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Abstract 

 

All-trans retinoic acid (ATRA) is essential for embryonic development and adult 

homeostasis. Its study has been hindered by the fact that it can be converted to isomers 

upon exposure to light and because its metabolites are also bioactive molecules. Recent 

research has indicated that ATRA can also activate two different receptor pathways in vitro 

and in vivo. 

The present study investigates the effects of these isomers and metabolites on chick wing 

development using two synthetic, photostable retinoids, EC23 and EC19. These retinoids 

have identical structures bar the position of the terminal carboxylic acid group but 

surprisingly, generate different effects in vitro and in vivo, and are differentially 

metabolised by metabolising enzymes. EC23 mimics most of the effects of ATRA in vivo, 

including the novel phenotype of scapula malformation, while EC19 does not. Their 

phenotypes are further characterised in the text but EC23 produces a novel retinoid 

phenotype characterised by duplications of solely forelimb digit 1. 

The mechanisms behind the phenotypes generated by EC23 and EC19 are explored with 

respect to retinoid metabolism and localisation of ATRA binding proteins at the stage of 

application. Both ATRA signalling pathways are investigated at HH20 of chick embryonic 

development which improves our understanding of the role of retinoids in limb and 

embryonic development. Comparison of gene expression in response to ATRA and EC23 

indicates that the metabolites and isomers of ATRA do not play a role in embryonic limb 

development, as well as highlighting avenues for further research into the development of 

the scapula and elbow. A major part of the retinoid response is to stall limb development 

while retinoid levels recover. By comparison with other teratogens, this may be part of a 

common response and be pertinent to the regulation of normal embryonic development by 

retinoids. 
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Introduction. 

 

Retinoids are known to be essential for the development of many organ systems in the 

developing vertebrate embryo.  Their excess or deficiency can cause malformation to 

particular regions of the developing embryo in mouse and chick e.g. the limb (see p22). It 

has been shown that the most bioactive, naturally occurring retinoid is all-trans retinoic 

acid (ATRA) and excess or deficiency of this compound causes the most severe effects 

(see p4; (Abu-Abed et al., 2001; Cui et al., 2003; Lammer et al., 1985; Mic et al., 2004; 

Niederreither et al., 2002b; Yashiro et al., 2004)). The severity of the phenotype from 

excess retinoid depends on the stage and dose of exposure (Mark et al., 2006). Notably, 

severe malformations have been documented in human embryos exposed to retinoid during 

pregnancy. These are collectively known as retinoic acid embryopathy and include: 

microtia, micrognathia, cleft palate, heart, ocular and central nervous system 

malformations (Lammer et al., 1985). Vitamin A deficiency (VAD) can also generate 

embryonic malformations e.g. in avian embryos VAD is lethal at E3.5. These embryos 

exhibit: abnormal cardiac, ocular and central nervous system development, no large extra-

embryonic blood vessels, shortened body and no axial rotation (Cui et al., 2003; Kostetskii 

et al., 1996).  Vitamin A is also needed postnatal for correct growth, reproduction and 

vision (Mark et al., 2006).  

 

Considering these effects in vivo, research has focused on how ATRA causes these 

phenotypes by investigating the ATRA signalling pathway and its effects on transcription. 

Considering that alteration of retinoid levels causes severe phenotypes, research has also 

investigated the control of its metabolism. The effects of retinoids have been well studied, 

as described in the following sections, and these compounds can be used for treatment of 

psoriasis as well as certain cancers (Njar et al., 2006). They have also been implicated in 

manipulation of stem cells which may have wide implications for future medicine (Christie 

et al., 2008; Maltman et al., 2009). However, some aspects of their role in development 

and their genetic targets are not well characterised. The presence and role of their 

metabolites and isomers during embryonic development is also poorly characterised. The 

aim of this review is to summarise the progress made to date in the study of ATRA 

signalling, its role in limb development and to introduce concepts pertinent to the present 

study. 
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The structure of ATRA. 

 

The structure of ATRA is shown in figure 1.1 below. As can be seen, it can be split into 

three regions: hydrophobic domain (β-ionene ring; blue box), linker region (isoprene tail; 

bracket) and polar region (carboxylic acid tail; red circle). The precursors of ATRA are 

retinol (vitamin A) and retinal which have an alcohol or aldehyde group substituted in 

place of the carboxylic acid group. ATRA can also be converted into isomers 9-cis (9CRA) 

and 13-cis retinoic acid (13CRA; (Christie et al., 2008; Thaller et al., 1993)) or oxidative 

metabolites including: 4-oxo-retinoic acid, 4-hydroxy-retinoic acid, 5, 6-epoxy-retinoic 

acid, 16-hydroxy-retinoic acid and 18-hydroxy-retinoic acid (see p30; (Topletz et al., 

2012)).  

 

The production of synthetic retinoids is an area of important research to direct the 

differentiation of stem cells and to improve the action of retinoids for medical purposes. 

Synthetic retinoids share key structural features (Dawson et al., 1989) but can actually be 

very different, as shown by the structure of 4-[(E)-2-(5,6,7,8-Tetrahydro-5,5,8,8-

tetramethyl-2-naphthalenyl)-1-propenyl]benzoic acid (TTNPB) in figure 1.1. Alteration of 

these major parts of the retinoids can affect retinoid activity, affinity with receptors, 

receptor specificity (Germain et al., 2004; Klaholz et al., 2000), affinity with binding 

proteins (Kleywegt et al., 1994) and metabolism in vivo.  

 

 

Figure 1.1: The structures of retinoids: ATRA and TTNPB.  

 

 

 

 

 

 

Blue boxes correspond to the hydrophobic region (β-ionene ring in ATRA). Black brackets indicate the 

linker region. Red boxes indicate the polar region or carboxylic acid group. Numbers correspond to the 

carbon above. Abbreviations: ATRA, all-trans retinoic acid; TTNPB, 4-[(E)-2-(5,6,7,8-Tetrahydro-5,5,8,8-

tetramethyl-2-naphthalenyl)-1-propenyl]benzoic acid.  
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Retinoid metabolism.  

 

ATRA is produced from its precursors by the alcohol dehydrogenases and the 

retinaldehyde dehydrogenases (RALDHs).  The alcohol dehydrogenases catalyse the 

production of retinal while the retinaldehyde dehydrogenases catalyse ATRA synthesis. 

Given the ubiquitous expression of the alcohol dehydrogenases, the RALDH enzymes are 

thought to control ATRA synthesis in vivo (Rhinn and Dolle, 2012). Despite their 

ubiquitous expression some alcohol dehydrogenases may be important for embryonic 

development. It is clear that retinal produced by retinol dehydrogenase 10 (RDH10) is 

important for correct limb, brain and craniofacial development from Rdh10 knockout mice 

(Sandell et al., 2007). The importance of RALDH enzymes in ATRA production has been 

supported by the embryonic lethal Raldh2 knock out mouse (Niederreither et al., 1999) as 

well as evidence that RALDH2 uses retinal as a substrate (Wang et al., 1996; Zhao et al., 

1996). Other enzymes have been implicated in the production of ATRA from retinol 

including CYP1B1 which is a cytochrome oxidase but, unlike CYP26, it does not 

metabolise ATRA (Chambers et al., 2007; Choudhary et al., 2007). This enzyme is also 

present in vertebrate embryogenesis, expressed in the proximal wing bud and implicated in 

neural development similar to Raldh2 (Chambers et al., 2007). The effects of ATRA are 

mediated by nuclear translocation to the retinoic acid receptors which alter transcription 

(see p6-7; (Mark et al., 2006)). 

 

ATRA is then known to be metabolised by members of the P450 cytochrome oxidase 

superfamily (Roberts et al., 1980). These include CYP2C8, CYP2C9 and CYP3A4 

demonstrated to be present in hepatic microsomes (Marill et al., 2000; McSorley and Daly, 

2000; Nadin and Murray, 1999). However, ATRA is also metabolised by a group of 

retinoid specific P450 cytochrome mono-oxidases: CYP26A1, CYP26B1 and CYP26C1 

(Taimi et al., 2004; White et al., 1997; White et al., 1996; White et al., 2000). The CYP26 

enzymes are also known to be retinoid inducible (Loudig et al., 2000; Loudig et al., 2005; 

White et al., 1996) while Raldh2 is down-regulated by retinoid administration at E8.5 

(Niederreither et al., 1997; Swindell et al., 1999) providing a mechanism by which ATRA 

levels may be tightly controlled during development.  

 

The structure of the CYP26 retinoid metabolising enzymes bound to ATRA has been 

difficult to elucidate. Previous research has relied on structural knowledge of other family 
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members and modelling studies but the research to date has indicated that the structure of 

the CYP active site is flexible to accommodate many different structures due to its role in 

xenobiotic metabolism. Oxidation by these enzymes requires residues from many regions 

of the enzyme, particularly helices I and K (Zeldin and Seubert, 2007). Modelling studies 

indicate that the active site of CYP26A1 is a hydrophobic tunnel similar to that of retinoic 

acid receptor (RAR) with a polar group for the carboxylic acid group to dock, involving 

R86. This work also suggests that ATRA binds to the active site with carbon 4 held 5.3A 

away from the heme group, favouring its oxidation (Gomaa et al., 2006)consistent with 

earlier work suggesting that these enzymes catalyse the 4-hydroxylation of ATRA to more 

polar derivatives (Frolik et al., 1979; Topletz et al., 2012; White et al., 1997). 

 

Knockout mouse models of the cyp26 enzymes exhibit the effects of retinoid excess and 

indicate that catabolism plays a major role in the control of ATRA during development 

(Abu-Abed et al., 2001; Yashiro et al., 2004). Whilst the oxidative derivatives of ATRA 

have been shown to bind to ATRA binding proteins including the receptors (Idres et al., 

2002; Maden and Summerbell, 1986), they are not generally thought to be required for 

embryonic development (see p32; (Niederreither et al., 2002a; Williams et al., 1987)). 

Retinoid metabolism is also affected, indirectly, by cytochrome P450 oxidoreductase 

(POR) which is the electron acceptor for CYP enzymes. Knockout of this enzyme causes 

effects on the developing limb: reduced length, autopod and elbow malformations (Ribes 

et al., 2007; Schmidt et al., 2009). Correct regulation of ATRA levels may be very 

important in some disorders e.g. DiGeorge syndrome. This has been studied using Tbx1 

knockout mice and it has been shown that CYP26 enzymes are targets of TBX1. Inhibition 

of the CYP26 enzymes has phenocopied Tbx1 null mice (Roberts et al., 2006).  

 

The expression of ATRA synthesising and metabolising enzymes. 

 

ATRA levels are tightly controlled during embryonic development by the restricted and 

complementary expression of synthesising enzymes (Raldh1-3 and cyp1b1) and 

metabolising enzymes (Cyp26A1-C1) (Blentic et al., 2003; Chambers et al., 2007; 

MacLean et al., 2001; Niederreither et al., 1997; Reijntjes et al., 2003, 2004; Swindell et 

al., 1999). This ensures that areas of the developing embryo are maintained in areas of 

increased or decreased ATRA signalling which is important for the correct development of 

many organs e.g. the distal limb (Pennimpede et al., 2010a; Yashiro et al., 2004). Raldh2 is 
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expressed in the posterior embryo at early stages and later is restricted to the somites and 

the proximal limb. It is also observed surrounding developing arteries in the forelimb and 

heart, interdigital regions and the ventral motor horns for forelimb innervation (Blentic et 

al., 2003; Niederreither et al., 1997). However, Raldh2 expression does not completely 

correlate with areas of retinoid signalling indicating that other enzymes are involved in 

such as Raldh1 and Raldh3 (Blentic et al., 2003; Niederreither et al., 1997).   

 

Cyp26 enzymes have been shown to be restricted and are observed in the anterior embryo 

at early stages, however, Cyp26a1 is later seen in the tail bud and posterior embryo in 

mouse and chick (Blentic et al., 2003; MacLean et al., 2001; Swindell et al., 1999). 

Cyp26a1 and cyp26b1 are expressed in complementary domains in the mouse branchial 

arches: cyp26a1 is in neural crest cells while cyp26B1 is in ectoderm and endoderm. This 

may reflect the need for differential turnover of ATRA in these tissues. Cyp26b1 is 

involved in tail, rhombomere, somitic and heart development in chick and quail (Reijntjes 

et al., 2003). Cyp26a1 and Cyp26b1 are expressed in the distal limb from HH20: cyp26a1 

expression is in stripes adjacent to the AER and cyp26b1 expression overlaps with the 

progress zone (PZ) in the mesenchyme, which is similar to mouse (Blentic et al., 2003; 

MacLean et al., 2001; Reijntjes et al., 2003; Swindell et al., 1999). Cyp26c1 expression has 

also been documented in chick and has been observed in the anterior embryo, somites and 

then restricted to areas of the head including the frontonasal mass (Reijntjes et al., 2004). 

Altogether, it has been suggested that the RALDH and CYP26 enzymes can produce 

gradients of ATRA signalling across the embryo e.g. in the limb where ATRA production 

is high proximally and catabolism is high distally, indicating that a proximal-to-distal (PD) 

gradient may exist. This may also be important for development given that the CYP26 

enzymes have different enzyme kinetics (Topletz et al., 2012) and their differential 

distribution provides another layer of complexity in that they can further influence ATRA 

levels during development. 

 

Signalling pathway: 

 

Retinoids enter vertebrates as retinyl esters or carotenoids from other animals or plants.  It 

is thought that retinyl esters are carried to their site of action in the bloodstream via 

chylomicrons or protein-bound.  They may also be metabolised to either ATRA or its 

derivatives via the CYP26 enzymes as mentioned in previous sections.  On entering the 
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cell they are sequestered by cellular retinoic acid binding protein 1 (CRABP1) or 

channelled to nuclear receptors by CRABP2 as seen right in figure 1.2 (Blomhoff and 

Blomhoff, 2006; Budhu and Noy, 2002).  The nuclear receptors for retinoids are 

heterodimers of RAR and retinoid X receptors (RXR) (Astrom et al., 1994; Leid et al., 

1992b; Yu et al., 1991), which are a subgroup of the steroid receptor family (Rochette-

Egly and Germain, 2009).  These receptors are bound to retinoic acid response elements 

(RAREs) via their DNA binding domain and in the absence of ligand, recruit co-

repressors. Upon binding ATRA or retinoids, there is a conformational change in the 

receptor causing the release of co-repressors and recruitment of co-activators such as p160 

causing a change in transcription (Idres et al., 2002; Rochette-Egly and Germain, 2009). It 

has been established that most effects of ATRA are mediated by RAR given that RXR 

agonists cannot rescue Raldh2 knockout mice (Mic et al., 2003).  However, the function of 

RXR is not completely understood.  Upon entering the cell ATRA may also be channelled 

to the nucleus by fatty acid binding protein 5 (FABP5) and activate an alternative pathway 

(see p20; figure 1.2, left side). I shall now review each of the components of the 

CRABP2/RAR mediated pathway in turn. 

 

Figure 1.2: Two receptor pathways activated by ATRA. 

 

 

 

 

 

Black dashed lines represent the cell membrane and blue circles represent the nucleus. Upon entering 

the cell, ATRA can be translocated to the nucleus by either CRABP2 or FABP5 which then causes 

activation of RAR or PPARβδ mediated transcription. Abbreviations: RA, ATRA; CRABPII, cellular 

retinoic acid binding protein 2; FABP5, fatty acid binding protein5; PPAR, peroxisome proliferator 

activated receptor; PRE, PPAR responsive element; RAR, retinoic acid receptor; RARE, retinoic acid 

response element; RXR, retinoid X receptor. 
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CRABP 

 

Two CRABPs have been reported in chick and mouse: CRABP1 and CRABP2 (Kitamoto 

et al., 1989; Maden et al., 1988). CRABP2 translocates ATRA to the nucleus (Budhu and 

Noy, 2002) due to a nuclear localisation sequence (NLS) only apparent from its tertiary 

structure (Sessler and Noy, 2005). CRABP2 containing ATRA interacts with RARα and is 

particularly important at low retinoid concentrations (Budhu and Noy, 2002). Considering 

the importance of its role in retinoid signalling CRABP2 binding is important for retinoid 

activity as shown by those retinoids, e.g. 13CRA, which cannot bind to it and therefore 

exhibit diminished activity (Keeble and Maden, 1984; Maden and Summerbell, 1986; 

Maden et al., 1991). However, the role of CRABP1 is less clear. CRABP1 does not 

directly affect transcription or interact with RARα (Venepally et al., 1996). The affinity of 

ATRA for CRABP1 is higher than that of CRABP2 (Scott et al., 1994) and it has been 

implicated in sequestering ATRA from its receptors (see p16) or enhancing retinoid 

metabolism as it is shown to interact with the CYP26 enzymes (Dong et al., 1999; Fiorella 

and Napoli, 1991; Kleywegt et al., 1994).  

 

The structure of the CRABP proteins has been investigated to determine how retinoids 

bind and why some retinoids have higher affinity. The ligand binding domain (LBD) is 

known to be narrow and hydrophobic to mimic the structure of ATRA. It also contains a 

polar region specifically containing Arg132, Tyr134 and Arg111 which interacts with the 

carboxylic acid group. 18 other amino acids interact with ATRA when bound. The 

structure of CRABP promotes binding of ATRA with the β-ionene ring in cis with the rest 

of the structure and suggests that the binding of 9CRA is therefore less favourable. 

Interestingly it has been noted that the β-ionene ring protrudes from the protein presumably 

allowing action of CYP26 mediated metabolism at carbons 4, 5, 6, 16 and 18 (Kleywegt et 

al., 1994). However, this does not explain the mechanism by which ATRA is shuttled 

between CRABP2 and RAR given that the carboxylic acid group is also bound to the 

centre of RAR LBD. However, it is known that residues Gln75, Pro81 and Lys102 are 

necessary for the transfer of ATRA (Budhu and Noy, 2002). 

 

Despite their proposed importance in retinoid signalling Crabp1 and Crabp2 knockout 

mice were normal although a slight limb defect was noted in Crabp2 null mice: extra post-

axial bone in 45% of forelimbs. Crabp1/Crabp2 double null mice exhibited this defect in 

83% of forelimbs, but no other defect was seen. This defect was noted to be more severe in 
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double knockouts in that it resembled an additional digit (Lampron et al., 1995). Given that 

CRABP2 channelling has been implicated most at low retinoid concentrations 

characterisation of these mutants in VAD development would be of interest (Budhu and 

Noy, 2002; Lampron et al., 1995). However, investigation of this has not been published to 

date.  

RARs. 

 

The RARs are transcription factors which are known to bind DNA and change gene 

transcription in response to ligand binding.  The RARs contain a LBD, a DNA binding 

domain (DBD) and dimerization regions for RXR binding. The RARs have a modular 

structure and can be split into A-F domains with the F domain specific to RARs.  The A 

and B domains are involved in receptor activation independent of ligand binding. The C 

domain is the DBD while the E domain is the LBD and both C and E domains are involved 

in dimerization (Bastien and Rochette-Egly, 2004; Leid et al., 1992a; Michaille et al., 

1995). The D domain is thought to be a hinge region containing a NLS and the function of 

the F domain is unknown but both it and the A domain are divergent between species and 

types of receptor. C and E regions are the most conserved suggesting that the function of 

retinoid signalling is highly conserved. Domains A and E are thought to interact on ligand 

binding to activate the receptor (Bastien and Rochette-Egly, 2004). Each of the receptors 

also has multiple phosphorylation sites and has been shown to be degraded by the 

ubiquitin-protease system.  This may function to attenuate and regulate the retinoid 

response in vivo (Bastien and Rochette-Egly, 2004).   

 

RARs have been shown to activate transcription of target genes and each RAR has a 

different affinity for ATRA as well as a different effect on gene induction: the biggest 

change in gene expression is caused by RARα binding (Astrom et al., 1990). The DBD in 

domain C is a zinc finger DBD which binds and recognises RAREs.  RAREs are 

characterised by direct repeats of a consensus sequence: (G/A)G(G/T)TCA spaced by one, 

two or five nucleotides (DR1, DR2, DR5; (Bastien and Rochette-Egly, 2004)). The spacing 

of the direct repeats is thought to determine the orientation and function of the 

heterodimers which bind which, in turn, is thought to influence RAR/RXR action 

(Kurokawa et al., 1994). RARs usually bind 5’ on DR5 RAREs, however, RARs were 

thought to bind DR2 elements with reversed orientation i.e. binding 3’ causing gene 

repression rather than activation (Leid et al., 1992a).  However, more recently, RARs have 
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also been shown to bind DR2 elements in a similar orientation to DR5 elements in vitro 

(Rochette-Egly and Germain, 2009).  This reversal in orientation is also seen on RAREs 

with a DR1 spacer but DR1 elements (Rastinejad et al., 2000) have only been found on one 

vertebrate gene-CRBPII in rat (Mangelsdorf et al., 1991; Rochette-Egly and Germain, 

2009). ATRA has been shown to activate the transcription of human and mouse Crabp2 in 

vitro via a DR5, and DR1 and DR2 elements respectively (Astrom et al., 1994). An in 

silico study of DR5 RARE containing genes conserved between 13 species has been 

carried out and shown that many genes contain multiple RAREs and their differential 

binding may allow complex regulation of retinoid genetic targets (Lalevee et al., 2011). In 

the absence of ATRA, RARs may still bind to DNA although more bind in the presence of 

ligand (de The et al., 1990; Lalevee et al., 2011). It has been reported that unliganded 

RARs repress gene expression: particularly during the development of the skeleton (Cash 

et al., 1997) and anterior structures in Xenopus (Koide et al., 2001). This is due to the fact 

that unliganded RARs bind co-repressors, such as silencing mediator of retinoid and 

thyroid hormone receptor (SMRT) and nuclear receptor co-repressor 1 (NCoR), but upon 

ligand binding, these co-repressors are released allowing co-activators to bind as the 

cofactor binding sites are overlapping (Benko et al., 2003). 

 

There are three subtypes of RAR which are encoded on separate genes (α, β and γ) 

producing three isotypes (Zelent et al., 1989). Interestingly, the isotypes of the RARs have 

been shown to be more similar between species than to the other RARs within a species 

suggesting that their functions are highly conserved (Zelent et al., 1989). Multiple isoforms 

can be generated by alternative splicing and differential promoter activation (Bastien and 

Rochette-Egly, 2004).  A number of RAR isoforms have been reported: RARα1, RARα2, 

RARβ1, RARβ2, RARγ1 and RARγ2 (Kastner et al., 1990; Zelent et al., 1989) but only 

one RARγ isoform appears to be characterised in chick corresponding to RARγ2 

(Michaille et al., 1994; Michaille et al., 1995; Smith and Eichele, 1991; Smith et al., 1995). 

Other isoforms of Rarγ have been observed in chick and mouse. The seven isoforms 

isolated in mouse are thought to differ in 5’ un-translated region while those in chick have 

not been characterised (Kastner et al., 1990; Michaille et al., 1994). It is believed, however, 

that Rarγ1 and Rarγ2 are the major isoforms involved in embryogenesis (Kastner et al., 

1990).  
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It has been shown that the RARs have two promoters (Leid et al., 1992a), one of which is 

retinoid inducible.  Rarβ has two promoters: one in the 5’ un-translated region and the 

other in the intronic region proximal to exon 3 (Zelent et al., 1991).  Differential promoter 

activation produces Rarβ1 and Rarβ2 with isoform specific exons in their A regions: 

Rarβ1 contains exon 1 while Rarβ2 contains exon 3. Both of these gene products can be 

alternately spliced in the A domain to generate Rarβ3 (containing exons 1 and 2) and 

Rarβ4 with an A domain containing only 4 amino acids (Kastner et al., 1990; Nagpal et al., 

1992; Nohno et al., 1991). However, only Rarβ2/4 is retinoid inducible as the Rarβ2 

promoter contains a retinoic acid response element (RARE) (Mendelsohn et al., 1994a; 

Nagpal et al., 1992). Similarly, Rarα2 and Rarγ2 have been documented to be retinoid 

responsive (Lampron et al., 1995; Lehmann et al., 1992; Leid et al., 1992b).  These 

isoforms are often differentially expressed suggesting subtly different functions in vivo 

(Mollard et al., 2000; Nagpal et al., 1992; Smith et al., 1995).  

 

RARs specifically respond to nanomolar concentrations of ATRA but it has been reported 

that RXR can bind both ATRA (micromolar concentrations) and its isomer, 9CRA, with 

higher affinity (Heyman et al., 1992; Levin et al., 1992; Yu et al., 1991).  The ligand 

binding pocket of RAR is found in the E domain and consists of twelve α-helices separated 

by a β-sheet. Helix 12 of the LBD has been shown to be important for transcription and it 

is also known as activation function 2 (AF-2) (Mark et al., 2006).  It is ligand dependent 

and interacts with the ligand independent activation function 1 (AF-1) (Bain et al., 2007) 

found in the A and B domains, which enhance the retinoic acid response.  The AF-1 region 

is isoform specific as it is partially overlaps the A domain but the portion in the B region is 

more conserved and includes sites which become phosphorylated in response to ligand 

(Bain et al., 2007).  These phosphorylation sites are important for the recruitment of SH3 

or WW domain containing proteins and may regulate the function of these receptors or 

allow downstream signalling (Rochette-Egly and Germain, 2009). When ligand-bound, 

helix 12 undergoes a significant conformational change to form a hydrophobic cleft with 

helices 3 and 4 of the E domain.  This causes the recruitment of co-activators such as the 

P160 subfamily of steroid receptor co-activators which contain the LXXLL motif 

(Rochette-Egly and Germain, 2009).  Consequently there is a reprogramming of gene 

expression as co-activator and co-repressor binding are mutually exclusive (Bain et al., 

2007).  Less is known about gene regulation by RARβ and RARγ although a study has 

investigated the RARγ specific targets in mouse limb bud culture (Galdones and Hales, 
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2008).   Some research has been carried out on the genetic targets of retinoids in vitro (Ali-

Khan and Hales, 2006; Galdones and Hales, 2008; Williams et al., 2004) but the complete 

transcriptional response to retinoids has been little characterised in vivo bar the studies of 

retinoid on whole rat embryos (Feng et al., 2010; Luijten et al., 2010). This is an area for 

further work and which is addressed in the present study (see chapter 5 for more details). 

RAR binding clearly has potential to cause a great change in gene expression dependent on 

the distribution of these receptors (see p15).   

 

The carboxylic acid group is important for RAR binding by an electrostatic guidance 

mechanism based on the attraction of this polar region to the LBD (Renaud et al., 1995) 

and, similarly, it is also important for the binding affinity for CRABP and CYP26 enzyme 

binding (Fiorella and Napoli, 1991; Gomaa et al., 2006; Kleywegt et al., 1994). There has 

been some investigation ligand specificity of the LBD in order that specific synthetic 

analogues could be synthesised (Lund et al., 2005; Piu et al., 2005). Ligand-bound RARγ 

has been crystallised either whole (Klaholz et al., 2000) or residues 178-723 only (Renaud 

et al., 1995), both of which indicated that three residues are important for carboxylic acid 

binding: Arg278, Ser289 and Leu233, with the equivalent residues shown for RARα and 

RARβ (table 1.1). The difference in these residues has been suggested to affect receptor 

selectivity as they are the only differences between the LBD of the receptors. The amino 

acids at positions 1 and 2 interact with the isoprene tail while the amino acid at position 3 

interacts with the β-ionene ring. RARβ was thought to have a smaller LBD than the other 

RARs (Klaholz et al., 2000) but crystallisation of its structure indicates that it has an extra 

cavity which allows binding of agonists with a more bulky hydrophobic region (Germain 

et al., 2004).  

 

Table 1.1: The different amino acids in the ligand binding domain of the retinoic acid receptor 

subtypes. 

RAR 

Amino Acid Position 

1 2 3 

RARγ Ala234 Met272 Ala397 

RARα Ser232 Ile270 Val395 

RARβ Ala225 Ile263 Val388 

 

 

Amino acid position refers to the differences observed by Klaholz et al (2000). Abbreviations: RAR, retinoic 

acid receptor; Ala, alanine; Ile, isoleucine; Met, methionine; Ser, serine; Val, valine. 
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An electrostatic guidance mechanism has been suggested for RARγ ligand binding. The 

carboxylic acid group enters first and pulls the molecule down the electrostatic gradient, 

with the C-terminal helix 12 forming a lid on the LBD when bound. This leads to burial of 

ATRA in the hydrophobic binding site stabilised by hydrogen bonds and Van der Waals 

forces (Renaud et al., 1995). 

 

The specific functions of the RARs are not well characterised but it appears that RARγ is 

highly involved in chondrogenesis and bone development from its expression during 

embryonic development (see p15) and its genetic targets in micromass cultures (Galdones 

and Hales, 2008) although RAR targets in vivo are unknown. Another source of 

information on receptor function could be mutant mice. However, comparison of the single 

receptor knockout mice and vitamin A deficiency (VAD) has indicated that the RARs are 

functionally redundant. Rarα knockout mice exhibit post-partum lethality, growth 

deficiency and testicular germinal epithelium degeneration (Lohnes et al., 1994). Rarβ 

knockout mice are fertile but exhibit eye malformations and transformation of certain 

vertebrae, but their limbs are normal suggesting that RARβ is not necessary for ATRA 

induced limb malformations (Ghyselinck et al., 1997; Luo et al., 1995). Rarγ null mutants 

are growth deficient, lethal early, infertile and exhibit vertebral transformations (Lohnes et 

al., 1993). Interestingly, they did show resistance to ATRA induced malformations 

(Iulianella and Lohnes, 1997; Lohnes et al., 1993). However, compound knockout of the 

RARs recapitulate the malformations exhibited in VAD embryos. RAR double knockouts 

do also exhibit some malformations which are not present in VAD embryos (Lohnes et al., 

1994; Mendelsohn et al., 1994b). Despite the effects of ATRA on limb development (see 

p25) only one RAR double knockout combination caused a limb defect: Rarα/γ which 

exhibits scapula malformation, thickened humerus, shortened skeleton and delayed 

ossification (Lohnes et al., 1994).  

 

RXR. 

 

RXR is necessary for RAR function (Zhang et al., 1992) although its actual role in retinoid 

signalling has been debated. RAR mediated retinoid signalling is known to be most 

important for embryonic development as Raldh2 knockouts were not rescued upon 

treatment with an RXR ligand (Mic et al., 2003). As mentioned previously, RXR binds 
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9CRA with higher affinity than ATRA and RAR which is thought to be due to the number 

of hydrogen bonds formed with the retinoid in the LBD: RXR forms two while RAR forms 

three (Heyman et al., 1992; Sussman and de Lera, 2005).  

 

RXR homodimers can form and bind similar elements to RAR/RXR heterodimers but it 

has been shown that RAR/RXR heterodimers inhibit RXR homodimer binding. RAR is 

thought to allosterically inhibit ligand binding RXR through binding to the upstream half 

site of DR1, however other partners of RXR do not (Kurokawa et al., 1994). This has led 

to the hypothesis that RXR is submissive to RAR function. It has also been documented 

that an RXR selective ligand can bind when in RAR/RXR heterodimer but that the co-

repressors on RAR/RXR are not released. Interaction of the co-activator p160 is enhanced 

with both RAR and RXR present indicating that activation of RAR or both are needed to 

contribute to cofactor binding (Germain et al., 2001).  

 

Similar to RAR, it has been reported that there are three isotypes of RXR: RXRα, RXRβ 

and RXRγ (Mangelsdorf et al., 1992; Mangelsdorf et al., 1991). RXRs can also form 

homodimers or heterodimerise with other nuclear receptors such as peroxisome proliferator 

activated receptor (PPAR), vitamin D receptor (VDR) or thyroid receptor (TR) to mediate 

transcription, however, they have been shown to prefer different response elements (DR1, 

DR3 and DR4 elements respectively; (Kliewer et al., 1992; Leid et al., 1992b). Rxrs are 

expressed in developing embryo but levels of Rxrγ are much lower than the other isotypes. 

It has been documented that the Rxrs are not expressed in the developing limb 

(Mangelsdorf et al., 1992) but northern blotting has shown Rxrγ in the HH20 chick limb 

bud (Thaller et al., 1993). However, Rxrα expression has been documented from HH12-22 

in chick: from rhombomere 6 to somite 9, roof plate, neural crest and limb bud. Unlike 

RAR, addition of ligand (9CRA) augments expression rather than expanding it (Hoover 

and Glover, 1998). The expression of Rxrα in the chick wing bud was further characterised 

as present in the ectoderm and mesenchyme and higher in the dorsal, anterior, proximal 

region (Seleiro et al., 1995). Consistent with the idea that RXRs are not essential for 

retinoid signalling Rxrγ null develop normally and are shown to be functionally redundant 

with Rxrα/β by compound mutants. Rxrα nulls, however, have similar ocular and cardiac 

defects to those seen in VAD as do compound Rar/Rxr nulls indicating that Rxrα is the 

most important for embryonic development (Krezel et al., 1996). Rxrα nulls develop 

normally until development arrests at E15.5 but exhibit normal limb development and are 
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resistant to retinoid induced limb malformations, indicating that this subtype is likely to be 

most important during limb development (Sucov et al., 1995).  

 

The expression of Rars and Crabp during embryonic development. 

 

The distribution of these receptors and CRABPs has been investigated during mouse 

development and in chick, to a lesser extent, mainly by sectioned in situ hybridisation with 

35
S autoradiography (Mollard et al., 2000).  Whilst this is important data, this technique has 

limitations in that it depends on the interpretation of 2D images to recreate a 3D expression 

pattern.  The use of 
35

S autoradiography generates a high signal to noise ratio and it can be 

difficult to detect expression in single cell layers due to sectioning and low resolution e.g. 

apical ectodermal ridge (AER).  This suggests a need to re-examine the expression of these 

genes in intact embryos. 

 

The expression of Crabps in development has been well characterised in the mouse model 

but is less characterised in the chick model. During development Crabp is expressed at the 

forebrain-midbrain boundary, cranial ganglia, branchial arch mesenchyme, frontonasal 

mass, limb and lateral plate mesoderm (Ruberte et al., 1991). Crabp2 has been shown to be 

expressed in bone, tendon, muscle and skin throughout chick development by northern 

blotting (Kitamoto et al., 1989). To date, most research has focused on the localisation of 

CRABP2 and CRABP1 proteins in chick, however, investigations into transcript 

localisation have been characterised in mouse (summarised in table 1.2). CRABP1 is seen 

at high levels in the limb bud at E4 of chick development while CRABP2 is more 

widespread (Maden, 1994). CRABP1 is localised in a gradient anterior-posterior (AP) with 

levels highest at the anterior wing bud (Maden, 1994; Maden et al., 1988; Scott et al., 

1994). CRABP2 is found in the developing limb bud between HH21-27 and is restricted to 

the distal limb bud or progress zone at HH23, specifically the middle and posterior 

progress zone as well as the dorsal and ventral muscle masses (Miyagawa-Tomita et al., 

1992; Scott et al., 1994). However, this is contradictory with other studies which find no 

AP gradient of CRABP2 in the progress zone (Maden, 1994). These results are also 

distinct from those in mouse (compare tables 1.2 and 1.3) and indicate that these proteins 

may play distinct roles in these organisms.  
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The distribution of CRABP1 and CRABP2 proteins have been implicated in the production 

or exacerbation of the ATRA gradient in the limb bud described previously as increased 

ATRA in the posterior and low in the anterior wing (Thaller and Eichele, 1987). If the role 

of CRABP1 is to sequester ATRA in the anterior limb and present it to the CYP26 

enzymes for metabolism (Dong et al., 1999; Fiorella and Napoli, 1991), this would account 

for the higher levels of free ATRA in the posterior limb. The CRABP2 present in the 

posterior progress zone would therefore indicate ATRA signalling would be important for 

limb patterning and growth, however, given the expression of reporter genes (discussed 

p27) this is unlikely to be the case. Despite being observed in bone tissue (Kitamoto et al., 

1989), it is absent from the condensations in the developing limb similar to the distribution 

observed in mouse and is present in the interdigit mesenchyme in mouse (Dolle et al., 

1989; Miyagawa-Tomita et al., 1992; Mollard et al., 2000).  

 

The expression of the Rar isotypes has been well investigated in mouse embryonic 

development but few studies have investigated the expression of the isoforms in mouse 

development. In chick there is less data available and none in the intact embryo which 

represents an area of further study. Considering the role of the RARs in the retinoid 

signalling pathway and the alteration of the A domain caused by the production of the 

RAR isoforms described above, it ought to be further investigated and will be addressed in 

this work. This section summarises the expression of the RARs known to date with 

particular reference to the limb bud as it is pertinent to the present study.  

 

According to previous research Rarα is ubiquitous, Rarβ is more tissue specific and Rarγ is 

specific to pre-cartilaginous regions and prospective squamous keratinising epithelia 

during embryonic development (Kastner et al., 1990; Ruberte et al., 1991).  Rarα and Rarγ 

are mainly ubiquitous in the head region whereas Rarβ2 is restricted to the frontonasal 

mass mesenchyme, periocular mesenchyme and anterior maxillary arch (Dolle, 2009; 

Dolle et al., 1990; Michaille et al., 1995). Rarβ was seen in the hindbrain at early stages 

(Smith, 1994) and intermediate mesoderm while Rarγ was expressed in the caudal embryo, 

neural tube, sclerotome and pre-vertebrae. Both Rarβ and Rarγ were also described to be 

present in the lateral plate mesoderm (Dolle et al., 1990; Michaille et al., 1994; Ruberte et 

al., 1991).   
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Rarα, Rarβ and Rarγ were expressed in the limb in both mouse and chick (summarised in 

tables 1.2 and 1.3 respectively). Generally in early limb development: Rarα and Rarγ are 

thought to be ubiquitous (Michaille et al., 1994; Mollard et al., 2000), Rarβ1 is thought to 

be ubiquitous including the epithelium (Schofield et al., 1992; Smith et al., 1995) and 

Rarβ2 is restricted to the proximal limb (Mollard et al., 2000; Smith et al., 1995).  All RAR 

isoforms have been seen to be involved in the later stages of limb development but 

interestingly Rarβ2 and Rarγ2 are expressed in the apoptotic interdigit regions. Rarγ1 was 

expressed in the developing cartilage and Rarα was ubiquitous but mutually exclusive with 

Rarγ (Dolle et al., 1989; Mollard et al., 2000). 

