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Abstract 
 

Title: The Plant Mediator Complex in the Transcriptional Response to Low Temperature 

Author: Charlotte Hannah Hurst 

 

SENSITIVE TO FREEZING6 (SFR6) is the MEDIATOR16 (MED16) subunit of the plant Mediator 

complex and is shown here to be required for the recruitment of Pol II and the Mediator 

complex to cold-inducible C-repeat binding factor (CBF)-controlled genes. In addition, the 

MED2 and MED14 subunits are also required for Pol II recruitment to these genes. Mutant 

lines impaired in expression of SFR6/MED16, MED2 and MED14 subunits showed impaired 

expression of many, but not all cold-inducible genes. Some cold-inducible genes that do not 

contain C-repeat element (CRT) motifs in their promoters were also misregulated in 

sfr6/med16, mediator2 (med2) and mediator14 (med14) mutant lines but Pol II recruitment 

was not impaired, unlike the situation for CRT-containing genes. Expression of cold-

inducible genes was not impaired in all of the Mediator tail subunit mutant lines tested; 

NRB4/MED15 mutants were not impaired in their expression of cold-inducible genes but 

preliminary result suggested that this subunit might be involved in UV-induced gene 

expression. In addition to their role in the transcriptional response to cold, both 

SFR6/MED16 and MED14 subunits were shown to be required for the expression of known 

CBF-controlled cold-inducible genes in response to sugar, but the MED2 subunit was not. 

Preliminary experiments conducted on CDK-8 domain subunit mutant lines, CYCC and 

CDK8, indicated that the CDK-8 domain may not function solely as a transcriptional 

repressor but may be required for expression of dark- and UV-inducible genes. Together, 

these data illustrate that transcriptional control in plants is achieved through the combined 

action of subsets of Mediator subunits that are defined by the stimulus and the particular 

gene investigated.  
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I. Introduction 

Plants are constantly exposed to changing environmental conditions. When these 

changes are rapid or extreme, plants perceive them as a stress. As plants are unable to 

move to more favourable conditions, they have at their disposal sophisticated sensing 

mechanisms and signal transduction systems that allow the plant to respond and 

adapt to the stress so that it can continue to survive in its current environment. As 

shown in Figure I.1 below, the ultimate outcome of any stress such as cold, heat, 

nutrient deficiency or osmotic stress is an alteration in transcriptional regulation 

where different sets of genes are induced or repressed in response to the stress 

(Figure I.1). Altered gene expression leads to biochemical, physiological and 

morphological adaptations that will allow the plant to acclimate to the stress and 

survive (Krasensky & Jonak 2012).  

 

 

Figure I.1: Plant acclimation to abiotic stress requires a new state of cellular homeostasis 
that is achieved through signalling pathways that ultimately leads to changes in 
transcription. Control of gene expression in the abiotic stress response is tightly regulated 
by many cellular factors to maximize plant survival in response to a stress. (Cramer et al., 
2011) 
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Stress responses act over different timescales: rapid post-translational effects such as 

phosphorylation, ubiquitylation or S-acylation (Seo & Lee 2004) provide immediate 

responses, activating stress-response signalling pathways that will lead to altered 

regulation of gene expression. Changes in gene expression occur more slowly than 

post-translational effects and result in metabolic and developmental alterations to the 

plant which are essential for a plant’s long-term adaptation to the stress. These 

metabolic and transcriptional alterations are all reversible, affording the plant a large 

degree of plasticity in its ability to return to a basal state of homeostasis once the 

stress is removed.  

 

I.1. The process of cold acclimation 

Cold temperatures are one of many abiotic stresses faced by plants through the course 

of their lifecycle (Figure I.1). The ability of a plant to tolerate low temperatures is a 

major determinant of its global distribution and use as a crop. Understanding how 

plants respond to low temperatures is therefore important for protecting crop yields, 

increasing useable land area, extending growing seasons and to ultimately breed 

varieties of crops that can adapt more rapidly to environmental stresses and tolerate 

more extreme conditions.  

Most temperate plants can survive mild chilling (temperatures >10°C) and can be 

described as either freezing sensitive or freezing tolerant. Plants that are freezing-

sensitive are commonly found in the tropics and sub-tropics and undergo chilling 

stress when temperatures fall below 10°C (Levitt 1980). Excessive chilling causes 

freezing-sensitive plants to wilt, undergo chlorosis and may even result in their death 

unless they have been acclimated by a gradual exposure to lower temperatures. 

Freezing-sensitive plants are unable to survive sub-zero temperatures even when they 

have been acclimated. Freezing tolerant plants are more commonly found in 

temperate regions; for them to survive through the winter months they must alter 

their transcriptional regulation and adjust their metabolism and physiology to deal 

with the sub-zero temperatures. This process is called cold acclimation and results in a 

significant increase in a plants tolerance to freezing temperatures (Thomashow, 1999). 

This is achieved by transcriptional and biochemical changes in response to a prior 

prolonged exposure of days or weeks to low, non-freezing temperatures between 0-

5°C (Warren et al., 1996). 
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In response to cold temperatures, a well-characterised series of physical and 

transcriptional changes occur within the plant cell that allows it to cold acclimate 

(Figure I.2): Cold temperatures rigidify the plant cell membrane (Orvar et al., 2000), 

resulting in an increase in cytosolic calcium concentrations ([Ca2+]cyto) and a 

reorganisation of the cytoskeletal networks (Knight et al., 1996, Orvar et al., 2000, 

Mazars et al., 1997). A series of mitogen-activated protein kinase (MAPK) proteins are 

also activated in phosphorylation cascades by cold that are thought to be involved in 

changes to gene expression independently of Ca2+ signalling. Overexpression of the 

MKK2 protein, which is normally activated in cold-induced MAPK cascades, under 

ambient conditions leads to the induction of many cold-inducible genes (Teige et al., 

2004). C-Repeat Binding Factor (CBF) transcription factors are activated in response to 

cold, binding to the C-repeat (CRT) CCGAC promoter motif found in some but not all 

cold-inducible genes to activate them, allowing the plant to cold acclimate and 

become freezing tolerant (Figure I.2).  

 

Figure I.2: Model for signalling leading from cold to the expression of COR genes and cold 
acclimation, regulated by CBF transcription factors in Arabidopsis. Ca2+: calcium ion, 
MAPK: mitogen-activated protein kinase, ICE: Inducer of CBF Expression, CBF: C-repeat 
Binding Factor, COR genes: Cold-On Regulated genes, CCGAC: C-Repeat promoter 
element sequence. (Based on Knight & Knight 2012) 

 

CBFs are the most well-studied pathway leading to altered transcriptional regulation of 

cold-inducible genes. However, some genes that do not contain CBF binding sites are 

also induced in response to cold, suggesting that non-CBF-regulated mechanisms of 
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cold-induced gene activation may exist (Hemsley et al., 2014). The function of many of 

these cold-responsive genes is still unclear, but some have been shown to be directly 

involved in protecting the plant from the stress, encoding genes of osmoprotectants, 

transporter proteins, detoxifying enzymes (Fowler & Thomashow 2002), regulatory 

proteins and transcription factors (Hannah et al., 2009).  

The production of compatible solutes and osmolytes reduces the impacts of osmotic 

stress as water is drawn out of the cell during freezing and increases the osmotic 

potential of the cell, reducing damage from ice crystal formation within the cytosol 

(Steponkus 1984). However, when water in intercellular compartments freezes, it 

causes a reduction in water potential that leads to water movement from the cytoplasm 

where it is not frozen out to the intercellular space. This causes a drought-like response 

to the plant cell as less water becomes available for cellular processes (Steponkus et al., 

1984). Osmolytes in the form of soluble carbohydrates accumulate during cold 

acclimation (Levitt, 1980, Pollock, 1984) to reduce cellular dehydration during freezing 

and act as a source of nutrition as photosynthesis is downregulated during cold 

acclimation (Hannah et al., 2005). It has been suggested that sugars may regulate cold 

acclimation (Guy et al., 1980) Research shows that treating dark-grown plants or plant 

cell cultures with exogenous sucrose can induce freezing tolerance (Tumanov & Trunova 

1957, Tabaei Aghdaei et al., 2003). However, this effect was not seen in whole, light-

grown seedlings, indicating that light strongly affects cold acclimation processes and 

sugar signalling networks, potentially by orchestrating sugar translocation around the 

plant (Steponkus & Lanphear, 1967). This suggests that feed-forward and feedback 

mechanisms exist in cold acclimation signalling pathways, allowing metabolic pathway 

products to regulate their own synthesis and act as regulators of other signalling 

pathways (Rekarte-Cowie et al., 2008). Thus sugars and other osmolytes play a dual role 

in the process of cold acclimation, indirectly through their use in plant metabolism and 

more directly in cryoprotection as regulators of cold acclimation pathways (Uemura & 

Steponkus, 2003). In addition, genes encoding detoxifying enzymes such as the D1 

protein (Aro et al., 1993, 2005) are important to protect cells from photo-oxidative 

stress and the photoinhibition that occurs when plants encounter abiotic stresses such 

as cold temperatures (Nishiyama et al., 2006; Takahashi & Murata, 2008). Cold 

temperatures inhibit D1-mediated repairs to photosystem II (PSII) caused by ROS after 

light-induced damage (for review, see Nishiyama & Murata, 2014). 
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The plasma membrane is the primary site of signal transduction in a cell, where signals 

from the outside environment are transmitted into the cell for transcriptional responses 

to occur. As no cold receptor has yet been identified in plants, changes in membrane 

fluidity in response to low temperature led to the theory that membranes themselves 

act as ‘thermometers’, alerting the cell to temperature changes and activating cold-

induced gene expression (Murata & Los, 1997, Los & Murata, 2000). Membranes are 

highly dynamic in response to cold stress as they are a major site of possible damage in 

plant cells during freezing temperatures (Webb et al., 1994). As water is lost from non-

acclimated cells during freezing, this causes the cell to shrink and the excess membrane 

to be removed by clathrin-mediated endocytosis into the cell, reducing surface area 

(Minami et al., 2009). Problems arise upon thawing when water rapidly moves back into 

the cell from the intercellular space, which can cause expansion-induced lysis of the 

plant cell if the cell membrane no longer has enough surface area to contain the volume 

of water (Uemura & Steponkus, 1989). Cell membranes in plants that are not cold 

acclimated are also susceptible to damage via fracture jump lesions where the plasma 

membrane fractures and becomes continuous with various endomembranes resulting in 

“leaky” membranes that are unable to retain osmotic potential, resulting in cell death 

when it defrosts (Webb & Steponkus, 1993). Non-bilayer lipid structures such as 

lamellar to hexagonal II phase transitions of membrane phospholipids can also occur 

when the plasma membrane is brought in close proximity to chloroplast membranes as 

a result of freezing-induced cellular dehydration, which negatively impacts the 

permeability of the membrane and the viability of the cell (Gordon-Kamm & Steponkus, 

1984).  

To combat the possibility of plasma membrane damage, the composition of the plasma 

membrane changes significantly during the process of cold acclimation (Thomashow et 

al., 1999). An increase in membrane vesicle trafficking during cold acclimation results in 

an increased in fatty acid chain desaturation and phospholipid content of the plasma 

membrane, both of which have been correlated with an increase in membrane stability 

and freezing tolerance in plants (Steponkus, 1984, Uemura et al., 1995). Detoxifying 

enzymes are also important to remove reactive oxygen species (ROS) produced as a 

result of membrane damage caused by freezing. Membrane damage leads to the 

uncoupling of photosystems and the uncontrolled release of ROS into the cytosol as the 

electron transport chain, a major site ROS generation within the cell, becomes 

disrupted. In small amounts, ROS acts as part of stress signalling networks (Figure I.1) 
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but in larger quantities, can causes an oxidative stress on cellular components that can 

result in cell death (Gadjev et al.,2006). It has been shown that genes encoding 

photosynthetic components are down-regulated in response to cold temperatures, 

possibly to protect the cell from the greater risk of ROS-induced photo-oxidative 

damage for the duration of the stress (Stitt & Hurry, 2002, Hannah et al., 2005). 

 

I.1.1. C-Repeat Binding Factor (CBF) transcription factors 

Just as plants do not exist in isolation but in a complex environmental system, so DNA 

does not exist as a naked double helix of nucleic acids in the nucleus, but is decorated 

with a multitude of proteins and protein complexes. These proteins act in concert in a 

dynamic manner to regulate transcription by altering DNA packing (Strahl & Allis, 2000) 

and form the transcriptional machinery that allows specific gene activation in response 

to environmental signals. This includes histones, transcription factors such as CBFs 

which bind specific promoter elements, the enzyme RNA polymerase II (Pol II) which 

produces mRNA transcripts from the DNA sequence, and the Mediator complex which 

links these transcription machinery components together to activate genes (Conaway & 

Conaway 2011).  

C-repeat binding factors (CBFs) are transcription factors that bind specifically to a 

CCGAC sequence in the promoter region of cold-responsive genes to activate them 

(Stockinger et al., 1997, Liu et al., 1998). Arabidopsis has a family of 3 genes encoding 

CBF transcription factors that lie in tandem on chromosome 4 (Liu et al., 1998, Gilmour 

et al., 1998). Transcripts of CBF1, 2 and 3 are rapidly upregulated by low temperature 

and show overlapping effects on Cold On-Regulated (COR) gene regulation (Gilmour et 

al., 2004). However, as not all cold-inducible genes are regulated by CBFs, the term ‘COR 

genes’ refers here only to those cold-inducible genes regulated by CBF transcription 

factors. CBF transcripts are relatively unstable at ambient temperatures with a half-life 

of 10 minutes, but can stably accumulate under cold conditions (Zarka et al., 2003). 

Overexpression of CBF transcription factors confers constitutive freezing, drought and 

salinity tolerance in Arabidopsis (Jaglo-Ottosen et al., 1998, Liu et al., 1998, Gong et al., 

2002) but negatively affects both growth and development of the plant causing slowed 

growth, delayed flowering and reduced seed production (Liu et al., 1998, Kasuga et al., 

1999, Gilmour et al., 2000). A CBF4 gene also exists but is involved in drought and ABA 

responses rather than cold (Haake et al., 2002). In Arabidopsis, CBF1-3 transcripts are 
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negatively regulated by MYB15, a transcription factor that binds to MYB-recognition 

elements in the CBF1-3 gene promoters, repressing their transcription under ambient 

conditions (Agarwal et al., 2006). CBF2 has also been shown to negatively regulate 

expression of CBF1 and CBF3, where cbf2 mutants showed an elevated and more 

sustained expression of CBF1, CBF3 and downstream COR gene transcripts (Novillo et 

al., 2004, 2007).  

Transcription of the three CBF genes is positively regulated by ICE1 and ICE2 

transcription factors. Under ambient conditions, ICE1 is ubiquitinated by HOS1 and 

degraded to prevent inappropriate CBF-mediated COR gene expression (Dong et al., 

2006). Under cold conditions, ICE1 becomes sumoylated by SIZ1 to prevent ubiquitin-

mediated degradation and activates transcription of CBF1, 2 and 3 to allow cold 

acclimation processes to occur within the plant (Miura et al., 2007) (Figure I. 2). 

DROUGHT-RESPONSE ELEMENT2 (DREB2A & DREB2B) transcription factors which are 

expressed in response to drought stress can also bind to the CCGAC promoter motif to 

activate expression of COR genes, thus it is described as the C-REPEAT/DROUGHT 

RESPONSE ELEMENT (CRT/DRE) promoter motif (Yamaguchi-Shinozaki & Shinozaki, 

1994; Thomashow, 1999). It is likely this occurs because freezing and drought stress are 

both osmotic stresses: Ice formation in intercellular spaces draws water out of the 

cytosol, reducing the volume of water available for cellular resulting in osmotic stress 

(Steponkus 1984). During drought stress, water is lost from cells by transpiration and is 

unable to be replaced, causing an osmotic stress on the plant. Thus the CBF1, CBF2 and 

CBF3 genes are also known as DROUGHT-RESPONSE ELEMENT1B, C and A (DREB1B, 

DREB1C and DREB1A) respectively as they are responsive to both cold- and drought-

stress (Liu et al., 1998).  

Research has shown that CBF1-3 transcripts accumulate not only in response to cold 

temperatures, but also in response to touch, abscisic acid (ABA) and the circadian clock 

(Gilmour et al., 1998; Knight et al., 2004; Fowler et al., 2005), suggesting that they may 

play a role in gene regulation in response to other stresses than cold. Fowler showed 

that CBF3 transcript levels are gated by the circadian clock, normally cycle throughout 

the day (Fowler et al., 2005) with CBF3 transcript levels accumulating to maximum levels 

early in the morning and reach minimum levels in the early evening period in non-cold-

treated plants (Harmer et al., 2000). The accumulation of CBF1, CBF2 and CBF3 

transcripts is also gated in cold-treated plants, with their expression being dampened 
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during the evening period and at the lowest levels of expression during the night 

(Fowler et al., 2005). CBF transcripts are also known to be regulated by circadian clock 

gene transcription factors, LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK 

ASSOCIATED1 (CCA1) as lhy and cca1 mutants are unable to correctly express CBF-

regulated genes (Dong et al., 2011). As plants can detect a change in temperature of just 

1°C (knight et al., 2000), this suggests that the circadian clock is also an important factor 

in cold-induced gene regulation, enabling the plant to distinguish between the cooler 

temperatures at night which do not require a full cold-acclimation response and low 

daily temperatures of <10°C that signal the approach of winter for which cold 

acclimation is a vital response (Bieniawsaka et al., 2008). However, much research is 

needed before we can gain a fuller understanding of how plants distinguish between 

these environmental cues to effect the appropriate response.  

 

I.2. The Mediator Complex 

While much is known of the role of transcription factors and Pol II in transcription, the 

Mediator complex is only in recent years being recognised as an essential component in 

many aspects of plant responses to their environment. The Mediator complex was 

originally purified from yeast (Saccharomyces cerevisiae) and mammalian cells 

(Guglielmi et al., 2004, Kang et al., 2001) however the plant Mediator complex has only 

recently been isolated, thirteen years after its initial discovery, so studies investigating 

the precise roles of the different subunits in plants are still being undertaken. 

 

Named for the intermediary role it plays linking Pol II to transcription factors, Mediator 

provides an additional level of discrimination amongst environmental signals to activate 

genes allowing eukaryotes to correctly and effectively respond to specific signals 

(Conaway & Conaway 2011). Mediator has no counterpart in bacteria and represents a 

new layer of complexity between Pol II and regulatory proteins unique to eukaryotes. 

This additional layer of complexity could account for the greater capacity for cell 

differentiation and development of eukaryotes as a result of the increased complexity of 

gene regulation (Kornberg, 2005). 
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Figure I.3: Cartoon diagram of proposed interactions of subunits in the yeast Mediator 
complex (Guglielmi et al., 2004).  

 

Mediator is a complex of 25-35 proteins (Figure I.3) that binds to both transcription 

factors and RNA Polymerase II (Kim et al., 1994) (Figure I.4). Its structure in eukaryotes 

has been conserved during evolution, consisting of 4 domains: the head, the tail, the 

middle and the cyclin-dependent kinase 8 (CDK-8) domain. Even though the primary 

sequences of Mediator subunits have extensively diverged between species, the overall 

structure and function has been conserved (Guglielmi et al., 2004). The head domain 

binds to RNA polymerase II and is highly conserved between species. The tail domain 

binds transcription factors and has diverged greatly between eukaryotes (Figure I.5). 

Mediator was originally purified from crude S. cerevisiae extracts and counterparts of 

yeast Mediator have been found in every eukaryote investigated (Boube et al., 2002). 

The close correspondence between yeast and mammalian Mediator was initially shown 

by structural studies and conservation was established by genomic and proteomic 

analysis (Sato et al., 2004, Bourbon et al., 2008). With the isolation of the Mediator 

complex, the proteins identified in previous screens for mutations affecting 

transcriptional regulation in yeast (Gustafsson et al., 1997) were united in a common 

biochemical entity (Kornberg, 2005).  
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Early research on Mediator led to the theory that Pol II and Mediator were recruited 

together as a holoenzyme to gene promoters (Kim et al., 1994; Koleske & Young, 1994). 

However, research later showed that Mediator and Pol II are recruited independently 

and that Mediator recruitment occurs prior to Pol II recruitment (Bryant & Ptashne, 

2003; Kuras et al., 2003). In vitro experiments have also revealed that Mediator may 

play a role both in histone occupancy, Pol II reinitiation (Yudkovsky et al., 2000) and 

after transcriptional initiation (Wang et al., 2005), suggesting that Mediator has various 

modes of transcriptional activity depending on the gene investigated. The plant 

Mediator complex has only relatively recently been purified, compared to the yeast 

counterpart. It was purified from Arabidopsis suspension culture (Bäckström et al.,2007) 

and contained most of the components present in the core complex in other organisms, 

but was missing the CDK8 domain. This led to two hypotheses about Mediator, where 

forms of Mediator with different assortments of subunits were recruited depending on 

the gene being activated or that when Mediator was isolated with Pol II, it did not have 

the CDK-8 domain attached, leading to the conclusion that the kinase domain was only 

present under repressive conditions (Bäckström et al.,2007).  

 

Figure I.4: Diagram of the proposed plant Mediator complex structure linking 
transcription factors such as CBFs bound to promoter elements to the RNA Pol II enzyme 
to activate gene transcription. Pol II: RNA polymerase II. (Image from P. Hemsley, 
Personal Comm.) 
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I.2.1. The plant Mediator complex 

At the amino acid sequence level, homology of the plant Mediator subunits to other 

eukaryotes is relatively low, at around 30% homology at best (Bäckström et al., 2007). 

Because of this, it was originally thought that plants had several unique subunits, 

however in silico studies have since shown that some of these subunits have 

homologues in yeast Mediator but have diverged so greatly in sequence that they were 

not, at first, recognisable (Bourbon et al., 2008). Using a different bioinformatic 

approach to Bäckström (2007), Bourbon et al. (2008) showed that subunits such as 

MED32 and MED33 were homologous to previously identified yeast Mediator subunits. 

Whilst the original study by Bäckström identified 6 Mediator subunits that were unique 

to plant Mediator, this was in fact an overestimation (Bäcktsröm et al., 2007). It has 

since been shown that of those original 6, MED32 is homologous to the yeast MED2 tail 

domain subunit and MED33 is equivalent to yeast MED5 head domain subunit, leaving 

just four subunits of the plant Mediator complex that are thought to be unique 

(Bourbon et al., 2008).  

 

I.2.2. Specific functions of plant Mediator subunits 

Sixteen of the proposed 34 plant Mediator subunits have either been assigned a 

function or have a defined phenotype for the gene-specific mutations (Kidd et al., 2009). 

Plant Mediator subunits have been shown to regulate a variety of functions in plants, 

including the response to abiotic and biotic stresses, flowering times and developmental 

control, DNA helicase activity, genome stability, RNA processing and non-coding RNA 

production. The remaining 11 subunits are yet to be characterised. 

 

I.2.2.1. Head domain 
The head domain of Mediator is the most evolutionarily conserved of the 4 domains as 

it serves as the binding site of Pol II to activate gene transcription. The MED8 (SETH10) 

subunit was characterised before the Mediator complex was identified. MED8 was 

found to regulate flower development as med8 mutants exhibit delayed flowering times 

and a slower pollen tube growth rate under long day conditions due to reduced 

transcripts of key positive flowering gene regulators FLOWERING LOCUS T (FT) and 

CONSTANS (CO) (Lalanne et al., 2004, Kidd et al., 2009),. MED8/SETH10 has now also 
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been shown to have an additive role with the PFT1/MED25 subunit in the plant defence 

responses against the leaf-infecting necrotrophic fungal pathogen A. brassicola (Kidd et 

al., 2009). Mutations in the MED17, MED18 and MED20a subunits all have similar 

phenotypes and have been shown to regulate plant development, non-coding RNA 

production and display reduced miRNA levels (Kim et al., 2011). The MED18 subunit has 

also recently been shown to play a positive role in the resistance to fungal infection by 

the necrotroph B.cinerea interaction by interacting with the YIN YANG1 (YY1) 

transcription factor to induce TRX and GRX genes that provide resistance to B. cinerea. 

However, known markers of immune response pathways such as R-genes and jasmonic 

acid-response genes show no altered expression in med18 mutants suggesting a new 

plant immunity pathway that functions distinctly from other previously-identified plant 

immune responses (Lai et al., 2014). In addition to its involvement in biotic stress 

responses, Lai et al. (2014) also showed that the MED18 subunit is involved in abiotic 

stress responses, phytohormone signalling and flowering. MED18 interacts with the 

ABI4 transcription factor to positively regulate genes induced in the response to ABA, 

and interacts with the SUF4 transcription factor for normal expression of the floral 

repressor gene, FLOWERING LOCUS C (FLC). Mutations in SUF4 result in early flowering 

due to reduced expression of FLC, suggesting the MED18 normally suppresses SUF4 

function to enable expression of FLC (Lai et al., 2014). A role for MED35 and MED36 

subunits has not yet been shown in plants, however Kang showed that the yeast MED35 

subunit is involved in pre-mRNA processing and could bind to the C-terminal domain 

(CTD) repeats of the largest RNA pol II subunit (Kang et al., 2009). In mammalian 

systems, the MED36 (FIB2) subunit encodes a fibrillarin which is a key nuclear protein in 

eukaryotes that is responsible for regulating the methylation and cleavage of rRNA 

(Huang et al., 2009). 

 

I.2.2.2. Middle Domain 
The MED5b/MED33b/REDUCED EPIDERMAL FLUORESCENCE4 (REF4) subunit is required 

for uncompromised accumulation of phenylpropanoid pathway products which provide 

plants with UV, pathogen and herbivore defences. Research has shown ref4 mutants are 

also rendered partially dwarfed due to impaired liginin biosynthesis (Stout et al., 2008). 

Interestingly, the REF4 (MED5b) subunit is also predicted to be a transmembrane 

protein, adding a new dimension to the cellular localisation and functions of the plant 

Mediator complex (Stour et al., (2008). Recent work from our lab has shown that 
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MED5a and MED5b are functionally redundant, and that the MED5/REF4 subunit is 

required for dark-induced gene expression in double med5a/med5b mutants (Hemsley 

et al., 2014). The MED21 subunit has been implicated in both biotic stress responses and 

development in plants. Interestingly, homozygous med21 subunit mutants show an 

embryo lethal phenotype in both plants and mice (Tudor et al., 1999, Dhawan et al., 

2009), thus research on med21 mutants in plants had to be carried out on heterozygous 

MED21/med21 plants. Dhawan also showed that the MED21 subunit regulates plant 

defences in response to the necrotrophic pathogens A. brassicola and B. cinerea via an 

interaction with the HUB1 (HISTONE MONOUBIQUITINATION1) protein to induce 

jasmoni acid-responsive defence genes (Dhawan et al., 2009).  

It is unclear whether the MED25 subunit is located in the middle domain of the plant 

Mediator complex as yeast, the organism on which the interaction map is based (Figure 

I.3), does not contain a MED25 subunit. However, from research carried out on the 

mammalian Mediator complex, the plant MED25 subunit is predicted to form part of the 

middle domain (Tomomori-Sato et al., 2004). The MED25 subunit was first identified as 

a positive regulator of shade avoidance called PHYTOCHROME AND FLOWERING TIME 1 

(PFT1) (Cerdán & Chory, 2003) that acts downstream of phytochrome B in the 

phytochrome signalling pathway to promote flowering under shaded conditions. 

However it is now considered to be a negative regulator of the phytochrome signalling 

pathway rather than a component of it as pft1 mutants are not impaired in flowering 

under shaded conditions (Wollenberg et al., 2008). MED25/PFT1 also has a role in the 

biotic stress response, acting as a positive regulator of jasmonic acid signalling during 

infection by fungal pathogens such as A. brassicola and B. cinerea as med25/pft1 

mutants show increased susceptibility to these fungi but shows resistance to F. 

oxysporum, a root-infecting hemibiotrophic fungal pathogen (Thatcher et al., 2009). The 

previously described med8 mutants also showed an altered flowering time and 

susceptibility to A. brassicola as med25/pft1 mutants do, however double med8pft1 

mutants showed even later flowering times than single mutants and increased 

resistance to F. oxysporum, suggesting that the MED25/PFT1 and MED8 subunits have 

additive functions in biotic stress responses and flowering. The MED25 subunit has been 

shown to interact with the MYC2 transcription factor to negatively regulate the ABA 

response during seed germination and (Chen et al., 2012). Recently, the MED25/PFT1 

subunit has also been shown to interact with 8 different transcription factors (Ou et al., 

2011), three of which induce expression of PLANT DEFENSIN1.2 (PDF1.2), a marker gene 
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of activated jasmonic acid signalling. It has been suggested that med25/pft1 mutants 

may not be able to correctly interact with these transcription factors, causing the 

reduced jasmonic acid-associated gene induction (Figure I.5). MED25/PFT1 has also 

been implicated in many aspects of plant abiotic stress responses and development 

(Elfving et al., 2011). Research has shown that the MED25/PFT1 subunit interacts with 

ZFHD1 and DREB2A, transcription factors that are involved in abiotic stress tolerance 

(Tran et al., 2006, Sakuma et al., 2006) (Figure I.5). Interestingly, med25/pft1 mutants 

are more drought-resistant than wild-type plants but, are more salt sensitive, which is 

unusual as these stress responses are highly interlinked (Elfving et al., 2011). Elfving 

(2011) showed that med25/pft1 mutants, and mutated salt-responsive transcription 

factors zfhd1 and myb-like that interact with MED25 to confer salt tolerance. However, 

while dreb2a mutants are more susceptible to drought, med25/pft1 mutants are more 

drought-resistant due to massive upregulation of DREB2A transcripts. This suggests that 

MED25 functions downstream of MYB-like and ZFHD1 transcription factors to activate 

expression of genes encoding proteins required for salt stress responses (Figure I.5). 

