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Abstract 

 
White-clawed crayfish Austropotamobius pallipes are listed as vulnerable on the 
International Union for the Conservation of Nature (IUCN) red list and British 
populations represent one of the greatest concentrations of this species in 
Europe. White-clawed crayfish still remain at risk in Britain due to habitat 
degradation, pollution, and non-indigenous crayfish and disease. This thesis 
investigates the microhabitat use of juvenile and adult white-clawed crayfish 
and quantifies the rate and pattern of recolonisation into an unoccupied reach of 
river.  
 
The microhabitat study was carried out over a 1 km stretch of the River 
Wansbeck, Northeast England in 2008 and a 3.5 km stretch on the Hart Burn, a 
tributary of the Wansbeck, in 2009. In September 2008 there was a 1 in 115 
year flood and the data collected before and after the flooding were compared. 
Crayfish recorded in the Wansbeck were separated into three age groups, 0+ (0 
- 9.4 mm carapace length (CL)), 1+ (9.5 - 16.4 mm CL) and 2+ and older (16.5 
mm+ CL). Crayfish recorded in the Hart Burn were separated into four age 
groups 0+ (0 - 7.4 mm), 1+ (7.5 - 13.4 mm), 2+ (13.5 - 22.4 mm) and 3+ and 
older (22.4 mm+).  
 
Crayfish of different ages had different microhabitat requirements where young 
crayfish, in particular 0+ crayfish, were more restricted in the microhabitats they 
inhabited. Young crayfish were found in closer proximity to the bank, in smaller 
substrata and slower velocities than older crayfish. In both study sites 
substratum heterogeneity created suitable habitat for all ages of crayfish and in 
the Hart Burn, root habitats were found to be important for all ages of crayfish. 
Extensive flooding in 2008 was found to significantly reduce densities of larger 
crayfish, probably reflecting large-scale mortalities or major redistribution. 
 
Recolonisation was studied in the lower 3 km of the Hart Burn after a mass 
mortality event occurred in May 2004, apparently due to a one-off acute 
pollution incident. The recolonisation data highlights the impact mass mortality 
events can have on crayfish populations. It took 4 years of no further pollution 
for the population to recover which relates to a recolonisation rate of 750 m 
year-1. The passive downstream drift of juveniles was the most rapid form of 
movement recorded and was responsible for the downstream population 
expansion in the first two years. Juvenile crayfish seem to have some control 
over their dispersal, as there was limited dispersal over periods of high flows 
and rapid dispersal over periods of low flows. Active upstream and downstream 
dispersal by adult crayfish was similar in rate. 
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General Introduction 

1.1 Introduction to conservation 
 

“The universe would be incomplete without man; but it would also be incomplete 

without the smallest transmicroscopic creature that dwells beyond our conceitful 

eyes and knowledge” (Muir 1916). 

 

The conservation of biodiversity is an important issue for many reasons.  

Natural diversity is good for our welfare and Wilson (1984) went as far as saying 

humans have a genetic predisposition to like biological diversity (Meffe and 

Carrol 1997). Greater biological diversity provides a greater variety of food and 

resources, which should help to buffer the human population from 

environmental catastrophes (Primack 1998). The environment provides many 

important resources for humans, including medicines, pollination of agricultural 

plants, recycling, replenishing oxygen, fertilisation by nitrogen fixation and 

aesthetic beauty (Meffe and Carrol 1997). Conservation is also important for 

scientific knowledge. Wallace (1863) believed that animals and plants are 

individual letters making up the volumes of Earth’s history; if a few letters are 

lost it will make the sentence unintelligible and so extinctions will obscure the 

invaluable record of the past. This still holds true today, as scientists believe 

that extinctions make it harder to understand the ecological relationship 

between organisms (Sadava et al. 2008). 

 

A global effort to conserve the natural environment may be a recent 

phenomenon, but the origins of conservation ideas can be traced back to 

ancient religious and philosophical beliefs (Meffe and Carrol 1997, Primack 

1998). Conservation started to become an issue when the European states 

began to colonise the rest of the world, disrupting traditional resource use and 

causing rapid overexploitation (Hunter 1996). At the time, it was thought of as 

inconceivable that nature’s resources would ever run out, an idea that was soon 

shattered with the extinction of European cattle Bos primigenius in 1627, and 

the dodo bird Raphus cucullatus in the 1680s (Primack 1998). Europeans 

started to show a concern for wildlife in the late nineteenth century, and in 

America the first ever national park, Yellowstone National Park, was created in 
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1872 (Hunter 1996, Primack 1998). Global biodiversity is changing at an 

unprecedented rate and currently 36% of all species listed on the IUCN red list 

are threatened (Primack 1998, Sala et al. 2000, IUCN 2010). Land use change 

is having a huge impact on global biodiversity, as grasslands and tropical 

forests are converted to cropland causing local extinction of plants and animals 

(Sala et al. 2000). After land use, change climate change is the next most 

important driver of biodiversity change, as it causes changes in habitat, leading 

to extinctions and changes in species distributions (Carpenter et al. 1992, Sala 

et al. 2000). Extinction rates are 100 to 1000 times their pre human levels and 

conservation has become an important global issue and an area that needs 

much attention (Meffe and Carrol 1997, Pimm et al. 1995, Primack 1998). 

 

This thesis is the result of research carried out in the freshwater environment. 

Conservation of the freshwater environment is a subject that cannot be 

comprehensively covered in this thesis. However, an overview of the main 

threats to freshwaters and the strategies that could be employed to combat 

them will be outlined in the following two sections. 

1.2 Threats to freshwater ecosystems 
 

Freshwater ecosystems are some of the most endangered ecosystems in the 

world (Dudgeon et al. 2006).  Humans have significantly modified freshwater 

ecosystems, as freshwater is fundamentally important to human welfare 

providing drinking water, irrigation, means of transport and even energy (NRC 

1992). Freshwater ecosystems support 6% of all species yet only cover about 

0.8% of the Earth’s surface (Dudgeon et al. 2006). Even though the extinction 

rates in freshwater habitats are higher than those in terrestrial habitats, only 7% 

of the papers published in the journal “Conservation Biology” from 1997-2001 

were concerned with freshwater species (Abell 2002, Dudgeon et al. 2006).  

1.2.1 Human impacts on hydrology 
Large-scale modifications of freshwater habitats have taken place over 

millennia, as for example at least 5,000 years ago on the River Nile (Smith 

1971), and as civilisation has advanced so too have the threats to streams and 

rivers (Allan and Flecker 1993). Since the 20th century the damming of rivers 

has caused dramatic physical changes as it fragments the river ecosystem, 
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converting a free flowing river into a reservoir habitat (Jager et al. 2001). 

Reservoirs impede the downstream migration of fish and outflows from 

reservoirs have altered chemical properties of rivers, while dams act as 

upstream barriers (Allan 1995). Dam constructions on the Volga River at 

Volgograd, Russia, ca 500 km upstream from the Volga river delta, for example 

has prevented beluga sturgeon Huso huso from accessing their usual spawning 

ground and has significantly reduced their migration distances (Birstein et al. 

1997, Khodorevskaya et al. 1997). Juveniles no longer grow to their full size 

and do not become reproductively active, preventing natural reproduction 

(Khodorevskaya et al. 1997). On the River Danube a dam altered the 

biochemistry of the entire Black Sea basin, which included a reduction in 

silicate, which can cause species shifts in algae that control the alkalinity of the 

water and can also result in toxic algae blooms (Humborg et al. 1997).   

 

The effects of straightening and channelising of rivers may not be as physically 

obvious as dams, but they have still contributed greatly to river degradation 

worldwide. Rivers have been channelised to aid navigation. This has created 

physical uniformity and led to the loss of native species through loss of habitat 

complexity (Allan 1995). Flood defence mechanisms such as levees prevent 

rivers discharging onto the floodplain periodically, which is an important cycle as 

it creates important spawning, nursery and foraging habitat for many fish 

species (Bunn and Arthington 2002). The Macquarie Marshes in Australia are of 

international importance and depend upon the water from the Macquaries River 

for their existence. Water reaching the marshes has been reduced, due to river 

regulation, leading to a reduction in marsh area and a consequent decline in 

water birds (Kingsford and Thomas 1995). Instead of replenishing wetlands and 

floodplains, the water is usually rapidly exported, causing further problems by 

lowering water tables and summer flows (Allan and Flecker 1993).  

 

Abstraction of water for drinking and irrigation has become so intense that some 

rivers now contain no flowing water for several months of the year (Malmqvist 

and Rundle 2002). Poor water management is common in many countries and 

an extreme example of water extraction is the drying of the Aral Sea, regarded 

as one of the world’s worst environmental disasters (Allan 1995). The main 

tributaries supplying the Aral Sea lose most of their water to nearly 3 million 
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hectares of cotton fields (Stone 1999). The Aral Sea, which used to be the 

world’s fourth largest lake, lost 80% of its volume over four decades (Postel 

2000, Stone 1999). It is now saltier than the ocean due to evaporation and 

agricultural run off and all 24 species of native fish have disappeared (Allan 

1995, Stone 1999).  

 

A more recent hydrological threat is the development of hydropower. As well as 

the flooding of biodiverse rainforests the generation of hydroelectricity has a 

huge impact on freshwater ecosystems. The fluctuating water levels cause 

erosion and desiccation which destroys the biota in the littoral zone (Smith et al. 

1987). Brazil has hydroelectric plans to build 80 dams which would flood 

roughly 100,000 km2 of Amazonia (Allan and Flecker 1993). Even in the UK 

where most hydroelectric energy resources have already been harnessed, the 

rapid expansion in small-scale hydroelectricity poses risks for some biota such 

as migrating Atlantic salmon and lamprey. 

1.2.2 Human impacts on water quality 
One of the main threats to freshwater ecosystems is pollution from agriculture, 

industry and domestic sources (Maitland and Morgan 1997). Intensive farming 

with heavy application of fertilisers results in enriched water entering rivers 

(Beasley and Roberts 1999). Fewer than 10% of rivers worldwide can be 

classified as pristine in terms of nitrates (WHO/UNEP 1987). Agricultural 

practices have resulted in higher levels of nitrogen and phosphorus flowing into 

enclosed seas such as the Adriatic and lagoons of the Nile (Turley 1999). This 

has led to eutrophication and the algal blooms and their decomposition can lead 

to deoxygenation of the water, which can cause fish extinctions like the 

extinction of vendance Coregonus albula and smelt Osmerus eperlanus in 

Scottish lakes (Beasley and Roberts 1999). Altering nutrients can also affect 

sensitive species such as the pearl mussel Margaritifera margaritifera (Beasley 

and Roberts 1999). Pearl mussels thrive in ‘soft’ waters which are poor in 

nutrients and experience reduced life expectancy under increasing nitrate 

concentration and eutrophication (Bauer 1988). The build up of silt also 

destroys pearl mussel habitat especially for juveniles. This has contributed to 

pearl mussels becoming listed as endangered on the International Union for the 

Conservation of Nature (IUCN) red list (Bauer 1988, IUCN 2010). Pollution from 

industries such as mining, involves the release of heavy metals into rivers, 
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which elevates metal concentrations. This can cause changes in the community 

structures of aquatic insects (Roline 1988), and reduced richness in 

macroinvertebrates, which can take hundreds of years to recover (Malmqvist 

and Hoffsten 1999).  

 

Atmospheric pollution is another source of pollution and the concept of ‘acid 

rain’ was born in the late 1960s (Baron et al. 2002). Acid rain is a trans-

boundary pollutant which can affect large areas, where the decrease in pH and 

increase in aluminium concentration can cause dramatic declines in freshwater 

species diversity including zooplankton and macroinvertebrates (Driscoll et al. 

2001). In Norway, Atlantic salmon Salmo salar became virtually extinct in 25 

rivers due to the acidification of the water (Hesthagen and Larsen 2003). 

Kitamura and Ikuta (2001) found that brown trout Salmo trutta were extremely 

sensitive to acidification and spawning behaviour was severely inhibited even in 

slightly acidic waters. 

1.2.3 Human impacts on habitat 
As well as directly affecting the river flow and quality, humans have also altered 

the landscape through which rivers flow. Intensification of agriculture has led to 

the clearing of forests and removal of riparian vegetation, which accelerates the 

rainwater runoff causing severe erosion and degradation of the streambed and 

can have adverse effects on stream ecology (Maitland and Morgan 1997). The 

loss of riparian vegetation has severely affected species such as the southern 

river otter Lontra provacax, which is only found in the Argentine and Chilean 

Patagonia region (Lariviere 1999). The southern river otter needs adequate 

riparian habitat in order to survive and due to habitat loss is now listed as 

endangered by the IUCN (Sepulveda et al. 2007). In the Himalayas, forest 

removal has led to devastating flooding (Allan and Flecker 1993). 

 

Afforestation with dense plantations also causes serious problems due to the 

impact of forest cultivation, drainage and road building (Nisbet 2001). 

Afforestation can also significantly reduce summer temperatures due to the 

shade provided by the canopy (Webb and Crisp 2006). Soil disturbance due to 

ploughing, drainage and harvesting causes large quantities of sediments to 

enter rivers, resulting in increased siltation and turbidity (Nisbet 2001). 

Afforestation, in particular with conifer trees, acidifies soils by capturing 
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acidifying components from the atmosphere and depositing them in the soil 

(Friberg et al. 1998, Nisbet 2001). In Denmark, the soil is sandy and has a low 

buffering capacity, so large scale plantations of conifers in close proximity to 

lakes and streams has had devastating effects on some freshwater ecosystems 

due to acidification of waters (Friberg et al. 1998). Another devastating human 

impact is the introduction of non-native species and the consequences that 

follow.  

1.2.4 Impacts of introduced species 
A wide range of organisms have been introduced to freshwater ecosystems all 

over the world due to deliberate and accidental transfer of non-native (exotic) 

species (Bubb et al. 2006). Allan and Flecker (1993) stated that more than 160 

species of exotic fishes from 120 countries have been introduced worldwide, 

and it is highly likely that the number has increased significantly since then. The 

devastation caused from some exotic species is well documented and their 

impacts can cascade through several trophic levels (Abell 2002). Zebra mussels 

Dreissena polymorpha have invaded all five of the North American Great lakes, 

are currently found in 23 US states, and are predicted to spread to the entire 

continental USA (Connelly et al. 2007, Malmqvist and Rundle 2002). Zebra 

mussels compete for food and over grow other molluscs resulting in the 

obliteration of many native molluscs (Pace et al. 1998, Schindler 2001). The 

invasions have also caused severe declines in phytoplankton and 

microzooplankton due to increased grazing pressure, which can have 

ramifications throughout the ecosystem, as many fish species depend on their 

availability during early life stages (Caraco et al. 1997, Pace et al. 1998). 

 

Brown trout have been introduced throughout much of the world and were 

introduced to the South Island of New Zealand in 1867 (Townsend 1996). The 

competitive and predatory potential of brown trout has led to the extinction of 

the southern grayling Prototroctes oxyrhynchus, a species that was once 

abundant (McDowall 1990). The introduction of brown trout has caused severe 

declines of fish such as Galaxias bulgaris. The remaining populations are 

fragmented to regions inaccessible to the trout, which has led to genetic 

constraints such as inbreeding (Townsend and Crowl 1991). The main reason 

for the decline of the native galaxiids is due to direct predation from the trout, as 

 6



the galaxiids have not evolved a predator escape response (Mcdowall 1990, 

Townsend and Crowl 1991). 

 

Introduced species may not only outcompete the natives but can also carry 

deadly diseases and parasites (Allan and Flecker 1993). Introduced alien signal 

crayfish Pacifastacus leniusculus carry an oomycete fungus Aphanomyces 

astaci which is acutely pathogenic to the native European species (Edgerton et 

al. 2004). The introduction of signal crayfish led to the outbreak of crayfish 

plague in Europe in 1860 decimating many populations of native crayfish 

(Lozan 2000). Japanese eel Anguilla japonica were introduced to Europe in 

1982 and carried with them a nematode Anguillicola crassus. The nematode 

may prevent European eels from reaching their spawning ground, as it attacks 

the swim bladder and reduces swimming performance and resistance to stress 

(Kirk 2003). This has had serious consequences for the European eel, and has 

contributed to their decline resulting in them now being listed as critically 

endangered on the IUCN red list (IUCN 2010).  

1.2.5 Impacts of human population increase 
All the threats to freshwater ecosystems will be exacerbated due to an 

increasing global human population. The population is set to increase to 9 

billion by the year 2050 and 50% of the world’s population will be experiencing 

waters stress by the year 2025 (Revenga et al. 2005). In developing countries 

the demands will lead to huge problems and large economic costs. In these 

circumstances it is doubtful that there will be much consideration for the 

ecological integrity of the systems that provide the much-needed water 

(Malmqvist and Rundle 2002). Increasing demand for water is already exerting 

immense pressure on freshwater environments, causing a decline in the quality 

and quantity of water and is leading to extinctions and severe biodiversity loss 

(United Nations. 2005). An expanding population is accompanied by an 

increase in the use of fertilisers, which was predicted to increase by 145% 

between 1990-2050 (Kroeze and Seitzinger 1998). The removal of accessible 

run off is predicted to rise to 70% by 2025. If this figure is realised it will lead to 

severe degradation of aquatic ecosystems, the extinction of beneficial species, 

and the decimation of many fish populations (Postel 2000).  
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1.2.6 Impacts of climate change 
The increasing human population is having a dramatic effect on the world’s 

climate and climate change is now a major topic on the political agenda 

(Walther et al. 2005). Anthropogenic induced climate change is expected to 

cause a warming of 0.2°C per decade (IPCC 2007). The effects of global 

climate change is the least predictable of all factors affecting freshwater 

ecosystems (Allan and Flecker 1993). Lotic systems will be highly sensitive to 

future changes, where there will be species shifts and changes in hydrology 

(Carpenter et al. 1992). Thermal limits of freshwater environments will be 

increased, which is likely to open them up to species invasions (Carpenter et al. 

1992). Most of the invasive species affecting the North American Great Lakes 

originate from warmer waters, so an increase in global temperatures will give 

them a competitive advantage and accelerate their spread (Schindler 2001). 

Increasing temperatures will increase evapotranspiration, and along with a 

reduction in precipitation will lead to lower run off and decreased flows, 

converting permanent first order streams to short lived temporary streams 

(Murphy and Timbal 2008, Schindler 2001). Floodplains and wetlands will be 

especially vulnerable as the lack of flooding will lead to their demise, along with 

important fish populations that depend on them (Schindler 2001). Climate 

change is also causing a rise in sea levels, which results in saltwater intrusion 

into freshwater wetland systems (Hughes 2003).  Lower than average rainfall in 

southeast Australia combined with an increase in evaporation is putting the 

floodplains and wetlands under serious threat and in some areas of Australia 

the extension of saltwater ecosystems is as rapid as 0.5 km yr-1 (Hughes 2003, 

Murphy and Timbal 2008).  

 

Climate change can also increase river flows, where in Alaska a higher degree 

of summer warming results in increasing run off from glaciers, which can 

significantly affect flow regimes and sediments in downstream areas. The 

increase in glacial melt water will decrease the water temperature, which can 

significantly affect freshwater species, especially invertebrates which may be 

eliminated by the cold temperatures (Firth and Fisher 1992). Climate change 

can also lead to the acidification of rivers, as warming causes sulphur deposits 

to reoxidise and declining flows decreases the influx in base cations (Schindler 

2001). 
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1.3 Conservation methods for freshwater ecosystems 
 

Conservation of freshwaters is of vital importance to ensure their long-term 

viability and in order to conserve them the previously outlined threats need to be 

addressed with a sense of urgency. 

1.3.1 Hydrology 
Dam construction and operation is now coming under increasing scrutiny, with 

the complete removal of a growing number of dams whose environmental 

damage outweighs the social benefits (Postel 2000). Proposals have been 

made to operate dams in a way that protects the ecological functions of the 

river, by improving the upstream migration of fish and maintaining a minimum 

flow over the dam (Benstead et al. 1999). In the US there is a limit on the 

volume of water that can be diverted away from the San Francisco bay delta-

estuary and Los Angeles has been made to reduce its water withdrawals from 

the tributaries feeding into Mono Lake (Postel 2000). Postel (2001) suggests a 

number of improvements that can be made in terms of water use in agriculture, 

which can help reduce water extraction. Drip irrigation is a technique where a 

network of perforated plastic tubing enables farmers to deliver water directly to 

the plant roots, eliminating water waste and doubling crop yield (Postel 1999,  

2001). This technique can also be used to deliver fertilisers, which will help to 

regulate agricultural run off and improve water quality (Baron et al. 2002, Postel 

1999). Crops can be improved so that they use water more efficiently, where 

the extra available water could be reserved for ecosystems (Postel 1999). 

Limits on water extraction could be enforced and the drainage of wetland and 

peat lands by means of moorland gripping could be reversed by filling in ditches 

and raising the water table (Holden et al. 2004). 

1.3.2 Water quality 
Point source pollution incidences are easier to control than diffuse pollution and 

thus it is easier to maintain a high water quality (Allan 1995). Agriculture 

represents the major source of diffuse pollution, but afforestation and 

atmospheric pollution are also important contributors (Baron et al. 2002, Nisbet 

2001). Non point sources of nutrients and toxins now supply the majority of 

pollutants to freshwater ecosystems (Baron et al. 2002). Nevertheless, rivers 

have a natural recovery system, and diffuse pollution can be combated. After 
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sewage improvements took place the tidal River Thames, south east England, 

went from containing no fish at all to 80 species within a decade (Gameson and 

Wheeler 1977). A spill of a highly toxic herbicide into the Upper Sacramento 

River in California virtually eradicated all forms of life over a 60 km stretch, but 

within 10 weeks algae and insect populations had made a remarkable recovery 

(Allan and Flecker 1993). In Norway and Sweden a strategy to improve water 

quality involves continuous liming with limestone powder (Hesthagen and 

Larsen 2003). It was found to be successful at re-establishing Atlantic salmon to 

previously acidified rivers; however, it is hard to say whether this method 

protects the whole aquatic community (Hesthagen and Larsen 2003). 

Controlling atmospheric emissions is another way to combat acidification. North 

American and European management has been successful in controlling the 

emission of sulphur nitrogen and other organic toxins (Baron et al. 2002, 

Driscoll et al. 2001). However, water quality improvements will be useless if 

physical habitat degradation renders the habitat unsuitable for the species to re-

establish. 

1.3.3 Habitat 
One method of reversing habitat degradation is rehabilitating the in-stream 

habitat so it reflects a natural stream. Rivers that have been channelised pose a 

greater challenge and require river engineers to follow important ecological and 

geomorphic principles in order to make the channel design as natural as 

possible (Allan 1995). Features such as mini-wetlands, meanders, riffle-pool 

sequences, streamside vegetation and reducing the slope of the bank will help 

restore the stream and reduce the input of nutrients and pollutants (Petersen et 

al. 1992). It is important to look beyond the riverbanks where a buffer strip of 

uncultivated land can help filter out sediments, prevent erosion and protect 

important riparian habitat in both agricultural and forestry systems (Nisbet 

2001). Buffer strips can range from a few metres to 30 metres, but a 10 metre 

buffer strip of rye grass was found to substantially reduce surface run off in 

central Illinois, U.S.A (Osborne and Kovacic 1993). Prato (1989) found that 

minimum tillage was the most economically effective method for reducing 

erosion rates. In Denmark, lakes have been restored by means of dredging, 

oxygenation and the reduction in external nutrient loading (Jeppesen et al. 