 

Whilst all RARs bind ATRA their expression can be altered by ATRA and interestingly 

they differ in their responses: Rarβ is up-regulated or expanded (Rowe et al., 1991; Zelent 

et al., 1989), Rarα is unaffected and Rarγ expression decreases (Zelent et al., 1989). The 

expression ATRA inducible isoforms of Rarα2 and Rarβ2 (Kostetskii et al., 1996) is also 

dependent on vitamin A status as seen by their decreased expression in a comparison of 

normal and VAD quail up to HH10. This is reversed within 45 minutes upon addition of 

vitamin A or ATRA (Cui et al., 2003).   
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Table 1.2: The distribution of retinoic acid binding proteins and receptor isotypes in mouse limbs. 

Stage Rarα Rarβ Rarγ Crabp1 Crabp2 

10dpc 
Ubiquitous, including 

AER (present in LPM) 

Restricted (proximal 

limb and LPM) 

Ubiquitous, mesoderm 

of limb only 

Restricted distal, 

posterior and dorsal. 

Also AER. 

Throughout but higher 

dorsally and low in 

PZ. 

12.5dpc Ubiquitous 

Restricted (proximal to 

zeugopod blastema), 

opaque patch and 

AER. 

Restricted (pre-

cartilage blastemas 

proximally-including 

scapula and ubiquitous 

distally) 

Restricted (surround blastemas and blood 

vessels. Not in distal mesenchyme) 

13.5 dpc Ubiquitous 
Restricted, interdigit 

mesenchyme. 

Restricted, interdigit 

mesenchyme. Also in 

cartilage before 

ossification. 

Restricted, distal and 

wrist elements. 

Restricted, distal and 

interdigit 

mesenchyme. 

14.5dpc 

Restricted (everything 

but cartilage-

complimentary to 

Rarγ) 

Restricted (interdigit 

mesenchyme, Rarβ1 at 

much lower levels) 

Restricted (skin and 

cartilage-Rarγ1), 

Rarγ2 is distal. 

Restricted (periphery of cartilage and digit tips 

but not overlapping with Rarβ) 

 

 

 

 

 

Data summarised from studies using section in situ hybridisation and 
35

S autoradiography (Dolle et al., 1989; Mendelsohn et al., 1992; 

Mollard et al., 2000; Ruberte et al., 1990a).  Abbreviations: AER: apical ectodermal ridge; dpc: days post coitus; LPM: lateral plate 

mesoderm; PD: proximal-distal; PZ, proximal zone. 
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Table 1.3: The distribution of Rarβ and cellular retinoic acid binding protein in chick limb development. 

Stage Rarβ1 Rarβ2 CRABP CRABP2 

20-22 
Ubiquitous (slightly higher 

dorsally) 

Restricted (proximal limb bud 

and then localised to central 

core condensation) 

Distal limb: high anterior low 

posterior. 
+ 

24 Ubiquitous 

Restricted (high in central 

proximal core condensation-

overlaps with Col1) 

Distal limb bud: PZ and more 

proximally but absent from 

the cartilage elements. 

Distal limb in PZ, restricted 

to mid and posterior PZ. 

25-27 Ubiquitous 

As HH24 then high 

proximally to 

humerus/stylopod.  Also in 

AER. 

0 + 

28-30 

Restricted (cartilage and 

connective tissue.  High in 

outer cartilage, low 

prehypertrophic cartilage) 

Restricted (mainly to distal 

mesenchyme, lining digital 

plate and zeugopod) 

0 0 

36 

Restricted (perichondrium 

cartilage and broader than 

Rarβ2) 

Restricted (fibroblasts 

between digits) 
0 0 

  

 

 

Data was taken from (Kitamoto et al., 1989; Maden et al., 1988; Maden et al., 1989; Miyagawa-Tomita et al., 1992; Schofield et al., 1992; 

Smith and Eichele, 1991; Smith et al., 1995). Abbreviations: AER: apical ectodermal ridge; Col1: collagen1; HH, Hamburger and Hamilton 

staging; PZ, progress zone; +, present by Northern blot while other patterns are demonstrated as present by immunohistochemistry; 0, not 

investigated. 
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An alternative signalling pathway for ATRA. 

 

It has recently been discovered that ATRA may bind to another intracellular binding 

protein: FABP5 (Shaw et al., 2003). FABP5 is essential for ligand translocation to 

peroxisome proliferator activated receptor β/δ (PPARβ/δ) in the nucleus and has been 

documented to contain the same NLS as CRABP2 in its tertiary structure (Sessler and Noy, 

2005; Tan et al., 2002). FABP5 has been confirmed to channel ATRA to and activate 

PPARβδ in vitro (Schug et al., 2007; Shaw et al., 2003; Tan et al., 2005). PPARβδ is 

known to heterodimerise with RXR, which is necessary for transcriptional activation 

(Peters et al., 2000), and binds PPAR responsive elements, DR1 or DR2 RXR responsive 

elements (PRE or RXRE; (Hihi et al., 2002; Kliewer et al., 1992). As both RAR and 

PPAR/RXR heterodimers have been implicated in DR1 element binding, there may be 

competition between the PPAR and RAR pathways (Kliewer et al., 1992; Yu et al., 2012) 

consistent with findings of Schug et al (2007), although the significance of this is unclear. 

The formation of heterodimers with RXR allows PPARβδ/RXR heterodimers to respond to 

both 9CRA and PPARβδ specific ligands (Kliewer et al., 1992). Similar to RARs, in the 

absence of ligands it can activate or repress transcription (Adhikary et al., 2011; Shi et al., 

2002; Tachibana et al., 2005). Although its action appears to mainly repress transcription 

as it binds co-repressors (Shi et al., 2002) and only 13 genetic targets are de-repressed in 

response to ligand and siRNA for Pparβδ using a human prostate cell line. It has been 

suggested that the genetic response is largely dependent on the PRE present and the 

function of the gene in question (Adhikary et al., 2011). Similarly PPARβδ has been 

shown to inhibit PPARα or PPARγ mediated transcription, thought to be via competitive 

binding to PREs, and it has been proposed to be a gateway receptor for correct activation 

of these pathways (Shi et al., 2002). PPARβδ is involved in barrier homeostasis through 

stimulation of keratinocyte differentiation, anti-inflammatory response, lipid metabolism, 

cholesterol transport, oligodendrocyte differentiation, wound healing and embryo 

implantation (Hihi et al., 2002; Michalik and Wahli, 1999; Schmuth et al., 2004; Tan et al., 

2005).  

 

ATRA has been used in the treatment of acute promyelocytic leukaemia but its use has 

been limited due to the fact that it can induce its own catabolism and the use of CYP26 

inhibitors such as liarozole are now considered (Miller et al., 1994; Njar et al., 2006; Rigas 

et al., 1993). Therefore, retinoids resistant to metabolism could be of use in a clinical 
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context. It also causes contradictory effects of proliferation in some cancers but apoptosis 

in others (Schug et al., 2007). The ratio of FABP5:CRABP2 in the responding cells has 

been shown to direct ATRA to either PPARβδ or RAR and cause a proliferative or 

apoptotic response respectively (Schug et al., 2007; Schug et al., 2008). This differential 

response due to the ratio of FABP5:CRABP2 may aid future cancer treatment and also has 

implications for the role of ATRA in development.  

 

Consistent with this, a recent study has suggested that the partitioning of ATRA between 

these two alternative pathways: PPARβδ and RAR is important for neurogenesis during 

development. It has been shown in P19 cells that ATRA acts via RAR mediated 

transcription early in differentiation but later acts via PPARβδ mediated transcription. The 

activation of PPARβδ mediated transcription inhibits RAR mediated transcription and, 

similar to RAR, PPARβδ is auto-regulated (Yu et al., 2012). Pparβδ is known to be 

expressed in the rat brain from GD11.5 as well as the adult (Abbott, 2009). Consistent with 

these observations, the Fabp5 null mouse exhibits an accumulation of neuroprogenitor 

cells in the hippocampus and decreased neural maturation (Yu et al., 2012). However, the 

significance of this pathway remains to be seen as the Fabp5 null mice are not documented 

to exhibit other malformations (Yu et al., 2012) and, similarly, the Pparβδ knockout mouse 

exhibited smaller foetuses but did not show any other embryonic malformations (Peters et 

al., 2000). However Pparβδ null adult mice do show abnormal wound response as cells 

move away from the wound instead of repair it (Tan et al., 2007).  

 

The expression of Fabp5 and Pparβδ has been little studied during embryonic 

development. However, Pparβδ is known to be expressed in the kidney, heart, liver, CNS 

and epidermis during rat, mouse and human embryonic development (Abbott, 2009; 

Braissant and Wahli, 1998; Michalik and Wahli, 1999). The sequences of chick Fabp5 

(Caldwell et al., 2005) and Pparβδ has been cloned and cPparβ is closest to that of 

Xenopus Pparβ (Takada et al., 2000). To date, the expression of chicken Pparβ has only 

been reported as ubiquitous in the digestive tract (Hojo et al., 2006) and the expression of 

Fabp5 has not been documented. Given their potential role in retinoid signalling in vivo, 

further characterisation of these genes is necessary to enhance our understanding of their 

role in development and will be addressed in this work. 
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The effect of altered ATRA levels in vivo.  

 

As mentioned previously, ATRA excess and vitamin A deficiency cause malformations to 

the developing embryo and can be studied using mouse models. Mice null for Cyp26a1 

have been studied and exhibit similar phenotypes to those of ATRA excess in this model 

system including: absent genitalia, sirenomelia, spina bifida, abnormal kidney and 

posterior embryo development. Cyp26a1 is also seen to be essential for normal hindbrain 

patterning including the trigeminal nerve and vertebral identity (Abu-Abed et al., 2001). 

Similarly, Cyp26b1 knockout mice also exhibit effects associated with excess ATRA: limb 

malformations (meromelia and oligodactyly-see p26), micrognathia, malformation of 

neural crest derived structures, abnormalities of caudal cranial nerves and eyes open at 

birth (Maclean et al., 2009; Yashiro et al., 2004).  This has led to the hypothesis that the 

CYP26 enzymes keep certain areas of the embryo in an ATRA depleted state for protection 

against teratogenesis. The level of ATRA has been shown to be important for development 

as these defects are rescued when mice are heterozygous for Raldh2 knockout on a 

Cyp26a1 knock out background (Niederreither et al., 2002a). Similarly mouse knockouts 

of the ATRA producing enzyme Raldh2 exhibit no detectable ATRA signalling and 

development is arrested at E8.5-9.5 (Mic et al., 2003; Niederreither et al., 2002b), similar 

to VAD. These embryos exhibit cardiac defects, axial truncation and hindbrain defects 

(Niederreither et al., 2002b). Raldh2 null embryos can be supplemented with ATRA to 

allow continued development and study the effect of ATRA deficiency on the limb 

(addressed p27).  

 

ATRA and limb development.  

 

One of the most studied regions affected by ATRA excess is the developing limb which 

will be addressed in this section. Limb outgrowth is initiated by the induction of the apical 

ectodermal ridge (AER) which secretes fibroblast growth factor 8 (FGF8) to maintain 

proliferation of the adjacent mesoderm (progress zone; PZ) and is thought to pattern the 

PD axis (Duboc and Logan, 2011). It has been well documented that cartilage 

differentiates in a proximal to distal sequence (Thorogood and Hinchliffe, 1975). The 

development of each PD segment (stylopod, zeugopod and autopod) is thought to be under 

the control of transcription factors marking each domain: Homeobox d 9 (Hoxd9) and Meis 

homeobox 2 (Meis2; stylopod), Hoxa11 (zeugopod) and Hoxa13 (autopod) (Pellegrini et 
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al., 2001; Pennimpede et al., 2010b). When the AER has been induced the limb is not 

polarised with respect to the AP axis. AP asymmetry and the production of digits is 

thought to be under the control of the zone of polarising activity (ZPA) and sonic 

hedgehog (SHH) produced in the posterior limb. This has been shown by the production of 

digit duplications from application or grafting of ZPA cells to the anterior wing bud, the 

severity of which is dependent on the number of cells and the stage at which the ZPA graft 

originated (Summerbell, 1974; Tickle, 1981). It was then shown that Shh was expressed in 

the ZPA and that SHH application to the anterior wing bud mimicked ZPA grafts (Riddle 

et al., 1993).  

 

Once Shh in the ZPA has been induced, limb outgrowth is maintained by a SHH-gremlin-

FGF feedback loop (Niswander et al., 1994; Scherz et al., 2004). It was also shown that 

bone morphogenetic protein (BMP) signalling inhibited the AER and a BMP antagonist, 

Gremlin, was essential for correct limb outgrowth (Capdevila et al., 1999; Pizette and 

Niswander, 1999). SHH causes proliferation and causes adjacent cells to express gremlin 

which allows the maintenance of FGF8 and FGF4 in the AER (Capdevila et al., 1999; 

Scherz et al., 2004). Once the ZPA cells and their descendants have proliferated 

significantly, they cannot induce gremlin expression adjacent to the AER, causing 

termination of limb bud outgrowth (Scherz et al., 2004). Consistent with this BMP 

antagonism in limb outgrowth, BMPs are also implicated in controlling the size of the Shh 

expression domain by a negative feedback loop and apoptosis caused by increased SHH in 

the posterior necrotic zone (PNZ; (Bastida et al., 2009; Sanz-Ezquerro and Tickle, 2000)). 

Death in the PNZ is therefore a buffer for the number of ZPA cells and may contribute to 

the control of limb outgrowth.  

 

However, the AP axis is thought to be polarised before the induction of Shh in the ZPA. 

Hoxb8 is seen to be expressed in the posterior mesoderm before restriction to the flank at 

early stages of limb development and overexpression can produce digit duplications, 

implicating it in the production of the ZPA (Charite et al., 1994). The expression of heart 

and neural crest derived 2 (Hand2) and Aristaless-like homeobox 4 (Alx4) is ubiquitous at 

early stages (Fernandez-Teran et al., 2000; Takahashi et al., 1998) but the action of Gli3R 

(repressor) causes Hand2 to become restricted to the posterior limb and Alx4 to be 

excluded from the posterior limb (te Welscher et al., 2002). Hand2 is then able to induce 

Shh expression as shown by the misexpression of hand2 in the anterior wing which results 
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in digit duplication (Fernandez-Teran et al., 2000). 5’ hoxd genes are also implicated in the 

induction and positioning of shh (Hill, 2007) as are T-box protein 2 (Tbx2) and Tbx3 

(Bastida et al., 2009). The 5’ hoxd genes exhibit restricted expression during limb 

development and before ZPA induction but which appears to correlate with the AP 

segments of the limb rather than the PD segments like the 5’ hoxa genes. Hoxd11 and 

hoxd12 are restricted to the posterior distal domain with an anterior limit of the radius. 

Hoxd13 is expressed in the posterior distal limb and then becomes restricted to the 

posterior autopod with the 2
nd

 metacarpal element as its anterior limit (Yokouchi et al., 

1991b). 

 

Digit identity, the manifestation of patterning in the AP axis, appears to be downstream of 

both Shh and Gli3 considering that the polydactylous limb formed in Shh/Gli3 double 

knockout mice exhibits identical digits (te Welscher et al., 2002). Shh has also been shown 

to be involved in digit identity given that Talpid3 mutant embryos, which do not maintain 

Shh expression in the ZPA, exhibit severely polydactylous limbs of identical digit identity 

(Francis-West et al., 1995). The induction of anterior or digit 1 identity is thought to be 

dependent on Gli3R activity or SHH independent (Chiang et al., 2001). However, posterior 

identity (digit 2-5) is dependent on SHH (Chiang et al., 2001; Harfe et al., 2004; te 

Welscher et al., 2002) with more posterior digits thought to require increased levels for 

specification (Yang et al., 1997). The development of digits 2-5 is not dependent on a 

gradient of SHH as shown by the SHH responsiveness across the limb bud using the SHH 

target Gli1.  The early response to SHH in the limb was graded: high posterior and low 

anterior with digit 2 as the anterior limit of expression but was absent from digit 1 

producing region. Subsequently, the posterior limb stopped responding to SHH and the 

levels of Gli1 in developing digits 3, 4 and 5 become equal indicating that digit identity is 

not solely due to a SHH gradient (Ahn and Joyner, 2004). Consistent with this, recent 

research has now implicated SHH dependent proliferation as important in the development 

of digits 3 and 4 as well as long range SHH signalling in digit 2 development 

(Drossopoulou et al., 2000; Harfe et al., 2004; Towers et al., 2008; Zhu et al., 2008a).  

 

These findings are likely to have significance for chick digit development but there has 

been some debate over avian digit identity. Given that, during its formation, the most 

posterior digit of the chick wing is seen to overlap with the ZPA (Towers et al., 2008) and 

that it is homologous to the hindlimb posterior digit, it has been implied that this digit is 
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homologous to digit 4 in mice (Burke and Feduccia, 1997). However, recent research by 

Towers et al (Towers et al., 2011) has shown that the chick ZPA does not form any digits 

but instead contributes to soft tissue in the most posterior limb. This implies that the digit 

previously known as digit 4 in chick is in fact more similar to digit 3 in mouse which is the 

most posterior digit to contain non-Shh expressing cells (Harfe et al., 2004; Lewis et al., 

2001). Therefore, the most anterior chick digit is more similar to murine digit 1 and may be 

SHH-independent.   

 

ATRA has long been implicated in limb development since experiments indicating that 

excess ATRA applied to the anterior chick wing bud could mimic ZPA grafts and generate 

digit duplications (Tickle et al., 1982) and reductions in a dose dependent manner 

(Summerbell, 1983; Tickle et al., 1985). Earlier grafts of the ZPA can cause duplication of 

more proximal structures which is also seen with ATRA application earlier than HH20 

(Summerbell, 1974, 1983). The effect of ATRA was later shown to be via the mesoderm 

and cause reorganisation of the AER (Tickle et al., 1989). Retinoids have also been shown 

to affect the development of axolotl limbs. Amputation of axolotl limb buds allows 

regeneration of the limb dependent on where the amputation occurred. Application of 

vitamin A to the blastemas causes regeneration of more proximal elements of the limb than 

expected from the site of amputation. Application of ATRA, increased exposure time or 

concentration can cause more proximal regenerations and can even include the limb girdle 

(Maden, 1983). ATRA application to mouse embryos has been shown to reduce forelimb 

length (Luo et al., 1995).  

 

Excess ATRA is thought to mimic the early events of limb development when applied to 

the anterior chick wing bud as it induces Hoxb8 which has been shown to induce Shh in the 

early steps of ZPA formation (Charite et al., 1994). Consistent with this ATRA then 

induces Hand2 and Shh to form an ectopic anterior ZPA (Fernandez-Teran et al., 2000; 

Riddle et al., 1993; Wanek et al., 1991).  The duplicated digits then develop under the 

control of the ectopic ZPA and if ATRA application occurs early enough the full digit 

pattern can be duplicated.  Interestingly the wing appears to lose the ability to generate 

digit duplications after retinoid application at HH22 (Summerbell, 1983) and digit 

duplications are also not seen after ZPA graft later than HH25 (Summerbell, 1974).  This 

may be due to a time lag between ATRA application and Shh induction.  
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In terms of the PD axis, ATRA has been shown to cause the up-regulation Meis2 which is 

a marker of proximal fate, although, recent research shows that lack of ATRA via Raldh2 

and Rdh10 does not affect Meis1/2 expression and therefore ATRA is not necessary for 

endogenous PD patterning (Cunningham et al., 2013; Mercader et al., 2000). The up-

regulation of Meis2 and alteration of the PD axis after excess ATRA is likely to be due to 

suppression of FGF8 distally in the limb bud and then a subsequent down-regulation of 

Meis expression (Cunningham et al., 2013). Consistent with an effect on PD outgrowth and 

identity, excess application of ATRA has been shown to cause reduced skeletal elements 

along the PD axis at high concentrations (Summerbell, 1983), proximal relocation of limb 

bud cells (Mercader et al., 2000; Yashiro et al., 2004) and constitutive activation of RARα 

concurrent with increased Shh causes thickening of cartilage elements with increased 

proximal relocation (Ogura et al., 1996).  

 

Cyp26 knockout can also be considered as a model of ATRA excess due to reduced ATRA 

metabolism. Cyp26a1 knockout mice do not exhibit a forelimb phenotype, however, 

Cyp26b1 knockout mice exhibit meromelia and oligodactyly, agenesis of the clavicle, 

fusion of the stylopod/zeugopod and lack the elbow joint (Maclean et al., 2009; Yashiro et 

al., 2004). Consistent with this, Sox9 expression is not well separated in developing 

cartilage. Unexpectedly, analysis of markers indicates that the control of AP and dorsal-

ventral (DV) patterning is normal. Expression of distal markers hoxd12, hoxd13 and 

hoxd13 is reduced and proximal marker meis2 is expanded consistent with expansion of 

ATRA signalling in the limb and the relocation of distal cells to the proximal limb. 

Knockout limb buds also exhibited increased cell death at E12 over wild type and 

decreased chondrogenic maturation which was thought to cause the reduction in limb size 

(Yashiro et al., 2004).  

 

A role for ATRA in limb development has been further supported by studies indicating that 

endogenous ATRA production is also important for limb initiation in chick (Stratford et 

al., 1996). VAD also affects chick limb development and these limbs have been shown to 

exhibit altered patterning of early markers of limb development: anterior Hoxb8, 

ventralised Wnt7a and down-regulation of Shh, Fgf4 and Bmp2 (Stratford et al., 1999).  

VAD has also been shown to affect the developing limb in rats but caused only a slight 

reduction in size concurrent with reduction of Shh, fgf8 and hox expression consistent with 

impaired outgrowth (Power et al., 1999). Raldh2 knockout mice lack forelimbs 
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(Niederreither et al., 1999) but supplementation with ATRA causes a dose dependent 

rescue of limb development and overcomes the heart defect in these mutants (Niederreither 

et al., 2002b). The best rescue was observed with supplementing with a low level of ATRA 

at E8.5 followed by higher levels until E14.5. These knockouts suggest that ATRA is 

necessary for forelimb initiation as well as subsequent patterning. Short ATRA 

supplementation caused development of a small scapula, no humerus, single zeugopod 

element and one digit. Increasing ATRA supplementation ameliorated the scapula and 

humerus but the zeugopod and autopod were still defective and the limb was truncated. 

These rescued forelimbs exhibited impaired Shh-fgf4 signalling as they can be anteriorly 

expressed and the AER can be converted to a distal mound. They also show defective AP 

patterning: Hand2 is ubiquitous while Bmp2 and Hox are symmetrical (Mic et al., 2004; 

Niederreither et al., 2002b).  Similarly application of an ATRA signalling antagonist to the 

limb in chick down-regulates Hoxb8 expression and inhibits ZPA formation (Lu et al., 

1997). This implies that a certain threshold of ATRA is necessary for correct limb 

development; however its genetic targets are unknown in vitro and in vivo.  A study of 

retinoid targets on the developing mouse limb has indicated that retinoid excess impairs 

development by altering genes involved in differentiation (see chapter 5; (Ali-Khan and 

Hales, 2006)). This is an area which will be further explored in the current work. 

 

ATRA signalling in the developing limb. 

 

The study of ATRA distribution and signalling in the developing limb has yielded some 

conflicting data but would advance our understanding of the role of ATRA during limb 

development. Early experiments on ATRA indicated that it may be the morphogen 

produced from the ZPA to direct AP patterning during limb development (Tickle et al., 

1982). Although subsequent experiments indicated that it is not the morphogen but acts to 

induce ZPA activity (Noji et al., 1991; Wanek et al., 1991), it has been documented from 

HPLC analysis that ATRA levels are higher in the posterior limb bud which has been 

confirmed using RARE::LACZ reporter cells (Maden et al., 1998; Thaller and Eichele, 

1987). However, it was proposed that there was double the amount of ATRA in the 

posterior wing while other studies have indicated that the ratio of posterior: anterior ATRA 

is 1.33 which is unlikely to act as a developmental cue or to lead to the different responses 

seen with excess retinoid application (Martinez-Ceballos and Burdsal, 2001; Scott et al., 

1994; Tickle et al., 1985). It has been suggested that HH23 limb buds can synthesise 
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ATRA despite the fact that they lack the ATRA synthesising enzyme Raldh2 which may 

implicate other enzymes such as Cyp1B1 in limb development, the importance of which 

are unknown (Chambers et al., 2007; Maden et al., 1998). This is also consistent with the 

observation that other areas of the developing Raldh2 knockout mice demonstrate 

RARE::LACZ activity suggesting Raldh1 and Raldh3 are also important for aspects of 

embryonic development (Mic et al., 2004).  

 

Measurement of endogenous ATRA by HPLC is challenging and therefore investigation 

into the location of ATRA has also been carried out by indirect methods: mapping the 

location of ATRA activity in the limb bud. This has exploited the production of transgenic 

mice containing the gene for β-galactosidase controlled by the RARE from Rarβ promoter 

(Sonneveld et al., 1999). The expression of Raldh2 at the proximal limb bud and Cyp26 at 

the distal limb bud has suggested a proximal-distal gradient of ATRA signalling in the 

developing limb (MacLean et al., 2001; Niederreither et al., 1997; Reijntjes et al., 2003, 

2004; Swindell et al., 1999). Early in limb development ATRA signalling is ubiquitous 

across the limb although a PD difference is evident. Subsequently there is an area of 

increased ATRA signalling proximally and undetectable signalling distally rather than an 

AP gradient (Mendelsohn et al., 1991; Mic et al., 2004; Yashiro et al., 2004). Consistent 

with this FGF8, produced from the AER, is thought to have an antagonistic relationship 

with ATRA and controls distal identity confirmed by recent work in Shh deficient mice 

(Mercader et al., 2000; Probst et al., 2011).This may be responsible for the segmentation of 

the limb into RA high and low (FGF8 positive) domains and may be maintained and 

controlled by CYP26B1 activity at the distal wing (Probst et al., 2011). Oddly ATRA 

reporter activity has also been documented in the AER (Mendelsohn et al., 1991) which 

could account for Cyp26 expression in this region. Later in limb development ATRA 

reporter activity is excluded from cartilage condensations and present in the INZ and 

opaque patch (Mendelsohn et al., 1991). Altogether these observations support a role for 

ATRA in PD limb development, although this is likely to be indirect via FGF8 suppression 

(Cunningham et al., 2013), and the formation of ATRA-low areas such as the distal limb. 

However, this does not explain the differential effect of ATRA on the posterior and 

anterior limb bud nor the differences in ATRA levels seen across the AP axis. 
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Hindering factors in the study of ATRA: the role of isomers and 

metabolites.    

 

The study of ATRA can be hindered by the fact that ATRA has been documented to alter 

transcription by two separate receptor pathways dependent on the ratio of FABP5: 

CRABP2 present in the responding cell (Schug et al., 2007), as outlined in a previous 

section. Further characterisation of these proteins in development is necessary to advance 

our understanding. Two other hindering factors in the study of ATRA are based upon its 

structure and alteration in vivo. Firstly, it is known to isomerise upon exposure to light 

(Christie et al., 2008) which generates increased levels of other retinoids presumed to be 9-

cis retinoic acid (9CRA) and 13-cis retinoic acid (13CRA). Secondly, ATRA is 

metabolised in vivo by the CYP26 enzymes which are known to produce more polar 

derivatives such as 4-oxo-retinoic acid, 4-hydroxy-retinoic acid, 5,6-epoxy retinoic acid, 

16-hydroxy-retinoic acid and 18-hydroxy-retinoic acid (Taimi et al., 2004; Topletz et al., 

2012; White et al., 1997; White et al., 2000). The structures of these isomers and 

metabolites can be seen in figures 1.3 and 1.4 respectively. Another retinoid, 3, 4-

didehydro-retinoic acid has also been shown to generate phenotypes in vivo, is present in 

the chick limb but is absent from mouse, however, little further investigation has been 

published (Maden et al., 1998; Scott et al., 1994; Thaller et al., 1993). 
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Figure 1.3: Naturally occurring ATRA and its isomers 9-cis and 13-cis retinoic acid. 

 

 

Figure 1.4: The oxidative derivatives of ATRA. 

 

The Isomers. 

 

As shown in figure 1.3, the isomerisation of ATRA to 13CRA and 9CRA causes a 

difference in retinoid structure and, given the importance of the carboxylic acid group, may 

alter their ability to bind RARs and CRABP (Kleywegt et al., 1994; Renaud et al., 1995). 

The precise effects of these isomers are unknown but they have been shown to be bioactive 

in limb bud cell culture (Kistler, 1987). Of the two isomers, 9CRA appears to be more 

bioactive than 13CRA as it is a high affinity ligand for RXR, being 40 times more potent 

than ATRA and can also activate RARs (Heyman et al., 1992; Levin et al., 1992; Zhang et 

al., 1992). It has been found to be metabolised specifically by Cyp26c1 (Mark et al., 2006; 

Taimi et al., 2004). 9CRA has been documented to be 25 times more potent than ATRA at 

Figure X: The oxidative derivatives 

of ATRA produced by CYP26 

enzyme activity. 

Numbers on indicate carbon number. Abbreviations: ATRA, all trans retinoic acid; 9cRA, 9-cis retinoic 

acid; 13cRA, 13-cis retinoic acid. 



31 

 

 

 

generating digit duplications in the chick wing bud. It also affected upper beak growth 

similar to the phenotypes documented with ATRA (Thaller et al., 1993). As mentioned 

previously, 13CRA is less potent than ATRA which may be due to the fact that it cannot 

bind CRABP2 (Ruhl et al., 2001) and may therefore be less effective at activating the 

RAR:RXR heterodimer (Budhu and Noy, 2002). 13CRA also had a lower binding affinity 

to CRABP compared to ATRA (Fiorella and Napoli, 1991) and RAR activation by 13CRA 

needs significantly higher concentration: an order of magnitude (Astrom et al., 1990). 

 

13CRA and 9CRA are thought to be produced by photo-isomerisation as mentioned 

previously (Christie et al., 2008). 13CRA has been shown to be found after excess ATRA 

application to E10.5 mice (Horton and Maden, 1995) and the occurrence of 9CRA in vivo 

is controversial (Kane, 2012). It has been found that bovine liver membranes can isomerise 

ATRA to 9CRA (Urbach and Rando, 1994) and this has been suggested to occur during 

chick limb development (Thaller et al., 1993). 9CRA was originally documented to be 

present in mouse kidney and liver (Heyman et al., 1992) but more recent reports have 

suggested that this was erroneous. Similar to 13CRA, it appears to be present after 

supraphysiological doses of ATRA suggesting that they are unlikely to mediate significant 

effects in vivo. This is consistent with the fact that high concentrations of 9CRA are needed 

to rescue Raldh2 knockout mice and RXR specific agonists are unable to (Mic et al., 

2003). Production of these isomers in response to light (Christie et al., 2008) or in vivo by 

the action of isomerases (Chen and Juchau, 1998; Urbach and Rando, 1994), leads to a 

decrease in the concentration of the bioactive molecule of interest, ATRA. These isomers 

may also affect transcription in a separate manner to that of ATRA: 9CRA is a high 

affinity ligand for RXR and could affect other pathways if generated in vivo (Heyman et 

al., 1992; Yu et al., 1991), masking the effect of ATRA.   

 

The metabolites. 

 

The metabolites are polar derivatives of ATRA derived from CYP mediated metabolism 

(see p3) as shown in figure 1.4 and their role in development is controversial. The 

oxidative derivative, 4-oxo-retinoic acid, has been documented to have similar binding 

affinity to CRABP as ATRA (Fiorella and Napoli, 1991). Interestingly, it has been shown 

that the RARs and CYP26 enzymes are responsive to particular enantiomers of the 

retinoids which may affect their activity in vivo and hinder their study (Klaholz et al., 
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2000; Shimshoni et al., 2012). Similar to ATRA, the CYP26 enzymes are also known to 

act on 13CRA and 9CRA to produce the same polar derivatives including their 9-cis and 

13-cis isomers (Fiorella and Napoli, 1991; Marill et al., 2002). Interestingly, other enzymes 

have also been documented to metabolise ATRA and its isomers: CYP3A7, CYP2C8 and 

CYP3A4 (Marill et al., 2002; Marill et al., 2000). The action of the metabolites may also 

mask the activity of ATRA during study of this molecule either by causing effects of their 

own or altering ATRA levels. Isomers and oxidative derivatives of ATRA can also induce 

RARE driven luciferase reporters at similar levels to ATRA. However, they exhibited 

different affinities to the three RARs. The retinoids with the highest affinity for RARα, 

RARβ and RARγ were: 9CRA, 4-oxo-retinoic acid and ATRA respectively (Astrom et al., 

1990; Idres et al., 2002). However, it is unknown whether these compounds were 

maintained in their original state or if they were converted to ATRA itself via endogenous 

isomerases (Urbach and Rando, 1994) or other unknown enzymes. Nonetheless, the 

presence of oxidative derivatives and/or isomers could out-compete ATRA for RARα and 

RARγ mediated transcription and mask the true effect of ATRA on these receptors. The 

action of these metabolites in vivo is debated but it is believed that they are inactive 

products of ATRA and that the metabolising enzymes are necessary for the control of 

correct ATRA levels during development (Niederreither et al., 2002a). Opposition to this 

hypothesis stems from the fact that addition of the polar metabolites to VAD quails can 

cause partial rescue (Reijntjes et al., 2005) and they can pattern anterior structures of the 

Zebrafish head (Pijnappel et al., 1993). 

 

 

Investigation of two photostable, synthetic retinoids. 

 

Considering the isomerisation and metabolism of ATRA, the present study investigates 

two synthetic retinoids which should be resistant to these processes with a view to their use 

in cellular differentiation. It has been shown that ATRA can cause neural differentiation 

and decreasing its isomerisation and metabolism can optimise this process (Christie et al., 

2008). EC23 and EC19, shown in figure 1.5, are two synthetic retinoids which have been 

shown to be stable upon exposure to light as they lack the isoprene tail of ATRA (Christie 

et al., 2008). 
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Figure 1.5: Structural comparison of the naturally occurring (ATRA and 13CRA) and photostable 

synthetic (EC23 and EC19) retinoids. 

 

 

 

 

 

EC23 has already been investigated with respect to its affinity for RAR subtypes and it has 

been suggested to activate all three at lower concentrations than ATRA and does not bind 

RXR. It also binds RARβ and RARγ with higher affinity than RARα (Gambone et al., 

2002). However, the affinity of EC19 for these receptors is unknown. Given the known 

sites of retinoid metabolism: carbons 4, 5, 6, 16 and 18; it is proposed that EC23 and EC19 

will be metabolised to a lesser extent than ATRA given that the only carbon similarly 

accessible compared to ATRA is in the position equivalent to carbon 16 (figure 1.5, red 

circle; (Henderson, 2011; Topletz et al., 2012)).  They are also similar in structure to 

TTNPB (compare with figure 1.1). This synthetic retinoid has also been well studied and it 

has been shown to exhibit similar affinities for RAR and CRABP compared to ATRA 

despite its increased potency in vivo (Eichele et al., 1985; Kistler, 1987; Pignatello et al., 

1997, 1999). However, this is thought to be explained by the increased resistance to 

CYP26-mediated metabolism (Eichele et al., 1985; Pignatello et al., 1997, 2002).  

 

Interestingly, despite their similar structures, EC23 and EC19 have exhibited differential 

effects in vitro on NTER2.cl.SP12 cells. These cells undergo neural differentiation upon 

exposure to ATRA which is mimicked by EC23. EC19, however, causes more epithelioid 

Blue boxes correspond to the hydrophobic (ATRA) or TMTN group (EC23 and EC19) which will block 

metabolism at C4, 5, 6 and 18. Red boxes highlight the differences between EC23 and EC19 being the 

position of the terminal carboxylic acid group. Red circles in EC23 and EC19 correspond to the carbon 

equivalent to C16 in ATRA which is the only known site where metabolism is possible (Topletz et al., 

2012). Numbers correspond to the carbon above. Abbreviations: ATRA, all-trans retinoic acid; 9CRA, 9-cis 

retinoic acid; 13CRA, 13-cis retinoic acid; TMTN, 1,1,4,4-tetramethyl-1,2,3,4-tetrahydronapthalene. 



34 

 

 

 

differentiation (Christie et al., 2008). The effects of EC23 on differentiation has been 

further characterised in this cell line by investigating the proteome in response to these 

retinoids.  It was observed that ATRA and EC23 altered retinoic acid responsive proteins 

(CRABP1, CRABP2 and CRBP) as well as altering similar cytoskeletal targets (Maltman 

et al., 2009). The two photostable, synthetic retinoids EC23 and EC19 shown in figure 1.5 

were then analysed in the chick limb bud and have been shown to cause differential effects 

in vivo (Budge, 2010). Varying concentrations of EC23 and EC19 were applied to anterior 

HH20 (Hamburger and Hamilton, 1951) chick wing buds using AG1-X2 beads (200-400 

mesh size or 50-150μm diameter) and the phenotypes produced after 7 days were 

compared to those produced after ATRA treatment in the same manner. It was observed 

that the toxicity of the three retinoids was as follows: EC23, ATRA and EC19, with EC23 

as the most toxic with 0 survival at 0.1mg/ml. EC23 was shown to mimic the effects of 

ATRA but generated mirror image digit duplications (321123) at concentrations two orders 

of magnitude lower than ATRA. EC19, however, had a more mild effect on the limb 

causing duplication of only the most anterior digit and required higher concentrations than 

EC23 (Budge, 2010). ATRA has also been documented to truncate the outgrowth of the 

upper beak (Tamarin et al., 1984). EC23 and EC19 were seen to mimic these effects 

however; although EC19 caused a higher frequency of this malformation, the phenotypes 

were not as severe as EC23 or ATRA treatment (Budge, 2010). Of particular interest, 

EC23 was also able to duplicate multiple additional digits of the most anterior identity 

(11123) at low frequency which was not observed with EC19 and has not been observed 

with ATRA previously (Budge, 2010; Tickle et al., 1985).  

