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Abstract 

 

Speciation models relying on geographic barriers to limit gene flow gather widespread 

consensus, but are insufficient to explain diversification in highly mobile marine organisms. 

Adaptation to different environments has been suggested as an alternative driver for 

differentiation, particularly in cetaceans. In this study, patterns of population structure at 

neutral and functional markers were investigated for both common (Delphinus delphis) and 

bottlenose dolphin (Tursiops spp.), chosen due to high levels of morphological and ecological 

variation within each genus. Candidate functional markers were selected by investigating 

signals of positive selection in both mammals and cetaceans.  

No population structure was found in the European common dolphin for neutral 

microsatellite loci, in contrast to what is observed in other sympatric cetacean species. The 

previously described differention of the Eastern Mediterranean Sea population, probably 

results from a recent human-mediated bottleneck. Functional markers showed almost 

complete uniformity suggesting purifying selection. One non-synonymous mutation in β-

casein and the DQβ1 locus were exceptions, with patterns of population differentiation 

possibly the result of differences in local selective pressures. 

Additionally, large mitogenomic sequences were used to investigate the worldwide 

phylogeography of several ecotypes/species within the genus Tursiops, with a recent 

biogeographical calibration point being used to calculate divergence times. Good node 

resolution with high statistical support was achieved, with good separation between most 

ecotypes in their own lineages. However, the results give no support for a monophiletic 

Tursiops. Divergence times are clustered in specific geological periods characterized by 

climatic fluctuations from cold to warmer periods.  

The Common and bottlenose dolphins exhibit contrasting patterns of population structure 

in an environment containing few geographical barriers. Such difference is speculated to be 

related with different feeding ecologies and social structures, although data on such are still 

limited. Although selection can be detected in the genomes of cetaceans both at the species 

and population level, current patterns of differentiation are thought to occur mainly due to 

drift.   
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Chapter 1 - Introduction 
 
 

1.1.  DIFFERENTIATION IN ANIMALS 
 

One of the key innovations brought about by Darwin into biological thinking, was that 

diversity in living organisms was essential for their survival in an environment where 

resources are limited (Darwin, 1859). The mechanisms that originate and maintain such 

diversity have been the focus of intense and continuous study ever since. In the extreme, two 

populations will split in such a way that hereditary material is no longer exchanged between 

them and speciation is said to occur. Although mechanisms are known to cause speciation 

instantaneously over the course of a single generation (e.g. Coyne, 1992; Wood et al., 2009), in 

animals it is usually preceded by some form of population differentiation, and mechanisms 

behind each step will be necessarily correlated (Kondrashov, 1992). As such, research on 

speciation benefits greatly from insight into population differentiation, with the opposite also 

being true. 

 

1.1.1.  Geographic speciation 
 

In one of the most influential works on speciation, Mayr (1963) stated that the process 

starts when gene flow between two populations becomes interrupted by an external 

geographical barrier, after which given enough time the two populations would develop 

reproductive isolation and gene flow would cease even if those populations regained contact. 

This model was named allopatric speciation, due to the geographical isolation that had to 

occur between the diverging populations. Predictions made by this model were found to 

occur in several natural populations, namely tropical birds (Mayr, 1963), and it received 

increased support with its replication in a laboratory environment with fruit flies 

(Dobzhansky & Pavlovsky, 1971; Dobzhansky, 1972). Since then, several other laboratory 

experiments have supported this model (Weinberg et al., 1992; Rice & Hostert, 1993). 

Numerous cases of wild populations fitting the model have since been reported, especially 

after the development of phylogeography as a research field (Avise et al., 1979a; Avise et al., 

1979b; Avise et al., 1987). In one of the most well studied systems, the divergence of most 

European vertebrates can be traced back to the Pleistocene glacial cycles when ice caps 

covered most of central Europe and species were forced to three isolated refugia: Iberia, Italy 

and the Balkans (Taberlet et al., 1998; Hewitt, 2000; Hewitt, 2001; Weiss & Ferrand, 2007).  
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In North America more complex patterns can be detected owing to the more complex 

geography of that continent (Remington, 1968; Swenson & Howard, 2004; Swenson & 

Howard, 2005), supporting the role of geography in the speciation process. 

 

1.1.2. Limitations of geographical speciation 
 

Mayr (1963) also recognized a clear limitation of this model by noting that the scarcity of 

geographic barriers in the open ocean, made it unclear as to how the allopatric model would 

apply to marine organisms. Mayr (1963) stated that sea urchins appear to fit his models, but 

these are animals with limited mobility and planktonic larvae, which makes them vulnerable 

to physical phenomena such as currents that could act as dispersal barriers in a similar fashion 

to geography on land (Palumbi, 1994; Jackson & Cheetham, 1999)(although note the re-

evaluation of Mayr’s sea urchin analysis using molecular phylogenetic data (Palumbi & 

Lessios, 2005)). Nevertheless, for free swimming marine organisms with high dispersal 

abilities, geographic barriers are unlikely to play a large role in population differentiation and 

speciation.  

Large-scale geological phenomena have been invoked as putative geographical barriers to 

gene flow in marine organisms in several instances. For example, continental drift due to plate 

tectonics has caused the distribution of land masses to change drastically over time, and has 

been invoked as a mechanism to explain certain speciation events in marine organisms (Bert, 

1986; Springer, 1988; Endo et al., 1996). However, these large-scale processes are insufficient 

to explain all the diversity found in the ocean, and some authors argue that species 

differentiation might sometimes precede geological isolation (Knowlton & Weigt, 1998; Hurt 

et al., 2009). Isolation by distance has also been claimed as a geographical isolating factor for 

speciation in the sea, although in such cases the distances involved are usually greater than or 

at the maximum limit of a species dispersal abilities (Kay & Palumbi, 1987; Palumbi, 1994). 

Yet, many marine groups will exhibit high levels of diversity, a contradiction that has been 

designated the “marine-speciation paradox” (Bierne et al., 2003).  

 

1.1.3.  Non-geographical models of speciation 
 

Mather (1955) first proposed that a geographical barrier was not necessary for divergence 

to occur, and that disruptive selection could lead to stable polymorphisms and eventually to 

reproductive isolation, as long as the selective pressures were strong enough relative to gene 

flow. This was shown to be mathematically feasible (Maynard Smith, 1962; Maynard Smith, 
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1966), and developments of this model have established that reproductive isolation should be 

preceded by race formation (Pimentel et al., 1967), which is more easily achieved by habitat 

specific mating (i.e. individuals first choose the habitat, then mate in that same habitat (Rice, 

1984)). Recent models concluded that lower levels of selection are required if a more realistic 

pattern of selection is assumed rather than simple disruptive selection (Artzy-Randrup & 

Kondrashov, 2006). Adaptation to different environments has also been shown through 

mathematical models to be sufficient to explain the rapid rates of speciation in adaptive 

radiations (Gavrilets & Vose, 2005). Several laboratory experiments in which habitat specific 

mating was simulated, resulted in the development of strong assortative mating between 

individuals with different habitat preferences, even if dispersal between them was possible 

(Soans et al., 1974; Hurd & Eisenberg, 1975; Rice, 1985; Rice & Salt, 1988; Dodd, 1989; Rice & 

Salt, 1990). Studies on wild Rhagoletis flies found that F1 hybrids between lines of different 

fruit plant specialists failed to respond to either parent preferred host plant in experimental 

conditions (Linn et al., 2004), showing that the effect was not confined to a laboratory setting.  

Several cases of divergence with gene-flow have been described in the wild. A particularly 

well documented case is that of phytophagous insects (Bush, 1994), particularly well 

documented in Rhagoletis flies (Bush, 1969; Linn et al., 2004), whose life-history adequately 

fit the theoretical models. Several other cases have been claimed in wild populations (Orr & 

Smith, 1998; Schluter, 2001; Via, 2001;  Savolainen et al., 2006a). However, such cases are 

confounded by the fact that it is usually impossible to assure that the presently diverged 

populations have never experienced a period of geographical isolation in the past to promote 

the initial differentiation (Coyne & Orr, 2004; Nosil, 2008). For example, Klicka and Zink 

(1997) argued that much of the diversity observed in European vertebrates began to form 

before the Pleistocene glaciations. Nevertheless, given the drastic geographical changes 

experienced in Europe, and the relatively limited data available today, invoking the 

glaciations almost always becomes the most parsimonious explanation. A typical example of 

such controversy can be seen in a discussion regarding the mechanism of speciation in insular 

palm trees of the genus Howea (Savolainen et al., 2006a; Savolainen et al., 2006b; Stuessy, 

2006). In the marine environment, such confounding factors are less important given the 

scarcity of geographical barriers to dispersal, making this an ideal model to study the role of 

the environment in promoting population differentiation in the absence of geographical 

barriers. 
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1.1.4.  Speciation in the sea 
 

Although considerable progress has been made in the understanding of the mechanisms 

promoting population differentiation and speciation in the sea, it is still largely unstudied in 

animals whose ecology and life history are less compatible with a geographic model of 

speciation  (Palumbi, 1994; Futuyma, 1998; Jackson & Cheetham, 1999; Mayr, 2001; Palumbi 

& Lessios, 2005). Marine species will often exhibit population structure on a scale largely 

inferior to their dispersal potential, such as cod (Ruzzante et al., 1996; Hutchinson et al., 2001; 

Pogson et al., 2001; Knutsen et al., 2003), herring (McPherson et al., 2001; McPherson et al., 

2004; Jorgensen et al., 2005), cuttlefish (Perez-Losada et al., 2007), sea bass (Naciri et al., 

1999), silverside fish (Beheregaray & Sunnucks, 2001), and several species of phytoplankton 

(Medlin, 2007).  

Oceanic currents have been suggested to limit dispersal in a similar way as geographical 

barriers in terrestrial environments (Palumbi, 1994; Jackson & Cheetham, 1999). This may be 

more likely in organisms whose dispersal is dependent on planktonic larvae, because even 

though these might be carried across long distances by currents, the survival capabilities of 

the larvae might stop them from travelling beyond certain distances (Palumbi, 1994). 

However, dispersal ranges are limited not only by the larval capacity to survive in the water 

column, but also by the ability of the larvae to find appropriate conditions to settle, meaning 

that ecology would be a defining parameter in addition to geography (Palumbi, 1994). In fact, 

even some biogeographic models that rely on Pleistocene range contractions to explain 

diversity patterns in marine fishes (Almada et al., 2001) depend more on adaptation to local 

environments than on geography itself (Stefanni et al., 2006; Domingues et al., 2007; 

Domingues et al., 2008). In such cases, ecological and environmental differences play an 

essential role in limiting dispersal and may act as effective barriers promoting speciation in a 

patchy environment such as the ocean. For example, in a coral reef surrounded by large 

patches of sandy bottom, neighborhood size (as defined in (Palumbi, 1994)) of different fish 

species appeared to be effectively limited by the size of the surrounding sandy patches 

(Chapman & Kramer, 2000).  

The pattern that emerges from these data is that for marine organisms such as fishes or 

sessile invertebrates, it might be difficult to separate between the effects of geography and the 

environment in determining population differentiation. The ability of individual animals to 

disperse over long distances can be dependent on availability of suitable habitats, and is not 

necessarily correlated with gene flow over long distances (Palumbi, 1994).  
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1.2.  CETACEANS 
 

Cetaceans are marine mammals with high dispersal potential and no apparent geographic 

barriers to their movements in the ocean (Hoelzel, 2002). In spite of this, the group has 

experienced a rapid radiation, giving rise to a large number of species in a relatively short time 

(Gingerich et al., 1990; Gatesy et al., 1999; Gingerich et al., 2001; Arnason et al., 2004; Price et 

al., 2005; Nikaido et al., 2007; McGowen et al., 2009; Slater et al., In Press). Furthermore, 

several studies have shown that instead of having large panmictic populations, they can show 

considerable genetic and morphological structure on a regional scale (Chivers et al., 2002; 

Hayano et al., 2003; Hayano et al., 2004; Krützen et al., 2004; Natoli et al., 2004; Karczmarski 

et al., 2005; Natoli et al., 2005; Rosa et al., 2005; Sellas et al., 2005; Adams & Rosel, 2006; 

Charlton et al., 2006; Murphy et al., 2006; Natoli et al., 2006; Fontaine et al., 2007; Gaspari et 

al., 2007). As such, cetaceans are an interesting model to study the relative role of geography 

and ecology in determining population structure and speciation. 

Great whales exhibit complex migration patterns that most likely determine genetic 

structuring and define extrinsic barriers due to fidelity to maternal migratory routes (Baker et 

al., 1993; Palsbøll et al., 1995; Palsbøll et al., 1997; Baker et al., 1998), and geography has 

necessarily been an important factor in river dolphins (Cassens et al., 2000; Hamilton et al., 

2001; Verma et al., 2004; Yan et al., 2005). In a few instances, it has been speculated that 

variation in coastal geography and sea levels during glacial cycles might have driven the 

current observed patterns of variation (Fordyce & Barnes, 1994; Hayano et al., 2004; Steeman 

et al., 2009). Nevertheless, differences in local habitat have been proposed as a major 

mechanism promoting divergence in cetaceans (Hoelzel et al., 1998; Yoshida et al., 2001; 

Torres et al., 2003; Natoli et al., 2005; Sellas et al., 2005; Natoli et al., 2006; Bilgmann et al., 

2007b; Fontaine et al., 2007; Mendez et al., 2010). Even in river dolphins the environment 

appears to play an essential role. While all the river dolphins share a similar basic body 

morphology and behaviour (they have extremely elongated beaks, short wide pectoral fins, 

reduced sense of vision, and a reliance on sound to hunt their prey), the genus Platanista has 

adapted to a riverine environment independently of the other river dolphins (McGowen et al., 

2009). Additionally, several other selection related mechanisms have been proposed, namely:  

kin selection (Möller & Beheregaray, 2004; Parsons et al., 2006; Gaspari et al., 2007), cultural 

hitchhiking (Whitehead, 1998), and resource specialization (Sellas et al., 2005; Hoelzel et al., 

2007). 
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Several cases of strong correlations between genetic and ecological differentiation have 

been reported in cetaceans (Hoelzel et al., 1998; Yoshida et al., 2001; Torres et al., 2003; Natoli 

et al., 2005; Sellas et al., 2005; Natoli et al., 2006; Segura et al., 2006; Bilgmann et al., 2007b; 

Fontaine et al., 2007; Mendez et al., 2010). In the harbour porpoise (Phocoena phocoena), for 

example, genetically differentiated units were geographically coincident with differences in 

temperature and productivity (Fontaine et al., 2007), with a similar pattern being found for 

bottlenose dolphins (Tursiops truncatus) along the Mediterranean Sea (Natoli et al., 2005). In 

Argentinean franciscana river dolphins (Pontoporia blainvillei) a strong correlation exists 

between genetic differentiation and an environmental change between a riverine and an 

oceanic environment (Mendez et al., 2010). Also, several species seem to exhibit a 

differentiation between offshore and coastal populations, such as white-sided dolphins 

(Lagenorhynchus obliquidens) in Japan (Hayano et al., 2004), Atlantic spotted dolphins 

(Stenella frontalis) and bottlenose dolphins (Tursiops truncatus) in eastern North America 

(Hoelzel et al., 1998; Adams & Rosel, 2006).  

 

1.2.1.  Delphinids 
 

Delphinids constitute the most diverse group of cetaceans in number of species, 

morphology and ecology, and they occupy a wide variety of marine ecosystems (Evans & 

Raga, 2001; Hoelzel, 2002). It is a monophyletic group whose origin is thought to have 

occurred around 10 Myrs before present (Fordyce & Barnes, 1994; Cassens et al., 2000; 

McGowen et al., 2009), whoe phylogenetic relationships have been difficult to determine. The 

first efforts were characterized by low resolution and a large basal polytomy (LeDuc et al., 

1999). A better resolution has been achieved since, but the phylogenetic position of some taxa 

remains difficult to determine due to inconsistent placement across different datasets (e.g. 

subfamily Lissodelphinae (May-Collado et al., 2007)), inconsistency with classically defined 

taxonomic groups (e.g. the genus Lagenorhynchus (Harlin-Cognato & Honeycutt, 2006) and 

Stenella (May-Collado et al., 2007)), and poor node support (e.g. subfamily Globicephalinae 

(May-Collado & Agnarsson, 2006; May-Collado et al., 2007)). On the other hand, several cases 

of interspecific hybridization are known within delphinids (Dohl et al., 1974; Spilliaert et al., 

1991; Miyazaki et al., 1992; Heide-jorgensen & Reeves, 1993; Reyes, 1996; Baird et al., 1998; 

Zornetzer & Duffield, 2003; Willis et al., 2004; Caballero & Baker, In Press). Cetaceans in 

general have highly conserved karyotypes (Arnason, 1972; Arnason, 1974) and hybrids kept in 

captivity appear to be fully fertile, showing that in some cases, reproductive isolation in 
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cetaceans might be restricted to pre-mating barriers. Nevertheless, species that are known to 

hybridize will maintain their identities in the wild even when occurring in sympatry (Baird et 

al., 1998; Caballero & Baker, In Press). 

Delphinids are thought to have a large dispersal potential, and cases have been recorded of 

individuals travelling thousands of miles in just a few days (Shane et al., 1986; Wells et al., 

1999). Together with the fact that species barriers are thought to be incomplete and recently 

established, large panmictic populations with wide geographical distributions would be 

expected to occur in dolphins. However, several cases are known which contradict this 

expectation. Killer whales in the eastern North Pacific exhibit marked differentiation between 

sympatric ecotypes specialized in different prey resources (Hoelzel et al., 2007). False killer 

whales (Pseudorca crassidens) found in Hawaiian coastal waters appear to differentiate from 

oceanic or Central American populations, with some support for a further differentiation 

between Mexican and Panama populations (Chivers et al., 2007). In the eastern coast of the 

United States significant differentiation was found between three geographically continuous 

coastal populations of Atlantic spotted dolphin (Stenella frontalis) (Adams & Rosel, 2006). In 

Europe, Risso’s dolphins (Grampus griseus) show significant levels of differentiation between 

UK and Mediterranean samples, and evidence for further differentiation within the 

Mediterranean were found (Gaspari et al., 2007). A study on spinner dolphins (Stenella 

longirostris) found evidence for limited connectivity between populations inhabiting different 

Pacific island systems, (geographic range between 16 – 1500 Km) (Oremus et al., 2007). 

Peruvian dusky dolphin (Lagenorhynchus obscurus) showed evidence of limited gene flow 

with populations elsewhere, even though no significant genetic structure was detected 

between the South American, African and New Zealand populations (Cassens, 2005). These 

results suggest that in delphinids geography is a less important factor determining population 

structure, as within the same species populations spread through thousands of miles can then 

be differentiated across short stretches of ocean where no obvious geographic barriers are 

apparent.  

However, few species can serve as models for assessing the role of the environment in 

promoting division better than the common (Delphinus spp.) and the bottlenose dolphin 

(Tursiops spp.). They are phylogenetically closely related, widespread cosmopolitan dolphins 

found in all major oceans except polar regions (Folkens et al., 2002), and are characterized by 

an extensive morphological variation that led to the proposal of several different species 

within each respective genus (Hershkovitz, 1966).  



Analysis of the effects of drift and selection in cetaceans    Page 22 

1.2.2.  Bottlenose dolphin (Tursiops spp.) 
 

Although several different species of the bottlenose dolphin have been proposed in the past 

(Hershkovitz, 1966), only two species are currently recognized, T. truncatus widespread 

through all major oceans, and T. aduncus (the Indian bottlenose dolphin) distributed 

essentially through coastal areas of East Africa, Asia and northwest Australia (Folkens et al., 

2002). Genetic studies have shown that samples from putative T. truncatus and T. aduncus 

populations are consistently well differentiated (Wang et al., 1999; Möller & Beheregaray, 

2001; Natoli et al., 2004; Charlton et al., 2006; Möller et al., 2008), and consistently group as 

independent clades in phylogenetic analyses (LeDuc et al., 1999; Natoli et al., 2004; Kingston 

et al., 2009). Based on similar patterns, it was further suggested that the aduncus morphotypes 

from South Africa might represent a distinct species from Asian aduncus type dolphins (Natoli 

et al., 2004), while Tursiops samples collected in Southern Australia were placed in their own 

mitochondrial lineage, separate from both T. truncatus  and the Australasian form of T. 

aduncus (Charlton et al., 2006; Möller et al., 2008; Rosel et al., 2009). This together with 

comparatively high genetic distances in comparison with T. aduncus and T. truncatus 

populations led the authors to propose a new species (Charlton et al., 2006; Möller et al., 

2008). Presently, both these cases await further analysis. 

Bottlenose dolphins are characterized by diverse ecology and behaviour throughout their 

range. Although capable of long range dispersal (dispersal events of 1500 Km for the coastal 

ecotype (Shane et al., 1986) and 4200 Km for the offshore ecotype (Wells et al., 1999) have 

been recorded), the coastal ecotype appears to use well defined restricted “home ranges” that 

can vary seasonally or be connected by specific well defined “travelling ranges” (Shane et al., 

1986). Diet and hunting behaviour is also extremely variable (Silber & Fertl, 1995; Smolker et 

al., 1997; Bearzi et al., 1999; Sargeant et al., 2007; Sargeant & Mann, 2009), suggesting that 

bottlenose dolphins are capable of adapting to a variety of different ecological contexts. Social 

behaviour is also quite variable. A well studied population in Australia exhibits a fission-

fusion like social structure, with males forming small stable alliances to herd females. These 

alliances can often unite in larger and more fluid superalliances (Connor et al., 1992; Connor 

et al., 1999), which have been suggested to prevent animals from dispersing too much from 

their native areas  (Krützen et al., 2004). Females, on the other hand, form small groups 

composed of related individuals, suggested to increase their calf rearing success (Möller & 

Beheregaray, 2004).  
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Adaptation to local conditions such as prey resources coupled with a complex social 

structure, might lead to habitat specific breeding and as such promote differentiation in the 

absence of geographical barriers (Rice, 1984; Rice & Salt, 1990). Patterns of genetic structure 

in the bottlenose dolphin (Tursiops spp.) reveal that populations from different locations 

around the world are generally well differentiated between each other (Tezanos-pinto et al., 

2009). Small-scale population structure (below recorded travelling distances (Shane et al., 

1986; Wells et al., 1999)) has been found in many locations around the world, namely Europe 

(Parsons et al., 2002; Natoli et al., 2005; Nichols et al., 2007), east coast of North America 

(Dowling & Brown, 1993; Hoelzel et al., 1998; Natoli et al., 2004; Sellas et al., 2005; Rosel et 

al., 2009), the Bahamas (Parsons et al., 2006) and several locations in Australia (Krützen et al., 

2004; Möller & Beheregaray, 2004; Bilgmann et al., 2007b). Differences in habitat use have 

been proposed as an explanation for the different patterns observed. Most notably, the 

division between “coastal” and “offshore” ecotypes described in the eastern coast of the United 

States is consistent with differences in morphology, diet, and habitat use (Hoelzel et al., 1998; 

Torres et al., 2003; Natoli et al., 2004). Several other authors have also noted that 

differentiated populations appear to inhabit regions with known differences between 

oceanographic features (Natoli et al., 2005; Sellas et al., 2005; Bilgmann et al., 2007b), or 

exhibit differences in prey choice (Dowling & Brown, 1993; Sellas et al., 2005; Segura et al., 

2006). Other studies have further suggested that behaviour and social factors might contribute 

to limited dispersal. Genetic studies in Australia showed there was some level of both female 

and male philopatry (Krützen et al., 2004; Möller & Beheregaray, 2004), with similar patterns 

described in the Gulf of Mexico (Sellas et al., 2005), as well as in the Bahamas from photo-id 

studies (Durban et al., 2000; Rogers et al., 2004). However, although bottlenose dolphins from 

the Gulf of Mexico and the Bahamas (Maze-Foley & Würsig, 2002; Krützen et al., 2003; 

Parsons et al., 2003) appear to exhibit similar social structure to the one found in Australia, it 

is unknown if it also occurs elsewhere. 

Bottlenose dolphins thus appear to have ecological and behavioural characteristics 

compatible with models of differentiation in the absence of external barriers to gene flow. In 

spite of being known to disperse over large distances, they appear to easily adapt to local 

ecological conditions and exhibit habitat-specific mating. However, the exact taxonomic 

classification within the genus Tursiops is still largely undetermined, and although four 

different species have been proposed in the literature, no single study has yet analysed the 

exact phylogenetic relationships between them. As such, the relative timings involved in such 
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differentiation events are not yet known, thus impairing any biogeographical hypothesis to be 

effectively validated. 

1.2.3.  Common dolphin (Delphinus spp.) 
    
Common dolphin (Delphinus spp.) can be the most abundant dolphin in areas where they 

occur, but their distribution is now understood to be much more patchy than initially thought 

(Folkens et al., 2002; Jefferson et al., 2009), due to either absence of records or only limited 

availability of reliable information. Like the bottlenose dolphin, the common dolphin is very 

variable in morphology, most notably in beak length (Heyning, 1994; Murphy & Rogan, 2006; 

Murphy et al., 2006; Pinela et al., 2008) and colouration patterns (Heyning, 1994; Perrin et al., 

1995; Stockin & Visser, 2005). 

 Its exact alpha taxonomy is still controversial. Genetic studies made in the eastern coast of 

California between two well characterized morphotypes (known as the long-beaked and the 

short-beaked) (Heyning, 1994) showed a strong genetic differentiation between them, leading 

the authors to propose the existence of two species (Rosel et al., 1994; Kingston & Rosel, 

2004). However, morphological studies in Europe and Mauritania showed that this clear 

morphological distinction is not necessarily found across the species range (Westgate, 2007), 

as several local populations exhibited intermediate (Murphy & Rogan, 2006; Murphy et al., 

2006; Tavares et al., 2010) or even clinal patterns between the two morphotypes (Pinela et al., 

2008). Genetic studies also revealed that long-beaked morphotypes found worldwide are 

polyphyletic within the genus, instead suggesting convergent evolution of the long-beaked 

morphotype in multiple locations (Natoli et al. 2006). A morphotype found along the coasts of 

India characterized by a particularly long beak has been proposed as a new species (Delphinus 

tropicalis) (Van Bree, 1971; Jefferson & Waerebeek, 2002), but further work is needed to test 

this hypothesis. 

Little is known about common dolphin ecology, social behaviour and reproduction 

(Stockin et al., 2004). Gonadal analysis indicates that sperm competition is strong, and mating 

is probably promiscuous with females copulating with several males (Murphy et al., 2005; 

Westgate & Read, 2007). Breeding has been described as seasonal (Murphy et al., 2005; 

Westgate & Read, 2007; Filby et al., 2010), although in some regions calving is seen 

throughout the whole year (Danil & Chivers, 2006). Genetic analysis of relatedness between 

individuals in one mass stranding showed that this group was essentially composed of 

unrelated individuals (Viricel et al., 2008). Feeding appears to be less diverse than in the 



Analysis of the effects of drift and selection in cetaceans    Page 25 

bottlenose dolphin, focusing mainly on fish, although cephalopods and crustaceans are also 

frequently found in stomach contents (Pascoe, 1986; Young & Cockcroft, 1994; Ohizumi et al., 

1998; Silva, 1999; Meynier, 2004; De Pierrepont et al., 2005; Pusineri et al., 2007). The fact that 

common dolphins appear to feed on a large number of different species (normally pelagic or 

benthopelagic), with a few being very frequent, led authors to conclude that this species is an 

opportunistic feeder, feeding on the most abundant pelagic fish species locally (Young & 

Cockcroft, 1994; Ohizumi et al., 1998; Silva, 1999; Meynier, 2004; De Pierrepont et al., 2005; 

Pusineri et al., 2007). Consistently, similar hunting strategies have been reported for different 

regions of the world (Clua & Grosvalet, 2001; Stockin et al., 2009).  

Compared to bottlenose dolphins, common dolphins appear to have a relatively lower level 

of genetic differentiation worldwide, although levels of genetic diversity are high. 

Differentiation was found to exist between ocean basins, and between both Atlantic coasts, 

although mitochondrial haplotypes can be shared across the Atlantic Ocean (Natoli et al., 2006; 

Mirimin et al., 2009). Local-scale populations are generally panmictic, although some cases of 

local-scale differentiation are described, namely between opposite ends of the Mediterranean 

Sea (Natoli et al., 2008), between Tasmania and South Australia (Bilgmann et al., 2008), and 

along the west coast of North America (Chivers et al., 2005). Differences in habitat use have 

also been invoked as an explanation for the genetic structure found in common dolphins, most 

notably, to explain the separation between long-beaked and short-beaked morphotypes (Natoli 

et al., 2006). Also, a correlation between a cline in skull length (ranging from long-beak to 

short-beak) and differences in isotope signatures were found in Mauritania (Pinela et al., 

2008), with differences in carbon signatures between two sampling locations in the Gulf of 

California further suggesting the existence of location-specific feeding (Nino-Torres et al., 

2006).  

 

1.2.4.  Environmental variability in Europe and the Iberian coast 
 

The European coastline has several characteristics that make it an interesting place to 

investigate the role of ecological differences in defining population structure. Being 

surrounded by four very different water masses (Black Sea, Mediterranean Sea, North Atlantic 

and North Sea), it exhibits a strong environmental cline along its coastline between two very 

different biogeographic regions, the Mediterranean in the south and Eurosiberian in the north 

(Alcaraz et al., 2006). The main transition between these two regions occurs along the Iberian 

coast, which is thus characterized by a considerable environmental heterogeneity (Alcaraz et 
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al., 2006). Common (Delphinus delphis) and bottlenose dolphins (Tursiops truncatus) are 

abundant throughout the European coast, but have differing distribution patterns and levels 

of population structure. 