However, DREB2A interacts with MED25, acting as a transcriptional repressor in 

response to drought stress as dreb2a mutants are less salt-sensitive than med25/pft1 

mutants (Elfving et al., 2011).  

The MED34 (RECQ HELICASE2) subunit is a DNA helicase that is important for genome 

stability. Mutations in the MED34 subunit can disrupt D loop structures in DNA, 

impeding DNA repair mechanisms and telomere stability. MED34 also mediates branch 

migration of Holliday junctions, impacting homologous recombination during meiosis 

(Kobbe et al., 2009, 2010). The final subunit that has been characterised in the middle 

domain of the plant Mediator complex is MED37a/BIP1 (Jin et al., 2007), which is a 

member of the HSP70 chaperone family and is homologous to the yeast Ig binding 

protein interacts with the brassinosteroid hormone receptor, BRI1 (Hong et al., 2008). 

BRI1 is a leucine-rich repeat (LRR) receptor-like kinase (RLK) protein that is embedded in 

the plasma membrane and acts as a receptor for brassinosteroid phytohormones which 

are crucial for plant growth and development (Kinoshita et al., 2005, Li & Chory 1997, 

Clouse & Sasse 1998). During BRI1 signalling, MED37a/BIP1 interacts with BRI1 to be 

degraded by a proteasome-independent endoplasmic reticulum–associated cellular 

mechanism (Hong et al., 2008) 
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Figure I.5: Arabidopsis MED25 integrates multiple abiotic, biotic and developmental 
pathways through interactions with different activators. From Kidd et al., 2011 

 

I.2.2.3. CDK-8 domain 
The CDK-8 domain is perhaps the most poorly understood of the 4 Mediator domains 

and much conflicting data from mammalian, yeast and plant Mediator experiments 

exists on the function of CDK-8 domain subunits. In plants, the CDK8 domain is 

composed of 4 subunits, CYCC, CDK8, MED12 and MED13 that have homologues in 

mammalian and yeast Mediator (Samuelsen et al., 2003, Loncle et al., 2007). Research 

carried out on mammalian Mediator led to the conclusion that the CDK-8 domain has a 

repressive function on Mediator activation when it is bound to the complex (van de 

Peppel et al., 2005). Research showed that the CDK-8 domain prevents Mediator 

associating with RNA polymerase II and promotes epigenetic silencing of target genes 

via chromatin methylation (Ding et al., 2008). Conflicting research shows both 

transcriptional activation (Holstege et al., 1998) and repression (Carlson, 1997) of sugar-

responsive genes in mammalian cells with mutations in SRB10, the mammalian 

homologue of the CKD8 subunit. In yeast and animals, MED12 and MED13 subunits have 

also been shown to act as transcriptional repressors, inhibiting the core Mediator 

function by complexing with homologues of CDK8 (SRB10) and CYCC subunits (Andrau et 

al., 2006). The developmental phenotypes of med12 and med13 mutants in Drosophila 

and C. elegans are consistent with expression of homologous genes in yeast in 
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microarray analysis, indicating that they positively regulate only a small number of 

developmental genes (Samuelsen et al., 2003), compared to the rest of core Mediator 

which regulates nearly all transcription events (Kornberg, 2005).  

However, research is now emerging to challenge the original hypothesis that the CDK-8 

domain acts as a general repressor of transcription. In human tumor cell lines the CDK-8 

domain is shown to be a positive regulator of genes by its interaction with transcription 

elongation factors (Donner et al., 2010). In addition, mammalian CDK-8 domain subunits 

KIN28 and CDK8/SRB10 have been shown to promote Pol II-mediated transcription and 

formation of the scaffold complex (Liu et al., 2004). In plants, the MED12 (CENTRE CITY 

CCT) and MED13 (GRAND CENTRAL/MACCHI-BOU2) subunits are required for correct 

embryo development and patterning (Gillmor et al., 2010; Ito et al., 2011) as was found 

in Drosophila and C. elegans (Samuelsen et al., 2003). This suggests that the CDK-8 

domain could play a positive role in transcriptional regulation, rather than just a 

negative one. The CDK8/HEN3 subunit is required for correct floral organ development 

by interacting with a co-repressor called LEUNIG (Gonzalez et al., 2007). Little is known 

about the CYCC subunit of the CDK-8 domain in plants 

 

I.2.2.4. Tail domain 
It is widely accepted that subunits of the tail domain contain sites for transcription 

factor binding, though no site-targeted mutagenesis of predicted binding sites on these 

subunits has yet been carried out in plants. It was originally hypothesised that the tail 

domain subunits were solely responsible for binding transcription factors, however 

research has now shown that subunits from other domains, such as MED18 and 

MED25/PFT1, are capable of binding different transcription factors to induce specific 

stress-response genes (Kidd et al., 2011, Lai et al., 2014)., suggesting that the original 

proposed structure of the Mediator complex may be different to what occurs in vivo 

(Guglielmi et al., 2004, Figure I.3 & Figure I.4).  

Canet et al. (2012) found that only nrb4/med15 point mutants were viable while T-DNA 

insertion lines were embryo lethal or sterile, suggesting that, like the MED21 subunit, 

the NRB4/MED15 subunit is essential to correct functionality of the plant Mediator 

complex and plant survival (Canet et al., 2012, Dhawan et al., 2009). Research showed 

that the NRB4/MED15 subunit is unique amongst plant Mediator subunits as being the 

first subunit that is responsible for mediating salicylic acid-dependent pathogenesis 
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responses in plants as MED25, MED8 and MED21 were all shown to be involved in 

jasmonic acid-mediated plant defence responses (Kidd et al., 2009, 2011, Dhawan et al., 

2009). It is predicted that up to three NRB4/MED15 orthologues may exist in 

Arabidopsis with non-redundant functions (Mathur et al., 2011), as only one nrb4 

mutant show increased susceptibility to the plant pathogen Pseudomonas syringae and 

impaired salicylic acid responses, while the other two did not (Canet et al., 2012). The 

MED14 tail subunit was shown to be the previously identified STRUWWELPETER (SWP) 

protein (Clay & Nelson 2005) which dictates the duration of the cell proliferation phase 

in the leaf primordium but does not affect the rate of cell division, resulting in smaller 

cells and plant organs in med14/swp mutants (Autran et al., 2002). As a result, 

med14/swp mutants also show a disorganised shoot apical meristem (Clay & Nelson, 

2005) and have also recently been shown to have altered pathogenesis responses to 

Pseudomonas syringae DC3000 with greatly reduced induction of many jasmonic acid-

responsive pathogen-associated genes (Zhang et al., 2013). In yeast, the MED16/SIN4 

and MED14/RGR1P proteins physically interact, deletion of the MED14/RGR1P subunit 

causes loss of the rest of the tail subunits MED2, MED3 and MED15, indicating that the 

MED14/RGR1P subunit of the yeast Mediator complex also plays a structural role, 

anchoring the other tail subunits on to the main Mediator complex (Li et al., 1995). The 

plant MED14 subunit may also play a similar role to the yeast RGR1P subunit based on 

its predicted location within the complex (Guglielmi et al., 2004, FigureI.3), but this has 

yet to be shown in vivo. 

The MED16 subunit of the plant Mediator complex was first identified as the SENSITIVE 

TO FREEZING6 (SFR6) protein and was discovered in an EMS (ethyl-methanesulfonate) 

mutant screen of Arabidopsis plants that failed to cold acclimate and could not survive 

freezing temperatures (Warren et al., 1996). SFR6 was later shown to have impaired 

expression of many Cold-On Regulated (COR) genes such as KIN2 and GOLS3, which 

contain the CRT/DRE promoter motif and are induced by CBF1-3/DREBA-C transcription 

factors in response to both drought and cold stress (Knight et al., 1999, Boyce et al., 

2003). It was the impaired COR gene expression that led to freezing sensitivity of sfr6 

mutants, even after a period of cold acclimation (Knight et al., 1999). Expression of CBF 

transcription factors is not impaired in sfr6/med16 mutants, showing that SFR6 acts 

downstream of CBF transcription factors to induce expression of COR genes in response 

to cold (Knight et al., 2009). The SFR6 protein was eventually identified as the MED16 

subunit of the plant Mediator complex by Bäckström et al. (2007) and is homologous to 



Chapter I: Introduction 
 

18 
 

the SIN4 subunit of the yeast Mediator complex (Li et al., 1995). Much like the 

MED25/PFT1 subunit, SFR6/MED16 is responsible for biotic stress responses and 

regulation of flowering time pathways. med16/sfr6 mutants were shown to be more 

susceptible to Pseudomonas syringae DC3000 as they were unable to correctly 

upregulate genes required for the salicylic acid-mediated defence response and the 

pathogenesis-related genes PR1, PR2 and PR5 in response to infection with P. syringae. 

In addition, sfr6/med16 exhibit compromised jasmonic acid responses as mutant lines 

failed to express well-established jasmonic acid-response genes, PDF1.1 and PDF1.2A 

genes in response to jasmonic acid treatment, indicating that both the MED25/PFT1 and 

SFR6/MED16 subunits are required for full expression of jasmonic acid-responsive genes 

(Wathugala et al., 2012).  

The SFR6 subunit is also required for correct regulation of the circadian clock as 

sfr6/med16 mutants show a delayed flowering phenotype and reduced sensitivity to day 

length compared to wild type and reduced expression of clock components CIRCADIAN 

CLOCK ASSOCIATED1 (CCA1), TIMING OF CAB1 (TOC1) and genes whose promoters 

contained circadian clock-associated promoter motifs. Given the role of sugar in the 

process of cold acclimation, it is unsurprising that sfr6/med16 mutants also show a 

limited, but not completely absent response to treatment with sucrose (Knight et al., 

2008). As a result of the delayed flowering phenotype, sfr6/med16 mutants also have a 

lower seed set than wild type plants. In addition to the role that the SFR6/MED16 

subunit plays in the biotic, abiotic stress response and flowering time pathway, 

induction of UV response genes is also impaired in sfr6/med16 mutants (Knight et al., 

2012). Mutant plant lines also show poor tolerance of UV-C irradiation and recovery 

after exposure. Many genes induced by UV-C are also salicylic acid-responsive and 

research has shown that many of these genes are misregulated in sfr6/med16 mutants, 

suggesting that UV-C responses are mediated through salicylic acid-dependent gene 

expression and are regulated by the SFR6/MED16 subunit (Knight et al., 2012). Thus the 

SFR6/MED16 subunit of the plant Mediator complex, like MED26/PFT1 and MED21 

subunits acts to integrate many stress response and developmental response networks 

in Arabidopsis to regulate gene expression and stress tolerance.  
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I.3. Aims of the thesis 

In light of previous research highlighting the important role of MED16/SFR6 in the 

transcriptional response to cold, microarray experiments were carried out to further 

dissect expression of the genes regulated by MED16/SFR6 in response to cold. Work 

carried out in this thesis firstly validates this microarray data and explores whether the 

MED16/SFR6 subunit is required for expression of all CBF-regulated cold-inducible 

genes. Secondly, expression of cold-inducible genes that are not CBF-regulated were 

also investigated in sfr6/med16 mutant lines to elucidate whether MED16/SFR6 is also 

involved in the activation of non-CBF-regulated genes. In addition, the role of other 

Mediator tail subunits MED2, MED14 and MED15/NRB4, predicted to be adjacent to 

MED16/SFR6 in the plant Mediator complex, are investigated in the transcriptional 

response to cold. This will be carried out using tDNA knock out and EMS plant lines 

subjected to cold or ambient conditions. This is to explore whether the MED16/SFR6 

subunit plays a unique role in the expression of cold-inducible genes, or whether these 

other subunits are required, acting in concert, for correct cold-inducible gene 

expression. 

Little is known about the function of the CDK-8 domain subunits CYCC and CDK8, 

conflicting data in the literature suggests a role for both transcriptional activation and 

repression of CDK-8 domain subunits. Therefore, the third aim of this thesis examines 

the transcriptional response to abiotic stresses such as cold, darkness and UV exposure 

in med15/nrb4 and CDK-8 domain subunits cycC-1, cycC-2 and cdk8 Mediator mutant 

lines and elucidates whether specific subunits are required for the transcriptional 

response to abiotic stress, or whether individual subunits each regulate a different 

abiotic stress transcriptional response in Arabidopsis. 
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II. Materials and Methods 
Recipes for all buffers and solutions used can be found in Appendix 1. 

II.1 Plant Culture 

II.1.1 Plant Lines 

med14-1: insertion in At3g04740 (SAIL_373_CO7) (Zhang et al., 2013), sfr6-1: EMS 

point mutation leading to premature stop codon in At4g04920 (Knight et al., 1999). 

Insertion lines not previously published were obtained in the following genes from 

NASC (http://signal.salk.edu/cgi-bin/tdnaexpress): MED2: At1g11760 (SALK_028490), 

CycC-1: At5g48630 (SALK_039400), CycC-2: At5g48640 (SAIL_102_B02), CKD8: 

At5g63610 (SALK_072781C), NRB4/MED15: At1g15780.  

II.1.2 Seed sterilisation  

Seeds were sterilised in 70% ethanol (Fisher Scientific E/0650DF/25) with constant 

shaking for 10 minutes before being left to dry on 90mm filter paper (WhatmanTM Filter 

Paper) in a laminar flow hood to prevent contamination.  

II.1.3 Plant growth conditions 

For all experiments described below, seeds were sown on autoclaved plant culture 

grade agar (SIGMA) with MS medium including vitamins (Murashige & Skoog, 1962) 

(Duchefa Biochimie M0222.0001), stratified at 5°C for 2 days after sowing to 

synchronise germination and transferred to either a Percival CU-36L5 or SANYO MLR-

350 growth chamber with a 16h/8h light/dark cycle at 20°C (±1°C).  

For DNA and RNA extractions, plants were grown for 8 days on 1x MS 0.8% agar in a 

Percival CU-36L5. For ChIP analysis, plants were grown for 3 weeks on 0.5x MS 1.5% 

agar in a SANYO MLR-350 growth chamber. For biolistic transformation, plants were 

grown in the centre (approx. 2cm diameter circle) of a 9cm plate containing 0.5x MS 

0.8% agar for 8 days in a SANYO MLR-350 growth chamber. For protoplast extraction, 

plants were grown for 3 weeks on 1xMS 0.8% agar in a SANYO MLR-350 growth 

chamber. 

II.1.4 Time course  

Arabidopsis thaliana ecotype Columbia-0 seeds were grown as described previously for 

RNA extraction. Seedlings were transferred to constant light growth conditions at 20°C 

http://signal.salk.edu/cgi-bin/tdnaexpress
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24h prior to the experiment. Samples were taken at 3, 6, 9, 12 and 24h intervals after 

presumptive dawn from ambient- and cold-treated seedlings, to choose a suitable time 

point for COR gene expression. Tissue was frozen in liquid nitrogen and stored at -80°C 

until use.  

 

II.2 Stress assays 

II.2.1 Cold treatment 

Seedlings were transferred to cold (5°C) or ambient (20°C) SANYO MLR-350 growth 

chambers with matching light conditions of 150µE/m²/s. Unless otherwise stated, 

tissue was harvested after 6h for RNA extraction or after 4h for ChIP analysis and flash 

frozen in liquid nitrogen and stored at -80°C until use. These timepoints were chosen 

based on data obtained from the previously described time course experiments. 

II.2.2 Sugar/light/dark  

Plants were grown as previously described for RNA extraction. After 8 days, seedlings 

were transferred to either 3% w/v sucrose or an isoosmolar equivalent concentration 

of mannitol (0.096M; control) and maintained in the light or covered in foil for darkness 

3h after presumptive dawn. Tissue was harvested after 6h, briefly blotted dry on tissue 

to remove excess sucrose or mannitol solution and stored at -80°C for RNA extraction.  

II.2.3 UV-C 

Seedlings grown as previously described for RNA extraction were treated with 5KJ.m² 

UV-C (254 nm) at 8 days old in a UVITEC CL-E508.G cross-linker. The Perspex lid 

covering the seedlings was removed for UV treatment. After treatment, seedlings were 

returned to ambient conditions for a period of 24h before being harvested and tissue 

stored at -80°C until use.  

II.2.4 Darkness 

Seedlings were grown as described for RNA extraction and wrapped in two layers of 

tinfoil 3h after presumptive dawn at 20°C at 8 days old. Seedlings were then harvested 

in the dark and tissue frozen at -80°C until use.  
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II.3 Transformations 

II.3.1 E.coli transformation 

25µl of E. coli DH5α cells (Bioline Silver grade competency cells) were transformed 

using 1µl plasmid DNA. After addition of the DNA, cells were incubated on ice for 20 

minutes before being heat shocked at 42°C for 45 seconds. The cells were briefly 

cooled on ice and 475µl of LB was added. The cells were incubated on a rocking 

platform at 37°C for 1h to allow recovery. The cells were plated out on LB agar plates 

containing the appropriate antibiotic and left at 37°C overnight. After 24h, a single 

colony was selected and used to inoculate 5ml LB containing antibiotic selection. The 

culture was then incubated at 37°C for 8h with vigorous shaking (300rpm). After 16h, 

2ml of the starter culture was used to inoculate a 200ml LB culture. The plasmid was 

then extracted using the plasmid maxiprep kit as described below.  

II.3.2 Biolistic transformation 

II.3.2.1 Preparation of the gold particles 

For the bombardment, 1.6µm gold microcarriers (Bio-Rad #165-2264) were used. 60mg 

of gold particles were washed three times with 1ml 100% ethanol and vortexed for 

1min. The gold particles were then washed in 1ml nuclease-free water and finally 

resuspended in 1ml nuclease free water and stored at 4°C until use.  

II.3.2.2 DNA-coating the particles 

The pre-washed gold particles were fully resuspended by vortexing and 50µl was 

removed into a new Eppendorf. 5µg total of two high copy number plasmids was then 

added to the suspension and vortexed continuously for 30seconds. The plasmids used 

were a CRT concatamer reporter consisting of 4 copies of CRT fused to a luciferase 

(Whalley et al., 2011) and a 35S:: aequorin construct (Knight et al., 1991) for 

normalisation purposes. 50µl of 2.5M CaCl2 was added and the particles were vortexed 

as before. 20µl of 0.1M spermidine-free base was then added and the gold particle 

suspension was placed in a continuous vortex for 3 minutes. The gold particles were 

briefly pelleted and the supernatant was removed. The DNA-coated gold particles were 

washed in 250µl of 100% ethanol and completely resuspended in 125µl 100% ethanol. 

Five large macrocarrier discs were inserted into their macrocarrier rings and 20µl of the 

fully resuspended DNA-coated gold particles was added to the centre of each 

macrocarrier disc. DNA-coated macrocarrier discs were left to dry under a Perspex lid 

to prevent contamination.  
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Figure 1: CRT::LUC concatemer construct. The concatemer contains a minimal -70 
promoter (-70 prom), four copies of the CRT/DRE promoter motif (CRT) fused to a luc+ 
gene (LUCIFERASE). Black bars represent forward and reverse primers listed below. Luc+ 
is a codon-optimised version of the luciferase gene that has been designed to express 
more efficiently in plants than the original luciferase gene found in fireflies (Whalley et 
al., 2011).  

II.3.2.3 Bombardment 

A new 1100psi rupture disc was washed in 100% isopropanol and inserted into a BIO-

RAD PDS-1000/He Biolistic® chamber for each bombardment (Figure 2). A stopping 

screen was placed over each macrocarrier disc in its holder and inserted into the 

biolistic unit. The seedlings on the agar plate were placed approximately 10cm below 

the rupture disc holder for bombardment. A 25mm Hg vacuum pressure was applied by 

a (JAVAL CD0544) double-stage vacuum pump. Once 1100psi was reached using 

pressurised helium gas, the DNA-coated gold particles were fired at the plants. 

 

Figure 2: Image from Wu et al., (2012) showing a diagram of the biolistic chamber and 
equipment used for transient plant transformation.  

II.3.2.4 Imaging 

The bombarded plants were returned to ambient conditions for 24h and then placed in 

either cold (5°C) or ambient (20°C) conditioned SANYO growth chambers for 24h to 

5’ 3’ 



Chapter II: Materials and Methods 

24 
 

express the concatemer construct. After 24h, plants were returned to their original 

growth conditions for 1h to allow translation of the concatemer transcripts. Plants 

were sprayed evenly with 5mM luciferin in 0.01% Triton X-100 and immediately imaged 

under an intensified CCD photon counting camera system (Photek 216, Photek ltd) for 

10 minutes. Photon count data was quantified using the Photek 32 image processing 

software. Tissue was then harvested, frozen in liquid nitrogen and stored at -80°C until 

use for RNA extraction.  

II.3.3 Protoplasts 

II.3.3.1 Isolation 

The photosynthetic tissues of the plants were pre-plasmolysed in a petri dish 

containing 0.5M mannitol for 1h in the dark. After 1h, the mannitol solution was gently 

removed and replaced with 30ml of Enzyme Solution and left to digest overnight in the 

dark at 20°C. The contents of the petri dish were filtered through two successive sieves 

of 140µm and 70µm respectively. The crude protoplast filtrate was transferred to a 

50ml Falcon tube and diluted with 0.5volumes of 200mM CaCl2. Protoplasts were 

sedimented at 60xg for 5 minutes in a (Beckman Coulter AllegraTM X-22R) centrifuge at 

20°C. The supernatant was carefully removed, protoplasts were gently resuspended in 

RB I and centrifuged as before. The supernatant was again removed and the 

protoplasts gently resuspended in RB II. The protoplast suspension was centrifuged as 

before and the sedimented protoplasts were finally resuspended in 7.5ml W5 solution. 

Protoplasts were counted using a haemocytometer and resuspended to give 5x106 

protoplasts/ml in the mannitol/Mg solution.  

II.3.3.2 Transformation 

50µg of herring sperm DNA at a concentration of 10mg/ml was added to a 15ml Falcon 

tube containing 300µl of protoplast suspension at a concentration of 5x106 and mixed 

well. 350µl of PEG-CMS was then added; the solution was carefully mixed to achieve 

homogeneity and incubated for 30 minutes at room temperature. The protoplast 

transfection mixture was carefully diluted in a stepwise manner over a 20 minute 

period. 0.6ml, 1ml, 2ml and finally 4ml of W5 solution was added at 5 minute intervals. 

The protoplasts were recovered by centrifugation at 600 rpm for 5 minutes and 

washed in Mannitol/W5 solution. The protoplasts were centrifuged as before and 

finally resuspended in 3ml Culture Medium to be transferred into 2 1.5ml Eppendorf 
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tubes. The protoplasts were cultured overnight in the dark to express the construct and 

RNA was extracted as described below.  

II.4 Nucleic Acid Extraction 

II.4.1 DNA Extraction 

II.4.1.1 Edward’s Extraction 

Based on the Edwards et al., (1991) plant DNA extraction protocol 

Approx. 10-20 7 day old seedlings were harvested and placed in an Eppendorf tube 

before being flash frozen in liquid nitrogen. The frozen tissue was ground in 200-400µl 

of Edward’s Extraction Buffer and centrifuged at 16,000x g for 1 min. ¾ volume of the 

supernatant was transferred to an equal volume of 100% isopropanol. The samples 

were incubated at 20°C for 5 mins and centrifuged at 16,000xg for 10 mins. The 

supernatant was removed and the pellet dried in a vacuum dessicator (Eppendorf AG 

Concentrator 5301). The DNA was resuspended in 50µl TE buffer overnight at 4°C. 

II.4.1.2 Phenol chloroform DNA extraction 

For use in genotyping PCR, DNA extracted from an Edward’s prep was diluted one in 

three in TE buffer (10mM Tris-HCL pH8.0 and 5mM EDTA pH7.5). For ChIP analysis, the 

DNA was not further diluted in TE buffer.  

The DNA was extracted with an equal volume of phenol:chloroform:isoamyl alcohol 

(25:24:1 ratio, buffered in TE pH 8.0) separated by centrifugation at 16,000xg, the 

supernatant was removed DNA was extracted again with and an equal volume of 100% 

chloroform. The supernatant was removed and 1/10 of a volume of 3M sodium acetate 

(pH5.3) and 2.5 volumes of 100% ethanol were added and vortexed. The DNA was 

precipitated at -80°C for 30 mins and pelleted in a cooled (15°C) centrifuge at 

155,000RPM for 30 mins. The pellet was washed with 70% ethanol, dried in a vacuum 

desiccator (Eppendorf AG Concentrator 5301) and resuspended in the original starting 

DNA volume of TE buffer.  

II.4.1.3 Mini preps 

Plasmid DNA was extracted using the QIAGEN QIAprep® Miniprep kit and protocol 

according to the manufacturer’s instructions. Briefly, 2ml of a 5ml transformed bacteria 

culture was harvested by centrifugation and resuspended in a resuspension buffer. 

Cells were then lysed in a lysis buffer. Protein and genomic DNA were precipitated out 
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of the solution and the supernatant was passed through a QIAprep spin column. The 

plasmid DNA was washed on the column and then eluted in 50µl elution buffer. Correct 

DNA construct was verified by DNA digest. The DNA was quantified using a Nanodrop 

spectrophotometer (ND-1000 Labtech) and stored at -20°C until use.  

II.4.1.4 Maxi preps 

Total plasmid DNA was extracted using the QIAGEN® Plasmid maxi purification kit and 

protocol. Briefly, a 200ml culture of transformed bacterial cells were harvested by 

centrifugation, resuspended in the resuspension buffer and then lysed in a lysis buffer. 

Proteins and genomic DNA were precipitated out of the sample and the remaining 

supernatant was passed through an equilibrated DNA-binding QIAGEN-tip 500 column. 

The retained plasmid DNA was washed on the column and the DNA was eluted in 15ml 

elution buffer. The eluted DNA was precipitated with isopropanol and washed in 70% 

ethanol. The DNA pellet was air-dried and finally dissolved in 100µl TE buffer. DNA yield 

was determined using a Nanodrop Spectrophotometer. Correct DNA construct was 

verified by DNA digest. The eluted DNA was stored at -20°C until use. 

II.4.2 RNA extraction  

Total RNA was extracted using the Qiagen RNeasy® Mini RNA extraction kit and 

protocol. Up to 100mg of plant tissue was harvested and flash frozen in liquid nitrogen. 

Briefly, the tissue was lysed and homogenised with the QIAshredder column. The flow-

through was transferred to an RNA-binding column. The retained nucleic acids were 

then washed on the column membrane with additional on-column DNase I digestion to 

eliminate genomic DNA contamination. The column was washed with an 80% ethanol 

buffer and the RNA was finally eluted in 30µl water for quantification using a Nanodrop 

Spectrophotometer (Labtech). Eluted RNA was stored at -80°C until use.  

 

II.5 Quantitative Real time PCR 
Unless otherwise stated, relative gene expression levels were analysed by quantitative 

real-time reverse transcription PCR (qRT-PCR) using an Applied Biosystems 7300 

system. The reaction was carried out in an optical 96-well plate with three technical 

replicates for each sample primer pair.  
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II.5.1 cDNA synthesis 

cDNA was synthesised using 2µg RNA per 20µl reaction according to the 

manufacturer’s instructions: reverse transcriptase buffer, random primers, 50µl 

MultiscribeTM Reverse Transcriptase (Applied Biosystems) and dNTPs (at a final 

concentration of 4µM) were added to the 2µg RNA. The cDNA synthesis reaction was 

carried out using the following program (Px0.2 Thermal Cycler): 10mins 25°C, 2h 37°C, 

10secs 85°C. The cDNA was stored at -20°C before being diluted 1:50 for use in real-

time PCR. Two controls were carried out for each cDNA synthesis reaction; one 

contained no Multiscribe reverse transcriptase (NRT) enzyme to reveal any genomic 

DNA contamination, the other contained no RNA template (NTC) for the reaction to 

identify potential formation of primer dimer products in the subsequent qRT-PCR 

experiments.  

II.5.2 Primer efficiency tests 

All primers used for qRT-PCR analysis were designed using the Primer3 program 

(http://bioinfo.ut.ee/primer3-0.4.0/). Transcripts were detected using gene-specific 

primers at a concentration of 5µM which were first validated for efficient amplification 

of target DNA using Fast Start SYBR green mastermix with added ROX (Promega) as a 

passive reference dye. 5µl of 1:10, 1:20, 1:40 and 1:80 diluted cDNA was used in a 15µl 

reaction mix. Primer regression coefficients showing the efficiency of the primers in 

amplifying the PCR product can be found in Appendix III. Primer dissociation curves 

were also analysed for the presence of genomic DNA template amplification and 

primer dimer formation which may create falsely elevated Ct values in the experiment. 

II.5.3 Transcript quantification 

Transcripts were detected using Fast Start SYBR green mastermix with added ROX. 5µl 

of 1:50 diluted cDNA was used in the 15µl reaction. Expression levels of cold-, dark- and 

sucrose-induced genes were normalised to the expression of PEX4 (At5g25760) which 

does not change in response to these stimuli. Expression levels of UV-induced genes 

were normalised to the expression of a different gene, At4g26410, which does not 

show an altered expression in response to UV light, as PEX4 transcript levels are 

affected by UV light. Relative quantification was performed by the ΔΔCT (comparative 

CT) method as described by Livak & Schmittgen (2001). Error bars represent a 95% 

confidence interval calculated using a Student’s t-test and RQ values for each sample 

were calculated as described by Knight et al. (2009). Each primer pair was also tested 

http://bioinfo.ut.ee/primer3-0.4.0/
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with NTC and NRT controls for genomic amplification from the cDNA synthesis and 

primer dimer formation.  