 

The present study aimed to further characterise the effects of these two retinoids in the 

chick limb bud model given the results previously described. Considering the additional 

digits of anterior identity duplicated at the highest level of EC23, experiments were carried 

out to further investigate this phenomenon by increasing the quantity of these retinoids 

applied. As summarised in this review, the effects of ATRA are well documented in chick 

wing development but there are gaps in our knowledge: the molecular mechanisms behind 

digit specification and retinoid response, the distribution of retinoic acid binding proteins 

in intact embryos and the role of ATRA metabolites and isomers in vivo. Therefore, the 

rationale for the present study was to address these gaps in our current understanding using 

the photostable synthetic retinoids EC23 and EC19. I aimed to particularly investigate the 

following:  
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 The effects of photostable, synthetic retinoids EC23 and EC19 in vivo which are 

theoretically resistant to metabolism by the CYP26 enzyme system. 

 Characterisation of the metabolism of the photostable synthetic retinoids EC23 and 

EC19. 

 Characterisation of components of the retinoid signalling pathway in chick given 

gaps in our current understanding. 

 Genetic profiling of the anterior treated wing bud to elucidate the genetic targets of 

retinoids in chick in vivo and to improve our understanding of the mechanisms 

controlling limb development and response to teratogenic compounds.
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Chapter 2) Materials and Methods.  
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Solutions: 

 

Tyrode’s Saline (10x; 500ml): 40g sodium chloride, 1g potassium chloride and 0.25g 

monobasic sodium phosphate dihydrate and then autoclaved.  It is diluted to 50ml 

1x on the day of use when 0.05g of both sodium bicarbonate and glucose, and add 

500μl of 100x antibiotic/antimycotic (Sigma).   

Phosphate Buffered Saline (10x; PBS):  80g sodium chloride (NaCl),  2g potassium 

chloride, 14.4g sodium phosphate (monobasic), 2 g potassium phosphate 

(dibasic) in 1l. This was treated with diethyl pyrocarbonate (DEPC; Sigma) and 

autoclaved if it was needed ribonuclease (RNase) free.  

Ethanolic alcian blue: 80ml 96% ethanol, 20ml acetic acid, 15mg Alcian blue 8GX made 

fresh from a stock. 

Alizarin Red S stain:  10mg alizarin red, 100ml 0.5% potassium hydroxide. 

Alcian blue for cell culture: 0.5% aqueous alcian blue, 3% acetic acid pH 1 using acetic 

acid. 

Tris hydrochloride (trisHCl; 2M): 121g Tris base into 350ml DEPC-water in baked 

glassware. pH was adjusted to 7.5, 8.0 or 9.5 using hydrochloric acid and water 

added to 500ml.  

Buffered saline for TBS at 20x: 80g sodium chloride, 2g potassium chloride in 500ml 

water, add 0.5ml DEPC and autoclave.  

Tris-buffered Saline (10x; TBS): Mix 125ml buffered saline and 31.25ml 2M trisHCl with 

93.75ml DEPC water in baked glassware. 

0.5M Ethylenediaminetetraacetic acid (EDTA): Dissolve 93.05 g Na2EDTA·2H2O in 350 

ml DEPC-H2O. pH was adjusted with sodium hydroxide. DEPC-H2O was added to 

500 ml before autoclaving. 

20x Sodium chloride sodium citrate (SSC): 17.53g sodium chloride, 8.523g sodium citrate 

dihydrate. Add water to 70ml and pH to 4.5 using citric acid pellets. Add water to 

100ml, add 50μl DEPC and autoclave. 

Sodium dodecyl sulphate (SDS; 10%): dissolve 10g into 100ml DEPC water. Add 50μl 

DEPC and heat to 60°C for 6hrs. Make up to 100ml with DEPC water. 

file:///C:/LABORATORY/Regulatory%20Documents/COSHH%20Assessments/E-001%20(EDTA).doc
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NTMT (40ml): 800μl 5M sodium chloride, 4ml 1M trisHCl (pH 9.5), 1ml 1M magnesium 

chloride, 400μl 2M levamisole (Sigma), 40μl Tween20 (Sigma). Make up to 40ml 

with DEPC water. 

Tris-acetate EDTA (TAE; 50x): 242 g Tris base, 57.1 ml acetic acid, 37.2 g 

Na2EDTA·2H2O. Add H2O to 1L. 

Tris-EDTA (TE; 10x): 100 mM TrisHCl (pH 8.0) and 10 mM EDTA, make up to 

10ml. 

Orange G loading dye: spatula of OrangeG, 30% glycerol and make up to 10ml water.  

1M Triethanolamine pH8.0: dissolve 46.41g triethanolamine in 200ml water. pH to 8.0 

using hydrochloric acid and make up to 250ml. Autoclave. 

Methods pertinent to all chapters: 

Eggs: 

 

Eggs were obtained from PD Hook Hatcheries (Thirsk, North Yorkshire) of white leghorn 

chicks.  They were kept at 10°C and then incubated at 38.4°C in 50% humidity (Brinsea 

Ova-Easy egg incubator).   

 

Chemicals: 

 

All-trans retinoic acid (ATRA) (Sigma) was dissolved in dimethyl sulphoxide (DMSO; 

Sigma).  EC23 and EC19 were obtained from Reinnervate Ltd and dissolved in DMSO.  

Aliquots of ATRA, EC23 and EC19 were stored at -20°C. Liarozole (5-[(3-Chlorophenyl)-

1H-imidazol-1-ylmethyl]-1H-benzimidazole hydrochloride; Tocris Biosciences) was 

stored in its powdered form at 4°C and was dissolved in DMSO on the day of use. 1,1'-

Dioctadecyl-3,3,3',3'-Tetramethylindocarbocyanine Perchlorate (DiI; Life Technologies, 

Paisley UK) was obtained in aliquots and kept at -20°C until the day of use and then were 

used at 1mM. 

 

In ovo microsurgery: 

 

Eggs were incubated for 4 days and staged according to Hamburger and Hamilton (HH) 

and Fisher et al (Fisher et al., 2008; Hamburger and Hamilton, 1951).  Eggs staged at 

file:///C:/LABORATORY/Regulatory%20Documents/COSHH%20Assessments/T-001%20(Tris).doc
file:///C:/LABORATORY/Regulatory%20Documents/COSHH%20Assessments/A-001%20(HOAc).doc
file:///C:/LABORATORY/Regulatory%20Documents/COSHH%20Assessments/E-001%20(EDTA).doc
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HH20-21 were then treated with retinoid or DMSO.  Formate derived (see below) AG1-X2 

beads (diameter 150-300μm; BioRad) were soaked in retinoid or DMSO for 30mins rinsed 

in Tyrode’s saline similar to Tickle et al (Tickle et al., 1985) and then inserted into a slit in 

the anterior limb bud using fine forceps and tungsten needles.  Embryos were prevented 

from dehydrating using Tyrode’s saline solution.  They were re-incubated for 7 days for 

phenotypic screens of the retinoids (chapter 3) or for 24hrs for microarray analysis (see 

chapter 5). 

 

A modification of this protocol was used in chapter 5 to investigate the proximalisation of 

limb bud cells treated with EC23 in comparison to ATRA (Mercader et al., 2000). In this 

case, beads previously soaked in retinoid or DMSO as previously described, were then 

dipped into 1mM DiI and then dipped into Tyrode’s saline solution to remove excess DiI. 

These beads were then implanted into a slit at the apex of the wing bud of HH23 chick 

embryos (Fisher et al., 2008; Hamburger and Hamilton, 1951). These were re-incubated for 

48hrs and then analysed using a Nikon inverted fluorescence microscope at x10 

magnification. These were imaged un-flattened or flattened. Subsequent analysis of limb 

bud cell relocation was carried out on fluorescent images using ImageJ and is described in 

more detail in chapter 5. 

 

Bead Preparation: 

 

Beads were placed into a falcon tube with 15ml sodium hydroxide and rocked for 10mins 

x2.  Beads were then washed in 15ml deionised water for 10mins x4. Beads are then 

washed in 15ml formic acid for 10mins x2. Beads were then left to dry overnight in a fume 

cupboard.  It had been found previously that beads were only stable in this condition for 1 

month and therefore this was carried out once a month and for all in ovo microsurgeries. 

 

Bead loading assay: 

 

This was carried out similar to the method described by Eichele et al (Eichele et al., 1984).  

20 AG1-X2 beads (150-300μm diameter) were placed into a microcentrifuge tube and 

collected by centrifugation at max speed for 2 minutes.  200μl of compound was added and 

the beads were re-centrifuged to remove any material from the supernatant.  A 10μl aliquot 

was removed to determine the absorbance of the surrounding solution using a NanoDrop 
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spectrophotometer (ND1000) as the quantity of retinoid available was small.  The beads 

were incubated in the dark between centrifugations and 10μl was removed at the following 

time points: 10, 20, 30, 40, 60, 120 and 180 minutes.  A standard curve was then used to 

determine the amount of retinoid which had loaded per bead over 180mins.    

 

Whole mount alcian Blue staining and photography 

 

Embryos recovered after 7 days of incubation with retinoid are then stained with alcian 

blue and alizarin red to determine their phenotype.  Briefly, embryos are fixed and stained 

in ethanolic acetic alcian blue for at least 3 days, followed by three washes in 100% 

ethanol over three days.  Alcian blue stains for proteoglycans in the extracellular matrix 

(Kistler et al., 1985) to visualise cartilage.  Embryos were imaged for limb and beak 

malformations using a camera (Idea, Spot) mounted to a Leica dissecting microscope.  

Embryos were imaged dry or surrounded by 100% ethanol on 3% agar plates.  To allow for 

comparisons of beak length, the left eye was removed to allow the heads to lie flat.  

Embryos were then stained with Alizarin red in 1% aqueous potassium hydroxide for 

45mins to stain for bone (Niswander, 2008).  Embryos were cleared further in 1% 

potassium hydroxide (KOH).  Embryos were then further cleared in 1% KOH, 25% 

glycerol and stored in 1% KOH, 50% glycerol or 80% glycerol.   Embryos were then 

imaged using transmitted light.   

 

Whole mount in situ hybridisation. 

 

This was carried out according to Wilkinson and Acloque et al (Acloque et al., 1996; 

Acloque et al., 2008; Wilkinson, 1992) with some modifications. All solutions for whole 

mount in situ hybridisation were treated with 0.05% DEPC and autoclaved to denature 

RNases before use. Where this was not possible, RNase free solutions were made up using 

baked glassware and spatulas and RNase-free stocks were kept separately. 

Ribonucleic acid (RNA) Isolation for whole mount in situ hybridisation: 

 

Briefly, RNA was extracted from 30mg embryonic tissue using the Qiagen RNeasy kit 

(Dorking, UK) using manufacturer’s recommendations.  Embryos were dissected into ice 

cold PBS and placed into 600μl RLT where it was disrupted and homogenised by 
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vortexing and then syringed using a 21.5G needle.  70% molecular biology ethanol 

(Sigma) was added to the homogenised material to provide the correct conditions for RNA 

to bind to the column.   The column was then washed with 350μl RW1 (Qiagen RNeasy 

kit).  This was followed by on column digestion of DNA.  80μl of RNase free 

deoxyribonuclease (DNase) (Qiagen) was applied to the column for 15mins at room 

temperature.  This was followed by one RW1 wash and 2 washes of 500μl RPE buffer 

(Qiagen RNeasy kit).  The RNA was eluted into 30μl nuclease free water and stored at -

80°C.  Integrity was verified by electrophoresis on a 1% agarose (BioRad) TAE gel and 

concentration measured on the NanoDrop spectrophotometer (ND1500). 

 

 

Reverse Transcription: 

 

RNA was reverse transcribed using the High Capacity DNA Synthesis kit (Applied 

Biosystems, Paisley, UK) as per the instructions provided.  Briefly, 2μg RNA in 10μl is 

added to 1μl 10x buffer, 0.4μl dNTP, 1μl random primers, 1μl reverse transcriptase and 

nuclease free water (Promega, Southampton, UK).  This is then placed into a thermocycler 

(Biometra) with the following programme: 25°C 10mins, 2hours at 37°C and 85°C 10s.    

 

Polymerase Chain Reaction (PCR) 

 

Usually plasmid DNA is used to generate digoxigenin (DIG) labelled RNA probes but 

PCR is applicable to the rapid generation of a wide range of probes.  In order to generate 

PCR products which could in turn be transcribed into labelled RNA probes, a T7 RNA 

polymerase binding site was added to each reverse primer (Frohman and Martin, 1989).  

This allowed the production of antisense probes for whole mount in situ hybridisation.  

Primers were designed using sequences from National Centre for Biotechnology 

Information (NCBI) and are shown below (table 2.1).  Before designing primers which 

would generate specific probes, the sequence of interest was blasted to determine regions 

of homology and specificity.  Primers and probes were then designed to the specific region, 

the A domain in the case of the RARs.  The probes which would be generated for each 

gene were then blasted to ensure specificity.   
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The BLAST function on NCBI was used to design sequence specific primers ideally with 

the following conditions: 50% guanine-cytosine (GC) content and no more than 3/5 GC 

bases at the 3’end.  For primer sequences see table 2.1 below.  PCR was carried out using 

GoTaq Flexi DNA Polymerase kit (Promega).  Briefly, 1μl DNA was added to: 2μl buffer, 

magnesium chloride at 1-4mM, 2mM nucleotides, 0.5mM primers (Sigma; Haverhill, UK) 

and 0.05μl GoTaq Flexi DNA Polymerase in a 20μl reaction volume.  This was placed into 

a thermocycler (Eppendorf) with the following programme: 95°C 2mins, 95°C 30s, lowest 

melting temperature (Tm) -5°C 30s, and 72°C for 30s.  This was cycled for 32 cycles 

followed by another extension step at 72°C for 2mins.   PCR products were 

electrophoresed on 2% agarose TAE gel using a low range marker (Fermentas) to check 

band size.   
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Table 2.1: The sequences used to generate primers for PCR and subsequent whole mount in situ hybridisation. 

 

Receptor Isoform 
NCBI Sequence 

Number 
Forward 5’-3’ Reverse 5’-3’ 

RARβ1(Smith and 

Eichele, 1991) 
NM205326.1, X56674 AACTGAATGGTGGTCTGAGACACGGA TGAGCTGGACTGTGTGATGGTGAAGA 

RARβ2 (Smith 

and Eichele, 1991) 
X57340.1, X59473.1 TGGGAAAAAGACCAACAGCCTACGT TGTTTGTGCCAATCCACTGAAGCA 

RARγ (Michaille 

et al., 1994) 
X73973.2 AACAGCAAACCCAAGAAGCG ATCGTCCCGCGCACC 

Hand2 

(Srivastava et al., 

1995) 

NM_204966.1 GCCGACACCAAGCTCTCTAAGATCAA ATCGCTGCTGCTAACTGTGCTTT 

PPARβδ (Takada 

et al., 2000) 
NM_204728.1 AGCTGCGGAGAGGCTAGTGCAA AGCTCTGCGAAAGGTCGGTGT 

FABP5 (Caldwell 

et al., 2005) 
NM_001006346.1 AATGGGAAGCATGGCGAAACCA TCACATTCCACCACCAACTGTCCA 

Pax1 (Barnes et 

al., 1996) 
U22046.1 TGGAGCAGACGGGTGGGTA TTCCTCGGCGGCTTTGTC 

Shh (Riddle et al., 

1993) 

NM_204821.1 

 
ATGAAGAGAACACGGGAGCTGACA TCCTGATTTCGCTGCCACTGAGTT 

T7 polymerase AAGGATCCGTCGACATCGATAATACGACTCACTATAAGGGA 

References refer to first cloning of the gene. Abbreviations: NCBI. National Centre for Biotechnology Information; RAR, retinoic acid receptor; PPAR, peroxisome proliferator-

activated receptor; FABP, fatty acid binding protein; Pax, Paired box gene; Shh, Sonic hedgehog. 

http://www.ncbi.nlm.nih.gov/nuccore/23504266
http://www.ncbi.nlm.nih.gov/nuccore/NM_204966.1
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=45382024
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=57530630
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Probe synthesis:  

 

DIG labelled RNA probes were generated from total RNA from HH20 embryos.  RNA 

was extracted and reverse transcribed as described earlier.  The complementary DNA 

(cDNA) was used as a template for PCR to amplify the region of DNA specific to each 

probe using the primers in table 2.1 (note that reverse primers had the T7 polymerase 

binding site attached).   The PCR product was then used as a template for in vitro 

transcription of DIG-labelled RNA probes for whole mount in situ hybridisation.  The PCR 

fragments were transcribed into DIG labelled RNA using the method described by 

Wilkinson (Wilkinson, 1992).  1μl template was added to 2μl buffer, 0.2M dithriothreitol, 

2μl nucleotides containing DIG-uracil triphosphate (Roche Applied Science; Burgess Hill, 

UK), 0.5μl recombinant ribonuclease inhibitor (RNasin) and 1μl T7 RNA polymerase 

(Promega) in 20μl reaction volume.  This is incubated at 37-45°C for 2 hours and 

electrophoresed on a 2% agarose Tris-borate EDTA (TBE; Sigma) gel.  The size of the 

product was checked against a low range DNA ladder (Fermentas). The probe was then 

ethanol precipitated by mixing with 100μl TE buffer, 300μl molecular biology ethanol and 

10μl 4M DEPC treated lithium chloride and incubating at -20°C for at least 1hr.  This was 

centrifuged at max speed for 10mins and washed twice with 80% ethanol before allowing 

to air dry.  The probe was then re-suspended in 1xTE for quantification on the NanoDrop 

spectrophotometer (ND1000). 

 

Pre-hybridisation, post-hybridisation and visualisation. 

 

Embryos are incubated to desired stage and staged as Hamburger and Hamilton (Fisher et 

al., 2008; Hamburger and Hamilton, 1951). They are dissected into ice cold PBS and fixed 

overnight in 4% paraformaldehyde (Sigma)-DEPC treated PBS at 4°C.  They were washed 

three times in DEPC-PBS containing 0.1% Tween20 (Sigma; PBT) and membranes were 

dissected off before dehydrating to 100% methanol (AnalaR VWR; Lutterworth, UK).  

Batches were stored in 100% methanol at -20°C.  They were rehydrated to PBT and then 

bleached in 6% hydrogen peroxide (Sigma).  This was rinsed off with PBT twice before 

digestion with proteinase K (Sigma): PBT to allow the probe access.  Proteinase K was 

applied at 10μg/ml or 20μg/ml for 3 or 4 day old embryos respectively for 15 minutes 

(Acloque et al., 1996; Correia and Conlon, 2001).  This enzyme was blocked using 2mg/ml 
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glycine (AnalaR VWR) and rinsed with PBT.  Embryos were re-fixed in 0.2% 

glutaraldehyde: 4% paraformaldehyde: DEPC-PBS for 20 minutes followed by PBT.  

Embryos were then treated with 0.1M triethanolamine hydrochloride (pH 8) and 0.25% 

(v/v) acetic anhydride (Sigma) to reduce background.  Hybridisation was carried out using 

highly stringent conditions.  Embryos were equilibrated to the hybridisation solution and 

the temperature via three washes: firstly a 1:1 pre-hybridisation: PBT wash, followed by a 

wash in 100% pre-hybridisation solution at room temperature and one wash in 100% pre-

hybridisation solution at 70°C for 1hour.  Approximately 1μg DIG labelled RNA probe is 

then dissolved into 1ml pre-hybridisation buffer in which embryos are agitated at 70°C for 

16hrs.   

 

Pre-hybridisation buffer is: 50% formamide (Sigma), 5xSSC, 1%SDS, 50ug/ml heparin 

(Sigma) and 50ug/ml yeast transfer-RNA (tRNA; Sigma).  

 

Embryos which were older than HH20 and had been treated with retinoid were processed 

slightly differently. Before dehydration they were dissected into three sections and then 

processed in bijoux tubes until pre-hybridisation. They then followed the same protocol as 

younger embryos.  This was to minimise the loss of the bead and parts of the embryo. 

 

Embryos were then washed with solution 1 at 70°C (50% formamide, 5xSSC, 1%SDS) and 

then with solution 3 (50% formamide, 2xSSC, 1%SDS) at 70°C.  This was followed by 

TBST washes (1xTBS, 1% Tween20, 2mM levamisole (Sigma)) and then blocking with 

10% sheep serum (Sigma): TBST.  1μl anti-DIG antibody (Roche Applied Science) was 

purified using embryo powder for 1hour in 1% sheep serum TBST at 4°C.   The powder 

was then centrifuged to remove purified antibody in the supernatant and was applied to the 

embryos at 1:3000 dilution.  This was rocked overnight at 4°C. 

 

Antibody was removed and followed with 8 washes of TBST and left overnight at 4°C.  

The embryos were then placed in NTMT (100mM sodium chloride, 100mM TrisHCl 

pH9.5, 50mM Magnesium chloride, 0.1% tween20, 2mM levamisole).  The DIG-antibody 

is conjugated to alkaline phosphatase which will catalyse a reaction between nitro-blue 

tetrazolium chloride (NBT) and 5-bromo-4-chloro-3-indolylphosphate toluidine salt 

(BCIP) to produce a purple precipitate.  4.5ul/ml NBT and 3.5ul/ml BCIP (Promega) were 

applied with NTMT and agitated in the dark for 20minutes and then left to develop.  Once 
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the colour reaction had developed to the desired extent, embryos were washed 3 times with 

PBS and then fixed in 4% paraformaldehyde.  Embryos were then imaged using the Idea 

(Spot) camera on the Leica dissecting microscope as described previously. Embryos were 

imaged on 3% agar plates so that they could be flat and pinned in place.  

 

Chick limb bud cell culture (chapter 4). 

 

Chick limb micromass cell cultures were set up using a modified method from Pignatello 

et al (Pignatello et al., 2002) to investigate the metabolism of EC23 and ATRA in 

comparison with the naturally occurring ATRA (chapter 4).  Briefly, embryos were 

isolated after 4 days incubation and staged according to Hamburger and Hamilton (Fisher 

et al., 2008; Hamburger and Hamilton, 1951).  Forelimb and hindlimb buds (Brown and 

Wiger, 1992) were isolated from HH20-21 embryos in Tyrode’s saline solution.  Cells 

were dissociated using 0.05% trypsin: EDTA for 30mins and then blocked with preheated 

medium: 10% foetal bovine serum (FBS; Lonza) α minimal essential medium (αMEM; 

Invitrogen), 5% glutamine (Lonza), antibiotic antimycotic (Sigma) and supplemented with 

150μg/ml ascorbic acid (Sigma) (Jiang et al., 1995; Leboy et al., 1989).  A single cell 

suspension was made and cells were passed through a 40μm cell strainer to remove 

epithelial fragments (Jiang et al., 1995).  Trypan blue positive cells were counted using a 

haemocytometer (Kistler et al., 1985) and re-suspended so that 400,000 cells were plated in 

20μl (Kochhar and Penner, 1992) onto 24 well plates (Nunc) to ensure the production of a 

high density culture (Nakanishi and Uyeki, 1985).  This was incubated at 37°C 5% CO2 for 

1hr 45mins to allow cells to adhere (Kistler, 1987; Kistler et al., 1985).  Wells were then 

flooded with 1ml media and this was taken as day 0 (Anderson et al., 2001).  Cells were 

treated with combinations of DMSO, retinoid and/or liarozole on day 1.  DMSO 

concentration was always of 0.1% in cell culture media except in cultures treated with high 

concentrations of liarozole and EC19 where it was 1.1%.  Medium was changed on day 4 

without addition of compounds tested and then incubated until day 7. 

 

Fixation, Staining and Quantification of Chondrogenesis assays 

 

Cells were rinsed with PBS and then fixed on day 7 using 10% formalin (Sigma), 0.5% 

cetyl pyridinium chloride (Sigma) for 30mins (Kochhar and Penner, 1992).  Cells were 

then washed with 3% acetic acid and then left to stain in 0.5% aqueous alcian blue, 3% 
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acetic acid pH1 (Kistler et al., 1985) overnight while agitated.  Cells were rinsed with 3% 

acetic acid and then imaged using a dissecting microscope as described previously but with 

an exposure time of 10.23ms.  Alcian blue stain was then extracted with 300μl 4M 

guanidine hydrochloride (Sigma) to generate a quantitative measurement of 

chondrogenesis (Hassell and Horigan, 1982; Kistler, 1987; Kistler et al., 1985).  The 

absorbance of the alcian blue staining was measured at 600nm using a Biotek ELX800 

plate reader.  

 

 

Methods for microarray analysis after retinoid treatment (chapter 5). 

 

Embryo Dissection and RNA isolation for Microarray Analysis: 

 

Embryos were exposed to retinoid or DMSO as described above by in ovo microsurgery 

(Figure 5.1A).  24hrs after operating, embryos were dissected into ice cold DEPC-PBS.  

Embryos whose limbs still had a bead attached and had developed as expected were 

included in the pool for RNA isolation.  Torsos of embryos were dissected and pinned to 

3% agar: Tyrode’s plates to facilitate accurate dissection (figure 5.1C).  The bead was 

removed and the anterior third of the limb bud was dissected using tungsten needles 

(Figure 5.1B, 5.1C).  The anterior limb portion was transferred into an RNase free tube 

(Starlabs) in DEPC-PBS.  After dissection, the limb portions were centrifuged for 15s to 

allow removal of DEPC-PBS.  RLT (lysis buffer) was then placed on the limb portions.  

The limb portions were vortexed 4x10s and then passed through a 21.5G syringe needle 24 

times to ensure complete lysis and homogenisation.  Limb portion lysates were stored at -

80°C until 16 limb portions were collected per repeat.  They were then thawed on ice and 

RNA was isolated using the Qiagen RNeasy Kit (Dorking, UK) as described previously.  

RNA was quantified using the NanoDrop ND1000.  If RNA met the requirements shown 

in table 2.2 it was used for microarray analysis otherwise they were cleaned up using the 

RNeasy Mini Kit (Qiagen) following manufacturer’s instructions.  The RNA pools 

hybridised at Newcastle University were ethanol precipitated to supply 5μg in 5μl but this 

was not carried out for pools sent to the Roslin Institute.   
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Table 2.2: Requirements for RNA for Microarray analysis. 

Requirement Threshold 

Quantity >5μg 

260/280 Between 1.9-2.1 

260/230 >1.8 

 

Microarray hybridisation, scanning and analysis. 

 

Production of labelled complementary RNA (cRNA), hybridisation and scanning of the 

microarray chip was carried out at Roslin Institute, University of Edinburgh and Centre for 

Life, University of Newcastle.  RNA from pools treated with retinoid or DMSO was 

reverse transcribed into double stranded cDNA using the one cycle cDNA synthesis kit 

(Affymetrix).  Labelled cRNA was then produced using an in vitro transcription reaction in 

the presence of biotinylated ribonucleotides. Quality and quantity of the fragmented cRNA 

was checked for quality control.  Fragmented cRNA was then hybridised to a Genechip 

Chicken Genome Array (Affymetrix).  The chip was then washed as manufacturers 

protocols to expose it to an antibody to biotin.  This was then visualised with a secondary 

antibody conjugated to biotin and stained with streptavidin phycoerythrin.   The stained 

chip was then scanned and .CEL files produced as per manufacturer’s instructions.  

Analysis was then carried out at the Bioinformatics Support Unit in Newcastle University. 

Details of subsequent analysis are described in chapter 5.  

 

qPCR. 

 

qPCR was used to validate the microarray carried out for genetic targets of ATRA and 

EC23 (chapter 5). This was carried out using cDNA generated using the high capacity 

cDNA synthesis kit as described previously. qPCR was then carried out using the Applied 

Biosystems Real Time PCR 7500 System as per manufacturer’s kits and instructions. The 

genes analysed and the assay IDs (Taqman Gene Expression Assays; Applied Biosystems) 

are shown in table 2.3. 
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Table 2.3: Taqman Gene Expression Assays used for qPCR validation of microarray analysis. 

Gene name Assay ID 

Cyp26A1 Gg03345448_g1 

Raldh2 Gg03348020_m1 

Emx2 Gg03312130_m1 

Hoxa13 Gg03813895_s1 

Hoxb8 Gg03339343_m1 

Meis2 Gg03338704_m1 

Lhx9 Gg03340016_m1 

Cdh2 Gg03345816_m1 

Hgf Gg03325663_m1 

Col6α3 Gg03340502_m1 

 

 

 

Briefly, DNA for analysis was diluted such that 20ng of DNA was added to each well of 

the 96 well plate used for qPCR in no more than 10μl RNase free water. 10μl 20xTaqman 

Universal Real Time PCR Master Mix (Applied Biosystems) was added to the assay for 

the gene in question (1μl 20x assay) and RNase free water added so that the volume of the 

reaction mix totalled 20μl.  This was sealed and centrifuged and then placed into the 

Applied Biosystems Real Time PCR machine (7500-fast mode). The qPCR conditions 

were standard conditions supplied by Applied Biosystems and can be seen outlined in table 

2.4. The PCR was run for 40 cycles and the progress monitored using Applied Biosystems 

software. 

Table 2.4: Conditions used for qPCR analysis of microarray targets (chapter 5). 

Temperature Time Reason 

95°C 20s Activating polymerase. 

95°C 3s Denaturing phase. 

60°C 30s 
Primer annealing and extension 

phase. 

 

In all cases the assays were undetectable in the blank reaction. The change in gene 

expression was calculated as fold change using the ΔΔCT method. This calculates fold 

Abbreviations: Cyp26A1, cytochrome P450 oxidase 26A1; Raldh2, retinaldehyde dehydrogenase 2; 

Emx2, empty spiracles homeobox 2; hox, homeobox; Meis2, meis homeobox 2; Lhx9, LIM 

homeobox 9; cdh2, cadherin 2/n-cadherin; hgf, hepatocyte growth factor; col6α3, collagen 6α3. 
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change by calculating the change in cycle threshold (CT) compared to the endogenous 

control (Gapdh in this case) and then the difference in CT compared with a calibrator 

sample for that gene. In all cases DMSO sample 2 was used as the calibrator. The relative 

quantification (RQ) was then calculated using the formula: RQ= 2
-ΔΔCT

, standard 

deviations were then calculated for these values. The significance of the fold change in 

response to retinoid with respect to DMSO was calculated using an unpaired student’s t-

test. 
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Chapter 3) An investigation of the phenotypes produced with 

applications of high quantities of EC23 and EC19 to the 

anterior chick wing bud and their comparison with ATRA. 
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Introduction 

 

The vertebrate limb develops from an area of limb forming mesoderm called the limb field.  

From this, the limb grows out under the control of three signalling centres: apical 

ectodermal ridge (AER), zone of polarising activity (ZPA) and dorsal ectoderm until it 

reaches the correct size (Scherz et al., 2004). During limb outgrowth the mesoderm must 

differentiate into cartilage, muscle and tendon to form a fully functioning limb.  This 

process has been extensively studied in chick as it is affected in response to many 

teratogens e.g. ATRA and it is easily manipulated, hence will be used in the present study.  

 

In chick, the limb field is specified between Hamburger and Hamilton stages 15-17 

(HH15-17).  By HH19 the AER has formed and the ZPA forms shortly after which 

together regulate limb outgrowth (see pages 22 and 55). During limb outgrowth the non-

AER ectoderm patterns the DV structures (Parr and McMahon, 1995). The wing then 

develops to have three segments: stylopod (humerus), zeugopod (radius and ulna) and 

autopod (wrist, carpals, and digits). The development of cartilage is particularly important 

for limb development as the developing cartilage forms a template around which 

subsequent differentiation occurs. The first morphological sign of development is the 

formation of a cartilage condensation for the humerus at HH22 in chick with cells also 

forming myogenic condensations at a similar time.  This condensation lengthens and then 

splits into two branches which will form the radius and ulna at HH24 (Searls et al., 1972; 

Singley and Solursh, 1981). During condensation and subsequent chondrogenesis the ECM 

surrounding these cartilage blastemas undergoes significant changes in the increased 

production of proteoglycans which can be stained with alcian blue (Hinchliffe, 1967; 

Summerbell, 1976). By HH26-27 the extracellular matrix (ECM) has changed significantly 

containing 25 times more sulphated proteoglycans than the previous stages (Cioffi et al., 

1980). The opaque patch between the radius and ulna is also defined at this stage 

(Hinchliffe, 1967). By HH28 the wrist elements are beginning to condense and digit 

condensations can be observed with alcian blue (Summerbell, 1976).  Previously it was 

thought that the progress of cartilage condensation was PD and posterior to anterior (as the 

ulna forms prior to the radius), however this is not true for the developing digits.  The digit 

condensations have now been shown to form in the following order: 4, 2, 5, 3 and 1 via 

Noggin and Sox9 expression in mouse (Zhu et al., 2008a).  
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Segmentation of the developing cartilage to produce the elements of the stylopod, 

zeugopod and autopod occurs via the formation of joints. This is thought to occur via a 

switch between chondrogenesis and joint differentiation. The joint is first morphologically 

distinguishable as the interzone, developing as a transverse stripe across cartilage elements 

at HH28 for the chick elbow. However, it has been shown to be determined by HH24 as a 

result of excision at HH24-26 (Holder, 1977) and can be regenerated if excised at HH26 

(Ozpolat et al., 2012). The interzone is characterised by densely packed cells forming three 

layers.  The outer two layers are densely packed cells which are become the articular layer 

on developing bones.  The inner layer is less dense and undergoes cell death to form the 

joint and accumulate fluid (Storm and Kingsley, 1996, 1999).  

 

The scapula or shoulder blade is important for correct limb function as the shoulder forms 

part of the pectoral girdle and is where the limb articulates with the appendicular skeleton. 

It is also important for muscle attachment. The scapula is a long thin bone spanning all ribs 

in chick consisting of a thicker head structure and the blade (figure 3.1). Chondrogenesis of 

the chick scapula begins at HH26 (embryonic day 5; E5) at the most caudal cervical 

vertebrae (C13-14) (Huang et al., 2000; Prols et al., 2004).  The scapula then develops 

caudally so that at E6 (HH29) it spans 2 ribs, E7 it spans 3 ribs, E8 it spans 4 ribs, E9 it 

spans 5 ribs and it finally reaches the 7
th

 rib during adult life (Huang et al., 2000).   

 

The scapula, as mentioned, is important for limb function but it is not traditionally thought 

of as part of the limb. Many manipulations can be made to the developing limbs which do 

not affect the scapula e.g. AER removal ablates limb outgrowth but has no effect on 

scapula formation. The origin of the scapula has been a subject of controversy since 

Chevalier (Chevallier, 1977) used quail-chick grafting to indicate that the scapula 

developed from the somites only. Other studies reported that it originated from lateral plate 

mesoderm (LPM) in Salamander and dual origin in chick with the blade originating from 

somitic mesoderm only (Huang et al., 2000). However, recent studies in mouse (Durland et 

al., 2008; Valasek et al., 2010) and chick (Shearman et al., 2011) show that the scapula 

does indeed have dual origin but the contributions of the somitic mesoderm and LPM are 

different to first thought. Shearman et al (2011) used a more rigorous technique than 

previous groups in that the quail-chick chimeras were sectioned and imaged completely to 

build up a 3D computer model of the scapula structure.  This shows that in fact the cranial 
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two thirds of the chick scapula develops from the LPM, including the head structure, 

whereas the distal third develops from somites 18-24 (Shearman et al., 2011).  Little is 

known about the mechanisms controlling scapula development as it has been studied less 

extensively than the limb but pre-B-cell leukaemia homeobox 1-3 (Pbx1-3), Paired box 1 

(Pax1) and empty spiracles 2 (Emx2) are thought to control genes involved in scapula 

patterning such as Tbx15, Alx1, Alx4 and Gli3 (Capellini et al., 2010; Timmons et al., 

1994).  

  

Figure 3.1: The structure of the scapula from the lateral view. 

 

 

As mentioned the outgrowth and development of the limb is under the control of two main 

signalling centres: the AER and ZPA. The AER is situated at the distal wing tip and 

secretes FGFs. This is particularly important for PD patterning as removal of the AER at 

progressively earlier stages truncates the limb at more proximal regions (Niswander et al., 

1993) which can also be seen with very high retinoid concentrations (Tickle et al., 1985). It 

is also thought that FGF8 has an antagonistic relationship with ATRA during limb 

development (Cunningham et al., 2013; Mercader et al., 2000). ATRA application causes 

an expansion of Meis2 which is known to be proximally expressed in the developing limb 

and is has been used subsequently marker of stylopod development (Mercader et al., 2000; 

Pennimpede et al., 2010b; Yashiro et al., 2004). There is also a concomitant down-

regulation of the autopodal marker genes hoxa11 and hoxa13 (Mercader et al., 2000) 

which indicates that ATRA treated cells contribute to more proximal structures.  

 

The scapula head and blade structures are marked.  The scapula head includes both the head and neck 

designated by Huang et al, 2000 (Huang et al., 2000). 
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The zone of polarising activity (ZPA) is formed shortly after the AER in the posterior wing 

and secretes SHH (Riddle et al., 1993).  Formation of the ZPA is due to the sequential 

polarisation of the developing wing into anterior and posterior segments.  This is achieved 

by the restriction of HoxB8 to the posterior wing (Charite et al., 1994), followed by the 

sequential positioning of Hand2 (Fernandez-Teran et al., 2000) in the posterior wing and 

Alx4 in the anterior wing (Takahashi et al., 1998).  Concomitant with Shh expression a 

gradient of Gli3R forms with highest levels anterior which may be important for digit 

identity.  The ZPA is thought to form a positive feedback loop with the AER (Niswander et 

al., 1994) and this controls limb size via the BMP antagonist gremlin (Scherz et al., 2004).  

 

SHH, whilst linked to PD patterning indirectly, has been linked to AP patterning more 

closely. The Shh knock out mouse generates a forelimb lacking digits and ulna and a 

hindlimb lacking all digits but digit 1 and the fibula (Chiang et al., 2001). This can also be 

seen in the oligozeugodactyly chick mutant who lacks SHH function (Ros et al., 2003). It 

has also been shown that application of excess SHH or ZPA grafts to the anterior wing bud 

generate ectopic digits/digit duplications (Yang et al., 1997). This effect has been 

mimicked by retinoids (Tickle et al., 1982; Tickle et al., 1985) which are thought to induce 

an ectopic ZPA in the anterior wing bud via hoxb8, hand2 and Shh as previously 

mentioned (Fernandez-Teran et al., 2000; Wanek et al., 1991). Interestingly, concomitant 

with the retinoid malformation of the developing limb, application of excess ATRA can 

cause truncation to the upper beak (Tamarin et al., 1984) which, likewise, is thought to be 

due to an effect on SHH signalling ((Helms et al., 1997) addressed further in the 

discussion). 