Although the bottlenose dolphin (Tursiops truncatus) can be found throughout the 

European coast, it is known to be more common in particular regions, such as several 

locations in the UK (Hastie et al., 2004), the Sado Estuary in Portugal (dos Santos et al., 2007), 

or the Amvrakikos Gulf in western Greece (Bearzi et al., 2008). Its genetic structure is well 

characterized, and it has been shown to have significant structure even on a local scale. Natoli  

and collaborators (2005) found significant differentiation along the European coast, with 

genetic breaks occurring in similar regions as other marine species, suggesting a role of the 

environment on such structuring (Quesada et al., 1995; Borsa et al., 1997; Chikhi et al., 1997; 

Roldan et al., 1998; Garcia-Martinez et al., 1999; Valsecchi et al., 2004; Gaspari et al., 2007; 

Abaunza et al., 2008; Perez-Portela & Turon, 2008; Fontaine et al., 2010). However, the 

differentiation between the Black Sea and the East Mediterranean can provide useful 

information and warrants further research. The Black Sea is characterized by having very 

different environmental characteristics relative to the adjacent Mediterranean Sea (Özsoy & 

Ünlüata, 1997), and bottlenose dolphins from this area are particularly well differentiated 

from East Mediterranean dolphins (Natoli et al., 2005; Viaud-Martinez et al., 2008). In 

addition, morphological differences have led to the classification of the Black Sea bottlenose 

dolphin as a distinct sub-species, T. truncatus ponticus  (Viaud-Martinez et al., 2008; 

Committee on Taxonomy, 2009). As the geological history of the Black Sea is relatively well 

described (Kerey et al., 2004), the differentiation timeframe of its bottlenose dolphin 

population can be robustly estimated and used as a calibration point to further investigate 

other bottlenose dolphin ecotypes/species. 

The common dolphin (Delphinus delphis) has a more continuous coastal distribution, but 

it is notably absent from some areas. Although extremely common along the Iberian coast, it 

is a relatively rare sighting on the east coast of the UK, with bottlenose and white-beaked 

dolphins being much more common (Evans & Hammond, 2004). In the Mediterranean Sea, 

although once very abundant it is now a rare sighting, having suffered a well described 

abundance reduction in recent years (Bearzi et al., 2003; Bearzi et al., 2006; Bearzi et al., 

2008). Morphology appears to be quite variable, with the Black Sea common dolphins being 

markedly smaller than other European populations, while British and Dutch dolphins appear 

to be larger, while Iberian dolphins show intermediate characteristics between short-beaked 
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and long-beaked morphotypes (Murphy & Rogan, 2006; Murphy et al., 2006). Genetic studies 

show that diversity is high along the coast, but genetic structure is either low or altogether 

absent (Natoli et al., 2006; Amaral et al., 2007; Natoli et al. 2008; Mirimin et al., 2009). 

Preliminary studies suggest a differentiation between Greece and other populations in Europe 

(Natoli et al., 2008), while other studies suggested the occurrence of fine scale population 

structuring along the Iberian coast (Amaral et al., 2007). However, no detailed studies 

encompassing the entire European coastline have been made to present, and it is still unclear 

what is causing the observed patterns. Given that the environmental transition occurs mainly 

along the Iberian coast, and that this appears to be the region where the common dolphin is 

more abundant and where local scale structure has been suggested, a more detailed sampling 

scheme from that region is required. 

 

1.3.  ANALYSIS OF FUNCTIONAL DIVERSITY 
 
Most of the above mentioned studies on population structure in wild populations have 

focused on markers that are likely to be neutral (such as microsatellites or mtDNA control 

region). However, a lack of differentiation in neutral markers does not necessarily imply a 

lack of adaptive divergence (Thibert-Plante & Hendry, 2009; Thibert-Plante & Hendry, 2010). 

There is strong support for the notion that neutral loci more easily cross the barriers 

separating diverging groups as compared with loci under selection (Wu, 2001). In a case of 

isolation caused by differential adaption (unrelated to reproductive potential), differentiation 

in effectively neutral markers would thus take longer to establish because of remaining levels 

of gene flow (Thibert-Plante & Hendry, 2010; Wu, 2001). A notable exception occurs when a 

particular marker is located close to a functional gene which is itself under selection. In such 

cases, recombination between the neutral marker and the functional one would be reduced 

due to the physical proximity, and this genetic hitchhiking with the functional gene would 

result in  linkage disequilibrium (Barton, 2000; Andolfatto, 2001).  

Several studies on functional nuclear markers have found a correspondence between 

population structure in those markers and environmental characteristics. Notable examples 

are the diversity in antigen binding genes of the major histocompatibility complex (MHC) and 

parasite load in several species (Sanjayan et al., 1996; Hughes & Yeager, 1998; Janeway et al., 

2001; Vassilakos et al., 2009), diversity of milk proteins in different cattle breeds and artificial 

selection by lactose tolerant human populations (Beja-Pereira et al., 2003), or allele frequency 

distribution in hemoglobin genes depending on altitude for several mammalian species (Storz, 
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2007). Population genomics studies, where genomewide variation is compared across different 

wild populations and/or closely related species, have revealed similar patterns. For example, a 

comparison between closely related species in the genus Drosophila revealed that divergence 

is elevated in regions of the genome where functional genes are located (Begun et al., 2007). 

Another study comparing divergence between independent freshwater and oceanic 

populations of the threespine stickleback (Gasterosteos aculeatus), revealed that higher 

divergence was observed in the same functional regions in all freshwater populations, 

suggested to indicate accelerated evolution in such genes due to adaptation to the freshwater 

environment (Hohenlohe et al., 2010). 

Very few studies have investigated population structure in candidate functional genes 

other than MHC in cetaceans. The transition from land to sea imposed drastic selective 

pressures that have undoubtedly left their mark in the genome of cetaceans. On a species and 

population scale, if the adaptation to different environments is promoting population 

subdivision, then such pressures should be detectable in the genome, particularly in genes 

with a physiologically relevant function. Under neutrality, the rate of mutations which cause 

changes in the amino acid structure of a protein (non-synonymous) would tend to be the same 

or lower than the rate of mutations that have no effect on the phenotype (synonymous) (Li et 

al., 1985). As such, if the rate of non-synonymous substitutions is higher than the rate of 

synonymous substitutions in a given gene, it is considered as an indication of a positive 

selective pressure on that gene (Hill & Hastie, 1987; Hughes & Nei, 1988). Several genes have 

been found to be under positive selection using the dN/dS test (Endo et al., 1996; Ford, 2002).  

 

1.4.  OBJECTIVES 
 

This study aims at investigating the mechanisms promoting population division and 

speciation in cetaceans, highly mobile organisms with little barriers to dispersal. Focus will be 

on the common (Delphinus delphis) and bottlenose dolphin (Tursiops spp.), species with high 

levels of morphological variation and several species suggested within each genus. It is 

hypothesized that if population structure is being promoted by differences in habitat choice, 

then a good correspondence should be found between environmental differences and 

differentiation patterns in neutral markers. To test this, local-scale population structure in the 

European common dolphin will be assessed in chapter 2 using a detailed sampling scheme and 

high resolution individual-based methods, later related with known environmental 

differences. This species was chosen due to previous suggestions of population structure 
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related to environmental differences found along the European coast. If population 

differentiation is promoted by environmental adaptation, then specific population structure 

patterns are also expected in functional markers. Population structure will thus be further 

assessed in chapter 3 using functionally relevant nuclear markers, which will be selected by 

investigating signals of positive selection in cetaceans for a set of well described candidate 

genes. Finally, if environmental differences are a general mechanism promoting 

differentiation in cetaceans, the divergence times between well established extant species and 

ecotypes should be coincident with periods of environmental changes. For this purpose, 

phylogenetic relationships within the genus Tursiops will be determined in chapter 4 using 

whole mitochondrial genome sequences. Several well differentiated species/ecotypes have 

been described within this genus, whose divergence has been hypothesized as the adaptation 

to different habitats. Divergence times will be calculated between these described species and 

ecotypes, and checked for correlations with known ecological and geological phenomena.  
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Chapter 2 – Population Structure of Common 

Dolphin (Delphinus delphis) in Europe Based on 

Individual Microsatellite Genotypes.  
 

2.1.  INTRODUCTION 
 

The common dolphin is a widespread species with a high degree of morphological 

variation (Folkens et al., 2002), whose exact alpha taxonomy is still controversial (Rosel et al., 

1994; Kingston & Rosel, 2004; Natoli et al., 2006). Along the eastern coast of California two 

well characterized morphotypes (Heyning & Perrin, 1994) were found to be genetically well 

differentiated (Rosel et al., 1994; Kingston & Rosel, 2004). They exhibit several morphological 

differences (e.g. body length, tooth count, colouration) but the most distinctive characteristic 

is a difference in zygomatic-width/length-of-rostrum ratio (Heyning & Perrin, 1994). These 

morphotypes were thus called collectively the short-beaked and the long-beaked form, and 

species status was proposed for each of them (Heyning & Perrin, 1994; Rosel et al., 1994; 

Kingston & Rosel, 2004). It is commonly accepted in the literature that these morphotypes 

represent different worldwide distributed species, the long-beaked common dolphin (D. 

capensis) and the short-beaked common dolphin (D. delphis), that have distinct distributional 

patterns (Evans & Raga, 2001; Folkens et al., 2002; Committee on Taxonomy, 2009). However, 

the clear differentiation between the long-beaked and the short-beaked morphotypes is not 

found across the genus range (Bell et al., 2002; Murphy et al., 2006; Pinela et al., 2008). In 

Europe, where morphological variation has been relatively well studied, no clear 

morphological distinction can be found, even though morphological characters typical of both 

morphotypes can be found across the range (Murphy & Rogan, 2006; Murphy et al., 2006). 

For example, Iberian common dolphins exhibit intermediate characteristics between the short

-beaked and the long-beaked morphotypes (Murphy et al., 2006). 

Common dolphin distribution and abundance in Europe is also not straightforward. It is 

the most abundant cetacean species in the Iberian coast (Sequeira et al., 1996), the Gulf of 

Biscay and the English Channel (Brereton et al., 2005), but on the East coast of the UK it is a 

relatively rare sighting, with white-beaked dolphins (Lagenorhynchus albirostris) being much 

more common (Evans & Hammond, 2004). In the Mediterranean Sea, although once 

continuously distributed and very abundant, it has suffered a drastic decline in recent decades 

making it extremely rare with a patchy distribution (Bearzi et al., 2003; Bearzi et al., 2006). 
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The reduction was considered to be so extreme that this particular population was listed as 

endangered under the IUCN Red List (Bearzi, 2003). Although traditionally represented as 

having a distribution roughly similar to the bottlenose dolphin (Tursiops truncatus), it is now 

increasingly represented as having a more coastal distribution, although it also occurs in 

oceanic environments like the Azores or Madeira archipelagos (Freitas et al., 2004; Cabral et 

al., 2005).   

Genetic structure in Europe has been shown to be less marked than in the eastern north 

Pacific. Significant differences in allele frequencies can generally be found between opposite 

sides of the Atlantic, even though both share mtDNA haplotypes (Natoli et al., 2006; Mirimin 

et al., 2009). Within Europe, differentiation is weaker but genetic diversity is usually high 

(Natoli et al., 2006; Amaral et al., 2007; Mirimin et al., 2009). Some evidence of structure was 

found within  the Mediterranean Sea (Natoli et al., 2008), while signs of a recent expansion 

were found in the eastern Atlantic (Amaral et al., 2007; Natoli et al., 2008; Mirimin et al., 

2009). Nevertheless, morphological studies show some segregation between different regions 

in Europe. Notably, skull size ranges of Portuguese and Irish samples are larger than those 

found in Spanish and British samples (Murphy et al., 2006). Also, sex differences in Fst led 

previous authors to suggest the existence of local-scale population structure (Amaral et al., 

2007) that might be masked due low resolution resulting from low sample size and 

insufficient markers analysed.  

Other cetacean species exhibit patterns of population structure along the European 

coastline. In the harbour porpoise (Phocoena phocoena), genetic structure was found between 

different areas in northern Europe, although high levels of gene flow could be detected 

(Andersen et al., 1997; Walton, 1997; Wang & Berggren, 1997; Andersen et al., 2001). A 

similar level of structure can also be detected across its entire range in Europe, with genetic 

breaks being particularly strong between Western Europe and Northern Africa, between the 

Black Sea and the Atlantic coast, and between Iberia and the North Atlantic (Rosel et al., 

2003; Tolley & Rosel, 2006; Fontaine et al., 2007; Viaud-Martínez et al., 2007; Fontaine et al., 

2010). White-beaked dolphins (Lagenorhynchus albirostris) also show a separation between 

southern North Sea and north of Norway (Banguera-Hinestroza et al., 2010), while the sperm 

whale (Physeter macrocephalus), fin whale (Balaenoptera physalus), Cuvier’s beaked whale 

(Ziphius cavirostris) and Risso’s dolphin (Grampus griseus) appear to be differentiated 

between the Mediterranean Sea and the Atlantic Ocean (Bérubé et al., 1998; Dalebout et al., 

2005; Engelhaupt et al., 2009; Gaspari et al., 2007). In the striped dolphin (Stenella 
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coeruleoalba) population structuring can be found between Atlantic and Mediterranean 

populations (Garcia-Martinez et al., 1995; Garcia-Martinez et al., 1999; Valsecchi et al., 2004), 

but also between Eastern and Western Mediterranean, once a more intensive sampling 

scheme together with higher resolution genetic methods were used (Gaspari et al., 2007). A 

similar pattern exists in the bottlenose dolphin (Tursiops truncatus), where strong 

differentiation was found between Black Sea, Eastern Mediterranean, Western 

Mediterranean, Atlantic and North Sea (Natoli et al., 2004; Natoli et al., 2005; Viaud-Martinez 

et al., 2008).  Each of these species shows stronger evidence of population structure than seen 

for the common dolphin over a similar geographic range (Natoli et al. 2006, Mirimin et al. 

2009). 

Several authors have noted that many of the genetic breaks found in cetaceans along the 

European coast are consistent with well described environmental breaks, and have thus 

suggested that differences in ecology are promoting population structure in these animals 

(Natoli et al., 2005; Fontaine et al., 2007; Gaspari et al., 2007; Natoli et al., 2008; Fontaine et 

al., 2010). However, for white-beaked dolphins, due to evidence of population expansion, 

authors have suggested that migration into areas that became available after the glaciations 

was most likely responsible for patterns observed in the North Sea (Banguera-Hinestroza et 

al., 2010). A similar process was proposed to have caused the differentiation of UK Risso’s 

dolphins from the Mediterranean Sea, given that the UK represents the limit of the species 

distribution (Gaspari et al., 2007). It has also been suggested that cases of local-scale 

structuring in common dolphin might result from founder events from larger populations, 

followed by adaptation to local conditions (Natoli et al., 2006). A similar process was invoked 

in (Mirimin et al., 2009) to explain the differentiation found within the Mediterranean Sea 

(Natoli et al., 2008). It was argued that the observed decline in the Mediterranean common 

dolphin and consequent fragmentation might be responsible for the higher levels of structure 

found there (Mirimin et al., 2009). Further to this point, population structure might be caused 

by differences in inbreeding rates that might result from, for example, differences in social 

structure (Sugg et al., 1996; Storz, 1999; Gao et al., 2007), though there are no data about this 

for common dolphins in the Mediterranean.  

In this study, we intend to carry out a comprehensive genetic study of common dolphin in 

Europe, to investigate a potential correspondence between environmental breaks and genetic 

structure in this species. Although previous studies have investigated the species population 

structure in Europe, no single study has focused on the whole distributional range of the 
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species. This study will build upon previous efforts by adding more detailed sampling and 

focusing on genetic methods that increase the power to detect subtle patterns of population 

differentiation, if they exist. This study will also focus on the previously described 

differentiation of Eastern Mediterranean dolphins and investigate different hypothesis 

suggested to have promoted such division. Kinship-based analysis will be done to investigate 

differences in social structure, while a simulation based approach will be used to compare 

different evolutionary scenarios.   

 

2.2.  METHODS 

2.2.1.  Sample Collection 
 

Samples from both stranded and bycaught animals were obtained together with biopsies 

from free ranging animals. Samples were obtained from several regions representing most of 

the European range of the species, namely Scotland, Ireland, England, Galicia, 4 locations in 

the Portuguese west coast, 2 locations from the Portuguese south coast, Madeira, Gibraltar, 

Ligurian Sea and two locations in Greece (Kalamos and Korinthiakos Gulf) (Figure 2.1, page 

34).  

For the Portuguese coast in particular, the availability of biopsies is extremely important, 

in light of other species that show differentiation between the Iberian coast and the North Sea 

(Natoli et al., 2004; Natoli et al., 2005; Fontaine et al., 2007). Given that strandings are known 

to occur in the Iberian coast of species only found in the North Sea (Sequeira et al., 1996), the 

reliability on a limited number of stranding samples might mask subtle genetic differences 

between those areas. Samples from the Portuguese coast were obtained specifically for this 

study, while samples from other locations in Europe were already available from other 

sources. Samples from Scotland, England, Galicia, Madeira, Gibraltar and Kalamos (Greece) 

were used previously in (Natoli et al., 2006; Natoli et al., 2008), while Irish samples were used 

previously in (Mirimin et al., 2009). Samples from the Ligurian Sea, Gulf of Biscay and 

Korinthiakos Gulf (Greece) were obtained from stranded animals and provided by Georgios 

Gkafas from Durham University.  

Because this study is part of an attempt to investigate the effect of the environment in 

shaping genetic variation, sampling also focused on the Atlantic Iberian coast, which is the 

area where the transition between the Mediterranean Sea and the North Atlantic Ocean is 

more pronounced. This involves differences not only in climate patterns, but also 
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oceanographic characteristics with, for example, the Mediterranean water being warmer and 

more saline (Pinet, 2003). This creates a well described transition between two distinct 

biogeographic regions on terrestrial biological communities, the Mediterranean and the 

Eurosiberian (Alcaraz et al., 2006). Samples from Gibraltar and Galicia were already available, 

but detailed sampling from the Portuguese coast was lacking. Biopsy samples from the coast of 

Portugal were obtained using two different methods: a long pole with a custom made 

removable metal tip, loosely based on the design described in (Bilgmann et al., 2007a); and a 

veterinary air rifle firing biopsy collection darts. Both air rifle and biopsy darts were obtained 

from the company Pneudart Inc. (www.Pneudart.com): rifle model 176B with floating 

aluminium darts with a tip length of 1.5 cm. This particular model was chosen because of its 

low power and the ability to regulate firing pressure. The air rifle was fitted with a fishing rod 

attached to the tip of the nozzle to allow recovery of the dart and to prevent it from 

remaining attached to the animal’s skin. Sampling was carried out following the established 

protocol to minimize disturbance to the animals (Hoelzel, 1991; IWC, 1991), and under a 

permit from the Portuguese “Instituto para a Conservação da Natureza e 

Biodiversidade” (ICNB). Biopsies were collected from 6 locations spread along the coast 

(Figure 2.2, page 36), and each group of dolphins was sampled as inclusively as possible.  

2.2.2.  Laboratory Procedures 
 

DNA was extracted using a standard phenol-chloroform protocol (Hoelzel, 1998). All 

individuals were screened for 18 microsatellite loci (Table 2.1, page 37) using a fraction of the 

forward primer labelled with a fluorescent dye (Table 2.1, page 37), and genotyped on an ABI 

3130 automated sequencer. Three different fluorescent dyes were used, carboxyfluorescein 

(FAM), and  hexachlorofluorescein phosphoramidite (HEX) and ABI proprietary NED. 

Amplification was made using two multiplex reactions: one amplifying 6 microsatellites, 

designated Set A (Table 2.1, page 37); the other 12 microsatellites, designated Set B (Table 2.1, 

page 37).  

Amplification was done using Qiagen Multiplex PCR kit (catalog number 206143) 

following the manufacturers instructions. PCR conditions were optimized as follow: initial 

denaturation at 95°C for 15 minutes, 40 cycles consisting of annealing at 50°C (Set A)/57ºC 

(Set B) for 90 seconds, followed by extension at 72°C for 1 minute, followed by denaturation 

at 94°C for 30 seconds. Finally, one annealing step as above was followed by a final extension 

at 60°C for 30 minutes (Table 2.2, page 37).  
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Figure 2.2. Geographical distribution of common dolphin biopsy samples 

collected along the Portuguese coast. 
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 Locus Name Fluorescent Dye Allele Range Reference 

Set A DO8 FAM-10% 88-122 (Shinohara et al., 1997) 

 KWM2a FAM-20% 135-167 (Hoelzel et al., 1998) 

 KWM2b HEX-10% 170-180 (Hoelzel et al., 2002) 

 KWM12a NED-20% 157-178 (Hoelzel et al., 1998) 

 TexVet5 FAM-10% 180-214 (Rooney et al., 1999) 

 KWM1b HEX-10% 181-189 (Hoelzel et al., 2002) 

Set B TtruAAT44 HEX-5% 92 (Caldwell et al., 2002) 

 EV14Pm NED-20% 123-159 (Valsecchi & Amos, 1996) 

 TexVet9 FAM-5% 124 (Rooney et al., 1999) 

 Dde70 HEX-10% 133-161 (Coughlan et al., 2006) 

 Dde84 FAM-10% 148-166 (Coughlan et al., 2006) 

 Dde65 FAM-10% 184-208 (Coughlan et al., 2006) 

 EV37Mn NED-20% 176-240 (Valsecchi & Amos, 1996) 

 Dde69 HEX-15% 198-218 (Coughlan et al., 2006) 

 Dde09 FAM-15% 221-245 (Coughlan et al., 2006) 

 Dde72 HEX-15% 231-271 (Coughlan et al., 2006) 

 Dde66 FAM-20% 346-362 (Coughlan et al., 2006) 

 Dde59 HEX-30% 384-432 (Coughlan et al., 2006) 

Table 2.1. List of microsatellite loci used in this study, grouped according to the Multiplex reactions used to amplify 

them. Proportion of the forward primer that was replaced by the labelled primer indicated after the Fluorescent 

Dye name. Allele range as described for European common dolphin in (Coughlan et al., 2006; Natoli et al, 2008). 

References indicate the study where they were first described. 

Step T (ºC) Time Cycles 

Denaturing 95 15' 1 

Annealing 50/57 90''   

Extension 72 1' 40 

Denaturing 94 30''   

Annealing 50/57 90'' 1 

Extension 60 30' 1 

Table 2.2. General PCR conditions used to amplify the 

microsatellite multiplexes used in this study 
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2.2.3.  Data Analysis 
 

The presence of null alleles was assessed using the software MICRO-CHECKER (Van 

Oosterhout et al., 2004). A preliminary analysis using only the Portuguese samples gave high 

probability of null alleles for 3 different loci: TexVet5, EV37Mn and EV14Pm. Repeats of a 

subset of the samples revealed that all these 3 markers would result in inconsistent scoring 

between repeats. Also, the same result was obtained when samples from other locations in 

Europe were included. As such, those 3 loci were excluded from further analysis. 

GENALEX (Peakall & Smouse, 2006) was used to identify matching genotypes based on 15 

microsatellite loci. All duplicate samples were removed from the analysis, as were samples 

that only differed in up to 2 loci, meaning 8 samples were removed from Portugal and 3 from 

Kalamos (Greece). This resulted in 492 individuals from 15 different locations along the 

European coast (Table 2.3, this page), analyzed for 15 microsatellite loci.  

 
Table 2.3. Number of samples analysed in this study, divided by each location 

 

 

Population structure was analysed using both classic population genetic methods and 

individual based methods. Due to the difference in sample numbers between locations, a 

possible sampling bias was assessed by plotting sample number by allele number for each 

population using the software ADEGENET (Jombart, 2008). Pairwise Fst was calculated between 

sampling locations using the software MICROSATELLITEANALYSER (MSA) (Dieringer & 

Schlötterer, 2003). Significance of the Fst values was calculated by individual permutation 

Location Number of Samples 

Scotland 62 

Ireland 105 

England 13 

Biscay Gulf 29 

Galicia 19 

Porto 26 

Figueira 26 

Peniche 30 

Sines 31 

Sagres 40 

Portimão 52 

Madeira 16 

Gibraltar 17 

Ligurian Sea 4 

Greece 22 
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between locations with 1,000 permutations and application of Bonferroni correction. 

Population structure was also tested using G-statistics as implemented in the software 

HIERFSTAT (Goudet, 2005). Both Principal Component Analysis (PCA) and Correspondence 

Analysis (CA) were performed using ADEGENET (Jombart, 2008). Factorial Correspondence 

Analysis (FCA) was performed on populations using the software GENETIX (Belkhir et al., 

2004). 

Individual based clustering without a priori information on sampling location was done 

using 3 distinct algorithms. STRUCTURE and BAPS employ different Bayesian clustering 

algorithms that look for the number of individual groups that minimizes deviations from 

Hardy-Weinberg equilibrium in each group (Pritchard et al., 2000; Corander, 2006; Corander 

et al., 2008). Because both algorithms tend to give biologically implausible results when Fst 

values become lower than 0.1 (Corander, 2006; Latch et al., 2006), they were used as 

independent confirmation for any patterns obtained. Additionally, patterns of population 

structure can be caused by historical limitation of gene flow, but also by location specific 

patterns of inbreeding (Gao et al., 2007). The INSTRUCT algorithm accounts for such scenarios, 

and is reportedly more accurate in defining population structure in such cases (Gao et al., 

2007). Using BAPS (Corander, 2006), 4 independent runs were carried out for K≤ 2, 3, 4, 5, 6, 

7, 8, 9, 11, 13, 15, where K is the maximum number of delimited groups. Such a procedure is 

suggested by the authors to avoid the algorithm being stuck in local optima, and as such better 

identify the overall optimum. STRUCTURE (Pritchard et al., 2000) was run for 1 x 107 iterations 

after 1 x 106 burn-in for K values between 1 and 4, with 4 independent runs. The admixture 

model with correlated allele frequencies was used. INSTRUCT (Gao et al., 2007) was run with 5 

simultaneous chains for a total of 2 x 106  iterations with 1 x 106  burn-in. The joint inference 

of population selfing rates and population substructure was done, with K set from 1 to 10. A 

uniform distribution was assumed as prior for the selfing rates, and convergence among chains 

was assessed using the Gelman-Rubin statistic.  

Isolation by distance was tested using both a Mantel Test and a Spatial Autocorrelation. 

Exact coordinates were available for most samples except Scotland, Gibraltar and Greece. In 

Scotland, the county of provenance for the sample was available, and as such a point located 

in the geographical middle of each county was chosen to represent the geographic location of 

such samples. For Gibraltar and Greece, no exact coordinates were available, but because all 

these samples refer to a very restricted geographic region, a single middle point was assumed 

to represent all the samples. Given these are also the geographically most distant samples, the 
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small variation between sample relative to the distance each point would have to the other 

European locations would most likely be negligible, and not have an effect on the overall 

result. Both analysis were carried out using the software ALLELES IN SPACE (Miller, 2005). 

Genetic diversity was compared between the identified clusters using several diversity 

indices. Actual and effective number of alleles, observed, expected and unbiased expected 

heterozygosity were calculated using GENALEX (Peakall & Smouse, 2006). The Shannon’s 

information index accounts for differences in sampling number, and was calculated using 

GENALEX (Peakall & Smouse, 2006). To check for potential differences in inbreeding, Fis was 

calculated in GENALEX (Peakall & Smouse, 2006). Effective population size was calculated 

with the software NEESTIMATOR (Ovenden et al., 2007) using the point estimation method of 

(Hill, 1981).   

As a final test for the effect of inbreeding on the obtained patterns of genetic structure, the 

software KINGROUP (Konovalov et al., 2004) was used to assess differences in kinship within 

locations. Groups of individuals related at the level of parent-offsprings, full-sibs, half-sibs and 

cousins were determined against all the individuals. After the groups in each kinship class 

(parent-offsprings, full-sibs, half-sibs and cousins) were determined, the number of different 

groups found in each location was counted. By comparing this number to the total number of 

individuals, it is possible to get a notion of how much more related the individuals within a 

location are relative to individuals in other locations. This proportion was simply calculated in 

each location as follows: 

1111----(Kc/N)(Kc/N)(Kc/N)(Kc/N)    

 
in which KcKcKcKc = number of groups in each kinship class; NNNN = number of samples. 

Severe bottlenecks are known to cause patterns similar to population structure (England et 

al., 2003), and as such, the software BOTTLENECK (Cornuet & Luikart, 1996) was used to test 

for signals of bottleneck in populations found to be differentiated. Significance tests were 

done for all mutation models with 1,000 iterations, and with 70% proportion of single 

mutations for the Two Phased Model (TPM). A test for mode shift in allele frequencies was 

also carried out. Such a scenario was further tested by using Approximate Bayesian 

Computation (ABC), as implemented in the software package DIYABC (Cornuet et al., 2008). 

In ABC methods, several competing population scenarios are modelled by simulating several 

different datasets fitting each defined scenario. Statistic tests are then used to assess which 

scenario better fits the observed data. For the present study, 4 different scenarios were tested 
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Figure 2.3. Scenarios coded to simulate datasets in DIYABC (Cornuet et al., 2008). Scenario 1 represents simple 

divergence; Scenario 2 represents divergence followed by a change in the size of one population while the other 

remains unchanged; Scenario3 represents divergence with simultaneous change in population size for one 

population with the second unchanged; Scenario 4 represents a variation of scenario 1 with a further reduction in 

Ne after divergence (see text for more details). Time is not to scale. 
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representing (Figure 2.3, page 41): 1- simple divergence with the ancestral population 

effective size (Ne) being the sum of the daughter populations Ne; 2- divergence at time t2 in 

the past, with one of the populations experiencing a change in Ne later, at t1 in the past; 3- 

divergence occurring with a simultaneous change in Ne in one of the populations; 4- 

divergence occurring with a simultaneous change in Ne in one of the populations which later 

experiences another change in Ne, representing a scenario where the bottleneck was preceded 

by an earlier divergence. Two sets of simulations were made with 600,000 datasets simulated 

for each scenario. In one simulation uniform priors were used for all summary statistics, while 

in the other, Ne and different timings were constrained according to Table 2.4 (this page). The 

fit of each simulation to the observed data was assessed through a PCA, while the subsequent 

assessment of which of the scenarios better fitted the data was done using the logistic 

regression method. Estimates for different Ne and timings was done by averaging such values 

in the 6,000 closest simulated datasets for the best fitting scenario. All the procedures were 

implemented in DIYABC software (Cornuet et al., 2008). 

