the

Figure 6.48 log10 θ
(i,j)
ang. Histogram for RW Estimator, H1 Case 3, NX = NY = 32

Figure 6.49 log10 θ
(i,j)
ang. Histogram for DAZ Indicator, H1 Case 3, NX = NY = 32
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Figure 6.50 log10 θ
(i,j)
ang. for LeR/TE-AD

Estimator, H1 Case 3, NX = NY = 512
Figure 6.51 log10 θ

(i,j)
ang. for RW Estimator, H1

Case 3, NX = NY = 512

Figure 6.52 log10 θ
(i,j)
ang. for

DAZ Indicator, H1 Case 3, NX = NY = 512

LeR/TE-AD estimator is far more accurate than in the previous cases. This is likely because

the high scattering ratio and large optical thickness mitigate the effects of the SCs more than

in either of the two previous cases.
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Figure 6.53 log10 θ
(i,j)
ang. Histogram for LeR/TE-AD Estimator, H1 Case 3, NX = NY = 512

Figure 6.54 log10 θ
(i,j)
ang. Histogram for RW Estimator, H1 Case 3, NX = NY = 512
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Figure 6.55 log10 θ
(i,j)
ang. Histogram for DAZ Indicator, H1 Case 3, NX = NY = 512

Figure 6.56 Angular Error/Estimator L2 Norm Convergence for H1 Case 3
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Figure 6.57 Angular Effectivity Convergence for H1 Case 3

Figure 6.58 Scalar Error/Estimator L2 Norm Convergence for H1 Case 3
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Figure 6.59 Scalar Effectivity Convergence for H1 Case 3
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6.2 H1 General Behavior

Next we observe the trends of some global quantities with changing problem parameters. It is

difficult to choose a single quantity that will convey sufficient information about the estimators’

performance, so four global quantities will be observed: the global norm, the fraction of local

estimates that are cautious (i.e., θ
(i,j)
ang. ≥ 1), the fraction of local estimates within a specified

range about the value of θ
(i,j)
ang. = 1, indicating exact agreement between the estimated and true

errors, and the standard deviation of log10 θ
(i,j)
ang., which should indicate the estimator’s usefulness

as an error shape estimator. The DAZ, RW, and LeR/TE-AD estimators are considered along

with the TE-AD residual approximation, due to its potential as an error bound calculated along

the way to a LeR/TE-AD estimate. First, these quantities are plotted versus computation time

with varying mesh size for the same problem parameters as H1 Case 1. This is done to convey

the efficiency of the estimator/indicators with respect to computation time.

Figure 6.60 Global Angular Effectivity vs. computation time

Figure 6.60 shows the global angular effectivities versus computation time. The values that

have computational times shorter than the computer’s clock precision are not plotted. The

results here are similar to Figure 6.22. No estimator gives a more accurate global estimate

than the LeR/TE-AD estimator for the computational cost. However, the DAZ estimator is

about an order of magnitude cheaper than the LeR/TE-AD and RW estimators and gives an
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bound on the global error. The residual approximation is cheapest to compute, but the different

convergence order hurts its prospect as a global error estimate or error bound, except in the

most cautious sense. This fact is evident from its trend of increasing overestimation with mesh

refinement, in contrast to the DAZ estimator whose upper bound tightens closer to the true

error with mesh refinement.

Figure 6.61 Fraction of cells with θ
(i,j)
ang. − 1 ≥ 0 vs. computation time

Figure 6.61 shows the fraction of estimates that overestimate (cautious), hence bound from

above, the true error. The RW estimator exhibits no local cautiousness because it precisely

underestimates the true error, as shown previously. The LeR/TE-AD estimator evidently be-

comes more cautious as the mesh is refined for this case, although the performance of the DAZ

indicator is far more efficient in terms of computational cost if a locally cautious estimate of

the error is desired. The residual for this case is cheapest of all, and it bounds about 90% or

more of all cells’ local error.

Figure 6.62 shows the fraction of cells that have local estimates within 10%, 25%, or 50%

of the true error. The DAZ results and some RW results are not plotted because they are

zero for all meshes. For this problem the DAZ indicator is not very accurate, so no values are

contained in the plot. Figures 6.6 and 6.16 corroborate this, as for this case, the DAZ indicator

has a floor of about θ
(i,j)
ang. ≥ 2 (200% of the true error). The RW estimator’s bias towards

underestimation is evident, as it is not accurate unless the 50% bound is considered. The 50%
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Figure 6.62 Fraction of cells within some bound vs. computation time

bound is accurate because the predicted bias of the RW estimator will be at θ
(i,j)
ang. = 0.5, which

means the effectivities will coalesce at the lower end of the 50% bound. The LeR/TE-AD

estimator is quite accurate, and while its accuracy appears to decrease as the mesh is refined,

this is mostly because the error is decreasing to the point that the estimator is not able to

accurately estimate it. Put another way, the solution is converging asymptotically, but the

error estimate is not because of the inherent failings of the TE-AD residual approximation.

Perhaps surprisingly, the TE-AD residual registers on this plot.

