
Abstract

PORTER, NATHAN WAYNE. Development of a Novel Residual Formulation of CTF and
Application of Parameter Estimation Techniques. (Under the direction of Maria Avramova).

In modern science, computational modeling and simulation are often used in place of physical

experiments. This is especially true in the nuclear power industry, where experiments are

prohibitively expensive—or impossible—due to their extreme scales, high temperatures, high

pressures, and radiation. Though the advent of the contemporary computer has enabled the

design, testing, and construction of hundreds of nuclear reactors throughout the world, most

simulation codes currently used in the industry were developed in the 1980’s.

One such code, COolant Boiling in Rod Arrays–Three Field (COBRA-TF), was developed

in the 1980’s to model the thermal hydraulic response of water in nuclear reactor cores. The

code used in this work, CTF, is a version of COBRA-TF which is currently developed at North

Carolina State University. CTF and other “legacy codes” were designed to utilize very limited

computational resources, and therefore required many simplifications. Today’s computers have

vastly improved memory and speed, and as such, these simplifications are no longer necessary.

Though various versions of COBRA-TF have been used extensively throughout academia and

industry, its original simplifications are still present in CTF.

A novel residual-based version of CTF, which enables the removal of these simplifications,

is developed in this work. The code, called CTF-Residual (CTF-R), allows flexibility in the

implicitness, discretization, solution algorithm, physical modeling choices, and numerical solver

used to solve the fluid conservation equations. This is an improvement over the current version

of CTF, which allows very little flexibility in any of these areas. In addition, CTF-R is designed

with modern coding practices—software quality assurance, verification, and validation—in mind.

Currently, CTF-R is capable of modeling single phase flow with wall friction, heat transfer,

lateral transfer, and nuclear fuel rods. Verification tests are used to prove that the first order

numerical scheme is implemented correctly. Each model in the code is provided with a series of

defect tests to ensure that it is accurate and error-free. Some models also include validation tests

which compare predicted results to experimental data. Finally, regression tests are incorporated

into the code repository to ensure that future changes do not break current capabilities. CTF-R

includes four empirical models: wall friction, heat transfer from the nuclear fuel rods to the fluid,

thermal conductivity of uranium dioxide, and thermal conductivity of zirconium. A particular

correlation is chosen for each of these models, and its origin, assumptions, and an extensive set of

experimental data are discussed. Each of the four correlations is calibrated to the experimental

data and the resulting parameter uncertainties are included with the code distribution.

CTF-R is modern code that, with further development, will have diverse future applications.



The flexibility in the residual equations will allow a more implicit solution algorithm, which

enables the use of larger time steps for a particular problem. CTF-R could be used to find a

solution to the steady state conservation equations. Not only will CTF-R be capable of modeling

light water reactors like CTF, but its governing equations, empirical models, and geometry

could be adjusted to model next generation reactors. Given these important applications, the

CTF-R framework established in this work will be an important contribution to CTF modeling.
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CHAPTER

1

INTRODUCTION

The primary responsibility of all Nuclear Power Plant (NPP) engineers, operators, and regulators

is to ensure that the public is safe during both normal operating conditions and postulated

accidents. In order to do this, these entities must understand the physical phenomena which

govern the response of a reactor. The most obvious way to understand reactor responses is

through direct experimentation, but in the nuclear industry, this can be inherently dangerous

and prohibitively expensive due to the presence of high temperatures, high pressures, and

radiation. Therefore, computational tools are often used to supplement experimental data.

In order to be an acceptable supplement, computational models must be accurate representa-

tions of reality. “Legacy codes,” which were written in the 1970’s and 1980’s, were significantly

impacted by the computational limitations at the time. For example, the amount of memory

available was very small, therefore large matrices couldn’t be stored. This restricted most codes

to explicit numerical methods, since Jacobian matrices couldn’t be stored in memory. As another

example, early computers were very slow, which often limited the complexity or number of

models that could be included in the code. Due to these types of limitations, a large number of

simplifications were applied to legacy codes that were not always applicable and could introduce

a significant amount of uncertainty.

Under these constraints, it was necessary to design legacy codes to be conservative. Codes

were intended to overestimate the responses relevant to the safety of the reactor; if a sufficiently

reliable computational tool predicted safe operation, then the reactor could be deemed safe.
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This allowed the general trend of reactor behavior to be estimated with the belief that the real

reactor would be safer than the simulation. Conservative methods have been used in the nuclear

industry for decades, but as computers and knowledge have improved, it has become possible to

estimate reactor behavior more accurately.

In 1988, the U.S. Nuclear Regulatory Commission (NRC) changed 10 CFR §50.46, which

governs the licensing of new reactors, to allow licensing decisions based on Best Estimate Plus

Uncertainty (BEPU) analyses [3]. Instead of calculating conservative estimates, BEPU methods

attempt to accurately predict the actual response of a system with its associated uncertainties.

This eliminates much of the safety margin fundamental to traditional conservative analyses,

enabling efficient operation of NPPs.

In order to apply a BEPU method, it is necessary to understand, document, and quantify all

sources of uncertainty in a code. The total uncertainty can be comprised of many different parts,

including coding mistakes, input or output errors, numerical discretization errors, numerical

convergence errors, statistical errors, model form errors, and parameter uncertainties.

Legacy codes were never intended to utilize BEPU methods, and using them presents a

variety of unique challenges. The codes often lack proper documentation and it is therefore

difficult to decipher the underlying physics or numerical methods. Individual empirical relations

are often chosen to be conservative, and therefore must be changed for the application of BEPU

methods. Moreover, the individual empirical correlations often were not designed to have

inherent uncertainty information.

The motivation of this work is to transition a legacy thermal hydraulic subchannel code,

Coolant Boiling in Rod Arrays–Three Field (COBRA-TF), towards more modern BEPU methods.

This goal will be achieved via two separate, albeit related, tasks. The first will be to develop a

novel residual formulation of the code that will provide more flexibility and be easier to use.

Through the development of a new code, the numerical assumptions and inherent conservativism

of the legacy version can be avoided. The second task will be to apply modern parameter

estimation techniques to achieve BEPU results that are based solely on experimental data. This

will supplement the existing coded models with uncertainty information which can be applied in

future BEPU analyses.

The following two chapters outline background information and methods used throughout

the work. Chapter 4 details the development and implementation of the novel version of The

RDFMG version of COBRA-TF (CTF), including all defect tests, verification analyses, and

validation. Chapter 5 details the parameter estimation process for the empirical models in CTF-

Residual (CTF-R). These parameter distributions will be included with the code distribution for

use in future uncertainty quantification studies. The final chapter provides concluding remarks

and an outline of future work.
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CHAPTER

2

THERMAL HYDRAULIC MODELING

Thermal Hydraulic (TH) codes are generally divided into three categories: subchannel analysis,

system analysis, and Computational Fluid Dynamics (CFD). There is significant overlap in the

methods and theory of these categories, but they are intended for specific purposes.

System analysis software is usually used to analyze an entire plant, including pumps, heat

exchangers, valves, etc. Four widely used examples of system codes are Reactor Excursion

and Leak Analysis Program (RELAP5-3D©) [5], Methods for Estimation of Leakages and

Consequences of Releases (MELCOR) [47], The Code for Analysis of Thermal Hydraulics during

an Accident of Reactor and safety Evaluation (CATHARE) [40], and The TRAC/RELAP

Advanced Computational Engine (TRACE) [4]. The core models are generally very simple and

are used to determine the heat source for the balance of plant. As such, it is often necessary to

provide a more detailed analysis of the in-core behavior.

To address this need for higher-fidelity in-core analysis, subchannel codes can be used. These

codes use arguments about the geometry and flow in a reactor core to define reactor-specific

correlations, and therefore give more accurate results when used for these conditions. Subchannel

models can be coupled to—or take boundary conditions from—system analysis codes to give

more detailed descriptions of in-core behavior during complicated accident scenarios. For a

general overview of subchannel codes, see [110]. A few notable examples are COBRA-TF [13],

Versatile Internals and Component Program for Reactors (VIPRE) [29], THERMIT-2 [81], and

SUBCHANFLOW [73].
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CFD codes are designed to analyze meshes that are significantly finer than those in system

or subchannel codes. CFD codes use turbulence models to replace much of the empirical

correlations in other TH codes, and therefore present a higher-fidelity representation of reality.

CFD codes can generally only accurately predict the behavior for single-phase flows, though

current research focuses on two-phase CFD modeling. Typical CFD codes used in the nuclear

industry are Simulating Transport in Arbitrary Regions - Computational Continuum Mechanics

(STAR-CCM) [21] and ANSYS Fluent [9]. These codes are generally used to study very specific

and small problems, or when computational cost is not an issue.

This work will focus on COBRA-TF, which was initially developed in the early 1980’s at Pa-

cific Northwest National Laboratory (PNNL) to model Loss of Coolant Accidents (LOCAs) [161].

Over time, the code was transferred to many different institutions and a variety of code versions

exist throughout academia and industry today. One version, re-branded as CTF, is currently

developed and maintained by the Reactor Dynamics and Fuel Modeling Group (RDFMG) at

North Carolina State University (NCSU) [13]. CTF was incorporated into The Consortium

for Advanced Simulation of LWRs (CASL), which lead to rapid improvements in the code’s

capabilities, parallelization, performance, validation, and quality assurance.

First, the CTF conservation equations are introduced in Section 2.1. Then in Section 2.2,

the solid energy conservation equation, which is used as a simplified fuel model, will be reviewed.

Section 2.3 introduces the meshing and discretization methods. Numerical approximations and

solution methods are discussed in Section 2.4.

2.1 Fluid Conservation Equations

In order to solve reactor core behavior during normal operation and safety situations, it is

necessary for TH codes to solve the conservation equations for fluids in the reactor. The codes

generally solve the equations using a multicomponent fluid approach. Each fluid is assigned its

own set of conservation equations, and transfer between the fluids is approximated using mostly

empirical models. For the simulation of Light Water Reactors (LWRs), the fluids modeled in

the reactor can include liquid water, steam, water droplets, and non-condensible gases.

If conservation equations for all four fluids are modeled completely, there would be a set of

twenty equations to solve simultaneously: one mass, three momentum, and one energy equation

for each fluid. Since this is generally not realistic, a number of approximations are used to refine

the selected equations to a smaller set that still represent reality. The following list explains the

particular assumptions used in CTF.

• The first assumption—which is generally a defining feature of subchannel codes—is that

the primary direction of flow is upward. Flow in this direction, counter to that of gravity,
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overwhelms flows in the other directions. As such, subchannel codes generally solve two

momentum equations: one for “axial flow” and one for “lateral flow.” Because of this

assumption, they cannot accurately model reactor designs with horizontal flow, such

as Canada Deuterium Uranium (CANDU) reactors. CTF is generally run with this

assumption, though a full three-dimensional implementation is also available.

• The non-condensible gas and steam are in thermal and mechanical equilibrium, and

therefore share a common energy and momentum equation.

• The liquid and droplet phases are in thermal equilibrium, and therefore share an energy

equation. This assumption is justified by observing that the droplets are constantly

entraining from and depositing to the continuous liquid field, and therefore have little

time to change temperature.

With these assumptions, the full set of conservation equations is narrowed to twelve: four

mass, three axial momentum, three lateral momentum, and two energy. Further assumptions

are applied to the conservation equations to introduce empirical relations and to neglect terms

that will be small for LWR applications.

• All phases are characterized by a single pressure.

• The vapor and non-condensible components of the gas field obey Dalton’s Law, and

therefore occupy the same volume.

• The viscous terms in the momentum and energy equation are neglected since inertial forces

are much larger for the problems of interest.

• Empirical correlations are incorporated to account for interfacial transfer, turbulence

(frictional forces and heat transfer from the wall), pressure loss coefficients, and other

phenomena.

• Axial pressure drops are relatively small, and therefore the pressure gradient term in the

conservation of energy equation is neglected (see Section A.1).

• The droplet field does not contact the wall, and therefore there are no frictional forces on

that phase.

• The only body force is that of gravity.

• Axial flow effects are much larger than conduction in the fluid, and it is therefore neglected.

• Energy deposited directly in the fluid is assumed to be a percentage of the total energy

generated in the reactor. Most of this energy deposition is from interactions of gamma

rays with the fluid in the reactor, so it is called gamma heating.

These assumptions are applied to all of the following equations, and their use will be noted

after each set of equations is introduced. The notation in this section is adapted from the thesis

of Dr. Lloyd [91], since it is more understandable and straightforward than in the CTF Theory
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Manual [13]. The liquid, vapor, entrained droplet, and non-condensible gas mass conservation

equations are given in Equations 2.1-2.4, respectively.

∂αlρl
∂t

+∇ · (αlρl~ul) = −(1− η)Γ̇′′′ − Υ̇′′′ + ṡ′′′m,l (2.1)

∂αgρv
∂t

+∇ · (αgρv~ug) = Γ̇′′′ + ṡ′′′m,v (2.2)

∂αeρl
∂t

+∇ · (αeρl~ue) = −ηΓ̇′′′ + Υ̇′′′ + ṡm,e (2.3)

∂αgρn
∂t

+∇ · (αgρn~ug) = ṡ′′′m,n (2.4)

The liquid, vapor, entrained droplet, and non-condensible gas are indicated respectively by

the subscripts l, v, e, and n. The combined vapor and non-condensible field is indicated by

the subscript g. The first two terms in each mass conservation equation are the temporal and

advective term in the Lagrangian derivative of mass for the given field. The mass inter-phase

transfer, Γ̇′′′, is due to the phase change of water between liquid and vapor. It is defined positive

for evaporation. The evaporation of vapor is apportioned to the droplet and liquid phases

according to the factor, η, which is between zero and one (η ≤ 1). The inter-field transfer, Υ̇′′′,

is between the continuous liquid and entrained droplet fields, which accounts for entrainment

and de-entrainment of liquid drops. It is defined positive for droplet entrainment. The external

source, ṡm,k, includes turbulent mixing, void drift, and lateral transfer.

Thermodynamic equilibrium between the continuous liquid and entrained droplet phases

allows them to be described by a single density, ρl. The non-condensible gas and vapor fields

share a single velocity, ug, since the two phases are in mechanical equilibrium. The two gas

components also occupy the same volume according to Dalton’s law, and therefore share a single

volume fraction, αg.

The liquid and gas fields are each described by a conservation of energy equation.

∂ (αl + αe) ρlhl
∂t

+∇ · (αlρlhl~ul) +∇ · (αeρlhl~ue)

= −Γ̇′′′h′l + q′′′i,l − q′′′n,l + q′′′w,l + (αl + αe)
∂P

∂t
+ ṡ′′′h,l (2.5)

∂αgρghg
∂t

+∇ · (αgρghg~ug)

= Γ̇′′′h′v + q′′′i,v + q′′′n,l + q′′′w,g + αg
∂P

∂t
+ ṡ′′′h,g (2.6)

Note that the energy conservation equation is formulated using specific enthalpy, h, rather

than energy. The derivation of the enthalpy conservation equation is in Section A.1. The void

fractions are related via αl + αe + αg = 1 and αg = αv + αn. The terms on the left side are the

change rate and the advection of energy, respectively.
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The first term on the right side is transfer due to phase change, where h′k is the enthalpy of

the fluid from which the transfer originates. The interfacial transfer rate between the k phase

and the saturated interface is q′′′i,k, q
′′′
w,k is the energy transfer rate between solid structures and

the k phase, q′′′n,l is the transfer rate of energy between the liquid and non-condensible gas. The

pressure work done by the k phase is the term with the pressure derivative. Finally, the external

energy source rate for each equation, ṡ′′′h,k, accounts for changes in energy due to turbulent

mixing, void drift, lateral transfer, and gamma heating.

There is no viscous dissipation or internal generation in the energy equations, since these

terms have been neglected. Because the liquid and droplet fields are in thermal equilibrium,

they share an energy equation. The non-condensible gas and vapor share an energy equation,

and have a common void fraction and velocity. A single pressure, P , is used to define the entire

system. For a derivation of the enthalpy equation from the total energy conservation equation,

see Section A.1).

There are also momentum equations for the continuous liquid, gas phase, and droplet field.

∂αlρlul
∂t

+∇ · (αlρlul~ul)

= −αl∇P + αlρlg − τ ′′′w,l + τ ′′′i,gl − (1− η)Γ̇′′′u′ − Υ̇′′′u′ + ṡ′′′v,l (2.7)

∂αgρgug
∂t

+∇ · (αgρgug~ug)

= −αg∇P + αgρgg − τ ′′′w,g − τ ′′′i,gl − τ ′′′i,ge + Γ̇′′′u′ + ṡ′′′v,g (2.8)

∂αeρlue
∂t

+∇ · (αeρlue~ue)

= −αe∇P + αeρlg + τ ′′′i,ge − ηΓ̇′′′u′ + Υ̇′′′u′ + ṡ′′′v,e (2.9)

The left side of these equations is the material derivative of the momentum, and the right

side is a variety of surface, boundary, and body forces that act upon them.

The first term on the right side is the pressure force. The only body force acting on each

fluid is that of gravity. The τ ′′′w,k terms are shear forces between the k phase and any solid

structures. The droplet field is assumed not to contact the wall, so τ ′′′w,e = 0. The interfacial

shear force of phase k2 on phase k1 is τ ′′′w,k1k2 . The equations are formulated for the usual case

where vapor is moving faster than liquid, so the interfacial force is a sink in the vapor equation

and a source in the others. If this is not the case, the signs are reversed. Also note that there

are no interfacial forces between the droplet and liquid field, since they are the same phase. A

droplet which contacts the continuous liquid will de-entrain rather than cause interfacial friction.

The phase change term between the vapor and liquid, similar to the other equations, is Γ̇′′′.

The velocity of the phase from which the transfer originates is u′. The entrainment models

are represented by the inter-field transfer term, which is Υ̇′′′. The final terms are the external
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sources of momentum, which for the momentum equation represent turbulent mixing, void drift,

and lateral transfer. Axial turbulent stresses are not modeled in CTF, so there is not a term

which accounts for this physics.

Finally, there are three lateral momentum equations which account for transfer in the x-y

plane. The lateral velocity appears in the other conservation equations in the divergence of the

advection the turbulent mixing terms.

∂αlρlwl
∂t

+∇ · (αlρlwl~ul)

= −αl
∂P

∂z
− τ ′′′wx,l + τ ′′′ix,gl − (1− η)Γ̇′′′w′ − Υ̇′′′w′ (2.10)

∂αgρgwg
∂t

+∇ · (αgρgwg~ug)

= −αg
∂P

∂z
− τ ′′′wx,g − τ ′′′ix,gl − τ ′′′ix,ge + Γ̇′′′w′ (2.11)

∂αeρlwg
∂t

+∇ · (αeρlwe~ue)

= −αe
∂P

∂z
+ τ ′′′ix,ge − ηΓ̇′′′w′ + Υ̇′′′w′ (2.12)

All values in the lateral momentum equation have corresponding terms in the axial momentum

equations. The lateral direction is defined here as z and w is the lateral velocity component.

Once momentum is transferred laterally, it loses its direction. As such, transverse momentum

cannot be convected from one gap to another. Such a simplification is only applicable for

situations where axial flow is much larger than lateral flow.

2.2 Solid Energy Conservation Equation

CTF has a simple fuel rod model which solves the solid energy equation (or “conduction

equation”) for solid components with various geometries. The mass and momentum equations

are excluded because thermal expansion is not considered and the solids are stationary. The

energy conservation equation can be solved using a finite element or finite volume approach. It

has been shown that the finite volume approach is more accurate for models with discontinuous

properties [16]. Since nuclear fuel rods have very discontinuous properties due to the cladding

and gap regions, a variation of the finite volume approach is used [166]. The control volume

form of the conduction equation is shown in Equation 2.13.

d

dt

∫
V
ρcpTdV =

∮
A

~q′′ · ~dA+

∫
V
q′′′dV +

∮
A

~q′′f
~dA (2.13)

The first term is a change in the solid energy with time, the second is a surface integral that
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accounts for energy conduction in all directions, and the third term is the volumetric generation

rate in the solid. The final term accounts for transfer from the solid to the liquid, which will be

zero for any control volume that is not at the surface of a solid structure. The area integrals

are solved in CTF via a sum over surfaces of each cell, and the volumetric integral of the heat

generation is simple since the generation is assumed to be constant for each control volume.

To avoid issues with mass conservation, the expansion or contraction of the fuel is not

considered. As such, the density is always evaluated at cold state properties, ρc. The left side of

Equation 2.13 can be simplified since the density does not vary with time and the specific heat

is approximated as a linear function.∫
V
ρccp

dT

dt
dV =

∮
A

~q′′ · ~dA+

∫
V
q′′′dV (2.14)

2.3 Meshing and Discretization

A staggered mesh, where velocities are defined at cell faces, is used in CTF. Staggered meshes

where first applied to Eulerian codes in the 1960’s [60], and since then have been widely

applied in TH codes [42, 60, 127]. CTF uses staggered grids for both the axial and lateral

momentum equations (see page 33 for schematic). Each of the axial scalar cells has a cross

section which is defined by its flow area and wetted perimeter. These cells are traditionally

either channel-centered or rod-centered, both of which are shown in Figure 2.1.

(a) Subchannel-centered (b) Rod-centered

Figure 2.1: Cross sections of traditional control volumes in CTF. Here, the red circles indicate
rods and the blue sections are coolant. Subchannel codes generally use control volumes that are
defined as the space between four adjacent rods (subchannel-centered), or the space around a
rod (rod-centered).

The fuel rods in CTF are discretized such that control volume centers are located at the

outside of the cladding, inside of the cladding, and surface of the fuel. Interpolation is therefore

not necessary to calculate the temperature at these locations. The control volumes in the fuel
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Fuel

Gap

Cladding

Water

Cell Center

Cell Edge

Figure 2.2: Example of CTF solid mesh. CTF uses an equally-spaced mesh inside the fuel with
cell centers at the outside of the cladding, inside of the cladding, and surface of the fuel.

i− 1
i− 1/2 i i + 1/2 i + 1

Ri−3/4 Ri−1/4 Ri+1/4 Ri+3/4

∆ri−1/2 ∆ri+1/2

Ti−1

ki−1

Ti

ki

Ti+1

ki+1

Figure 2.3: Thermal resistance analogy. The nomenclature for the four thermal resistances
about cell i is established here.

region are equally spaced. It is necessary to interpolate the centerline temperature, since there

is not a face at this location. Figure 2.2 is a schematic of the radial fuel meshing.

In CTF, the conduction equation is solved using a thermal resistance analogy. The resistances

provide a justifiable method for averaging the thermal conductivity to face values. For example,

with a Cartesian mesh, the resistance analogy is equivalent to using a harmonic average of the

surrounding control volumes to calculate face thermal conductivities [127]. This method also

allows simple treatment of the boundary conditions, gap region, and transfer to the coolant.

A schematic of the thermal resistances about an arbitrary cell i is shown in Figure 2.3 for

cylindrical coordinates. For control volume i, the surface heat fluxes in 2.14 can be calculated.

q′′i−1/2 =
1

Ri−3/4 +Ri−1/4
(Ti−1 − Ti) (2.15)
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Table 2.1: Thermal resistance equations. All thermal resistances are derived by solving the
steady state conduction solution for a particular geometry. This results in relatively simple
relations that are easy to implement in a code.

Region Resistance

Fuel centerline 0

Fuel interior node
ln

(
ro
ri

)
2πkfL

Gap
1

2πrghg

Cladding
ln

(
ro
ri

)
2πkcL

Rod surface
1

2πrohg

Axial and azimuthal transfer
L

kA

q′′i+1/2 =
1

Ri+3/4 +Ri+1/4
(Ti+1 − Ti) (2.16)

Here, the resistances and temperatures refer to those in Figure 2.3. The resistances of the

corresponding regions are calculated according to a steady state conduction solution for the

given fuel cell. Boundary conditions and gap transfer are included as resistances. The equations

to calculate each of the thermal resistances are listed in Table 2.1 [161, 162, 166]. The thermal

resistances are updated explicitly.

Axial and azimuthal transfer are added as explicit terms in CTF. The axial mesh in the

solid region is the same as the fluid region, so each surface solid cell transfers its energy directly

to a single fluid cell.

2.4 Numerical Methods

The conservation equations for mass, momentum, and energy can be arranged and solved in a

variety of ways. In the most general sense, the discretized form of the equations are arranged in

a matrix and solved for the unknown vector of variable updates, δx.

Jδx = −F (x) (2.17)
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Here, J is the Jacobian matrix and f(x) is the residual vector. Each row in the Jacobian is

related to a specific conservation equation and each column is one of the unknown variables.

Most numerical methods are iterative, and convergence is reached when the change between

iterations is sufficiently small. In CTF, the full Jacobian matrix is row-reduced to solve for the

pressures in each fluid cell.

J ′δP = b (2.18)

Here, J ′ is the pressure matrix, δP are the pressure updates, and b is the row-reduced right

hand side. In this way, all fluid conservation equations are incorporated into a single n × n
matrix, where n is the number of computational cells. See [12, Section 3.1] for a description of

the pressure matrix construction and solution algorithm.

The fluid conservation equations do not have a general closed-form solution, so it is necessary

to find a numerical approximation. The simplifications necessary to find this solution are

discussed next.

The first approximation deals with the discretization of the conservation equations in space.

Since the continuous form of the equation cannot be solved numerically, one must make an

assumption about how the value of all quantities vary throughout a control volume. In CTF, all

quantities are assumed to be a constant average value for a specified control volume:

ψ̄ =
1

V

∫
V
ψdV , (2.19)

where ψ is any continuous variable and ψ̄ is the average value over the cell. This assumption

is generally accurate, but can cause numerical errors for situations with sharp gradients or

discontinuities. Variables will be defined by the mesh for which their conservation equations are

defined. For example, density and enthalpy are defined on the “continuity” or “scalar” mesh

and velocity is defined on the “momentum” or “vector” mesh. For example, if the indexing

of the staggered mesh in Figure 4.1a is used, scalar quantities are assumed to be constant

averaged quantities between i − 1/2 and i + 1/2 with a center at i. Momentum quantities are

constant between cell centers. For situations when quantities are shared between the conservation

equations, a relationship between the two meshes must be used. In CTF, a linear average is

generally used to transition quantities between the two meshes.

