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ABSTRACT 

LIU YANG. Development of a Data-Driven Analysis Framework for Boiling Problems with 

Multiphase-CFD Solver (Under the direction of Dr. Nam Dinh). 

 

Flow boiling is a highly efficient heat transfer regime, which is used for thermal management 

in various engineered systems. Among the modeling tools for boiling, the Multiphase 

Computational Fluid Dynamics (MCFD) solver based on Eulerian-Eulerian two-fluid model has 

demonstrated its potential in solving boiling problems for industrial applications. On the other 

hand, in two-fluid model, closure relations are needed to make the two-fluid conservation 

equations solvable. Such relations, usually empirical or semi-empirical correlations, bring model 

form uncertainty and model parameter uncertainty to the MCFD solver. A still open issue for 

MCFD is that such uncertainties can be significant and are still not well quantified, thus 

undermining the predictive capability of the solver.  

This dissertation presents a data-driven analysis framework to address this open issue. The 

framework aims to leverage state of the art statistical methods and the increasingly affluent boiling 

data, from both high-resolution experimental measurements and high-fidelity simulations, to 1). 

perform validation and uncertainty quantification (VUQ) for the MCFD solver based on all 

available datasets; 2). develop data-driven closure relations based on deep neural networks for the 

MCFD solver that has the better predictive capability. Three major products are developed within 

the framework. 

First, a boiling data processing and storage procedure is developed for high-resolution 

experiments and high-fidelity simulations. The extracted data are stored in a structured manner to 

ensure the flexibility for multipurpose usage. Second, a comprehensive validation and uncertainty 

quantification (VUQ) procedure is developed for the MCFD solver. The procedure quantifies the 

uncertainties of MCFD solver predictions using Bayesian inference; then calculates validation 

metrics that quantitatively measuring the agreement between experimental measurement and 

obtained prediction uncertainties. Last, a study of new boiling closure relation development based 

on deep learning is performed. The deep feedforward networks trained by high fidelity boiling 

simulation data are found to be capable of predicting wall boiling heat transfer behavior with good 

accuracy.   
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Two-phase flow and boiling heat transfer occurs in many situations and are used for 

thermal management in various engineered systems with high energy density, from power 

electronics to heat exchangers in power plants and nuclear reactors. Essentially, two-phase 

and boiling heat transfer is a complex multiphysics process, which involves different 

interactions between heated solid surface, liquid, and vapor, including nucleation, 

evaporation, condensation, interfacial mass/heat/momentum exchange, and interface 

topological change (such as bubble breakup or coalescence). Correspondingly, there are 

various quantities of interest (QoIs) of a given boiling system, such as flow pattern, 

pressure drop, wall heat transfer, void fraction distribution, phasic temperature and velocity 

distribution, etc. In nuclear engineering, understanding the relevant phenomena and 

accurately predicting the QoIs involve in two-phase flow and boiling heat transfer is crucial 

for the design of an efficient and safe reactor.  

The measurement of many phenomena related to two-phase flow and boiling heat 

transfer is very challenging with current experimental techniques. Moreover, the 

experimental study of two-phase flow and boiling at prototypical reactor scale is 

technically challenging and expensive. Thus in current practices, the design and safety 

analysis of reactor thermal hydraulics systems are highly dependent on the scientific 

modeling and simulation. 

The modeling of two-phase flow and boiling heat transfer for engineering purpose 

can be characterized by two aspects: the dimension and the treatment of interfacial 

interaction. The system code, such as TRACE [1] and COBRA-TF [2] deals with one-

dimension cross-sectional averaged problems, while multiphase computational fluid 

dynamics (MCFD) code deals with multi-dimensional problems. The treatment of 

interfacial interaction has two types: the mixture model and the Eulerian-Eulerian two-fluid 

model.  

The mixture model treats two phases as a mixture whose property is averaged from 

vapor and liquid. Thus only one set of conservative equations for mass, momentum, and 
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energy is needed. The mixture model is further divided, based on their treatment of 

mechanical non-equilibrium (the relative velocity between the two phases). The 

homogeneous equilibrium model assumes there is no relative velocity between the phases. 

The slip factor model uses empirical correlations for the slip ratio (which is defined by the 

ratio of vapor velocity to liquid velocity). The drift-flux model uses kinematic constitutive 

equations to describe the relative flow. Theoretically, all three models can be applied to 

both one-dimension cross-sectional averaged problem and multi-dimensional problems. In 

practice, however, these models are mainly used for one-dimension cross-sectional 

averaged problems, such as in system analysis and engineering calculations.  

The two-fluid model treats two phases by separate sets of field conservation 

equations. For one-dimension cross-sectional averaged formulation, the interfacial 

interactions are modeled in a correspondingly coarse manner. Notably, the effect of local 

interactions, e.g., wall boiling heat transfer, is coarsened as a source term that affects the 

cross-sectional averaged parameters of flow dynamics. In contrast, the multi-dimensional 

formulation requires a much larger set of closure relations needed to provide detailed 

modeling of interfacial interactions and wall heat transfer.   

There are two common features of those modeling approaches: 1). the interface 

between two phases is averaged and is not resolved in the simulation; 2). closure relations 

are required to make the conservation equations of the model solvable. Among those 

approaches, the MCFD solver based on Eulerian-Eulerian two-fluid model has been 

regarded as the most promising tool, especially for applications with complex geometries 

such as reactor fuel rod bundles. The main reason is MCFD has the capability to describe 

phenomena with local detail, while still retain relative computational efficiency. Based on 

this reason, MCFD attracts increasingly interests over recent two decades. Simulations are 

developed based on it, from adiabatic bubbly flow and boiling simulation [3, 4] to critical 

heat flux prediction [5, 6].  

On the other hand, it should be recognized that fundamental disconnection still exists 

between performing simulations using MCFD solver and applying MCFD solver for 

industrial applications. The main issue is the uncertainties of the MCFD solver are not well 
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quantified, especially for the uncertainty introduced by the closure relations. As pointed 

out by Roy and Oberkampf [7]: 

Information on the magnitude, composition, and sources of uncertainty in 

simulations is critical in the decision-making process for natural and engineered systems. 

Without forthrightly estimating and clearly presenting the total uncertainty in a prediction, 

decision makers will be ill advised, possibly resulting in inadequate safety, reliability, or 

performance of the system. Consequently, decision makers could unknowingly put at risk 

their customers, the public, or the environment. 

Compare to the single-phase CFD, MCFD has a significant uncertainty source from 

the closure relations. Those closure relations are introduced to describe the unresolved 

phenomena in the two-fluid model, including boiling process and the interfacial interaction. 

There are two issues for applying those closure relations in a MCFD solver. Firstly, most 

of those closure relations are empirical or semi-empirical correlations with empirical 

parameters whose values significantly influence the results of the solver, yet the values of 

those parameters can vary significantly between different practices. Secondly, the closure 

relations are proposed in a manner that one closure relation deals with one physical 

phenomenon, a group of closure relations is then assembled for the whole system. Such 

“divide-and-conquer” approach neglects the possible interactions between different closure 

relations.  

Many efforts have been made to address these two issues. These efforts can be 

characterized into two interrelated categories. The first category is to evaluate the 

uncertainty of closure relations through uncertainty quantification (UQ) and evaluate the 

influence of the uncertainties on the solver predictions through validation. A most 

straightforward and widely used approach is to select different closure relations, in many 

cases also randomly sampling the corresponding empirical parameters, and run multiple 

simulations, then graphically compare the simulation results with the experimental 

measurement [8-10]. Based on these comparisons, a set of “optimized” parameters and 

closure relations are selected for future usage. This approach can produce reasonably good 

results with a limited data support. However, it is heavily dependent on the researcher’s 

experience and is generally providing ad hoc result. 
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A more comprehensive framework for the validation and uncertainty quantification 

(VUQ) of a solver was formulated in the late 1990s [11]. Later, an improved version was 

developed [7]. This framework includes the following steps: construction of validation 

hierarchy, design of validation experiments, UQ in computations, and validation metrics. 

The fundamental idea of this framework is phenomena decomposition, which is similar to 

the “divide-and-conquer” approach for the closure development in MCFD solver. It 

decomposes a complex system into several progressively simpler tiers. Each tier represents 

a series of sub-systems or phenomena of the complete system; an example is given in 

Figure 1. A new type of experiment termed validation experiment needs to be conducted 

according to the decomposition which should provide detailed measurements for all the 

inputs and outputs of each component, including comprehensive uncertainty analysis of 

these measurements. The most updated criteria of validation experiment are evaluated in 

[12]. 

This framework provides a detailed guidance with solid theoretical background for 

the uncertainty study and validation of a computational model, thus can be applied to the 

MCFD solver. However, based on the author’s best knowledge, there is no real application 

that follows the complete process of this framework. One of the major difficulty is that 

most of the currently available datasets are not suitable for this framework since those 

datasets were measured from traditional experiments, which cannot meet the standard of 

the validation experiment.  

 

Figure 1. Validation hierarchy for MCFD solver based on AIAA guidance. 
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The second category is to develop new mechanistic closure relations that aim to 

better describe the underlying physics of the two-phase flow and boiling phenomena. With 

closure relation that resolves the physics, the uncertainty of it can be significantly reduced. 

Among the efforts of this category, developing new wall boiling closure relation that 

consider the detailed physical mechanism for wall boiling heat transfer is an active research 

topic. New mechanistic closure relations that focus on the bubble dynamics [13], or the 

bubble sliding effects [14, 15] have been developed. Those new closure relations were 

validated against a few experimental datasets and demonstrated better agreement, 

compared to closure relations that heavily rely on empirical correlations. Another active 

research topic is the closure relation for interfacial area transport which aims to describe 

the evolution of interfacial structure across different two-phase regimes. Since firstly 

proposed by Kocamustafaogullari and Ishii [16], various works on interfacial area transport 

equation (IATE) have been developed for different phenomena, such as wall nucleation 

[17] and bulk condensation [18], as well as for different geometries, such as round pipe 

[19] and rectangular channel [20]. 

The major limitation of this approach stems from a fact: the quantitative 

measurement of physical processes relevant to two-phase flow and boiling, such as 

nucleation and bubble deformation, are still very challenging. Thus a fully understanding 

of the underlying physics of these phenomena is still not possible. Inevitably, artificial 

concepts and empirical parameters are included in these mechanistic correlations, and those 

parameters are tuned, just like the efforts of the first category, to make the closure relation 

match the data. In this sense, the predictive capability of those mechanistic closure relations 

is heavily relied on, and thus limited by, the individual researcher’s experience and 

knowledge. In many cases, those proposed closure relations demonstrate a good agreement 

on measurements under certain conditions, but fail to match measurements under other 

conditions [21]. The applicability range of those closure relations is thus limited.   

To summarize, the significant uncertainty of the closure relations of the MCFD 

solver hampers the predictive capability of it, thus causing a disconnect between running 

simulations with MCFD solver to making practical decisions based on it. Current efforts 

to address the uncertainty issue, including the VUQ strategy to quantify and validate the 
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uncertainty of solver predictions and the development of mechanistic closure relations, 

both have their limitations. In this sense, novel insights are required to address this 

uncertainty issue.  

1.2 Motivation 

It worth noting that some recent developments in multiple research fields have 

demonstrated potential impact on the study of two-phase flow and boiling, and MCFD 

solver can benefit from those developments.  

First, the development of experimental technology makes the high-resolution 

measurement for two-phase flow and boiling possible. The particle tracking velocimetry 

(PTV) has been used for measuring whole field distribution of QoIs of the two-phase flow 

and boiling system. In the representative work [22-24], promising results are demonstrated 

for the quantitative measurement of the detailed bubble dynamics and flow velocity fields. 

Moreover, high-speed infrared (IR) camera has been applied to measure the detailed 

boiling process. The pioneering work is the UCSB-BETA experiment [25, 26], which 

measured the detailed nucleation and the corresponding nucleate boiling heat transfer of 

pool boiling and thin liquid film boiling. Another representative work is [27], which 

couples the high-speed IR camera and high-speed camera to estimate the wall heat flux 

partitioning in nucleate boiling heat transfer. Information extracted from those high-

resolution experiments can significantly increase the current available two-phase flow and 

boiling database, which is usually from measurements on limited points of the whole 

domain.  

Second, the recent progress of computational power and numerical algorithms makes 

the first-principle simulation of the two-phase flow and boiling heat transfer system 

possible. In these simulations, the interface is fully resolved through interface capturing or 

interface tracking methods. These simulations provide high-fidelity results which can be 

treated as “virtual experimental data”. Moreover, many important phenomena which 

cannot be measured in experiments can be derived based on the simulation results. One of 

the representative works [28, 29] conducted the direct numerical simulation (DNS), which 

use the level set method to track the interface, for the adiabatic bubbly flow system. The 

obtained results were used to analyze the bubble-induced turbulence and the interfacial 
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forces. Other works [30, 31] simulated the high heat flux pool boiling, with interface 

tracking method (ITM) based on color function and large eddy simulation for turbulence. 

The details of nucleate boiling, including micro-layer dynamics, can be captured. From the 

simulation results, the heat flux partitioning and the ratio of vapor-to-liquid area over the 

heat transfer surface were calculated. Moreover, the feasibility of using high-fidelity 

computational model to quantify the uncertainty of low-fidelity model has been 

demonstrated within statistical framework [32]. Within this “high-to-low” framework, the 

high-fidelity simulation results can be used to quantify the uncertainty of the MCFD solver.  

Third, based on the author’s best knowledge, the value of both high-fidelity 

simulation and high-resolution experiment are still not fully exploited. One major reason 

is the traditional data analysis method used in the engineering community is not capable to 

handle the “big data” concept. It should also be noted that the data mining technique based 

on machine learning algorithms have already made progresses in many research fields 

which demonstrates it is a promising tool for the information extraction of the high 

resolution experimental measurements. Open source packages such as scikit-learn or 

commercial package Matlab can be conveniently used for such purposes. 

Last, with the development of algorithms and computational power, the deep neural 

network (DNN) demonstrates its power and draws increasing attention with a series of 

successful applications in several topics [33]. Recently, there are wide applications of DNN 

on several areas including computer vision [34], natural language processing [35], and 

playing the sophisticated Go game [36]. For the physics problem, DNN also demonstrates 

its potential to predict high resolution QoIs with the local input features. Ling et al. [37] 

use DNNs with the input of invariant tensor basis to predict the anisotropy tensor in 

turbulent flow. The DNN is trained by single-phase turbulent flow DNS results. The trained 

DNN demonstrated significant improvement compared to baseline RANS eddy viscosity 

models. Inspired by this, Kutz [38] predicts the DNNs would play a significant role in 

turbulence modeling in next decade. In MCFD solver, a neural network based closure to 

represent the interfacial force is studied [39] that learn from DNS data. The promising 

results indicate DNN is a potential tool for the data-driven closure relation development. 



 

8 

 

However, according to the authors’ best knowledge, there is still no application of DNN 

for boiling related problems. 

To summarize, recent developments in experimental technology and computational 

power have created increasingly affluent data for two-phase flow and boiling heat transfer 

problem. Whereas the state-of-the-art statistical and machine learning methods can be 

applied to leverage these new data sources. Inspired by these developments, a novel data-

driven framework to address the uncertainty issue of the MCFD solver can be developed.  

1.3 Dissertation overview and outline 

The significant uncertainty within the closure relations of the MFD solver hampers 

the predictive capability of it. The traditional two approaches to address this issue are: 

conducting model selection and parameter tuning based on expert judgement; developing 

new mechanistic closure relations that better describe the underlying physics of the relevant 

phenomena. However, these two approaches demonstrate only limited applicability on this 

issue. 

In this dissertation, a new framework to address this uncertainty issue is proposed. 

Directly driven by data, this framework aims to address the uncertainty of MCFD solver 

also through two approaches. In contrast to the traditional efforts, these two approaches are 

based on and driven by data. The first approach is to perform a comprehensive VUQ on 

MCFD solver with available database. This VUQ work is based on Bayesian inference 

which learns from data. The second approach is to develop data-driven closure relations 

based on deep neural networks, which are benefited from the “big-data” and good 

mathematical properties of DNN and thus have lower uncertainty and better predictive 

capability compared to traditional empirical correlations. Such a data-driven framework is 

possible today due to technological advancements on following topics: 

• High resolution experimental measurement for boiling process 

• High fidelity simulation for boiling process with detailed local features 

• State-of-the-art machine learning and statistical algorithms 
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This chapter has discussed the background, motivation, and achievements of the 

dissertation. The remainder of the dissertation is structured in the following manner. 

Chapter 2 provides an overview of the data-driven framework, as well as the 

explanation of the essential concepts that closely relevant to this dissertation.  

Chapter 3 discusses the data processing and storage procedure. The data processing 

examples for experimental measurements and simulation results are discussed respectively. 

The concepts of virtual containers, which is proposed for storing data for multipurpose 

usage, is introduced. 

Chapter 4 and 5 introduces a data-driven VUQ procedure for MCFD solver. In 

Chapter 4, a detailed introduction of Eulerian-Eulerian two-fluid model based MCFD 

solver is provided, including the characterization of its closure relations. Then a six-step 

VUQ procedure for MCFD is introduced with technical details. In Chapter 5, two case 

studies on two-phase flow and boiling heat transfer is conducted as demonstrations of the 

proposed VUQ procedure.  

Chapter 6 introduces the data-driven modeling approach for boiling closure relation 

development. The fundamental ideas of deep learning are discussed in this chapter. An 

example using deep feedforward network is demonstrated.  

Chapter 7 gives a detailed summary of contributions, conclusions, and 

recommendation for future works. 
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CHAPTER 2. OVERVIEW OF THE PROPOSED FRAMEWORK 

The chapter provides an overview of the data-driven analysis framework. The 

framework consists of three components. The first one is data processing and storage 

procedure, which aims to convert the heterogamous data from high-resolution experiments 

and high-fidelity simulation to well-structured datasets. With the processed data, two types 

of application for the MCFD solver can be developed, one is the validation and uncertainty 

quantification (VUQ); the other is the data-driven modeling. Before introducing the 

framework, several essential concepts that closely relevant to the dissertation is introduced 

in Section 2.1.   

2.1 Essential concepts 

The section discusses the essential concepts that closely related to the main theme of 

this dissertation. 

2.1.1 Verification 

The definition of verification in the context of modeling and simulation is given by 

[40]: 

Verification is the process of determining that a model implementation accurately 

represents the developer’s conceptual description of the model and the solution to the 

model.  

The verification can be further divided into two types: code verification and solution 

verification. The code verification is the process of determining that the numerical 

algorithms are correctly implemented in the computer code and of identifying errors in the 

software [40]. The code verification aims to identify and correct potential errors in the 

source code and numerical algorithms of the model. Two methods are widely used for the 

code verification: the method of exact solutions (MES) and the method of manufactured 

solutions (MMS).  

The solution verification is the process of determining the correctness of the input 

data, the numerical accuracy of the solution obtained, and the correctness of the output 

data for a particular simulation [40]. The solution verification mainly deals with two types 

of errors. One is Human errors, which could be introduced in the preparation of inputs 
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needed by the simulation, or in the post-processing of output results from the simulation. 

The other is the numerical error stems from the discretization and iteration process during 

the simulation. Unlike code verification, solution verification needs to be performed for 

every simulation if it is significantly different from previous verified solutions. 

2.1.2 Validation 

There are several definitions of validation that have been used in different 

communities, one of the most well-known definition is included in [40] which defines 

validation as: 

The process of determining the degree to which a model is an accurate 

representation of the real world from the perspective of the intended uses of the model. 

Essentially speaking, verification is a mathematics issue while validation is a physics 

issue. In other words, the verification deals with the problem: is the model solves the 

equation correctly? Whereas the validation deals with the problem: is the model solves the 

correct equation? 

In previous practices, a widely used validation approach is to graphically compare 

the model predictions with the experimental measurement. Such “graphical comparison”, 

while provides a basic understanding of the model accuracy, cannot generate a quantitative 

measurement of the simulation-data agreement, and can hardly lead to a reasonable 

evaluation of the solver. To address this issue, validation metrics that aim to provide a 

quantitative measurement of the agreement between model predictions and experimental 

measurement are proposed [41-43]. In this dissertation, two validation metrics are applied 

to the VUQ of MCFD solver.   

2.1.3 Sources of uncertainty 

For a general computational model, there are three sources of uncertainty:  

• Model parameter uncertainty. A computational model inevitably contains 

parameters that need to be specified before the model can be used for prediction. 

Those parameters, whether denoting certain input physical quantities such as inlet 

velocity or wall heat flux, or representing the empirical description of a closure 

relation, have uncertainties that influence the prediction. Such uncertainty can 
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come from the intrinsic variation of the physical process such as the fluctuation 

of inlet velocity, or the lack of knowledge about a certain phenomenon such as 

the empirical parameter in a closure relation. In this sense, those parameters are 

treated as random variables if the UQ is performed under the Bayesian 

framework. The uncertainty introduced by those parameters are termed as model 

parameter uncertainties, which needs to be quantified and then propagated 

through the model. 

• Model form uncertainty. The model form uncertainty is also termed as model 

bias, model inadequacy, or model discrepancy in different references. It stems 

from the simple fact that no model is perfect. This occurs even for a model with 

no parameter uncertainty so that the true values of all parameters required for a 

model are known. With all those true parameter values, the obtained QoIs from 

the model still would not be their true values in the real world. Such discrepancy 

is embedded in the formulation of the model, which usually includes 

approximations and simplifications for certain complicated physical process, as 

well as ignorance of some physical interactions between different phenomena, 

especially for complicated multi-scale problems such as the multiphase flow and 

boiling. The model form uncertainty is generally problem dependent and more 

difficult to address as compared to the parameter uncertainty. The study of the 

model form uncertainty is a topic of active research.  

• Numerical errors and uncertainty. The numerical errors mainly arise from the 

discretization process and map the continuum PDE to discrete equations, 

insufficient iterative convergence for solving the nonlinear equations, as well as 

the round-off of simulation results. Strictly speaking, the evaluation of numerical 

errors is not considered a work of validation, but a work of solution verification 

as discussed before. 

2.1.4 Uncertainty quantification 

The uncertainty quantification (UQ) process can be characterized as two different 

types: the forward UQ and the inverse UQ. The first type is based on the assumption that 

the model parameter uncertainties are already known. Thus the probability distributions of 
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the QoIs can be obtained by simply perturbing the parameter values according to their 

known distributions. This can be done with the Monte Carlo method with certain sampling 

strategies such as Latin Hypercube Sampling (LHS). In most practices of the forward UQ, 

the experimental data is not directly evolved. This process is usually applied to problems 

that only evolve measurable parameters with clear knowledge. The inverse UQ, on the 

other hand, is based on a more realistic assumption that we have limited knowledge of the 

parameters implemented in the model. Thus, the uncertainties of the parameters need to be 

inferred using experimental measurements. The Bayesian framework is a suitable 

statistical tool for such inference and has multiple applications since it was first introduced 

for computational models by [44]. The Bayesian framework assumes that parameters can 

be regarded as random variables, and have prior distributions based on current knowledge 

about it. With the experimental data, the likelihood function can be calculated. Combing 

this likelihood function with the prior distribution, the posterior distribution can be 

obtained. The likelihood term takes into account how probable the data is given the 

parameters of the model. Once the posterior distribution of the parameter is obtained, it can 

be propagated through the model to construct uncertainties of QoIs using forward UQ. In 

the inverse UQ, the model form uncertainty can be considered. For problems with empirical 

parameters that cannot be directly measured, inverse UQ needs to be applied. 

2.1.5 Sensitivity analysis 

The general objective of sensitivity analysis (SA) is to quantify the individual 

parameter’s contribution towards the QoIs and determine how variations in parameters 

affect the QoIs. A solid SA should be able to provide a ranking of the parameters by their 

importance to the QoIs. With the uncertainty into consideration, SA should also be able to 

identify how the uncertainty of model predicted QoIs can be apportioned to the different 

sources of uncertainty of the model inputs. 

2.1.6 Predictive capability 

The most important role of modeling and simulation is to make predictions regarding 

untested conditions. In engineering, the ability of a model for prediction is termed 

predictive capability. In contrast to the model prediction in scientific study, which focus 

on finding the philosophical concept of “truth”, the predictive capability concerns whether 
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the predictions made by the model is used to inform and improve the decision-making 

process. In other words, the predictive capability evaluates the adequacy of predictions 

made by a model to meet the accuracy requirement for QoIs. The predictive capability 

maturity method (PCMM) proposed by Oberkampf [40] provides a comprehensive 

guidance to evaluate the predictive capability of a model. 