 

II.6 Genotyping  

II.6.1 NASC T-DNA insert lines 

Unless otherwise stated, all PCR reactions were carried out using the following 

program: 5 minutes at 95°C followed by 35 cycles of 30s at 95°C, 30s at 58°C, 45s at 

72°C. The final stage consisted of two minutes at 72°C. 5µl of the PCR product was run 

on a 1% agarose (Bioline BIO-41025) 0.5x TBE electrophoresis gel at 35mA for 1h. 

Images of the gel were taken using a camera (spacecom 8-48mm lens) mounted on a 

UV transilluminator (uvitec DOC-CF08.TFT).  

T-DNA inserts in NASC seed lines were detected using gene-specific primers designed 

by the T-DNA express PrimerL program (http://signal.salk.edu/cgi-bin/tdnaexpress) and 

a primer at the left border (LB) of the T-DNA insert at a final concentration of 5µM. 

30µM MgCl2, 0.2µM dNTPs, 1µl of Bio Taq Red was added per reaction and Iµl of DNA 

was also added in a total reaction volume of 20µl. The amplicon of the T-DNA left 

border primer (LB) and reverse primer (R) is smaller than the forward (F) and reverse 

(R) product of the wild-type gene and can therefore been seen as separate distinct 

bands on an agarose gel (Figure II.3). For each confirmed homozygous seed line 

acquired from NASC, transcript levels of the knocked-out gene were also investigated 

by qRT-PCR to ensure transcripts were reduced compared to wild-type.  

 

Figure 3: diagram of primer pairs used to genotype NASC tDNA insert plant lines.  

II.6.2 EMS sfr6 genotyping 

The sfr6-1 EMS line contains a single nucleotide polymorphism (SNP) that introduces a 

premature STOP codon early in the sequence (Knight et al., 2009). As such, the 

mutation was undetectable using conventional PCR genotyping previously described. A 

fluorescent probe with specifically-designed primers was therefore used to detect the 

http://signal.salk.edu/cgi-bin/tdnaexpress
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single nucleotide polymorphism of the sfr6-1 plants. The fluorescent Taqman probe 

binds over the SNP-containing region and uses VIC and FAM as reporter dyes for the 

two different sequences. Genotyping was carried out according to the manufacturer’s 

instructions for an Applied Biosystems 7300 system. Between the pre-read, 

amplification and post-read cycles, the 96-well plate was removed, centrifuged for 1 

min at 3000 xg to collect the sample at the bottom of each well.  

Due to the various inhibitors present in the crude DNA extracted with the Edward’s 

protocol, DNA from putative sfr6-1 plants was first extracted using the Edward’s 

extraction protocol previously described and then purified using the previously 

described phenol chloroform extraction protocol. The purified DNA was resuspended in 

TE for quantification using a Nanodrop Spectrophotometer. To genotype the plants, 

10ng/µl of phenol chloroform purified DNA was used in a 15µl reaction. Alternatively, 

10ng/µl crude DNA extracted using the Edward’s protocol could be used with PerfeCra® 

qPCR ToughMixTM with added ROX (Quanta 95113-250).  

II.6.3 MED15 genotyping 

 
Figure 4: From Canet et al. (2012), (A)Drawing of the predicted NRB4 protein, showing 
the conserved KIX domain and the region rich in Gln. AA, amino acids.(B) Magnification of 
the KIX domain, showing the introns (horizontal lines), the point mutations (arrows), and 
the T-DNA insertions (triangles) found in NRB4 (At1g15780). The number above the 
mutation indicates the number of alleles. Only a section of the NRB4 gene is shown; the 
region shown corresponds to the gray rectangle in (A). (C) Sequence of the first 100 
amino acids of NRB4, indicating the point mutations. nrb4-4 was SAIL_792_F02, and nrb4-
5 was GABI_955_E02. 

 

Three NRB4/MED15 mutant lines (nrb4-1, nrb4-2 and nrb4-3) used in this study were a 

kind gift from the Tornero group (Figure II.4). Mutant lines were detected by previously 
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described genotyping PCR and then by restriction digest, with the use of BseX1, Bpi1 

and Mbol1 enzymes which cut wild type NRB4, nrb4-2 and nrb4-3 respectively as the 

altered amino acids introduced new cleavage sites compared to the wild type 

NRB4/MED15 gene.  

II.7 Chromatin Immunoprecipitation 

II.7.1 Cross-linking 

Approximately 5g of seedling tissue was collected. 30ml of Extraction Buffer I 

containing 1% v/v formaldehyde for protein cross-linking was added to each sample. 

(At this stage, Extraction Buffer I does not require Triton X-100 or protease inhibitors.) 

Miracloth was used to keep the seedlings submerged in Extraction Buffer I as a 

28mmHg vacuum was applied for 20 minutes (BIO-RAD PDS-1000/He Biolistic®). 2M 

glycine was added to a final concentration of 200mM to stop the cross-linking reaction. 

The solution was mixed well and a vacuum was applied as before for 5mins. The tissue 

was recovered and washed with distilled water to remove the formaldehyde solution, 

then washed a second time with Extraction Buffer I (formaldehyde, protease inhibitors 

and Triton X-100 not required). The tissue was dried briefly and transferred to a 50ml 

Falcon tube before being flash frozen in liquid nitrogen. Tissue was stored at -80°C until 

use.  

II.7.2 Chromatin preparation  

The frozen tissue was ground to a fine powder in liquid nitrogen and resuspended in 

25mL Extraction Buffer I. The samples were incubated on ice for 5 minutes with gentle 

mixing and filtered through two layers of miracloth. The filtrate was then centrifuged at 

4°C for 15 mins at 3000xg (Beckman Coulter AllegraTM X-22R). The supernatant was 

discarded and the pellet was gently resuspended by pipetting in 25mL Extraction Buffer 

I, incubated on ice for 5 minutes and centrifuged as before. Each crude nuclear pellet 

was resuspended in 1ml Extraction Buffer II, transferred to a microfuge tube and 

incubated on ice for 5 minutes with intermittent mixing and centrifuged for 10 minutes 

as before.  

II.7.3 DNA fragmentation 

The crude nuclear pellet was fully resuspended in 500µl Nuclear Lysis Buffer and 

incubated on ice with intermittent mixing for 5 minutes.  The chromatin was sheared to 
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achieve an average fragment size of 400bp using a Diagenode Bioruptor (20 cycles at 

high power of 30s off/15s on). 

One aliquot (25µl) of the chromatin from each sample was transferred to fresh 

Eppendorfs to check for digestion efficiency and to quantify the chromatin present in 

each sample. An equal volume of TE buffer containing 10µg.ml-1 RNaseA was added to 

each sample and incubated at 30°C for 30mins. An equal volume of 20% w/v Chelex 

(SIGMA C7901-25G, Chelex 100 sodium form) was added. The samples were briefly 

vortexed and boiled at 95°C in a heating block (Labnet AccuBlockTM Digital Dry Bath) for 

10 mins with intermittent mixing. The tubes were returned to room-temperature and 

then incubated at 50°C for 30mins with 2mg.mL-1 proteinase K (New England BioLabs 

P81025). The supernatant was recovered by centrifugation at 16,000xg for 1minute. 

The DNA was extracted using the phenol chloroform extraction protocol described 

previously. 2µl of Linear Polyacrylamide (AppliChem) was added prior to the 

precipitation step at -80°C. The extracted DNA pellet was dissolved in the original 

starting volume of TE with 10µg.mL-1 RNase A and incubated at 37°C for 30 minutes. 

The DNA was run on a 1.5% agarose gel to see the size distribution of the fragments. 

2µl of the DNA was also quantified using a Nanodrop Spectrophotomoeter (Labtech 

ND-1000). If fragmentation was to the correct level, 1/10 volume of 10% Triton X-100 

was added to the fragmented chromatin and centrifuged at 15,500xg for 10 minutes at 

4°C. The supernatant was removed and stored at -80°C until use.  

II.7.4 Bead Pre-Clearing 

The following steps were carried out at 4°C or on ice. The chromatin was diluted with 

ChIP Dilution Buffer to achieve a concentration of 25ng.µl-1 DNA in a final volume of 

600µl per ChIP reaction.  

30µl Pierce pre-blocked ChIP grade A/G plus agarose beads (Thermo Fisher, 26159) 

were prepared to serve 10µl per 0.5ml immunoprecipitation reaction plus 20µl per 

sample for pre-clearing. The beads were washed twice with ChIP Dilution Buffer and 

resuspended in 5 bead volumes of ChIP Dilution Buffer. 20µl of the washed beads were 

added to each sample and incubated on a rocking platform at 4°C for 4-8h to eliminate 

non-specific binding to the beads during the IP reaction. The pre-clearing beads were 

removed from the chromatin solution by centrifugation at 3000 xg and retention of the 

supernatant.  
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II.7.5 Pre-coating the antibody 

2.5µg of Pol II CTD antibody (AbCam ab5408) was added to the pre-cleared ChIP A/G 

agarose beads and incubated at 4°C on a rocking platform for 4-8h. The antibody-

coated beads were recovered by centrifugation and washed three times with ChIP 

Dilution Buffer. The beads were finally resuspended in sufficient ChIP Dilution Buffer to 

add 100µl of the bead suspension to each IP reaction.  

II.7.6 Immunoprecipitation 

The antibody-coated ChIP beads were aliquoted out to give 100µl to each chromatin 

sample. 500µl of the pre-cleared chromatin was aliquoted into tubes with the 

antibody-coated ChIP beads and incubated on a roller-mixer platform at 4°C overnight.  

The remaining fraction of pre-cleared chromatin was retained as the Input fraction and 

was flash frozen in liquid nitrogen and stored at -80°C until use.  

II.7.7 Washes 

The beads were recovered from the IP reactions by centrifugation at 3000xg for 1 

minute.  

Each wash was carried out in 1.5mL eppendorfs with 1mL of each wash buffer on ice 

for 5 minutes with intermittent mixing. The beads were recovered after each wash by 

centrifugation at 3000xg for 1 minute. The beads were washed twice in the Low Salt 

Wash Buffer, twice in the High Salt Wash Buffer, once with the LiCl Wash buffer and 

finally twice with TE buffer. After the second TE buffer wash, the beads were 

resuspended in 50µl TE buffer.  

II.7.8 Cross-link reversal 

An equal volume of 20% w/v Chelex was added to the bead suspension. 20% Chelex 

was also added to the Input ChIP fraction. All of the samples were incubated at room 

temperature with intermittent mixing for 5 minutes. The cross-linking was reversed in a 

95°C heating block for 10 minutes with intermittent mixing. Once the tubes had cooled 

to room temperature, 20µg.µl-1 proteinase K was added and incubated at 50°C for 30 

minutes, followed by boiling for 10 minutes. The beads were removed from the 

samples by centrifugation at 16,000xg for 1 minute. 2 volumes of TE were added onto 

the beads to recover any traces of IP DNA left and added to the initial supernatant. 5µg 

RNaseA was added to each sample and incubated at 37°C to 30mins. The DNA was 

extracted using the phenol chloroform protocol described previously. 2µl of Linear 
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Polyacrylamide (AppliChem) was added prior to the precipitation step at -80°C. The 

extracted DNA pellet was dissolved in 200µl TE buffer for use in real-time PCR.  

II.7.9 Quantitative real time PCR analysis of ChIP DNA 

MgCl2 was added to a final concentration of 1mM in the real-time PCR reaction mix to 

counteract the chelating effects of the EDTA in the TE buffer. DNA was stored at -80°C 

until use. Freeze-thaw cycles should be avoided to minimise DNA degradation. ChIP 

DNA was normalised against the total input fraction of each sample, diluted to the 

same concentration. The previously described qRT-PCR method was then followed. 

 

II.8 Microarray data 
Col-0 and sfr6-1 Arabidopsis were grown as previously described for RNA extractions 

and subjected to either 5°C or 20°C for 3h before harvesting and subsequent analysis 

on Affymetrix gene chips (GEO reference GSE6167). For the second microarray, Col-0, 

sfr6-2 and sfr6-3 were grown as previously described for RNA extraction and subjected 

only to 5°C for 3h before harvesting and analysis on Affymetrix gene chips (GEO 

reference GSE46084). The aim of the microarray experiments was to generate two lists 

of cold-inducible genes that were and were not mis-regulated in the three different 

sfr6 allele mutant lines compared to wild type. Microarray data analysis was carried out 

using the WindowsTM dChip Programme (Li & Wong 2003) to generate the two lists of 

cold-upregulated genes that are misregulated and non-misregulated in sfr6. Microarray 

analysis was conducted prior to start of the project. Full details of the analysis can be 

found in Hemsley et al., 2014. 

Analysis of overrepresented heptamer sequences 500bp upstream of the start codon 

was performed using the “oligo analysis” programme available on the Regulatory 

Sequence Analysis Tools (RSAT) website (http://rsat.ulb.ac.be/rsat). All default settings 

were used with the exception of “Oligomer length” and “organism”, which were set to 

7 and Arabidopsis thaliana, respectively (Thomas-Chollier et al., 2011). Matrices from 

the RSAT programme were entered manually into the Weblogo programme 

(http://weblogo.berkeley.edu/logo.cgi) (Crooks et al., 2004) to graphically represent 

the nucleic acid multiple sequence alignments. All default settings were used with the 

Weblogo programme. The Athena program (http://www.bioinformatics2.wsu.edu/cgi-

bin/Athens/cgi/analysis_select.pl) was used to explore previously characterised 

http://rsat.ulb.ac.be/rsat
http://www.bioinformatics2.wsu.edu/cgi-bin/Athens/cgi/analysis_select.pl
http://www.bioinformatics2.wsu.edu/cgi-bin/Athens/cgi/analysis_select.pl
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transcription factor binding sites. All default settings were used with the exception of 

selecting 500bp upstream of the start codon for analysis.  

II.9 Primer sequences 

II.9.1  Primers used for genotyping NASC T-DNA insert and EMS lines 
Gene Name AtG code Forward Primer Reverse Primer 

CYCC-1 At5g48640 5’ GATGGGCAATTGTGGAAGTC 3’ 5’ CCTTCAGCAAATTGGCTTTG3’ 

CYCC-2 At5g48630 5’ GCAATGTAAATGCAAGCGAGT3’ 5’ AACTTGGGGTCTTGTCAACG3’ 

HEN3/CDK8 At5g63610 5’ TTGGTCTTGGCATCGATCTAC3’ 5’ TTGGTGAAGGCACTTATGGTC3’ 

NRB4 (MED15) At1g15780 5’AATCTATGGATGTGCCATTATTAGCG3’ 5’ TGCGCAGAATGGAAACACTAAA3’ 

SFR6/MED16 At4g04920 5’ CGCTGAGAGATTCTGGTGGA3’ 5’ TGAAACTATCCCATCCTCTGC3’ 

SFR6 TaqMan Probe At4g04920 5’ CGTATGATCCAGATGAAGGTCCTT3’ 5’GCAGTACAACAGGTTGAACACTTG3’A 

MED14 At3g04740 5’ TCCAAACAACAAAAACCCATC3’ 5’ TTCACCGTTTATTGTCGGAAC3’ 

MED2 At1g11760 5’ TTTGCGGTATCAAATCGTTTC3’ 5’ CTCCACAAACTCCTCTGCTTG3’ 

SAIL LB - 5’ GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC3’ 

SALK LB - 5’ GCGTGGACCGCTTGCTGCAACT3’ 

CRT::LUC concatamer - 5’ GATGTCCACCTCGATATGTG3’ 5’ GATGTCCACCTCGATATGTG3’ 

 

II.9.2 Primers used for transcript analysis 

Gene Name AtG code Forward Primer Reverse Primer 

PEX4 At5g25760 5’ TCATAGCATTGATGGCTCATCCT3’ 5’ ACCCTCTCACATCACCAGATCTTAG3’ 

KIN2 At5g15970 5’ CAACAGGCGGGAAAGAGTAT3’ 5’CAACAACAAGTACGATGAGTACGA3’ 

At3g52740  At3g52740 5’ GAAGCATCGGAGAGAGATCG3’ 5’ AGCAGTACGTGCAGACGAGA3’ 

At1g20030  At1g20030 5’ TTTCGCTCCCTGAAAGAAGAA3’ 5’ CCTTGACATAACTCCGGAGAAG3’ 

At1g20030 non-spliced At1g20030 5’ AAGAATCTGCCTGATCTCACA3’ 5’ TGAAGCTCCTTGACATAACTC3’ 

At1g68500  At1g68500 5’ AGCTCTGTGTGGTTGCCTTT3’ 5’ CGTCCCAAACAACATCATTG3’ 

At5g62360  At5g62360 5’ AGCCATGCTCAAATTGGTTC3’ 5’ TGGGTACGTTGTGAAAGTGC3’ 

At5g46710  At5g46710 5’ CCATGAAACTTGCATTGAGC3’ 5’ CGAGAACCCAAATCGAGAAA3’ 

ABF1  At1g49720 5’AATGAAAACCCATAATAGTGAGGTAA3’ 5’ ATTGTCTTTTGGCCAGCAAT3’ 

SZF2  At2g40140 5’ TCAAAAACCCCAACCACTTC3’ 5’ TGCACCGCACATATCTCTTC3’ 

LTI78 At5g52310 5’ GCACCCAGAAGAAGTTGAACA3’ 5’ TCATGCTCATTGCTTTGTCC3’ 

COR15A AT2G42540 5’ CGTTGATCTACGCCGCTAAAG3’ 5’ CTCACCATCTGCTAATGCC3’ 

COR414 AT1G29395 5’ GGGAGAGTATGGTGTATGGGCA3’ 5’ TGATATGGCGCCACAATCA3’ 

DIN6 At3g47340 5’ GGCCAAGAGAGTTCGTGTTC3’ 5’ AGACGTTGATGGGCCAAGTA3’ 

MED14 At3g04740 5’ TAGCTTTGGTTCAGGCGTTT3’ 5’ GGCCATAGTTGGTCAGGAGA3’ 

MED2 (MED32) At1g11760 5’ GCGACTAGTCTCCCTCCCATT3’ 5’ CCATCGAACCGCTCTACTCATC3’ 

PR1 At2g14610 5’ CATCCTGCATATGATGCTCCT3’ 5’ TCGTGGGAATTATGTGAACG3’ 

At4g26410  At4g26410 5’ CTCGTTCCCTCCGTGAAAAT3’ 5’TGAAGAAAGCATTCTCATAGGTCTT3’ 
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At1g76590 At1g76590 5’ GTTTCTGCTCTCTCGGTTGC3’ 5’ CGCTTCATCAGATTCCCACT3’ 

At1g27730 At1g27730 5’ GGCATAGGGCTCATGACTTC3’ 5’ GGTCCACTAGCCACGTTAGC3’ 

At1g32860 At1g32860 5’ ATGCTCACCACCAATGACAA3’ 5’ GGATAGTGCGTCCACTGGTT3’ 

At5g46710 At5g46710 5’ CCATGAAACTTGCATTGAGC3’ 5’ CGAGAACCCAAATCGAGAAA3’ 

At5g48250 At5g48250 5’ ATTGCTTAATGCTGGCTGCT3’ 5’ TTGGTTCAGCCTTCAACTCA3’ 

At2g45660 At2g45660 5’ AACCGGTTTGGTGCTGACT3’ 5’ AACTTTATGAATTCGCCAGCTC3’ 

At1g53035 At1g53035 5’ TGCAAACAGAAGCAAACCAG3’ 5’ GGACCAGGAAGTGAGATTGC3’ 

At1g20030 At1g20030 5’ TTTCGCTCCCTGAAGAAGAA3’ 5’ CCTTGACATAACTCCGGAGAAG3’ 

At2g36220 At2g36220 5’ AGTCCCAGGGGGAAAGTAGT3’ 5’ CACGTCATCACCAACGACTT3’ 

At3g04010 At3g04010 5’ CCGTTGTACGCTGTCAAGAA3’ 5’ AGATTGGGTCCAAAGAAACG3’ 

ERF5 At5g4723 5’ TCTTCGGATCATCGTCCTCTTC3’ 5’ GGTTTGCATACGGATTCAGAGAA3’ 

At2g39920 At2g39920 5’ CGAATACCGACTCCCCAAT3’ 5’ ATGTCGGCTTATACGCATCC3’ 

At1g68500 At1g68500 5’ AGCTCTGTGTGGTTGCCTTT3’ 5’ CGTCCCAAACAACATCATTG3’ 

At3g25870 At3g25870 5’ CTAAAAACATTTTGATTTTTCTAATCC3’ 5’ CGTACCACCGGTTCAGCTAT3’ 

At1g48100 At1g48100 5’ CGAAGGCAATGGTCAAAAAT3’ 5’ GTCGGACTTGCACATGGTC3’ 

At5g62360 At5g62360 5’ AGCCATGCTCAAATTGGTTC3’ 5’ TGGGTACGTTGTGAAAGTGC3’ 

At4g24960 At4g24960 5’ CCAACATCCTCCACTCCATT3’ 5’ CCACCACCAAGACCATTACA3’ 

GOLS3 At1g09350 5’ GAGGTTCACAGGCCAAGAAG3’ 5’ TCGTTGTAAATGTCCCACCAT3’ 

At3g13310 At3g13310 5’ TACCCGTCTCCGTGGTACTC3’ 5’ TCACAAAGCTTACGCGACAC3’ 

At3g17130 At3g17130 5’ GCGTTCGTGATTCCTTTCTG3’ 5’ AATATTCCTCAGGCGATGGA3’ 

At3g61190 At3g61190 5’ CTCTAATCTCGGCCTCCACA3’ 5’ TTAAATCGGATCCCACCAGA3’ 

LTI78 At5g52310 5’ GCACCCAGAAGAAGTTGAACA3’ 5’ TCATGCTCATTGCTTTGTCC3’ 

At2G47990  At2G47990 5’ CAGCGTCAAGGTATGGGATT3’ 5’ TCATGTATCCGTCCAAAGCA3’ 

At5G66985  At5G66985 5’ TATCGTCTGAAACGCAAACG3’ 5’ AGACATCGCCGCTATCAATC3’ 

At3g52740  At3g52740 5’ GAAGCATCGGAGAGAGATCG3’ 5’ AGCAGTACGTGCAGACGAGA3’ 

At1g04040  At1g04040 5’ TCTAAGTGTGACGGCATGGA3’ 5’ TCTTCATGTGTGGCACTGCT3’ 

At5g41010  At5g41010 5’ CACTTTGAAGTCTGGGGATG3’ 5’ TCTCAGCGAGCTTCGTATTG3’ 

At5g20180  At5g20180 5’ AAACGTCGTGGACGTGTGTA3’ 5’ ACTAGCAATCGGCTCAGCAA3’ 

At5g52820  At5g52820 5’ GCACACACTTGCTGTGACTTG3’ 5’ CCCCTGAGTAGTCTCCCACA3’ 

SZF2/CZF1 At2g40140 5’ TCAAAAACCCCAACCACTTC3’ 5’ TGCACCGCACATATCTCTTC3’ 

POP1 At5g44110 5’ CCTCCAACCATATGTTTTCCA3’ 5’ ATCTCGTTGCCTCTTGGTTG3’ 

At1g52280  At1g52280 5’ TTGTCCAGCAGTATCCCAAA3’ 5’ GCTACGATTGGAGCAGATTTT3’T 

At5g20600  At5g20600 5’ ACGGCCTAAGCTCTTCAACA3’ 5’ TCGACGGGACTTTACTTGCT3’ 

JAZ1 At1g19180 5’ ATGCAAGCCTGATGTCAATG3’ 5’ GCTGACGTGAGTTGCCTAAA3’ 

At1g51610  At1g51610 5’ GGGCGAAACAAGTGAAGAGA3’ 5’ CACGAGGAAGTTGCACCATA3’ 

At4g02330  At4g02330 5’ CGGTTGGACCACTTTCAACT3’ 5’ AGCGGTATTTCGGAAAGTCA3’ 

At3g19680  At3g19680 5’ AGAAACTCCAACTCCGGTGA3’ 5’ CGGTTGTTCTTTTTCCGAAT3’ 

At3g02250  At3g02250 5’ TCGAGTATCGGTCTTGTTCAGA3’ 5’ ACCACACCATGCCTCCTATT3’ 

ABF1 At1g49720 5’AATGAAAACCCATAATAGTGAGGTAA3’ 5’ ATTGTCTTTTGGCCAGCAAT3’ 

At3G05800  At3G05800 5’ ATCGAATCCTTCCACGTCAC3’ 5’ GACGTAGAGCCTCCATCAGC3’ 
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II.9.3 Primers used for ChIP analysis 

Gene name/position AGI code forward primer reverse primer 

PEX4 Mid  At5g25760 5’ CTTGGACGCTTCAGTCTGTG3’ 5’ GAACGCCCATGGTTACATTT3’ 

GOLS3 -500  At1g09350 5’ TGCATATTTTTACCAAAACAAAAA3’ 5’ ATTTTCTTCTTTTGTCCTAACG3’TC 

GOLS3 TSS  At1g09350 5’ CCATAATCACGGCCTCAAAG3’ 5’ TCATCTCAGGTGCCATCTTG3’ 

GOLS3 Stall  At1g09350 5’ GGAACCGGAGACTACGTGAA3’ 5’ GCCTTGGTCCAATAGCTGTC3’ 

GOLS3 Mid  At1g09350 5’ TGGGGCAGCTACCACTATACA3’ 5’ GAGCATGGCCAAGACAAGAT3’ 

GOLS3 End  At1g09350 5’ TTCACAGGAAACCGAAAACC3’ 5’ ACAAGAACCTCGCTCGTCAG3’ 

KIN2 -500  At5g15970 5’ ATGAAAATACGGGAGGTTCG3’ 5’ GTTGTTGCATATGCGTTTGG3’ 

KIN2 TSS  At5g15970 5’ GATTACACGTGGCACCACAC3’ 5’ GGAAGGCATTCTTGTTGGTC3’ 

KIN2 Stall  At5g15970 5’ GCTGGCAAAGCTGAGGTACT3’ 5’ CCATGGTCAACACAAAATCAA3’ 

KIN2 End  At5g15970 5’ AGTATATCGGATGCGGCAGT3’ 5’ TCCCAAATTTTATTTGAAAATCC3’ 

At5g54470 -500  At5g54470 5’ GACCGGAACGAGAGAGGAAT3’ 5’ TCCTACGTGGACGAATCAGG3’ 

At5g54470 TSS  At5g54470 5’ AGGAAGCTTCTTTGCATTTCA3’ 5’ TTCTGCGGACACGAATAAGA3’ 

At5g54470 Stall  At5g54470 5’ AGCTTGTGGTTGTGGTTGTG3’ 5’ GTGTTTCGCCACCAGAAAAT3’ 

At5g54470 Mid  At5g54470 5’ GGTGGTGAAAAGGACGAGAC3’ 5’ TTGGTTCTCCTCCTGCATTT3’ 

At5g54470 End  At5g54470 5’ CCTCATCGTTCATTTACTAACAACA3’ 5’ TGAACAACTTTGCTTCATTTTATTTT3’ 

At3g52740 -500  At3g52740 5’ AGTTGAGTTTGGTCACACAAAAA3’ 5’AACCTAAAATTCTATCAAGTGATCAAG3’ 

At3g52740 TSS  At3g52740 5’ CGTCGACGTGTAAGACAACC3’ 5’ TTGCAGGAAACAAAAAGATGAA3’ 

At3g52740 Stall  At3g52740 5’ TGATGAACATCGACGATACGA3’ 5’ GCTTCGGTTTCTCTTCAAGC3’ 

At3g52740 End  At3g52740 5’ TCGTCTGCACGTACTGCTCT3’ 5’ TTGAGGAACAAGAACCACATTT3’ 

At5g03230 -500  At5g03230 5’CAAAGACGAAGATAAAAATTCCATT3’ 5’ TGTGGCAAGTCTCACGTTCT3’ 

At5g03230 TSS  At5g03230 5’ AAGTTTAACCCAATGAGAGAGCTT3’ 5’ TCTGGGTTTTGATCAGCTTG3’ 

At5g03230 Stall  At5g03230 5’ CCAGAGATGTCCGATGAGAA3’ 5’ TCGTCGGTTTTCTCCGTAAC3’ 

At5g03230 Mid  At5g03230 5’ TGGGAGAAGATTGGGTTTCA3’ 5’ ATAACGCCAAAAGGAAATCG3’ 

PEX4 pro  At5g25760 5’ GCAGAGTCATTGCTTAACCCTAA3’ 5’ CCCAAAGAGAACGAATTGTCA3’ 

GOLS3 3IGR  At1g09350 5’ TGCAATTGGTAAGTTCTTCATTTT3’ 5’ TTTTAGAAGAGATTGTGTGTTGCAT3’ 

At3g52740 3IGR  At3g52740 5’ TGCAATGTGTCCGCTCTAAA3’ 5’ TAGGAAAACGGGCAAATGTC3’ 

KIN2 3IGR  At5g15970 5’ CGAAATCGTTGTGGTCAATG3’ 5’ ACAATGACGCAGAGCAAACA3’ 

At1G20030 Mid  At1g20030 5’ GAATAGCGTCGACGGGAAG3’ 5’ GTAGCTATAGGCGCGTGGAC3’ 

At1G20030 End  At1g20030 5’ TGTGGTGGTTCTTCTGACCA3’ 5’ CAACGTTTGGTCATGTGGAGT3’ 

At1G20030 3’IGR  At1g20030 5’ ACATGGGCTATTCCTCAACG3’ 5’ TTAGGCGCTGGAGGAGTTC3’ 

At1G20030 TSS2  At1g20030 5’CATGAGAAAAAGAAAAAGAATCTCG3’ 5’AAGAAAAGAGAGAATAAACATTAGCC3’ 

At1G20030 -250  At1g20030 5’ AATGGTTTCTTAGGACACTTGAA3’ 5’ TTTTATGGCTTGGAGTTGGA3’ 

PEX4  At5g25760 5’ TGTTTTGTTGCAAATTCTCTGTG3’ 5’ CCTTTGATAAGAGCGGTCCA3’ 

At3g05800 End  At3g05800 5’ ACTAATCTCGGCTCGGCTTT3’ 5’ TTTCGTCCAACTCGTGATGA3’ 

ABF1 MID  At1g49720 5’ CAGGCTTATACCTTGGAACTGG3’ 5’ TTCAGCCTGCAACATAGAGAGA3’ 

At5g46710 MID  At5g46710 5’ TGCCTGCATGGTCTGTTATC3’ 5’ CAAGGGAGGTAATGGATGCT3’ 
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At1g68500 End  At1g68500 5’ TCGGATCATAGTTCCCTTTCT3’ 5’ GAGGCACGGCGTCTATAAAA3’ 

At5g62360 MID  At5g62360 5’ TGTCAGCTAAGTGGCTCGAA3’ 5’ ACCTTAACCTTCCCGTCCAT3’ 

At5g48250MID  At5g48250 5’ AGCAGCCAGCATTAAGCAAT3’ 5’ TTCTCCAGTGATGCCAGAGA3’ 

COR15a MID  At2g42540 5’ CAGATGGTGAGAAAGCGAAAG3’ 5’ CTTGTTTGCGGCTTCTTTTC3’ 

LTI78 MID  At2g42540 5’ GACTCCGGTCAATGAGAAGG3’ 5’ CCGCCACATAATCTCTACCC3’ 

SZF2/CZF1 MID  At2g40140 5’ TTCTGCAATGGTTTCACCAA3’ 5’ TGTTCTGCCATAAACCACCA3’ 
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III. Results 

III.1. Microarray data  
A microarray experiment was previously carried out by the Knight group to investigate 

genes in wild type and sfr6-1 (Warren et al., 1996) Arabidopsis that were upregulated 

in response to cold conditions (6h at 5°C) compared to ambient conditions (6h at 

20°C). A second microarray was then conducted to investigate cold-induced gene 

expression in sfr6-2 and sfr6-3 mutants in cold conditions compared to wild type. The 

two microarrays were used to investigate whether these cold-inducible genes were 

misregulated in three different sfr6 alleles (sfr6-1 is an EMS point mutation that causes 

a premature stop codon early in the coding sequence, sfr6-2 and sfr6-3 alleles are T-

DNA insert lines) in cold conditions as sfr6 plants fail to cold acclimate and cannot 

therefore survive freezing temperatures. Genes were said to be cold-inducible if they 

showed a minimum 1.5-fold induction in the cold-treated wild-type plants compared 

to ambient-treated. Cold-inducible genes were said to be misregulated in sfr6 if they 

showed a minimum 30% reduction of expression in all three of the sfr6 mutant alleles 

compared to wild type levels in the cold. 81 genes from the microarray were therefore 

said to be cold-inducible and misregulated in all three sfr6 alleles, based on these 

criteria (a list of the 81 misregulated genes can be found in Appendix II). For 

comparison, a second list of 81 genes said to be non-misregulated was created from 

genes that had the most similar expression values in wild type and all three sfr6 

mutant alleles. A list of these genes can be found in Appendix II) 

 

III.1.1. RSAT 

III.1.1.1. 81 misregulated genes contain known cold-inducible transcription factor binding 

motifs 

The RSAT program was used to analyse 500 bp upstream of the transcriptional start 

site for heptamer sequences that occur at a higher frequency than would normally be 

expected to occur randomly in the genome. The WebLogo 3 

(http://weblogo.threeplusone.com/) program was used to graphically represent the 

promoter motif sequences obtained from the RSAT analysis.  

http://weblogo.threeplusone.com/


Chapter III: Results 

39 
 

 
Figure 1: Consensus sequence that contains the abscisic acid response element (ABRE) 
CACGTG motif was found using the RSAT promoter motif program.  
 