Advection terms in the conservation equations are discretized on the spatial mesh using a

first-order upwinded difference. This is necessary for convergence, and introduces the Courant-

Friedrichs-Lewy condition (CFL) to ensure numerical stability when explicit time integration is

used [28]. Other spatial terms are discretized using second-order central differences.

Once the spatial discretization is addressed, the set of equations is spatially discrete and

temporally continuous. The discretization in CTF is a one-step difference scheme where the time
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variables are evaluated at discrete points between the beginning and end of the simulation. The

simplest method to solve these equations is a purely explicit method, where the conservation

equations for each control volume are formulated such that a single unknown variable can be

directly calculated using each of them. The explicit method is detailed in Algorithm 2.1.

Algorithm 2.1: Fully explicit solution algorithm. Also called a single stage or linearized
method, an explicit solution algorithm reduces the cost of the matrix solve but generally
requires smaller time steps.

Input : initial conditions xo = x(to), time step ∆t, and number of steps N

1 for n = 1 to N do
2 tn+1 = tn + ∆t
3 δx = −J(xn)−1F (xn)
4 xn+1 = xn + δx

5 end

In the explicit algorithm, all discretized conservation equations contain only one value

evaluated at the new time, and therefore each one can be solved individually—there are no

cross terms in the Jacobian matrix. Though the explicit method is a relatively computationally

inexpensive solution algorithm, it is only numerically stable when specific stability criterion are

met. Therefore, the explicit method often requires the use of very small time steps.

A fully implicit method evaluates all state variables in each conservation equation at the new

time step. The Jacobian is no longer a diagonal matrix, which is more difficult to solve. Though

each individual time step may take longer to solve, fully implicit methods are unconditionally

stable and therefore very large time steps can be taken. Since the implicit fluid equations are

highly nonlinear, Newton’s method is often used [80]. This method, which is fully implicit with

a nonlinear iteration, is outlined in Algorithm 2.2.

Other methods exist that use some combination of implicit and explicit variables to solve

the set of discretized equations [80]. These methods, generally called semi-implicit methods,

include the following:

• Pressure projection methods, such as the one used by CTF and its predecessors, which is

a predictor-corrector scheme between pressure and velocity [13, 127];

• The Stability-Enhancing Two-Step Method (SETS), which is a multi-stage approach used

in TRACE [4, 96];

• The nearly-implicit method, which is similar to SETS and used by RELAP5-3D© [5, 165];

and

• Many other semi-implicit methods [90].
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Algorithm 2.2: Fully implicit solution algorithm. Also called a multi-state or nonlinear
method, an implicit solution algorithm can take large time steps but the matrix solve is
more costly.

Input : initial conditions xo = x(to), time step ∆t, and number of steps N

1 for n = 1 to N do
2 tn+1 = tn + ∆t

3 xk = xn

4 for k = 0 to K do
5 δxk = −J(xk)−1F (xk, xn)

6 xn+1 = xk + δxk

7 end

8 xn+1 = xk+1

9 end

CTF is restricted to using a pressure projection method, since the terms in the algorithm

are derived by hand and hard-coded in the solution algorithm. The next chapter will introduce

a novel residual-based version of CTF which is not restrained to a particular choice of solution

algorithm.

2.5 Possible Improvements

Though CTF is a well-established code which has been applied extensively throughout the

literature for the last few decades, some aspects of the code are detrimental to future modeling.

1. Many models in the code were implemented long ago. Most of these were originally

well-documented, but not all code developers have followed the same process. As such,

many of the models lack proper documentation and the individuals who implemented them

are now retired. As an example, see the interfacial mass transfer model in Appendix B.

This model was only minimally documented before the appendix was assembled, and

the origin of some of the correlations is still unknown. Additionally, some correlation

implementations are not consistent with their corresponding models in the literature.

Usually, no motivation or justification is given for these changes. With undocumented or

adjusted models, it is difficult to perform any assessment of code accuracy.

2. The pressure matrix in CTF was calculated by hand and then hard-coded in the software.

This was a requirement when computers had limited memory and speed, since only a few

solution algorithms could possibly be implemented. In contrast, codes today have greatly

expanded memory, speed, and code structures that no longer require these simplifications.

As such, a code can be highly flexible and allow for different discretizations, implicitness,
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etc.

3. The equations and closure models in CTF are implemented specifically for LWRs. As-

sumptions are made throughout the code which depend upon this fact. For example, the

effects of natural circulation are mostly ignored, conduction in the fluid is neglected, and

the boiling model is specifically for water. It would be necessary to change many of these

modeling choices to apply CTF to most other reactor types. This includes any reactor

which relies on natural circulation in the event of off-site power, liquid sodium reactors,

liquid metal reactors, or even high temperature gas reactors. As such, the development

of a tool which can easily be changed would be beneficial for these important future

applications.

4. Finally, the software development tools described in the next chapter were not formalized at

the time CTF was written. Though the code developers likely used detailed and thorough

tests for their code, these tests were rarely documented and never added as regression tests.

Since CTF has been implemented in The Consortium for Advanced Simulation of Light

Water Reactors (CASL), the verification and validation of the code has been drastically

improved. Nonetheless, it is very difficult, if not impossible, to provide a pedigree for a

code which was not designed with these ideas in mind.

The new version of CTF, outlined in Chapter 4, addresses all of these issues in some way.
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CHAPTER

3

VERIFICATION, VALIDATION, AND

UNCERTAINTY QUANTIFICATION

An important part of code development is establishing that the results can be trusted. This

can take a variety of forms: testing the numerical methods, benchmarking against other codes,

Software Quality Assurance (SQA) programs, comparison to experimental data, or bounding

the output with uncertainty. This section will briefly discuss all of these activities.

A variety of authors have developed quantitative methods to address all sources of uncertainty

in computational tools. One such method is the Code Scaling, Applicability, and Uncertainty

(CSAU) method, which was developed by the NRC to support BEPU analyses [78]. Another

example is the Predictive Capability Maturity Model (PCMM), which groups evidence that a

code is mature into the following six categories: code bugs, code verification, solution verification,

validation, parameter uncertainty, and calibration [121].

Much of the processes in formal Verification, Validation, and Uncertainty Quantification

(VVUQ) methods are similar, and the relevant steps are outlined in a number of references [78,

121, 122, 167]. Some of the literature disagrees on terminology for these activities, so this

chapter will outline each briefly as used in this work. The process necessary to establish code

credibility is outlined in Figure 3.1.

First, SQA is used to minimize general code bugs; it is outlined in Section 3.1. Section 3.2

deals with code verification, which minimizes bugs in the numerical solution algorithm. The
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Figure 3.1: General process for establishing code credibility. Each of the five steps minimizes
different sources of uncertainty and is described at length in this chapter.

numerical uncertainty in a code is quantified using solution verification, which is described in

Section 3.3. Validation is the process of ensuring that the code is a faithful representation of

reality and it is detailed in Section 3.4. Some quantitative metrics used in verification and

validation problems are defined in Section 3.5. Section 3.6 describes the process of assessing

code output uncertainty. Finally, a process related to uncertainty quantification, parameter

estimation, is described in Section 3.7. Finally, identifiability and sensitivity are processes

important to Uncertainty Quantification (UQ) and parameter estimation. They are outlined in

Sections 3.8 and 3.9.

3.1 Software Quality Assurance

SQA is accomplished by employing appropriate software engineering practices to minimize the

number of mistakes in the code. A variety of activities fall under this category [122].

First, defect tests ensure that small portions of the code are working correctly. There

are three types of defect tests which verify different parts of the code: unit, component, and

system. Unit tests are very simple test problems which verify a particular function or subroutine.

Component testing consists of testing isolated parts of the code, such as a call to a module that

has an expected result. System tests show that the components are coupled correctly. All of

these SQA activities can be incorporated as regression tests, which are used to ensure that a

code does not lose capabilities as it is developed. Regression test suites are run periodically and

should include at least one test problem for every feature, combination of features, input and

outpute options, and solution algorithms in the code.

If there is a code with similar capabilities to the one being developed, it can be used as a

benchmark. When using another code this way, it is important to have confidence in that code’s

results. If confidence is lacking, then differences between the codes should be analyzed with

skepticism and changes should not be made to either code to bring the results into agreement.

3.2 Code Verification

Code verification ensures that a computer code is a faithful representation of the original

mathematical model. This is accomplished via order of convergence assessment. The convergence
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rate of all numerical methods can be assessed using Modified Equation Analysis (MEA), which

is based on Taylor Series approximations of discretized equations [65]. Therefore, it is possible

to design test problems with analytical solutions that, when their spatial or temporal mesh is

refined, demonstrate the proper convergence rate. The analytical convergence rate is referred to

as the formal order of accuracy, and the convergence rate of the code is the observed order of

accuracy. If the formal and observed orders agree, then the analyst can be reasonably confident

that the code is an accurate representation of the intended mathematical model.

Code order convergence problems must have an analytical solution, which can be very

restrictive. Nonetheless, since the order is a purely mathematical result, there is no requirement

that the test problem represent a physical situation. As such, a variety of methods can be used

to find problems for which analytical solutions exist. The first, and most obvious, is to design an

extremely simple problem which can be analytically solved by hand. These problems generally

work well, and they should be included as verification problems. Tests with approximate

solutions can also be used, but they must be highly accurate in order to converge as expected.

The Method of Manufactured Solutions (MMS) uses a given solution to calculate source terms

for the conservation equations [147]. The source terms are then added directly to the discretized

equations, and the code results should match with the original solution. MMS is a very thorough

analysis method because the source terms can involve both time and space, as well as different

continuous distributions for the state variables. In addition, MMS procedures can be automated

using symbolic computation, which eliminates most human error from the process. An MMS

problem that converges with the expected order of accuracy is one of the best indications that

the mathematical representation of the code is accurate. A method similar to MMS which uses

physically realistic test problems is the Method of Nearby Problems (MNP) [144].

3.3 Solution Verification

The main focus of solution verification is the estimation of numerical errors that occur when a

mathematical model is discretized and solved on a digital computer. In solution verification, the

exact solution to the mathematical model is not usually known, and thus numerical error must

be estimated and not simply evaluated.

Solution verification can be concerned with approximating the error originating from a

variety of sources. Round off errors are due to the limited precision available on computers.

This is generally very small and negligible for double-precision programs. Statistical uncertainty

can dominate for codes that are stochastic in nature. Iterative error is due to solution of the

coupled system of equations and can be assessed by changing the convergence criterion and

quantifying the resulting change. In general, this error is negligible if the convergence criterion

are properly set and the iterative procedure is not divergent.
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The largest source of error is from discretizing the governing equations. This contribution

is assessed by comparing the code order of convergence to the formal order. This is similar to

convergence assessment in code verification, but an analytical solution is generally not available.

Instead, the convergence between successive refinements of the spatial or temporal mesh is

used to approximate the error. When performing solution verification, the order of accuracy

requirements are generally looser than for code verification.

3.4 Validation

Validation is the process of assessing if code models are an accurate representation of reality.

This is done through comparison to experimental data. If the code accurately predicts the

experimental results, then it is validated.

Validation can be split into two general categories: separate effects and integral effects.

Separate effects tests are experiments that were designed to use a single model or correlation.

For example, an isothermal pipe flow experiment could be considered a separate effects friction

test. For an example of separate effects validation, see Section 4.4.3 and [163]. Integral

effects tests incorporate the use of many models or systems of the code. Examples of integral

effects experiments are the BWR Full-size Fine-mesh Bundle Test (BFBT) [117] and the

PWR Subchannel and Bundle Test (PSBT) [145] Benchmarks. An example of integral effects

validation can be found in [133]. Integral effects validation is important to the validation process,

but compensating errors can produce unreasonably good results, especially if any amount of

calibration has been performed. To avoid these compensating errors, separate and integral tests

should be used together during code validation.

Some experiments are not suitable to use as validation data. Oberkampf [122] cites three

types of traditional experiments which fit into this category: (1) discovery experiments to improve

the fundamental understanding of some physical process, (2) model development experiments to

improve fairly well-understood physical models, and (3) reliability tests which that test new

engineering systems. A validation experiment, on the other hand, is conducted primarily to test

a simulation code. This requires that all relevant characteristics of the experiment, both within

the system and outside it, are accurately measured.

Validation can also be used to assess the model form uncertainty inherent in a code. In

order to represent reality, engineers narrow down real physics to create a model. These models

are generally good representations, but there is inherent uncertainty in them. If all numerical

error has been minimized via verification, then the remaining error can be apportioned to model

form and parameter uncertainties. The model form error can also be reduced by quantitatively

choosing the best model for particular problems (see [101, 139] for examples).
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3.5 Quantitative Metrics

For both verification and validation problems, the results are often summarized quantitatively

using a single value. These studies usually require the comparison of two arrays and the distance

between them can be quantified in many different ways [102]. This section outlines all metrics

used in this work.

Minkowski Distance For verification problems, the change in the quantity of interest between

two successive iterations is calculated using the Minkowski Distance. This metric, also called a

vector norm, is very commonly used to assess the difference between two vectors.

||x||n=

[∑
i

(xi)
n

]1/n
(3.1)

Here, x is usually defined as the difference in the quantity of interest between the fine mesh

and the coarse mesh. So, if enthalpy is the quantity of interest, x = hfine − hcoarse. In this

work, three norms are used.

||x||1 =
∑
i

|xi| (3.2)

||x||2 =

√∑
i

(xi)
2 (3.3)

||x||∞ = max |xi| (3.4)

These are respectively the L1, L2, and L∞ norms. The L2 norm is also known as the

Euclidean norm and is likely the most commonly used. By definition, L1 ≥ L2 ≥ L∞, though

they all result in similar orders of accuracy when applied to verification problems.

Root Mean Square Error One of the most common validation metrics is the root-mean-

square (RMS). This metric is the square root of the summed errors divided by the number of

errors.

RMS =

√√√√ 1

n

n∑
i=1

x2 (3.5)

In general, the error x is defined as x = xm − xp where xm is the experimentally measured

quantity and xp is the quantity predicted by the code. In this work, the relative errors,

x =
∣∣∣xm−xpxm

∣∣∣, are used because the quantity of interest can vary over many orders of magnitude.

When using the relative errors, the RMS becomes the relative RMS (rRMS).

A similar metric, the mean square error is also used.
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mse =
1

n

n∑
i=1

(
xm − xp
xm

)2

(3.6)

3.6 Uncertainty Quantification

Uncertainty Quantification is the science of analyzing uncertainty in order to make predictions

and understand the degree to which predictions can be trusted. An uncertainty analysis

is essentially meaningless until a thorough verification study has been completed. UQ and

validation are often performed simultaneously, since analysts are often interested in calculating

uncertainty of their validation results. Sensitivity studies and parameter estimation should be

performed before UQ studies to select the sensitive input parameters and give them bounds.

Errors can have various forms that must be treated differently. First, aleatory uncertainties

are those that are inherent to a process and cannot be reduced with additional information.

Examples include boundary conditions and parameter uncertainties. Aleatory uncertainties

are generally unbiased and easily defined in a probabilistic framework. The second type of

uncertainty, epistemic, is more difficult to treat probabilistically. Epistemic uncertainty is due to

lack of knowledge, and is often associated with simplifying assumptions or physics that are not

accounted for. These errors are generally referred to as model errors if numerical uncertainty

has been minimized. During the UQ process, epistemic uncertainties are often recase as aleatory

in order to treat all sources of uncertainty in the same way.

Uncertainty analysis is the process of propagating input parameter distributions through a

computational tool, and calculating bounds on the resulting quantities of interest. This process

can either be deterministic or statistical.

Deterministic methods use derivatives of the parameters of interest with respect to the input

uncertainties to analytically calculate the effect on the output uncertainty. These methods

are useful for codes whose solution algorithms require the calculation of these gradients. For

example, adjoint-based solution algorithms can easily use deterministic UQ methods. The

complex nonlinear structure of other codes makes the analytical calculation of these gradients

very difficult, and numerical techniques to calculate them are often unreliable. As such, almost

all uncertainty analyses of computer results are performed using a statistical approach.

The alternative to deterministic methods is to use a sampling method to propagate input

uncertainties to the quantity of interest. This process is much more computationally intensive,

but it does not require gradient information. To perform a statistical uncertainty propagation,

the code is run using input uncertainties that are sampled from their respective distributions.

This process is repeated until the required sample size is reached. The sample size must be large

enough to have statistically meaningful results, but small enough that the computational cost is
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minimized. Statistical analysis of the output parameters can be used to construct the output

distributions and corresponding summary statistics (mean, standard deviation, intervals, etc.).

A popular statistical uncertainty method in nuclear engineering applications is Wilks’ Formula.

Given a specified percentile and confidence interval, Wilks’ formula can be used to calculate the

required sample size. This non-parametric uncertainty quantification method is derived and

discussed in Appendix C.

3.7 Parameter Estimation

Parameter estimation is the process of optimally fitting parameters to match model output

with experimental data. It is often referred to as an “inverse problem” or “inverse uncertainty

quantification” because it is closely related to uncertainty quantification. For UQ, the parameter

estimates are known and the goal is to estimate how these affect model output. Parameter

estimation is the opposite: a set of experimental data (model output) is used to determine what

input parameters will give the desired results. This relationship is outlined in Figure 3.2.

Parameters
θ

Model
f()

Data
y

Parameter Estimation

Uncertainty Quantification

Figure 3.2: UQ and parameter estimation. UQ and parameter estimation both relate parameter
estimates to experimental data using some model, but in opposite directions.

Estimated parameters can be treated as single deterministic values or as random variables.

The methods discussed in this section will be capable of assessing the uncertainty in parameter

estimates, and therefore parameters will be treated as nondeterministic values.

Fixed effects models use the same parameter distributions for the entire population. In most

cases, these methods are sufficient if all data is governed by the same physical law or theory.

Fixed effects models include fixed effects parameters θ and an observational error ε, which is

generally assumed to be identically and independently distributed (iid) with a mean of zero.

yi = f (xi,θ) + εi (3.7)

Here, i indicates the ith observation and f is the model which is fit to the experimental data.

The independent variables for point i are represented as xi. Alternatively, mixed-effects models

are used when some physical law governs all data but there is also variation due to individuals
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or components of the general population. These models are composed of global parameters

(or fixed parameters), which identify the entire population, and local parameters (or random

parameters) which are used to distinguish between groups.

yij = f (xij ,θ, βj) + εi (3.8)

The model result of the ith observation for the jth laboratory is yij . The fixed effects

parameters are again represented by θ, and the mixed-effects parameters for the jth laboratory

are βj . A mixed-effects model is necessary when results from different laboratories have differing

behavior due to experimental conditions, various measurement techniques, experimental errors,

or physical constraints. Mixed-effects models provide a means to estimate the overall physics of

the model while also quantifying the variation due to these effects.

3.7.1 Frequentist Methods

The frequentist—or classical—representation treats probabilities as the frequency with which

an event occurs if an experiment is repeated a large number of times. Frequentist statistics

require that parameters have a fixed but unknown value. These fixed values are not affected by

the addition of more data, since the data comes from the same population. The value of the

parameters is approximated using estimators, which map the sample space to a set of parameter

estimates. Parameter uncertainty from a frequentist perspective is the uncertainty of these

estimators, which is represented by their sampling distributions. Three frequentist techniques

are discussed in this section: two for fixed effects models and one for mixed-effects models.

Asymptotic Analysis

For asymptotic frequentist analysis, the behavior of the sampling distribution for large sample

sizes is considered. With a large sample size, asymptotic properties—which are based on the

theory of local linearity and Taylor series expansions—can be applied. As such, the existing

theory for linear Ordinary Least Squares (OLS) estimators can be used.

The use of asymptotic analysis is the most basic process used in this work for parameter

estimation and it provides a first estimate of reasonable distributions. However, asymptotic

analysis cannot account for nonlinear or non-Gaussian parameters. The asymptotic analysis

process is outlined in Algorithm 3.1.

Bootstrapping

In cases where the local linearity assumption is not valid, e.g. for highly nonlinear problems or for

problems with small sample sizes, an alternative method is necessary [22, 151]. Bootstrapping
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Algorithm 3.1: Fixed effects OLS parameter estimation. This frequentist method for
parameter estimation is computationally inexpensive but assumes that the parameters are
a joint Gaussian distribution [156].

Input : Experimental data y, state points x, and model f().
Output : OLS estimates of optimized parameters, variance, and covariance matrix: θ̂OLS ,

σ̂2, and V̂ , respectively.

1 Determine θ̂OLS = arg minθ

∑N
i=1 [yi − f(xi,θ)]2.

2 Set SSθ =
∑N

i=1

[
yi − f(xi, θ̂OLS)

]2
.

3 Compute variance estimate σ̂2 =
SSθ
N − p

.

4 Calculate the sensitivity matrix X̂ij =
∂f(xi, θ̂OLS)

∂θj
≈ f(xi, θ̂OLS + εj)− f(xi, θ̂OLS)

ε
.

5 Construct covariance estimate V̂ (θ) = σ2(XTX)−1 ≈ σ̂2(X̂T
X̂)−1.

provides an alternative way to construct sampling distributions using frequentist estimators.

The same estimators are resampled to calculate a Monte Carlo approximation of the parameter

distributions. Since actually sampling additional data is not practical, the existing data is

resampled. The bootstrapping method utilized in this work is detailed in Algorithm 3.2. For

the analyses in this work, a large number of resmaples are taken so that this method provides

statistically relevant results M = 104.

Algorithm 3.2: Fixed effects bootstrapping parameter estimation. Bootstrapping is the
process of resampling estimators from the same set of data to get a distribution of those
estimators [22, 151].

Input : Experimental data y, model f(), and number of bootstrap samples M .
Output : Frequentist estimates of optimized parameters, experimental error, and

covariance matrix: θOLS , σ̂2, and V̂ , respectively.

1 Determine θOLS = arg minθ

∑N
i=1 [yi − f(xi,θ)]2.

2 Construct standardized residuals ri =
√

N
N−p [yi − f(xi,θOLS)]

3 for m = 1 to M do
4 Sample from r with replacement to generate a bootstrap sample of N standardized

residuals, r̄m

5 Generate synthetic data ym = f(x,θOLS) + r̄m

6 Calculate the OLS estimate to obtain θm

7 end

8 Now θm is a chain which can be used to construct θOLS , σ̂2, and V̂ .
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Maximum Likelihood Estimation for Mixed-Effects Models

In this work, a Matrix Laboratory (MATLAB©) algorithm for mixed-effects Maximum Likeli-

hood Estimation (MLE) is used. This algorithm, nlmefit, provides an estimation of the mean

local β and global θ parameters, along with an estimate of the covariance between the local

effects, Ψ [100]. The results lack extensive uncertainty information, but they are used to indicate

what correlations and state space would requires the use of a mixed-effects model.

3.7.2 Bayesian Methods

The Bayesian perspective is different than the frequentist because it treats probability as the

belief that an event will occur based on prior information. Since this interpretation is subjective,

it is possible that Bayesian estimates can change as more information is acquired. Bayesian

statistics are also different from classical methods in that the parameters are treated as random

variables which characterize the current state of knowledge. Hence, Bayesian parameters have no

set true value and instead are characterized by some parameter density. Overviews of Bayesian

methods are available in the literature [82, 156].

The foundation of all Bayesian methods is Bayes’ Theorem:

P (A|B) =
P (B|A)P (A)

P (B)
, (3.9)

where A and B are events and P (i) indicates the probability of i occurring. To infer a set of

parameters, θ = [θ1, θ2, . . . , θp], based on experimental observations, y = [y1, y2, . . . , yn], Bayes’

relation can be used.

π(θ|y) =
L(y|θ)πo(θ)∫

Rp L(y|θ)πo(θ)dθ
(3.10)

The posterior density is π(θ|y), the prior distribution is πo(θ), L(y|θ) is the likelihood

function, and the denominator is a normalization factor which is integrated over all parameter

space. The direct calculation of the normalization factor is very computationally intensive, so it

is necessary to use sampling methods.

Delayed Rejection Adaptive Metropolis

The Delayed Rejection Adaptive Metropolis (DRAM) algorithm [57] is a modified form of the

Metropolis-Hastings algorithm, which is one of many Markov Chain Monte Carlo (MCMC)

methods for randomly sampling from posterior distributions. The DRAM algorithm uses two

additional steps to increase the performance of the algorithm. The delayed rejection step allows

for the proposal function to be updated after a rejection, which improves the mixing of the

chains [58]. The adaptive metropolis part of the algorithm allows the covariance matrix to
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be recalculated throughout the simulation, which makes the exploration of the chains more

efficient [107].

The DRAM code used in this work is implemented in MATLAB© and was developed by

Laine [85] and it includes Algorithms 3.3 and 3.4. The DRAM algorithm is very computationally

intensive, but it requires no assumptions on parameter shape or behavior.

Algorithm 3.3: Basic DRAM method. The DRAM algorithm allows for second stage
proposals [58] and updates the covariance throughout the simulation [107]. In this work, a
Gaussian likelihood function and uninformative priors are used [85, 156].

Input : Experimental data y, model f(), chain length M , error variance update
parameters ns and σ2s , sp = 2.382/p, iterations between covariance updates ko.

Output : Bayesian chain, which can be used to construct posterior distributions.

1 Use Algorithm 3.1 to calculate θOLS , σ20, and V0.
2 Set initial residuals R0 = chol(V0).
3 for k = 1 to M do
4 Sample zk ∼ N (0, I).

5 Construct candidate θ∗ = θk−1 +RTk−1zk.

6 Sample uα ∼ U(0, 1)

7 Compute SSθ∗ =
∑N

i=1 [yi − f (xi,θ
∗)]

8 Compute α
(
θ∗|θk−1

)
= min

(
1, e−[SSθ∗−SSθk−1 ]/2σ2

k−1

)
9 if uα < α then

10 Set θk = θ∗ and SSθk = SSθ∗

11 else
12 Algorithm 3.4.
13 end
14 Update σ2k ∼ Inv-gamma (a, b), where a = 0.5(ns +N) and b = 0.5(nsσ

2
s + SSθk).