 

Digit differentiation has been shown to be partially dependent on SHH concentration and 

time of exposure as seen during application of increasing concentration of SHH: 

duplication of more posterior digits require a higher concentration of SHH than the 

duplication of anterior digits in chick (Yang et al., 1997).  Given the phenotype of the Shh 

knock out mouse, it is widely thought that the murine digit 1 develops independently of 

SHH, at least in the hindlimb (Chiang et al., 2001). It has been more recently determined 

that cells which have been exposed to SHH during murine  limb outgrowth contribute to 

digits 2 and 3 and that long range SHH signalling is important for their development (Ahn 

and Joyner, 2004; Drossopoulou et al., 2000). Digits 3, 4 and 5 consist of cells which were 

part of the ZPA (Harfe et al., 2004). Consistent with the importance of cell expansion in 
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digit development, Zhu et al (2008) showed that conditional knockout of Shh generated 

limbs with missing digits but that digit identity was not impaired. Noggin and Sox9 

expression showed that murine digit condensations form in the following sequence: 4, 2, 5, 

3 and 1 (Zhu et al., 2008a). These studies highlight the importance of SHH dependent 

proliferation in the murine limb bud and this has also been observed in the chick wing 

(Towers et al., 2008). Inhibition of SHH signalling in the chick wing caused the formation 

of only the two most anterior digits, now designated 1 and 2. Inhibition of proliferation 

caused the formation of only the most posterior element, digit 3. This suggests that, similar 

to the mouse limb, digits 1 and 2 are produced from the SHH dependent expansion of digit 

progenitors while digit 3 is produced from Shh expressing cells as well as expansion.  

However, their study in 2011 (Towers et al., 2011) shows that digit 3 is also likely to be 

produced from purely non-Shh expressing cells as cells contributing to digit 3 never 

express Shh in chick.   

 

Considering that the developing limb has been extensively studied and is known to be 

retinoid responsive, the limb bud was chosen as the model system to investigate EC23 and 

EC19.  

 

 

 

 

 

 

 

 

 



57 

 

 

 

Results 

EC23 and EC19 have differential toxicity. 

 

This aim of this work is to investigate the effects of EC23 and EC19 in vivo using the chick 

wing bud as a model system.  The chick wing bud was chosen as the model as it is easily 

accessible and has been well characterised to investigate retinoid effects (Tickle et al, 

1982; Tickle et al, 1985).  EC23 and EC19 were applied to chick wing buds using ion 

exchange chromatography beads as previously described and their effects compared to 

ATRA.  EC23 and EC19 have been shown to load onto ion exchange chromatography 

beads in a similar way to ATRA (Budge, 2010; Eichele et al., 1984).  EC23 and EC19 have 

been shown to generate differential effects previously in vitro in the pluripotent stem cell 

line TERA2.cl.SP12 (Christie et al., 2008).  Preliminary studies in vivo using the chick 

wing bud model system and smaller beads than the present study (50-150μm) have 

indicated that they also generate differential effects in vivo and have differential toxicity 

(Budge, 2010).  This preliminary study showed that survival rate was lower after treatment 

with EC23 compared to either EC19 or ATRA. It also showed that EC23 mimicked the 

effects of ATRA in that it could generate digit duplications ranging from a single extra 

digit of the most anterior identity to complete mirror image duplication. EC19 was unable 

to produce these phenotypes but, similar to EC23 and ATRA, EC19 did truncate upper 

beak outgrowth. Interestingly, EC23 was seen to generate duplication of multiple 

additional digits of the most anterior identity i.e. 11123 or 111123 in 3.3% of embryos 

which survived till HH35 when applied to the anterior wing bud at 0.01mg/ml (Budge, 

2010). The present study has further characterised the effects of EC23 and EC19 using 

beads with a diameter of 150-300μm to investigate the effects of increased quantities of 

these retinoids and the duplication of additional digits of the most anterior identity seen 

previously.  0.01mg/ml EC23 was chosen for further study as Budge (2010) had found that 

it generated the highest frequency of digit duplication, is the highest concentration of EC23 

which allows survival and is the only retinoid concentration to duplicate multiple 

additional digit 1s.  1mg/ml ATRA was chosen for further comparison as it generated a 

similar frequency of phenotypes to 0.01mg/ml EC23.   

 

Table 3.1 shows the percentage of embryos surviving after 7 days of EC23 and EC19 

compared to ATRA.  EC23 and ATRA have a similar survival rate at the concentrations 

chosen. ATRA exhibits a slightly lower survival rate indicating that it may be more toxic 
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than EC23.  Interestingly there appears to be a difference in survival rate when EC23 is 

compared to EC19 at 0.01mg/ml.  It can be seen that embryos treated with this 

concentration of EC19 exhibit a worse survival rate than those with EC23.  This may also 

be due to the difference in number of operations performed as 38 fewer operations were 

performed with 0.01mg/ml EC19 than with EC23.  However, it does appear that there is an 

increase in embryo survival at higher concentrations of EC19 as a similar number of 

operations were performed for both concentrations, yet there is a much higher survival rate 

with 0.1mg/ml EC19 than 0.01mg/ml EC19.  This result is consistent with previous 

findings (Budge, 2010).   

 

These results show that the survival rates are similar to those obtained previously (Budge, 

2010).  The fact that EC19 is less toxic than EC23 and demonstrates a similar toxicity to 

ATRA indicates that EC23 is more potent.  This increased potency of EC23 may be due to 

a number of factors: enhanced CRABP2 binding, enhanced RAR binding or prolonged 

RAR activation due to differences in metabolism.  Given the structural similarity with 

TTNPB, it is likely that these will all contribute to its increased potency (Pignatello et al., 

1999, 2002). The low potency of EC19 is surprising as the structure of EC23 and EC19 are 

identical bar the position of the terminal carboxylic acid group (see figure 1.5).   
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Table 3.1: The toxicity of the synthetic retinoids EC23 and EC19 compared to ATRA. 

Retinoid Concentration 

(mg/ml in DMSO) 

Number of operations 
% survival (number) surviving to 

7 days 

ATRA EC23 EC19 ATRA EC23 EC19 

0.01 0 58 20 - 50 (29) 30 (6) 

0.1 0 0 24 - - 42 (10) 

1 14 0 - 43 (6) - - 

 

 

 

Table 3.2 : The frequency and nature of limb phenotypes generated with ATRA and EC23. 

Retinoid 
Conc. 

(mg/ml) 

Frequency (number) of limb phenotypes seen in embryos surviving to 7 days. 

123 1123 11123 111123 2123 21123 1223 32123 Truncated Other 

EC23 0.01 35 (10) 24 (7) 17 (5) 3 (1) 0 0 0 0 10 (3) 7 (2) 

ATRA 1 0 (0) 33 (2) 0 0 17(1) 17 (1) 17  (1) 17 (1) 0 0 

 

 

 

 

This shows the number of operations carried out at retinoid concentrations used.  This is used to calculate the frequency/% 

survival 7 days after operation.  % survival is presented as a percentage (number of embryos). % survival of DMSO only 

treated embryos was 44% (n=9). 

Retinoids were used to treat HH20 chick embryos and phenotypes scored after 7 days of incubation.  Normal limb development is referred to as 123 as shown on A) in 

accompanying figures e.g. figure 3.2.  Extra digits are denoted by numbers before this and refer to the digit identity assigned by length of ectopic digits.  “Truncated” 

refers to limbs which have extensively shortened or absent zeugopod and/or autopod elements (figure 3.2F).  “Other limb defects” are those embryos which did not 

exhibit clear digit duplications (figures 3.2G-H). No limb phenotypes were seen when anterior wing buds were treated with DMSO alone.  Abbreviations: conc, 

concentration. 
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EC23 mimics the effects of ATRA on limb development but EC19 has no effect at 

concentrations tested. 

 

Consistent with the previous findings by Budge (2010) I have also found that EC23 and 

EC19 have differential effects in vivo.  Budge (2010) found that EC23 caused digit 

duplications and facial phenotypes similar to ATRA but at concentrations 2 orders of 

magnitude lower than ATRA (Budge, 2010).  EC19 was also found to cause similar facial 

phenotypes to ATRA but far fewer digit duplications.  Digit duplications were only 

documented by Budge (2010) at 0.1mg/ml and 3mg/ml EC19.  Despite the structural 

similarity of EC23 and EC19, I report that EC19 was not seen to generate digit 

duplications when using beads with a diameter of 150-300μm.  In analysing the frequency 

of digit duplication and facial phenotypes, it was evident that EC23 and ATRA also affect 

other parts of wing development: cartilage element length, scapula and elbow 

development.  These shall be addressed in order of their frequency. 

 

EC23 causes duplication of multiple anterior digits whereas ATRA causes a wide 

range of duplications. 

 

In the present study, the effect of a photostable retinoid, EC23 (Christie et al., 2008), has 

been investigated and compared to ATRA at one concentration.  HH20 chick wings were 

treated with retinoid soaked beads and re-incubated for 7 days to study the digit 

duplications produced. Digit identity was assigned dependent on digit length, width and 

then finally on number of cartilage elements.  The reason for this was that duplicated digits 

often did not form joints correctly and therefore the number of cartilage elements was not 

deemed a reliable method for determining digit identity.  Wings designated as 

“truncations” were so assigned due to their appearance prior to clearing.  These limbs 

appeared to lack autopodal elements concurrent with shortened zeugopod and stylopod 

elements. Recent research has demonstrated that the three digits in the developing avian 

wing correspond to digits 1, 2 and 3 of mammalian development (Towers et al., 2011) and 

therefore this nomenclature shall be used to identify and discuss the phenotypes seen.   

 

Table 3.2 demonstrates the frequency of digit duplications and limb phenotypes seen with 

EC23 and ATRA. As can be seen EC23 generates a high frequency of digit duplications 

containing additional digits of the most anterior identity.  However, ATRA generated a 
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range of digit duplications from the least severe (anterior digit duplication; 1123) to most 

severe (complete mirror image duplication; 32123).  It can also be seen that ATRA never 

generated digit duplications containing multiples of the most anterior digit e.g. 11123 or 

111123, both of which were seen with 0.01mg/ml EC23. 

 

Figures 3.2 and 3.3 show examples of the range of limb phenotypes seen with 0.01mg/ml 

EC23 and 1mg/ml ATRA respectively ranging from the least to most severe.  It can be 

seen from figure 3.2 and table 3.2 that the predominant duplication phenotype with EC23 

is of multiple additional digit I.  The differences between the types of duplication seen with 

ATRA and EC23 can be contrasted with when these are compared to the duplications seen 

in figure 3.3.  Figure 3.3 shows that the full range of digit duplications can be generated 

with 1mg/ml ATRA from duplication of the most anterior digit (1123; figure 3.3B) to 

mirror image duplication (32123; figure 3.3E).   

 

Some EC23 treated embryos can develop truncated limbs as seen in figure 3.2F which has 

been documented after application of high concentrations of ATRA (Tickle et al, 1985).  

Figures 3.2G and 3.2H show the two limbs classified as “other” in table 3.2.  They were so 

assigned as they did not exhibit clearly identifiable digit identities.  The wing in figure 

3.2G could be classified as digit duplication or a proximalisation effect.  The wing shown 

in figure 3.2H was so assigned as it shows an abnormal number of digits but assigning 

digit identity is difficult as all digits appear to have similar identity similar to digit pattern 

after experimental dysregulation of BMP signalling (Drossopoulou et al., 2000).   

 

These data are consistent with the finding that EC23 mimics the effect of ATRA in vitro 

(Christie et al., 2008) and previous data in vivo (Budge, 2010).  The ability of ATRA to 

generate digit duplications at the current concentration is consistent with data documented 

by Budge (2010) and previous literature (Tickle et al., 1985).  The fact that EC19 did not 

generate any digit duplications is consistent with its lower potency in vitro (Christie et al., 

2008). Interestingly EC23 was able to generate phenotypes of multiple additional digits of 

anterior identity not seen by Budge (2010) or Tickle et al (1985).  Therefore, EC23 

application at this concentration and quantity could be used as a tool to study anterior digit 

development.   
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Figure 3.2: The effect of 0.01mg/ml EC23 on chick wing development. 

 

 

 

 

 

 

Dorsal views of whole mount skeletal preparations of isolated retinoid treated wings are shown.  A) shows the effect of DMSO with normal digit 

development shown by numbers 1, 2, 3.  The arrowhead indicates the bead. B) to F) show the digit duplications generated with EC23 ranging from 

least to most severe: B) 1123, C) 11123, D) 111123, E) 11123, F) truncation.  G and H) do not exhibit clear digit duplications and have been 

designated “other”.  Multiple digit 1’s are highlighted by asterisks.  Abbreviations: h; humerus, r; radius and u; ulna. Scale bars are 1mm. 
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Figure 3.3: The effect of 1mg/ml ATRA on chick wing development. 

 

 

Whole mount skeletal preparations of isolated retinoid treated wings are shown. A) shows the effect of DMSO.  Digits 1, 2 and 3 are 

indicated to show normal digit development.  B) to E) show the digit duplications generated with ATRA ranging from least to most severe. 

B) 1123, C) 21123, D) 2123, E) 32123.  Arrowheads in A) and C) indicate the bead.  Asterisks indicate additional digits.  Abbreviations: h, 

humerus; r, radius; u, ulna.  Scale bars are 1mm. 
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Both EC23 and ATRA affect cartilage element size of the humerus, radius and ulna. 

 

The development of the different cartilage elements is the first morphological sign of 

differentiation in the developing limb and muscles, tendons and nerves develop 

subsequently (Thorogood and Hinchliffe, 1975). Cartilage development is connected to 

overall limb size and patterning as removal of the AER causes limb reductions dependent 

on the time of removal (Niswander et al., 1993). Knock out or dysregulation of signalling 

pathways such as BMP, growth and differentiation factor 5 (GDF5) or transforming 

growth factor β (TGFβ) (Brunet et al., 1998; Spagnoli et al., 2007; Storm and Kingsley, 

1996; Yi et al., 2000) can cause reductions to limb element length and exogenous BMP can 

generate longer elements and increase humerus width (Macias et al., 1997). Changes to the 

ECM have also been shown to affect limb length (Choocheep et al., 2010; Hudson et al., 

2010; Shepard et al., 2008; Wilson et al., 2012).  Retinoids have been shown to affect 

members of these pathways. High concentrations of retinoids can truncate limb 

development and depending on the position of application on the PD axis, they can affect 

proximal elements (Tickle and Crawley, 1988). Application of ATRA to the posterior 

proximal wing can affect length of the zeugopod and autopod elements (Tickle et al., 1985) 

as can application of extremely high concentrations of ATRA to the anterior wing bud at 

earlier stages than the present study (Summerbell, 1983). Consistent with a role for 

retinoids in element length it has been affected in both Rarα/γ null mice (Lohnes et al., 

1994) and cyp26b1 knockout mice (Pennimpede et al., 2010b; Yashiro et al., 2004). Given 

these previous results, cartilage element size was analysed in the present study.  

 

It can be seen from table 3.3 that EC23 and ATRA cause malformation to the zeugopod 

(radius and ulna) and stylopod (humerus) of the wing.  The frequency of digit duplication 

was 65% in EC23 treated wings and 100% ATRA treated wings, which is similar to the 

frequency of effects on zeugopod element size: 69% in EC23 treated wings and 100% in 

ATRA treated wings.  Both EC23 and ATRA also affected the humerus but with 

differential frequencies: ATRA causing a higher frequency of phenotypes.  Interestingly, 

EC23 and ATRA showed differential effects on development of the humerus, radius and 

ulna.  

  



65 

 

 

 

 

Table 3.3:  the effect of EC23 and ATRA on development of humerus, radius and ulna. 

Retinoid 
Concentration 

(mg/ml) 

% of embryos (number) surviving after 7 days treatment with 

malformations to humerus, radius or ulna cartilage 

RU change Small Radius Small Ulna Humerus 

EC23 0.01 69 (20) 48 (14) 48 (14) 48 (14) 

ATRA 1 100 (6) 100 (6) 17 (1) 83 (5) 

 

 

 

 

Table 3.4 : The effect of EC23 and ATRA on size of radius, ulna and humerus. 

Retinoid 
Concentration 

(mg/ml) 

Average LW ratio of radius, ulna and humerus 7 days 

after treatment. 

Radius Ulna Humerus 

DMSO/untreated N/A 12.6 (±2.5) 13.2 (±2.2) 11.9 (±1.0) 

EC23 0.01 8.6 (±2.5) *** 9.2 (±3.1) *** 9.4 (±2.3) *** 

ATRA 1 7.4 (±1.1) *** 10.8 (±2.1) * 12.4 (±1.8) NS 

 

 

 

Both EC23 and ATRA application at HH20 decreased the humerus length: width ratio (L: 

W) which is characterised phenotypically by a thickened and shorter humerus (compare 

figure 3.5A with 3.5C and 3.5H).  It can be seen from table 3.3 that ATRA causes this 

phenotype at twice the frequency of EC23.  However, it appears from table 3.4 that EC23 

generates a more severe effect on humerus size than ATRA supported by the fact that the 

humerus L: W ratio of untreated embryos vs. ATRA treated embryos was not significant.  

This is contrasted with the highly significant drop in length: width ratio seen when EC23 

treated and untreated humerus is compared.  It can be seen from figure 3.4B and 3.4C) that 

the correlation between length and length: width of the humerus is reduced with retinoid 

treatment supporting the observation that there is a change to the width of the humerus.  

The fact that this correlation is markedly reduced in ATRA treated embryos but there is no 

significant change in humerus L: W ratio reflects the fact that there is a greater range in the 

phenotypes of the ATRA treated embryos than the EC23 treated embryos. 

 

This shows the frequency of phenotypes and number of examples with a smaller length: width ratio of 

radius, ulna or humerus.  Note that embryos exhibiting smaller radius or ulna are both included in the 

column designated RU change.  Some embryos show changes to one or both elements.    Abbreviations: R, 

radius; U, ulna. 

This shows average length: width ratio of these cartilage elements (±standard deviation).  Significance 

was tested using an unpaired student t-test to compare retinoid treated to DMSO treated cartilage 

elements. * p<0.05, ** p<0.01, *** p<0.001, NS indicates not significant. 
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Table 3.3 shows that 69% of embryos treated with 0.01mg/ml EC23 exhibit a change in the 

L: W ratio of the radius and/or the ulna and these effects occur at equal frequencies (table 

3.4).  This can be contrasted with ATRA which affects the radius in all embryos treated but 

only affects in ulna in a subset (table 3.4), consistent with previous literature (Summerbell, 

1983). Figure 3.5 shows examples where EC23 or ATRA have affected the length of the 

zeugopod elements equally (figure 3.5B, 3.5D, 3.5F and 3.5H) or one element more than 

the other (figure 3.5C, 3.5E and 3.5G) in a single embryo. Graphs plotting the radius L:W 

against ulna L:W show that there is less correlation between the development of these two 

elements in the presence of retinoid indicating that they are both sensitive to retinoid 

treatment (Figure 3.6).  The correlation between radius and ulna in response to EC23 is 

more similar to untreated wings consistent with observations that the radius and ulna can 

be equally affected.  The further decrease in correlation in response to ATRA is consistent 

with the observation that ATRA affects the radius at a higher frequency than the ulna 

(tables 3.3 and 3.4; figures 3.6C and 3.6B).   

 

Radius and humerus L: W ratios co-vary less in retinoid treatment consistent with the 

observations that one or both are malformed after retinoid treatment and that this effect is 

independent of the other element (figure 3.7 and Table 3.3). Ulna and humerus L: W co-

vary to a similar extent in DMSO and ATRA treatments consistent with the fact that 

ATRA has little effect on these elements (Figure 3.8, table 3.3).  However there is much 

less correlation in response to EC23 treatment consistent with the fact that one or both 

elements are often significantly malformed in response to EC23 (figure 3.8, table 3.3).   

 

Due to the fact that element size increases during outgrowth of the limb and that embryos 

were not at the exact same developmental stage, age of the embryos recovered could 

explain the changes to element length: width ratio. Therefore humerus length was plotted 

against humerus length: width ratio to discount the fact that differences in age may cause 

the differences seen in cartilage size.  As can be seen from figure 3.4A, there is no 

significant correlation between the two in untreated wings indicating that age at harvest is 

unlikely to be a factor contributing to the phenotypes observed.   

 

This shows that EC23 and ATRA both affect the entire PD axis. Therefore retinoids can 

affect the entire PD axis during limb development.  
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Figure 3.4 : The effect of ATRA and EC23 on the relationship between humerus length and length: 

width ratio. 

 

 

A) shows the relationship between humerus length and length: width (L:W) ratio of the humerus in 

untreated/DMSO treated embryos. B) and C) show the same relationship in EC23 and ATRA treated 

embryos respectively. R
2
 values are for the trendlines shown. 
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Figure 3.5 : Changes to length: width ratios of humerus, radius and ulna caused by EC23 and ATRA. 

 

 

 

 

 

Whole mount skeletal preparations of isolated retinoid treated wings are shown.  A) shows normal development of the wing in response to DMSO.  B) and C) 

show the effect of 1mg/ml ATRA.   B) shows 1223 duplication with the proximal cartilage elements of digit 3s fused (arrowhead).  C) shows a 1123 digit 

duplication with the two digit 1s fused at the proximal element.  B) and C) also exhibit shortened radius and ulna elements.  D-H) show the effects of 0.01mg/ml 

EC23.  D) shows normal length of the humerus, radius and ulna.  The arrow indicates a humerus-radius fusion.  E-H) show shortened radius and ulna elements as 

well as thickened humerus elements. The arrow in E) indicates a fusion between the 1st and 2nd digits. F) shows one of the wings with a digit duplication 

designated as “other” with severe thickening of the humerus and shortening of the zeugopod.  G) shows severe effects on humerus, radius and ulna lengths.  H) 

shows a severely truncated limb with abnormal development of the humerus, radius and ulna.  The arrow in H) indicates a fusion between proximal elements of 

digits 2 and 3 of the 1123 duplication.   Abbreviations: h, humerus; e, elbow; r, radius; u, ulna.  Scale bars are 1mm. 
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Figure 3.6 : The effect of retinoid on the relationship between radius and ulna length: width ratios. 

 

 

 

A) shows the relationship in DMSO/untreated wings.  B) and C) show the relationship in response to 

EC23 and ATRA respectfully.  The R
2
 values shown correspond to the trendlines plotted. Abbreviations: 

L:W, length : width ratio. 
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Figure 3.7 : The effect of retinoid on the relationship between radius and humerus length: width ratios. 

 

 

 

A) shows the relationship in DMSO/untreated wings.  B) and C) show the relationship in response to 

EC23 and ATRA respectfully. R
2
 values shown correspond to the trendlines plotted. Abbreviations: L:W, 

length : width ratio. 
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Figure 3.8 : The effect of retinoid on the relationship between ulna and humerus length: width ratios. 

 

 

 

 

A) shows the relationship in DMSO/untreated wings.  B) and C) show the relationship in response to EC23 

and ATRA respectfully.  The R
2
 values shown correspond to the trendlines plotted. Abbreviations: L:W, 

length: width ratio. 
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Both EC23 and ATRA affect scapula development. 

 

The limb is characterised as having 3 segments: stylopod, zeugopod and autopod.  

Previous sections have addressed the effects on all of these segments.  The limb girdle is 

also an important part of the limb in that it is necessary to connect the limb to the axial 

skeleton and important for subsequent function. However, compared to the rest of the wing 

skeleton, this region has been less extensively studied as it is not considered to be part of 

the wing skeleton.  This is due to the fact that manipulations which cause dramatic 

malformation to the wing skeleton e.g. AER removal or high concentrations of ATRA at 

HH20 are not documented to affect the limb girdle (Niswander et al., 1993; Tickle et al., 

1985).  Its origins are also controversial: previous research has suggested that it develops 

entirely from the somites (Chevallier, 1977), from a mixture of the somites and LPM while 

research in Salamander indicated that it was purely derived from LPM (Huang et al., 

2000).  Latest research suggests that the scapula develops from a mixture of somite and 

LPM derived cells: head and proximal 2/3 of blade is LPM and distal portion is somite 

derived (Shearman et al., 2011).  Previous research has shown that retinoids can affect the 

shoulder girdle if applied at HH18-20 in chick and showed that retinoid caused production 

of ectopic cartilage or duplication of the coracoid (Oliver et al., 1990).  

 

Table 3.5 : The effect of EC23 and ATRA on scapula development. 

A) 

Retinoid 
Conc. 

(mg/ml) 

% (number) of embryos surviving 7 days after 

treatment 

Normal Malformed 

EC23 0.01 24 (7) 66 (19) 

ATRA 1 0 100 (6) 

B) 

Retinoid 
Conc. 

(mg/ml) 

% embryos (number) with one or more scapula malformations surviving for 7 

days 

Reduced Foramen Bend Ectopic cartilage Absent head 

EC23 0.01 59 (17) 0 7 (2) 14 (4) 48 (14) 

ATRA 1 83 (5) 17 (1) 0 17 (1) 67 (4) 

 

 

 

HH20 chick wing buds were treated EC23 and ATRA.  A) shows the frequency of embryos (number) 

surviving for 7 days after treatment with a normal or malformed scapula on the operated side.  B) shows the 

frequency (number) of embryos with scapula malformations: reductions, foramen, bending, ectopic cartilage 

or absent head structure.  Note that some examples exhibited more than one of these phenotypes and 

therefore an embryo can contribute to more than one total. 
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As mentioned previously, EC23 and ATRA affect the entire PD axis of the limb and they 

also affect the scapula.  Malformation to the scapula occurs at a similar frequency to digit 

duplication and to changes to the zeugopod elements (compare Tables 3.2, 3.3 and 3.5A). 

As can be seen, all embryos treated with 1mg/ml ATRA that survived for 7 days exhibited 

a scapula malformation whereas 0.01mg/ml EC23 caused scapula malformations at a lower 

frequency. In the limited number of operations performed scapula phenotypes were always 

seen with digit duplications in response to 1mg/ml ATRA.  Scapula phenotypes were not 

always concurrent with digit duplication in response to 0.01mg/ml EC23: 24% scapula 

malformations seen were with normal digit development.  This indicates that some data 

may have been lost as embryos were not fixed without an obvious external phenotype. 

However, in most cases of EC23 treatment if there was a digit phenotype there was also a 

malformation of the scapula: 78% limb phenotypes had a malformed scapula and 67% 

scapula malformations were seen with digit duplication.  67% scapula phenotypes are seen 

concomitant with a change in the size of the radius and/or ulna. 52% scapula 

malformations are seen with a change in the size of the humerus.   

 

As can be seen from table 3.5B, the scapula malformations generated ranged in severity.  

The most frequent scapula malformation seen with either EC23 or ATRA was a shortening 

of the scapula blade (figures 3.9C-D and 3.10C-D respectively).  This was often concurrent 

with absence of the scapula head in EC23 and ATRA treated embryos (figure 3.9E and 

figure 3.10C-D respectively).  There was a range in the severity of the scapula blade 

shortening in either EC23 or ATRA treated embryos (compare 3.10B with 3.10D for 

ATRA; 3.9D and 3.9E for EC23).   

 

The least severe phenotypes are those of ectopic cartilage, bending and a foramen (figures 

3.9 and 3.10).  Both EC23 and ATRA can generate ectopic cartilage around the scapula as 

seen in figure 3.9D’ and 3.10C.  This phenotype is consistent with previous literature 

although the ectopic cartilage has been documented to be a duplicated coracoid (Oliver et 

al., 1990).  Duplication of the coracoid was never seen with EC23 and ATRA.  Only EC23 

was seen to have any effect on the coracoid causing one embryo to develop with a 

thickened coracoid (not shown).  Significant bending of the scapula blade was only seen in 

response to treatment with 0.01mg/ml EC23 (figure 3.9C’). The development of a foramen 

in the scapula was only seen once in response to 1mg/ml ATRA (figure 3.10B’).   
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EC23 and ATRA are shown to affect the limb girdle as well as the entire PD axis of the 

wing.  They both appear to affect regions of the scapula derived from both the LPM and 

the somitic mesoderm and therefore it is worth considering mechanisms affecting the 

development of both of these regions in determining their mechanism of action. Retinoids 

have been documented to affect shoulder girdle development if applied at HH18-20 or at 

high concentrations.  Unlike the present findings, previously they have induced formation 

of ectopic cartilage (Oliver et al., 1990).  The mechanism behind this shortening of the 

scapula was investigated by analysing the effect of retinoid on Pax1 expression.   
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Figure 3.9 : The effect of 0.01mg/ml EC23 on scapula development. 

 

 

 

 

 

Whole mount skeletal preparations of isolated retinoid treated torsos and scapulae are shown. A, B, 

C, D and E) are dorsal views of the torso with the operated wing on the right and anterior is top.  C’, 

D’ and E’) are flat views of both scapulae from the adjacent embryo: right is operated.  A) shows the 

effect of DMSO.  B) to E’) show the scapula phenotypes generated with EC23 ranging from least to 

most severe.  C) shows an example of scapula blade bending.  D) shows an example of ectopic 

cartilage and E) shows an example of scapula blade truncation. C’, D’ and E’) also exhibit absence 

of the scapular head.  Arrow in C’) indicates the scapular head on the un-operated wing.  

Arrowheads in C’, D’ and E’) indicate absence of the scapular head on the operated side.  

Abbreviations: s, scapula; c, coracoid; vc, vertebral column.  Scale bars are 1mm. 
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Figure 3.10 : The effect of application of 1mg/ml ATRA at HH20 on scapula development. 

 

 

 

 

 

Whole mount skeletal preparations of isolated retinoid treated torsos and scapulae are shown. A,B,C 

and D) are dorsal views of the torso with the operated wing on the right and anterior is top.  B’, C’ and 

D’) are ventral views of both scapulae from the torsos shown: right is operated.  A) shows the effect of 

DMSO.  B) to D’) show the scapula phenotypes generated with 1mg/ml ATRA ranging from least to 

most severe.  B) shows the scapula can develop a foramen (arrow in B’) in the presence of ATRA.  C) 

shows the presence of ectopic cartilage indicated by the arrowhead.  C, C’, D and D’) show reduction 

to the scapula blade in the presence of ATRA.  They also show that scapula head formation can be 

inhibited in the presence of ATRA (arrow compared to arrowhead in C’ and D’). Abbreviations: s, 

scapula; c, coracoid; vc, vertebral column.  Scale bars are 1mm. 
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Both ATRA and EC23 affect expression of the scapula marker Pax1. 

 

The mechanisms controlling scapula development are still largely unknown.  Pax1 has 

been implicated in scapula development as the Pax1 knock out mouse (undulated) shows 

malformations in the structures which articulate with the clavicle (acromion and spina 

scapula-see figure 3.17; (Timmons et al., 1994).  Its expression pattern has also been 

documented in mouse and chick development (Huang et al., 2000; LeClair et al., 1999).  

Pax1 expression in chick has been shown to precede scapula cartilage development and is 

the only marker for scapula development (Huang et al., 2000).  Pax1 has been documented 

as a marker of chondrogenic cells in the dermomyotome (Huang et al., 2006) and as a 

marker of the scapula although it is absent from condensations (Huang et al., 2000; LeClair 

et al., 1999; Timmons et al., 1994). Therefore, the mechanism behind the scapula 

reductions in EC23 and ATRA treated embryos was investigated by investigating the effect 

of these retinoids on Pax1 expression.   

 

Pax1 expression is seen in chick from HH21 as a crescent shaped band at the proximal 

dorsal wing as well as in a domain in the anterior wing.  This band then extends caudally 

between HH22-25 and at HH23 it could be found cranial and ventral to the shoulder.  By 

HH26-27 it is found at the cranial edge of the shoulder and dorsal to the shoulder there is a 

pronounced cranio-caudal stripe of expression.  At HH28 there is a new spot of expression 

in the dorsal posterior limb bud which later becomes a stripe of posterior expression.  By 

HH29 Pax1 is seen at the cranial parts of the scapula at the scapula-humeral joint as well 

as caudally along the dorsal margin of the scapula (Huang et al., 2000; LeClair et al., 

1999). 

 

Figure 3.11 shows whole mount in situ hybridisation for Pax1 expression in the wing after 

48hrs of retinoid treatment.  The solid arrows indicate normal expression of Pax1 in 

untreated wings.  It is seen to be expressed in a domain at the anterior, proximal wing and 

on the ventral side.  This is similar to that reported at HH24-26 (Huang et al., 2000; 

Timmons et al., 1994). It can be seen that both EC23 and ATRA down-regulate Pax1 

expression.  This down-regulation can be complete as shown in figure 3.11 (n=2/6 ATRA 

or n=3/5 EC23) or a reduction in Pax1 levels (n=3/6 ATRA or n=1/5 EC23; not shown). 

These data are consistent with the idea that retinoids cause the scapula phenotype via a 



78 

 

 

 

down-regulation of Pax1 and highlights the fact that retinoids can affect the entire PD axis 

of the limb.  

 

 

 

 

 

 

Figure 3.11 : The expression pattern of Pax1 in response to retinoids. 

 

 

 

 

 

 

 

 

 

 

Embryos were treated with retinoid dissolved in DMSO at HH20 and allowed to develop for 48hrs.  

Pax1 expression was investigated using whole mount in situ hybridisation.  A and D) are ventral views 

while B,C,E and F) are lateral, dorsal views of chick wings after 48hrs of retinoid treatment.  A-C) were 

treated with 1mg/ml ATRA and D-F) were treated with 0.01mg/ml EC23. B and E) show Pax1 

expression is absent in the presence of retinoid.  This is also shown by the dashed arrows in A) and D).  

C and F) show normal expression of Pax1 on the contralateral side of the embryo.  This is also shown by 

the solid arrows in A) and D).  Abbreviations: nt, neural tube; w, wing.  Scale bars are 1mm. 
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Both EC23 and ATRA affect elbow development and cause digit fusions. 

 

As mentioned previously both EC23 and ATRA can be seen to generate fusions to the 

elbow joint or between digits during wing development (table 3.6 and figures 3.12 and 

3.13).  Table 3.6 shows that the frequencies of elbow phenotypes seen are similar between 

EC23 and ATRA.  EC23 has not been observed to cause fusion of the humerus-ulna and 

ATRA has not been observed to cause fusion of the humerus-radius elements.  However, 

EC23 can fuse humerus-radius (figures 3.12B and 3.13D) and ATRA can fuse humerus-

ulna (figure 3.12F and 3.13B).  Both EC23 and ATRA can generate fusion of all three 

elements at varying severity.  Fusion of the three elements by 0.01mg/ml EC23 can occur 

with varying degrees of severity (compare figure 3.12C and 3.12D).  This can also be seen 

more clearly by comparing figure 3.13C and 3.13E.  The degree of severity was not seen to 

be as wide with ATRA (data not shown) but this could be due to number of operations 

performed. 

 

As seen from table 3.6, EC23 and ATRA cause fusions to developing digits at similar 

frequencies.  Figure 3.12E and 3.12F show examples of digit fusions in response to 

0.01mg/ml EC23.  These are between cartilage elements of digit 1s.  0.01mg/ml EC23 can 

also generate fusions between other digits as seen in figure 3.5E and 3.5H.  0.01mg/ml 

EC23 also caused bifurcation of a duplicated digit 1 as seen in figure 3.12G.  1mg/ml 

ATRA was also able to generate digit fusions (figure 3.5B).   

 

Table 3.6 : The frequency and nature of cartilage element fusion in wing development after treatment 

with EC23 and ATRA. 

Retinoid 
Conc. 

(mg/ml) 

% of embryos (number) surviving after 7 days treatment with fusions 

HR HU HRU Digit 

EC23 0.01 17 (5) 0 21 (6) 10 (3) 

ATRA 1 0 17 (1) 17 (1) 33 (2) 

 

 

 

Both EC23 and ATRA can cause digit fusions and elbow fusions.  It can be seen that more 

severe effects on elbow fusion are seen with EC23 rather than ATRA confirming that it is a 

more potent retinoid than ATRA. EC23 and ATRA appear to differentially affect fusion of 

humerus and radius or ulna although both retinoids can cause the fusion of all three 

elements. 

Note that some examples with digit fusions also exhibited more proximal fusions, and are included in the 

HR, HU and HRU frequencies.  Abbreviations: conc, concentration; HR, humerus-radius; HU, humerus-

ulna; HRU, humerus-radius-ulna. 
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Figure 3.12 The effect of EC23 and ATRA on elbow and digit development. 

 

 

 

 

 

Whole mount skeletal preparations of isolated retinoid treated wings are shown.  A and G) show ventral 

views and B-F) show dorsal views.  A) shows an untreated wing with normal digit and elbow 

development.  B-D) show the effects of 0.01mg/ml EC23 on development of the elbow joint ranging from 

least to most severe.  The arrow in B) shows a humerus-radius fusion.  The arrows in C) show a mild 

humerus-radius-ulna fusion.  D) shows a complete fusion of humerus-radius-ulna (arrow).  E and F) show 

the effect of 1mg/ml ATRA on elbow development.  E) shows a mild humerus-radius-ulna fusion (arrow).  

F) shows a humerus-ulna fusion (arrow).  The arrowheads in E) and F) also indicate fusion between digit 

1s in these duplications. G) shows a 1123 duplication with a bifurcation (arrowhead) in the most anterior 

digit with 0.01mg/ml EC23. Abbreviations: h, humerus; e, elbow; r, radius; u, ulna.  Scale bars are 1mm. 
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Figure 3.13 The effect of EC23 and ATRA on elbow development. 

 

 

 

Whole mount skeletal preparations of isolated retinoid treated wings are shown.  All images are 

dorsal views except A and D) which are ventral.  A) shows an untreated wing with normal elbow 

development.  B) shows an embryo treated with 1mg/ml ATRA and the arrow indicates a humerus-

ulna fusion.  C-E) represent phenotypes seen with 0.01mg/ml EC23.  C) shows a mild humerus-

radius-ulna fusion.  The arrow and arrowhead indicate additional cartilage between humerus-radius 

and humerus-ulna respectively.  D) shows a humerus-radius fusion with the additional cartilage 

indicated by an arrow.  E) shows a complete fusion between humerus-radius and ulna.  Extra 

cartilage is indicated between humerus-radius and humerus-ulna by an arrow and arrowhead.  