 
Figure 2: Consensus sequence that contains the C-Repeat/Drought Response Element 
(CRT/DRE) CCGAC motif was found using the RSAT promoter motif program.  
 

 
Figure 3: Consensus sequence found that contains the AAATATC sequence which encodes 
the Sugar Response Element (SRE) promoter motif using the RSAT promoter motif 
program. 
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Figure 4: Consensus sequence found in almost all of the 81 misregulated gene promoters 
using the RSAT promoter motif program. It is not a known binding site for transcription 
factors in plants.  
 

The CACGTG sequence (Figure III.1) represents the abscisic acid response element 

(ABRE) promoter motif (Mundy et al., 1990). The CACGTG motif was found at 18 

different sites in the 81 misregulated genes. It had a frequency of 0.22 per promoter. 

The CCGAC sequence (Figure III.2) contains the CRT/DRE promoter motif, found at 24 

sites in the 81 misregulated genes and is the binding site of CBF/DREB2 transcription 

factors (Stockinger et al., 1997, Liu et al., 1998). It had a frequency of 0.30 per 

promoter compared to the expected significance of 2.5x10-13 as shown by Athena 

analysis software. The ABRE and CRT/DRE elements are previously known to be found 

in Cold On-Regulated (COR) genes. The SRE promoter motif (AAATATC) in Figure III.3 

was found in genes that are misregulated in response to cold treatment in sfr6 and 

also in previous studies of sugar-responsive genes (Tatematsu et al., 2005). No known 

transcription factors have been shown to bind to this sequence in plants. The 

TCTTCTTCT sequence had a frequency of 0.97 per promoter in the 81 misregulated 

genes (Figure III.4). It is not a known binding site for transcription factors in plants but 

is known as a Y-Patch-Like motif. A Y-patch motif is a pyrimidine-rich region of DNA 

and is a direction-sensitive regulatory motif much like the TATA box that plays a major 

role in transcriptional processes in plants as it is involved in transcriptional regulation 

by DNA packing and histone binding. It is found close to the transcriptional start site of 

genes (Yamamoto et al., 2007). A CACGCC sequence was also found using the RSAT 

software which encodes the low-temperature response element (LTRE) that plays a 

similar role to the CRT/DRE element in response to low temperature (Medina et al., 

1999) 
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III.1.1.2. 81 non-misregulated genes contain no known transcription factor binding motifs 

 
Figure 5: Consensus sequence that contains the Y-patch motif (CTTCTTC) was found using 
the RSAT promoter motif program.  
 

 
Figure 6: Other sequences also found in the RSAT promoter analysis of the 81 non-
misregulated genes. 
 

 
Figure 7: Consensus sequence that contains an AAACAAA motif using the RSAT promoter 
analysis program. 
 

Fewer consensus promoter motif sequences were found in the 81 non misregulated 

genes compared to the 81 misregulated genes. The Y-patch motif (Figure III.5) found in 

the 81 non-misregulated genes had a frequency of 0.33 per promoter. Other motifs 

were also found that contain AAACCCTA and GCCCA sequences (Figure III.6 A & B) 

which are not known transcription factor binding sites in plants or involved in 

transcriptional regulation by DNA packaging. The AAACAAA sequence (Figure III.7) has 

been hypothesised to be involved in activation of anaerobic genes and is found in 

sucrose synthase genes. They are not known transcription factor binding sites in plants 

but are found in animals (Mohanty et al., 2005). Many sequences found by the RSAT 

software are not yet recognised transcription factor binding sites in plants, but have 

been identified in previous studies (Mohanty et al., 2005).  

A B 
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III.1.2. Promoter analysis using ATHENA software 

The ATHENA analysis software (http://www.bioinformatics2.wsu.edu/cgi-

bin/Athena/cgi/home.pl) was used to identify known transcription factor binding 

motifs that were enriched in groups of gene promoters compared to the expected 

occurrence of a particular sequence in the plant genome. The software identified the 

ABRE (CACGTG) and CRT/DRE (CCGAC) promoter motifs to be overrepresented 

compared to the expected occurrence of the motif in the group of 81 misregulated 

genes. Athena also identified the full EVENING ELEMENT motif (AAAATATCA), the core 

sequence of which is equivalent to the SRE in sequence (AAATATC), the full EE has 

been shown to be present in genes regulated by the circadian clock in Arabidopsis 

(Harmer et al., 2000). The AAAATATCA motif occurred at 60 sites in the misregulated 

genes, with a frequency of 0.74 per promoter and is a known binding site for LHY and 

CCA1 transcription factors that are components of the circadian clock signalling 

network (Alabadí et al., 2001, Harmer et al., 2000). The ATHENA program did not show 

the genes to be enriched in any other known motifs. No known plant promoter 

elements were found in the 81 non misregulated genes using the ATHENA software.  

 

III.2. Monitoring expression of cold-inducible genes chosen from the 

microarray data 
Quantitative reverse transcriptase PCR (qRT-PCR) analysis was carried out on cold-

inducible genes chosen from the microarray data to assess if relative expression levels 

between wild type and sfr6 mutant plants were similar to those seen in the microarray 

experiments. Genes were classified into three different groups depending on the 

previously described cold-inducible promoter elements found within 500 bp upstream 

of the predicted transcriptional start site. Genes were divided into three groups: those 

that contained the CRT/DRE element (CCGAC), those that contained the full EE motif 

(AAAATATCA) and genes that contained both CRT/DRE and EE motifs.  

 

III.3. Assessment of cold-induced transcript levels after various lengths of 
time in the cold.  

A time course experiment was carried out to investigate the kinetics of COR gene 

induction in seedlings under constant light conditions. This was in order to investigate 

whether these varied depending on the promoter motifs found present within 500 bp 

http://www.bioinformatics2.wsu.edu/cgi-bin/Athena/cgi/home.pl
http://www.bioinformatics2.wsu.edu/cgi-bin/Athena/cgi/home.pl
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upstream of the transcriptional start site and to assess an optimum point at which to 

measure differences in COR gene expression between wild type and mutants in 

response to cold (5°C) temperatures. This experiment was also used to investigate 

ambient gene expression in the free-running clock in plants to see if expression 

patterns of cold-inducible genes that contain EE promoter element are more strongly 

up-regulated in the relative evening period compared to the rest of the day.  

Unless otherwise stated, all gene expression is normalised to the expression of PEX4 

(Peroxisomal ubiquitin conjugating enzyme 4), a housekeeping gene that does not 

alter its expression in response to cold temperatures (Czechowski et al., 2005). Graphs 

show relative quantitation (RQ value) of gene expression compared to the first 

temperature-treated sample on the histogram (set to a value of 1), as described by the 

ΔΔCT method (Livak & Schmittgen 2001) of quantitation. Patterns of gene induction in 

response to cold (5°C) were consistent across two biological replicate experiments, 

however slight variation was observed in the degree of gene induction between 

experiments. Unless otherwise stated, data from a representative experiment of each 

gene has been shown.  

  



Chapter III: Results 

44 
 

 
Figure 8: Relative quantification (RQ value) of cold-inducible transcript levels in wild type 
plants after 3, 6, 9, 12 and 24h in cold or ambient conditions. A: Ambient (20°C); C: Cold 
(5°C). Error bars represent a 95% confidence interval from 3 technical repeats. Data is 
representative of two biological replicate experiments.  
 

Genes whose promoter contains the EE (Figure III.8 D & E: ABF1 & AT1G20030) show 

increased expression under ambient conditions in constant light as the time elapsed 

since presumptive dawn progresses with the free-running clock. They showed a 

maximum induction in the cold after 9h before expression starts to decline. CRT/DRE-

containing genes (Figure III.8 A, B & C: KIN2, GOLS3, COR15a) did not show an increase 

in transcript levels in ambient conditions, but continued to increase in expression over 

time in the cold up to 24h. GOLS3 is the exception in the CRT/DRE gene group, which 

showed a pattern of gene induction similar to genes that contain an EE as it showed 

reduced expression at 24h compared to 12h. AT3G52740 (Figure III.8F) is a gene that 

contains neither CRT/DRE nor EE promoter motifs (selected from the group of 81 non 

misregulated genes) and showed a pattern of gene expression remarkably similar to 

the EE-containing ABF1 and At1G20030 (Figure III.8D & E) genes during the time 
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course experiment. These data suggest that 6h at 5°C was a suitable time point at 

which to assess the expression of genes from all three groups.  

 

III.4. Transcript levels in T-DNA insertional mutant lines 
All insertion lines used in this study were obtained from the Nottingham Arabidopsis 

Stock Centre (NASC). T-DNA insertion lines from NASC that have not been previously 

published (MED2, MED14, CDK8, CYCc1 & CYCc2) were tested for disruption of the 

gene by both conventional PCR and qRT-PCR. This was to show the presence of the T-

DNA insert and that transcription of the gene under non-experimental conditions was 

reduced in the proposed mutant line compared to the wild-type.  

 

 
Figure 9: Relative quantification of transcript levels of MED2 under control and 
experimental conditions in wild type and med2-1 lines. Amb: 6h at 20°C; Cold: 6h at 5°C. 
WT: wild-type; m2: med2-1 T-DNA insert line (SALK_028490). Error bars represent a 95% 
confidence interval from 3 technical repeats. Data is from 3 biological replicate 
experiments.  
 

The SALK_028490 line contains a T-DNA insertion in the promoter region rather than 

the exon. Data from qRT-PCR experiments in Figure III.9 (above) showed that 

transcript levels of MED2 (At1g11760) were reduced by at least 80% in the insertion 

line under both normal and experimental conditions in three independent 

experiments of seedlings under cold and ambient conditions. This confirms that the 

med2-1 T-DNA insert mutant line used in the subsequent experiments can be 

considered a loss-of-function mutant. The med14-1 (At3g04740) insert line used in this 

study (SAIL_373_C07) contains a T-DNA insert in the last exon and showed reduced 

expression of full length MED14 transcript (Zhang et al., 2013). 
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III.5. Cold-inducible expression of COR genes in wild type, sfr6-1, med2-1 

& med14-1 Arabidopsis mutants 
 

III.5.1 Expression of cold-inducible genes 

Genes whose promoters contained an EE, a CRT/DRE or both sequences were chosen 

from the 81 cold-inducible genes misregulated in sfr6 identified from the microarray. 

Expression of these genes was tested by qRT-PCR after 6h under cold or ambient 

conditions in wild type and sfr6-1 plant lines. This was to validate the differences seen 

in the microarray data and the parameters used to select the 81 misregulated genes. 

Expression of these cold-inducible genes was also investigated in med2-1 and med14-1 

seedlings to examine the effect loss of Mediator tail subunits had on the expression of 

genes containing different promoter motifs in response to cold.  

A 6h time point was chosen based on data obtained from previous time course 

experiments (Figure III.8). Expression of cold-inducible genes in med2-1-and med14-1 

plant lines was also investigated to see if genes were impaired when the MED2 or 

MED14 subunits were lost from the Mediator complex.  
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III.5.1.1. EE-containing genes 

 

 
Figure 10: Relative quantification (RQ value) of cold-inducible transcript levels of genes 
that contain EVENING ELEMENT (EE) promoter elements under ambient and cold 
conditions. A: Ambient (20°C) C: cold (5°C). Gene expression was measured in response to 
6h at 5°C or 20°C. Error bars represent a 95% confidence interval from 3 technical 
repeats. Data is representative of two biological replicate experiments. 
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III.5.1.2. CRT/DRE-containing genes 

 

 
Figure 11: Relative quantification (RQ value) of cold-inducible transcript levels of genes 
that contain C-repeat (CRT/DRE) elements under ambient and cold conditions. A: 
Ambient (20°C) C: cold (5°C). Genes are induced in response to 6h at 5°C or 20°C. Error 
bars represent a 95% confidence interval from 3 technical repeats. Data is representative 
of two biological replicate experiments. 
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III.5.1.3. Genes that contain both CRT/DRE & EE elements 

 

 
Figure 12: Relative quantification (RQ value) of cold-inducible transcript levels of genes 
that contain both EVENING ELEMENT (EE) and C-repeat (CRT/DRE) promoter elements 
under ambient and cold conditions. A: Ambient (20°C) C: cold (5°C). Genes are induced in 
response to 6h at 5°C or 20°C. Error bars represent a 95% confidence interval from 3 
technical repeats. Data is representative of two biological replicate experiments 
 

Data from qRT-PCR experiments (Figure III.10, 11 & 12) show that genes from all three 

promoter element groups were induced in response to cold (5°C) temperatures in wild 

type plants compared to the ambient (20°C) control. Data showed that these genes 

were misregulated in sfr6-1 seedlings as suggested by the microarray data. These 

genes were also shown to be misregulated in med2-1 and med14-1 seedlings.  

COR414 (At1g29395) is a known COR gene (Oakenfull et al., 2013) that contains a 

CRT/DRE motif. However, itwas not found in the group of 81 misregulated genes found 

in the microarray despite qRT-PCR evidence to suggest that it is both cold-inducible 

and misregulated in sfr6-1 to a similar degree as other CRT/DRE-containing genes 

(Figure III.11F). 
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III.5.1.4. Cold-inducible genes not misregulated in sfr6 mutants 

Genes were chosen from the group of 81 non-misregulated genes to further validate 

microarray data suggesting that the genes are both cold-inducible and are not 

misregulated in sfr6 mutants. Genes were tested for their expression after 6h under 

cold or ambient conditions in wild type and sfr6-1. Expression of cold-inducible genes 

in med2-1 and med14-1 plant lines was also investigated to see if genes were impaired 

when the MED2 or MED14 subunits were lost from the Mediator complex. The 6h time 

point was chosen based on data obtained from time course experiments (Figure III.8). 

 

 
Figure 13: Relative quantification (RQ value) of cold-inducible transcript levels from genes 
that are non-misregulated in sfr6 in response to cold. A: Ambient (20°C) C: Cold (5°C). 
Genes are induced in response to 6h at 5°C or 20°C. Error bars represent a 95% 
confidence interval from 3 technical repeats. Data is representative of two biological 
replicate experiments. 
 

As indicated by the microarray, these genes were induced in response to cold and did 

not show an impaired cold-induced expression profile in sfr6-1 seedlings despite the 

loss of the SFR6/MED16 Mediator subunit. POP1 (At5g44110) shows slight impairment 

in expression in med2-1 and med14-1 lines, but not sfr6-1 mutants (Figure III.13C).  
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III.5.1.5. AT5G54470-like genes  

The cold-inducible AT5G54470 gene (previously identified in a search for non-CBF 

regulated cold-inducible genes) has been shown to be misregulated in sfr6 mutants in 

cold conditions but not med2-1 or med14-1 mutants (personal comm. P. Hemsley). As 

this gene is so far unique in showing misregulation only in sfr6 mutants and not also in 

med2-1 or med14-1 mutants, other genes misregulated in sfr6 to a similar extent as 

AT5G54470 that contained the EE motif (AAAATATCA) on the microarray were 

investigated by qRT-PCR to see if they showed a similar gene expression profile to 

AT5G54470 of impaired expression only in sfr6 alleles and not in med2-1 or med14-1. 

 
Figure 14: Relative quantification (RQ value) of cold-inducible transcript levels of 
AT5G54470-like genes under ambient and cold conditions. A: Ambient (20°C) C: cold (5°C) 
Genes are induced in response to 6h at 5°C or 20°C. Error bars represent a 95% 
confidence interval from 3 technical repeats. Data is representative of two biological 
replicate experiments 
 

Data in Figure III.14 shows that the AT5G54470-like genes were not, in the main, cold-

inducible in wild type seedlings and were not shown to be misregulated in sfr6-1 as 
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suggested by the microarray. The pattern of gene expression was not consistent with 

the AT5G54470 gene with a reduced expression in sfr6-1, but not in med2-1 or med14-

1 lines.  

 

III.5.2. Chromatin Immunoprecipitation (ChIP) Experiments 

ChIP experiments were carried out to investigate Pol II recruitment to different sites 

along the length of cold-inducible genes in wild type, sfr6-1, med2-1 and med14-1 

mutants under cold and ambient conditions to see if Pol II occupancy was 

compromised in the mutant lines, leading to the reduced transcript levels seen in 

CRT/DRE- and EE-containing genes.  

 

III.5.2.1. ChIP Full Length  

Chromatin immunoprecipitation (ChIP) experiments were carried out using an 

antibody against the c-terminal domain (CTD) repeats of RNA Polymerase II (Pol II) to 

investigate Pol II recruitment along the length of cold-inducible genes KIN2 (CRT/DRE-

containing gene) and AT1G20030 (EE-containing gene). Pol II occupancy at cold-

inducible genes was normalised to the total input fraction of chromatin that had not 

been immunoprecipitated with anti-Pol II CTD antibodies for each sample and to the 

Pol II occupancy of PEX4, a housekeeping gene that does not alter its expression in 

response to cold, in each sample.  

 

 

 
Figure 15: Primers used to investigate Pol II occupancy at 4 sites along the KIN2 gene and 
5 sites along the At1g20030 gene. -500: 500 bp upstream of the predicted TSS; -250: 250 
bp upstream of the predicted TSS; TSS: Transcriptional start site; Stall: predicted Pol II 
stall site; Mid: midpoint of the gene; End: End of the gene. Thick black bars represent 
exons, thin lines represent the region amplified by the primer pair. 
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Figure 16: Relative occupancy of Pol II along the length of the KIN2 gene at 4h under 
ambient (20°C) or cold (5°C) conditions. -500: 500bp upstream of the predicted 
transcriptional start site; TSS: predicted transcriptional start site; Stall: predicted stall site 
of Pol II; End: end of the gene. Cold: 4h at 5°C; Amb: 4h at 20°C. Error bars represent a 
95% confidence interval of 3 technical repeats. Data is representative of two biological 
replicate experiments.  
 
 

 
Figure 17: Relative occupancy of Pol II along the length of the At1g20030 gene under 
ambient (20°C) and cold (5°C) conditions. -500: 500bp upstream of the predicted 
transcriptional start site; TSS: predicted transcriptional start site; Stall: predicted stall site 
of Pol II; Mid: midpoint of the coding sequence region; End: end of the gene. Cold: 4h at 
5°C; Amb: 4h at 20°C. Error bars represent a 95% confidence interval of 3 technical 
repeats. Data is representative of two biological replicate experiments. 
 

ChIP experiments to monitor the occupancy of Pol II along the length of KIN2, a 

CRT/DRE-containing gene showed that Pol II is recruited in response to cold (5°C) 

temperatures, but not in ambient (20°C) temperatures. Recruitment of Pol II was 

impaired in sfr6-1, med2-1 and med14-1 lines in the cold, compared to wild type. ChIP 

experiments along the length of AT1G20030, an EE-containing gene, showed that 
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recruitment of Pol II does not increase in response to cold and that there was no 

difference on Pol II occupancy between wild type seedlings and sfr6-1, med2-1 or 

med14-1 seedlings.  

 

III.5.2.2. CRT/DRE genes 

 
Figure 18: Relative occupancy of Pol II at the middle of the transcribed region of 
CRT/DRE-containing genes. Cold: 4h at 5°C; Amb: 4h at 20°C. ChIP was carried out against 
the CTD of Pol II at the midpoint of cold-inducible genes that contain a CRT/DRE element 
in their promoters but no EE motif. Error bars represent a 95% confidence interval from 3 
technical repeats. Data is representative of two biological replicate experiments. 
 

Further genes were examined at the midpoint position only chosen as full length ChIP 

experiments (Figure III.16 & 17) indicated that occupancy of Pol II was greatest at the 

midpoint of the transcribed region of the gene under cold conditions. Much like in 

KIN2, ChIP experiments on other CRT/DRE-containing genes, COR15a and LTI78 (Figure 

III.18 A & B) revealed an increase in Pol II occupancy in the cold at the middle points of 

the transcribed region of cold-inducible genes in wild type plants that contain CRT/DRE 

promoter elements. Experiments showed reduced Pol II occupancy in sfr6-1, med2-1 

and med14-1 mutant lines in the cold (5°C) compared to wild type.  

III.5.2.3. EE only genes 

 
Figure 19: Relative occupancy of Pol II at the mid points of ABF1 which contains an EE 
motif. Cold: 4h at 5°C; Amb: 4h at 20°C. Error bars represent a 95% confidence interval 
from 3 technical repeats. Data is representative of two biological replicate experiments.  
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III.5.2.4. Both CRT/DRE- & EE-containing genes 
 

 
Figure 20: Relative occupancy of Pol II at the mid points of CRT/DRE- and EE-containing 
genes. Cold: 4h at 5°C; Amb: 4h at 20°C. Error bars represent a 95% confidence interval 
from 3 technical repeats. Data is representative of two biological replicate experiments.  
 

Genes that contain the EE motif but no CRT/DRE promoter elements showed a less 

distinct pattern of Pol II recruitment in cold conditions at the midpoint of the gene 

compared to CRT/DRE genes (Figure 18). Presence of Pol II at midpoints in the cold 

was similar to that of ambient conditions in ABF1 (Figure III.19). AT1G68500 and 

AT5G62360 are genes that contain both a CRT/DRE and EE element, AT5G62360 

showed a more CRT/DRE-like Pol II occupancy (Figure III.20B) but AT1G68500 showed 

Pol II occupancy similar to EE genes (Figure III.20A). A microarray carried out by the 

Thomashow group (Fowler et al., 2002) indicated that AT1G68500 and AT5G62360 are 

not strongly upregulated by CBF2 overexpression despite the CRT/DRE promoter motif 

found present in this analysis. Therefore, they may not be genuine targets of the three 

CBF transcription factors and the CRT/DRE motifs found in their promoters may not 

constitute functional CBF-binding sites. This suggestion is supported by the 

observation that they are only mildly upregulated in the cold compared to other CBF-

regulated genes such as GOLS3 or LTI78.  
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III.5.2.5. Non mis-regulated genes 

 
Figure 21: Relative occupancy of Pol II at the midpoint of SZF2, a gene not misregulated in 
response to cold in sfr6-1. Cold: 4h at 5°C; Amb: 4h at 20°C. Error bars represent a 95% 
confidence interval from 3 technical repeats. Data is representative of one biological 
replicate experiment.  
 

ChIP against the CTD of Pol II in SZF2, a gene not misregulated in sfr6 in the cold 

(Figure III.21) compared to wild type showed an increase in Pol II occupancy in the cold 

(5°C) compared to the ambient (20°C). Surprisingly, experiments revealed reduced Pol 

II occupancy in sfr6-1, med2-1 and med14-1 lines in response to cold compared to the 

wild type.  

 

III.5.3. AT1G20030 alternative splicing 
As Pol II recruitment to EE-containing genes was unimpaired in sfr6-1, med2-1 and 

med14-1 compared to wild type, posttranscriptional modifications to the AT1G20030 

transcript were investigated in wild type and the three mutant lines with a view to 

uncovering the reason for the differential transcript levels observed in the cold. In 

response to abiotic stress, alternative splicing of mRNA transcripts can occur to allow 

expression and translation of required stress-responsive genes (Chinnusamy et al., 

2007). AT1G20030 is a cold-inducible gene (Figure III.8E) that has two predicted 

protein-coding gene models and multiple cDNA variants (Figure III.22 A & B). 

Therefore, a proposed mechanism for impaired expression of AT1G20030 in sfr6-1, 

med2-1 and med14-1 seen in cold conditions (Figure III.10A) was that the increased 

transcript levels seen in the cold was an artefact of primers detecting a different splice 

variant in response to cold rather than a true increase in transcript levels in response 

to cold.  
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Figure 22: Two protein coding gene models of At1G20030 (A). Different cDNA variants of 
the At1G20030 gene (B). Data from http://www.arabidopsis.org.  
 

Specific primers were therefore designed to detect three different splice variants of 

the AT1G20030 gene to investigate alternative splicing events in sfr6-1, med2-1 and 

med14-1 mutants in response to the 6h of cold (5°C) or ambient (20°C) conditions 

used in previous qRT-PCR experiments (Figure III.23).  

Figure 23: Gene map depicting primers to detect different splice variants of AT1G20030. 
TSS: transcriptional start site; 1: primers span the start site of the gene and are used in 
qRT-PCR experiments; 2: primers span the first small intron; 3: primers an exon region 
and are used in ChIP experiments as the midpoint of AT1G20030. Thick black lines 
represent exons, thin coloured lines represent the region of PCR product amplified by the 
primer pair 

 

 

     
Figure 24: Relative quantification (RQ value) of different splice variants of the At1g20030 
gene under ambient and cold conditions. Colours represent the 3 different primer pairs 
shown in Figure 23. A: Ambient (20°C) C: cold (5°C). A: Primer set 1 used in qRT-PCR 
experiments; B: Primer set 2 that span the small intron; C: Primer set 3 used in ChIP 
experiments. AT1G20030 is expressed in response to 6h at 5°C or 20°C. Error bars 
represent a 95% confidence interval from 3 technical repeats. Data is representative of 
two biological replicate experiments. A) Thom10 spliced B) Thom10 real-time primers C) 
Thom10 ChIP primers 
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From these data, it appeared that relative levels of the different splice variants did not 

change in the cold and cannot therefore account for the increase in one type of 

transcript in the cold (Figure III.10A). These data also showed that alternative splicing 

events are occurring in the AT1G20030 gene, but that splicing is not impaired in sfr6-1, 

med2-1 or med14-1 mutants in response to cold treatment (Figure III.24 A-C).  