15 if mod(k, k0) = 1 then
16 Update Vk = sp cov(θ) and Rk = chol(Vk)
17 else
18 Vk = Vk−1 and Rk = Rk−1
19 end

20 end

All DRAM analyses in this work will use the OLS estimates of parameter values as initial

estimates. Noninformative priors will be used, since the parameters are generally fit to exper-

imental data and have no physical meaning. Standard practice in the nuclear industry is to

bound the parameters by [0, 2θOLS ] [114]. All analyses take 104 samples from the posterior after

a burn-in period of 105 chains. The large number of burn-in samples is sufficient to converge

the chains, but future work will address the convergence in a more quantitative way [18, 48].
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Algorithm 3.4: Delayed rejection part of DRAM. The delayed rejection part of DRAM,
outlined in [107], allows the algorithm to propose a second candidate, which significantly
increases the mixing of the chains [156].

1 Set the design parameter γ2 < 1. This work uses γ2 = 1/5.
2 Sample zk ∼ N (0, I).

3 Construct a second state candidate θ∗2 = θk−1 + γ2R
T
k−1zk.

4 Sample ua2 ∼ U(0, 1).

5 Compute SSθ∗2 =
∑N

i=1

[
yi − f

(
xi,θ

∗2)]2.
6 Compute the proposal distribution

J(θa|θb) =
1√

(2π)p |V |
exp

(
−1

2

[
(θa − θb)V −1(θa − θb)T

])
.

7 Compute α2

(
θ∗2|θk−1,θ∗

)
= min

(
1,

L(θ∗2|y)J(θ∗|θ∗2)
[
1− α(θ∗|θ∗2)

]
L(θk−1|y)J(θ∗|θk−1)

[
1− α(θ∗|θk−1)

]) where L

is the likelihood.
8 if uα2 < α2 then

9 Set θk = θ∗2 and SSθk = SSθ∗2 .
10 else

11 Set θk = θk−1 and SSθk = SSθk−1 .
12 end

3.8 Identifiability

A prerequisite of calibration is that the parameterized model is identifiable, meaning that there

exists a unique parameter set which can be determined from the observations. The parameter

set θ = {θ1, θ2, . . . , θk} is identifiable at θ∗ if, for any admissible parameter set, Y (θ) = Y (θ∗)

implies that θ = θ∗. The parameter set θ is identifiable if this holds for all θ∗ in the parameter

space.

A sensitivity matrix is approximated numerically at each calibration state point.

Xij =
∂Yi
∂θj
≈ Yi(θ + εj)− Yi(θ)

εj
(3.11)

If X is rank deficient, it is necessary to determine the identifiable parameter subspace. To

accomplish this, a QR decomposition with rank-revealing column pivoting is used [156].

The sensitivity matrix is decomposed into orthogonal (Q) and upper triangular (R) parts,

XP = QR, where P is a permutation matrix which pivots the columns of X so that R has an

r × r upper triangular block whose diagonal elements are nonzero. This process reveals the r

vectors of Q which correspond to the identifiable parameters, where Qi (the r diagonal values in

Q) quantify the identifiability of the corresponding parameters.
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3.9 Sensitivity Studies

The goal of sensitivity analysis is to determine which input parameters influence the quantities of

interest. These analyses are used to eliminate inputs that have relatively little importance, which

can focus future development and make calibration, optimization, and uncertainty analyses

simpler and more manageable. Additionally, some methods can measure model smoothness,

nonlinear trends, simulation robustness, or interactions between inputs. As such, preliminary

sensitivity studies are critical to any uncertainty analysis.

Sensitivity measures can either be local or global. Local sensitivities measure the variability of

the response as inputs are varied about one point in state space. These measures are often used in

optimization, adjoint methods, and model calibration. Local sensitivities can be calculated using

finite difference approximations, sensitivity equations, or automatic differentiation [156]. Global

sensitivity aims to apportion uncertainty in the output to different inputs. Global sensitivity

measures are often composed of local measures sampled from the parameter space. They can be

categorized as regression, variance, or screening-based methods [156]. In this work, three global

sensitivity methods are used.
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CHAPTER

4

CTF-RESIDUAL

The original version of CTF was optimized to run on computers with limited capabilities

and the code architecture has remained essentially stagnant since then. Recent work has

focused on modernizing the code. A residual form, COBRA-IE, is used at Bettis Atomic Power

Laboratory [11, 20, 91]. Similar work, the state of which is the topic of this chapter, has

commenced at NCSU to introduce a residual formulation into the CASL version of the code.

The initial development of CTF-R was performed by Chris Dances at Pennsylvania State

University (PSU) [30, 31, 32, 33]. The first version did not include any closure relationships

and had a rudimentary one-dimensional Cartesian form of the conduction equation. His work

has been expanded to include closure relationships for frictional and gravitational pressure

drops, heat transfer between the solid and liquid, and solution of the one-dimensional cylindrical

conduction equation [135]. A manual for CTF-R with one-dimensional single phase flow was

published by CASL [136]. The addition of a lateral momentum equation to CTF-R has also

been detailed previously [138, Chapter 6].

The basic theory and benefits of CTF-R are discussed in Section 4.1. The conservation

equations are given in Section 4.2 in both continuous and discretized forms. The implementation

is discussed in Section 4.3. All verification and validation of CTF-R is outlined in Section 4.4.
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4.1 Theory

As discussed in Section 2.4, the discretized conservation equations solved in a computational

tool are often organized into a matrix system.

Jδx = −F (x) (4.1)

Here, J is the Jacobian matrix, δx is the array of state variable updates, and F (x) is the

evaluated residual equations. Here, the update array is defined as the difference in the state

variables between consecutive iterations.

δx = xn+1 − xk (4.2)

Each state variable is indicated by x, the new time value is n+ 1, and the old time value is

n. Each fluid cell has three residuals, which correspond to the mass, energy, and momentum

equations. Each solid cell has a single residual, which corresponds to the solid energy equation.

δP = Pn+1 − Pn (4.3a)

δh = hn+1 − hn (4.3b)

δu = un+1 − un (4.3c)

δT = Tn+1 − Tn (4.3d)

The equation of state is incorporated into the other conservation equations, so there is no

corresponding residual in density.

CTF-R infrastructure was designed to use Newton’s method to resolve nonlinearities in the

solution (Algorithm 2.2), but it currently only takes a single linear iteration. This is a decent

approximation for single phase flow since it is not highly nonlinear, but should be corrected

in the future. Using this single-iteration time iteration scheme, the Jacobian is first evaluated

numerically.

Ji,j =
δFj(x

n)

δxi
≈ Fj(x

n + εi)− Fj(xn)

εi
(4.4)

Here, Fj() indicates the jth conservation equation and εi is a small perturbation to the ith

state variable. Next, the remaining terms in the conservation equations are evaluated, F (xn).

Then the residual vector is calculated using a linear algebra library.

δx = −J−1F (xn) (4.5)

The new time values of the state variables can then be calculated xn+1 = xn+ δx. After each
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iteration, the state variables are updated to the correct time levels and the process is repeated

until convergence. CTF-R currently uses CTF’s convergence algorithm, which sets tolerances

on global conservation and the change in state variables from one iteration to the next.

In CTF-R, each conservation equation F (x) is coded as an individual function and the state

variables are stored as a matrix with xn, xk, and xn+1 values. Keeping the data structures in

this generalized form and constructing the Jacobian numerically provides many benefits.

• The conservation equations are easier to understand and locate, which reduces the time

necessary to learn the code.

• The equations can be changed easily, which allows the the implicitness, discretization, and

physics to be adjusted for application to a specific case.

• A true steady state solution can be found by removing the temporal terms from the

conservation equations.

• Conservation equations can be added or removed from the Jacobian.

• More tools from the numerical solver can be utilized, including more advanced solution

algorithms, built-in parallelization, and direct coupling to other codes.

• Since Equation 4.5 is used to calculate the residual array directly, the residuals can be

used to assess convergence without any additional computations. This is a significant

improvement over the traditional ad hoc method used in the CASL version of CTF.

• CTF-R has been designed to enable VVUQ. All empirical models can be disabled, there

is no under relaxation, and coded models have been provided with suggest parameter

uncertainties (see Chapter 5). Most importantly, every model currently in the code has at

least a minimal level of Verification and Validation (V&V) (See Section 4.4).

• The full Jacobian is available, which allows a variety of solution algorithm options. Different

nonlinear iterations can be added, and the Jacobian can be row-reduced to the pressure

matrix.

CTF-R is early in its development, but these benefits act as motivation to gradually increase

its modeling capabilities. Currently, CTF-R is single-phase and solves the conservation equations

outlined in Section 4.2. The code implementation is briefly outlined in Section 4.3, and all V&V

work is discussed in Section 4.4. The chapter concludes with a discussion of shortcomings of the

current implementation, future applications, and future work in Section 4.5.

4.2 Conservation Equations

CTF solves eight conservation equations for the fluid domain, but only four of these have been

implemented in CTF-R. These are the conservation of mass, energy, axial momentum, and

lateral momentum for liquid water. There is also an energy equation for solid components. All
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four of these equations are summarized in the following sections in both their continuous and

discretized form. All equations are consistent with the current CTF-R implementation. See

Appendix A for derivations of the enthalpy and both momentum equations.

4.2.1 Discretization

The discretization nomenclature in both axial and lateral directions are shown schematically in

three dimensions in Figures 4.1a and 4.1b. The black cubes are scalar cells and the red cubes

are vector cells. The black dots indicate the location of all scalar quantities, and the red arrows

define velocities. All discretized equations in this section are consistent with this nomenclature.

4.2.2 Mass Equation

The conservation of mass equation, or continuity equation, in CTF-R is relatively simple.

∂ρ

∂t
+
∂ρu

∂x
+
∂ρw

∂z
− κ1

∂2ρ

∂z2
= 0 (4.6)

The independent variables of time and space are represented by t, x, and z, where x is in the

upward axial direction and z is in the lateral direction. The density, mean axial velocity, and

mean lateral velocity are respectively ρ, u, and w. The first two terms are the rate of change in

density and advection in the axial direction, the third is lateral transfer. The final term in the

mass equation is turbulent mixing, which smooths density in the lateral direction. The constant

κ1 has units ft2/s and is currently a tunable input parameter.

In CTF-R, the mass equation is discretized as follows:

(4.7)
ρn+1
i − ρni

∆t
+
ρ̇ni+1/2u

n+1
i+1/2 − ρ̇

n
i−1/2u

n+1
i−1/2

∆x
+

Ng∑
g

[
ρ̇ngw

n
g

Lg
− κ1

ρng+1/2 − ρ
n
g−1/2

L2
g

]
= 0.

Here, i indicates the current scalar cell, i− 1/2 is the momentum cell below it, and i+ 1/2

is the momentum cell above it (see Figure 4.1a). The summation is over all gaps g connected

to the scalar cell. The gaps are defined such that lateral velocity wg is from the lower indexed

channel g − 1/2 to the higher indexed channel g + 1/2 (see Figure 4.1b). The lateral distance

between cells g− 1/2 and g+ 1/2 is Lg. The last time step values are indicated by an n superscript

and new time values are at n+ 1. The dotted quantities are upwinded in space.

ρ̇ni+1/2 =

ρni , uni+1/2 > 0

ρni+1, uni+1/2 ≤ 0
(4.8a)

ρ̇ni−1/2 =

ρni−1, uni−1/2 > 0

ρni , uni−1/2 ≤ 0
(4.8b)
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Scalar Cell
ixi

Momentum Cell
i+ 1/2
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(a) Axial mesh

Gap Cell g

wg

Scalar Cell
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Scalar Cell
g − 1/2

xg−1/2

(b) Lateral mesh

Figure 4.1: CTF-R staggered mesh. This figure establishes the nomenclature used to discretize
the conservation equations in CTF-R. Scalar values, such as density, enthalpy, and pressure are
indicated by x and defined for each scalar cell (black box) on the gray plane. Velocity vectors
are defined on the red planes, which are centered in the momentum cells (red dashed box).
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ρ̇ng =

ρng−1/2, wng > 0

ρng+1/2, wng ≤ 0
(4.8c)

4.2.3 Energy Equation

The energy equation in CTF-R is in enthalpy form, which is inherited from CTF. For a derivation

and discussion of this equation, see Section A.1.

ρ
∂h

∂t
+ ρu

∂h

∂x
− ∂P

∂t
+
∂ρhw

∂z
− κ2

∂2h

∂z2
=
Sht
V

(4.9)

The specific enthalpy is h, P is pressure, and cell volume is V . The first two terms are the

change rate and advection of enthalpy. The pressure work is the third term, followed by lateral

advection and turbulent mixing. The tunable parameter κ2 has units lbm/ft · s. The source Sht

is heat transfer from the surface of nuclear fuel rods to the fluid and it is defined in Section 4.2.9.

In CTF-R, the enthalpy conservation equation is discretized as follows:

(4.10)ρni
hn+1
i − hni

∆t
+ ρni ū

n
i

∂̇h

∂x

∣∣∣∣∣
n

i

−
Pn+1
i − Pni

∆t
+

Ng∑
g

[
˙(ρh)

n

gw
n
g

Lg
− κ2

hng+1/2 − h
n
g−1/2

L2
g

]
=
Sht
V i

.

Here, i indicates the current scalar cell, i− 1 is the scalar cell below it, and i+ 1 is the scalar

cell above it. The sum over gaps g connected to the scalar cell uses the same nomenclature as

Equation 4.6. The dotted quantities are upwinded for numerical stability.

∂̇h

∂x

∣∣∣∣∣
n

i

=


(hni − hni−1)/∆x, ūni > 0

(hni+1 − hni−1)/2∆x, ūni = 0

(hni+1 − hni )/∆x, ūni < 0

(4.11a)

˙(ρh)
n

g =

(ρh)ng−1/2, wng > 0

(ρh)ng+1/2, wng ≤ 0
(4.11b)

The average velocity in the advective term is currently defined as a linear average of the

surrounding velocities: ūni = (uni+1/2 + uni−1/2)/2. The cell volume is calculated using the input

continuity area for the channel Ac and the axial spacing ∆x: V i = Ac∆x.

4.2.4 Axial Momentum Equation

Derivation of the CTF axial momentum equation is in Section A.2.

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂P

∂x
+

1

ρ

∂ρuw

∂z
− κ3

ρ

∂2u

∂z2
= g + Sf (4.12)
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The first two terms are the material derivative of velocity, followed by the pressure force.

The final two terms on the left side are lateral advection and turbulent mixing. The tunable

parameter in the turbulent mixing model, κ3, has units lbm/ft · s. The gravitational constant

is g, and the friction source Sf is defined in Section 4.2.8.

In CTF-R, the momentum equations are discretized on vector cells.

un+1
i+1/2 − u

n
i+1/2

∆t
+ uni+1/2

∂̇u

∂x

∣∣∣∣∣
n

i+1/2

+
1

ρ̄ni+1/2

Pn+1
i+1 − P

n+1
i

∆x

+
1

ρ̄ni+1/2

Ng∑
g

[
˙(ρu)

n

gw
n
g

Lg
− κ3

ung+1/2 − u
n
g−1/2

L2
g

]
= g + Sf

(4.13)

The scalar cell density is not averaged: ρ̄ni+1/2 = ρni . This is a decent approximation for single

phase water, since the density is relatively constant. For other applications, an average density

should be used. The dotted quantities are upwinded.

∂̇u

∂x

∣∣∣∣∣
n

i+1/2

=


(uni+1/2 − u

n
i−1/2)/∆x, uni+1/2 > 0

(uni+3/2 − u
n
i−1/2)/2∆x, uni+1/2 = 0

(uni+3/2 − u
n
i+1/2)/∆x, uni+1/2 < 0

(4.14a)

˙(ρu)
n

g =

(ρu)ng−1/2, wng > 0

(ρu)ng+1/2, wng ≤ 0
(4.14b)

The densities in the lateral source term are averaged to the axial momentum cells: ρg+1/2 =

(ρni,g+1/2 + ρni+1,g+1/2)/2 and ρg−1/2 = (ρni−1,g−1/2 + ρni,g−1/2)/2.

4.2.5 Lateral Momentum Equation

The CTF-R lateral momentum equation is derived in Section A.3.

∂w

∂t
+

1

ρ

∂P

∂z
= H|w|w (4.15)

The change in lateral velocity is due to lateral pressure gradients, with a form loss opposing

the change. Note that the form loss—which is implemented to model the advection term and

lateral friction—is tunable using the input form loss H. The equation is discretized.

wn+1
g − wng

∆t
+

1

ρ̄ng

Pn+1
g+1/2 − P

n+1
g−1/2

Lg
= H|wng |wng (4.16)

The gap density is a linear average of the surrounding scalar cells, ρ̄ng = (ρng+1/2 + ρng−1/2)/2.
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4.2.6 Equation of State

CTF-R uses the CTF equation of state. The change in density is a linear combination of changes

due to pressure and enthalpy changes. The partial derivatives are evaluated using the existing

CTF code.

∆ρ =
∂ρ

∂P
∆P +

∂ρ

∂h
∆h (4.17)

Or, in discretized form:

ρn+1 = ρn +
∂ρ

∂P

∣∣∣∣n
i

(Pn+1
i − Pni ) +

∂ρ

∂h

∣∣∣∣n
i

(hn+1
i − hni ). (4.18)

4.2.7 Solid Energy Equation

CTF-R uses a simplified form of the conduction equation to calculate the temperature profile

in a nuclear fuel rod. First, thermal expansion is neglected, so the cold mass of material is

used. Second, the equation is simplified to eliminate radial and azimuthal conduction. Third,

this equation assumes that specific heat cp is a linear function of temperature. The continuous

control volume form of the conduction equation is used.

Mcp
∂T

∂t
=
∑
s

q′′sAs + q′′′V − Sht (4.19)

Here, M is the cold mass of the material, cp is specific heat, and T is the temperature of

the solid. For each surface s connected to a cell, q′′s is the heat flux and As is the surface area

available to heat transfer. The volumetric heat source is q′′′ and V is volume of the current cell.

Finally, Sht is heat transferred from the solid to the fluid.

The equation is discretized according to Figure 2.3, where each cell in the fuel is equally

spaced.

Micpi
Tn+1
i − Tni

∆t
=

Tni−1 − T
n+1
i

Rni−3/4 +Rni−1/4

+
Tni+1 − T

n+1
i

Rni+3/4 +Rni+1/4

+ q′′′i V i − Sht (4.20)

Here, i is the current annular solid cell, i− 1 is the cell inside it, and i+ 1 is the cell outside

it. The resistances are defined according to Table 2.1 depending on their location and they

include all information about geometry and thermal conductivity. Note that q′′′i is assumed to

be zero in the gap and cladding regions and Sht = 0 for every cell except the rod surface.

4.2.8 Friction Source Term

Friction in CTF-R appears as a source term in the axial momentum equation, Equation 4.12.

The force of friction is calculated using the Darcy friction factor f .
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Sf =
f |u|u
2Dh

(4.21)

Here, the hydraulic diameter is Dh = 4Ac/Pw. In discretized form, one velocity is evaluated

at new time and the other at the previous time step.

Sf =
fn|uni+1/2|u

n+1
i+1/2

2Dh
(4.22)

The friction factor is a function of Reynolds number and surface roughness. CTF-R uses the

same function to calculate friction factor as the main version of the code, where IRFC is the input

option. There are five options that correspond to IRFC values from 1 to 5, respectively [13]: the

original CTF correlation, modified version of the McAdams Correlation [103], Zigrang-Sylvester

Correlation [179], modified Churchill Correlation [24], and a user defined function.

4.2.9 Heat Transfer Source Term

Heat transfer between the solid and coolant is implemented as a source term in both the solid

and fluid energy equations. The wall heat transfer is the temperature potential multiplied by a

heat transfer coefficient.

Sht = hAs(Tw − Tf ) (4.23)

Here, h is the heat transfer coefficient, As is the surface area available to heat transfer, Tw

is the temperature of the wall, and Tf is the temperature of the fluid. The term is discretized

explicitly.

Sht = hnAs(T
n
co − Tnf ) (4.24)

The heat transfer coefficient is a constant in laminar flow [157] and it is calculated using the

Dittus-Boelter correlation in turbulent flow [38].

h =
kl
Dh

max
[
7.86, 0.023Re0.8Pr0.4

]
(4.25)

4.3 Implementation

The current version of CTF-R splits away from CTF after the input is read and code variables

are instantiated. This separation of the solution algorithms ensures that future merge conflicts

will be minimized.

After the input deck is read and all working arrays are initialized, CTF-R creates its own

copies of the arrays (pressure, density, enthalpy, and velocity) to work with. These arrays are

used to independently construct and solve the Jacobian. Once the Jacobian solution is found,
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the CTF-R results are copied back to the CTF arrays for the output process. In this way, the

CTF and CTF-R input/output processes are identical. The general structure of CTF and how

it relates to CTF-R is outlined in Algorithm 4.1.

Algorithm 4.1: CTF-R call structure. CTF-R and CTF solution algorithms are called
separately in the Outer iteration module. Blue text indicates a call or processes that
is relevant to the CTF-R algorithm and comments indicate important connection points
between the two codes.

1 cobra tf

2 Init tf

3 Pre input initialization

4 Input // Read Card 20 for residual options

5 Post input initialization // Initializes CTF-R arrays

6 Trans

7 pre trans

8 for n = 1 to N do
9 Time step

10 Timestep

11 prep3d // CTF working arrays copied to CTF-R arrays

12 heat

13 Outer iteration

14 if residual form then
15 inner iteration

16 build matrix

17 PETSc JacSolve

18 get deltas

19 update variables

20 check convergence

21 else
22 xschem

23 gssolv

24 end

25 post3d // CTF-R arrays copied back to CTF

26 post step

27 end
28 post trans

29 Cobra cleanup

There are four files specific to CTF-R: (1) residual drivers.F90 contains the high-level

subroutines of the code, (2) residual functions.f90 has all residual functions and other low-

level parts of the code, (3) Mod Jacobian construction.f90 defines an object and associated
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methods which are used to numerically construct the Jacobian, and (4) Mod variable index.f90

which defines a convenient structure for storing index information.

The Jacobian matrix is solved using the linear algebra package PETSc. The Generalized

Minimal Residual (GMRES) solution algorithm [146] is used with relative and absolute tolerances

available to the user via input.

4.4 SQA and V&V

SQA and V&V activities were discussed in Chapter 3. In this section, a series of defect,

verification, and validation tests are outlined to reinforce confidence in the predictions of CTF-R.

4.4.1 Software Quality Assurance

Defect tests were designed to test friction, solid conduction, heat transfer, and lateral transfer.

All test problems model subchannels with conditions and geometry similar to that in Table 4.1.

Table 4.1: Boundary conditions and geometry of CTF-R defect tests. The defect tests use
conditions representative of a PWR channel at normal operating conditions.

Parameter Symbol Value Unit

Outlet pressure Pout 152 bar
Inlet temperature Tin 292 ◦C
Mass flow rate ṁ 0.365 kg/s
Flow area A 1.1445 cm2

Wetted perimeter Pw 3.43125 cm
Axial height L 3.6 m
Rod outer diameter Dco 1.0922 cm
Fuel outer diameter Dfo 0.9400 cm

Constant Friction Factor with Exact Solution

Under steady state and isothermal conditions, the one-dimensional momentum equation (Equa-

tion 4.12) can be solved if the friction factor is a known constant.

∂P

∂x
− ρg = f

ρu2

2Dh
(4.26)

∫ Pout

P (x)
∂P =

∫ L

x

[
f
ρu

2Dh
+ ρg

]
∂x (4.27)
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(b) Comparison of code results with Equation 4.28

Figure 4.2: Constant friction factor defect test results. The defect test models a subchannel at
PWR conditions and three different friction factors with gravity both enabled and disabled. All
tests match the analytical solution to within 2× 10−6 bar.

P (x) = Pout −
[
f
ρu

2Dh
+ ρg

]
(L− z) (4.28)

The results for these tests problems are shown in Figure 4.2a for a variety of constant friction

factors with and without gravity. A comparison to the analytical solution is shown in Figure 4.2b.

CTF-R accurately predicts the steady state pressure gradient under these conditions.

Friction Factor Correlations with Approximate Solution

When the friction factor is calculated using a correlation, it varies slightly throughout the axial

length due to variations in the Reynolds number. This case cannot be solved analytically, but an

approximate solution is appropriate because the error is small in single phase flow. Isothermal

steady state flow is modeled at different inlet temperatures, pipe diameters, outlet pressures,

and axial lengths. The approximate solution is an integral form of Equation 4.28.

∆P ≈ fL ρu
2

2Dh
+ ρgL (4.29)

The friction factor is calculated using all four CTF-R correlations. The fluid properties are

evaluated at the inlet temperature and outlet pressure. These component tests are performed

for a large range of geometry and operating conditions: 1 ≤ D ≤ 10 cm, 0 ≤ ε/D ≤ 0.05,

293 ≤ Tin ≤ 374K, 0.1 ≤ Pout ≤ 15.5MPa, and 0.25 ≤ vin ≤ 5m/s. The results of the 576

defect tests are shown in Figure 4.3. They indicate correct implementation, where the constant

property assumption likely causes most of the error.
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Figure 4.3: Friction factor correlation defect test results. The approximately calculated solution
is ∆Pc and the code prediction is ∆Pp. All four friction factor correlations are tested with 148
different combinations of geometry and conditions. The maximum error is less than 0.15% and
the rRMSs are shown in the legend.

Constant Conductivities

The conduction equation can be solved for a problem with constant conductivities. For a steady

state case with constant properties, the temperature profile inside the fuel pin is calculated

analytically starting with the cylindrical conduction equation.

ρcp
∂T

∂t
=

1

r

∂

∂r

(
kr
∂T

∂r

)
+ q′′′ (4.30)

k

r

∂

∂r

(
r
∂T

∂r

)
+ q′′′ = 0 (4.31)

k
∂T

∂r
+ q′′′

r

2
+
C1

r
= 0 (4.32)

Now the boundary condition at zero is applied to find C1 = 0, then the equation is integrated

again.