 
Table 2.4. DIYABC (Cornuet et al., 2008) parameter prior distribution for the simulation using constrained priors 

(see text for description) 

 

2.3.  RESULTS 

2.3.1.  Summary statistics and population structure 
 

From the allele number vs. sample size plot, it is evident that there is a tendency for 

populations with a larger sample size to have higher number of alleles (Figure 2.4, page 43). 

However, none of these populations showed any significant patterns that appeared to be 

correlated with sample size (see results). Allele range was increased relative to previous 

studies in all 15 microsatellites considered for the population structure analysis (Table 2.5, 

page 43). 

G-statistic test of population differentiation showed a significant result, meaning it 

detected the presence of population structure among populations (Figure 2.5, page 44). 

Parameter Distribution Minimum Maximum Additional  condition 

Ne1 Uniform 10 100 < Ne2 

Ne2 Uniform 10 10,000 > Ne1 

Ne3 Uniform 10 10,000 — 

t0 Uniform 1 10 < t1 

t1 Uniform 1 100 > t0; < t2 

t2 Uniform 10 10,000 > t1 
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Figure 2.4. Plot of sample size vs. number of alleles.   

 Locus Name Fluorescent Dye Allele Range 

Set A DO8 FAM 83-123 

 KWM2a FAM 134-170 

 KWM2b HEX 162-180 

 KWM12a NED 154-184 

 KWM1b HEX 181-193 

Set B TtruAAT44 HEX 82-109 

 TexVet9 FAM 122-126 

 Dde70 HEX 119-165 

 Dde84 FAM 143-167 

 Dde65 FAM 179-211 

 Dde69 HEX 194-226 

 Dde09 FAM 218-250 

 Dde72 HEX 229-281 

 Dde66 FAM 334-374 

 Dde59 HEX 310-432 

Table 2.5. Allele range obtained in this study for the 15 microsatellites used in 

the population genetic analysis.  
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Figure 2.5. G-statistic test plot. Diamond indicates where the data fits 

within the distribution relative to simulations. Plot drawn using ADEGENET 

(Jombart, 2008).  
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Pairwise Fst values between sampling locations are generally low, with the highest values 

found in comparisons between Greece and other locations (0.032-0.064). Also, only 

comparisons involving Greece have significant Fst values with the exception of the Ligurian 

sea (Table 2.6, page 46), which is probably an artefact of low sample size for that region (N=4).  

The PCA revealed that the first 2 components only explained 7 % of the variation. Only 

one group is apparent, although Greek individuals appear to occupy a more peripheral 

position in the plot along the first component (Figure 2.6, page 47). Ligurian Sea show a 

similar pattern along the second component, but this is probably due to the low sample size 

(N=4). 

The correspondence analysis showed that 24 % of the variability is explained by the first 

component, and clearly separates Greece from all the other populations. Interestingly, 

components 2 and 3 (which explain a further 20 % of the variation) separate Madeira and 

Scotland respectively, both located at the edge of the geographical distribution of the analysed 

samples (Figure 2.7, page 47). This result is consistent with the one obtained with the FCA in 

GENETIX (Figure 2.8, 2.9 & 2.10, page 48).                 

 

2.3.2.  Individual-based population structure 
 

Using the clustering of individuals algorithm in BAPS (Corander et al., 2008), the most 

likely number of K was 9 (Probability of K9=0.99). However, from the ancestry plot (Figure 

2.11, this page) we can see that the main division is between Greek individuals and all other 

individuals. It should be noted that samples from Greece are from 2 different geographic 

locations, 19 from Kalamos in the Ionian Sea, and 3 from the Korinthiakos Gulf, a landlocked 

bay connected to the Ionian Sea. Notably, the 3 samples collected in the Korinthiakos Gulf 

cluster in its own group, and 2 other Greek samples cluster outside Greece.  

Figure 2.11. BAPS (Corander et al., 2008) ancestry plot for K=9 obtained using the clustering of individuals 

algorithm. 
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Figure 2.6. Individual based PCA plot comparing all European samples. 

Components 1 and 2 are represented. Eigenvalues bar plot on the top left. 

Plot drawn using ADEGENET (Jombart, 2008).   

Figure 2.7. Population based correspondence analysis plot. Eigenvalues bar plot on the lower right of each plot. A- Components 1 

vs 2; B- Components 1 vs 3. Plots drawn using ADEGENET (Jombart, 2008).   

A B 
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Figure 2.8. Individual based FCA plot. Red represents Greece; white represent all other locations. Plot built using GENETIX (Belkhir 

et al., 2004). 

Figure 2.9. Individual based FCA plot. Red represents Madeira; white represent all other locations. Plot built using GENETIX (Belkhir 

et al., 2004). 

Figure 2.10. FCA Individual based FCA plot. Red represents Scotland; white represent all other locations. Plot built using GENETIX 

(Belkhir et al., 2004). 
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However, Fst values are low, which can undermine the ability of STRUCTURE (Pritchard et 

al., 2000) to detect subtle population differences, and looking at the plots for higher levels of K 

provides some consistent patterns. When looking at the bar plot for K=4, it is apparent that 

Greece separates into its own cluster, with the 3 samples from Korinthiakos Gulf showing 

distinct ancestry patterns (Figure 2.14, page 50).  The triangle plot for K=3 shows a picture 

somewhat similar to the PCA plot. Ionian Sea Greek individuals do not form an independent 

cluster, but mostly group at the edge of the main cluster including all other individuals 

admixed. Korinthiakos samples group with all the others, suggesting that these are more 

similar to other European samples, and thus masking the differentiation of Greece (Figure 

2.15, page 50). 

Figure 2.12. BAPS (Corander et al., 2008) ancestry plot for K=2 obtained using the clustering of groups algorithm. 
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Figure 2.13. Likelihood (Ln) values for each K on all 4 chains implemented in STRUCTURE (Pritchard et al., 2000). 

The clustering of groups algorithm resulted in a very strong support for K=2 (Probability of 

K2=1), separating Greece from all other samples (Figure 2.12, this page). This result clearly 

supports the separation of Greece from the other populations.  

Using the STRUCTURE algorithm (Pritchard et al., 2000), the most likely value for K was 1 

(Figure 2.13, this page). All 4 chains achieved similar likelihood values, indicating that enough 

iterations were performed to reach convergence.  
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Using the INSTRUCT (Gao et al., 2007) algorithm, the most likely value of K determined was 

10 (Figure 2.16, page 51). Looking at the population ancestry plot however, it is clear that 

only Greece separates from the rest of the samples that are strongly admixed, although some 

European samples exhibit an ancestry pattern more similar to Greece (Figure 2.17, page 51). 

It is noteworthy that within Greek samples, one has an admixed ancestry similar to most 

other European samples, while other appears to have a mixed pattern. These 2 samples 

correspond to the only 3 samples that did not group as cousins with all the other Greek 

samples in the KINGROUP analysis (see below). Also, the 3 individuals from the Korinthiakos 

Gulf have a similar pattern as all other European samples. Notably, in the plot for other values 

of K, these samples group within their own cluster, also including other European individuals. 

 

2.3.3.  Isolation by distance 
 

Neither the Mantel test nor the spatial autocorrelation showed any relationship between 

genetic and geographic distance (Figure 2.18 & 2.19 respectively, page 53). As such, the 

observed population differentiation patterns are likely not due to isolation by distance. 

 

2.3.4.  Population diversity 
 

Given that a significant population differentiation was only found between Greece and 

other European locations, genetic diversity statistics were only calculated for Greece, and the 

other European locations pooled. All diversity estimates calculated show, unsurprisingly, a 

lower diversity for the Greek population (Table 2.7, this page). However, and in stark contrast 

with the other statistics, Fis was not only lower in Greece than in Europe, but it was negative 

as opposed to the positive value of Europe (Table 2.7, this page). Given that Europe shows 

higher diversity in all the statistics calculated, this result is rather surprising. 

 
Table 2.7. Comparison between Greece and all other European populations for several diversity indices. Na- 

Number of alleles; Neff- Number of effective alleles; I- Shannon Information Index;  Ho- Observed heterozygosity; 

He- Expected heterozygosity; UHe- Unbiased expected heterozygosity;  

 

 
 

Na Neff I Ho He UHe Fis 

Greece Mean 6.867 3.936 1.493 0.703 0.684 0.700 -0.035 

 SE ± 0.542 ± 0.428 ± 0.119 ± 0.047 ± 0.047 ± 0.048 ± 0.026 

Europe Mean 12.533 5.492 1.752 0.709 0.734 0.735 0.031 

 SE ± 1.369 ± 0.663 ± 0.164 ± 0.059 ± 0.061 ± 0.061 ± 0.012 

Population 



Analysis of the effects of drift and selection in cetaceans    Page 53 

Figure 2.18. Mantel test plot of genetic distances vs. geographic distances. Distance represented in 

meters. Plot drawn using AiS (Miller, 2005). 

Figure 2.19. Spatial autocorrelation plot. Distance represented in meters. Plot drawn using AiS 

(Miller, 2005). 



Analysis of the effects of drift and selection in cetaceans    Page 54 

The proportion of cousin groups found within each location is correlated with sampling 

size, explaining the relatively high proportion found in Portimão, Scotland and Ireland. 

However, the high number of cousin groups in those regions is not accompanied by a higher 

proportion of other kinship classes, as it is in the Greek sample. Furthermore, the high 

number of cousin groups in Greece is independent of sample size (Figure 2.21, this page).    

Figure 2.20. Plot representing the proportion of different kinship class for each European location. Number of 

samples is in Brackets. See Methods for details on the calculations. 

2.3.5.  Kinship analysis 
 

In the kinship analysis, Greece stands out has having a noticeably higher number of all 

classes of kinship groups (Figure 2.20, this page). It is noteworthy that only 4 groups of 

cousins were found in Greece. All these groups included individuals found in other locations 

around Europe and so were not composed solely of Greek individuals. Notably, individuals 

sampled in the Korinthiakos Gulf which group in their own cluster in the individual based 

analyses do not form any kinship group together with other Greek samples. Scotland and 

Ireland also exhibit a particularly high number of cousin groups, but it is not accompanied by 

a corresponding higher proportion of other kinship classes.  

Figure 2.21. Plot of Sampling size vs. Proportion of cousin groups for each European location. Regression was 

calculated excluding Greece. Greece is included to show its position relative to the calculated regression line. 



Analysis of the effects of drift and selection in cetaceans    Page 55 

2.3.6.  Estimates of effective population size 
 

In the estimate of effective population size (Ne), Greece is the only location where 

estimated Ne is lower than the sample size (Table 2.8, this page).  

 

Table 2.8. Estimated effective population size (Ne) for each European location. CI – Confidence Interval. 

 
 
 

The program BOTTLENECK (Cornuet & Luikart, 1996) showed statistical support for a 

bottleneck in Greece for all mutation models (Table 2.9, page 56), as well as a mode shift in 

allele frequencies (Figure 2.22, page 56).  

In the DIYABC (Cornuet et al., 2008) analysis, the PCA revealed that the simulations with 

the unconstrained priors (Figure 2.23, page 57) had a worse fit than the constrained priors 

(Figure 2.24, page 57), and as such the remaining analyses were based on the scenarios  from 

the later simulations. The logistic regression evaluation of the different constrained scenarios 

revealed that scenario 2 was the one who best fitted the observed data (Figure 2.25, page 58), 

thus supporting the idea of a bottleneck in the Greek population. The parameter estimate 

revealed that Ne values for both populations is proportionally consistent with the one 

obtained by the program BOTTLENECK (Cornuet & Luikart, 1996)(meaning a much lower value 

for the Greek population than for the European one), and that both the divergence between 

the populations and the reduction in Ne in the Greek population were very recent (Figure 

2.26, page 58).  

Population Sample size Ne Lower CI Higher CI 

Scotland 62 126 105.4 154.9 

Ireland 105 257.4 207.5 334.4 

England 13 47.9 31.6 93.3 

Biscay 29 212.4 116.7 963.1 

Galicia 19 114.5 68.2 321.8 

Porto 26 73.4 54 111.5 

Figueira 26 808.9 189.8 Infinity 

Peniche 30 233.3 129.5 986.4 

Sines 31 180.2 109.1 473.9 

Sagres 40 344.5 183.6 2090.2 

Portimao 52 367.2 217.5 1071.8 

Madeira 16 25.1 20.3 32.1 

Gibraltar 17 79.1 48.5 194 

Greece 22 17.3 15.2 19.8 
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Figure 2.23. PCA plot displaying the fit between scenarios simulated with uniform unconstrained priors and the 

observed data. Large yellow dot represents the observed data, while small dots represent the several simulated 

datasets. Plot made using DIYABC (Cornuet et al., 2008). Simplified plot available in Appendix 2.1, page 141. 

Figure 2.24. PCA plot displaying the fit between scenarios simulated with constrained priors and the observed data. 

Large yellow dot represents the observed data, while small dots represent the several simulated datasets. Note 

that the observed data fits the simulated datasets much better than the unconstrained simulations in Figure 2.23. 

Plot made using DIYABC (Cornuet et al., 2008). Simplified plot available in Appendix 2.1, page 141. 
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Figure 2.25. Logistic regression plot to test the fitness of the observed data and simulated 

scenarios.Plot drawn in DIYABC (Cornuet et al., 2008). 

Figure 2.26. DIYABC (Cornuet et al., 2008) plot of parameter estimate using the 6000 simulated datasets under 

scenario 2 that were closer to the observed data. The x-axis range reflects the prior distribution. 
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2.4.  DISCUSSION 
 

The results clearly show a lack of population genetic structure along the European 

coastline for the common dolphin. Only Greece seems to differentiate, but the differentiation 

is nevertheless weak. Fst comparisons between Greece and other locations are generally 

significant and within the ranges found for other dolphin species in Europe (0.032-0.064 in 

this study; 0.045-0.152  for bottlenose in similar areas (Natoli et al., 2005); 0.0047-0.0632 in 

striped dolphin (Gaspari et al., 2007)). The test for population structure using G-statistics 

confirmed this result by showing significant signals of population structure. This, however, 

only shows that allele frequencies are different in Greece. The individual based clustering 

algorithm implemented in STRUCTURE (Pritchard et al., 2000) did not find statistical support 

for that differentiation, while BAPS (Corander et al., 2006) not only differentiated Greece, but 

further supported a division between the Ionian Sea and the Korinthiakos Gulf. The pattern 

obtained for the rest of Europe made little biological sense, given it consists of relatively 

homogeneous admixture between clusters that no other biological study in Europe to date 

gave any indication of existing. This is expected to happen with such algorithms when Fst 

values are lower than 0.1 (Corander, 2006; Latch et al., 2006) as is the case of the current 

dataset. INSTRUCT (Gao et al., 2007), which takes into account population structure due to 

inbreeding, gave strong support for the separation of Greece, although some European 

individuals showed an ancestry pattern similar to Greece. The Korinthiakos Gulf samples, 

however, grouped with the rest of Europe. In the PCA, Greek individuals do not fully separate 

from the rest of Europe, but occupy a peripheral position in the single cloud of points. CA and 

FCA confirmed this, also placing Madeira and Scotland (locations at the limit of the analysed 

geographical distribution) at the edge of the plot, but only Greece separated consistently 

regardless of the factors compared. 

The lack of differentiation across Europe except between the Eastern and Western 

Mediterranean Sea confirms the patterns observed previously in the common dolphin (Natoli 

et al., 2006; Natoli et al., 2008; Mirimin et al., 2009). The detailed sampling scheme used in 

this study for the Iberian coast, showed that the previous suggestion of fine-scale population 

structure in that region (Amaral et al., 2007) cannot be supported by the data presented here. 

Other cetacean species have been found to exhibit barriers to gene flow in the same 

geographical area as observed here for the common dolphin (between Greece and the rest of 

Europe) (Natoli et al., 2004; Natoli et al., 2005; Gaspari et al., 2007). However, such species 

usually exhibit further population structure elsewhere in the European coast, namely between 
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the Mediterranean and the Atlantic, and between the Atlantic and the UK. In fact, the 

transition from the Mediterranean Sea to the Atlantic Ocean (roughly represented by the Strait 

of Gibraltar) appears to be a strong barrier to gene flow in marine organisms. Several cetacean 

species analysed exhibit population structure between the Mediterranean Sea and the Atlantic 

Ocean (Bérubé et al., 1998; Garcia-Martinez et al., 1999; Natoli et al., 2004; Valsecchi et al., 

2004; Dalebout et al., 2005; Natoli et al., 2005; Gaspari et al., 2007; Engelhaupt et al., 2009), as 

do other marine organisms such as several species of fish (Borsa et al., 1997; Chikhi et al., 1997; 

Roldan et al., 1998; Naciri et al., 1999; Carreras-Carbonell et al., 2006; Charrier et al., 2006; 

Abaunza et al., 2008), cuttlefish (Perez-Losada, 2002) and mussels (Quesada et al., 1995). 

Surprisingly, common dolphin appears to exhibit no population structure across this barrier, 

while apparently having structure within the Mediterranean Sea.  

Kinship analysis showed that Greek individuals are all much more strongly related to each 

other than individual samples in other locations. Interestingly, individuals from the 

Korinthiakos Gulf are not related to the ones form the Ionian Sea, even though these sea basins 

are connected. Consistently, statistics of genetic diversity all indicate that Greece is less diverse 

when compared to the rest of Europe, while Fis in Greece is much lower. This suggests that the 

Greek population has undergone some sort of population reduction, either due to a founder 

event or a bottleneck. However, several lines of evidence suggest that the Greek population 

was historically connected with the other European populations, but has recently undergone a 

severe bottleneck. In populations with large sizes, rare alleles will be common but contribute 

little to heterozygosity. When such populations undergo a fast and severe reduction in size, 

allele frequencies will change drastically, with the rarest alleles usually disappearing first. As 

such, heterozygosity will remain high proportionally to the reduced allelic diversity 

(Maruyama & Fuerst, 1985; England et al., 2003). This was strongly supported by the 

BOTTLENECK (Cornuet & Luikart, 1996) analysis which detected a significant excess of 

heterozygotes for all mutation models as well as a shift in the allelic frequency distributions. 

Also, when comparing allele frequencies across loci between Greece and other European 

populations, it is apparent that many of the rare alleles found in Europe are not found in 

Greece (Appendix 2.2, page 142). When comparing diversity statistics between Greece and 

Europe, it is also clear that observed heterozygosity is much less reduced in Greece, when 

compared to number of alleles, allele-richness and expected heterozygosity. Finally, the 

estimated effective population size (Ne) for Greece is lower than sample size. Because a 

positive relationship between samples size and allele number was found in present dataset, the 
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observation that everywhere else in Europe Ne is much higher than sampling size probably  

reflects that sampling as not been sufficiently representative to in all these locations to 

accurately calculate Ne based on a point calculation method used in this study. However, with 

a sampling number of 22, the lower Ne obtained for Greece probably reflects an accurate 

calculation, and it likely reflect a very severe reduction suffered by this population . In such a 

scenario, genetic variation would be reduced, but after a few generations of breeding, the 

population would be composed of related individuals with highly heterozygous genotypes 

when compared to the allelic variation, leading to lower diversity but negative Fis values. 

However, mating among relatives is expected to increase Fis rapidly, meaning that the 

negative value of Fis for the Greek population would only last a short period of time, thus 

suggesting a very recent bottleneck. This scenario was confirmed by the Approximate 

Bayesian Computations, where datasets simulated under the assumption of a recent strong 

reduction in one of the diverging population fitted the data better than scenarios where no 

such assumptions were made. The scenario that best fitted the data suggests, however, that 

divergence was already occurring before the bottleneck occurred. This can reflect a real 

demographic pattern, but the recent dates for both the divergence (around 300 years ago) and 

the bottleneck (around 11 years ago) are also compatible with a continuous population decline 

over the past hundred years rather than an instantaneous bottleneck causing an immediate 

divergence between the two populations (as simulated in alternative unsupported scenarios).   

The genetic evidence suggesting a bottleneck for the Greek population is consistent with 

independent demographic data obtained from the Mediterranean common dolphin, where a 

population reduction has indeed been reported. Common dolphin is thought to have been 

abundant throughout the Mediterranean Sea, although such statements are usually based on 

indirect historical records (e.g., strandings and museum collections) (Forcada & Hammond, 

1998; Bearzi et al., 2003; Bearzi et al., 2004). However, more recent and direct evidence 

suggests a continuing decline in the Mediterranean population to the present day. Strandings 

in the Mediterranean coast of France have been declining since the 1970’s  (Bearzi et al., 

2003), while transect observations recorded an extremely low incident in Italian waters where 

the species was once abundant (Notarbartolo-di-Sciara et al., 1993). Very few animals are also 

reported from the Adriatic Sea (Bearzi et al., 2003; Bearzi et al., 2004). More notably though, 

and more relevant in the context of this study, the decline of common dolphins in the Ionian 

Sea around the island of Kalamos has been directly observed. During extensive population 

surveys, the mean encounter rate has dropped dramatically to the point that it became an 
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extremely rare sighting compared to only a few years before (Bearzi et al., 2005; Bearzi et al., 

2006; Bearzi et al., 2008). This is precisely the population from which the majority of the 

Greek samples used in this study were obtained. Our results show that the perceived decline 

in common dolphin numbers is reflected in the genetic data. It is not clear whether the 

common dolphin populations experienced a population crash or just migrated to other regions 

in the Mediterranean Sea (little is known of cetacean occurrence along the African coast) but 

this study seems to support a significant population crash. If individuals had only migrated 

elsewhere, then the genetic patterns observed in Greece would not be so evident due to gene 

flow with a larger population. This study also suggests that the bottleneck was very severe and 

probably occurred over a very small number of generations (England et al., 2003), but further 

tests are needed to confirm this hypothesis. 

Common dolphin exhibits a notorious lack of detectable structure in European waters 

when compared to other cetaceans (Garcia-Martinez et al., 1999; Natoli et al., 2004; Valsecchi 

et al., 2004; Natoli et al., 2005; Fontaine et al., 2007; Gaspari et al., 2007; Banguera-Hinestroza 

et al., 2010), which is probably due to its more generalist diet (Young & Cockcroft, 1994; 

Ohizumi et al., 1998; Silva, 1999; Meynier, 2004; De Pierrepont et al., 2005; Pusineri et al., 

2007)    in combination with an extremely fluid social structure and promiscuous mating 

(Murphy et al., 2005; Westgate & Read, 2007; Viricel et al., 2008). Other cetaceans that also 

have high dispersal abilities such as the sperm whale (Physeter macrocephalus) or the 

bottlenose dolphin (Tursiops truncatus), will still exhibit structure in Europe, probably due to 

their more selective mating systems and more cohesive social structure (Natoli et al., 2005; 

Engelhaupt et al., 2009). Although the genetic differentiation found between Greece and the 

rest of Europe is weak, from the ecological point of view, it is clear that the Greek population 

is now isolated from the rest of Europe, and given its extreme decline, it is rightly considered 

a separate management unit (Bearzi, 2003). It has been proposed before that founder events 

caused population structure in cetaceans (Hoelzel et al., 1998; Gaspari et al., 2007; Banguera-

Hinestroza et al., 2010). In the common dolphin, Mirimin and collaborators (2009) suggested 

that the decline might have had a similar role in the differentiation of Greek individuals 

(Natoli et al., 2008), which is confirmed by this study. As such, population fluctuations might 

be a relevant mechanism promoting differentiation in cetaceans (Templeton, 1980; Storz, 

1999), including other regions where differentiation was found in the common dolphin (Rosel 

et al., 1994; Chivers et al., 2005; Bilgmann et al., 2008). Notably, in one case the differentiated 

population is known to be under the impact of excessive bycatch (Bilgmann et al., 2008). In 
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the bottlenose dolphin, a species that usually exhibits more pronounced population structure 

than the common dolphin, it has also been suggested that past population fluctuations have 

caused local extinctions (Nichols et al., 2007).  It remains unclear if selection would have had 

an important role in this process. It has been suggested that the differentiation found in 

common dolphins between Greece and the rest of Europe might relate to environmental 

differences (Natoli et al., 2008), and several other species exhibit patterns consistent with this 

interpretation (Natoli et al., 2004; Natoli et al., 2005; Perez-Losada et al., 2007; Abaunza et al., 

2008). The results from this study further suggest that population fluctuations might have 

contributed to the differentiation of Greek populations in addition to environmental 

differences. 
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Chapter 3 – Analysis of Functional Diversity in the 

European Common Dolphin (Delphinus delphis), 

with Detection of Selection Signals on Ecologically 

Relevant Candidate Markers 
 
 

3.1.  INTRODUCTION 
 

When assessing the role of ecological barriers in promoting differentiation in wild 

cetaceans, most studies use markers that exhibit a relatively high substitution rate (such as 

mitochondrial DNA or microsatellites) to establish population differentiation, correlating the 

patterns found with breaks in environmental characteristics (Torres et al., 2003; Natoli et al., 

2004; Natoli et al., 2006; Bilgmann et al., 2007b; Fontaine et al., 2007; Natoli et al., 2008; 

Fontaine et al., 2010). However, such markers are essentially neutral (Avise et al., 1987; Jarne 

& Lagoda, 1996), and are therefore unlikely to reflect local adaptation unless divergent 

selection is strong relative to levels of migration and recombination (Kelly, 2006; Thibert-

Plante & Hendry, 2009; Thibert-Plante & Hendry, 2010). Even then, when combined with 

scenarios such as complex geological history or historically small effective population sizes, 

distinguishing between selection and genetic drift becomes virtually impossible (Coyne & Orr, 

2004; Thibert-Plante & Hendry, 2010). It is nevertheless important to understand the patterns 

of genetic differentiation that may result from the process of natural selection, both for the 

understanding of evolutionary processes and to promote effective conservation strategies. For 

that purpose, focus should ideally be on functional genes coding for phenotypic attributes 

relevant for the environmental differences experienced along a species geographical range 

(Lewontin, 1974; van Tienderen et al., 2002). 

Such an approach is, however, far from straightforward, mainly because identifying the 

precise relationship between genotype and phenotype has proven an extremely elusive and 

technically challenging objective (Lander & Schork, 1994; Glazier et al., 2002; Andersson & 

Georges, 2004). First, several phenotypic characteristics are determined by complex 

interactions between several different genes (epistasis) (Cordell, 2002) each also potentially 

involved in more than one trait (pleiotropy) (Caspari, 1952). Mammalian coat colour, for 

example, is determined in such a fashion. Specific coat colours are determined by the type of 

melanin being produced in melanocytes, following a complex cascade of reactions requiring 

the interaction of several different proteins (Slominski et al., 2004). Genes affecting coat 
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colour will also often influence other unrelated traits, such as obesity (Voisey & Van Daal, 

2002). Additionally, phenotypic differences are often controlled by differences in expression 

of the protein rather than its nucleotide sequence (King & Wilson, 1975), as is the case of 

differences between the brains of humans and chimpanzees (Caceres et al., 2003) (although 

some studies report that differences in expression are themselves controlled by single 

nucleotide polymorphism (Kudaravalli et al., 2009)). Several genes also exhibit multiple exon/

intron splicing varieties, making it impossible to know the exact composition of a protein 

being expressed from the genomic DNA sequence (Bultman et al., 1994; Mironov et al., 1999; 

Kampa et al., 2004). Finally, many phenotypic traits are influenced not only by genetics, but 

also by the surrounding environment. This  means that visible differences in phenotype might 

not be controlled by genetic differences (epigenetics) (Choi & Kim, 2007; Assfalg et al., 2008). 

 

3.1.1.  Strategies to investigate ecologically relevant diversity in 

functional genes 
 

Because phenotypic traits will often be controlled by several different genes, investigating 

the genetic basis of phenotypic traits is ideally done through QTL mapping and association 

studies  (Lewontin, 1974; Darvasi & Pisanté-Shalom, 2002; Glazier et al., 2002; Mackay, 2002). 

Once a particular quantitative phenotypic trait has been identified as relevant, it is possible 

through pedigree analysis to identify regions in the genome which seem to be segregating 

with the quantitative trait (hence receiving the name of Quantitative Trait Loci - QTL). Then 

association studies between mutations in the QTL and specific phenotypic traits can be made 

(Darvasi & Pisanté-Shalom, 2002; Glazier et al., 2002; Mackay, 2002; Andersson & Georges, 

2004). Such studies can then be followed by functional association and sequence association 

analyses, in order to identify the extent to which each particular gene (called candidate gene) 

contributes to the trait of interest (e.g. Andersson & Georges, 2004; Peretz et al., 2007; Peiro 

et al., 2008; Fontanesi et al., 2009). However, such an approach is very difficult to achieve in 

wild non-model organisms, and to date has only been achieved fully in laboratory model 

organisms e.g. yeast (Steinmetz et al., 2002). QTL’s identified through pedigree studies usually 

include thousands of genes which are impractical to analyse in a population study, and the 

pedigree information required for such studies is often not available or very difficult to gather 

(Andersson & Georges, 2004). Studies on wild animals have mainly focused on easily 

accessible species that are closely related to well studied domestic animals, but even those face 

limitation and have had mixed results. Notably, QTL associations studies are rarely replicated 

in different populations of the same species, and the ones who have been replicated found no 
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consistent associations in all populations analysed (Vasemagi & Primmer, 2005; Slate et al., 

2010).  

Given such limitations, most studies of functional genes in wild populations are mainly 

restricted to the last step of the process; the sequence analysis of candidate genes. In this case, 

information on well described genes is used to make an informed speculation on its potential 

relevance for the adaptation to a specific environment in the wild (Dalziel et al., 2009). Such 

functional genetic markers can then be used to look for patterns of differentiation or for 

molecular signatures of selection and relate the findings with particular environments, usually 

above the species level  (e.g. Ward et al., 1997; Juarez et al., 2008; Maheshwari et al., 2008). 

Recent developments in genomic sequencing have greatly increased the available information 

on specific genes, making such an approach more tractable and focused (Dalziel et al., 2009; 

Slate et al., 2010). It has also allowed a more bottom-up approach to be used, where selection 

detection algorithms are applied to data from genome scans (Nielsen, 2001; Akey et al., 2002; 

Sabeti et al., 2002; Beaumont &  Balding, 2004; Storz, 2005; Hans, 2008; Zayed & Whitfield, 

2008). Regions were selection is detected can then be compared to annotated genomes of 

closely related species to identify and characterize the functional genes in which some of 

these regions are found (Andersson & Georges, 2004; Vasemagi & Primmer, 2005; Dalziel et 

al., 2009).  