2.1.7 Data-driven modeling 

Modeling a complex physical process that has not yet been fully understood is a 

difficult task. The classical approach is to formulate a model with some simplification 

assumptions. The model formulated in this way is consistent with the simplified physical 

process, but some parameters are left unknown until being empirically determined with the 

support of available data. While data also plays a role in this modeling approach, it is still 

mainly driven by the knowledge and experience of the researcher.  

The data-driven modeling approach, on the other hand, is focused on the data about 

the physical process, aiming to find the connection between the input conditions of the 

process and the output QoIs of it. This approach does not require the explicit understanding 

of the physical process. The data-driven modeling is possible today due to 1). the 

significantly increased data availability from high-resolution experiments and high-fidelity 

simulations; 2). the recent breakthrough in machine learning especially the deep learning 

algorithm[33].  

2.2 Overview of the proposed framework 

The data-driven analysis framework for boiling problem proposed in this dissertation 

can be simply illustrated in Figure 2. It aims to quantify and validate the uncertainty of 

MCFD solver through a VUQ procedure, and reduce the uncertainty of MCFD solver 

through data-driven modeling of closure relation. There are three major components of the 

framework. 

The first component is the data processing and storage. This dissertation mainly relies 

on data from high-resolution experiments and high-fidelity simulations. Most of these data 

are heterogeneous and cannot be directly applied to the analysis of MCFD solver. Thus a 

data processing procedure is needed to convert the heterogeneous data to the form that is 
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compatible with the MCFD solver. Moreover, considering the fact that one dataset can 

serve multiple purposes, the processed dataset should be properly stored to maximize the 

flexibility for multipurpose usage. This part of work will be discussed in Chapter.3.   

The second component is VUQ of the MCFD solver, with the focus on the closure 

relations. The closure relations contribute significant uncertainties to the MCFD. The VUQ 

component of the framework uses the modular Bayesian approach to quantify both the 

parameter uncertainty and the model form uncertainty of the closure relations in MCFD 

solver, then propagate the obtained uncertainty through the solver to obtain the uncertainty 

of QoIs predicted by the solver. The obtained QoIs, with its full uncertainty distribution, 

are quantitatively validated against all available datasets. This part of work will be 

discussed in Chapter.4. 

The third component is data-driven modeling for the closure relations of the MCFD 

solver. In contrast to the modeling approach based on expert’s knowledge and experience, 

the data-driven modeling approach discussed in this dissertation focuses on the data of the 

boiling process, using the deep learning algorithm to identify the connection between the 

input flow and surface features of boiling process and the output QoIs of it. This part of 

work will be discussed in Chapter.5. 

 

Figure 2. Overview of the data-driven analysis framework. 

In this dissertation, two examples for data processing and storage are demonstrated. 

Based on the obtained data, two applications, one for VUQ and one for data-driven 

modeling, are developed as a demonstration of the last two components of the framework. 

It should be noted that further applications can be developed that couples these two 
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components together. For example, a researcher can first develop a data-driven closure 

relation, then incorporate this closure relation in the MCFD solver and perform VUQ with 

it.  
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CHAPTER 3. DATA PROCESSING AND STORAGE 

This chapter discusses the data processing and storage procedure of the data-driven 

analysis framework. The nucleate boiling is a complex multiphysics process that involves 

interactions between heating surface, liquid, and vapor. Thus the data related to boiling 

also have complex structures. Moreover, different applications could be developed based 

on one dataset, whereas one application could also depend on several interrelated datasets.  

To maximize the convenience of data usage, the concept of “virtual container” is adopted 

for the storage of the obtained data. 

In this chapter, the data processing procedure is applied to both high-resolution 

experiments and high-fidelity simulations. Multiple QoIs are extracted and stored in the 

virtual container. The purpose of this procedure is to convert the heterogeneous rich data 

to well organized datasets that can be conveniently used for quantifying or reducing the 

uncertainty of MCFD solver through various applications. 

3.1 Processing boiling images from IR camera 

The data measured by high-speed infrared (IR) camera in both pool boiling and 

subcooled flow boiling experiments are studied in this work. A typical IR experiment is 

demonstrated in Figure 3. These experiments used nano-meter-thick metal film deposited 

on a glass substrate for ohmic heating. This design ensures uniform heat flux distribution 

on heating surface. The transparency of glass ensures it is the heating surface’s infrared 

that is captured by the camera. For subcooled flow boiling, the setup is similar with a 

different direction. The data from both the pool boiling experiments (UCSB-BETA) [25, 

26] and subcooled flow boiling experiments (from MIT boiling experimental facility) [45] 

are processed in this work. 

The raw data from IR camera is the counts of photons the sensor received. It can be 

easily converted to temperature data. However, the temperature contains only static 

information of the boiling process, it is very difficult to identify active nucleation sites and 

the corresponding nucleation boiling information from the temperature. A more desired 

data type is the heat flux distribution over the heating surface from which the nucleation 

information and the heat partitioning can be obtained. The transient heat conduction 
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equation over the substrate is solved to obtain the heat flux distribution over the heating 

surface. With the heat flux obtained, the nucleation information including the location of 

active nucleation sites, the heat partitioning, the bubble area fraction, etc. can be obtained. 

This is done through a parallel processing system as depicted in Figure 4. The detailed 

work would be discussed in Section 3.1.2. 

 

Figure 3. Schematic of measuring high-resolution boiling process with IR camera. 

 

Figure 4. Automatic data processing for IR boiling images. 
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3.1.1 Heat flux distribution processing 

For UCSB-BETA experiment, the heat flux is obtained by solving transient three-

dimensional heat conduction equation for the glass substrate, as shown in Figure 5. A 

special type of boundary condition is developed to map the IR temperature data to the upper 

wall cells. The surrounding walls are assumed to be adiabatic, while the lower wall is 

assumed to be a mixed boundary type with constant heat transfer coefficient. Grid 

sensitivity is conducted to ensure the obtained results are mesh independent. 

 

Figure 5. Scheme of computational domain for deriving heat flux distribution on heating 

surface. 

 

Figure 6. Three frames of (1) appearance of hot spot (t = 0ms); (2) Some hot spots being 

rewetted while others beginning merging (t = 60.3 ms); (3) Merged hot spot become 

irreversible and lead to burnout (t = 119.7 ms); 𝑞 =  2.15 𝑀𝑊/𝑚2, BETA experiment. 
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An example of obtained results are demonstrated in Figure 6. The development of 

the boiling crisis can be directly observed from these images.  

Similar process is performed for the subcooled flow boiling experiments. Figure 7 

demonstrates an example of the obtained temperature and heat flux distribution. As can be 

seen, the sliding effect can be clearly observed in the heat flux map. 

 

Figure 7. Temperature and corresponding heat flux distribution in flow boiling, mass 

flow rate = 500kg/m2, heat flux = 1.4MW/m2. 

3.1.2 Nucleation information processing 

As can be seen from Figure 6 and Figure 7, the nucleation sites can be clearly 

identified from the heat flux images. However, manually counting and recording the 

nucleation information would be very time consuming and tedious, the human error could 

also be introduced. In this work, the hierarchical clustering, an unsupervised machine 
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learning algorithm is applied to automatically identify and record the nucleation 

information. 

The hierarchical clustering algorithm is applied to the obtained heat flux images to 

identify the active nucleation sites. There are two types of hierarchical clustering, the 

agglomerative and divisive. In this work, the agglomerative type is adopted, which is a 

“bottom up” approach. Each sample starts in its own cluster, in each iteration, pairs of 

clusters are merged until the stop criterion is satisfied. 

The clustering process is dependent on measuring the dissimilarity, which is usually 

represented by distance, between sets of samples. Such measurement is specified by a 

chosen metric and the corresponding linkage criterion. The metric determines how to 

measure the dissimilarity, while the linkage criterion determines based on which property 

of the cluster to measure the dissimilarity. The commonly used metrics for hieratical 

clustering includes: Euclidean distance, Maximum distance, Mahalanobis distance, etc.  

In this work, the Euclidean distance is chosen as the metric, 

 ‖𝒂 − 𝒃‖2 = √∑(𝑎𝑖 − 𝑏𝑖)
2

𝑖

 , (1) 

where 𝑖 is the dimension of the sample. In this work, the clustering is applied to pixels of 

an image, thus 𝑖 = 2. 

A cluster consists of multiple samples; thus the metric alone cannot generate a unique 

distance between two clusters. The linkage criterion is introduced to resolve this issue and 

provide a unique measurement for the distance between two clusters. The maximum 

linkage criterion, for example, defines the distance between two clusters 𝐴 and 𝐵 as the 

maximum pairwise distance of samples inside 𝐴 and 𝐵. The minimum linkage criterion, in 

contrast, defines the distance as the minimum pairwise distance of samples inside 𝐴 and 𝐵. 

In this work, the centroid linkage is chosen, which means the Euclidean distance 

between two clusters 𝐴 and 𝐵 is calculated by  

 𝑑(𝐴, 𝐵) =  ‖𝑐𝐴 − 𝑐𝐵‖2 , (2) 
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where 𝑐𝐴 and 𝑐𝐵 are the centroids of clusters 𝐴 and 𝐵, respectively. 

Before running the clustering process, a value is specified to the linkage criterion, 

the merging process will stop when the distance between every pair of clusters exceed this 

value. This value needs to be adjusted for each case, since a too large value would falsely 

merge two nucleation sites into one, while a too small value would falsely divide one 

nucleation sites into several. In the practice, around 50 frames are randomly chosen from 

each case to manually examine if the clustering is correct or not, based on which the linkage 

value is adjusted.  

 

Figure 8. Example of hierarchical clustering for active nucleation sites identification. 

An example of the hierarchical clustering for active nucleation sites identification is 

demonstrated in Figure 8, it can be found that even the very small incipient nucleation sites 

can be identified. 

Once the nucleation sites are identified, the corresponding nucleation information 

can be obtained, including the nucleation site density, bubble area fraction, and evaporation 

heat flux, etc., one example is provided in Figure 9. These information are stored for future 

usage. 
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Figure 9. Evaporation Heat Flux and Bubble Area Fraction Distributions, 𝑞 =
1.16 MW/m2, BETA experiment, Heater Ti36A. 

These obtained boiling data can serve multiple purpose. First, it provides direct 

observation to the detailed boiling process that provide better understanding of the flow 

boiling process and the boiling crisis. This could serve a foundation for new mechanistic 

closure relation development. Second, the obtained data can be further averaged over time 

and space to serve for the VUQ of wall boiling closure relation in MCFD solver. Last, 

coupling with the flow dynamics measurement, the data can be used for data-driven 

modeling. In this dissertation, only the second application is developed, but it should be 

noted that more applications can be development with these high-resolution data. 

3.2 Processing high-fidelity simulation results 

The high-fidelity simulation results are processed to serve for data-driven modeling 

purpose, as will be discussed in Chapter.5. The simulation studied multiple pool boiling 

scenarios with interface tracking method (ITM) [46]. The simulation is based on directly 

solving the incompressible Navier-Stokes equations with a sharp-interface, phase-change 

model proposed in [30]. The three conservative equations solved in this approach can be 

expressed as follows: 

Mass: 

 
𝜕𝜌

𝜕𝑡
+ ∇ ∙ 𝜌𝑼 = 0 , (3) 

Momentum: 
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𝜕𝜌𝑼

𝜕𝑡
+ ∇ ∙ (𝜌𝑼𝑼) = −∇𝑝 + ∇ ∙ {𝜇(∇𝑼 + (∇𝑼)𝑻)} + 𝒇 , (4) 

Energy: 

 C𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑼 ∙ ∇𝑇) = ∇ ∙ (𝜆∇𝑇) + 𝑄 , (5) 

In addition to the conservative equations, the color function 𝜙 is used to track the 

interface between vapor and liquid: 

 
𝜕𝜙

𝜕𝑡
+ ∇ ∙ (𝜙𝑼) = −

1

𝜌𝒍
𝛤𝒍𝒗 , (6) 

In the simulation, the nucleation site is prescribed in the whole heating surface, and 

the heat conduction in the solid wall is considered through conjugate heat transfer. With 

the boundary conditions specified, the solver is able to predict the detailed boiling process 

with high accuracy. The QoIs of boiling process include the wall superheat, evaporation 

heat transfer component, convective heat transfer component towards liquid, and near wall 

bubble concentration. Such QoIs are the outcome of complex interactions between 

different phenomena, including: convection, evaporation, conjugate heat transfer, 

buoyancy, and nucleation. Although it is impossible to develop an explicit correlation or a 

model to accurately account for such interaction and give a reasonable prediction for the 

QoIs, a DNN that takes those phenomena as input features can serve as a “black-box” 

model for the prediction of boiling QoIs and can be applied to untested conditions.  

On the other hand, however, the ITM simulation is performed on very fine meshes, 

the results contain detailed interface information, as well as the fluctuation of physical 

quantities. For the two-fluid-model, such information is unnecessary. In this sense, the 

obtained ITM results need to go through certain average process before being used for 

training the DNN which is supposed to be compatible with two-fluid-model.  

In this work, a combination of time and space average is processed for each physical 

quantities 𝑓(𝒙, 𝑡) into a space and time averaged form 〈𝑓〉(𝒙, 𝑡)  which can be described as 

follows: 

 〈𝑓〉(𝒙, 𝑡) =
1

𝜏

1

𝑙3
∫ ∫ ∫ ∫ 𝑓(𝒙′, 𝑡′)𝑑𝑥3

′𝑑𝑥2
′𝑑𝑥1

′𝑑𝑡′
𝑥3+𝑙/2

𝑥3−𝑙/2

𝑥2+𝑙/2

𝑥2−𝑙/2

𝑥1+𝑙/2

𝑥1−𝑙/2

 ,
𝑡

𝑡−𝜏

 (7) 
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where 𝜏 and 𝑙 are the averaging time scale and averaging length scale, respectively. One 

interesting fact that worth noting ,as discussed in [47], is that this average process is 

mathematically equivalent to the convolution operation over a 4-dimensional matrix (three 

dimension in space, one dimension in time), with a kernel function𝑔(𝒙): 

 〈𝑓〉(𝒙, 𝑡) = ∫ ∫∫∫𝑔(𝒙 − 𝒙′)

𝑅4

 𝑓(𝒙′, 𝑡)𝑑𝒙′ . (8) 

For quantities that are only valid in the heating surface, i.e. the potential nucleation 

site density, nucleation activation temperature, wall superheat, and the heat transfer 

components, the average process is performed on 2-dimensional surface and time. Such 

operation is widely adapted in the DNN for extracting and preserving features of the data. 

It is assumed the averaged process will preserve the causal-relationship between input 

features and the boiling QoIs. Such assumption is reasonable if the ITM simulation already 

reached quasi-steady state before the data is extracted. Every physical quantity obtained 

from the ITM simulation are propagated through the process to generate an averaged 

version of it. The void fraction 𝛼 is obtained by propagating color function 𝜙 through this 

process. One example of the average process is demonstrated in Figure 10, where the color 

function describing the bubble interface is averaged over time and space to generate the 

void fraction distribution over a slice plane. 

 

Figure 10. Demonstration of the average process, from bubble interface to void fraction. 
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After this average process, the raw data of hundreds gigabyte level would be reduced 

to hundreds megabyte level while still preserves all the important information.  

3.3 “Virtual container” for data storage 

The processed data should be properly stored for the future usage. There are different 

purposes to use these datasets, one researcher hope to investigate the relevant physical 

process from the data, another researcher wants to use the data to validate a model, while 

another researcher would like to develop a new model based on the data. In this sense, the 

data need to be stored in a flexible way to maximize the convenience for all purposes. 

Moreover, potential connections could exist between different datasets, thus the data 

storage should also be flexible to preserve such possible connection. Based on this, the 

concept of “virtual container” proposed in the Nuclear Energy Knowledgebase for 

Advanced Modeling and Simulation (NE-KAMS) [48] is adopted in this dissertation.   

With this concept, datasets are stored in virtual containers according to the facility 

and the experimental condition. That is, no matter how many measurements was taken in 

one experiment, how many QoIs are measured and what their types are, it should be stored 

together in one container. This container should have a clear description about the 

information it stored and should provide access to all types of data it stored so other 

researchers that is not familiar with this experiment can still understand and use them. An 

example of virtual container storing the subcooled flow boiling data is given in Table 1. In 

this dissertation, the virtual container is stored in the dataframe format supported by 

Pandas, which is a python package. 

The virtual container designed in this way ensures the data are well organized and 

easy to use. Moreover, the collaboration between two containers can also be achieved 

through this configuration. One possible scenario is illustrated in Figure 11. In this 

scenario, the interactions between two containers, which stored data of the same physical 

process, are characterized. First, the type I data from both containers are used for studying 

the physical process. Second, type II data of container A and type III data of container B 

are used together for data-driven modeling. Last, type III data of container A and type II 

data of container B are used for VUQ of the model.  
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Table 1. Example of an experimental data container 

General information 

Source 
MIT boiling experimental 

facility [45] 

System configuration 

Geometry 
Vertical flow in rectangular 

channel 

Fluid materials water liquid/vapor 

Heater materials 
ITO sapphire heater with 

synthetic CRUD 

Test program 

Flow conditions 500 kg/m2 

Heat configurations 

2um thick CRUD with 

10um diameter chimneys 

on a 45um pitch 

Heat flux 1400 kW/m2 

Data stored 

[D0] raw data IR counts distribution 

[D1] data type I 
temperature/heat flux 

distribution 

[D2] data type II Nucleation information 

[D3] data type III 

Averaged heater 

temperature and heat 

transfer partition 

Data characteristics 

Applicability 

boiling model VUQ for 

flow boiling on low 

pressure 

Quality Good 
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Figure 11. Collaboration between two virtual containers. 

3.4 Summary remarks 

In this chapter, the data processing and storage procedure is introduced with two 

examples. The purpose of this procedure is to convert the heterogeneous rich data to well 

organized datasets that can be conveniently used for quantifying or reducing the 

uncertainty of MCFD solver through various applications. 

The hierarchical clustering algorithm is applied for the high-resolution IR boiling 

experiments. Active nucleation sites and the corresponding nucleation information can be 

automatically identified with the algorithm. Boiling related QoIs for MCFD solver are 

extracted. Similarly, the time and space average process is applied to high-fidelity ITM 

simulations. The extracted data are organized in the virtual container for further usage. 

In the following two chapters, two different applications are developed driven by 

different datasets from traditional experiments, high-resolution experiments, and high-

fidelity simulations. Each of the application reflects one usage of the data: from VUQ to 

data-driven modeling. It also should be noted that these two applications can be connected 

together: develop a data-driven closure relation first, then put the developed closure 

relation into the VUQ process. Data stored in virtual container can serve for such purpose 

with maximum flexibility.     
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CHAPTER 4. METHODOLOGY DEVELOPMENT FOR THE VALIDATION 

AND UNCERTAINTY QUANTIFICATION FOR MCFD SOLVER 

In this chapter, a validation and uncertainty quantification (VUQ) procedure for the 

Eulerian-Eulerian two-fluid-model based multiphase-computational fluid dynamics solver 

(MCFD) is developed. The procedure aims to answer the question: how to evaluate if a 

MCFD solver adequately represents the underlying physics of a multiphase system of 

interest? The proposed procedure is based on total data-model integration (TDMI) 

approach that uses Bayesian method to inversely quantify the uncertainty of the solver 

predictions with the support of multiple experimental datasets. The framework consists of 

six steps with state-of-the-art statistical methods, including: 1). Solver evaluation and data 

collection; 2). Surrogate model construction; 3). Sensitivity Analysis; 4). Parameter 

selection; 5). Uncertainty quantification with Bayesian inference; and 6). Validation 

metrics calculation. Those steps are formulated in a modular manner and using non-

intrusive methods. Such features ensure the applicability of the flexible procedure to 

different scenarios and modeling of multiphase flow and boiling heat transfer, as well as 

the extensibility of the procedure to support VUQ of different MCFD solvers. 

4.1 Eulerian-Eulerian two-fluid model based MCFD solver 

The fundamental idea of a two-fluid-model is to average the local instantaneous 

conservation equations, thus eliminating the need for tracking interfaces to achieve 

computational efficiency. The system of averaged conservation equations needs to be 

solved numerically, commonly using a finite-volume or finite-element method. The 

convergence and accuracy of the solution depend on numerical techniques and temporal 

and spatial resolutions needed to capture the dynamics and scales of governing physical 

processes.  

4.1.1 Conservative equations 

Generally speaking, the two-fluid model solver relies on solving three ensemble 

averaged conservative equations for mass, momentum and energy. The k-phasic mass 

conservation equation can be written as  
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∂(𝛼𝑘𝜌𝑘)

∂𝑡
+ ∇ ⋅ (𝛼𝑘𝜌𝑘𝐔𝑘) = 𝛤𝑘𝑖 − 𝛤𝑖𝑘 , (9) 

where the two terms on the left-hand side represent the rate of change and convection, the 

two terms on the right-hand side represent the rate of mass exchanges between phases due 

to condensation and evaporation.  

The k-phasic momentum equation is given by  

 

∂(𝛼𝑘𝜌𝑘𝐔𝑘)

∂𝑡
+ ∇ ⋅ (𝛼𝑘𝜌𝑘𝐔𝑘𝐔𝑘) = −𝛼𝑘∇𝑝𝑘 + ∇ ⋅ [𝛼𝑘(𝜏𝑘 + 𝜏𝑘

𝑡 )] + 𝛼𝑘𝜌𝑘𝐠 +

                     𝛤𝑘𝑖𝐔𝑖 − 𝛤𝑘𝑖𝐔𝑘 +𝐌𝑘𝑖, 
(10) 

where i represents the interphase between two phases, 𝐌𝑘𝑖 represents the term of averaged 

interfacial momentum exchange, which can be modeled by a set of interfacial force closure 

relations. 

The k-phasic energy conservation equation in terms of specific enthalpy can be given 

as 

 

∂(𝛼𝑘𝜌𝑘ℎ𝑘)

∂𝑡
+ ∇ ⋅ (𝛼𝑘𝜌𝑘ℎ𝑘𝐔𝑘) = ∇ ⋅ [𝛼𝑘 (𝜆𝑘𝛻𝑇𝑘 −

𝜇𝑘

Pr𝑘
𝑡 𝛻ℎ𝑘)] + 𝛼𝑘

𝐷𝑝

𝐷𝑡
+ 𝛤𝑘𝑖ℎ𝑖 −

                                                           𝛤𝑖𝑘ℎ𝑘 + 𝑞𝑘 ,  

(11) 

where the terms on the right-hand side represent heat transfer in phase k, work done by 

pressure, enthalpy change due to evaporation and condensation, and heat flux from the 

wall. The wall boiling heat transfer is modeled by a set of closure relations. 

4.1.2 Characterization of closure relations in MCFD 

Solving a typical two-phase flow and boiling problem involves predicting the boiling 

process on the heated wall and flow and heat transfer process in the bulk flow. The boiling 

process involves complex multi-physics process that includes interaction between liquid 

and the wall surface, such as nucleation and bubble departure. Such process cannot be 

directly resolved in the MCFD solver. Thus, wall boiling closure relations are incorporated 

in the MCFD solver to predict the boiling process; some recent development also includes 

the capability for the prediction of the departure from nucleate boiling (DNB) [5, 15]. After 

nucleation and departure from the wall, the bubbles join the bulk flow and interacting with 

the liquid in the bulk flow. Resolving such interactions require a series of closure relations 
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for the interphase exchange of mass, momentum and energy. Interfacial force closure 

relations are proposed to describe the interphase momentum exchange, while interfacial 

condensation closure is necessary to describe the interphase mass and heat transfer for the 

subcooled flow boiling problem. Moreover, the size of bubbles has significant influence 

on those interphase exchanges, and closure relation is needed for determining the bubble 

size. Last, the turbulence can influence the interphase exchange, and the bubble dynamics 

in turn influences the turbulence, thus closure relation is also required to describe the 

bubble-induced turbulence. Thus the closure relations in a MCFD solver can be 

characterized into five categories: wall boiling, interfacial momentum exchange, interfacial 

mass/heat transfer, bubble size, and turbulence. There exist complex relationships between 

those closure relations and a typical structure of them is depicted in Figure 12.  