∆T =
q′′′r2

4k
(4.33)

Applying this to various regions of the fuel gives the following analytical equations for

temperature at the inside of the cladding Tci, surface of the fuel Tfo, and centerline temperature

Tcl [162]:

Tci = Tco +
ln rco

rci

2πkc
(4.34a)

Tfo = Tci +
q′

2πrfohg
(4.34b)
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Tcl = Tfo +
q′

4πkf
. (4.34c)

CTF-R temperature profiles are compared to these solutions. The results are shown in Fig-

ure 4.4. The analytical solution is only compared at the outside of the cladding, inside of the

cladding, outside of the fuel, and the fuel centerline. It is shown that all of these predictions are

within 0.3K of the analytical solution, with the largest difference at the centerline. Not only is

the centerline the furthest from the fluid boundary condition, but there is significant error due

to the temperature interpolation at the center of the pin.
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(b) Comparison with Equation 4.34

Figure 4.4: Conduction equation defect test results. Six cases with varying conductivities are
tested and compared to the analytical solution. The largest error is at the fuel centerline.

Heat Transfer with Uniform Power Profile

Given a constant axial power profile and assuming that all power is deposited into the coolant,

the coolant enthalpy rise can be calculated analytically. Steady state is assumed without the

pressure gradient or dissipation terms [162].

ṁ
dh

dx
= q′(z) (4.35)

ṁ

∫ h(x)

hin

dh =

∫ x

0
q′(x)dx (4.36)
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(b) Comparison of code results with Equation 4.37

Figure 4.5: Constant heat rate defect test results. CTF-R accurately predicts the enthalpy to
within 0.25 kJ/kg for these six defect tests for a subchannel at approximately PWR conditions.

h(x) = hin +
q′x

ṁ
(4.37)

A steady state test problem is analyzed for a variety of linear heat rates. The enthalpy rise

in the fluid when modeled in CTF-R is shown in Figure 4.5a. The code and analytical results

are compared in Figure 4.5b.

Heat Transfer with Cosine Power Profile

Once the heat transfer is tested with a constant heat rate, it is necessary to also demonstrate

that the power profile is properly implemented. This series of defect tests is nearly identical to

the tests in the previous section, but with a cosine power distribution. Under this condition, the

enthalpy in the channel is calculated using Equation 4.36 with q′(x) = q′o cos(πx/L− π/2).

h(x) = hin +
q′oL

πṁ

[
1 + sin

(πx
L
− π

2

)]
(4.38)

The CTF-R results for this power distribution are shown in Figure 4.6a for a variety of heat

rates. The comparison between the CTF-R and analytical solutions are shown in Figure 4.6b.

Two Channels with Different Areas

To test the lateral momentum equation, two isothermal channels with a gap between them are

simulated. The two channels have different areas and the same inlet mass flux. The two channels

have different frictional pressure drops, which leads to a lateral pressure difference. The pressure

43



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Axial Position [m]

1298

1300

1302

1304

1306

1308

1310

1312

1314

En
th

al
py

 [k
J/k

g]
q=0.1
q=0.5
q=0.75
q=1.0
q=1.5
q=2.0

(a) Enthalpy distribution

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Axial Position [m]

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

0.02

∆
 E

nt
ha

lp
y 

[k
J/k

g]

q=0.1
q=0.5
q=0.75
q=1.0
q=1.5
q=2.0

(b) Comparison of code results with Equation 4.38

Figure 4.6: Cosine heat rate enthalpy defect tests. CTF-R accurately predicts the enthalpy to
within 0.16 kJ/kg for these test problems which approximate a PWR subchannel.

distribution in the two channels is allowed to reach steady state, at which point pressure in

laterally adjacent cells will equalize and the lateral velocities will reach a steady state value.

This problem is essentially equivalent to the flow split problem in the CTF documentation [149].

The two subchannels each have three axial cells with a total flow area equal to 0.003m2.

The results for three different area ratios are plotted in Figure 4.7. As the area ratio increases,

the pressure difference between laterally adjacent cells and the steady state value for the lateral

velocities both increase.

Two Identical Channels

For these defect tests, the lateral velocity between two identical channels is initialized to a

nonzero value. Because the two channels are identical, lateral gradients eventually equalize and

the lateral velocities go to zero. The results for these defect tests are shown in Figure 4.8. As

the initial velocity increases, the oscillations before steady state are more severe, but the velocity

eventually go to zero.

4.4.2 Solution Verification

Only one verification problem is currently used to verify CTF-R. For this isokinetic advection

problem, the initial conditions are designed such that the pressure and velocity are constant

throughout the domain, then the inlet conditions are allowed to advect through the channel at

a constant velocity, u. All closure terms are disabled for these simulations.

44



(a) A2/A1 = 1.5

(b) A2/A1 = 2.0

(c) A2/A1 = 2.5

Figure 4.7: Lateral momentum defect tests with different areas. The pressure (left) and lateral
velocity (right) are shown as a function of time. The channel numbers i and axial level j are
indicated in the legends, where the two ghost cells are j = 1 and j = 5. Over time, the lateral
pressure gradients go to zero and the lateral velocity approaches a steady state value.
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(a) w0 = 0.05 ft/s

(b) w0 = 0.10 ft/s

(c) w0 = 0.15 ft/s

Figure 4.8: Lateral momentum defect tests with equal areas. The pressure (left) and lateral
velocity (right) are shown as a function of time. The channel numbers i and axial level j are
indicated in the legends, where the two ghost cells are j = 1 and j = 5. Over time, the lateral
pressure gradients go to zero and the lateral velocity approaches zero.
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Each of the problems is run for successively refined temporal and spatial meshes. The results

are compared using the vector norms defined in Section 3.5. The observed order of accuracy

p is determined by finding a line of best fit with the exponential form, ||h|| = cxp. Here, ||h||
is the vector norm, c is some constant, and x is the mesh being refined. The coefficient of

determination, R2, demonstrates how closely the line approximates the results.

Problem Definition

With a constant velocity uo and constant pressure in single phase with no closures, the conser-

vation equations simplify significantly. The momentum equation becomes trivial, and the mass

and energy equations take similar forms.

∂ρ

∂t
+ uo

∂ρ

∂x
= 0 (4.39)

∂ρh

∂t
+ uo

∂ρh

∂x
= 0 (4.40)

The parameters which define the problem are outlined in Table 4.2. The conditions approxi-

mate a subchannel with reactor geometry at near standard pressure and temperature. There is

a maximum change in temperature of 2◦C. The water is subcooled throughout all simulations.

The inlet condition advects to the outlet in about ten seconds. The time of interest for all

simulations is when the inlet condition has advected half way through the channel.

Table 4.2: Problem Parameters for Isokinetic Advection

Parameter Symbol Value Units

Channel Length L 0.5 m
Flow Area A 0.0001 m2

Wetted Perimeter Pw 0.040 m
Pressure P 1.00 bar
Initial Temperature Tout 40 ◦C
Initial Enthalpy hout 167.6 kJ/kg
Initial Density ρout 992.22 kg/m3

Initial Flow Rate ṁout 0.005 kg/s
Velocity uo 0.05039 m/s
Inlet Temperature Tin 38 ◦C
Inlet Enthalpy hin 159.22 kJ/kg
Inlet Density ρin 992.90 kg/m3

Inlet Flow Rate ṁin 0.05004 kg/s
Hyperbolic Tangent Width l 0.05 m
Hyperbolic Tangent Offset τ 5.0 s
Cosine Wave Period p L/u s
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Three inlet condition types are chosen: square wave, hyperbolic tangent, and cosine wave.

The square wave is selected for its simplicity; both the inlet condition and the initial condition

are constant. For the square wave, solution of Equation 4.40 is a step function.

hsq =

hout, uot ≤ x

hin, uot > x
(4.41)

The second inlet condition type is the hyperbolic tangent. This condition is selected because,

like the square wave condition, it is smooth with the initial condition, but lacks the discontinuity

at the wave location.

htanh =

hout, uot ≤ x
1
2

[
(hout + hin)− (hout − hin) tanh

(
uo(t−τ)−x

l

)]
, uot > x

(4.42)

A characteristic length, l, determines how wide the hyperbolic tangent is. The constant τ is

necessary to shift the wave left, which allows the inlet and initial condition to be approximately

equal at the beginning of the simulation. When using the hyperbolic tangent inlet condition,

the time of interest for all simulations will be at five seconds plus the offset.

The final inlet condition type is a cosine wave. The cosine is selected such that it is continuous

with the initial condition.

hcos =

hout, uot ≤ x
1
2

[
(hout + hin) + (hout − hin) cos

(
2π
p

(
t− x

uo

))]
, uot > x

(4.43)

The cosine period, p, is equal to the channel length divided by the velocity, u. Therefore,

the wavelength is equal to the channel length.

To ensure that all derivatives of the solution are smooth, the initial condition should also be

a cosine shape. CTF input does not allow for nonuniform initial conditions, so there may be

a small amount of error that originates from the discontinuous second derivative at the wave

location.

Modified Equation Analysis

MEA [65] is used to define the formal order of accuracy by estimating the truncation error of a

given discretization scheme. The analysis starts with a discretized form of Equation 4.39 with a

constant positive velocity and upwinded advection term.

ρn+1
i − ρni

∆t
+ uo

ρni − ρni−1
∆x

= 0 (4.44)
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Second order Taylor series expansions about i and n are used to approximate ρn+1
i and ρni−1.

ρn+1
i = ρni +

∂ρ

∂t

∣∣∣∣n
i

∆t+
1

2

∂2ρ

∂t2

∣∣∣∣n
i

∆t2 +O
(
∆t3

)
(4.45)

ρni−1 = ρni −
∂ρ

∂x

∣∣∣∣n
i

∆x+
1

2

∂2ρ

∂x2

∣∣∣∣n
i

∆x2 +O
(
∆x3

)
(4.46)

Equations 4.44, 4.45, and 4.46 are combined and rearranged with the original conservation

equation on the left and the error terms on the right.

∂ρ

∂t
+ uo

∂ρ

∂x
=

[
uo
2

∂2ρ

∂x2

]
∆x−

[
1

2

∂2ρ

∂t2

]
∆t (4.47)

This defines the general behavior of error in CTF. The formal order of accuracy is first

order in both space and time when the higher order terms are sufficiently small that they

can be neglected. The selection of suitable ∆x and ∆t combinations is an important part

of the convergence study process. The solution must be stable, while also having a feasible

computational time. Equation 4.47 can be used to derive the CFL, which directly determines

the stability of the single-phase solutions in this work.

Equation 4.6 is used to find a relationship between the second derivative with respect to

space and the second derivative with respect to time,
(
∂2ρ/∂t2

)
= u2

(
∂2ρ/∂x2

)
. This result is

combined with Equation 4.47 to derive a stability criterion.

∂ρ

∂t
+ uo

∂ρ

∂x
=
uo∆x

2

∂2ρ

∂x2
(1− CFL) (4.48)

The CFL is defined as uo∆t/∆x. When the CFL is less than one, the error term causes

diffusion. When the CFL number is larger than one, the diffusion term becomes an anti-diffusion

operator and the solution is unstable. The CFL is below 1.0 for all simulations in this work.

Square Wave Advection Results

Typical enthalpies for the square wave advection problem are shown in Figure 4.9a. The results

are compared to Equation 4.41, which is represented as dashed lines in the figure. The difference

between the analytical and code results are shown in Figure 4.9b. CTF-R predicts the solution

well, with characteristic diffusion around the discontinuity.

A temporal order of accuracy study is performed and the results are shown in Figure 4.10.

Three norms—L1, L2, and L∞—are shown along with the lines of best fit with corresponding

R2 values. See Section 3.5 for the definition of these norms. The resulting order of accuracy is

essentially one for both codes.
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Figure 4.9: Square wave advection results. Enthalpy is plotted for an example square wave
advection run with ∆x = 0.05m, ∆t = 0.0893 s, and CFL = 0.9.
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Figure 4.10: Square wave temporal convergence study. The axial spacing is held constant at
∆x = 6.25× 10−3m while the time step size is refined by factors of two.
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Hyperbolic Tangent Advection Results

Results for the hyperbolic tangent inlet condition are shown in Figure 4.11. Similar to the square

wave results, Figure 4.11a shows the code results and analytical solution, and Figure 4.11b is

the difference between the two. The offset of the wave, τ , is sufficiently large that the solution

is smooth. The error follows the wave location and again shows the expected diffusion behavior.

0.0 0.1 0.2 0.3 0.4 0.5
Location [m]

159

160

161

162

163

164

165

166

167

168

En
th

al
py

 [k
J/k

g] Time [s]:
3.04
6.07
9.02
12.05
14.91

Code and Analytical EnthalpyCode and Analytical EnthalpyCode and Analytical EnthalpyCode and Analytical EnthalpyCode and Analytical Enthalpy

(a) Code results and analytical solutions

0.0 0.1 0.2 0.3 0.4 0.5
Location [m]

0.20

0.15

0.10

0.05

0.00

0.05

0.10

∆
En

th
al

py
 [k

J/k
g]

Time [s]:
3.04
6.07
9.02
12.05
14.91

Enthalpy DifferenceEnthalpy DifferenceEnthalpy DifferenceEnthalpy DifferenceEnthalpy Difference

(b) Error htanh − hcode

Figure 4.11: Hyperbolic tangent wave advection results. Enthalpy is plotted for an example
hyperbolic tangent advection run with ∆x = 0.05m, ∆t = 0.0893 s, and CFL = 0.9.

Temporal, spatial, and constant CFL convergence studies were performed with the hyperbolic

tangent condition and the results are shown in Figures 4.12a, 4.12b, and 4.12c, respectively. All

three studies have observed orders of accuracy approximately equal to one.

Cosine Wave Advection Results

Typical results for the cosine advection problem are shown in Figure 4.13a, and the difference

between the code and analytical solution are shown in Figure 4.13b. Again, the CTF results

are solid and the analytical solution is dashed. The code results match well with the analytical

solution.

Finally, the cosine wave isokinetic advection test problem is used to perform three convergence

studies. The results are shown in Figures 4.14a, 4.14b, and 4.14c. All observed orders of accuracy

are near unity, which demonstrates that the codes are first order in both space and time.
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Figure 4.12: Hyperbolic tangent wave convergence studies. Each study holds ∆x, ∆t, or CFL
constant while refining the mesh. All results are approximately first order.
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Figure 4.13: Cosine wave advection results. The enthalpy is plotted for a cosine advection run
with ∆x = 0.05m, ∆t = 0.0893 s, and CFL = 0.9.

Table 4.3: Summary of observed orders of accuracy. The `2 norm for each boundary condition
and convergence type are shown. All results are approximately one.

Boundary Type CTF-R CTF

square ∆t 1.012 1.012
tanh ∆t 1.006 1.006

∆x 0.932 0.932
CFL 0.974 0.974

cos ∆t 1.002 1.002
∆x 0.951 0.951

CFL 0.993 0.993

Conclusions

All observed orders of accuracy are summarized in Table C.1.

It has been shown that the formal order of accuracy and the observed order match for both

CTF and CTF-R when using an isokinetic advection test problem. Small variations can be

attributed to a variety of sources, but the differences are sufficiently small to conclude that

the code is overall first order. Therefore, the solution algorithms for both codes have been

implemented correctly. For further discussion, refer to [30, 32, 132, 136, 149].
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Figure 4.14: Cosine wave convergence studies. Each study holds ∆x, ∆t, or CFL constant
while refining the mesh. All results are approximately first order.
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4.4.3 Validation

The current validation of CTF-R includes only a separate effects study of the frictional pressure

drop, which is outlined in this section. This analysis has already been performed for the main

version of CTF and incorporated into the Validation Manual [149], and the same input decks

are used for this study.

Friction

All friction validation is for single phase flow through horizontal isothermal pipes with circular

cross sections. In these studies, the geometry is defined by pipe diameter D and total length

L. The boundary conditions are inlet velocity vin, inlet temperature Tin, and outlet pressure

Pout = Patm. The pressure drop in the pipe is measured between two locations, P1 and P2,

which are a defined distance from each end of the pipe. The geometry is shown schematically in

Figure 4.15.

D

L

LoutLin

P2P1

∆P = P1 − P2

vin, Tin

Page 1 of 1

Figure 4.15: Geometry of friction validation experiments. Each case models isothermal horizon-
tal single phase flow through a pipe.

The first set of experiments are taken from the smooth and rough pipe data of Nikuradse [118,

119]. Of the 487 tests run by Nikuradse, 398 are selected for this validation study. The results

are shown in Figures 4.16a and 4.16b for the smooth and rough data, respectively. The second

set of data is taken from the experiments of Furuichi et al. [46]. These were performed at a higher

pressure than Nikuradse’s, but all pipes were smooth. The results are outlined in Figure 4.17.

The RMS between the experimental pressure drops and the code results are summarized

in Table 4.4 for each friction factor option and each experimental setup. The second option is the

least accurate, especially for the rough data. This is because these friction factor options do not

include any effect for roughness. The second two options, which were recently implemented [163],

are much more accurate.
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Figure 4.16: Nikuradse pressure drop validation results. Both smooth pipe and rough pipe results
are plotted for all four friction factor correlations. The rRMS for each option is summarized
in the legend. The first two options are inaccurate for the rough pipe data, since they do not
account for the effect of pipe roughness.
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Figure 4.17: Furuichi pressure drop validation results. The first two options are relatively
inaccurate, with the second two matching the data extremely well.
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Table 4.4: Summary of rRMSs for separate effects friction validation. The friction factor options
corresponds to the correlations in Section 4.2.8, which are determined by the user input IRFC.
For all cases, options 3 and 4 yield better results than the other two.

IRFC Nikuradse Smooth Nikuradse Rough Furuichi

1 0.673 0.282 0.924
2 0.150 0.408 0.173
3 0.0452 0.0526 0.0363
4 0.0466 0.0469 0.0244

4.4.4 Regression Tests

A subset of the defect tests discussed in the previous sections have been selected as regression

tests. All of these are incorporated into the automated CTF test matrix. These tests are

summarized in Table 4.5. All tests are run by invoking the command ctest -R res in the CTF

build directory.

4.5 Discussion

This chapter has demonstrated the theory, conservation equations, implementation, and V&V

of a novel residual-based version of CTF. The residual form is capable of modeling single phase

flow through rod-centered subchannels with nuclear fuel rods, friction, heat transfer, and lateral

flow. Each of these capabilities have associated defect tests, though there are some features that

remain to be tested.

• No test problems have been designed where an azimuthal rod fraction is connected to

a channel. This would test that the azimuthal fraction is implemented correctly in the

conservation equations and would be necessary for channel-centered control volumes.

• The temperature dependence of the fuel thermal conductivity has not been tested. In

order to thoroughly test the conduction ;resistance analogy, a conduction solution defect

test with temperature-dependent conductivities should be implemented. For example, if

the thermal conductivity is linear k = C1 + C2T , the steady state conduction equation in

cylindrical coordinates can be solved analytically.

C1(Ti − To) +
C2

2
(T 2
i − T 2

o ) =
q′′′r2

4
(4.49)

• A channel with reverse flow should be tested to ensure that axial upwinding terms are

properly implemented.
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Table 4.5: CTF-R regression tests. Each of the 21 regression tests are listed here with their
name, the model that is tested, and general notes about the test. Each test corresponds to a
defect test that was discussed earlier in this chapter.

Name Model Notes

square Isokinetic advection square wave
cosine cosine wave
tanh tanh wave

fric g0 f001 Friction f = 0.01, g = 0
firc g0 f005 f = 0.005, g = 0
fric g0 f01 f = 0.01, g = 0
fric g1 f001 f = 0.001, g = 9.81
firc g1 f005 f = 0.005, g = 9.81
fric g1 f01 f = 0.01, g = 9.81
friction 1 Friction correlation IRFC= 1
friction 2 IRFC= 2
friction 3 IRFC= 3
friction 4 IRFC= 4

ht1 Heat transfer q′ = 0.1, constant
ht2 q′ = 2.0, constant
ht3 q′ = 0.1, cosine
ht4 q′ = 2.0, cosine

cond1 Conduction solution kf = 20, kc = 10
cond2 kf = 15, kc = 8

lat1 Lateral momentum Ar = 2.0, wo = 0.0
lat2 Ar = 1.0, wo = 0.5

• Negative lateral flows must be tested to verify that the lateral momentum equation properly

incorporates channel indeces.

• Though each code capability is tested individually, the code lacks defect tests that

incorporate combinations of models. For example, there is no test which includes both

lateral transfer and fuel rods.

• Convergence studies should be designed and implemented for the momentum equations

and the conduction solution.

Once all existing capabilities are fully tested, there are four tasks which should be performed

for CTF-R to make it more robust.

1. The Jacobian matrix is dimensional, which means that different rows can vary many orders

of magnitude. To resolve numerical issues, the Jacobian matrix can be nondimensionalized
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in one of two ways. The first option is to multiply each conservation equation by some

representative values. For example, the mass equation would become

τ

ρo

[
∂ρ

∂t
+
∂ρu

∂x
+
∂ρw

∂z
− κ1

∂2ρ

∂z2

]
= 0. (4.50)

The second option for nondimensionalizing the Jacobian is to simply multiply each row by

a constant. These constants will be selected such that each row of the Jacobian has values

of similar magnitudes.

2. The PETSc tolerances used to solve the Jacobian should be re-examined. Currently,

these values are input by the user because they are strongly problem-dependent. By

nondimensionalizing the Jacobian, these tolerances should be more universal.

3. The CTF-R algorithm currently uses CTF convergence criterion for the steady state

solution. Instead, the convergence should be based on a norm of the residuals over the

entire system. This will require three tolerances: (1) the relative value of the residuals,

(2) the absolute value of the residuals, and (3) the change in residuals between successive

iterations. This capability is partially implemented, but not currently used.

4. Finally, the nonlinear iteration should be finalized and tested. The basic structures and

algorithm for a CTF-R nonlinear iteration are already in place, but the algorithm is thus

far unused and untested. With a nonlinear iteration, the code will be much more stable as

more implicitness is added to the conservation equations.

Though CTF-R provides a much more flexible tool, it lacks many of the features already

included in the CASL version of CTF. Much of the future work for CTF-R will include the

implementation of these capabilities.

• CTF-R is currently single phase, a large amount of work will be required to transition to

two phase modeling.

• Only nuclear fuel rods are modeled in CTF-R, other solid components will need to be

implemented for reactor geometries.

• Azimuthal and axial transfer should be added to the conduction equation.

• The CTF and CTF-R turbulent mixing and lateral friction models are currently inconsis-

tent. The turbulent friction coefficients—κ1, κ2, and κ3—are currently tunable parameters

in CTF-R.

• CTF has the capability to model sections, which are axial lengths of a reactor that have

significantly different geometries. For example, these can be used to model partial-length

rods in Boiling Water Reactors (BWRs). This capability is not yet implemented in CTF-R.

• Tables for temporal or spatial variation of geometry are not read by CTF-R.
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• CTF-R is only capable of modeling the typical boundary conditions for a reactor: inlet

temperature and velocity with outlet pressure. CTF has other options which should be

implemented.

• CTF-R uses the same output files as CTF, but not all state variables have been consistently

updated in these outputs. Fuel temperature and lateral flow quantities need to be pushed

to the CTF working arrays.

• CTF-R does not track boron or model noncondensible gases.

• CTF-R does not have a restart capability.

• Error checking in CTF-R needs to be expanded.

CTF-R run times are currently longer than corresponding CTF run times for the same

problem. For example, the run times for the cosine wave spatial convergence study corresponding

to Figure 4.14b are shown in Figure 4.18. The CTF-R run times scale poorly as the mesh is

refined because the full Jacobian matrix is solved in PETSc, which takes much longer. If N is

the number of fluid cells, then the CTF matrix is N ×N and the CTF-R matrix is 3N × 3N .

In the future, this will be resolved by increasing the implicitness of the solution algorithm, using

Jacobian preconditioning, and using Jacobian-free solution algorithms.

10-4 10-3 10-2

Axial Spacing [m]

101

102

103

104

Ru
n 

Ti
m

e 
[s

]

CTF-R
CTF

Run Time (∆t=3.00e-03)

Figure 4.18: Run times for cosine verification simulations. The run times for four problems
with ∆t = 0.003 and different spatial meshes are shown for both CTF and CTF-R.

As a new code, CTF-R is not restricted to particular conservation equations, discretizations,

or solution algorithms. There are a few particular applications that represent interesting future

work.
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• Next generation reactors will be much easier to model. For example, liquid sodium and

liquid metal reactors will require that a conduction term is added to the liquid energy

equation. This is not possible in the main version of CTF, but would be trivial in CTF.

• It would be possible to add multi-physics conservation equations to the Jacobian. This

could include coupling to residual-based nuclear physics or fuel rod modeling codes. An

implicit coupling method could be used by including off-diagonal terms in the combined

Jacobian.

• CTF-R can solve the steady state conservation equations by simply eliminating the

temporal terms. This would require significant effort to develop an algorithm which sets

an initial condition which is sufficiently close to the steady state solution.

CTF-R has been developed as a flexible solver through general data structures and a

numerical construction of the Jacobian and it was designed with VVUQ explicitly in mind.

Given it’s current modeling capabilities and future potential, CTF-R will be an important

development step in the history of COBRA codes.
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CHAPTER

5

CORRELATION CALIBRATION

As part of CTF-R development, each empirical model is provided with suggested parameter

distributions for use in uncertainty analyses. These parameter distributions are based purely

on experimental data, so they will be an improvement over “expert opinion” distributions that

are commonly employed in UQ studies (see [134] for an example of traditional UQ methods).

The experimental data can be included in the code distribution and additional data may be

appended in the future. With better experimental data, the parameter estimates will be more

accurate.

The parameter estimation framework used in this chapter incorporates both frequentist and

Bayesian calibration methods. Most analyses are performed using a fixed effects statistical

model, though an initial mixed-effects analysis is used to motivate future work. Each correlation

is individually calibrated multiple times to ensure that a suitable statistical model is used. The

same process is followed for each correlation.