1999). The restoration of river habitat and morphology also improves nutrient 

retention in the catchment, which aids in the recovery of lakes. 
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Full protection of aquatic habitat can only be achieved when there is complete 

control of the catchment. Freshwaters need to be viewed in a landscape context 

as many of the problems come from outside the river systems (Baron et al. 

2002). A broad coalition of water users is needed where headwaters, riparian 

zones and habitats that meet special needs of species are preserved and the 

numerous protected areas involved are integrated into an effective network 

(Allan 1995, Baron et al. 2002).  

1.3.4 Invasive species 
Although with restoration efforts streams can recover from pollution and habitat 

modifications over time, alien species are virtually impossible to eradicate (Abell 

2002). In spite of this, major efforts have been made to eradicate Gyrodactylus 

salaris from the rivers of Norway. Gyrodactylus salaris is a freshwater 

ectoparasite, which naturally infects Baltic stocks of Atlantic salmon without 

causing significant impacts on the population but is highly infectious to the 

Atlantic stocks (Peeler et al. 2006). Gyrodactylus salaris was first discovered in 

Norway in 1975 and has resulted in the collapse of salmon populations in 45 

rivers (Peeler et al. 2006, Winger et al. 2008). Attempts to eliminate the 

parasites have been carried out using rotenone, which is an indiscriminate 

poison killing all fish species and gill-breathing invertebrates, and therefore 

indirectly eliminating the parasite (Winger et al. 2008). This method may be 

extreme but has successfully eliminated the parasite from 19 rivers, which the 

salmon have successfully recolonised, but several treatments have also failed 

(Peeler et al. 2006, Winger et al. 2008). Legislations have been passed 

enforcing European countries to control the introduction of invasive species, 

where the sixth community environment action plan states that there must be 

the “prevention and mitigation of impacts of invasive alien species and 

genotypes” (The European Parliament and the Council of the European Union 

2002). However, prevention is always better than cure and tighter control over 

the aquarium trade and educating the fishing public can help prevent 

introductions and slow the spread of invasive species (Allan and Flecker 1993).  

1.3.5 Reintroductions 
One of the most positive areas of conservation lies in the establishment of new 

populations. The deliberate translocation of organisms by human means is 
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becoming increasingly important for reinforcing declining populations (White et 

al. 2003). Research needs to be done into the quality of the habitat, the 

appropriate numbers to be released and the genetic structure of the population 

(White et al. 2003). Poorly researched reintroduction programmes can result in 

a waste of resources and money, as the populations fail to establish, and can 

even lead to reintroduced animals expanding into new areas and damaging the 

habitat (Macdonald et al. 2000). Once the populations have been established 

they need to be protected and their numbers must increase through natural 

reproduction (Birstein et al. 1997). For example, the Soviet Government 

introduced over 12.9 million beluga sturgeon into the Volga River. However, as 

there was no natural reproduction the beluga populations in the Volga River 

continued to decline despite the restocking (Khodorevskaya et al. 1997).  

 

Reintroducing rare species within their natural range helps to increase their 

range and reduce the risk of extinction (Macdonald et al. 2000). The European 

beaver Castor fiber used to be widespread across Europe but suffered a severe 

reduction in numbers due to habitat loss and over hunting (Nolet and Rosell 

1998). By the beginning of the 20th century only eight small populations 

remained (Macdonald et al. 1995, Nolet and Rosell 1998). The European 

beaver has been widely reintroduced across Europe with the first reintroduction 

in Sweden in the 1920s and has now been reintroduced into Britain (Macdonald 

et al. 1995, Macdonald et al. 2000, Nolet and Rosell 1998). Beavers are 

keystone species, so its reintroduction can promote freshwater ecosystems 

functions, improve water quality, aid flood control and recreate conditions that 

are favourable to certain species (Hodder and Bullock 1997, Macdonald et al. 

2000). However, reintroductions carry certain risks and although beavers may 

maintain wetlands and create re-growth, which benefits the aquatic fauna, they 

may also damage forestry crops, agricultural land and riverbanks, and impede 

the migration of salmon (Macdonald et al. 1995). Reintroductions of nationally 

extinct populations are especially hard to predict and the alteration of habitat 

and possible transmission of pathogens and parasite may be harmful to other 

species (Hodder and Bullock 1997). Reintroduction may be an important 

management strategy but will always carry an air of uncertainty. 
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This thesis focuses on the white-clawed freshwater crayfish Austropotamobius 

pallipes, native in Britain, and an important crustacean which is threatened by 

all the previously discussed issues. As rivers and streams are the most 

mistreated and ignored natural resources, conservation of flagship species such 

as the iconic stream-dwelling crayfish will help to conserve important freshwater 

ecosystems (Schindler 2001). Flagship species play an important role in 

conservation as they can be used to educate the local people and creating a 

community ownership of such species can promote conservation of the local 

environment.  

1.4 Crayfish Ecology 

1.4.1 Introduction 
Crayfish belong to the largest crustacean order, the Decapoda which divides 

into two super families the Astacoidea and the Parastacoidea (Hogger 1988, 

Holdich and Lowery 1988). Astacoidea contains the two families, Astacidae and 

Cambaridae, which occur in the Northern hemisphere and the Parastacoidea 

super family contains the Parastacidae family, which is confined to the southern 

hemisphere (Holdich and Lowery 1988). There are over 500 species of crayfish 

found throughout the world, many of which are found in temperate countries but 

some are also found in the tropics (Holdich et al. 2004). The tropical Astacoides 

consists of six species all found in Madagascar, confined to the high altitudes of 

the mountains (Horton and Hobbs 1988). The majority of crayfish species are 

native to North America but there is also a great diversity of species in 

Australasia (Holdich et al. 2004, Souty-Grosset et al. 2006, Taylor 2002). The 

widespread distribution of crayfish species is due to their behavioural, 

physiological and ecological adaptations. However, many species have been 

able to expand their range unnaturally due to human intervention (Hogger 

1988). 

1.4.2 Life cycle 
Crayfish possess the basic arthropod body plan of a segmented body covered 

by a protective exoskeleton which must be shed in order for the crayfish to grow 

(Lowery 1988, Reynolds 2002). The moulting cycle dominates the life of these 

animals, as during moulting crayfish are vulnerable to attack from predators and 

cannibalism (Lowery 1988, Reynolds 2002). There is a strong tendency for 

adult crayfish to synchronise their moulting which may be an adaptation to 
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reduce the risk of cannibalism (Brewis and Bowler 1983). Prior to moulting, the 

calcium from the existing exoskeleton is reabsorbed, leaving the crayfish soft 

and vulnerable. However, this only provides 10 % of the calcium required to 

harden the exoskeleton, so crayfish must reabsorb a considerable amount of 

calcium from the water (Lowery 1988). There are numerous moults during the 

first few months but they decrease as the crayfish increases in size eventually 

reaching one moult per year (Lowery 1988, Reynolds 2002).  

 

When crayfish reach maturity, sexual dimorphism becomes more prominent as 

moult frequency varies between the sexes.  Females have a lower moult 

frequency as they cannot moult when bearing eggs (Figure 1.1), and due to the 

energetic demands of reproduction they also have smaller moult growth 

increments (Reynolds 2002). As well as growing faster, males also have larger 

chelae once they reach sexual maturity and females have a broader abdomen 

in order to accommodate the eggs (Reynolds 2002, Thomas and Ingle 1987). 

Both the age and size at maturity is greatly affected by the environment. 

Crayfish mature at younger ages in areas of good growing conditions, but delay 

maturity in harsh environments (Matthews and Reynolds 1995). 

 

The exoskeleton places constraints on internal fertilisation so males fertilise the 

eggs by the transfer of a spermatophore by the gonopods. Gonopods are 

modified anterior pleopods that function like a plunger, introducing the white 

spermatophore mass onto the underside of the female (Holdich 2003). Data on 

vas deferens weights has suggested that some males mate several times whilst 

others none at all. This implies there is a vertebrate-type dominance hierarchy 

in the mating system (Reynolds 2002). Females carry immature eggs in their 

ovaries which mature during a period of suitable temperature and photoperiod 

(Reynolds 2002). When they are newly hatched the females continue to carry 

the juveniles under her abdomen in order to protect them from predators. After 

the first moult they are released from the females but continue to cling to their 

ruptured eggs using their toothed chelae (Gherardi 2002, Thomas and Ingle 

1987). After the second moult the juveniles begin to swim and walk away from 

the female until they leave the female entirely after their third moult (Gherardi 

2002, Lowery 1988). The life cycle of the white-clawed crayfish can be seen in 

Figure 1.2. 
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The reproductive cycle of the Cambaridae family is quite different from other 

crayfish families, as cambarid crayfish exhibit cyclic dimorphism. After the 

production of young the mature females and males eat voraciously and then 

within weeks moult and assume immature appearance (Ackefors 1999). 
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Figure 1.1- Photograph of a ‘berried’ female signal crayfish Pacifastacus 
leniusculus. The term berried is used to refer to mature females that carry the 
egg mass of newly hatched young 
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Figure 1.2- Schematic life cycle of a white-clawed crayfish 



1.4.3 Habitat 

1.4.3.1 Water chemistry 
The chemical properties of water can affect processes such as moulting and 

reproduction and so, to some extent, determine which areas crayfish inhabit. 

Most crayfish cannot thrive in habitats where the pH ≤ 5. The water becomes 

too acidic and disturbs the calcium metabolism vital to the moulting process 

resulting in reproductive failure (Cukerzis 1988, Nystrom 2002). As crayfish are 

poikilothermic they can only survive at temperatures where important 

physiological process are able to take place. The ability to tolerate variability in 

temperature differs from species to species. The cambarids are restricted to 

warmer waters and although they have been found to survive in lakes in 

southern Sweden they cannot reproduce (Nystrom 2002). In contrast, the 

Astacidae family can cope with lower temperatures. For example, white-clawed 

crayfish Austropotamobius pallipes can survive in streams that experience low 

winter temperatures of 1.8°C and barely exceed 10°C in summer (Bubb et al. 

2002, Souty-Grosset et al. 2006). These cool water astacid crayfish have a high 

requirement for dissolved oxygen whereas the cambarids and parastacids are 

less demanding (Reynolds 2002). Certain cambarid species display behavioural 

adaptations to low oxygen concentrations. For example the red swamp crayfish 

Promcambarus clarkii, climbs onto bushes and aquatic plants, exposing its gills 

to the air, allowing it to survive in waters with oxygen concentrations as low as 

0.4 mg l-1 (Nystrom 2002). In comparison the astacid narrow-clawed crayfish 

Astacus leptodactylus can only survive temporary oxygen depletion of 3.97 mg 

l-1 (Koksal 1988).   

 

Although crayfish may be able to tolerate hypoxic conditions it was thought that 

relatively few are able to survive exposure to saline water. However, some 

crayfish species have demonstrated the ability to survive and grow in increased 

levels of salinity. Narrow-clawed crayfish inhabit brackish waters and can 

endure salinity fluctuations from four to 14 gl-1 and white-clawed crayfish, 

narrow-clawed crayfish and signal crayfish are able to survive for several weeks 

in a salinity of 21 gl-1 (Holdich et al. 1997, Koksal 1988, Nystrom 2002). Crayfish 

may be able to survive exposure to salinities of 21 gl-1 but reproduction and 

growth is disturbed above 7 gl-1 (Nystrom 2002). Therefore the presence of 
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crayfish in brackish waters will be for feeding purposes only and colonisation of 

these habitats will be limited (Koksal 1988, Nystrom 2002).  

1.4.3.2 Physical habitat 
Crayfish distribution cannot be explained by water quality alone as physical 

characteristics play an important role (Broquet et al. 2002, Souty-Grosset et al. 

2006). Crayfish are found in a wide range of habitats including lakes, rivers, 

swamps, wetlands, canals, reservoirs, and water-filled quarries but are usually 

highly localised, only inhabiting favourable sections within the habitat (Holdich 

2003, Nystrom 2002). A common requirement of all crayfish species is suitable 

substratum in which to burrow or to find a refuge (Reynolds 2002). Unlike the 

astacids, the cambarids and parastacids are able to burrow into soft bank 

substratum, enabling them to exploit more habitats (Horton and Hobbs 1988). 

Some species like the southern prairie crayfish Procambarus hagenianus spend 

most of their life in burrows, leaving them occasionally in order to find food or a 

mate (Gherardi 2002). Other species like the common yabby Cherax destructor 

only burrow in winter or during droughts (Gherardi 2002). For the non-burrowing 

astacids refuges are usually in the form of logs, stones, tree roots and 

macrophytes (Peay 2000).  Macrophytes and plant biomass provide important 

protection for many crayfish species; for example, wetland plants protect 

Procambarus allenin from the predatory largemouth bass Micropterus 

salmoides (Nystrom 2002). Cobbles and stones are another important refuge 

from predators, exemplified by rusty crayfish Orconectes rusticus in Wisconsin 

Lake, where use of cobble habitat was associated with a low predation risk 

(Kershner and Lodge 1995). Refuges are crucial for crayfish survival and so 

most aggressive behaviour between crayfish is centred around them. 

1.4.4 Behaviour 
When food or refuges are limited, crayfish will interact aggressively (Lodge and 

Hill 1994). The larger and older crayfish are more dominant and Bovjerg (1956) 

observed that within an hour a dominance hierarchy was established between 

the crayfish. Davis and Huber (2007) observed O. rusticus and found that larger 

individuals frequently displaced smaller individuals from refuges. As well as 

aggression cannibalism is also induced when there are low levels of food or in 

the presence of a moulting individual (Holdich 1991, Nystrom 2002). 

Cannibalism is usually directed at smaller conspecifics but aggression can 
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occur between species. For example, the introduced signal crayfish is 

particularly aggressive towards the smaller native white-clawed crayfish and 

narrow-clawed crayfish (Nystrom 2002).  

 

Crayfish activity, including conspecific interactions is concentrated during 

nocturnal hours where the absence of diurnal fish predators allows them to 

leave the protection of their refuges (Gherardi 2002). However, increased 

movement by night may be to avoid predators such as eels Anguilla sp. that 

prey by chemoreception, where refuges will provide no protection but increase 

their vulnerability to trapping (Blake and Hart 1993). Ingle (1976), found that 

juvenile A. pallipes were rarely seen during nocturnal hours and Davis and 

Huber (2007), found that smaller rusty crayfish individuals had a peak of activity 

in the afternoon. Juvenile crayfish may avoid nocturnal activity and forage under 

refuge to prevent aggressive interactions with larger conspecifics and predators. 

Juvenile crayfish may be able to avoid predators by identifying their chemical 

cues, where one study found that noble crayfish Astacus astacus juveniles were 

able to discriminate between chemical cues of several fish species (Blake and 

Hart 1993). This enables them to reduce encounters with predators by 

monitoring the habitat from within their shelter (Blake and Hart 1993, Nystrom 

2002). Crayfish also use chemoreception to locate conspecifics. Crayfish 

species such as northern clear-water crayfish Orconectes propinquus and virile 

crayfish Orconectes virilise were found to be attracted to chemicals released 

from conspecifics of the opposite sex during the reproductive season (Hogger 

1988, Nystrom 2002). Another use of chemoreception is in the location of food, 

since crayfish are stimulated to feed when compounds such as amino acids 

from animals and carbohydrates from plants are released (Nystrom 2002). 

1.4.5 Feeding 
Macrophytes, algae, snails, worms, insects and even small fish are all 

components of a crayfish diet (Holdich 2003, Nystrom 2002). Crayfish are able 

to consumer a wide range of food types due to the structure of their mouthparts 

and their ability to hold and grasp food items with their walking legs (Nystrom 

2002). Unlike the omnivorous adults, juvenile crayfish are considered carnivores 

as they feed predominantly on invertebrates (Goddard 1988, Reynolds and 

O'Keefe 2005). Juveniles require the animal protein for rapid growth in order to 

become less vulnerable to gape-limited fish predators and so increase their 
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likelihood of reaching adulthood (Momot 1995, Nystrom 2002). Adult crayfish 

suffer a loss in dexterity so invertebrates that are more active are lost from an 

adult’s diet. Instead, adult crayfish feed on plants such as moss, where the 

periphyton associated with it is easy to handle and easily digestible (Goddard 

1988, Momot 1995, Reynolds and O'Keefe 2005). This ontogenic shift towards 

greater herbivory may be in order to meet certain nutrient requirements, for 

example macrophytes such as Chara may be an important source of calcium 

(Holdich 2003, Momot 1995). However, adult crayfish are not as herbivorous as 

once thought, as the detritus ingested contains large communities of insects 

and soft-bodied metazoans and they are probably best described as 

opportunistic feeders (Momot 1995). This is reflected in the diet of white-clawed 

crayfish, where detritus was more prominent in their guts during autumn, 

coinciding with the peak litter fall, and insect larvae were more prominent in 

spring and summer, coinciding with the highest levels of insect biomass 

(Gherardi et al. 2004). 

1.4.6 Crayfish as keystone species 
Crayfish are the largest, mobile invertebrates inhabiting freshwaters and due to 

their large size and numbers (in suitable habitat) and their many trophic links 

are often considered as keystone species, as they can modify habitats and 

reduce or even eliminate plants and animals through predation (Momot 1995, 

Holdich 2003). Adult crayfish consume plants selectively, preferring to handle 

single-stemmed species such as Elodea canadensis and plants that lack 

buoyancy and cellulose such as Chara (Momot 1995, Nystrom et al. 1999). As 

well as consuming macrophytes, crayfish mechanically eliminate them while 

searching for other food items and can greatly reduce or even eliminate certain 

species (Momot 1995). The effect crayfish have on plant biomass is most 

obvious when they are eliminated from a habitat. Several studies found that the 

elimination of crayfish resulted in excessive weed growth and a significant 

increase in Chara (Abrahams 1966, Goddard and Hogger 1986, Matthews and 

Reynolds 1992).  Macrophytes create habitat heterogeneity and decrease 

predation efficiency so their reduction will have consequences for invertebrates 

(Nystrom and Perez 1998). As well as indirectly affecting invertebrates through 

the decrease in plant biomass, crayfish also actively forage on invertebrates 

(Nystrom et al. 1999), and can influence the community structure in habitats in 

which they are present. Crayfish significantly reduce the number of leeches and 
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molluscs, in particular snails, which leads to the domination of larger thicker-

shelled snails and active swimming invertebrates (Lodge et al. 1994, Nystrom et 

al. 1999, Nystrom and Perez 1998). At high densities, competition occurs 

between crayfish and fish over food, and crayfish can directly impact on fish 

growth and fecundity by modifying shelters and spawning areas (Momot 1995). 

Small benthic fish may be at risk from interactions with crayfish. In British rivers, 

both the native white-clawed crayfish and the invasive signal crayfish were 

dominant over bullhead Cottus gobio and ousted them from refuges (Bubb et al. 

2009). Guan and Wiles (1997) also found that the survival of bullhead and stone 

loach Noemacheilus barbatulus were significantly lower in the presence of 

signal crayfish. Crayfish not only control macrophyte growth and exert top-down 

influences on community structure; they also play an important role as prey. 

Crayfish are a source of food for large predators such as brown trout, European 

otter Lutra lutra, grey heron Ardea cinerea, and European eel Anguilla anguilla 

(Smith et al. 1996, Wiltshire and Reynolds 2006). 

 

A less obvious effect of crayfish is through a form of non-trophic engineering, 

where they exert a physical effect on river and lakebed sediments (Statzner et 

al. 2003, Usio and Townsend 2004). The walking activities of crayfish promotes 

sand and gravel erosion and stirs up the layer of sediments, which can release 

phosphorus and nutrients into streams and lakes and affect the entire water 

body (Momot 1995, Usio and Townsend 2004). In addition, the burrowing 

behaviour of some species of crayfish can lead to considerable damage and 

even collapse of the riverbank (Guan 1994). 

 

The important roles of crayfish in freshwater ecosystems are becoming 

increasingly recognised (Souty-Grosset et al. 2006, Usio and Townsend 2004). 

Unfortunately, these valuable species are in decline and several crayfish 

species are threatened or have already become extinct worldwide (Nystrom 

2002).  

1.5 Threats to crayfish 

1.5.1 Pollution 
As crayfish inhabit relatively clean waters, pollution is a serious threat (Hart and 

Fuller 1974, Holdich and Lowery 1988). Organic pollution results in siltation, 
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weed growth and a decrease in dissolved oxygen, which can lead to the 

exclusion of crayfish from certain river stretches (Holdich and Lowery 1988, 

Reynolds et al. 2002). The addition of phosphorus and nitrogen from human 

sewage causes eutrophication. This can cause toxic algae blooms and signal 

crayfish experienced high mortality in a Swedish pond during a bloom of toxic 

cyanobacteria Oscillatoria sancta (Nystrom 2002). Insecticides are the most 

toxic group of chemicals to crayfish and these agricultural pollutants are 

particularly threatening as they usually affect stretches of river in unpolluted 

rural sites where crayfish are locally abundant (Nystrom 2002, Souty-Grosset et 

al. 2006). Synthetic pyrethroids were first introduced in the early 1990s as they 

posed a lower threat to humans. However, they are 100 times more toxic to 

invertebrates than previously used organophosphates, where they affect the 

neurological systems of crayfish leading to paralysis and death (Howells and 

Slater 2003, Morolli et al. 2006, Slater and House 2001). With the intensification 

of agriculture the use of synthetic pyrethroids is a serious threat to crayfish, 

which in comparison to other macroinvertebrates have a lengthy recovery time 

(Peay 2002, Slater and House 2001). A pollution incidence in Poland led to the 

disappearance and replacement of the less tolerant native noble crayfish with 

more tolerant alien spiny-cheek crayfish Orconectes limosus (Nystrom 2002).  

1.5.2 Habitat degradation 
Wilcove et al (1998) stated that in North America alone there are 67 threatened 

crayfish species; 4% due to alien species, 28% of the species are threatened 

because of pollution, but 52% were due to habitat degradation (categories are 

nonexclusive so do not add up to 100). Human activities such as draining, 

dredging and channelisation are the usual causes of habitat degradation. They 

have a significant impact on crayfish populations due to the removal of 

important cover and food sources (Goddard and Hogger 1986, Holdich and 

Lowery 1988). During river operations the existing populations can be removed 

unintentionally (e.g. by dredging) and the river is left in a state that seriously 

deters colonisation from neighbouring populations, so crayfish populations 

become segregated (Hart and Fuller 1974). Channel alterations and drainage 

methods in the Tyrol region of Italy are seriously threatening white-clawed 

crayfish populations (Fureder et al. 2002). River operations can also lead to the 

increase in barriers such as long culverts, which increase local velocities and 

prevent crayfish from entering, especially when the ends are vertically stepped 
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(Peay et al. 2006). The presence of barriers and fragmentation of populations 

into sub populations results in reduced genetic variation and increased risk of 

extinction due to demographic stochasticity (Peay 2002). Even small barriers 

can have dramatic effects on crayfish dispersal (Bubb et al. 2008). There are 

only a few well documented cases of habitat degradation eliminating a crayfish 

species but Cambarellus alvarezi became extinct when the spring where it was 

found was removed for agricultural purposes in Northern Mexico (Taylor 2002).  