Abbreviations: h, humerus; e, elbow; r, radius; u, ulna.  Scale bars are 1mm. 
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Effect of EC23, EC19 and ATRA on upper beak outgrowth. 

 

Retinoids are also known to affect the development of the upper beak when applied to the 

anterior chick wing at HH20 (Tamarin et al., 1984).  Therefore the effect of EC23, EC19 

and ATRA on upper beak development was also compared.  Table 3.7 shows the 

frequencies of facial phenotypes at concentrations chosen for EC23 and ATRA and 2 

concentrations of EC19.  EC23 and ATRA generated a range of facial phenotypes (figures 

3.14 and 3.15).  ATRA generated a mild reduction of upper beak outgrowth in 50% of 

embryos (see figure 3.14C) and the more severe truncated upper beak in 33% of embryos 

(figure 3.14D).   0.01mg/ml EC23 caused both reduced and truncated upper beak 

outgrowth in 38% and 14% of embryos respectively (figure 3.15G-H and 3.15I-J).  EC23 

was also able to cause asymmetric upper beak outgrowth (3% of embryos; figure 3.15C-D) 

and the production of an overbite (3% of embryos; figure 3.15E-F).   

 

Interestingly EC19 was able to generate mild effects on upper beak outgrowth (table 3.7 

and figure 3.16).  At 0.01mg/ml EC19 only 17% of embryos exhibited a facial phenotype 

which was reduced upper beak outgrowth (table 3.7; data not shown).  However, at 

0.1mg/ml EC19 reduced upper beak outgrowth in a similar frequency to EC23 (table 3.7; 

figure 3.16G-H).  0.1mg/ml EC19 also generated a high frequency of asymmetric upper 

beak outgrowth (60%; figures 3.16C-D and 3.16E-F).  The frequency of this phenotype is 

higher than the frequency seen with 0.01mg/ml EC23.  It is also notable from comparing 

figure 3.16C-D with figure 3.16E-F that the asymmetry can be either towards or away from 

the source of retinoid (retinoid was always applied to the right wing).    In the most severe 

phenotype generated by 0.1mg/ml EC19, there is both reduced and asymmetric upper beak 

outgrowth (figure 3.16G-H).   

 

These data indicate that EC23 is more potent than EC19 in vivo.  EC23 is able to generate 

more severe phenotypes at lower concentrations than EC19.  This is consistent with 

previous findings by Budge (2010) and Christie et al (2008).  
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Table 3.7: The effect of ATRA, EC23 and EC19 on upper beak development in embryos surviving for 7 days after treatment. 

Retinoid 
Conc. 

(mg/ml) 

Frequency of embryos surviving with facial phenotypes after 7 days treatment. %(number) 

Normal Asymmetric Reduced Truncated Overbite 

EC23 0.01 41 (12) 3 (1) 38 (11) 14 (4) 3 (1) 

ATRA 1 17 (1) 0 50 (3) 33 (2) 0 

EC19 0.01 83 (5) 0 17 (1) 0 0 

EC19 0.1 10 (1) 60 (6) 40 (4) 0 0 

 

 

 

 

 

Shows the frequency of embryos which survived for 7 days with either normal, asymmetric, reduced, truncated or overbite facial 

phenotypes.  Reduction is characterised as decreased upper beak outgrowth whereas truncation is complete absence of the upper 

beak (see figures 3.14-16 for examples of all phenotypes).  Numbers are presented as percentages of embryos surviving to 7 days 

(number surviving). Abbreviations: conc, concentration. 
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Figure 3.14: The effects of 1mg/ml ATRA on upper beak outgrowth. 

 

 

 

 

 

 

 

 

 

 

 

 

A, C and E) show lateral views of embryos stained with Alcian Blue and B, D and F) show frontal views 

of the same embryo.  A) and B) indicate the effect of DMSO on upper beak outgrowth.  C) to H) show the 

phenotypes produced with 1mg/ml ATRA in increasing severity.  C, D) show reduced upper beak 

outgrowth.  E, F) show complete truncation of upper beak outgrowth. Abbreviations: e, eye; l, lower beak; 

u, upper beak.  Scale bars are 1mm. 
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Figure 3.15: The effects of 0.01mg/ml EC23 on upper beak outgrowth. 

 

 

 

 

 

A, C, E,G and I) show lateral views of embryos stained with Alcian Blue and B, D, F, H and J) show 

frontal views of the same embryo.  A) and B) indicate the effect of DMSO on upper beak outgrowth.  

C) to J) show the phenotypes produced with 0.01mg/ml EC23 in increasing severity.  C, D) show 

asymmetric upper beak outgrowth.  E, F) show production of an overbite.  G, H) show reduction in 

upper beak outgrowth.  I, J) show complete truncation of the upper beak. Abbreviations: e, eye; l, lower 

beak; u, upper beak.  Scale bars 1mm. 
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Figure 3.16: The effects of 0.1mg/ml EC19 on upper beak outgrowth. 

 

 

 

 

A, C, E and G) show lateral views of embryos stained with Alcian Blue and B, D, F and H) show frontal 

views of the same embryo.  A) and B) indicate the effect of DMSO on upper beak outgrowth.  C) to H) 

show the phenotypes produced with 0.1mg/ml EC19 in increasing severity.  C, D) show asymmetric upper 

beak outgrowth with the upper beak skewed to the un-operated side.  E, F) asymmetric upper beak 

outgrowth with the upper beak skewed towards the operated side.  G, H) show reduction in upper beak 

outgrowth.  I, J) shows both reduced and asymmetric upper beak outgrowth. Abbreviations: e, eye; l, lower 

beak; u, upper beak.  Scale bars 1mm. 
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Discussion: 

EC23 and EC19 on toxicity and limb development: 

 

The two synthetic retinoids analysed in the present study generate different phenotypes as 

well as effects on toxicity (table 3.1 and 3.2) consistent with data obtained by Budge 

(2010). This is also consistent with the observation that these retinoids generate different 

effects on TERA2.cl.SP12 cells in vitro (Christie et al., 2008).  The differential effects of 

these retinoids raises the question of how two such similar compounds could cause such 

different effects and potencies.  Given the position of the terminal carboxylic acid group, 

EC23 was designed to be an analogue of ATRA whereas EC19 was designed to be an 

analogue of 13CRA.  Therefore, perhaps it is unsurprising that these cause such differential 

effects in vivo and in vitro.  13CRA has been shown to be present at low concentrations in 

vivo, like 9CRA, and is increased after the application of excess amounts of ATRA 

(Horton and Maden, 1995).  13CRA has been shown to be less potent than ATRA (Kistler, 

1987) and its effects have been attributed to its inter-conversion with ATRA by isomerases 

(Chen and Juchau, 1998). Considering the differences in structure of the synthetic retinoids 

used here compared to naturally occurring retinoids, it is unlikely that these isomerases can 

act on EC23 and EC19 hence generating a dramatic difference in their effects.   

 

Equally, there may be other causes of these differential effects on limb development and 

toxicity by EC23 and EC19. The increased toxicity of EC23 could be hypothesised to be 

due to decreased CYP26 mediated metabolism: considering its structural similarity to 

TTNPB and the fact that almost all known sites of metabolism are blocked (Eichele et al., 

1985; Henderson, 2011; Pignatello et al., 2002; Topletz et al., 2012). This potential 

decrease in metabolism may cause an inhibition of limb development and also the 

duplication of multiple digit 1s as well as the severe cartilage element shortening and 

truncations observed with EC23. This is supported by the fact that some of these 

phenotypes are seen in Cyp26b1 knockout mouse limbs ((Yashiro et al., 2004); see later). 

However, these phenotypes are not documented with TTNPB (Eichele et al., 1985). 

 

Given the similar structures of EC23 and EC19 this potential resistance to metabolism 

should also apply to EC19 however it exhibits lower potency than ATRA in vivo. 

Therefore, the mechanism behind these effects could also be due to differential binding of 

CRABP2 as seen between ATRA and 13CRA (Maden and Summerbell, 1986) or 



88 

 

 

 

differential RAR binding and activation as investigated for TTNPB (Pignatello et al., 

1997). The mechanisms behind the differential effects on limb and upper beak 

development observed with these two synthetic retinoids will be investigated and further 

discussed in chapter 4.  

 

Retinoids and digit development. 

 

Application of ATRA or EC23 to the anterior wing bud at HH20 has generated digit 

duplications and a more limited number of truncations to the limb in the present study. 

Truncations have been seen previously in response to 1-10mg/ml of ATRA in chick 

(Tickle et al., 1985), or in excess ATRA after Cyp26b1 knock out in mouse (Yashiro et al., 

2004). The increased numbers of truncations seen with 1mg/ml ATRA compared with 

previous results (Budge, 2010) are consistent with the fact that the beads in this study load 

larger quantities of retinoid (up to 300μm diameter compared to 150μm used previously). 

Similarly, ATRA has been previously shown to generate duplications (Tickle et al., 1985) 

as has the synthetic retinoid TTNPB (Eichele et al., 1985), which has a similar structure to 

EC23. These early experiments on the developing limb showed that retinoids could 

posteriorize the anterior wing bud at this developmental stage by inducing an ectopic ZPA 

(Wanek et al., 1991).  This is supported by studies showing that ATRA up-regulated 

Hoxb8 (Stratford et al., 1997), Hand2 (Fernandez-Teran et al., 2000) and Shh (Riddle et 

al., 1993).  SHH is secreted by cells of the ZPA (Riddle et al., 1993) and involved in AP 

axis patterning after the stylopod/zeugopod transition (Chiang et al., 2001).  Therefore, up-

regulation of Shh in the anterior wing after EC23 treatment could be the mechanism behind 

the duplications seen.  

 

EC23 does generate digit duplications similar to those of ATRA in that extra digits are 

formed but, unlike ATRA, those which are formed are of the most anterior identity.  The 

duplication of multiple additional digit 1s has not been described previously after ATRA 

treatment ((Budge, 2010; Tickle et al., 1985) and table 3.2). This, combined with the fact 

that it is observed at low frequency with 0.01mg/ml EC23 (table 3.2; (Budge, 2010)), 

indicates that it is a specific property of this retinoid. This also supports the fact that 

increased EC23 concentrations were achieved in this study given the increased frequency 

of this type of duplication as well as the increased range of examples seen.   
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This phenotype has been described in response to application of 0.75mg/ml SHH to the 

anterior chick wing bud (Yang et al., 1997) and is consistent with subsequent studies in 

mice suggesting that the hindlimb digit 1 develops independent of SHH signalling (Chiang 

et al., 2001). Increased SHH concentrations or numbers of ZPA cells are known to 

generate the development of more posterior digits in chick (Tickle, 1981; Yang et al., 

1997). Similarly, Shh expressing cells have been described to contribute to digits 3, 4 and 5 

while part of digit 3 and all of digit 2 are produced from long range SHH signalling in 

mouse (Harfe et al., 2004; Lewis et al., 2001). Interestingly, longer SHH exposure has been 

shown to be important for digit 4 compared to more anterior digits, while a pulse of SHH 

signalling is important for digit 5 development (Ahn and Joyner, 2004). SHH-deficient 

mice have shown that SHH dependent proliferation of these progenitors controls digit 

number but not identity (Zhu et al., 2008a).  

 

A similar relationship between SHH concentration, exposure time and proliferation has 

also been postulated for chick digit development. Given that chick ZPA cells contribute to 

soft tissue at the posterior wing rather than the most posterior digit itself, the wing digits 

can be re-named 1, 2 and 3 (Towers et al., 2011).  Inhibition of SHH signalling by 

cyclopamine caused the loss of digit 3 suggesting that, consistent with previous studies, 

digit 3 requires high concentrations of SHH (Towers et al., 2008; Yang et al., 1997). 

Interestingly, inhibition of proliferation using trichostatin A caused the loss of anterior 

digits 1 and 2 consistent with the fact that proliferation is important for development of 

digits 1 and 2 as seen in mice (Harfe et al., 2004; Towers et al., 2008; Zhu et al., 2008a). 

Given the phenotypes observed, ATRA may cause an increase in proliferation as well as 

Shh expression in the anterior wing to enable mirror image duplications. However, 

considering that digit 1 is SHH-independent in mouse (Chiang et al., 2001), it is possible 

that the duplication of additional digit 1s after increased quantity of EC23 as seen here, 

may not induce Shh expression in the anterior wing bud at all but still allow increased 

proliferation.  Considering that mirror image duplications are observed at lower 

concentrations and quantities of EC23 (Budge, 2010), EC23 is likely to be able to induce 

Shh in the anterior wing bud. Instead the increased quantity of EC23 may stimulate 

proliferation in the wing bud but not up-regulate Shh expression in the anterior wing, 

which could produce multiple additional digit 1’s.  
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Considering that retinoid treatment after HH22 and ZPA grafting after HH25 cannot 

generate digit duplications (Summerbell, 1974, 1983), it could be further postulated that 

this quantity of EC23 may not be able to up-regulate Shh within the duplication window. 

This could be due to its potential resistance to metabolism in the wing bud. It has been 

suggested that excess retinoid generates digit duplication in two phases: a lag phase 

followed by a duplication phase (Eichele et al., 1985). If EC23 were more resistant to 

metabolism, the lag phase may be extended to metabolise the excess retinoid resulting in 

the duplication phase occurring later in development. Due to the extended time over which 

this could occur, the resulting duplication phase may result in a smaller or absent ectopic 

ZPA. Lower levels of SHH would then be produced in the anterior limb, compared to 

ATRA treatment, which would lead to the duplication of only anterior digits (Towers et al., 

2008; Yang et al., 1997). Altogether, it can be observed that EC23 can generate similar 

limb phenotypes to ATRA but the differences in digit identity produced suggests the 

potential for a differential effect on Shh expression in the anterior treated wing bud.  

 

Retinoids and cartilage element size. 

 

ATRA and EC23 have been observed to reduce the length of the humerus, radius and ulna 

during limb development.  They have also been seen to differentially affect these elements: 

ATRA affects the humerus and ulna to a lesser extent than EC23 (Figure 3.5 and Table 

3.4).  Both EC23 and ATRA can affect cartilage elements of the entire PD axis which may 

occur via the alteration of limb outgrowth, patterning or progression of chondrogenesis.  

This has not been previously documented after anterior application of retinoid.  Previous 

research indicated that retinoid application to the posterior wing could shorten the 

zeugopod and autopod (Tickle et al., 1985) and that the Rarα/γ knockout mouse exhibited 

shortening of the limb including the elements of the stylopod and zeugopod (Lohnes et al., 

1994). Very high concentrations of retinoic acid have also been documented to cause 

shortening of cartilage elements however it was not documented at HH20 with 1mg/ml 

(Summerbell, 1983). Increased resistance to metabolism may also affect cartilage element 

size as aberrant retinoid signalling may occur at later developmental stages e.g. during the 

specification and development of the stylopod and zeugopod (Pignatello et al., 1997; Searls 

et al., 1972). In the following section, some mechanisms behind the shortening of the limb 

cartilage elements and the differential effects of these retinoids are explored. 
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It has been seen that exogenous application of BMPs can alter cartilage element length in 

the developing limb but depending on the member of the BMP family applied and its 

position, they affect the radius or ulna (Macias et al., 1997)and will be discussed later. 

BMP receptor 1B (Bmpr1b) and Gdf5 single or double knock outs, however, affect 

cartilage element length along the entire PD axis (Yi et al., 2000). BMP7 signalling 

through BMPR1B is vital for regulating element length as Bmp7/Bmpr1b double knockout 

mice exhibit more severe reductions to the length of skeletal elements along the entire PD 

axis. Interestingly Bmp7 knockout mice also exhibit preaxial polydactyly (Yi et al., 2000), 

mimicking another retinoid phenotype seen here.   

 

Components of the ECM are also implicated in regulating cartilage size and width along 

the PD axis. One of the major components of the ECM during limb development is the 

chondroitin sulphate proteoglycan (CSPG) Versican which can be alternately spliced and 

cleaved during development (Capehart, 2010).  The different isoforms have been shown to 

be present in distinct locations in the limb and may provide a method for regulating joint 

development and limb length over a growing 3D object (Hudson et al., 2010). Reduction of 

versican has been shown to reduce limb element length in chick and mouse (Choocheep et 

al., 2010; Shepard et al., 2008; Shepard et al., 2007) causing alteration of the elbow joint 

and increase the width of the humerus (Hudson et al., 2010). Similarly, enzymes which 

modify ECM proteins e.g. chondroitin sulphate synthase 1 (chsy1) are also implicated in 

the control of element size. Chsy1 knockout mice exhibit chondrodysplasia, decreased 

bone length and density in all limb elements due to a delay in chondrogenesis (Wilson et 

al., 2012).  

 

Alteration of limb outgrowth may also affect cartilage element length. Limb outgrowth 

occurs under the control of the ZPA and AER which are mutually dependent (Niswander et 

al., 1994).  The AER secretes several FGFs which maintains survival of the 

undifferentiated mesenchyme adjacent to it (Niswander et al., 1993)while the ZPA confers 

AP patterning by the secretion of SHH (Riddle et al., 1993). It has been shown that AER 

removal affects cartilage element development depending on the stage of removal.  If 

removed at HH20-21 the radius and ulna are completely truncated but development can be 

partially rescued with FGF4 to produce a shortened radius and ulna (Niswander et al., 

1993). Both retinoids could cause a transient down-regulation of AER FGFs and cause 

decreased proliferation of progenitors. This could particularly affect the zeugopod and 
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stylopod if this down-regulation occurred before their differentiation which, based on 

morphological observations, is HH24 (Summerbell, 1976; Thorogood and Hinchliffe, 

1975).  

 

Given the positive feedback between FGFs and SHH in the developing limb (Niswander et 

al., 1994), there could also be a transient down-regulation of endogenous Shh (see chapter 

5). The development of the limb in the absence of Shh function leads to the development of 

the humerus and radius alone (Ros et al., 2003). Transient down-regulation of Fgf4 and 

Shh could therefore affect the length of the ulna if the expression of Fgf4 and Shh were to 

recover. However, this is not consistent with previous studies showing that retinoids up-

regulate Shh expression in the anterior wing (Riddle et al., 1993) nor explains the 

differential effects seen on the radius. Also this would not be consistent with research 

showing that grafting P19 cells expressing Shh and constitutively active RARα exhibit 

polarising activity in the anterior wing bud and also cause the development of thicker 

cartilage elements, similar to the phenotypes seen here (Ogura et al., 1996).  

 

Another transcription factor expressed in the AER is Msh homeobox 1 (Msx1) (Yokouchi 

et al., 1991a). It has been shown that Msx1 and Msx2 are required for the correct 

development of the anterior limb as Msx1/Msx2 knockout mice exhibit shortening or 

absence of the radius concurrent with preaxial polydactyly (Bensoussan-Trigano et al., 

2011; Lallemand et al., 2005).  Similar to Shh and Msx1, BMPs have been shown to 

differentially affect the development of the radius and ulna. Retinoids have been shown to 

interact with BMP signalling in the control of chondrocyte differentiation (Weston et al., 

2000) and can induce Bmp2 expression (Francis et al., 1994). Exogenous BMP can shorten 

zeugopod elements if applied to the chick wing between HH19-21: anterior application of 

BMP2 inhibited radius development while posterior application of BMP7 inhibited ulna 

development.  Interestingly application of either BMP2 or BMP7 to the dorsal wing 

between HH22-25 caused thickening to the humerus element. These phenotypes were 

proposed to be due to the role of BMP in the amount and position of chondrocyte 

precursors (Macias et al., 1997) and could also occur here.  

 

An effect on areas of cell death could also be proposed to be the mechanism behind the 

shortening of cartilage elements. There are three regions of apoptosis in the early stages of 

normal wing development: anterior necrotic zone (ANZ), PNZ and the opaque patch (OP) 
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(Dawd and Hinchliffe, 1971).The ANZ and PNZ have been suggested to sculpt the limb 

bud while the OP is involved in the separation of zeugopod elements (Zuzarte-Luis and 

Hurle, 2002). It is unlikely that either retinoid causes aberrant apoptosis in the OP given 

that both the radius and ulna are not fused in response to retinoid treatment. Removal of 

the presumptive ANZ and PNZ can reduce limb cartilage length (Rizgeliene, 1996) 

presumably due to decreased cell number. It has been suggested that lower concentrations 

of ATRA than are used in the present study are able to decrease apoptosis in the ANZ 

(Tickle et al., 1985) consistent with a down-regulation of a marker of apoptosis, 

Msx1(Yokouchi et al., 1991a). As the concentration of EC23 used is the highest non-toxic 

concentration in the developing chick embryo and the concentration of ATRA is higher 

than that discussed in Tickle et al (1985) these quantities may be cytotoxic or cause a 

further decrease in apoptosis. If the retinoids were cytotoxic increased apoptosis could 

deplete zeugopod progenitors given that the presumptive zeugopod has been mapped to be 

in close proximity to the site of bead implantation (Vargesson et al., 1997). This could 

provide a mechanism behind cartilage element shortening; however, it would not explain 

the increased width of the humerus also observed. ATRA could be proposed affect the 

ANZ whereas as EC23 as a more potent retinoid could also affect the PNZ, causing an 

effect on both elements of the zeugopod. However, if the retinoids decreased apoptosis and 

Msx1 expression in the limb bud their effects could be linked to the phenotypes observed 

as Msx1/Msx2 knockout mice exhibit shortening or absence of the radius concurrent with 

preaxial polydactyly (see chapter 5;(Bensoussan-Trigano et al., 2011; Lallemand et al., 

2005)).   

 

Considering the previous studies described here, it is proposed that both retinoids alter the 

expression of BMPs early in the retinoid response. This may then cause a negative effect 

on the AER and the control of limb bud outgrowth (Pizette and Niswander, 1999). As 

discussed this would indirectly decrease Shh in the limb and could contribute to the 

inhibition of limb bud outgrowth and development of the ulna. Alteration of BMP and 

application of retinoid has been documented to lead to decreased Msx1 and Msx2 during 

limb development (Pizette and Niswander, 1999) which may contribute to the effects on 

the radius (Bensoussan-Trigano et al., 2011; Lallemand et al., 2005). This in turn may also 

affect apoptosis in the ANZ and PNZ and contribute to the effects on the ulna and/or radius 

(Rizgeliene, 1996). The differential effect of EC23 and ATRA on the zeugopodal elements 

could also be proposed to be due to differences in their effects on members of the BMP 
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signalling or due to a retinoid effect on the ANZ via Msx1 (Macias et al., 1997; Yokouchi 

et al., 1991a).  

 

Retinoids and scapula development: 

 

In a similar manner, EC23 and ATRA are both observed to cause malformation of the most 

proximal element of the limb: the scapula. They caused shortening to the scapula blade and 

absence of the scapula head at high frequency as well as formation of ectopic cartilage, 

bending of the scapula and development of a foramen (see figures 3.9 and 3.10; table 3.5). 

This indicates that they affect both LPM and somitic mesoderm derived portions of the 

scapula and therefore mechanisms involved in the development of the entire scapula are 

discussed. The retinoid signalling antagonist AGN193190 (Prols et al., 2004) and Rarα/γ 

null mice (Lohnes et al., 1994), indicate that the loss of retinoid signalling appears to 

truncate scapula blade development.  The results presented in this study appear to 

contradict these studies, given that excess retinoid is applied here, as well as early data 

suggesting that retinoid application could induce changes to the coracoid rather than the 

scapula (Oliver et al., 1990).  However, considering that more retinoid was applied to the 

limb in the present study, it seems most likely that the correct level of retinoid signalling is 

important for correct development of the scapula and deviations from these cause scapula 

malformations. Some of the mechanisms behind the retinoid effect on scapula development 

are explored in the following section and are further discussed in chapter 5. 
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Figure 3.17: Comparison of the chick (top) and mouse (below) scapula. 

Abbreviations: A, acromion; b, blade; c, coracoid process; sp, scapula spina. Bottom panel shows lateral view 

of a right scapula (left) and anterior view of the left scapula (right) taken from Timmons et al (1994). 

 

Compared to limb development far less is known of the control of scapula development 

however BMP signalling and the following transcription factors have been implicated: 

Pax1, Emx2 and Pbx1-3 in early stages of development while Alx1, Alx4, Tbx15 and Gli3 

in its correct patterning (Capellini et al., 2010; Kuijper et al., 2005; Pellegrini et al., 2001; 

Prols et al., 2004; Timmons et al., 1994; Wang et al., 2005). The structure of the mouse 

scapula compared to the chick scapula is shown in figure 3.17. It can be seen that the 

structures are similar in that they have a head (acromion and coracoid process) and a blade 

(Timmons et al., 1994). However, in chick the coracoid is a separate bone connecting to 

the wishbone and the acromion and scapula spina in mouse are raised with respect to the 

scapula blade (Huang et al., 2000). The factors implicated will be discussed with reference 

to the phenotypes observed with EC23 and ATRA.  
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Interestingly ATRA and EC23 both affect the development of the scapula head.  The 

development of the scapular head has been proposed to be dependent on the AER (Prols et 

al., 2004). ATRA is known to have an antagonistic relationship with FGF and excess 

ATRA causes expansion of proximal markers Meis1/2 although endogenous ATRA is not 

thought to be necessary for their expression (Cunningham et al., 2013; Mercader et al., 

2000). The down-regulation AER-FGFs could therefore be a mechanism behind this 

phenotype. Reduction to FGF signalling is shown in microarray analysis after retinoid 

treatment (chapter 5) and may be consistent with the effect on scapular head development 

as proposed by Prols et al (2004). Pax1 mutant mice (undulated) have been shown to 

exhibit malformations in the shoulder girdle particularly the absence of the acromion or its 

fusion with the scapula blade (Capellini et al., 2010; Timmons et al., 1994).  Pax1 has been 

proposed to be a marker of scapula forming cells and is expressed marking the extension of 

the scapula blade later in development (Huang et al., 2000).  Analysis of compound Pbx 

mutants has showed that all Pbx genes are also necessary for correct formation of the 

acromion as are Tbx15, Gli3, Alx1 and Alx4 (Capellini et al., 2010; Kuijper et al., 2005) 

potentially implicating them in the correct development of the chick scapula head.   

 

Increased BMP signalling has been implicated in scapula malformation and inhibits Pax1 

expression if applied between HH19-25 (Hofmann et al., 1998) consistent with a 

subsequent study showing NOGGIN injection at varying somite levels between HH20-22 

caused lack of scapula blade development in the corresponding region (Wang et al., 2005). 

Emx2 is a transcription factor expressed at the anterior-proximal limb bud, overlapping 

pax1 expression and has been proposed to have a role in shoulder girdle development 

(Pellegrini et al., 2001; Prols et al., 2004).  Emx2 null mice exhibit scapula agenesis 

although the shoulder joint and acromion develop correctly (Pellegrini et al., 2001).  This 

suggests that Emx2 is involved in scapula blade development unlike Pax1 which mainly 

controls acromion development (Pellegrini et al., 2001; Timmons et al., 1994). Another 

transcription factor, Pbx1, has also been implicated in the control of scapula development 

given its expression pattern and its knockout mouse exhibiting reduction of the scapula 

blade (Capellini et al., 2010; Selleri et al., 2001).   

 

Considering the studies described previously and the present data, the reduction in Pax1 

expression in response to retinoids (figure 3.11) is consistent with the absence of the 

scapula head (figures 3.9 and 3.10; (Capellini et al., 2010; Timmons et al., 1994)). Given 
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that Pax1 expression is seen subsequently extending over the scapula blade (Huang et al., 

2000) it is likely that retinoids also inhibit Pax1 expression in the development of the 

scapula blade in chick. However investigation of the effect of EC23 and ATRA on Pax1 

expression over the scapula blade requires further investigation. Given the scapula 

truncations generated after NOGGIN injection (Wang et al., 2005) and the truncations seen 

after BMP application (Hofmann et al., 1998) it is likely that the retinoids used may 

truncate the development of the scapula via a dysregulation of BMP signalling (see chapter 

5).  

 

Unexpectedly, some of the genes implicated to be involved in scapula blade development 

are seen to be up-regulated in response to retinoids: Emx2 (Prols et al., 2004) and Pbx1 

((Qin et al., 2002); see also chapter 5). This may indicate that aberrant up-regulation of 

these transcription factors in either the incorrect location, developmental stage or above a 

certain threshold may cause the scapula malformations observed. Interestingly alteration of 

other genes may be the mechanism behind the less frequently observed phenotypes: e.g. 

Tbx15 and Gli3 knockouts exhibit scapulae with foramina (Kuijper et al., 2005) although 

these are not altered after 24hrs retinoid treatment (chapter 5). Application of EC23 and 

ATRA at these concentrations and quantities provides a useful method for the subsequent 

investigation of scapula development in chick. 

 

Retinoids and elbow development: 

 

As shown in figures 3.12 and 3.13 as well as table 3.6, EC23 and ATRA can cause fusion 

of the elbow joint. This has not been seen previously although fusion of the knee joint has 

been seen after retinoid application to mice at E12 (Abu-Hijleh and Padmanabhan, 1997). 

Little is known about the mechanisms controlling elbow development as much research 

has concentrated on the developing digits, however, the potential mechanisms behind this 

retinoid phenotype are discussed in the following section.  Joints were thought to develop 

from the cartilage condensations by dedifferentiating from chondrocytes into pre-joint cells 

but pre-joint cells are now thought to differentiate from undifferentiated mesenchyme 

(Cortina-Ramirez and Chimal-Monroy, 2007; Fell and Canti, 1934). This forms an 

interzone structure: a central domain of cell death surrounded by two layers of highly 

dense cells (Storm and Kingsley, 1996, 1999).  This can undergo cavitation later in 

development to form the joint. It has been proposed that Bmp2, Bmp4, Chordin, Gdf5 and 
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Wnt14 (wingless-type MMTV integration site, family member 14) are expressed in the joint 

interzones in chick limb development while bagpipe homeobox homologue 1 (bapx1), 

Collagen type 2α1 (Col2α1), Noggin and sex determining region Y-box 9 (Sox9) are 

expressed in the digits (Crotwell and Mabee, 2007).  

 

Interactions between these signalling pathways are thought to control joint development. 

Considering that BMP family members are highly expressed in the developing limb and 

that one of the earliest markers of joint development is gdf5, it could be proposed that the 

elbow fusions are due to retinoid action on members of the BMP signalling family.  

Overexpression of gdf5 has been shown to cause lengthening of the humerus (as previously 

discussed) and fusion of the digit joints (Francis-West et al., 1999). GDF5 has also been 

shown to act upstream of BMPR1B and when both are lost they cause malformation to the 

elbow joint (Yi et al., 2000). Previous studies have indicated that application of BMP2/7 to 

the dorsal wing between HH22-25 can cause elbow fusions (Macias et al., 1997) and that 

retinoic acid can up-regulate Bmp2 and Bmp7 (Francis et al., 1994).  Retinoids could 

therefore be generating elbow fusions via BMPR1B, up-regulation of Bmp7, aberrant Ggf5 

expression (as seen in Zebrafish;(Bruneau et al., 1997)) or a mixture of these. This is 

supported by the observation that after microarray analysis Bmpr1b is down-regulated (see 

chapter 5). Similarly other early markers of elbow development are Dlx5 and Dlx6 which 

may also be altered by retinoid signalling ((Ferrari and Kosher, 2006); chapter 5). 

 

Shh has also been documented to affect elbow development: in Shh nulls the elbow joint 

chondrifies and the element fails to segment (Chiang et al., 2001) implying a role in 

facilitating the correct position and development of the joint either directly or indirectly.  

Retinoids have been shown to induce Shh expression in the anterior wing after 30hrs 

((Riddle et al., 1993); see chapter 5).  However, consistent with Shh null phenotypes is the 

observation that both retinoids do not induce Shh anteriorly and there appears to be a slight 

down-regulation of the expression of endogenous Shh which could cause elbow fusion (see 

chapter 5). WNTs are known to be involved in limb development and they have also been 

implicated in joint development. Wnt4 and Wnt14 have been shown to be expressed in both 

elbow and digit joint forming regions suggesting that they are important for elbow 

development (Loganathan et al., 2005). Thus investigation into the expression of these 

genes may elucidate the mechanism behind the effect of retinoid on elbow development. 

Excess VEGF application can cause elbow fusion in chick wing development via increased 
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chondrocyte differentiation and inhibited joint formation (Cortina-Ramirez and Chimal-

Monroy, 2007) and may provide another mechanism by which retinoids could affect elbow 

joint formation. Overexpression of the Versican1 and 3 in chick between HH19-25 can 

reduce olecranon/elbow development (Hudson et al., 2010). Morpholino knock down of 

Versican expression in the chick wing at HH22-25 also reduced olecranon process 

(Shepard et al., 2008; Shepard et al., 2007) suggesting that the correct threshold of versican 

in the ECM is necessary for correct elbow development and may be affected by retinoids. 

 

Muscle and elbow development  

 

During limb development other tissue types develop using the cartilage as a template e.g. 

muscle.  Early experiments by Fell and Canti (Fell and Canti, 1934), Holder (Holder, 1977) 

and, more recently, analysis of Muscleless mutants (Nowlan et al., 2010) have shown that 

muscle is important for correct limb development. Muscleless mutants (Myf5/MyoD and 

Splotch) particularly reduced scapula, humerus and ulna length, similar to the present 

study, while heterozygotes exhibited a less severe phenotype (Nowlan et al., 2010). 

Concurrent with decreased cartilage element size, fusion of the elbow and shoulder joint 

was also seen. Therefore, it appears that the many events occurring during limb 

development are inter-dependent and regulate the final size and shape of the limb to ensure 

the production of a correctly functioning appendage.  Considering the similarity in 

phenotypes generated in the present study, retinoids may affect the development of these 

three elements and the elbow joint by interfering with muscle development.  Similarly, it 

has been shown that lack of chick embryonic movement after E8 from treatment with a 

neuromuscular blocking agent inhibits joint cavitation (Persson, 1983). This could be 

investigated by analysing the effect of retinoid on muscle markers e.g. Pax3 or MyoD 

(chapter 5). The difference in severity of phenotypes between EC23 and ATRA treated 

embryos may be explained by the fact that EC23 is a more potent retinoid and should be 

more resistant to metabolism. Therefore it could be concluded that EC23 and ATRA may 

inhibit muscle development or movement at later stages which then affects joint 

development. 

 

Altogether the effect of retinoid on elbow development may be via BMP, SHH or VEGF 

signalling. However, both the composition of the ECM and the development of embryonic 
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muscle have also been implicated in correct development of this structure and therefore are 

avenues for further investigation. 

Retinoids and upper beak outgrowth. 

 

ATRA and EC23 can be seen to reduce or truncate upper beak outgrowth (figures 3.14 and 

3.15).  These results are consistent with those reported previously for ATRA (Tamarin et 

al., 1984). Upper beak outgrowth and DV polarity are controlled by a region called the 

frontonasal ectodermal zone (FEZ) which develops at HH20 in chick.  The FEZ is two 

expression domains of Shh and Fgf8 which are adjacent in the ectoderm and expressed in 

the ventral and dorsal parts respectively (Hu et al., 2003).  SHH and FGF8 are essential for 

outgrowth and morphogenesis of the upper beak as removal of the FEZ or inhibition of 

FGF8 at HH17 causes truncation of the upper beak (Hu and Marcucio, 2009). Inhibition of 

SHH signalling has been documented to cause truncation (Hu and Marcucio, 2009) but it 

has been shown that the epithelium can re-specify itself after FEZ excision at HH20 to 

produce normal upper beak development (Hu and Helms, 1999).   

 

Both EC23 and ATRA may cause decreased upper beak outgrowth by interfering with the 

FEZ.  Consistent with this it has been documented that Shh expression is absent from 30hrs 

after ATRA treatment in the developing frontonasal mass (FNM) while Fgf8 is unaltered 

(Helms et al., 1997). The timing of this response is also consistent with previous data 

suggesting that ATRA affects mesenchyme as its primary target tissue (Wedden, 1987). 

ATRA has been shown to decrease Msx expression in the developing facial processes 

which leads to decreased outgrowth of the FNM (Brown et al., 1997; Song et al., 2004) and 

has been seen in the limb in this study (see chapter 5).  Given the similarity of the 

phenotypes seen, it is likely that EC23 mimics the effects of ATRA on the expression of 

Shh but this would require further verification. However, work to investigate the state of 

the FEZ after ATRA or EC23 treatment would be necessary to draw conclusions on the 

molecular mechanisms by which retinoids affect upper beak development. 

 

EC19 treatment can also produce facial phenotypes (figure 3.16 and table 3.7); however, 

those observed appear to be distinct from those produced by ATRA or EC23 in that the 

outgrowth of the FNM is reduced or asymmetric. EC19 may be a less potent isomer of 

EC23 or act via a different mechanism to cause its differential effects.  EC23 causes no 

effect at concentrations lower than 0.01mg/ml rather than inducing similar facial 
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phenotypes to EC19, indicating that this is unlikely (Budge, 2010).  This is also supported 

by data showing that the frequency of digit duplications generated by EC19 is not 

increased in a concentration dependent manner: approximately 40% 1123 duplications at 

0.01mg/ml EC23 against 10% 1123 duplications at 3mg/ml EC19 and no limb phenotypes 

at all with 10mg/ml EC19(Budge, 2010).  This is further supported by the fact that in the 

present study no duplications were generated with EC19 despite more retinoid being 

loaded than Budge (2010).  The idea that EC19 is a less effective isomer is therefore 

unlikely and further investigation of this phenotype is not addressed here.  

 

Conclusions. 