 

III.5.4. CRT::LUC transformations 

Experiments have previously shown that cold-inducible expression via the CRT/DRE 

motif is impaired in sfr6 mutants (Boyce et al., 2003). Boyce et al. conducted 

experiments using a concatamer reporter construct in which 4 copies of the motif 

were fused to an unmodified luciferase sequence that resulted in the emission of 

relatively low levels of light that are not easily detected. Whalley et al. (2011) later 

produced a version of this construct in which the modified codon optimised LUC+ 

version of luciferase was used. This gives greater levels of luciferase protein expression 

that were high enough for transient expression experiments to be attempted as 

expression of reporter genes is greatly reduced in a transient system than in stable 

transformant lines. The LUC+ construct was used to attempt transient expression 

experiments using med2-1 and med14-1 mutants. The artificial concatamer contains a 

-70 minimal promoter and 4 copies of the CRT/DRE motif fused to a LUCIFERASE 

reporter gene (Figure II.1). med2-1 and med14-1 lines were transiently transformed 

with the CRT::LUC+ concatamer and tested for reporter gene expression in response to 

cold treatment (24h at 5°C) prior to imaging to see if the MED2 and MED14 subunits 

were required specifically for activation by cold via the CRT promoter. Luciferase 

activity in the form of photons released is measured as a proxy for CRT-driven 

expression levels. The level of activity is reflected in the numbers of photons captured 

(raw photon counts). 

 

III.5.4.1. CRT::LUC bombardment into wild type seedlings 
In a proof-of-concept experiment, 7 day old wild type seedlings were transiently 

transformed by biolistics to express a CRT::LUC+ concatamer (Whalley et al., 2011). 

Seedlings were treated with either cold (5°C) or ambient (20°C) temperatures for 24h, 
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returned to ambient conditions for 1h and then the luciferase luminescence was 

imaged for 10 minutes to reveal differences in expression levels.  

 

  

Figure 25: Photons captured during 10 minutes of imaging from luciferase luminescence 
in 7 day old seedlings expressing a CRT::LUC+ concatamer in ambient or cold conditions. 
Cold: 24h at 5°C (B); ambient: 24h at 20°C (A). Seedlings were sprayed with 5mM luciferin 
in 0.01% Triton-X and imaged for 10 minutes. Image is in false colour and representative 
of 3 biological replicate experiments. 
 

 
Figure 26: Average photon counts from CRT::LUC+ bombardment into wild type seedlings. 
Error bars represent the range of photon counts collected from the 2 technical repeats of 
each bombardment over a period of 10 minutes. Data shown is from each of the three 
biological replicate experiments. 
 

This proof-of-concept experiment showed that more photons were captured from 

seedlings that had been treated with 5°C (Figure III.25B) for 24h than in the control 

conditions of 20°C (Figure III.25A) for 24h. Raw photon count data (Figure III.26B) is 

captured from luciferase luminescence images (Figure III.25) taken during imaging and 

shows an identical pattern of fewer photons captured in seedlings under ambient 

conditions than cold conditions.  
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III.5.4.2. CRT::LUC bombardment into 3 mutant lines 
Having shown that transiently expressed CRT::LUC+ concatamer construct showed a 

greater degree of expression in the cold than in ambient conditions in wild type plants 

(Figure III.25 & 26), expression of the concatamer was investigated in sfr6-1, med2-1 

and med14-1 seedlings in cold and ambient conditions. 

 
Figure 27: Number of photons captured from bombarding a CRT::LUC concatemer 
construct into wt, sfr6, med2-1 and med14-1 mutant lines. Cold: 24h at 5°C; Amb: 24h at 
20°C. Data is representative of a single biological replicate.  
 

In the first experiment, the wild type, sfr6-1 and med2-1 all show a similar of increased 

numbers of photons captured in the cold compared to the ambient. Preliminary data 

suggest that the med2-1 and sfr6-1 lines show reduced numbers of photons captured 

in the cold compared to the wild type. The med14-1 line showed a reduced photon 

count in the cold compared to ambient, however the numbers of photons captured in 

both the ambient and cold samples were strangely more elevated than either the 

med2-1 or sfr6-1 lines (Figure III.27). This was likely due to differences between 

coating the DNA onto the gold particles for delivery and the amount of DNA-coated 

gold particles bombarded into each seedling set. A control for transformation 

efficiency between samples was not possible, however, further experiments described 

below attempted to address this problem.  
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Figure 28: Photons captured from wild type (A), sfr6-1 (B), med2-1 (C) and med14-1 (D) 
seedlings bombarded with a CRT/DRE::LUC concatemer construct after 24h in the cold. 
Data is representative of two biological replicate experiments and two technical 
replicates in each biological replicate.  
 

 
Figure 29: Photon counts from a second biological replicate experiment of CRT::LUC 
bombarded into wild type, sfr6-1, med2-1 and med14-1. Seedlings were treated with 24h 
cold (5°C) prior to imaging. Data is representative of a single biological replicate 
experiment shown in Figure III.28.  
 

In a second experiment, only cold-treated plants were compared between the 4 plant 

lines. Data from photon counts captured from expression of the LUC+ reporter gene 

(Figure III.28) showed a pattern of fewer photons captured in sfr6-1, med2-1 and 
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med14-1 in the cold than in wild type seedlings in the cold in both experiments (Figure 

III.29). This suggests that sfr6-1, med2-1 and med14-1 have an impaired ability to 

activate expression of LUC+ via the CRT/DRE promoter element compared to wild type 

seedlings.  

 

III.5.4.2.1. Analysis of CRT::LUC transcript levels in WT, sfr6-1, med2-1 and med14-1 by 
qRT-PCR  

As there was no way to control for the number of cells transformed by each 

bombardment, photon count data is not a reliable method for quantifying relative 

expression via the CRT in different plant lines. Therefore, LUC+ transcripts were 

further investigated to elucidate whether the luciferase activity previously measured 

(Figure III.29) was due to the differences in number of transformed cells or due to 

increased expression of the concatemer in the same number of cells. It is usually the 

case that LUC+ emission acts as a good proxy for transcript abundance (Millar et al., 

1992) and relative transcript levels of LUC+ was therefore investigated by qRT-PCR 

analysis to confirm this. An AEQUORIN gene under the control of a constitutive 35S:: 

promoter (Knight et al., 1991) was transiently co-expressed with LUC+ as a control for 

the varying levels of transformation efficiency between samples. qRT-PCR experiments 

were carried out on LUC+ transcripts in wild type, sfr6-1, med2-1 and med14-1 

seedlings under cold and ambient conditions and data was normalised against the 

expression of co-expressed AEQUORIN. 

 

 
Figure 30: A: relative quantitation (RQ value) Luciferase transcript levels in wild type 
seedlings in response to 24h of either 5°C or 20°C. A: Ambient (20°C); C: Cold (5°C). B: 
Relative quantitation (RQ value) of LUC+ transcripts in wild type, sfr6-1, med2-1 and 
med14-1 seedlings after 24h at 5°C. Expression of LUC+ is normalised to expression of 
aequorin driven by the 35S:: promoter.  
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Despite the differences seen in luminescence captured from wild type seedlings 

(Figure III.26 A-C) in either cold (5°C) or ambient (20°C) conditions, LUC+ transcript 

levels, when normalised to aequorin expression, were not shown to be elevated in the 

wild type in cold, compared to ambient samples. Similarly, expression of LUC+ is not 

reduced in sfr6-1, med2-1 or med14-1 seedlings in the cold compared to wild type 

(Figure III.30B).  

 

III.5.4.3. Protoplasts 
Protoplast isolation and transient transformation with the CRT::LUC+ concatemer was 

attempted as a more reliable system to empirically test transcription of LUC+ in wild 

type, sfr6-1, med2-1 and med14-1 Arabidopsis. The transformation required 

protoplasts at a concentration of 5x106 in 300µl, however in both attempts at 

protoplast extraction, insufficient protoplasts were recovered to transform. 

Measurements using a haemocytometer showed that a total of fewer than 1x106 

protoplasts were recovered after the final centrifugation step.  

It was found that many intact protoplasts were lost in the decanted supernatant after 

each wash, while protoplast debris was also found in the supernatant. This suggests 

that after each resuspension, protoplasts could be centrifuged for longer at the same 

gravity to collect more of the protoplasts. To avoid excessive loss of protoplasts, the 

supernatant could also be removed from the falcon tubes without removing them 

from the centrifuge to avoid accidental resuspension of protoplasts while transporting 

them. Due to time constraints, it was not possible to attempt further protoplast 

isolation and transient transformation experiments with the suggested optimisations.  

 

III.6. Expression of sugar-inducible cold-responsive genes  
Using the RSAT analysis software to investigate promoter elements in the group of 81 

misregulated genes, the AAATATC promoter motif was found. Literature suggests that 

it is an EVENING ELEMENT-like sequence (AAAATATCA) present in promoters of sugar-

responsive genes (Tatematsu et al., 2005) and was thus called the SUGAR RESPONSE 

ELEMENT (SRE). Preliminary experiments were first carried out on wild-type 

Arabidopsis thaliana plant lines, looking at expression of known cold-inducible genes 
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from the microarray and qRT-PCR analysis that also contained the AAATATC motif, in 

response to the presence of sucrose in light or dark conditions.  

Unless otherwise stated, all gene expression is normalised to the expression of PEX4, a 

housekeeping gene that does not alter its expression in response to most abiotic 

stresses (Czechowski et al., 2005). Graphs show relative quantitation (RQ value) of 

gene expression compared to the first temperature-treated sample on the histogram 

(set to a value of 1), as described by the ΔΔCT method (Livak & Schmittgen 2001) of 

transcript quantitation. Patterns of gene induction in response to sugar were 

consistent across two biological replicate experiments, however slight variation was 

observed in the degree of gene induction between experiments. Unless otherwise 

stated, a representative experiment for each gene has been shown. Purple bars 

indicate the sucrose treatment (3% w/v) while blue bars indicate the mannitol control 

(0.096M, an equiisomolar concentration of a non-metabolisable sugar) represent the 

dark-treated samples, light blue and purple represent light-treated samples. Darker 

blue and purple represent the dark-treated samples, light blue and purple represent 

light-treated samples.  

 

 
Figure 31: Relative quantification (RQ value) of transcripts that contain the AAATATC 
promoter motif in 7-day old seedlings treated with isoosmotic concentrations of mannitol 
or sucrose in the light or dark for 6h. L: Light, D: Dark. Error bars represent a 95% 
confidence interval from 3 technical repeats. Data is representative of two biological 
replicate experiments.  
 

DIN6 is a control gene that is known to be induced in the dark (Buchanan-Wollaston et 

al., 2005), and its induction in the dark was repressed by sugar in wild type seedlings, 

as shown in Figure III.31C, showing each treatment was correctly experienced by the 

seedlings.  

Data from the wild type seedlings suggested that genes with an EVENING ELEMENT 

(EE: AAAATATCA) promoter motif were more upregulated in response to light than 
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sucrose (Figure III.31B). Genes with the SRE (AAATATC) and C-REPEAT/DROUGHT 

RESPONSE ELEMENT (CRT/DRE: CACGTG) promoter motif were more responsive to the 

presence of sugar than light as genes are equally expressed in the dark in the presence 

of sucrose, as in the presence of mannitol in the light (Figure III.31A).  

Further experiments were then carried out on sfr6-1, med2-1 and med14-1 seedlings, 

to compare their gene expression in response to sucrose in dark or light conditions 

with that of wild type. The wild type samples in these experiments were those 

described above (Figure III.31) 

 
Figure 32: Relative quantification (RQ value) of a known dark-inducible gene in response 
to sugar in the light or dark. D: dark; L: light. Error bars represent a 95% confidence 
interval from 3 technical repeats. Data is representative of two biological replicate 
experiments.  
 

DIN6 was used as a control gene known to be induced in response to dark and 

repressed in the presence of sugar or light, the gene expression profile seen in the wild 

type of this experiment, indicating that treatments were successfully experienced by 

the seedlings (Figure III.32). Expression of DIN6 in med2-1 was elevated under dark 

and mannitol treatments compared to wild type, sfr6-1 and med14-1 samples, 

suggesting that the MED2 subunit is not required for sugar-induced expression of 

DIN6.  

 

III.6.1. EE genes 
Relative expression of genes that were previously shown to have an EE promoter motif 

in addition to the SRE (AAATATC) motif was investigated in wild type, sfr6-1, med2-1 
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and med14-1 seedlings in response to the presence of sucrose in the light or dark 

(Figure III.33).  
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Figure 33: Relative quantitation (RQ value) of EE-containing genes in response to sucrose 
in the light or dark for 6h. D: Dark; L: Light. Error bars represent a 95% confidence interval 
of 3 technical repeats. Data is representative of two biological replicate experiments.  
 

III.6.2. CRT/DRE genes 

 
Figure 34: Relative quantification (RQ value) of CRT/DRE-containing genes in response to 
sugar or mannitol in the light or dark. D: Dark; L: Light. Error bars represent a 95% 
confidence interval. Data is representative of two biological replicate experiments.  
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Data from this experiment show that genes with an EE were not strongly misregulated 

in any of the mutant lines in the response to sugar (Figure III.33A-D). EE-containing 

genes (AT1G20030, AT5G46710, ABF1 & AT3G05800) were induced to a greater 

degree in response to light compared to sugar (Figure III.33). Genes with a CRT/DRE 

motif (GOLS3, LTI78) were misregulated in sfr6 and med14-1 lines, but not in med2-1 

(Figure III.34A & B). cold-responsive CRT/DRE-containing genes were more strongly 

induced in response to sucrose rather than light. Sugar responses in genes that contain 

a CRT/DRE promoter motif have not previously been shown with exception to GOLS3. 

This experiment showed that the SFR6 and MED14 subunits are required for gene 

expression in response to light and sugar, but that the MED2 subunit was not required 

(Figure III.33 & 34). This suggests that different sets of subunits are required for the 

transcriptional response to different abiotic stresses.  

 

III.7. Double mutant lines: sfr6-1, med2-1 and med14-1  
Having shown that expression of cold-inducible genes in sfr6-1, med2-1 and med14-1 

lines is impaired in response to cold, light and sugar, crosses were made between the 

three mutant lines to create plant lines with pairs of the three subunits knocked out. 

This was to investigate whether SRF6/MED16, MED2 and MED14 Mediator subunits 

have overlapping synergistic or redundant functions in response to abiotic stresses or 

if each subunit has a unique role in the response to abiotic stress.  

 

III.7.1. Genotyping for sfr6-1, med2-1 and med14-1 double mutants  

III.7.2 Genotyping and Mendelian genetics  

According to Mendelian genetics as SFR6/MED16, MED2 and MED14 are on different 

chromosomes, it would be expected that 1/16 of all F2 generation plants from each 

cross tested would be homozygous mutants for both Mediator subunit genes, 

assuming an equal inheritance of both genes. Two separate reciprocal crosses were 

made of each mutant pair (data not shown).  
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III.7.2.1 med2-1 x med14-1 

26 plants from the first med2-1 x med14-1 cross were genotyped by PCR using gene-

specific primers. 14 plants were found to be med2-1 homozygous, but none of which 

were found to be med2-1med14-1 double mutant lines. 

III.7.2.2. Genotyping for the sfr6-1 EMS point mutation 

 
Figure 35: sfr6-1 genotyping of homozygous med2-1 and med14-1 mutant lines.  

represents known heterozygous sfr6 lines (1 copy of the mutant sfr6 allele) ,  
represents known sfr6-1 homozygous EMS mutant lines (2 copies of the mutant sfr6 
allele),  represents known wild-type lines ( 2 copies of the wild type SFR6 allele). X 
represents plant lines of an unknown sfr6 mutant status to be genotyped.  represents 
no template controls. The X and Y axes show the relative frequency of the different allele 
forms. Three technical repeats were carried out for each plant line. Each symbol is 
representative of three technical replicate reactions.  
 

Genotyping for the sfr6-1 mutation was carried out using a Taqman® genotyping probe 

that can detect single base pair changes present in the genomic DNA of sfr6-1 EMS 

mutants. sfr6-1 mutants contain a point mutation in the SFR6 genes that causes a 

premature stop codon early in the coding sequence of the protein. The x-axis shows 

the relative number of mutant sfr6 allele copies in the genomic DNA; the y-axis shows 

the relative number of wild type SFR6 allele copies present. Putative sfr6-1 plants lines 

(X on Figure III.35) are compared with known sfr6-1 homozygote (◊), sfr6-1 

heterozygote (Δ) or wild type lines (O), indicating how many copies of the SFR6 allele 

they carry. The proximity of an unknown sample plant (X) to the known sfr6-1 (◊) 

indicates whether the plant is an SFR6, sfr6-1 or a heterozygote.  
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III.7.2.2.1. med2-1 x sfr6-1 

51 med2-1 x sfr6-1 plants were selected for genotyping based on an unbiased 

selection. While 20 were found to be med2-1 homozygous mutants, none of these 

plants were subsequently found to also be homozygous for the sfr6-1 mutation.  

 

 
 
 
 
 
Figure 36: Electrophoresis gel showing the PCR product of the native MED2 gene 
Forward/Reverse primer pair (upper bands) and the T-DNA insert SAIL LB/Reverse (lower 
bands) primer pair used to identify med2-1 homozygotes. 
 

Seeds from the reciprocal sfr6-1 x med2-1 cross were then grown, from which 17 

plants were selected for the sfr6-1 visible phenotype (larger, yellow cotyledons) 

(Knight et al, 2009) and screened for the T-DNA insert in MED2.  

Elimination of the seedlings with a wild type phenotype and specific selection of the 

sfr6-1 phenotype (Knight et al., 2009) increased the chances of finding a double 

mutant plant as the selected seedling was already likely to be sfr6-1 mutant. One plant 

line was found to be a med2-1sfr6-1 double mutant. This plant had a severely dwarfed 

phenotype and was extremely slow growing compared to its wild-type and single 

mutation counterparts (Figure III.38).  

 

III.7.2.2.2. med14-1 x sfr6-1 
Similarly to the med2-1 x sfr6-1 double mutant screening, 51 med14-1 x sfr6-1 plants 

were selected on an unbiased basis and genotyped by PCR for the T-DNA insert in 

MED14. Eight of these plants were found to be med14-1 mutants, none of which were 

subsequently found to be homozygous for the sfr6-1 mutation.  
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Figure 37: electrophoresis gel showing the PCR product of the native MED14 gene 
forward/reverse primer pair (upper bands) and T-DNA insert SALK LB/ reverse (lower 
bands) primer pair used to identify med14-1 homozygous lines.  
 

As in the reciprocal sfr6-1 x med2-1 cross, seeds from the reciprocal sfr6-1 x med14-1 

cross were grown and 17 plants were selected based on the sfr6-1 visible phenotype 

and screened for the MED14 T-DNA insert by PCR. Only one plant was found to be 

homozygous for both the med14-1 T-DNA insert and the sfr6-1 EMS mutation.  

 
Figure 38: sfr6 (left), med14-1sfr6-1 (middle) and med2-1sfr6-1 (right) mutant lines at 5 
weeks old.  
 

The med14-1sfr6-1 double mutant plant showed the visible sfr6-1 phenotype (Knight 

et al., 2009) and in additions it was slightly dwarfed compared to sfr6-1 plants (Figure 

III.38). The med2-1sfr6-1 double knock out plant showed a severely dwarfed 

phenotype at 5 weeks old, compared to sfr6-1 and the med14-1sfr6-1 double knock 

out line. It was therefore not possible to carry out any freezing tolerance or gene 

expression experiments on the med2-1sfr6-1 or med14-1sfr6-1 double mutant lines in 

the time available.  
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III.8. Other Mediator subunit mutants 

III.8.1. NRB4/MED15 

NRB4/MED15 (Canet et al., 2012) is another predicted Mediator tail subunit that has 

been shown to interact with transcription factors in yeast. Studies show that the yeast 

MED15 subunit can bind the yeast MED2 Mediator subunit (Mathur et al., 2011). Due 

to the similarities between the plant and yeast Mediator complex, it is possible that 

the plant NRB4/MED15 and plant MED2 proteins also interact in the plant Mediator 

complex.  

Two confirmed nrb4/med15 T-DNA insert lines are also available from NASC but have 

been shown to be sterile and are seedling lethal in the absence of sucrose so cannot 

be grown on soil for propagation: in each generation, the parent must be 

heterozygous for the mutation and the homozygous mutants selected for as seedlings 

(Canet et al., 2012). Therefore, these seed lines were not used in any of the 

experiments presented here as many seedlings are required for gene expression 

analysis when the seedlings are 7-days old and individual homozygous seedlings could 

not be identified and harvested rapidly enough for experimental purposes. In addition, 

the risk of failing to eliminate all wild-type seedlings from the experiment was too 

great and could have created artefacts in the data. nrb4 mutants were not included in 

the original cold-response experiments as the seeds were a gift from the Tornero 

group in Valencia that arrived later in the year. The three nrb4 mutant lines used are 

EMS mutants that contain three different SNPs which cause amino acid alterations in 

the KIX domain of the NRB4 protein (Figure II.4). These three nrb4 EMS mutant lines 

were previously shown to have impaired responses to pathogenesis (Canet et al., 

2012).  
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III.8.1.1. Quantitative real time PCR- Cold  

 
Figure 39: Relative quantification (RQ value) of cold-inducible transcript levels in 3 
separate nrb4/med15 lines in cold or ambient conditions. Cold: 6h at 5°C; Amb: 6h at 
20°C. Error bars represent a 95% confidence interval from 3 technical repeats. Data is 
representative of one biological replicate experiment.  
 

Preliminary experiments were carried out on all three nrb4/med15 EMS mutant lines 

under cold (5°C) and ambient (20°C) conditions. The nrb4-1 allele showed impaired 

expression of the cold-inducible genes KIN2 and ABF1 (Figure III.39). The nrb4-2 allele 

showed different impairments in expressing KIN2 and ABF1. The nrb4-3 line did not 

appear to show any impairment in cold-induced gene expression.  

Further experiments testing the role of NRB4/MED15 in the responses to other abiotic 

stresses were carried out only on the nrb4-1 and nrb4-3 alleles as too few nrb4-2 seeds 

were available for experiments.  

 
Figure 40: Relative quantification (RQ value) of cold-inducible transcripts in cold or 
ambient conditions. Cold: 6h at 5°C; Amb: 6h at 20°C. Error bars represent a 95% 
confidence interval from 3 technical replicates. Data is representative of two biological 
replicate experiments.  
 

Data from two further biological repeats suggested that the preliminary experiments 

showing nrb4/med15 lines were impaired in expressing cold-inducible genes was not 
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reproducible and therefore likely to be inaccurate (Figure III.40). Further experiments 

showed that cold-inducible genes are not down-regulated in either of the two nrb4 

lines (nrb4-1 and nrb4-3) that were experimented with (Figure III.40).  

 

III.8.1.2. Quantitative real time PCR– Dark & UV-C 
Further experiments were carried out on nrb4-1 and nrb4-3 lines to investigate dark- 

and UV-C-induced transcripts. Dark-induced gene expression was normalised to the 

expression of PEX4 (Peroxisomal ubiquitin conjugating enzyme 4), a housekeeping 

gene that does not alter its expression in response to many abiotic stresses 

(Czechowski et al., 2005). UV-induced gene expression was normalised to the 

expression of PR1 (At4g26410), a housekeeping gene that does not alter expression in 

response to UV-C as PEX4 expression level have been shown to alter in response to 

UV-C (Wathugala et al., 2012). Graphs show relative quantitation (RQ value) of gene 

expression compared to the first temperature-treated sample on the histogram (set to 

a value of 1), as described by the ΔΔCT method (Livak & Schmittgen 2001) of transcript 

quantitation. 

  
Figure 41: Relative quantification (RQ value) of dark- and UVC- inducible transcripts in 
response to dark or UV-C exposure. Cont: control 20°C conditions; dark: 6h darkness 3h 
after dawn; UV: 5KJ.m² UV-C. Error bars represent a 95% confidence interval from three 
technical repeats. Data is from one biological replicate experiment.  
 

Preliminary results suggest that expression of dark-inducible gene, DIN6 was impaired 

in the nrb4-1 EMS mutant, while expression of UV-responsive gene PR1 was impaired 

in both nrb4 lines tested (Figure III.41). However, expression of PR1 appeared to be 

upregulated in nrb4 lines under untreated conditions compared to the wild type levels. 

The untreated condition of the seedlings (Figure III.40 & 41) was an unchanged 20°C 

temperature and light regime. The same set of seedlings acted as the control sample 

for cold, dark and UVC stresses.  
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III.8.2. CDK-8 domain 

The CDK-8 domain of Mediator has been reported to be a regulatory domain that 

causes repression of gene activation when bound (Andrau et al., 2006). It consists of 4 

subunits: CDK8, CYCC, MED12 and MED13. Research has previously been carried out 

on the MED12 and MED13 subunits of the CDK-8 domain (Gillmor et al., 2010, Imura 

et al., 2012), but little is known about the CYCC and CDK8 subunits of the Mediator 

complex in plants.  

 

III.8.2.1. PCR genotyping 

III.8.2.1.1. CycC 
T-DNA insertion lines from NASC that have not been previously published were tested 

for the presence of the T-DNA insert by conventional PCR and qRT-PCR was performed 

to show that reduced levels of full length transcript occurred in the mutant compared 

to the wild-type. Two different CYCC genes, At5G48630 (CYCC-1) and At5G48640 

(CYCC-2), exist back-to-back in the Arabidopsis genome. A T-DNA insert line was 

available for each gene from NASC (SALK_039400 and SAIL_102_B02 respectively). As 

the genes are back-to-back within the Arabidopsis genome, creating a double mutant 

by conventional crossing as with sfr6-1, med2-1 and med14-1 would not be possible; 

therefore an RNAi approach may prove useful in the future as this was also not 

possible within the timeframe of the project. 

 
Figure 42: Relative quantification (RQ value) of transcript levels of CYCC-1 (At5g48630, 
SALK_039400) and CYCC-2 (At5g48640, SAIL_102_B02) under control conditions in wild 
type and cycC-1 and cycC-2 lines. Error bars represent a 95% confidence interval from 3 
technical repeats. Data is from 2 biological replicate experiments. 
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The two NASC insert lines both contain T-DNA inserts in the promoter regions of the 

CYCC1 (At5g48630) and CYCC2 (At5g48640) genes. Data from qRT-PCR experiments in 

Figure III.42 (above) showed that transcript levels of cycC-2 were reduced by at least 

90% in the T-DNA insert line under normal and conditions. This suggests that the 

proposed cycC-2 seed line identified from NASC can be considered a loss-of-function 

mutant. Transcript levels of CYCC-1 were only reduced by 40% in the cycC-1 insertion 

line, suggesting that the cycC-1 seed line was not a complete loss-of-function mutant.  

 

III.8.2.2. Phenotypes 

III.8.2.2.1. CycC 

There was no visible phenotype of the two cycC homozygous mutant lines, compared 

to wild type plants. This was potentially due to the two genes having redundant 

functions. No research has yet been published about cycC mutant lines in response to 

abiotic stresses although other CDK-8 domain subunits such as MED12 and MED13 

have been investigated (Gillmor et al., 2010, Imura et al., 2012).  

 

III.8.2.2.2. Cdk8 

T-DNA insertion lines in the CDK8 gene from NASC that have not been previously 

published were tested for disruption of the gene by conventional PCR to show the 

presence of the T-DNA insert in the proposed mutant line compared to the wild-type.  

 

 
Figure 43: Electrophoresis gel showing the PCR product of the native CDK8 gene 
Forward/Reverse primer pair used to identify cdk8 homozygotes.  
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Figure 44: Photograph of the cdk8 (At5g63610) homozygous T-DNA knock out 
(SALK_138675) plant before seed harvesting.  
 

The phenotype for the cdk8 homozygous mutant showed poor growth compared to 

wild-type Arabidopsis thaliana plants. cdk8 plants only grew to 2/3 height and 

produced smaller leaves, had much fewer, smaller siliques that contained few seeds 

(Figure III.44) compared to wild type. The upper parts of the plants bore no siliques (as 

seen by Wang & Chen, 2004). The poor seed set of this cdk8 mutant line meant that no 

further experiments on transcriptional regulation in response to abiotic stresses could 

be carried out in the time available.  

 

III.8.2.3. Analysis of stress-induced gene expression in cycC mutants 

Quantitative reverse transcriptase PCR (qRT-PCR) analysis was carried out on cold-, 

dark- and UV-inducible genes to assess relative expression levels of these genes in 

cycC-1 and cycC-2 lines compared to wild type. 

III.8.2.3.1. Cold-treatment 

 
Figure 45: Relative quantification (RQ value) of cold-inducible transcripts in response to 
ambient or cold conditions. Cold: 6h at 5°C; Control: 6h at 20°C. Error bars represent a 
95% confidence interval from 3 technical repeats. Data is from a single biological 
replicate experiment.  
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Preliminary experiments suggested that cycC-1 and cycC-2 mutants were not impaired 

in their transcriptional response to low temperatures compared to wild type. Further 

experimentation will be required to verify this result, however, it is likely that the T-

DNA insert lines from NASC were not complete knock-out lines and still retained 

functionality when part of the Mediator complex resulting in normal gene expression 

compared to wild type.  

 

III.8.2.3.2. UVC- & Dark-treatment 

 
Figure 46: Relative quantification (RQ value) of UV-C and dark-inducible transcripts PR1 
and DIN6 respectively. Amb: 20°C conditions; Dark: 6h darkness 3h after presumptive 
dawn; UV: 5KJ.m² UV-C. Error bars represent a 95% confidence interval of 3 technical 
repeats. Data is from one biological replicate experiment.  
 

Preliminary data suggested that expression of UV-C-inducible gene, PR1, was not 

impaired in cycC-1 or cycC-2 lines (Figure III.46A). However, expression of dark-

inducible gene DIN6 appeared to be mildly impaired in both cycC mutant lines 

compared to the wild type (Figure III.46B). Further experiments would be required to 

confirm this result.  