The role of closure relation is the reflection of the “divide-and-conquer” philosophy 

that decompose a complex system into several sub-phenomena and models them with 

closure relations separately. It should also be noted that most of those closure relations are 

proposed for bubbly flow which assumes the continuous phase is liquid and the disperse 

phase is vapor or gas. Several investigations also assume such closure relations can be 

extended to droplet flow simulation where the continuous phase is vapor while disperse 

phase is liquid droplet. There are still gaps for the modeling of slug or churn flow using 

MCFD solver. 
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Figure 12. Closure relation structures in a typical MCFD solver. 

Turbulence 

The modeling of turbulence in MCFD solver is based on the Reynolds-averaged 

Navier–Stokes (RANS) model to obtain the turbulence viscosity 𝜈𝑡 . This type of 

turbulence model, which usually comes with wall functions, such as 𝑘 − 휀 model, 𝑘 − 𝜔 

model etc., already has been widely applied and tested in single phase flow problems. One 

additional closure in MCFD is to introduce a term that takes into account the bubble/droplet 

induced turbulence, such as the work by [49] and [28]. In most practices, only the 

turbulence of continuous phase - i.e. liquid phase in bubbly flow, vapor phase in droplet 
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flow -is modeled in this way, while the turbulent viscosity of dispersed phase is assumed 

to be linearly dependent on the vt of continuous phase with a turbulence response 

coefficient Ct. 

Interfacial momentum closure relations 

The interfacial momentum exchange between two phases is represented by different 

types of interfacial forces. For a typical MCFD solver, five interfacial forces are modeled. 

The drag force is modeled to describe the resistance of relative motion between the two 

phases. The lift force is modeled to describe the force that exerts by continuous fluid flow 

past the bubble. The turbulent dispersion force is modeled to describe the effect of liquid 

turbulence on the bubble. The wall lubrication force is designed as an artificial force to 

move the bubble away from the wall to describe. The virtual mass force is modeled to 

describe the inertia of bubble acceleration or deceleration. Figure 13 illustrates these five 

interfacial forces. 

 

Figure 13. Schemes of interfacial forces. 

Table 2 summarizes the expressions of those interfacial forces. Among these 

interfacial forces, the form of drag force and lift force can be analytically derived; thus 

their expression is quite consistent among different MCFD solvers. On the other hand, the 

force coefficients Cd and Cl are calculated from semi-empirical correlations. For drag force, 

several models can be used, such as the work done by [50] and [51], while for lift force, 

the correlation developed by [52] is widely used. It should also be noted that in some 
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practices, the force coefficients are also set to be constant for simplification purpose. The 

forms of other three forces is varied among different researchers due to the lack of solid 

theoretical support. Besides the expressions summarized in Table 2, there are other 

expressions can be used, such as the wall lubrication force model proposed by [53] 

turbulent dispersion force model proposed by [54]. 

Table 2. Expressions of interfacial forces 

Force type Expression 

Drag force  𝐌𝑔
𝐷 = −

3

4

𝐶𝑑
𝐷𝑠
𝜌𝑙𝛼‖𝐔𝑔 − 𝐔𝑙‖(𝐔𝑔 − 𝐔𝑙) 

Lift force  𝐌𝑔
𝐿 = 𝐶𝑙𝜌𝑙𝛼(𝐔𝑔 − 𝐔𝑙) × (∇ × 𝐔𝑔) 

 

Wall lubrication force [55]  

 

𝐌𝑔
𝑊𝐿 = −𝑓𝑊𝐿(𝐶𝑤𝑙, 𝑦𝑤)𝛼𝜌𝑙

‖𝐔𝑟 − (𝐔𝑟 ⋅ 𝐧𝑤)𝐧𝑤‖
2

𝐷𝑠
𝐧𝑤 ,

𝑓𝑊𝐿(𝐶𝑤𝑙, 𝑦𝑤) = max (−0.2𝐶𝑤𝑙 + (
𝐶𝑤𝑙
𝑦𝑤
)𝐷𝑠, 0)

 

Turbulent dispersion force 

[56] 
𝐌𝑔
𝑇𝐷 = −

3

4

𝐶𝐷
𝐷𝑠

𝜐𝑙
𝑡

𝜎𝑡𝑃𝑟𝑙
𝑡 𝜌𝑙‖𝐔𝑔 − 𝐔𝑙‖∇𝛼 

Virtual mass force  

[57] 
𝐌𝑔
𝑉𝑀 = −𝐶𝑣𝑚𝜌𝑙𝛼 (

𝐷𝐔𝑔

𝐷𝑡
−
𝐷𝐔𝑙
𝐷𝑡
) 

 

Interfacial mass and heat transfer closure relations 

Bubbles developed from nucleation depart from the wall and join the bulk flow. In 

subcooled flow boiling, the bubbles become surrounded by the subcooled liquid causing 

vapor condensation. The interfacial mass transfer related to condensation of vapor bubbles 

in the bulk coolant can be described as 

 𝛤lg =
ℎ𝑙𝑔(𝑇𝑠𝑎𝑡 − 𝑇𝑙)𝐴𝑎

ℎ𝑓𝑔
 , (12) 

where ℎ𝑙𝑔 is the heat transfer coefficient between the two phases, which can be calculated 

using empirical or semi-empirical correlations, representative works have been done by 

[58] and [59].  

 



 

35 

 

Bubble size closure relations 

The size of the bubble has significant influence on the interphase exchanges of mass, 

energy, and momentum. Initially, the bubble size is evaluated using empirical correlation 

derived from subcooled flow boiling. One example of the empirical correlation, as 

proposed by [60], is 

 𝐷𝑠 =
𝐷𝑟𝑒𝑓,1(𝑇𝑠𝑢𝑏 − 𝑇𝑠𝑢𝑏,2) + 𝐷𝑟𝑒𝑓,2(𝑇𝑠𝑢𝑏,1 − 𝑇𝑠𝑢𝑏)

𝑇𝑠𝑢𝑏,1 − 𝑇𝑠𝑢𝑏,2
 , (13) 

where 𝑇𝑠𝑢𝑏,1, 𝑇𝑠𝑢𝑏,2, 𝐷𝑟𝑒𝑓,1, 𝐷𝑟𝑒𝑓,2 are empirical constants which have suggested values, but 

those values are often tuned in different applications. A more sophisticated development is 

to predict the bubble size distribution with the interfacial area transport equation [61]. The 

volumetric interfacial area concentration equation can be expressed as 

 
∂(𝐴𝑎)

∂𝑡
+ ∇ ⋅ (𝐴𝑎𝐔𝑎) =

2

3

𝐴𝑎
𝛼
(
𝜕𝛼

𝜕𝑡
+ 𝛻 ⋅ (𝛼𝐔𝑎)) + ΦBB +ΦBC +ΦNUC  , (14) 

in which the first term on the right-hand side refers to the contribution of phase change and 

expansion due to pressure-density change. Here ΦBB, ΦBC, and ΦNUC represent the source 

and sink term induced by breakup, coalescence, and nucleation respectively. There are 

several semi-empirical correlations for those terms proposed by different researchers, 

reprehensive works include [62], and [63]. 

Another mechanistic approach for bubble size prediction is the multiple size group 

(MUSIG) model which deals with the non-uniform bubble size distribution by dividing the 

bubble size distribution into a finite number of groups. A more recent progress is the 

inhomogeneous MUSIG model by [64] which allows each bubble group to have its own 

velocity.   

Wall boiling closure relations  

Nucleation and growth of vapor bubbles serve as a mechanism for efficient cooling 

of the superheated fluid layer and hence heat removal from the heated wall. The wall 

boiling closure relation in MCFD solver is developed to provide a consistent treatment of 

phenomena that govern heat transfer in boiling. The general approach is termed “heat 

partitioning”, which decomposes the wall heat flux into several components representing 
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corresponding heat transfer mechanisms. The wall boiling model was first introduced by 

[65], which partitions the wall heat flux into three components: single phase forced 

convective heat transfer, quenching heat transfer, and evaporation heat transfer. This model 

is often called “Generation-I” model as many new refined models are developed based on 

it. It can be expressed as 

 𝑞𝑤𝑎𝑙𝑙 = 𝑞𝐸𝑣 + 𝑞𝑄𝑢 + 𝑞𝐹𝑐 . (15) 

The quenching heat transfer describes the heat transfer towards the liquid phase when 

the cool liquid replaces the detached bubbles from the wall. The quenching heat flux can 

be calculated with the expression proposed by [66]:  

 𝑞𝑄𝑢 = 𝐴𝑏
2

√𝜋
𝑓√𝑡𝑤𝑎𝑖𝑡𝑘𝑙𝜌𝑙𝑐𝑝,𝑙(𝑇𝑠𝑢𝑝 − 𝑇𝑙) , (16) 

where 𝑡𝑤𝑎𝑖𝑡  is the waiting time between the bubble departure and the appearance of a new 

bubble at a given nucleation site, which can be modeled by different empirical correlations. 

The forced convective heat transfer happens in the area where no nucleation happens. The 

convective heat flux can be modeled as: 

 𝑞𝐹𝑐 = (1 − 𝐴𝑏)ℎ𝑙(𝑇𝑠𝑢𝑝 − 𝑇𝑙) , (17) 

whereℎ𝑙is the convective heat transfer coefficient which is usually modeled with semi-

empirical correlations that take into account the near wall turbulence.  

In the boiling process, a significant proportion of heat transfer is served for 

evaporation. The bubbles appear and grow on the active nucleation site until departure. 

Therefore, the evaporation heat flux is dependent on the nucleation site density𝑁𝑎, bubble 

departure diameter 𝐷𝑑, and bubble departure frequency 𝑓𝑑:  

 𝑞𝐸𝑣 =
𝜋

6
𝐷𝑑
3𝜌𝑣𝑓𝑑𝑁𝑎ℎ𝑓𝑔. (18) 

Selected empirical correlations for those nucleation phenomena are summarized in Table 

3, Table 4, and Table 5, respectively. A more comprehensive review of those empirical 

correlations also can be found in [67]. It should also be noted that the evaporation heat 

transfer also serves as a void fraction source term in the mass conservation equation.   
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Table 3. Selected models for nucleation site density 

Model Empirical correlation for 𝑁𝑎, m-2 Condition 

Lemmert 

and Chawla 

[68] 
𝑁𝑎 = (𝑎𝑇sup)

𝑏
, a = 210, b = 1.805 Pool boiling 

Wang and 

Dhir [69] 
𝑁𝑎 = 5 × 10

−31(1 − 𝑐𝑜𝑠𝜃)𝑅𝑐
−6.0 

Pool boiling, 

p=1bar 

Yang and 

Kim [70] 
𝑁𝑎 = 𝑁𝑎𝑣𝑔𝜙(𝛽)𝑒𝑥𝑝(−𝐶𝑅𝑐) Pool boiling 

Hibiki and 

Ishii [71] 
𝑁𝑎 = 𝑁𝑎𝑣𝑔 [1 − 𝑒𝑥𝑝 (−

𝜃2

8𝜇𝑐𝑜𝑛2
)] [𝑒𝑥𝑝 (

𝜆′𝑔(𝜌+)

𝑅𝑐
) − 1] 

Pool and 

flow boiling, 

p ~ [1-198] 

bar 

Table 4. Selected models for bubble departure diameter 

Model Empirical correlation for 𝐷𝑑, m Condition 

Cole and Rohsenow 

[72] 
𝐷𝑑 = 1.5 × 10

−4√
𝜎

𝑔𝛥𝜌
(
𝜌𝑙𝐶𝑝𝑙𝑇𝑠𝑎𝑡

𝜌𝑔ℎ𝑓𝑔
)

5 4⁄

 
Pool nucleate 

boiling 

Tolubinsky and 

Konstanchuk [73] 

𝐷𝑑
= min[0.06𝑒𝑥𝑝(−𝛥𝑇𝑠𝑢𝑏 45⁄ ),0.14],  mm 

 

Subcooled flow 

boiling 

Kocamustafaogullari 

[74] 

𝐷𝑑 = 1.27 × 10
−3 (

𝜌𝑙 − 𝜌𝑔

𝜌𝑔
)

0.9

𝑑𝑟𝑒𝑓 

 

Pool and flow 

boiling, p 1-

142 bar 

Zeng et al.[75] 
Mechanistic model bubble departure/lift-off 

based on force balance analysis 

Pool and Flow 

boiling 
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Table 5. Selected models for bubble departure frequency 

Model Empirical correlation for f, s-1 Condition 

Cole[76] 𝑓𝑑 = √
4𝑔(𝜌𝑙 − 𝜌𝑔)

3𝐷𝑑𝜌𝑙
 

Pool nucleate boiling 

near CHF 

Kocamustafaogullari and 

Ishii [16] 𝑓𝑑 =
1.18

𝐷𝑑
[
𝜎𝑔(𝜌𝑙 − 𝜌𝑔)

𝜌𝑙
2 ]

0.25

 Subcooled _flow boiling 

Podowski et al. [77] 

Mechanistic model accounts 

for waiting time and bubble 

growth time 

subcooled flow boiling 

 

It is noted that in the “Generation-I” model, some of the important phenomena in 

flow boiling were not considered, such as the bubble sliding effect and the nucleation site 

interaction under high heat flux boiling. Some more recent efforts to resolve such issues 

have been made [13-15, 78]. The refined models resolve the underlying physics during 

nucleation and bubble growth. A common feature of those refined boiling models is the 

consideration of bubble sliding effect in flow boiling. The differences between those 

refined boiling models and the “Generation-I” model are summarized in Figure 14. 

 

Figure 14. Illustration of heat partitioning in (a).” Generation-I” boiling model; (b). 

Refined boiling models; (c). Boiling model for DNB prediction. 
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To summarize, the MCFD solver is based on a system that consists of three 

conservative equations and a set of closures included in the equations. The solver 

discretizes and numerically solves this system. The empirical parameters in the closures 

contribute to a major source of uncertainty of the solver. Similar to the validation hierarchy, 

the role of closures in the system is also a reflection of the “divide-and-conquer” 

philosophy that decompose a complex system into several sub-phenomena and modeled 

them with closures separately. Effective as this approach is, it could underestimate or even 

ignore the interaction between different sub-phenomena. A consequence of this approach 

is the non-negligible model form uncertainty. In this sense, both the model parameter 

uncertainty and the model form uncertainty need to be considered in the VUQ of MCFD 

solver. 

4.1.3 Characterization of uncertainties of MCFD solver 

As discussed in Section 2.1, there are three sources of uncertainty for a general 

computational model: parameter uncertainty, model form uncertainty and numerical 

uncertainty. In MCFD solver, these uncertainties can be roughly characterized as follows. 

One major source of uncertainty stems from the closure relations, which are largely 

empirical correlations, relying on historical data and published experiments; both the 

correlations and the data were generated decades ago, long before rigorous procedures for 

uncertainty analysis became required. Thus, the uncertainty comes from following issues: 

• Common for legacy experiments is the lack of detail and accurate description of 

facility, measurement techniques, flow geometry, heater surface characteristics, 

inlet and boundary conditions. Consequently, it is not possible to evaluate the 

experimental data uncertainty, which is instrumental for determining uncertainty of 

models and model parameters. For safety analysis, conservative assumptions were 

usually invoked in selecting parameters of empirical correlations.  

• Calibration of models involves a body of data, although not all data are born equal 

in their relevance to the conditions of interest. Value of information of data varies 

between experiments, tests (in an experiment), and types (even locations) of 

measurements (in a test).  
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• A major contribution to data uncertainty is the use of models outside the 

experimental domain, both interpolation and extrapolation. Even though various 

scaling techniques were devised and applied, complexity of two-phase flow and 

boiling heat transfer makes it difficult, if not impossible, to satisfy different scaling 

requirements.  

• As a special case of scaling distortions, note that empirical correlations were mostly 

designed for steady or quasi-steady state, and fully-developed flow situations. 

However, there are many problems in two phase and boiling flow that are 

intrinsically unsteady or transient. Furthermore, developing flow is dominant in 

industrial systems. The effect is particularly notable for flow regime criteria. 

Another group of uncertainty stems from basic assumptions that underlie the two-

fluid modeling approach. This includes:  

• The averaging procedure to obtain conservation equations, particularly the use of 

cross-sectional averaged variables in one-dimensional description of flow boiling. 

For different flow regimes, phase distributions across the channel can vary greatly 

and not well characterized for flow boiling in different transient scenarios.  

• Another assumption is scale separation that decouples physics between “global” 

scale of fluid dynamics (given by the field equations’ advection and diffusion terms) 

and “sub-grid-scale” local interactions (given by source terms). The source terms 

typically contain neither time nor spatial functional dependence. The scale 

separation allows source terms (e.g., interfacial exchanges, wall heat transfer, 

friction) in conservation equations be determined via local conditions, which – in 

one-dimensional model of flow boiling – are axially local and cross-sectional 

averaged.  

• Interfacial exchange terms and wall terms are typically decomposed into 

components, which are considered independent, and whose effect on “global” fluid 

dynamics is additive. For example, the effect of wall heat transfer is averaged over 

the cross-section flow.  

Note that the “divide-to-conquer” strategy popular in mechanistic modeling of 

various engineered systems. Their applicability (of scale separation and physics 
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decomposition) is limited by the complexity (non-linearly coupled/ multiscale nature) of 

two-phase flow, in general, and flow boiling in particular. 

The numerical uncertainty stems from the numerical solution process of the two-fluid 

model’s partial differential (conservation) equations. A major source of uncertainty results 

from the combined effect of discretization errors and errors due to approximation 

(integration) of closure relations over the numerical solution’s finite difference or control 

volume. The errors increase with variability of different flow characteristics over the 

control volume.  

The evaluation of numerical uncertainty of a MCFD solver is the same with other 

computational models, such as single phase CFD. The general tools including the 

manufactured solution [79], or the Richardson extrapolation [80]. Such evaluation process 

is considered as a topic of the verification. Thus, in this chapter, the numerical uncertainty 

is not explicitly analyzed. Rather, it is implicitly included in the model form uncertainty 

term. The validation and uncertainty quantification (VUQ) procedure discussed in the 

following section mainly deals with the parameter uncertainty and the model form 

uncertainty.   

4.2 VUQ procedure for MCFD solver 

As discussed in Section 1.1 the validation procedure for CFD based on the 

phenomena decomposition has been proposed for two decades [11]. Although the 

procedure has detailed guidance and solid theoretical background, limited validation 

practice has been conducted based on it. The major reason is the strict requirement of the 

validation data support, which current traditional experiments often cannot provide. 

Instead, a more convenient and straightforward validation paradigm has been adopted. This 

approach first identifies a set of closure relations that are considered to be important to the 

system of interest, then conduct parameter tuning on the closure relation based on available 

separate-effect test (SET) data. The tuned closure relations are then employed in the solver 

to obtain the QoIs and compare with the integrated-effect test (IET) data. This approach 

can produce reasonably good results with a limited data support. On the other hand, there 

are some shortcomings for this approach. The parameter tuning heavily depends on the 

researcher’s experience and is generally providing ad hoc result. Also, the obtained results 
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cannot be updated with newly available data. Moreover, the possible interactions between 

the closure relations are neglected through this approach.  

To overcome the shortcoming of the aforementioned traditional validation paradigm 

and to avoid the strict requirement for validation data, a new validation procedure based 

on the idea of total data-model integration (TDMI) is proposed. The TDMI approach treats 

closure relations, solver, and data in an integrated manner within the Bayesian procedure. 

Taking the MCFD solver as an example, for a given solver, the closure relation structure 

and the corresponding phenomena decomposition are already fixed. When using TDMI 

approach, the solver with its closures are treated as an integrated mathematical model 

which is like a “black-box” computational model with parameters serving as inputs and 

QoIs as outputs. This “black-box”, along with available data, are employed in the Bayesian 

framework to quantify the uncertainty of both the influential parameters and the QoIs. This 

approach ensures the possible interaction between different closure relations to be 

considered, and the results can be automatically updated with newly available data. 

Another advantage of TDMI is its flexibility with data. It is capable to simultaneously take 

into account multiple QoIs measured under different conditions. Moreover, it can provide 

a reasonable VUQ result with limited available data, and can also give a more accurate 

result with better data support. The VUQ relationship between MCFD solver and data 

under TDMI approach is illustrated in Figure 15.  

 

Figure 15. VUQ relationship of MCFD solver, closure relations, and data under TDMI 

approach. 



 

43 

 

It is obvious that in the TDMI approach, the validation is tightly coupled with the 

UQ process. The Bayesian method serves as the core method in this approach. The TDMI 

with the Bayesian method has been firstly demonstrated in [81] for the two-phase drift-flux 

model with synthetic data. The comparison between the traditional validation and TDMI 

based VUQ is illustrated in Figure 16. 

The VUQ procedure is proposed as a six-step workflow. It is formed in a modular 

manner, which means each step of the workflow can be treated independently and the 

specific method applied in a step will not influence the following steps. For example, for 

the surrogate construction (step 2), one can choose a method that fits their problem best, 

such as Gaussian process, Stochastic collocation or support vector machine, and this choice 

will not influence the further steps of the work. Moreover, for each step, the non-intrusive 

method can be used which ensures the extendibility of the procedure to different MCFD 

solvers. The workflow of the procedure is summarized in Figure 17.  

 

Figure 16. Two different validation paradigms: (a) Traditional validation; (b)VUQ based 

on total data-model integration. 
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Figure 17. Workflow of the proposed VUQ procedure. 

As discussed in the introduction, the ultimate goal of this VUQ procedure is to 

answer the question: How to evaluate if a MCFD adequately represents the underlying 

physics of a multiphase system of interest? In this section, this question is further 

decomposed into several smaller questions and is discussed in detail: 

• How to choose relevant closure relations for a given scenario (section 4.2.1) 

• How to build an accurate and efficient surrogate model for statistical inference? 

(section 4.2.2) 

• How to identify influential and identifiable parameters (section 4.2.3 and section 

4.2.4) 

• How to quantify the model parameter uncertainty with the given available datasets? 

(section 4.2.5) 

• How to evaluate the model form uncertainty which should be independent of 

parameters? (section 4.2.5) 

• How to quantify the uncertainties of all the QoIs in a simultaneous manner? (section 

4.2.5) 

• How to build confidence in applying VUQ results on an untested condition? 

(section 4.2.5)? 

• How to quantitatively validate the QoIs’ full distribution against experimental 

measurements (section 4.2.6)? 
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4.2.1 First step: solver evaluation and data collection 

The MCFD solver deals with many different scenarios related to multiphase flow, 

from adiabatic bubbly flow to subcooled boiling flow. For different problems, the closure 

relations used for simulation could be different and the Quantities of Interest (QoIs) would 

also vary. In this sense, the initial step in the procedure is evaluating the solver based on 

scenarios and collecting relevant experimental data to support the VUQ process. 

Based on the studied scenario, several items should be addressed in this step: 

• Evaluation of QoIs 

• Collection of available experimental datasets 

• Evaluation of closure relations 

• Evaluation of input parameters 

The QoIs of an MCFD simulation is scenario dependent and needs to be specified in 

the first place. For example, for boiling flow simulation, the wall superheat is considered 

as a QoI since it closely relates to safety, while the heat partitions are also QoIs since it 

relates to the heat transfer efficiency. For adiabatic bubbly flow, the interface distribution 

(characterized by void fraction) and the phasic flow field are QoIs. Once the QoIs for the 

given scenario is determined, the experimental measurement for the QoIs should be 

collected. For most cases, the resolution of the experimental measurement is coarse than 

the simulation results whose resolution can be easily controlled through mesh setup. The 

proposed VUQ procedure can deal with such limited data availability issue within the 

Bayesian framework. On the other hand, the VUQ results would be more accurate with the 

support of detailed measurement from validation experiments. Also, the procedure takes 

measurements from different conditions (e.g. different mass flow rate, heat flux, etc.) for 

the VUQ work simultaneously. This would generate robust VUQ results that can be 

extended to untested conditions. 

As discuss in Section 4.1, there are many closure relations of different categories in 

a MCFD solver. Some of the closure relations have very limited influence on certain QoIs 

or are even not activated in certain scenarios. Thus, it is impractical and unnecessary to 

evaluate the parameters of all closure relations for a given scenario. The evaluation of 
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closure relations aims to identify closure relations that are relevant to the QoIs of a scenario. 

Once the relevant closure relation is evaluated, the uncertainties of the corresponding 

parameters are then inversely quantified through the Bayesian inference. To perform 

Bayesian inference, the empirical parameters are treated as random variables with given 

prior distribution that base on “expert judgment”.   

4.2.2 Second step: surrogate construction 

The VUQ process requires many solver evaluations, considering the relative 

expensiveness of running a MCFD simulation, a surrogate model, also known as response 

surface model or emulator, is a necessary. In this step, a surrogate model is constructed 

based on the outputs of a limited number of runs of the original solver. 