 

From the data presented here it can be observed that EC23 and EC19 exhibit differential 

effects on toxicity, limb and craniofacial development in vivo. EC23 mimics ATRA to an 

extent in the production of digit duplications, shortening of the cartilage elements and 

malformation of the scapula but also generates novel digit duplication in the production of 

multiple digit 1s. EC19 however, is never seen to generate digit duplications at the 

concentrations tested here. EC23 mimics the effects of ATRA on upper beak outgrowth 

while EC19 causes far more mild effects: reductions and asymmetrical outgrowth. 
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Chapter 4) Further characterisation of EC23 and EC19: 

investigation of their metabolism in vitro and the localisation of 

retinoid signalling pathway components with respect to the 

phenotypes observed. 
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Introduction: 

 

As presented in chapter 3, EC23 and EC19 generate differential phenotypes in vivo as in 

vitro (Christie et al., 2008) despite their similar structures.  EC19 is far less potent than 

EC23 in vivo consistent with the previous study in vitro (Christie et al., 2008). EC23 

mimics ATRA in vivo: truncating upper beak outgrowth, shortening limb cartilage element 

size, reducing scapula blade development and generating digit duplications. Despite the 

fact that EC23 was designed to be an ATRA analogue, EC23 generates different types of 

digit duplications to ATRA in the production of multiple additional digits of digit 1 

identity. EC19, however, causes very limited effects on limb development and mild effects 

on craniofacial development. Considering that their structures are identical bar the position 

of the terminal carboxylic acid group, it is intriguing that they should cause such different 

effects.   

 

There may be many mechanisms behind the differential effects of these retinoids and their 

differences with ATRA. It has been documented that similar retinoids have limited affinity 

for parts of the retinoid signalling pathway. TTNPB has been documented to have 

decreased affinity for all RARs, decreased activation of all RARs but similar affinity for 

CRABPs compared to ATRA (Maden and Summerbell, 1986; Pignatello et al., 1997, 

1999). Meanwhile 13CRA has less affinity for CRABPs than ATRA (Maden and 

Summerbell, 1986). Given the role of FABP5 proposed in retinoid signalling in vitro 

(Schug et al., 2007), affinity for this binding protein may also affect retinoid signalling 

during development. Differences in potency and phenotype seen may also be due to 

differences in retinoid metabolism: the closely related retinoid, TTNPB, has been shown to 

be more potent than ATRA due to its resistance to metabolism by the CYP26 enzymes 

(Pignatello et al., 2002). Considering the structure of EC23 and EC19 both retinoids would 

be hypothesised to be potentially resistant to metabolism by the CYP26 enzymes as all bar 

the site equivalent to C16 in ATRA are blocked (red circle; figure 1.5). However, other 

enzymes have been documented to metabolise ATRA in humans, as mentioned previously, 

and include CYP2C8, CYP2C9 and CYP3A4 (McSorley and Daly, 2000; Nadin and 

Murray, 1999). RAR specificity may also provide a mechanism behind the differential 

effects: if one receptor is restricted to the developing wing bud, this may provide the 

mechanism behind EC23 effects and indicate that EC19 cannot activate this receptor. This 
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chapter investigates the potency and differential effects generated by EC23 and EC19 by 

investigating: metabolism likely to be mediated by the CYP26 enzymes and distribution of 

Rarβ1, Rarβ2, Rarγ, Fabp5 and Pparβ at HH20 of chick development. Given that the 

expression of Rarα1, Rarα2 and Crabp2 are not investigated, this study is not yet complete 

and is an avenue for further work. 
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Results: 

 

TTNPB, a retinoid with a similar structure to EC23 and EC19, has been shown to be 

resistant to metabolism by the CYP26 enzymes in vitro using the CYP26 inhibitor 

liarozole. Although liarozole only inhibited ATRA metabolism by 10%, it was shown to 

enhance the activity of ATRA to a similar level to that of TTNPB (Pignatello et al., 2002).  

A similar approach was considered here as a mechanism to explain the differential effects 

of EC23 and EC19 in vivo.  It could be hypothesised that EC23 and EC19 are potentially 

resistant to metabolism by the CYP26 enzymes. The 1, 1, 4, 4‐Tetramethyl‐1, 2, 3, 4‐

tetrahydronapthalene (TMTN) group blocks almost all known sites of CYP26 action 

(Henderson, 2011; Topletz et al., 2012) and may contribute towards their differential 

phenotypes and potencies in vivo and in vitro.  Given that the phenotypes described in 

chapter 3 were generated after in ovo microsurgery applying retinoid to the anterior wing 

bud at HH20, application of both liarozole and retinoid in vivo was attempted to investigate 

the effect of liarozole and the metabolism of these retinoids. However, this was 

unsuccessful as liarozole would not load onto the beads in question and an alternative 

approach was taken.   

 

EC23 and EC19 inhibit chondrogenesis in chick limb bud cell culture but exhibit 

different potencies. 

 

It is known that limb bud cells can be cultured at high density (micromass) for seven days 

and during this time they will undergo chondrogenesis. The degree to which they undergo 

chondrogenesis can be quantified using alcian blue staining of sulphated 

glycosaminoglycans and proteoglycans present in the cartilaginous ECM (Hassell and 

Horigan, 1982; Paulsen and Solursh, 1988). The extracted alcian blue stain can be 

quantified by measuring its absorbance at 600nm or image analysis (Anderson et al., 2001; 

Kistler, 1987). Many teratogens have been assayed using this system including ATRA and 

its derivatives (Kistler, 1987). It has been shown that ATRA and TTNPB (Kistler, 1987; 

Kochhar and Penner, 1992; Pignatello et al., 2002) can decrease alcian blue staining and 

hence inhibit chondrogenesis.  

 

It can be seen from figure 4.1A that chick limb bud cells can be cultured in the presence of 

0.1% DMSO (vehicle) and will undergo chondrogenesis shown by the presence of alcian 
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blue staining.  Chondrogenesis is also evident from the presence of densely packed cells in 

cartilage nodules (see asterisk in figure 4.4A). In all subsequent analyses DMSO treatment 

was included so that chondrogenesis seen could be calculated as a percentage of the 

chondrogenesis seen in DMSO treatment.  

 

The effects of ATRA, EC19 and EC23 on chick limb bud chondrogenesis can be seen from 

figures 4.1, 4.2 and 4.3 (top panels) respectively with quantification of staining level by 

measurement of absorbance at 600nm shown in figure 4.7. As can be seen ATRA inhibits 

chondrogenesis completely at 10
-6

M (figure 4.1B), partially at 10
-7

M (figure 4.1C) but has 

little effect on chondrogenesis at lower concentrations (figure 4.7A and figure 4.1D-E). 

EC19 is less potent than ATRA in this system as it completely inhibits at 10
-5

M rather than 

10
-6

M with ATRA (compare figures 4.1B and 4.2B; figure 4.7A and 4.7B).  EC19 partially 

inhibits chondrogenesis at 10
-6

M (figure 4.2C) and has little effect on chondrogenesis at 

lower concentrations (figure 4.2D-E, figure 4.7B). EC23 is more potent than ATRA in this 

system as chondrogenesis is completely inhibited at 10
-9

M rather than 10
-6

M (compare 

figure 4.3A with 4.1B).  Interestingly it is three orders of magnitude more potent in the 

limb bud assay compared to two orders of magnitude more potent in vivo (see chapter 3).  

It can be seen that at 10
-10

M EC23 partially inhibits chondrogenesis (figure 4.3B and 4.7C) 

but at concentrations lower than this EC23 has little effect on chondrogenesis (figure 4.3C-

D and 4.7C). 
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Figure 4.1: The effect of ATRA on chondrogenesis in chick limb cell cultures. 

 

 

 

 

 

Chick limb bud cells were cultured at high density and treated with varying concentrations of ATRA: B,G) 10
-6

M; C,H) 10
-7

M; D,I) 10
-8

M; E,J) 10
-9

M. 

(A-E) were cultured in the absence of liarozole and (F-J) in the presence of 10
-7

M Liarozole.   A,F) represent control cultures treated with 0.1% DMSO.  

Cultures were stained with Alcian Blue and photographed at x11.  Scale bars =2mm. 
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Figure 4.2: The effect of EC19 on chondrogenesis in chick limb bud cell culture. 

 

 

 

 

 

 

 

 

Cultures were treated with varying concentrations of EC19: A,F) 10
-4

M; B,G) 10
-5

M; C,H)10
-6

M; D,I) 10
-7

M and E,J) 10
-8

M. Chick limb bud cells were 

cultured at high density for 7 days in the absence (A-D) or presence (F-J) of 10
-7

M liarozole and stained with alcian blue. Photographed at x11 

magnification with scale bars=2mm. 
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Figure 4.3: The effect of EC23 on chondrogenesis in chick limb bud cell culture. 

 

 

 

Cultures were treated with varying concentrations of EC23: A,E) 10
-9

M; B,F) 10
-10

M; C,G)10
-11

M; and D,H) 10
-12

M. Chick 

limb bud cells were cultured at high density for 7 days in the absence (A-D) or presence (F-J) of 10
-7

M liarozole and 

stained with alcian blue.  Photographed at x11 magnification with scale bars=2mm. 
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Cell death is unlikely to be the cause of the different potencies seen with EC23 and 

EC19. 

 

It is possible that the inhibition of chondrogenesis is due to cell death rather than inhibiting 

chondrogenesis. Figure 4.4 shows the appearance of chick limb bud cell cultures at day 4. 

By day 4 the cells have been cultured in retinoid at concentrations sufficient to completely 

inhibit chondrogenesis for 3 days.  As can be seen from figure 4.4B-D, cells are present at 

high density and alive.  This is consistent with the idea that retinoids do not immediately 

cause apoptosis and therefore the effects are due to inhibition of chondrogenesis alone. 

However, cell death at later stages cannot be ruled out.   

 

The inhibition of chondrogenesis described previously with retinoid is notable by the 

decrease in alcian blue staining shown from figures 4.1, 4.2, 4.3 and 4.7 at day 7.  

However, it can also be observed in phase images at day 4 shown in figure 4.4. From this 

time it can be seen that the retinoids negatively affect chondrogenesis due to the absence of 

cartilage condensations after retinoid treatment. Figure 4.4A shows the appearance of 

cultures after treatment with 0.1% DMSO.  The asterisk indicates the presence of a large 

condensation which later will secrete cartilaginous ECM. There are also other 

differentiated cell types indicated by the arrow, which are most likely to be muscle fibres.  

However, in cultures treated with high concentrations of retinoid, the appearance of the 

cultures is very different. There is a decrease in the number and size of cartilage nodules 

(figure 4.4B-D, particularly compare asterisks in A and C).  Likewise there is also a 

decrease in the number of differentiated cells (arrows).  In response to the more potent 

retinoids, ATRA and EC23, there does not appear to be differentiated cells present (figure 

4.4B and 4.4D). Therefore, it can be seen that chick limb bud cells appear to survive until 

at least day 4 and that the response to retinoid is not due to immediate apoptosis.  It can 

also be concluded that all retinoids tested inhibit chondrogenesis by inhibiting the earliest 

stage: cartilage condensation. 
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Figure 4.4: The appearance of chick limb bud cell cultures after treatment with high concentrations of 

retinoids. 

 

 

 

Liarozole can inhibit chondrogenesis in micromass cultures in a dose dependent 

manner. 

 

As previously mentioned, Pignatello et al (Pignatello et al., 2002) used the CYP26 

inhibitor liarozole to indicate that TTNPB was metabolised to a lesser extent than ATRA. 

Upon addition of liarozole ATRA activity was enhanced such that lower concentrations of 

ATRA could achieve inhibition of chondrogenesis such that alcian blue staining was 50% 

lower than controls (50% inhibition). The concentration at which 50% inhibition was 

achieved with ATRA and liarozole was similar to the concentration of TTNPB needed for 

50% inhibition. This suggests that TTNPB is resistant to metabolism by the CYP26 

enzymes and contributes to its increased potency (Pignatello et al., 2002). As mentioned 

previously, this method was to be used to investigate metabolism of EC23 and EC19.  

However, as liarozole is used as a poison it may itself affect chondrogenesis in this assay.  

The effect of liarozole was therefore investigated so that the highest ineffective 

concentration could be used in subsequent analysis. 

Chick limb bud cells were plated at high density and then treated with 0.1% DMSO (A), 10
-6

M ATRA 

(B), 10
-5

M EC19 (C) or 10
-9

M EC23. Cells were then cultured and photographed on day 4 at x10 

magnification . * in A and C indicates the presence of cellular condensations.  Arrows indicate other 

differentiated cell types. Scale bars are 200μm. 
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As hypothesised liarozole inhibits chondrogenesis in a dose dependent manner (figures 4.5 

and 4.6). Liarozole is able to completely inhibit chondrogenesis at concentrations higher 

than 10
-5

M (figures 4.5C and 4.5D and 4.6) and partially inhibit chondrogenesis at 10
-6

M 

(Figure 4.5E).  There is no significant difference in chondrogenesis at 10
-7

M and 10
-8

M 

liarozole (figure 4.5F, 4.5G and 4.6). The concentration used for subsequent studies was 

chosen to be 10
-7

M liarozole as it caused no measurable effect on chondrogenesis and was 

the highest ineffective concentration which would enable any effects on EC23, EC19 and 

ATRA activity to be highlighted. 

 

 

Figure 4.5: The effect of liarozole on chondrogenesis in chick limb bud cell cultures. 

Chick limb bud cells were cultured at high density and treated with varying concentrations of liarozole 

before being fixed and stained with alcian blue for cartilage.  C-G) were treated with varying 

concentrations of liarozole: C) 10
-4

M, D) 10
-5

M, E) 10
-6

M, F) 10
-7

M and G) 10
-8

M. A and B) represent 

control cultures treated with 0.1% and 1.1% DMSO respectively.  Cultures were stained with Alcian 

Blue and photographed at x11.  Scale bars =2mm. 
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Figure 4.6: Quantification of the effect of liarozole on chondrogenesis in chick limb bud cell culture. 

 

 

 

  

Extent of chondrogenesis in response to varying concentrations of liarozole was measured by alcian 

blue staining.  The Alcian Blue stain was extracted and its absorbance measured at 600nm.  %OD is a 

measure of chondrogenesis. %OD is the absorbance in response to liarozole as a percentage of 

equivalent DMSO treated cultures.  DMSO concentration never exceeded 1.1% in culture media.  N=4 

wells, error bars ±standard deviation.  Statistical significance was used to determine the concentration 

of liarozole to be used subsequently.  Significance was calculated using an unpaired t-test. * p<0.05,  

** p<0.01,  *** p<0.001, NS indicates not significant. 
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ATRA and EC19 are metabolised by chick limb bud cells but EC23 is not. 

 

As ATRA is metabolised by the CYP26 enzymes, it acts as a positive control (see figures 

4.1 and 4.7A). Combination of ATRA with liarozole treatment inhibits CYP26 activity and 

increases the concentration of ATRA present, thus decreasing chondrogenesis more than 

ATRA alone at the retinoid concentrations tested except 10
-9

M (figure 4.7A red bars, 

figure 4.1G-I). It can be proposed that were EC23 and EC19 metabolised in chick limb bud 

cells, the chondrogenesis profile when their treatment was combined with liarozole would 

be similar to that of ATRA.  

 

Combination of EC19 and liarozole further decreases chondrogenesis at all concentrations 

tested (figure 4.2G-J) and which is statistically significant (p<0.05 or lower; figure 4.7B). 

There was a 57% decrease in alcian blue staining in response to ATRA and liarozole 

combined when compared to ATRA treatments alone (at 10
-7

M retinoid).  However, there 

was only a 34% decrease in alcian blue staining in EC19 combined with liarozole when 

compared to EC19 treatment alone (at 10
-6

M EC19).  This decrease in alcian blue staining 

upon addition of liarozole at 10
-6

M EC19 was statistically significant (p<0.01) and 

similarly the decrease in alcian blue staining at lower concentrations was also statistically 

significant (p<0.05) although to a lesser extent.  It can therefore be concluded that at the 

concentrations tested, EC19 is metabolised in vitro although to a lesser extent than ATRA.  

 

However, combination of EC23 with liarozole does not decrease alcian blue staining when 

compared to EC23 alone, unlike EC19 and ATRA (compare figures 4.1, 4.2 and 4.3).  

Interestingly, addition of liarozole can cause a statistically significant increase in alcian 

blue staining at 10
-10

M and 10
-12

M EC23 (p<0.05; figure 4.7C). As this effect is opposite 

to the positive control of ATRA, this indicates that EC23 is potentially resistant to 

metabolism by the CYP26 enzymes.  Altogether, this indicates that EC23 is more resistant 

to metabolism by the CYP26 enzymes as previously proposed while EC19 is metabolised 

by the CYP26 enzymes.  

 

Increased resistance to metabolism by the CYP26 enzymes would allow longer signalling 

period as seen with TTNPB (Pignatello et al., 1999) which could account for the greater 

potency of EC23 and even generate different phenotypes. This is particularly pertinent for 

the effects of EC23 on the limb bud compared to EC19. It has been shown that retinoid 

signalling for 14hrs is necessary for complete digit duplication in the chick wing (Eichele 
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et al., 1985). Given that the signalling centre for upper beak outgrowth forms at HH20 but 

that the ectoderm can re-specify if the FEZ is removed at this stage while it cannot at later 

stages (Hu and Helms, 1999), increased resistance to metabolism may contribute to the 

upper beak truncations seen. This difference in metabolism cannot be the sole mechanism 

for the differential effects and potencies seen with EC23 and EC19 due to the fact that 

EC19 would mimic ATRA at higher concentrations, which is not the case.    

 

Upon combination of liarozole with retinoids it is also noted that the appearance of the 

limb bud cell cultures is altered. It can be seen that the increased level of retinoid causes 

cultures to roll up (figures 4.1D+1I and 4.2C+2H). This can also be seen upon increasing 

concentrations of ATRA: compare figure 4.1B with 4.1C-D. The cells present are still alive 

given the presence of cartilage nodules and a micromass culture present in the well. This 

indicates that the increased level of retinoid is causing limb bud cells to change their cell: 

cell adhesion, given the decreased number of cartilage condensations observed, but also 

adhesion to the cell culture plasticware. Interestingly, this effect is not seen upon 

combination of EC23 and liarozole indicating that there is not an appreciable increase in 

retinoid present due to the fact that EC23 is more resistant to metabolism. However, this 

does beg the question why this rolling of cell cultures is not observed at high levels of 

EC23. It could be proposed that EC23 does not affect genes involved in the control of 

adhesion to the same extent that ATRA does (see chapter 5).  
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Figure 4.7: Quantification of the effect of ATRA, EC19 and EC23 on chondrogenesis in the absence 

and presence of 10
-7

M liarozole. 

 

 

 

A-C) show quantification of chondrogenesis by extraction of alcian blue and extract absorbance measured at 

600nm for cells cultured as in figures 4.1-3).  Cultures were treated with A) ATRA, B) EC19 and C) EC23.  

White bars are treated with retinoid only and red bars were treated with retinoid in the presence of 10
-7

M 

liarozole.  %OD was calculated as the absorbance as a percentage of the corresponding control (DMSO or 10
-

7
M liarozole).  DMSO treatment never exceeded 1.1%. Statistical significance was tested using the students t-

test and * p<0.05,  ** p<0.01,  *** p<0.001, NS indicates not significant.(n=3,  error bars ±SEM). 

ATR

A 

EC1

9 

EC2
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Retinoic acid receptor specificity as a mechanism behind differential effects of ATRA, 

EC23 and EC19.  

 

Retinoids are known to alter gene expression by binding to nuclear RAR: RXR 

heterodimers bound to DNA at RAREs (Astrom et al., 1990; Idres et al., 2002). ATRA is 

thought to activate transcription by binding to all RARs whereas 9CRA can activate both 

RARs and RXRs (Heyman et al., 1992; Idres et al., 2002). As ATRA only binds RARs, 

these receptors will be considered here. There are three isotypes of RAR: RARα, RARβ 

and RARγ (Michaille et al., 1994; Michaille et al., 1995; Smith et al., 1995), which 

produce the following isoforms: RARα1, RARα2, RARβ1, RARβ2 and RARγ2 by 

differential promoter activation and alternative splicing given their similarities with the 

mouse isoforms (Kastner et al., 1990; Leroy et al., 1991; Zelent et al., 1991). It has been 

shown that the potency of TTNPB is also due to the fact that it can activate RARs at 

similar concentrations to ATRA and it is a pan-agonist (Pignatello et al., 1999). Previous 

research has suggested that EC23 is also a pan-agonist although it binds RARβ and RARγ 

with higher affinity than RARα (Gambone et al., 2002). Given that EC23 and EC19 have 

similar structures to each other and TTNPB, it is proposed that EC19 is also a pan-agonist 

of the RARs.  If they were to be specific to a receptor isotype, the differential expression of 

RARs in the limb and facial processes may provide a mechanism behind their differential 

effects. Considering the limited existing data in chick, this chapter further investigates the 

expression of Rarβ1, Rarβ2 and Rarγ2 at HH20.  

 

The expression of the RARs has been investigated in mouse by section in situ hybridisation 

(Mollard et al., 2000; Ruberte et al., 1991) and partially in chick (Michaille et al., 1994; 

Rowe et al., 1991; Schofield et al., 1992; Smith et al., 1995). The present study uses whole 

mount in situ hybridisation for Rarβ1, Rarβ2 and Rarγ2 to determine whether EC23 or 

EC19 might explain the differential phenotypes observed via differential expression of 

RARs in the limb and facial processes. I also attempt to elucidate novel expression patterns 

of Rarβ1 and Rarβ2 as well as describe the expression of Rarγ2 in the intact chick embryo. 

Considering that EC23 and EC19 cause different effects: EC23 mimics ATRA in 

craniofacial and limb development while EC19 only affects the face; expression of a RAR 

isoform in the facial processes which is absent from the limb may suggest EC19 is specific 

for this receptor and vice versa.  
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Figure 4.8 shows the expression of Rarβ1, Rarβ2 and Rarγ2 in the developing facial 

prominences at HH20.  As can be seen all Rars investigated are expressed in the facial 

processes.  Rarβ1 is expressed in the FEZ (figure 4.8B, white arrow), the distal maxillary 

arch and anterior distal mandibular arch (arrows in figure 4.8A and 4.8B). Rarβ2 is 

expressed in the anterior half of the maxillary arch (figure 4.8C); the nasal pits and the 

FNM (figure 4.8D). Expression in the FNM is lower in the medial FNM corresponding 

with the anterior neural ridge (ANR; figure 4.8D, asterisk). Rarγ2 is expressed in the 

posterior maxillary and 2
nd

 arches, anterior distal mandibular arch, mandibular-2
nd

 arch 

cleft, the FEZ and mesenchyme at the midline adjacent to the FEZ (figure 4.8E and 4.8F). 

Considering that upper beak outgrowth is controlled by the FEZ (Hu et al., 2003) and that 

both EC23 and EC19 affect upper beak development (see chapter 3) it is likely that both 

EC23 and EC19 can bind and activate RARβ1 and RARγ2. Both EC23 and EC19 may also 

bind and activate RARβ2. 

 

Figure 4.9 shows the expression of Rarβ1, Rarβ2 and Rarγ2 in the wing bud at HH20. All 

Rars investigated are seen to be expressed in the wing bud. Rarβ1 is expressed in the wing 

bud ectoderm including the AER (arrow figure 4.9A). Rarβ2 is expressed in the proximal 

wing bud but is absent from the distal wing bud (arrow figure 4.9B) as previously 

described (Smith et al., 1995). Rarγ2 appears to be expressed throughout the bud wing as 

described for Rarγ (Michaille et al., 1994) but is more highly expressed in the distal wing 

bud adjacent to and including the AER (arrow, figure 4.9C). Considering that the known 

molecular events of digit duplication and limb patterning centre around the posterior 

mesoderm (ZPA) and that the effects of ATRA in the limb have been proposed to be via 

induction of another ZPA and lengthening of the AER via the mesenchyme (Tickle et al., 

1989; Wanek et al., 1991), it seems likely that EC23 is able to activate RARβ2. As EC19 

does not affect wing development in the present study it is possible that EC19 is not a 

RARβ2 agonist. Therefore the receptor expression patterns from this investigation are 

consistent with the idea that EC23 appears to be a pan-RAR agonist whereas EC19 could 

activate both RARβ1 and RARγ2 but not RARβ2.   

 



119 

 

 

 

 

Figure 4.8: The expression of Rarβ1, Rarβ2 and Rarγ2 in the facial processes at HH20. 

 

 

 

 

 

 

A, C and E) are right lateral views, dorsal is left and B, D and F) are frontal views, anterior is top.  A and B) 

show whole mount in situ hybridisation for Rarβ1.  C and D) show whole mount in situ hybridisation for 

Rarβ2.  E and F) show whole mount in situ hybridisation for Rarγ.  The black arrows in A and B) indicate 

higher levels of Rarβ1 expression in the anterior mandibular arch.  The white arrow in B) indicates higher 

levels of Rarβ1 in the frontonasal ectodermal zone (FEZ).  The arrow in C) indicates Rarβ2 expression in the 

anterior maxillary arch.  D) shows lower levels of Rarβ2 in the middle of the FNM (white asterisk) flanked 

by higher levels of expression laterally. E) shows expression of Rarγ2 in the posterior maxillary arch (arrow), 

proximal posterior mandibular arch adjacent to the pouch (white arrow) and posterior 2
nd

 arch (dashed 

arrow). F) shows Rarγ2 is expressed at higher levels in the anterior distal mandibular arch (black arrow) and 

expression is seen in the FEZ (white arrow).  Abbreviations: ey, eye; fnm, frontonasal mass; md, mandibular 

arch; mx, maxillary arch; n, nasal pits; ot, optic tectum; 2
nd

, 2
nd

 branchial arch.  Scale bars are 1mm. 
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Figure 4.9: The expression of Rarβ1, Rarβ2 and Rarγ2 in the wing bud at HH20. 

 

 

 

 

 

 

 

 

A-C) are dorsal views pinned on agar with tungsten wire.  A-C) shows dorsal views of whole mount in situ hybridisation 

for A) Rarβ1, B) Rarβ2 and C) Rarγ2 where anterior is top.  The arrow in A) indicates Rarβ1 expression in the ectoderm 

over the wing bud. The arrow in B) indicates Rarβ2 in the proximal wing bud.  The arrow in C) indicates expression of 

Rarγ2 in the distal wing bud.   Abbreviations: e, ectoderm; nt, neural tube; wb, wing bud.  Scale bars are 500μm. 
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Novel Expression of Rarβ1, Rarβ2 and Rarγ2. 

 

As mentioned, previous investigations into RAR distribution in chick have been limited 

and have mainly focused on Rarβ in limb (Schofield et al., 1992; Smith et al., 1995) and 

craniofacial development (Rowe et al., 1992).  An investigation of the Rarγ isoforms in 

chick was performed and the expression of the Rarγ isotype was described at HH21 using 

section in situ hybridisation (Michaille et al., 1994). Investigation into Rar expression 

domains is further complicated by the fact that many studies, including many in mouse, did 

not carry out isoform specific investigations. Rarβ1 and Rarβ2 differ in the length and 

sequence of the A region due to differential splicing and promoter activity (Smith et al., 

1995; Zelent et al., 1991). The difference between the two isoforms is illustrated below 

(figure 4.10). The probes used in the present study to differentiate between Rarβ1 and 

Rarβ2 were directed towards the specific sequences in the A domains. 

 

Figure 4.10: Illustration of Rarβ1 and Rarβ2 isoforms. 

 

 

Most studies address the expression of Rarβ but often relate to Rarβ2. They describe 

Rarβ1 as ubiquitously expressed in the limb and Rarβ2 restricted to the proximal third of 

the limb (Smith and Eichele, 1991; Smith et al., 1995). Rarβ also appears to be expressed 

in the limb ectoderm which is likely to be Rarβ1 (Schofield et al., 1992). The study of 

Rarβ expression in the facial processes describes Rarβ expression in the anterior maxillary 

process and periocular mesenchyme at HH20 which is likely to be Rarβ2 given its 

similarity with the expression domain in mouse (Mollard et al., 2000; Rowe et al., 1991; 

Smith and Eichele, 1991). Rarγ expression has been less characterised during chick 

embryonic development compared to Rarβ but it has been described in: the ectoderm, 

anterior midbrain, eye, neural tube, caudal region and limb buds as well as characterised 

during skin development (Michaille et al., 1994; Michaille et al., 1995). Rarγ1 and Rarγ2 

are documented in the limb buds, frontonasal process and branchial arches at E10.5 in 

Abbreviations: IS, isoform specific; DBD, DNA binding domain; LBD, ligand binding domain. 
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mouse with expression of Rarγ1 being more restricted than Rarγ2. It is also documented to 

be expressed in cartilaginous condensations later in limb development (Mollard et al., 

2000). Rarγ1 has not been isolated from chick at present and therefore the expression 

domain investigated in the present study is that of Rarγ2 due to its similarity with the 

mouse gene sequence (Michaille et al., 1994). It must also be noted that none of the 

previous studies have investigated expression of Rarβ1, Rarβ2 or Rarγ2 in intact chick 

embryos (Michaille et al., 1994; Michaille et al., 1995; Smith et al., 1995).  As introduced 

in the previous section, the distribution of Rarβ1, Rarβ2 and Rarγ2 was investigated at 

HH20 to infer a mechanism for the differences in phenotypes observed with EC23 and 

EC19. This is the first investigation into Rarβ1, Rarβ2 and Rarγ2 using both whole mount 

in situ hybridisation and isoform specific probes. This section describes some of the 

expression domains which were observed except the limb and facial process which was 

addressed in the previous section. 

 

Figure 4.11 shows the expression of Rarβ1 in the embryo at HH20. Rarβ1 can be seen to 

be expressed at a high level over the entire embryo (figure 4.11A). Although particularly 

high levels of expression appear in the eye, branchial arches, gut (white bracket) and limbs 

(figure 4.11A). The expression in the eye is due to expression in the choroid fissure and 

otherwise may include trapping (figure 4.11B). Figure 4.11C shows that Rarβ1 is absent 

from the hindbrain at this stage.  From a partial dissection of the wing bud (arrow figure 

4.11D) Rarβ1 appears to be restricted to the ectodermal layer similar to previous literature 

(Schofield et al., 1992).  

 

Figure 4.12 shows the expression of Rarβ2 in chick at HH20. Figure 4.12A and 4.12B 

show Rarβ2 expression in the periocular mesenchyme and the anterior half of the 

maxillary arch as documented previously (Rowe et al., 1991; Smith and Eichele, 1991). 

Figure 4.12B also demonstrates Rarβ2 expression in the developing gut region (bracket), 

caudal to the 6
th

 branchial arch and reaching the anterior wing, which is a region of novel 

expression. It can be seen that Rarβ2 is expressed in the proximal third of the developing 

wing (figure 4.9) and the proximal hindlimb (figure 4.12D) at this stage which is consistent 

with previous reports (Schofield et al., 1992; Smith et al., 1995). Rarβ2 was also observed 

to be expressed in the lateral plate mesoderm between the wings and hindlimbs (arrow 

figure 4.12C) and in two stripes within the neural tube (white arrow figure 4.12D). Rarβ2 
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is absent from the medial frontonasal mass (asterisk figure 4.12F) as reported (Rowe et al., 

1992) as well as the novel finding that it is absent from the hindbrain (figure 4.12E).  

 

Figure 4.13 shows the expression of Rarγ2 in chick at HH20. Rarγ2 is expressed at low 

levels in the intersomitic clefts (black arrow) and the neural crest derived regions of the 

trigeminal ganglion (figure 4.13A, white arrow). Interestingly, it is also expressed in the 

hindbrain demarcating the posterior boundary of rhombomeres 2-5 (arrows figure 4.13B) 

which was not documented previously (Michaille et al., 1994; Mollard et al., 2000). Rarγ2 

has been documented to be expressed in the mouse and chick limbs (Michaille et al., 1994) 

as well as the FNM and branchial arches in mouse (Mollard et al., 2000; Pennimpede et al., 

2010b) which has been described in the present study in chick (figure 4.8).  However, it 

was not documented to be expressed in the trigeminal ganglion, hindbrain or intersomitic 

clefts although it was shown to be expressed in the pre-vertebrae at later stages of 

development (Mollard et al., 2000). These differences may be due to differences in 

methodology, developmental stage, species or isoform assayed. 

 

The analysis of Rarβ1, Rarβ2 and Rarγ2 at HH20 of chick embryonic development has 

demonstrated some novel domains as well as the documentation of these Rars in intact 

chick embryos. The domains observed implicate Rarβ1, Rarβ2 and Rarγ2 in ectoderm 

development; gut and neural tube development; and neural, somite, limb and craniofacial 

development respectively. The expression domains are summarised in tables 4.1 and 4.2. 
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Figure 4.11: The expression of Rarβ1 in the embryo at HH20. 

 

 

 

 

 

 

 

 

 

 

 

A) is a right lateral view of an embryo anterior top showing generalised expression of Rarβ1. White 

bracket indicates expression in the developing gut. B) is the left side of an embryo showing Rarβ1 

expression in the head.  The arrow indicates expression in the choroid fissure. C) shows dorsal view of 

the hindbrain, anterior left.  Expression of Rarβ1 is absent from the rhombomeres.  D) shows medial 

view of a partially dissected left wing bud, anterior top and dorsal left.  The arrow indicates expression 

of Rarβ1 is ectodermal in the wing bud. Abbreviations: ey, eye; hb, hindbrain; ot, optic tectum; wb, wing 

bud.  Scale bars are 1mm. 
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Figure 4.12: The expression of Rarβ2 in the embryo at HH20. 

 

 

 

 

 

 

A) is a left view of the head, anterior top and dorsal right, showing expression of Rarβ2 in the periocular 

mesenchyme (pm) and an anterior stripe of the maxillary arch (arrow). B) shows the right side of embryo.  The 

bracket indicates expression of Rarβ2 from the posterior 6
th

 arch to the anterior wing bud. C) shows expression 

of Rarβ2 in the lateral plate between the limbs (arrow), anterior left dorsal bottom.  D) shows dorsal view of the 

hindlimbs showing Rarβ2 expression in the proximal hindlimb (black arrow) and expression in the neural tube 

(white arrow). E) shows dorsal view of the hindbrain, anterior right showing that Rarβ2 is absent from the 

rhombomeres. F) is a ventral view of the frontonasal mass showing lower levels of Rarβ2 expression at the 

midline (asterisk) and higher levels lateral to this.  Abbreviations: ey, eye; h, heart; hb, hindbrain; hl, hindlimb; 

n, nasal pit; nt, neural tube; o, otocyst; ot, optic tectum; pm, periocular mesenchyme; s, somite; wb, wing bud; 

2
nd

, 2
nd

 branchial arch.  Scale bars are 1mm. 
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Figure 4.13: The expression of Rarγ in the embryo at HH20. 

 

 

 

 

A) right lateral view and B) dorsal view of the hindbrain with anterior right.  A) shows general 

expression of Rarγ.  It is expressed at higher levels in the limb buds and the branchial arch region but is 

expressed at lower levels in the optic tectum and forebrain.   Rarγ also exhibits a regular expression 

pattern in the somites (black arrow) and the placode derived trigeminal ganglion (white arrow).  B) 

shows the expression of Rarγ at the boundaries of rhombomeres 2-5 (arrows) .  Abbreviations: ey, eye; 

h, heart; o, otocyst; ot, optic tectum; s, somite; wb, wing bud; numbers indicate rhombomeres 2-5.  

Scale bars are 1mm. 
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Differential activation of the PPARβδ/FABP5 pathways as a mechanism for 

differential effects of EC23 and EC19. 

 

As described previously, ATRA binds to CRABP2 which translocates ATRA to the 

nucleus and allows it to bind and activate RAR:RXR heterodimers (Budhu and Noy, 

2002). It has been proposed recently that ATRA can also bind to FABP5 which channels 

ATRA to the nucleus to activate PPARβδ (Schug et al., 2007; Shaw et al., 2003). The 

activation of this receptor pathway would activate different target genes and the ratio of 

FABP5:CRABP2 is thought to be the mechanism behind the contradictory effects seen 

with ATRA (Schug et al., 2007).  To investigate the hypothesis that EC23 and EC19 could 

differentially activate this pathway and generate the phenotypes seen in chapter 3, the 

expression of Fabp5 and its receptor Pparβ was investigated in chick at HH20. This may 

also give novel insights into retinoid function by localisation of where this receptor 

pathway may be activated in the entire embryo and its comparison with RAR/CRABP2 

domains. The expression of Fabp5 and Pparβ in the wing and facial processes is addressed 

here. 

 

Figure 4.14 shows the expression of Fabp5 and Pparβ in the facial processes (4.14A-D) 

and the developing wing buds at HH20 (4.14E-F). Fabp5 is seen to be absent from the 

branchial arches and other facial processes, although it is present in other areas of the head 

which will be addressed later (figure 4.15A and 4.15C). The arrow in figure 4.14E shows 

expression of Fabp5 in the mesoderm of the posterior half of the wing bud but which is 

absent from the ZPA region. Pparβ is expressed at low levels in the head but at higher 

levels in the posterior maxillary process, anterior distal mandibular process and posterior 

2
nd

 arch. It is also expressed in the FNM and FEZ (figure 4.14B and 4.14D). It appears to 

be ubiquitously expressed in the wing bud mesenchyme bar a region in the posterior wing 

where it is expressed at lower levels and which may correspond to the ZPA.  It is also 

absent from the AER (figure 4.14F-arrow). From these expression patterns it appears that 

PPARβ may have a role in both upper beak and limb development whereas FABP5 appears 

to be involved in limb development alone at HH20. The differential expression of Fabp5 

with respect to Pparβ may support previous research suggesting that unliganded PPARβδ 

has an important role as a repressor of transcription (Shi et al., 2002), similar to unliganded 

RARs (Damm et al., 1993; Koide et al., 2001), or that another channelling protein may 

deliver a different ligand to the receptor in this region. With respect to EC23 and EC19, as 
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Fabp5 is restricted to the wing bud and EC23 affects wing development while EC19 does 

not, this suggests that EC23 may bind FABP5 and activate PPARβ while EC19 may not.   

 

Figure 4.14: The expression of Fabp5 and Pparβ in the facial processes and wing buds at HH20. 