0

200

400

600

800

1000

Col-0
Control

Col-0
UV

cycC1
Control

cycC-1
UV

cycC2
Control

RQ
 v

al
ue

  

A 

0

20

40

60

80

100

Col-0
Amb

Col-0
dark

cycC-1
Amb

cycC-1
dark

cycC-2
Amb

cycC-2
dark

B PR1 DIN6 



Chapter IV: Discussion 

79 
 

IV.  Discussion 
Previous research has identified a set of sensitive to freezing (sfr) Arabidopsis mutants 

including sfr6 that could not survive freezing after a period of cold, non-freezing 

temperatures due to a failure to cold acclimate (Warren et al., 1996). It was later 

discovered that in the case of sfr6, the failure to cold acclimate was due to a defect in 

Cold On-Regulated (COR) gene expression (Knight et al., 1999). Knight went on to show 

that sfr6 mutants specifically failed to express CBF-controlled COR genes in response 

to cold (Knight et al., 2009). The SFR6 protein was later shown to be MED16, which 

forms part of a larger protein complex called Mediator (Bäckström et al., 2007, 

Wathugala et al., 2011) which interacts with both transcription factors and RNA pol II 

to mediate gene expression (Conaway & Conaway, 2011).  

In light of previous research showing that several CBF-responsive genes were poorly 

expressed in response to cold in sfr6 mutants (Knight et al., 1999, 2009), microarray 

experiments were conducted to investigate whether all CBF-responsive genes were 

affected in this way and to ask whether loss of SFR6 affects cold-responsiveness of 

other genes that do not use CBFs. The work in this thesis validates the data obtained 

from the microarray experiments and tests whether all cold-inducible genes require 

the SFR6 subunit to be activated in response to cold. This study also expands on this 

idea, exploring the transcriptional response of cold-inducible genes in other Mediator 

subunit mutants, med2, med14, med15, cycC1, cycC2 and cdk8. This is to investigate 

whether all subunits tested are required for correct cold-induced gene expression or if 

individual subunits play a specific role in the transcriptional response to abiotic 

stresses.  

 

IV.1. Promoter motifs associated with genes that require SFR6 for 

cold-induction  
Microarray data showed that not all cold-induced genes require the SFR6 subunit for 

their full expression. To further explore the role of SFR6 in the transcriptional 

regulation of cold-inducible genes, an analysis was carried out on 500 bp of the 

promoter regions of genes identified in microarray experiments as requiring SFR6 for 

their expression. ATHENA and RSAT analysis software was used to identify both known 
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and predicted transcription factor binding motifs to highlight potential differences 

between cold-inducible genes that are misregulated or non-misregulated in sfr6.  

 

IV.1.1 The CRT/DRE motif 

Using both the RSAT programme and the ATHENA software, a CCGAC sequence, which 

is the C-REPEAT/DROUGHT RESPONSE (CRT/DRE) motif, was found in the promoters of 

misregulated cold-inducible genes (Figure III.2). The CRT/DRE motif is a binding site of 

CBF transcription factors to induce expression of Cold On-Regulated (COR) genes that 

results in cold acclimation. CBFs binding to the CRT/DRE motif was first validated by in 

vitro experiments (Stockinger et al., 1997, Liu et al., 1998) and more recently in vivo by 

research carried out in our lab (Hemsley et al., 2014) showing that SFR6 is required for 

all CBF-responsive gene expression.  

 

IV.1.2 The EE motif  

In addition to the CRT/DRE motif, the ATHENA software identified an AAAATATCA 

sequence, which is the full EVENING ELEMENT (EE), only in the group of cold-inducible 

genes that are misregulated in sfr6 (Figure III.3). The EE is more commonly known to 

be involved in circadian clock signalling mechanisms than in the cold response (Carré & 

Kay, 1997), however data produced in this thesis is in accordance with previously 

published results (Mikkelson & Thomashow, 2009) showing that the EE can be 

responsible for cold-inducibility in genes that do not contain a CRT/DRE motif and are 

not CBF-responsive. A link between sfr6 mutants and impaired expression of EE-

containing genes is unsurprising as an association between SFR6 and the EE-induced 

gene expression has previously been published (Knight et al., 2008). However, the 

previously published association was in the context of sfr6 and reduced expression of 

circadian clock components rather than abiotic stress.  

The circadian clock is a signalling network that carries time-encoded information, an 

internal molecular clock that organisms use to measure time. It allows organisms to 

anticipate and respond to environmental changes on a daily and seasonal basis. The 

circadian clock can be divided into three parts: a central oscillator that generates 

inbuilt rhythmic behaviour in the plant, input pathways that carry environmental 

information to effect changes to the central oscillator and finally the output pathways 
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that regulate physiological processes as a result of changes to the central oscillator 

(Dunlap, 1999). The central oscillator is entrained by environmental time cues such as 

light, dark or temperature fluctuations (McClung, 2006) affecting transcriptional 

regulation feedback loops between the three different parts of the circadian clock. 

This can repress or activate transcription of clock-controlled genes to alter plant 

growth and development.  

CIRCADIAN CLOCK ASSOCIATED1 (CCA1) (Wang & Tobin, 1998) and LATE ELONGATED 

HYPOCOTYL (LHY) (Schaffer, 1998), PSEUDORESPONSE REGULATOR (PRR) and TIMING 

OF CAB EXPRESSION1 (TOC1) (Millar, 1995; Makino, 2000) are four transcription 

factors that bind to the EE motif and act antagonistically to regulate transcription of 

clock-controlled genes (Alabadí et al., 2001). Feedback loops between other unknown 

clock components and these transcription factors regulate expression of clock-

controlled genes to alter plant development and growth in response to environmental 

signals (McClung, 2006). Expression of clock-controlled genes is also affected by 

phytohormones such as auxin (Covinton & Harmer 2007). There is also evidence 

showing that the cold-inducibility of CBF-responsive transcript levels is gated by the 

circadian clock (Fowler et al., 2005; Kreps et al., 2002; Bieniawska et al., 2008). Recent 

research has shown that CCA1 and LHY transcription factors are involved in the control 

of CBF expression, suggesting that the circadian clock does contribute to the process 

of cold acclimation (Dong et al., 2011).  

Expression of clock-controlled genes can also be affected by endogenous sugar levels 

(Blasing et al., 2005). As presumptive evening approaches, environmental 

temperatures begin to fall. In C3 plants such as Arabidopsis, the combination of cooler 

temperatures and reduced light levels signals the approach of night and allows the 

plant to alter carbon metabolism pathways from photosynthesis and sugar storage to 

respiration and sugar usage (Geiger & Servaites, 1994). In this study the RSAT 

programme identified a SUGAR RESPONSE ELEMENT (SRE) as overrepresented in the 

promoters of the cold-inducible sfr6 misregulated genes. The SRE sequence is AAATAT, 

a core sequence within the full EE motif, AAAATATCA (Figure III.3). This may explain 

the link between previous research showing that some clock-controlled genes are 

responsive to sugar (Blasing et al., 2005). Interestingly, the expression of clock 

component genes is less affected by sugar levels in sfr6 mutants than it is in wild type 

plants (Knight et al 2008).  
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IV.2. Temporal kinetics of cold-inducibility vary between cold-

inducible genes 
To further investigate the group of misregulated cold-inducible genes in sfr6 identified 

from the microarray, the genes were divided into three subgroups depending on the 

promoter elements found 500 bp upstream of the predicted transcriptional start site 

of the gene. The three subgroups consisted of genes containing a CRT/DRE motif 

(CCGAC), an EE motif (AAAATATCA) or both motifs. A time course experiment was 

carried out under free-running conditions in wild type Arabidopsis under cold (5°C) 

and ambient (20°C) temperatures to investigate whether genes from each of the three 

subgroups were differentially expressed depending on the presumed time of day. It 

has been suggested that cold dampens oscillator cycles, disrupting expression of some 

circadian output genes (Gould, 2006; Bieniawska et al., 2008). It has also been 

previously demonstrated that EE-containing genes are upregulated in the relative 

evening period (McClung, 2006).  

The time course experiments described in this thesis revealed different patterns of 

relative transcript levels between the three subgroups of genes in wild type 

Arabidopsis but indicated an optimal time point of 6h at 5°C for significant levels of 

cold-induced gene expression in all three groups of genes, irrespective of their 

dynamics (Figure III.8). This time point was used in all further experiments. Genes that 

contained a CRT/DRE motif showed a continued increase in transcript levels over time 

(Figure III.11), with the exception of GOLS3 (Figure III.11C) which showed an 

expression pattern similar to EE-containing genes (Figure III.10). This suggests that 

GOLS3 expression in response to cold is not purely regulated by the presence of a 

CRT/DRE element but may also be affected by the presence of other promoter motifs 

such as the SRE, as GOLS3 encodes an enzyme involved in galactinol synthesis (Taji et 

al., 2001). Relative transcript levels of genes that contained the EE motif decreased 

after 9h of cold treatment (Figure III.10). This is possibly due to the effects of the 

circadian regulatory elements altering relative transcript levels rather than the cold-

response as relative expression of EE-containing genes oscillated under ambient 

conditions during the time course (Figure III.8). Alternatively the EE may not provide a 

sustained response to cold, offering explanation of the oscillations seen in transcript 

levels during the timecourse. It is possible that while both the CRT/DRE and EE motifs 
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are cold-inducible, only the CRT/DRE motif provides a sustained response to cold, as 

seen in the transcript levels of CRT/DRE-containing genes (Figure III.8) while the EE 

provides a short-term response.  

 

IV.2.1. The role of Mediator tail subunits in control of CBF-responsive CRT/DRE-

containing genes 

In light of the differences seen between CRT/DRE- and EE-containing genes in 

response to cold during the timecourse, relative transcript levels of misregulated 

genes that contained a CRT/DRE element, an EE element or both elements were then 

investigated after 6h at 5°C in plant lines where various Mediator subunits had been 

disrupted by either ethyl  methanesulphonate (EMS) mutation (sfr6-1) (Knight et al., 

2009) or T-DNA insertion (med2-1 and med14-1 lines). This was to investigate whether 

other tail subunits are required for correct expression of these genes or whether this is 

a role specific to SFR6. In response to a treatment of 6h at 5°C, genes that contained a 

CRT/DRE promoter element showed reduced expression in sfr6-1, med2-1 and med14-

1 seedlings compared to wild type (Figure III.11). This reduction could be due to a 

number of factors such as variations in mRNA processing, stability or turnover in 

response to cold temperatures. The reduced col-induced gene expression could also 

be due to impaired recruitment of transcriptional machinery such as Pol II or the 

Mediator Complex.  

Chromatin immunoprecipitation (ChIP) experiments were therefore carried out to 

investigate the presence of transcriptional machinery at cold-inducible genes. ChIP 

experiments revealed that occupancy of Pol II was impaired in the three mutant lines 

under cold conditions compared to wild type levels along KIN2, COR15A and LTI78 

(Figure III.16 & 18) genes, whose promoters contain the CRT/DRE promoter motif but 

no EE motif. A reduced occupancy of Pol II at cold-inducible genes would explain the 

reduced COR gene transcript levels and result in an inability to correctly cold acclimate 

and survive freezing conditions, as seen in sfr6-1 mutants (Knight et al., 1999). These 

data indicate that the SFR6 subunit and the MED2 and MED14 subunits are all 

required to recruit Pol II to cold-inducible promoters and express cold-inducible genes 

correctly.  
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Other current research in the lab (Hemsley et al., 2014) suggests that recruitment of 

the whole Mediator complex to CRT/DRE-containing genes is also impaired in sfr6-1, 

med2-1 and med14-1 mutants compared to wild type in response to cold. Briefly, ChIP 

experiments were carried out against the MED6 (head submodule) subunit of the core 

Mediator complex and showed a reduced presence of core Mediator along the length 

of CRT/DRE-containing genes. This suggests that loss of SFR6, MED2 or MED14 

subunits from the Mediator complex results in a reduced recruitment of both the 

Mediator complex and the RNA polymerase II enzyme. Research in the lab has also 

shown by ChIP experiments that CBF recruitment to the CRT/DRE motif in GOLS3, 

LTI78 and KIN2 was normal in sfr6-1 mutants in response to cold treatments. This 

suggests that CBF recruitment does not require the Mediator complex, but Pol II 

recruitment does. These data are in agreement with previous work carried out (Malik 

& Roeder 2010) showing that Mediator is recruited by transcription factors, followed 

by Pol II recruitment to the Mediator complex for gene activation. Therefore, poor 

recruitment and occupancy of vital transcriptional machinery such as the Mediator 

complex and by extension, Pol II along the length of cold-inducible genes is likely the 

cause of misregulation of cold-inducible genes that contain CRT/DRE promoter motifs.  

Impairment of the SFR6, MED2 or MED14 subunits could result in a loss of 

transcription factor binding sites present on individual subunits or an incorrect 

conformation of the Mediator complex that does not promote transcription factor 

binding at promoter motifs. Individual subunits could play a structural role tethering 

subunits containing transcription factor binding sites onto the complex, which are lost 

as an indirect consequence of mutated tethering subunits. Cryo-electron tomography, 

a technique used to reconstruct 3D images from a series of 2D images, could prove an 

interesting tool to investigate Mediator conformation in sfr6-1, med2-1 and med14-1 

plant lines compared to wild type Arabidopsis. This technique may reveal physical 

changes to the Mediator complex as a result of the sfr6-1, med2-1 or med14-1 

mutations. Alternatively, the whole complex could be pulled down from mutant plants 

to see if various subunits are attached to the complex or whether they require the 

missing subunits in order to remain associated with the complex.  

 

 



Chapter IV: Discussion 

85 
 

IV.2.1.1. The role of Mediator tail subunits in activation of expression via the CRT 
motif 

Previously published work has shown that the CRT/DRE motif alone can respond to 

cold (Knight et al., 2004). To further investigate the dependence of CRT/DRE-mediated 

cold-inducible expression upon these Mediator tail subunits, an artificial concatamer 

construct was expressed transiently in 7 day old sfr6-1, med2-1 and med14-1 

seedlings. The data produced are in agreement with a previous study (Boyce et al., 

2003) where sfr6 mutants expressed a CRT concatamer less than wild type in response 

to cold. Ideally stable transformant lines expressing the CRT/DRE::LUC+ concatamer in 

the sfr6-1, med2-1 or med14-1 backgrounds would form the best basis for analysis of 

the role of the CRT/DRE promoter element in response to various abiotic stresses such 

as cold. Stable transformant lines carrying both the concatamer and a Mediator 

subunit mutation have now been identified. Experiments with these lines were not 

possible in the time available for this project but will provide an interesting line of 

enquiry to future work.  

 

IV.2.2. EE-containing genes do not show impaired Mediator and Pol II 

recruitment in sfr6-1, med2-1 and med14-1 in cold conditions 

Amongst the genes shown in the microarray experiment to be cold-inducible were 

genes that contained an EE promoter element (AAATATCA) but no CRT/DRE motif. 

Previous work has demonstrated that the EE can confer cold-inducibility on some non-

CRT/DRE genes (Mikkelsen & Thomashow, 2009). Experiments in this thesis showed 

that expression of EE-containing genes in response to cold is impaired in sfr6-1, med2-

1 and med14-1 compared to wild type levels (Figure III.10), much like in the group of 

CRT/DRE-containing genes previously described. Expression of one EE-containing gene, 

At5g4470, was shown to be impaired in sfr6-1 mutants, but not med2-1 or med14-1 

lines. Other genes expressed to a similar level in the microarray were therefore 

investigated. Transcript data showed that none of the genes were also only 

misregulated in sfr6-1 lines. This lends support to the idea that specific Mediator 

subunits are required for activation of certain cold-inducible genes. Unlike the 

CRT/DRE-containing genes however, recruitment of Pol II to EE-containing genes as 

shown by ChIP analysis (Figure III.17 & 19) is not impaired in sfr6-1, med2-1 or med14-

1 compared to wild type in response to cold treatments (6h at 5°C).  
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Full length ChIP analysis of At1g20030 (a gene containing an EE but not CRT/DRE 

motif) shows that occupancy of Pol II along the full length of the gene is not increased 

in response to cold (Figure III.17) as seen in the CRT/DRE-containing genes. This could 

be explained by de novo recruitment of Pol II and transcription of CRT/DRE-containing 

genes such as GOLS3 and KIN2 in response to cold, while EE-containing genes are 

potentially constantly being transcribed in ambient conditions and modifications to 

the mRNA transcript that affect its stability or turnover occur in response to cold 

temperatures. Other current research has been carried out in the lab with ChIP 

experiments against the MED6 core Mediator subunit in EE-containing cold-inducible 

genes in wild type, sfr6-1, med2-1 and med14-1 mutants (Hemsley et al., 2014). 

Results revealed that, like Pol II, occupancy of core Mediator is not impaired in any of 

the mutant lines under cold conditions compared to the occupancy seen in wild type 

seedlings. These data suggest that both Mediator and Pol II recruitment occurs 

correctly in EE-containing genes; however posttranscriptional modifications such as 

alternative splicing or mRNA transcript degradation may affect the number of 

detected transcripts (Hofmann, 2012; James et al., 2012). Alterations to the mRNA 

may lead to an increase in transcript turnover due to altered poly-A tailing of the 

mRNA or alternative splicing events of the mRNA in response to cold (Chiba et al., 

2012). Alternatively spliced mRNA may potentially have been detected with the qRT-

PCR primers used and misinterpreted as an increase in total transcript. Pol II 

occupancy may also not be a reflection of its activity; more Pol II is not recruited to EE-

containing genes in response to cold, however it may have a greater activity in the 

cold that is dependent on the presence or absence of the subunits.  

Experiments to investigate alternative splicing events in EE-containing genes were 

therefore carried out in wild type, sfr6-1, med2-1 and med14-1 under cold and 

ambient conditions. Data showed that alternate splice variants of the At1g20030 gene 

are not over or underrepresented in any of the mutants compared to wild type (Figure 

III.24). This suggests that for this gene, spliceosome activity is not impaired in the 

mutant lines and that the reduced transcripts of At1g20030 seen in sfr6-1, med2-1 and 

med14-1 are not due to an increased proportion of alternatively spliced or unspliced 

mRNA detected by the qRT-PCR primers. However, alternative splicing events in other 

EE-containing genes could be investigated. PolyA tailing of the transcripts could also be 

investigated to explore whether transcripts of At1g20030 and other cold-inducible 
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genes are degraded more rapidly in Mediator subunit lines compared to wild type 

(Gotic & Schilbler, 2013; Chiba et al., 2012).  

 

IV.2.3. Non-misregulated cold-inducible genes  

A group of cold-inducible genes were also found not to be misregulated in sfr6-1, 

med2-1 or med14-1 mutants (Figure III.13), suggesting a level of cold-inducible gene 

activation that is independent of these three Mediator subunits, showing that certain 

Mediator subunits are required for some but not all cold-inducible genes. These genes 

were weakly induced in response to cold which may be the result of changes in 

transcript stability rather than activator-dependent transcription. However, further 

investigation into the activation mechanisms of these genes could prove interesting to 

elucidate the role of other transcriptional activation mechanisms, the role of other 

previously unknown Mediator subunits involved in the transcriptional response to cold 

or posttranscriptional modifications to the mRNA transcript in response to cold 

treatments.  

 

IV.3. The SUGAR RESPONSE ELEMENT 
A consensus sequence of AAATATC was found in the promoters of genes misregulated 

in sfr6-1 mutants using the RSAT programme (Figure II.3). While it forms part of the 

full EE motif, it is also known to be the SUGAR RESPONSE ELEMENT (SRE) (Tatematsu 

et al., 2005). The SRE was not found using the ATHENA software as it is not a known 

transcription factor binding sequence. However, previous research has shown that 

some clock-controlled genes are responsive to sugar (Blasing et al., 2005). This is 

potentially because the SRE motif sequence forms the core of the full EVENING 

ELEMENT (AAAATATCA) promoter motif.  

Sucrose is the major sugar synthesised in plants; during the day it is synthesised in the 

cytosol via photosynthesis and stored as a carbon store in the form of starch. At night 

the starch is degraded for the production of sucrose as an energy source (Fekke et al., 

2005). Sugars are important in plants as they serve as energy reserves, as building 

blocks for carbohydrate polymers such as starch or cellulose, as precursors of amino 

acids and as osmolytes which are necessary for the process of cold acclimation (Nägele 

et al., 2010). Sugar accumulation has numerous roles in the cell, acting to reduce 
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cellular dehydration during freezing, helping proteins to maintain conformation and 

acts as an energy store (Levitt, 1980; Klotke et al., 2004). It has also been suggested 

that sugars may contribute to cold acclimation in plants (Guy et al., 1992) as 

overexpression of CBF3 causes freezing tolerance and the accumulation of sugars in 

Arabidopsis (Gilmour et al., 2000). sfr4, another sfr mutant identified in the mutant 

screen with sfr6 (Warren et al., 1996) is also susceptible to freezing as it fails to 

accumulate sugars (Uemura et al., 2003) 

 

IV.3.1. Expression of sugar-response genes is impaired in sfr6-1 and med14-1 but 

not med2-1 mutants 

Research by Tatematsu (Tatematsu et al., 2005) showed that the SRE and SRE-like 

motifs were found in genes repressed by sugar. However, results from this study 

showed that genes in wild type Arabidopsis containing both the SRE and a CRT/DRE 

promoter motif were upregulated in response to sucrose in wild type seedlings (Figure 

III.31A). Genes that did not contain a CRT/DRE motif were not upregulated in response 

to sucrose treatment. Experiments revealed that genes containing only the SRE and no 

CRT/DRE motif were more responsive to the presence of light rather than the 

presence of sucrose in wild type seedlings (Figure III.33). This could suggest that these 

genes are regulated more by light than sugar or that the changes in sugar levels 

caused by the light were sufficient to effect changes in sugar-responsive gene 

expression regardless of the addition or absence of extra sucrose to the media.  

In light of the differential gene expression patterns seen as a result of the promoter 

elements present in wild type seedlings, expression of sugar-induced genes was 

investigated in sfr6-1, med2-1 and med14-1 mutants. This was to explore whether 

genes from the CRT/DRE and EE subgroups showed marked differences in patterns of 

transcript levels in response to sucrose as was seen in response to cold conditions.  

Sugar-response experiments revealed that genes containing both a CRT/DRE motif and 

the SRE motif were differentially expressed in sfr6-1, med2-1 and med14-1 seedlings. 

Expression of genes that contained both CRT/DRE and SRE motifs were impaired only 

in sfr6-1 and med14-1 mutants in response to sugar and darkness (Figure III. 32, 33A & 

34). Interestingly, these genes (DIN6, AT1G20030, GOLS3 & LTI78) were more highly 

expressed in med2-1 than wild type seedlings in both experiments carried out (Figure 
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III.32 & 34). This could suggest that the MED2 subunit may function as a 

transcriptional repressor of sugar-response genes. 

The increased sugar-induced gene expression in med2-1 mutants implies a subunit-

specificity in response to abiotic stresses: all three subunits investigated in this study 

are required for increased cold-induced transcript levels in response to cold, but only 

SFR6 and MED14 subunits are required for an increase in sugar- and dark-inducible 

gene transcript levels.  

 

In response to sucrose, transcripts of LTI78 and GOLS3 were impaired in sfr6-1 and 

med14-1 mutants (Figure III.34). Expression of GOLS3 is likely to be affected and/or 

regulated by the presence of sucrose as it encodes an enzyme which is involved in 

synthesis of a carbohydrate, galactinol, a type of complex sugar, so its own expression 

could be regulated by sugar (Taji et al., 2001). However a similar pattern occurs in 

LTI78, another CRT/DRE-containing gene, suggesting a general effect of sugar on 

CRT/DRE-containing genes rather than a GOLS3-specific effect. Transcriptional analysis 

of other CRT/DRE-containing genes identified in the microarray may provide further 

evidence to support this hypothesis.  

It is also possible that other previously unidentified promoter elements are also 

present in these genes regulating their response to sugar that was not found in the 

RSAT or ATHENA promoter element analysis, but further analysis with different 

promoter programmes may be necessary to further investigate this. It is also possible 

that known cold-responsive genes could be prone to activation by sucrose via the 

CRT/DRE element as osmoprotectants often take the form of sugars and therefore an 

increase in the sugar content of the cell is synonymous of an osmotic stress to the 

plant, thus activating the CRT/DRE element in genes such as LTI78 and GOLS3 (Asher 

& Schibler, 2011). Further investigation with other CRT/DRE-containing genes may 

prove useful in further validating this hypothesis. 
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IV.4. Additional Promoter motifs identified by RSAT in promoters of 

sfr6-misregulated genes 
Using the RSAT analysis software and ATHENA programme, a CACGTG motif (Figure 

III.1) was also found to be overrepresented in the promoters of the 81 genes 

misregulated in sfr6 and has been characterised as the abscisic acid response element 

(ABRE) (Mundy et al., 1990). The ABRE is known to play a role in the activation of 

known cold-inducible genes (Haake et al., 2002) by ABF and AREB transcription factors 

which are induced by the drought hormone, ABA (Narusaka et al., 2003). Research 

shows that the ABRE acts as a coupling element for the EE (Mikkelson & Thomashow 

2009) and that salt- cold- and drought-stress responses share many common signalling 

networks in plants (Krasensky & Jonak, 2012). It is therefore unsurprising that the 

ABRE occurs at a greater frequency in cold-inducible genes than would normally be 

expected in the rest of the plant genome. 

The RSAT analysis software also revealed numerous other motifs. Of these motifs, a 

CTTCTTC sequence was found (Figure III.4) that is known as a Y-patch, a pyrimidine-

rich DNA sequence that has been implicated in transcriptional regulation of genes by 

DNA packing (Yamamoto et al., 2007). Other motifs were also found present within 

500 bp of the promoters of the non-misregulated gene group using the RSAT software 

that contained AAACCCTAAA, GCCCA and AAACAAA sequences (Figure III.6 & 7). These 

sequences have previously been found in other Arabidopsis genome-wide studies but 

have not yet been shown to have a role in DNA packing or acting as transcription 

factor binding sites in plants or animals (Mohanty et al., 2005).  

 

IV.5. Mediator Subunit Specificity 
In light of the Mediator subunit requirement for the transcriptional responses to 

sucrose, dark (Figure III.32 & 34) and cold (Figure III.10 & 11), it would be interesting 

to investigate the contribution of each subunit to stress-induced transcript levels by 

assessing whether loss of two subunits causes more severe effects than loss of either 

singly. This would also elucidate whether sfr6, med2 and med14 had any overlapping 

redundant functions in abiotic stress response or if the roles they play are unique. 

Therefore crosses were made between sfr6-1, med2-1 and med14-1 mutants to create 

lines lacking expression of pairs of these subunits.  
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According to Mendelian genetics, as SFR6, MED2 and MED14 are on different 

chromosomes, it would be expected that 1/16 of the F2 generation were homozygous 

for mutations on both genes. However, in genotyping these plant lines, it was found 

that a much smaller proportion of the population were homozygous double mutants, 

occurring at a frequency of 0.015 (med2sfr6-1 and med14sfr6-1 lines only), compared 

to the expected frequency of 0.063. It is therefore possible that this mutation was 

under negative selection bias due to reduced seed viability as a result of the mutation 

or a bias in the plants chosen to be tested for genotyping. To eliminate the latter 

possibility, an unbiased selection process was used in a second search for double 

mutant lines that successfully yielded double homozygous med2-1sfr6-1 and med14-

1sfr6-1 mutants.  

Due to the dwarfed phenotype and delayed flowering time of med2-1sfr6-1 and 

med14-1sfr6-1 (Figure III.38), it was not possible in the time available to carry out any 

abiotic stress assays on the progeny of these two plant lines. However, the dwarfed 

phenotype indicates some degree of additive or synergistic behaviour of SFR6, MED2 

and MED14 as opposed to functional redundancy. One possibility is that activation of 

certain genes may require two different transcription factors that each bind different 

Mediator tail subunits or that binding sites of certain transcription factors spans two 

different subunits. It is also possible that one tail subunit may bridge other subunits 

containing the transcription factor binding site to the rest of the Mediator complex.. 

The current data could support any of these possibilities. Experiments with double 

Mediator subunit mutants will provide an interesting line of enquiry in future work to 

address these possibilities and further explore the function of the subunits in the 

transcriptional response to abiotic stresses investigated in this study. 

 

IV.5. Additional Mediator Subunits investigated 

IV.5.1. The MED15 subunit  

Like the SFR6, MED2 and MED14 subunits, the MED15 subunit is a predicted subunit in 

the tail domain of plant Mediator (Bourbon et al., 2008, Gugliemi et al., 2004). 

Research has shown that med15 seedlings are profoundly insensitive to salicylic acid 

(SA), show compromised growth and the complete knock-out mutant is sterile, though 

other med15 mutant lines are not. Research shows that the MED15 subunit acts 

downstream of NON-EXPRESSER OF PATHOGENESIS-RELATED GENE1 (NPR1) to 
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regulate the SA response in Arabidopsis (Canet et al., 2012). Due to its predicted 

location adjacent to SFR6 in plant Mediator and the SA-responsive role it plays with 

MED16 (Wathugala et al., 2012), it is possible that it also plays a role in the 

transcriptional response to other abiotic stresses as have been shown in MED2 and 

MED14 mutants in this study.  

Three different med15 mutant alleles were originally identified from an EMS mutant 

screen of plants insensitive to salicylic acid (Figure II.4). Seeds were sent later in the 

year and therefore the three nrb4/med15 mutants were not part of the original cold 

responsive gene expression experiments.  

In light of the transcriptional impairment seen in other tail subunits mutants (sfr6-1, 

med2-1 and med14-1) in response to cold treatment and the proximity of the MED15 

subunit to SFR6 in the plant Mediator complex, the three different alleles of med15 

seedlings (nrb4-1, nrb4-2 and nrb4-3) were tested for transcriptional impairment in 

response to cold stress. Initial experiments revealed that the MED15 subunit may also 

be required for correct expression of CBF-regulated cold-inducible genes (Figure 

III.39). However, these data were found to be irreproducible in further experiments 

(Figure III.40).  