Figure 6.63 shows the standard deviation of each estimator, an indication of its ability as

a shape estimator regardless of how well it predicts the magnitude of the error in each cell of

the mesh. While the distribution of log10 θ
(i,j)
ang. is not a probabilistic one, the magnitude of an

estimator/indicator’s standard deviation can be related to that estimator/indicator’s utility as a

shape estimator. Consider the local RW estimator for the H1 Case 1, NX = NY = 512, Figure

6.15, compared to the local LeR/TE-AD estimator for the same case, Figure 6.14. Judging

by the figures, the RW estimator could be considered a better shape estimate because the

maximum-to-minimum log10-scale width of the spread of its angular effectivities is smaller,

and the height of its peak is taller. It should therefore have a smaller standard deviation. The

corresponding values on Figure 6.63 (largest computation times for each estimator correspond

to the NX = NY = 512 mesh) show the RW estimator has a smaller standard deviation by

over a factor of three compared to the next best estimator/indicator, LeR/TE-AD. In general,

aside from small mesh sizes when the solution is not yet asymptotically converging with mesh

refinement, the RW estimator is the best shape function for a given execution time regardless of

mesh size. Note that as the estimators approach asymptotic convergence with mesh refinement
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Figure 6.63 Standard deviation of log10 θ
(i,j)
ang. vs. computation time

the estimator/indicators’ standard deviations counter-intuitively increase because the outlier

effectivity “tails” get further away from the peak.

Figure 6.64 Global Angular Effectivity vs. σt,
c = 0.1,

NX = NY = 32, H1

Figure 6.65 Global Angular Effectivity vs. σt,
c = 0.1,

NX = NY = 512, H1

The same set of angular quantities are observed in Figures 6.64-6.69, which show the global

angular effectivity with varying optical thickness for scattering ratios of c = 0.1, c = 0.5, and

c = 0.9 and for NX = NY = 32 and NX = NY = 512. Generally, the global effectivity of the
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Figure 6.66 Global Angular Effectivity vs. σt,
c = 0.5,

NX = NY = 32, H1

Figure 6.67 Global Angular Effectivity vs. σt,
c = 0.5,

NX = NY = 512, H1

Figure 6.68 Global Angular Effectivity vs. σt,
c = 0.9,

NX = NY = 32, H1

Figure 6.69 Global Angular Effectivity vs. σt,
c = 0.9,

NX = NY = 512, H1

LeR/TE-AD estimator and RW estimator are invariant to changes in scattering ratio and optical

thickness. In the fine mesh case when the discrete solution has reached asymptotic convergence

with respect to mesh refinement, the RW estimator is located about the predicted bias of

log10 θ
(i,j)
ang. = −0.3, and the LeR/TE-AD estimator, which is the most accurate, is consistently

between log10 θ
(i,j)
ang. = −0.2 and log10 θ

(i,j)
ang. = 0, suggesting that there could also be a predictable

bias for the LeR/TE-AD estimator. The DAZ estimator and the TE-AD residual, when used

as an indicator, are sensitive to optical thickness and scattering ratio. The Duo estimator is

expected to be sensitive to the scattering ratio because the scattering ratio is related to the

accuracy of an additional high-order sweep when compared to a fully converged high-order

problem. Using the residual approximation as a mathematical bound is instructive, although

it has been shown that the residual has a different order of convergence than the error, so it
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should not be used as an indicator of the error with mesh refinement.

Figure 6.70 Fraction of cells with θ
(i,j)
ang. − 1 ≥ 0

vs. σt, c = 0.1,
NX = NY = 32, H1

Figure 6.71 Fraction of cells with θ
(i,j)
ang. − 1 ≥ 0

vs. σt, c = 0.1,
NX = NY = 512, H1

Figure 6.72 Fraction of cells with θ
(i,j)
ang. − 1 ≥ 0

vs. σt, c = 0.5,
NX = NY = 32, H1

Figure 6.73 Fraction of cells with θ
(i,j)
ang. − 1 ≥ 0

vs. σt, c = 0.5,
NX = NY = 512, H1

The fraction of local estimates that overestimate is observed next, Figures 6.70-6.75. As

would be expected from the global effectivity, the RW estimator is not locally cautious. Because

it is a good shape estimator and has bias to underestimate, most if not all local estimates will

underestimate the true error. The LeR/TE-AD estimator is minimally cautious in a local sense

for the coarse mesh cases when low-to-medium optical thicknesses are considered. As the optical
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Figure 6.74 Fraction of cells with θ
(i,j)
ang. − 1 ≥ 0

vs. σt, c = 0.9,
NX = NY = 32, H1

Figure 6.75 Fraction of cells with θ
(i,j)
ang. − 1 ≥ 0

vs. σt, c = 0.9,
NX = NY = 512, H1

thickness increases and the mesh is refined, the LeR/TE-AD estimator becomes more cautious.

The DAZ indicator locally bounds the error for most cases considered, although at larger optical

thicknesses it underestimates some errors, especially so when the scattering ratio is large. When

the local residual approximation is considered as an error indicator, it tends to be rather locally

cautious, especially at higher optical thicknesses.

Figure 6.76 Fraction of cells with |θ(i,j)ang. − 1| ≤ specified bounds vs. σt,
c = 0.1, NX = NY = 32, H1

The fractions of local estimates that are within some bound interval are observed next,

Figures 6.76-6.81. The LeR/TE-AD estimator is by far the most accurate estimator by all three

measures with the exception of cases with very large optical thickness. It is most accurate for

low-to-large optical thicknesses on both coarse and fine meshes, with 90% of cells having error
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Figure 6.77 Fraction of cells with |θ(i,j)ang. − 1| ≤ specified bounds vs. σt,
c = 0.1, NX = NY = 512, H1

Figure 6.78 Fraction of cells with |θ(i,j)ang. − 1| ≤ specified bounds vs. σt,
c = 0.5, NX = NY = 32, H1

estimates with 50% or better accuracy relative to the true error. The LeR/TE-AD estimator

gets progressively more accurate as the optical thickness is increased until it reaches very large

optical thickness (somewhere between σt = 10.0 and σt = 100.0), where this trend is reversed.