 

3.1.2.  Methods to detect selection in the genome 
 

Different methods exist to detect selection in the genome, either in candidate markers or 

genome scans. When analysing sequence data, several tests exist that rely on allele frequency 

or DNA divergence data (e.g. Lewontin & Krakauer, 1973; Watterson, 1977; Hudson et al., 

1987; Tajima, 1989; Fu & Li, 1993). However, such tests suffer from very low power to detect 

real cases of selection (Zhai et al., 2009), and positive results can be created by extreme 

demographic events or cryptic population structure (Kreitman, 2000; Nielsen, 2001; Ford, 

2002).  The most direct method to assess positive selection based on sequence data looks at the 

patterns of substitutions within a given sequence. Due to the redundancy in the genetic code, 

some substitutions will not result in an aminoacid change, thus resulting in no functional 

changes in the protein and receiving the designation of ‘synonymous’. In contrast, 

substitutions that do cause an aminoacid change are called ‘non-synonymous’ (Lewin, 2004).  

In a neutrally evolving locus, both types of substitutions are equally likely to become fixed in 

the population, and as such, the proportion between non-synonymous substitutions and 
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synonymous substitutions (dN/dS) should not significantly differ from 1. Because there are 

less non-synonymous sites in the genetic code, dN/dS is scaled to the availability of non-

synonymous and synonymous sites. If the gene is under purifying selection, then non-

synonymous mutations are very unlikely to become fixed in the population, and the dN/dS 

ratio should be lower than 1. If there is selective pressure for the gene to diversify (either 

through balancing selection or directional selection on new mutations), then dN/dS ratio will 

be higher than 1 (Hughes & Nei, 1988; Goldman & Yang, 1994; Muse & Gaut, 1994). 

Maximum likelihood algorithms that test different dN/dS distributions along a sequence in a 

phylogenetic tree, have been shown to be relatively powerful and largely independent from 

demography or population structure (Yang & Bielawski, 2000; Wong et al., 2004). In addition, 

such algorithms also identify the exact codons that are under selection, as well as specific 

branches in a phylogenetic tree (Yang & Nielsen, 2000; Nielsen, 2001; Yang & Nielsen, 2002; 

Yang et al., 2005). Numerous studies using dN/dS analysis have found evidence of selection in 

functional genes, either in candidate genes (Ward et al., 1997; Rooney & Zhang, 1999; 

Hashiguchi et al., 2007; Ali & Meier, 2008; Juarez et al., 2008; Maheshwari et al., 2008; Dayo 

et al., 2009; Larmuseau et al., 2010) or through genome scans (Nielsen et al., 2005).  

 

3.1.3.  Selection in cetacean genomes 
 

In their transition from a terrestrial to an exclusively marine environment, cetaceans have 

undergone drastic morphological and physiological changes, involving adaptation in 

physiological functions such as vision, respiration, thermoregulation, osmoregulation, etc. 

(Thewissen, 1998; Hoelzel, 2002). Such modifications are expected to leave a clear mark in the 

genome, such as the evidence for strong selection in cetaceans at the homeobox genes, 

responsible for the development of  limbs in vertebrates (Wang et al., 2009). Even at the 

population level, such signals of adaptation to different environments have been found in 

cetaceans, namely in the peptide binding region of the DQβ1 locus suggesting adaptation to 

different pathogenic environments (Vassilakos et al., 2009). Other genes, such as haemoglobin 

and myoglobin (proteins essential for providing oxygen to skeletal muscle) are known to 

exhibit structural differences that can sometimes be related to regions with different 

oceanographic characteristics (Wang et al., 1977; Iwanami et al., 2006; Remington et al., 

2007). As such, genes related to well characterized physiological functions might also show 

signals of selection, not only on a phylogenetic scale, but also on a population scale within 
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cetacean species that have adapted to different habitats, such as deep diving vs. shallow diving 

populations. Several such potential functions are discussed in the following sections. 

3.1.4.  Ecologically relevant candidate genes 
  

Osmoregulation 

From the many adaptations that cetaceans had to go through in their transition from land 

to sea, one of the most significant was the survival in a hyperosmotic environment. 

Vertebrates in general cannot ingest saltwater, as the resulting excess salt would lead to 

increased urine production and further cellular dehydration (Randall et al., 2002). Marine 

birds and reptiles do drink seawater, but they excrete the excess salt through specialized 

glands (Randall et al., 2002).  Cetaceans do not have such systems, but physiological studies 

have reported the active intake of saltwater (Hui, 1981; Kjeld, 2003). It is thus expected that 

cetaceans exhibit some adaptations to cope with the specific constraint the marine 

environment poses to osmoregulation.  

In several desert mammals, production of a highly concentrated urine is a common 

strategy to prevent dehydration (Randall et al., 2002). Urea is one of the main solutes of urine, 

and as such, the ability to concentrate urea in parts of the nephron is thought to be essential 

in the osmotic reabsorption of water, thus producing concentrated urine (Fenton & Knepper, 

2007), a process which is largely controlled by proteins called “urea transporters”. Cetaceans 

have a higher concentration of urea in plasma and urine than cattle, a phylogenetically related 

terrestrial group (Birukawa et al., 2008). Birukawa and collaborators (2008) hypothesized that 

the urea transporters in the kidney might play a role in the urine concentrating abilities of 

cetaceans (Ridgway & Venn-Watson, 2010), given that differences in urine concentration 

between baleen whales and sperm whales were related with differences in UT-A2 gene 

sequence (Birukawa et al., 2008). Additionally to urea transporters, aquaporins are 

transmembrane channels known to actively promote the transfer of water and other solutes 

across membranes in the kidney nephron. Although AQP1, the best characterized aquaporin, 

exclusively transports water, other aquaporins transport glycerol and other solutes together 

with water (Nielsen et al., 2002).  

Milk proteins  

Milk production is one of the most crucial physiological functions in mammals. Neonates 

are exclusively dependent on their mother’s milk to survive, and differences in milk quality 

can have a very big influence on offspring development and survival. Studies in humans have 
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shown that milk composition influences infant growth rate and overall height attained as an 

adult (Kuschel & Harding, 2000; Kuschel & Harding, 2004). In addition to nutrition, milk also 

has an important immunological function in neonates (Hylander et al., 1998). 

Cetaceans live in a harsh environment where newborns need to gain weight quickly in 

order to increase their chances of survival. The energy content of milk is among the highest in 

mammals, due to a high protein and fat content (Evans & Raga, 2001). As such, milk proteins 

are good candidates for assessing adaptation in cetaceans. Sequences from several cetacean 

species are available for different milk proteins from earlier phylogenetic studies (Gatesy et 

al., 1996; Gatesy, 1998; Gatesy et al., 1999). These include β and κ casein, and α-lactalbumin, 

genes encoding proteins known to be physiologically important in milk nutrition (Kelleher et 

al., 2003; Lonnerdal, 2003; Goff, 2010).  

Diving adaptations 

Cetaceans live exclusively under water, and several species are known to dive to extreme 

depths in feeding bouts. Such dives require extreme physiological adaptations to cope not only 

with prolonged times without oxygen, but also with the extreme pressures experienced at 

those depths (Hoelzel, 2002).  

Air breathing vertebrates have a mixture of lipids and proteins in the lungs designated as 

lung surfactant, whose function is, among others, to prevent the moist alveolar walls from 

collapsing during normal breathing (Daniels et al., 1998; Daniels & Orgeig, 2001). In diving 

mammals, the lungs are known to fully collapse under the strong pressures experienced in 

deep waters (Hoelzel, 2002). Comparison between the lipid and protein composition of the 

lung surfactant between terrestrial (cattle) and marine mammals (pinnipeds) revealed the 

existence of differences that might contribute to a more effective prevention of the alveoli 

from collapsing during deep diving (Miller et al., 2006a; Miller et al., 2006b). Sequence 

comparison between terrestrial and marine mammals for one of the proteins composing the 

lung surfactant, SP-C, also found differences between these groups likely to be the result of 

selection (Foot et al., 2007).  

During diving, marine mammals have no access to air and have therefore developed several 

physiological adaptations to hypoxia. For example, they will lower their heart rate during 

dive, and reduce the level of blood flow to all tissues except for the brain (Hoelzel, 2002). 

However, studies have concluded that in spite of these known adaptations, the partial oxygen 

pressure in cetaceans during diving is still lower than the minimum required to maintain 

consciousness in other mammals (Williams et al., 2008). A common adaptation to increase 



Analysis of the effects of drift and selection in cetaceans    Page 70 

available oxygen in tissues involves the increased expression of oxygen binding globins 

(Hoelzel, 2002), a process that also occurs in the brain (Williams et al., 2008). Interestingly, 

the exact composition of such proteins is dependent on whether the animals are deep divers 

or fast swimmers, indicating that different proteins will have different characteristics suitable 

for different patterns of hypoxia (Williams et al., 2008). One such protein is the neuroglobin, 

which is mainly expressed in the brain and is known to have a protective function against 

hypoxia in brain cells, and whose expression is thought to be controlled by the hypoxia 

inducible factor (HIF) (Sun et al., 2001; Brunori & Vallone, 2007; Greenberg et al., 2008; 

Williams et al., 2008). 

The HIF is part of a signalling pathway that controls the expression of several different 

genes in response to reduced oxygen levels. Genes regulated by the HIF are involved in 

physiological processes such as vascular endothelial growth, erythropoiesis and ATP 

production (Semenza, 1998). The HIF DNA binding regions were found to be encoded by two 

different genes, the HIF-1α and the HIF-2α. A study comparing haplotype frequency of the α 

sub-unit of the HIF2 gene (also known as EPAS1) between high competition athletes and a 

control group found significant differences between them, indicating that variation in this 

gene might be important in determining the ability of an individual to cope with activities 

that demanded increased levels of oxygen (such as prolonged or intense exercise) (Prior et al., 

2003; Henderson et al., 2005). 

Echolocation 

In the ocean, very little light will penetrate roughly beyond 100 metres past the surface, 

much less in certain turbidity conditions, making vision a less important sense. As such, many 

cetaceans have developed the use of sound for orientation and prey capture. Additionally, the 

high pressures cetaceans face during deep diving, might have promoted adaptations to protect 

sensitive structures like the eyes or the inner ear from damage (Hoelzel, 2002). 

In mammals, the capacity to detect and resolve subtle differences in sound frequency, 

particularly high frequencies, is thought to be due to the cochlear outer hair cells (Randall et 

al., 2002; Santos-Sacchi, 2003). The morphology of cochlear hair cells in general is quite 

variable in vertebrates, which is thought to be the result of adaptation to different hearing 

requirements (Fay & Popper, 2000). Sequence analysis of a gene encoding a transmembrane 

protein from the solute carrier family (Slc26a5 or prestin) found in the membrane of outer 

cochlear cells, has shown signs of positive selection in mammals only (Franchini & Elgoyhen, 

2006). Further to this, phylogenetic studies of prestin joined all echolocating bats together, in 
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close relationship with echolocating cetaceans to the exclusion of other non-echolocating 

species (Li et al., 2008; Li et al., 2010; Liu et al., 2010). 

Myocilin is a protein that exhibits high levels of expression in ocular tissues (Gould et al., 

2004; Wentz-Hunter et al., 2004; Wentz-Hunter et al., 2004). Its functions are still unclear, 

but mutations in the gene encoding it have been associated with mild cases of open-angle 

glaucoma (Kaur et al., 2005; Rose et al., 2007). Open-angle glaucoma (OAG) is a disease caused 

by the degeneration of the optic nerve, resulting in a progressive loss of field vision eventually 

leading to blindness (Quigley, 1993). It’s thought that although not a consequence of OAG, 

increased high intra-ocular pressure might contribute to the progress of the disease by 

increased strain on the optic nerve (Quigley, 1996). A study indicated that increased levels of 

myocilin expression per se do not cause glaucoma, and therefore the production of abnormal 

proteins must be involved (Gould et al., 2004). Populations that usually feed at night might 

make more use of echolocation while hunting and such selection against visually impaired 

animals might be relaxed in comparison with populations that hunt during the day. 

Alternatively, populations that live or feed in deeper waters might experience a selective 

pressure for higher intraocular pressure to resist collapse during deep diving. 

Thermoregulation  

Water has a thermal conductivity 20 times higher than air, and as such maintaining core 

body temperature imposes a considerable physiological challenge to cetaceans. Blubber is the 

only isolating mechanism in these animals, and different species of cetaceans are known to 

have different lipid content and corresponding differences in insulating properties, suggesting 

adaptation to different water temperatures (Hoelzel, 2002) 

A recent study has identified two genes in mammals that are thought to be involved in the 

formation of adipose tissue, named fat-inducing transcript genes (FIT1 and FIT2). While FIT1 

was shown to be expressed mainly on heart and skeletal muscle, FIT2 is mainly expressed in 

white and brown adipose tissue. Knockout mice lacking these genes exhibited a decreased 

production of lipid droplets, confirming the importance of these genes in the formation of 

adipose tissue (Kadereit et al., 2008).  

Colouration 

Although cetaceans have relatively homogeneous skin colouration across species, some 

striking differences can be found between taxonomic groups. For example, the beluga whale 

(Delphinapterus leucas) has white skin colour, while most delphinids have dark skin. The 

common dolphin is one of the only two species of dolphins that exhibit yellow coloured 
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patches (Folkens et al., 2002). However, a different conspecific morphotype has been 

described, where the yellow colour is replaced by a black colouration similar to one found on 

the dorsal side (Perrin et al., 1995; Stockin & Visser, 2005). Colouration patterns in cetaceans 

are thought to have a predator avoidance function (Pryor & Norris, 1991), but resistance to 

sunburn by species that spend more time on the surface has also been proposed (Martinez et 

al., In Press). 

Several mutations are known in both MC1R and agouti genes that lead to different 

proportions of black and yellow for a number of mammal species. Mutations in the MC1R are 

usually point mutations, whose dominant alleles result in all black colouration (Jackson, 1997; 

Kijas et al., 1998; Savage et al., 2008), while mutations in agouti are usually related to inserts 

or deletions of large fragments of DNA, whose dominant alleles result in an all yellow 

phenotype (Vrieling et al., 1994; Manne et al., 1995). Additionally, other genes are known to 

influence the intensity of pigmentation, such as TYRP1 (Slominski et al., 2004) where point 

mutations are related to a change in colouration from black to brown in cattle, mouse and 

humans (Bell et al., 1995; Berryere et al., 2003; Alonso et al., 2008; Mohanty et al., 2008).  

Reproduction 

Many cetacean species are thought to have promiscuous and polygynous mating systems. 

As such, it can be expected that proteins involved in egg-sperm recognition will be under 

strong selection. In the egg, sperm recognition is mediated by the zona-pellucida, a structure 

that covers the whole egg surface and is composed of three different glycoproteins, named 

ZP1, ZP2 and ZP3. There is evidence that, among these, ZP3 is essential in allowing sperm 

binding, and stopping remaining sperm from binding after the egg is fertilized. Therefore, 

differences in ZP3 structure act as an effective reproductive barrier between species 

(Wassarman, 1999). One study comparing ZP3 sequence from different mammalian species 

found that it showed considerable levels of variation within species and that dN/dS analysis 

revealed signs of selection (Swanson et al., 2001).                                                                                                                     

Protamines are proteins that replace histones in binding condensed DNA in sperm (Ammer 

& Henschen, 1988). In mammals two types of protamine exist, protamine 1 being the most 

important (Rooney & Zhang, 1999). Studies of this gene in catarrhinean primates showed that 

the two protamine 1 exons appear to accumulate mutations faster than the single intron in 

some taxa, and that non-synonymous substitutions were significantly more common that 

synonymous ones, suggesting that natural selection is promoting the evolution of this gene 

(Rooney & Zhang, 1999; Wyckoff et al., 2000). Several lines of evidence suggested that 
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variation in the protamine genes might originate variation in sperm head morphology, which 

results in differences on fertility rates (Rooney & Zhang, 1999; Clark, 2000). Dolphins 

generally exhibit strong sperm competition as indicated by their large testis size relative to 

body size (Kenagy & Trombulak, 1986). For example, common dolphins exhibit some level of 

sexual dimorphism and increased testis size during the mating season (Murphy et al., 2005; 

Westgate & Read, 2007) while female bottlenose dolphins are known to copulate with 

multiple males (Connor et al., 1992). As such, diversity levels in protamines may also be high 

relative to ZP3 in cetaceans. 

Immune system 

All living organisms are equipped with a set of mechanisms that allows them to stop 

infection from foreign pathogenic organisms (virus, bacteria, fungi and parasites) that 

collectively form the immune system. The simplest of those mechanisms consists in the 

physical barrier that cellular membranes or epithelial surfaces represent to pathogens 

(Janeway et al., 2001). Pathogens can enter the blood circulation through open wounds, and it 

can thus be expected that selective pressures would favour more effective blood clotting and 

scar tissue formation in environments with higher pathogenic load. Fibrinogen is a 

glycoprotein composed of 3 different units (α, β and γ), and is an essential protein in the blood 

clotting mechanism, while also being important to the inflammatory response and scar tissue 

formation (Mosesson et al., 2001). Several mutations in the fibrinogen genes are known to 

cause blood clotting related problems with symptoms such as chronic bleeding, impaired 

scaring, and liver cirrhosis (Asselta et al., 2000; Brennan et al., 2001; Matsuda & Sugo, 2001; 

Neerman-Arbez, 2001; Maghzal et al., 2004). Other problems have also been associated with 

fibrinogen mutations, such as kidney disease (Brennan et al., 2001; Matsuda & Sugo, 2001) and 

coronary heart diseases (Green, 2001). Several cetacean sequences are available from earlier 

phylogenetic studies (Gatesy, 1997; Gatesy, 1998), but evidence for selection on such genes 

was never investigated. 

Once pathogens enter the blood circulation, other more complex molecular cellular 

mechanisms exist to stop infection. These can be divided in two groups according to specific 

characteristics of how they fight infection, called the innate immune system and the adaptive 

immune system. The innate immune system reacts to molecular and cellular structures  found 

in a wide range of foreign pathogens, while the adaptive immune system provides more 

effective and long-lasting protection by identifying and targeting unique characteristics of 

specific pathogens and by remembering them for future infections. In order for the adaptive 
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immune system to be effective, lymphocytes (the adaptive immune system effector cells) must 

be able to discriminate between different antigens. There are two different classes of 

lymphocytes, B-cells and T-cells. One of the main functions of T-cells is to recognize antigens,  

and lead them to phagocytic cells such as B-cells, macrophages or dendritic cells. In addition, 

T-cells can also eliminate virus infected cells.   

The Major Histocompatibility Complex (MHC) is a family of genes that encode proteins 

whose general function is to bind pathogenic proteins and present them on the surface of 

infected cells so that they can be recognized by T-cells (Janeway et al., 2001). Within the 

MHC, genes are classified into two categories, named class I and class II, according to their 

specific function (Janeway et al., 2001).  MHC genes were the first to be shown to be under 

selection through dN/dS analysis (Hughes & Nei, 1988; Hughes & Nei, 1989), and several lines 

of evidence strongly suggest that diversity in these genes is actively maintained by selective 

pressures imposed by different pathogenic loads (Hughes & Yeager, 1998). Several studies 

have also shown evidence for selection on a population level in several species of mammals 

(Bernatchez, 2003), including some species of cetaceans for the MHC class II HLA-DQβ locus 

(Munguia-Vega et al., 2007; Vassilakos et al., 2009; Yang et al., 2010).  

Toll-like receptors (TLR) constitute another class of antigen receptors similar in function 

to the MHC, that activate phagocytes and tissue dendritic cells (Janeway et al., 2001). TLR’s 

are transmembrane proteins that will recognize different structures characteristic of infectious 

bacteria, such as the bacterial cell wall (Janeway et al., 2001). Different TLR’s will be specific 

to different structures, with TLR3 in particular recognizing double stranded RNA produced 

during viral reproduction (Alexopoulou et al., 2001). As such, TLR3 has a very similar 

pathogen recognition system as the DQβ locus but is specific to viral infections. 

3.2.  OBJECTIVES 
 

In this study, a candidate marker approach will be used to investigate adaptation in 

cetaceans, both in the order as a whole and at a population level. Appropriate markers to use 

in the population level analysis will be identified by carrying out dN/dS tests in several 

functionally relevant genes in mammals and cetaceans where enough sequence are available. 

The objective is to identify regions of the genome that have evolved and differentiated rapidly 

in response to the transition from land to sea in the cetacean lineage, and assess if such 

patterns can also be observed at a population level as evidence that adaptation promotes 

differentiation in such organisms. This will be done under the assumption that markers that 
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show signals of positive selection in higher taxonomic levels are more likely to also exhibit 

signals of selection at a population level, an assumption that will be evaluated in light of the 

results. The population level analysis will focus on European common dolphins. Patterns of 

genetic structure on neutral markers are well described in this population (see Chapter 2 of 

this work and references therein), and the strong environmental cline that can be observed 

between the Mediterranean and the North Atlantic (Pinet, 2003), can be used to assess 

correlations between environmental differences and any potential patterns observed. 

 

3.3.  METHODS 

3.3.1.  Candidate markers choice 
 

Choice of candidate markers was based on a combination of factors, namely, knowledge of 

a physiologically relevant function (discussed in the introduction), detection of selection 

along the mammalian class and availability of cetacean sequences to carry out selection 

analysis. Throughout the following sections of this chapter, different markers will be 

represented by their GenBank abbreviations, indicated in Table 3.1 (page 76). 

Markers that do not have a well described functional relevance will be difficult to interpret 

in the light of positive (or negative) results, while markers that have evolved neutrally, or 

have been under purifying selection over a wide taxonomic range, are less likely to show 

evidence of local adaptation. As such, to determine the applicability of candidate markers for 

their use in population studies of the common dolphin, the potential for detecting signals of 

selection was investigated in mammals in general, and if enough sequences were available, in 

cetaceans in particular. Studies of selection have previously been done in several of the 

markers analysed here, with varying degrees of species representation among mammals. These 

will still be included in the present study for the sake of consistency in the mammalian groups 

sampled between markers, and also to act as positive controls for which selection has been 

confirmed independently. The only exceptions are protamine and ZP3 as both these markers 

have been shown to be under selection on a large range of mammalian groups. As a negative 

control, one gene was included whose physiological function would be difficult to integrate in 

an environmental adaptation context. Calcium/calmodulin-dependent protein kinase II is an 

enzyme primarily expressed in neurons that is activated by high levels of Ca+ and active 

calmodulin (Lin et al., 1987; Carlton, 2002; Djakovic et al., 2009). Its exact physiological 

functions are unclear, but variation in the gene coding this enzyme has been related to pain 

sensitivity and neurological conditions such as depression (Brüggemann et al., 2000; Novak et 
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GenBank Code Gene 

CAMKA2 Ca/calmodulin-dependent protein kinase II, α chain 

AQP1 Aquaporin 1 

AQP6 Aquaporin 6 

ASIP Agouti Signalling Protein 

CSN2 α-casein 

CSN3 κ-casein 

FGG γ-fibrinogen 

FIT1 Fat inducing transcript 1 

FIT2 Fat inducing transcript 2 

HIF1 Hypoxia inducible factor 1 

HIF2 Hypoxia inducible factor 2 

LALBA α-lactalbumin 

MYOC Myocilin 

TLR3 Toll-like receptor 3 

MC1R Melanocortin receptor 1 

TYRP1 Tyrosinase-related protein 1 

UT-A2 Urea-transporter 2, α chain 

NGB Neuroglobin 

Prestin Prestin 

SP-C Lung surfactant protein C 

Protamine Protamine 1 

ZP3 Zona Pellucida 3 

Table 3.1. GenBank abbreviations used in the chapter for each functional gene analysed. 
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al., 2006; Chen et al., 2010). Although the exact function is unknown, studies so far have not 

revealed any function that could potentially be thought of as having any adaptive value for 

marine mammals.  

 

3.3.2.  Data collection/sequence alignment 
 

Mammalian sequence data was retrieved from the ORTHOMAM online database (Ranwez et 

al., 2007). ORTHOMAM uses data from available mammalian genomes to create alignments of 

orthologous genes based on the well annotated genomes of human, mouse and dog. Currently, 

data for up to 36 different species of mammals are available. However, because different genes 

will have different species coverage, an attempt was made to include the same taxonomic 

groups in each alignment, but not necessarily the same species. The bottlenose dolphin 

(Tursiops truncatus) was present in all ORTHOMAM alignments and was always included to test 

for branch specific selection. Because the proportion of missing data can be variable for 

certain species, additional searches were performed in GenBank to complement species with a 

high proportion of missing data. Species known to be under selection for a particular gene, 

were removed from the alignment as their presence in the database might give the illusion of 

a stronger selection pattern across mammals. For example the cow (Bos) sequence was 

removed from all milk protein alignments.  

Additional cetacean sequence data was obtained from GenBank for each gene obtained in 

the previous analysis, when available. Species representation within Cetacea was highly 

variable, with most groups being available for some markers, while only a few species being 

available for others. In markers where a good representation was available, alignments 

containing only cetacean species and outgroup was included. Otherwise, cetacean sequences 

were added to the mammalian alignment. Sequences from other species were also added as 

relevant in particular cases. All the alignments were done using either CLUSTALW (Thompson 

et al., 1994), MUSCLE (Edgar, 2004) or MAFFT (Katoh et al., 2002) algorithm as appropriate. 

Because complete mRNA’s were not available for all the species marker combinations (either 

only partial exons or sequences including exons and introns), alignments tended to be 

complex and CLUSTALW frequently failed. In cases where complete mRNA’s were available 

for all species, MUSCLE and MAFFT will often introduce excessive alignment gaps in areas of 

high diversity. All alignments were implemented in the software package GENEIOUS 

(Drummond et al., 2010).  
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3.3.3.  Detection of selection 
 

Sequence model evolution for each alignment was determined using TOPALI V2 (Milne et 

al., 2008). Phylogenetic trees for use in the maximum likelihood dN/dS analysis were 

produced using the PHYML algorithm (Guindon & Gascuel, 2003) implemented in the 

program TOPALI V2 (Milne et al., 2008). Robustness of the trees was assessed through 

bootstrap with 1,000 replicates. Independent trees were constructed using the MRBAYES 

algorithm (Huelsenbeck & Ronquist, 2001) implemented in the software package GENEIOUS 

(Drummond et al., 2010). Four independent chains were run for 1,100,000 replicates with 

110,000 burnin replicates, and a sampling frequency of 200 replicates.  

Signals of selection were detected using the maximum likelihood dN/dS approach 

implemented in PAML (Yang, 2007) integrated in the software package TOPALI V2 (Milne et 

al., 2008). Instead of pairwise dN/dS analysis, PAML compares statistical distributions among 

sites that allow or not for positive selection to occur. These models are then compared for 

significance using a likelihood ratio test with a χ2 distribution  (Yang, 2007). Three pairs of 

models were compared independently, based on their well known robustness in detecting 

positive selection (Wong et al., 2004; Yang, 2007; Yang, 2009): M0 vs. M3 – M0 is the simplest 

model and assumes a single value of dN/dS (ω in the PAML package) common to all sites 

(Goldman & Yang, 1994), while M3 allows for 3 distinct values of ω across sites, each with 

distinct proportions (p) (Yang et al., 2000); M1a vs. M2a – M1a represents a nearly neutral 

model with two classes of ω where one (ω0) is allowed to vary from 0 to 1 and the other (ω1) 

is fixed at 1, while M2a represents positive selection by adding an extra class where ω is 

allowed to have any value above 0 (ω2) (Nielsen & Yang, 1998; Wong et al., 2004; Yang et al., 

2005); M7 vs. M8 – M7 assumes a β distribution of ω across sites where ω is only allowed to 

vary between 0 and 1, while M8 allows for an extra proportion of sites to adopt any value of ω 

above 0 (ω2) (Yang et al., 2000). From these tests, only M1a vs. M2a and M7 vs. M8 are real 

tests of positive selection, whereas M0 vs. M3 only test for heterogeneity of ω across sites 

(Anisimova et al., 2001). Therefore, models M1a, M2a, M7 and M8 were tested multiple times 

with different initial values to avoid local optima, as suggested in (Wong et al., 2004; Yang, 

2009). Sites under positive selection were identified using the empirical Bayesian method of 

(Yang et al., 2005).  

 Branch model analyses were also carried out. In the mammalian alignments, branch model 

analyses were done by comparing a tree with constant dN/dS to a tree where the branch 

leading to the bottlenose dolphin was allowed to vary (Yang & Nielsen, 2002). In the cetacean 
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alignments, branch analysis was done by comparing hypotheses relevant to each marker 

(discussed below).  Candidate markers for the population level analysis, where selected  based 

on evidence for selection from the phylogenetic analysis, availability of template sequences to 

design PCR primers, exon/intron complexity of the marker (genes with numerous small exons 

separated by large introns are difficult to amplify fully using PCR), and known physiological 

relevance.   

For the population level analysis, genotype frequencies for each successfully screened non-

synonymous mutation was counted, and deviations from Hardy-Weinberg equilibrium 

calculated using exact tests with 1,000,000 iterations and 100,000 of dememorization steps. 

Pairwise Fst between locations was calculated, with significance assessed through 1,000 

permutations. All calculations implemented in the software ARLEQUIN (Excoffier, 2005).  

3.3.4.  Laboratory procedures 
 

For each selected candidate gene, primers were designed using the PRIMER3 (Rozen & 

Skaletsky, 2000) algorithm as implemented in GENEIOUS (Drummond et al., 2010). Primers 

were targeted at conserved regions of an alignment including either cetacean or arctiodactyl 

sequences, depending on availability. Seven markers were successfully amplified and 

sequenced in the common dolphin (Table 3.2, page 80). Amplification was carried out using 

Phusion Taq polymerase (Finnzymes) because of its proofreading capabilities and fast PCR 

times, allowing for quick optimization of PCR conditions. DNA was placed in a tube 

containing 1X High Fidelity Buffer (Finnzymes), variable concentrations of dNTP’s (Table 3.2, 

page 80), 0.6 µM of each primer and 0.2 U of Phusion Taq (Finnzymes). PCR conditions 

followed a general protocol, with only variations in the dNTP and DNA concentration, 

annealing temperature and number of cycles. General conditions involved initial denaturation 

at 98°C for 3 minutes, variable number of cycles (Table 3.2, page 80) of denaturation at 98°C 

for 10 seconds, annealing at variable temperatures (Table 3.2, page 80) for 30 seconds and 

extension at 72°C for 30 seconds. One last extension step at 72°C for 7 minutes was included in 

all markers. All primers were designed in this study. 