In some research area, the parameter number of a model can be very huge, for this 

type of model, the usual procedure is to do a simplified sensitivity analysis and parameter 

selection first to reduce the dimensionality of parameter space, then construct the surrogate 

on the reduced parameter space [82]. For MCFD solver, the parameter size is not that huge 

compared to these problems. Thus in this procedure, the surrogate is constructed with all 

parameters relevant to a certain scenario, then comprehensive sensitivity analysis and 

parameter selection are performed based on the surrogate. 

There are multiple statistical and numerical methods that can be used for constructing 

a surrogate model. Each has various applications, such as polynomial response surface 

[83], stochastic collocation [84], and Gaussian Process [85], etc. In this work, we chose the 

Gaussian Process (GP) regression for surrogate construction, which has been widely used 

in the area of data-driven modeling and optimization. The only assumption for GP model 

is the QoIs are smooth over the whole input domain, which is generally valid for the 

considered problems. 

The general form of a GP model can be expressed as 

 𝑦𝑀(𝐪,𝜷)= ∑ℎ𝑖(𝐪)
𝑇𝛽𝑖

𝑚

𝑖=1

+ 𝐟(𝐪)=𝐡(𝐪)𝑇𝛃 + 𝑍(𝐪) , (19) 

where 𝐪 = [𝒒𝟏, 𝒒𝟐, . . . , 𝒒𝒑] is the p input variables, which can be empirical parameters or 

boundary conditions and 𝒚𝑴(𝐪) is the model output with the given input. The first term on 
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the right side is a deterministic trend function, which is the product of regression 

coefficients 𝛃=[𝜷𝟏, 𝜷𝟐, . . . , 𝜷𝒎]and the basis function𝐡(𝐪) = [𝒉𝟏(𝐪), 𝒉𝟐(𝐪), . . . , 𝒉𝒎(𝐪)], 

which has known form, usually set to be a constant or polynomial function. The second 

term Z(q) is a GP error model with zero mean, variance σ2 and non-zero covariance 

𝐜𝐨𝐯[𝒁(𝐪𝟏), 𝒁(𝐪𝟐)], which can be modeled as 

 cov[𝑍(𝐪(𝑖)), 𝑍(𝐪(𝑗))] = 𝜎2𝐾(𝐪(𝑖), 𝐪(𝑗)) , (20) 

where 𝐾(𝐪(𝑖), 𝐪(𝑗)) is called kernel function, which is usually chosen to be a function of 

the distance between the two input vectors. This functional form ensures that two inputs 

with close distance will produce outputs that are also close together. Since not all input 

variables are equally important to the output, it is natural to introduce weighting factors for 

each input variable in the kernel. There are many forms of kernel functions, an example is 

the powered-exponential kernel  

 𝐾(𝐪(𝑖), 𝐪(𝑗)) = exp(−∑𝜔𝑘 |𝑞𝑘
(𝑖) − 𝑞𝑘

(𝑗)
|

𝑝

𝑘=1

𝛾𝑘

) , (21) 

 

where ω𝑘 is the weighting factors, and γ𝑘 is termed “roughness factors”, which influence 

the smoothness of the kernel function. 

The two vectors ω  and γ  in equation (3), along with variance 𝜎2  are called 

hyperparameters of the GP model. The values of hyperparameters can be estimated by 

several methods such as Maximum Likelihood Estimation (MLE) or Bayesian inference.  

As noted, a GP model needs a limited number of runs from original solver before it 

can be used to do prediction. Suppose N simulations of MCFD solvers are performed, the 

following matrices and vector are calculated: 

Basis function:  

 𝐇=[𝒉(𝐪1),𝒉(𝐪2), . . .,𝒉(𝐪N)]=(
ℎ1(𝐪

1) … ℎ1(𝐪
𝑁)

⋮ ⋱ ⋮
ℎ𝑚(𝐪

1) ⋯ ℎ𝑚(𝐪
𝑁)
) (22) 



 

48 

 

 

Kernel function: 

 𝐊=(
𝐾(𝐪(1), 𝐪(1)) … 𝐾(𝐪(1), 𝐪(𝑁))

⋮ ⋱ ⋮
𝐾(𝐪(𝑁), 𝐪(1)) ⋯ 𝐾(𝐪(𝑁), 𝐪(𝑁))

) (23) 

 

Output QoI: 

 𝐲𝑀 = [𝑦𝑀(𝐪(1)), 𝑦𝑀(𝐪(2)), . . . , 𝑦𝑀(𝐪(𝑁))] (24) 

The regression coefficients β can be obtained through least-square estimate 

 �̂�=(𝐇T𝐑−1𝐇)−1𝐇𝐓𝑲−1𝐲M (25) 

Thus, for a new unknown input q*, the GP model can give following prediction: 

 �̂�𝑀(𝐪∗) =  𝐡(𝐪∗)�̂� +  𝐾∗
𝑇
𝑲−1(𝐲𝑀 −𝐇�̂�), (26) 

where  

 K*=σ2[K(𝐪∗,𝐪(1)),K(𝐪∗,𝐪(2)),. . .,K(𝐪∗,𝐪(N))] . (27) 

In addition, the GP model also give the variance of the predictor, which can be 

expressed as 

 Var[(�̂�𝑀)] = 𝜎2 [1 − (𝐡T(𝐪∗)    K∗T) (0 𝐇𝑇

𝐇 𝐑
)
−1

(
𝐡T(𝐪∗)

K∗T
)] . (28) 

The accuracy of GP model in predicting the QoI with untried inputs can be evaluated 

through the cross-validation method. The details will be discussed in the specific 

applications detailed in Section 5.2.2. 

For many cases, such as bubbly flow problem, the output QoI from MCFD solver is 

not only a function of boundary condition and empirical parameters but also a function of 

locations. Thus for even one single QoI, the output is a vector, with the size of the vector 

depending on the mesh setup. The straightforward approach is to train a GP model for 

every element of the vector respectively. This approach, however, is too cumbersome and 



 

49 

 

totally ignores the spatial correlation between those outputs. The dimension reduction 

method Principal Component Analysis (PCA) can be applied to resolve this issue. 

The PCA uses an orthogonal transformation to convert a set of observations of 

possibly correlated variables into a set of values of linearly uncorrelated variables called 

principal components. The number of principal components is less than or equal to the 

smaller of the number of original variables or the number of observations. The Singular 

Value Decomposition (SVD) is a robust algorithm for PCA. 

The implementation of PCA to the MCFD solver output can be summarized as 

several steps. Firstly, concatenate the output vectors of different QoIs to form a long vector; 

e.g.: 

 𝐲𝑀 = [𝛼1, 𝛼2, . . . 𝛼𝑑 , 𝑈𝑔1, 𝑈𝑔2, . . . 𝑈𝑔𝑑]
T
 , (29) 

where 𝛼i and 𝑈𝑔𝑖  are the void fraction and gas velocity in mesh index i, respectively. Thus 

the length of the output vector is 𝑛 × 𝑑 where n is the number of QoIs and d is the number 

of meshes. 

Evaluate the output vector with N different MCFD simulations. Thus an output 

matrix Y with dimension 𝑛𝑑 × 𝑁 can be constructed:  

 𝐘 = (𝐲𝑀(𝐪(1)), 𝐲𝑀(𝐪(2)), . . . , 𝐲𝑀(𝐪(𝑁))). (30) 

Center the output matrix by subtracting the mean column vector �̅�𝑀 =

1

𝑁
∑ 𝑦𝑀(𝐪(𝑖))

𝑁

𝑖=1
in each column to obtain 𝐘c. Then Perform SVD on 𝐘c: 

 𝐘c = 𝐔𝚺𝐕
T . (31) 

This means the centered output matrix 𝐘c can be decomposed as the products of three 

matrices, where Σ is a 𝑛𝑑 × 𝑁diagonal matrix whose diagonal entries are non-negative and 

ordered from largest to smallest, those diagonal entries are known as singular values of Yc 

which are the root of the eigenvalues of 𝐘c𝒀𝒄
𝑻, whereas the eigenvalues are the measure of 

the variances of 𝐘c. U is a 𝑛𝑑 × 𝑛𝑑unitary matrix, whose columns are the left-singular 

vectors of 𝐘c and V is a 𝑁 ×𝑁 unitary matrix whose column vectors are the right-singular 

vectors of 𝐘c. The column vectors of U are called the Principal Components (PCs).  
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Since U is unitary matrix, it has the property for such manipulation: 

 𝐔T𝐘c = 𝐔
T𝐔𝚺𝐕T = 𝚺𝐕T = 𝐒 . (32) 

This means the PCs map each row vector of Yc to a new vector (the row vector in S) 

which is termed PC scores. The PC scores are the transformed representations of the 

original input matrix Yc. For most cases, the singular values of Yc decrease very quickly 

which means the first few PCs can quantify the structures of the Yc. So the manipulations 

in Eq.(32) can be modified as: 

 𝐔*T𝐘c = 𝐒
∗ , (33) 

where 𝐔* is a 𝑛𝑑 × 𝑑∗  matrix with first 𝑑∗  PCs, 𝐒∗ is the corresponding 𝑑∗ × 𝑁  matrix 

with first 𝑑∗  PC scores. In practice, one usually retains the first 𝑑∗  PCs to ensure the 

corresponding variances can account for 95% - 99.9% of the total variance. In this way, 

the dimension of outputs can be reduced from 𝑛𝑑 to 𝑑∗. This means one only need to train 

d* uncorrelated GP models instead of 𝑛𝑑 highly correlated ones.  

In training GP models for the PC scores, each column in 𝐒∗serve as a sample. For a 

new input, the GP model give predictions for the corresponding PC scores 𝐒∗can be 

transformed back from the PC subspace to the original space by the following 

manipulation: 

 𝐲𝑀 = 𝐔∗𝐬∗ + �̅�𝑀 (34) 

4.2.3 Third step: sensitivity analysis 

Once the surrogate model for the MCFD solver is constructed, Sensitivity Analysis 

(SA) regarding the empirical parameters would be performed based on it. The general 

objective of SA is to quantify the individual parameter’s contribution towards the QoIs and 

determine how variations in parameters affect the QoIs.  

In this procedure, the Global SA (GSA) is conducted which considers the QoI 

uncertainties due to combinations of parameters throughout the whole admissible input 

space. It should also be noted that when conducting SA, the prior distributions and nominal 

values of all parameters are already determined in Step 1. In the following analysis, the 
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input variables q used in constructing GP model are further characterized by parameters θ 

(suppose have p dimensions) and condition variable ν (such as mass flow rate, wall heat 

flux, etc.) and spatial dependent variable x, so that 𝐲𝑀(𝐪) is expressed as 𝐲𝑀(𝑥, 𝛎, θ). 

There are two different methods for GSA: the Morris screening method and the Sobol 

indices method. 

Morris Screening method 

Morris Screening method evaluates local sensitivity approximations, termed 

elementary effects, over the input space. Morris Screening method can rank parameters 

according to their importance, but cannot quantify how much one parameter is more 

important to another. The major advantage of Morris Screening is its low computational 

cost.  

Morris Screening is based on the linearization of the model. To construct the 

elementary effect, one partitions [0,1] into l levels. Thus the elementary effect associated 

with the ith input can be calculated as 

 

𝑑𝑖(𝛉)

=
∫𝑦𝑀(𝑥, 𝐯, [𝜃1, … , 𝜃𝑖−1, 𝜃𝑖 + 𝛥, 𝜃𝑖+1, … 𝜃𝑝])𝑑𝑥 − ∫𝑦

𝑀(𝑥, 𝐯, 𝛉)𝑑𝑥

𝛥
 , 

(35) 

which means the QoIs are integrated over the whole input condition space for evaluation. 

The step size  is chosen from the set 

 𝛥 ∈ {
1

𝑙 − 1
, . . . ,1 −

1

𝑙 − 1
}. (36) 

For r sample points, the sensitivity measurement for xi can be represented by the 

sampling mean 𝜇𝑖, standard deviation 𝜎𝑖
2, and mean of absolute values 𝜇𝑖

∗, which can be 

calculated respectively. 

 𝜇𝑖
∗ =

1

𝑟
∑|𝑑𝑖

𝑗
(𝐪)|

𝑟

𝑗=1

 (37) 

 𝜇𝑖 =
1

𝑟
∑𝑑𝑖

𝑗
(𝐪)

𝑟

𝑗=1

 (38) 
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 𝜎𝑖
2 =

1

𝑟 − 1
∑(𝑑𝑖

𝑗
(𝐪) − 𝜇𝑖)

2
𝑟

𝑗=1

 (39) 

 

The mean represents the effect of the specific parameter on the output, while the 

variance represents the combined effects of the input parameters due to nonlinearities or 

interactions with other inputs. The obtained µ∗ and 𝜎 can help ranking the parameters by 

the relative order of importance. If the value of sigma is high compared to mu (same order 

of magnitude), a non-linear influence and/or interactions with other parameters are 

detected. This measure is however only qualitative. 

Variance based method: Sobol indices 

Variance-based methods decompose the output variance into contributions of the 

input variances, in this method, the importance of parameter can be quantitatively 

evaluated. The Sobol indices method is one of the most widely used variance based method 

on GSA. In here the basic idea of Sobol indices is discussed, assuming the parameters are 

independent and uniformly distributed on [0,1]. A more general situation is discussed in 

[82].  

A general computational model 𝑦𝑀(𝒒) can be expressed with second-order Sobol 

expansion:  

 𝑦𝑀(𝒒) = 𝑓0 +∑𝑓𝑖(𝑞𝑖)

𝑝

𝑖=1

+ ∑ 𝑓𝑖𝑗(𝑞𝑖, 𝑞𝑗) ,

1≤𝑖<𝑗≤𝑝

 (40) 

where the zeroth-, first-, and second-order terms on the right-hand side can be expressed 

as 

 

𝑓0 = ∫ 𝑦𝑀(𝒒)𝑑𝒒 ,
𝛤𝑝

𝑓𝑖(𝑞𝑖) = ∫ 𝑦𝑀(𝒒)𝑑𝒒~𝒊
𝛤𝑝−1

− 𝑓0 ,

𝑓𝑖𝑗(𝑞𝑖 , 𝑞𝑗) = ∫ 𝑦𝑀(𝒒)𝑑𝒒~𝑖
𝛤𝑝−2

− 𝑓𝑖(𝑞𝑖)−𝑓𝑗(𝑞𝑗) − 𝑓0 ,

 (41) 

where 𝛤𝑝 = [0,1]𝑝. The notation 𝒒~𝑖 denotes the vector having all the components of 𝒒 

except 𝑖𝑡ℎ element. 
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The total variance D of the model prediction 𝑦𝑀 is 

  𝐷 = var(𝑦𝑀) = ∫ 𝑦𝑀
2
(𝒒)𝑑𝒒 − 𝑓0

2

𝛤𝑝
 , (42) 

which can be further expressed as  

 𝐷 =∑𝐷𝑖 +

𝑖

∑ 𝐷𝑖𝑗
1≤𝑖<𝑗≤𝑝

 , (43) 

where 𝐷𝑖  and 𝐷𝑖𝑗 are two partial variances can be expressed as 

 

𝐷𝑖 = ∫ 𝑓𝑖
2(𝑞𝑖)𝑑𝑞𝑖

1

0

𝐷𝑖𝑗 = ∫ 𝑓𝑖𝑗
2(𝑞𝑖 , 𝑞𝑗)𝑑𝑞𝑖

1

0

 . 

 

(44) 

The Sobol indices are defined to be  

 𝑆𝑖 =
𝐷𝑖
𝐷
,   𝑆𝑖𝑗 =

𝐷𝑖𝑗

𝐷
,   𝑖, 𝑗 = 1, . . . , 𝑝 (45) 

By definition, those indices satisfy 

 ∑𝑆𝑖

𝑝

𝑖=1

+ ∑ 𝑆𝑖𝑗 = 1

1≤𝑖<𝑗≤𝑝

 , (46) 

where Si is termed the first-order sensitivity indices, large value of Si indicate strong 

influence of the corresponding parameter on the model prediction. Sij measures the 

influence of interaction between two corresponding parameters. Based on this two terms, 

the total sensitivity indices can be calculated to quantify the total effect of the 

corresponding parameter on model prediction 

 𝑆𝑇𝑖 = 𝑆𝑖 +∑𝑆𝑖𝑗

𝑝

𝑗=1

 (47) 

In practice, both the first-order indices and total sensitivity indices are considered 

using this method. The algorithm proposed by [86] can be used to calculate Sobol indices.  
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Firstly, create two 𝑀 × 𝑝 sample matrices through random sampling, where M is the 

sample size, p is the number of parameters investigated.  

 

𝐀 = (

𝜃1
1 …    𝜃𝑖

1   … 𝜃𝑝
1

⋮ ⋮ ⋮
𝜃1
𝑀 …    𝜃𝑖

𝑀   … 𝜃𝑝
𝑀
) ,

𝐁 = (

𝜃1
1 …    𝜃𝑖

1   … 𝜃𝑝
1

⋮ ⋮ ⋮
𝜃1
𝑀 …    𝜃𝑖

𝑀   … 𝜃𝑝
𝑀
) .

 (48) 

Secondly, create p different 𝑀 × 𝑝 matrices based on A and B. 

 𝐶𝑖 = (

𝜃1
1 …    𝜃𝑖

1   … 𝜃𝑝
1

⋮ ⋮ ⋮
𝜃1
𝑀 …    𝜃𝑖

𝑀   … 𝜃𝑝
𝑀
) , (49) 

which is identical to B except the ith column which is taken from A. 

Then compute 𝑀 × 1 vectors of model prediction: 

 𝑦𝐴 = 𝑓(𝐴), 𝑦𝐵 = 𝑓(𝐵), 𝑦𝐶 = 𝑓(𝐶) (50) 

The total number of model evaluations is 𝑀(𝑝 + 2).  

The first-order sensitivity indices can be estimated as  

 𝑆𝑖 =

1
𝑀∑ 𝑦𝐴

𝑗
𝑦𝐶𝑖
𝑗
− 𝑓0

2
𝑀

𝑗=1

1
𝑀∑ (𝑦𝐴

𝑗
)2 − 𝑓0

2
𝑀

𝑗=1

 , (51) 

where f0 is the mean of model prediction which can be approximated as 

 𝑓0
2 = (

1

𝑀
∑𝑦𝐴

𝑗

𝑀

𝑗=1

)(
1

𝑀
∑𝑦𝐵

𝑗

𝑀

𝑗=1

) . (52) 

 

The total sensitivity indices can be estimated as  

 𝑆𝑇𝑖 = 1 −

1
𝑀∑ 𝑦𝐵

𝑗
𝑦𝐶𝑖
𝑗
− 𝑓0

2
𝑀

𝑗=1

1
𝑀∑ (𝑦𝐴

𝑗
)2 − 𝑓0

2
𝑀

𝑗=1

 . (53) 
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4.2.4 Fourth step: parameter selection 

For a complex system such as the MCFD solver, many empirical parameters exist in 

the closure relations, and the parameter identifiability arises as a major issue for conducting 

Bayesian inference. This issue stems from the fact that with a limited number of datasets, 

there could exist different values of parameters that produce very similar results and fit the 

data equally well. The convergence of Bayesian inference would face difficulty with non-

identifiable parameter exists, unless good prior distributions are provided. Moreover, for 

engineering applications, the VUQ results should provide guidance for setting up 

parameters for future cases, thus a subset of parameters quantified with small uncertainties 

is more helpful for engineering simulation compared to the complete set of parameters 

quantified with large uncertainties. In this sense, it is desired to find a subset of parameters 

that not only can be identified using measured data but also with high sensitivity so that 

the Bayesian inference would give smaller posterior uncertainties of parameters. In this 

sense, the parameter selection is closely related to SA. The objective of this step is to 

perform SA and select a subset of parameters based on SA for the Bayesian inference in 

next step. 

It is natural to select parameters based on the GSA results. The general idea is to 

select parameters with high impact to the QoIs which are identifiable in the sense that they 

can be uniquely determined by the data. However, even two highly influential parameters 

cannot guarantee that they are mutually identifiable. A most straightforward example is 

𝑦 = 𝑎 + 𝑏, where 𝑎 and 𝑏 are of equal importance, but they are not identifiable with each 

other. Thus based on the GSA results, the parameter selection is still an ad hoc solution 

which requires trial-and-error.  

An algorithm for parameter selection has been developed by [87], which is based on 

the local sensitivity matrix, instead of the GSA results. The selection scores of different 

combinations of parameters can be obtained.  

The local sensitivity around nominal parameter values q0 can be analyzed based on 

the sensitivity matrix which is defined as 
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 𝜒(𝛉0) =

(

  
 

𝜕𝑦𝑀

𝜕𝜃1
(𝑥1, 𝑣, 𝛉0) …

𝜕𝑦𝑀

𝜕𝜃𝑝
(𝑥1, 𝑣, 𝛉0)

⋮ ⋱ ⋮
𝜕𝑦𝑀

𝜕𝜃1
(𝑥𝑛, 𝑣, 𝛉0) ⋯

𝜕𝑦𝑀

𝜕𝜃𝑝
(𝑥𝑛, 𝑣, 𝛉0)

)

  
 

 (54) 

Based on sensitivity matrix 𝜒(𝛉0), the Fisher information matrix is 

 𝐅(𝛉0) =
1

𝑠0
2 (𝜒

T(𝛉0)𝜒(𝛉0)) , (55) 

where 𝑠0
2 is the estimated error variance:   

 𝑠0
2 =

1

𝑛 − 𝑝
∑(𝑦𝐸(𝑣𝑖) − 𝑦

𝑀(𝑣𝑖, 𝛉0))
2

𝑛

𝑖=1

 (56) 

The covariance matrix 𝐕 can be estimated as  

 𝐕(𝛉0) = 𝑠0
2 (𝜒T(𝛉0)𝜒(𝛉0))

−1
= 𝐅−1(𝛉0) . 

(57) 

The coefficient of variation can be defined as: 

 𝜐(𝛉0)𝑖 =
(𝐕(𝛉0)𝑖,𝑖)

1 2⁄

(𝛉0)𝑖
 , (58) 

where 𝐕(𝛉0)𝑖,𝑖  is the 𝑖𝑡ℎ  diagonal entry in the covariance matrix. The coefficient of 

variation 𝜐(𝛉0)𝑖 represents the ratio of standard error of 𝜃𝑖 to its nominal value. Based on 

it, the parameter selection score 𝛽(𝛉0)  can be defined as the Euclidean norm of the 

vector 𝜐(𝛉0): 

 𝛽(𝛉0) = ‖𝜐(𝛉0)‖𝑙−2 = √∑(𝜐(𝛉0)𝑖)2

𝑝

𝑖=1

 (59) 

If one wants to select a subset of parameters of size p* from the whole parameters (of 

size p), the parameter selection based on 𝛽(𝛉0) can be accomplished by the following 

algorithm:  

1). For p* < p, consider all possible choices of indices i1 , i2,…, ip* with 

lexicographical order, which is the enumeration of the combination (
𝑝
𝑝∗).  
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2). Initialize the minimum selection score 𝛽𝑠𝑒𝑙=∞ and the selected index vector 

𝑖𝑛𝑑𝑠𝑒𝑙 to be (1,2,…, p*). 

3). Start with the first choice (𝑖1
(𝑘), 𝑖2

(𝑘), … , 𝑖𝑝∗
(𝑘)) and completes the following steps: 

Step k: for index (𝑖1
(𝑘), 𝑖2

(𝑘), … , 𝑖𝑝∗
(𝑘)), compute 𝑟 = 𝑟𝑎𝑛𝑘(𝐅(𝛉

0,𝑖1
(𝑘) , 𝛉

0,𝑖2
(𝑘) , . . . , 𝛉

0,𝑖𝑝∗
(𝑘)) 

if r < p* (which means selected parameters in this step are not mutually 

identifiable), go to step k+1 

   if r = p*, compute the corresponding selection score 𝛽𝑘 =

                𝛽(𝛉
0,𝑖1
(𝑘) , 𝛉

0,𝑖2
(𝑘) , . . . , 𝛉

0,𝑖𝑝∗
(𝑘)): 

          if 𝛽𝑘 > 𝛽
𝑠𝑒𝑙, go to step k+1 

if 𝛽𝑘 < 𝛽
𝑠𝑒𝑙, set 𝛽𝑠𝑒𝑙=𝛽𝑘 and 𝑖𝑛𝑑𝑠𝑒𝑙 to be (𝑖1

(𝑘), 𝑖2
(𝑘), … , 𝑖𝑝∗

(𝑘)), then go to 

step k+1. 