• The correlation purpose, origin, and inherent assumptions are outlined and discussed.

• A specific correlation is chosen for calibration that is continuous, smooth, relatively

accurate, and has reasonable derivatives with respect to all parameters.

• An extensive set of experimental data is gathered to be used in the calibration.

• An identifiability analysis is performed and used to eliminate any unidentifiable parameters.

The algorithm outlined in Section 3.8 is used for this step, where the least identifiable

parameters are successively fixed until all calibration methods run without errors.
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• The empirical model is calibrated to the experimental data using three fixed effects

statistical frameworks.

1. Algorithm 3.1: OLS asymptotic minimization.

2. Algorithm 3.2: a statistical bootstrapping method with 104 samples.

3. Algorithm 3.3: the DRAM algorithm with uninformative priors, a Gaussian likelihood

function, OLS estimates as initial values, 105 burnin samples, and 104 samples.

• A mixed-effects MLE algorithm implemented in MATLAB©, nlmefit, is employed to

demonstrate which datasets would be more accurately modeled using a mixed-effects

statistical model.

• Final remarks are made, including suggestions for parameter distributions, possible im-

provements to the model, and future work.

Four CTF-R empirical correlations are considered in this chapter: friction factor, heat

transfer coefficient, fuel thermal conductivity, and cladding thermal conductivity. This covers

all correlations that are currently implemented in the code.

5.1 Single-Phase Wall Friction

Pressure drop due to wall friction is calculated by integrating wall shear stress: τw = µ (∂u/∂y)w,

but the derivative of velocity is difficult to predict near walls so it is nondimensionalized.

f =
8τw
ρu2

(5.1)

Here, f is the Darcy friction factor, ρ is density, and u is mean flow velocity. The friction

factor is determined empirically and related to pressure drop with the Darcy-Weisbach equation.

∆P = fL
ρu2

2Dh
(5.2)

The length of a pipe is L and the hydraulic diameter is Dh. In the most general sense,

friction factor is a function of Reynolds number, pipe roughness, Grashof number, and geometry.

In most engineering applications, the effects of natural circulation and entrance effects are

neglected. In addition, correlations for circular pipes are commonly applied to all geometries,

where the hydraulic diameter is used Dh = 4A/P . Here, A is flow area and P is the wetted

perimeter. This approach is generally accepted in nuclear engineering applications, even though

it can result in errors as large as 23% [43].

Many pipe friction factor correlations exist throughout the literature, and most are based

on the graphical representation of Moody [109]. For laminar flow of incompressible Newtonian
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fluids through circular pipes, the friction factor can be analytically derived [131].

flam =
64

Re
(5.3)

In the transitional and turbulent regimes, however, the friction factor must be approximated.

Examples of commonly used correlations are those from McAdams [83, 103], Churchill [24], and

Zigrang [179]. Here we use a correlation which is a logarithmic combination of correlations for

turbulent flow through smooth pipes and flow through fully rough pipes [23].

fturb = 8

[
2.457 ln

(
1

(7/Re)0.9 + 0.27ε/D

)]−2
(5.4)

The laminar and turbulent correlations are combined using a smooth sigmoid function.

S =
1

1 + e−a(x−b)
(5.5)

Here, a and b are sigmoid parameters which determine how quickly the sigmoid transitions

from y = 0 to y = 1 and at what x-value the transition takes place. The sigmoid function is

plotted in Figure 5.1 with a = 1 and b = 0.

6 4 2 0 2 4 6
x

0.0

0.2

0.4

0.6

0.8

1.0

S

Figure 5.1: Sigmoid function. A sigmoid is any function which transitions smoothly from y = 0
to y = 1. The sigmoid used to smooth the friction factor is shown here with a = 1 and b = 0.

The laminar and smooth parts of the equation are combined such that f = (1−S)flam+Sfturb.

The sigmoid parameters are given initial values a = 0.005 and b = 2500.

(5.6)
f =

(
1− 1

1 + e−0.005(Re−2500)

)
64

Re

+

(
1

1 + e−0.005(Re−2500)

)
8

[
2.457 ln

(
1

(7/Re)0.9 + 0.27ε/D

)]−2
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This new correlation is continuous and smooth and has reasonable derivatives of the friction

factor throughout the entire parameter space. The correlation is parameterized with θ =

[θ1, θ2, θ3, θ4, θ5, θ6].

f =

(
1− 1

1 + e−θ1(Re−θ2)

)
64

Re
+

(
1

1 + e−θ1(Re−θ2)

)
8

[
θ3 ln

(
1

(θ4/Re)θ5 + θ6ε/D

)]−2
(5.7)

Because the laminar parameter is derived analytically, it is not treated as uncertain. Instead,

its application outside of the conditions for which it was derived is accounted for by additional

model error in the model uncertainty, ε (defined in Equation 3.7).

Experimental data for isothermal flow through smooth and rough circular pipes is gathered

from 24 different experimentalists. In general, these experiments consist of a long horizontal tube

through which the working fluid flows. After steady state is reached, the pressure differential

between two points in the pipe is measured. This pressure drop is used with the Darcy-Weisbach

equation to calculate the friction factor. The experiments with rough pipes are generally

performed using “artificial roughness”, where the experimentalist adheres sand or some other

small particles to the interior of the pipe. In total, there are 2,194 data points over a large

range of Reynolds numbers and pipe roughnesses. All data sources are listed chronologically in

Table 5.1 and the data is plotted in Figure 5.2.

An identifiability analysis is applied to the model. After the QR decomposition, the diagonal

elements of the matrix Q are [−261,−0.00476, 3.56,−0.242, 67.9,−45.7]. Additionally, the

sensitivity matrix is not rank deficient, so all six parameters are identifiable.

A statistical fixed effects model is formulated using Equation 3.7, where f(x,θ) is determined

according to Equation 5.7 with state points Re and ε/D. An initial OLS calibration is performed

and the residuals are shown in Figure 5.3. The shape of the residuals indicates that the

observational error is dependent upon a state variable, and therefore it is heteroskedastic.

Therefore, the original data and the model are log-transformed such that y = ln(f) instead of

y = f .

ln y = ln (f(x,θ)) + ε (5.8)

An alternative to transforming the data in this way would be to formulate an error model

such that the error scales with model values.

y = f(x,θ)(1 + ε) (5.9)

This method is not possible using the current coding implementation, so the data is trans-

formed according to Equation 5.8 instead. With the transformed model, the residuals are still

not iid, but they are much more reasonable. This is shown in Figure 5.4.
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Table 5.1: Data sources for single-phase wall friction. Sources of data are listed chronologically
with the pipe material, working fluid, and number of data points extracted.

Year Author Ref. Pipe Fluid Data points

1886 Smith [83] iron water 13
1909 Schoder [83] iron water 32
1909 Eberle [83] iron steam 13
1914 Gibson [83] copper water 15
1914 Stanton & Pannell [158] brass water, air 312
1918 Greve [83] plastic black water 42
1920 Scobey [26] concrete air 5
1922 Corp & Ruble [83] iron water 58
1923 Francis [83] iron water 57
1923 Freeman [83] brass, iron water 224
1923 Darcy [83] iron water 10
1923 Mills [83] bass water 25
1927 Corp & Hartwell [83] iron, steel water 244
1930 Hsaio [83] glass, copper, iron water 183
1930 Carnegie [83] steel steam 21
1932 Nikuradse [119] brass water 123
1933 Nikuradse [118] sanded brass water 362
1937 Colebrook & White [27] roughened metal air 50
1969 Patel & Head [128] brass air 53
1982 Schlichting & Gersten [150] 98
1998 Zagarola & Smits [178, 106] aluminum air 26
2002 Swanson et al. [160, 106] stainless steel gases, liquid He 59
2015 Furuichi et al. [46] glass water 66
2017 Everts & Meyer [39] copper water 103
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(a) two-dimensional representation, similar to the Moody chart
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Figure 5.2: Friction factor experimental data. Friction factors are dependent upon the Reynolds
number and pipe roughness. The color scheme indicated in the legend is used throughout this
section.
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Figure 5.3: Friction factor residuals for untransformed data. The residuals between the data
and model vary by many orders of magnitude, which requires a change to the statistical model
because the observational error is heteroskedastic.
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Figure 5.4: Friction factor residuals for transformed data. The residuals between the friction
factor data and optimized model are more reasonable than for the untransformed data.
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Table 5.2: Friction factor marginal parameter distributions. The distributions of all six pa-
rameters are summarized by their mean (µ) and standard deviation (σ). These results do not
include covariance between the parameters, which is also estimated by all three methods.

Initial Asymptotic Bootstrap DRAM
value µ σ µ σ µ σ

θ1 0.005 0.00443 0.000327 0.00442 0.000328 0.00419 0.000388
θ2 2500 2531 17.09 2531 17.18 2535 16.69
θ3 2.457 2.262 0.02363 2.261 0.02377 2.245 0.02561
θ4 7 6.544 0.3653 6.567 0.3704 6.568 0.3731
θ5 0.9 0.9663 0.01358 0.9667 0.01366 0.9741 0.01475
θ6 0.27 0.1292 0.009120 0.1294 0.009186 0.1232 0.009890
σ2 0.0881 0.0815 – 0.0815 0.00184 0.0815 0.00124

With the statistical model selected, the three different fixed effects methods are applied:

OLS calibration, bootstrapping, and DRAM. All results are summarized in Table 5.2, which

shows the marginal distribution of each parameter for the three methods as well as the estimates

of the observational error. In addition, Figure 5.5 plots these distributions.

The covariance structure of the parameters is not trivial in this example. The propagation of

marginal distributions can lead to a significant overprediction of uncertainty, so the covariance

matrix should also be propagated for UQ studies. The three methods have similar results, so

the DRAM covariance is shown here.

Vdram =



1.50× 10−7 −1.30× 10−3 8.65× 10−7 −4.48× 10−5 −1.03× 10−6 3.02× 10−7

−1.30× 10−3 2.79× 10+2 −2.21× 10−2 2.34× 10+0 4.44× 10−2 −7.86× 10−3

8.65× 10−7 −2.21× 10−2 6.56× 10−4 −3.25× 10−3 −3.42× 10−4 2.49× 10−4

−4.48× 10−5 2.34× 10+0 −3.25× 10−3 1.39× 10−1 3.83× 10−3 −1.15× 10−3

−1.03× 10−6 4.44× 10−2 −3.42× 10−4 3.83× 10−3 2.17× 10−4 −1.28× 10−4

3.02× 10−7 −7.86× 10−3 2.49× 10−4 −1.15× 10−3 −1.28× 10−4 9.78× 10−5


(5.10)

Once the fixed effects model is finalized and all methods have similar results, a mixed-effects

model can be employed. The systematic differences between different laboratories are due to (1)

differences in the onset of turbulence due to entry geometry and other effects [160], (2) variations

in the fluid properties used to calculate Re and f , (3) different manufacturing procedures and

measurement techniques for pipe roughness, (4) possible biases in measurement methods or

equipment, and (5) any human errors such as offsets in plotting or incorrect calculations.

With better experimental data, these sources of uncertainty could be minimized. In the

meantime, a mixed-effects model can indicate those experiments which are significantly different

than the others. A MATLAB© algorithm, nlmefit, is used to calculate an MLE estimate of

the parameters. The resulting parameter estimates and covariance matrix of the mixed-effects,
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Figure 5.5: Friction factor results. The three different fixed effects models have similar estimates
for all six parameters as well as the estimate of variance, σ2.
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Figure 5.6: Friction factor mixed-effects residuals. The residuals for the mixed-effects model are
smaller than the fixed effects residuals. This indicates that the mixed-effects model appropriately
accounts for systematic differences between the laboratories.

Ψ, are shown in Table 5.3.

Since the mixed-effects model accounts for differences between the laboratories, the resulting

model is more accurate. To demonstrate this, the residuals are shown in Figure 5.6. There is an

overall reduction in the residuals compared to Figure 5.4.

The fixed effects and mixed-effects residuals are compared in Figure 5.7. Each data set is

shown as a separate box plot, each of which indicate the quartiles, minimum, maximum, and

outliers for each laboratory. Many of the fixed effects box plots are significantly displaced from

zero. In the mixed-effects analysis, the residuals are mostly centered about zero and therefore the

laboratory errors are accounted for. In addition, the overall error is smaller for the mixed-effects

results, which is displayed on the plot as a mean squared error.

Finally, the transition region is shown in Figure 5.8 with data from four of the laboratories.

The plot also shows the fixed effect result and the global parameters of the mixed-effects analysis.

This is a situation where the fixed model cannot account for laboratory errors.

The friction factor correlation was calibrated using a fixed effects statistical model. It

was shown that all three models give similar results for the joint parameter distribution and

observational error. In addition, the mixed-effects analysis accounted for systematic biases in

the data that artificially inflate the observational error in the fixed effect model.

5.2 Convective Heat Transfer

Heat transfer from a heated solid to a flowing liquid is an important physical process, especially

in nuclear reactors. This heat transfer process is governed by the heat transfer coefficient, which
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Table 5.3: Estimated parameter values for mixed-effects friction model. Results are summarized
for the frequentist nlmefit MATLAB© algorithm, where the combination of fixed and mixed
results θ + β are shown along with the covariance matrix of the mixed-effects Ψ.

nlmefit parameter estimates

Parameter i = 1 i = 2 i = 3 i = 4 i = 5 i = 6
θi + βi1 0.008123 2576.8 2.153 4.255 0.894 -0.0252
θi + βi2 0.008123 2576.8 2.205 3.767 0.925 0.0757
θi + βi3 0.008123 2576.8 2.207 3.158 0.946 0.0913
θi + βi4 0.003896 2508.5 2.271 6.231 0.952 -0.0073
θi + βi5 0.008123 2576.8 2.214 4.184 0.920 0.0660
θi + βi6 0.008123 2576.8 2.141 1.746 0.865 0.0533
θi + βi7 0.008123 2576.8 2.244 3.032 0.934 0.0612
θi + βi8 0.008123 2576.8 1.977 0.298 0.770 0.0037
θi + βi9 0.005666 2584.7 2.251 9.530 0.999 0.1484
θi + βi10 0.007654 2449.0 2.199 3.665 0.909 0.0624
θi + βi11 0.008127 2576.8 2.162 3.873 0.927 0.0964
θi + βi12 0.008127 2576.8 1.965 0.281 0.815 0.0128
θi + βi13 0.008883 2473.0 2.243 5.597 0.930 0.0073
θi + βi14 0.008127 2576.8 2.103 4.905 0.860 -0.0091
θi + βi15 0.009217 2543.6 2.572 1.842 0.771 0.2816
θi + βi16 0.008375 2572.1 2.056 4.511 1.003 0.0606
θi + βi17 0.007005 2473.6 2.196 3.276 0.907 0.0612
θi + βi18 0.004014 2803.3 2.263 5.448 0.945 0.0612
θi + βi19 0.008127 2576.8 2.262 5.237 0.944 0.0612
θi + βi20 0.011908 2912.2 2.264 5.415 0.945 0.0612
θi + βi21 0.008127 2576.8 2.317 8.269 0.974 0.0612
θi + βi22 0.014653 2447.9 2.178 2.826 0.897 0.0612

σ2 0.004195

Ψ



1.74× 10−5 0 0 0 0 0
0 30670 0 0 0 0
0 0 0.0331 0 0 0
0 0 0 7.54 0 0
0 0 0 0 0.00762 0
0 0 0 0 0 0.00778
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(a) Fixed effects model
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(b) Mixed-effects model

Figure 5.7: Friction factor residual box plots. The mixed-effects model accounts for systematic
biases due to the different laboratories.
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Figure 5.8: Example of mixed-effects results for the friction factor. A selection of smooth
pipe results are plotted here with (1) the fixed effect DRAM results, (2) the fixed part of the
mixed DRAM model, and (3) the overall mixed-effects model for each laboratory. The clear
biases between the different experiments in the transition regime are accounted for in the mixed
framework.
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relates heat flux to a temperature difference.

h =
q′′

Tw − Tf
(5.11)

Here, the heat transfer coefficient h is related to the heat transfer per area from the solid q′′

and the temperature differential between the wall and the bulk fluid Tw − Tf . In general terms,

the heat transfer coefficient is influenced by the Reynolds number, Prandtl number, Grashof

number, pipe roughness, entrance effects, and geometry. Similar to the friction factor correlation,

the effect of natural circulation and entrance effects are assumed negligible. The roughness effect

is generally neglected as well. The heat transfer coefficient is determined empirically based on

experimental data for smooth pipes, where an equivalent diameter is used for other geometries.

The most commonly used correlation is that of Dittus-Boelter, which is for heating of internal

flow through smooth tubes.

Nu = 0.023Re0.8Pr0.4 (5.12)

Here, Nu is the Nusselt number and Pr is the Prandtl number. The Prandtl exponent is

changed to 0.3 for cooling liquid, but this section is only concerned with heating because it

is the general mode of transfer in nuclear reactors. As pointed out in [176], this form of the

heat transfer correlation is incorrectly attributed to Dittus and Boelter’s work [38]. Instead, it

originated in an early edition of McAdams’ heat transfer book [103]. It is derived through a

combination of the Chilton-Colburn analogy with Moody’s equation for friction in smooth pipes

f = 0.184/Re0.2, where the Prandtl exponent is adjusted to fit data.

Nu =
fRePr1/3

8
=

0.184RePr1/3

8Re0.2
= 0.023Re0.8Pr

1/3 (5.13)

McAdams merely credited Dittus and Boelter with the use of average fluid properties

rather than film properties in the equation. Nonetheless, the Dittus-Boelter correlation is used

throughout the nuclear industry to approximate heat transfer in nuclear reactors. It is included

in the heat transfer models of CTF, CTF-R, and RELAP5-3D©.

The correlation is calibrated to an extensive set of experimental data for heat transfer

from smooth tubes to flowing fluid. Twelve sources are used to obtain 829 data points for the

calibration. All data sources are shown chronologically in Table 5.4 with the type of transfer

measured, the material of the pipe used, the working fluid, and number of data points extracted.

The data is plotted in Figure 5.9 as the traditional two-dimensional plot with the Reynolds

number and Prandtl number are collapsed into a single dimension, as well as in three dimensions.

The Dittus-Boelter equation is parameterized with θ = [θ1, θ2, θ3].

Nu = θ1Re
θ2Prθ3 (5.14)
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Figure 5.9: Heat transfer experimental data. Heat transfer is determined by the Nusselt number,
which depends on Reynolds number and Prandtl number. Both plots also show a the calibrated
Dittus-Boelter model.
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Table 5.4: Data sources for the heat transfer correlation. Each source is indicated chronologically
with the transfer type modeled, pipe material, working fluid, and number of data points extracted.

Year Author Ref.
Transfer

Pipe Fluid
Data

type points

1928 Morris & Whitman [113] heating steel water 12
oil 44

cooling 62
1931 Lawrence & Sherwood [87] heating copper water 127
1932 Sherwood & Petrie [152] heating copper water 34

acetone 34
benzene 83
kerosene 79

n-butyl alc. 30
1952 Deissler & Eian [36] heating Inconel air 74
1962 Leung et al. [89, 105] heating Inconel air 14
1963 McEligot et al. [104] heating Inconel air, He 66
1963 Kays & Leung [79] heating Inconel air 29
1964 Allen & Eckert [6] heating stainless steel water 37
1964 Malina & Sparrow [97] heating stainless steel water 29

oil 53
1965 Harriott & Hamilton [61] mass benzoic acid glycerin sol. 58
1968 Dickinson [37, 155] heating stainless steel water 12
2011 Abraham et al. [2] heating air 14

An initial OLS calibration indicates that the residuals are non-iid, as shown in Figure 5.10.

The heteroskedastic Nusselt number errors range over four orders of magnitude, which leads

to huge variation in the corresponding residuals. As such, the heat trasfer data and model are

logarithmically transformed such that ln y = ln f . This is the same transformation that was

used for the friction factor model.

The residuals for the transformed model are plotted in Figure 5.11 against both the Reynolds

number and Prandtl number. Once the heat transfer correlation is transformed, the residuals

behave much more appropriately.

The identifiability analysis of the Dittus-Boelter equation is performed and the resulting

diagonal elements of Q are [−825, 36.0, 66.7]. The sensitivity matrix is rank sufficient, so the

three parameters are uniquely identifiable. Therefore, the model with three parameters will be

used for the fixed effects analysis.

After the data and model are finalized and the identifiable and sensitive parameters are

selected, the three fixed effects calibration methods are applied. The marginal distributions of

the parameters are summarized as a mean and standard deviation in Table 5.5. In addition, the
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Figure 5.10: Heat transfer residuals for untransformed data. The residuals between the data
and model vary by many orders of magnitude, which must be treated so that the iid assumption
of the statistical model is not violated.
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Figure 5.11: Heat transfer residuals for transformed data. The residuals between the experiment
and optimized model are more iid for the transformed data.
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Table 5.5: Heat transfer parameter results. The distributions of all six parameters are summa-
rized by their mean (µ) and standard deviation (σ). These results do not include covariance
between the parameters, which is also estimated by all three methods.

Initial Asymptotic Bootstrap DRAM
value µ σ µ σ µ σ

θ1 0.023 0.0349 0.00244 0.0350 0.00242 0.0367 0.00247
θ2 0.8 0.761 0.00682 0.761 0.00677 0.757 0.00689
θ3 0.4 0.384 0.00380 0.384 0.00384 0.378 0.00386
σ2 0.252 0.246 – 0.245 0.0231 0.246 0.00604
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Figure 5.12: Heat transfer marginal parameter distributions. The three different fixed effects
models have similar estimates for all six parameters as well as the estimate of variance, σ2.

estimates of variance of the observational error σ2 are shown.

The estimate of the covariance matrix from the DRAM algorithm is shown here.

Vdram =

 6.11× 10−6 −1.68× 10−5 −3.34× 10−6

−1.68× 10−5 4.75× 10−5 6.54× 10−6

−3.34× 10−6 6.54× 10−6 1.49× 10−5

 (5.15)

Two of the parameters, θ1 and θ2, are strongly correlated (corr (θ1, θ2) = cov (θ1, θ2)/(σθ1σθ2) =

0.99). As such, it will be important to incorporate the joint distribution into any future propa-

gation exercises.

Before transitioning to a mixed-effects analysis, the strong correlation between θ1 and θ2 will
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require an adjustment to the model. Even though the two parameters are strictly identifiable,

their strong correlation will cause the mixed-effects model to be overparameterized. As such,

either θ1 or θ2 will be fixed for the mixed-effects analysis. Here, we fix θ2 to its optimized value.

Nu = θ1Re
0.761Prθ3 (5.16)

Fixing θ2 is consistent with experimental procedures, since most experimentalists tune θ1

to match data. The results from nlmefit are shown in Table 5.6. The results indicate that a

mixed-effects model would be beneficial and account for laboratory errors.

Table 5.6: Estimated parameter values for mixed-effects heat transfer model. Results are
summarized for the frequentist nlmefit MATLAB© algorithm and DRAM method, where the
combination of fixed and mixed results θ + β are shown along with the covariance matrix of the
mixed-effects Ψ.

nlmefit

Parameter i = 1 i = 2
θi + βi1 0.0556 0.216
θi + βi2 0.0316 0.487
θi + βi3 0.0335 0.447
θi + βi4 0.0284 0.405
θi + βi5 0.0323 0.407
θi + βi6 0.0290 0.406
θi + βi7 0.0325 0.401
θi + βi8 0.0383 0.423
θi + βi9 0.0380 0.393
θi + βi10 0.0443 0.340
θi + βi11 0.0378 0.427
θi + βi12 0.0294 0.405

σ2 0.03363

Ψ
[
6.38× 10−5 0

0 8.68× 10−3

]

The residuals between the mixed-effects results and the experimental data are shown in

Figure 5.13. A small reduction is apparent when these residuals are compared to Figure 5.11.

The residuals for the fixed and mixed-effects models are compared in Figure 5.14. Similar

to the friction factor results, this demonstrates how a mixed-effects statistical model improves

model predictions.

The Dittus-Boelter equation was calibrated to an extensive set of data in this section. Future

work should transition nuclear codes to correlations which account for natural circulation and
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Figure 5.13: Heat transfer mixed-effects residuals. These residuals are smaller than the fixed
effects residuals, which indicates that the mixed-effects model accounts for laboratory errors.

entrance effects (such as the Gnielinski equation [51]). These effects are relatively small in LWRs

at normal operating conditions, but they will be important in next generation reactors which

often rely on natural circulation and use working fluids which have thicker thermal boundary

layers than water. In addition, the correlation should be adjusted to account for rod array

geometries and the incorporation of roughness effects.

5.3 Uranium Dioxide Thermal Conductivity

Because fuel temperature is an important safety criteria for nuclear reactors, the fuel thermal

conductivity is a very important model. An inaccurate prediction of thermal conductivity can

drastically impact the predicted temperature distribution in the fuel. This is especially true

for thermal hydraulic codes, which do not have any feedback mechanisms to reduce the fuel

temperature if it is overpredicted.

Various correlations for thermal conductivity of uranium dioxide are used throughout the

industry including the various versions of Material Properties (MATPRO) [59, 154], the Nuclear

Fuel Industries (NFI) model [123], the SIM-FUEL model [94], and the Massih model [99]. The

most commonly used correlation, the modified NFI model [86], is selected in this work. It was

designed for use in FRAPCON, is used in RELAP5-3D© [5], and was recently incorporated

into the CTF fuel rod model [164].

The modified NFI model alters the temperature-dependent part of the original NFI model

and incorporates the gadolinium term suggested by Massih [99].
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(a) Fixed effects model
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(b) Mixed-effects model

Figure 5.14: Heat transfer residual box plots. The mixed-effects model accounts for systematic
biases due to the different laboratories.

(5.17)

kf =

[
4.52× 10−2 + 2.46× 10−4T + 1.1599x+ 1.87× 10−3BU

+ 0.038
BU0.28

(
1− 0.9e−0.04BU

)
1 + 396e−6380/T

]−1
+

3.5× 109

T 2
e−16361/T

Here, k is the fuel thermal conductivity in W/(mK), T is temperature in Kelvin, x is weight

percent gadolinium, and Bu is burnup in GWd/MTU . Note that the correlation is not derived

analytically and therefore has inconsistent units. The modified NFI model does not account for

non-ideal stoichiometry of uranium dioxide or thermal recovery after heating.