 

Intensification of agriculture has also lead to habitat degradation, where 

overstocking of riverside fields leads to severe poaching of the riverbank which 

increases turbidity and sediments entering the water (Nystrom 2002, Slater and 

House 2001). Mud and silt accumulation destroys crayfish habitat due to the 

loss of interstices between large sediment particles and reduced oxygen 

content in the interstitial water (Slater and House 2001, Taugbol and Skurdal 

1999). This has greatly reduced crayfish populations in the Eastern United 

States (Hart and Fuller 1974, Nystrom 2002).  

1.5.3 Invasive species 
The greatest threat to European crayfish is the threat imposed by invasive 

crayfish species. Non-indigenous crayfish species have been introduced all 

over the world and the competition from the introduced signal crayfish was 

partly to blame for the extinction of the sooty crayfish Pacifastacus nigrescens 

in the Western United States (Taylor 2002). Crayfish were accidentally 

introduced through ballast water and deliberately implanted into fish farm ponds 

and lakes and sometimes into the wild in order to establish crayfish farming 

(Holdich et al. 1999b). In some areas of Europe the native crayfish have 

become endangered due to the introduction of alien crayfish species (Souty-

Grosset et al. 2006). In Europe, unlike in other parts of the world, the alien 

crayfish carry a commensal organism Aphanomyces astaci  that causes drastic 

declines in the native species (Taylor 2002).  

1.5.4 Threats to European crayfish 
There may be over 500 crayfish species worldwide but only five are native to 

Europe (Edgerton et al. 2004). These five species belong to the family 

Astacidae and in Europe there are two genera of crayfish: Astacus which 

consists of three species and Austropotamobius which comprises of two 
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(Holdich 2002a, Souty-Grosset et al. 2006). Three of these five European 

species are classed as vulnerable; the noble crayfish, which is widespread in 

eastern, central and northern parts of Europe; the stone crayfish, 

Austropotamobius torrentium, which is confined to central Europe and the 

white-clawed crayfish, which is found in southern, central and northern Europe 

(Lowery and Holdich 1988, Taylor 2002). The remaining two species are the 

narrow-clawed crayfish which is found in Asia and Eastern Europe and the 

thick-clawed crayfish Astacus pachyous, which is confined to areas of the 

Caspian and Asov sea (Lowery and Holdich 1988, Souty-Grosset et al. 2006). 

1.5.4.1 Crayfish plague 
Over the last two centuries the abundance and distribution of native freshwater 

crayfish in Europe has been subject to major changes. This is due to the arrival 

and consequent spread of crayfish plague caused by the oomycete fungus 

Aphanomyces astaci (Souty-Grosset et al. 2006). Crayfish from North America 

were introduced to Italy unintentionally through ballast water introductions in the 

1860s (Holdich and Gherardi 1999). Since the introduction of alien crayfish from 

North America there have been widespread mortalities of native crayfish and by 

the 1930s the oomycete fungus A. astaci was implicated and became known as 

crayfish plague (Holdich and Gherardi 1999). Due to the rapid spread and 

destruction of the plague, alien crayfish from North America, in particular the 

invasive signal crayfish, were introduced to supplement native crayfish stocks 

for exploitation (Holdich et al. 1999a, Holdich and Gherardi 1999, Taylor 2002). 

However, North American crayfish carry the fungus as a sub-clinical infection so 

the introduced invasive signal crayfish became vectors of the plague and from 

1960 onwards were responsible for the continuing spread of the disease 

(Edgerton et al. 2004, Holdich et al. 1999a, Holdich and Gherardi 1999). The 

oomycete fungus A. astaci infects the host through the uncalcified regions 

where the mycelia then grow within the host (Holdich 2003, Smith and Soderhall 

1986). The fungus releases spores, which on contact with water, transform into 

zoospores that are chemotactically attracted to crayfish (Smith and Soderhall 

1986). The condition is extremely contagious and the spores can remain viable 

for up to nine days in the water (Smith and Soderhall 1986, Taugbol et al. 

1993). In Turkey, crayfish plague was responsible for reducing the native 

crayfish stocks by 85% and estimates found that roughly 5% of the original 

Swedish populations of native crayfish remain (Ackefors 1999, Taylor 2002). 
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Once infected it is difficult to see visually but the most obvious symptoms are 

behavioural abnormalities (Holdich 2003). Once the mycelium grows within the 

body it impairs mobility causing crayfish to walk on the tips of their legs as if 

walking on stilts (Holdich 2003, Smith and Soderhall 1986). Brown patches may 

also appear on the membrane between joints and infected individuals rarely live 

for more than two weeks (Holdich 2003, Smith and Soderhall 1986). The rapid 

spread of the plague is a direct result of human activity responsible for the 

movement of infected crayfish and equipment around Europe (Holdich 1991). 

Spores can be carried in the mud on boots, in the water, on fish and fishing 

equipment (Holdich 2003).  

 

Other alien crayfish species have been introduced into Europe and currently 

there are ten alien species present in Europe (Souty-Grosset et al. 2006). One 

of these is the red swamp crayfish, which was introduced to Spain in the early 

1970s (Ackefors 1999, Holdich 2002b). The red swamp crayfish is a tropical 

species but is now present in ten countries with temperate climates and is able 

to occupy a number of habitat types and adapt to temporarily dry conditions 

(Holdich 2002b). It is a well known vector of crayfish plague and is a major risk 

factor to the survival of white clawed crayfish in Spain (Gil-Sanchez and Alba-

Tercedor 2006).  Red swamp crayfish have also eliminated indigenous mollusc 

species in Spain and led to a 99% reduction in plant cover in Chozas lake in 

northwest Spain (Souty-Grosset et al. 2006). More recently the marbled crayfish 

Procambarus spp. has been introduced to Germany and as it belongs to the 

Cambaridae family is may also be a vector of the plague (Holdich et al. 2004, 

Souty-Grosset et al. 2006). Furthermore, it has been found to reproduce 

parthenogenetically and can release 120 juveniles every 8-9 weeks, so even 

the introduction of a single specimen can pose serious threats to natives 

(Scholtz et al. 2003, Souty-Grosset et al. 2006). 

 

European crayfish are also affected by other diseases such as the protozoan 

Thelohaniasis contejeani which causes porcelain disease, where infected 

individuals have a porcelain white colouration in the tissue of their tail muscles 

(Holdich 2003). This protozoan rarely causes mass mortalities like crayfish 

plague, but if the prevalence in a population is above 10% it may cause 

 24



population crashes (Holdich 2003, Holdich et al. 2004, Souty-Grosset et al. 

2006).  

1.5.5 Threats to white-clawed crayfish 
This thesis considers white-clawed crayfish Austropotamobius pallipes (Figure 

1.3) in Britain. Some of the largest remaining white-clawed crayfish populations 

in Europe are found in Britain and Ireland where it is the sole native species 

(Holdich 2003, Holdich et al. 1999b). White-clawed crayfish can be 

distinguished from other European species by the one post orbital spine 

(Laurent 1988). It has a pinkish white underside and the body is olive brown in 

colour (Goddard and Hogger 1986, Holdich 2003). Despite the dangers 

associated with the introduction of alien crayfish species in the late nineteenth 

and early twentieth century, Britain continued to import signal crayfish. Crayfish 

plague started to spread in Britain soon after 1981 and signal crayfish have 

become established as far north as the River Clyde in Scotland (Lowery and 

Holdich 1988, Peay 2000). 
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Figure 1.3- Photograph of a white-clawed crayfish 
 
There are four other crayfish species that have been introduced to Britain; two 

of them, the red swamp crayfish and the spiny cheeked crayfish, have been 

found to be vectors of the plague (Holdich et al. 2004, Palmer 1994). The 

narrow clawed crayfish and the noble crayfish have been found in sites in the 

south of England and although they are native European species they are still 

considered a threat (Holdich et al. 1999a). White-clawed crayfish have been in 

severe decline in Britain since the 1970s due to habitat loss, pollution, crayfish 

plague and competition with signal crayfish (Holdich et al. 2004). Records of 
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white-clawed crayfish were mapped according to their presence within 10 km 

squares and in the period 1997-2001 the white-clawed crayfish distribution had 

declined by 20.3%, in comparison to their distribution in 1990-1996 (Sibley et al. 

2002). 

1.5.5.1 Competitive exclusion 
There are some cases in Britain where populations of signal crayfish do not 

harbour the plague and mixed populations of signal and white-clawed crayfish 

arise (Bubb et al. 2005, Holdich 2003, Holdich et al. 2004). However, these 

mixed populations may exist for a couple of years but eventually the signal 

crayfish eliminate the native populations through competitive exclusion (Bubb et 

al. 2006, Holdich 2003, Holdich et al. 2004). In Britain, all mixed populations of 

white-clawed crayfish and signal crayfish that have existed were entirely made 

up of signal crayfish within nine years (Holdich 2003). Signal crayfish have a 

higher growth rate, higher fecundity, they reach their sexual maturity earlier, and 

have a better physiological tolerance to changing environments than white-

clawed crayfish (Holdich et al. 1999a, Lozan 2000, Nystrom 2002). In contrast 

white-clawed crayfish are a more K-selected species (live longer, have a lower 

fecundity and a slower growth rate) (Gherardi et al. 1997).  

1.6 Ecology of the white-clawed crayfish 

1.6.1 Life cycle 
White-clawed crayfish usually become sexually mature in their third year 

although this is dependent on growth rate (Holdich 2003). Mating takes place in 

October and November once the temperature has dropped below 10oC for an 

extended period (Holdich 2003, Matthews and Reynolds 1995, Peay 2000). As 

white-clawed crayfish cannot grow below 10oC they reach their northern limits in 

England and Ireland (Pratten 1980). However, a population was introduced to a 

limestone loch in Sutherland northwest Scotland where the gulf stream 

ameliorates winter temperatures (Holdich 2003, Palmer 1994). During the 

mating season males show increased movements and aggression induced by a 

receptive female, when the males are only receptive for a few days (Villanelli 

and Gherardi 1998, Woodlock and Reynolds 1988). Males compete 

aggressively with one another and also remove competitors spermatophores 

from receptive females by eating them and then replacing them with their own 

(Villanelli and Gherardi 1998). After mating, the females retire to the deepest 
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waters of the river and conceal themselves beneath rocks while they brood their 

eggs over winter, held beneath their tail (Holdich 2003, Ingle 1976, Villanelli and 

Gherardi 1998). Over winter, crayfish remain torpid in their refuges and for 

white-clawed crayfish, the harsh winter conditions can sometimes reduce a 

population by up to 40% (Brewis and Bowler 1983, Peay 2000). Hatching 

occurs in April and May in the south of their range and up to a month later in the 

north of England, where females start to become more aggressive and display 

territorial behaviour (Ingle 1976, Villanelli and Gherardi 1998).  Around 20-25 

days after hatching, the juveniles have moulted for the third time and the mother 

vibrates her abdomen while holding it out horizontally, releasing the hatchlings 

which are now completely independent from the mother (Ingle 1976, Thomas 

and Ingle 1987, Villanelli and Gherardi 1998). In the north of England, Brewis 

and Bowler (1985), stated that hatching does not occur until July-August. 

However, in the River Wansbeck, Northumberland almost all juveniles were 

released from the mothers by mid-July (H. Ream pers. obs).  

 

In comparison to other astacids white-clawed crayfish have a low reproductive 

rate only producing around 60-80 eggs a year (Reynolds 1997). The growing 

season is reduced by as much as three months in the northerly British and Irish 

populations due to the colder summer temperatures (Laurent 1988). This further 

reduces their fecundity rendering them more vulnerable to disturbances than 

other white-clawed crayfish populations (Laurent 1988, Reynolds and Matthews 

1997). Nevertheless, these northerly populations are important for the 

conservation of this species, where the most densely populated areas of white-

clawed crayfish in Britain were found in the northeast of England (Souty-

Grosset et al. 2006). 

1.6.2 Origins and taxonomy 

The origins of British and Irish populations of white-clawed crayfish have been 

disputed, where some believed that Irish populations were introduced from 

Britain relatively recently (Lucey 1999). However, analysis of haplotypes 

showed that populations in Ireland were not introduced from Britain but from 

western France, possibly by French monastic orders travelling to Ireland (Gouin 

et al. 2003, Reynolds 1997). British populations of crayfish may have also 

arrived from France via stream connections when the land bridge between 
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Britain and the rest of Europe existed (Gouin et al. 2003, Grandjean et al. 

1997). However, molecular techniques showed that British populations were 

very similar to French, which suggests a relatively recent origin (Holdich 2002a). 

White-clawed crayfish may have arrived in Britain due to human introductions 

from France, as literature from the 18th century refers to the stocking of pools 

with white-clawed crayfish and there is little reference to crayfish in Britain 

earlier than the 17th century (Thomas and Ingle 1971, Grandjean et al. 1997). 

Molecular techniques such as nucleotide sequence analysis of mitochondrial 

DNA has also helped to solve the taxonomic problem of white-clawed crayfish, 

which has gone through several taxonomic revisions. Now it is widely accepted 

that A. pallipes is a species complex that consists of two genetically distinct 

species A. pallipes and A. italicus, where A. italicus consists of four sub species 

all found in Italy (Fratini et al. 2005).  

1.6.3 Habitat of white-clawed crayfish 
White-clawed crayfish are found in relatively hard, mineral rich waters on 

calcareous and rapidly weathering rocks (Holdich 1991). The majority are found 

in waters with chalk, limestone or sandstone deposits where the pH typically 

ranges from 6.5 - 9 (Holdich 2003). White-clawed crayfish are more sensitive to 

calcium than other crayfish species and are unable to survive in waters with 

less than 5mg l-1 of calcium (Holdich 2003, Jay and Holdich 1981, Smith et al. 

1996). They can acclimatise to a range of temperatures and altitudes and have 

been found to inhabit high altitude lakes in the Alps, up to 1500 m (Souty-

Grosset et al. 2006). They can survive in rivers in northern England, where the 

water temperature reaches 1.8°C in winter (Bubb et al. 2002), and in rivers in 

Spain, where the temperature reaches 23oC in summer (Laurent 1988). 

Typically, they inhabit low order streams that are often in upland areas and are 

on average 0.75-1.25 metres deep, but they have been found in shallower 

waters (Bubb et al. 2008, Holdich 2003, Laurent 1988). They also occupy lakes; 

however, in Ireland they are usually found near the mouth of the inflowing river 

due to predation from eels and are scarce in lakes larger than 1,000 hectares 

(Hogger 1988, Reynolds et al. 2000, Reynolds 1997).  

 

White-clawed crayfish are usually found in high quality waters either class A or 

B on the UK Environment Agency general quality assessment scale, which 

relates to very good or good water quality in terms of chemical pollutant levels 
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(Gallagher et al. 2006, Holdich 2003, Holdich et al. 1999b, ). Nevertheless they 

have been known to exist below storm overflows and sewage works, where 

they seemed relatively tolerant to the pollution (Souty-Grosset et al. 2006). They 

are often found in relatively high gradient streams but require refuges to survive 

in the fast running waters (Bubb et al. 2008, Holdich 2003). Substratum is an 

important aspect of the environment for white-clawed crayfish, as it provides 

protection for juveniles from fish predators such as perch Perca fluviatilis, brown 

trout, and pike Esox lucius, but also protection for adults from mammals and 

birds such as grey heron, mink Neovison vison, otters and rats Rattus 

norvegicus (Armitage 2000, Hogger 1988, Holdich 2003). Studies have found 

that white-clawed crayfish often remain in one location for a number of days, 

where they display aggressive behaviour towards crayfish that they come into 

contact with (Bubb et al. 2008, Robinson et al. 2000). This may be so they can 

defend refuges, which are vital to their survival but are usually a limiting factor 

(Bubb et al. 2008, Statzner et al. 2003). Displacement from refuges by larger 

and more aggressive signal crayfish is a serious threat to white-clawed crayfish. 

It leaves them exposed to predators and may be one of the reasons they are 

competitively excluded by signal crayfish from plague free sites (Bubb et al. 

2006). 

1.7 Conservation of white-clawed crayfish 
 
White-clawed crayfish are currently labelled as threatened on the IUCN red list 

(IUCN 2010). White-clawed crayfish have had a protected status in Britain since 

1986 by the Wildlife and Countryside Act but more recently the international 

recognition of its vulnerability has led to its inclusion in the Bern convention 

(Kemp et al. 2003, Palmer 1994). This was later updated through the EU 

Habitats and Species Directive in 1992, where white-clawed crayfish are listed 

in Annexes II and V (Kemp et al. 2003, Palmer 1994, Souty-Grosset et al. 

2006).  Annex II requires the designation of special areas of conservation and 

Annex V makes it an offence to take white-clawed crayfish from the wild and 

sell it without a license (Kemp et al. 2003, Souty-Grosset et al. 2006).  

1.7.1 Habitat management 
In the UK, the Joint Nature Conservation Committee (JNCC) has drawn up an 

action plan for white-clawed crayfish and one of the aims is the designation and 
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management of protected areas (Palmer 1994). Habitat for white-clawed 

crayfish needs to be protected and riparian corridors can play an important role 

by protecting freshwater environments from agricultural and industrial effluents 

(Fureder et al. 2002). During river works on the River Lea, southern England, 

complex bank-structure and tree roots were maintained as well as refuges in 

the form of rocks, which greatly improved the recolonisation (Peay et al. 2006).  

1.7.2 Reintroductions 
The JNCC also aims to publish guidelines on species translocations and re-

establishments (Palmer 1994). Not all areas considered suitable for white-

clawed crayfish populations are currently occupied by the species and re-

introductions are regarded as crucial for the conservation and management of 

this species (Holdich 2003, Schulz et al. 2002).  Reintroduction can restore 

recently lost stocks and buffer against extinction rate or extend the range of 

existing populations by aiding recolonisation processes (Gil-Sanchez and Alba-

Tercedor 2006, Kemp et al. 2003, Reynolds 1997). Reintroductions have taken 

place in Irish lakes where populations were lost due to crayfish plague. Crayfish 

plague normally results in 100% mortality, but as it has no secondary host the 

fungus will eventually die out (Taugbol and Skurdal 1999). In situ tests can 

show whether the plague persists by holding crayfish in cages for a whole year 

and monitoring their health (Schulz et al. 2002, Spink and Frayling 2000). 

Reintroduction into the Boyne catchment and White lake in Ireland successfully 

resulted in good stocks after several years. These population may subsequently 

be important for possible reintroduction in Britain, where they will act as an 

offshore reservoir (Reynolds et al. 2002).  

1.7.3 Protection from alien crayfish 
Alien crayfish have to be accepted as part of the European fauna as it would be 

impossible to eradicate them, other than in small, isolated water bodies. 

However, it may be possible to prevent the spread of signal crayfish and other 

non-native crayfishes into water courses currently free from this species 

(Taugbol and Skurdal 1999). Isolation may help prevent signal crayfish and 

crayfish plague from reaching important native populations. High gradient 

barriers such as weirs and waterfalls can limit the spread of signal crayfish and 

crayfish plague in an upstream direction and protect populations of white-

clawed crayfish situated upstream of the barrier (Light 2003, Peay 2002). 

 30



Electric barriers may be installed to prevent signal crayfish entering pipes and 

tributaries but this would have a high cost of installation (Sibley and Noel 2002). 

Sex pheromone baited traps have shown to be effective at attracting and 

trapping male signal crayfish, which could be used to create a non-breeding 

population (Stebbing et al. 2003). Stebbing et al (2003) also tested the use of 

repellent pheromones, with the idea that they could be used to restrict the 

expansion of a population, but the results were inconclusive. 

1.7.4 Legislation and public awareness 
Legislation can help restrict the movement of signal crayfish and other alien 

crayfish and help prevent situations where alien crayfish are accidentally 

introduced to more river courses. Effective legislation can only be passed if 

those who write the laws are well educated on the subject and there is a need 

to improve communications between experts and policy makers (Taylor 2002). 

As the live importation of crayfish is allowed into Britain, there are strict laws on 

what happens to crayfish once imported. Crayfish were included in the 

prohibition of keeping live fish (crayfish) order 1996, where it is an offence to 

keep live white-clawed crayfish in England and Wales and it is prohibited to 

farm alien signal crayfish in designated “no-go” areas unless you have a licence 

(Department for Environment Food and Rural Affairs 2010). However, people 

frequently ignore these laws and prosecutions need to be made. Previous 

prosecutions include a fishery owner who was prosecuted for illegally 

introducing rainbow trout into a watercourse in the River Wear catchment, 

northeast England (Environment Agency 2010). Legislation is a good measure 

to prevent further spread but much depends on the awareness of the public and 

their willingness to comply. Since 1988, and the severe decline in white-clawed 

crayfish, the British public have become much more aware of the situation 

(Holdich 1991). The public need to be educated on the threats and 

consequences of introducing alien crayfish into rivers (Souty-Grosset et al. 

2006). Information campaigns and sterilising facilities for fishing gear can help 

limit the spread of crayfish plague (Reynolds et al. 2002). Carefully regulated 

recreational fishing of white-clawed crayfish can also enhance the awareness of 

this species and encourage the public to view white-clawed crayfish in term of 

aesthetic beauty and biological diversity (Holdich et al. 1999a, Reynolds 1997). 
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Most importantly, conservation can only be applied effectively with the backing 

of sound scientific knowledge. In this thesis, information is gathered on the 

microhabitat requirements and recolonisation processes of white-clawed 

crayfish, which will provide valuable information for the conservation of this 

species. 
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1.8 Research aims 
 
 Chapter 2 of this thesis sets out to expand the understanding of the 

microhabitat requirements of white-clawed crayfish, in particular juveniles. It is 

hypothesised that small, young crayfish use different microhabitats than larger, 

older crayfish. As mentioned in section 1.5, draining, dredging and 

channelisation of rivers along with intensification of agriculture is destroying 

crayfish habitat, which is having significant impacts on native crayfish 

populations. One of the conservation strategies outlined in section 1.7 to 

combat habitat degradation is the designation and management of protected 

areas. Microhabitat requirements of adults and juvenile white-clawed crayfish 

will provide invaluable information needed to identify areas that provide 

important habitat for all ages of crayfish. 