Through this algorithm, the subset of parameters with size p* with minimum selection 

score can be selected, the low score means low uncertainty probabilities in the estimation. 

The choice of p* depends on the rank analysis of the full Fisher information matrix 𝐅(𝛉0). 

Compared to the trial-and-error approach based on GSA, this algorithm also has its 

drawbacks. Since the algorithm is based on the nominal parameter value θ0, it does not 

fully explore the whole parameter space. In this sense, there is a possibility that such 

selection may be misleading if the parameter posterior distribution deviates significantly 

to the nominal value. Moreover, since there are multiple QoIs taken into consideration, the 

“optimal” parameter subset for different QoI could be different. In this sense, subjectivity 

cannot be avoided in the parameter selection. To sum up, the parameter selection process 

introduced in this work can be regarded as an “expert judgment informed by sensitivity 

analysis” procedure. In the following Bayesian inference step, only the selected parameters 

are treated as random variables while other parameters are fixed at their nominal values. 
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4.2.5 Fifth step: Uncertainty quantification 

For a general computational model, the relationship between the outputs and 

experimental measurements can be expressed as  

 𝐲𝐸(𝐱, 𝐯) = 𝐲𝑀(𝐱, 𝐯, 𝛉) + 𝛿(𝐱, 𝐯) + 휀(𝐱, 𝐯) , (60) 

where 𝐲𝐸(𝐱, 𝐯)  is the experimental measurement, 𝐲𝑀(𝐱, 𝐯, 𝛉) is the model prediction, 

𝛿(𝐱, 𝐯)  is the model form uncertainty, which is usually caused by missing physics, 

simplified assumptions or numerical approximations in the model, 휀(𝐱, 𝐯)  is the 

measurement uncertainty which is assumed to be i.i.d (independent and identically 

distributed) normal distributions with zero means and know variance σ2 in this work:  

 휀(𝐱, 𝐯)~𝑁(0, 𝜎2𝐈) (61) 

The goal in inverse UQ process is to evaluate the uncertainty of the parameter based 

on the data. In the framework of Bayesian inference, which treats the parameter as random 

variables, the prior knowledge for the parameter is also considered. The prior knowledge 

usually comes from previous simulations, other experimental observations or purely expert 

opinion. The Bayes formula is the foundation of Bayesian inference:  

 𝑝(𝛉|𝐲𝐸) =
𝑝(𝐲𝐸|𝛉)𝑝0(𝛉)

𝑝(𝐲𝐸)
∝ 𝑝(𝐲𝐸|𝛉)𝑝0(𝛉) , (62) 

where 𝑝(𝐲𝐸|𝛉)is the likelihood function, and 𝑝0(𝛉)is the prior distribution of θ. Under the 

assumption that 휀(𝐱, 𝐯)~𝑁(0, 𝜎2𝐈) , the likelihood function has the form 

 𝐿(𝛉|𝐲𝐸) =
1

(2𝜋𝜎2)𝑛 2⁄
exp(−∑

(𝑦𝐸(𝑥𝑖, 𝐯) − 𝑦
𝑀(𝑥𝑖, 𝐯, 𝛉) − 𝛿(𝑥𝑖 , 𝐯))

2

2𝜎2

𝑛

𝑖=1

) , (63) 

If we only care about the point estimate of the parameter, the Maximum a posteriori 

(MAP) method can be applied. If the prior is set to be uniform, the MAP can be obtained 

by maximizing Eq.(64). Due to the monotonicity of the logarithm function, it is 

numerically advantageous to maximize the log-likelihood function, which can be 

expressed as 
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𝑙(𝛉|𝐲𝐸) = −
𝑛

2
ln(2𝜋) −

𝑛

2
ln(𝜎2)

−∑
(𝑦𝐸(𝑥𝑖, 𝐯) − 𝑦

𝑀(𝑥𝑖 , 𝐯, 𝛉) − 𝛿(𝑥𝑖, 𝐯))
2

2𝜎2
.

𝑛

𝑖=1

 

(64) 

On the other hand, the full distribution of the posterior is more difficult to obtain. For 

most cases, the posteriori cannot be direct calculated. Based on the likelihood function and 

prior distribution, the posterior distribution of the parameter can be drawn through the 

Markov Chain Monte Carlo (MCMC) sampling. However, a still unresolved issue is the 

unknown term model form uncertainty  𝛿(𝐱, 𝐯) . The investigation of the model form 

uncertainty is an active topic in the statistics community. The intrinsic difficulty for this 

problem is the confounding between model form uncertainty 𝛿(𝐱, 𝐯) and the parameter θ. 

In other words, if discrepancy is observed between the model prediction and experimental 

data, there is no way to distinguish if this is caused by mode form uncertainty or a “poorly” 

chosen model parameter without given any prior knowledge.  

The data driven approach, which use a Gaussian process to evaluate the model form 

uncertainty term 𝛿(𝐱, 𝐯), has been widely used since proposed by [44]. This data driven 

approach can be further divided into two types. One approach is often called “full 

Bayesian” [88], which treats the hyperparameters of the GP for 𝛿(𝐱, 𝐯) as random variables 

with specified prioris and infers their posterior distributions in the same MCMC process 

for the inference of empirical parameters. For problems with rich data sources, such as 

weather forecasting, those hyperparameters can have noninformative prior in the Bayesian 

inference. For other cases where the data sample is not that rich, tight priors need to be 

assigned to those hyperparameters. Such prior setup reflect the assumption that one has 

good understanding on the model form uncertainty terms. The other approach is termed 

“modular Bayesian” approach [89], which firstly evaluate the hyperparameters in 𝛿(𝐱, 𝐯) 

with the point estimate method such as MLE to get a fixed form of 𝛿(𝐱, 𝐯). Then performs 

MCMC for only empirical parameters with the 𝛿(𝐱, 𝐯) term included in the process. The 

“modular Bayesian” approach doesn’t require a rich data support of strong prior for the 

hyperparameters and is thus considered to be a more realistic and feasible approach 
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compared to “full Bayesian”. In this work, the “modular Bayesian” approach is adopted 

for the treatment of 𝛿(𝐱, 𝐯) which can be summarized in following steps:  

1. Split the available datasets into three groups: one for parameter inverse UQ, one for 

model form uncertainty evaluation, one for testing.  

2. The model form uncertainty term 𝛿(𝐱, 𝐯) is modeled by GP (noted that this GP 

model is independent with the surrogate model) based on the training datasets: 

𝑦𝐸(𝐱, 𝐯) − 𝑦𝑀(𝐱, 𝐯, 𝛉0) with all the parameter fixed at their nominal values. The 

hyperparameters are obtained using MLE method and keep fixed. 

3. obtain the posterior uncertainty distributions of parameters using Bayesian 

inference. When performing Bayesian inference on the parameters, 𝛿(𝐱, 𝐯)  is 

introduced in as shown in Eq.(60). 

4. Propagate the uncertainty of the parameters through the solver (which is 

represented by the surrogate model) to obtain the uncertainty of the QoIs. 

The procedure is summarized in Figure 18. 

 

Figure 18. Evaluation of model form uncertainty and model parameter uncertainty. 
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The general idea of MCMC is to construct Markov chains that converge to the 

posterior parameter distributions. For a given parameter, it is proved that the stationary 

distribution of the Markov chains is the posterior density. There are multiple algorithms 

for MCMC sampling; in this work, the Delayed Rejection Adaptive Metropolis (DRAM) 

algorithm [90] is used. Once the posterior distributions of parameters are obtained, the 

forward UQ can be applied to obtain the distributions of QoIs based on the surrogate model.  

4.2.6 Sixth step: validation metrics 

Once the uncertainties of QoIs are obtained, the last step of the procedure is to 

quantitatively evaluate the agreement between QoIs predicted by solver and the 

experimental measurements. This is done by calculating the validation metrics.  

Generally speaking, validation metrics currently applied to scientific computation 

problems can be characterized into three categories. The first type is hypothesis testing. In 

this type of validation metric, two hypotheses are constructed. The first one is called null 

hypothesis which is initially assumed to be true and usually it is set to be “the model is in 

agreement with the observed data”. The second one is called alternative hypothesis, which 

contradicts the null hypothesis, such as “the model is not in agreement with the observed 

data”. Hypothesis testing based on the observed data to construct a test statistics S based 

on which to decide whether to accept or reject the null hypothesis, thus the outcome of this 

type of validation metric is only a “Yes or No” statement. The second type is Confidence 

Interval (CI) proposed by [41] which measures the discrepancy between the mean of 

predicted QoIs and the experimental data, plus the uncertainty of measurement. The 

confidence interval can be constructed as 

 (�̃� − 𝑡𝛼 2⁄ ,𝑣 ⋅
𝐬

√𝑛
, �̃� + 𝑡𝛼 2⁄ ,𝑣 ⋅

𝐬

√𝑛
) , (65) 

where E is the estimated error between model and data,   

 �̃� = 𝐲𝑀(𝐱, 𝐯, �̅�𝑝𝑜𝑠𝑡) − �̅�
𝐸(𝐱, 𝐯), (66) 

s is the standard deviation of the experimental data, tα/2,v is the 1-α/2 quantile of the t-

distribution with freedom of v used to quantify the uncertainty of experimental data. The 
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obtained CI can be interpreted as “we have (1 − 𝛼) × 100%  confidence that the true 

discrepancy between model and observed data is within the interval”.  

The third type is termed area metric, which is proposed by [42]. In this type of 

validation metric, both the experimental data and model predicted QoIs are treated as 

random variables, whose probability distribution is their uncertainty distribution. The area 

metric measures the area between the two Cumulative Distribution Functions (CDFs), 

which can be expressed as 

 𝑑(𝐹𝑥𝑖
𝐸 , 𝐹𝑥𝑖

𝑀) = ∫ |𝐹𝑥𝑖
𝐸(𝑥) − 𝐹𝑥𝑖

𝑀(𝑥)|
+∞

−∞

𝑑𝑥 . (67) 

One of a major merit of the area metric is that it takes the full uncertainty distribution 

of both data and model prediction into consideration. It also needs to mention that there are 

also other forms of validation metrics such as u-pooling and p-box [43] which are 

extensions of the area metrics.  

In this practice, two types of validation metric are calculated. The first type is 

Confidence interval. For experimental data obtained from literature, the detailed 

measurement information is usually not available. Thus the uncertainty of experimental 

data is assumed to follow normal distribution instead of t-distribution. The Eq.(65) based 

on t-distribution is modified to following 

 (�̃� − 𝑧𝛼 2⁄ ⋅ 𝜎, �̃� + 𝑧𝛼 2⁄ ⋅ 𝜎) , (68) 

where σ is the standard deviation of the experimental data, and zα/2 is the 1-α/2 quantile of 

the statistic distribution of the experimental data. The obtained CI can be interpreted as 

“we have (1 − 𝛼) × 100%  confidence that the true discrepancy between model and 

observed data is within the interval”.  

The second type applied in the procedure is the area metric. In this type of validation 

metric, both the experimental data and model predicted QoIs are treated as random 

variables, whose probability distribution is their uncertainty distribution. The area metric 

measures the area between the two Cumulative Distribution Functions (CDFs), which can 

be calculated with Eq.(67).  
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The validation metrics are calculated for both pure model predictions and model 

prediction plus model form uncertainty. The discrepancy between these two different 

calculations reflects the closure relations’ ability to capture the corresponding physical 

process in the given application domain. An example of the two different validation metrics 

is provided in Figure 19. 

 

Figure 19. Example of area metric. 

4.3 Summary remarks 

In this chapter, a VUQ procedure designed for Eulerian-Eulerian two-fluid-model 

based MCFD solver is proposed. The gold of the procedure is to evaluate whether the solver 

represents the underlying physics of a multiphase flow and boiling system of interest with 

acceptable accuracy. This is accomplished through a six step procedure with two major 

results obtained: i). quantify the uncertainties of the closure parameters and predictions of 

the MCFD solver; ii). evaluate the agreement between the solver predictions and the 

experimental measurements. 

There are several advantages of the proposed procedure. Firstly, it is modular and 

non-intrusive. This ensures the procedure’s flexibility for different scenarios as well as its 

extendibility to different MCFD solvers. Secondly, the procedure also has strong flexibility 
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with data. It is capable of simultaneously taking into account multiple QoIs measurement 

under different conditions. Moreover, it can provide a reasonable VUQ result with limited 

data availability, while providing a more accurate result with better data support. Thirdly, 

the TDMI treatment ensures the VUQ considers the possible closure interactions in the 

MCFD solver. Last, the model form uncertainty is considered which can serve as an 

additional correction term to the model prediction. The validation metrics differences 

between pure model prediction and prediction corrected by model form uncertainty can 

also serve as a measure of closure relations’ ability to capture the corresponding physical 

process in the given application domain. 

There are also limitations of the procedure. Firstly, the numerical error introduced by 

discretizing the PDEs is not considered in this procedure. Rather, this part of the error is 

implicitly integrated into the model form uncertainty term. Secondly, additional 

uncertainty would be introduced by the statistical methods applied in the surrogate 

construction step, such as Gaussian process and dimension reduction. Such uncertainty 

varied through different statistical methods and is difficult to get an estimation for the 

whole validation domain. A more comprehensive work in future should include the 

verification work to take into account the numerical error and uncertainty, also with a more 

rigorous method to evaluate the uncertainty introduced by statistical methods.  
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CHAPTER.5 CASE STUDIES OF THE PROPOSED VALIDATION AND 

UNCERTAINTY QUANTIFICATION PROCEDURE 

In this chapter, two case studies, the wall boiling heat transfer in subcooled boiling 

flow and the adiabatic bubbly flow, are performed as demonstrations of the VUQ procedure 

proposed in Chapter 4. The influential closure relation parameters for multiple quantities 

of interest (QoIs) are identified through two different global sensitivity analysis (GSA) 

methods: Morris screening and Sobol indices. The model form uncertainty and model 

parameter uncertainty of relevant closure relations are evaluated using the “modular 

Bayesian” approach. The uncertainties of QoIs are quantified by propagating the obtained 

uncertainties through the solver. The agreement between solver predicted QoIs and the 

experimental measurement are evaluated using two different validation metrics: 

confidence interval and area metric. 

Strictly speaking, a complete VUQ for a MCFD solver requires taking all the QoIs 

from a scenario into consideration, quantifying the uncertainties of the solver predictions 

of all those QoIs and corresponding closure parameters, then evaluating the agreement 

between the solver predictions and the experimental measurement. This is compatible with 

the total data-model integration (TDMI) approach whose fundamental idea is to take all the 

available experimental data, the relevant closure models, and the solver into simultaneous 

consideration for the VUQ process. The TDMI approach serves as the basic idea of this 

proposed VUQ procedure and is achieved with the Bayesian method. Thus such VUQ 

requirement is compatible with the procedure. On the other hand, the complete VUQ 

requires the support of the measurements for all the QoIs in a given scenario. This includes 

measurements of the phasic velocities, the void fraction, the pressure drop, the temperature, 

and the wall heat transfer, etc. It is impractical to measure all the phenomena in a single 

experimental facility. Moreover, the lack of a satisfactory scaling method for two phase 

flow system prohibits the use of experimental data from different facilities into one 

complete VUQ process of the MCFD solver. 

In this work, the limitation of available experimental data is considered, and a more 

practical approach for the VUQ of the MCFD solver is applied. The VUQ of MCFD is 

decomposed into two separate case studies. One focuses on the wall heat transfer in the 
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scenario of subcooled flow boiling in a vertical channel, the other focuses on the flow 

dynamics in the scenario of adiabatic bubbly flow. The decomposition is depicted in Figure 

20.  

 

Figure 20. Decomposition of VUQ case studies. 

An MCFD solver developed based on open source CFD toolbox OpenFOAM [91] is 

evaluated in the following work, the UQLab package [92] is used for sensitivity analysis. 

5.1 Case Study I: VUQ on wall boiling heat transfer 

5.1.1 Solver evaluation and data collection 

The scenario investigated in this case study is the subcooled flow boiling, with a 

focus on the wall heat transfer behavior. In this case study, the wall superheat and the three 

heat transfer components, i.e. evaporation heat transfer, quenching heat transfer, and forced 

convective heat transfer, are chosen to be the QoIs. Although the boiling process is crucial 

for a two phase flow system, the traditional experiments can only measure the wall 

superheat through thermocouples, as in [93]. Hence the previous validation efforts for the 

boiling related scenario can only be performed for the wall superheat [3].  

Recently, the experiments using IR camera makes it possible to measure the detailed 

wall temperature development in boiling process, thus making the derivation of wall heat 

transfer components possible [94-97].  
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In this work, the experimental data is collected from [27], which measures the wall 

superheat and three heat transfer components in an upward subcooled boiling flow. The 

QoIs over 12 different input heat fluxes are extracted from the report. Since the data 

provided in the report are averaged on the whole 10mm-by-10mm heat surface, the QoIs 

obtained from MCFD simulations in this work are also averaged in the same manner to 

match the data.  

The closure relation that is pertinent to the boiling process is the wall boiling model 

which consists of the heat partition and the nucleation related empirical correlations. Thus 

the wall boiling closure relations are the focus of this scenario. It is also assumed that other 

closure relations including the interfacial forces have a minor impact on the wall heat 

transfer behavior and thus do not need to be considered in the UQ process in this case 

study. This assumption is based on the observation of the chosen boiling closure relations 

studied in this case, which relies only on one flow feature: the 𝒚+ in near wall cell. The 𝒚+ 

value is obtained along with the mesh study and is assumed to be independent from the 

wall boiling closure relations. The evaluation process can be summarized in Table 6. 

Table 6. Summary of evaluations for wall boiling heat transfer scenario 

Scenario QoIs Varying input 

Condition 

Closure relations studied 

Subcooled 

flow boiling 

𝑇𝑠𝑢𝑝, 𝑞𝐸𝑣 , 𝑞𝑄𝑢, 𝑞𝐹𝑐   

 

Applied wall 

heat flux: 500 

~ 2500 

kW/m2 

Nucleation site density, 

Bubble departure 

diameter, 

Bubble departure 

frequency, 

Effective bubble area, 

Bubble growth waiting 

time, 

Convective heat transfer 
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The wall boiling closure relations studied in this case are based on the heat 

partitioning model proposed by [65]. The heat is partitioned into these three components, 

and each component is support by one to several empirical closure relations. 

 𝑞𝑊𝑎𝑙𝑙 = 𝑞𝐸𝑣 + 𝑞𝑄𝑢 + 𝑞𝐹𝑐 . (69) 

The evaporation heat transfer is dependent on three nucleation correlations: the active 

nucleation site, the bubble departure diameter and bubble departure frequency: 

 𝑞𝐸𝑣 =
𝜋

6
𝐷𝑑
3𝜌𝑣𝑓𝑑𝑁𝑎ℎ𝑓𝑔. (70) 

The nucleation site density model studied in this work is proposed by [71]  

 𝑁𝑎 = 𝑁𝑎𝑣𝑔 [1 − 𝑒𝑥𝑝 (−
𝜃2

8𝜇𝑐𝑜𝑛2
)] [𝑒𝑥𝑝 (

𝜆′𝑔(𝜌+)

𝑅𝑐
) − 1] , (71) 

where  

 𝑅𝑐 =
2𝜎 {1 + (𝜌𝑔 𝜌𝑓⁄ )} 𝑃𝑓⁄

exp{ℎ𝑓𝑔(𝑇𝑔 − 𝑇𝑠𝑎𝑡 ) 𝑅⁄ 𝑇𝑔𝑇𝑠𝑎𝑡} − 1
 (72) 

 𝑓(𝜌+) = −0.01064 + 0.48246𝜌+ − 0.22712𝜌+
2
+ 0.05468𝜌+

3
 (73) 

 𝜌+ = log (
𝜌𝑙 − 𝜌𝑔

𝜌𝑔
) . (74) 

Here 𝑁𝑎𝑣𝑔, 𝜇
𝑐𝑜𝑛

 and 𝜆′ are empirical parameters that represent the average cavity 

density, angle scaler, and cavity radius scaler respectively.   

The bubble departure diameter model studied in this work is proposed by [74]: 

 𝐷𝑑 = 𝑑1𝜃 (
𝜎

𝑔𝛥𝜌
)
0.5

(
𝛥𝜌

𝜌𝑔
)

0.9

. (75) 

The bubble frequency model studied in this work is proposed by [76] 

 𝑓𝑑 = √
4𝑔(𝜌𝑙 − 𝜌𝑔)

3𝐷𝑑𝜌𝑙
 . (76) 

The Quenching heat transfer is based on analytical analysis [66], yet several terms in 

the expression are still depend on empirical parameters:  
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 𝑞𝑞𝑢 = 𝐴𝑏
2

√𝜋
𝑓𝑑√𝑡𝑤𝑎𝑖𝑡𝜆𝑙𝜌𝑙𝑐𝑝,𝑙(𝑇𝑠𝑢𝑝 − 𝑇𝑙). (77) 

Ab in the expression is the effective bubble area fraction,  

 𝐴𝑏 = max(𝜋 (𝑎
𝐷𝑑
2
)
2

𝑁𝑎, 1.0) , (78) 

and a is the bubble influence factor which is an empirical parameter. Moreover, 𝑡𝑤𝑎𝑖𝑡  is the 

waiting time between the bubble departure and the appearance of a new bubble at a given 

nucleation site. In this work, the model proposed by [77] is selected: 

 𝑡𝑤𝑎𝑖𝑡 =
𝑒

𝑓𝑑
 , (79) 

where e is the waiting time coefficient, the suggested value is 0.8. 

The forced convective heat transfer can be expressed as 

 𝑞𝐹𝑐 = (1 − 𝐴𝑏)ℎ𝑙(𝑇𝑠𝑢𝑝 − 𝑇𝑙) , (80) 

where ℎ𝑙 is the heat transfer coefficient, which can be evaluated through the analysis of 

heat transfer in turbulent boundary layer flow. The wall function of turbulence model is 

applied which relates ℎ𝑙 to the turbulent Prandtl numbers amd the dimensionless near-wall 

flow velocity. In this work, a simplified version of the correlation proposed by [98]    is 

adopted as 

 ℎ𝑙 = 𝑢𝜏𝜌𝑐𝑝 [Pr𝑡
1

𝜅
ln(𝐸𝑦+)+𝑃]

−1

 , (81) 

where 𝐸 and 𝑃 are the empirical parameters from the wall function.  

As noted from the empirical correlations discussed previously, the number of the 

empirical parameters is quite large but not all of them have clear physical meanings. Based 

on this, a preliminary parameter selection is processed to choose those with clear physical 

meanings for further UQ process. The prior uncertainties of those selected empirical 

parameters are determined based on expert judgment. The results are summarized in Table 

7. 
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Table 7. Prior uncertainties of studied empirical parameters in wall boiling closure 

relations 

Empirical 

parameter 
Physical meaning 

Nominal 

value 

Lower 

bound 

Upper 

bound 

𝑁𝑎𝑣𝑔 
Averaged Nucleation 

site density coefficient 
4.72 × 105 

4.72
× 104 

4.72 × 106 

𝜇𝑐𝑜𝑛 Contact angle scaler 0.722 0.4 3.14 

𝑑1 
Departure diameter 

constant 
0.0015 0.0005 0.003 

𝑎 
Effective bubble area 

factor 
1 0.5 2 

𝑒 
Bubble growth waiting 

time factor 
0.8 0.5 0.95 

𝐸 
Wall function Log law 

offset 
9.79 1 15 

𝑃 
Wall function 

coefficient 
0 -9 9 

 

5.1.2 Surrogate construction 

As noted for the aforementioned closure relations, the wall boiling closure relations 

can be regarded as source terms that only loosely coupled with the conservative equations. 

Thus, a simplified physical based surrogate model is constructed for this case study. The 

structure of the simplified model is illustrated in Figure 21.  

It can be found that the wall boiling closure relation can be regarded as a network of 

different correlations, which combine to form a non-linear equation with the constraint of 

a fixed and known value: the total wall heat flux. Following this structure, the wall 

superheat can be calculated by solving a non-linear equation using the Newton-Raphson 

method. Once the wall superheat is obtained, the heat transfer components can be 

calculated respectively. 