As the MED2 subunit had shown differential involvement in the transcriptional 

response to cold, darkness and sugar, whereas MED16 is involved in all of these (, 

Knight et al., 2009, Hemsley et al., 2014) nrb4-1 and nrb4-3 alleles were subjected to 

UV-C stress and darkness to elucidate potentially unknown functions of the 

NRB4/MED15 subunit and to test whether it shares any other functions with the SFR6 

subunit. Insufficient seeds of the nrb4-2 allele meant that further analysis of stress-

induced transcripts was not possible as it was for nrb4-1 and nrb4-3 alleles.  

Preliminary experiments suggested that the nrb4-1 allele had reduced transcripts of 

dark- (DIN6) and UVC- (PR1) responsive genes (Figure III.41). The nrb4-3 allele showed 

reduced transcripts in response to UVC stress, but not in response to darkness 

compared to wild type (Figure III.41A). The nrb4-1 and nrb4-3 alleles showed reduced 

transcript levels of PR1 in response to UV compared to wild type (Figure III.41B). 

Interestingly, nrb4-1 and nrb4-3 alleles also showed increased PR1 transcripts under 

control conditions compared wild type which could suggest inappropriate gene 

activation either as a result of the mutation or a fungal contaminant on the growth 
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medium (Figure III.41B). Due to time constraints of the project, further research will be 

required in the future to further explore and validate this result.  

 

IV.5.2. CDK-8 Domain 

Early literature on Mediator suggested that the CDK-8 domain of the Mediator 

complex plays a negative regulatory role on transcription in response to abiotic stress 

in yeast by its association or dissociation with the rest of the Mediator complex 

(Andrau et al., 2006, Gonzalez et al., 2007). Much work has been carried out in plants 

on two of the four subunits of the CDK-8 domain, MED12 and MED13, implicating 

them in negative regulation of transcription during embryo patterning (Gillmor et al., 

2010) and flower formation (Imura et al., 2012). Other work on the CDK8 subunit of 

the CDK-8 domain has shown that cdk8 mutants have impaired floral organ formation 

and seed set (Wang & Chen, 2004), a phenotype also seen in this study (Figure III.45).  

Experiments in yeast and human cells have shown that the CDK-8 domain has a 

transient interaction with core Mediator as it is recruited in a gene-specific manner to 

the core Mediator complex to repress transcription of certain genes in response to 

abiotic stress (Andrau et al., 2006; Donner, 2010; Knuesel, 2009). Recently, research in 

plants provides evidence to suggest that CDK8 plays a dual role integrating cellular 

responses to environmental signals to promote growth and act as a relay between 

stress-induced transcription factors and Pol II (Ng et al., 2012). This offers an 

explanation to opposing research showing CDK8 as both a transcriptional repressor 

(Andrau et al., 2006) and a transcriptional activator (Ng et al., 2012) depending on the 

environmental conditions.  

 

Little is known of the functions of the last subunit of the CDK-8 domain, CYCC, and 

whether it also functions as a negative regulator of transcription. Preliminary 

experiments in this study suggest that two back-to-back genes in the same orientation 

both encode the CYCC subunit of the plant Mediator complex and that the cycC 

responses to cold and UV-C stress are unimpaired in both T-DNA insert lines tested 

(Figure III.45 & 46A). Despite this, preliminary experiments show that transcripts of the 

dark-inducible gene DIN6 are reduced in both cycC alleles compared to the wild type 

(Figure III.46B), suggesting a role for the CYCC subunit in the expression of dark-
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inducible genes in plants. This could suggest that the CYCC-2 gene is the functional one 

while CYCC-1 plays a more redundant role.  

More recently, evidence is emerging to counteract the theory that the CDK-8 domain 

is a general negative transcriptional regulator (Ng et al., 2012). Indeed, preliminary 

results in this study show that transcription is not generally repressed in cycC lines in 

response to cold and UV-C stress despite the impaired response to darkness (Figure 

III.46B). This lends weight to the argument that different sets of Mediator subunits 

from all 4 domains are required to for full expression of different sets of abiotic stress-

response genes in Arabidopsis. However, as the CYCC subunit is encoded by two 

genes, functional redundancy may account for the normal transcriptional response to 

cold and UVC stress seen in this study. In light of this, creation of a double cycC mutant 

would allow a fuller investigation into the role played by the CYCC subunit in 

transcriptional regulation. As CYCC-1 and CYCC-2 are back-to-back genes in the 

Arabidopsis genome, it would be difficult to create a double mutant line by 

conventional crossing. RNAi would prove a more useful technique for disruption of the 

CYCC-1 gene in cycC-2 lines and allow transcriptional analysis of genes in response to 

abiotic stresses when expression of both genes is impaired.  

 

IV.6. Conclusions & Future Work 
This study shows that MED2 and MED14 control an overlapping set of cold-inducible 

genes with SFR6. Future structural studies on the plant Mediator complex, as have 

been carried out in yeast (e.g. Gugliemi 2004), may explain the differential 

involvement of various subunits in the response to abiotic stresses. This will enable 

evaluation of the nature of the contribution (structural and conformational changes, 

transcription factor binding sites and interactions) SFR6, MED2 and MED14 subunits 

play in abiotic stress-induced gene activation. Mediator mutants stably expressing a 

CRT/DRE::LUC reporter may elucidate the interaction of different Mediator subunits 

with the CRT/DRE in cold-inducible expression. 

This study demonstrated that reduced transcripts of cold-inducible genes in sfr6-1, 

med2-1 and med14-1 are due to an impaired Pol II recruitment to genes that contain 

CRT/DRE promoter motifs. Pol II recruitment to genes that contained the EE promoter 

motif was not impaired, suggesting a Pol II-independent mode of gene activation or a 
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role for unknown post-transcriptional modifications to the mRNA transcripts or a post 

recruitment role. Further work on identifying alternatively spliced mRNA transcripts of 

EE-containing genes could provide further illumination on activation of EE-containing 

gene transcripts in the process of cold acclimation.  

Research in this study has also shown the previously unknown effect of sucrose and 

light on CRT/DRE- and EE-containing cold-inducible genes in wild type plants and its 

dependency on the SFR6/MED16, MED2 and MED14 subunits. Experiments revealed 

differential involvement of the MED2 subunit in activation of genes in response to 

sucrose compared to the SFR6 and MED14 subunits. Preliminary experiments with 

another predicted tail subunit mutant, nrb4/med15, suggested that the NRB4/MED15 

subunit does not play a role in the transcriptional response to low temperature but 

may be involved in the response to UV-C and darkness.  

Preliminary results suggest that the CDK-8 domain may not act as a general 

transcriptional repressor as was previously assumed (Gonzalez et al., 2007) cycC 

mutants were only mildly affected in the transcriptional response to darkness but not 

cold or UV-C stress. Future work will be required to gain a fuller understanding of the 

role played by the 4 subunits of theCDK-8 domain in transcriptional regulation. 

Structural studies and co-immunoprecipitation experiments with subunits of the CDK-

8 domain could reveal previously unknown interactions with the rest of the Mediator 

complex and shed light on the much-debated role it plays in transcriptional regulation.  

Although this study was limited to a small number of Mediator subunits, it begins to 

illustrate that transcriptional regulation in response to different abiotic stresses occurs 

as a result of the cooperation between different sets of subunits within the Mediator 

complex. Future work with other single and double Mediator subunit mutants will 

highlight the role each subunit plays in the transcriptional response to abiotic stress.  
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Appendix I: Buffers 
 

TE Buffer: 
10mM Tris-HCL pH8.0, 5mM EDTA pH7.5 

Edward’s Extraction buffer: 
200mM Tris-HCL pH 7.5, 250mM NaCl, 25mM EDTA pH 8.0, 5% v/v SDS 

 

ChIP Buffers 

Extraction Buffer 1 

0.4M sucrose, 10mM Tris-HCl pH8.0, 10mM MgCl2, 1% v/v Triton X-100, 5mM β-

mercaptoethanol, 0.35% v/v protease inhibitor (SIGMA protease inhibitor cocktail P-9599) 

Extraction Buffer 2 

0.25M sucrose, 10mM Tris-HCl pH8.0, 10mM MgCl2, 1% v/v Triton X-100, 5mM β-

mercaptoethanol, 0.35% v/v Protease inhibitor 

Nuclear Lysis Buffer 

10mM Tris-HCl pH8.0, 150mM NaCl, 1mM EDTA pH8.0, 0.1% v/v Sodium deoxycholate, 0.5% v/v 

sarcosine, 0.35% v/v protease inhibitor  

ChIP Dilution Buffer 

10mM Tris-HCl pH8.0, 150mM NaCl, 1mM EDTA, 1% v/v Triton X-100, 0.35% v/v protease 

inhibitor  

Low Salt Wash Buffer 

150mM NaCl, 0.1% SDS, 1% v/v Triton X-100, 2mM EDTA, 20mM Tris-HCl pH8.0 

High Salt Wash Buffer 

500mM NaCl, 0.1% v/v SDS, 1% v/v Triton X-100, 2mM EDTA, 20mM Tris HCl pH8.0 

LiCl Wash Buffer 

0.25M LiCl, 1% v/v NP-40, 1% v/v sodium deoxycholate, 1mM EDTA, 10mM Tris-HCl pH8.0 

TE RNaseA  

10mM Tris-HCl pH8.0, 1mM EDTA, 10µg.mL-1 RNaseA 
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Gel electrophoresis 

TBE Buffer 

A stock of 0.5X TBE was made using 45mM tris-borate, 1mM EDTA pH 8.0 for use in the agarose 

gel and running buffer.  

 

Luciferase 

Spray 

A 100mM stock of luciferin diluted to 5mM in a 1% v/v Triton-X 100 solution.  

Liquid 

A 100mM stock of luciferin diluted to 1mM in ddH2O.  

 

Protoplast extraction & transformation 

Enzyme Solution 

1% w/v cellulose, 0.25% w/v maceroenzyme, 0.5M mannitol, 8mM CaCl2 adjusted to pH5.5 and 

filter sterilised through a 0.45µm cellulose filter [VWR 28145-477].  

Resuspension Buffer I (RB I) 

30ml 0.5M mannitol, 60ml 0.2M CaCl2 

Resuspension Buffer II (RB II) 

60ml 0.5M mannitol, 30ml 0.2M CaCl2 

W5 solution 

154mM NaCl, 125mM CaCl2, 5mM KCl, 5mM glucose, 1.5mM MES-KOH pH5.6 

Mannitol/Mg solution  

15mM MgCl2, 0.1% v/v MES, 0.4M mannitol adjusted to pH5.6 with 0.1MKOH and autoclaved 

PEG-CMS solution 

0.4M mannitol, 100mM calcium nitrate, 40% w/v PEG 4000 

Protoplast culture medium 

400mM sucrose, 1xMS salts, 250mg/L xylose adjusted to pH 5.8 with 0.1M KOH and autoclaved.  
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Mannitol/W5 solution (M/W5 solution) 

400mM mannitol diluted 1 in 4 with W5 solution 
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Appendix II: Lists of 81 cold-inducible misregulated and non-misregulated genes  
 

81 cold-inducible misregulated genes 
These genes showed at least a 1.5-fold induction in wild type plants compared to ambient in microarray experiments (Affymetrix gene chip GEO reference:GSE6167).  

 

Wild type (WT) and sfr6-1 gene expression data is from the Affymetrix gene chip GEO reference GSE6167. The sfr6-2 and sfr6-3 data is from the Affymetrix gene chip GEO 

reference GSE46084. A gene was said to be misregulated in sfr6 if the ratio of all three sfr6 alleles (sfr6-1, sfr6-2 and sfr6-3) to wild type was less than 0.7, i.e. these genes 

showed a minimum 30% reduction in gene expression in all 3 sfr6 alleles compared to wild type.  

 

Gene Accession Description WT1 cold sfr6-1 cold sfr6-1/WT1 
Ratio WT2 cold sfr6-2 cold sfr6-2/WT2 

Ratio WT3 cold sfr6-3 cold sfr6-3/WT3 
ratio 

UDP-glucoronosyl/UDP-
glucosyl transferase family 

protein 
At1g01420 

flavonol 3-o-glucosyltransferase, putative 
similar to flavonol 3-o-glucosyltransferase 

GB:Q40287 from [Manihot esculenta] 
291.872 204.003 0.6989468 613.355 199.848 0.32582762 740.617 278.259 0.375712413 

galactinol synthase, 
putative At1g09350 

putative galactinol synthase similar to 
GB:AAD26116 from [Brassica napus]; supported 

by cDNA: 
gi_13899102_gb_AF370546.1_AF370546 

615.518 190.192 0.30899503 1796.926 56.044 0.03118882 4522.038 788.74 0.17442135 

cytochrome P450 family 
protein At1g12740 

cytochrome P450, putative similar to 
cytochrome P450 GI:4176420 from [Arabidopsis 

thaliana] 
194.247 102.149 0.5258717 73.51 39.295 0.53455312 222.415 103.025 0.46321066 

pathogenesis-related 
thaumatin family protein At1g20030 calreticulin, putative similar to GB:AAF06346 

from [Vitis vinifera] 1104.569 546.643 0.49489258 490.285 147.094 0.30001734 2006.977 915.973 0.45639436 

dehydrin (ERD10) At1g20450 hypothetical protein ; supported by cDNA: 
gi_15081631_gb_AY048208.1_ 4628.388 2256.994 0.48764149 10728.304 4174.608 0.38912096 13822.834 7796.736 0.56404757 

expressed protein At1g24575 Expressed protein ; supported by full-length 
cDNA: Ceres: 38093. 138.525 84.135 0.60736329 101.17 45.783 0.45253534 108.092 23.461 0.21704659 

zinc finger (C2H2 type) 
family protein (ZAT10) / At1g27730 salt-tolerance zinc finger protein identical to 

salt-tolerance zinc finger protein GB:CAA64820 859.43 410.399 0.47752464 734.548 158.103 0.21523849 422.852 51.813 0.12253223 
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salt-tolerance zinc finger 
protein (STZ) 

GI:1565227 from [Arabidopsis thaliana]; 
supported by cDNA: 

gi_14334649_gb_AY034998.1_ 

glycosyl hydrolase family 
17 protein At1g32860 

beta-1,3-glucanase precursor, putative similar 
to beta-1,3-glucanase precursor GI:4097948 

from [Oryza sativa] 
502.37 245.042 0.48777196 222.072 98.996 0.44578335 1628.257 254.829 0.15650416 

expressed protein At1g33230 unknown protein ;supported by full-length 
cDNA: Ceres:8976. 573.56 357.04 0.62249808 744.6 359.215 0.48242681 1593.627 433.117 0.27178066 

serpin, putative / serine 
protease inhibitor, 

putative 
At1g47710 serpin, putative similar to serpin GB:X95277 

GI:1197576 from (Hordeum vulgare) 1281.314 595.141 0.46447709 2109.753 581.58 0.2756626 4769.654 963.071 0.20191632 

glycoside hydrolase family 
28 protein / 

polygalacturonase 
(pectinase) family protein 

At1g48100 

polygalacturonase PG1, putative similar to 
GB:AAD46483 from [Glycine max] (Mol. Plant 

Microbe Interact. 12 (6), 490-498 (1999)); 
supported by cDNA: 

gi_15292728_gb_AY050798.1_ 

401.876 137.794 0.34287691 1403.612 114.239 0.0813893 2790.533 170.151 0.06097437 

ABA-responsive element-
binding protein / abscisic 
acid responsive elements-

binding factor (ABRE) 

At1g49720 

abscisic acid responsive elements-binding factor 
identical to abscisic acid responsive elements-
binding factor GB:AAF27179 GI:6739274 from 

[Arabidopsis thaliana]; supported by cDNA: 
gi_6739273_gb_AF093544.1_AF093544 

1532.98 1025.379 0.66887957 1171.78 483.029 0.41221816 2137.028 1172.583 0.54869800 

heavy-metal-associated 
domain-containing protein At1g51090 

proline-rich protein, putative similar to proline-
rich protein GI:3242079 from [Capsicum 

annuum]; supported by cDNA: 
gi_14334847_gb_AY035097.1_ 

573.723 221.263 0.38566172 1134.879 150.556 0.1326626 3979.105 898.575 0.22582339 

expressed protein At1g53035 Expressed protein ; supported by full-length 
cDNA: Ceres: 271765. 1754.213 968.068 0.55185317 493.646 119.349 0.24177042 2083.381 829.906 0.39834576 

integral membrane 
transporter family protein At1g64890 unknown protein ; supported by cDNA: 

gi_15028136_gb_AY046018.1_ 773.646 246.505 0.31862764 271.666 98.306 0.36186346 1150.62 268.486 0.23334028 

expressed protein /// 
expressed protein At1g66000 unknown protein 89.751 53.188 0.59261735 180.659 58.227 0.32230334 192.093 62.093 0.32324447 

expressed protein At1g68500 hypothetical protein predicted by genefinder 1226.004 156.196 0.12740252 2340.24 147.8 0.06315592 3684.59 275.263 0.07470654 

expressed protein At1g69760 unknown protein  ;supported by full-length 
cDNA: Ceres:18367. 1001.895 633.758 0.6325593 1435.111 491.716 0.34263273 1299.205 492.491 0.37907104 

hydrolase, alpha/beta fold 
family protein At1g73480 

lysophospholipase homolog, putative similar to 
lysophospholipase homolog GI:2801536 from 

[Oryza sativa]; supported by cDNA: 
gi_15028212_gb_AY045929.1_ 

1253.427 657.632 0.52466717 2694.336 719.834 0.26716564 3319.905 1111.222 0.33471499 
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expressed protein At1g75860 unknown protein 882.47 433.242 0.49094247 712.672 264.602 0.3712816 1117.141 385.064 0.34468701 

SPL1-Related3 protein 
(SPL1R3) At1g76580 

unknown protein similar to SPL1-related 
proteins: GB:CAB56771, GB:CAB56770, 

GB:CAB56773 [Arabidopsis thaliana] 
270.181 161.004 0.59591163 325.208 114.061 0.35073245 632.893 163.161 0.25780187 

zinc-binding family protein At1g76590 unknown protein  ;supported by full-length 
cDNA: Ceres:114376. 691.824 272.538 0.39394123 1448.001 170.007 0.11740807 1345.896 294.569 0.21886460 

alcohol dehydrogenase 
(ADH) At1g77120 

alcohol dehydrogenase identical to alcohol 
dehydrogenase GI:469467 from (Arabidopsis 

thaliana); supported by full-length cDNA: Ceres: 
4033. 

761.11 491.928 0.6463297 775.673 402.574 0.51899963 3707.75 2103.285 0.56726721 

expressed protein At1g79660 predicted protein 1048.567 503.721 0.4803899 4774.979 457.462 0.09580398 3276.783 451.785 0.13787455 
senescence/dehydration-
associated protein-related 

(ERD7) 
At2g17840 putative senescence-associated protein 12  

;supported by full-length cDNA: Ceres:40806. 1340.403 517.19 0.38584664 1664.822 275.225 0.16531797 5325.376 1056.251 0.19834299 

expressed protein At2g19390 unknown protein  ; supported by cDNA: 
gi_16604626_gb_AY059758.1_ 46.311 26.69 0.57632096 94.54 38.61 0.40839856 91.074 53.435 0.58672068 

glycosyl hydrolase family 
17 protein /// glycosyl 

hydrolase family 17 
protein 

At2g19440 putative beta-1,3-glucanase 378.414 221.606 0.58561787 175.804 119.503 0.67975131 286.649 153.484 0.53544230 

expressed protein At2g22080 En/Spm-like transposon protein related to 
En/Spm transposon family of maize 415.173 264.167 0.63628174 1143.629 297.322 0.25998117 1290.442 560.711 0.43451081 

AP2 domain-containing 
transcription factor, 

putative 
At2g23340 putative AP2 domain transcription factor 719.989 322.401 0.44778601 671.968 138.307 0.20582379 2423.684 540.687 0.22308477 

mitochondrial import 
inner membrane 

translocase subunit 
Tim17/Tim22/Tim23 

family protein 

At2g28900 putative membrane channel protein  
;supported by full-length cDNA: Ceres:10159. 1905.727 1123.82 0.58970671 5538.4 1926.291 0.34780641 7219.076 4130.066 0.57210451 

cytochrome P450 family 
protein At2g29090 putative cytochrome P450 137.65 39.692 0.28835452 148.147 62.936 0.42482129 60.062 24.641 0.41025939 

expressed protein At2g36220 unknown protein  ;supported by full-length 
cDNA: Ceres:12251. 1045.746 620.712 0.59355905 1199.315 427.86 0.35675365 1921.956 676.011 0.35173073 

expressed protein At2g39705 Expressed protein ; supported by full-length 
cDNA: Ceres: 27620. 580.366 301.115 0.51883639 400.505 147.999 0.36953097 689.737 228.704 0.33158145 

acid phosphatase class B At2g39920 hypothetical protein predicted by 507.991 240.465 0.47336469 139.704 63.229 0.45259262 447.097 294.471 0.65862888 
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family protein genscan;supported by full-length cDNA: 
Ceres:33701. 

cold-responsive protein / 
cold-regulated protein 

(cor15b) 
At2g42530 cold-regulated protein cor15b precursor  

;supported by full-length cDNA: Ceres:19221. 2332.839 1147.021 0.4916846 5387.203 1467.117 0.27233371 5224.701 2517.639 0.48187236 

cold-responsive protein / 
cold-regulated protein 

(cor15a) 
At2g42540 

cold-regulated protein cor15a precursor  ; 
supported by cDNA: 

gi_14532457_gb_AY039853.1_ 
2134.961 633.755 0.29684617 8821.425 1649.688 0.18700924 10009.884 3562.287 0.35587695 

MADS-box protein 
(AGL20) At2g45660 MADS-box protein (AGL20)  ; supported by full-

length cDNA: Ceres: 5467. 257.743 150.79 0.58504014 1191.943 253.684 0.21283233 856.617 318.402 0.37169703 

expressed protein At3g05800 
hypothetical protein predicted by 

genscan+;supported by full-length cDNA: 
Ceres:21672. 

1743.748 1218.685 0.69888826 497.27 208.052 0.4183884 1848.854 797.047 0.43110326 

pectate lyase family 
protein At3g09540 putative pectate lyase simliar to pectate lyase 

precursor GB:P40972 from [Nicotiana tabacum] 255.223 169.371 0.66361966 322.337 111.643 0.3463549 629.357 239.122 0.37994651 

DNAJ heat shock N-
terminal domain-

containing protein /// 
DNAJ heat shock N-
terminal domain-
containing protein 

At3g13310 
DnaJ protein, putative contains Pfam profile: 

PF00226 DnaJ domain;supported by full-length 
cDNA: Ceres:31309. 

1267.005 281.963 0.22254293 1375.822 209.914 0.15257352 826.735 242.835 0.29372773 

ethylene-responsive 
element-binding factor 4 

(ERF4) 
At3g15210 

ethylene responsive element binding factor 4 
(AtERF4) identical to GB:BAA32421 from 

[Arabidopsis thaliana];supported by full-length 
cDNA: Ceres:22775. 

1191.188 498.393 0.41839995 1441.647 564.856 0.39181298 994.117 331.601 0.33356335 

invertase/pectin 
methylesterase inhibitor 

family protein 
At3g17130 hypothetical protein predicted by 

genemark.hmm 369.142 171.406 0.46433622 459.403 66.314 0.14434821 1552.657 130.412 0.08399279 

expressed protein At3g23170 unknown protein  ;supported by full-length 
cDNA: Ceres:92314. 1235.798 676.743 0.5476162 214.107 90.227 0.42141079 557.033 165.197 0.29656591 

expressed protein At3g25870 unknown protein  ;supported by full-length 
cDNA: Ceres:141813. 226.211 21.928 0.09693605 122.056 17.191 0.14084519 405.037 38.873 0.09597394 

expressed protein At3g27880 
hypothetical protein predicted by 

genemark.hmm;supported by full-length cDNA: 
Ceres:15282. 

552.206 352.114 0.63764972 167.386 100.842 0.60245182 652.975 397.194 0.60828362 

cytochrome P450 family 
protein At3g44970 cytochrome P450 - like protein cytochrome 

P450 d13695c, Arabidopsis thaliana, PIR:C71417 625.969 303.801 0.48532915 623.645 254.421 0.40795805 531.852 210.309 0.39542767 

dehydrin xero2 (XERO2) / At3g50970 dehydrin Xero2  ; supported by cDNA: 2638.137 636.637 0.24132067 12680.454 2522.688 0.19894303 14551.283 4983.044 0.34244705 
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low-temperature-induced 
protein LTI30 (LTI30) 

gi_15809983_gb_AY054260.1_ 

expressed protein At3g51750 hypothetical protein 141.339 58.314 0.41258251 74.798 35.114 0.46945105 83.665 23.141 0.27659116 

alkaline alpha 
galactosidase, putative At3g57520 

imbibition protein homolog probable imbibition 
protein - Brassica oleracea, PIR:S45033; 

supported by cDNA: 
gi_15292676_gb_AY050772.1_ 

1734.538 1160.978 0.66932982 8632.648 4599.374 0.53278832 1325.846 766.035 0.57777072 

expressed protein At3g60520 putative protein  ;supported by full-length 
cDNA: Ceres:21518. 1110.828 610.97 0.55001314 528.513 221.928 0.4199102 861.46 380.924 0.44218419 

BON1-associated protein 1 
(BAP1) At3g61190 

putative protein hypothetical protein F4I18.26 - 
Arabidopsis thaliana, PIR:T02471;supported by 

full-length cDNA: Ceres:30454. 
360.374 176.982 0.49110646 735.589 51.711 0.07029877 403.197 53.54 0.13278868 

CBL-interacting protein 
kinase 4 (CIPK4) At4g14580 SNF1 like protein kinase ; supported by cDNA: 

gi_13249502_gb_AY007221.1_ 690.32 469.907 0.68070895 99.559 54.168 0.54407939 408.201 239.964 0.58785745 

glycosyl transferase family 
4 protein At4g18270 

putative protein phospho-N-acetylmuramoyl-
pentapeptide-transferase, Haemophilus 

influenzae,Pir2:A64185 
695.254 445.824 0.64123903 262.704 153.981 0.58613877 651.186 190.578 0.29266292 

glycine-rich cell wall 
protein-related At4g18280 

glycine-rich cell wall protein-like glycine-rich 
protein 1.0 precursor, Phaseolus vulgaris, 

PIR1:S01821; supported by cDNA: 
gi_14030676_gb_AF375429.1_AF375429 

523.97 234.027 0.44664198 367.764 79.387 0.21586398 1908.111 326.103 0.17090358 

iron-responsive 
transporter (IRT2) At4g19680 putative Fe(II) transport protein Fe(II) transport 

protein, Arabidopsis thaliana, gb:U27590 183.664 95.016 0.517336 64.002 36.516 0.57054467 124.929 56.05 0.44865483 

ABA-responsive protein 
(HVA22d) At4g24960 

abscisic acid-induced - like protein abscisic acid-
induced protein HVA22, Hordeumvulgare, 

PIR2:A48892;supported by full-length cDNA: 
Ceres:28535. 

1320.8 370.519 0.2805262 4262.871 574.2 0.13469795 5965.98 1157.281 0.19398003 

glycosyl hydrolase family 1 
protein At4g27820 putative beta-glucosidase beta-glucosidase 

BGQ60 precursor - barley, PIR2:A57512 1250.489 764.867 0.61165432 1356.701 912.828 0.67282916 3090.573 916.427 0.29652333 

zinc finger (CCCH-type) 
family protein At4g29190 

putative protein zinc finger transcription factor 
- Arabidopsis thaliana,PID:g2961542;supported 

by full-length cDNA: Ceres:16432. 
2184.6 1331.93 0.60969056 3444.45 1112.481 0.32297783 2609.259 1258.334 0.48225722 

hydrophobic protein, 
putative / low 

temperature and salt 
responsive protein, 

putative 

At4g30650 

low temperature and salt responsive protein 
homolog low temperature and salt responsive 

protein LTI6A - Arabidopsis 
thaliana,PID:g4039153 

1898.811 920.6 0.48482972 2739.773 601.608 0.21958316 3464.831 1863.086 0.53771338 

pyruvate decarboxylase, At4g33070 pyruvate decarboxylase-1 (Pdc1) 216.101 135.108 0.62520766 357.04 78.28 0.21924714 2190.617 772.068 0.35244317 
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putative 

zinc finger (C3HC4-type 
RING finger) family protein At4g35480 RING-H2 finger protein RHA3b  ;supported by 

full-length cDNA: Ceres:31493. 644.387 402.729 0.62498002 544.605 218.432 0.40108335 797.618 360.626 0.45212871 

pathogenesis-related 
thaumatin family protein At4g36010 

thaumatin-like protein thaumatin-like protein, 
Arabidopsis thaliana, Pir2:S71175; supported by 
cDNA: gi_13430505_gb_AF360165.1_AF360165 

2764.088 1094.356 0.39591938 830.607 136.36 0.1641691 3234.546 825.364 0.25517151 

expressed protein At4g36500 putative protein 2230.408 1255.688 0.56298579 2321.841 609.377 0.26245423 2050.377 739.348 0.36059124 
heavy-metal-associated 

domain-containing protein 
/ copper chaperone (CCH)-

related 

At4g38580 farnesylated protein (ATFP6)  ; supported by 
full-length cDNA: Ceres: 10238. 909.445 432.005 0.47502048 3596.06 451.003 0.12541587 4415.486 934.62 0.21166865 

zinc finger (C2H2 type) 
family protein At5g04340 putative c2h2 zinc finger transcription factor 613.972 262.987 0.42833712 2083.316 162.561 0.07802993 1198.959 263.593 0.21985155 

stress-responsive protein 
(KIN1) / stress-induced 

protein (KIN1) /// stress-
responsive protein (KIN1) 
/ stress-induced protein 

(KIN1) 

At5g15960 cold and ABA inducible protein kin1  ;supported 
by full-length cDNA: Ceres:2270. 3152.109 610.111 0.19355644 14067.651 3189.086 0.22669641 14222.241 3892.383 0.27368281 

expressed protein At5g19875 Expressed protein ; supported by full-length 
cDNA: Ceres: 59. 534.017 223.1 0.41777696 520.824 107.778 0.20693747 725.614 109.229 0.15053320 

expressed protein At5g22390 unknown protein 288.328 190.027 0.65906537 578.57 323.01 0.55829027 255.119 160.952 0.63088989 

prephenate dehydratase 
family protein At5g22630 

chorismate mutase/prephenate dehydratase-
like protein  ; supported by cDNA: 

gi_16604397_gb_AY058097.1_ 
1050.414 722.282 0.6876165 400.462 253.865 0.63393031 1236.448 854.117 0.69078279 

proline oxidase, putative / 
osmotic stress-responsive 
proline dehydrogenase, 

putative 

At5g38710 

proline oxidase, mitochondrial precursor -like 
protein PROLINE OXIDASE, MITOCHONDRIAL 

PRECURSOR, Arabidopsis thaliana, 
SWISSNEW:PROD 

187.707 92.46 0.4925762 242.919 38.528 0.15860431 78.248 53.322 0.68144872 

reticulon family protein 
(RTNLB4) At5g41600 

putative protein contains similarity to 24 kDa 
seed maturation protein; supported by cDNA: 

gi_14334529_gb_AY035169.1_ 
1155.581 798.068 0.69062056 1345.917 505.34 0.37546149 1389.092 760.263 0.54730932 

zinc-binding family protein At5g46710 
putative protein similar to unknown protein 

(pir||T05076);supported by full-length cDNA: 
Ceres:42747. 