 

Chapter 3 sets out to give a better understanding of recolonisation in crayfish 

and the processes that are involved. It is hypothesised that recolonisation of 

unoccupied habitat by white-clawed crayfish involves both active dispersal by 

large adults in upstream and downstream directions, as well as small individuals 

passively dispersing from upstream regions. Pollution incidences are a serious 

threat to stream-dwelling crayfish, in particular white-clawed crayfish, as section 

1.6 highlights they have low fecundity and slow growth. Reintroductions are 

another crucial conservation strategy outlined in section 1.7, as they can buffer 

against extinctions and expand the range of existing populations. An 

understanding of the processes involved in recolonisation, through dispersal 

and the effects of pollution incidences, is crucial to the effective conservation of 

this species and success of reintroduction projects.  
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Microhabitat use in white-clawed crayfish 

2.1 Introduction 
 
In order to conserve native crayfish species a thorough understanding of their 

habitat requirements is needed. Populations of crayfish are usually highly 

localised, only inhabiting sections of a river where the habitat provides appropriate 

shelter from predation and drift (Edgerton et al. 2004). Many crayfishes, including 

sensitive and threatened species, are strongly affected by microhabitat features 

(Benvenuto et al. 2008). An understanding of habitat and microhabitat 

requirements is vital in order to correctly identify suitable areas for conservation 

and possible sites for successful reintroductions.  

 

The overall habitat requirements of white-clawed crayfish Austropotamobius 

pallipes (outlined in 1.6.3) are similar to many other crayfish species, especially 

native European astacids (Lowery and Holdich 1988). White-clawed crayfish tend 

to shelter under and between stones and Peay (2000) believes that crayfish prefer 

to refuge under larger stones, as they are more stable and stand up to high flows. 

Bubb et al (2006) also found that large substrate was important for creating 

suitable refuges and only recorded crayfish in locations with boulders and large 

cobbles. Boulders and cobbles are generally agreed to provide suitable habitat for 

white-clawed crayfish, but the importance of finer substrate is disputed. Some 

studies found that fine substrate such as silt was unsuitable for white-clawed 

crayfish and they were found not to inhabit areas covered in it (Blake and Hart 

1993, Holdich 2003). However, Peay et al (2006) found that in a study on the River 

Ivel, southeast England, crayfish were frequently found in habitats that were 

largely dominated by silt. It may be the case as Nystrom (2002) states, that an 

optimal habitat for crayfish is one that contains a diversity of substrate sizes. 

 

Several studies on white-clawed crayfish found that steep banks and exposed tree 

roots were present in the most widely used habitats (Smith et al. 1996, Peay et al. 

2006, Benvenuto et al. 2008). Benvenuto et al (2008) found that exposed tree 

roots were particularly important for smaller crayfish, as they provided structural 

complexity at the stream edge. Nystrom (2002) explains that tree roots may also 

be important for juveniles in the form of flood protection. Studies on white-clawed 

crayfish also found vegetation cover to be important. Smith et al (1996) found that, 
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in particular, over hanging vegetation was associated with favourable crayfish 

habitat. Usio (2007) found that early succession species, in particular alder Alnus 

glutinosa and willow Salix spp, were associated with high crayfish abundance. 

This may be because their leaves are not only a food source but also a good 

source of nitrogen (Usio 2007). However, Peay et al (2006) found that too much 

shading from trees caused crayfish numbers to drop due to the lack of emergent 

vegetation. Emergent and submerged vegetation, where emergent vegetation 

grows and emerges from the water and submerged vegetation only grows 

underwater, can create favourable habitat within the channel (Holdich 2003), but if 

the vegetation becomes too dense, it can impede the movement of the crayfish 

and create unfavourable habitats (Peay et al. 2006). 

 

While there is a good deal of information concerning habitat and some information 

on microhabitat requirements of the white-clawed crayfish, few studies have 

examined potential differences in habitat use by young, small crayfish (Carapace 

length < 25 mm) compared with those of more commonly studied larger adult 

crayfish. Benvenuto et al (2008) found that predation pressures could lead to 

segregation in the distribution of juveniles and adults. Large adults are more 

susceptible to predation from terrestrial predators, so they refuge in the deeper 

waters under boulders, whereas juvenile crayfish are heavily predated on by fish, 

so they take refuge in the shallower waters under finer substrate. It is 

hypothesised that different sizes of crayfish will inhabit different microhabitats, at 

least partly on the basis of small crayfish being able to exploit small refuges. In 

considering reintroductions, conservation, or mitigation, it is important to ensure 

that habitat and microhabitat characteristics are suitable for all life stages, 

including juveniles. This study used quantitative sampling of crayfish across and 

range of microhabitats to determine the microhabitats used by juveniles as well as 

adult white-clawed crayfish. 

2.1.1 Population structure 
The main difficulty in ascribing microhabitat use by juveniles and adults is deciding 

which of the crayfish caught are juveniles and which are not. The definition of a 

juvenile is an individual which has not yet reached sexual maturity. Age at maturity 

is dictated principally by growth rate to a critical size. In reality, the age crayfish 

reach sexual maturity is strongly affected by environmental conditions. They can 

delay maturity in harsher environments and crayfish which have smaller moult 
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increments, due to limb regeneration and disease, will reach critical size later in 

their life (Englund and Krupa 2000).  

 

A female crayfish can be identified as sexually mature if it bears eggs. Rhodes and 

Holdich (1982) found females as small as 23 mm carapace length bearing eggs in 

the River Leen, England. Brewis and Bowler (1982, 1985) concluded that in 

Northumberland, the minimum carapace length of sexual maturity in females is 22 

mm and all are mature by 27 mm carapace length. Determining whether a male is 

sexually mature is significantly harder and the data on the sizes of sexually mature 

males is sparse and less reliable. One method that can be used to determine 

sexual maturity in males is to look for whitened gonopods (Reynolds 2002). Males 

have been recorded to mature at smaller sizes than females (Thomas and Ingle 

1971, Brown and Bowler 1977). However, Lowery (1988) found that the females 

reached sexual maturity at 28 mm carapace length and males at 33 mm. 

 

White-clawed crayfish in Britain are said to reach the critical size in which they 

become sexually mature in their third year, and this age class is referred to as 2+ 

(Peay 2000). When released 8 - 10 months after reproduction in May - July, they 

are referred to as 0+ crayfish. They then enter their first mating season in October 

as 0+ crayfish, as although the eggs were laid a year ago they are only two - four 

months old. These 0+ crayfish then become 1+ crayfish once the young of the 

following year are released. Following this method of age classification, crayfish 

entering their third mating season, where they have usually reached sexual 

maturity, will be classed as 2+. 

2.2 Study site 
Microhabitat data collection was carried out on the River Wansbeck and the Hart 

Burn, a tributary of the Wansbeck in northeast England (Figure 2.1). The 

Wansbeck system is located in Northumberland, where the source is centred on 

55° North, 2° West. The source is 300 m above sea level and is located at OS grid 

reference NY914829 and the river enters the North Sea at NZ305854 (Worrall et 

al. 1998). In the Wansbeck white-clawed crayfish are the only crayfish species and 

densities are among the highest recorded in the UK (Rogers 2005). The bedrock in 

the Wansbeck catchment consists of Millstone grit, which was deposited during 

the Carboniferous age (Abesser et al. 2005). The River Wansbeck is 53 km long 

and has a width of 1 m near its source and 20 m at the lower end (Thom 1990). 

The Hart Burn is an eroding upland stream whose width rarely exceeds  



10 m and joins the Wansbeck after flowing for around 20 km from its source.  

 

In the Wansbeck, the data was collected over a 500 m stretch of the river. The site 

is situated just over 6 km downstream of the confluence with the Hart Burn, where 

the river runs through open pastures. The average gradient of the river section 

was 4.75 m km-1. The river section was lined with trees, mostly early succession 

species, especially alder. The bank-side vegetation consisted mostly of tall 

grasses including canary grass Phalaris arundinacea, branched bur reeds 

Sparganium erectum and butterbur Petasites hybridus. In the Hart Burn, the data 

was collected over a 3.5 km stretch, starting from a point 4 km upstream of the 

confluence of the Wansbeck and working downstream ending at 0.5 km upstream 

of the confluence. The average gradient of the river section was 7.14 m km-1, 

where the river passed through mostly deciduous woodlands and unimproved 

pasture. The bank-side vegetation was mostly made up of deciduous trees such 

as alder and ash Fraxinus excelsior.  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 2.1- Location of study sites in the Hart Burn and Wansbeck 

2.3 Methods 

2.3.1 Collection of microhabitat data  
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Data collection took place over the period 5th August - 29th September 2008 and 

29th July - 15th September 2009, when young of that year (0+) had been at liberty 

for several weeks. Sampling was by way of quadrats in which the crayfish were 



sampled using a Surber sampler together with microhabitat (Figure 2.2; see also 

section 2.3.2). Quadrats were placed quasi-randomly and all visible habitat types 

that were within the constraints on the depth were sampled. Crayfish were 

sampled from water depths up to 0.5 m. Deeper water could not be sampled due 

to the constraints of hand searching, where areas deeper than arms length could 

not be effectively searched. Sampling progressed in an upstream direction to 

avoid disturbance to subsequent sampling areas.  A total of 75 quadrats were 

taken in the Wansbeck and 101 in the Hart Burn. The quadrat measured 0.70 m 

by 0.70 m creating an area of 0.49 m2. The quadrat was placed in the river and the 

microhabitat within the quadrat was recorded in detail.  

 

Direction of flow 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2- Photograph of the Surber sampler used to capture crayfish and delimit 
the area for microhabitat recording 
 
The water velocity was measured using an OHIO Great Atlantic Flow Meter in 

2008, and a Valeport electromagnetic flow meter Model 801, in 2009.  OHIO Great 

Atlantic Flow Meter uses propeller revolutions to measure velocity in m/s and the 

Valeport electromagnetic flow meter uses the Faraday principle to measure the 

flow of water past a flat sensor. The propeller and flat sensor are suited for shallow 

and slower moving waters, so it is suited for measuring velocities in appropriate 

crayfish microhabitat. As crayfish are found on the streambed, the velocity was 

recorded 10 cm from the bottom. Water depth was measured using a meter ruler. 

Both the velocity and depth were measured within the quadrat at all four corners 

and the centre, in order to give average values as well as divergence. Velocity 
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heterogeneity was calculated as the standard deviation of the five readings. To 

avoid disturbance to the sediment, which would result in the movement of crayfish 

away from the area, depth and velocity were not recorded prior to the placement of 

the Surber sampler. The Surber sampler may affect the velocity of the water but it 

did not seem to have a dramatic effect, and measuring the depth and velocity at 

set points within the quadrat created consistency between samples.  

 

The substrate composition was classified according to particle size by using a 

modified Wentworth Scale (Table 2.1). The Wentworth scale is based on the 

diameter of the particle and each category is twice the preceding one (Giller and 

Malmqvist 1999). Substrate index was calculated from the percentage cover of 

different substrate categories. Substrate index = ∑nS where n is the percentage 

cover and S is the substrate category, which in this case ranges from one to six, 

with bedrock being zero. The cover of embedded substrate, where there were no 

crevices between the substrate and the riverbed, was also recorded. When 

creating the substrate index, cover of embedded substrate was given the value of 

zero, as like bedrock embedded substrate provides no refuges for crayfish. No 

Bedrock was recorded in the Wansbeck. Canopy cover over the quadrat was 

recorded in six categories based on the height and density of the nearby 

vegetation (Table 2.2).  

 
Table 2.1- Modified version of the Wentworth scale 

Category Size category Particle diameter (mm) 
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Sand < 2 1 

Gravel  2 - 16 2 

Pebble 16 - 64 3 

4 Small Cobble 64 - 128 
5 Large Cobble 128 - 256 

Boulder  > 256 6 



Table 2.2- Canopy cover scale based on the cover provided by bank-side 
vegetation  
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The percentage cover of organic matter, tree roots and aquatic vegetation was 

recorded. Organic matter included twigs, leaves and organic detritus and aquatic 

vegetation fell into the category of moss, algae or macrophyte. Although organic 

matter was recorded in the Wansbeck, the cover in the quadrats was not 

substantial enough to include it as a variable. Due to the lack of accessible root 

habitats, cover of roots was also not included as a variable in the Wansbeck. The 

distance of the quadrat to the closest bank was also recorded to the nearest 

metre.  

Canopy cover 
category Description 

0 Vegetation height of less than 1 m on both banks 

1 Vegetation height of less than 2 m on both banks 

2 Vegetation height of less than 2 m on closest bank only 

3 Vegetation height of over 2 m on both banks 

4 
Vegetation height of over 2 m on both banks and low branches 

overhanging 

5 Dense overhead cover 

  

2.3.2 Sampling crayfish 
The Surber sampler was made of netting fitted around the 0.70 x 0.70 m frame. At 

the downstream end, there was a large netting bag, which captured any crayfish 

swept into it by the flow or by an escape response (Figure 2.2). The netting was 

also extended to create a skirt around the bottom of the quadrat. The skirt was 

weighed down with leaded cord, in order to prevent crayfish from escaping through 

the gaps between the bottom of the quadrat and the riverbed. 

 

Once the sampler was in place, stones within the sampler were progressively 

removed from the bed, carefully checking for crayfish as each was removed. 

Crayfish observed were captured by hand with the assistance of an aquarium net. 

Once all the stones were removed an aquarium net was used to scour the 

remaining substrate for smaller crayfish. Finally, the sampler was removed and the 

net bag was checked for crayfish. Sampled crayfish were measured by carapace 
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length (from the rostral apex to the posterior median edge of the cephalothorax) to 

the nearest 0.1 mm using vernier callipers. The sex and any damaged limbs or 

evidence of disease was also recorded. Once the data had been collected, the 

stones were replaced and the crayfish were released at the site of capture. 

Sampling was carried out under a licence from Natural England. 

2.3.3 Determining age groups 
Some animals exhibit clear growth rings, which can be used to estimate age; 

however, such patterns do not occur in crayfish. The frequency distribution of 

carapace lengths was used to determine age groups. The frequency distribution 

obtained from a sample of lengths is often skewed and polymodal, where the 

modes refer to different age groups (Bhattacharya 1967). In general, variation in 

growth rates between individuals is lower earlier in life and results in a narrow 

range of sizes in the first cohorts, and typically progressively wider variation in 

subsequent cohorts. This usually enables the first few cohorts to be distinguished 

reliably. The Bhattacharya method identifies distinct normal distributions which 

may represent age groups (Bhattacharya 1967, Gayanilo 1998). Once one has 

been identified it is removed from the total distribution and the process is repeated 

until it is no longer possible to identify normal distributions (Bhattacharya 1967, 

Gayanilo 1998). The separation index is used to separate the modes, but 

separation is generally unreliable if the separation index is lower than 2 (Gayanilo 

et al. 2005). The boundaries between age classes were defined as where the lines 

of the normal distributions cross. FISAT II (Fisheries and Aquaculture Department) 

was used to run the Bhattacharya method. 

2.3.4 Logistic regression 
To see whether it is possible to predict the presence of crayfish from the variables 

recorded, logistic regression was carried out. Quadrats were separated into two 

categories, quadrats in which crayfish were present and quadrats in which crayfish 

were absent. Logisitc regression predicts the probability of a quadrat containing 

crayfish. Each variable recorded was analysed, where the log-likelihood 

determines if the variable had a significant effect on the outcome.  

2.3.5 Principal components analysis 
As multiple variables were recorded in order to understand the pattern of 

distribution in crayfish, multivariate analysis was used. Principal components 

analysis (PCA) was used as it reveals the relationships between variables, where 

interacting variables form factors. Factors can become the axis on a graph, where 
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each crayfish caught can be plotted. This allows for the visualisation of how the 

relationships between variables affect the presence of different crayfish ages. The 

variables for PCA were selected by removing all the variables with diagonal 

elements in the anti-correlations less than the minimum of 0.5. For both data sets, 

the Kaiser-Meyer-Olkin measure of sampling adequacy (KMO statistic) was above 

the minimum recommended by Kaiser (1974) of 0.5 and Bartlett’s test was highly 

significant (p < 0.001). This establishes that there is a relationship between the 

variables and PCA is appropriate for the data sets. Variables were considered for 

each crayfish caught so the sample size for the Wansbeck was 223 and for the 

Hart Burn 315. According to Steven (1992) when the sample size is 200 a loading 

of 0.364 and over is considered significant, and for a sample size of 300 and 

loading of 0.298 and over is considered significant. For the Wansbeck factor 

loadings of 0.364 and less were ignored and for the Hart Burn factor loadings of 

0.298 and less were ignored. The factors were rotated using oblique rotation to 

improve the interpretability of the factors. Oblique rotation was used as the 

component correlation matrix showed correlation between factors. The values 

were taken from the pattern matrix, although the structure matrix was consulted to 

make sure the pattern matrix had not suppressed any values (Field 2005). 

2.3.6 Canonical correspondence analysis 
Another multivariate analysis, Canonical correspondence analysis (CCA), was 

used to test for relationships between the assembly of age groups and the 

environmental variables (Terbraak and Verdonschot 1995), and these can be 

visualised in an ordination diagram. CCA was performed using CANACO 4.5 for 

Windows, where the data was transformed using square root transformation. 

Manual forward selection step was used, with the number of permutations set to 

999 which is the standard number used in the literature, as it ensure all ambiguous 

and weak effects are also identified (Buja & Eyuboglu, 1992). 

 

2.3.7 Non-parametric tests 
Kolmogorov-Smirnov tests were used to measure the normality of the data. Where 

data was not normally distributed, Kruskal Wallis tests were carried out for the 

continuous variables in order to make multiple comparisons. If a significant 

difference between age groups was found, Mann-Whitney tests were used to 

identify between which age groups the significant difference existed. As multiple 

Mann-Whitney tests were used, in order to make comparisons between age 
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groups, the Bonferroni correction was applied. For the Hart Burn, six different tests 

were carried out and for the Wansbeck only three, so the modified critical levels for 

were 0.0083 and 0.017 respectively. For the categorical data, which in this case is 

distance from bank as it was recorded to the nearest metre, and canopy cover, a 

chi-square test was used. As all the continuous variables were found to have a 

non-normal distribution no parametric tests were carried out. 

2.3.8 The effects of flooding 
Data collection on the Wansbeck was interrupted due to a 1 in 115 year flood 6th - 

8th September 2008. Previous to the flooding 45 quadrats had been collected. 

Once the river had become safe enough to collect data, 30 more quadrats were 

collected from the river over the period 25th -29th September 2008. Quadrats were 

placed in habitats that were newly formed from the flooding, as well as habitats 

that existed before the flooding. The data collected before and after the flooding 

were compared to see if the extensive flooding had any effect on the population of 

crayfish at the site.  

 

After the flooding took place, 12 quadrats were taken from areas that were 

immediately adjacent to previously placed quadrats taken before the flooding.  

These 12 pairs can allow direct comparisons to be made of conditions before and 

after the flood. The size distributions before and after the flooding were not 

normally distributed. Non-parametric Mann-Whitney tests were carried out when 

comparing all quadrats and a Wilcoxon test was carried out for the 12 pairs of 

quadrats taken from the same position.  

2.4 Results 

2.4.1 Population structure 
In the Wansbeck a total of 203 crayfish were caught, the carapace lengths of 

which ranged from 5.5 - 46.2 mm. In the Hart Burn a total of 283 crayfish were 

caught, of which the carapace lengths ranged from 3.8 - 40.3 mm. The output from 

FISAT II, in which the Bhattychara’s method is used to assign age classes, can be 

seen in Appendix 1. For the Wansbeck the Bhattacharya method found four age 

groups all with significant separation indexes above 2 (4.5 - 9.4 mm carapace 

length (CL), 9.5 - 16.4 mm CL, 16.5 - 30.5 mm CL, 30.5 - 40.5 mm CL). As the 

fourth age group only consists of a very small number of crayfish, it was included 

in the third group, which became 16.5 mm+ CL. The three age groups used were 



as follows 0+ = 0 - 9.4 mm CL, 1+ = 9.5 - 16.4 mm CL, 2+ and older = 16.5 mm+ 

CL (Figure 2.3). 

 

For the Hart Burn data set the Bhattacharya method found five different age 

groups all with separation indexes higher than 2 (3.5 - 7.4 mm CL, 7.5 - 13.4 mm 

CL, 13.5 - 22.5 mm CL, 15.5 - 29.4 mm CL, 29.5 - 35.5 mm CL). However, the 

fourth age group overlaps the third age group and the fifth age group only consists 

of a few crayfish. The first three age groups were used and all the rest were 

grouped as 22.5 mm+ CL. The four age groups used were as follows 0+ = 0 - 7.4 

mm CL, 1+ = 7.5 - 13.4 mm CL, 2+ = 13.5 - 22.5 mm CL, 3+ and older = 22.5 mm 

+ CL (figure 2.4).  

 

 

 

 

 

 

 

 

 
 

Figure 2.3- Size distribution of crayfish caught in the Wansbeck, where the arrows 
signify the upper size limit of the first two age classes 
 

 

 

 

 

 
 
 

 

 
 
Figure 2.4- Size distribution of crayfish caught on the Hart Burn, where the arrows 
signify the upper size limit of the first three age classes 
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2.4.2 Logistic regression 
The logistic regression on the Wansbeck data found that the percentage cover of 

small cobbles (χ2 = 4.973, p = 0.026), moss (χ2 = 6.776, p = 0.009) and canopy 

cover (χ2 = 4.159, p = 0.041) positively affect the presence of crayfish. The logistic 

regression lines in Figures 2.5 - 2.7 show that the effects of the variables are the 

same, where an increase of canopy cover, moss and smaller cobbles increases 

the probability of finding a crayfish. Depth was found to affect the presence of 

crayfish (χ2 = 4.973, p = 0.026) but as the depth increased the probability of finding 

a crayfish decreased (Figure 2.8). Sampling bias may have impacted on this 

association, where it is easier to find crayfish in shallower water. All other variables 

were found to have no significant effect on crayfish presence.  

 

 

 

 

 

 

 

 
 
 
 
Figure 2.5- Logistic regression for crayfish presence/absence dependent on the 
cover of small cobbles in the Wansbeck 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.6- Logistic regression for crayfish presence/absence dependent on the 
cover of moss in the Wansbeck 
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 Canopy cover
Figure 2.7- Logistic regression for presence/absence of crayfish dependent on 
canopy cover in the Wansbeck 
 

 

 

 

 

 

 

 

 

 
 
Figure 2.8- Logistic regression for presence/absence of crayfish dependent on 
depth in the Wansbeck 
 
For the Hart Burn substrate index was found to positively affect the presence of 

crayfish (χ2 = 8030, p = 0.005; see also Figure 2.9). Presence of bedrock was 

found to have a negative effect on crayfish presence (χ2 = 7.718, p = 0.005; see 

also Figure 2.10). Distance from bank showed a significant but weaker negative 

relationship (χ2 = 10.225, p = 0.036; see also Figure 2.11). Velocity was expected 

to be important but was not quite significant (χ2 = 13.753, p = 0.056). Figure 2.12 

shows the logistic regression for velocity where at higher velocities there was a 

reduced probability of finding a crayfish.  
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Figure 2.9- Logistic regression for presence/absence of crayfish dependent on  
substrate index in the Hart Burn 
 
 

 

 

 

 

 

 
 
 
 
 
Figure 2.10- Logistic regression for presence/absence of crayfish dependent on 
cover of bedrock in the Hart Burn 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.11- Logistic regression for presence/absence of crayfish dependent on 
distance from the bank in the Hart Burn 
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Figure 2.12- Logistic regression for presence/absence of crayfish dependent on 
the velocity in the Hart Burn 
 

It is possible to determine whether a combination of variables can influence 

crayfish presence by inputting more than one variable to the logistic regression. 