Similar to Figure 6.62, the RW estimator is generally inaccurate unless the 50% bound is

considered, due to the asymptotic bias analyzed earlier. For very large optical thickness and

NX = NY = 32 mesh, the RW estimator is accurate because the problem has not reached

asymptotic convergence with respect to cell size; therefore, the bias has not set in. These

plots suggest the local DAZ indicator cannot be expected to provide a good estimate of the

error, as the cases that give any amount of agreement are undoubtedly outliers. The residual

approximation gives a surprisingly good estimate of the error for cases with low-to-medium

optical thickness; however, the utility of using the residual approximation as an estimate for

the error is suspect. First, the residual approximation should not be equal to the error in any
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Figure 6.79 Fraction of cells with |θ(i,j)ang. − 1| ≤ specified bounds vs. σt,
c = 0.5, NX = NY = 512, H1

Figure 6.80 Fraction of cells with |θ(i,j)ang. − 1| ≤ specified bounds vs. σt,
c = 0.9, NX = NY = 32, H1

sense, so at best it could be an error indicator. Second, it has been shown that the true residual

converges to a constant in cells adjacent to the global incoming boundary and on the SCs for H1

problems paired with DGFEM-0, unlike the true error, so a hypothetical perfect approximation

of the residual used as an error indicator would incorrectly suggest no decrease in error as the

mesh was refined for these regions.

The standard deviation of the log10 θ
(i,j)
ang. distribution is plotted as an indication of each

estimator’s quality as a shape estimator in the indicated problem parameter regime shown in

Figures 6.82-6.87. As expected, the RW estimator has the best shaping function, especially for

large optical thickness, although it and the LeR/TE-AD estimator suffer at very large optical

thickness (σt = 100.0), likely because the true error is very low for these problems, and this

is not well captured by the estimator/indicators. Although the RW estimator is robust as a

shape estimator for these cases, something that must be considered is that these idealized
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Figure 6.81 Fraction of cells with |θ(i,j)ang. − 1| ≤ specified bounds vs. σt,
c = 0.9, NX = NY = 512, H1

Figure 6.82 Standard deviation of log10 θ
(i,j)
ang. vs.

σt, c = 0.1,
NX = NY = 32, H1

Figure 6.83 Standard deviation of log10 θ
(i,j)
ang. vs.

σt, c = 0.1,
NX = NY = 512, H1

homogeneous problems are generally uniform, thus all cells reach local asymptotic convergence

with respect to decreasing mesh size simultaneously and at the same asymptotic order. In a

heterogeneous problem it may take a very fine mesh for all cells to reach local asymptotic

convergence everywhere in the domain. The LeR/TE-AD estimator, while not as robust as the

RW estimator, is generally good when compared to the other estimates. The DAZ indicator

is very good as a shape estimate at low-to-medium optical thicknesses, but it worsens as the

scattering ratio and optical thickness are increased, both of which will decrease the accuracy

of the HOPS relative to a fully converged sweep. The residual approximation is a poor shape

estimator, as its standard deviation is an order of magnitude or more larger than the LeR/TE-

AD estimator for most problems.

Finally, the computation time for each estimate (not including the original discrete transport

solution time) is plotted in Figures 6.88-6.93. As expected, the residual approximation and DAZ
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Figure 6.84 Standard deviation of log10 θ
(i,j)
ang. vs.

σt, c = 0.5,
NX = NY = 32, H1

Figure 6.85 Standard deviation of log10 θ
(i,j)
ang. vs.

σt, c = 0.5,
NX = NY = 512, H1

Figure 6.86 Standard deviation of log10 θ
(i,j)
ang. vs.

σt, c = 0.9,
NX = NY = 32, H1

Figure 6.87 Standard deviation of log10 θ
(i,j)
ang. vs.

σt, c = 0.9,
NX = NY = 512, H1

estimator computation times are mostly invariant to changes in scattering ratio and optical

thickness, because these variables should have no influence on the computation time of these

quantities. The LeR/TE-AD and RW estimators are mostly invariant to changes in scattering

ratio and optical thickness for low-to-medium optical thicknesses. The computation time shoots

up at larger optical thicknesses, with a larger jump corresponding to higher scattering ratio.