Population level analyses were made using the same set of samples as used in Chapter 2 

(Figures 2.1 & 2.2, pages 33 & 35). For each successfully amplified candidate gene (Table 3.2, 

page 80), variation was screened by sequencing 12 individuals sampled along the Portuguese 

coast, 2 for each sampling location as indicated in Chapter 2. Heterozygous positions were 

confirmed through cloning. Cloning was done using the CloneJet PCR Cloning Kit protocol 
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(Fermentas) according to the manufacturer’s instructions, with 4 clones sequenced for each 

sample using the forward primer pJET 1.2 included in the CloneJet cloning kit. Because these 

sequences were used to test for selection at a population level, they were not added to the 

cetacean phylogenies. 

For the markers where variation was found, non-synonymous point mutations were 

identified and screened using restriction enzyme based method. Screening was performed for 

the Irish and Greek populations, located at the edges of the European distribution of the 

species, as well as for the Portuguese population, located in the transition zone between the 

Mediterranean Sea and the Atlantic Ocean (total number and location of samples analysed 

provided in the results section). Appropriate restriction enzymes were identified using the 

online software SNP-RFLPING (Chang et al., 2010), and the online software 

RESTRICTIONMAPPER (http://www.restrictionmapper.org/) was used to predict cutting patterns 

for the different alleles. Restriction digestion was done in a PCR machine according to the 

manufacturer’s indication, and results were checked in a 1.5% agarose gel stained with 

ethydium bromide, later photographed on a UV transluminator. To confirm correct genotype 

identification for each mutation, the restriction digestion process was repeated for 20 

randomly chosen samples, and a subset of 4 samples was re-sequenced directly.   

The exon 2 of the MHC DQβ1 locus was amplified using the primers from (Tsuji et al., 

1993) following the PCR conditions described in (Vassilakos et al., 2009). Variation was 

assessed using an SSCP protocol based on the one described in (Vassilakos et al., 2009). For 

each sample, 2 µl of PCR product was mixed with 2 µl denaturing loading buffer following the 

formula described in (Vassilakos et al., 2009). Samples with loading buffer were denatured at 

98°C for 5 minutes and placed on ice for 3 minutes straight after. They were then run on a 

Sequi-Gen GT vertical electrophoresis system (BioRad) in a 6% (v/v) 37.5:1 acrylamide:bis-

acrylamide gel with 10% (v/v) Glycerol in 1X TBE. Gels were run for 5 hours at constant 40 

W and room temperature, after which they were stained for a minimum of 30 minutes with 

GelStar Nucleic Acid Gel Stain (Lonza, Inc.) and photographed in a BioRad UV 

transluminator.   

Unique alleles were extracted from the acrylamide gel using the following protocol: single 

stranded bands were extracted from the gel and placed in one 1.5 mL microcentrifuge tube 

each; gel slices were eluted in autoclaved water at 37°C overnight; samples were then 

centrifuged for 1 minute at 13,000 rpm, and the supernatant was placed in a new tube using a 

micropipette. Extracted sequences were then reamplified by placing 1 µl of the resulting 
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template following the same protocol as before (from (Vassilakos et al., 2009)). The resulting 

product was then purified using Qiaquick PCR Purification Kit (Qiagen), and sequenced on an 

ABI 3730 automatic sequencer using both forward and reverse primers.  

3.3.5.  MHC Data Analysis 
 

For the analysis of MHC DQβ1 variation along the European coast, several genetic 

differentiation statistics between sampling locations were calculated using DNASP V5.1 

(Librado & Rozas, 2009). Pairwise Fst between locations and Analysis of Molecular Variance 

(AMOVA) were calculated using the program ARLEQUIN (Excoffier, 2005). Significance of 

pairwise Fst comparisons was assessed with 1,000 permutations as implemented in the 

software ARLEQUIN (Excoffier, 2005). A median-joining network was constructed with 

maximum parsimony processing using the software NETWORK (Bandelt, 1999; Bandelt, 2000). 

It is well described that differences in the ability of MHC DR locus to bind pathogenic 

agents are dependent on the combined charge profiles of specific amino acid positions on the 

pocket 4 region (residues 70, 71 and 74 of the β chain)(Ou et al., 1998). Given that DR and DQ 

loci are thought to have originated by duplication of an ancestral gene (Kumanovics, 2003), 

and that they retain similar antigen peptide binding functions (Janeway et al., 2001), the 

criteria of (Ou et al., 1998) can serve as a template to investigate functional differences in the 

DQ locus. As such, differences in the frequency of charge profiles in those positions between 

populations might reflect selection for functional differences. Differences in the frequency of 

alleles with different charge profiles in the pocket 4 region were assessed manually following 

the criteria described in (Ou et al., 1998). Statistical significance of the differences found was 

assessed through contingency tables as implemented in the software RXC (http://

www.marksgeneticsoftware.net). dN/dS analysis was carried out following the same protocol 

as described earlier, both for all generated sequences, and for each sampling location. 

3.4.  RESULTS 

3.4.1.  Mammalian datasets 
 

All the alignments showed considerable length variation between species, with several 

sequences exhibiting both end gaps and insertions/deletions (indels) (Table 3.3, page 83). 

Phylogenetic analysis showed considerable variation in the resolution of different markers, 

with some markers exhibiting particularly low resolution at the basal nodes (ASIP, CSN3, 

FIT2, SP-C, TYRP1). Tree topologies were essentially consistent between markers, especially 
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for primates. However, some taxa appeared to jump position considerably, especially the horse 

(Equus), bats (Myotis & Pteropus) and the hedgehog (Erinaceus). Interestingly, these taxa had a 

tendency to group in closely related clades. The position of the bottlenose dolphin (Tursiops 

truncatus) was always consistent, grouping with either cow (Bos) or pig (Sus), with the notable 

exception of NGB where it falls basal to all eutherian mammals (Appendix 3.1, page 157).  

All 21 markers showed support for heterogeneity of ω among sites (M3), but only 14 markers 

showed evidence for positive selection (M2a or M8) (Table 3.3, page 83). From these, only 8 had 

significant statistical support for both M2a and M8 positive selection models. From the 5 markers 

showing support for only the M3 models, the largest proportion of sites had ω values very close 

to 0, suggesting they are under purifying selection (Appendix 3.1, page 144 - 150). In the branch 

analysis, only CAMKA2 and FGG showed significant results for the bottlenose dolphin branch.  

3.4.2.  Cetacean datasets 
 

Good representation for cetaceans was only available for the markers CSN2 (partial exon 7), 

CSN3 (partial exon 4), LALBA (exons 1 to 3), Protamine 1 (exon 1 & 2), ZP3 (partial exons 6 & 7) 

and MC1R (full exon). Therefore, only those markers were analysed for cetaceans (including 

some outgroup sequences). For the other markers (FGG, SP-C, UT-A2 and Prestin), due to weak 

cetacean representation, available sequences were added to the mammalian dataset. For Prestin, 

sequences of bats available from (Li et al., 2010; Liu et al., 2010) were added for comparison, and 

for SP-C, pinniped sequences available from (Foot et al., 2007) were added for comparison. These 

were used as positive controls for the detection of selection, as these markers have been shown to 

be under selection in previous studies (Foot et al., 2007; Li et al., 2010; Liu et al., 2010). 

Resolution in the cetacean phylogenetic trees was considerably reduced compared to the 

mammalian datasets, owing to the high degree of similarity among taxa, especially in LALBA, 

MC1R and ZP3 where pairwise identity was higher than 95%. Topologies within cetaceans were 

generally consistent with previous studies, with some notable exceptions. In particular, baleen 

whales are polyphyletic for CSN3, and the sperm whale (Physeter macrocephalus) is basal to all 

cetaceans in ZP3 (Appendix 3.2, pages 165 & 169 respectively).  

From all the alignments including only cetaceans and outgroups, only LALBA and MC1R 

showed no signs of selection, while MC1R showed evidence for ω heterogeneity among sites 

(M3)(Table 3.4, page 85). All the other markers showed strong signs of positive selection with the 

exception of UT-A2 that showed support for positive selection only for the M8 model (Table 3.4, 

page 85), consistent with the previous analysis (Table 3.3, page 83).  
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3.4.3.  Variation along the Portuguese coast 
 

For 12 individuals sampled along the Portuguese coast, 5 markers showed variation within 

exons. From those, 3 (CSN2; TYRP1 exon 5; TYRP1 exon8) had non-synonymous mutations. 

Notably, in 2 cases (CSN2 and TYRP1 exon 5) all the mutations found in exons were non-

synonymous. Further to this, CSN2 stands out as having an unusually high number of 

mutations compared to other markers, all of them non-synonymous (Table 3.5, this page).  

 

Table 3.5. Number of mutations, synonymous and non-synonymous, found by screening 12 individuals sampled 

along the Portuguese coast. 

 
 
 

From the identified non-synonymous substitutions, 3 were successfully screened for 

samples from the European coast using restriction enzymes, one in TYRP1 exon 8 (TP8-114 

A/C using the enzyme Hin1II) and two in CSN2 (CSN2-105 A/G using the enzyme Hin6I; 

CSN2-255 G/T using the enzyme BseGI). In all cases, mostly only one variant of each 

mutation was found in the homozygous state, while the other, when found, was mostly in the 

heterozygous state. Heterozygous individuals were always found in very low frequency (Table 

3.6, page 87). Most populations did not significantly deviate from Hardy-Weinberg 

expectations, with the exception of Greece and Ireland for CSN-255 G/T point mutation 

(Table 3.6, page 87). These were also the only cases were pairwise Fst values were positive and 

significant (Table 3.7, page 88). 

Marker Mutations Synonymous Non-Synonymous 

Protamine 1 0 - - 

CSN2 6 0 6 

SP-C 0 - - 

UT-A2 0 - - 

MYOC 2 2 0 

AQP1 0 - - 

TYRP1 exon 1 1 1 0 

TYRP1 exon 2 0 - - 

TYRP1 exon 4 0 - - 

TYRP1 exon 5 1 0 1 

TYRP1 exon 6 0 - - 

TYRP1 exon 7 0 - - 

TYRP1 exon 8 3 2 1 
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TP8-114 AA AC CC Total 

Greece 15 2 0 17 

Portimão 44 5 0 49 

Sagres 33 5 0 38 

Sines 19 3 0 22 

Peniche 25 3 0 28 

Figueira 23 3 0 26 

Porto 19 4 0 23 

Ireland 16 1 0 17 

CSN2-105 AA AG GG Total 

Greece 16 2 0 18 

Portimão 49 4 0 53 

Sagres 33 5 0 38 

Sines 24 1 0 25 

Peniche 22 2 0 24 

Figueira 22 1 0 23 

Porto 19 1 0 20 

Ireland 17 1 0 18 

CSN2-255 GG GT TT Total 

Greece* 6 10 0 16 

Portimão 47 6 0 53 

Sagres 35 3 0 38 

Sines 22 3 0 25 

Peniche 23 1 0 24 

Figueira 23 0 0 23 

Porto 17 3 0 20 

Ireland* 14 19 0 33 

Table 3.6. Genotype frequency and the total number of individuals genotyped in different 

locations along the European coast, for each non-synonymous point mutation analyzed. Rows 

marked with a star represent populations that were found to deviate from Hardy-Weinberg 

equilibrium for that particular point mutation. 
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CSN2-155 Greece Portimão Sagres Sines Peniche Figueira Porto Ireland 

Greece 0 0.25087 0.27679 0.19187 0.28386 0.33918 0.14999 -0.02226 

Portimão 0.0 0 -0.00827 -0.01484 -0.00049 0.02616 -0.01454 0.18342 

Sagres 0.0 n.s. 0 -0.01214 -0.01164 0.01477 -0.0064 0.19938 

Sines 0.0 n.s. n.s. 0 -0.00104 0.03766 -0.02117 0.14049 

Peniche 0.0 n.s. n.s. n.s. 0 -0.0009 0.01058 0.20461 

Figueira 0.0 n.s. n.s. n.s. n.s. 0 0.05817 0.24152 

Porto 0.027 n.s. n.s. n.s. n.s. n.s. 0 0.11067 

Ireland n.s. 0.0 0.0 0.0 0.0. 0.0 0.036 0 

CSN2-105 Greece Portimão Sagres Sines Peniche Figueira Porto Ireland 

Greece 0 -0.01495 -0.01998 -0.00541 -0.02273 -0.00888 -0.01453 -0.01868 

Portimão n.s. 0 -0.00299 -0.0098 -0.01516 -0.01175 -0.01502 -0.01747 

Sagres n.s. n.s. 0 0.00638 -0.01174 0.00315 -0.00229 -0.00643 

Sines n.s. n.s. n.s. 0 -0.0128 -0.02124 -0.02243 -0.02311 

Peniche n.s. n.s. n.s. n.s. 0 -0.0152 -0.01915 -0.02204 

Figueira n.s. n.s. n.s. n.s. n.s. 0 -0.02369 -0.0246 

Porto n.s. n.s. n.s. n.s. n.s. n.s. 0 -0.02695 

Ireland n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0 

TP8-114 Greece Portimão Sagres Sines Peniche Figueira Porto Ireland 

Greece 0 -0.01959 -0.02133 -0.02602 -0.02394 -0.02492 -0.02041 -0.01979 

Portimão n.s. 0 -0.00978 -0.01392 -0.01416 -0.01449 -0.00508 -0.01471 

Sagres n.s. n.s. 0 -0.01822 -0.01442 -0.01589 -0.01442 -0.00869 

Sines n.s. n.s. n.s. 0 -0.01878 -0.02047 -0.02023 -0.01102 

Peniche n.s. n.s. n.s. n.s. 0 -0.01873 -0.01134 -0.01718 

Figueira n.s. n.s. n.s. n.s. n.s. 0 -0.01434 -0.01572 

Porto n.s. n.s. n.s. n.s. n.s. n.s. 0 0.00236 

Ireland n.s. n.s. n.s. n.s. n.s. n.s. n.s. 0 

Table 3.7. Pairwise Fst comparisons between European locations for all non-synonymous point mutations. Fst 

values are above the diagonal. Significant P-values below the diagonal. 
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Diversity indexes within each location showed generally high levels of diversity and 

essentially similar in each location (Table 3.8, this page). 

 
Table 3.8. Genetic diversity of the DQβ1 exon 2 locus within each European location. N-number of sequences 

analysed; Hn-number of different haplotypes; Hd-haplotype diversity (Nei, 1987); K-average number of nucleotide 

differences (Tajima, 1983); Pi-nucleotide diversity (Nei, 1987). 

 

Location N Hn Hd K Pi 

Ireland 54 22 0.93 11.35 0.053 

Portugal 72 20 0.93 10.41 0.049 

Greece 26 12 0.92 11.98 0.056 

Total 152 22 0.93 11.35 0.053 

Figure 3.1. Median joining network of DQβ1 exon 2 haplotypes. Size of the circles is proportional to the number of 

chromosomes in each haplotype; black circles represent single point mutations separating haplotypes. 

3.4.4.  MHC diversity 
 

76 samples were successfully genotyped using SSCP, 13 from Greece, 27 from Ireland and 

36 from Portugal. 35 unique alleles were identified through direct sequencing of single 

stranded DNA extracted from the SSCP gel.  

Median joining network showed no correspondence between location and specific 

haplotypes (although each location had unique haplotypes), and a generally high level of 

diversity between them (Figure 3.1, this page).  
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All pairwise Fst comparisons between locations were significant, with the highest Fst 

values found in the comparison between Greece and Ireland and the lowest between Ireland 

and Portugal (Table 3.9, this page).  AMOVA revealed, however, that most of the variation 

was distributed within populations (Table 3.10, this page).  

Table 3.9. Pairwise Fst comparison between European locations. Fst values above the diagonal; significant 

comparisons at 0.05 level indicated by an asterisk below the diagonal 

 

 

 

 

Table 3.10. AMOVA results for pairwise comparisons between European locations and for a comparison including all 

three European locations. d.f.—degrees of freedom. 

Although tests for isolation by distance are not possible with only 3 locations, the Fst 

values are proportional to the distance by sea between each location. The same pattern is 

observed for several other genetic divergence statistics between locations (Table 3.11, this 

page).  

 
Table 3.11. Pairwise comparison of different genetic diversity statistics between locations as implemented in the 

software DNASP (Librado & Rozas, 2009). Comparisons are ordered according to increasing distance by sea from top 

to bottom. 

 

Comparison Hs Ks Kxy Gst DeltaSt GammaSt Nst Dxy Da 

Ireland vs. Portugal 0.93 10.81 11.27 0.014 0.0013 0.02552 0.036 0.053 0.0018 

Portugal vs. Greece 0.93 10.82 11.78 0.020 0.00162 0.03158 0.049 0.055 0.0027 

Ireland vs. Greece 0.92 11.55 12.96 0.029 0.00336 0.05998 0.101 0.060 0.0061 

Population Ireland Portugal Greece 

Ireland - 0.03514 0.10177 

Portugal * - 0.05283 

Greece * * - 

Comparison Source  d.f. 
Sum of 
Squares 

Variance  
Component 

Percentage of 
Variation 

Ireland vs. Portugal  
Among Populations 1 17.6 0.2 3.51 

Within Populations 124 670.4 5.4 96.49 

Portugal vs. Greece  
Among Populations 1 16.9 0.3 5.28 

Within Populations 96 519.4 5.4 94.72 

Ireland vs. Greece  
Among Populations 1 28.7 0.6 10.18 

Within Populations 78 450.4 5.8 89.82 

Among Populations 2 40.6 0.3 5.4 

Within Populations 149 820.1 5.5 94.6 
All Locations  
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dN/dS analysis showed strong signals of positive selection for all the sampling locations, 

with similar result being obtained for the dataset including all sequences (Table 3.12, pages 92

-93).  

Comparisons of the frequency of different charge profiles on the DQβ exon2 pocket 4 

revealed that haplotypes with no charge were more common than haplotypes with either 

positive or negative charged profiles. Negatively charged haplotypes showed a decrease in 

frequency going from Ireland to Greece, while positively charged haplotype frequencies 

showed an increasing trend (Figure 3.2, this page).  

 

 
Figure 3.2. Frequency of differently charged haplotypes classified according to (Ou et al., 1998) within each 

European location 
 
 

 

Contingency table analysis showed that frequencies of all charge profile classes were 

independent when all locations where compared. However, when locations were compared 

pairwise, only the comparisons involving Greece were significant (Table 3.13, this page). 

 

 

Table 3.13. p values and standard errors for each contingency table of the frequency of charged haplotypes 

classified according to (Ou et al., 1998) for pairwise comparison between European locations. 

 
 

Comparison p-value Standard Error 

Ireland vs. Portugal 0.096920 0.006646 

Portugal vs. Greece 0.000280 0.000130 

Ireland vs. Greece 0.000100 0.000100 
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3.5.  DISCUSSION 
 

The analyses of mammalian datasets retrieved from the ORTHOMAM database revealed that 

most of the candidate genes showed signs of selection. Genes that have shown signs of 

selection in previous studies have also showed positive results in this analysis, in spite of 

different species coverage, namely Prestin (Franchini & Elgoyhen, 2006; Li et al., 2010; Liu et 

al., 2010), TYRP1 (Izagirre et al., 2006; Alonso et al., 2008), SP-C (Foot et al., 2007), and CSN3 

(Ward et al., 1997).  Such a result is not altogether unexpected given the inclusion of 

ecologically diverse groups such as monotremates, cetaceans and primates. If a strict criterion 

is applied for the detection of selection (significant results for both M2a & M8 models), then 

only 8 out of 14 markers show signs of selection. Model M2a usually assumes higher levels of 

dN/dS, and as such, only detects stronger cases of positive selection, while M8 constitutes a 

much less conservative test (Wong et al., 2004). From the cetacean alignments, only one locus 

(LALBA) showed no signs of selection. This result might be related to the very low level of 

variation found in that marker, as pairwise identity was very high (96.2%, Table 3.4, page 85) 

and the phylogenetic tree was characterized by very low resolution (Appendix 3.2, page 166). 

The pattern is similar to that for MC1R, where only the model M3 was significant. Another 

marker with very low levels of variation was ZP3, but in this case significant signals of 

selection were detected for both models M2a and M8.  

In this study, most markers for which selection was supported only for model M8 showed 

ω2 values that were always close to 1 and never higher than 2 (Appendix 3.1, page 144 & 3.2, 

page 161). This suggests that evidence for positive selection is weak, given that dN/dS values 

are only marginally higher than what is expected for a neutrally evolving gene. However, dN/

dS analysis is based on the relative occurrence of one type of mutation over the other, and 

therefore power to detect positive selection can be undermined by low variation in the dataset 

or by saturation of synonymous substitutions when divergence between sequences is high 

(Wong et al., 2004). It is known that false negatives can occur when using datasets that 

contain low information (Anisimova et al., 2002; Wong et al., 2004), while false positives are 

generally thought to be infrequent. In such cases, one mutation will have a disproportionate 

effect on the dN/dS ratio, even if it has been caused by drift (Anisimova et al., 2001; Wong et 

al., 2004; Hughes & Friedman, 2005). In addition, when positive selection is only acting on a 

few branches of the dataset, and purifying selection on the rest, false negatives will also occur, 

as most of the tree will obscure the signal of the few branches where positive selection is 

occurring (Yang et al., 2000). As such, a positive result of model M8 might reflect either low 
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information in the dataset or that selection is only acting in a few branches of the tree 

analysed.   

Evidence for selection is also provided by the comparison of tree topology between 

markers. The topology obtained in the mammalian trees is generally consistent with previous 

phylogenies with the exception of the phylogenetic position of the horse (Equus), bats 

(Myotis/Pteropus), and the hedgehog (Erinaceus). The horse position within Perissodactyla is 

well established, and sister relationship between Perissodactyla and Carnivora is also 

consistent in the literature (Pumo et al., 1998; Nikaido et al., 2000; Lin & Penny, 2001; 

Nikaido et al., 2001; Kullberg et al., 2006; Nishihara et al., 2006; Arnason et al., 2008). 

However, the phylogenetic position of both bats and hedgehogs has long been controversial. 

Bats are generally accepted as being monophyletic and closely related to Fereuungulata 

(including the groups Carnivora, Cetarctiodactyla and Perissodactyla) although the exact 

placement within that group has been inconsistent between studies (Pumo et al., 1998; 

Nikaido et al., 2000; Lin & Penny, 2001; Nikaido et al., 2001; Nishihara et al., 2006). The 

hedgehog is probably the most extreme case of inconsistent placement within mammals, 

having been placed as basal to all eutherian mammals (Nikaido et al., 2001), although it 

appears to be basal to the Fereuungulata plus Chiroptera (Nishihara et al., 2006; Arnason et al., 

2008). The same general inconsistencies are found in this analysis, but more surprisingly, the 

horse, the hedgehog and the bats will, in some markers, group together in independent clades 

(horse+bats in CSN3, FGG, HIF1 and SP-C; horse+hedgehog in MYOC; bats+hedgehog in 

Prestin). Although some of those groupings were supported by low posterior probability and 

involved markers with low resolution, all these genes were also found to be under positive 

selection, which suggests that the apparent similarity between these three groups in those 

markers might reflect shared function. The bottlenose dolphin also groups inconsistently for 

the NGB gene, and for Prestin when the phylogeny is built on the protein sequence rather 

than the DNA sequence as in (Li et al., 2010; Liu et al., 2010). When a phylogeny of the 

protein sequence was built for NGB, the bottlenose dolphin grouped together with primates. 

Comparing the phylogenetic tree topologies in cetaceans, only the baleen whales showed 

unexpected grouping for CSN3 (polyphyletic), and sperm whales for ZP3 (discussed below).  

The phylogenetic inconsistencies in Prestin were previously attributed to convergent 

evolution between echolocating bats and cetaceans (Li et al., 2010; Liu et al., 2010). Outer hair 

cells will change shape in the presence of a mechanical stimuli (Brownell et al., 1985; 

Ashmore, 1987), thus altering the frequency sensitivity of inner hair cells (Randall et al., 2002; 
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Santos-Sacchi, 2003). The change in shape of the outer hair cells is controlled by Prestin, a 

transmembrane protein whose conformation is modified in response to mechanical stimuli 

from sound waves (Dallos et al., 1991). Knockout of Prestin resulted in significant hearing 

impairment in mammals (Santos-Sacchi, 2003; Wu et al., 2004) and DNA sequence analysis 

has shown signs of positive selection in mammals only (Franchini & Elgoyhen, 2006). 

Furthermore, the results obtained in (Li et al., 2010; Liu et al., 2010) and confirmed here, 

clearly suggest that this gene is under selection in marine mammals. Therefore, the 

inconsistent grouping of bats (Myotis/Pteropus), the hedgehog (Erinaceus) and the horse 

(Equus) found in different markers in this study might reflect a similar phenomenon. In the 

case of NGB, although no evidence for selection was found in mammals, the inconsistent 

placement of the bottlenose dolphin suggests that for this group, NGB might have also 

experienced functional changes, potentially related to the hypoxic conditions of an air 

breathing mammal in the ocean. Collectively, these results suggest that in animals with highly 

specialized ecologies, such patterns might be widespread across the genome, and may account 

in part for the difficulties faced in determining the phylogenetic relationships of such groups 

with molecular markers, as has been the case with cetaceans (Thewissen, 1998; McGowen et 

al., 2009).  

Although making physiological interpretations for the discrepancies found in Protamine 

and ZP3 for cetaceans might be tempting, the low resolution found in such markers is a more 

plausible explanation for such patterns. However, some inferences are possible from 

comparing both reproduction-related proteins analysed. Many cetacean species are known to 

be promiscuous (Kenagy & Trombulak, 1986; Hoelzel, 2002), meaning that sperm competition 

may be high. In this context, it would be expected that female reproduction-related proteins 

would show less variation than male reproduction-related proteins, as sperm competition 

would promote the fixation of new protein variants that allow more effective fertilization 

relative to other males. That is in fact the pattern that can be observed, with Protamine not 

only having higher variation, but showing good resolution for the cetacean phylogeny, 

especially when compared to ZP3. Also, the Protamine tree is highly consistent with 

previously established cetacean phylogenetic trees (McGowen et al., 2009).  

The dolphin branch analysis in the mammalian datasets failed to detect positive selection 

in most markers, even in the markers where more cetacean species were added (with the 

exceptions of FGG and CAMKA2). Evidence for selection along a particular branch is only 

expected when the direction or magnitude of selection is very different for that branch 
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relative to the other branches in the dataset, so failure to detect selection along the dolphin 

branch might be due to the fact that selection is also present in other branches of mammals as 

well. 

 

3.5.1.  Physiological relevance 
 

Many of the markers where strong evidence for selection were found are known to have 

well described physiological roles and can be interpreted in an ecological context. Prestin, a 

marker which has previously been reported to be under selection in mammals with a well 

described physiological mechanism (Li et al., 2010; Liu et al., 2010) also showed strong 

evidence for selection in this study (discussed above). MYOC, another marker hypothesized to 

be interpretable in the context of the increased reliance on sound relative to vision by 

cetaceans, did show significant support for site models M2a and M8. However, no other 

evidence were found for its functional relevance as was the case for Prestin, and given that no 

other cetacean sequences were available and the exact phenotypic effects of this gene are still 

uncertain, no more interpretations are possible at the moment.  

The marker included in this analysis to serve as a negative control (CAMKA2) showed no 

evidence of selection in the site models. However, it was one of the only two markers to show 

evidence for selection in the branch analysis of the bottlenose dolphin (Tursiops truncatus). 

Such result is difficult to interpret in light of the fact that the branch analysis gave generally 

negative results for other markers. The other marker where positive branch results were 

obtained (FGG; discussed below) had generally good support for selection from the site 

models as well, while in CAMKA2 most sites had a dN/dS value of 0, suggesting strong 

purifying selection. These results might reflect that CAMKA2 has a physiologically important 

role and may have been subjected to positive selection in the cetacean lineage. However, very 

little is known about the effects that mutations in this gene might have on the phenotype, 

severely impairing the interpretation of the patterns found in this study. 

Milk Proteins 

The markers that had stronger support for selection were both milk casein genes (CSN2 

and CSN3). These showed support for both M2a and M8 models of selection, in both the 

mammalian and cetacean datasets. This is further supported by the findings that while most 

markers screened for the Portuguese coast had very little variation (maximum 3 point 

mutations of which only one was non-synonymous), the exon 7 of CSN2 exhibited 6 non-

synonymous mutations (Table 3.5, page 86). Lactation periods in cetaceans are generally short 
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but some species can exhibit surprisingly long lactation periods, possibly reflecting different 

environmental pressures (Hoelzel, 2002). Baleen whales calves must get enough energy from 

milk to allow them to cope with the long migrations typically done by these animals, and 

therefore have usually fast lactation periods. On the other extreme, sperm whales (Physeter 

macrocephalus) form stable matrilineal societies where calf protection is increased, and have a 

correspondingly long lactation time, the longest in cetaceans. These different ecologies and 

life histories might act as a selective pressures requiring different milk energy content. Caseins 

are the main constituents of milk proteins, and they form colloidal particles named micelles 

which are thought to facilitate milk digestion and serve as calcium and phosphate carriers to 

the infant (Goff, 2010). CSN2 form the interior of  the micelle and bind the calcium 

phosphate, while CSN3 form the surface of the micelle and maintain stability by stopping the 

other caseins from precipitating in the presence of calcium (Gutierrez-Adan et al., 1996; 

Fujiwara et al., 1997). Polymorphisms in both these genes are known to change the overall 

energy characteristics of milk in cattle species (Van Eenennaam, 1991; Manfredi et al., 1993; 

Martin, 1993; Remeuf, 1993; Amigo et al., 2000; Moioli et al., 2007). Noteworthy in this 

context is the fact that the shape parameter of the site heterogeneity gamma distribution was 

always much higher than other markers, indicating that some regions of the sequence are 

evolving much faster than others. This is consistent with other scenarios typically involving 

selection on DNA sequences, in which certain parts of the protein have a key role in its 

physiological function, as for example, in MHC loci (Ou et al., 1998). This is also known to 

occur for CSN3, in which different alleles in a region of the protein encoded by exon 4, 

designated as casein macropeptide, are known to affect milk protein content and to be under 

selection in cattle (Ward et al., 1997). Although the present study did not focus particularly 

on the CMP region, sequences available for cetaceans were from exon 4 (including the CMP 

region), and have also shown evidence for selection in cetaceans. Taken together, all these 

results suggest that milk casein genes are fundamental in influencing milk energy content in 

cetaceans and has been under strong selection throughout their evolutionary lineage. 