However, this was not deemed necessary, as the multivariate analyses will 

determine how a combination of variables influences the occurrence of crayfish.  

2.4.3 Multivariate analysis  

2.4.3.1 Principal components analysis 
Four variables, distance, velocity, velocity heterogeneity and substrate index were 

incorporated into a principal components analysis for the Wansbeck data. 

Two factors were extracted, which explained 75% of the total variance, with factor 

one explaining 49.5% of the variance and factor two explaining 25.5%. 

Table 2.3 presents the pattern matrix, where only the significant factor loadings of 

variables are shown.  

 

Table 2.3- Pattern matrix for principal components analysis for the Wansbeck 

Variable Loading on factor 1 Loading on factor 2 

Velocity 0.942   

Velocity heterogeneity 0.923   

Substrate index   0.885 

Distance   0.643 
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Five variables, distance, velocity, substrate index, percentage cover of algae and 

moss and percentage cover of roots were incorporated into a principal 

components analysis for the Hart Burn data. The two factors extracted explained 

69% of the total variance, with factor one explaining 46% of the variance and 

factor two explaining 23%. Table 2.4 presents the pattern matrix.  

 

Table 2.4- Pattern matrix for principal components analysis for the Hart Burn  
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For each data set the factor analysis scores for each individual distinguished by 

age group were plotted, where the score for factor one was the X coordinate and 

the score for factor two was the Y coordinate. The resulting graphs are shown in 

Figures 2.13 and 2.14. Both PCA graphs show little separation in the microhabitats 

inhabited by different age groups of crayfish.  

Variable Loading on factor 1 Loading on factor 2 

Velocity 0.862   

Distance 0.732   

% cover of algae/moss  0.703  

% cover of roots  0.896 

Substrate index   -0.817 

 

Both graphs also show clustering of points at relatively large substrate indexes 

and low velocities. By joining the outermost points on the graph maximum convex 

polygons were drawn, which represent the microhabitat breadth of the age groups. 

When the sizes of the convex polygons were defined they were not controlled for 

sample size. The maximum convex polygon for 0+ crayfish in both graphs is 

smaller in comparison to the older age groups, which implies that 0+ individuals 

occupy a smaller range of microhabitats. 

 

There was no significant difference between the X coordinates for the age groups 

in the Wansbeck but there was a significant difference between the Y coordinates 

(Kruskal Walls, n = 203, p < 0.0001). Points that represent the microhabitat use of 

0+ crayfish (Mann-Whitney U, n = 136, p = 0.002) and 1+ crayfish (Mann-Whitney 

U, n = 168, p < 0.0001) were recorded significantly lower down the Y-axis than 

points representing the microhabitat use of 2+ crayfish. This implies that 2+ 

individuals tend to be found in microhabitats that are composed of larger substrate 

and found further away from the bank in comparison to 0+ and 1+ crayfish. 



 

For the Hart Burn there was a significant difference between the points that 

represent microhabitat use by different age groups in both X (Kruskal Wallis, n = 

315, p < 0.0001), and Y coordinates (Kruskal Wallis, n = 315, p = 0.014). Points 

that represented microhabitat use of 0+ crayfish were recorded significantly lower 

down the X-axis in comparison to 2+ (Mann-Whitney U, n = 146, p < 0.0001) and 

3+ and older crayfish (Mann-Whitney U, n = 108, p < 0.0001). Points that 

represented microhabitat use of 1+ crayfish were also recorded significantly lower 

down the X-axis in comparison to 2+ (Mann-Whitney U, n = 175, p = 0.002) and 3+ 

and older crayfish (Mann-Whitney U, n = 137, p = 0.001). This implies that crayfish 

aged 2+ and 3+ and older were found in microhabitats with higher velocities, found 

further away from the bank and with a larger cover of moss and algae in 

comparison to the younger 0+ and 1+ crayfish. Points that represent microhabitat 

use of 0+ crayfish were also recorded significantly higher up the Y-axis in 

comparison to 3+ and older crayfish  (Mann-Whitney U, n = 108, p = 0.005). This 

implies that 0+ crayfish were found in finer substrate and in microhabitats with a 

higher percentage cover of roots 
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Figure 2.13- PCA biplots of microhabitat use by different age groups of crayfish in 
the Wansbeck. The overall microhabitat breadth is expressed for each age group 
by the maximum convex polygon. Individual points are shifted slightly to enhance 
visibility 
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Velocity (0.862), Distance (0.732), % cover of algae and moss (0.703) 
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Figure 2.14- PCA biplots of microhabitat use by different age groups of crayfish in 
the Hart Burn. The overall microhabitat breadth is expressed for each age group 
by the maximum convex polygon. Individual points are shifted slightly to enhance 
visibility 

2.4.3.2 Canonical correspondence analysis 
For the CCA, no significant variables were found for the Wansbeck, but five were 

found for the Hart Burn: velocity, substrate index, roots, organic matter, and depth. 

There is a degree of similarity with the PCA, as velocity, substrate index and roots 

were also found to be important variables. However, unlike in the PCA, depth and 

organic matter were found to be important variables and not distance and cover of 

moss and algae.  

 

The ordination diagram in figure 2.15 shows that the older crayfish of 2+ and 3+ 

and older are associated with each other in that they inhabit similar habitats, 

especially in terms of depth, velocity and substrate index. The percentage cover of 

roots seems particularly important to crayfish of age 3+ and older. The crayfish 

aged 0+ and 1+ were also found in similar habitats that are low in velocity, are 

shallow, have a low substrate index and contain organic matter. In particular, aged 

0+ crayfish were found in areas with organic matter. The microhabitats where no 

crayfish were found have no associations with the microhabitats inhabited by all 

ages of crayfish, suggesting that these microhabitats are different in terms of the 

environmental variables included. It seems uninhabited microhabitat have a lower 

cover of roots, higher velocity and lower substrate index. 
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Figure 2.15- Canonical correspondence analysis ordination diagram, which 
includes the average vectors of the significant variables, and the symbols 
represent the centroids for the different age classes 
 
The results from the multivariate analysis and the logistic regression were very 

different between the Wansbeck and the Hart Burn, which highlights the 

differences between the data sets.  

2.4.4 Univariate analysis 
After examining all the variables together in the multivariate analysis, each 

individual variable will be explored in detail in order to identify important variations 

between age groups. 

2.4.4.1 Substrate 
Substrate index was found to be an important variable in the multivariate analysis 

for both the Wansbeck and the Hart Burn. Substrate index was also found to be 

important in influencing the presence of crayfish in the Hart Burn and small 

cobbles were important in influencing crayfish presence in the Wansbeck. 

larger crayfish in both the Wansbeck and the Hart Burn tended to occur in 

microhabitats with larger substrate indexes (Figure 2.16). Median substrate index 

inhabited was significantly different between age groups in both the Wansbeck 

(Kruskal Wallis test, n = 203, p = 0.014) and the Hart Burn (Kruskal Wallis test, n = 

315, p = 0.002). In the Wansbeck the crayfish aged 2+ were found in significantly 

larger substrates than 1+ crayfish (Table 2.5). In the Hart Burn the crayfish aged 
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3+ and older were found in significantly larger substrates than 0+ crayfish (Table 

2.6). 

 

 

 

 

 

 

 

 

 

  

 

 Wansbeck Hart Burn 

Figure 2.16- Box plots including median, upper and lower quartiles, 95% upper 
limit and 5% lower limit of substrate index in crayfish microhabitats for the 
Wansbeck and the Hart Burn. 
 

 Table 2.5- P values for Mann-Whitney U tests for use of substrate indexes by 
different age groups of crayfish in the Wansbeck, where the highlighted cells 
signify a significant result 
 

 
 
 
Table 2.6- P values for Mann-Whitney U tests for use of substrate indexes by 
different age groups of crayfish in the Hart Burn, where the highlighted cells signify 
a significant result 
 

 

 

 

 

Each individual substrate category was compared to determine the origin of the 

significant difference in overall substrate index. The Kruskal Wallis tests for all 

substrate types in both the Wansbeck and Hart Burn are shown in Table 2.7. For 

the Wansbeck the pebble substrate and the large cobble substrate showed 

significant differences in percentage cover between age classes. For the Hart Burn 

sand, pebbles, small cobbles, large cobbles, boulders, and bedrock all showed 
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significant differences in percentage cover between age classes. Box plots of 

substrate size across age groups for the Wansbeck are presented in Figures 2.17 

A-E. 

For the Wansbeck, 0+ and 1+ crayfish tended to occur in microhabitats with the 

greatest cover of pebbles, where they were found in microhabitats with a 

significantly higher cover of pebbles than 2+ and older crayfish (Table 2.8; see 

also Figure 2.17, C). Microhabitats inhabited by crayfish of 2 years and older 

tended to contain a higher proportion of large cobbles, where they were found in 

microhabitats with significantly greater cover of larger cobbles in comparison to 1+ 

crayfish (Table 2.8; see also Figure 2.17 E). Box plots of substrate size across age 

groups for the Hart Burn are presented in Figure 2.18, A-E. 

 

Table 2.7- P values for Kruskal Wallis tests for use of seven different substrate 
types by different age groups of crayfish in the Wansbeck and the Hart Burn, 
where the highlighted cells signify a significant result 
 

Kruskall Wallis Hart 
Burn (n=283)

Kruskall Wallis 
Wansbeck (n=203)

Sand (<2mm) <0.0001 0.318

Gravel 2-16mm 0.646 0.413

Pebbles 16-
64mm 0.016 <0.0001

Small cobbles 64-
128mm

0.028 0.057

large cobbles 
128-256mm <0.0001 0.029

Boulders 
>256mm

0.001 0.374

Bedrock 0.02 n/a

 

 

 

.  

 

 

 

 

 

 

 

 

 
Table 2.8- P values for Mann-Whitney U tests for use of two different substrate 
types by different age groups of crayfish in the Wansbeck, where the highlighted 
cells signify a significant result 
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A) Sand < 2 mm diameter  B) Gravel 2 - 16 mm diameter 

D) Small cobbles 64 - 128 mm diameter 

 

 

 

 

 

 

 

 

 

 

C) Peb les 16 - 64 mm diameter b 
 
 
 
 
 
 
 
 
 
 

E) Larg  cobbles 128 - 256 mm diameter e F) Boulders > 256 mm diameter 

 
Figure 2.17- Box plots including median, upper and lower quartiles, 95% upper 
limit and 5% lower limit of the substrate composition of crayfish microhabitats on 
the Wansbeck 



 

D) Small cobbles 64 - 128mm diameter 

F) Boulders > 256mm diameter 

B) Gravel 2 - 16mm diameter 
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A) Sand < 2mm diameter 

C) Pebbles 16 - 64mm diameter 

 
E) Large cobbles 128 - 256mm diameter 

Figure 2.18- Box plots including median, upper and lower quartiles, 95% upper 
limit and 5% lower limit of the substrate composition of crayfish microhabitats on 
the Hart Burn 



The P values for the Mann-Whitney tests for each variable, where there was a 

significant value in the Kruskal Wallis test, are shown in Table 2.9. Quadrats 

where crayfish were absent were not compared, as the sample size was low and 

introducing another group would reduce the strength of the statistical test. Age 0+ 

and 1+ crayfish had a significantly higher cover of sand compared to 2+ and 3+ 

and older crayfish (Table 2.9; see also Figure 2.18, A). Age 3+ crayfish were 

recorded in microhabitats with a significantly higher cover of large cobbles in 

comparison to 1+ and 2+ crayfish (Table 2.9; see also Figure 2.18, E). Crayfish 

aged 3+ and older also had an association with boulders, although it is unclear 

from the boxplot they were recorded in microhabitats with a significantly higher 

cover of boulders than microhabitats used by 2+ crayfish (Table 9; see also Figure 

2.18,F).  

 

Bedrock was recorded in the Hart Burn only and there seems to be little variation 

in the cover of bedrock between microhabitats of different age groups (Figure 

2.19). However, the Kruskal Wallis test reported a significant difference (Table 

2.7), and age 2+ crayfish were recorded in microhabitats with a significantly higher 

cover of bedrock than 1+ crayfish (Table 2.9). 

 

 

Table 2.9- P values for Mann-Whitney U tests for use of six different substrate 
types by different age groups of crayfish in the Hart Burn, where the highlighted 
cells signify a significant result 
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Figure 2.19 – A box plot of the percentage cover of bedrock found in 
microhabitats of different age groups in the Hart Burn 
 
In the Wansbeck microhabitats inhabited by 2+ and older crayfish had significantly 

higher substrate indexes than 1+ crayfish (Figure 2.16), due to a higher cover of 

large cobbles and a lower cover of pebbles. For the Hart Burn, the significantly 

higher substrate indexes found in microhabitats inhabited by 3+ and older crayfish 

in comparison to 0+ crayfish (Figure 2.16) was due to a higher cover of large 

cobbles and lower cover of sand.  

2.4.4.2 Water velocity 
Water velocity was found to be a significant variable explaining the microhabitat 

use of crayfish in the PCA for both the Wansbeck and the Hart Burn. Larger 

crayfish tended to inhabit microhabitats with higher velocities in both the 

Wansbeck and the Hart Burn (Figure 2.20). In the Hart Burn there was a 

significant difference in median velocities between age groups (Kruskal Wallis, n = 

283, p < 0.0001), but not for the Wansbeck (Kruskal Wallis, n = 203, p = 0.274). 

Hart Burn crayfish of age 2+ and 3+ and older were recorded in microhabitats with 

significantly higher velocities than 0+ and 1+ crayfish (Table 2.10). 

 

Velocity heterogeneity was found to be important in explaining the microhabitat 

use of different age groups of crayfish on the Wansbeck, as it was included in the 

PCA. However, it was not found to be a significant variable in the PCA for the Hart 

Burn. There is little variation between age groups (Figure 2.21), and there was no 

significant difference in velocity heterogeneity between the age groups in the 

Wansbeck (Kruskal Wallis, n = 203, p = 0.186) or the Hart Burn (Kruskal Wallis, n 

= 283, p = 0.165). 
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 Wansbeck Hart Burn 

Figure 2.20- Box plots of the velocities found in microhabitats of different age 
groups in the Wansbeck and the Hart Burn 
 
 
 

Table 2.10- P values for Mann-Whitney U tests for the water velocities recorded in 
microhabitats of different age groups of crayfish in the Wansbeck, where the 
highlighted cells signify a significant result 
 

  

 
 

 

 

 

 

 

 

 

 

 

 
 
 

 Wansbeck Hart Burn 
 

Figure 2.21- Box plots of the velocity heterogeneity found in microhabitats of 
different age groups in the Wansbeck and the Hart Burn 
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2.4.4.3 Distance from bank 
Distance from bank was also found to be a significant variable in the PCA for 

describing crayfish distribution in both the Wansbeck and the Hart Burn. For both 

the Wansbeck and the Hart Burn distance from the bank, expressed in distance 

classes of <1 m, 1 - 3 m, >3 m, was found to be significantly different between the 

age classes of crayfish (Wansbeck χ2 = 28.844, p < 0.0001, Hart Burn χ2 = 

21.773, p < 0.0001). In the Wansbeck, more aged 0+ and 1+ crayfish were found 

within 1 m of the bank than would be expected if there was no effect of age (Figure 

2.22). For microhabitats found 1 - 3 m from the bank, the observed values were 

similar to the expected. In microhabitats 3 m and further from the bank, there were 

more 2+ and older crayfish found than expected and less 1+ and especially 0+ 

crayfish. 

 

In the Hart Burn more 0+ and 1+ crayfish and less 2+ and 3+ and older were 

observed within 1 m of the bank than would be expected if age had no effect 

(Figure 2.23). The same pattern was observed for microhabitats found 1 - 3 m 

from the bank. For the microhabitats found 3 m and further from the bank there 

were less 0+, 1+ and 2+ than expected and more 3+ and older crayfish. 

2.4.4.4 Cover of moss and algae 
Moss was found to be a significant variable in the multivariate analysis for the Hart 

Burn. Larger crayfish tended to be found in microhabitats with a higher cover of 

moss and algae in both the Hart Burn and the Wansbeck (Figure 2.24). In the 

Wansbeck the 2+ individuals had the largest median for percentage cover of 

moss. In the Hart Burn, the effect is less obvious where the medians are all zero, 

as the values for percentage cover of algae and moss were not as large as in the 

Wansbeck. There was a significant difference in the cover of moss and algae 

between microhabitats of different aged crayfish in both the Wansbeck (Kruskal 

Wallis, n = 203, p = 0.034) and the Hart Burn (Kruskal Wallis, n = 283, p = 0.002). 

Wansbeck crayfish of age 2+ and older were found in microhabitats with 

signficantly more algae and moss in comparison to 0+ crayfish (Table 2.11). Hart 

Burn crayfish of age 3+ and older were found in microhabitats with signficantly 

more algae and moss in comparison to both 0+ and 1+ crayfish (Table 2.12).  

 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 2.23- A bar chart of expected 
and observed numbers of crayfish of 
different age groups, in microhabitats 
with varying distances from the bank, 
recorded in the Hart Burn 

Figure 2.22- A bar chart of expected 
and observed numbers of crayfish of 
different age groups, in microhabitats 
with varying distances from the bank, 
recorded in the Wansbeck 
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Hart Burn 

 

 

 

 

 

 

 

  

Wansbeck   

Figure 2.24- Box plots of the cover of moss and algae found in microhabitats of 
different age groups in the Wansbeck and the Hart Burn 
 
 

Table 2.11- P values for Mann-Whitney U tests for cover of moss and algae 
recorded in microhabitats of different age groups of crayfish in the Wansbeck, 
where the highlighted cells signify a significant result 
 

  62

 

 

 

Table 2.12- P values for Mann-Whitney U tests for cover of moss and algae 
recorded in microhabitats of different age groups of crayfish in the Hart Burn, 
where the highlighted cells signify a significant result 
 
  

 

 

2.4.4.5 Cover of roots 
Cover of roots was a variable that was recorded in the Hart Burn only, as it 

contained a high number of accessible roots that could be sampled, unlike in the 

Wansbeck. The variable was found to be important in describing crayfish 

distribution in the PCA and CCA. Univariate analysis showed there to be a 

significant difference in cover of roots between age groups (Kruskal Wallis, n = 

283, p = 0.025). The box plot in Figure 2.25 suggests that older crayfish are found 

in microhabitats with a higher cover of roots. Age 2+ and 3+ and older crayfish 

were found in microhabitats with significantly more root cover than 1+ crayfish 

(Table 2.13). 

0+ 
(n=35)

1+ 
(n=67

0+ 

)
2+ and older 

(n=101)

(n=35) 0.028
1+ 

0.006
(n=67) 0.596



 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 2.25- A box plot of the cover of roots found in microhabitats of different age 
groups in the Hart Burn 
 
 
Table 2.13- P values for Mann-Whitney U tests for cover of roots recorded in 
microhabitats of different age groups of crayfish in the Hart Burn, where the 
highlighted cells signify a significant result 
 
 
 
 
 

 

2.4.4.6 Cover of organic matter 
Organic matter was another variable that was only included in the analysis for the 

Hart Burn, as it contained a high number of accessible areas of leaf litter, so 

provided a large enough sample size unlike in the Wansbeck. Organic matter was 

extracted as a factor in the CCA for the Hart Burn. Univariate analysis identified 

differences in extent of organic matter cover between age groups (Kruskall wallis, 

n = 283, p < 0.0001). There was a significantly higher cover of organic matter in 

microhabitats of the two youngest age groups (Table 2.14; see also Figure 2.26).  

 

Table 2.14- P values for Mann-Whitney U tests for cover of organic matter 
recorded in microhabitats of different age groups of crayfish in the Hart Burn, 
where the highlighted cells signify a significant result 
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igure 2.26- A box plot of the cover of organic matter found in microhabitats of 
different age groups in the Hart Burn 
 
2.4.4.7 Water depth 

Depth was not found to be an important variable in the PCAs but was included in 

the CCA output for the Hart Burn. Logistic regression also identified it as a 

significant variable for influencing the presence of crayfish in the Hart Burn.  

For the Wansbeck there was no significant difference in depth between ages 

(Kruskal Wallis, n = 203, p = 0.056), but there was for the Hart Burn (Kruskal 

Wallis, n = 283, p = 0.001). Box plots in Figure 2.27 suggest a small influence on 

depths used by different age groups. In the Hart Burn age 2+ crayfish were found 

in microhabitats that were significantly deeper than 1+ crayfish (Table 2.15) 

 

 

 

 

 

 

 

 

 

 

 
 

Wansbeck Hart Burn 

Figure 2.27- Box plots of the depth in microhabitats of different age groups in the 
Wansbeck and the Hart Burn 
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Table 2.15- P values for Mann-Whitney U tests for depth recorded in microhabitats 
of different age groups of crayfish in the Hart Burn, where the highlighted cells 
signify a significant result 
 

 

 

 

 

2.4.4.8 Canopy cover 
Canopy cover was classified in categories between 0 and 5, but due to the high 

abundance of trees there were few quadrats with little canopy cover, so categories 

0 - 3 were grouped together. Canopy cover was not found to be an important 

variable in either of the multivariate analyses for both the Hart Burn and the 

Wansbeck, but was identified by logistic regression as a factor which influences 

the presence of crayfish on the Wansbeck. For the Wansbeck there was found to 

be a significant difference between age groups (χ2 = 9.694, p = 0.046), but no 

relationship was found for the Hart Burn (χ2 = 5.464, p = 0.141). The expected and 

observed values for the Wansbeck are shown in Figure 2.28. More 0+ crayfish 

were found in relatively open sites than would be expected if age had no effect. 

More 0+ and 1+ crayfish were found in sites with dense overhead cover and more 

2+ and older crayfish were found in the high cover category 4 than would be 

expected. 

2.4.5 The effects of flooding on crayfish populations.  
The density of crayfish recorded in the Wansbeck before and after the 2008 

flooding was similar, where the mean density recorded before the flooding was 2.6 

crayfish/quadrat compared to 2.8 crayfish/quadrat after the flooding. There was no 

significant difference between overall densities of crayfish before and after the 

flooding (Mann-Whitney U, n=75, p=0.367), but the oldest age group of 2+ and 

older saw significant declines in densities after the flooding (Table 2.16). There 

was no significant difference in densities in other age groups (Table 2.16). 