The thermal conductivity of nuclear fuel has been the subject of various experiments since

the 1970’s. Experimental limitations forced early experimentalists to use only unirradiated

pure UO2, but recent studies have been conducted with a variety of burnup and gadolinium

contents. For this work, only data extracted using reliable experimental methods is considered

and experiments with theoretical densities lower than those in nuclear reactors are excluded. All

sources of data used in this work are summarized chronologically in Table 5.7. Most experiments

consisted of a thin slab of UO2 which was heated on one side and the temperature response was

measured on the opposite side. Using the steady state conduction equation, the average thermal

conductivity in the slab was estimated.

The experimental data is plotted in Figure 5.15. In total, 1,608 data points have been

extracted from the available literature. The state space is very well explored for unirradiated

fuels, but there is a lack of data for irradiated fuels; for irradiated pellets, there are only 154 data
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Table 5.7: Data sources for the thermal conductivity of fuel. Each source is listed chronologically
with its burnup, gadolinium content, and number of data points extracted.

Year Author Ref.
Burnup Gadolinium Data

[GWd/MTU] [wt%] points

1960 Lucks & Deem [93] 0 0 15
1964 Christensen et al. [59] 0 0 10

Godfrey et al. [52, 59] 0 0 57
Stora et al. [159] 0 0 13

1970 Bates [15, 59] 0 0 153
1971 Gibby [49, 59] 0 0 45
1972 Fayl & Hansen [41] 0 0 9

Weilbacher [172, 59] 0 0 30
1973 Goldsmith & Douglas [53, 59] 0 0 52

Washington [171] 0 0 144
1974 Hobson et al. [66, 59] 0 0 36
1982 Fukushima et al. [45] 0 0-10 525

Newman [99] 0 0-6 45
1990 Hirai [64] 0 0-10 122
1994 Carrol et al. [86] 40 0 10
1996 Nakamura et al. [116] 63 0 30
1997 Ohira & Itagaki [123] 61 0 12
1999 Ronchi et al. [142] 0 0 125
2000 Ikeda et al. [72] 0, 40 0, 10 57
2002 Amaya et al. [7] 38-61 0-4.5 84
2004 Ronchi et al. [143] 30-60 0 11
2006 Walker et al. [169] 100 0 23

points without additives and 59 points with gadolinium. Note that the thermal conductivities of

all experiments have been adjusted to 95% theoretical density using Loeb’s porosity correction

factor [92].

The modified NFI correlation is initially parameterized with 12 parameters.

kf =

[
θ1 + θ2T + θ3x+ θ4BU + θ5

BU θ6
(
1− θ7e−θ8BU

)
1 + θ9e−θ10/T

]−1
+
θ11
T 2

e−θ12/T (5.18)

The identifiability analysis indicates that the sensitivity matrix is rank deficient, so one

parameter is unidentifiable. The initial sensitivity results indicate diagonal elements of Q in

the QR decomposition of [396, 2.82× 105, −811, −5490, 102, 2.83, 0.00325, −0.510, 0.0415,

−3.28× 10−4, −3.73× 10−10, −0.005 93]. The unidentifiable parameter, θ11, is fixed along with

other nearly identifiable parameters. The resulting model has five parameters.
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Figure 5.15: Fuel thermal conductivity experimental data. The empirical model for uranium
dioxide thermal conductivity is four dimensional and therefore difficult to plot. All data is
shown here, though it should be noted that burnup and gadolinium content both degrade the
thermal conductivity.
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(5.19)kf =

[
θ1 + θ2T + θ3x+ θ4BU + θ5

BU0.28
(
1− 0.9e−0.04BU

)
1 + 396e−6380/T

]−1
+

3.5× 109

T 2
e−16361/T

An initial OLS optimization is performed using the selected parameterized model. The

resulting residuals are shown in Figure 5.16. The residuals are plotted with respect to the

different independent variables in Figures 5.16a, 5.16b, and 5.16c. A few of the datasets have

clear lines on the residual plot, which indicate that there is a dependence between the residual

and the independent variables. Therefore, the residuals are not iid.

The three fixed effects calibrations are performed and resulting marginal parameter distribu-

tions are summarized in Table 5.8. The results for all five parameters match relatively well for

both their mean and standard deviation. The mean model variance σ2 is almost the same for

all three methods, and is significantly reduced when compared to the initial model.

Table 5.8: Fuel thermal conductivity marginal parameter distributions. The distributions of all
five parameters are summarized by their mean (µ) and standard deviation (σ). The variance σ2

of observational error is also included.

Initial Asymptotic Bootstrap DRAM
value µ σ µ σ µ σ

θ1 0.0452 0.1158 0.001160 0.1165 0.001166 0.1162 0.001181
θ2 0.000246 0.000206 0.00000227 0.000203 0.00000218 0.000205 0.00000224
θ3 1.1599 0.0186 0.000522 0.0184 0.000511 0.0190 0.000556
θ4 0.00187 0.00144 0.000314 0.00181 0.000319 0.00177 0.000304
θ5 0.038 0.0251 0.00691 0.0160 0.00694 0.0172 0.00661
σ2 1.947 0.416 – 0.415 0.00875 0.416 0.00727

These distributions are plotted in Figure 5.17. The parameter distributions are slightly

offset from one another, but still relatively consistent. The covariance matrix from the DRAM

algorithm is given here.

Vdram =


1.40× 10−6 −2.00× 10−9 −7.34× 10−9 1.75× 10−8 −5.76× 10−7

−2.00× 10−9 5.02× 10−12 −3.01× 10−10 −4.74× 10−11 8.96× 10−10

−7.34× 10−9 −3.01× 10−10 3.09× 10−7 7.40× 10−9 −1.70× 10−7

1.75× 10−8 −4.74× 10−11 7.40× 10−9 9.21× 10−8 −1.94× 10−6

−5.76× 10−7 8.96× 10−10 −1.70× 10−7 −1.94× 10−6 4.37× 10−5

 (5.20)

Once the fixed effects analysis is complete, the correlation is analyzed using a mixed-effects

model. For the thermal conductivity experiments, laboratory errors originate from considerations

such as (1) measurement techniques or accuracy, (2) inaccurate theoretical density measurements,

(3) non-stoichiometric samples, and (4) different delays between irradiation and measurement.
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Figure 5.16: Fuel thermal conductivity residuals. The residuals between the experiment and
optimized model are relatively centered about zero, though there do appear to be some trends
in the data.
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Figure 5.17: Fuel thermal conductivity marginal parameter distributions. The three fixed
effects models have similar estimates for all five parameters as well as the estimate of variance,
σ2.
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Accounting for these differences will result in a more accurate statistical model. The mean total

parameter values θ + β are shown in Table 5.9 for the nlmefit algorithm.

Table 5.9: Estimated parameter values for mixed-effects fuel thermal conductivity model. Re-
sults are summarized for the frequentist nlmefit MATLAB© algorithm, where the combination
of fixed and mixed results θ+ β are shown along with the covariance matrix of the mixed-effects
Ψ.

nlmefit

Parameter i = 1 i = 2 i = 3 i = 4 i = 5
θi + βi1 0.0951 0.000253 0.0133 0.00214 0.0229
θi + βi2 0.1485 0.000183 0.0133 0.00214 0.0229
θi + βi3 0.1308 0.000238 0.0133 0.00214 0.0229
θi + βi4 0.1425 0.000171 0.0133 0.00214 0.0229
θi + βi5 0.0813 0.000225 0.0133 0.00214 0.0229
θi + βi6 0.0930 0.000224 0.0133 0.00214 0.0229
θi + βi7 0.1014 0.000217 0.0133 0.00214 0.0229
θi + βi8 0.2101 0.000100 0.0133 0.00214 0.0229
θi + βi9 0.1123 0.000209 0.0133 0.00214 0.0229
θi + βi10 0.2421 0.000079 0.0133 0.00214 0.0229
θi + βi11 0.1270 0.000174 0.0133 0.00214 0.0229
θi + βi12 0.1108 0.000231 0.0212 0.00214 0.0229
θi + βi13 0.1260 0.000225 0.0116 0.00214 0.0229
θi + βi14 0.1074 0.000185 0.0117 0.00214 0.0229
θi + βi15 0.1474 0.000187 0.0133 0.00218 0.0245
θi + βi16 0.0787 0.000180 0.0133 0.00199 0.0179
θi + βi17 0.1442 0.000177 0.0133 0.00219 0.0251
θi + βi18 0.1450 0.000198 0.0133 0.00234 0.0290
θi + βi19 0.0845 0.000218 0.0109 0.00222 0.0225
θi + βi20 0.1271 0.000162 0.0113 0.00191 0.0169
θi + βi21 0.1348 0.000158 0.0133 0.00218 0.0241

σ2 0.05026

Ψ

 0.00176 0 0 0 0
0 1.99× 10−9 0 0 0
0 0 1.68× 10−5 0 0
0 0 0 8.57× 10−8 0
0 0 0 0 5.07× 10−5



The parameters which are related to burnup and gadolinium content are the same as the

global parameter for those cases without data for those conditions. For example, θ3 is the same

for almost all datasets, since only five laboratories did experiments with gadolinium content.

Therefore, these parameters would be unidentifiable in a general mixed-effects framework and

likely lead to overparameterization.
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Figure 5.18: Fuel thermal conductivity mixed-effects residuals. The residuals for the mixed-
effects model are smaller than the fixed effects residuals.

The residuals for the mixed-effects analysis are shown in Figure 5.18. Overall, they are

smaller than the fixed residuals. The residuals are also summarized in Figure 5.19, where the

residuals from each laboratory are grouped and summarized using box plots. The fixed effects

residuals in Figure 5.19a indicate severe biases in some of the laboratories, where the biases

have been mostly resolved in Figure 5.19b.

Future analyses of the fuel thermal conductivity should focus on gathering experimental

data for irradiated fuels. This type of data is often proprietary due to cost and safety issues. In

addition, the thermal recovery of fuel after it has been heated should be analyzed. Because the

fuel temperature is so sensitive to thermal conductivity, these small improvements could lead to

large improvements in code predictions.

5.4 Zirconium Cladding Thermal Conductivity

The thermal conductivity of cladding is the final empirical model in CTF-R. It has a small

impact on single phase safety parameters, and therefore only a fixed effects calibration is

performed for this correlation. The calibration model is taken from an IAEA report [1], where a

quadratic fit is made to experimental data from a variety of sources.

kc = 13.09− 7.92× 10−4T + 9.043× 10−6T 2 (5.21)

Here, the thermal conductivity of the cladding kc depends only on temperature T . A cubic

fit to the data was also considered, but it did not yield significant improvements in accuracy.

The correlation is parameterized with θ = [θ1, θ2, θ3].
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(a) Fixed effects model
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(b) Mixed-effects model

Figure 5.19: Fuel thermal conductivity residual box plots. The mixed-effects model accounts
for systematic biases due to the different laboratories.

kc = θ1 − θ2T + θ3T
2 (5.22)

The experimental data is taken from the same IAEA report as the correlation [1]. The data

was extracted from a variety of sources and inaccurate data was neglected. The resulting data

is plotted in Figure 5.20.

The results of the three fixed effects analyses are outlined in Table 5.10. The marginal

distributions of the three parameters are summarized as a mean and standard deviation.

Table 5.10: Cladding thermal conductivity fixed marginal distributions. The distributions of
the three parameters are summarized by their mean (µ) and standard deviation (σ).

Initial Asymptotic Bootstrap DRAM
value µ σ µ σ µ σ

θ1 13.09 12.97 0.363 12.97 0.364 12.96 0.359
θ2 0.000792 0.000769 0.000861 0.000778 0.000865 0.000758 0.000850
θ3 9.04× 10−6 9.07× 10−6 4.70× 10−7 9.08× 10−6 4.73× 10−7 8.09× 10−6 4.63× 10−7

σ2 0.958 0.955 – 0.953 0.0491 0.957 0.0429

For the joint parameter distribution, the DRAM covariance matrix is also calculated.

Vdram =

1.29× 10−1 2.93× 10−4 1.48× 10−7

2.93× 10−4 7.22× 10−7 3.84× 10−10

1.48× 10−7 3.84× 10−10 2.14× 10−3

 (5.23)
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Figure 5.20: Cladding thermal conductivity experimental data.

The residuals for the DRAM calibration are shown in Figure 5.21. These residuals are

relatively iid with no obvious trends. Finally, the three parameter distributions are plotted in

Figure 5.22 along with the estimate of variance for each of the fixed effects models.

Future work with the cladding thermal conductivity will require the addition of more

experimental data and the separation of the existing data into different laboratories. In addition,

zirconium properties change significantly with burnup, stress, and hydrogen deposition. None of

these contributions are currently accounted for.

5.5 Discussion

The calibration exercises in this chapter did not account for some sources of uncertainty in

the data or the model. All of the models do not account for some independent variables that

significantly impact the quantity of interest. All correlations are for steady state conditions.

The correlations for friction and heat transfer are both for fully developed steady state flow in

tubes. Significant improvements in the models can be made by accounting for these higher-order

dependencies, which would reduce the model form uncertainty in the code.

Much of the data utilized in this section was digitized using plots in the literature. This

process is prone to human error and there is inherent uncertainty that scales with the quality

of the images used. Some of the data was extracted in tabular form, but assumptions were

usually necessary to put it in a useable form. For example, standard temperature and pressure

(P = 1 atm and T = 20◦C) were often assumed for the friction factor experiments. Finally, it
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Figure 5.21: Residuals for cladding thermal conductivity model. The residuals for the thermal
conductivity model are relatively iid with a mean of zero.
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Figure 5.22: Cladding thermal conductivity parameter results. The three different fixed effects
models have similar estimates for the three parameters as well as the estimate of variance, σ2.
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was not always possible to calculate fluid properties using the same methods as the original

literature. This could lead to large uncertainties in some experiments, especially those that used

atypical working fluids.

Further, none of the experiments employed in the calibration exercises were taken from

validation experiments. As such, thorough measurements of state variables were not always

performed, most lacked any quantification of measurement uncertainty, and there were no

repeated experiments. In the future, experiments should be designed and executed for the

primary purpose for use in validation. This would greatly increase the accuracy and dependability

of analyses in this chapter.

The fixed effects statistical model could be improved in many ways. Uncertainty in the state

variables was not included in any of the analyses. This uncertainty, especially for nondimensional

numbers in the older data sets, could be quite large. The friction factor and heat transfer

coefficient correlations where transformed before performing any analyses because the residuals

were not iid. This would not be necessary if the statistical model was reformulated to scale with

the model.

y = f(x,θ)(1 + ε) (5.24)

A basic DRAM algorithm was used in this work. In the future, these analyses should be

transitioned to quantify chain convergence using multiple runs and to subsample the chains to

eliminate correlation between them [18, 48].

Finally, future work will include a mixed-effects DRAM analysis. The importance of this

analysis was demonstrated using an initial nlmefit analysis, which approximated the MLE

parameter estimates for global and random effects. It was shown that the biases between

laboratories can be treated using this type of analysis. A basic mixed-effects DRAM algorithm—

such as that in [156]—could be used, or recent improvements could be incorporated [151].

Regardless of the future work to be performed, this chapter is an improvement over the status

quo for most legacy codes. First, all correlations are clearly outlined with their respective origins

and assumptions. This is not the case for legacy codes like CTF, where many of the models

are undocumented and esoteric. Second, the inclusion of experimental data in the repository

will enable future analysts to calibrate and recalibrate the models in whatever way they see fit.

Finally, uncertainty analyses of CTF-R will propagate justifiable joint parameter distributions.

Future models added to CTF-R will follow this process, which will lead to accurate BEPU

quantification of the code.
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CHAPTER

6

CONCLUSION

In this work, a novel residual-based version of CTF was developed. The new code is flexible

in that its data structures are general and its Jacobian matrix is constructed numerically.

These improvements allow the removal of simplifications that were necessary to reduce the

computational resources needed to run the code in the 1980’s. Since computational tools have

been significantly improved since then, these new capabilities are a natural next step.

The initial CTF-R framework is established, including a link to the CTF input and output

processing, data structures for state variables, a solution algorithm, single phase residual

functions, a solid energy residual function, a numerical algorithm for building the Jacobian,

and an interface with PETSc for solving the Jacobian. Each new feature is tested to ensure

proper implementation, the mass and energy conservation equations are verified using isokinetic

advection test problems, and validation is performed for the friction model. Overall, a decent

pedigree is established for the current version of the code.

Though the initial coding of CTF-R is complete, there is a large amount of future work

that was discussed in Chapter 4. Some current capabilities of the code remain untested,

such as the connection of azimuthal rod fractions to fluid channels, temperature-dependent

thermal conductivity models, reverse flows, reverse lateral flows, combinations of different code

capabilities, and the numerical implementation of the conduction and momentum equations. The

numerical algorithm in CTF-R can be improved by adding a nonlinear iteration, implementing

appropriate convergence criteria, nondimensionalizing the Jacobian matrix, and re-examining
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the PETSc tolerances. Finally, the code requires a large amount of development so that its

capabilities will be consistent with the current version of CTF: the implementation of two-phase

flow, additional geometrical modeling options, noncondensible gas and boron, and additional

empirical models.

Each CTF-R empirical model is calibrated to an extensive set of nonproprietary experimental

data. Through the inclusion of parameter estimates from this process, the code can have a

built-in UQ capability that is based purely on experimental data. This will be an improvement

over the status quo, which often involves the propagation of expert opinion input distributions

for uncertainty analyses. The four empirical models in CTF-R are used for the parameter

estimation studies: single phase friction factor, heat transfer from a solid to a working fluid, the

thermal conductivity of uranium dioxide, and the thermal conductivity of zirconium.

The primary contributions of this work are detailed below.

• The general methods and solution algorithm of CTF are outlined and possible improvements

are discussed.

• A general framework for assessing code credibility is discussed at length. Each individual

step is provided with examples.

• A novel residual-based version of CTF is developed for modeling of single phase flow in

reactor geometries. The code is written in object-oriented Fortran with capabilities to

model wall friction, solid conduction, coupling between the liquid and solid fields, and

lateral transfer between adjacent channels.

• A series of defect tests with analytical or approximate solutions are developed and applied

to CTF-R simulations. All tests are run with multiple conditions or geometries to show

that CTF-R is robust and accurate. These defect tests include (1) one-dimensional steady

state isothermal flow problems with constant friction factor, (2) one-dimensional steady

state isothermal flow with Reynolds-dependent friction factors, (3) steady state conduction

through a nuclear fuel rod with uniform internal heat generation and constant properties,

(4) steady state heat transfer from a fuel rod with a uniform axial power profile to the

surrounding liquid, (5) steady state heat transfer with a cosine axial power profile, (6) a

lateral flow problem with two channels of different areas, and (7) a lateral flow problem

with two identical channels.

• Isokinetic advection verification problems are used to show that the CTF and CTF-R

mass and energy equations are appropriately first order. This process is repeated for three

different waves: square, hyperbolic tangent, and cosine. All three analyses show that the

temporal and spatial numerical errors behave appropriately as their respective meshes are

refined.

• The CTF and CTF-R friction models are validated using experimental data from Nikuradse
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and Furuichi.

• Regression tests are implemented to ensure that CTF-R maintains its capabilities during

future development.

• The four empirical models in CTF-R are calibrated to experimental data: friction factor,

heat transfer coefficient, thermal conductivity of uranium dioxide, and thermal conductivity

of zirconium. Joint parameter distributions are constructed in all cases using three methods:

asymptotic analysis, bootstrapping, and DRAM. The resulting joint parameter distributions

can be applied to future uncertainty analyses of CTF-R and other codes.

CTF-R is modern code that, with further development, will have varied future applications.

The flexibility in the residual equations will allow a more implicit solution algorithm, which

enables the use of larger time steps for a particular problem. CTF-R could be used to find a

solution to the steady state conservation equations. Not only will CTF-R be capable of modeling

light water reactors like CTF, but its governing equations, empirical models, and geometry could

be adjusted to model next generation reactors. Given these important applications, the CTF-R

framework established in this work will be an important contribution to the future of CTF.
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APPENDIX

A

CONSERVATION EQUATION

DERIVATIONS

This appendix outlines the derivation of conservation equations and source terms used in

Section 4.2 for cases where their origin might not be clear. This includes the enthalpy, axial

momentum, and lateral momentum equation.

A.1 Enthalpy Equation

This appendix contains a derivation of the enthalpy equation used in CTF and CTF-R. Begin

with the one-dimensional form of the total energy conservation equation.

∂ρE

∂t
+
∂ρuE

∂x
+
∂uP

∂x
+ uρg = 0 (A.1)

Total energy and enthalpy are defined as E = e+ u2/2 and h = e+ P/ρ. Combining these

definitions gives an equation for total energy in terms of enthalpy: E = h− P/ρ+ u2/2. This is

substituted into Equation A.1 and then simplified.

∂ρh

∂t
− ∂P

∂t
+
∂ρuh

∂x
+
u2

2

(
∂ρ

∂t
+
∂ρu

∂x

)
+ u

(
ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρg

)
= 0 (A.2)
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Note that the terms in the large parentheses are the mass equation and the momentum

equation, which are zero by definition.

∂ρh

∂t
+
∂ρuh

∂x
− ∂P

∂t
− u∂P

∂x
= 0 (A.3)

This is consistent with the literature, where the conservation of enthalpy appears as Dρh
Dt =

DP
Dt [84, 162]. The spatial derivative of pressure is neglected in CTF. It is possible to justify

this assumption for steady state LWRs. A steady state version of Equation A.3 is integrated

over the entire reactor.
∆ (ρuh)

L
− ū∆P

L
= 0 (A.4)

The reactor length is L, and ū is an average velocity. The general operating conditions of a

typical BWR and PWR are used in Table A.1 to evaluate these terms.

Table A.1: Calculation of neglected terms in enthalpy equation. Operating conditions are taken
from [162, Appendix K] for normal operating LWRs.

Description Symbol Units BWR PWR

Core pressure drop ∆P MPa 0.171 0.197
Flow rate per assembly ṁ kg/s 15.4 89.8
Flow area per assembly A m2 0.0097 0.0244
Heated fuel height L m 3.588 3.658
Inlet pressure Pin MPa 7.14 15.51
Inlet density ρin kg/m3 754.65 740.29
Inlet enthalpy hin kJ/kg 1227.5 1300.6
Outlet density ρout kg/m3 36.2 660.6
Outlet enthalpy hout kJ/kg 2583.7 1473.3
First term in Eq. A.4 ∆ (ρuh) /L MPa/s 598.9 173.4
Second term in Eq. A.4 ū∆P/L MPa/s 1.1 1.6

The neglected term is two orders of magnitude smaller than the other. This is sufficient

to demonstrate that neglecting the pressure gradient term is accurate for steady state LWRs.

It could be non-negligible for depressurization transients, dense working fluids, very strong

frictional forces, strong gravity, or very high coolant velocities.

In CTF-R, the enthalpy equation is further simplified, where the chain rule is applied to two

of the derivatives.

ρ
∂h

∂t
+ h

∂ρ

∂t
+ h

∂ρu

∂x
+ ρu

∂h

∂x
− ∂P

∂t
= 0 (A.5)

Then a mass equation is eliminated, yielding Equation 4.9 without the lateral terms.
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ρ
∂h

∂t
+ ρu

∂h

∂x
+ h

(
∂ρ

∂t
+
∂ρu

∂x

)
− ∂P

∂t
= 0 (A.6)

ρ
∂h

∂t
+ ρu

∂h

∂x
− ∂P

∂t
= 0 (A.7)

An additional consideration is that the mass and momentum equation in Equation A.2 are

only zero when there are no source terms in the conservation equations. Otherwise, the source

terms in those equations should be carried through this derivation, which is not the case in

CTF.

It is left as a future exercise to include the pressure gradient term in the energy equation

and quantify the model form error introduced by neglecting it. The introduction of CTF-R

(see Chapter 4) clearly enables an analysis such as this, where the addition of a term to a

conservation equation is trivial. In the main version of CTF, this would require significant

source codes changes and the recalculation of all analytical terms in the pressure matrix.

A.2 Axial Momentum Equation

The axial momentum conservation equation used in CTF-R is derived from the one-dimensional

x-component of the three-dimensional momentum equations.

∂ρu

∂t
+
∂ρu2

∂x
+
∂P

∂x
− ρg = 0 (A.8)

The first two derivatives are split using the chain rule.

ρ
∂u

∂t
+ u

∂ρ

∂t
+ ρu

∂u

∂x
+ u

∂ρu

∂x
+
∂P

∂x
− ρg = 0 (A.9)

The mass equation is eliminated, yielding Equation 4.12 without the lateral transfer or

source term.
u

ρ

(
∂ρ

∂t
+
∂ρu

∂x

)
+
∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂P

∂x
− g = 0 (A.10)

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂P

∂x
− g = 0 (A.11)

A.3 Lateral Momentum Equation

Flow in an LWR is primarily in the upwards direction, because of this assumption, the CTF and

CTF-R momentum equations are simplified from a full three-dimensional form to a subchannel

form. Though this reduces the number of equations to be solved, the underlying assumptions
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are not immediately clear. To resolve this issue, the lateral momentum equation and associated

source terms in the mass and energy equations are derived in this appendix.

The lateral momentum equation is derived from the three-dimensional momentum conserva-

tion equations with no source terms.

∂ρu

∂t
+

[
∂ρu2

∂x
+
∂ρvu

∂y
+
∂ρwu

∂z

]
= −∂P

∂x
− ρg (A.12a)

∂ρv

∂t
+

[
∂ρuv

∂x
+
∂ρv2

∂y
+
∂ρwv

∂z

]
= −∂P

∂y
(A.12b)

∂ρw

∂t
+

[
∂ρuw

∂x
+
∂ρvw

∂y
+
∂ρw2

∂z

]
= −∂P

∂z
(A.12c)

As usual, u, v, and w are defined as the velocity components in the x, y, and z directions.