LALBA also showed strong evidence for selection in the mammalian dataset but not in the 

cetacean dataset, despite this being the gene with the best representation within this group. 

LALBA is one of the two sub-units of the enzyme responsible for synthesizing lactose in 

lactating mammals (Brodbeck et al., 1967). Besides this role, it is also thought to have 

important antimicrobial and mineral deposition functions (Lonnerdal, 2003), as well as 

contributing with specific amino acids essential to the infant metabolism (Kelleher et al., 
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2003). Also, the lack of mammalian tissue regression in the absence of suckling observed in 

fur seals was related to a mutation causing lack of expression of  LALBA (Sharp et al., 2008). 

Such a mechanism is thought to be an adaptation to the irregular suckling patterns 

experienced by fur seal pups due to the mother’s foraging expeditions (Sharp et al., 2008). 

Although no evidence was found for positive selection in cetaceans, variation was generally 

very low and a great majority of sites had a dN/dS value very close to 0. Together with the 

signals for selection detected in mammals, and the important physiological role known in fur 

seals (Sharp et al., 2008), the results of this study suggest that this marker might be under 

strong purifying selection in cetaceans.  

Osmoregulation 

Genes related to osmoregulation (AQP1, AQP6 and UT-A2) also consistently showed 

evidence for selection. AQP1 and AQP6 had strong support for both M2a and M8 site models 

in the mammalian dataset, while UT-A2 had support for M8 model in both mammalian and 

cetacean dataset. Different lines of evidence indicate that water balance control by means of 

aquaporins in mammals is dependent on expression regulation, and knockout studies of AQP1 

genes resulted in urine concentration deficiencies, especially in situations of prolonged water 

deprivation (Nielsen et al., 2002). However, studies have also shown that single point 

mutations might significantly alter the structure of aquaporins leading to changes in 

permeability function and specificity (Bai et al., 1996; Lagree et al., 1998), with mutations 

completely changing the protein specificity from water to glycerol (Lagree et al., 1999). 

Mutations in AQP6 were also shown to alter ion specificity of the molecule (Yasui et al., 

1999). Phylogenetic analysis of sequence data from UT-A2 showed that differences in urine 

concentration between baleen whales and sperm whales were related with differences in UT-

A2 gene sequence (Birukawa et al., 2008). This suggests that these genes play an important 

physiological function and are important in determining adaptation to environments with 

limited access to drinkable water, such as desert regions, or in the context of cetaceans in a 

hyperosmotic habitat. 

Immunity 

All immunity-related markers showed strong signals of selection at all levels analyzed. 

Both TLR3 and FGG showed evidence of selection in the mammalian dataset, with FGG 

showing even stronger support when more cetacean sequences were added to the dataset. In 

addition, FGG was one of the only two markers showing a positive result in the branch 

analysis of the bottlenose dolphin (Tursiops truncatus), suggesting that FGG might be under 
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particularly strong selection in the cetacean lineage. FGG encodes part of the fibrinogen 

protein, which is essential to the blood clotting process (Mosesson et al., 2001). Cetaceans 

have very high levels of parasite load (Evans & Raga, 2001), and in the marine environment, 

open wounds are a common way for parasite to infect a host (Bush, 2001). As such, given the 

evidence found in this study, it can be speculated that the marine environment might have 

imposed a strong selective pressure for more effective clotting mechanism. TLR3 results are 

consistent with those obtained in the MHC, in the sense that both genes have similar immune 

functions. However, very few studies have assessed the selective value of this or other toll-like 

receptors in wild mammals. These results, although preliminary, suggests that immunity 

genes other than the MHC can exhibit signals of selection in wild animals, thus meeting 

previous suggestions that research on other immunity related genes can greatly contribute to 

the understanding of the immune system evolution in wild animals (Acevedo-Whitehouse & 

Cunningham, 2006), in a manner similar to what studies in the MHC have greatly done in the 

past.  

Diving Adaptations 

Evidence for selection was less marked in genes thought to be relevant for the adaptation 

to constrains imposed by deep diving, although the analysis was impaired by limited 

representation of cetacean species. SP-C showed support for site model M8 in the mammalian 

dataset and for models M2a and M8 in cetaceans, suggesting an important role of this gene in 

adaptation to diving. The composition of the lung surfactant is highly variable among 

vertebrates. It has a general function of preventing the alveolar walls from sticking to each 

other during expiration. However, several functions appear to be exclusive to mammals, such 

as maintaining alveoli stability and reducing the water surface tension in its surface (Daniels 

& Orgeig, 2001). The results of this study confirm the ones obtained by (Foot et al., 2007), 

who had previously identified signals of selection in SP-C in marine mammals, and attributed 

such result to adaptation to high pressures experienced by these animals during diving. 

However, lung surfactant composition also changes with lower temperatures, and can cause 

differences in the water surface tension on the alveoli walls, influencing the gas exchange 

process between air in the alveoli and the blood (Daniels & Orgeig, 2001). Together with the 

evidence for selection on the mammalian dataset, this suggests that environmental variables 

other than increased pressure during diving might be acting as selective pressures on this 

gene. Nevertheless, it appears to be clear that SP-C is under positive selection in cetaceans, 

and investigating the physiological relevance of these patterns in this group is an exciting field 

of research. 



Analysis of the effects of drift and selection in cetaceans    Page 101 

Genes related with responses to hypoxia showed generally weak evidence for positive 

selection. Both HIF2 and NGB showed no support for any positive selection sites model, and 

HIF1 showed support for only the M8 model with dN/dS only slightly higher than 1. This 

suggests that those markers have an essential physiological role in mammals, and are thus 

under purifying selection or evolve neutrally. However, no sequences were available for these 

markers in cetaceans, limiting their interpretation. In particular, NGB was the only marker 

showing inconsistent placement of the bottlenose dolphin (Tursiops truncatus) among the 

mammalian phylogenetic tree, suggesting convergent evolution (discussed earlier). It is well 

established that NGB has the effect of protecting brain cells from hypoxia and ischemia, 

although the exact mechanism by which that is accomplished is still not clear (Sun et al., 

2001; Hundahl et al., 2005; Khan et al., 2006; Greenberg et al., 2008). Proposed mechanisms 

involve more effective transport of O2, O2 scavenging under hypoxia conditions, or as a low O2 

sensor triggering other hypoxia related adaptations (Brunori & Vallone, 2007; Greenberg et 

al., 2008). NGB is also thought to be the main oxygen supplier to the retina (Schmidt et al., 

2003). It is thus expected that such gene would exhibit functional changes in cetaceans, and 

the inconsistent phylogenetic placement suggests this to be true. Therefore, although the 

results of this study can be considered inconclusive for NGB, they encourage further research 

on this gene in cetaceans. 

Colouration 

Colouration genes showed generally little evidence of positive selection. Both MC1R and 

TYRP1 showed evidence for positive selection in the mammalian dataset, with MC1R having 

the strongest signal. Both these genes are known to influence skin colouration in mammals, 

and have been shown to be under selection if different taxonomic groups (Izagirre et al., 2006; 

Hubbard et al., 2010). However, ASIP is also known to influence colouration and showed no 

signals of selection. Colouration is controlled by a very complex cascade of reactions involving 

a large array of different proteins (Slominski et al., 2004). The production of eumelanin by 

melanocytes is promoted by high levels of MSH protein, which binds to the melanocortin 

receptor 1 (MC1R). Pheomelanin production is promoted by the ASIP protein, a MC1R 

antagonist (Slominski et al., 2004). Several mutations are known in these genes that lead to 

different proportions of black and yellow in several mammalian species (Barsh & Epstein, 

1989; Bultman et al., 1994; Kijas et al., 1998; Berryere et al., 2003; Beaumont et al., 2007; Le 

Pape et al., 2008; Alizadeh et al., 2009; Anderson et al., 2009; Fontanesi et al., 2010), while 

mutations in the TYRP1 gene are known to cause reduced production of both melanin 

pigments (Sarangarajan & Boissy, 2001; Alaluf et al., 2003). However, while mutations in the 



Analysis of the effects of drift and selection in cetaceans    Page 102 

MC1R and TYRP1 are often due to nucleotide substitutions in coding regions (Hubbard et al., 

2010), mutations in ASIP more commonly involve deletions and alternative splicing patterns 

(Barsh & Epstein, 1989; Bultman et al., 1994; Girardot et al., 2006), making dN/dS analysis of 

limited use.  

In cetaceans, only MC1R sequences were available, and while these showed no evidence 

for positive selection, dN/dS values were very close to 0, which together with the low levels of 

variation suggests purifying selection. The general lack of evidence for positive selection in 

cetaceans does not necessarily suggest lack of adaptive value of colouration in these animals, 

as several cases are known where differences in colouration are not related to mutations in 

MC1R (Hubbard et al., 2010). The fact that non-synonymous mutations were found in 

common dolphin TYRP1 that are consistent with colouration variation found in the wild, 

indicates that this might be an area for future research.   

 

3.5.2.  Limitations of dN/dS methods 
 

Criticisms have been made against the use of dN/dS analysis in unravelling the molecular 

basis of adaptation outside a few restricted cases, namely the MHC loci (Hughes, 2007). One 

of the strongest points made was that most genes will be under purifying selection in most 

taxa, and variation will thus be generally low, which undermines the robustness of the test. In 

addition, most cases where positive selection is found involve levels of dN/dS only slightly 

higher than 1, making differentiation between positive selection and relaxation of purifying 

selection difficult (Hughes, 2007). In this study,  all the markers where no support for positive 

selection could be found, did show evidence for purifying selection, as values of dN/dS were 

very close to 0 (Appendix 3.1, page 144 & 3.2, page 161). Also, in the genes where weak 

signals of selection were found, dN/dS values were never above 2. However, analysis on a 

more restricted phylogenetic scale (the order Cetacea in this case) revealed strong signals of 

selection in markers where only weak signals had been found in the mammalian datasets. 

Although the patterns found in this study are generally consistent with the limitations 

highlighted by (Hughes, 2007), this study shows that those limitations do not exclude the 

possibility that positive selection can be detected in genes related to different physiological 

systems, particularly if some care is taken regarding the a priori hypothesis to be tested. A 

related criticism made by (Hughes, 2007) was that in most cases where dN/dS analysis has 

been used to detect selection, a clear biological integration of the functional relevance of the 

genes analysed was not achieved. However, such integration becomes more feasible as more 
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information on the molecular basis of different physiological functions becomes available, 

thus allowing to build sensible a priori hypotheses regarding the genes where natural 

selection is more likely to be detected. When considering all the analyses carried out here, 

several genes whose physiological function can be integrated within the environmental 

adaptive pressures the marine environment probably imposed on cetaceans, show evidence of 

selection using dN/dS analysis.  

 

3.5.3.  Variation in European common dolphins 
 

Very little variation could be found in the candidate markers tested for the European 

common dolphin. Even for those non-synonymous mutations that were detected, their 

incidence was very low and always found in heterozygous condition, which is consistent with 

Hardy-Weinberg equilibrium when one allele is rare. Even in Greece, where a bottleneck is 

expected to have occurred recently (see Chapter 2), no particular changes appear to have 

occurred in the allele frequency of different candidate genes. These results together with the 

strong evidence for selection found on a phylogenetic scale suggest that purifying selection is 

probably acting on these animals. The only exception was the CSN2-255 non synonymous 

mutation, in which Portuguese locations differentiate significantly from Greece and Ireland 

with high Fst values (0.13-0.34) but do not differentiate between each other. It is noteworthy 

that even though very few point mutations were detected in the analysed individuals, CSN2 

exhibited 6 non-synonymous point mutations. Even though the mutations screened 

throughout the entire coast were found to be rare, it does not allow rejecting the hypothesis 

that these are physiologically relevant, and that they might hold some adaptive value. In fact, 

caseins are known to have physiologically important functions (see discussion above), and in 

the phylogenetic analyses they are among the markers exhibiting the strongest evidence for 

selection. In the mammalian dataset, it is noteworthy that casein genes had the highest levels 

of variation together with the highest values of the gamma distribution shape parameter, 

indicating that not only are these genes evolving faster than the other genes analysed, but also 

in the most heterogeneous fashion along the sequence. dN/dS analysis showed that the highest 

rate of evolution probably occurs at non-synonymous sites, thus supporting a fundamental 

role of casein in mammalian ecology.  The fact that in CSN2-255 Greece and Ireland do not 

differentiate is counterintuitive, given that these represent the most dissimilar environments. 

However, the differentiation is mainly the result of an increase in heterozygote frequency in 

those locations relative to Portugal, which might reflect a relaxation of the purifying selection 
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observed in other non-synonymous mutations analysed. However, the fact that these 

population deviate significantly from Hardy-Weinberg populations suggests local balancing 

selection. Further investigation the variation of CSN genes in European common dolphin is 

needed before a more robust conclusion is possible.  

Analysis of the variation in the exon 2 of the DQβ1 locus showed a different pattern. 

Levels of variation were high in all locations analysed, and although Fst comparisons were 

generally low (lower than 0.1), all were significant. The fact that all genetic differentiation 

statistics showed some correlation with distance by sea between locations suggests that 

geographic distance might influence the levels of differentiation in the MHC locus. This 

pattern is unexpected given that neither microsatellite data nor any of the other nuclear 

markers analysed in this study showed any indications of isolation by distance. Although 

evidence for a reduction in population size can be found in microsatellite data for the Greek 

population, diversity in the DQβ1 for Greece is not lower than for other European locations. 

Given the strong evidence for positive selection obtained in the dN/dS analysis, the high 

diversity found in Greece is likely being maintained through balancing selection, consistent 

with the findings of other MHC studies on mammals (Bernatchez, 2003). The phylogenetic 

network is still consistent with a reduction in population size in Greece, as haplotypes found 

in Greece were generally represented by small number of individuals (often occurring only 

once) but were scattered among the phylogenetic network. The comparison of the charge 

profiles distribution of the pocket 4 codons showed that only Greece had a significantly 

different frequency distribution from the other locations. Although this might suggest that 

local directional selection for charge profile is operating in the Greek population, the same 

pattern could have been caused by a reduction in population size.  

3.6.  CONCLUSION 
 

This study shows that evidence for adaptation can be detected in cetacean physiological 

functions such as reproduction, osmoregulation, immunity, hypoxia and elevated pressure 

resistance. All the genes where tests revealed the presence of positive selection, were 

correlated with physiologically important function in cetaceans, while in genes where this 

relationship was more tenuous, no such evidence was found (e.g. CAMK2A). Genes under 

selection were also found to show inconsistent phylogenetic groupings at specific taxa, 

especially when the phylogenies were based on the protein sequence. This not only supports 

the idea that such inconsistencies might due to convergent evolution, but also that point 
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mutations can significantly alter the phenotype in a functionally relevant way. As such, when 

phylogenetic analysis are carried out using data from nuclear genes underlying physiological 

functions, interpretation of inconsistent taxonomic grouping would benefit from taking such 

possibility into consideration. Genes where no evidence of positive selection was found 

generally showed strong purifying selection, suggesting a more vital function that allowed 

little change in the protein function. In some cases (such as the MC1R) this finding was at 

odds with predictions based on physiological relevance. However, such cases involved genes 

whose effect on phenotype is dependent on complex metabolic pathways, where differences 

in physiology can be caused by changes in several different genes. 

The lack of variation along the European coast suggests that adaptation to different 

environments found in that region is not promoting any levels of population structuring, but 

it does suggest purifying selection. The only exceptions are the CSN2-255 non synonymous 

mutation and the MHC DQβ1 locus. However, it’s unclear if these patterns relate to any local 

differences in selective pressures. In CSN2-255, a significant increase in heterozygote 

frequency in both Greece and Ireland suggest relaxation of purifying selection, while 

deviations from Hardy-Weinberg equilibrium in both these populations suggests local 

balancing selection. In DQβ1, Fst comparisons between locations revealed significant 

differences in allele frequencies, while comparison of the frequency of different pocket 4 

charge profiles showed significant differences only for Greece. Although such results suggest 

location specific differences in selection, the fact that sites identified as being under selection 

in dN/dS analysis were consistent between locations suggests otherwise, and the evidence for 

a reduction in population size in the Greek population provides a reasonable alternative 

explanation for the differences in allele frequencies. A comparison of MHC locus variation 

with regional differences in dolphin parasite load would greatly contribute to answer such 

questions. In addition, the results obtained for other immune-related genes such as TL3 and 

FGG provide further immune related genes that can be used to investigate such issues. 

Several difficulties were apparent when trying to apply a candidate marker approach to the 

study of adaptation at a population level. First, many of the markers studied here have very 

complex splicing patterns, with numerous short exons separated by long introns. Such cases 

make it very difficult to assess functionally important variation using traditional PCR 

protocols. Second, using traditional PCR and sequencing protocols to screen a large number of 

candidate loci for a large number of samples is both time and cost consuming, especially 

without a priori knowledge of which markers are likely to be functionally relevant in any 
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given population. Studies of selection at higher taxonomic levels can be useful in suggesting 

potential candidates, but as the results of this study have shown, evidence for positive 

selection at a higher taxonomic level might not reflect positive selection at a population level. 

As genome scan techniques become more readily available, its application to population level 

analysis become a more feasible and cost effective strategy. Nevertheless, this study shows 

that several markers do show signals of selection in cetaceans. At a population level, although 

only the MHC showed evidence for positive selection, the lack of variation found in other 

markers suggest purifying selection. In fact, it is interesting to note that none of the markers 

analysed in this study appeared to evolve in a strictly neutral fashion. Although much of the 

results produced in this study can be considered preliminary, they strongly suggest that the 

approach used can undoubtedly contribute to the understanding of the role of adaptation in 

cetacean evolution. 
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Chapter 4 – Worldwide Phylogeographic Analysis of 

the Bottlenose Dolphin (Tursiops spp.) Using 

Mitochondrial Genomes, with Emphasis on the 

Calculation of Divergence Times 
 

4.1.  INTRODUCTION 
 

Bottlenose dolphin (Tursiops spp.) is a widespread cosmopolitan species found in all major 

oceans except polar regions (Folkens et al., 2002). They are characterized by extensive 

variation in morphology, ecology and behaviour. Group size is generally small but appears to 

increase depending on behaviour and habitat. Offshore groups are normally larger, as are 

feeding groups (Shane et al., 1986). Hunting behaviour is also extremely variable and includes 

trapping schooling fish against the surface (Bearzi et al., 1999), chasing and trapping 

individual fish against the shoreline (Silber & Fertl, 1995), capturing fish buried in the sand 

with their rostrums (Sargeant et al., 2007), and using tools as protection from physical damage 

(Smolker et al., 1997) among other strategies (Sargeant & Mann, 2009). As for social 

behaviour, a fission-fusion like social structure where males form small stable alliances to 

herd females, while females form small groups of related individuals is well described in 

Australia (Connor et al., 1992; Connor et al., 1999; Möller & Beheregaray, 2004). Studies of 

bottlenose dolphins from the Gulf of Mexico and the Bahamas (Maze-Foley & Würsig, 2002; 

Krützen et al., 2003; Parsons et al., 2003) suggest this type of social structure might occur 

outside of Australia, but it is not known how prevalent the Australian model is in other 

regions. Therefore it seems that bottlenose dolphins are capable of adapting to a variety of 

different situations, and the exact ecology and behaviour appears to vary with local 

conditions. 

In spite of this considerable phenotypic diversity and several species proposed, only one 

species was recognised for many years (Shane et al., 1986). Molecular studies have, however, 

revealed that some morphological variants do represent distinct evolutionary lineages.  One 

well studied case concerns a morphotype occurring in several coastlines along the Indo-

Pacific, characterized by a shorter body and longer beak length, with ventral spotting 

occurring frequently, that had been suggested to represent the distinct species T. aduncus 

(Wang et al., 2000; Wang et al., 2000; Perrin et al., 2008). In China, two sympatric 

populations of truncatus and aduncus morphotypes (Wang et al., 2000) were found to show 
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reciprocal monophyly for the mtDNA control region locus, leading the acceptance of T. 

aduncus as a valid species (Wang et al., 1999). In South Africa, however, where the aduncus 

morphotype was first described, an aduncus type population was found to separate not only 

from other truncatus type dolphins, but also from the Chinese aduncus, suggesting that T. 

aduncus from South Africa might in fact represent a third species (Natoli et al., 2004). Later, 

studies on Australian bottlenose dolphins revealed that although animals from southeast 

Australia grouped with the Chinese aduncus type (Wang et al., 1999), bottlenose dolphins 

from south Australia formed yet another independent lineage in mtDNA phylogenies, distinct 

from both T. aduncus and T. truncatus (Möller & Beheregaray, 2001; Charlton et al., 2006; 

Möller et al., 2008). This together with comparatively high genetic distances between these 

Australian samples and the other Tursiops species, led the authors to suggest that these might 

belong to yet another unnamed species (designated as the South Australian Bottlenose 

Dolphin – SABD (Charlton et al., 2006; Möller et al., 2008)). However, neither of these studies 

included samples from the South African aduncus described in (Natoli et al., 2004). In the 

western North Atlantic, coastal and offshore populations of T. truncatus known to have 

distinct morphologies and ecologies (Mead & Potter, 1995), were shown to be genetically 

differentiated as well (Hoelzel et al., 1998). Later studies have shown that while the offshore 

ecotype (WNAP) is related to truncatus populations found elsewhere in the world, the coastal 

ecotype (WNAC) consistently forms an independent mtDNA lineage (Natoli et al., 2004; 

Kingston et al., 2009; Tezanos-Pinto et al., 2009), though the distinction is less clear for 

nuclear markers (Natoli et al., 2004; Kingston et al., 2009). Furthermore, in Europe, the Black 

Sea bottlenose dolphin exhibits several morphological differences as compared with other 

European populations (Birkun, 2002) and has been proposed as a distinct subspecies, T. 

truncatus ponticus (Committee on Taxonomy, 2009). Population genetic analysis revealed that 

the Black Sea bottlenose dolphin was significantly differentiated from other European 

bottlenose dolphins, and also revealed that eastern Mediterranean populations were 

differentiated from other European populations (Natoli et al., 2005; Viaud-Martinez et al., 

2008). Presently, the exact taxonomic situation of the bottlenose dolphin (Tursiops spp.) 

remains unresolved. Nevertheless, two species are commonly accepted within the genus: the 

Indo-Pacific bottlenose dolphin (T. aduncus) distributed through coastal areas of east Africa, 

Asia and northwest Australia; and the common bottlenose dolphin (T. truncatus) widespread 

through all major oceans, with two subspecies, T. t. ponticus in the Black Sea and T. t. 

truncatus  elsewhere (Folkens et al., 2002; Committee on Taxonomy, 2009).  
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Questions have also been raised regarding the monophyly of the genus Tursiops. Although 

morphologically all these ecotypes or species are more closely related to each other than to 

any other cetacean species, several phylogenetic studies have placed the Chinese aduncus and 

the SABD in lineages more closely related to other dolphin species than to T. truncatus, 

making the Tursiops genus polyphyletic (LeDuc et al., 1999; Charlton et al., 2006; Nishida et 

al., 2007; Möller et al., 2008; Kingston et al., 2009; Xiong et al., 2009). However, phylogenies 

built using several different genes and including a comprehensive species representation of 

the order Cetacea, give support for the monophyly of the genus Tursiops (McGowen et al., 

2009; Steeman et al., 2009).  

Several studies have described population differentiation on small geographical scales for 

the bottlenose dolphin (Tursiops sp.) (Dowling & Brown, 1993; Krützen et al., 2004; Sellas et 

al., 2005; Parsons et al., 2006; Bilgmann et al., 2007b; Nichols et al., 2007; Rosel et al., 2009), 

with a study in the Gulf of California showing a distinction between coastal and offshore 

populations similar to the one found in the western North Atlantic (Segura et al., 2006). Such 

complex patterns are unexpected in a species with long-range dispersal abilities (Shane et al., 

1986; Wells et al., 1999) in environments that have few obvious geographical barriers to 

dispersal. Several authors noted that differentiated populations appear to inhabit regions with 

known differences between oceanographic features (Natoli et al., 2005; Sellas et al., 2005; 

Bilgmann et al., 2007b), or exhibit differences in prey choice (Dowling & Brown, 1993; Sellas 

et al., 2005; Segura et al., 2006). A quantitative analysis on the habitat occupation of the 

western north Atlantic coastal and offshore ecotypes (Hoelzel et al., 1998), showed that depth 

and distance to shore were robust predictors of each ecotype occurrence (Torres et al., 2003). 

Several studies have suggested that while adaptation to local environments have contributed 

to the morphological and ecological differences found between species/ecotypes, the initial 

separation is more likely to result from specialization on local prey resources maintained by a 

complex social organization that favours natal philopatry (Wang et al., 1999; Natoli et al., 

2005; Parsons et al., 2006). Bottlenose dolphins do exhibit a large variety of regional hunting 

strategies (Silber & Fertl, 1995; Smolker et al., 1997; Bearzi et al., 1999; Sargeant et al., 2007; 

Sargeant & Mann, 2009) and genetic studies of social behaviour of bottlenose dolphins in 

Australia showed that while individual dispersal was evident (especially in males), 

reproduction appeared to be somewhat confined to the natal area (Krützen et al., 2004; Möller 

& Beheregaray, 2004). It was suggested that an alliance-based social organization prevents 

males from dispersing too far from their native areas (Krützen et al., 2004), while females 
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might benefit from philopatry due to increased familiarity with food resources and kin 

protection (Möller & Beheregaray, 2004). Similar patterns of philopatry have been described 

in bottlenose dolphin genetic studies elsewhere (Sellas et al., 2005; Parsons et al., 2006), while 

photo-identification studies have also suggested a high degree of site fidelity (Durban et al., 

2000; Rogers et al., 2004; Baird et al., 2009).  

Determining the factors governing diversification in the genus Tursiops has been limited 

by several factors. First, no study to date has carried out a phylogenetic analysis including all 

of the main diverging groups. Notably, the South African aduncus type, the putative 

subspecies T. t. ponticus in the Black Sea, and the Eastern Mediterranean dolphins have not 

been directly compared. Second, the lack of good estimates for substitution rate or geologic 

reference points have prevented good estimates of divergence times among populations and 

putative species (Wang et al., 1999; Viaud-Martinez et al., 2008). Finally, few markers and 

relatively short sequences have so far been employed.     

In this study, the mitochondrial genome was sequenced for individuals representing most 

of the best described species/ecotypes within the genus Tursiops. The differentiation between 

the Black Sea and the Eastern Mediterranean bottlenose dolphins was used to calibrate the 

mitogenomic substitution rate in Tursiops. The Black Sea is a semi-landlocked basin whose 

only connection to the adjacent Mediterranean Sea is achieved through the narrow 

Bosphorous Strait. However, the Bosphorous Strait has only been established between 10,000 

and 7,000 years before present (Gökasan et al., 1997; Kerey et al., 2004), since the Black Sea 

became isolated from surrounding water masses 10 Myrs before present (Nikishin et al., 2003). 

As such, bottlenose dolphins could have not entered the Black Sea earlier than at the end of 

the last glacial cycle. The well described geological history of the isolation between the Black 

Sea and the Mediterranean Sea can therefore be used to estimate a substitution rate for 

mitochondrial DNA that can then be used to estimate divergence times between the described 

bottlenose dolphin species/ecotypes. The data obtained for Tursiops will be integrated with 

other available cetacean mitogenome sequences to assess the monophyly of the genus.  

4.2.  METHODS 

4.2.1.  Sampling 
 

Samples were obtained from worldwide locations (Figure 4.1, page 111) representative of 

well described species and/or ecotypes (Table 4.1, page 111). Samples were obtained from 

stranded and bycaught individuals as well as biopsies from free ranging animals. Western 
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North Atlantic samples were available from Rus Hoelzel archived at Durham University, 

European samples were available from Ada Natoli archived at Durham University, Gulf of 

California samples were provided by Iris Segura at Durham University, and Australian 

samples were provided by Luciana Möller at Macquarie University. 

 
Figure 4.1. Geographic location of the Tursiops samples used in this study. Details on the species/ecotypes studied 

and the number of samples used are described in Table 4.1. 
 
 

Table 4.1. Number of samples from each Tursiops species/ecotypes used in this study. The same code is used 

throughout this study, and reference corresponds to the publication where the species/ecotype was first described 

genetically. 

 
 
 

4.2.2.  Laboratory Procedures 
 

DNA was extracted using a standard phenol:chloroform protocol (Hoelzel, 1998). Whole 

mitogenome sequences were produced by amplifying two regions with overlapping ends. 

Primers were designed using PRIMER3 (Rozen & Skaletsky, 2000) algorithm as implemented in 

the software package GENEIOUS (Drummond et al., 2010), and targeted conserved regions 

across delphinid species available in GenBank. The first fragment was approximately 8,600 bp 

Code Location Ecotype/Species N Reference 

WNAC-Tt Western North Atlantic Coastal T. truncatus 1 (Hoelzel et al., 1998) 

SCO-Tt Scotland T. truncatus 2 (Natoli et al., 2005) 

EMED-Tt Eastern Mediterranean T. truncatus 6 (Natoli et al., 2005) 

BSEA-Ttp Black Sea T. truncatus ponticus 3 (Natoli et al., 2005)  

SA-Ta South Africa T. aduncus 2 (Natoli et al., 2004) 

IP-Ta Australia 
Indo-Pacific  
T. aduncus 

3 
(Möller & Beheregaray, 

2001; Wang et al., 1999) 

GC-Tt Gulf of California Coastal T. truncatus  1 (Segura et al., 2006) 
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long, including the region between the methionyl-tRNA and ND5 genes. The second fragment 

was approximately 8,300 bp long, including the region between the ND5 and ND2 genes (Table 

4.2, page 113). 