 

 

 

 

 

A) and B) are right lateral views of the head, anterior top.  C and D) are frontal views of the facial 

processes, anterior top.  E and F) are dorsal views of wing buds pinned to agar, anterior top.  A, C, E) 

show expression of Fabp5 and B, D, F) show expression of Pparβ.  A and C) show absence of Fabp5 

expression from the branchial arches and frontonasal mass.  The arrow in A) indicates expression 

flanking the pineal gland.  The arrow in C) indicates expression between the cerebral hemispheres.  E) 

shows expression of Fabp5 in the posterior wing bud (arrow) but anterior to the zone of polarizing 

activity.  B and D) show Pparβ is expressed generally in the developing facial processes with higher 

levels in the anterior proximal mandibular arch (arrow in D).  F) shows expression of Pparβ in the 

mesoderm of the wing bud but is absent from the ectoderm (arrow).  Abbreviations: e, ectoderm; ey, 

eye; fnm, frontonasal mass; md, mandibular arch; mx, maxillary arch; n, nasal pit; nt, neural tube; ot, 

optic tectum; s, somite; tv, telencephalic vesicles; wb, wing bud.  Scale bars are 1mm. 

tv 



129 

 

 

 

Expression of Fabp5 and Pparβ in the entire embryo at HH20. 

 

The expression patterns of Fabp5 and Pparβ have not been documented in chick 

embryonic development and this section addresses their expression patterns in the rest of 

the embryo. Figure 4.15 shows the expression of Fabp5 in other areas of interest at HH20. 

It can be seen that Fabp5 appears to be expressed in a pattern consistent with a role in 

neural development. Figure 4.15A-D exhibits the expression of Fabp5 in the developing 

brain and eye and it is expressed in two lines demarcating the un-segmented floor plate of 

the hindbrain (figure 4.15A; solid arrow).  There are also projections of Fabp5 expression 

extending into the hindbrain which appear to follow rhombomere boundaries (dashed 

arrow). This expression in the hindbrain is reminiscent of that of Islet1 which is expressed 

in developing motor neurons (Chambers et al., 2007). Expression is also seen in the 

rhombic lips marking the boundary between non-neural tissue and neural tube (figure 

4.15A and 4.15E). Figure 4.14C, 4.15B, 4.15C and 4.15D show that the expression of 

Fabp5 in the head is complex and restricted.  Figures 4.14C, 4.15B (black arrow) and 

4.15D (white arrow) show that Fabp5 is expressed in two stripes flanking the midline of 

the dorsal telencephalon and lies between the posterior third of the telencephalic vesicles 

and the FNM. This is similar to the expression of Fgf8 between HH19 and HH23 marking 

the ANR (Fuchs et al., 2010; Halilagic et al., 2007). There is also a stripe of Fabp5 

expression visible connecting the nasal pits to the telencephalic vesicles (black arrow, 

figure 4.15D). Figure 4.15B and 4.15C show that Fabp5 is also expressed in the dorsal 

diencephalon particularly surrounding the developing pineal gland (white arrow and p 

respectively). There are also two stripes of expression flanking the midline of the dorsal 

midbrain. These stripes of expression at the midline are not completely connected with 

those in the forebrain (see figure 4.15B) although it is a common theme for Fabp5 

expression within the developing brain.  Interestingly it is also seen in embryos hybridised 

with Raldh2 (GEISHA, March 2013). Fabp5 is therefore expressed in the head at HH20 

including: the developing eye and in two stripes at the midline of the hindbrain, midbrain 

and forebrain.  

 

Figure 4.15C shows the most strongly expressing domains of Fabp5 expression: ventral 

retina (solid arrow), lens and, likely, the fourth cranial nerve (dashed arrow and figure 

4.15E; (Guthrie, 2007)). The expression of Fabp5 in the ventral retina is also seen in a 

similar region to Raldh3 in mouse and chick at earlier stages of development (GEISHA, 

March 2013; Mic et al., 2000; Reijntjes et al., 2005).  It can also be seen that Fabp5 is 
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expressed in restricted areas of the developing cranial nerves: trigeminal (V), geniculate 

(VII), vestibular (acoustic VIII), petrosal (IX), nodose/vagus(X) and accessory (XI). Figure 

15G and 15H show Fabp5 in the proximal V
th

 ganglion which are known to be a 

population of neural crest derived boundary cap cells (bc in figure 4.15H; (Wilkinson et 

al., 1989)). It also appears to be expressed in the boundary cap cells of cranial nerve VII (fa 

in figure 4.15H). It is also expressed in two spots in the 2
nd

 and 3
rd

 branchial clefts which 

correspond to the placode derived exit points of cranial nerves VII and IX (geniculate and 

petrosal; white dashed arrows in figure 4.15H) as well as part of cranial nerve X (nodose or 

vagus; white and black arrows in 4.15F and 4.15H respectively). As mentioned previously, 

Fabp5 is also expressed in neural crest corresponding to the developing cranial nerve XI 

(white dashed arrow, figure 4.15F). Figure 4.15E and 4.15F also indicate that Fabp5 is 

expressed at the intersomitic boundary (solid black arrows, figure 4.15F) which is 

expressed in a progressively more ventralised portion caudal to the wing. This also appears 

to spread to include anterior and posterior somites in the posterior embryo. Taken together, 

the expression pattern of Fabp5 indicates a role in neural development as it is highly 

restricted in the developing brain and cranial nerves. 

 

The expression of Pparβ at HH20 is shown in figure 4.16. Figure 4.16A shows ubiquitous 

expression of Pparβ as reported previously in rat (Braissant and Wahli, 1998), with regions 

of higher expression in the following areas: limb buds, eye, branchial arches and 

telencephalic vesicles. Pparβ is absent from the hindbrain (figure 4.16B). The expression 

of Pparβ is consistent with a role for this pathway in limb and face development.  It must 

be noted that the differences between Pparβ and Fabp5 expression patterns, particularly in 

the developing facial processes where they are marked, are puzzling as it has been shown 

from manipulation of cancer cell lines that FABP5 can  channel ATRA to PPARβδ to 

activate this pathway (Schug et al., 2007; Shaw et al., 2003). However, it may be proposed 

that in these regions, as in the anterior wing, the primary function of PPARβ may be to act 

as an unliganded repressor of transcription in a similar manner to the RARs and described 

for this receptor (Cash et al., 1997; Koide et al., 2001; Shi et al., 2002).  

 

Table 4.1 and 4.2 show a summary of the expression of the receptors investigated in this 

study, the implications of which are discussed in the following section.  
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Figure 4.15: The expression of Fabp5 in the embryo at HH20. 

 

 

See following page for figure legend. 
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Figure 4.16: The expression of Pparβ in the embryo at HH20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A) is a right lateral view of the whole embryo showing general expression of Pparβ but higher levels at 

the branchial arches and cerebral hemispheres (bracket) and leg bud (arrow).  Expression is lower in the 

optic tectum.  B) shows a dorsal view of the hindbrain with anterior left showing absence of Pparβ 

expression from the rhombomeres.  Abbreviations: ey, eye; hb, hindbrain; ot, optic tectum; wb, wing 

bud.  Scale bars are 1mm. 

Legend for Figure 4.15: The expression of Fabp5 in the embryo at HH20. 

 

A-D) anterior is left, E-H) anterior top.  A) is a dorsal view of the hindbrain showing Fabp5 

expression in the floor plate (arrow) and at rhombomere boundaries (dashed arrow).  B) shows 

ventral view of the forebrain showing Fabp5 expression in two stripes flanking the midline of the 

optic tectum (dashed black arrow), pineal gland (dashed white arrow) and cerebral hemispheres 

(black arrow).  C) shows right lateral view of the head showing Fabp5 expression flanking the pineal 

gland (p), in developing neurons (CNIV; dashed arrow) and at the ventral eye (solid arrow).  D) 

shows Fabp5 expression between the cerebral hemispheres (white arrow) and a stripe of expression 

from the nasal pits (dashed arrow).  E) shows a right lateral view of the whole embryo to show areas 

of high expression levels: somites (close up F), cranial ganglia (close up G and H), posterior limb bud 

(dashed arrow) and neural folds (arrow).  F) shows lateral right view of Fabp5 expression at the 

posterior somite boundaries (black solid arrows), also expression adjacent to branchial arches 3-6 

(white arrow), vagus nerve (CNX; white dashed arrow) and chain ganglia (black dashed arrow).  G) 

shows a right lateral view of the branchial arches.  Box indicated the area shown in H) at higher 

magnification.  H) shows right lateral view of the head showing Fabp5 expression in the boundary 

caps of the trigeminal and facioacoustic ganglia (white arrows), exit points for other cranial nerves 

seen as spots of expression in the mandibular-2
nd

 cleft and 2
nd

-3
rd

 cleft (black dashed arrows) and 

adjacent to arches 3-6 (black arrow).  Abbreviations: bc, boundary cap; ch, cerebral hemispheres; ey, 

eye; f, frontonasal mass; fa, facioacoustic ganglion; h, heart; md, mandibular arch; mx, maxillary 

arch; n, nasal pit; nf, neural folds; o, otocyst; ot, optic tectum; p, pineal gland; s, somite; tg, 

trigeminal ganglion; v, vagus nerve; wb, wing bud; 2
nd

, 2
nd

 branchial arch.  Scale bars are 1mm. 
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Table 4.1: A comparison of Rarβ1, Rarβ2, Rarγ2, Fabp5 and Pparβ expression in the developing chick 

wing and face at HH20. 

Gene Limb Face 

Rarβ1 Ectoderm Inc. AER. 
Distal maxillary arch and anterior mandibular arch. 

FEZ 

Rarβ2 

Proximal limb and 

lateral plate mesoderm 

between wings. 

Periocular mesenchyme and anterior half of maxillary arch. 

FNM but lower expression at the midline. 

Absent from the FEZ. 

Rarγ2 
Distal wing adjacent to 

the AER and within it. 

Generally high. 

Elevated in the posterior distal maxillary arch and anterior 

proximal mandibular arch. 

Also seen flanking 2
nd

 and anterior 3
rd

 branchial pouches. 

Distal FNM and FEZ. 

Fabp5 

Mesoderm region in 

both wing and 

hindlimb anterior to the 

ZPA. 

- 

Pparβ + ubiquitous bar AER 

Higher expression in proximal and posterior maxillary arch, 

distal anterior mandibular arch and posterior distal 2
nd

. 

FNM and FEZ. 

 

 

 

 

 

 

 

 

Abbreviations: AER, apical ectodermal ridge; FNM, frontonasal mass; FEZ, frontonasal ectodermal zone; 

md, mandibular arch; mx, maxillary arch; ZPA, zone of polarizing activity. + denotes expression and – 

denotes absence of expression. 
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Table 4.2: A comparison of Rarβ1, Rarβ2, Rarγ2, Fabp5 and Pparβ expression in the embryo at HH20 excluding the limbs and facial processes. 

Gene Brain Head Nerves and NT Somites and Other 

Rarβ1 - Expressed in the choroid fissure. - Ectodermal * 

Rarβ2 - 
Periocular mesenchyme and 

choroid fissure. 

Expressed in two stripes adjacent 

to the neural tube. 

6
th

 arch to the anterior wing-

developing gut. 

Rarγ2 

Posterior boundaries of 

rhombomeres 2-5. 

Neuroepithelium of the rhombic 

lips. 

Increased expression in the head 

compared to the rest of the 

embryo. 

Seen in neural crest derived 

region of CN V. 
Intersomitic clefts at low levels. 

Fabp5 

2 stripes of expression adjacent to 

the floor plate in the hindbrain 

(MNs). 

Some medio-lateral expression 

corresponding to rhombomere 

boundaries.  

2 stripes flank roof plate of 

hindbrain, midbrain and forebrain 

(pineal and ANR). 

A stripe of expression is seen 

from NP to FNM. 

Ventral retina and choroid fissure. 

BCCs of CN V and VII. 

Spots indicating exit points of CN 

VII and IX. 

CN X and IX (placode derived). 

Entire intersomitic clefts cranial 

to the wing.   

Caudal somites exhibit ventralised 

expression also spreading anterior 

and posterior. 

Pparβ Forebrain. Expressed in choroid fissure. - 
Very faint expression in somitic 

clefts. 

 

Abbreviations: BCCs, boundary cap cells; CN, cranial nerve; FNM, frontonasal mass; MNs, motor neurons; NP, nasal pit; NT, neural tube; RAR, retinoic acid 

receptor. Roman numerals refer to the cranial nerves: V, trigeminal; VII, geniculate; IX, petrosal; X, nodose and vagus; XI, spinal accessory.* indicates partial 

dissection. 
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Discussion: 

 

EC23 and EC19 have been shown to generate differential effects in vivo (chapter 3) and in 

vitro (Christie et al., 2008). This is intriguing as these retinoids are identical except in the 

position of the carboxylic acid group (see chapter 1). This has led to the production of two 

photostable retinoids which may mimic ATRA and, given the position of the carboxylic 

acid group in EC19, 13CRA. This chapter has investigated the mechanisms behind these 

differential effects by exploring the metabolism of these retinoids and whether the location 

of their binding proteins may correlate with the differential phenotypes generated. Their 

metabolism was investigated using an in vitro chondrogenesis system which has been used 

previously in the investigation of teratogenic compounds (Jiang et al., 1995; Kistler, 1987; 

Pignatello et al., 2002) and will be addressed first. 

 

Differential metabolism of EC23 and EC19 as part of the mechanism behind their 

differential effects in vivo and in vitro. 

 

As described, EC23 is relatively more potent in this in vitro system than it is in vivo as well 

as demonstrating increased potency over ATRA (figures 4.1, 4.3 and 4.7). This is most 

likely to be due to the fact that retinoid treatment of the in vitro system is direct whereas 

retinoid treatment of the chick limb can be dissipated to the rest of the embryo via the 

vascular system. EC19, however, is less potent than ATRA (figure 4.2). It has been 

documented that excess ATRA inhibits chondrogenesis in chick limb bud micromass 

cultures while 13CRA is less potent (Kistler, 1987; Kistler et al., 1985). This inhibition is 

due to a decrease in cartilage condensations formed, also seen in response to EC23 and 

EC19 (figures 4.2, 4.3 and 4.4), and may occur via inhibition of cell: cell adhesion or 

signalling factors such as TGFβ (see chapter 5; (Cho et al., 2003; Miura and Shiota, 

2000)). The decreased potency of EC19 observed provides further evidence that EC19 is 

an analogue of 13CRA. TTNPB is a retinoid of similar structure to EC23 and EC19 which 

has also been investigated (Kistler, 1987; Kochhar and Penner, 1992; Pignatello et al., 

1997, 1999, 2002). It has been shown that the action of TTNPB is similar to the action of 

ATRA when it cannot be metabolised indicating that TTNPB is resistant to metabolism 

(Pignatello et al., 2002). Similarly the action of ATRA is enhanced here with an inhibitor 

of metabolism while it has no effect on EC23 indicating that EC23 is potentially resistant 

to metabolism. Oddly, EC19 is apparently metabolised despite their similar structures. 
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Considering that metabolism of EC23 and EC19 to 4-hydroxy-, 4-oxo, 5,6-epoxy- and 18-

hydroxy-derivatives are blocked by the TMTN unit ((Henderson, 2011) chapter 1), both 

retinoids should theoretically be resistant to metabolism by the CYP26 enzymes at these 

sites. Some potential explanations for these differences are discussed below.  

 

As previously mentioned, EC19 can be thought of as an analogue of 13CRA. The action of 

13CRA in vivo has been studied as it is also a potent teratogen and has been used as a 

treatment for dermatological diseases.  It has been described as being metabolised in vitro 

at a similar rate to ATRA (Klaassen et al., 2001) but no studies have characterised it 

further. 13CRA levels in vivo are low indicating that it is present due to the application of 

excess ATRA and interconverted by isomerases (Horton and Maden, 1995). It is thought 

that these isomerases can convert 13CRA to ATRA which cause the teratogenic effects of 

13CRA given that its affinities for CRABP and RAR are very low (Klaassen et al., 2001; 

Maden and Summerbell, 1986; Ruhl et al., 2001). EC19, however, is unlikely to be 

converted to ATRA or its analogue EC23 in vivo as the terminal carboxylic acid is linked 

to a conjugated ring structure rather than a polyene chain. EC19 may therefore be useful as 

a tool to investigate the relative lack of teratogenicity of 13CRA compared to ATRA.  

 

ATRA is thought to be metabolised to 4-hydroxy-retinoic acid (RA), 4-oxo-RA, 18-

hydroxy-RA and 16-hydroxy-RA (primary) and then sequentially to their more polar 

derivatives such as 4, 16- hydroxy-RA; 4, 18-hydroxy RA; 4-oxo, 16-hydroxy-RA and 18-

oxo, 4-hydroxy RA by the CYP26 enzymes in humans (Topletz et al., 2012). A recent 

study has shown that the primary and secondary metabolism of ATRA may also depend on 

the chirality of the compound present. CYP26A1 metabolises ATRA predominantly to the 

enantiomer 4S-oxo RA as binding to the active site favours this. CYP26 enzymes have also 

been shown to catalyse this to 4-hydroxy RA and this occurs three times faster if the 4S-

oxo RA enantiomer is present (Shimshoni et al., 2012).  Similarly, it has been documented 

that different enantiomers of synthetic retinoids bind preferentially to the CYP26 enzymes 

(Kleywegt et al., 1994). Further investigation into the chirality of the metabolites produced 

from EC23 and EC19 metabolism as well as CRABP binding for EC23, EC19 and their 

metabolites may provide a mechanism behind their differential metabolism and phenotypes 

despite their similar structures.  
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CYP26 enzymes have been documented to carry out primary and secondary metabolism of 

ATRA in vivo (Taimi et al., 2004; Topletz et al., 2012; White et al., 1997; White et al., 

2000) but retinoids have also been documented to be metabolised to glucoronide 

derivatives in vivo although the enzyme responsible for this conversion is unknown (Barua 

and Sidell, 2004). This pathway could be another mechanism for the differential 

metabolism of EC23 and EC19.  It could be proposed that binding of EC23 or EC19 to 

CYP26 is hindered. CYP26A1 is the major enzyme involved in ATRA metabolism. 

Interestingly its active site is thought to be narrow after modelling studies (Gomaa et al., 

2006; Shimshoni et al., 2012) which may result in neither EC23 nor EC19 binding to 

CYP26 enzymes. Other cytochrome P450 oxidase enzymes are capable of catabolising 

ATRA and its isomers in human liver: CYP2C8, CYP2C9, CYP3A4, CYP3A5 and 

CYP3A7 (Marill et al., 2002; Marill et al., 2000; McSorley and Daly, 2000; Shimshoni et 

al., 2012; Thatcher and Isoherranen, 2009) although their activity during embryonic 

development is unknown.  Unlike CYP26 enzymes, these enzymes may have a larger 

active site, as documented for CYP3A4 (Shimshoni et al., 2012), which may allow some 

metabolism of EC23 and EC19. However, considering that fewer enzymes would be 

involved, metabolism of EC23 and EC19 would be decreased. 

 

Given that the only difference between these molecules is the position of the carboxylic 

acid group (red box; figure 1.5); this may also suggest an area for further research.  It could 

be proposed that the position of the carboxylic acid in EC19 favours its metabolism by 

stabilising the molecule in the CYP26 active site whereas the planar structure of EC23 may 

not allow this. This may be significant as it has been shown that the carboxylic acid group 

interacts with an arginine residue when bound to the active site of CYP26A1 or to three 

residues in CYP26B1 (Gomaa et al., 2006; Karlsson et al., 2008). Equally, it could be 

proposed that EC23 and EC19 bind the CYP26 active site in a different conformation than 

expected. When ATRA is bound, the β-ionene ring is closest to the heme group (Karlsson 

et al., 2008). As the carboxylic end of EC23 and EC19 is very similar to this β-ionene ring, 

this could bind closest to the heme group to allow oxidation of these residues.  It could 

then be proposed that metabolism could occur in EC19 at the carboxylated carbon of 

EC23. If this were true it would explain why EC19 is metabolised and EC23 is not and 

could be an interesting avenue for further work. Also, as all other sites for metabolism are 

still blocked in EC19 and EC23 bar the equivalent position to carbon 16 in ATRA (red 
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circle; figure 1.5), this would be consistent with the fact that EC19 is metabolised to a 

lesser extent than ATRA and that EC23 is metabolised even less. 

 

Interestingly, it can be seen that 10
-10

M and 10
-12

M EC23 cause a slight decrease in 

chondrogenesis but when combined with liarozole, chondrogenesis is enhanced (figures 

4.3 and 4.7C). It has been shown that the CYP26 enzymes are highly retinoid responsive 

(Loudig et al., 2000; Loudig et al., 2005; Reijntjes et al., 2005; White et al., 1996) and that 

EC23 induces them in vivo (see chapter 5). The concentrations of EC23 used here may 

induce the CYP26 enzymes more strongly than ATRA or EC19 causing them to 

metabolise all ATRA present in the limb bud cells or in cell culture medium. RALDH2 is 

known to synthesise ATRA (Wang et al., 1996; Zhao et al., 1996) and could also be down-

regulated in order to maintain correct retinoid levels in culture (chapter 5; (Niederreither et 

al., 1997)). In these low levels of ATRA the concentration of EC23 alone may not be high 

enough to inhibit chondrogenesis in this system and would disinhibit chondrogenesis by 

reducing ATRA concentrations to lower than normal.  

 

Overall it can be concluded that EC23 and EC19 are differentially metabolised in vivo 

which may partially explain the differential phenotypes generated with these compounds. 

The increased metabolism of EC19 compared to EC23 suggests that EC19 may be 

metabolised at the carbon which is carboxylated in EC23 by other unknown enzymes in 

vivo while the presence of the carboxylic acid group in EC23 inhibits this. As ATRA can 

be metabolised to 16-hydroxy RA (Topletz et al., 2012), it can be proposed that the 

metabolism of EC23 and EC19 seen occurs at the equivalent carbon on the TMTN group 

(red circle; figure 1.5). The differences between EC23 and EC19 may then be due to 

differences in binding to the CYP26 or other enzymes via their terminal carboxylic acid 

groups. Given the similarities with 13CRA it may be proposed that EC19 may not bind 

CRABP or RAR in vivo which would also explain the differential phenotypes seen. As 

EC23 is metabolised to a lesser extent in vivo it can be used as an experimental tool to 

investigate ATRA function.  The fact that EC23 is metabolised less but not isomerised in 

vivo and mimics the phenotypes of ATRA bar digit specification suggests that the 

metabolites are unlikely to be involved in signalling during development consistent with 

previous literature (Niederreither et al., 2002a). This suggests that exogenously applied 

metabolites such as 4-oxo-RA to VAD quail may be converted to ATRA for use in 

development and hence can rescue the VAD phenotype (Reijntjes et al., 2005). 
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Differential activation of the RARs or PPARβδ as a mechanism for the differential 

effects of EC23 and EC19. 

 

The expression of some receptors linked to retinoic acid signalling was investigated here to 

determine whether differential expression of Rarβ1, Rarβ2, Rarγ2, and Pparβ as well as its 

channelling protein Fabp5, in the developing limb and facial processes may provide a 

mechanism for the differential effects generated by EC23 and EC19. From the 

investigations presented in chapter 3, it can be seen that EC23 generates severe effects on 

the developing wing while EC19 does not. Both EC23 and EC19 inhibit upper beak 

outgrowth but the effects of EC23 are more severe than EC19. The expression patterns of 

Rarβ1, Rarβ2 and Rarγ2 were presented in figures 4.8-13, the expression patterns of Pparβ 

and Fabp5 were presented in figures 4.14-16 and all expression patterns studied are 

summarised in table 4.1 and 4.2. All receptors were found to be expressed in the 

developing facial processes and wing. 

 

Rarβ1, Rarβ2, Rarγ2, Fabp5 and Pparβ in the developing facial processes and wing. 

 

Rarβ1 and Rarγ2 are expressed in the FEZ (and FNM mesenchyme) while Rarβ2 is 

expressed in the FNM bar a region at the midline (figure 4.8). Upper beak development 

and outgrowth is directed by the FEZ present from HH20 and consists of a boundary of 

Fgf8 and Shh expression in the ventral and dorsal facial ectoderm respectively (Hu et al., 

2003). Expression of Rarβ1 and Rarγ2 in the FEZ suggests that they may be involved in 

the control and regulation of this structure at HH20. Altered ATRA signalling via these 

receptors could lead to the down-regulation of Shh signalling observed previously resulting 

in truncation of the upper beak (Helms et al., 1997). Retinoids have been shown to alter 

Fgf8 signalling in pharyngeal ectoderm in mice (Abe et al., 2008) and requires further 

investigation. Whilst the FEZ is known to direct upper beak outgrowth, it has been shown 

that the effects of ATRA on the upper beak result from effects on the mesenchyme rather 

than the ectoderm (Wedden, 1987). Therefore the expression of Rarβ2 and Rarγ2 in the 

FNM mesoderm is equally important in the production of upper beak abnormalities.  

 

It has been shown in chick and mouse that ATRA can affect the proliferation of the 

developing FNM by altering its direction in excess (McGonnell et al., 1998) and causing 
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apoptosis in Rarα/γ knockout models (Lohnes et al., 1994). The proliferating region in the 

distal FNM corresponds to a region of Rarγ2 and Rarβ2 expression (figure 4.8).  This is 

consistent with a role for Rarγ2 and Rarβ2 in the regulation of proliferation in the FNM. 

This is also consistent with previous research showing that signalling via Rarβ2 has 

mediated other teratogenic effects of ATRA in the branchial arches (Matt et al., 2003). 

Considering these observations, it could be proposed that EC19 is Rarβ1 specific given its 

expression in the FEZ providing a mechanism for the inhibition of Shh signalling after 

ATRA treatment (Helms et al., 1997). This alteration at the FEZ may indirectly affect 

proliferation in the FNM (McGonnell et al., 1998) which would lead to the asymmetrical 

phenotypes seen in chapter 3. However, this may also involve Rarγ2 given its expression 

pattern.   

 

Interestingly, Fabp5 is not expressed in the developing facial processes unlike Pparβ. As 

PPARβδ requires FABP5 to translocate ATRA to the nucleus (Schug et al., 2007; Shaw et 

al., 2003; Tan et al., 2002), the ubiquitous expression of Pparβ in this region suggests that, 

similar to the RARs in other areas (Cash et al., 1997; Koide et al., 2001), it may function as 

an unliganded repressor in the development of the facial processes. Consistent with this it 

has been documented to function as an unliganded repressor and to repress the 

transcription of other PPAR target genes (Adhikary et al., 2011; Shi et al., 2002). However, 

in these regions it could be activated by another ligand. This is unlikely as although it has 

been suggested that polyunsaturated fatty acids may be another endogenous ligand for 

PPARβδ, they also require FABP5 for nuclear translocation (Michalik and Wahli, 1999; 

Tan et al., 2002).  

 

With respect to wing development, Rarβ1 and Rarγ2 are expressed in the AER but they are 

also expressed in the surface ectoderm and the adjacent distal mesenchyme respectively, 

while Rarβ2 is restricted to the proximal wing mesenchyme (figure 4.9). Given their 

expression in the AER, Rarβ1 and Rarγ2 may be involved in the control of PD outgrowth 

and patterning.  Considering that Rarγ knockout mice exhibit no abnormalities of limb 

development it is likely to be redundant with other receptors expressed in the limb in this 

function e.g. Rarα (Lohnes et al., 1993; Lohnes et al., 1994).  The role for Rarγ2 in the 

distal limb mesenchyme may be to mediate the effects of RA induced teratogenesis since 

Rarγ knockout in the Cyp26b1 knockout background, rescues some limb defects 

(Pennimpede et al., 2010b). Considering that EC23 generates similar phenotypes to the 
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Cyp26b1 knockout mouse: shortening of the cartilage elements and alteration to digit 

development (Pennimpede et al., 2010b), it may be considered that EC23 is signalling via 

Rarγ2 in the chick wing while EC19 may not. However, EC23 and ATRA have been 

shown to cause proximalisation of cells in the developing wing (chapter 5; (Mercader et 

al., 2000)). As ATRA is known to cause an expansion of Rarβ2 and Meis2 (Mercader et 

al., 2000) expression it is likely that the effects of EC23 on the wing occur via Rarβ2. This 

is consistent with the idea that the retinoid response induces changes to the wing mesoderm 

(Tickle et al., 1989) although this does not rule out EC23 acting via Rarγ2 in the distal 

limb or Rarα which is documented to be ubiquitously expressed in the mouse (Mollard et 

al., 2000).  

 

As in the facial processes, Pparβ is expressed ubiquitously through the limb bud mesoderm 

bar the ZPA region (figure 4.14) and Fabp5 expression must therefore determine retinoid 

signalling via this receptor. Fabp5 expression is seen in the mesoderm of the posterior half 

of the wing but is absent from the ZPA (figure 4.14). Given that Fabp5 is only expressed 

in the wing, where EC19 has significantly less effect, it could be proposed that EC19 

cannot bind to FABP5 and activate PPARβ while EC23 can. These results imply that EC23 

is a pan-agonist and EC19 may be specific to Rarβ1 as EC19 does not generate a limb 

phenotype and therefore it cannot affect the mesenchyme.  

 

 

Therefore, it can be surmised that EC23 is likely to be a pan-agonist of the RARs and that 

EC19 may be specific to RARβ1 or RARα. However, this cannot be determined 

conclusively as the expression of Rarα1 and Rarα2 in the limb have not been determined 

in chick. Previous research in mouse has elucidated that they are ubiquitously expressed at 

early stages, although they are restricted later, particularly in limb development (Mollard et 

al., 2000). Given that RARα/γ knockout mice exhibit many of the phenotypes seen with 

EC23: scapula and radius malformations as well as alteration to digit number (Lohnes et 

al., 1994), this would be consistent with the idea that EC23 is a pan-agonist of the RARs. It 

would also fit with the idea that EC19 may be a RARβ1 agonist rather than RARα given 

that Rarα is expressed in the mesoderm (Mollard et al., 2000) and the fact that RARα 

specific ligands cause limb malformations (Elmazar et al., 1996) does not correlate with 

the absence of a limb phenotype after EC19 treatment. If true, the fact that EC19 would 

only affect one receptor in the developing facial processes would cause a far milder 
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phenotype consistent with results seen in chapter 3.  Considering the presence of Fabp5 in 

the developing wing bud mesoderm but its absence from the FNM, this supports the idea 

that EC19 is unable to activate PPARβ in the limb. It could be proposed that EC23 can 

activate both RAR and PPARβ while EC19 can only activate RARβ1 during limb 

development and this may contribute to the differential effects seen with EC23 and EC19.  

 

Retinoid signalling is not just confined to activation of the RARs but also involved binding 

to intracellular binding proteins, receptors and degradation enzymes, all of which could 

provide a mechanism behind the effects seen (Pignatello et al., 2002) and refs therein). 

Indeed, the expression of Fabp5 in the limb but not the facial processes provides one such 

mechanism: it is possible that EC23 may bind FABP5 as well as CRABP2 while EC19 

may have lowered affinity for FABP5. This in conjunction with differential receptor 

activation may lead to the dramatic difference in limb phenotypes generated by these two 

retinoids of such similar structure. Further investigation into binding affinity of EC23 and 

EC19 is necessary to conclusively reveal the mechanism behind the different phenotypes 

seen with these similar retinoids. Their degradation has also been investigated in the 

previous section and the finding that EC23 is potentially resistant to metabolism unlike 

EC19 and ATRA suggests that further investigation of RARs may be necessary for the 

mechanism behind the EC23 phenotype. It must be concluded that EC23 may activate 

receptors for an increased period of time over both EC19 and ATRA and therefore 

exploring RAR expression at later time points may be equally important in determining 

receptor activation of EC23.  

 

Novel findings from the investigation of Rarβ1, Rarβ2 and RARγ2 expression at HH20 

of chick embryonic development. 

 

The RARs have been a subject of research since the late 1980s and their expression 

patterns were analysed in mouse and chick development early on (Dolle et al., 1989; Dolle 

et al., 1990; Michaille et al., 1994; Michaille et al., 1995; Mollard et al., 2000; Rowe et al., 

1991; Smith et al., 1995). Since then, their knockout phenotypes (Lohnes et al., 1993; 

Lohnes et al., 1994; Mendelsohn et al., 1994b) and investigation into ATRA metabolism 

(Mic et al., 2004; Niederreither et al., 2002a; Pennimpede et al., 2010b; Reijntjes et al., 

2005; Yashiro et al., 2004) has become the focus of research into retinoids in the 

developing embryo. Many investigations researched the expression of the receptor 
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subtypes but not their isoforms and are reported in that fashion (Dolle, 2009). The 

expression of the RARs are still not fully characterised in chick embryonic development 

although they have been studied in skin development (Michaille et al., 1995) and this has 

left gaps in our knowledge and understanding of ATRA in development. The present study 

reports the expression of Rarβ1, Rarβ2 and Rarγ2 using whole mount in situ hybridisation 

rather than section in situ hybridisation and notes some novel areas of expression. 

 

Rarβ1 and Rarβ2 are perhaps the most studied of the RARs during embryonic 

development. It has been shown that Rarβ2 is highly retinoid inducible; its promoter is 

well characterised and used as a retinoid signalling reporter (Mercader et al., 2000; 

Sonneveld et al., 1999; Yashiro et al., 2004). Previous studies of Rarβ have often described 

the expression of Rarβ2 as it is more restricted during development (Schofield et al., 1992; 

Smith and Eichele, 1991). The expression of Rarβ2 has been documented previously as 

restricted to the proximal limb during development (Mollard et al., 2000; Schofield et al., 

1992; Smith et al., 1995). Rarβ2 is also restricted to the anterior maxillary process at HH20 

as presented in this chapter (Rowe et al., 1991; Smith and Eichele, 1991).  

 

Interestingly, it is also expressed in the periocular mesenchyme and the FNM as shown by 

Smith and Eichele (1991) but as can be seen from the present study it is also seen in the 

choroid fissure and more particularly the FNM mesenchyme bar a central T shaped region 

which is discussed in the previous section (figure 4.8). The area of Rarβ2 expression in the 

FNM is also complementary to that of Fabp5 (discussed below) and may delineate the 

boundary between the forebrain and the facial mesenchyme. Rarβ2 can also be seen to be 

expressed in two stripes flanking the neural tube in the spinal cord similar to Fabp5 and is 

discussed in more detail later (figures 4.12 and 4.15).  This is also a region of Raldh2 

expression (GEISHA, March 2013) indicating that the balance between Rarβ2 and Fabp5 

mediated pathways may be important for developmental control. This is thought to 

delineate a boundary with the roof plate at this point or a subset of differentiating motor 

neurons, given its similarity to Islet1 (Chambers et al., 2007; GEISHA, March 2013). A 

domain of expression is also noted caudal to the branchial arches to the cranial forelimb. 

This expression domain encompasses the developing gut and is also a region of Raldh2 

expression (GEISHA, March 2013; Swindell et al., 1999).  Interestingly, Raldh2 knockout 

mice exhibit agenesis of the enteric nervous system (Niederreither et al., 2003), and Fabp5 

is also documented to be expressed in the cranial nerve X (discussed later) indicating that 
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Rarβ2 and Fabp5 may have complementary roles in its development. The LPM between 

wing and hindlimb also expresses Rarβ2 and is another region of Raldh2 expression 

(GEISHA, March 2013; Swindell et al., 1999).  Altogether this indicates that RARβ2 is 

likely to be the main receptor for ATRA during this period of embryonic development. 

 

Given the highly restricted pattern of Rarβ2, it has been investigated more than Rarβ1 and 

when in situ hybridisation was performed for the Rarβ subtype, the expression of Rarβ1 

may have been missed. This is likely considering the expression of Rarβ1 presented here. 

Rarβ1 has been described as ubiquitously expressed in the developing wing at HH20 

(Smith and Eichele, 1991; Smith et al., 1995) and it can be seen to be highly expressed in 

the developing limbs here, but partial dissection reveals that this is restricted to the wing 

bud ectoderm. Considering the high levels of background staining which could be seen 

with section in situ hybridisation, this ectoderm specific expression may not have been 

recognised in previous studies although it is noted with Rarβ probes (Schofield et al., 

1992).  This implies that ATRA signalling can occur in the surface ectoderm of the limb 

which has not been discussed previously and may provide an interesting avenue for new 

research. Considering that it is also expressed in the AER it could be proposed to be 

involved in the maintenance of an ATRA-negative distal limb in that it may up-regulate 

Cyp26a1, also expressed in this region (Pennimpede et al., 2010b; Reijntjes et al., 2004; 

Swindell et al., 1999). Similar to Rarγ, the Rarβ1 knockout mouse does not exhibit limb 

malformations (Ghyselinck et al., 1997; Lohnes et al., 1993). As discussed earlier, it also 

has a restricted expression pattern in the FEZ and anterior-distal maxillary arch (figure 

4.8). It may be that the close proximity of Rarβ1 and Rarβ2 expression domains are 

necessary to provide a unified response to ATRA in the developing facial processes.  

 

Rarγ2 is the third and final RAR investigated here. This receptor has been documented to 

have two isoforms in mouse (Kastner et al., 1990; Zelent et al., 1989) but as yet only one 

isoform has been documented in chick embryonic development. It is thought to be 

homologous to the Rarγ2 receptor in mouse (Michaille et al., 1994). Its expression at 

HH20 is documented here for the first time and is similar to that documented at HH21 for 

Rarγ (Michaille et al., 1994). Rarγ2 has been documented to be expressed in the mesoderm 

of the: developing FNM, branchial arches and limb buds in mouse (Mollard et al., 2000; 

Pennimpede et al., 2010b; Ruberte et al., 1990b) as well as the anterior and middle brain, 

neural tube, eye and caudal region for Rarγ in chick (Michaille et al., 1994). The 
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expression pattern presented here demonstrates that Rarγ2 is expressed in the distal limb 

bud, AER, intersomitic clefts, branchial arches, trigeminal ganglion (placode derived 

region), rhombic lips and the boundaries of rhombomeres 2-5 in chick (see figures 4.8, 4.9, 

4.13 and table 4.2). The expression pattern for chick Rarγ2 confirms regions already 

observed however, the following domains have not been previously observed in mouse or 

chick: intersomitic clefts, rhombic lips and rhombomere boundaries. These may reflect 

species specific differences or differences in methodology.  