1442.876 814.059 0.56419193 1212.831 433.153 0.35714209 1449.837 305.334 0.21059884 

ethylene-responsive 
element-binding factor 5 At5g47230 ethylene responsive element binding factor 5 

(ATERF5) (sp|O80341)  ; supported by cDNA: 347.018 214.689 0.6186682 87.507 39.036 0.44609003 256.197 86.003 0.33569089 
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(ERF5) gi_14326511_gb_AF385709.1_AF385709 

zinc finger (B-box type) 
family protein At5g48250 putative protein contains similarity to 

CONSTANS homologs 1248.126 708.851 0.56793224 669.667 331.75 0.49539547 1683.239 988.827 0.58745490 

33 kDa secretory protein-
related At5g48540 33 kDa secretory protein-like  ; supported by 

cDNA: gi_15292980_gb_AY050924.1_ 825.885 529.17 0.64073085 762.205 183.545 0.24080792 1225.539 323.704 0.26413194 

acetyl-CoA C-
acyltransferase 1 / 3-

ketoacyl-CoA thiolase 1 
(PKT1) 

At5g48880 
3-keto-acyl-CoA thiolase 2 (gb|AAC17877.1)  ; 

supported by cDNA: 
gi_3192892_gb_AF062590.1_AF062590 

800.679 449.614 0.56154089 378.395 211.409 0.55869924 334.975 194.646 0.5810762 

low-temperature-
responsive protein 78 
(LTI78) / desiccation-

responsive protein 29A 
(RD29A) 

At5g52310 
low-temperature-induced protein 78 
(sp|Q06738)  ; supported by cDNA: 

gi_348691_gb_L22567.1_ATHCOR78A 
2863.279 863.511 0.30158116 7374.733 928.208 0.12586327 8723.203 4291.044 0.49191151 

zinc finger (GATA type) 
family protein At5g56860 

putative protein similar to unknown protein (pir 
|T04270);supported by full-length cDNA: 

Ceres:110454. 
752.06 414.663 0.55136957 738.796 245.008 0.33163147 355.913 171.773 0.48262637 

invertase/pectin 
methylesterase inhibitor 

family protein 
At5g62360 

DC1.2 homologue - like protein DC1.2 
homologue, Nicotiana tabacum, 

EMBL:AB009888 
2822.477 459.028 0.16263303 7175.524 600.618 0.08370371 10473.894 3146.858 0.30044776 

pectate lyase family 
protein At5g63180 pectate lyase  ; supported by cDNA: 

gi_16648839_gb_AY058197.1_ 873.48 578.486 0.66227733 438.135 281.278 0.64198934 599.754 361.076 0.60204017 

expressed protein At5g65300 unknown protein ; supported by cDNA: 
gi_13877834_gb_AF370180.1_AF370180 759.923 319.245 0.42010177 101.545 37.761 0.37186469 348.725 90.587 0.25976629 
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81 cold-inducible non-misregulated genes 
These genes showed at least a 1.5-fold induction in wild type plants compared to ambient in microarray experiments (Affymetrix gene chip GEO reference:GSE6167).  

 

Wild type (WT) and sfr6-1 gene expression data is from the Affymetrix gene chip GEO reference GSE6167. The sfr6-2 and sfr6-3 data is from the Affymetrix gene chip GEO 

reference GSE46084. A gene was said to be non-misregulated in sfr6 if the ratio of all three sfr6 alleles (sfr6-1, sfr6-2 and sfr6-3) to wild type was less than 0.7 in all 3 sfr6 

alleles compared to wild type.  

 

Gene Accession Description WT1 cold sfr6-1 
cold 

sfr6-
1/WT1 
ratio 

WT2 cold sfr6-2 
cold 

sfr6-
2/WT2 
ratio 

WT3 cold sfr6-3 
cold 

sfr6-
3/WT3 
ratio 

GCN5-related N-
acetyltransferase 

(GNAT) family protein 
At1g03150 

unknown protein Belongs to PF|00583 
Acetyltransfersase (GNAT) family; supported 

by full-length cDNA: Ceres: 10117. 
292.364 256.954 0.8788 225.514 252.519 1.119 222.403 237.105 1.0661 

expressed protein At1g03260 hypothetical protein predicted by genscan 142.572 143.958 1.00972 91.793 102.518 1.116838 125.916 118.454 0.940738 

acid phosphatase class 
B family protein At1g04040 

unknown protein Similar to acid 
phosphatase; Location of ESTs 110C2T7 , 
gb|T42036, and 110C2XP, gb|AI100245; 

supported by cDNA: 
gi_13926197_gb_AF370572.1_AF370572 

2416.849 2382.966 0.9859805 680.144 790.602 1.162403 1543.454 1521.147 0.9855 

eukaryotic translation 
initiation factor 2 

subunit 3, putative / 
eIF2S3, putative / eIF-

2-gamma, putative 

At1g04170 

putative translation initiation factor eIF-2, 
gamma subunit similar to gb|U37354 from S. 

pombe. ESTs gb|T41979, gb|N37284 and 
gb|N37529 come from this gene;supported 

by full-length cDNA: Ceres:37699. 

1655.607 1731.803 1.046022 1188.36 1304.854 1.098029 1288.875 1397.469 1.0842 

dehydration-
responsive protein-

related 
At1g04430 

ankyrin-like protein EST gb|ATTS0956 comes 
from this gene;supported by full-length 

cDNA: Ceres:108617. 
1818.533 1647.475 0.90593 2392.518 2148.778 0.8981 1666.415 1592.615 0.9557 

phosphoribosylamine--
glycine ligase (PUR2) At1g09830 

putative phosphoribosylglycinamide 
synthetase Identical to A. thaliana PUR2 

(gb|X74766). ESTs gb|ATTS3927,gb|N96446 
come from this gene; supported by cDNA: 

385.927 403.544 1.04564 342.284 323.699 0.9457 422.751 410.618 0.9712 
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gi_15292772_gb_AY050820.1_ 

S-locus lectin protein 
kinase family protein At1g11330 

receptor-like protein kinase, putative similar 
to receptor-like protein kinase GB:AAC95353 

GI:4008010 from [Arabidopsis thaliana] 
117.35 104 0.8862 53.149 54.995 1.0347 40.532 41.27 1.0182 

eukaryotic translation 
initiation factor, 
putative (EIF4B5) 

At1g13020 unknown protein EST gb|T22808 comes from 
this gene 405.092 410.236 1.0126 395.486 423.199 1.0700 507.905 579.464 1.14089 

EF-1-alpha-related 
GTP-binding protein, 

putative 
At1g18070 

guanine nucleotide regulatory protein, 
putative similar to guanine nucleotide 

regulatory protein GI:3461880 from [Mus 
musculus] 

1288.624 1213.348 0.94158 864.917 787.43 0.9104 953.377 838.93 0.8799562 

sulfate 
adenylyltransferase 2 / 

ATP-sulfurylase 2 
(ASA1) (MET3-1) (APS2) 

At1g19920 

sulfate adenylyltransferase identical to 
sulfate adenylyltransferase GI:487404 from 

[Arabidopsis thaliana];supported by full-
length cDNA: Ceres:21320. 

1024.685 1052.922 1.02755 833.911 817.986 0.9809 894.651 991.55 1.1083 

tRNA pseudouridine 
synthase family protein At1g20370 

hypothetical protein contains Pfam profile: 
PF01416 tRNA pseudouridine synthase; 

supported by cDNA: 
gi_14334543_gb_AY035176.1_ 

249.882 242.085 0.96879 87.432 97.078 1.1103 111.892 124.492 1.1126 

expressed protein At1g21050 
hypothetical protein predicted by 

genemark.hmm;supported by full-length 
cDNA: Ceres:3200. 

1269.932 1444.862 1.13774 746.49 821.538 1.1005345 797.744 731.956 0.9175 

phosphoribosylanthran
ilate isomerase 1 (PAI1)  At1g29410 

phosphoribosylanthranilate isomerase 
identical to GI:619749 from [Arabidopsis 

thaliana] (Plant Cell 7 (4), 447-461 (1995)) 
435.113 372.346 0.85574 215.479 221.865 1.0296363 167.577 193.639 1.1555 

GDSL-motif 
lipase/hydrolase family 

protein 
At1g29660 

lipase/hydrolase, putative contains Pfam 
profile: PF00657 Lipase/Acylhydrolase with 

GDSL-like motif;supported by full-length 
cDNA: Ceres:6680. 

3950.271 4412.087 1.11690 2547.214 2631.936 1.0332 3720.111 3638.401 0.9780356 

armadillo/beta-catenin 
repeat family protein At1g51350 hypothetical protein predicted by genscan 282.348 263.12 0.93189 231.125 222.689 0.9635 267.792 240.639 0.8986 

Ras-related GTP-
binding protein, 

putative 
At1g52280 

GTP-binding protein RAB7D, putative similar 
to GI:1370187 from [Lotus japonicus] (Plant 

J. 11 (2), 237-250 (1997)); supported by 
cDNA: 

gi_15718409_dbj_AB071847.1_AB071847 

679.842 606.51 0.8921 659.293 695.798 1.0553 750.089 808.834 1.0783 

mitochondrial import 
inner membrane At1g61570 unknown protein similar to small zinc finger-

like protein GI:5107149 from [Oryza sativa]; 1347.003 1372.053 1.01859 637.62 738.378 1.1580 715.825 708.1 0.9892 
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translocase (TIM13) supported by full-length cDNA: Ceres: 21075. 

DNA-binding 
storekeeper protein-

related 
At1g61730 

unknown protein similar to hypothetical 
protein GI:7267126 from [Arabidopsis 

thaliana];supported by full-length cDNA: 
Ceres:38650. 

1858.849 1845.793 0.99297 1023.284 887.887 0.8676 1317.656 1396.122 1.0595 

ABC transporter family 
protein At1g64550 

ABC transporter protein, putative similar to 
ABC transporter protein GB:AAF31030 
GI:6899653 from [Leishmania major] 

649.038 643.748 0.99184 579.852 573.349 0.9887 552.971 506.769 0.9164477 

auxin transport 
protein, putative (PIN3) At1g70940 

auxin transport protein REH1, putative 
similar to auxin transport protein REH1 

GI:3377509 from [Oryza sativa]; supported 
by cDNA: 

gi_5817300_gb_AF087818.1_AF087818 

1161.138 1120.688 0.96516 1141.021 1105.711 0.96905 494.987 432.207 0.8731 

asparaginyl-tRNA 
synthetase, 

cytoplasmic, putative  
At1g70980 

asparaginyl-tRNA synthetase(SYNC1) 
protein,putative similar to SYNC1 protein 
GI:5670315 from [Arabidopsis thaliana] 

779.871 769.134 0.98623 1189.228 1358.666 1.1424773 1175.019 1232.573 1.0489 

galactosyl transferase 
GMA12/MNN10 family 

protein 
At1g74380 

putative alpha galactosyltransferase similar 
to alpha galactosyltransferase GB:CAB52246 
[Trigonella foenum-graecum] (plant cell wall 

matrix polysaccharide biosynthesis) 

713.138 662.793 0.92940 480.794 475.186 0.9883 528.891 481.551 0.9104 

zinc knuckle (CCHC-
type) family protein At1g75560 

DNA-binding protein similar to cellular 
nucleic acid binding protein GB:CAA45345 

GI:50471 from [Mus musculus]; supported by 
full-length cDNA: Ceres: 125348. 

650.371 657.483 1.01093 480.092 526.507 1.0966 402.099 434.274 1.0800 

NAD-dependent 
epimerase/dehydratas

e family protein 
At1g78570 

dTDP-glucose 4,6-dehydratase, putative 
similar to dTDP-glucose 4,6-dehydratase 

GI:5921157 from [Streptomyces avermitilis]; 
supported by cDNA: 

gi_14596090_gb_AY042833.1_ 

1526.002 1519.165 0.99551 2046.142 1797.117 0.8782 2067.215 1997.878 0.9664 

prefoldin-related KE2 
family protein At2g07340 hypothetical protein predicted by genefinder 211.121 196.44 0.93046 153.162 154.013 1.0055562 191.076 183.763 0.9617272 

small nuclear 
ribonucleoprotein E, 
putative / snRNP-E, 

putative  

At2g18740 putative small nuclear ribonucleoprotein E  
;supported by full-length cDNA: Ceres:24619. 657.246 626.497 0.9532153 422.662 371.042 0.8778693 489.01 417.155 0.8530602 

violaxanthin de-
epoxidase-related At2g21860 

unknown protein predicted by 
genscan;supported by full-length cDNA: 

Ceres:38497. 
1052.848 1059.407 1.0062297 555.568 626.439 1.1275649 714.127 686.649 0.9615222 
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trehalose-6-phosphate 
phosphatase, putative At2g22190 putative trehalose-6-phosphate phosphatase 773.974 666.881 0.8616323 144.043 152.599 1.0593989 633.976 580.024 0.9148989 

aminotransferase class 
I and II family protein At2g22250 

putative aspartate aminotransferase  
;supported by full-length cDNA: 

Ceres:112880. 
666.395 672.536 1.0092152 484.769 557.055 1.1491143 310.179 333.394 1.0748438 

homeobox-leucine 
zipper protein 6 (HB-6) 
/ HD-ZIP transcription 

factor 6 

At2g22430 
homeodomain transcription factor (ATHB-6)  

; supported by cDNA: 
gi_16974586_gb_AY060569.1_ 

1810.476 1821.222 1.0059354 953.698 961.603 1.0082887 1670.315 1808.323 1.0826239 

splicing factor, putative At2g24590 putative RSZp22 splicing factor 926.659 954.457 1.0299980 788.943 805.081 1.0204552 739.028 670.917 0.907837 
mitochondrial import 

inner membrane 
translocase (TIM10) 

At2g29530 unknown protein  ; supported by cDNA: 
gi_5107173_gb_AF150093.1_AF150093 883.214 975.894 1.1049331 458.865 477.252 1.0400706 652.348 623.786 0.9562166 

aspartate 
aminotransferase, 

mitochondrial / 
transaminase A (ASP1) 

At2g30970 
aspartate aminotransferase (AAT1) identical 

to GB:U15026;supported by full-length 
cDNA: Ceres:34360. 

1358.587 1473.269 1.0844127 771.441 685.343 0.8883932 635.767 672.734 1.0581455 

delta 9 desaturase 
(ADS2) At2g31360 

delta 9 desaturase ALMOST identical (4 aa 
diff't) to GP:2970036;supported by full-

length cDNA: Ceres:21841. 
4481.876 4108.329 0.9166538 5965.467 5108.593 0.8563609 6677.861 6629.054 0.9926912 

40S ribosomal protein 
S12 (RPS12C) At2g32060 40S ribosomal protein S12  ;supported by 

full-length cDNA: Ceres:13453. 3322.54 3396.288 1.0221962 2419.995 2692.206 1.1124841 3065.28 2683.331 0.8753950 

serine 
carboxypeptidase S10 

family protein 
At2g35770 putative serine carboxypeptidase II 129.51 132.888 1.0260829 45.249 51.71 1.1427876 200.912 194.997 0.9705592 

phenylalanine 
ammonia-lyase 1 

(PAL1) 
At2g37040 

phenylalanine ammonia lyase (PAL1)  ; 
supported by cDNA: 

gi_15028192_gb_AY045919.1_ 
2552.947 2614.556 1.0241325 3622.19 3205.438 0.8849447 3741.437 3461.518 0.9251840 

adenylate kinase family 
protein At2g37250 putative adenylate kinase  ;supported by full-

length cDNA: Ceres:15831. 691.515 685.506 0.9913103 691.885 666.839 0.9638003 806.501 715.758 0.8874855 

zinc finger (CCCH-type) 
family protein At2g40140 putative CCCH-type zinc finger protein also 

an ankyrin-repeat protein 816.746 849.541 1.0401532 613.589 549.651 0.8957967 674.511 711.86 1.0553719 

AP2 domain-containing 
transcription factor, 

putative (DRE2B)  
At2g40350 AP2 domain transcription factor 324.978 331.739 1.0208044 63.284 69.296 1.0950002 95.274 94.39 0.9907215 

chaperonin, putative At3g02530 
putative chaperonin similar to chaperonin 

subunit 6a (zeta) GB:NP_033968 from [Mus 
musculus];supported by full-length cDNA: 

1028.997 1024.635 0.9957609 801.784 923.74 1.1521058 920.312 882.673 0.9591011 
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Ceres:116386. 

guanylate kinase, 
putative At3g06200 

putative guanylate kinase similar to 
guanylate kinase (GmK) GB:AAD31506 

[Salmonella typhimurium]; contains Pfam 
profile: PF00625 guanylate kinase; supported 

by cDNA: 
gi_14190398_gb_AF378877.1_AF378877 

181.276 196.321 1.0829949 273.223 278.664 1.0199141 326.577 376.887 1.1540524 

60S ribosomal protein 
L29 (RPL29B) At3g06680 

ribosomal protein L29, putative similar to 60S 
ribosomal protein L29 GB:P25886 from 

[Rattus norvegicus] 
2163.351 2227.498 1.0296516 1399.234 1627.458 1.1631063 1748.415 1697.022 0.9706059 

60S ribosomal protein 
L29 (RPL29A) At3g06700 

ribosomal protein L29, putative similar to 
ribosomal protein L29 GI:7959366 (Panax 
ginseng);supported by full-length cDNA: 

Ceres:315. 

3176.562 3180.62 1.0012774 2221.594 1924.022 0.8660547 2399.864 2135.584 0.8898770 

sterile alpha motif 
(SAM) domain-

containing protein 
At3g07170 unknown protein  ; supported by cDNA: 

gi_15294217_gb_AF410300.1_AF410300 447.998 416.621 0.9299617 510.535 436.476 0.8549384 522.446 500.409 0.9578196 

60S acidic ribosomal 
protein P0 (RPP0C) At3g11250 

60S acidic ribosomal protein, putative similar 
to 60S acidic ribosomal protein P0 

GI:2088654 [Arabidopsis thaliana];supported 
by full-length cDNA: Ceres:38036. 

1506.267 1431.657 0.9504669 840.242 752.404 0.8954610 824.606 897.693 1.0886326 

DNA-binding protein, 
putative At3g11580 

putative DNA binding protein similarity to 
RAV2 DNA binding protein  GB:BAA34251 

[Arabidopsis thaliana] 
113.917 116.531 1.0229465 77.198 80.747 1.0459729 101.241 91.183 0.9006529 

expressed protein At3g18790 unknown protein 556.756 544.064 0.9772036 380.531 414.387 1.0889704 338.349 389.535 1.1512816 

sulfotransferase family 
protein  At3g45070 

sulfotransferase-like protein FLAVONOL 4 -
SULFOTRANSFERASE - Flaveria chloraefolia, 

EMBL:M84136 
117.763 100.266 0.8514219 21.785 22.511 1.0333256 32.73 35.777 1.0930950 

Ras-related protein 
(RAB11A) / small GTP-

binding protein, 
putative 

At3g46830 GTP-binding protein Rab11  ; supported by 
full-length cDNA: Ceres: 35596. 441.963 458.09 1.036489 385.379 386.391 1.0026259 423.727 485.243 1.1451783 

expressed protein At3g52740 hypothetical protein ; supported by cDNA: 
gi_15450654_gb_AY052695.1_ 1283.889 1183.907 0.9221256 425.227 432.637 1.0174259 564.227 555.178 0.9839621 

phosphoribosylformylgl
ycinamidine cyclo-

ligase, chloroplast / 
phosphoribosyl-

At3g55010 
phosphoribosylformylglycinamidine cyclo-

ligase precursor  ; supported by cDNA: 
gi_16974614_gb_AY060585.1_ 

858.519 783.364 0.9124597 458.328 492.38 1.0742961 475.526 474.299 0.9974197 
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aminoimidazole 
synthetase / AIR 
synthase (PUR5) 

sugar transporter 
family protein At4g00370 hypothetical protein 1474.787 1361.844 0.9234174 1465.477 1578.642 1.0772205 1084.355 1057.835 0.9755430 

glycosyltransferase 
family protein At4g09500 

putative protein anthocyanin 
rhamnosyltransferase -Petunia x hybrida, 

PID:g454253 
304.382 290.77 0.9552798 69.514 66.758 0.9603533 146.155 137.31 0.9394820 

expressed protein At4g14240 hypothetical protein 480.542 484.977 1.0092291 264.666 238.621 0.9015929 239.74 267.831 1.1171727 
eukaryotic translation 
initiation factor 4E 1 / 
eIF-4E1 / mRNA cap-

binding protein 1 
(EIF4E1) 

At4g18040 translation initiation factor eIF4E  ;supported 
by full-length cDNA: Ceres:25447. 1768.628 1707.986 0.9657124 768.029 820.308 1.0680690 842.444 952.815 1.1310128 

adenine 
phosphoribosyltransfer

ase, putative 
At4g22570 

adenine phosphoribosyltransferase (EC 
2.4.2.7) - like protein adenine 

phosphoribosyltransferase, Triticum 
aestivum, T06263; supported by full-length 

cDNA: Ceres: 11009. 

1189.523 1309.578 1.100927 1346.758 1205.626 0.8952061 769.012 690.443 0.8978312 

expressed protein At4g25210 
putative protein cylicin II - human, 
PID:g758587; supported by cDNA: 

gi_14423517_gb_AF386996.1_AF386996 
945.114 969.576 1.0258825 748.573 776.975 1.0379415 809.815 885.415 1.0933546 

amine oxidase family 
protein At4g29720 

putative protein Cs protein, Drosophila 
melanogaster, AF091328;supported by full-

length cDNA: Ceres:158028. 
1634.15 1899.24 1.1622188 1101.131 992.832 0.9016474 1309.693 1144.764 0.8740704 

expressed protein At4g32020 putative protein 2633.813 2970.008 1.1276457 3377.027 2968.707 0.8790889 3546.801 3064.533 0.8640273 
beta-galactosidase, 
putative / lactase, 

putative 
At4g36360 beta-galactosidase like protein ; supported 

by cDNA: gi_15810492_gb_AY056285.1_ 1328.959 1247.171 0.9384570 841.924 939.107 1.1154296 1223.021 1253.381 1.0248237 

DNAJ heat shock N-
terminal domain-
containing protein 

At4g39150 dnaJ-like protein CAJ1 protein, 
Saccharomyces cerevisiae, PIR2:S48085 712.752 751.062 1.0537494 635.898 553.912 0.8710705 574.79 641.662 1.1163416 

glycine-rich RNA-
binding protein 8 

(GRP8) (CCR1) 
At4g39260 

glycine-rich protein (clone AtGRP8)  ; 
supported by cDNA: 

gi_166838_gb_L00649.1_ATHRBPB 
3236.631 2969.954 0.917606 2590.706 2970.159 1.1464670 2853.955 3077.036 1.0781655 

stress-responsive 
protein, putative At5g01410 

pyridoxine biosynthesis protein - like 
pyridoxine biosynthesis protein pyroA - 

Emericella nidulans;supported by full-length 
3543.37 3984.101 1.1243818 5242.777 4773.358 0.9104636 4309.031 4331.316 1.0051717 
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cDNA: Ceres:8877. 

40S ribosomal protein 
S15 (RPS15D) At5g09510 

ribosomal protein S15-like ribosomal protein 
S15 - Arabidopsis thaliana, 

EMBL:Z23161;supported by full-length cDNA: 
Ceres:164. 

1487.457 1525.519 1.0255886 846.97 910.44 1.0749377 1125.132 963.812 0.8566217 

eukaryotic translation 
initiation factor SUI1 

family protein 
At5g11900 putative protein density regulated protein 

drp1, Homo sapiens, EMBL:AF038554 396.115 368.091 0.9292528 258.894 292.747 1.1307600 271.342 275.285 1.0145314 

MA3 domain-
containing protein At5g17930 unknown protein 196.643 168.958 0.8592118 121.326 135.695 1.1184329 152.517 175.434 1.1502586 

ribosomal protein L36 
family protein At5g20180 

ribosomal protein L36-like ribosomal protein 
L36 - Synechocystis sp., 

PIR:S77481;supported by full-length cDNA: 
Ceres:28109. 

967.667 1015.795 1.0497361 633.863 571.984 0.9023779 874.63 871.325 0.9962212 

expressed protein At5g28040 putative protein various predicted proteins, 
Arabidopsis thaliana and Oryza sativa 563.307 488.387 0.8669997 260.144 225.271 0.8659473 273.357 264.743 0.9684880 

expressed protein  At5g28430 putative protein predicted proteins - 
Arabidopsis thaliana 77.112 73.534 0.9535959 81.951 91.82 1.1204256 84.326 87.166 1.0336788 

expressed protein At5g41810 unknown protein  ;supported by full-length 
cDNA: Ceres:126660. 723.797 696.125 0.9617682 185.987 206.297 1.1092011 299.908 314.262 1.0478613 

expressed protein At5g42060 putative protein similar to unknown protein 
(gb|AAF19669.1) 303.132 289.697 0.9556793 90.759 91.519 1.0083738 115.301 109.054 0.9458200 

nuclear RNA-binding 
protein, putative At5g47210 

putative protein similar to unknown protein 
(pir||G71444);supported by full-length 

cDNA: Ceres:19104. 
3136.34 2924.282 0.9323867 1720.33 1854.818 1.0781757 1602.125 1555.726 0.9710390 

heat shock protein 70 / 
HSP70 (HSC70-7) At5g49910 

heat shock protein 70 (gb|AAF27639.1)  ; 
supported by cDNA: 

gi_6746591_gb_AF217459.1_AF217459 
2247.32 2444.277 1.0876408 2090.948 1970.203 0.9422537 1333.875 1320.419 0.9899121 

mitochondrial import 
inner membrane 

translocase (TIM8) 
At5g50810 small zinc finger-like protein  ;supported by 

full-length cDNA: Ceres:33833. 1023.742 981.278 0.9585207 642.765 659.184 1.0255443 719.063 740.629 1.0299911 

fibrillarin 1 (FBR1) 
(FIB1) (SKIP7) At5g52470 

fibrillarin 1 (AtFib1) identical to fibrillarin 1 
GI:9965653 from [Arabidopsis thaliana]; C-

terminus identical to SKP1 interacting 
partner 7 GI:10716959 from [Arabidopsis 

thaliana];  supported by cDNA: 
gi_10716958_gb_AF263383.1_AF263383 

2743.645 3084.725 1.1243163 3330.269 3830.273 1.1501392 3224.583 3376.433 1.0470913 

RabGAP/TBC domain- At5g53570 GTPase activator protein of Rab-like small 313.99 300.93 0.9584063 348.532 348.647 1.0003299 392.49 369.511 0.9414532 
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containing protein GTPases-like protein  ; supported by cDNA: 
gi_14517421_gb_AY039546.1_ 

auxin-responsive family 
protein At5g53590 unknown protein 509.562 501.947 0.9850557 179.977 170.274 0.9460875 335.592 376.871 1.1230035 

heat shock protein 81-
2 (HSP81-2) At5g56030 HEAT SHOCK PROTEIN 81-2 (HSP81-2) 

(sp|P55737) 2526.584 2846.955 1.1268000 3555.103 4059.669 1.1419272 2327.221 2401.02 1.0317112 

CBL-interacting protein 
kinase 10 (CIPK10) At5g58380 

serine/threonine protein kinase ; supported 
by cDNA: 

gi_13249118_gb_AF295665.1_AF295665 
441.336 504.536 1.1432015 243.686 272.863 1.1197319 289.767 290.728 1.0033164 

DNA-directed RNA 
polymerase II At5g59180 RNA polymerase II 531.113 492.533 0.9273600 274.513 287.042 1.0456408 413.72 370.772 0.8961906 
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Appendix III: Primer Regression Coefficients 
Regression Coefficient of primer viability for genes used in qRT-PCR experiments. Primer 

sequences can be found in Materials and Methods section II.9.2. Primers used for transcript 

analysis.  
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