Amplification was done using two long range PCR polymerase kits, DynaZyme from 

Fynnzymes and LA from Takara. Standard PCR profiles for both polymerases are indicated in 

Tables 4.3 & 4.4 (page 109), although some variation between samples in the number of cycles 

and MgCl2 concentration was needed for optimal amplification. 

PCR products were purified using a PCR Purification Kit from Qiagen following the 

manufacturer’s protocol, and purified DNA was eluted in 1 X TE. Whole genome sequencing 

was carried out at the Centre for GeoGenetics in the University of Copenhagen by Dr. Thomas 

Gilbert’s research group, using the 454 Life Sciences (Roche) system. Both amplified fragments 

from each sample were diluted to similar concentrations using a Nanodrop (Thermo Scientific), 

and subsequently fragmented into shotgun libraries following the manufacturer’s indications 

(454 Life Sciences [Roche]). Libraries from different samples were pooled using Parallel 

Sequence Tagging (Meyer et al., 2007, 2008). Libraries were tagged with sample specific 

oligonucleotides containing a SrfI restriction site, with untagged sequences removed for 

sequencing by dephosphorylation (Meyer et al., 2007, 2008). Libraries were then quantified for 

pooling in equimolar concentrations and digested with SrfI restriction enzyme as described in 

(Meyer et al., 2007). Single stranded DNA was then captured using DNA capture beads and 

clonally amplified. Beads containing the single stranded DNA were then analysed in a FLX 

Sequencing System (Roche). 

 

4.2.3.  Data Analysis 
 

The obtained output consisted of fragment reads of up to roughly 250 bp. Reads consisting of 

bottlenose dolphin mtDNA were identified through comparison with a Tursiops truncatus 

mitogenomic reference sequence (GenBank accession number EU557093), and assembled 

following the method described in (Gilbert et al., 2007). Discrepancies between the 454 

sequences and the reference sequence were checked by manual confirmation of the consensus 

between single stranded reads using the software GENEIOUS (Drummond et al., 2010). All 

alignments were carried out using the MAUVE (Darling et al., 2010) algorithm as implemented 

in the software package GENEIOUS (Drummond et al., 2010), and checked manually for 

inconsistencies. Bottlenose dolphin (Tursiops spp.) sequences were then aligned with all 

available mitogenomic sequences of delphinids, together with sequences from the harbour 
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Polymerase Buffer MgCl2 dNTP’s Primers Taq DNA 

DynaZyme 1X 1.5 mM 0.36 mM 0.5 µM 0.5 U 30 ng/µL 

LA-Takara 1X 1.5 mM 0.4 mM 0.5 µM 1.5 U 30 ng/µL 

Table 4.3. Standard PCR mix per tube used for both polymerases used in this study. Some variations were 

needed for specific samples. 

Enzyme/fragment Step T (ºC) Time Cycles 

 Denaturing 94 1' 1 

 Denaturing 94 30''   

 Annealing 65 30'' 10 

DynaZyme: Both fragments Extension 68 14'   

 Denaturing 94 30''   

 Annealing 65 30'' 15 

 Extension 68 14' + 20''/cycle   

 Denaturing 94 1' 1 

LA-Takara: Met-ND5 Denaturing 94 30''   

 Annealing/Extension 68 12' 27 

 Extension 72 10' 1 

 Denaturing 94 1' 1 

LA-Takara: ND5-ND2 Denaturing 94 30''   

 Annealing/Extension 68 15' 35 

 Extension 72 10' 1 

Table 4.4. Standard PCR cycling conditions used for both polymerases and fragments amplified in this 

study. Some variations were needed for specific samples. 

Fragment Primer Length 

Met-ND5 
Met-F1.1: 5'- GGCCCATACCCCGGAAATGTTGG -3' 
ND5-R1.1: 5'- TGAGTGGAGTAGGGCTGAGACTGG -3' 

8598 bp 

ND5-ND2 
ND5-F1.1: 5'- TGATATATGCACTCCGACCCCTAC -3' 
ND2-R1.1: 5'- TCTGTGGCTCGGGGGTTAGG -3' 

8339 bp 

Table 4.2. Primers used to amplify the whole mitochondrial genome in two fragments. All primers 

designed in this study. 
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porpoise (Phocoena phocoena), sperm whale (Physeter macrocephalus), pygmy sperm whale 

(Kogia breviceps), and 3 species of baleen whales as outgroup (GenBank accession numbers in 

Table 4.5, this page). The T. aduncus reference sequence was obtained from a wild dolphin in 

China, while the T. truncatus reference sequence was obtained from a captive animal kept at the 

Polar and Oceanic Park in the Chinese Shandong Province (Xiong et al., 2009).  

Table 4.5.  Cetacean species and corresponding GenBank accession numbers used in the phylogenetic analysis. 

 
 
 

Model of sequence evolution was determined using the software TOPALI V2 (Milne et al., 

2008), and phylogenetic trees were built using both PHYML (Guindon & Gascuel, 2003) and 

MRBAYES (Huelsenbeck & Ronquist, 2001) algorithms as implemented in the software package 

GENEIOUS (Drummond et al., 2010). Branch support in the maximum likelihood tree was assessed 

through 1,000 bootstrap replicates. The Bayesian tree was built using 2,100,000 replicates and a 

burn-in length of 210,000 replicates, with a sampling frequency of 400 replicates, run with 4 

independent heated chains (preliminary runs revealed this to be appropriate for all chains to 

reach convergence). 

Species GenBank Accession Number 

Eubalaena australis AP006473 

Balaenoptera physalus S79330 

Eschrichtius robustus AJ554053 

Physeter macrocephalus AJ277029 

Kogia breviceps AJ554055 

Phocoena phocoena AJ555063 

Orcinus orca – resident ecotype GU187192 

Orcinus orca – transient ecotype GU187173 

Globicephala macrorhynchus HM060333 

Globicephala melas HM060334 

Pseudorca crassidens HM060332 

Grampus griseus EU557095 

Lagenorhynchus albirostris AJ554061 

Sousa chinensis EU557091 

Stenella atenuata EU557096 

Stenella coeruleoalba EU557097 

Delphinus capensis EU557094 

Tursiops aduncus EU557092 

Tursiops truncatus EU557093 
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Node ages were estimated using the software BEAST v1.6 (Drummond & Rambaut, 2007). The 

first tree was generated randomly following a Yule branching model, but tree topology was 

constrained to keep the several monophyletic groups within the Tursiops genus as determined in 

the phylogenetic analysis. Dolphins were also constrained to be monophyletic, and baleen 

whales were constrained as outgroup. Two calibration points were used as priors for the 

calculation of substitution rates and divergence times: the time to the most recent common 

ancestor (TMRCA) of the lineage including both Eastern Mediterranean and Black Sea dolphins 

was modelled with a uniform prior bounded between 5kyrs and 10kyrs, according to the 

published timings for the opening of the Bosphorous Strait (Gökasan et al., 1997; Kerey et al., 

2004); The TMRCA of dolphins was modelled with a normal distribution prior with a mean of 

10 Myrs and a standard deviation of 1.5 Myrs, based on the observation that delphinid fossils are 

not found earlier than the late Miocene (Fordyce & Barnes, 1994), and previous divergence dates 

calculated with molecular data using other independent cetacean fossils as calibration points 

(McGowen et al., 2009; Steeman et al., 2009; Xiong et al., 2009). Because of the known effect 

that using recent versus ancient calibration nodes has on the substitution rate (Ho et al., 2005), 

three independent runs were carried out: 1- both calibration nodes were used; 2- only the 

delphinids TRMCA based on fossil and molecular data calibration node was used; 3- only the 

biogeographical node for the separation between Eastern Mediterranean and Black Sea was used. 

A relaxed uncorrelated molecular clock was assumed, with branch rate distribution following a 

lognormal distribution (Drummond et al., 2006). The mean substitution rate prior was 

constrained between 0 and 100 substitutions/site/Myrs, while the standard deviation prior was 

constrained between 0 and 10. MCMC analysis was run for 40,000,000 iterations with a burn-in 

length of 4,000,000 iterations and sampling frequency of 4,000 iterations.  

4.3.  RESULTS 

4.3.1.  Phylogeographic analysis 
 

Mitogenomic coverage was variable between bottlenose dolphin (Tursiops spp.) samples. 

Regions that were unavailable in at least one sequence were removed from all sequences in the 

alignment. As such, the resulting alignment included 10,175 base pairs of the mitochondrial 

genome (Figure 4.2 & 4.3, page 116-117). The alignment contained 3,690 variable sites, of which 

2,584 were informative and 107 included gaps., with a transition/transversion bias of 4.081. 

Both maximum-likelihood (Figure 4.4, page 119) and Bayesian (Figure 4.5, page 120) 

algorithms produced well resolved trees with similar topologies and strong support for most 
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Figure 4.2. Map of the mitogenomic fragment used in the final aligment of this study, based on the T. truncatus 

reference sequence (GenBank accession number EU557093) after all gaps are excluded. Blue rectangles represent 

RNA genes; green rectangles represent protein genes; orange rectangle represents the hypervariable control region. 

Image created using GENEIOUS (Drummond et al., 2010). 
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nodes. A notable result is that T. truncatus and T. aduncus are not sister taxa, but T. aduncus is 

more closely related to the common (Delphinus capensis) and striped dolphin (Stenella 

coeruleoalba). Most ecotypes analysed within each Tursiops species grouped together in well 

differentiated lineages, except the Eastern Mediterranean dolphins (dark blue in Figure 4.4 & 

4.5, pages 119-120) where several haplotypes grouped in the same lineage as other Atlantic 

ecotypes. 

 

4.3.2.  Divergence times between Tursiops species/ecotypes 
 
 

The substitution rates calculated when only the delphinid fossil TMRCA or the Black Sea-

East Mediterranean split is constrained differs strongly from each other (Table 4.6, page 121).  

When both the calibration nodes are used, although the substitution rate is slower than when 

only the Black Sea-East Mediterranean node is used as calibration, it is disproportionately 

faster than the rate calculated using only the dolphin fossil calibration. Consequently, 

divergence times in the latter model are all consistently older than in the other two models. 

However, the divergence time for the Black Sea dolphins from the eastern Mediterranean 

based on the slower (fossil calibration) rate is calculated as to 152 thousand years before 

present (kyrsBP), a date inconsistent with geological history (Gökasan et al., 1997; Kerey et 

al., 2004). As such, the divergence times calculated using the combined fossil and 

biogeographical calibration nodes will be used in the rest of this work. 

The calculation of divergence times shows that diversification in the genus Tursiops 

appears to be characterized by episodes of diversification in independent lineages occurring in 

well defined time periods (Figure 4.6, page 122). The divergence of the T. truncatus lineage 

from the one including T. aduncus/S. coeruleoalba/D. capensis is dated to 148.1 kyrsBP, while 

the divergence of the T. aduncus lineage from the D. capensis lineage is dated to slightly later 

at 95.5 kyrsBP. However, the separation between IP-Ta and SA-Ta lineages appears to have 

occurred roughly simultaneously with the separation of the WNAC-Tt, GC-Tt and European 

lineages, between 58.7-49.3 kyrsBP. Another period of diversification was dated between 25.1

-20.5 kyrsBP, corresponding to the divergence between the IP-Ta and Chinese aduncus 

(represented by the T. aduncus reference sequence) lineages, as well as between the lineage 

containing the EMED-Tt/BSEA-Ttp ecotypes and the SCO-Tt lineage. This date also 

corresponds to the separation between the transient and the resident ecotypes of the killer 

whale (Orcinus orca). Diversification within main bottlenose (Tursiops spp.) ecotypes broadly 

coincide with the end of the last glaciation, around 10 kyrsBP, although such dates are 
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characterized by wide error margins (discussed later). The separation between the Black Sea 

and the Eastern Mediterranean lineages was dated between 7.1-6.1 kyrsBP, which is 

consistent with geological data for the opening of the Bosphorous Strait (Gökasan et al., 1997; 

Kerey et al., 2004). The TMRCA of the delphinids was dated to 464.8 kyrsBP, which is at odds 

with previous estimates based on molecular data (McGowen et al., 2009; Steeman et al., 2009; 

Xiong et al., 2009), the significance of which will be discussed later. 

Figure 4.6. Divergence times within cetaceans calculated using BEAST (Drummond & Rambaut, 2007), and both dolphin fossil and 

biogeographical calibration node (see description of results for details). Branch lengths are not to scale, and only represent the 

topology. Numbers indicate divergence times in one thousand years unit. 
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4.4.  DISCUSSION 

4.4.1.  Phylogenetic relationships between the two Tursiops species 
 

In this study, the inclusion of a large fragment of the mitochondrial DNA genome has 

shown to be useful in resolving the relatively shallow nodes that separate different bottlenose 

(Tursiops spp.) species/ecotypes. All nodes were well resolved and had good statistical support. 

Both currently identified species within the genus Tursiops resolved as polyphyletic, with T. 

aduncus being more closely related to both the common (Delphinus capensis) and the striped 

dolphin (Stenella coeruleoalba). Although some studies investigating cetacean phylogenetic 

relationships have found support for the monophyly of Tursiops (McGowen et al., 2009; 

Steeman et al., 2009), most previous studies have not (LeDuc et al., 1999; Charlton et al., 2006; 

Möller et al., 2008; Kingston et al., 2009; Xiong et al., 2009). However, most of the studies 

finding support for a polyphyletic Tursiops have focused on mtDNA, and given it is a haploid 

uniparentally inherited and essentially non-recombining molecule, it is unsurprising that the 

results of this study are consistent with those earlier works. Studies that found support for the 

monophyly of Tursiops have instead integrated information from several different nuclear 

genes (McGowen et al., 2009; Steeman et al., 2009). However, some studies based on nuclear 

loci were also unable to support monophyly in the genus. A study by Nishida and 

collaborators (2007) that focused on a sequence of the Y chromosome, also found no support 

for the monophyly of Tursiops, with T. aduncus grouping closely with D. delphis and S. 

longirostris, while T. truncatus grouped with S. coeruleoalba in a separate lineage. The study 

by Kingston and collaborators (2009) that focused on AFLP markers also found no support for 

the monophyly of the genus, with T. aduncus being more closely related to the Fraser’s 

dolphin (Lagenodelphis hosei). Given that other studies supporting a monophyletic Tursiops  

(McGowen et al., 2009; Steeman et al., 2009) have included data on several functionally 

important genes, it is possible that the monophyly of Tursiops obtained is the result of 

molecular convergence, although there is at present no data to support this hypothesis. The 

phenotypic similarities between both species may thus also represent convergence, even 

though clear differences are also well described (Wang et al., 1999; Wang et al., 2000). 

Convergence would suggest an ecological driver in the evolution of these species and local 

adaptation, although little information regarding the ecology of T. aduncus is available.  
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4.4.2.  Dating of divergence nodes 
 

From the dating analysis of the main divergence nodes, it can be seen that two of the 

calculated divergence times correspond well with interglacial warm periods. The divergence 

times of both Tursiops lineages are broadly consistent with the estimated timing of the 

Eemian interglacial cycle (roughly between 150-100 kyrsBP), a period of relatively stable 

climate characterized by warm temperatures (Kukla et al., 1997; NorthGrip, 2004). Also, many 

divergence times within Tursiops ecotype lineages are consistent with the end of the last 

glacial cycle, around 10 kyrsBP. Other relevant divergence times, however, occur well within 

the last glacial cycle. The separation of the SA-Ta, the European truncatus as well as both 

truncatus coastal ecotypes (WNAC-Tt and GC-Tt) was estimated to around 50 kyrsBP, while 

the separation of the IP-Ta, and the differentiation between SCO-Tt and EMED-Tt was 

estimated to around 20 kyrsBP. The last glacial cycle is thought to have been characterized by 

strong climatic fluctuations, with the extent of the polar ice caps changing considerably both 

temporally and regionally (Elders & Gibbard, 2004). Although temperatures during the last 

glacial cycle were generally much lower than temperatures observed during the preceding 

and following interglacial periods, ice core data reveal a relatively warm period between 60-

40 kyrsBP following a particularly cold period (NorthGrip, 2004; Jouzel & Masson-Delmotte, 

2010). Independent data suggest that at least in some regions the climate might have been 

milder during this period. Colonization of southern Australia by humans, for example, appears 

to have occurred during this period (Bowler et al., 2003) following a local retreat in glacier 

extension (Barrows et al., 2001). Only the divergence times estimated at around 20 kyrsBP are 

coincident with a period of extreme glaciations. In fact, the maximum estimated extent of the 

ice cap during the Last Glacial Maxima (LGM) is thought to have occurred roughly during 

that period (Yokoyama et al., 2000; Clark et al., 2009). However, the LGM was followed by a 

fast retreat of the ice caps in the following hundreds of years, which were accompanied by 

fast changes in the world climate and ocean sea levels (Yokoyama et al., 2000; Weaver et al., 

2003; Clark et al., 2004; Clark et al., 2009). The calculation of such dates is, however, faced 

with several limitations which demand a cautious interpretation, the implications of which 

will be discussed further below in this section.  

Temperature itself is unlikely to have been the driving mechanism in the diversification of 

these animals. Instead, the dates calculated here suggest that most splits between currently 

differentiated species/ecotypes occurred in periods of warmer climate relative to the 

preceding periods. It is thus conceivable that the rapid change between warm and cold cycles 
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have been accompanied by environmental changes that promoted differentiation in these 

animals. This could have been caused by adaptation to changing oceanographic conditions or 

changing patterns of local distribution and abundance of prey resources. In fact, the fast 

retreat of the ice caps after the LGM would have caused a large runoff of fresh water into the 

oceans, affecting ocean circulation systems such as the thermohaline current (Weaver et al., 

2003; Clark et al., 2004; Clark et al., 2009). Also, changes in the ocean upwelling patterns are 

known to have occurred shortly after the LGM, giving support to the changing prey resource 

hypothesis.  

A strong influence of changes in ocean productivity on the evolution of cetaceans has been 

proposed before (Lipps & Mitchell, 1976; Fordyce, 1980; Berger, 2007), and it has been shown 

that diatom diversity in the oceans seems to be positively correlated with cetacean diversity 

over geological timescales (Marx & Uhen, 2010). Although studies of present oceanic cetacean 

diversity distributions found a stronger correlation with sea surface temperature (SST) 

(Whitehead et al., 2008; Whitehead et al., 2010), SST and diversity at the lower levels of the 

food chain in the oceans are also generally correlated (Rutherford et al., 1999; Marx & Uhen, 

2010). With cetaceans being apex predators, both variables can reflect local productive food 

webs. The way these climatic changes promoted divergence could have been through 

adaptation to newly created ecological niches, possibly aided by founder events or population 

fragmentation resulting from demographic changes. Alternatively, modifications of the 

general geography of land masses caused by such climatic fluctuations and the accompanying 

sea level changes could have made previously inaccessible regions available for colonization. 

For example, during the LGM, most of northern Europe coastlines were inaccessible to 

cetaceans due to the extension of ice caps. Once these receded, colonization into the newly 

available coastlines could have led to founder effects as proposed in (Banguera-Hinestroza et 

al., 2010). Although at present it is not possible to determine the exact mechanisms promoting 

diversification within Tursiops, this study suggests that it occurred simultaneously in different 

lineages, at specific periods in time which are coincident with fast climatic changes as 

observed previously in cetaceans (Steeman et al., 2009).  

 

4.4.3.  Limitations of the dating analysis 
 

The dates calculated in this study should, however, be taken with caution. Both the DNA 

substitution rate and the divergence times calculated in this study change drastically 

depending on whether a fossil or a biogeographical calibration point was used. Such a 
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phenomenon was first described in a paper by Ho and collaborators (2005) (a pattern called 

the “lazy-J” (Penny, 2005)), and several cases of it are known in the literature (Ho & Larson, 

2006; Genner et al., 2007; Waters et al., 2007; Burridge et al., 2008; Ho & Endicott, 2008; Ho 

et al., 2008). However, when both the calibration nodes were used in the analysis, the 

calculated substitution rate was still more similar to the one obtained when only the 

biogeographical calibration point was used. Several lines of evidence suggest that this rate is 

more appropriate for the calculation of the divergence times considered here than the one 

obtained with the fossil calibration point alone. First, according to the fossil calibration, the 

divergence time between the Black Sea and the East Mediterranean populations occurred 

around 150 kyrsBP, which is inconsistent with geological data, as the Black Sea was then 

physically isolated from the Mediterranean Sea (Gökasan et al., 1997; Kerey et al., 2004). Also, 

the mean substitution rate calculated using both calibration points in this study is 0.127 

substitutions/site/Myr, which is similar to previous mtDNA substitution rates calculated from 

intraspecific variation data in other cetaceans (Ho et al., 2008). The existence of this 

discrepancy between molecular clock rates calculated using ancient and recent calibration 

points has been controversial (together with the biological reasons behind it) and is the focus 

of continuous debate (Woodhams, 2006; Emerson, 2007; Fagundes et al., 2008; Weir & 

Schluter, 2008; Peterson & Masel, 2009). Namely, such a pattern has been attributed to 

shallow divergence between analysed sequences and inadequate sampling (Emerson, 2007), 

uncertainty in the biogeographical calibration nodes used (Fagundes et al., 2008; Weir & 

Schluter, 2008) and patterns of ancestral population structure and effective population size 

(Woodhams, 2006; Peterson & Masel, 2009). Uncertainty in the biogeographical calibration 

point used in this study is unlikely to bias the results obtained, as the bottlenose dolphin could 

not have entered the Black Sea earlier than 10 kyrsBP. However, it cannot be ruled out that 

the differentiation between the Black Sea and the eastern Mediterranean lineages did not 

already exist before the opening of the Bosphorous Strait. Additionally, the branches 

separating many of the Tursiops ecotypes are shallow and sampling is limited to only a few 

individuals of each ecotype. However, the divergence times for the Black Sea lineage obtained 

using the fossil calibration is unreasonably high, and for the purpose of this study, the 

inclusion of a recent biogeographical calibration node thus appears to provide much more 

reasonable substitution rates and divergence times.  

The calculated substitution rate also led to an estimate of the time to the most recent 

common ancestor (TMRCA) of the Delphinidae at around 500 kyrsBP. Such date is extremely 
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different from the date of 10 MyrsBP estimated by both fossil data (Fordyce & Barnes, 1994) 

and previous molecular studies (McGowen et al., 2009; Steeman et al., 2009). The TMRCA of 

delphinids calculated in this study is likely to be severely underestimated. According to the 

lazy-J hypothesis, divergence times of over 1 Myrs will be strongly underestimated when 

using recent biogeographical calibration points (Ho & Larson, 2006), and as such, the 

substitution rate used is probably inappropriate to calculate the older origin of delphinids 

(even though a fossil calibration point was included in the calculations).  

 

4.4.4. Taxonomic status within Tursiops species 
 

Different ecotypes within both Tursiops species have been suggested as independent 

species (Kingston & Rosel, 2004; Natoli et al., 2004). Most notably, the South African aduncus 

(SA-Ta) has been proposed to represent a different species from the Indo-Pacific aduncus (IP-

Ta) (Natoli et al., 2004). The results of this study suggest that this is probably accurate, as these 

lineages appear as reciprocally monophyletic with a calculated divergence time that is older 

than, for example, the one between the two pilot whale species (Globicephala sp.) calculated 

in this study. However, caution should be taken in interpreting the results of this study in 

such a way, given the limited sample size used and the single gene tree analysed. No 

sequences of the recently described South Australian Bottlenose Dolphin (SABD)  (Charlton 

et al., 2006; Möller et al., 2008) were available for this study, and very few samples are 

available from other locations in the Asian and African coast. Work is currently ongoing to 

increase sample sizes used and include the SABD to further assess this issue.  

Interpretation of the patterns found within T. truncatus is more complex. Three different 

lineages can be defined with divergence times of the same order of magnitude as between 

both ecotypes of T. aduncus: one including the T. truncatus reference sequence (from the 

North Pacific), the western North Atlantic coastal ecotype (WNAC-Tt), and one individual 

from the Eastern Mediterranean Sea (EMED-Tt); another including the only individual 

available from the Gulf of California coastal ecotype (GC-Tt); and a third one including all 

European individuals. However, such lineages are not reciprocally monophyletic and 

differentiation between them is very shallow, which together with limited sample size, 

especially within non-European ecotypes such as the western north Atlantic offshore, makes 

such interpretations speculative at this point. Current work is also focused on increasing 

samples size and ecotype representation for all T. truncatus ecotypes.  
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4.5.  CONCLUSIONS  
 

Although preliminary, the present study shows that the analysis of whole mitochondrial 

genomes can facilitate the understanding of the phylogenetic relationships within the genus 

Tursiops. The results obtained are consistent with earlier studies (LeDuc et al., 1999; Charlton 

et al., 2006; Möller et al., 2008; Kingston et al., 2009; Xiong et al., 2009) that together suggest 

that the genus is not monophyletic. However, multilocus phylogenies suggest otherwise 

(McGowen et al., 2009; Steeman et al., 2009), and further work is needed. Molecular dating of 

the divergence times of different species/ecotypes suggests that climatic fluctuations might be 

promoting differentiation in these animals either by forcing adaptation to a changing 

environment, both temporally and spatially, by providing new habitats that would promote 

founder events, or by causing population fragmentation through demographic fluctuations. 

Limited sampling and coverage of the mtDNA genome are obvious limitations of this study. 

However, all the nodes were well resolved with high statistical support, something which has 

been difficult to achieve in previous studies. As such, this study encourages further efforts to 

achieve full mitogenomic coverage for more representative set of samples. A better coverage 

of the variation found within the genus Tursiops, can further advance our understanding of 

the evolutionary processes guiding its diversification. 
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Chapter 5 – Discussion 
 

Speciation is usually initiated when gene flow between subgroups of the ancestral species 

becomes limited. One of the most widely accepted speciation model considers that such 

limitation can only occur if an external geographical barrier physically stops migration from 

occurring (Mayr, 1963; Futuyma, 1998), although models that rely on natural selection as an 

agent limiting gene flow have long been shown to be feasible (Maynard Smith, 1962; Maynard 

Smith, 1966; Rice and Hostert, 1993). However, several authors have suggested that an 

emphasis on geography when classifying models of speciation is misleading and that emphasis 

should instead be placed on the levels of gene flow observed during divergence (Endler, 1973; 

Templeton, 1981; Rice & Hostert, 1993; Fitzpatrick et al., 2008; Nosil, 2008). Thus, allopatric 

speciation models would be at one extreme of divergence without gene flow, while most non-

allopatric definitions would fall in the more general model of divergence with gene flow. In 

such a scenario, the terms allopatric and sympatric become inappropriate because gene flow 

can be restricted by mechanisms other than geographic barriers. Conversely, natural selection 

can lead to reproductive isolation independently of a geographic barrier being present (as 

shown by experimental data compiled in (Rice & Hostert, 1993)).  

 

5.1.  POPULATION STRUCTURE OF EUROPEAN COMMON DOLPHIN 

(DELPHINUS DELPHIS) 
 

In this study, no significant structure could be detected over most of the European 

distribution of the common dolphin (Delphinus delphis) for neutral microsatellite DNA 

markers, which is the expected pattern for a marine species with high dispersal potential and 

a fluid social system (promiscuous mating and no stable social bonds). This is also consistent 

with findings from previous studies, where no genetic differentiation was found in the 

common dolphin across similar geographic distances, and relatively weak structure found at 

the oceanic scale in the Atlantic (Natoli et al., 2006; Amaral et al., 2007; Bilgmann et al., 2008; 

Mirimin et al., 2009). However, the samples collected from the Eastern Mediterranean Sea 

showed a significant separation from samples collected in the rest of Europe. This is consistent 

with the findings in (Natoli et al., 2008), who further suggested that such differences reflected 

differential habitat use, given that other marine species exhibit similar patterns of genetic 

differentiation in that region (Natoli et al., 2004; Natoli et al., 2005; Perez-Losada et al., 2007; 

Abaunza et al., 2008). Although similar cases of population structure over small geographic 



Analysis of the effects of drift and selection in cetaceans    Page 130 

distances are known for the common dolphin in the Pacific (Rosel et al., 1994; Kingston & 

Rosel, 2004) and Indian Ocean (Natoli et al., 2006; Bilgmann et al., 2008), the differentiation 

of Greece is an exceptional occurrence in the North Atlantic (Natoli et al., 2006; Amaral et al., 

2007; Mirimin et al., 2009). The results obtained here suggest, however, that genetic drift due 

to a reduction in effective population size of the Greek population made a significant 

contribution to the observed pattern of differentiation. This was likely the result of a recent 

bottleneck, which is consistent with independent data that document a decline in the 

occurrence of the common dolphin in the Mediterranean Sea over recent decades (Bearzi et 

al., 2003; Bearzi et al., 2006; Bearzi et al., 2008). The simulation analyses are consistent with 

these independent demographic data suggesting a very recent timing for the bottleneck 

(Bearzi et al., 2003). This not only supports the view that such reduction was caused by 

human activity, but also that such influence can deeply affect the species’ genetic composition 

and observed population structure patterns. Even if conservation measures are applied and the 

Mediterranean common dolphin recovers to previous abundance levels, it is unclear what the 

future pattern of population connectivity would be. This highlights the importance of 

preventive conservation measures, particularly in species with large distribution ranges, as 

local pressures can lead to strong population fragmentation with potentially lasting effects.  