In general, the computational cost of the RW estimator is approximately 2-3 times that of the

LeR/TE-AD estimator, although one would expect this multiplier to trend to 4 in 2d, i.e., the

ratio of computational cells in the applicable uniform halving of the per-dimension size of all

cells, as the iterations required to reach convergence trends towards infinity. All estimates have

computation times that scale linearly with total number of cells in the mesh.
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Figure 6.88 Computation time vs. σt, c = 0.1,
NX = NY = 32, H1

Figure 6.89 Computation time vs. σt, c = 0.1,
NX = NY = 512, H1

Figure 6.90 Computation time vs. σt, c = 0.5,
NX = NY = 32, H1

Figure 6.91 Computation time vs. σt, c = 0.5,
NX = NY = 512, H1

6.3 H1 Conclusions

Overall, several impressions can be taken from the preceding figures forH1 problems. As a global

error estimate, the residual source estimator with the TE-AD residual is the most accurate,

although it is not globally cautious. With respect to changing optical thickness and scattering

ratio, the behaviors of the global effectivity of the LeR/TE-AD and RW estimators are relatively

insensitive. The DAZ estimator is globally cautious for all H1 cases, in agreement with the

theory, and it becomes more cautious and less accurate as the optical thickness and scattering

ratio are increased, as this will increase the iterative error of the HOPS. The TE-AD residual

approximation has promise as an on-the-fly error bound in conjunction with the LeR/TE-AD

estimator, although it has a different convergence order with respect to mesh refinement than

the true error. As a local estimator, the LeR/TE-AD estimator is consistently more cautious

than the RW estimator due to the inherent underestimation bias in the RW estimator. The DAZ
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Figure 6.92 Computation time vs. σt, c = 0.9,
NX = NY = 32, H1

Figure 6.93 Computation time vs. σt, c = 0.9,
NX = NY = 512, H1

indicator locally overestimates the error for low-to-medium optical thicknesses, although this is

not guaranteed by theory, but is not as reliable otherwise. The TE-AD residual approximation

is a cautious estimate of the error for a majority of local errors and is more reliably cautious at

larger optical thicknesses. As a local error estimate, the LeR/TE-AD estimator is far superior

to all other estimates in nearly every case in terms of accuracy. The RW estimator suffers from

a bias known a priori once all the cells enter the asmyptotic regime, although predicting the

value of this bias and when it takes effect (i.e., when the domain is locally asymptotic with

respect to mesh refinement) would require multiple fine mesh calculations and be potentially

impractical in real-life problems. The DAZ indicator is not accurate by the metrics presented

in this work, and while the TE-AD residual approximation is surprisingly accurate when used

as an error estimate, it has serious shortcomings which have been outlined earlier. By using

the standard deviation of the log10 θang. distribution as an indication of the quality as a shape

estimator, the RW estimator is shown to be unquestionably the best shape estimator for these

cases. The LeR/TE-AD estimator performs well as a shape estimator at low-to-high optical

thicknesses, and the DAZ indicator performs well at low-to-medium optical thicknesses. The

TE-AD residual approximation has a very large standard deviation, which is probably because

the local residual on the boundary and the SCs converges to a constant while the local true

error on these cells converges to zero with mesh refinement. The estimators have predictable

behavior in terms of their relative computation time, and one can expect the computation time

of the estimators that require additional transport solves to follow the same computation time

trends as the initial discrete transport solution.
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Chapter 7

Estimators Comparison and

Assessment for H0 Problems

The next set of cases examined are the problems that are H0. Like the H1 cases, the problem

parameters that are modified are the optical thickness (via σt), the cell size h via the number

of cells NX ×NY , and the scattering ratio c. The DGFEM order is fixed to 0, and all cases of

the residual source utilize the TE-AD residual. Recall that for H0 cases the solution itself is

discontinuous along the SCs.

7.1 H0 Case Study

7.1.1 H0 Case 1

The first H0 case considered at has medium optical thickness (σt = 1.0) and a high scattering

ratio c = 0.9. A coarse NX = NY = 32 is applied to the domain. These problem parameters

are identical to those used in Case 1 of the H1 test configuration.

First the angular effectivities are plotted over the domain for the LeR/TE-AD, RW, and

DAZ estimator/indicators, Figures 7.1-7.3, respectively. Note that unlike H1 problems, which

have reflective and rotational symmetry, H0 problems have reflective symmetry, but not rota-

tional symmetry, due to the different boundary conditions on the North/South faces from the

West/East faces.

The histograms for the same estimators/indicators, Figures 7.4-7.6, show many similarities

to the H1 case; the noteworthy features that exist in the H1 problem also exist in the H0

problem. For example, both RW and LeR/TE-AD estimators have distinct peaks. The LeR/TE-

AD estimator peak is very close to exact agreement, and the RW estimator peak has the same

underestimation bias. The bias is identical to the H1 cases because, while the global error should

converge with mesh refinement at a different rate than the H1 problem, the local convergence

of cells unaffected by SCs will be identical. The LeR/TE-AD estimator is more cautious than

the RW estimator. The local DAZ indicator has similar trends for this case as it did in the
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Figure 7.1 log10 θ
(i,j)
ang. for LeR/TE-AD

Estimator, H0 Case 1, NX = NY = 32
Figure 7.2 log10 θ

(i,j)
ang. for RW Estimator, H0

Case 1, NX = NY = 32

Figure 7.3 log10 θ
(i,j)
ang. for DAZ Indicator,

H0 Case 1, NX = NY = 32

H1 case, as the effectivites are concentrated about the same value peak and bounds, and it is

locally cautious.

The scalar versions of the LeR/TE-AD estimator and RW estimator are presented in Figures

7.7 and 7.8. The histograms for the scalar estimators are shown in Figures 7.9 and 7.10. Once

again, the scalar versions are less accurate than the angular versions but have similar features,

such as distinct peaks.

The same problem configuration is considered with a fine NX = NY = 512 applied, with

angular effectivities plotted over the domain and tallied into histograms, Figures 7.11-7.16.