The convective terms in the second two equations are neglected because u >> v and u >> w.

∂ρu

∂t
+

[
∂ρu2

∂x
+
∂ρvu

∂y
+
∂ρwu

∂z

]
= −∂P

∂x
− ρg (A.13a)

∂ρv

∂t
+
∂ρuv

∂x
= −∂P

∂y
(A.13b)

∂ρw

∂t
+
∂ρuw

∂x
= −∂P

∂z
(A.13c)

Neglecting both ∂ρv2/∂y and ∂ρw2/∂z physically means that momentum added to any

control volume “losses its direction” after it is convected. Lateral momentum is not convected

from above or below a lateral momentum cell, since ∂ρwv/∂z and ∂ρwv/∂z are negligible.

Now the equations are reformulated in terms of a unit vector parallel to any face of the

scalar cell. For now, the direction of this unit vector is L. Redefined in this way, the y and z

momentum equations are redundant. Velocity in the lateral direction is w, though this is not

the same w as above.

∂ρu

∂t
+

[
∂ρu2

∂x
+
∂ρwu

∂y
+
∂ρwu

∂z

]
= −∂P

∂x
− ρg (A.14a)

∂ρw

∂t
+
∂ρuw

∂x
= −∂P

∂L
(A.14b)

Now the convection term in the x equation is simplified by partially discretizing it. Subscripts

that are not noted are at i, j, or k.

∂ρvu

∂y
+
∂ρwu

∂z
=

(ρuv)j+1/2 − (ρuw)j−1/2

∆y
+

(ρuv)k+1/2 − (ρuw)k−1/2

∆z
(A.15a)
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A

(
∂ρvu

∂y
+
∂ρwu

∂z

)
=
[
(ρuv)j+1/2 − (ρuv)j−1/2

]
∆z +

[
(ρuw)k+1/2 − (ρuw)k−1/2

]
∆y (A.15b)

A

(
∂ρvu

∂y
+
∂ρwu

∂z

)
= (ρuv)j+1/2 ∆z− (ρuv)j−1/2 ∆z+ (ρuw)k+1/2 ∆y− (ρuw)k−1/2 ∆y

(A.15c)

Each of terms on the right side correspond to a lateral face around the subchannel. This is

notated as a summation over the faces in the CTF nomenclature.

∂ρvu

∂y
+
∂ρwu

∂z
=

1

A

ng∑
g

(ρwuS)g (A.16)

Here, A is the flow area of the channel, g indicates different gaps, and S is the gap width.

Therefore, the axial and lateral momentum equations can be finalized.

∂ρu

∂t
+
∂ρu2

∂x
+

1

A

ng∑
g

(ρwuS)g = −∂P
∂x
− ρg (A.17a)

∂ρw

∂t
+
∂ρuw

∂x
= −∂P

∂L
(A.17b)

Note that the neglected terms could be included in the analysis, at which point the lateral

momentum equation is more complicated [161].

∂ρw

∂t
+
∂ρw2

∂L
+
∂ρuw

∂x
+
∑
nk

ρwwnkS
′
nk = −∂P

∂L
(A.18)

All gaps that convect momentum towards the current gap are indicated by nk, and S′ is the

corresponding orthogonal gap width.

The mass and energy source terms for the subchannel formulation are derived from their full

three-dimensional forms. The conservation of mass equation is used as an example here.

∂ρ

∂t
+∇ · (ρ~v) = 0 (A.19a)

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
= 0 (A.19b)

Follow the same logic as in Equation A.15 to derive the mass source term.

∂ρv

∂y
+
∂ρw

∂z
=

1

A

ng∑
g

(ρwS)g (A.20)
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It is also derived in the same way in the conservation of energy equation.

∂ρhv

∂y
+
∂ρhw

∂z
=

1

A

ng∑
g

(ρwhS)g (A.21)
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APPENDIX

B

CTF PHASE CHANGE MODEL

In TH codes, many of the closure models are related to interfacial transfer. This appendix

outlines the interfacial mass transfer model in CTF, which serves as an example of how esoteric

the models in legacy codes can be. Much of the information in this appendix is not included in

any of the CTF documentation [13, 148] and therefore was researched independently.

B.1 Flow Regime Map

Interfacial models are based on a flow regime map, which is used to select the appropriate

correlations depending on parameters in each computational cell. For the interfacial mass

transfer model, each regime is some combination of four different correlations: small bubble,

large bubble, film, and droplet. The film and droplet correlations are always added together,

yielding the annular-mist correlations.

B.1.1 Normal Flow Regimes

When the solid structures are cool enough to be continuously wetted, normal flow regimes are

used. The normal flow map has four regimes, the selection of which depends only on the void

fraction, α. The combination of the three correlations into the four flow regimes is shown in

Figure B.1.
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Figure B.1: The CTF flow regime map. There are four flow regimes in CTF which are each a
combination of four correlations.

Small Bubble The small bubble regime consists of small steam bubbles dispersed in the

continuous liquid water. The regime exists when 0.0 < α < 0.2, where suggestions for the upper

range have varied from 0.18 to 0.3 in the literature [54, 55, 140]. Above the 0.2 threshold, the

small bubbles begin to coalesce and form larger bubbles.

Slug The slug regime is used for void fractions 0.2 < α < 0.5. Slug flow contains bubbles of

varying sizes separated by liquid slugs. In CTF, slug flow is modeled as a nonlinear combination

of the small and large bubble correlations.

Hi,slug = FslugHsb + (1− Fslug)Hlb (B.1a)

Fslug =
0.2(1− α)

0.8α
(B.1b)

The factor, Fslug is 1 when α = 0.2 and is 0 when α = 1. The lower limit of the slug regime

uses only small bubble correlations. The upper limit of the regime uses 75% of the large bubble

correlations and 25% of the small bubble correlations.

Churn-Turbulent The churn-turbulent regime exists for void fractions 0.5 < α < 0.8. It is

characterized by agitated flow with unique behaviors. The film/droplet correlations are added

linearly to the slug correlations in this regime.

Hi,ann = FannHann + (1− Fann)Hslug (B.2a)
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Fann =
α− 0.5

0.3
(B.2b)

When α = 0.5, only the slug correlations are used, but when α = 0.8 only the film/droplet

correlations are used.

Annular/Mist The annular/mist flow regime is characterized by a continuous vapor core

surrounded by a liquid film with entrained droplets. It exists above a void fraction of 0.8 and is

a direct combination of the film and droplet correlations.

B.1.2 Hot Wall Regimes

When the surface of a rod is too hot to be wetted by the continuous liquid, a vapor blanket can

form. This is detrimental to reactor safety because steam has a lower heat transfer capability

than liquid water. The hot wall regimes are used when the rod surface is too hot.

Tw > min (705.3, Tsat + 75) ◦F (B.3)

The critical heat flux temperature is approximated as Tsat + 75, above which the heat flux

at the surface will immediately vaporize any water in contact with the wall. The other limit

corresponds to the critical temperature of water, above which the vapor on the surface of the

wall cannot be condensed regardless of the pressure.

There are three hot wall flow regimes: bottom reflood, falling film, and top deluge. Each

regime uses different interfacial area and drag models for the film, which are added to the droplet

coefficients. If the liquid void fraction is very small, the model is approximately dispersed droplet

flow.

Bottom Reflood If a hot wall exists in the current cell and also in the cell above, the bottom

reflood correlations are used. This can be thought of as an inverted annular or inverted slug

regime, where the rod is unwetted and there exists some amount of continuous liquid in the

core of the subchannel.

Falling Film If there is a top quench front, meaning that the cell below has a hot wall but

the cell above does not, the falling film correlations are used. This option is selected if α ≥ 0.8.

This models a liquid film flowing down with a vapor core flowing upwards.

Top Deluge If a top quench front exists and α < 0.8, the top deluge regime is selected. This

regime models large liquid slugs, with a diameter equal to the hydraulic diameter of the channel,

which are falling downwards.
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Dispersed Droplet If the liquid fraction is very small, the contributions from the previous

hot wall regimes are negligible. In this case, the flow will essentially be single phase vapor with

a dispersed droplet field.

B.1.3 Discussion

Most TH codes use one correlation for each flow regime with interpolation between them. This

allows thorough investigation of each correlation, where experimental uncertainty is directly

related to code uncertainty. Instead, CTF combines multiple correlations for each flow regime,

which adds model form error. The uncertainty and range of applicability for each correlation

cannot be directly ascertained from the experiments used to derive the correlations. In addition,

the transition points between flow regimes are not smooth; the derivative of hi at α = [0.2, 0.5, 0.8]

is undefined.

The flow regime map depends only on void fraction with a consideration for the wall

temperature, but most flow regime maps are at least two-dimensional. It is expected that flow

with a given void fraction behaves very differently depending on other conditions. CTF does

not capture these physics.

B.2 Interfacial Area Models

Because interfacial phenomenon are calculated per unit interfacial area, error in the estimation

of interfacial area can propagate to interfacial heat transfer and drag. As such, proper heat

transfer and drag calculations require that the interfacial area is accurately estimated.

Small Bubble The small bubble model is based on the assumption that all bubbles are the

same size and spherical. Given these relationships, the interfacial area can be calculated.

Ai = AbNb = 4πr2b
V v
V b

= 4πr2b
αV J
4
3πr

3
b

= 3α
V J
rb

(B.4)

The total interfacial area, area of a single bubble, number of bubbles, radius of the bubbles,

total vapor volume, volume of a single bubble, and volume of the current momentum cell

are respectively Ai, Ab, Nb, rb, V v, V b, and V J . The void fraction and volume of the current

momentum cell are known, and the bubble radius is calculated using a critical Weber number.

The Weber number is the ratio of inertial forces to surface tension of the bubble, so a large

Weber number indicates that the bubble will break up. Starting with the definition for We and

solving for rb gives:

r ′sb =
Wecσgc
2ρl~u

2
vl

(B.5)
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The critical Weber number in CTF is equal to 10. Similar values can be found throughout

the literature and the same critical Weber number is used in RELAP5-3D© [5]. If the liquid

phase is superheated, there is an additional correlation to provide an interfacial area for the

initiation of flashing. It assumes a minimum number of bubbles per cubic foot, nc = 2000/α ′.

Combine this bubble concentration with Equation B.4 to solve for the bubble radius.

rb =

(
3

4π

α ′

nc

)1/3

(B.6)

Note that this part of the correlation is coded as Db = (α ′ 21.91 · 10−4)0.333, where there is

significant round-off error. Finally, the radius of the bubbles is not allowed to grow larger than

0.02 ft or half the hydraulic diameter.

The derivation assumes that all bubbles are the same size and that they are spherical. This

is a good assumption for small bubbles, but as bubbles grow larger, they become more distorted.

As the void fraction increases, it is expected that these equations are less accurate. In addition,

the limitations on bubble size are not supported by any data or reference.

Large Bubble Equation B.4 is also used to calculate the large bubble interfacial area. The

large bubble radius, r∗lb, is calculated assuming that all void up to α = 0.2 is in the form of small

bubbles, and that large bubbles form as the void continues to increase. The model is equivalent

to linearly interpolating the large bubble void fraction from zero at α = 0.2 to one at α = 1.0.

αlb = 1.25α− 0.25 = α− αsb(1− α)

1− αsb
(B.7)

The large bubble radius is calculated similar to the small bubble radius.

R∗lb =

[
3

4π
V lb

]1/3
=

[
3

4π
αlbV J

]1/3
=

[
3

4π

(
α− αsb(1− α)

1− αsb

)
V J

]1/3
(B.8)

Note that 3/4π is coded as 0.23870. If there are multiple bubbles, the radius is limited by

0.25 f and half the hydraulic diameter. Finally, the small bubble radius is used if it is larger than

rlb
∗. A single large bubble begins to form at α = 0.2 and grows until it reaches the maximum

size. After this, a second large bubble forms, which starts to grow.

An additional factor is added to the heat transfer interfacial area to make the transition

between axially adjacent mesh cells smooth. It compares the void fraction in the adjacent scalar

mesh cells and uses the smaller of the two to ramp the interfacial area.

The large bubble correlation makes the following assumptions: (1) the large bubbles are

spherical, (2) large bubbles begin to form at α = 0.2 and their formation is dependent only on

the void fraction, and (3) the bubble radius is derived assuming that there is only one bubble
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in the control volume and then limited by three separate considerations. Large bubbles are

not expected to be perfectly spherical. The second and third assumptions introduce significant

unquantifiable uncertainty by combining two correlations.

Film The film interfacial area is calculated assuming that the vapor core is cylindrical [76].

Ai,f = πDcore∆x = π
√
αv + αdDh∆x =

4
√
αv + αdV J
Dh

(B.9)

There is also a factor to smooth between adjacent mesh cells similar to the large bubble

correlation. This assumes that the vapor core is perfectly cylindrical. This is only true for stable

films (at low relative velocities).

Droplet The interfacial area for the droplets is calculated using the interfacial area transport

equation. Refer to [13] for more information.

Bottom Reflood For the bottom reflood regime, the film and droplet interfacial areas are

added together. The film portion of the bottom reflood interfacial area correlation has two

contributions.

Ai,f = Ff,hw
4
√
αlV J
Dh

+ (1− Ff,hw)
4αlV J
Dh

(B.10)

Ff,hw = max

(
0,min

(
1,
hf − hl

20

))
(B.11)

If the liquid is saturated or superheated, a correlation similar to Equation B.4 is used, but

the coefficient is larger and the hydraulic diameter is the characteristic length. If the liquid is

subcooled, the other correlation is also used. This equation is for inverted annular flow and is

similar to Equation B.9, but with liquid as the continuous phase.

The origin of the first part is unknown, but it is likely a modified inverted slug correlation

which assumes the slug’s diameter is the hydraulic diameter. The assumption that the liquid core

is cylindrical does not apply to the inverted annular regime. Perhaps the second contribution is

intended to adjust for this.

Falling Film The falling film interfacial area is calculated in the same way as the film for the

normal regime (Equation B.9). This assumes that the geometry is the same, just flowing in the

opposite direction. This is added to the droplet interfacial area to get the total area.

Top Deluge This correlation is derived the same way as the large bubble normal flow regime,

but the bubbles occupy the whole channel and void fraction is used instead of the vapor fraction.
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Ai,f = 6αl
V

Dh
(B.12)

This area is added to the droplet area to get the total value for the regime.

Dispersed Droplets The interfacial area of the dispersed droplets is calculated using the

interfacial area transport equation.

B.3 Interfacial Heat Transfer Models

The interfacial heat transfer coefficient determines the evaporation/condensation rate. This is an

important model in TH codes because it determines the rate of transfer between the liquid and

vapor phases. The interfacial heat transfer coefficient per area is multiplied by the interfacial

area to give an overall transfer coefficient, and the heat transfer coefficient is related to the

Nusselt number.

Hi,k = hi,kAi,k =
kk
L

NuAi,k (B.13)

Here, Hi,k is the heat transfer coefficient, hi,k is the heat transfer coefficient per unit interfacial

area, k is the thermal conductivity, L is a characteristic length scale, Nu is the Nusselt number,

and Ai is the interfacial area. The subscript k indicates the k phase.

The interfacial mass transfer Γ, is calculated using an energy balance at the interface. The

energy transferred across the interface is equal to the energy of the mass transferred: Qi = Γhfg,

where Qi is the interfacial heat transfer and hfg is latent heat. The heat transfer is defined by

a heat transfer coefficient and a change in temperature Qi = H∆T . Since cp = ∆h/∆T , the

general form of the mass transfer model is:

Γ = H
∆h

cphfg
. (B.14)

There are four contributions to the mass transfer model: subcooled liquid (SCL), subcooled

vapor (SCV), superheated liquid (SHL), and superheated vapor (SHV). Both superheated

effects contribute to evaporation and the subcooled effects contribute to condensation: Γnet =

Γshl + Γshv + Γscl + Γscv. These four additive effects are shown in Figure B.2.

Γnet = Hshl

hf − hsf
Cp,lhfg

+Hshv

hg − hsg
Cp,vhfg

−Hscl

hsf − hf
Cp,lhfg

−Hscv

hsg − hg
Cp,vhfg

(B.15)

For condensation, hfg = hg −hsf and hfg = hsg −hf is used for evaporation. In Section B.3.1,

the operations to calculate the interfacial heat transfer coefficient are discussed in the order they

are applied. The remaining sections detail each of the individual heat transfer correlations.
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Figure B.2: Diagram of the CTF interfacial mass transfer model. CTF has four contributions
to its interfacial transfer model, half for condensation and half for evaporation.

B.3.1 Numerical Considerations

CTF evaluates a set of conservation equations that have been discretized in time and in space.

Because of this, there are many numerical adjustments during the interfacial calculations which

are not immediately obvious from the code documentation. This section outlines each of these.

The Staggered Grid Scalar quantities (such as void fraction, density, and pressure) are

defined at the center of scalar cells and velocities are defined at the center of the momentum

cells (see Figure 4.1). Interfacial quantities are calculated for each momentum cell, but the mass

transfer model is implemented in the mass and energy conservation equations. Therefore, before

correlations are used, all scalar mesh values must be transformed to momentum mesh values.

A linear average is used regardless of the size of adjacent cells: xJ = 0.5xj + 0.5xj+1, where x

indicates any value defined for the scalar cells (ρ, α, h, P , etc.), the subscript J indicates any

momentum cell, and j/j + 1 are the scalar cells surrounding the given momentum cell.

The heat transfer coefficients are calculated in each momentum cell using the appropriate

correlations, then the final values are transformed to scalar values and incorporated into the

mass and energy equations. This requires a second linear average: Hj = 0.5HJ + 0.5HJ−1.

The averaging smooths the results in space, where the heat transfer coefficient for any cell is

informed by the conditions in the two surrounding cells. This is shown in Figure B.3.

The use of a linear average introduces error when adjacent cells are different sizes. In these

cases, more accurate results would be achieved using a volume-weighted average.

Under Relaxation The heat transfer coefficients are smoothed over time to ensure that they

do not change significantly from one time step to the next. Each of the four heat transfer

contributions is individually under relaxed.
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Figure B.3: Spatial averaging of the interfacial transfer model. Since CTF uses a staggered
grid, quantities in the interfacial models must be averaged between the multiple meshes. X
indicates any scalar quantity and H is an interfacial heat transfer coefficient.

Hscl = (Hn
scl)

ε · (Hn+1
scl )1−ε (B.16a)

Hshl = (Hn
shl)

ε · (Hn+1
shl )1−ε (B.16b)

Hscv = (Hn
scv)

ε · (Hn+1
scv )1−ε (B.16c)

Hshv = (Hn
shv)

ε · (Hn+1
shv )1−ε (B.16d)

In this equation, n is the current time step, n+ 1 is the next time step, and ε is an under

relaxation parameter. In CTF, the under relaxation parameter is 0.9. Exponential under

relaxation is chosen because the heat transfer coefficient could vary many orders of magnitude

between time steps; exponential under relaxation heavily weights the previous time step.

Limits Each of the SCL, SHL, SCV, and SHV heat transfer coefficients are individually

limited. This is required to prevent code failures due to thermodynamic property errors when

the condensation or evaporation rate exceeds physical values. The stable phases (SCL and SHV)

have more strict limitations than their unstable counterparts.

Hmax,unstable = 27.8V ·max(144α(1− α), 1.43) (B.17a)

Hmax,stable = 2.78V ·max(144α(1− α), 1.43) (B.17b)

The 144 ft-1 is calculated from assumptions on bubble/droplet size and 1.43 ft-1 is a 1%

limit. The 27.8 and 2.78 are derived by converting 100000 and 10000 from Btu/ft2hr ◦F to

Btu/ft2s ◦F , respectively.

The use of limits is intended to keep the mass transfer term at a reasonable order of

magnitude. These limits are applied after each coefficient has already been calculated, so the
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complicated correlation can be thrown out for the less physical limiting value. For example, the

superheated liquid contribution, which has some of the highest heat transfer coefficient values,

is very commonly clipped by this limit. Perhaps it would be more efficient to use the simplified

model and save computational time. A more physical process would be to apply limits based on

physical principles to each of the individual correlations.

Switching Each of the two phases can only be subcooled or superheated at any given time.

To capture this physics, CTF sets two of the heat transfer coefficients equal to zero.

hf > hl then Hshl = 0 (B.18a)

hf ≤ hl then Hscl = 0 (B.18b)

hg > hv then Hshv = 0 (B.18c)

hg ≤ hv then Hscv = 0 (B.18d)

Again, the application of switching late in the calculation can be detrimental to the process.

For example, when the two phases are very close to saturation, the code can switch directly

from a subcooled to a superheated value within one time step. This can result in a very large

change in the heat transfer coefficient because all of the smoothing is done to each of the heat

transfer coefficients individually. As such, the temporal, spatial, and state smoothing can be

“undone” by the switch in this situation.

Ramps Ramps are applied to the interfacial heat transfer coefficients at the same time as the

switching. These ramps were implemented for numerical stability because unphysical results

are typical near α = 0 and α = 1. Each of the heat transfer coefficients is adjusted individually

with one or more ramps.

Hi,scl = Hi,sclFgvFglFfp (B.19a)

Hi,shl = Hi,shlFgl (B.19b)

Hi,scv = Hi,scvF
′
gvFfp (B.19c)

Hi,shv = Hi,shvFgl (B.19d)

There are two ramps on void fraction: one reduces heat transfer as α → 0 and the other

reduces it as α→ 1. These operations are necessary to avoid unphysical production or destruction

of mass. For example, a large heat transfer coefficient near α = 0 could cause an unphysical

negative void fraction because the mass transfer model overpredicts how much mass can be

transferred between the two phases. To deal with this, the iteration can be rerun with a smaller

time step, but instead most modern codes implement a ramp on hi, Ai, or both. This ensures

125



that the mass transfer near the single phase regions is small enough to avoid instabilities.

There is also a ramp on the subcooled heat transfer coefficients which depends on pressure.

The purpose and origin of this ramp is unclear.

Fgv =
α− .001

0.099
(B.20a)

F ′gv =
α− .0001

0.0099
(B.20b)

Fgl =
0.99999− α

0.00009
(B.20c)

Ffp =
P − 0.11

0.89
(B.20d)

Each of these linearly enables or disables heat transfer over a range of 0→ 1. The origin or

selection of these specific values is not documented, but they are likely based on code stability.

B.3.2 Small Bubble Correlations

Subcooled Liquid This correlation was in the original version of CTF [161] and it is an

analytical solution for steady state heat transfer to a sphere in potential flow [17, 77].

Hi,sb,scl =
2√
π

(
kf
Db
~uvlρlcp,l

)0.5

Ai,sb (B.21)

A common form of this equation, Nu = 2
√
Pe/π, appears throughout the literature and

possible improvement is discussed there [74, 108].

The derivation of this correlation makes a large number of assumptions: (1) the particle is

surrounded by an ideal, incompressible fluid, (2) viscous forces are negligible, (3) the effects of

kinetic energy are small, (4) the system is steady state, (5) the particle is spherical, (6) the fluid

flows only along the streamlines, (7) the fluid has constant properties (k, cp, and ρ), and (8)

there is no conduction in the direction of the flow.

The kinetic energy and viscosity effects are only negligible when the particle velocity is

small. The bubbles are not necessarily spherical. The steady state and constant properties

assumptions are only valid when the time step size and spatial mesh are sufficiently refined. The

one-dimensional flow simplification is a good engineering assumption, but there are cross flow

models in CTF which cause transverse velocities.

In addition, the assumption of negligible conduction in the direction of flow is true only

when Pe > 8.0 and neglecting one term in the derivation is only applicable when Pe > 13, 400.

This implies that the correlation should only be used for high Reynolds number flows (since

Pr ≈ 1 for water). This contradicts some of the underlying assumptions of the model that are

only true at low Reynolds numbers, which calls the model’s overall applicability into question.
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Superheated Liquid The small bubble SHL correlation has two contributions: the conduc-

tion/convection and the nucleation effect.

Hi,sb,scl = max(hconv, hcond)Ai,sb + max(hct, hnb)Awp (B.22)

The maximum of the conduction and convection contribution is used, which accounts for

significant increases in heat transfer as bubble velocity increases. The convection term is

calculated using the Lee and Ryley correlation [88].

hconv =
kf
Db

(2.0 + 0.74Re
1/2
b Pr

1/3
l ) (B.23)

This uses the Lee and Ryley correlation, which is based on evaporating droplet experiments.

Given that the mechanisms governing heat transfer from a bubble and a droplet are similar, it is

also applied to bubbles. Error analysis on the experimental data used to derive the correlation

gives ±9%. The correlation was derived over operating conditions of 0.23 < Db < 1.126 mm,

64 < Reb < 250, 1 < P < 2 atm, 3 < ∆Tsuper < 34 ◦C, 2.7 < uv < 11.9 m/s.

There are a number of issues with applying the Lee and Ryley correlation here: (1) it was

derived for a spherical droplet, (2) the correlation was derived for low Reynolds numbers, and

(3) no experimental data for typical reactor pressures was used.

At low relative velocities, the conduction term is expected to dominate. It is based on the

Jakob number, though the origin of this equation is unknown.

hcond =
kf
Db

Ja =
kf
Db

ρl(hl − hf )

ρv(hf − hg)
(B.24)

RELAP5-3D© uses a similar correlation with a coefficient of 12/π, which is derived from

the bubble growth rate equation of Plesset [5, 130]. The applicability of the Jakob number

correlation is impossible to determine without more information about its origin.

The second contribution is the effect of nucleation [38].

hnb =
kf
Db

(
0.023Re ′b

0.8
Pr0.4l

)
(B.25)

This is the Dittus-Boelter equation, which was developed for single phase, turbulent heat

transfer in smooth, circular pipes inside of automobile radiators. It has a ±5% percent error in

Nu over its experimental range: 0.7 < Pr < 120 and 10, 000 < Re < 120, 000.