However, selection might be occurring at the molecular level, as the DQβ1 locus showed 

strong differentiation between the eastern Mediterranean Sea and the North Atlantic, both in 

allele frequencies and the distribution of different charge profiles. Although the extreme 

demographic event could also explain such differences, several lines of evidence suggest that 

the patterns found in the DQβ1 may reflect differential selective pressures. First, significant 

differences in allele frequencies were also found within the North Atlantic between Ireland 

and Portugal, and there is no signal for a bottleneck in either of these samples. Second, dN/dS 

analysis strongly suggests that DQβ1 is under balancing selection in all sampled locations, 

which is expected to reduce the differences between populations. As such, the observed 

differences are likely to be due to directional selection at the regional scale. Finally, if the 

Eastern Mediterranean population differentiation in DQβ1 was solely due to drift, it would be 

expected that some of the other analysed SNPs would exhibit similar patterns, but these other 

markers show no evidence of structure. The European coast was chosen for its environmental 

gradient between the Mediterranean Sea and the North Atlantic (see Chapter 2 for details), 

and as such the differences found in the DQβ1 can potentially be related to regional 

differences in parasite communities, although such information is currently lacking.     
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Several studies have reported an excess of non-synonymous mutations at MHC loci in 

cetacean species (Murray & White, 1998; Flores-Ramirez et al., 2004; Baker et al., 2006; 

Hayashi et al., 2006; Munguia-Vega et al., 2007; Xu et al., 2007; Yang et al., 2008; Nigenda-

Morales et al., 2008; Vassilakos et al., 2009; Xu et al., 2009; Xu et al., 2009; Du et al., 2010) 

consistent with the pattern found in this study, and typical for MHC loci across mammals 

(Hedrick, 1994; Hughes et al., 1994; Horton et al., 1998; Bontrop et al., 1999; Yeager & 

Hughes, 1999; Aguilar et al., 2004). Some studies that focused on population structure at MHC 

loci also found a coincident structure at neutral markers (Murray et al., 1999; Vassilakos et al., 

2009; Du et al., 2010), suggesting differentiation patterns found in the MHC can also be due to 

drift. The study by Vassilakos and collaborators (2009) showed evidence for local selection in 

the bottlenose dolphin (Tursiops truncatus), although this species also typically shows strong 

population structure at a regional scale (e.g. Natoli et al., 2004; Tezanos-Pinto et al., 2009). In 

this study, differentiation at the DQβ1 locus can be found between different European 

locations even though almost no structure could be found at neutral microsatellite loci and 

other functional nuclear genes, which strongly suggests a role of selection.  

 

5.1.1.  Analysis of functional diversity 
 

Such inconsistencies in the patterns of differentiation revealed by different markers in the 

genome is the expected pattern for a system where differentiation is promoted by both 

selection and drift (Lewontin & Krakauer, 1973; Wakeley, 1996; Wakeley & Hey, 1997). If 

gene flow is limited solely by an external barrier, then differentiation will mainly occur due 

to drift and similar differentiation patterns should be observed in all markers. However, if 

gene flow is limited due to local differences in habitat characteristics or use, relevant 

functional genes may differentiate first (given that selective pressures are sufficiently strong), 

while neutral loci differentiate over time at a rate dependent on gene flow levels and effective 

population size (Thibert-Plante & Hendry, 2010; Wu, 2001). Studies assessing the patterns of 

variation in non-coding loci such as microsatellites or anonymous markers such as AFLP’s 

sometimes find evidence for selection by identifying loci with outlier patterns of genetic 

differentiation (Stinchcombe & Hoekstra, 2007; Nosil et al., 2009), sometimes correlated with 

environmental differences (Nosil et al., 2008; White et al., 2010). However, because no 

information exists on the functional relevance of these markers (or closely linked markers 

that could create such patterns through linkage disequilibrium), it’s difficult to determine an 

ecological mechanisms behind such patterns (Hughes, 2007). Additionally, it has been shown 
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that demographic phenomena such as fast changes in effective population size and complex 

patterns of population structure can give rise to false positives in such studies (Excoffier et al., 

2009).  

One of the first well integrated studies comparing levels of divergence between neutral and 

functional markers focused on closely related species of Drosophila, where residuals levels of 

gene flow after speciation were thought to have reduced the differentiation found in neutral 

markers (Wakeley, 1996; Wang & Hey, 1996; Wang et al., 1997; Kliman et al., 2000; Noor et 

al., 2001; Machado et al., 2002). However, many of the genes that were found to be strongly 

differentiated were known to affect reproductive isolation between the species analysed, and 

were located in the same chromosome (Wang & Hey, 1996; Noor et al., 2001). Similarly, in 

African honey bees (Apis mellifera) expanding out of Africa, higher Fst values were detected 

in coding regions relative to non-coding regions, suggesting a generalised effect of selection in 

populations adapting to new environments (Zayed & Whitfield, 2008). A compelling case-

study was reported for species of the genus Peromyscus where studies have showed a strong 

correlation between significant differences in haemoglobin allele frequencies and populations 

inhabiting different altitudes (Storz et al., 2007). Although a similar level of differentiation 

was found for mtDNA as well (Gering et al., 2008), different haemoglobin alleles were shown 

to confer different fitness at different altitudes (Storz, 2007; Storz et al., 2009). Similar patterns 

have been reported for haemoglobin in other mammalian species (Storz, 2007; Campos et al., 

2008).  

Although such studies are still rare, they show that focusing on functionally relevant 

markers in natural populations can provide important insights into the processes promoting 

population differentiation. Studies of European marine fishes have revealed that functional 

nuclear markers can exhibit population structure in systems where microsatellite markers 

failed to do so (Pogson, 2001; Hemmer-Hansen et al., 2007). Little information was, however, 

available regarding the functional relevance of the markers used in these studies, thus 

impairing interpretations about which oceanographic features might account for such 

patterns.  

 

5.1.2.  Functional markers that can be useful in the study of 

adaptation in cetaceans 
 

Selection appears to be detectable in genes controlling for physiologically important 

functions in cetaceans on several levels. In several markers analysed within the order Cetacea, 
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non-synonymous mutations are more common than synonymous ones, namely: β-casein, κ-

casein, γ-fibrinogen, lung surfactant protein-C, Prestin, Protamine 1 and Zona Pelucida-3. 

This suggests that, at least for those genes, functional variation has been actively maintained 

during the course of the group’s evolution (Hughes & Nei, 1988; Goldman & Yang, 1994; 

Muse & Gaut, 1994). In addition, both β-casein and Zona Pelucida-3 resulted in phylogenetic 

groupings inconsistent with those expected from earlier studies (McGowen et al., 2009), 

which is a strong indicator of shared function between phylogenetically distinct groups (Li et 

al., 2008; Li et al., 2010; Liu et al., 2010). These observations are consistent with the prediction 

that adaptation to the marine environment placed strong constraints on the molecular 

evolution of physiologically relevant genes. Because of these adaptive constraints, such genes 

are not expected to follow random patterns of diversification, and will thus not necessarily 

reflect the species phylogenetic tree. Neutral portions of the genome will diversify due to drift 

after gene flow has been limited between diversifying groups, and thus will more accurately 

reflect the species phylogenetic tree. Several previous phylogenetic studies of cetaceans based 

on functional genes have also resulted in inconsistent groupings (Thewissen, 1998; McGowen 

et al., 2009).  

The genes that showed the strongest evidence for selection were all related to physiological 

functions that can be speculated to have been more affected during the transition from land to 

sea, namely osmoregulation, immunity, adaptations to reduced oxygen and increased 

pressures during diving. Markers that exhibited signals of selection in mammals, however, did 

not necessarily exhibit the same patterns in cetaceans, and vice-versa. Also, the fact that a 

particular marker shows strong signals of selection at a phylogenetic level, does not 

necessarily reflect a meaningful pattern at a population level. Most of the analysed functional 

markers showed very little variation in European common dolphins suggesting purifying 

selection, even in cases where several non-synonymous mutations were found, as in β-casein. 

However, it should be noted that the regions assessed are only fragments of the whole genes, 

and unless previous knowledge of functionally important regions exist (as was the case of the 

DQβ1), it is very difficult to know which parts of the gene will be functionally relevant. The 

analysis of the TYRP1 gene clearly showed this problem, by revealing that from all 8 exons, 

only 2 had non-synonymous mutations.  

Although many of the markers analysed in this study showed no variation in the common 

dolphin along the European coast, this might only reflect the fact that environmental 

differences are not strong enough to create such patterns. Cetaceans are ecologically a very 
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diverse group, and it is unlikely that the same genes will be under selection in all populations/

species. Preliminary studies on higher taxonomic levels can, nevertheless, help to identify 

good candidate genes to focus in particular case studies. While screening a representative 

number of genes using a candidate gene approach might be time and cost consuming, the 

development of large scale genomic screening methods, such as next generation sequencing or 

SNP microarrays, can allow the evaluation a wider range of candidate markers in a more cost 

and time effective manner. Nevertheless, several markers have been developed in this study 

which can potentially be applied to investigate selection in other cetacean species/populations 

where they might be relevant. 

 

5.1.3.  Comparison of the European common dolphin population 

structure with other cetacean species 
 

The European common dolphin shows a remarkable lack of population structure when 

compared to other European cetaceans (Garcia-Martinez et al., 1999; Natoli et al., 2004; Natoli 

et al., 2005; Fontaine et al., 2007; Gaspari et al., 2007; Gaspari et al., 2007; Viaud-Martinez et 

al., 2008; Banguera-Hinestroza et al., 2010; Fontaine et al., 2010), or other species of 

delphinids elsewhere, such as the bottlenose dolphin (Tursiops spp.) (Hoelzel et al., 1998; 

Krützen et al., 2004; Sellas et al., 2005; Parsons et al., 2006; Segura et al., 2006; Bilgmann et al., 

2007b; Rosel et al., 2009; Tezanos-Pinto et al., 2009; Wiszniewski et al., 2010), the spotted 

dolphin (Stenella frontalis) (Adams & Rosel, 2006), the killer whale (Orcinus orca) (Hoelzel et 

al., 2007), or the false killer whale (Pseudorca crassidens) (Chivers et al., 2007). The 

differentiation found to exist between the Greek and European populations (Natoli et al., 

2008), appears to be the result of a recent anthropogenic interference rather than historical 

limitation of gene flow. Oceanographic features along the European coast that are consistently 

related to population structure in several marine organisms do not appear to be so in the 

common dolphin. For example, although several marine species will show population 

differentiation between the Mediterranean Sea and the North Atlantic (Quesada et al., 1995; 

Borsa et al., 1997; Chikhi et al., 1997; Naciri et al., 1999; Charrier et al., 2006; Perez-Losada et 

al., 2007; Abaunza et al., 2008; Comesana et al., 2008; Perez-Portela & Turon, 2008), including 

cetaceans (Garcia-Martinez et al., 1999; Dalebout et al., 2005; Gaspari et al., 2007; Engelhaupt 

et al., 2009), such a pattern is not found in the common dolphin. This suggests that the exact 

patterns of differentiation in cetaceans can be dependent on each species biology and ecology, 

namely prey choice, mating system, social structure, or other yet unknown mechanisms.  
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Studies focusing on the feeding ecology and habitat use suggest that the common dolphin 

tends to occupy areas of high ocean productivity (Brereton et al., 2005; Cañadas et al., 2005; 

Cañadas & Hammond, 2008), while stomach content studies across Europe showed that it 

feeds opportunistically on locally abundant schooling fish species with occasional feeding on 

cephalopods and crustaceans (Young & Cockcroft, 1994; Ohizumi et al., 1998; Silva, 1999; 

Meynier, 2004; De Pierrepont et al., 2005; Pusineri et al., 2007; Jefferson et al., 2009). This 

generalist and opportunistic feeding strategy can be a potential mechanism to explain the lack 

of population structure in Europe when compared to other delphinid species. The common 

dolphin preference on a prey resource that tends to be patchy but locally abundant, and 

whose exact distribution likely shifts with time, might promote dispersal rather than site-

fidelity thus contributing to the lack of population structure over large distances. However, a 

mechanism explaining the lack of population structure in the European common dolphin, 

should also be able to account for the cases where population structure is found on similar 

geographical scales elsewhere, namely the strong genetic differentiation in common dolphins 

found in the Pacific (Rosel et al., 1994; Kingston & Rosel, 2004) and in South Africa (Natoli et 

al., 2006). Both these cases strongly reflect a marked distinction between the short-beaked 

and the long-beaked morphotypes, a distinction that is not apparent in Europe (Murphy et al., 

2006; Westgate, 2007). This variation in skull proportions found worldwide may be correlated 

with local differences in prey items, a mechanism proposed and generally accepted for other 

taxonomic groups, namely Darwin finches (Grant & Grant, 1996; Grant & Grant, 2002) and 

crabs (Yamada & Boulding, 1998). Although differences in prey resources between the short-

beaked and the long-beaked common dolphin have yet to be assessed, a positive relationship 

between dolphin size and prey size has been found in stomach content studies in common 

dolphins elsewhere (Silva, 1999; Meynier, 2004). Comparatively, the bottlenose dolphin 

(Tursiops spp.) exhibits a high level of genetic differentiation both worldwide and on a 

regional scale (Dowling & Brown, 1993; Hoelzel et al., 1998; Krützen et al., 2004; Sellas et al., 

2005; Parsons et al., 2006; Segura et al., 2006; Bilgmann et al., 2007; Nichols et al., 2007; Rosel 

et al., 2009). Well differentiated populations in this species will also often show local 

specialization in prey resources and hunting strategies (Hoelzel, 1998). This is consistent with 

observations made in Rhagoletis flies and other phytophagous insects, in which specialists on 

different food resources which then mate locally quickly developed reproductive isolation, 

even in the absence of geographical barriers limiting dispersal (Bush, 1969; Bush, 1994; Linn 

et al., 2004). Differences in the levels of population structure between oceans observed in the 

killer whale (Orcinus orca) have also been attributed to well described differences in feeding 
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ecology (Hoelzel et al., 2007; Foote et al., 2009). However, data on feeding habits of both 

species analysed in this study is still limited, especially for the common dolphin, where most 

detailed studies have focused on European samples. No definitive statements can be made 

regarding the role of feeding strategies in accounting for the differences in the level of 

population structure found in the common dolphin. However, the data collected so far 

suggests this to be an interesting hypothesis in which to focus further research. 

Differences in mating strategies and social structure could also account for such 

differences. However, much less data is available to allow any conclusions to be made at 

present. A few well described populations of the bottlenose dolphin exhibit some level of kin 

association and site-fidelity (Durban et al., 2000; Krützen et al., 2004; Möller & Beheregaray, 

2004; Rogers et al., 2004; Sellas et al., 2005), although this pattern is not found everywhere 

(Defran & Weller, 1999; Defran et al., 1999). Common dolphins in Europe are thought to have 

a promiscuous mating system (Murphy et al., 2005; Westgate & Read, 2007)  and no data at 

present suggests any level of kin association (Viricel et al., 2008). However, data for the 

common dolphin is extremely scarce, and essentially absent for many populations worldwide. 

More data is clearly needed on mating structure, kin association and site-fidelity patterns of 

different populations in these species, particularly the common dolphin, in order to address 

this hypothesis.   

 

5.2.  BOTTLENOSE DOLPHIN (TURSIOPS SPP.) PHYLOGEOGRAPHY 
 

Several authors have suggested that the observed high levels of population differentiation 

in the bottlenose dolphin (Tursiops spp.) might result from specialization in different prey 

resources, resulting from the environmental changes that occurred at the end of the 

Pleistocene glaciations (Hoelzel et al., 1998; Wang et al., 1999; Charlton et al., 2006; Natoli et 

al., 2004; Möller et al., 2008). The results of this study are generally supportive of such a 

hypothesis. By using a well defined biogeographical calibration point, more appropriate for 

the calculation of recent divergence times (Ho et al., 2005; Ho & Endicott, 2008), it was 

estimated that the split between different Tursiops species/ecotypes occurred simultaneously 

in specific time periods, all characterized by fast climatic changes from cold to warmer 

periods. The lineages leading to both T. truncatus and T. aduncus split at around the time of 

the last interglacial period (the Eemian period), almost simultaneously with the divergence of 

other delphinid species. Although the validity of those two species has generally been 

accepted, uncertainty regarding the monophyletic status of the genus still existed (LeDuc et 
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al., 1999; Charlton et al., 2006; Nishida et al., 2007; Möller et al., 2008; Kingston et al., 2009; 

McGowen et al., 2009; Steeman et al., 2009; Xiong et al., 2009). The results of this study 

support the studies that have found the genus to be polyphyletic, and place T. aduncus more 

closely to the common (Delphinus sp.) and the striped dolphin (Stenella coeruleoalba) (LeDuc 

et al., 1999; Charlton et al., 2006; Nishida et al., 2007; Möller et al., 2008; Kingston et al., 2009; 

Xiong et al., 2009), although the data analysed here represents only a single gene phylogeny. 

Changes in the ocean environment caused by climatic cycles has been proposed as a major 

force in the evolution of cetaceans by several authors (Davies, 1963; Lipps & Mitchell, 1976; 

Fordyce, 1980; Berger, 2007; Steeman et al., 2009; Marx & Uhen, 2010). However, the exact 

mechanisms by which such changes have promoted diversification are still a matter of 

speculation. One hypothesis is that cyclical closing of certain sea basins (such as the 

Mediterranean Sea) and changes in the availability of coastlines caused by retreating ice caps 

and the consequent changes in sea levels, promoted diversification through vicariance and 

drift (Steeman et al., 2009). This is probably a relevant mechanism in the differentiation of 

coastal ecotypes of the bottlenose dolphin (T. truncatus) in which the rise in sea level after the 

last glaciation could have made new ecological niches available for colonization. It would also 

account for the observation that many local populations of cetaceans exhibit clear signals of 

population expansion (Natoli et al., 2004; Amaral et al., 2007; Banguera-Hinestroza et al., 

2010).  Alternatively, several authors have proposed that changes in the ocean’s food web 

during climatic cycles promoted diversity bursts in cetaceans (Davies, 1963; Lipps & Mitchell, 

1976; Fordyce, 1980; Berger, 2007; Marx & Uhen, 2010). Supporting this view are recent 

studies that have shown a correlation between cetacean diversity and productive food webs, 

both at present and during geological times (Whitehead et al., 2008; Marx & Uhen, 2010; 

Whitehead et al., 2010).  

In the particular case of the bottlenose dolphin (Tursiops spp.), it has been proposed that 

the Pleistocene glacial cycles provided new habitats that were occupied by small founding 

populations that then adapted to local environmental conditions (Hoelzel et al., 1998; Wang 

et al., 1999; Natoli et al., 2004; Charlton et al., 2006; Möller et al., 2007; Möller et al., 2008). 

Such a process could be promoted by a complex social structure and high levels of site fidelity. 

Independent studies suggest that the bottlenose dolphin does exhibit some level of site-fidelity 

(Durban et al., 2000; Krützen et al., 2004; Möller & Beheregaray, 2004; Rogers et al., 2004; 

Sellas et al., 2005; Parsons et al., 2006; Baird et al., 2009), while stable isotope studies have 

shown that such habitat fidelity might be related to prey choice (Barros et al., 2010), 
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especially in the western North Atlantic where dietary segregation between coastal and 

offshore animals was detected in teeth samples spanning a 100 year period (Walker et al., 

1999). This is also supported by studies showing that females occupying distinct habitats will 

exhibit different hunting strategies (Hastie et al., 2004), and that such behaviours can be 

transmitted from mother to calf (Smolker et al., 1997; Krützen et al., 2005; Weiss, 2006).  

Alternatively, a change in the ocean productivity and upwelling patterns during colder 

periods (Weaver et al., 2003; Clark et al., 2004; Clark et al., 2009) might have led to 

fragmentation of previously abundant populations due to demographic crashes promoted by 

reduction in prey resources. Population expansions that time roughly to the early Holocene 

(after the last glacial maximum) have been suggested for a number of species (Hoelzel et al., 

1998; Tolley et al., 2001; Natoli et al., 2004; Amaral et al., 2007; Banguera-Hinestroza et al., 

2010), which could be consistent with this theory.  The increased effects of drift in the smaller 

sub-populations would facilitate the fixation of functional mutations (Wright, 1982) that 

could turn useful for the adaptation to newly available environments.  

 

5.3.  CONCLUDING REMARKS 
 

In this study, the relative effects of drift and selection on the differentiation of cetacean 

populations were investigated. A combination of local-scale population structure, screening 

for selection in candidate functional genes at different taxonomic levels, and high resolution 

phylogeographic analysis of a species known for strong differentiation patterns was carried 

out. The analysis of candidate functional markers showed that evidence for selection can 

generally be found in physiologically relevant markers in the cetacean order, thus reflecting 

the extreme adaptations that cetaceans underwent during the transition from a terrestrial 

environment to a marine one. However, when analysed on a population level in the European 

common dolphin, most markers studied exhibited a strong uniformity with little population 

structure. This suggests that strong purifying selection is acting on these markers. The 

exception was the MHC DQβ1 locus, which showed significant structure in Europe, in 

particular in comparisons between functional differences in the pocket 4 region between 

Greek and other European individuals. However, the Greek population shows strong evidence 

of a rapid bottleneck in recent times, likely leading to the observed differentiation in 

microsatellite markers due to drift. This indicates that the observed difference at the DQβ1 

MHC locus may also be the product of drift, but differentiation elsewhere (between Portugal 

and Ireland, together with other factors; see above) suggests the potential for directional 
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selection at this locus as a response to differences in the local parasite composition (as reported 

earlier for other delphinid species; Vassilakos et al. 2009). Excluding the Greek differentiation 

(which is likely the result of anthropogenic influence), the European common dolphin 

exhibits very little population structure both in neutral and functional markers. This pattern, 

although expected for marine species with high dispersal potential, is at odds with the 

patterns observed in many dolphin species, documented particularly well in the bottlenose 

dolphin (Tursiops spp.). Mitochondrial DNA results obtained in this study are consistent with 

previous studies clearly separating two species within the genus (LeDuc et al., 1999; Charlton 

et al., 2006; Nishida et al., 2007; Möller et al., 2008; Kingston et al., 2009; Xiong et al., 2009), 

although the monophyly of the genus is still open to debate. Both these species are 

nevertheless characterized by high levels of differentiation both locally and regionally 

(Dowling & Brown, 1993; Krützen et al., 2004; Natoli et al., 2005; Sellas et al., 2005; Parsons 

et al., 2006; Segura et al., 2006; Bilgmann et al., 2007b; Nichols et al., 2007; Viaud-Martinez et 

al., 2008; Rosel et al., 2009). The divergence times of these species/ecotypes occurred almost 

simultaneously at key periods in the past, characterized by rapid environmental changes from 

cold to warmer climate. Such a pattern has been described previously for the diversification of 

cetaceans, observing that cetacean diversity generally increased in periods of warmer climate 

(Davies, 1963; Lipps & Mitchell, 1976; Fordyce, 1980 Berger, 2007). Several authors have 

suggested that changes in the availability of prey resources resulting from such climatic 

fluctuations might be the mechanism driving diversification in cetaceans (Davies, 1963; Lipps 

& Mitchell, 1976; Fordyce, 1980; Hoelzel, 1998; Berger, 2007). Such interpretation is 

consistent with observations that several well differentiated bottlenose dolphin ecotypes are 

known to exhibit differences in prey choice (Dowling & Brown, 1993; Sellas et al., 2005; 

Segura et al., 2006) and also exhibit signals of demographic expansion (Natoli et al., 2004) 

reflecting occupation of newly available habitats. The lower levels of population structure 

exhibited by the common dolphin comparatively to the bottlenose dolphin can also 

potentially be explained by differences in feeding ecology. The opportunistic nature of the 

common dolphin foraging strategies (Young & Cockcroft, 1994; Ohizumi et al., 1998; Silva, 

1999; Meynier, 2004; De Pierrepont et al., 2005; Pusineri et al., 2007; Jefferson et al., 2009) 

may benefit from a more fluid social structure promoting associations between unrelated 

individuals (Murphy et al., 2005; Westgate & Read, 2007; Viricel et al., 2008), thus promoting 

higher population connectivity. In contrast, the tendency of the bottlenose dolphin in 

specializing in specific prey types (Silber & Fertl, 1995; Smolker et al., 1997; Bearzi et al., 

1999; Sargeant et al., 2007; Sargeant & Mann, 2009), might benefit from a tighter social 
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structure promoting kin association (Connor et al., 1992; Connor et al., 1999; Maze-Foley & 

Würsig, 2002; Krützen et al., 2003; Parsons et al., 2003; Möller & Beheregaray, 2004) and 

maternal transmission of learned foraging strategies, thus leading to the establishment of 

regional population differences. However, data on these animals’ feeding ecology, social 

structure and site fidelity is still lacking for many well differentiated populations, particularly 

so for the common dolphin, and such interpretations must remain speculative. Nevertheless, 

the comparison of genetic differentiation between cetacean species with different ecologies 

and social structures can improve the understanding of the mechanisms promoting 

differentiation in these animals. Directing such comparisons at both neutral and functional 

genetic variation can further help to incorporate such mechanisms in the context of both drift 

and selection. 
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Appendix 2.1 — Simplified DIYABC plots 

Figure A2.1.1. Simplified PCA plot displaying the fit between scenarios simulated with uniform unconstrained priors 

and the observed data. Ellipses cover approximately 95% of the data points for each scenario. 

Figure A2.1.2. Simplified PCA plot displaying the fit between scenarios simulated with constrained priors and the 

observed data.  Ellipses cover approximately 95% of the data points for each scenario. Note that the observed data 

fits the simulated datasets much better than the unconstrained simulations in Figure A2.1.1. 
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Appendix 2.2 — Allele frequency comparison 

between European and Greek populations for each 

microsatellite loci genotyped 



Analysis of the effects of drift and selection in cetaceans    Page 143 



Analysis of the effects of drift and selection in cetaceans    Page 144 

Appendix 3.1 — Mammalian dataset dN/dS results 

and candidate markers phylogenetic trees 
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Appendix 3.2 — Cetacean dataset dN/dS results and 

candidate markers phylogenetic trees 
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Appendix 3.3 — Agarose gel pictures from 

successfully amplified nuclear markers  

Protamine 1Protamine 1Protamine 1Protamine 1    

Aquaporin 1 (AQP1)Aquaporin 1 (AQP1)Aquaporin 1 (AQP1)Aquaporin 1 (AQP1)    

ββββ----casein (CSN2)casein (CSN2)casein (CSN2)casein (CSN2)    

Myocilin (MYOC)Myocilin (MYOC)Myocilin (MYOC)Myocilin (MYOC)    
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Lung surfactant pTyrosinaserotein C (SPLung surfactant pTyrosinaserotein C (SPLung surfactant pTyrosinaserotein C (SPLung surfactant pTyrosinaserotein C (SP----C)C)C)C)    

UreaUreaUreaUrea----transporter 2, transporter 2, transporter 2, transporter 2, αααα    chain (UTchain (UTchain (UTchain (UT----A2)A2)A2)A2)    

TyrosinaseTyrosinaseTyrosinaseTyrosinase----related protein 1 (related protein 1 (related protein 1 (related protein 1 (TYRP1),  exon 1TYRP1),  exon 1TYRP1),  exon 1TYRP1),  exon 1    

TYRP1 exon 2 TYRP1 exon 2 TYRP1 exon 2 TYRP1 exon 2     

TYRP1 exon 3TYRP1 exon 3TYRP1 exon 3TYRP1 exon 3    
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TYRP1 exon 4TYRP1 exon 4TYRP1 exon 4TYRP1 exon 4    

TYRP1 exon 5 TYRP1 exon 5 TYRP1 exon 5 TYRP1 exon 5     

TYRP1 exon 6 TYRP1 exon 6 TYRP1 exon 6 TYRP1 exon 6     

TYRP1 exon 7 TYRP1 exon 7 TYRP1 exon 7 TYRP1 exon 7     

TYRP1 exon 8 TYRP1 exon 8 TYRP1 exon 8 TYRP1 exon 8     
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ABC - Approximate Bayesian Computation 

AFLP - Amplified Fragment Length Polymorphism 

AMOVA – Analysis of Molecular Variance 

BSEA – Black Sea 

bp – Base pairs 

CA - Correspondence Analysis 

CAMKA2 - Ca/calmodulin-dependent protein kinase II, α chain 

AQP1 - Aquaporin 1 

AQP6 - Aquaporin 6 

ASIP – Agouti Signalling Protein 

CI – Confidence Interval 

CSN2 - α-Casein 

CSN3 - κ-Casein 

df – Degrees of Freedom 

DNA - Deoxyribonucleic Acid 

dN/dS – Proportion between non-synonymous and synonymous mutations 

dNTP - Deoxyribonucleotide triphosphate 

EMED – Eastern Mediterraean 

FAM – Carboxyfluorescein 

FCA - Factorial Correspondence Analysis 

FGG - γ-Fibrinogen 

FIT - Fat Inducing Transcript 

GC – Gulf of California 

HEX - Hexachlorofluorescein phosphoramidite 

HIF - Hypoxia Inducible Factor 

IAM - Infinite Allele Mutation model 

ICNB - Instituto para a Conservação da Natureza e Biodiversidade 

IP – Indo Pacific 

IUCN - International Union for Conservation of Nature 

kyrs – Thousand years 

kyrsBP - Thousand years before present 

LALBA - α-Lactalbumin 

Appendix 4 — List of Abbreviations  
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LGM – Last Glacial Maxima 

MC1R - Melanocortin Receptor 1 

MHC - Major Histocompatibility Complex  

MSH – Melanocyte Stimulating Hormone 

mtDNA – Mitochondrial DNA 

MYOC - Myocilin 

Myrs – Million years 

MyrsBP – Million years before present 

Ne – Effective Population Size 

NGB - Neuroglobin 

OAG – Open Angle Glaucoma 

PCA - Principal Component Analysis 

PCR – Polymerase Chain Reaction 

QTL – Quantitative Trait Loci 

SA – South Africa 

SABD – South Australian Bottlenose Dolphin 

SCO – Scotland 

SMM - Stepwise Mutation Model 

SNP – Single Nucleotide Polymorphism 

SP-C - Lung surfactant protein C 

SSCP – Single Strand Conformation Polymorphism 

SST – Sea Surface Temperature 

Ta – Tursiops aduncus 

TBE – Tris-Borate-EDTA buffer 

TE – Tris-EDTA buffer 

TLR - Toll-like receptor 

TMRCA – Time to the Most Recent Common Ancestor 

TPM – Two Phased Model 

Tt – Tursiops truncatus 

TYRP1 - Tyrosinase-related protein 1 

UT-A2 - Urea-transporter 2, α chain 

WNAC – Western North Atlantic Coastal 

WNAP – Western North Atlantic Pelagic 

ZP – Zona Pellucida 
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