Once again, both LeR/TE-AD and RW estimators have deviation from the value at which the

distribution of effectivities peak at and around SCs. Regarding the LeR/TE-AD estimator, the

distribution of effectivities is much more spread out. Recall that for H1 Case 1, the minimum

and maximum of non-outlier log10 θ
(i,j)
ang. values were near -0.3 and 0.3, respectively (Figure 6.14),
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Figure 7.4 log10 θ
(i,j)
ang. Histogram for LeR/TE-AD Estimator, H0 Case 1, NX = NY = 32

Figure 7.5 log10 θ
(i,j)
ang. Histogram for RW Estimator, H0 Case 1, NX = NY = 32
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Figure 7.6 log10 θ
(i,j)
ang. Histogram for DAZ Indicator, H0 Case 1, NX = NY = 32

Figure 7.7 log10 θ
(i,j)
sca. for LeR/TE-AD

Estimator, H0 Case 1, NX = NY = 32
Figure 7.8 log10 θ

(i,j)
sca. for RW Estimator, H0

Case 1, NX = NY = 32

whereas the minimum and maximum for H0 Case 1 are near -0.8 and 0.4, respectively. The SCs

are much more influential in the H0 case vis-a-vis the H1 case. This is because the true residual

on cells that neighbor the SCs increases with mesh refinement, and the TE-AD residual approx-

imation is unable to capture this trend. This means that the TE-AD residual approximation

in these cells will get worse as the mesh is refined. While these cells make up a relatively small

fraction of the total cells in the mesh, the inability to capture this extremely large source term

in Eq. 3.4 (relative to the magnitude of the residual elsewhere in the domain) correctly for the

error’s transport-like problem results in a worse error estimate for H0 cases. The discontinuity
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Figure 7.9 log10 θ
(i,j)
sca. Histogram for LeR/TE-AD Estimator, H0 Case 1, NX = NY = 32

Figure 7.10 log10 θ
(i,j)
sca. Histogram for RW Estimator, H0 Case 1, NX = NY = 32
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Figure 7.11 log10 θ
(i,j)
ang. for LeR/TE-AD

Estimator, H0 Case 1, NX = NY = 512
Figure 7.12 log10 θ

(i,j)
ang. for RW Estimator, H0

Case 1, NX = NY = 512

Figure 7.13 log10 θ
(i,j)
ang. for DAZ Indicator,

H0 Case 1, NX = NY = 512

in the solution itself is also significant, as this will further break the Taylor-Expansion approxi-

mations used to approximate derivatives and the residual. Finally, the lower continuity order of

the true solution will cause the DGFEM-0 solution to be poorer, leading to worse a posteriori

approximation of derivatives.

The scalar effectivities for the refined mesh are plotted over the domain and tallied in

histogram form, Figures 7.17-7.20. Once again, both scalar estimates are less accurate than

their angular counterparts, and, like the fine-mesh H1 cases, they have extremely inaccurate

outliers and larger over- and under-estimation tails.

Figures 7.21-7.22, show the global convergence with mesh refinement of the true error and

estimator angular effectivity for this problem configuration, while Figures 7.23-7.24 show the

convergence of the scalar effectivity. One noteworthy feature of the convergence plots is that

the approximated residual actually increases with decreasing mesh size. This is actually in
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Figure 7.14 log10 θ
(i,j)
ang. Histogram for LeR/TE-AD Estimator, H0 Case 1, NX = NY = 512

Figure 7.15 log10 θ
(i,j)
ang. Histogram for RW Estimator, H0 Case 1, NX = NY = 512

agreement with the behavior of the true residual, and it happens in H0 cases because the local

residual in cells that are directly downwind of SCs increase with O(h−1) due to the discontinuity
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Figure 7.16 log10 θ
(i,j)
ang. Histogram for DAZ Indicator, H0 Case 1, NX = NY = 512

Figure 7.17 log10 θ
(i,j)
sca. for LeR/TE-AD

Estimator, H0 Case 1, NX = NY = 512
Figure 7.18 log10 θ

(i,j)
sca. for RW Estimator, H0

Case 1, NX = NY = 512

in the true solution along the SCs. A similar analysis to that done in Section 3.3 for H1 cases

can be done to show that the leading order of convergence of the residual will be O(h−1/2) as

the mesh size is decreased. At fine meshes the global LeR/TE-AD and RW estimators trend

slightly away from the true error, which was not seen in any H1 case. Figure 7.21 shows that

this is because the true error convergence order decreases slightly after it has apparently reached

asymptotic convergence. For this case, the global DAZ estimator bounds the true error, although

the theory does not guarantee this for H0 problems [19].
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Figure 7.19 log10 θ
(i,j)
sca. Histogram for LeR/TE-AD Estimator, H0 Case 1, NX = NY = 512

Figure 7.20 log10 θ
(i,j)
sca. Histogram for RW Estimator, H0 Case 1, NX = NY = 512

96



Figure 7.21 Angular Error/Estimator L2 Norm Convergence for H0 Case 1

Figure 7.22 Angular Effectivity Convergence for H0 Case 1
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Figure 7.23 Scalar Error/Estimator L2 Norm Convergence for H0 Case 1

Figure 7.24 Scalar Effectivity Convergence for H0 Case 1
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7.2 H0 General Behavior

As in the H1 cases, certain global quality indicators are plotted here with varying problem

parameters.