 

The crayfish caught before the flooding were significantly larger than the crayfish 

caught after the flooding (Mann-Whitney U, n = 203, p = 0.002; see also Figure 

2.30). This may be a reflection of the reduction in abundance of large adult 

crayfish. In the matched pairs of quadrats before and after the flooding (Figure 31), 
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there was no significant difference (Wilcoxon, n=12, p= 0.272). However, this may 

be a reflection of the small sample size. There is always the possibility of sampling 

bias, as adult habitat may have been harder to search after the flooding due to the 

increased depth of channel sections.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.28- A bar chart of expected and observed numbers of crayfish of different 
age groups, in microhabitats with varying degrees of canopy cover, recorded in the 
Wansbeck 
 

 
Table 2.16- P values for Mann-Whitney U test for densities of different crayfish 
age groups before and after a major flooding event in September 2008, where the 
highlighted cells signify a significant result 
 

Age group P value
0+ 0.194

1+ 0.274

2+ and older 0.007
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Figure 2.29- Densities of different crayfish age groups recorded in the 75 quadrats 
collected in the Wansbeck in 2008, before and after the major flooding event in 
September 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.30- Size distribution of crayfish caught from all 75 quadrats taken in the 
Wansbeck 2008, before and after the major flooding event in September 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.31- Size distribution of crayfish caught from 12 matched pairs taken in 
the Wansbeck 2008, before and after the major flooding event in September 
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2.5 Discussion 

2.5.1 Factors influencing crayfish presence 
Different variables influenced crayfish presence on the Wansbeck and the Hart 

Burn. For the Wansbeck, crayfish were more likely to be present in areas with a 

high cover of small cobbles, moss and canopy cover and less likely to be present 

in deep waters. Previous studies have also recognised that crayfish are usually 

absent from deeper waters (Holdich 2003), but this may be because deeper 

waters are harder to sample. Other studies have also found tree shading to be 

important in creating suitable crayfish habitat (Naura and Robinson 1998). It is 

surprising that small cobbles in particular would be important for influencing 

crayfish presence, as crayfish have been found to favour larger stones, where 

cobbles only provide suitable habitat for juveniles (Peay 2000, Holdich 2003). 

However, in the Wansbeck a large number of adult crayfish were found under 

small cobbles, so they may represent an intermediate substrate that is widely used 

by a broad range of crayfish age groups, and therefore important in creating 

favourable habitats. Cover of moss and algae was found to be important in 

influencing crayfish presence, which is surprising as white-clawed crayfish are 

found in many rivers where moss is largely absent, for example the low lying River 

Ivel in Bedfordshire, England (Peay 2000). It may be that the cover of moss and 

algae represents the size of the substrate, where there is generally a higher cover 

on larger substrates such as cobbles and boulders. If this is the case then it is the 

substrate size that is influencing crayfish presence where there is a higher chance 

of finding a crayfish in larger substrates. 

 

In the Hart Burn, crayfish were more likely to be present in larger substrates, close 

to the bank, in slower velocities and in areas with a minimal cover of exposed 

bedrock. Bedrock is important for influencing crayfish absence, as it provides little 

refuge for crayfish, except where it is deeply fissured. Crayfish may generally be 

found close to the bank due to the added protection from high flows and rivers 

tend to get deeper further away from the bank. Large substrates such as boulders 

and large cobbles are important for crayfish, especially larger crayfish, which need 

a stable and solid substrate to refuge under. However this result is somewhat 

contradictory to the Wansbeck results, which found small cobbles to be important 

refuges. Crayfish are probably associated with slower velocities as it may make it 

easier for crayfish to forage, where less energy will be expended when moving. 

Higher velocities may also create unstable environments, which would be 
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unfavourable to crayfish as they are easily injured by moving rocks. Benvenuto et 

al (2008) agrees with this finding, as they found that white-clawed crayfish avoided 

streams with velocities over 0.1 m s-1. Streissl and Hodl (2002) also carried out 

logistic regression when looking at stone crayfish Austropotamobius torrentium in 

Austria. Similarly they found that the probability of finding a stone crayfish 

increases with increasing substrate size and decreased with increasing velocity. 

 

Overall it seems the important variables that influence crayfish presence vary, 

depending on the river. The output of the CCA showed a distinct separation 

between microhabitats where different ages of crayfish were present and where 

crayfish were absent. The separation of microhabitats was in terms of velocity, 

depth, substrate index, cover of organic matter and roots, which implies these are 

also important variables that influence the presence of crayfish. Unlike the 

Wansbeck, the variables important for influencing crayfish presence in the Hart 

Burn reflected the variables incorporated into the multivariate analysis.  

2.5.2 Microhabitat use by different age groups 
The PCA found velocity, substrate index and distance from bank to be good 

predictors of the presence of the different age groups, as they were found to be 

important in both rivers. These three variables showed interactions with one 

another, where microhabitats in close proximity to the bank had slower velocities, 

due to the projecting bank creating slower pools, and slower velocities resulted in 

finer substrate.  In both rivers the influence of these variables were similar.   

 

The areas covered by the maximum convex polygons on the PCA graphs imply 

that the 0+ crayfish are much more restricted by their microhabitat requirements 

than the older crayfish, in both the Wansbeck and the Hart Burn. There is always 

the possibility that smaller 0+ crayfish are harder to catch in different 

environments, restricting the environments in which they can be caught and 

recorded, but the use of a Surber sampler should have overcome this bias. The 

Wansbeck PCA suggests that 0+ crayfish are found in microhabitats with lower 

velocities than older crayfish. However the univariate velocity results found no 

significant difference between age groups. This is surprising but may be due to the 

lower sensitivity of the flow meter used that year, an impellor driven meter which 

exhibits low sensitivity at low velocities, which may have masked subtle 

differences in velocities. This relationship, where younger crayfish are found in 

slower velocities, is also apparent in the Hart Burn PCA graph. It is also reinforced 
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by the univariate results for the Hart Burn, where 0+ and 1+ crayfish inhabited 

microhabitats with significantly lower velocities than 2+ and 3+ crayfish. The 

younger crayfish are not capable of substantial active movements and are much 

more susceptible to the flow. Slower velocities may allow them to control their 

movement more effectively, enabling them to remain in suitable microhabitats and 

refuges.  

 

From the PCA graphs, 0+ and 1+ crayfish in the Hart Burn were found significantly 

closer to the bank. These results are reinforced by the chi-square results for the 

Hart Burn and the Wansbeck, where 0+ crayfish were absent from microhabitats 3 

m and further from the bank. The importance of distance from bank for the 

younger age classes may not be due to the direct effect of that variable, but the 

outcome of other variables such as velocity and substrate. The fact that there are 

slower velocities and finer substrates closer to the bank creates suitable habitat for 

juveniles. However, Benvenuto et al, (2008) found that the structural complexity at 

the stream edge was important for juveniles in terms of protection. Features such 

as roots may be a reason younger crayfish are associated with the stream edge, 

where the roots may provide invaluable protection to juveniles, especially during 

flooding.  

 

The PCA graphs also show that in both the Wansbeck and the Hart Burn 0+ 

crayfish were absent from quadrats with large substrate indexes, but positively 

associated with finer substrate indexes. This idea that smaller crayfish are found in 

finer substrate is reinforced by the univariate results for substrate index, and the 

univariate results for the individual substrate categories. However, it was not only 

0+ crayfish which were found in finer substrates. It has often been thought that 

crayfish are not found in sandy or muddy habitats, as they can only refuge in hard 

substrate, except for those species and sites were burrows could be made (Blake 

and Hart 1993, Holdich 2003). Nevertheless, in the Wansbeck microhabitats that 

were mostly covered in sand contained 1+ and 2+ and older crayfish. In the Hart 

Burn 0+ crayfish were found inhabiting a microhabitat where the substrate cover 

was 100% sand and all the age groups were found in quadrats where sand and 

gravel made up the majority of cover. This implies that although 0+ crayfish are 

absent from larger substrate, larger crayfish are not necessarily absent from finer 

substrate. Larger crayfish may be able to refuge in the finer substrate by burrowing 

into it, although the permanence of any such burrow depends greatly on the 
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stability of the fine substrate. Generally white-clawed crayfish can only create 

‘open’ burrows in compacted clay. 

 

The PCA graph from the Hart Burn shows a clustering of points around larger 

substrate, where 89% of all points signifying presence of crayfish represented 

microhabitats with a large substrate size. This implies that although all substrates 

are available to them to refuge in, larger substrate seem to be preferable. From 

the two study sites, it was found that in general 0+ and 1+ crayfish are found in 

microhabitats with a higher cover of sand and pebbles in comparison to other age 

groups, and 1+ crayfish are found to inhabit microhabitats with a higher cover of 

small cobbles. Older crayfish are found in microhabitats with a higher cover of 

large cobbles and boulders in comparison to other age groups. This suggests that 

age groups are substantially segregated by substrate, which implies habitats with 

a range of substrates will be important in order to accommodate all ages of 

crayfish.  

 

Foster (1993) also found that larger crayfish inhabited larger refuges, as a 

significant positive relationship between stone area and carapace length was 

found. The reason for the segregation may be due to the intra-specific competition 

between crayfish. The more stable refuges will be provided by the larger rocks, 

which the more dominant, larger crayfish will inhabit. These older crayfish will oust 

out the smaller crayfish to the less favourable finer substrate. However, smaller 

crayfish may also actively decide to take refuge in finer substrate found in 

shallower waters, where they can protect themselves from cannibalism and 

predation. Blake and Hart (1993) concluded that differential mortality and not 

juvenile behaviour explained the high abundance of juvenile signal crayfish in 

small substrates, where potential predators including conspecifics were less 

successful in smaller substrates and shallower water.  

 

Adult crayfish primarily consume vegetal items so moss and algae provides a 

major nutritional benefit. This may explain why adult crayfish were found in 

microhabitats with a larger cover of moss and algae. Gheradi et al (2004) found 

that white-clawed crayfish showed a preference to moss over other plant 

materials, and Foster (1995) found that there was a positive association of crayfish 

with moss cover. Cover of moss and algae was not found to be an important 

variable in the Wansbeck. This may be because the majority of recordings of moss 
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and algae in the Wansbeck were on the aerially exposed surface of the rocks, 

where its inaccessibility may make it an unsuitable food source. Alternatively, 

algae and moss cover may not be directly important for crayfish, but may reflect 

the size of the substrate, where larger substrates usually have a higher cover of 

moss and algae. The univariate results for moss exhibit the same pattern as the 

substrate index, where 0+ and 1+ crayfish were found in microhabitats with 

significantly less cover of moss and smaller substrates, compared to the 3+ and 

older crayfish. If the significant effect of moss and algae cover on the distribution 

of age classes was purely down to the underlying factors of substrate size, it 

means that cover of moss and algae is not an important variable.  

 

Cover of roots was included in the analysis of the Hart Burn data but not the 

Wansbeck. The PCA implies that roots were important to 0+ crayfish as the points 

that represent microhabitats used by 0+ crayfish were found higher up the axis. 

However, according to the univariate results root cover is important for the older 

crayfish of age 2+ and 3+ and older, where they inhabit microhabitats with the 

highest cover of roots. The refuge areas provided by the roots in the Hart Burn are 

usually quite large so suitable for larger crayfish. Root habitats create very stable 

and effective refuges and act as leaf litter traps, which means they provide an 

important source of food for the omnivorous adults. The larger crayfish may take 

advantage of these high quality refuges and exclude the smaller crayfish from the 

root habitats. Other studies found that roots were important for juveniles where 

Smith et al (1996) concluded that marginal habitats with roots are important 

nurseries for juveniles and Benvenuto et al (2008) also found that roots give 

juveniles important additional protection at the stream edge. Holdich (2003) found 

that roots are important shelters for juveniles, but also adults if the roots are larger. 

In our study sites, the tree species of alder and ash may produce larger roots in 

comparison to other rivers, which contain finer roots systems e.g. willow that may 

be more suitable for juveniles. Nevertheless, there were limitations in the use of a 

Surber sampler, as it did not easily allow the sampling of roots. Only the edges of 

roots could be sampled and the more compacted roots closer to the bank and in 

the under cut of the bank, which may have been more suitable for juveniles, could 

not be sampled. This may explain why root habitats were not found to be important 

for juvenile crayfish, as the root habitats important for juveniles were not sampled.  
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For the Wansbeck PCA, velocity heterogeneity was included as a significant 

variable; however, there were no significant difference found in the univariate 

analysis. Velocity heterogeneity may purely be reinforcing the importance of 

velocity, as larger velocities are generally associated with larger substrate, which 

will have local effects on the flow and so create more velocity heterogeneity. It is 

not surprising that velocity heterogeneity seems of limited relevance, because 

crayfish do not need to rely on slow pools of flow created by substrate, instead 

they refuge in the substrate itself. 

  

Cover of organic matter and depth were included as significant variables in the 

CCA for the Hart Burn. The CCA ordination plot (Figure 2.15) showed that the 

cover of organic matter is important for 0+ and 1+ crayfish but not for 2+ and 3+ 

and older crayfish. Organic debris may be an important variable for 0+ and 1+ as it 

can provide refuge for the smaller crayfish, but not for the larger, older crayfish. 

Also, organic matter will provide an ideal habitat for invertebrates, which the 

carnivorous juveniles prefer to feed upon (Momot 1995). The organic matter itself 

is not a good food source for juveniles but it is widely consumed by the older 

omnivorous adults (Goddard 1988). However, high cover of organic matter was 

usually found close to the bank where the substrate was small, making it 

unsuitable for adult crayfish. 

 

Depth is important for larger crayfish, as they need deeper water to protect 

themselves from terrestrial predators such as heron Ardea cinerea and otter Lutra 

lutra, which hunt by sight so the predation risk is high in the shallower clearer 

waters (Englund and Krupa 2000, Benvenuto et al. 2008). The younger smaller 

crayfish tend to avoid deeper waters due to threats from fish predators, which only 

pose a threat in depths where they can manoeuvre and hunt successfully 

(Englund and Krupa 2000, Benvenuto et al. 2008). It is also possible that juveniles 

are mainly found in shallower waters due to the resources it provides such as 

good habitat for invertebrates, which juveniles solely feed upon. Whereas, the 

wider range of food items consumed by the adults including plant material, 

requires them to venture into deeper waters. This possible segregation due to 

predation and resource use is reflected in the CCA plot (Figure 2.15), where the 

0+ and 1+ crayfish are found in shallower water in comparison to 2+ and 3+ and 

older crayfish. This pattern is also shown in the univariate results for Hart Burn, 

where the larger 2+ crayfish are found in significantly deeper water than the 1+ 
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crayfish. However, on the Wansbeck there was no significant difference in depth 

between age classes and other studies such as Englund and Krupa (2000), found 

that water depth was an insignificant variable for crayfish. Whether depth plays an 

important role in habitat selection may depend on how strong the predation 

pressures are in the environment. It is also possible that the limitations of the 

method used, where water deeper than 0.5 m could not be sampled, may mask 

the overall pattern of distribution. However, it is unlikely that juveniles will be found 

in deeper waters than were sampled so the conclusions drawn are still valid. 

 

The CCA plot shows an association between 0+ and 1+ crayfish and between 2+ 

and 3+ and older crayfish. The Hart Burn 2+ crayfish are still too small to be 

sexually mature. This implies that a potential change in behaviour after becoming 

sexually mature does not seem to affect microhabitat requirements. It seems the 

difference in microhabitat requirements is a direct result of size where after 

reaching a threshold size (around 13 mm carapace length for the Hart Burn) the 

microhabitat requirements of the crayfish changes.  

 

Finally, the remaining variable of canopy cover was not found to be an important 

variable in the multivariate analyses, but there was a significant chi-square result 

for the Wansbeck. In the Wansbeck, the younger crayfish of age 0+ and 1+ are 

found in the most covered areas, probably because the younger crayfish inhabit 

microhabitats close to the bank, which will be highly covered. Overhead vegetation 

has little impact on stream dwelling crayfish as they take refuge under substrate so 

the added protection of vegetation will be minimal. However, canopy cover may 

help protect older crayfish, which are preyed on by terrestrial predators, and this 

may explain why the larger crayfish were not found in exposed areas. 

Nevertheless, the majority of quadrats taken in the more exposed sites were in 

close proximity to the bank, which is most likely the main reason adult crayfish 

were not recorded in those locations. The trees that create the canopy cover may 

be more important for crayfish than the canopy cover itself, as their leaves provide 

important nutrition (Foster 1995). The main reason for the lack of significant results 

is that both study sites had extensive amounts of tree cover, so there was not 

enough canopy cover variability to determine its importance. 

2.5.3 The effects of flooding 
After the 1 in 115 year flood on the Wansbeck 6th- 8th September 2008, there was 

not a significant reduction in overall crayfish density, but there was a significant 
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reduction in the larger crayfish. The smaller crayfish may be less vulnerable from 

moving boulders during high flows, as they can fit into smaller crevices so have 

less chance of becoming injured. However, on Tuesday 16th September 2008, the 

Environment Agency reported a mass stranding of crayfish in the fields beside the 

River Wansbeck. The mass stranding event occurred just 2.5 km upstream of the 

study site. Overall roughly 6,150 crayfish were returned safely to the river but 

about 10,300 died. There was reported to be a higher survival of juveniles, 

probably due to the fact they could survive in pools of water for longer. This may 

be one of the reasons for the reduction in large adult crayfish caught after the 

flooding.  

 

After the flooding, a couple of quadrats contained very high densities of crayfish 

(over 10 crayfish/quadrat), densities that had not been recorded in the Wansbeck 

study area previous to the flooding. There were fewer areas suitable for crayfish 

due to newly deposited mounds of gravel or exposed bedrock with no crevices. 

This may have led to high densities of crayfish collecting in the remaining suitable 

habitat. 

 

It is important to consider that the microhabitat use of crayfish may change by 

night when the crayfish become active. There is the possibility of radio tracking 

and night observations but these methods are biased towards adults, as only adult 

crayfish can carry a radio transmitter and smaller crayfish will be even harder to 

find at night and by torchlight. The main purpose of this study was to identify the 

microhabitat requirements of juveniles and how they compare to adult crayfish. It 

is unlikely that juveniles will move into new microhabitats by night as they tend to 

remain under refuge (unlike adults who feed at night), so only recording the 

microhabitat use during the day will have little effect on the conclusions drawn. 

2.5.4 Conservation implications 
The Wansbeck is believed to have the largest density of white-clawed crayfish in 

Britain, which implies there is excellent crayfish habitat present (Rogers 2005). 

The habitat recorded in the Wansbeck could create a model to be applied to areas 

where river restoration is required. The most basic yet fundamental requirement of 

a white-clawed crayfish is access to a suitable refuge (Peay 2002). Substrate 

heterogeneity is vital in order to provide refuges for all age groups, as although 

larger substrate is important, finer substrate is still accessible to larger crayfish and 

pebbles provide important refuges for smaller crayfish. In order to maintain these 
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important refuges, land management is needed to reduce excessive siltation, 

which leads to the embedding of potential refuges, where interstices are filled with 

silt and become unavailable to crayfish (Peay 2000). Many studies have 

concluded that enhancing bank-side features is important in the conservation of 

crayfish (Smith et al. 1996, Peay et al. 2006, Benvenuto et al. 2008). Bank-side 

features such as tree roots and riparian vegetation, maintains a complex bank 

structure, which creates habitat heterogeneity, including slower pools for the 

juveniles and roots for all ages of crayfish. Engineering work that damages or 

alters the bank-side features should be prevented. Strong flows cause instability in 

the sediment, where shifting beds of gravel and cobbles is unlikely to present 

suitable microhabitat. Therefore, patterns of microhabitat suitability are also linked 

to channel geomorphology, where the risk of severe flooding should be low as this 

may have a mass mortality effect on the larger reproductively active crayfish.  
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Recolonisation by white-clawed crayfish 

3.1 Introduction 
 
Dispersal is fundamental to the survival of a species and individuals are always 

under a selective pressure to disperse in order to avoid extinction risks, 

competition, inbreeding, and unfavourable variability in habitat quality (Bilton et al. 

2001, Bowlby et al. 2007). Dispersal is especially important in freshwater 

environments, where the conditions are changing constantly (Lucas and Baras 

2001). Dispersal is a density dependent process, where individuals move away 

from high-density areas in search of a new site with few resource competitors 

(Bovbjerg 1959, Elliott 2003, Bubb et al. 2006). This can lead to the colonisation of 

new areas and recolonisation of areas which have become depopulated. 

 

Recolonisation in riverine invertebrates can occur via downstream drift, active 

migration, and from aerial sources (Lancaster et al. 1996). Aerial dispersal may be 

the most prominent mechanisms of colonisation in insects, however, is it not 

possible for other lotic macroinvertebrates (Wallace 1990). For macroinvertebrates 

such as white-clawed crayfish, which have no terrestrial life form, dispersal is 

limited by the physical parameters of the stream (Detenbeck et al. 1992). 

Dispersal can only occur through active upstream and downstream movements 

and passive downstream drift from the young of the year (0+ crayfish) once they 

have been released from their mothers (see section 1.6.1). 

 

The physical medium of flowing water allows organisms to be transported in the 

water column, where in river systems the transport is always downstream 

(Lancaster et al. 1996). Downstream drift is an important source of recolonisation 

in macroinvertebrates (Townsend and Hildrew 1976, Lancaster et al. 1996). This 

includes crayfish, where in Britain, in the summer months of June-August, newly 

independent juveniles can be transported over considerable distances 

downstream (Robinson et al. 2000). As the crayfish become larger and more 

dense, they are less easily transported in the water column, so downstream drift is 

less likely to occur (Bubb et al. 2004). Instead, the larger, more mobile adult 

crayfish are able to make active movements in order to disperse (Robinson et al. 

2000, Bubb et al. 2004). The upstream dispersal ability of white-clawed crayfish is 

largely dependent on the mobility of these actively moving adults, but downstream 
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movement may occur by passive transport of young (< 10 mm) and active 

movement of adults. 

 

Many adult decapod crustaceans are highly mobile animals at least partly due to 

their size. American lobsters Homarus americanus were recorded to have a 

maximum movement of 2.5 km day-1 (Bowlby et al. 2007), and freshwater crabs 

Potamon fluviatile of 134 m day-1 (Gherardi et al. 1998). In comparison, crayfish 

seem to move relatively slowly, where the highly invasive red swamp crayfish 

Procambarus clarkii only has a maximum rate of movement of 11 m day-1 

(Gherardi et al. 2002). In comparison to other decapods white-clawed crayfish 

appear to be poor dispersers; they cover small areas when foraging and move 

relatively slowly (Gherardi et al. 2001, Bubb et al. 2008). Adult white-clawed 

crayfish reside in the same area of the stream for long periods of time (Gherardi et 

al. 1998, Robinson et al. 2000, Bubb et al. 2008). However, stationary phases are 

interspersed between nomadic phases, where they can move up to 200 m in one 

night (Brown 1979, Gherardi et al. 1998). These large movements are particularly 

common after moulting and during the mating season (Brown 1979, Gherardi et al. 

1998). 

 

The limited dispersal ability of white-clawed crayfish implies that it may take a 

substantial amount of time to recolonise a stretch of river after a disturbance 

event. However, the time taken for recolonisation may depend on the location of 

the dispersal pools to the depleted zone. Dispersal by passive and active means 

from an upstream source could result in rapid recolonisation, whilst active 

upstream dispersal to a depleted zone would be much slower. This makes it vitally 

important to understand the spatial behaviour and recolonisation ability of white-

clawed crayfish, in order to apply this to reintroduction and restocking schemes. 

This Chapter aims to increase the understanding of the movement and population 

growth of crayfish, by studying a population of white-clawed crayfish while they 

recolonise a stretch of river after a pollution event. It also seeks to determine the 

relative importance of active dispersal of adults and passive drift of juveniles in the 

recolonisation process. 
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3.2 Study site 
  

The data was collected from the Hart Burn, a tributary in the Wansbeck catchment, 

previously described in Chapter 2. On 14 May 2004, there was a mass mortality 

event on the Hart Burn caused by unidentified pollution. The pollution source was 

located by the Environment Agency in the Hart Burn woods (NGR: NZ 08908652). 