For this simplified model, only one feature is required from the simulation of MCFD 

solver: the 𝑦+ of the near wall cell. For this case, the 𝑦+ is obtained and prescribed through 
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the mesh study, which is performed before any cases are simulated in the solver. Since the 

wall function of the turbulence model is included for all the simulation in this work, the 

near wall 𝑦+ should be greater than 30. A uniform mesh is chosen to meet this criterion 

through the mesh study. Based on the mesh setup, the 𝑦+ is obtained and assumed to be 

independent of parameters of wall boiling closure relations.  

 

Figure 21. Structure of wall boiling closures in this case study. 

5.1.3 Sensitivity analysis 

In this step, two methods of global sensitivity analysis (GSA) are performed. As 

previously discussed, the QoIs are the averaged quantities over the heating surface. In this 

step, those obtained QoIs are further integrated over the whole simulation domain to 

generate global responses quantity for GSA. The results of Morris Screening method are 

plotted in Figure 22. 
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Figure 22. Morris screening measures for wall boiling empirical parameters. 

It can be observed that for all the QoIs, the bubble departure diameter constant 𝑑1is 

the most influential parameter. This is reasonable considering the fact that the evaporation 

heat transfer component is dependent on the third power of 𝑑1, while for other parameters 

the relationship is linear. For other parameters, the importance varies by different QoIs. 

For example, the nucleation site density constant 𝑁𝑎𝑣𝑔 has relatively strong influence on 

wall superheat, whereas the contact angle scaler 𝜇con has influence on wall superheat and 

convective heat transfer component. Moreover, the bubble effect area factor 𝑎 plays a 

relatively important role on evaporation and quenching heat transfer components.  

Morris screening is an efficient measurement method for GSA, but it cannot generate 

a quantitative measurement of the parameters sensitivity on the QoIs. The Sobol indices 

method, on the other hand, can generate indices that quantitatively measure the sensitivity 

of parameters on the QoIs, while is much more computationally expensive. The results of 

Sobol indices for the four QoIs are plotted in Figure 23. 
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Figure 23. Sobol indices for wall boiling empirical parameters. 

It is noted in Figure 23 that the bubble departure diameter constant 𝑑1 is the dominant 

parameter for all QoIs, the results of other parameters are also consistent with the Morris 

Screening method. Thus we can conclude that the GSA results from those two methods are 

consistent.   

5.1.4 Parameter selection 

As noted from GSA results, the most dominant parameter for all QoIs is 𝑑1 . 

However, all other parameters are still influential to at least one QoI. There is no clear clue 

to rule out anyone of them. Moreover, preliminary MCMC sampling suggest that the 

parameter identifiability issue exists when inferring all the parameters together. Thus, the 

parameter selection algorithm proposed by [87] is applied. Firstly, the rank of the 

sensitivity matrix is computed using singular value decomposition (SVD). The rank of the 
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sensitivity matrix is found to be 4, which equals to the maximum number of identifiable 

parameters for the given closure relations with nominal parameter values. Then the 

selection score for all the possible combinations of parameters is calculated based on the 

proposed algorithm. This procedure is performed for all QoIs respectively. Some results 

are summarized in Table 8. 

Table 8. Optimal selection scores for different QoIs 

Parameter 

combination 

Selection 

score for Tsup 

Selection 

score for qEv 

Selection score 

for qQu 

Selection 

score for 

qFc 

(𝑎,𝑑1,𝑒,E) 103.36 1.446E+06 3.047E+06 1.398E+07 

(𝑎,𝜇𝑐𝑜𝑛,𝑒,𝑃) 133.76 1.823E+06 8.679E+06 4.772E+06 

(𝑎,𝜇𝑐𝑜𝑛,𝑑1,𝑒) 90.55 6.518E+05 4.630E+06 6.548E+06 

 

It can be found from the results that for different QoI, the parameter selection with 

minimum selection score is different, in this sense, trade-off needs to be made between 

different QoIs. In a preliminary MCMC, single-value dependence between 𝜇𝑐𝑜𝑛 and 𝑑1 is 

observed, which is undesired for the Bayesian inference. Thus in this work, the parameter 

combination (𝑎,𝑑1,𝑒,E) is selected for the Bayesian inference. A more robust selection 

criterion for multiple QoIs is desired for future work. 

5.1.5 Uncertainty quantification 

In the step of uncertainty quantification, the modular Bayesian is applied, which firstly 

evaluate the model form uncertainty using Gaussian process while fix the parameters at 

their nominal values. In this case, the full datasets are divided into three parts: 6 datasets 

are used to evaluate the model form uncertainty, 5 datasets are used for model parameter 

uncertainty inference, while 1 dataset is left for testing. The decomposition is summarized 

in Table 9. 
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Table 9. Boiling datasets decomposition for different purposes 

Datasets decomposition Input heat flux (kW/m2) 

Model form uncertainty evaluation 

datasets 

500, 1000, 1500, 2200, 2400, 2450 

Parameter uncertainty evaluation 

datasets 

750, 1250, 1750, 2100, 2300 

Testing dataset 2000 

 

In this work, the QoIs measured over the surface are averaged, thus the model form 

uncertainty term is spatially independent and can be expressed by a single variant GP: 

𝛿(𝑞𝑤𝑎𝑙𝑙)~𝐺𝑃(𝑞𝑤𝑎𝑙𝑙). Six datasets are used for evaluating the model form uncertainty. The 

exponential kernel is selected as the kernel function of GP. The hyperparameters of the 

kernel are evaluated using the MAP method. The obtained results are plotted in Figure 24.  

 

Figure 24. Model form uncertainty 𝛿(𝑞𝑤𝑎𝑙𝑙) for different QoIs. 
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It can be found from Figure 24 that the 𝑇𝑠𝑢𝑝  has small model form uncertainties, with 

exceptions under high and low heat flux conditions. The other QoIs have significant 

discrepancy between model predictions and experimental measurements. To some extent, 

this is expected considering the fact that when the wall boiling closure relations were 

proposed, the only measurable data was the wall superheat. Thus, the wall boiling closure 

relations have already been compared against many different wall superheat measurements, 

and can give wall superheat predictions with reasonable accuracy. On the other hand, the 

heat partitioning prediction lacks comparison due to the lack of experimental 

measurements, thus the existent significant model form uncertainty cannot be identified if 

only takes the wall superheat into consideration. In this practice, the model form 

uncertainties can be identified under the TMDI approach by “learning” from the 

multiphysics measurement.    

Once the parameters for inverse UQ are selected, the MCMC method is applied for 

Bayesian inference. The MCMC has been applied to similar applications such as the 

inverse UQ on turbulence model [99] and fluidized-bed gasifier simulations [100]. The 

Delayed Rejection Adaptive Metropolis (DRAM) algorithm proposed by [90] is applied. 

There are two features of DRAM, one is delayed rejection, which means if a candidate is 

rejected in the sampling process, an alternate candidate is constructed to induce greater 

mixing. The other is adaption, which means the covariance matrix of the parameters is 

continuously updated using the accepted candidates.  

The purpose of the MCMC is to construct stationary distribution of a Markov chain 

that equals to the posterior distribution of the parameter. In practice, the first 5000 samples 

from the chain are disregarded to ensure the convergence (or so-called “burn-in”) of the 

following chains. Moreover, for the “burned-in” chain, only every 10th elements are kept 

in order to reduce the auto-correlation of the chain as a requirement of the stationary 

distribution. 

The processed sample chain for all selected parameters, and their autocorrelations 

are plotted in Figure 25. Good mixing and the fast decay of auto-correlations for all 

parameters can be observed which indicate the process chain can be regarded as the 

stationary distributions of the Markov chains. 
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Figure 25. MCMC sample traces and auto-correlations of wall boiling closure relation 

parameters. 

The marginal and pair-wise joint distributions of the four parameters are plotted in 

Figure 26. Light correlation between 𝑑1 and 𝑒 is observed, while they come from different 

closure relations. This suggests that with the TDMI approach, which takes all closure 

relations and all QoIs of the solver into consideration simultaneously, the potential 

interaction between different phenomena can be identified. The statistics of the parameter 

distribution are summarized in Table 10. 
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Figure 26. Marginal and pair-wise joint distributions of selected empirical parameters. 

Table 10.posterior statistics of selected empirical parameters 

Parameter Mean 
Standard 

deviation 
95% Confidence interval 

a 0.5943 0.0743 [0.4523, 0.7445] 

d1 6.42 × 10−4 7.98 × 10−5 [4.85 × 10−4, 7.98 × 10−4] 

e 0.5135 0.0916 [0.3520, 0.7110] 

E 8.3839 2.1374 [4.2580, 12.6366] 

 

Once the posterior distributions of the parameters are obtained, the uncertainties of 

QoIs can be estimated by propagating the posterior distributions through the solver, the 
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previously obtained model form uncertainty can be added to the obtained QoIs as a 

correction term. The obtained results are displayed in Figure 27. 

 

Figure 27. 95% confidence intervals (CIs) for different QoIs from wall boiling closure 

relations. 

It can be observed from Figure 27 that the predictions of 𝑇𝑠𝑢𝑏 and 𝑞𝐸𝑣 are generally 

in good agreement with the whole dataset. However, 𝑞𝑄𝑢 is overestimated in low heat flux 

region while is underestimated in high heat flux region, and 𝑞𝐹𝑐 demonstrates the opposite 

trend.  Moreover, for all QoIs, if takes the model form uncertainty into consideration, the 

model prediction will be in good agreement with the experimental measurement for all the 

input conditions. Moreover, since the model form uncertainty is constructed using 

Gaussian Process (GP) which treat the input condition as variable, it can be interpolated to 

any unmeasured wall heat flux. In this sense, the applicable range of the UQ results is 500 

kW/m2 ~ 2500 kW/m2, which basically covers normal nucleate boiling regime.  
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5.1.6 Validation metrics 

In this work, two different types of validation metrics are calculated: the confidence 

interval [41] and the area metric [43]. The confidence intervals for the QoIs from wall 

boiling closure relations are plotted in Figure 28.  

 

Figure 28. Confidence intervals for different QoIs from wall boiling closure relations. 

If only consider the pure model prediction, it can be found the confidence intervals 

of 𝑇𝑠𝑢𝑝  are close to or covers zero, with exceptions in 500kW/m2 and 2500kW/m2. This 

suggests that the model prediction of 𝑇𝑠𝑢𝑝  is in good agreement with the experimental 

measurement. For other three QoIs, most of the confidence intervals deviate from zero. 

This indicates that the true error between model predictions and data are significant. Taking 

the 𝑞𝐹𝑐 as an example, it can be observed that the wall boiling closure relation significantly 

underestimates the convective heat transfer for low heat flux cases while overestimating it 

for high heat fluxes. On the other hand, it can be observed that with the consideration of 

model form uncertainty, the errors are significantly reduced for almost all the cases. Such 
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improvement indicates that the wall boiling closure relations has intrinsic model form 

uncertainty, and such model form uncertainty can be successfully evaluated through the 

proposed “Modular Bayesian” approach.    

The advantage of confidence interval is it has very clear physical interpretation while 

also easy to implement. For example, the 95% confidence interval can be interpreted as we 

are 95% confident that the true error of QoI predicted by the solver is within the given 

interval. Such interpretation can be directly applied in the design and safety analysis for a 

certain engineering problem. One disadvantage of confidence interval, however, is only 

the mean of the QoIs predicted by solver is considered and the interval contains only 

statistics from the uncertainty of experimental data. In other words, the confidence interval 

fails to consider the full uncertainty of the solver predictions and the experimental data.  

The area metric, on the other hand, compensates for the disadvantage of confidence 

interval by comparing the discrepancy between the cumulative distribution functions 

(CDFs) of the experimental data and the solver prediction. The results of area metric are 

plotted in Figure 29. It should be noted that every single point displayed in the figure 

represent the integrated area between the two CDFs mentioned above, a large value of area 

metric suggests large difference between the CDFs of model prediction and experimental 

data.  
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Figure 29. Area metrics for different QoIs from wall boiling closure relations. 

It can be found that for the pure model prediction, 𝑇𝑠𝑢𝑝  has small area metrics, with 

exceptions in 500kW/m2 and 2500kW/m2. For the other three QoIs, the pure model 

predictions have significant difference with experimental data. With model form 

uncertainty is accounted for, the results are significantly improved. In this sense, the two 

validation metrics are consistent.  

Another advantage of area metric is that it has several properties as suggested by [42] 

that make it mathematically well behaved and well understood. Such properties can be 

expressed as following for CFDs of two random variables 𝑋 and 𝑌: 

• Non-negativity: 𝑑(𝑋, 𝑌) ≥ 0 

• Symmetry: 𝑑(𝑋, 𝑌) = 𝑑(𝑌, 𝑋) 

• Triangle inequality: 𝑑(𝑋, 𝑌) + 𝑑(𝑌, 𝑍) ≥ 𝑑(𝑋, 𝑍) 
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• Identity of indiscernible: 𝑑(𝑋, 𝑌) = 0   if and only if   𝑋 = 𝑌 

On the other hand, there are also two disadvantages of the area metric. One is that 

the area metric is much more complicated to calculate compared with confidence interval. 

It also puts higher requirement for the data quality, requires not just the statistics of the 

data such as its mean and variance, but the full distribution. This usually requires measuring 

the same quantities multiple times. The other disadvantage is that the area metric measures 

the absolute difference between the solver predictions and the data. Thus it cannot discern 

whether the solver is overestimate or underestimate the QoIs. Thus, it is suggested to 

calculate both validation metrics for a comprehensive evaluation of the agreement between 

the solver prediction and experimental data.  

5.2 Case study II: VUQ on flow dynamics 

5.2.1 Solver evaluation and data collection 

The MCFD’s performance on flow dynamics in the context of upward adiabatic 

bubbly flow is studied in this case. The reason to choose this scenario is the relatively rich 

experimental data. Several experimental investigations can be found from literature, which 

includes a series measurement of the phasic velocity, the void fraction, and the bubble 

dynamics. Representative works include [101, 102], and many more summarized in [103]. 

A simplified case is considered which focuses on only two QoIs: the void fraction and gas 

velocity. Based on the idea of TDMI, the experimental data from different conditions are 

taken into consideration simultaneously. Thus, the experiments conducted by [104] are 

chosen as the datasets, from which eight datasets of different inlet conditions are extracted. 

The summary of evaluations is summarized in Table 11. 

. For the VUQ process, the uncertainty of data is important. However, the detail 

uncertainty analysis is not included in the original literature. In this work, the conservative 

estimation based on an incomplete error analysis from the original literature is adopted, the 

uncertainty for all QoIs is assumed to be 10%. 
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Table 11. Summary of evaluations for interfacial momentum closure relations 

Scenario QoIs 
Varying input 

Condition 

Closure relation 

studied 

Adiabatic bubbly 

flow 

spatial 

distributions 

of 𝛼, U1 

𝑗𝑔  from 0.09 – 0.48 

m/s, 

𝑗𝑙  from 0.64 – 2.0 

m/s 

drag force, 

lift force, 

turbulent 

dispersion force, 

virtual mass 

force, 

wall lubrication 

force 

 

The interfacial force coefficients are investigated. For drag and lift force, there are 

many semi-mechanistic correlations for the coefficients. In this work, a simplified version 

is used which assumes those coefficients are independent with the flow condition and can 

be expressed by constant values. Besides the interfacial forces, the bubble size also has a 

significant influence on the bubbly flow simulation. The state of the art method for bubble 

size prediction is to solve the interfacial area concertation equation along with the 

conservation equations. This approach, however, includes more parameters and requires 

many more extra sampling runs in the MCFD solver. Considering the limitation of 

computational resources, in this first demonstration case, a simplified assumption for 

bubble size was made. The bubble size is set to be a constant whose value equals to the 

inlet bubble size. Thus, only the interfacial momentum closure relations are studied and the 

model selected is summarized in Table 12. The prior uncertainties of the interfacial force 

coefficients are summarized in Table 13. The uniform uncertainties are assumed for those 

parameters, as the same to the Case Study I. 

 

 

 



 

85 

 

Table 12. Summary of the studied interfacial momentum closure relations 

Force type Expression 
Parameter 

studied 

Drag force 
𝐌𝑔
𝐷 = −

3

4

𝐶𝑑
𝐷𝑠
𝜌𝑙𝛼‖𝐔𝑔 − 𝐔𝑙‖(𝐔𝑔 − 𝐔𝑙) 

 

𝐶𝑑  

Lift force 𝐌𝑔
𝐿 = 𝐶𝑙𝜌𝑙𝛼(𝐔𝑔 − 𝐔𝑙) × (∇ × 𝐔𝑔) 𝐶𝑙  

Wall 

lubrication 

force [55] 

𝐌𝑔
𝑊𝐿 = −𝑓𝑊𝐿(𝐶𝑤𝑙, 𝑦𝑤)𝛼𝜌𝑙

‖𝐔𝑟 − (𝐔𝑟 ⋅ 𝐧𝑤)𝐧𝑤‖
2

𝐷𝑠
𝐧𝑤 ,

𝑓𝑊𝐿(𝐶𝑤𝑙, 𝑦𝑤) = max (−0.2𝐶𝑤𝑙 + (
𝐶𝑤𝑙
𝑦𝑤
)𝐷𝑠, 0)

 𝐶𝑤𝑙  

Turbulent 

dispersion 

force[56] 

𝐌𝑔
𝑇𝐷 = −

3

4

𝐶𝐷
𝐷𝑠

𝜐𝑙
𝑡

𝜎𝑡𝑃𝑟𝑙
𝑡 𝜌𝑙‖𝐔𝑔 − 𝐔𝑙‖∇𝛼 

 

𝜎𝑡 

Virtual mass 

force[57] 

𝐌𝑔
𝑉𝑀 = −𝐶𝑣𝑚𝜌𝑙𝛼 (

𝐷𝐔𝑔

𝐷𝑡
−
𝐷𝐔𝑙
𝐷𝑡
) 

 

𝐶𝑣𝑚 

Table 13. Prior uncertainties of parameters in interfacial momentum closure relations 

empirical 

parameter 
Nominal value Lower bound Upper bound 

𝐶𝑑  0.6 0.44 1.0 

𝐶𝑙  0.03 -0.05 0.1 

𝐶𝑤𝑙  0.05 0.03 0.08 

𝐶𝑣𝑚 0.5 0.3 1.0 

𝜎𝑡  0.9 0.6 1.2 

 

To match the experimental measurement, the studied QoIs are set to be the 

distributions of void fraction and the gas velocity along the radial direction of the tube at 

(z/D = 62).   
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5.2.2 Surrogate construction 

The surrogate model is constructed using Gaussian Process. There are eight datasets 

with different liquid and gas superficial velocities. Each case contains detailed 13 radial 

distributions of void fraction and gas velocity. Thus, the output QoIs can form a high 

dimensional vector. The length of the output QoIs is 8 × 13 × 2 =  208 . It is very 

inefficient to construct 208 separate GPs for the QoIs, thus the dimension reduction based 

on PCA is performed for this case.   

Firstly, the MCFD simulations are performed with perturbed interfacial force 

coefficients sampling from Latin hypercube sampling. A total 64 samples are generated 

and run in the MCFD solver, among which 56 samples are used for surrogate construction 

and 8 samples are used for cross-validation.  

Considering the high dimensionality of the outputs, the principal component analysis 

(PCA) applied for dimensionality reduction. The void fraction and gas velocity simulation 

results are centered and scaled according to the inlet conditions, then stacked to create a 

matrix to which PCA is applied.  

The results of the PCA applied to the combined void fraction and fluid temperature 

predictions are shown in Figure 30. It can be observed that up to 99.5% of the total 

variances can be explained by the first 8 principal components (PCs).  

 

Figure 30. Accumulative percentage of variances explained by PCs. 
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Based on the PCA results, the first 8 PCs are selected for constructing surrogate, this 

reducing the dimension of outputs from 208 to 8. The variations of the 8 PCs for one 

condition are summarized in Figure 31. 

 

Figure 31. Variations of two QoIs captured by 8 PCs (𝑗𝑔 = 0.29 m/s, 𝑗𝑙 = 1.1 m/s). 

The GP surrogate is constructed for the 8 PCs, respectively. The constructed GP 

surrogate is an approximation of the original MCFD solver, whose accuracy should be 

evaluated. In this work, the cross validation is performed for the accuracy assessment. The 

procedure of cross-validation is done through the following steps: 

• Randomly divide the sampled test case results into k groups of the same size.  

• Construct the surrogate with k-1 groups of results and left 1 group as validation set.  

• Repeat the previous step k times, in each time a different group is treated as a 

validation set.  
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• Average the obtained results from the k evaluations.   

The comparisons of PC scores between MCFD simulations and GP predictions are 

plotted in Figure 32 , where an accurate GP prediction should fall into or very close to the 

diagonal line in the plot. It can be found from the figure that the GP surrogate predictions 

are in good agreement with original MCFD simulations for most of the PC scores. Except 

for 3rd and 7th score which have some moderate discrepancies.  

 

Figure 32. Comparison of PC scores between MCFD simulations and GP predictions. 
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The averaged accuracy of surrogate can be estimated with the mean square error, the 

results for all the PCs are summarized in Table 14. 

 MSE =
1

𝑁
∑(�̂�𝑖 − 𝑦𝑖

𝑀)2
𝑁

𝑖=1

 (82) 

Table 14. Cross validation results 

PC scores MSE 

1st score 6.8542e-4 

2nd score 0.0012 

3rd score 0.0169 

4th score 6.4328e-9 

5th score 3.7789e-09 

6th score 1.2514e-9 

7th score 0.0240 

8th score 3.0624e-09 

 

The results confirm the qualitative observation from Figure 32, that the 3rd and 7th 

PC score has relative large MSE, but still in the acceptable range. It should be noted that 

both the GP surrogate and the PCA would inevitably introduce additional uncertainties. A 

rough estimate of these uncertainties can be made by comparing the differences between 

original solver predictions and the predictions given by surrogate. For most predictions, 

the difference between surrogate predictions and the original MCFD solver is less than 1%. 

However, extreme cases exist for predictions with near zero values where differences can 

be around 10%. It is also worth noting that it is still unclear how to estimate the uncertainty 

introduced by the statistical methods over the whole validation domain. In this work, we 

assume the uncertainties introduced by statistical methods is trivial compared to the model 

parameter uncertainty and model form uncertainty thus can be neglected.  
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5.2.3 Sensitivity analysis 

Similar to the first case study, the solver predictions are averaged to generate a global 

response for the GSA. This averaging process indicates that the void fraction and velocity 

in different locations under different flow conditions are treated with equal importance. 

Thus two globally averaged quantities are analyzed using two GSA methods: the void 

fraction and gas velocity.  

The GSA results using Morris Screening method are displayed in Fig. It can be found 

that for both QoIs, only three parameters are influential and their importance can be ranked 

as: 𝐶𝑙 > 𝐶𝑤𝑙 > 𝐶𝑑. While the virtual mass force coefficient 𝐶𝑣𝑚 and turbulence dispersion 

coefficient 𝜎𝑡  has less influence on both of the QoIs.   

 

Figure 33. Morris screening measures for interfacial force coefficients. 

The Sobol indices plotted in Figure 34 is consistent with the Morris screening results, 

both the first order indices and total indices confirmed the same importance order. 
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Figure 34. Sobol indices for interfacial force coefficients. 

There are only three influential parameters and the preliminary MCMC result shows 

no parameter identifiability issue. Thus there is no need to perform the parameter selection 

algorithm. The three parameters are directly applied for the Bayesian inference for 

uncertainty quantification.  

5.2.4 Uncertainty quantification 

The model form uncertainty is evaluated using Gaussian process. The 

hyperparameters of the kernel function are evaluated using the MAP method. Unlike the 

first case study, the QoIs in this case is a spatial distribution, and there are two inlet 

conditions. Thus the model form uncertainty term is modeled by a multi-variant 

GP: 𝛿(𝑟/𝑅, 𝑗𝑔, 𝑗𝑙)~𝐺𝑃(𝑟/𝑅, 𝑗𝑔, 𝑗𝑙). Due to the limitation of available datasets, 4 datasets are 

used for model form uncertainty evaluation, while 3 are used for model parameter 

uncertainty evaluation, and one dataset is left for testing. The decomposition is summarized 

in Table 15. The model form uncertainty distribution as a function of inlet superficial 

velocities at one location are plotted in Figure 35. It can be observed that the model form 
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uncertainty of 𝑈𝑔 at this location is negative over the whole input space, this suggest 𝑈𝑔 is 

overestimated for all cases at this location. 