Figure 7.25 Global Angular Effectivity vs. σt,
c = 0.1,

NX = NY = 32, H0

Figure 7.26 Global Angular Effectivity vs. σt,
c = 0.1,

NX = NY = 512, H0

Figure 7.27 Global Angular Effectivity vs. σt,
c = 0.5,

NX = NY = 32, H0

Figure 7.28 Global Angular Effectivity vs. σt,
c = 0.5,

NX = NY = 512, H0

Figures 7.25-7.30 show the global angular effectivity with varying optical thickness for scat-

tering ratios of c = 0.1, c = 0.5, and c = 0.9 and for NX = NY = 32 and NX = NY = 512.

As a global error estimate, the LeR/TE-AD estimator is once again the most accurate. Unlike
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Figure 7.29 Global Angular Effectivity vs. σt,
c = 0.9,

NX = NY = 32, H0

Figure 7.30 Global Angular Effectivity vs. σt,
c = 0.9,

NX = NY = 512, H0

the H1 cases, the RW estimator has varying degrees of underestimation bias depending on the

problem parameters for the H0 problem set. The convergence order of the global L2 error norm

for DGFEM-0 for a problem with a discontinuous solution is p = 0.5, which corresponds to a

predicted underestimation bias of log10 θang. = −0.53. This is observed in problems where the

SCs are more influential, such as low-to-medium optical thickness and low-to-medium scattering

ratio. However, when the SC effects are mitigated (optically thick and large scattering ratio),

the numerical solution evidently behaves like an H1 problem, and the global order of conver-

gence is closer to p = 1, thus the associated underestimation bias log10 θang. = −0.3. However,

in cases where the RW estimator exhibits the predicted H0 bias in the global estimate, the local

estimator does not peak at this value. Instead it peaks close to perfect agreement, as will be

seen when accuracy metrics are plotted later. For these cases the global DAZ indicator bounds

the global error.

Figures 7.31-7.36 show the fraction of local estimates that are cautious. All estimators, with

the exception of DAZ, are relatively insensitive to changes in scattering ratio. All estimators

except DAZ generally become more cautious as the optical thickness is increased and the mesh

is refined. The LeR/TE-AD estimator has about 50% of its estimates cautious on the fine mesh,

which is expected, since the estimator is centered about exact estimation. Like in the H1 cases,

the RW estimator is not locally cautious because of the intrinsic bias.

Figures 7.37-7.42 show the fraction of local effectivities that are within some specified bound.

The accuracy results for the H0 cases are noticeably different for low-to-medium optical thick-

nesses than in the H1 cases, Figures 6.76-6.81. The RW estimator performs superior to the

LeR/TE-AD estimator for most of the metrics at low-to-medium scattering ratios and low-to-

medium optical thicknesses. The reason for this is two-fold. First, the RW estimator’s accuracy

in H0 problems with prominent SC effects is more superior than when the SCs are promi-

nent (though precision and global accuracy are inferior). Second, in problems that have low
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Figure 7.31 Fraction of cells with θ
(i,j)
ang. − 1 ≥ 0

vs. σt, c = 0.1,
NX = NY = 32, H0

Figure 7.32 Fraction of cells with θ
(i,j)
ang. − 1 ≥ 0

vs. σt, c = 0.1,
NX = NY = 512, H0

Figure 7.33 Fraction of cells with θ
(i,j)
ang. − 1 ≥ 0

vs. σt, c = 0.5,
NX = NY = 32, H0

Figure 7.34 Fraction of cells with θ
(i,j)
ang. − 1 ≥ 0

vs. σt, c = 0.5,
NX = NY = 512, H0

scattering ratios and optical thicknesses, the magnitude on the discontinuity in the true solu-

tion will be larger and associated SC effects worse, thus resulting in a poorer TE-AD residual

approximation and associated LeR/TE-AD estimate.

Figures 7.43-7.48 show the standard deviation as an indication of each estimator/indicator’s

quality as a shape estimate. Once again there is a stark contrast between the H0 plots and H1

plots, Figures 6.82-6.87, namely the DAZ indicator is a better shape estimate for low-to-medium

optical thicknesses than the RW and LeR/TE-AD estimators. In comparison to the H1 plots, it

appears that for low-to-medium optical thicknesses the RW and LeR/TE-AD estimators have

much larger standard deviations, while the DAZ indicator is relatively unaffected by the change

in the true solution’s continuity order. At a higher scattering ratio the LeR/TE-AD and RW

estimators have comparable standard deviations at most optical thicknesses.
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Figure 7.35 Fraction of cells with θ
(i,j)
ang. − 1 ≥ 0

vs. σt, c = 0.9,
NX = NY = 32, H0

Figure 7.36 Fraction of cells with θ
(i,j)
ang. − 1 ≥ 0

vs. σt, c = 0.9,
NX = NY = 512, H0

Figure 7.37 Fraction of cells with |θ(i,j)ang. − 1| ≤ specified bounds vs. σt,
c = 0.1, NX = NY = 32, H0

Figures 7.49-7.54 show the post-solution computation time. The relative computation times

are mostly invariant with change in the continuity order. Ultimately, like the H1 cases, the

estimates that require additional transport solves will have computation times that mimic the

computation time for the numerical solution. Therefore, one would expect the continuity order

to affect the estimator computation time only insofar as it affects the computation time of the

discrete variable transport solution.