Surveys were carried out by the EA and it was concluded that a 3 km stretch 

downstream of the source was affected, where an estimated 30,000 crayfish died 

along with huge mortalities of other invertebrates such as mayflies 

(Ephemeroptera) and stoneflies (Plecoptera). No fish or higher vertebrate mortality 

was recorded and healthy populations of crayfish were found upstream of the 

source and in the River Wansbeck, where the affected portion of the Hart Burn 

meets. The specific pollutant was not identified, but appears to have been highly 

temporary. No pollution events have been reported there since. 

3.3 Methods 
 

White-clawed crayfish reproduce in October - November and the females lay their 

eggs soon after mating has occurred. Females bear their eggs over winter, which 

hatch in northern England around June. The juveniles remain attached to their 

mothers for several weeks and once they have moulted three times their mother 

releases them, usually around mid-July. Following the incident in May 2004, three 

surveys were carried out in 2004 (carried out by D.H. Bubb and M.C. Lucas), in 

the affected zones as well as upstream and downstream. The surveys in 2004 

(carried out by D.H. Bubb and M.C. Lucas) were in June/early July (before the 

release of the young), August (after release of young from the females) and finally 

October (prior to egg laying). Sequential surveys were carried out in May, August 

and September 2005, June and August 2006, May and September 2007 (carried 

out by D.H. Bubb and M.C. Lucas), September 2008 and August 2009 (carried out 

by M.C. Lucas, H.M. Ream and V. Louca). The surveys were timed so they were 

prior to egg laying in autumn, where females become inactive, and with 

decreasing temperatures crayfish become harder to find. All surveys were carried 

out by standardised timed-effort hand searching of streambed refuges by 

experienced surveyors during clear, low-water conditions. Each survey took 

several days, but in similar conditions, where the crayfish were counted, sexed 

and measured. Stones were moved aside and any crayfish that were seen were 

caught if possible and a note was made if they escaped. The carapace length 
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(from the rostral apex to the posterior median edge of the cephalothorax) of each 

crayfish that was caught was measured to the nearest 0.1 mm using vernier 

callipers. Hand searching refuges is the most effective and robust method for 

rapidly assessing presence and relative densities in shallow stream environments, 

especially when populations are present in low densities (Peay 2000, Bubb 2004). 

 

Standardised effort searches were carried out for a minimum of one-person hour, 

where several two-person hour searches were carried out at each selected site. 

The catch per unit effort for each survey was calculated as the total number of 

crayfish caught and seen in one hour and this was used as a measure of 

abundance and compared across sites. Sites were selected along the river, which 

provided suitable habitat for crayfish. Suitable crayfish habitat included slow 

flowing stony sections, boulder riffles, cobbles and leaf litter, and among bank-

structures including overhanging vegetation and submerged roots (Smith et al. 

1996, Peay 2000, Holdich 2003, Benvenuto et al. 2008). The sites selected also 

had areas of low turbulence and were relatively shallow so they could be easily 

searched. Sites were selected across the whole reach of the affected area, 

including upstream of the pollution and downstream in the River Wansbeck (Figure 

3.1). Surveys carried out prior to 2008 did not include the author, but raw data was 

provided for analysis.  

 

Surber sampler quadrats of 0.7 x 0.7 m dimensions were collected in the Hart 

Burn in 2009 from seven of the sites surveyed (A,B,C,D,E,F,H; see Figure 3.1). 

The data from these quadrats was used to compare densities and microhabitats 

between the sites and for comparison to hand-search data from that year. 

Macrohabitat data was also recorded at 11 of the sites in 2009 

(A,B,C,D,E,F,H,K,M,N,O; see Figure 3.1). Habitat data was recorded to aid in 

interpretation of observed patterns of recolonisation. Velocity, depth, channel 

substrate, bank-side vegetation, bank-structure, flow types, the size of the buffer 

strip, adjacent land use and canopy cover were recorded. Nine values for velocity 

and depth were recorded at each site, where they were measured at three points 

along three transects of the stream. The velocity was measured with a Valeport 

electromagnetic flow metre model 801. The modified Wentworth scale shown in 

Chapter 2 (Table 2.1) was used to calculate the substrate composition of each 

site.  
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The bank-side vegetation was categorised into cover of woody bushes, reeds, 

herbaceous vegetation, evergreen trees and deciduous trees. The bank-structure 

was categorised into tree roots, overhang, herbaceous vegetated slope, eroding 

bank, vertical bank, steep rocky bank and beach, where the definitions of each 

category is shown in Table 3.1. The percentage cover of flow type was 

categorised into rapid, riffle, glide and pool in accordance to Padmore (1998), with 

the definition of each category presented in Table 3.2. Canopy cover was recorded 

as a percentage of the river section covered by the canopy of trees. 

 

Table 3.1- Definition of bank-structure categories recorded in the Hart Burn 
Category Definition 

Tree roots Tree roots projecting into the water from the 
bank 

Overhang Overhanging bank above the water or 
undercut bank below the water 

Herbaceous vegetated slope Self explanatory 

Bare eroding bank Crumbling bank with no vegetation 

Vertical bank No overhang, erosion or vegetation, but too 
steep to classify as beach 

Steep rocky vertical bank Self explanatory 

Beach Usually in the form of rocks and gravel and 
includes mounds of rocks and gravel which 
form the bank 

 
Table 3.2- Definition of flow types recorded in the Hart Burn 

Flow type Definition 

Broken standing water (rapid) White water and tumbling waves with the crest 
facing upstream 

Unbroken standing water 
(riffle) 

Undular standing waves with crest facing 
upstream and without breaking 

Smooth boundary turbulent 
(glide) 

Very little turbulence occurs, reflection is 
distorted and floating debris moves in a 

downstream direction 

Scarcely perceptible flow 
(pool) 

Floating debris appears stationary and reflection 
is not distorted 
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In order to compare the sizes of crayfish at the sites during the first two years of 

recolonisation, pair-wise comparisons between sites were carried out. Non-

parametric tests were used as the sizes were non-normally distributed 

(Kolmogorov-Smirnov test statistic, p < 0.05). For the first two years (2004 - 2005) 

the sizes of crayfish at sites C, D, F, and I were compared to each other and the 

unaffected Wansbeck sites combined, and then separately to the unaffected Hart 

Burn reach. A site was only included in analysis if there were a sufficient number 

of crayfish present (n=5). A sample size of five was chosen, as it was a 

compromise between looking for differences and minimising the number of sites 

excluded, but a sample size close to five may lack the power to detect differences. 

In 2004, site I was the only site that had high enough numbers for comparisons to 

be feasible. In 2005, all sites had high enough numbers, so the Bonferroni 

correction was applied, where the significance level became 0.05/10 (where the 

number of comparisons determines the denominator). Pair-wise comparisons were 

only carried out for the first two years, as it would be unlikely if any further 

significant differences would occur as the population increases and becomes 

demographically similar.  

 

Daily water discharge data was also obtained for the years 2004 – 2005, to 

determine if discharge had any effect on the initial recolonisation. The data was 

obtained by the Environment Agency at a recording station on the Wansbeck in 

Mitford (NGR: NZ 1745885790), just under 10 km downstream from the 

confluence with the Hart Burn. Although flow in the Hart Burn sub-catchment may 

be affected by local rainfall not received by the upper Wansbeck catchment, 

normally patterns of flow in the two sub-catchments are similar on any given day. 

Discharge at Mitford is therefore regarded as an adequate measure of crude 

patterns of discharge in the Hart Burn. 

3.4 Results 

3.4.1 Long-term trends in recolonisation 
Figure 3.2 presents the relative abundance of crayfish caught at each of the 

survey sites from 2004 until 2009. There were some fluctuations in catch per unit 

effort (CPUE) between different times of the year, with highest values normally in 

summer, but the same spatial patterns were evident. There were markedly 

reduced numbers over a 3 km stretch, in comparison to the controls a month after 

the pollution event.  
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Figure 3.2- Catch per unit effort of white-clawed crayfish on the Hart Burn, 
showing timescale of recolonisation. Negative values refer to sites upstream and 
positive values downstream  



The two most downstream Hart Burn sites, K (3214 m downstream of pollution), 

and I (3034 m downstream of pollution), had a relatively high number of crayfish in 

2004. However, it still took three years for the sites to reach similar abundances to 

those of the unaffected controls. There were early signs of recolonisation at site C 

(105 m downstream) in August and September 2004, and the population there 

seemed to recover in terms of relative density within a year. The two middle sites 

D (826 m downstream of pollution), and F (2070 m downstream of pollution), took 

the longest to recover. Site, D, took three years for relative abundances to reach 

similar levels to that of the controls, while site F, took four years. Overall, even 

though there was suitable habitat available and a lack of competition, it took four 

years for the crayfish population to recolonise the 3 km stretch of river to relative 

densities similar to those in unaffected control reaches. 

3.4.2 Initial recolonisation and demography 
To ensure there is no difference in the demography of the two separate unaffected 

control reaches, the size distribution in the control sites upstream in the Hart Burn 

and downstream in the Wansbeck were compared in Figures 3.3 and 3.4.  

There seems to be little variation in sizes and there was no significant difference 

between sites (Independent T test, n1 = 180, n2 = 119, p = 0.160). 
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Figure 3.3- Size distribution of crayfish caught in the Hart Burn control sites on the 
30th/31st July 2009 
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Figure 3.4- Size distribution of crayfish caught on the Wansbeck on the 5th August 
2009 
 

Distinction between age classes was achieved by monthly length frequency 

analysis (Figure 3.5). In May and June, before the young have been released in 

that calendar year, the smaller juveniles of carapace lengths as small as 7 mm 

would have been released the previous year. Once the young of the year have 

been released in July, there is a clear size separation between the 1+ and 0+ 

crayfish. In July-August crayfish with a carapace length less than 10 mm will be 

aged 0+, and those with a carapace length greater than 10 mm will be aged 1+.  

 

If crayfish with carapace lengths smaller than 10 mm are recorded at a site in 

August, and reproductively active crayfish (> 25 mm carapace length (CL)) have 

also been recorded at the site, then it suggests that a reproductively active 

population is present. 

 

 

 

 

 

 

 

 

 
 86



October

Carapace length (mm

 87

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 
Figure 3.5- Size distribution of crayfish with carapace lengths 10 mm and less, 
across months, showing the separation of 0+ and 1+ age groups by month. 
Release of young from females occurs in July 
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The size distribution of crayfish caught in every survey is presented in Figure 3.6 

as box plots. In June/July 2004, about a month after the pollution incident, a 

relatively high abundance of crayfish was caught at sites K and I. The presence of 

individuals around 10 mm carapace length (Age 0+, 2003 year class), suggests 

that these may have survived the pollution incident. 

 

In August 2004, there were no young of the year (0+ crayfish, 2004 year class) 

present at the two downstream sites K and I. The crayfish found at a site I, were 

significantly larger than those found in the control sites in the Hart Burn (Mann-

Whitney U, n = 23, p = 0.046). This suggests an influx of larger individuals but no 

influx of smaller individuals. From the 2004 discharge data (Appendix 2) there was 

a high flow from the 8th August 2004 lasting until the 29th August 2004, yet surveys 

carried out on 31st August, immediately after the high flows, found no influx of 

juveniles in the depleted zone. 

 

In October 2004, there was an influx of 0+ and 1+ juveniles in the upper parts of 

the depleted zones, where they reached as far downstream as site D (826 m from 

pollution source), despite the fact that there had been low flows since the last 

survey in August (Appendix 2). Age 1+ crayfish ranging from 18 - 20 mm carapace 

length were present at site H. 

 

In May 2005, there was an influx of larger individuals (ca. 20 - 30 mm CL) to site C 

(105 m downstream from pollution source), and the downstream movement of 

adult crayfish reached as far as site D (826 m). There was more downstream 

dispersal of 0+ crayfish (released the previous July), which now reached as far as 

site I (3034 m). Site C and D were still mainly being colonised by juveniles, where 

site D was made up of significantly smaller crayfish than the control sites in the 

Hart Burn (Mann-Whitney U, n=91, p=0.001). No large crayfish were recorded at 

site F. 
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Figure 3.6- Size distribution of crayfish caught in the standardised fixed-timed 
effort hand searching of the survey sites on the Hart Burn from 2004 - 2009, not all 
sites were surveyed every year. Negative distances refer to sites upstream and 
positive values downstream of the pollution source 
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In August 2005, there was an influx of larger individuals to the downstream sites 

H, K, and I. An influx of larger individuals was also seen at site F. The influx of 

larger crayfish was still much greater in the downstream sites than upstream, 

where site I had significantly larger crayfish than D (Mann-Whitney, n = 44, p = 

0.003). However, the influx of crayfish at site F was comprised of smaller crayfish 

than those found in the Hart Burn control sites (Mann-Whitney, n = 64, p = 0.01), 

but this difference was not significant after the Bonferroni correction. The upstream 

sites (C and D) also had an influx mainly comprising smaller crayfish, where 

crayfish in site D were still significantly smaller than those found in the Hart Burn 

control sites (Mann-Whitney, n = 72, p = 0.004). As a few berried females were 

recorded at site H and I in May 2005, it may mean that the populations at these 

sites are starting to increase through reproduction. 

 

By September 2005, a further influx of larger individuals to C and D resulted in all 

sites except F having crayfish larger enough to be reproductively active (> 25 mm 

CL). The crayfish in site I were still significantly larger than upstream sites such as 

site C (Mann-Whitney U, n=27, p=0.003). Crayfish in site I were also larger than 

crayfish at site D (Mann-Whitney U, n=28, p=0.015), and F (Mann-Whitney U, 

n=20, p=0.015); however, after the Bonferroni correction these differences were 

not significant.  

 

In June 2006, there was a further influx of larger individuals to F and there is now 

a similar number of large crayfish at all sites, which can be seen from the upper 

quartiles on the box plots. However, the abundances are still low in sites D, F, H 

and I.  In August there is an influx of 0+ crayfish and a dramatic increase in 

abundance at all sites except F, which suggests the populations at all sites except 

F are reproductively active. A further influx of larger individuals has led to a 

substantial amount of large reproductively active crayfish finally arriving at site F. 

 

By 2007, all sites except F had reached similar abundances to the controls. In 

September 2007 there was an influx of 0+ crayfish to site F, which suggest the 

population is reproductively active and the size distribution of site F is similar to all 

other sites. However, the abundances at site F are still very low in comparison to 

all other sites. It is not until 2008 that abundances at site F finally increase to that 

similar to the controls and all other sites.  



3.4.3 Habitat and recolonisation 
Since it is possible that prolonged periods of recolonisation (e.g. site F) will be due 

to poor habitat, surveys of habitat and microhabitat quality across sites were 

made, together with quadrat estimates of density. There was a significant 

difference in the densities of crayfish in quadrats (taken at sites A, B, C, D, E, F, H, 

K, M, N, O) in 2009, found between the sites (Kruskal Wallis, n = 76, p = 0.035). 

Mann-Whitney tests were not carried out due to the large number of comparisons 

and low statistical power of comparison after the Bonferroni correction. The 

densities found at each site are shown in Figure 3.7.  
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Figure 3.7- Average densities of crayfish, including standard error bars, calculated 
from densities recorded in the quadrats, at seven of the sites in the Hart Burn 
 

The low densities found in sites F and E are most likely to be the cause of the 

significant difference. The relatively low densities at site F were less evident in the 

standardised timed-effort searches in 2008 and 2009, although in 2005 - 2007 this 

site exhibits the lowest relative abundance of those sampled. Kruskal Wallis tests 

were carried out in order to compare the microhabitat and macrohabitat variables 

of velocity and depth between the sites, and the microhabitat variable of substrate 

index. However, no significant differences were found in the microhabitat or 

macrohabitat variables (microhabitat variables: velocity p = 0.193, depth p = 0.532 

and substrate index p = 0.237; macrohabitat variable: velocity p = 0.077, depth p = 

0.796). Buffer strips, land use, cover of different substrates, and bank-side 

vegetation were not amenable to statistical analysis but were similar between 

sites.  

 

Two variables, flow type and bank-structure, did highlight some important 

differences between sites. Figure 3.8 shows the composition of flow types found at 
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each site, and Figure 3.9 shows the bank-structure at each site. Although site F 

shows similar composition of flow type to the rest of the sites, site E (immediately 

upstream) had a higher proportion of rapids than any other site. The presence of 

rapids implies a higher gradient and stronger flow, which may have led to a 

smaller number of suitable refuges for the crayfish. The major difference seen at 

site F was in the bank-structure. The banks at site F are almost entirely steep and 

rocky, with a small cover of vegetated slope. The steep sides of site F imply that 

there is a high gradient and an unstable environment, also linked to high flows at 

site E. A large cover of steep rocky slope was also present at site B; however, 

unlike site F it was not steep on both sides but contained large areas of beach. 

Site B was also entirely composed of glides and pools, which suggest a low 

gradient and a more stable environment.  

 

During high flows, the river will erode away the bank and deposit it in the river 

channel, leading to unsuitable habitat. The amount of substrate that was 

embedded was recorded in the quadrats and the percentage of rocks that were 

embedded in finer sediment (i.e. without gaps around the periphery of large 

particles) for each site is presented in Figure 3.10. Site F had the highest 

recording of embedded substrate, where although all the medians were zero the 

mean cover was 12% in site F, 5% in site E, 3% in site D and all the other sites 

contained no embedded substrate. The zone that took the longest to recover 

(containing sites F and E) contained the largest amount of embedded substrate. 

 

3.4.4 Comparison of methods 

The use of the Surber sampler allows crayfish of all sizes to be caught in a given 

area. Whereas, with timed hand searches the smallest crayfish may be harder to 

locate and catch. The size distribution of crayfish from the hand searches in 2009 

and the quadrats collected in the seven sites in the same year were compared and 

the results are shown in Figure 3.11. Overall the size distributions appear broadly 

similar, although the crayfish caught in the quadrats were significantly smaller at 

site B (Mann Whitney U, n=96, p=0.007) and site C (Mann Whitney U, n=85, 

p=0.001). This implies that hand searching may misrepresent the smaller crayfish. 
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Figure 3.8- Composition of flow types at 11 of the sites on the Hart Burn 
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Figure 3.9- Bank-structure observed at 11 of the sites on the Hart Burn 
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Figure 3.10- Percentage of embedded substrate found in seven of the sites on the 
Hart Burn 
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Figure 3.11- Comparison of crayfish sizes caught by hand and in the Surber 
sampler (quadrat) 
 

3.5 Discussion 
 

In order to recolonise a 3 km stretch of river, it took the white-clawed crayfish 

population four years, based upon relative abundances and the occurrence of 

similar demographic composition to the control reaches. This equates to a 

recolonisation rate of 0.75 km year-1. During this period there is no evidence of any 

further acute pollution episodes in the reach, nor any reports of conspicuous 

crayfish mortality episodes. This is fairly rapid in comparison to previously 
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recorded rates of colonisation by white-clawed crayfish. Gil-Sanchez and Alba-

Tercedor (2006), recorded a population expansion rate after restocking 52 and 43 

crayfish in the Guadalquivur River basin, south east Spain, of 0.075- 0.2 km year-1. 

This implies that natural recolonisation from a dense population is a faster process 

than colonisation by a relatively small restocked population, as might be expected. 

Restocking usually involves the introduction of several populations dispersed 

along a stretch of river, where each population provides only a single source of 

crayfish to recolonise the local area. In natural populations there will be a large 

population surrounding the depopulated area, creating several recolonisation 

sources from upstream and downstream and from connecting tributaries along the 

stretch of river. The number of population sources depends on the location of the 

disturbance in relation to the geography of the river. Passive dispersal from 

upstream combined with active movement from both upstream and downstream 

appears to have increased the rate of population expansion and recolonisation. 

The higher densities found in the Hart Burn and Wansbeck populations in 

comparison to previous studies and restocking schemes will also create a higher 

propagule pressure, forcing the crayfish to disperse away from the population, in 

order to escape from the competition.  

 

A recolonisation rate of 0.75 km year-1 translates to a daily movement of around 

2.05 m day-1. This is significantly higher than the average daily movement for adult 

white-clawed crayfish in an upland stream in northern England, recorded 

throughout the year by Bubb et al (2008) of 0.233 m day-1. However, several 

studies have recorded much faster rates of movements. For example, Gherardi et 

al (1998) recorded daily movements in adult white-clawed crayfish of 6 m day-1 in 

autumn and in June, McCreesh (2000) recorded rates as high as 7.5 m day-1. The 

variation in movement rates is partly due to the time period in which they were 

recorded. Rates of movement recorded over the whole year include the winter 

months, when crayfish have reduced mobility and will not be as high as those 

recorded in the summer and autumn months. As recolonisation rate represents the 

average movement throughout the year the value of 0.233 m day-1 is the most 

accurate to compare against. Although the recolonisation rate was 2.05 m day-1 

the average distance covered by an individual crayfish may not be that far, due to 

the fact that in this study, the depleted zone of 3 km was recolonised from two 

sources (upstream and downstream). However, the recolonisation value is almost 

10 times the movement rates within well-populated zones, recorded by McCreesh 
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(2000), Gherardi et al (1998), and Bubb et al (2008), which implies that 

recolonisation, where there is movement into a depopulated zone, is faster than 

within population dispersion. Other factors may have played a role such as the 

habitat in the Hart Burn. The substrate may have been easier to move through 

(e.g. fewer large expanses of bedrock) and the Hart Burn may have a smaller 

gradient, which would reduce the frequency of high flows.   

 

This high rate of dispersal from a stretch of river abundant with refuges is 

somewhat contradictory to predictions. Bovbjerg (1959), Barbaresi and Gherardi 

(2001), Sint and Fureder (2004), all found that crayfish released in sites with a 

high density of shelters moved the smallest distance and had the lowest activity. 

Due to the widely available refuges in this reach of study stream one would expect 

more limited movement, as there would be limited competition and less need to 

disperse. However, Bovbjerg (1959) and Barbaersi and Gherardi (2001) recorded 

movements in laboratory conditions that may not reflect natural dispersal 

behaviour. Also, Barbaresia and Gherardi (2001) recorded dispersal behaviour of 

crayfish in isolation and the largest group of crayfish recorded by Bovbjerg (1959) 

was 20. Although Sint and Fureder (2004) measured movement in the field, they 

were looking at a reintroduced population of only 63 crayfish. The conditions 

during recolonisation may be very different, where the presence of a large natural 

population may provide a large amount of competition, resulting in a relatively fast 

rate of movement even when refuges are abundant. 

 

As well as the average rate of movement of the population through the depleted 

zone, specific rates of movement can be calculated. Site, I, is roughly 256 m from 

the confluence and large adult crayfish were present at the site I on the 22nd June. 