The nucleation effect can also come from another contribution, hct, which is undocumented.

hct = 8.0
kf
Db

(B.26)
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Subcooled Vapor This correlation is derived from the customary selection of high powers of

10 for interfacial heat transfer correlations when experimental data is lacking. This arbitrarily

large value is selected to force the vapor/gas phase towards saturation, since SCV is an unstable

phase, and therefore is expected to condense quickly.

104
Btu

ft2hr ◦F
≈ 2.78

Btu

ft2hr ◦F
(B.27)

Superheated Vapor The SHV correlation for small bubbles uses the same value as the

subcooled correlation, Hi,sb,shv = 2.78Ai,sb. The SHV heat transfer should be smaller than

the subcooled heat transfer since it is a stable phase and is not expected to condense. Again,

experimental data is lacking in this area and engineering judgment was used. This heat transfer

coefficient is an order of magnitude larger than the one used in RELAP5-3D©, which is from [19].

B.3.3 Large Bubble Correlations

Subcooled Liquid The large bubble SCL heat transfer coefficient uses the same correlation

as Equation B.21.

Hi,lb,scl =
2√
π

(
kf
Db
~uvlρlcp,l

)0.5

Ai,lb (B.28)

The same concerns about the applicability of this correlation to small bubbles apply to large

bubbles. In particular, the assumption that the bubbles are spherical is not applicable. The

large bubble correlations are used in the slug and churn regimes, when the bubbles are expected

to be significantly deformed.

Superheated Liquid Similar to the value used for the small bubble vapor correlations, the

SHL large bubble correlation is an arbitrarily large power of 10.

Hi,lb,shl = 106
Btu

ft2hr ◦F
≈ 278

Btu

ft2s ◦F
(B.29)

This arbitrarily high value forces the SHL towards saturation since it is an unstable phase.

Subcooled Vapor This heat transfer coefficient is calculated using the Lee and Ryley corre-

lation [88].

Hi,lb,scv =
kv
Dh

(
2.0 + 0.74Re

1/2
b Pr1/3v

)
Ai,lb (B.30)

This is the same as Equation B.23, but it replaces liquid properties with vapor properties

and uses the hydraulic diameter as the characteristic length, since the correlation is applied to

vapor and large bubbles.
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Superheated Vapor The SHV heat transfer correlation for large bubbles is the same as that

for SHL (Equation B.30).

Hi,lb,scv =
kv
Dh

(
2.0 + 0.74Re

1/2
b Pr1/3v

)
Ai,lb (B.31)

B.3.4 Normal Regime Droplet Correlations

Subcooled Liquid The droplet heat transfer coefficient for SCL is taken from a different

early TH code [8]. The equation is an analytical solution for the heat transfer from a droplet to

steam. It was used in a model similar to the CTF boiling model, where the heat transfer is split

into transfer from the vapor to the interface and transfer from the liquid to the interface.

Hi,d,scl =
kf
Rd

(
2.7

π2

3

)
Ai,d (B.32)

The original correlation does not have a coefficient of 2.7, it was likely incorporated later

to calibrate to some experimental data. The derivation of this correlation includes three

assumptions: (1) the droplet is azimuthally symmetric and spherical, (2) the liquid-steam

interface is at the saturation temperature, and (3) the time scale of interfacial transfer is much

smaller than the times of interest τ << t.

Superheated Liquid The droplet SHL heat transfer coefficient is also calculated using the

Andersen correlation [8], which matches with the original implementation into the RHC code.

Hi,d,shl =
kf
Rd

(
2.7

π2

3

)
Ai,d (B.33)

Subcooled Vapor The SCV correlation for droplets is calculated using the Lee and Ryley

correlation [88], which was first introduced in Equation B.23.

Hi,d,scv =
kv
Dd

(
2.0 + 0.74Re

1/2
d Pr1/3v

)
Ai,d (B.34)

The Lee and Ryley correlation was also used for the SHL small bubble correlation, as well as

the SCV and SHV correlations for large bubbles. The application to droplets should yield more

accurate results since it is based on droplet experiments, but the same ranges of applicability

apply.

Superheated Vapor The droplet SHV and SCV correlations are the same.

Hi,d,shv =
kv
Dd

(
2.0 + 0.74Re

1/2
d Pr1/3v

)
Ai,d (B.35)
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B.3.5 Normal Regime Film Correlations

Subcooled Liquid The film SCL heat transfer coefficient is calculated using the Colburn

Analogy with the “Hughmark friction factor.” The Colburn Analogy is a modified version of

the Reynolds Analogy which uses the Prandtl number to account for the differences between

the radial distributions of temperature and velocity [25].

Hi,f,scl = fρlcp,l|ul|Pr
−2/3
l Ai,fFai (B.36)

Colburn tested the heat transfer/friction analogy for a wide variety of operating conditions

and geometries. The analogy was not intended to be used with a specific friction factor model,

so use with the Hughmark factor is acceptable.

The Hughmark friction factor is taken from work by Ishii and Gromles [75], where Hughmark’s

correlation for film thickness [71] is used to derive a friction factor.

f =


13.913Re−0.94f 2 < Ref < 100

3.8494Re−0.67f 100 < Ref < 1000

0.5402Re−0.38f 1000 < Ref

(B.37)

The Hughmark correlation is derived from experimental data with 10 < Ref < 30, 000. The

CTF correlation is implemented differently from the form reported by Ishii. The middle relation

is used for all Reynolds numbers below 1, 000 and the coefficient 3.8494 is cut in half.

f =

1.925Re
−2/3
l Rel < 1000

0.540Re−0.38l Rel ≥ 1000
(B.38)

Using a different coefficient changes the form of the correlation and introduces a discontinuity

at Re = 1000. In an early CTF Theory Manual [161], the entire correlation was halved, but

the source code from 2001 has the discontinuity. CTF also uses a different Reynolds number in

the determination of the friction factor. The original correlation uses a film Reynolds number

Ref = 4ρfvfδ/µl, while CTF uses the fluid velocity as if it occupied the entire flow area, Rel.

In addition, the rounding of the coefficients and exponents introduces more unnecessary error.

Finally, there is a factor that ramps the interfacial heat transfer to zero as the liquid film

dries out. It starts to decrease from 1.0 when the void fraction drops below 0.01.

Fai = max (0,min(1, 111.1(αl − 0.001))) (B.39)
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Superheated Liquid This correlation is similar to the SCL correlation, but there is an

additional consideration for conduction through the film.

Hi,f,shl = max (hcolbAi,f ,min (hctAi,f , hcondAwp)) (B.40)

The same Colburn analogy and Hughmark friction factor correlations are used.

hcolb = fρlcp,l|uvl|Pr
−2/3
l fai (B.41)

f =

1.925Re
−2/3
l Rel < 1000

0.540Re−0.38l Rel ≥ 1000
(B.38)

The conduction contribution is determined from a one-dimensional, constant properties

integration of the heat conduction equation through the film. In CTF, a Cartesian derivation is

used and then doubled to more closely match a cylindrical result.

hcond =
2kf
δ

(B.42)

A cylindrical derivation is more suitable, but considering that CTF models reactor geometries,

both are approximations. The film thickness is estimated based on the liquid fraction and

hydraulic diameter. The source of this relation is not clear, but it is used in the derivation of

the Wallis friction factor [170], and it requires that the film is “thin”.

δ = 0.25αlDh (B.43)

In addition, the heat transfer coefficient cannot exceed hct = 278, which keeps it from getting

too large for thin films.

Subcooled Vapor This correlation uses the Colburn Analogy, Hi,f,scv = fρvcp,v~uvlPr
−2/3
v Ai,f .

Instead of combining it with the Hughmark friction factor, the vapor correlations use either the

stable film correlation from Wallis or the unstable film correlation from Henstock and Hanratty:

f = max (fstable, funstable).

The CTF implementation of the Wallis correlation is five times the original [170].

fstable = 0.0125 (1 + 75(1− αv)) (B.44)

The Wallis correlation was derived for air and water annular flow in circular pipes. The

dimensionless film thickness, δ/D ranges from 0.001 to 0.04. Uncertainty analysis of the original

data yields an error of ±23.7%.
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The Henstock and Hanratty correlation appears in CTF in almost the same form as the

original publication [63].

funstable = fs

(
1 + 1400F

[
1− exp

(
−(1 + 1400F )1.5

13.2GF

)])
(B.45)

fs =
1

4
(0.204Re−0.2v ) (B.46)

F =

[
(0.707Re0.5l )2.5 + (0.0379Re0.9l )2.5

]0.4
Re0.9v

µl
µv

(
ρv
ρl

)0.5

(B.47)

G =
ρlgDh

ρv~u2vfs
(B.48)

CTF uses a different fs than the original reference, using a leading coefficient of 0.051 instead

of 0.046. The Henstock correlation is derived from experimental data over a wide range of

operating conditions: 20 < Ref < 15, 100, and 5, 000 < Rev < 112, 000, and 0.04 < D < 0.21 ft.

Superheated Vapor The SHV film correlations are the same as the SCV film correlations.

B.3.6 Hot Wall Regime Droplet Correlations

Subcooled Liquid The hot wall droplet correlation for SCL is the same as that for the

normal regime (Equation B.32).

Hi,d,scl =
kf
Rd

(
2.7

π2

3

)
Ai,d (B.49)

Superheated Liquid Hi,d,shl = 278.0Ai,d (see Equation B.29)

Subcooled Vapor Hi,d,scv = 2.78Ai,d (see Equation B.27)

Superheated Vapor The hot wall droplet SHV heat transfer coefficient is a combination of

a correlation and a modification factor. The correlation takes the same functional form as the

Lee and Ryley correlation (Equation B.23), but with a coefficient from Frössling [44].

Hi,d,shv =
kv

DhFyc

(
2.0 + 0.55Re

1/2
d Pr1/3v

)
Ai,d (B.50)

The Frössling correlation is based on 110 visual observations of the evaporation of nitroben-

zene, aniline, water and naphthalene droplets in a hot air stream. The ranges of applicability for

this correlation are 0.1 < Dd < 2.0 mm and 2 < Re < 1, 300. Note that the CTF implementation
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has rounded the coefficient to two digits. Yuen and Chen suggested a modification factor that

accounts for the indirect effects that evaporation has on heat transfer at high temperatures [177].

Fyc = 1 + 0.5
hv − hg
hfg

(B.51)

In the original derivation, the modification factor is applied to a Frössling equation with a

different leading coefficient 0.6. An exponent is also neglected in the CTF implementation. In

addition, CTF multiplies the second part by 0.5. The Yuen and Chen modification factor was

calculated based on heat transfer to water and methanol droplets in a vertical hot air tunnel.

The range of applicability of this correlation is 200 < Re < 1, 800, and 150 < Tg < 960 ◦C, and

2.1 < ug < 11.4 m/s.

The combination of the two correlations is unnecessary given that Yuen and Chen proposed

their own form of the equation with properties evaluated at the film temperature. The Yuen

and Chen factor is significantly modified in the CTF implementation.

B.3.7 Hot Wall Film Correlations

Subcooled Liquid The source of this correlation is unknown.

Hi,f,scl =
kl
Dh

17.77Ai,f (B.52)

Superheated Liquid This follows the common practice of selecting high powers of 10, which

forces the phase towards saturation: Hi,f,shl = 27.8Ai,f .

Subcooled Vapor Hi,f,scv = 2.78Ai,f (see Equation B.27).

Superheated Vapor The film hot wall correlation for SHV uses the Frössling correlation with

the Yuen and Chen modification factor. The implementation for film SHV uses nondimensional

numbers evaluated at film properties, which is consistent with the original droplet experiments.

Hi,f,shv =
kv

DhFyc

(
2.0 + 0.55Re

1/2
l Pr

1/3
l

)
Ai,f (B.53)

Fyc = 1 + 0.5
hv − hg
hfg

(B.51)

B.4 Conclusion

The interfacial models of CTF have been analyzed in their entirety. Many of the specifics

have not been previously documented. In addition, some models and changes to models to the
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literature could not be fully documented here. These models often seem arbitrary, and it is

difficult to find justification the literature.

The basis of the interfacial models, the flow regime map, is extremely simplified and applies

questionable methods to get results. The combination of different correlations over large portions

of the map significantly complicates any uncertainty analysis efforts that will take place in the

future. Every interfacial model makes assumptions, each of which implies some constraint on

their applicability. In addition, all of the correlations are developed for steady state and fully

developed conditions. As such, the application of these models to problems is only accurate when

the time and space meshes have been appropriately refined. A large number of correlations or

adjustments to correlations are based purely on engineering judgment. It is difficult to validate

these models, and impossible to make a relationship between the uncertainty of the original

document and the uncertainty of the model in the code.

CTF was created during a time when computational tools were only used to give insight,

and it has achieved that goal. The RDFMG and CASL have done a decent job of modernizing

it, but it is obvious that there is still work to be done.
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APPENDIX

C

ANALYSIS OF WILKS’ FORMULA

The tolerance limit problem was first posed in 1939 in reference to manufacturing [153]. It was

proposed that a probability of failure for a manufacturing process could be estimated when a

certain number of samples was previously available. Wilks solved this issue in 1941, when he

proposed a method for finding the necessary sample size for a one-sided tolerance limit with

given confidence [173]. This analysis was later extended to two-sided tolerance intervals [174]

and multivariate distributions [168]. In 1944, Robbins proved that non-parametric tolerance

limits can only be estimated using order statistics [141], cementing the importance of Wilks’

method.

Recently, Wilks’ method for setting tolerance limits has been applied to simulations. In

nuclear engineering, many companies have incorporated it into their regulatory frameworks

(GRS [50, 67], AREVA [98], and Westinghouse [120]) and it is commonly used in UQ Bench-

marks [69]. Given the prevalence of Wilks’ method, it is important to understand its statistical

properties, underlying assumptions, and how to properly apply it. These issues are partially

addressed in this appendix. More information about Wilks’ Formula is available in the litera-

ture [115, 175] and portions of this appendix have been previously published [137].
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C.1 Derivation

Given N independently and identically distributed samples from some probability density

function, (Y1, . . . , YN ), the order statistics are formed (Y(1), . . . , Y(N)), where Y(1) ≤ Y(2) ≤
. . . Y(N). Given the rank r, tolerance value P , and confidence level 1− α, the properties of order

statistics can be applied to derive the following conditions [115, Appendix A]:

I1−P (r,N − r + 1) ≥ 1− α, tolerance limit (C.1)

IP (N − 2r + 1, 2r) ≤ α, tolerance interval (C.2)

where Iz(a, b) indicates the incomplete beta function.

Iz(a, b) =

∫ z

0
ua−1 (1− u)b−1 du (C.3)

Given r, P , and α, the desired one-sided or two-sided tolerance can be achieved with the

smallest sample size N satisfying Equation C.1 or C.2. Generally, this limit is called the

100(1−α)%/100P% tolerance limit. The sample size necessary for given P and 1−α first order

tolerance bounds are shown in Figure C.1.

101

1
1

102

N

P

0.95

1-

103

0.95

0.9 0.9

Figure C.1: Sample size for Wilks’ Formula. The sample size required for first order tolerance
bounds increases with both the tolerance and confidence.
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Since Wilks’ Formula is being applied to computational problems instead of manufacturing,

it is important to analyze the underlying assumptions and delineate how they apply. The four

most important of these implications are discussed here.

1. NO CODE CRASHES: Wilks’ Formula can only be applied to a random sample of outputs.

If any code crashes occur during the study, then this assumption is likely violated. In most

cases, code crashes are functionally related to parameter settings, and therefore the output

is no longer independently and identically distributed. If code crashes are independent

of the parameter settings, then the code is not robust and should be verified before the

application of UQ methods.

2. KNOWN INPUT PARAMETER DISTRIBUTIONS: Wilks’ Formula can be applied to

any output distribution, but it must be accurately sampled. Since most uncertainty

quantification methods use expert opinion to determine parameter distributions, this

assumption is generally violated in engineering applications. In addition, the joint distribu-

tion of parameters should be known. In most situations, input distributions are assumed

independent.

3. ALL PARAMETERS ARE ANALYZED: Since the output distribution must be accurately

known, it is important to analyze all possible input parameters. This is nearly impossible

in most codes, since they have a large number of tunable parameters, many of which

are not available to user input. In addition to correlation parameters, input parameters

can also include protection against division by zero, spatial or temporal under-relaxation,

ramping parameters between different models, and many others.

4. NO BIASES: Again, Wilks’ method requires that the output distribution is accurately

known. This requires that there are no systematic biases in the output. This is particularly

difficult for computational tools, since numerical errors manifest as a bias. Before applying

Wilks’ Method, it is important to assess and minimize the numerical error.

C.2 Properties of Order Statistics

Since Wilks’ Formula is based on order statistics, their properties can be used to verify and

draw conclusions about it. In order statistics, the distribution from which samples are taken is

termed the “parent distribution,” so code outputs will be referred to as such in this section.

GivenN samples from a parent distribution arranged in increasing order, the ith order statistic

is calculated by taking the ith smallest value. When the parent distribution is analytically known,

the distribution of an order statistic can be calculated. If the parent distribution Probability

Density Function (PDF) and Cumulative Density Function (CDF) are respectively f(y) and

F (y), the PDF of the ith order statistic, g(y), can be calculated [10, 35].
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gi(y) =
N !

(i− 1)! (N − i)!
(F (y))i−1 (1− F (y))N−i f(y) (C.4)

So, given a parent distribution, N , and i, the PDF of the order statistic estimator can

be analytically calculated. This is an important result and will be used later to verify Wilks’

Formula.

The bounds on the first moment of the maximal order statistic were first investigated by

Gumbel [56] and Hartley [62]. These results were later extended to symmetrical distributions

by Moriguti [111]. In 1953, Moriguti proposed a general method for calculating the tight upper

bound on the expected value (i.e. mean or first moment) of an order statistic [112]. His analysis

applies to any unknown distribution using the greatest convex minorant [35, 112].

E (Xi − µ)

σ
= Mi ≤

[∫ 1

0
(̄iu − 1)

2
du

]0.5
(C.5)

Where īu is a piecewise function,

īu =

iu 0 ≤ u < u1

iu1 u1 ≤ u ≤ 1
, (C.6)

and u1 can be found by solving the implicit equation:

i−1∑
j=1

(
N

j

)
uj1(1− u1)

N−j =
N !

(i− 1)! (N − i)!
ui−11 (1− u1)N−i+1. (C.7)

The large parenthese indicate a binomial coefficient.(
N

k

)
=

N !

(N − k)! k!
(C.8)

The lower bound can be calculated as −MN−i+1. A MATLAB© script to solve the above

equations was implemented and verified against computational and analytical solutions in the

literature [14, 35, 70, 95]. In order to find Mi, Equation C.7 is solved numerically and then

Equation C.5 is integrated numerically.

Similarly, The variance (i.e. second moment) of the ith order statistic, V (Xi,n), can be

bounded [126].

V (Xi,N ) ≤ κ2σ2 (C.9)

Here, κ is a constant that depends on the beta function, the sample size, and the chosen

order statistic.
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κ2 = sup
0<u<1

{
Iu(i,N − i+ 1) [1− Iu(i,N − i+ 1)]

u(1− u)

}
(C.10)

In the above equation, Iz(a, b) indicates the incomplete beta function (Equation C.3). Again,

these equations were solved using MATLAB© and verified against available solutions [126].

Equations C.5 through C.10 are extremely complex and difficult to solve, but they give

important implications when the solutions are applied to Wilks’ Formula. To demonstrate

this result, the bounds on the first two moments have been computed numerically for each

95%/95% rank, and the results are given in Table C.1 and Figure C.2. This shows that the

upper bound on both the mean and the variance shrink as the rank increases. These bounds

are distribution-free (they apply to all possible distributions) and tight (it gives a result for the

most extreme distribution).

Table C.1: Tight bounds on moments of Wilks’ Formula. The tight bounds on the expected
value and variance of one-sided 95%/95% Wilks’ Formula estimates are given here. The results
are outlined for 1 < r < 10.

Rank Samples
Mean Mean Variance

Lower Bound Upper Bound Upper Bound
r N −MN−i+1 Mi κ2

1 59 0.0000 5.3621 58.6617
2 93 -0.0063 4.6010 18.3388
3 124 -0.0240 4.4242 13.8152
4 153 -0.0397 4.3407 11.8941
5 181 -0.0524 4.2947 10.8115
6 208 -0.0627 4.2633 10.0914
7 234 -0.0713 4.2379 9.5608
8 260 -0.0785 4.2232 9.1760
9 286 -0.0846 4.2153 8.8841
10 311 -0.0901 4.2047 8.6282

The bounds are especially powerful when combined with verification, which will be demon-

strated in the next section.

C.3 Verification

In this section, the one-sided 95%/95% tolerance bound is verified using both a statistical and

analytical method. For the statistical method, Wilks’ formula is performed M times with N

samples in each iteration (N = 59 and M = 10, 000) and the results are visualized using a
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Figure C.2: Tight bounds on moments of Wilks’ Formula. The tight bounds on the expected
value and variance of one-sided 95%/95% Wilks’ Formula estimates are plotted here for 1 < r <
10.

Kernel Density Estimator (KDE). The analytical distribution is constructed using Equation C.4

with i = 59, N = 59. Finally, the statistical and analytical distributions can be compared to the

actual 95% tolerance of the parent distribution. By calculating the fraction of samples which

underestimate the tolerance, the confidence level of Wilks’ formula is verified. This process

verifies that (1) the confidence level and tolerance limit are accurately predicted using Wilks’

Formula, and (2) the estimator distribution can be constructed statistically and is equivalent to

the analytical distribution.

The verification is performed for two normal distributions and a uniform distribution, which

are all shown in Figure C.3. The results for each of the three distributions are shown respectively

in Figures C.4a, C.4b, and C.4c. In each figure, the statistically constructed PDF is represented

by the colored line, and the dashed black lines are the corresponding analytical solutions

(Equation C.4). The thick vertical black line is the analytical tolerance, and the percentages in

the parentheses are the percent of samples greater than the analytical.

In Figure C.4c, first order estimate looks slightly off, which is due to the boundary effects of

the KDE construction. A χ2 test between the statistical and analytical distributions yields a

confidence of at least 99.5% that the two distributions are the same for all verification tests.

For all three verification distributions, the variance of the distribution decreases with increasing

order and the estimate becomes, on average, more accurate. This is an important extension of

the results in the previous section. Not only do the limits of the mean and variance decrease

with increasing order, but the values do for the chosen parent distributions.
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Figure C.3: Parent distributions for Wilks’ Formula verification. Three different parent distri-
butions are used to verify Wilks’ formula using statistical and analytical methods.

C.4 Discussion

This section discusses some common misconseptions and incorrect applications of Wilks’ method,

with particular reference to computational problems.

Dependent Outputs In 1943, Wald extended Wilks’ formula for setting sample size to

multivariate distributions [168]. Therefore, if outputs are dependent (which is the case for most

computational exercises), the multivariate case must be used. In practice, analysts generally

assume that the outputs are independent even after demonstrating that they are not (for example,

in [129]). Though independent outputs significantly increase the simplicity of the analysis, it

can lead to misleading or incorrect estimates of the tolerance limit.

Higher Order Estimates There seems to be some confusion in the literature about what

exactly a higher order Wilks’ estimate is for. Many authors say that higher order estimates

should be used to account for dependent outputs, but this is a completely unrelated issue that

was discussed in the last section. In 2013, Hong et al. pondered over this meaning, saying that

the increase in the sample size could simply go to improving the confidence in the estimate [68].

This is a valid exercise, but it is not the purpose of higher order estimates.

Table C.1 and Figure C.4 demonstrate that higher order Wilks’ estimates are, on average,

more accurate and have less variance. This gives no benefit from a regulatory view, it yields a

more accurate answer.

Repeated Wilks’ Sampling In 2004, Pál and Makai pointed to what they called a “remark-

able weakness” of using Wilks’ formula to set the sample size [124]. Upon repeated Wilks’

sampling, statistics indicate that the maximal value will likely get larger. So if Wilks’ Formula

is repeated, the estimate of the tolerance limit will likely be larger. Though this is a correct
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Figure C.4: Verification of Wilks’ Formula. Wilks’ Formula is verified using three different parent distributions to calculate the
95%/95% tolerance limits for ranks 1 ≤ r ≤ 10. The colored lines are KDEs of M repeated Wilks’ studies, where the statistical
confidence is included in the legend. The dotted black lines are the analytical distributions of the order statistic corresponding to
each Wilks’ sample size (using Equation C.4). The black horizontal line is the analytical tolerance and the horizontal red line is
the statistically estimated tolerance using a large sample size.

142



observation, it is by design that Wilks’ formula can give a distribution of results for estimation

of the tolerance limit (see Equation C.4 and it’s application in Section C.3). Further, that

distribution is not infinite, so there is a limit to how large it can get. This is why a confidence is

incorporated into the formula: it measures the probability that the tolerance limit is over- or

underestimated.

In addition, new statistics must be calculated if Wilks’ Formula is repeated. For example, if

a one-sided 95%/95% tolerance limit is repeated four times, the maximal element is no longer a

95%/95% estimate of the tolerance limit. The precision P or confidence 1− α must be changed

to maintain consistency with Equation C.1.

Rounding of Wilks’ Formula The inequalities in Equations C.1 and C.2 can be interpreted

as yielding a result that has a confidence level of at least 1−α. It is common in the literature for

these equations to be rounded in the wrong direction. For example, for a first order 95%/95%

tolerance limit, 58 samples are often used [34, 125, 124]. Though this is approximately equal to

95% confidence, it is not at least 95% confidence. To demonstrate this, equation C.1 is switched

to an equality and the analytical solution is presented in Table C.2 for three different cases.

Table C.2: Rounding of Wilks’ Formula. The first order 95%/95% tolerance limit is calculated
allowing the sample size to be a non-integer. It is demonstrated that the sample size must be
rounded up so that the confidence is at least 95%.

r P 1− α N

1 0.95 0.95 58.39
1 0.95 0.949 58
1 0.95 0.952 59

The first row shows the number of samples that would be necessary to calculate the 95%/95%

tolerance limit exactly. This is not possible, since N must be an integer. The next two rows

round N both ways, and then recalculate 1− α. The correct choice is 59 samples because it is

the lowest N that satisfies the inequality.
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