7.3 H0 Conclusions

Overall, the results for the H0 cases are not entirely different than the H1 cases. Like the H1

cases the global LeR/TE-AD estimator is the most accurate of all the estimators, although it

is not cautious. The RW global estimator is not cautious either, although it is not as likely
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Figure 7.38 Fraction of cells with |θ(i,j)ang. − 1| ≤ specified bounds vs. σt,
c = 0.1, NX = NY = 512, H0

Figure 7.39 Fraction of cells with |θ(i,j)ang. − 1| ≤ specified bounds vs. σt,
c = 0.5, NX = NY = 32, H0

to exhibit the predicted bias in cases where the solution discontinuity effects are prevalent

throughout the domain. The global DAZ indicator is cautious for allH0 cases observed, although

this is not a mathematical certainty. However, this shows that the DAZ indicator is still useful

for H0 cases, especially since it is the most computationally affordable indicator/estimator

presented in this work. The local DAZ indicator continues to overestimate the true error for

most cases as well. The LeR/TE-AD estimator is consistently more locally cautious than the

RW estimator, regardless of optical thickness or scattering ratio. Unlike the H1 cases, where

the LeR/TE-AD estimator had a substantial advantage in terms of accuracy, the accuracy of

the LeR/TE-AD estimator vis-a-vis the RW estimator is highly dependent on the scattering

ratio due to the angular flux discontinuities inherent to H0 problems, although at larger optical

thicknesses the LeR/TE-AD estimator is superior. Because the true and TE-AD approximated

residuals increase locally near the SCs and globally as a norm with decreasing mesh size for H0
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Figure 7.40 Fraction of cells with |θ(i,j)ang. − 1| ≤ specified bounds vs. σt,
c = 0.5, NX = NY = 512, H0

Figure 7.41 Fraction of cells with |θ(i,j)ang. − 1| ≤ specified bounds vs. σt,
c = 0.9, NX = NY = 32, H0

cases, it would not be recommended to rely on the residual approximation as an error estimate

when the problem is H0, although it does have some desirable features. Namely, the TE-AD

residual approximation globally bounds the true error in all cases; however, it is not locally

cautious in all cells.
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Figure 7.42 Fraction of cells with |θ(i,j)ang. − 1| ≤ specified bounds vs. σt,
c = 0.9, NX = NY = 512, H0

Figure 7.43 Standard deviation of log10 θ
(i,j)
ang. vs.

σt, c = 0.1,
NX = NY = 32, H0

Figure 7.44 Standard deviation of log10 θ
(i,j)
ang. vs.

σt, c = 0.1,
NX = NY = 512, H0

Figure 7.45 Standard deviation of log10 θ
(i,j)
ang. vs.

σt, c = 0.5,
NX = NY = 32, H0

Figure 7.46 Standard deviation of log10 θ
(i,j)
ang. vs.

σt, c = 0.5,
NX = NY = 512, H0
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Figure 7.47 Standard deviation of log10 θ
(i,j)
ang. vs.

σt, c = 0.9,
NX = NY = 32, H0

Figure 7.48 Standard deviation of log10 θ
(i,j)
ang. vs.

σt, c = 0.9,
NX = NY = 512, H0

Figure 7.49 Computation time vs. σt, c = 0.1,
NX = NY = 32, H0

Figure 7.50 Computation time vs. σt, c = 0.1,
NX = NY = 512, H0

Figure 7.51 Computation time vs. σt, c = 0.5,
NX = NY = 32, H0

Figure 7.52 Computation time vs. σt, c = 0.5,
NX = NY = 512, H0
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Figure 7.53 Computation time vs. σt, c = 0.9,
NX = NY = 32, H0

Figure 7.54 Computation time vs. σt, c = 0.9,
NX = NY = 512, H0
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Chapter 8

Conclusions

The residual source estimator has been derived for local and global spatial error estimation of

the DGFEM-0 solution of SN transport equation. By using MMS, this work has empirically

proven the feasibility of using a residual approximation as an input to the residual source

estimator by using the true residual as a fixed source in a transport-like problem to calculate the

true error. A residual approximation method using Taylor Expansions to approximate the true

solution has been demonstrated for DGFEM-0, as has the accompanying point-wise derivative

approximation. By evaluating the LeR/TE-AD estimator, as well as the RW estimator and DAZ

indicator/estimator, against true errors computed via MMS, several features of the LeR/TE-

AD estimator, including advantages and disadvantages over the other estimation methods, were

identified.

When implementing an error estimator, it was shown that comparing differences in the

angular fluxes by implementing an “angular” norm gave the most accurate agreement with the

true error. Nevertheless, the “scalar” norm is a useful quantity, and many of the trends in the

angular estimators are mirrored in the behavior of the scalar estimators. For both LeR/TE-AD

and RW estimators, using the scalar error estimator norm results in long “tails” of many orders

of magnitude of deviation from the true scalar error norm as the mesh is refined. A major

advantage the scalar form of the RW estimator has over the LeR/TE-AD estimator is that it

does not require code modification or storing angular quantities in between source iterations,

whereas the LeR/TE-AD estimator requires code modification to output angular quantities and

storage of an angle-dependent TE-AD residual approximation regardless of whether the angular

or scalar error norm is used. The DAZ estimator/indicator has no scalar norm variant as of yet,

though even the angular norm version does not require storage of angular values, as these can

be added to the local norm on-the-fly during the additional higher-order sweep; although, this

would require code modifications.