If these had moved upstream from the Wansbeck then the minimum rate of 

movement of the crayfish would be 6.56 m day-1. This is a very rapid rate of 

movement, especially in an upstream direction. Previously recorded rates of 

upstream movement by adult crayfish are substantially lower than the average 

movement rates of adult crayfish in all directions, recorded by McCreesh (2000), 

Gherardi et al (1998), and Bubb et al (2008). The maximum upstream movement 

of adult white-clawed crayfish recorded by Bubb et al (2008), was 734 m in 335 

days, which equates to 2.19 m day-1. Robinson et al (2000), recorded an upstream 

movement in adult crayfish of 1.36 m day-1 and 0.9 m day-1. However, there is 

evidence that some crayfish may have survived the pollution incident. It is unlikely 
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that the small individuals (ca. 10 mm CL) recorded at site I could have reached the 

site by upstream movement within two months (around 256 m upstream from the 

closest Wansbeck site), and there was no sign of passive dispersal to the other 

sites upstream. The presence of a 15.6 mm carapace length crayfish at site F 

(2070 m downstream from pollution) also suggests that a small number of crayfish 

survived, as it is unlikely that a 1+ crayfish (2002 year class) of this size would be 

passively dispersed over 2 km, or actively moved over 1 km in two months. 

Nevertheless, if the larger crayfish found in June 2004 had survived the pollution 

incident and remained in that site, then crayfish of that size should release young 

in late July. As there were no young of the year found at site K and I in August 

2004, it suggests that they did in fact actively move upstream from the Wansbeck. 

 

In August 2004, there were large individuals of 31.5 and 44.9 mm carapace length 

at site I, where no crayfish close to that size were found in the first sampling 

period. This suggests they must have moved in from the Wansbeck, the nearest 

colonising source. These large individuals were found at site I 109 days after the 

pollution event, which would indicate an upstream movement rate of 2.36 m day-1. 

This is still higher than all the other recordings, especially as a minimum rate of 

movement. This suggests that white-clawed crayfish may be capable of rapid 

upstream movements. However, this is only one possible interpretation. It may be 

that during the standardised fixed-timed effort hand searching, crayfish were not 

recorded due to the low numbers present in the affected reach. Due to the low 

densities of crayfish after the pollution incident, only a very large sample effort 

would allow one to be confident about the presence of crayfish at particular sites.  

 

The rate of active downstream dispersal by adults can also be calculated, where it 

is assumed that due to their size, they are not subject to unintentional downstream 

drift and it has been recorded that they never intentionally enter fast water flows in 

order to disperse downstream (Bubb et al. 2002, Bubb et al. 2004). In May 2005, 

large adult crayfish were recorded at site D that had not been present the previous 

year. Site D is 826 m from the pollution source and they were recorded 369 days 

after the pollution incident, equating to a minimum dispersal rate of 2.24 m day-1. 

Robinson et al (2000), recorded similar rates of downstream active movement by 

adult white-clawed crayfish of 2.4 m day-1 and 1.67 m day-1, and Bubb et al (2008), 

recorded a maximum downstream movement of adult crayfish of 918 m in 304 

days, which translates to 3 m day-1.  
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When comparing active downstream and upstream rates of movement in adult 

crayfish, several studies found that there was no bias in one direction (Brown 

1979, McCreesh 2000, Robinson et al. 2000). However, Bubb et al (2004, 2005) 

recorded a strong bias towards downstream colonisation in signal crayfish 

populations. This was attributed to the geology of the upland river, where the high 

gradient of the upland stream created riffles and falls, which reduced upstream 

movement. In this study it seems that even though the upland river has a high 

gradient there is little bias towards active downstream movement of adults, as the 

upstream dispersal rates were also fairly rapid. However, it did take longer for the 

relative abundances and population size structure to increase to normal levels in 

the region of site F, which is in the downstream section of the affected reach. This 

may suggest that upstream colonisation of crayfish is slower than downstream. 

This would be expected, as colonisation involves the whole population, where 

downstream colonisation includes the passively dispersing juveniles and upstream 

colonisation does not. 

 

The passive dispersal of juvenile crayfish is thought to occur over considerable 

distances (Robinson et al. 2000, Elliott 2002). In October 2004, individuals around 

10 mm carapace length were found at site D, where it is assumed they had been 

passively dispersed from upstream, as they could not realistically have moved 

there actively. Site, D, is 826 m from the pollution source, so the minimum rate of 

movement by these juveniles in the 152 days since the pollution is 5.5 m day-1. 

The following year, in May 2005, juveniles were present as far as site I, which 

were known to be passively dispersed due to the lack of reproductively active 

crayfish (>25 mm CL) in the population at site I in 2004. Site, I, is 3034 m from the 

pollution source, and as they arrived there within 369 days this equates to a 

minimum rate of 8.2 m day-1. This suggests that passive downstream dispersal of 

juvenile crayfish is relatively rapid compared to active movements of the adults. 

Nevertheless, colonisation by juvenile 0+ and 1+ crayfish by passive drift requires 

a further two-three years of growth in the Hart Burn before they are reproductively 

mature.  

 

When the passive dispersal rates are compared to the flow data, it seems that 

there is evidence of limited passive dispersal after a high flow event, but rapid 

passive dispersal during low flow periods. Due to the low numbers of 
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reproductively active crayfish at sites H and I in May 2005, it is likely that the 

majority of the 0+ were passively dispersed from upstream. This suggests a 

substantial dispersal distance despite the low flows recorded since the young were 

released (appendix 2).  This suggests that juvenile crayfish have some control 

over when and how far they are passively dispersed. There is evidence that 

benthic invertebrate juveniles have some control over their passive dispersal, 

where they can actively enter the flow and their behaviour can control their drift 

response (Elliott 1971, Lancaster et al. 1996). Invertebrates can increase their drift 

response in low velocities by actively swimming upwards, in order to remain in the 

flow for as long as possible (Campbell 1985). It certainly seems that in the case of 

white-clawed crayfish low flows are not a barrier to drift. In terms of the lack of 

dispersal in elevated flows, the juvenile crayfish may be able to avoid being 

washed out of the substrate and dispersed due to the microhabitats in which they 

are found. The interstices between gravel and small pebbles may protect them 

against high flows, allowing them to remain in the same position until they actively 

decide to enter the flow. Nevertheless, during extreme flood events, when more 

substrate is mobilised, it is possible they are washed out. 

 

As crayfish recolonise a stretch of river by active upstream and downstream 

movement and passive downstream drift, the position of the population source 

affects the population structure. Initially the upstream sites that were recolonised 

by an upstream source had a population made up of significantly smaller crayfish, 

due to an influx of juveniles from passive downstream dispersal. Larger crayfish 

actively moved in a short while afterwards and modified the population size 

structure. In the downstream sites, where the closest population source was from 

downstream, larger crayfish initially dominated the population, as they are the 

most effective at actively moving upstream. Crayfish in site I were significantly 

larger than crayfish in upstream sites in September 2005, due to a lack of small 

juveniles. Juveniles appeared in the downstream stream sites through 

reproduction in the local population and eventually downstream drift. A lack of 

passive dispersal from upstream sources will delay the recolonisation process, as 

juveniles will not appear until a year after the larger crayfish have arrived and 

mated. Also, the annual in situ influx of juveniles will not be substantial until the 

reproducing population has increased back to normal levels.  
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White-clawed crayfish are known to have a low fecundity (Gherardi et al. 1997), so 

the presence of nearby large populations is important to recolonisation and 

population recovery. It was not the establishment of reproductively active 

populations, but the continuous influx of crayfish, through passive and active 

dispersal, that resulted in crayfish abundances in the affected river stretch 

reaching similar levels to those in the unaffected control reaches. This reliance on 

an influx of crayfish by dispersal lasted for two years for all sites except F where it 

lasted four. Upstream and especially downstream dispersal is therefore a driving 

force behind initial recovery in denuded sites, as natural reproduction by a few 

crayfish does not have a substantial effect on densities. This conclusion was also 

reached by Momot (1966), who stated that due to the low reproduction of crayfish, 

the repopulation of a denuded stream reach must occur through recolonisation not 

in situ reproduction.  

 

Finally, habitat was found to play an important role in recolonisation. Although site 

F was the furthest away from a population source all sites except F were showing 

a steady increase since 2005. The numbers at Site F only started to increase three 

years later despite being only 646 m away from the downstream site H, which 

reached normal densities in 2006. The delay was mainly in the arrival of larger 

crayfish as juveniles were arriving within a year. This may suggest the occurrence 

of a barrier to active dispersal, particularly in an upstream direction. There were 

large expanses of bedrock upstream and downstream of site F (H. Ream, pers. 

obs.). The large expanses of bedrock may have provided a barrier, as crayfish 

would have been deterred from dispersing over large stretches of bedrock, which 

exceeded 50 m in length. The site was also found to contain the highest 

percentage of embedded substrate, possibly due to substantial bank erosion and 

collapse immediately upstream. Site F was unique to other sites in the sense it 

had steep rocky sides to both banks. Reduced availability of refuges, due to 

embedding and instability of the habitat at high flows, due to channelisation by the 

steep bank, may have prevented larger crayfish from establishing here as they 

actively choose their settlement location, unlike the passively dispersed juveniles. 

Gradually as densities increased elsewhere the pressure from competition may 

have forced some crayfish into less favourable habitats, leading to the delayed 

recolonisation of site F. 
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Although the results suggest that the standardise fixed-time effort hand searching 

may misrepresent smaller crayfish, this is still the most effective method to use 

when calculating abundances in areas where crayfish are patchily distributed, due 

to the larger areas that can be covered in a given time in comparison to placing 

quadrats. 

3.5.1 Implications for conservation 
Point source pollution events in rivers have dramatic effects on the biota, where 

the recovery time is related to the mobility of the species. Winged insects are at 

less risk due to rapid rate of aerial recolonisation. However, crustaceans such as 

shrimps, and other invertebrates that have no aerial life stage, will have a 

substantially longer recovery time in comparison to crayfish, which are considered 

the most mobile freshwater invertebrate. The presence of an upstream population, 

where downstream drift can originate from, is an important feature that will 

increase the recolonisation speed. Disturbance events in the top of catchments 

should be prevented at all costs, as it will be more damaging than if an event 

occurred further downstream, due to the importance of an upstream source of 

recolonisation in recovery. There should be concentration on keeping good quality 

habitat in upstream reaches, in order to sustain important upstream populations. 

Habitat suitability is likely to have a major effect on recolonisation ability and 

unsuitable habitat may delay recolonisation by several years. The availability of 

suitable habitat is essential for recolonisation projects. Abundant refuges at the 

edges of the denuded population were not found to decrease crayfish movement 

markedly, possibly due to the high competition found in large natural populations. 

The results of this study highlight the importance of propagule pressure as it 

represents a study where there is a dense population surrounding the affected 

stretch encouraging colonisation of unoccupied habitats. Many reintroduction 

schemes for endangered animals utilise small numbers of individuals, due to 

difficulties in obtaining them or the ethical need to minimise impacts on donor 

populations. The results of this study suggest that, release of small numbers of 

crayfish in reintroduction exercises will take a long period of time for 

establishment, with large risks of extinction during that period.  

 

In conclusion, rates of recolonisation in white-clawed crayfish in this study stream 

are rapid, in comparison to within population dispersion and population expansions 

after restocking measured elsewhere. Passive downstream dispersal is the most 

rapid form of recolonisation for white-clawed crayfish in streams, with evidence 
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obtained that juvenile crayfish have control over when and how far they are 

passively dispersed. Active movements of adults also contributed to 

recolonisation, with upstream and downstream active dispersal found to be similar 

in rate.  
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General Discussion 
 

This thesis found that white-clawed crayfish Austropotamobius pallipes exhibit 

ontogenic microhabitat segregation. The issue of differing habitat requirements 

between life stages or ages has important implications for conservation of 

animals in general, since there is a general bias towards conserving areas that 

are known to be suitable for adults. Yet, juveniles are the most susceptible life 

stage in many species and studies on crayfish have found that limiting juvenile 

mortality is vital for the survival of the population (Meyer et al. 2007). Failing to 

identify important juvenile habitats may lead to the failure of conservation 

strategies. There are many examples of ontogenic habitat segregation, where 

the energy requirements and survival strategies vary between age classes 

(Loseto et al. 2006). For example, newly hatched pond turtles Emys orbicularis 

require shallower water to avoid risk of drowning (Ficetola et al. 2004). 

Thermoosphaeroma thermophilum is a freshwater isopod, where the juveniles 

were found above the substrate in the grass to avoid cannibalism from the 

adults (Jormalainen and Shuster 1997). The reef fish, Nassau grouper 

Epinephelus straitus has three different habitat associations, due to the 

increasing metabolic demand and reduction in predation risk as they mature 

(Eggleston 1995). In some fish species the juveniles prefer lagoon habitat, 

whilst the adults are found on the reefs (Gratwicke et al. 2006). Such 

differences imply that a lack of knowledge on juvenile habitat requirements 

could affect the conservation of many species. Juveniles are often overlooked 

in relation to habitat, as they are harder to locate due to their size and cryptic 

nature. Improved sampling efforts will be needed in order to effectively sample 

juveniles of crayfish and other animal species and increase the understanding 

of their ecology. 

Identification of suitable habitat for white-clawed crayfish and its appropriate 

protection and rehabilitation through management, is crucial for conservation of 

this species. This thesis identified suitable white-clawed crayfish habitat as river 

sections with a heterogenous cover of substrate types, where the varying sizes 

of interstices provides refuge for all crayfish ages. Complex bank-structures 

including roots are also important along with heterogenous flow patterns. 

However, strong flows, which are exacerbated by channelisation, create 
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unstable and unsuitable environments for crayfish due to shifting sediments. Silt 

accumulation in the interstices of substrate destroys important crayfish refuges 

(Taugbol and Skurdal 1999). A common cause of silt accumulation is poaching 

of riverbank edges by livestock, especially cattle, where cattle trample on and 

break up the bank, causing it to enter the river. In fields bordering important 

river stretches there could be a limit on the number of cattle that can be stocked 

and an obligatory upkeep of fences (Palmer 1994, Peay 2000). Preventing 

woodland clearance and creating substantial buffer strips could eliminate 

erosion sources, which contributes to silt accumulation (Palmer 1994). The 

presence of trees is important in preventing erosion, but they also create good 

bank-side habitat. Where they are lacking, trees could be planted close to the 

waters edge, in particular alder Alnus glutinosa and willow Salix spp, and a 

possible alternative to the removal of trees along side the riverbank is coppicing 

(Palmer 1994, Peay 2000). Also, the use of concrete in bank stabilising should 

be avoided, as it leads to the permanent loss of important crayfish bank-side 

habitat. Instead, un-mortared stones could be used, which would create refuges 

for crayfish (Peay 2000). In order to maintain a heterogenous flow pattern 

dredging and channelisation should be avoided (Holdich 2003). Land practices 

such as moorland gripping should be prevented in the upland catchments 

containing white-clawed crayfish, in order to decrease the chance of flash 

flooding. Restoration and protection of good quality crayfish habitat should be 

concentrated in important areas such as headwaters, which are important in 

recolonisation and the recovery of a population in the case of a disturbance 

event, such as pollution or extreme flooding.  

Habitat also plays an important role in determining recolonisation success of 

crayfish and most other species. Suitable unoccupied habitat with abundant 

refuges, where low competition and, therefore, limited density dependent 

dispersal, might be expected to occur was, in-fact, not found to hinder the 

dispersal-driven recolonisation. Juvenile white-clawed crayfish play an 

important role in recolonisation as it was found they have a rapid rate of 

dispersal in the form of downstream drift. This reinforces the need to identify 

suitable habitat for all life stages, as in order for a population to expand, the 

dispersing juveniles need to settle in suitable habitat. This also implies that 

microhabitat heterogeneity is important, as in order for a population to survive in 



  105

the newly colonised area, there needs to be suitable microhabitat accessible for 

all life stages. 

The rapid downstream dispersal of juveniles also has serious implications for 

the spread of plague Aphanomyces astaci by invasive crayfish e.g. 

Pacifastacus leniusculus. As juveniles also carry the plague, the potential 

downstream spread in a system is substantial. However, this rapid downstream 

dispersal also has positive implications in terms of reintroduction and 

recolonisation of threatened crayfish species. This thesis found that there was 

not only rapid dispersal, relative to other dispersal rates recorded for white-

clawed crayfish, in juveniles, but in adults and the population as a whole. This 

rapid dispersal in a species, which is deemed to be a poor disperser, may have 

only been possible due to the large natural population that was present. 

Although the number of individuals required for a successful reintroduction was 

not specifically tested in this thesis, the rapid dispersal and successful 

recolonisation, as a results of a large population, implies that in order to 

successfully reintroduce a population of white-clawed crayfish large numbers 

are likely to be needed.  

Several reintroduction programmes have been carried out for native European 

crayfish, all with varying degrees of success. The first reintroduction programme 

for white-clawed crayfish in the UK, took place on the Bristol Avon, south west 

England, and started in 1982. Juveniles and a mixture of female and male adult 

crayfish were released at several sites, where the maximum number released 

was 150 (Spink and Frayling 2000). By 1998, the population at the site where 

150 crayfish were released, had only moved a maximum of 150 m and at many 

of the other sites, which were all around 1 km apart, there was no expansion 

and no connectivity between the populations (Spink and Frayling 2000). 

However, larger scale reintroductions of noble crayfish Astacus astacus have 

been carried out in Norway, where 3,580 juveniles and 13,832 adults were 

reintroduced to the Glomma watercourse over a period of 10 years, and 26,404 

juveniles and 18,916 adults were reintroduced to the Halden watercourse over 

a period of six years (Taugbol 2004). Even after 10 years densities had still not 

reached normal levels. This suggests that recolonisation takes a substantially 

longer time on a large scale, as they were repopulating whole watercourses, or 

there may have been unsuitable habitat available. Many reintroduction 
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programmes fail, either due to a lack of suitable habitat, or if the reintroduced 

population is too small. The population has to be large enough in order to buffer 

against demographic stochasticity. Mortality events are especially common in 

the highly variable freshwater environment, where in winter, white-clawed 

crayfish populations can be reduced by 40 - 60% (Brewis and Bowler 1983).   

Even though relatively rapid rates of recolonisation were recorded in the Hart 

Burn the point source pollution still had devastating effects, where it took over 

four years for the 3 km stretch to recover. Full recolonisation within this 

timeframe was only possible as there were no repeats of the pollution. For 

maintenance of strong, white-clawed crayfish populations, great effort needs to 

be made to ensure repeat pollution events do not reoccur, as they would 

fragments the existing population, which would seriously hinder recolonisation 

and recovery. Small populations will not expand at a rapid rate, so fragmented 

populations may be isolated permanently, leaving them at risk from extinction. 

When implementing reintroduction programmes, careful considerations should 

be made when deciding the location of introductions, in order to prevent 

population fragmentation. 

An important tool in reintroduction programmes is population viability analysis 

(PVA). This method has mainly focused on the charismatic megavertebrates, 

but PVA can help increase the probability of success in reintroduction schemes 

(Marshall and Edwards-Jones 1998, Murphy et al. 1990). An important output of 

the PVA is the minimum viable population (MVP).  PVA was used in the 

reintroduction of capercaille Tetrao urogallus in Scotland, where the MVP was 

calculated as 60 birds (Marshall and Edwards-Jones 1998). MVP has also been 

used to reintroduce tree squirrels Sciurus spp (Wood 2007); however, they may 

be difficulties in modelling highly fecund taxa such as invertebrates 

(Lindenmayer et al. 1995). Nevertheless, Meyer et al (2007) carried out PVA on 

noble crayfish and found that restocking would only be successful if at least 75 

adults were introduced every five years. This number is substantially smaller 

than the numbers of noble crayfish released in the Glomma and Halden 

watercourses. However, Meyer et al (2007) was looking at a single restocking 

event and this number would have to be extrapolated if large-scale 

reintroduction programmes into whole watercourses, as outlined by Taugbol 

(2004), were to be attempted. Reintroducing large numbers is costly, but with 
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the use of PVA, the increased confidence in success may allow large-scale 

reintroduction programmes to take place. 

In order to reintroduce large populations of endangered freshwater 

invertebrates, it may be necessary to set up breeding programmes in order to 

provide the numbers. Breeding crayfish in particular will also reduce catchment-

to-catchment movements, which would increase the risk of spreading plague. 

Artificial incubation of eggs has been carried out in white-clawed crayfish and 

was found to produce similar results to maternal incubation (Perez et al. 1999). 

Jones (1995), successfully reared juvenile red-clawed crayfish Cherax 

quadricarinatus, where the tanks contained similar sized juveniles, and there 

was frequent feeding and artificial shelters in order to decrease the risk of 

cannibalism and increase production. Breeding would be especially important in 

species with a low fecundity, such as white-clawed crayfish, where removing 

large numbers from the wild may have detrimental effects on the population. 

Once the reintroduction scheme or recolonisation has been initiated the 

population needs to be monitored. Radio tracking is an effective method for 

monitoring adult crayfish, but in order to monitor juveniles Surber samplers or 

hand searching will have to be used. Surber samplers were found to be more 

effective at locating juveniles than hand searching. However, hand searching 

can cover larger areas in less time and snorkelling or SCUBA equipment can be 

used to search deeper waters. 

Overall, identifying the habitat requirements of juvenile crayfish is vital to their 

conservation, as in chapter two it was found that the microhabitats may be 

substantially different from those of the adults and perceived habitat 

requirements of the species. If the importance of juvenile habitat is overlooked it 

could lead to serious consequence like population crashes. Conserving the 

important habitat features identified in chapter two is vital, especially in the 

headwaters, where the populations are an important recolonisation source. 

Juvenile white-clawed crayfish are especially important in recolonisation, where 

in chapter three passive downstream drift was found to be the most effective 

form of dispersal. If the conditions are right, recolonisation can be very rapid, 

even in a species which is known to usually have poor dispersal. If there is a 

large population and suitable habitat then rapid dispersal can lead to the fast 
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colonisation of new sites, as was observed in chapter three. Creating these 

conditions will be vital in recolonisation and reintroduction projects for white-

clawed crayfish 
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Appendix 1 

FISAT II output 

 

 

 

 

 

Figure 1- Size distribution of crayfish taken from the Wansbeck in 
August/September 2008, modelled to identify age groups 

Table 1- Separation index for the four modal groups identified on the 
Wansbeck, where separation indexes above 2 represents a reliable separation 
from the adjacent group. 

Group Mean s.d Population S.I 

1 7.13 0.94 36 n.a 

2 13.92 1.38 67 3.11 

3 22.8 2.65 86 2.63 

4 34.76 2.21 14 2.56 

 

 

 

 

 

Figure 3-Size distribution of crayfish taken from the Hart Burn in July/August 
2009, modelled to identify age groups 

Table 2-Separation index for the five modal groups identified on the Hart Burn, 
where separation indexes above 2 represents a reliable separation from the 
adjacent group. 
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Group Mean s.d Population S.I 

1 5.08 0.59 42 n.a. 

2 11 1.11 72 3.49 

3 17.24 1.61 69 2.58 

4 22.67 2.45 78 2.15 

5 31.91 0.99 14 2.46 



Appendix 2 

Flow data 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1- Daily discharge readings for the Wansbeck from the Mitford recording 
stations in 2004 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2- Daily discharge readings for the Wansbeck from the Mitford recording 
tations in 2005 s

  128

 