Table 15. Flow dynamics datasets decomposition for different purposes 

Datasets decomposition 
Inlet phasic superficial velocities (𝑗𝑔, 𝑗𝑙) 

(m/s) 

Model form uncertainty evaluation 

datasets 
(0.16,0.64), (0.09,2.0), (0.16,2.0), (0.48,2.0) 

Parameter uncertainty evaluation 

datasets 
(0.09,0.64), (0.29,1.1), (0.29,2.0) 

Testing dataset (0.09,1.1) 

 

Figure 35. Model form uncertainty distribution at r/R = 0.55. 
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For the inverse UQ on model parameters, the same process discussed in Section 5.1.5 

is applied. The processed sample chain for all selected parameters and the autocorrelations 

of them are plotted in Figure 36. Good mixing and the fast decay of auto-correlations for 

all parameters can be observed.  

 

Figure 36. MCMC sample traces and auto-correlations of selected interfacial force 

coefficients. 

The obtained samples can be used to construct the stationary distribution of the 

Markov chain which can be regarded as the posterior distributions of the parameters. The 

obtained marginal and point-wise distributions of the three parameters are plotted in Figure 

37. The statistics of the parameter distribution are summarized in Table 16. It can be 

observed that there is a correlation between 𝐶𝑙 and 𝐶𝑤𝑙. Generally speaking, large value of 

𝐶𝑙  will result a large value of 𝐶𝑤𝑙 . This again indicates TDMI can detect the possible 

interaction between different closure relations. 
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Figure 37. Marginal and pair-wise joint distributions of selected interfacial force 

coefficients. 

Table 16. Summary of posterior distributions of the influential interfacial force 

coefficients 

Parameter Mean Standard 

deviation 

95% Confidence 

interval 

Cd 0.8440 0.0711 [0.6977, 0.9788] 

Cl 0.0448 0.0025 [0.0403, 0.0492] 

Cwl 0.0350 0.0029 [0.0304, 0.0412] 

 

Once the parameter uncertainties and model form uncertainties are obtained, the 

uncertainties of QoIs, with and without model form uncertainty, can be evaluated. The 95% 

predictive intervals of QoIs are plotted in Figure 38, Figure 39, Figure 40, which represent 
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the model form uncertainty evaluation case, parameter uncertainty evaluation case and the 

test case respectively.  

 

Figure 38. 95% confidence intervals of QoIs for model form uncertainty evaluation cases 

(first row: 𝑗𝑔 = 0.16 m/s, 𝑗𝑙 = 0.64 m/s; second row: 𝑗𝑔 = 0.09 m/s, 𝑗𝑙 = 2.0 m/s; third row: 

𝑗𝑔 = 0.16 m/s, 𝑗𝑙 = 2.0 m/s; fourth row: 𝑗𝑔 = 0.48 m/s, 𝑗𝑙 = 2.0 m/s). 
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Figure 39. 95% confidence intervals of QoIs for model parameter uncertainty evaluation 

cases (first row: 𝑗𝑔 = 0.09 m/s, 𝑗𝑙 = 0.64 m/s; second row: 𝑗𝑔 = 0.29 m/s, 𝑗𝑙= 1.1 m/s; third 

row: 𝑗𝑔 = 0.29 m/s, 𝑗𝑙 = 2.0 m/s). 

 

Figure 40. 95% confidence intervals of QoIs for test case (𝑗𝑔 = 0.09 m/s, 𝑗𝑙 = 1.1 m/s). 
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It can be found from these three figures, the calibrated interfacial force closure 

relations can capture the near wall void fraction peak for all the conditions. The peak 

location can also be identified with acceptable accuracy. On the other hand, there are still 

relative large discrepancies between experimental data and solver prediction for the 

absolute values of void fraction. For the gas velocity, the solver predictions indicate a 

consistent pattern for all cases: underestimating the velocity in the near wall region while 

overestimating it in the central region. Such discrepancies, including the void fraction and 

gas velocity, can be corrected by adding the model form uncertainty term to the solver 

predictions. This indicate that there are significant model form uncertainties if the constant 

interfacial coefficients are chosen since significant information regarding the bubble 

dynamics flow are neglected. Moreover, it also demonstrates that the modular Bayesian 

approach can incorporate such model form uncertainty.  

5.2.5 Validation metrics 

The confidence interval and the area metric are calculated in this step. Three 

representative results, model form uncertainty evaluation case, model parameter 

uncertainty evaluation case and test case, are plotted in Figure 41 and Figure 42.  

 

Figure 41. Confidence intervals for three representative cases (first row: 𝑗𝑔 = 0.09 m/s, 𝑗𝑙 

= 0.64 m/s; second row: 𝑗𝑔 = 0.16 m/s, 𝑗𝑙 = 0.64 m/s; third row: 𝑗𝑔 = 0.09 m/s, 𝑗𝑙 = 1.1 

m/s). 
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From the confidence interval plotted in Figure 41, several observations can be made: 

• Generally, for void fraction, the model prediction is in better agreement with data 

in the central region than the near wall region. Such a pattern is most significant 

in the third case, 𝑗𝑔 = 0.09 m/s, 𝑗𝑙 = 1.1 m/s. 

• For velocity, the confidence interval of error is positive in central region and 

negative in near wall region; this is consistent with the observation from 

uncertainty quantification results. 

• With the consideration of model form uncertainty, the confidence interval of 

errors become very close to or covers zero. This reaffirmed that the model form 

uncertainty can be correctly accommodated with the modular Bayesian approach.  

The area metrics of the same representative cases plotted in Figure 42 is consistent 

with the observations from confidence interval.   

 

Figure 42. Area metrics for three representative cases (first row: 𝑗𝑔= 0.09 m/s, 𝑗𝑙 = 0.64 

m/s; second row: 𝑗𝑔 = 0.16 m/s, 𝑗𝑙 = 0.64 m/s; third row: 𝑗𝑔 = 0.09 m/s, 𝑗𝑙 = 1.1 m/s). 
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5.3 Summary remarks 

In this chapter, two case studies are performed to demonstrate the VUQ procedure 

designed for MCFD solver proposed in Chapter 4. One case study focuses on the wall heat 

transfer in the scenario of subcooled flow boiling in a vertical channel, whereas the other 

focuses on the flow dynamics in the scenario of adiabatic bubbly flow. Based on the VUQ 

results, several summaries can be drawn on the relevant closure relations of the MCFD 

solver: 

• For both cases, only a subset of empirical parameters’ uncertainties are quantified, 

whereas nominal values are employed to other parameters. There are two reasons 

for not quantifying the uncertainties of all parameters. Firstly, some parameters are 

not influential on the QoIs and thus do not need to be considered in the UQ process. 

Secondly, possible parameter identifiability issue could exist among certain 

parameters. The UQ process will hence not update the prior distribution of these 

unidentifiable parameters. Given non-informative priors, this UQ process will lead 

to flat posteriors of these unidentifiable parameters, from which one can hardly get 

useful information for future simulation setup. In this sense, the parameter selection 

is an essential step for avoiding the parameter identifiability issue.   

• For subcooled flow boiling case, the UQ results suggest that with the studied wall 

boiling closure relation, the MCFD solver can have predictions that are in good 

agreement with the wall superheat with experimental data, while having a relatively 

large model-data discrepancy on the wall heat transfer component. Such 

discrepancy can be quantified by the model form uncertainty term. 

• For adiabatic bubbly flow, despite some discrepancy between solver prediction and 

experimental measurement, the void fraction predicted by MCFD solver, with 

calibrated interfacial force coefficients, can quantify the near wall peak observed 

in experimental measurement. But the predictions for bubble velocity tend to 

overestimate it in bulk flow region while underestimate it in near wall region. For 

both QoIs, the model-data discrepancy can be reduced by introducing the model 

form uncertainty term. 
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The obtained VUQ results confirm feasibility and basic promises of the proposed 

procedure in several aspects: 

• The surrogate modeling is found to be an effective method to alleviate the 

computation burden for performing the parametric study on MCFD solver. 

• The uncertainties of closure relation parameters can be quantified through the 

inverse UQ with Bayesian inference. Since such UQ process is performed with 

datasets of different conditions instead of a single case study, the obtained results 

can be applied over the whole domain covered by data.    

• There is significant model form uncertainty of the studied closure relations. These 

model form uncertainties can be evaluated through the modular Bayesian approach 

applied in the procedure. On the other hand, this also emphasizes the importance to 

develop state-of-art closure relations that generalize more experimental evidence to 

reduce the model form uncertainty. 

• The uncertainty of QoIs can be obtained by propagating the parameter uncertainties 

through the MCFD solver. Validation metrics are calculated to give a quantitative 

and objective measurement of the agreement between model predicted QoIs and 

the experimental measurement.  

There are still several limitations of the current procedure which requires 

improvement for further study: 

• The numerical uncertainty is not explicitly evaluated in the procedure. As a topic 

of verification, the numerical uncertainty is not discussed in this work. A more 

comprehensive evaluation requires the VUQ procedure to be extended to the 

VVUQ. 

• whereas using the statistical model to construct a surrogate for the high dimensional 

output of the MCFD solver is helpful for significantly reducing the computation 

burden, additional uncertainties are introduced through this process. Such 

uncertainty is not evaluated in the current procedure. The cross-validation can give 

an estimation of such uncertainties by calculating the differences between original 

solver predictions and the predictions given by surrogate. However, whether such 

estimation can be extended to the whole validation domain is still unclear. 
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An additional topic that needs investigation is the data availability for the VUQ of 

MCFD solver. In current work, the VUQ on MCFD solver is decomposed into two separate 

case studies due to the limitation of experimental measurement. On the other hand, it 

should be noted that the high-fidelity simulation demonstrates its potential to be an 

alternative data source in addition to experiment. Moreover, the feasibility of using high-

fidelity computational model to quantify the uncertainty of low-fidelity model has been 

demonstrated within statistical framework [32]. Based on this, the direct numerical 

simulations with interface tracking method for two phase flow and boiling [29, 31] could 

serve for the VUQ of MCFD solver. Moreover, those high-fidelity simulations can provide 

detailed local information of different physical phenomena, which cannot be obtained with 

current experimental measurements. Those detailed features can serve as the database for 

a new model development paradigm: the data-driven modeling, which will be discussed in 

next chapter.   
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CHAPTER 6. DATA DRIVEN MODELING OF BOILING HEAT TRANSFER 

The nucleate boiling is a complex multiphysics process that involves interactions 

between heating surface, liquid, and vapor.  In the context of two-fluid model, the classical 

approach for predicting the heat transfer in nucleate boiling is to develop a wall boiling 

closure with a combination of mechanistic models as well as empirical correlations. 

However, as has been identified in last chapter, there exist significant model parameter 

uncertainty and model form uncertainty correlated to the wall boiling closure.  

In this chapter, the data driven approach based on deep neural networks (DNNs) is 

studied which directly learns from high fidelity simulation data to predict the boiling heat 

transfer. The proposed network takes the near wall features of the boiling system as inputs, 

including momentum and energy convections, pressure gradients, and surface information. 

Then trained by the data processed from first principle simulation of pool boiling to predict 

the boiling heat transfer behavior, including heat transfer components, wall superheat, and 

near wall void fraction. The trained networks are tested in interpolation case and 

extrapolation cases which both demonstrate good agreement with the original simulation 

results. With the good expressiveness and generalization property of the DNN, the obtained 

closure relation can have minimized model form uncertainty and can be extrapolated to 

untested conditions. 

6.1 Fundamentals of deep learning 

The DNNs have some good mathematical properties for dealing with complex 

problem.  It has been proven by [105] that even a two layer neural network of sigmoid 

activation function can approximate any continuous functions, given large enough hidden 

units and properly chosen weights. It is further proven by [106] that a DNN can achieve 

better expressiveness with more flexibility. Such property of DNN indicates a properly 

trained DNN can avoid the model form uncertainty. Moreover, DNN has good 

optimization property. It is also observed from practices that a DNN can be optimized and 

converges towards global minimum with a straightforward method, i.e. the stochastic 

gradient descent (SGD), although the theoretical explanation of its success is still weak 

[107]. The last good property is the generalization capability of DNN. It is observed 

through practice that a DNN usually has good performance in predicting the case it has not 
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been trained on [108]. On the other hand, although has so many good properties, DNN 

usually requires significantly large amount of data to train before it can be used for 

prediction. Moreover, the performance of DNN is highly dependent on the 

hyperparameters chosen in the training process. 

This work is based on the deep feedforward NEURAL networks (DFNNs), which is 

the most fundamental type of DNN in practical applications, as is illustrated in Figure 43. 

In deep feedforward network, the first layer is the input and the last layer is the output, in 

between are the hidden layers, the units in hidden layer are term “neurons” and are 

represented by a nonlinear function of certain form. The term “deep” indicates the 

feedforward network has multiple hidden layers, while the term “feedforward” means there 

are no feedback connections in the hidden layers.    

 

Figure 43. Architecture of a fully connected deep feedforward network. 

 

Essentially, the DFNN can be regarded as a process where the input features go 

through a series of nonlinear transformations to predict the outputs as QoIs. Most DFNNs 

do so using an affine transformation controlled by learnable parameters weights 𝑾 and 

biases 𝒃, followed by a nonlinear function named activation function 𝑔(𝑥). In this sense, 

the 1neural network in Figure 43 can be interpreted as the following transformations: 
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𝒉1 = 𝑔(𝑾1
𝑻𝒙 + 𝒃1)

𝒉2 = 𝑔(𝑾2
𝑻𝒉1 + 𝒃2)

⋮
𝒚 = 𝑔(𝑾𝑙+1

𝑻 𝒉𝑙 + 𝒃𝑙+1)

 (83) 

 

There are many choices of activation function in practice, including sigmoid 

function, tanh function, rectified linear units (ReLU) [109], etc. In this work, a modified 

version of ReLU, the Exponential linear unit (ELU) [110] is chosen which can be expressed 

as follows: 

 

 𝑔(𝑥) = {
𝛼(𝑒𝑥 − 1), 𝑥 < 0

𝑥, 𝑥 ≥ 0
 (84) 

 

With the input features, number of hidden layer, number of hidden units, weights 𝑾 

and biases 𝒃, activation function, and outputs setup, the architecture of the DFNN is 

determined. It will accept an input feature vector 𝒙 and propagate through every hidden 

layer to produce an output vector �̂�, the weight matrix 𝑾 and bias vector 𝒃 determines the 

prediction. Without proper training, it cannot be guarantee that �̂� can approximate the real 

data 𝒚, thus the prediction would be meaningless. The next step is to train the DFNN with 

enough data, generally speaking, the deeper the network, the more data required for 

training. For training a DFNN, a loss function 𝐿(�̂�, 𝒚) need to be defined to measure the 

error between the DFNN prediction �̂� and the real data 𝒚. For physical problems, the 𝐿1 

and 𝐿2 norm loss functions are most widely used: 

 

𝐿1 𝑛𝑜𝑟𝑚: 𝐿(�̂�, 𝒚) =  ‖�̂� − 𝒚‖1 =
1

𝑚
∑|�̂�𝑖 − 𝑦𝑖|

𝑚

𝑖=1

𝐿2 𝑛𝑜𝑟𝑚: 𝐿(�̂�, 𝒚) =  ‖�̂� − 𝒚‖2 =
1

𝑚
(�̂�𝑖 − 𝑦𝑖)

2

 (85) 

 

Once the loss function is defined the error gradients w.r.t. the weights and biases of 

each layer can be computed through the backpropagation based on the chain rule of 

calculus. Thus the training process is a repeat of two steps: first input the data, do a forward 

propagation through the network, then perform the back propagation to obtain the error 

derivatives w.r.t. the weights and biases of each layer. Figure 44 demonstrates such 



 

105 

 

procedure with a simple two hidden layer units and 𝐿2  norm loss function, the bias is 

assumed to be zero for simplicity.  

 

Figure 44. Demonstration of (a) forward-propagation of input features; (b) back-

propagation of loss function gradients. 

 

Based on the computed gradients, the weights and biases can be updated with the 

stochastic gradient descendent algorithm, the goal is to find a set of weights and biases 

(denoted by 𝜽 here) for every layer to minimize the loss of all data: 
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 𝐽(𝜽; �̂�, 𝒚) =
1

𝑁
∑𝐿(�̂�(𝑖), 𝒚(𝒊), 𝜽)

𝑁

𝑖=1

 (86) 

 

 ∇𝜽𝐽(𝜽; �̂�, 𝒚) =
1

𝑁
∑∇𝜽𝐿(�̂�

(𝑖), 𝒚(𝒊), 𝜽)

𝑁

𝑖=1

 (87) 

𝜽𝑢𝑝𝑑𝑎𝑡𝑒 =  𝜽 − ε∇𝜽𝐽(𝜽; �̂�, 𝒚) (88) 

In this process, the 휀 is termed learning rate which is the most important parameter 

during the training whose value directly affect the performance of the network. In practice, 

a more effective training process is to randomly sample many mini-batches from the full 

dataset and update 𝜽 with every mini-batch. The size of the mini-batch is usually around 

hundred level no matter how large the full dataset is. Moreover, more advanced algorithm 

improved from the standard SGD is usually applied in practice. In this work, the adaptive 

moment estimation (Adam) algorithm [112] is applied which computes individual adaptive 

learning rates for different parameters from estimates of first and second moments of the 

gradients. The training process would go over the datasets many iterations (termed epoch 

in the deep learning community).  

The backpropagation algorithm proposed by [111], for a DFNN with 𝑙 layers, 𝑥 as 

input features, 𝑦 the output QoIs, the backward propagation of loss derivatives is applied 

in following way: 

(1). Initialize the weights 𝑾(𝒊) and biases 𝒃(𝒊) for each layer, 𝑖 ∈ {1,… , 𝑙}   
(2). Do a forward pass: 

 𝒉(0) = 𝒙 

 FOR k = 1,… , 𝑙 do  

                      𝒛(𝒌) = 𝑾(𝑘)𝒉(𝑘−1) + 𝒃(𝒌)

  𝒉(𝒌) = 𝑔(𝒛(𝒌))
 

 END FOR 

 �̂� = 𝒉(𝒍) 
(3). Calculate the loss function, taking the regularization into account: 

 𝐽 = 𝐿(�̂�, 𝒚) +  𝜆𝛺(𝜽) 
After the forward pass, do the backward propagation of loss derivatives: 

(4). Compute the gradient on the output layer: 

 𝒈𝒓𝒂𝒅 ← ∇�̂�𝐽 = ∇�̂�𝐿(�̂�, 𝒚)  
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(5). Convert the gradient on layer’s output into gradient on the pre-nonlinearity activation 

𝒂(𝑘)  
 FOR k = 𝑙, 𝑙 − 1… ,1 do 

         𝒈𝒓𝒂𝒅 ← ∇𝒛(𝑘)𝐽 = 𝒈𝒓𝒂𝒅⊙ 𝑔′(𝒛(𝑘))  , ⊙  stands for element-wise 

multiplication 

 (6). Compute the gradients on weights and biases: 

        ∇𝒃(𝑘)𝐽 =  𝒈𝒓𝒂𝒅 +  𝜆∇𝒃(𝑘)𝛺(𝜽)  

        ∇𝑾(𝑘)𝐽 =  𝒈𝒓𝒂𝒅 ∙ 𝒉(𝑘−1)𝑇 +  𝜆∇𝑾(𝑘)𝛺(𝜽) 
 (7). Propagate the gradients to the next lower level hidden layer: 

        𝒈𝒓𝒂𝒅 ← ∇𝒉(𝑘−1)𝐽 = 𝑾
(𝑘)𝑇 ∙ 𝒈𝒓𝒂𝒅  

 END FOR 

 

In the practices of training a very deep DFNN, there are still two common issues: the 

overfitting and the potential vanishing or exploding gradients. If a DFNN is overfitted with 

the training data, the total loss function would be small, but it will fail to predict dataset 

that is not included in the training. A way to minimize the overfitting is to include a 

regularization term 𝜴(𝜽)in the loss function 𝐿: 

 𝐽(𝜽; �̂�, 𝒚) = 𝐽(𝜽; �̂�, 𝒚) +  𝜆𝜴(𝜽) (89) 

where 𝜆  is a positive hyperparameter that weights the relative contribution of the 

regularization term, large 𝜆  indicates strong regularization. In most practices, the 

regularization term is only applied to weights, thus 𝜴(𝜽)  is equal to 𝜴(𝒘). Most widely 

used 𝜴(𝒘) are 𝐿1 and 𝐿2 regularization: 

 

𝐿1 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛:     𝜴(𝒘) =  ‖𝒘‖1 =∑𝑤𝑖

𝐿2 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛:     𝜴(𝒘) =  
1

2
𝒘𝑇𝒘

 (90) 

In this work, the 𝐿2 regularization is applied. Moreover, the total dataset is divided 

into the training data and test data. to exam if a DFNN is overfitted or not. The test data is 

not included in the training process but is used to test the accuracy of the trained DFNN 

for inputs that it did not know in the training. 

When training a very deep DFNN, the gradients can sometimes get either very big 

or very small through the backpropagation process. Such unstable behavior makes training 

difficult or even fail to converge. Currently, there is no universal solution for such issue. A 
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partial solution is to carefully chose the initialization of weights. In this work, the weights 

are initialized with state-of-the-art method, and are also closely monitored during the 

training process.  

To summarize: although the DNN has demonstrate its power in many fields, there 

are still several unclear aspects about its property. In current practices, training a DNN 

depends on experience and is usually a trial-and-error process. The predictive capability of 

DNN is highly dependent on not only data but also its hyperparameters: the learning rate 

휀, the number of hidden layers, the number of hidden units in each layer, the regularization 

coefficient 𝜆, the mini-batch size, etc. In this work, the effects of those hyperparameters 

are investigated. 

6.2 Problem setup 

In this work, the pool boiling simulation results obtained from [46] is used. The 

simulation uses color function to resolve the liquid-vapor interface, uses large eddy 

simulation (LES) for turbulence modeling. The computational domain is 

40mm×40mm×38mm, the upper 32mm representing the fluid domain, and the lower 6mm 

representing the solid domain. In the solid domain, a cylindrical-shaped copper block of 

diameter 20mm locates at the center, and the surrounding solid material is the thermal 

insulation, for which the thermal conductivity is defined to be zero. The number of 

nucleation sites is derived based on the experimental measurement [113]. The location of 

those nucleation site was prescribed as a priori, and randomly distributed on the heating 

surface, together with a nucleation activation temperature 𝑇𝑎𝑐𝑡. The number of cells for the 

whole domain is 224×224×360.  In this work, only the central part of the near wall region, 

a 10mm×10mm area, is chosen for data extraction in order to minimize the influence of 

boundary. The computational domain and the data extracted area is depicted in Figure 45. 
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Figure 45. Computational domain and data sampling area of the ITM simulations. 

The obtained results were validated against experiments from[113] and [114], with 

good agreement observed on both cases. Thus the simulation can be regarded as a high-

fidelity. 

The purpose of the desired DFNN is to use local flow features, which can be obtained 

in the MCFD solver without boiling closure relations, to predict the boiling heat transfer. 

The input features for DFNN is important and directly influences its performance. In these 

boiling cases, there is no well-developed bulk flow, thus the widely used dimensionless 

flow features such as 𝑦+  and Reynolds number are not applicable. Considering this, 

comprehensive flow features are chosen to include all the relevant terms in the averaged 

conservation equations, including pressure gradient term, momentum convection term, 

energy convection term, and turbulent viscosity. For simplification purpose, these flow 

features are further averaged between the vapor phase and liquid phase, thus the number 

of the input features is significantly reduced. Besides the flow features, the features related 

to the heating surface, including the total heat flux applied to the heating surface 𝑞𝑇𝑜𝑡𝑎𝑙, 

the nucleation site density 𝑁𝑠𝑖𝑡𝑒, and the nucleation activation temperature 𝑇𝑎𝑐𝑡,  are also 

included in the inputs. The selected input features are consistent with the fact that the 

nucleate boiling is a multiphysics process that involves interactions between heating 

surface, liquid, and vapor. A total 19 features are selected as the inputs of DFNN, which 

are summarized in Table 17. However, it should be admitted that there should exist more 
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concise input features that represent the physical characteristics of the boiling process. As 

the first effort to predict the local boiling process with DNN, such investigation to find 

better input features is not conducted.  

The wall boiling closure in MCFD provide predictions on heat partitioning and wall 

superheat. For the prediction of departure from nucleate boiling in MCFD solver, the near 

wall void fraction is also a key parameter. Thus, in this work, these four QoIs are set to be 

the outputs of the DFNN which are summarized in Table 18. 

 

Figure 46. Histogram of 4 QoIs on different input heat fluxes. 