The LeR/TE-AD estimator is a robust estimator. In H1 problems, the LeR/TE-AD es-

timator is consistently the most accurate estimator regardless of scattering ratio and optical

thickness, with very few exceptions. It gives good agreement with the true error away from

SCs and interference-like regions that appear near the center of the domain. Unlike the RW
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estimator, which has an inherent bias to underestimate, the LeR/TE-AD effectivity values are

generally near the ideal value of θ
(i,j)
ang./sca. = 1. It is also more locally cautious (i.e., overes-

timates) than the RW estimator. The local DAZ indicator is far more locally cautious than

the LeR/TE-AD estimator, however, especially at low-to-medium optical thicknesses. Globally,

the LeR/TE-AD estimator performed well for H1 cases. For both angular and scalar versions

it maintains similar convergence order with the true error, even at very fine meshes, and it

is also consistently the most accurate global estimator. However, unlike the global DAZ esti-

mator, the LeR/TE-AD estimator is not cautious. The TE-AD residual approximation itself

globally bounds the true error in the angular sense and in the scalar sense for every case except

NX = NY = 2. This suggests some usefulness as an error bound, since any code that uses the

LeR/TE-AD estimator will necessitate computation of the TE-AD residual approximation. One

disadvantage to using this quantity, though, is that an accurate TE-AD residual approximation

will converge with a different order than the true error.

The LeR/TE-AD estimator has some failings, though. For example, in the H0 cases it was

shown that the local angular LeR/TE-AD estimator struggles vis-a-vis the RW estimator when

the discontinuities in the angular flux are prominent, low-to-medium optical thickness and low-

to-medium scattering ratio. The cause is two-fold due to an advantage in the RW estimator

and a disadvantage in the LeR/TE-AD estimator. The RW estimator is advantaged because

it does not exhibit the same bias as in H1, and the LeR/TE-AD is disadvantaged because

the derivatives in the TE-AD residual expression are not well approximated due to numerical

spreading of error in the solution. The true residuals in cells that border SC-intersected cells

are also large due to solution discontinuity, which the TE-AD residual approximations cannot

accurately capture. However, one potential advantage to the LeR/TE-AD estimator is that

the residual expressions could be modified on cells intersected by or bordering cells intersected

by SCs, the locations of which are known a priori, with no additional computational burden

for the transport-like problem and a minor, relative to the cost of the transport-like problem,

computational burden for the residual computation. SC tracking algorithms ([19]) combined

with modified SC residual approximations could provide more accurate residual approximations

and be applied to an H0 problem with minimal additional cost. The LeR/TE-AD estimator

still maintains some advantages in the H0 cases, though. It is more locally cautious than the

RW estimator, although still not as cautious as the global DAZ indicator. As a global estimator

it remains the most accurate estimator, but it is not cautious. The global DAZ indicator is

cautious, but this is not a mathematical certainty (hence calling it an “indicator”).

As a shape estimate, the LeR/TE-AD estimator was excellent for H1 cases, although it was

not as robust as the RW estimator. In H0 cases, however, it was poorer than the RW estimator

and DAZ indicator. Based on the accuracy metrics, though, one can see that a significant

fraction of cells have effectivities within a 50% band of relative agreement with the true error,

so the LeR/TE-AD estimator is not necessarily a bad shape function in H0.

In terms of computational cost, in practice the LeR/TE-AD estimator is regularly 2-3 times
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cheaper than the RW estimator. The LeR/TE-AD estimator requires some post-processing

of the DGFEM-Λ solution to compute the residual and a full transport-like problem with

NX × NY × (Λ + 1)2 × N unknowns, where N is the total number of discrete ordinates over

all quadrants/octants. The RW estimator requires less post-processing, but the full transport

problem required has 4×NX×NY ×(Λ+1)2×N unknowns. While the unrefined solution can be

prolonged onto the uniformly refined mesh to precondition the refined solution, thus reducing

the computational burden of the additional transport solve, the data structure and compu-

tational time required by the RW estimator, particularly in an angular sense, is undoubtedly

largest among all compared estimators. Future work should examine the effect on estimator

accuracy of reducing the convergence criterion on the additional transport problems for the

LeR/TE-AD and RW estimators. The DAZ estimator/indicator is cheap, as it only requires a

single high-order sweep and some post-processing, and its cost is related solely to the number

of unknowns and is invariant to factors like scattering ratio and optical thickness that would

otherwise affect an estimator execution time in proportion to the number of iterations required

to achieve convergence. The TE-AD residual approximation is the cheapest, but its usage as an

error estimate is suspect due to its different order of convergence (including failure to converge

for H0 cases) with respect to mesh refinement locally and globally.

In addition to the special residual treatment on the SCs and a relaxation of convergence

criterion on additional transport solves, several avenues of further research exist. Residual ap-

proximation methods other than the TE-AD method could be highly useful, though such meth-

ods are unknown to us at this time. Also, extending the LeR/TE-AD estimator to higher order

DGFEM-Λ would be vital for continued investigation of the estimator, as DGFEM-0 would not

be considered sufficient for most real-life problems. It is noted that the HOPS calculated in the

DAZ indicator/estimator could be implemented in a direct error estimate. The HOPS generated

by the additional sweep and used to approximate the residual and jump discontinuities could

rather be used as a reference solution in a p-refinement-like scheme [30]. Preliminary results

have shown this to be rather accurate, and if this trend is maintained, this estimator would have

the advantage of being extremely cheap and providing the potential to be used in complement

with the DAZ indicator/estimator at virtually no additional cost.
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