It is further assumed that the boiling is only influenced by the near wall flow based 

on the scale-separation assumption [25], thus only the near wall flow features are processed 

from the ITM results. In the processing, the average length scale 0.25mm, the average time 

step is 0.1s. Following the procedure, the near wall region of the whole 224×224×360 

computational domain in 100 time frames are averaged to 50×50 near wall flow features, 

thus 2500 data samples are collected for each simulation case. 
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For each simulation, constant heat flux is applied at the bottom of the cylindrical 

copper block. Due to the effect of conjugate heat transfer, randomly distributed nucleation 

sites, and the random activation temperature assigned to them, the heat flux imposes on the 

liquid contact surface varies significantly. Thus, the data collect from it covers a broad 

range of inputs and outputs for the DFNN. Thus, the trained DFNN would have good 

generalization capability. 

 In this work, the simulation cases of four different heat flux are used: 600 kW/m2, 

800 kW/m2, 1000 kW/m2, and 1200 kW/m2. The extracted QoIs from 4 different simulation 

cases are illustrated in Figure 46 in the form of histogram. As can be observed, each case 

has a significant different distribution, which means each dataset reflects a different 

pattern.  

 

Figure 46. Histogram of 4 QoIs on different input heat fluxes. 
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Table 17. Summary of input features of DNN 

Feature type Feature expression 

Pressure gradient 

𝜕〈𝑝〉

𝜕𝑥
 

𝜕〈𝑝〉

𝜕𝑦
 

𝜕〈𝑝〉

𝜕𝑧
 

Momentum convection 

𝜕〈𝜌〉〈𝑢〉〈𝑢〉

𝜕𝑥
 

𝜕〈𝜌〉〈𝑢〉〈𝑣〉

𝜕𝑥
 

𝜕〈𝜌〉〈𝑢〉〈𝑤〉

𝜕𝑥
 

𝜕〈𝜌〉〈𝑢〉〈𝑣〉

𝜕𝑦
 

𝜕〈𝜌〉〈𝑣〉〈𝑣〉

𝜕𝑦
 

𝜕〈𝜌〉〈𝑣〉〈𝑤〉

𝜕𝑦
 

𝜕〈𝜌〉〈𝑢〉〈𝑤〉

𝜕𝑧
 

𝜕〈𝜌〉〈𝑣〉〈𝑤〉

𝜕𝑧
 

𝜕〈𝜌〉〈𝑤〉〈𝑤〉

𝜕𝑧
 

Energy convection 

𝜕〈𝜌〉〈ℎ〉〈𝑢〉

𝜕𝑥
 

𝜕〈𝜌〉〈ℎ〉〈𝑣〉

𝜕𝑦
 

𝜕〈𝜌〉〈ℎ〉〈𝑤〉

𝜕𝑧
 

Turbulence viscosity 𝜇𝑡 
Heat flux applied to 

heating surface 
𝑞𝑇𝑜𝑡𝑎𝑙 

Potential nucleation site 

density 
𝑁𝑠𝑖𝑡𝑒 

Nucleation activation 

temperature 
𝑇𝑎𝑐𝑡 
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Table 18. Outputs of DFNN 

QoIs notation 

Evaporation heat transfer 𝑞𝐸𝑣𝑎𝑝 

Convective heat transfer towards liquid 𝑞𝑆𝑖𝑛𝑔𝑙𝑒 

Near wall void fraction 𝛼𝑤𝑎𝑙𝑙 
Wall superheat 𝑇𝑠𝑢𝑝 

 

To summarize, the DFNN is used to predict the near wall boiling behavior, with the 

averaged near wall flow features that compatible to the two-fluid model as inputs. The 

high-fidelity simulation results from four pool boiling simulation cases are used for training 

the DFNN. The architecture of this DFNN is illustrated in Figure 47. 

 

Figure 47. Architecture of DFNN used for predicting boiling heat transfer. 

6.3 Results and discussions 

In this work, the open source deep learning library Pytorch [115] is used for 

constructing, training and applying the DFNN. All cases are trained on GPU, which is 

significantly faster compared to the training on CPU. To test the performance of the trained 

network, the full dataset is divided into training dataset and testing dataset. As a rule of 

thumb, for data of medium size (10000 samples of this work), the training data should be 

70%-80% of the full dataset, while the rest for testing. Based on this, four different cases 

are studied as summarized in Table 19. Each case chose a different simulation results as 

testing dataset, and three other simulation results as training datasets. Thus, four different 

DFNNs are trained and tested.  
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Table 19. Case studies based on different training/testing data decomposition 

Cases Training datasets Testing dataset 

Case 1  800 kW/m2, 1000 kW/m2, 1200 kW/m2 600 kW/m2 

Case 2  600 kW/m2, 1000 kW/m2 ,1200 kW/m2 800 kW/m2 

Case 3 600 kW/m2,800 kW/m2,1200 kW/m2 1000 kW/m2 

Case 4 600 kW/m2,800 kW/m2,1000 kW/m2 1200 kW/m2 

 

Comparing to choosing 25% of the results from each simulation  as testing data, this 

decomposition increased the difficulty of training the DFNN. On the other hand, the DFNN 

trained in this way should have better generalization capability for unknown inputs, thus 

can be regarded as better predictive capability.  From the perspective of traditional 

regression, Case 2 and 3 are interpolation cases, while Case 1 and 4 are extrapolation cases. 

With traditional regression method such as Gaussian process, the interpolation cases should 

have better accuracy compared to the extrapolation cases.  

Before putting into the DFNN, all input features and output QoIs, are zero centered 

and normalized by the mean and standard deviation of the training dataset. As an approach 

to avoid the vanishing/exploding gradient during the training process, the weights are 

initialized with the method (known as “Xavier initialization”) proposed by [116]. The ELU 

activation function defined in Section.2 is used. The 𝐿2  loss function is used, with 𝐿2 

regularization term considered. The regularization coefficient λ is tuned to minimize the 

difference of loss between training data and testing data during the training process. 

Through a series of testing, λ is set and fixed at 0.0001 for all cases.  

It should also be noted that, the influence of hyperparameter is still an active research 

topic in the deep learning community. The most suitable combination hyperparameters 

depends on the data and selected input features. Currently, the choose of hyperparameter 

is still through ad hoc analysis. Considering this, the effects of other hyperparameters, 

including learning rate 휀, number of hidden units, and batch size, are also tested based on 

case 1. The three parameters are sampled over a series of discrete value using the Latin 

hypercube sampling (LHS) method. A few selected results regarding to the loss on test 

dataset are demonstrated on Figure 48, in which the average of the root mean square errors 

(RMSE) of the four QoIs are calculated: 
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 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑𝐿2(�̂�

(𝑖), 𝒚(𝒊))

𝑁

𝑖=1

 (91) 

 
Figure 48. Demonstrating of hyperparameter influence on DFNN performance. 

As can be observed in Figure 48, all the three hyperparameters have significant influence 

on the DFNN performance. Several observations can be drawn from this test: 

• Too large learning rate ϵ is a negative factor for the DFNN’s performance, while a 

too small value will not help increase the performance, but will slow the training 

process instead.   

• Generally speaking, a small size of hidden units cannot have good generalization 

performance on the testing data. 

• Large batch size is more computationally efficient on GPU, but cannot produce 

better performance. In this case, the batch size around 200~500 produce quite 

similar results. 



 

116 

 

In following training, the hyperparameters of the DNNs are tuned and adjust through 

trial-and-error for each case respectively to achieve minimum error in the testing dataset. 

The performance of the trained DFNN can be examined through the scatter plots of 

DFNN predictions on the testing dataset against the original simulation results. Figure 49 

and Figure 50 demonstrate the results of the two interpolation cases. In the figures, the 

solid 45°angle line stands for the ideal situation where DFNN predictions perfectly match 

the simulation results. The dash line stands for the 2𝜎  bound, where 𝜎 is the standard 

deviation calculated from the differences between DFNN predictions and the original 

simulation results. The error bound 2𝜎 is less than 20% of the averaged QoIs in both cases. 

Considering the complicity of the problem, and the large uncertainty of the classical wall 

boiling closures, the prediction of DFNN has lower uncertainty and thus can be regarded 

as an improvement for this problem. It can be further found from both figures that although 

some outliers are observed, most of the DFNN predictions are within the 2𝜎  bound. 

Considering there are 2500 samples in the plot, those few outliers are not statistically 

significant. 

Moreover, it can be observed in Figure 49 that the DFNN predictions on 𝛼 are evenly 

distributed in the 2𝜎 region, demonstrating a Gaussian distribution pattern, but the other 

three QoIs show certain skewness. Especially for 𝑞𝐸𝑣𝑎𝑝  and 𝑞𝑆𝑖𝑛𝑔𝑙𝑒 , where in general 

𝑞𝐸𝑣𝑎𝑝 is underestimated and 𝑞𝑆𝑖𝑛𝑔𝑙𝑒 is overestimated by the DFNN prediction. Similar, but 

less significant, trends can also be observed in Figure 50. In deep learning community, 

such discrepancy is termed as high variance (noted that it is a different definition of 

variance compared to the widely used definition in statistics community), and can usually 

be resolved by increasing the training data. 

The two extrapolation cases are depicted in Figure 51 and Figure 52. Again, the high 

variance problem is observed in Figure 51, where 𝑇𝑠𝑢𝑝  and 𝑞𝑆𝑖𝑛𝑔𝑙𝑒  are overestimated, 

while 𝑞𝐸𝑣𝑎𝑝is underestimated. On the other hand, it is also observed that both the 2𝜎 bound 

and the scatter plots show quite similar pattern compared to the interpolation case. This 

indicates the DFNN generalized both the interpolation and the extrapolation cases with 

similar performance. 
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Figure 49. Comparison of DFNN predictions and real ITM simulations (Case 2). 

 

Figure 50. Comparison of DFNN predictions and real ITM simulations (Case 3). 
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Figure 51. Comparison of DFNN predictions and real ITM simulations (Case 1). 

 

Figure 52. Comparison of DFNN predictions and real ITM simulations (Case 4). 
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A more quantitative comparison, i.e. the RMSE of the DFNNs on the prediction of 

test datasets are summarized in Table 20. It can be found the RMSE for all QoIs are below 

20% of the averaged values. This confirms the DFNNs predict the original simulation 

results with reasonable good agreement. On the other hand, it is also noticed that the 

absolute value of the error is evenly distributed in the whole testing dataset. This means if 

judging by the error in percentage, the errors for small value predictions would be 

significantly higher than the large value predictions. This issue stems from the optimization 

process applied in current DFNN training. In the training process, the whole datasets are 

divided into several batches, each batch contains hundreds of data. The weights and biases 

of the DFNN are updated for each batch. This is a much more stable and efficient method 

compared to update the weights and biases for every single data. However, when using the 

L_2 norm loss function will average the data in each batch, thus small value data would be 

less important compared to large value data. In this sense, the trained DFNN would favor 

the large value data. To overcome this issue, new forms of loss function that specially 

designed for physical problems should be developed.   

Table 20. RMSE on test data of each case 

 𝛼𝑤𝑎𝑙𝑙 𝑇𝑠𝑢𝑝, K 𝑞𝐸𝑣𝑎𝑝,W/m
2 𝑞𝑆𝑖𝑛𝑔𝑙𝑒 ,W/m

2 

Case 1 0.074 1.57 7.17 × 104 7.29 × 104 

Case 2 0.070 1.27 8.15 × 104 8.01 × 104 

Case 3 0.068 1.29 9.73 × 104 9.65 × 104 

Case 4 0.057 1.59 1.07 × 105 9.67 × 104 

 

The predictive capability of the DFNN can be further demonstrated through the 

global boiling pattern prediction. The visual comparison between DFNN predictions and 

the original ITM results on the heating surface is depicted in Figure 53 (Case 2) and Figure 

54 (Case 4). The original ITM simulation results suggest two different boiling patterns in 

these two cases. In Case 2 (𝑞𝑡𝑜𝑡𝑎𝑙 = 800 kW/m
2), the individual nucleation sites can be 

clearly identified which suggested the frequently activated nucleation location in the 

simulation. The boiling in this case is the well-developed nucleate boiling. Whereas in Case 

4 (𝑞𝑡𝑜𝑡𝑎𝑙 = 1200 kW/m
2), the results show the trend of transition from nucleate boiling 

to film boiling. For both cases, it can be found the DFNN prediction captures the global 
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boiling pattern with good accuracy. This suggests that the DFNN relies on local features 

can not only give good prediction on local boiling process, but also captures the global 

boiling pattern.  

Here a hypothesis is proposed to explain the good performance of DFNN on the 

extrapolation prediction. One the one hand, the DFNN in this work relies on the local 

features of flow and heating surface as inputs. Those local features can be characterized 

with a certain pattern, given that their global conditions are in the same regime. For 

example, in fully turbulent flow, the near wall flow can be characterized by the boundary 

layer theory, no matter the Reynolds number is 50,000 or 80,000. This means the wall 

function based on boundary layer theory can be extrapolated to predict the near wall flow 

for any fully turbulent flow case. However, traditional regression methods, such as 

Gaussian process, cannot identify such pattern (like boundary layer theory), with even 

unlimited data. Because these regression methods have limited capability in both 

expressiveness and generalization. Limited expressiveness capability means these methods 

cannot approximate complex functional forms if not specified first. Limited generalization 

capability means these methods cannot identify the intrinsic pattern of a certain problem 

from a large dataset. In this sense, these traditional regression methods cannot be trusted 

for extrapolative prediction, as has been already suggested in various practices.   

On the other hand, the DNN has demonstrated good capability on both 

expressiveness and generalization. As being discussed in Section 1, a properly trained 

DNN can approximate any form of continuous function. Also, the DNN has demonstrated 

good generalization property in the application of natural language processing and 

computer vision. In this sense, the DNN has the potential to identify the intrinsic pattern of 

a real physical problem from a large set of data, and describe this pattern with enough 

accuracy. From this point of view, the DNN can serve as not only a statistical tool to replace 

certain closure relation, but also a promising tool to help discover insights of complex 

physical problems. The latter depends on the progress of the interpretability of DNN, which 

means the logic of DNN predictions hidden inside the network should be made 

understandable by people. This is a very challenging topic but already attracts interests of 

many researchers [117].   
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Figure 53. Visual comparison of DFNN predictions and ITM results (Case 2). 

 

Figure 54. Visual comparison of DFNN predictions and ITM results (Case 4). 
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6.4 Summary remarks 

In this chapter, the data driven approach is studied which takes local flow surface 

features as inputs to predict the heat transfer behavior in pool boiling using deep 

feedforward neural networks (DFNN). The networks are trained on data extracted from 

high fidelity pool boiling simulations with interface tracking method (ITM). The accuracy 

of the networks is tested through four case studies, including both interpolation and 

extrapolation cases. Reasonably good agreement between the DFNN predictions and the 

original ITM simulations are found for both the interpolation case and the extrapolation 

case. Moreover, the global boiling pattern over the heating surface can also be captured 

with the DFNN.  Especially, the boiling patterns can be captured through DFNN, even for 

extrapolation case. This indicates the deep network trained with local flow features have 

good generalization property and thus can be trusted to be extended to unknown conditions. 

The results demonstrate the deep neural networks can be a promising tool to help improve 

the predicative capability of Multiphase-CFD solver. Further, a hypothesis is proposed to 

explain the good performance of DFNN on the extrapolation prediction. Based on this 

hypothesis, the DNN can also be a promising tool to help discover insights of complex 

physical problems. 

On the other hand, there are still limitations of this work. Firstly, the networks studied 

in this work are trained with pool boiling simulation results, while for industrial problems, 

the flow boiling is usually the focus. Due to the significantly different flow and boiling 

patterns between the two scenarios, the DFNN trained with pool boiling data is 

questionable to be applied to flow boiling scenarios. Moreover, the flow features chose in 

this work is based on the terms of conservative equations, most of which are scale and 

geometry variant. If a network is designed to have universal predicative capabilities, its 

features should be scale invariant, as demonstrated in [37]. It worth noting that, a most 

recent work showed promising results to use convolutional neural network to automatically 

extract physics based features [118]. Finally, the accurate prediction for boiling heat 

transfer depends on the accurate input of flow features. Such premise cannot be guaranteed 

with flow features calculated from a MCFD solver. In this sense, to incorporate the deep 

network in a MCFD solver, the network should also be coupled with that solver in the 

training process, as is suggested in [119]. 
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CHAPTER 7. CONCLUSIONS 

Although being considered as one of the most promising analysis tools for industrial 

two-phase flow and boiling systems, the Eulerian-Eulerian two-fluid model based MCFD 

solver still has an unresolved issue that undermines its predictive capability: the significant 

uncertainty within the closure relations of the solver is not well quantified.  

In contrast to the efforts to develop new closure relations that aim to describe the still 

unclear physical process, this dissertation proposes two approaches to address this issue 

within the data-driven analysis framework. The first is to perform validation and 

uncertainty quantification (VUQ) for the MCFD solver. This process is based on the idea 

of total data-model integration (TDMI) that treat solver, closure relations, and all available 

datasets in an integrated manner within the Bayesian framework. The second is to develop 

data-driven closure relations based on deep neural networks (DNNs) with local flow 

features for the MCFD solver. With the good expressiveness and generalization property 

of the DNN, the obtained closure relation can have minimized model form uncertainty and 

can be extrapolated to untested conditions. 

The major contribution of the dissertation is the exploration of this new data-driven 

paradigm, which the author sees of great potential, to analyze complex physical processes 

of a system such as boiling. In contrast to the traditional analysis paradigm which is mainly 

driven by expert experience, this new paradigm is directly driven by data, thus leverages 

the power of increasingly rich data resources from high-resolution experiments and high-

fidelity simulations. 

This chapter concludes the dissertation by summarizing the proposed framework, 

highlighting the contributions, and outlining future works on this topic. 

7.1 Summary 

In this dissertation, a novel approach was presented for uncertainty quantification 

and model development in boiling problems using a data-driven framework with state-of-

the-art statistical algorithms. The framework is applied to MCFD solver and serves for two 

important practical purposes: 1). quantifying and reducing the uncertainties of the MCFD 
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solver for boiling simulations; 2). quantitatively validating the solver predictions against 

available datasets. 

First, a data processing and storage procedure is developed as a component of the 

framework. For high fidelity simulations results, the time and spatial average process is 

applied to obtain two-fluid model compatible data. For high-resolution experimental 

measurements obtained by IR camera, the hierarchical clustering algorithm is applied to 

identify the active nucleation sites and record the corresponding nucleation information. 

The obtained data are then stored in virtual containers and can be incorporated into the 

following VUQ and data-driven modeling work. 

Second, a six-step data-driven VUQ procedure is developed for the MCFD solver. 

The procedure builds a surrogate model for the MCFD solver predictions. Based on the 

surrogate, a subset of parameters is selected and went through a modular Bayesian 

inference. With the provided datasets, the model form uncertainties are evaluated, and the 

parameter uncertainties are inversely quantified. The obtained uncertainties are then 

propagated through the solver to obtain the uncertainties of the solver predictions. 

Validation metrics are calculated as a quantitative measurement of the agreement between 

solver predictions and the datasets. Two cases studies with MCFD solver are performed 

based on the procedure, the obtained results demonstrate the applicability of the procedure.   

Last, the data-driven approach based on deep feedforward network is studied which 

learns from high fidelity simulations to predict the boiling heat transfer. The proposed 

network takes the local flow features of the boiling system as inputs to predict the boiling 

heat transfer behavior. The networks are tested in both interpolation case and extrapolation 

case, which both demonstrate reasonable agreement with the original simulation results. A 

more promising observation is the trained network can accurately capture the global boiling 

patterns, even for extrapolation case. 

7.2 Contributions 

As stated, this dissertation explored the new data-driven paradigm in boiling problem 

analysis, which are reflected by the following contributions: 
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1). The exploration of machine learning based automatic data processing, 

compared to the traditional human effort based data processing. Traditionally, the 

nucleation events are manually identified and recorded from consecutive boiling images. 

Such work is generally tedious and time consuming. In this dissertation, the hierarchical 

clustering algorithm is applied to boiling images which can automatically identify the 

nucleation events with high accuracy and efficiency. Such an efficient data processing 

procedure is crucial for the data-driven paradigm which usually requires a significant 

amount of data for the analysis purpose.  

2). The application of Bayesian inference to inversely quantify the parameter 

uncertainty, compared to the expert judgment based parameter tuning. Running 

simulation for boiling problems using MCFD solver involves many parameters. 

Traditionally, the uncertainties associated with these parameters are not well characterized 

and only roughly evaluated with expert judgment. In this dissertation, the Bayesian 

inference is applied to inversely quantify the uncertainties of those parameters, with the 

support of QoI datasets. Moreover, the model form uncertainty is also evaluated through 

this modular Bayesian approach. This process provides a rigorous estimate of the 

uncertainty of QoIs, which is essential for the validation process.      

3). The application of validation metrics to quantitatively measure the 

agreement between solver predictions and the datasets, compared to the traditional 

“graphical comparison”.  Validation is a necessary step to evaluate the predictive 

capability of a simulation tool. The most commonly used approach in engineering 

community is to directly display the simulation results and data on a graph. Such “graphical 

comparison” cannot generate a quantitative measurement of the simulation-data agreement 

and can hardly lead to a reasonable evaluation of the solver. In this dissertation, two 

validation metrics, the area metric and confidence interval, are applied as a quantitative 

measure of the agreement between data and solver prediction. This type of validation 

metric considers the full uncertainty distribution of the solver predictions as well as the 

datasets, thus can be regarded as a comprehensive evaluation.  

4). The exploration of data-driven modeling for boiling problems using deep 

learning algorithms, compared to the expert experience based modeling approach. 
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The closure relations in MCFD solver has a significant influence on the solver predictions. 

A closure relation is developed mainly based on expert experience and has limited 

applicable range within the condition it has been tested. In this thesis, the data-driven 

approach in the form of deep neural networks for closure relation development is studied. 

This approach leverages the “big data” from high-resolution experiments and high-fidelity 

simulations. The deep neural network has good expressiveness and generalization property, 

thus a well-trained deep network based closure relation should minimize the model form 

uncertainty and can be extrapolated to untested conditions. The results obtained in this 

dissertation demonstrates the network trained by local features cannot only predict local 

boiling heat transfer behavior with good accuracy but also capture the global boiling 

pattern, even for the extrapolation case. 

7.3 Future work 

As discussed in several chapters, some improvements can be made to the work 

discussed in this dissertation such as: 

• Performing the VUQ procedure on a comprehensive case study, which including 

both boiling and two-phase flow QoIs.  

• Using validation metrics such as p-box that can differentiate the epistemic 

uncertainty and aleatory uncertainty.  

Besides those relatively minor improvements, there are three major areas that the 

author considers important for future work and the extension of this dissertation. 

In the data processing work, current practice is to obtain different QoIs from 

experimental measurements of one test facility. However, it is not possible to measure all 

the QoIs of a boiling system in one single facility. A comprehensive data-driven analysis 

thus requires exploiting multiple data sources and heterogeneous data from different 

experimental facilities. To achieve this, rigorous scaling criteria for two-phase flow and 

boiling should be developed. Moreover, an evaluation procedure for the value of datasets, 

depending on their relevance and scaling distortion, should be developed. 

In the VUQ work, MCFD simulations are performed, results over the global 

computation domain are obtained. Yet only a few local points are extracted to perform 
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Bayesian inference. The reason to do so is there lacks global measurement for the whole 

flow and heat transfer field. A desired improvement in future is to perform VUQ on the 

whole flow field. Two challenges need to be addressed to achieve this goal. The first is to 

develop an advanced image processing method to reconstruct the whole flow field from 

the images from high speed camera. Comparing to current boiling images (which 

represents the two-dimensional heating surface), this is more difficult since the obtained 

two-dimensional image is an incomplete representation of the three-dimensional real 

world. The second is the surrogate modeling for the whole flow field, which could have 

millions of outputs depending on the meshes of the computation domain. 

In the data-driven modeling work, the deep feedforward network takes local input 

features determined by the author. Such determination may not be an “optimized” choice, 

since some of the features may not be important to the QoIs. More importantly, some 

features that are significant to the QoIs could be neglected. A desired improvement is to 

have an approach that can automatically identify and extract the important and efficient 

features for the deep neural network. 

In the ultimate picture, the flow and boiling images obtained from different high-

resolution experiments can be automatically processed to produce the averaged flow fields 

that compatible with the two-fluid model. This obtained flow field will be used for the 

VUQ of the MCFD solver, which is supported by the closure relations in the form of deep 

networks with efficient input features. 
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