 

The expression of Rarγ2 in the intersomitic clefts is intriguing. Fabp5 is also expressed in 

the intersomitic clefts and expression in this region is discussed later. It may be possible 

that these pathways both regulate the development of the somites and their derivatives. It is 

documented that cervical vertebrae are affected in Rarγ knock outs but, after dosing these 

knockouts with ATRA, lumbosacral vertebrae are also affected (Ghyselinck et al., 1997; 

Lohnes et al., 1993; Lohnes et al., 1994). Rarγ2 is seen to be expressed in intersomitic 

clefts along the entire embryo and therefore may play a role in the correct development of 

the axial skeleton. This hypothesis is further supported by the inhibition of cervical and 

thoracic vertebrae ossification after treatment with a RARγ-specific agonist (Elmazar et al., 

1996). 

 

The expression of Rarγ2 in the trigeminal ganglion and the rhombic lips is complementary 

to Fabp5 in that Rarγ2 is expressed in the placode derived region of the trigeminal 

ganglion (rather than the boundary cap cells-BCCs) and in the developing neuroepithelium 

of the rhombic lips rather than the boundary (compare figures 4.13A and 4.15H).  The 

differential location of these retinoid transduction pathways provide further support for the 

hypothesis that FABP5 mediated signalling is necessary for boundary formation or in 

regions of proliferation and that activation of RAR in other regions is involved in the 

control of neural differentiation.  The balance between these pathways may be important 

for correct neural development (see later for further discussion).  

 

Interestingly, Rarγ2 is also seen to be expressed in the posterior boundary of rhombomeres 

2-5 (figure 4.13B). The hindbrain is split into segments or rhombomeres from early in 

hindbrain development (beginning at HH7) and they are crucial for the correct 

development and patterning of the cranial nerves as well as branchial arch derived 

structures (Kontges and Lumsden, 1996; Mahmood et al., 1995). During rhombomere 
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formation a boundary is also formed which comprises of morphologically distinct, slowly 

proliferating cells with a distinct cell matrix containing high levels of CSPG (Sela-

Donenfeld et al., 2009; Theodorakis et al., 2002). The expression of Rarγ2 at rhombomere 

boundaries in slowly proliferating cells may be consistent with previous research 

indicating that RARs are involved in differentiation while PPARβδ controls the 

proliferative response to ATRA (Schug et al., 2007) in that its role here may be to suppress 

proliferation and maintain the rhombomere boundary. This may indicate a role for RAR vs. 

PPARβ mediated retinoid signalling in vivo. However, a role for FABP5 and PPARβδ 

signalling is just one possible explanation of the expression patterns presented here and 

further experiments are required to ascertain the role for this pathway in development. 

 

One of these possibilities is that FABP5/PPARβδ signalling is involved in coordinating the 

development of cells forming the rhombomere boundary. Other genes have been 

documented to be expressed in rhombomere boundary cells at similar developmental 

stages: neurological stem cell leukaemia (NSCL1), promyelocytic leukaemia zinc finger 

ortholog (PLZF), Pax6 (Theodorakis et al., 2002), Fgf3 (Mahmood et al., 1995; Powles et 

al., 2004; Weisinger et al., 2008), Fgf19, radical fringe (rfng; (Sela-Donenfeld et al., 

2009)), Wnts (Riley et al., 2004), follistatin (Weisinger et al., 2008) and notch receptors 

(Qiu et al., 2009). Further investigation has highlighted a role for fgf3 and notch in the 

maintenance of rhombomere boundaries (Qiu et al., 2009; Riley et al., 2004; Weisinger et 

al., 2008). Fgf3 is expressed in the posterior boundaries of rhombomeres 2-5 at HH20 of 

chick development (Weisinger et al., 2008) which would overlap with Rarγ2 expression 

indicating that these genes may function as part of a boundary maintenance pathway. 

Earlier in hindbrain development, Fgf3 is documented to be restricted rhombomeres 4 and 

5 (Mahmood et al., 1995) and ectopic expression can induce otic placode formation 

(Powles et al., 2004), its expression is then reorganised by a signal from the boundary cells 

(Sela-Donenfeld et al., 2009). Conversely, Fgf3 knockout mice exhibit no rhombomere 

abnormalities indicating that it is functionally redundant, possibly with Fgf19 (Weisinger 

et al., 2008). Follistatin expression has been shown to be necessary for the expression of 

Fgf3 in the boundaries at earlier stages in development and their correct patterning.   

 

The presence of these expression domains and boundaries at HH20 (Weisinger et al., 2008) 

and their overlap with Rarγ2 in rhombomeres 2-5, suggest that they may form a pathway 

segregating rhombomeres and boundary cells. Notch1a and notch3 have been shown to be 
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necessary for boundary maintenance and correct neural development in Zebrafish (Qiu et 

al., 2009) as have Wnt: notch signalling (Riley et al., 2004) indicating that RARγ2 may 

also function to regulate these.  However, only cranial nerve IV is aberrant in Rarα/γ 

knockout mice (Dickman et al., 1997) indicating that it may be functionally redundant with 

another receptor and the action of RARγ in the hindbrain requires further investigation.  

 

It can be seen from this study that the expression of Rarβ1, Rarβ2 and Rarγ2 in the intact 

chick embryo has been described for the first time as well as novel expression domains for 

these receptors (summarised in tables 4.1 and 4.2). These expression patterns raise many 

new avenues of research: Rarβ2 in Hirschsprung’s Disease, role of Rarβ1 in the ectoderm 

and the role of Rarγ2 during chick embryonic development. Rarγ2 may be implicated in 

correct facial, somitic and neural development. Despite the implications of this work, it 

must be noted that the expression of Rarα1 and Rarα2 in chick embryonic development is 

still uncharacterised. The expression patterns reported here require validation by sectioning 

and it would also be of interest to investigate their expression patterns at earlier and later 

stages of development.  

 

Expression of Fabp5/Pparβ reveals implications for ATRA signalling in neural, limb 

and somite development. 

 

As previously described, recent research has indicated that the contradictory effects seen 

with ATRA in different cancer cell lines may be due to activation of the receptor PPARβδ 

via FABP5 (Schug et al., 2007). FABP5 is an intracellular binding protein which is thought 

to channel ATRA to this receptor (Shaw et al., 2003; Tan et al., 2002).  This could 

reconcile the different spatiotemporal responses to ATRA during development. More 

specifically, it has been proposed that the ratio of CRABP2:FABP5 in responding cells is 

crucial to determine whether ATRA will cause cells to proliferate, differentiate or undergo 

apoptosis. Manipulation of these levels in responding cells has supported this conclusion 

(Schug et al., 2007; Schug et al., 2008).  Considering the implications this could have for 

ATRA signalling in the developing embryo, the expression of Fabp5 and Pparβ at HH20 

have been described here.   

 

Although the effect of PPARβδ/FABP5 signalling has not been tested on limb 

development, it has been suggested that PPARβδ is involved in many processes including 
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embryo implantation and neural development during mouse development (Hihi et al., 

2002). Fabp5 is known be expressed during skin development (Collins and Watt, 2008) 

but has not been studied in embryonic development in depth. As described in the results 

section of this chapter, it appears that Pparβ is expressed ubiquitously at HH20 but with 

decreased levels in the rhombic lips, roof plate and midbrain. However, it is expressed at 

higher levels in the developing limb buds, branchial arches, periocular mesenchyme and 

telencephalic vesicles indicating the possibility that it is involved in many aspects of 

development (figures 4.14, 4.16, tables 4.1 and 4.2).  Fabp5, however, is expressed in a far 

more restricted pattern (figures 4.14, 4.15, tables 4.1 and 4.2) and therefore must determine 

the response of PPARβ to ATRA in the developing embryo and will be the focus of this 

discussion. As previously mentioned, PPARβ may therefore function as an unliganded 

repressor in areas where Fabp5 is not expressed during embryonic development (Shi et al., 

2002; Tachibana et al., 2005), or another ligand and binding protein exits but is as yet 

undiscovered. Interestingly, FABP5 appears to be involved in the control of differentiation 

and proliferation in the chick embryo.   

 

FABP5 and development of the Cranial Ganglia. 

 

Fabp5 is seen to be expressed in cranial ganglia V, VII, IX, X and XI (figure 4.15G and 

4.15H). These ganglia arise from placode derived cells or neural crest and dependent on 

their origin, the location of Fabp5 expression is different.  Unlike the other ganglia, the 

trigeminal and facial ganglia consists of neural crest derived BCCs in the proximal region 

as well as cells of placodal origin in the distal portion (Niederlander and Lumsden, 1996; 

Wilkinson et al., 1989).  Interestingly, Fabp5 is seen to be expressed in the neural crest 

derived BCCs which have been documented at the entry and exit points of spinal ganglia 

(Hjerling-Leffler et al., 2005; Maro et al., 2004). BCCs proliferate and maintain an 

undifferentiated state (Altman and Bayer, 1984; Aquino et al., 2006; d'Amico-Martel and 

Noden, 1980; Kim et al., 2003; Zujovic et al., 2011) before they differentiate into all 

associated glia and some peptidergic nociceptive or thermoreceptive neurons later in 

development (Coulpier et al., 2009; Hjerling-Leffler et al., 2005; Marmigere and Ernfors, 

2007; Maro et al., 2004). As they are actively proliferating at HH20, Fabp5 expression in 

these cells is consistent with a role for ATRA in maintaining proliferation as proposed by 

Schug et al (Schug et al., 2007). If BCCs are ablated there are no effects on nerve 

patterning but their somata migrate out of the CNS (Vermeren et al., 2003).  This border 
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control is thought to be due to interactions between semaforin and plexin proteins (Bron et 

al., 2007; Golding and Cohen, 1997).  When neural crest is removed earlier in 

development, the cranial nerve develops closer to the midline indicating an early role in 

positioning of the ganglion ((Shigetani et al., 2008) and refs therein). Therefore, BCCs are 

of paramount importance in defining the position and trajectory of developing neurons. 

Furthermore, FABP5 may be implicated in BCC maintenance and hence correct 

development of the nervous system at HH20.  

 

The first gene shown to be expressed in BCCs was Krox20 (Voiculescu et al., 2001; 

Wilkinson et al., 1989) but recent microarray and expression analyses have indicated that 

cadherin 7 (Bravo-Ambrosio and Kaprielian, 2011; Maro et al., 2004), Dapper2 (Alvares 

et al., 2009), sox10 (Aquino et al., 2006), Lingo1 (Okafuji and Tanaka, 2005), 

erythropoietin receptor (Bravo-Ambrosio and Kaprielian, 2011) L20 and Wnt inhibitory 

factor-1 (Wif1) (Coulpier et al., 2009) are also markers of BCCs. Krox20 is involved in 

maintaining the identity of the motor column (Coulpier et al., 2009; Vermeren et al., 2003) 

indicating a role for FABP5 in motor-neuron development whether as a border control in 

the BCCs or in regulating their differentiation (see later discussion of expression in the 

hindbrain).  Manipulation of krox20 generates shorter, de-fasciculated neurons (Maro et 

al., 2004) and can also cause fusion of cranial nerves V and VII (Schneider-Maunoury et 

al., 1993) indicating a role for BCCs in correct path-finding. Interestingly, excess ATRA 

decreases Krox20 expression in the hindbrain at early stages (Conlon and Rossant, 1992; 

Morriss-Kay et al., 1991) while Raldh2 knockout mice demonstrate altered krox20 

expression in the rhombomeres at earlier time points (Niederreither et al., 2000). Excess or 

deficiency of ATRA has been shown to decrease the nerves present in the trigeminal 

ganglion and cause deranged projections (Gale et al., 1996; Lee et al., 1995; Reijntjes et 

al., 2007). Altogether, this implies that incorrect levels of ATRA may inhibit proliferation 

in the BCCs via Krox20 and the FABP5/PPAR pathway and inhibit differentiation via the 

CRABP2/RAR pathway. This is supported by the fact that Crabp2 has been shown to be 

expressed in the entire V
th

 cranial nerve (Ruberte et al., 1991) indicating that the ratio of 

CRABP2:FABP5 and hence differential activation of the PPARβδ/RAR pathways would 

be pertinent to development of the BCCs.   

 

The nodose, geniculate, vagal and spinal accessory ganglia (IX, X and XI) are also seen to 

express Fabp5.  However, these cranial ganglia are purely placodal in origin (Watari-
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Goshima and Chisaka, 2011). Interestingly, it has been documented that Crabp2 is also 

expressed in cranial nerves VII, IX and X (Ruberte et al., 1991) indicating that the level of 

FABP5:CRABP2 in retinoid responsive cells is likely to be important for the development 

of these cranial nerves. Spots of Fabp5 expression are also seen in the mandibular-2nd 

branchial cleft and the 2
nd

-3
rd

 branchial cleft corresponding to the exit points for cranial 

nerves VII and IX (figure 4.15G and 4.15H).  The widespread expression of Fabp5 in these 

cranial nerves indicates that it is involved the control of neuron development, trajectory 

and survival rather than solely the control of neuron trajectory as in the BCCs of cranial 

nerves V and VII. The areas of higher Fabp5 expression may indicate an important role in 

proliferation in these cranial nerves.  

 

ATRA and the cranial nerves: 

 

Interestingly, ATRA levels have been shown to affect the development of all cranial nerves 

(Dickman et al., 1997; Reijntjes et al., 2007). VAD rats have defective cranial nerve 

development: hypoplastic nerve V, apoptotic cranial nerves VII and VIII and absence of 

cranial nerve X (Dickman et al., 1997). This suggests that ATRA is necessary to maintain 

proliferation and neuronal development in the cranial nerves which would be consistent 

with activation of both FABP5/PPARβδ and CRABP2/RAR pathways. The VAD rat 

exhibits many phenotypes also seen in RAR mutants, the most similar of which is the 

Rarα/γ double knock out mouse, exhibits a hypoplastic or absent cranial nerve IV 

(Dickman et al., 1997). The fact that the nuclei affected in VAD and RAR mutant mice are 

different and that these correlate with Fabp5 expression indicates a role for FABP5 in 

development and possibly proliferation of these nerves. The retinoid effects seen in 

developing mice are accepted to be due to RAR:RXRα heterodimers considering that the 

Rxrα knockout mouse recapitulates many of the phenotypes seen in the Rar knockouts and 

are resistant to ATRA induced malformations (Kastner et al., 1997; Sucov et al., 1995). It 

may be interesting to investigate the expression of Fabp5 and Pparβ at earlier time points 

as it has been documented that Rxrγ is expressed in cranial nerves V, VII, IX and X at 

earlier time points (Rowe and Brickell, 1995) and could be a binding partner for PPARβ. 

 

Similar to VAD rats, knockout of genes involved in retinoid metabolism generates defects 

of murine cranial nerve development (Maclean et al., 2009; Niederreither et al., 2003; 

Reijntjes et al., 2007; Sandell et al., 2007). Raldh2 null mice exhibit aberrant connections 



151 

 

 

 

of cranial nerves XI and X with the hindbrain or, in more severe cases, these nerves have 

fused (Niederreither et al., 2003) while Rdh10 nulls affect cranial nerves V, VII, VIII, IX 

and X and they note an absence of the proximal ganglia in particular (Sandell et al., 2007). 

Morpholino directed manipulation of Cyp26b1 in zebrafish decreased neuron production in 

cranial nerves V, VII and X and well as retarding their projections into the branchial 

arches. As reported previously, the manipulation of ATRA levels affected the vagus nerve 

more than those more rostral to it (Reijntjes et al., 2007).  Similar effects are seen on 

cranial nerves IX and X in the Cyp26b1 knock out mouse (Maclean et al., 2009). Given 

that these effects mimic inhibition of retinoid synthesis with 4-diethylaminobenzaldehyde 

(DEAB) treatment more closely that excess ATRA levels (Reijntjes et al., 2007) this 

suggests that a minimum threshold of ATRA is necessary for cranial nerve development. 

Furthermore, lack of the murine ATRA induced gene neuron navigator 2 (nav2) can cause 

deranged connections of the IX
th

 cranial nerve or fusion of it with X
th

 cranial nerve 

(McNeill et al., 2010).  

 

Altogether, this implies that path-finding and survival in cranial nerves V, VII, IX and X 

are defective in the absence of ATRA. As these phenotypes and their worsening severity 

correlate with relative levels of Fabp5 expression in these cranial nerves, the 

FABP5/PPARβ pathway may be important for proliferation (survival) and path-finding in 

the development of cranial nerves V, VII, IX, X and XI in chick. Interestingly, the vagus 

nerve (X) has been documented as more severely affected by altered ATRA levels 

(Reijntjes et al., 2007) and agenesis of this nerve can generate a Hirschsprung’s like 

phenotype in mouse due to vagal crest deficiency and subsequent agenesis (Niederreither 

et al., 2003). FABP5 may provide part of the mechanism behind agenesis of this nerve in 

low levels of ATRA and may be an interesting avenue of research for the development of 

Hirschsprung’s Disease.   

 

FABP5/PPARβ and the development of the CNS. 

 

As well as its restricted expression in the cranial ganglia, Fabp5 also exhibits restricted 

expression domains in the developing brain: Fabp5 is seen to be expressed in two stripes 

adjacent to the floor plate of the hindbrain and also to the roof plate of the hindbrain, 

midbrain and forebrain (figure 4.15A-D and table 4.2). Each region of the brain will be 

addressed in turn.  
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Hindbrain:  

 

The expression of Fabp5 in the hindbrain is in two similar regions: two stripes (adjacent to 

the floor plate; figure 4.15A) and both rhombic lips (adjacent to the roof plate; Figure 

4.15H). Its expression pattern is compared to that of genes involved in hindbrain patterning 

and retinoid signalling discussed in the following section in the schematic shown in figure 

4.17. The expression of Fabp5 in the cranial nerves and later the limb indicate that FABP5 

may be involved in a proliferative response to ATRA.  However, the expression domains 

that are seen in the hindbrain could indicate a role in delineating boundaries.  The dorsal 

rhombic lips are known to be the boundary between neural and non-neural tissue (roof 

plate) during embryonic development (Wilson et al., 2007). The floor plate of HH17 chicks 

has been shown to produce ATRA and exhibit polarising activity when transplanted to the 

anterior chick wing (Wagner et al., 1990). Considering these it could be proposed that 

FABP5 provides a barrier between differentiating and non-differentiating regions for 

cellular protection and proliferation at important developmental boundaries.  However, at 

HH20 no enzymes involved in retinoid synthesis are expressed in the floor plate (Wilson et 

al., 2007) and figure 4.17) indicating that it does not produce ATRA at this time. It has 

been observed that Cyp1b1, another enzyme involved in retinoid synthesis, may be 

expressed in the notochord at earlier stages to provide ATRA to the floor plate (Chambers 

et al., 2007).  
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Figure 4.17: A schematic to show the expression of Fabp5 and Rarγ2 in the hindbrain compared to 

genes involved in retinoid metabolism and development of the hindbrain between E3.5-4.5. 

 

 

 

 

 

 

 

Abbreviations: FP, floor plate; RL, rhombic lips. (Berggren et al., 1999; Reijntjes 

et al., 2005; Weisinger et al., 2008; Wilson et al., 2007). Curved lines of 

RALDH2 at rhombomere 4 are a representation of RALDH2 protein in 

rhombomeres 4 and 5 to the developing facial nerve.  
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Interestingly, Fabp5 expression is complementary to that of Crabp1 indicating that ATRA 

may be activating different pathways in these regions (Means and Gudas, 1997; Ruberte et 

al., 1991; Wilson et al., 2007).  Cyp26a1 is reported to be expressed in the rhombic lips 

while Cyp26b1 and Cyp26c1 are expressed in stripes adjacent to the floor plate (Wilson et 

al., 2007). Together, this indicates that there are low, carefully controlled levels of ATRA 

in Fabp5 expressing regions of the hindbrain.  Interestingly, RALDH2 is observed in a 

similar location to Fabp5 at HH18. RALDH2 levels correlate with motor neurons in two 

stripes surrounding the floor plate at the level of the VII/VIII
th

 cranial nerve (Berggren et 

al., 1999). Lower levels of RALDH2 can also be seen in projections to the ganglion which 

appear to follow rhombomere boundaries in a similar, but more extensive manner than 

Fabp5 (curved lines of RALDH2 in figure 4.17). This suggests that these regions may be 

RALDH2 positive neural projections and that ATRA and Fabp5 may be involved in path-

finding but this would need further investigation at HH20. It is also noted that Raldh2 is 

expressed in the roof plate, adjacent to the Fabp5 positive domain (Berggren et al., 1999; 

Wilson et al., 2007) which, when considered with the expression of the Cyp26a1 in this 

region, may suggest a low level, paracrine ATRA signal is important for the development 

of nerves in this region.  

 

Other genes are expressed in a similar pattern to Fabp5 in the hindbrain: Islet1 (Caton et 

al., 2000; Chambers et al., 2007), Sulfatase 1 (Sulf1; (Garcia-Lopez et al., 2009)), Paired-

like homeobox 2b (Phox2b) (Pattyn et al., 1997), Wnt3a (Narita et al., 2007), ring finger 

protein 146 (RNF146; (GEISHA, March 2013), signal sequence trap clone 273 (SST273; 

(Gejima et al., 2006)) plexina1 and plexina3 (Schwarz et al., 2008). It has been proposed 

that both Islet1 and SST273 are expressed in motor neurons (Chambers et al., 2007; 

GEISHA, March 2013; Gejima et al., 2006; Schwarz et al., 2008).  This indicates that 

Fabp5 may also be expressed in regions of differentiating motor neurons at the hindbrain 

floor plate.  Spinal motor neurons are known to extend their axons away from the floor 

plate (Niederlander and Lumsden, 1996) as, in a similar fashion to BCCs; the floor plate 

repels motor neurons to ensure correct extension (Barnes et al., 2010; Chang et al., 1992).  

Consistent with the idea that Fabp5 marks developing motor neurons, inactivation of 

Phoxb2 causes atrophy of the cranial sensory ganglia, agenesis of the parasympathetic 

nervous system and impaired motor neuron development (Pattyn et al., 1997; Samad et al., 

2004). It could be proposed that these phenotypes may also result from inactivation of 

Fabp5, a potential focus for future work. Interestingly, RNF146 and SST273 are seen to be 
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expressed in two stripes over the midbrain and forebrain (GEISHA, March 2013; Gejima et 

al., 2006) indicating that these genes may be part of a common pathway with 

FABP5/PPARβ and may be retinoid responsive. Fabp5 may also overlap with plexina1 

and plexina3 given their expression in murine hindbrains at E10.5 (Schwarz et al., 2008). 

Plexins are known to be involved in axon guidance pathways with semaforins and 

neuropilin.  Of the genes overlapping with Fabp5, only plexina3 was shown to be 

important for the development of motor neurons in cranial nerve VII (Schwarz et al., 

2008). The expression of Fabp5 is consistent with a role for FABP5: PPARβ and ATRA in 

the differentiation of motor neurons and their correct path-finding. 

 

As mentioned previously, Fabp5 is also expressed in the dorsal rhombic lips (figure 

4.15A). This expression domain is also seen flanking the roof plate in other areas of the 

embryo: at the most rostral sections of the dorsal telencephalon and diencephalon, 

midbrain and flanking the midline of the spinal neural tube (figure 4.15A-C and 4.14E). 

The developing ventricles are found between the developing telencephalic vesicles, dorsal 

diencephalon and hindbrain and are specialised regions of the roof plate important in 

providing nutrients to the developing embryonic brain (Broom et al., 2012). The fact that 

Fabp5 is expressed adjacent to the most rostral parts of the forebrain ventricles indicates a 

role specifically in the development of that section. The roof plate differentiates to form 

the choroid plexus in the hindbrain while the rhombic lips and adjacent neuroepithelium 

differentiate down the neuronal lineage. The hindbrain roof plate has been demonstrated to 

be a developmental compartment and a bi-directional organiser of neural and choroid 

plexus development.  It has been demonstrated that this boundary directs development via 

the Delta-Notch pathway and is important for the production of dorsal atonal homologue 1 

positive neural crest derivatives in the adjacent rhombic lip. cHairy2 and Gdf7 are involved 

in the maintenance of the boundary at the dorsal rhombic lip (Broom et al., 2012). The 

expression of Fabp5 in the dorsal rhombic lips supports the hypothesis that FABP5 is 

involved in boundary maintenance during embryonic development. The roof plate is also a 

region of proliferation and as such FABP5 may play a role in maintaining the proliferation 

boundary of this region (Broom et al., 2012).  However, the fact that the roof plate itself 

has not been observed to express Fabp5 at HH20 indicates that FABP5 may not play a role 

in proliferation of this structure. It has also been observed in this study that the roof plate 

expresses Rarβ2 at HH20 (figure 4.12B).  This implies that retinoid signalling may be 
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occurring in this region and that the interplay between the RARβ2 and PPARβ pathways 

may be crucial for correct development of the hindbrain at this developmental stage. 

 

Interestingly, as well as marking the developing ventricles, the expression domains in the 

forebrain also flank the developing pineal gland and end of the developing forebrain 

(ANR). The ANR between the developing telencephalic vesicles expresses Fgf8 at HH20 

in a horseshoe shape (Crossley et al., 2001; Fuchs et al., 2010; Goodnough et al., 2007; 

Halilagic et al., 2007). This domain of Fgf8 and Fabp5 expression is complementary to 

Bmp4 expression in the roof plate (Crossley et al., 2001). Fgf8 at the ANR is expanded 

anteriorly and dorsally in the VAD quail at HH20 which was documented to affect 

forebrain splitting and frontonasal patterning (Halilagic et al., 2007).  However, Fgf8 

expression was lost completely when embryos were treated with ATRA signalling 

antagonists at HH10 (Schneider et al., 2001). The expression of Fabp5 in the ANR may 

indicate that this transduction pathway facilitates an antagonistic relationship in the 

forebrain as observed between ATRA and FGF8 in the development of neurons secreting 

gonadotrophin releasing hormone-1in this region (Sabado et al., 2012) and the limb 

(Mercader et al., 2000).  However, Fgf8 is also known to be expressed in the FEZ at HH20 

(Hu et al., 2003) while Fabp5 is never expressed in that region.  Altogether, this indicates a 

specific role for FABP5/PPARβ in the correct development of the ANR, third ventricle and 

brain compartmentalisation.   

 

The stripes seen in the midbrain and spinal cord regions are not connected to ventricular 

development.  It could be proposed that the expression of Fabp5 in these areas is again to 

delineate a boundary with the roof plate and are clearly worthy of further investigation. It 

can be seen that Fabp5 is expressed in the developing motor column along the spinal cord 

which may overlap with: Islet1 (GEISHA, March 2013), SST273 (Gejima et al., 2006) and 

CRABP2 (Maden et al., 1989). This suggests that FABP5: PPAR and CRABP2/RAR 

signalling are involved in the development of spinal cord motor neurons.  Further 

characterisation of the ratio of these proteins in the developing neurons may generate a 

responding signature in each subtype. Further investigation in the sectioning of Fabp5 

hybridised embryos would be necessary to determine their location at the spinal cord floor 

plate.  Altogether it can be concluded that FABP5/PPARβ signalling may be involved in 

the correct development of motor neurons, sensory neurons, boundary maintenance and 

correct brain development at HH20 of chick embryonic development.  
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Fabp5 is also seen to be expressed in the entire intersomitic cleft but this expression 

domain becomes progressively ventralised caudal to the wing bud (figure 4.15E). The 

intersomitic cleft delineates a boundary between developing somites, the lack of which 

causes severe effects (Evrard et al., 1998). Considering the work by Schug et al (2007) 

FABP5 could be maintaining cells at the intersomitic cleft by causing a proliferative, non-

differentiating response to ATRA during development. However, this would require 

further investigation as would the ventralisation of Fabp5 expression caudal to the wing 

bud. Little work has been carried out on the maintenance of the intersomitic boundary 

during embryonic development.  Most research has concentrated on genes involved in the 

formation of the intersomitic boundary and patterning during somitogenesis e.g. ephrinB2 

(Watanabe et al., 2009), lunatic fringe (lfng) (Evrard et al., 1998), Integrin α5 (Chong and 

Jiang, 2005), misty somites (Mys), notch1, deltaD and Tbx24 (Kotani and Kawakami, 

2008). Early research  suggests that the cells of the intersomitic boundary express tenascin 

and may differentiate into tendons (meeting abstract-(Adds et al., 2009)) which could 

implicate FABP5/PPARβ signalling in tendon development.  Lfng has been shown to be 

involved in intersomitic cleft formation and correct somite patterning. It is expressed 

during somitogenesis (Evrard et al., 1998) and then at HH20 in the intersomitic clefts and 

dorsal boundary (GEISHA, March 2013). Mys has been investigated in zebrafish using 

morpholinos to lower expression.  This reduced the epithelialisation of somites and the 

intersomitic boundary was not maintained (Kotani and Kawakami, 2008). The expression 

pattern of Mys has not been characterised in chick or at later stages but it would be 

interesting to determine its location relative to Fabp5 and whether manipulation of Fabp5 

in zebrafish generates a similar phenotype. As Lfng and tenascin expression overlaps with 

Fabp5 expression it could be proposed that FABP5 is part of a signalling cascade with 

these genes to control somite patterning and tendon development.   

 

FABP5/PPARβ and CRABP2/RAR as modulators of proliferation and differentiation in the 

developing chick limb. 

 

The expression of Fabp5 in the chick wing and hindlimb at HH20 does not correspond to 

the expression of any one gene during limb development.  This region of the developing 

wing overlaps with the PZ, a region of undifferentiated and proliferating cells in the 

mesenchyme which are crucial for limb outgrowth and patterning (Summerbell, 1974).  
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Control of PD outgrowth and patterning is thought to be via the antagonistic relationship 

between FGF8 and ATRA signalling from the distal and proximal wing bud respectively 

(Mercader et al., 2000; Mic et al., 2004).  Recent research has suggested that endogenous 

ATRA from Raldh2 or Rdh10 is not involved in PD patterning of the murine forelimb as 

Meis1/2 expression is unaffected in these mutants (Cunningham et al., 2013).  However, 

excess ATRA is known to induce markers of proximal regions such as Meis2 (Mercader et 

al., 2000; Yashiro et al., 2004) while the ATRA negative distal region remains proliferative 

and undifferentiated due to FGF8 secreted from the AER (Niswander et al., 1994). The 

distal region is preserved in a low ATRA state due to the action of CYP26B1 in the distal 

mesenchyme and CYP26A1 in the AER (Reijntjes et al., 2005; Yashiro et al., 2004). The 

Fabp5 expressing cells in the wing appear to correspond to the posterior part of the distal 

zone expressing Cyp26b1 and the PZ.  Considering the high levels of proliferation and 

ATRA reported in this region (Summerbell et al., 1973; Thaller and Eichele, 1987), it 

could be proposed that FABP5: PPARβ retinoid transduction may maintain proliferation in 

this region.  

 

High FABP5:CRABP2 ratio has been shown to induce proliferation in retinoid treated 

cancer cell lines (Schug et al., 2007; Schug et al., 2008). Studies have also shown that 

CRABP2 is found in an anterior to posterior gradient with CRABP2 levels highest in the 

anterior wing bud (Maden et al., 1989; Ruberte et al., 1991). Conversely, this is the 

opposite to the gradient of ATRA levels reported previously (Thaller and Eichele, 1987). 

Interestingly the levels of CRABP2 and FABP5 in the developing wing would therefore 

generate a gradient of high CRABP2:FABP5 to high FABP5:CRABP2 from anterior to 

posterior. This would suggest that excess levels of ATRA present in the wing bud could 

result in a proliferative response in the Fabp5 expressing region while it would induce 

apoptosis or differentiation in the regions of high CRABP2:FABP5 ratio.  This is 

consistent with observations made by Galdones et al (2008): excess retinoid application 

increases RARE driven β-galactosidase staining in the proximal limb and the necrotic 

areas (Galdones and Hales, 2008), all of which are Fabp5 negative in chick. Therefore, 

tightly controlled levels of ATRA are needed for the correct balance between proliferation 

and differentiation during wing development. This hypothesis also provides an elegant 

mechanism behind the differential effect of ATRA in the anterior vs. posterior limb 

(Martinez-Ceballos and Burdsal, 2001) as well as the inability of ATRA to alter limb 

development when placed in the posterior regions (Tickle et al., 1985). Further work to 
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validate this theory would be to investigate the expression of Fabp5 after treatment with 

ATRA and whether manipulation of the levels of CRABP2:FABP5 can recapitulate digit 

duplication or other phenotypes associated with ATRA excess. 

 

FABP5/PPARβ may also be implicated in PD limb patterning. Rarγ and Cyp26b1 have 

been shown to have overlapping expression domains in distal limbs and therefore may be 

involved in retinoid teratogenesis. The abnormal ATRA concentrations generated due to 

Cyp26b1 knock out caused two separable effects in the developing limb: apoptosis and 

altered PD patterning as well as delayed chondrogenesis. Cyp26b1/Rarγ double knockout 

mice exhibit partially rescued limbs (Pennimpede et al., 2010b). This implies that the 

teratogenic effects of ATRA occur via RARγ. However, the phenotypes of these knockout 

mice do not conform to this hypothesis as in Cyp26b1/Rarγ double knockout mice the 

zeugopod is still malformed implying that another receptor is involved in teratogenesis.  It 

could be proposed that RARβ2 causes the aberrant PD patterning due to its distribution, 

induction by ATRA and downstream effects of inducing Meis2 ((Mercader et al., 2000; 

Smith et al., 1995) and figure 4.9).   

 

However, it could also be due to either RARα or FABP5/PPARβδ. Considering that Rarα 

has been documented to be ubiquitously expressed in the developing forelimb (Dolle, 

2009) and no studies have so far investigated Rarα expression in chick limb, it is unlikely 

to be the mechanism behind the alteration in the PD axis. The cells of the Fabp5 

expression domain in the distal wing partially overlap with the Cyp26b1 expression 

domain (Pennimpede et al., 2010b; Reijntjes et al., 2003) and these cells would give rise to 

the ulna, elbow and associated tissue (Sato et al., 2007; Vargesson et al., 1997) which 

further supports the hypothesis that FABP5/PPARβ retinoid transduction may be involved 

in PD patterning. CRABP2 levels have been documented to be elevated at the distal limb 

tip adjacent to the AER (Maden et al., 1988) which would overlap with a small portion of 

the Fabp5 expressing domain. This could result in high CRABP: FABP5 in the distal wing 

tip and high FABP5:CRABP2 in the area which will give rise to the zeugopod. It has been 

shown that ATRA induces Crabp2 expression in mouse and human (Astrom et al., 1994) 

which would alter the FABP5:CRABP2 ratio causing abnormal patterning in the 

Cyp26b1/Rarγ knockout mouse. 
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The proposals suggested here for FABP5/PPARβ mediated retinoid transduction during 

limb development also suggest a role for FABP5 in digit duplication and other limb 

phenotypes generated with ATRA excess (see chapter 6). The differential expression of 

Fabp5 in the limb and facial processes could provide a mechanism for the differences 

between the EC19 and EC23 as mentioned previously. Different affinities for CRABP2 

and FABP5 may also explain the differences in digit duplications seen with EC23 and 

ATRA if ATRA and EC23 exhibit different affinities for FABP5 and CRABP2. This 

would be consistent with previous research that retinoids do not need to bind CRABP2 

with high affinity to generate digit duplications (Maden et al., 1991) although it increases 

their potency if they do bind CRABP2 (Keeble and Maden, 1984). This would lead to 

alteration of target genes depending on the level of affinity. If these retinoids bound to 

PPARβ with high affinity, it would be expected that PPAR responsive genes would be 

altered after 24hrs in the limb bud. This does not appear to be the case (chapter 5) although 

consideration of recent microarray analysis of PPARβδ targets (Adhikary et al., 2011) 

would need further investigation. Alternatively, this response could occur over a shorter 

time period and that by 24hrs at this dosage of retinoid the transcriptional responses are 

similar between EC23 and ATRA.  Further research could include investigation of FABP5 

affinity of synthetic retinoids to corroborate this hypothesis.  

 

Overall, it can be concluded that Fabp5 and Pparβ exhibit interesting expression patterns 

at HH20 of chick embryonic development.  Pparβ is expressed ubiquitously except the 

roof plate of the hindbrain and the midbrain.  Therefore, Fabp5 expression indicates areas 

of active PPARβ signalling.  Interestingly, these appear to correlate with regions of low 

ATRA levels or which are sensitive to altered ATRA levels: the distal limb and rhombic 

lips or surrounding the floor plate.  They also correlate with regions of proliferation, such 

as the wing bud progress zone and the trigeminal BCCs, consistent with in vitro analysis of 

the role of FABP5/PPARβδ mediated retinoid signalling (Schug et al., 2007). FABP5 may 

also be involved in boundary maintenance in the developing nervous system and somites 

as well as the correct development of motor neurons, sensory neurons and the brain. That 

FABP5 is worthy of further study is most evident from the implications it could have for 

the understanding of embryonic limb development, Hirschsprung’s Disease and neural 

development. 
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Conclusions: 

 

From the data presented here it can be concluded that EC23 is potentially resistant to 

metabolism while EC19 is not. It has recently been shown that ATRA can be metabolised 

to 16-hydroxy-RA by the CYP26 enzymes. All sites known to be substrates for CYP26 

mediated metabolism are blocked in EC23 and EC19 bar the carbon equivalent to carbon 

16 (red circle; figure 1.5; (Henderson, 2011; Topletz et al., 2012)). EC19 is metabolised to 

a lesser extent than ATRA, which is consistent with potential metabolism at the site 

equivalent to carbon 16 as the only site at which oxidation can occur and a differential 

binding of retinoids dependent on the terminal carboxylic acid. EC23 appears to be less 

metabolised than EC19 and may be due to a combination of only one site available for 

CYP26 action as well as the different position of the carboxylic acid group which may 

affect CYP26 binding. The decreased metabolism of EC23 can contribute to the potency 

and effects seen with EC23 as it will activate RARs over a longer period than ATRA in a 

similar manner to TTNPB (Pignatello et al., 1999, 2002). The metabolism of EC19 cannot 

be solely responsible for the great difference in phenotypes generated from EC19 treatment 

when compared to EC23 and ATRA as higher concentrations of EC19 do not generate the 

same phenotypes (Budge, 2010) indicating that its receptor specificity is important.  

Considering the location of the receptors investigated here: EC23 is likely to be a pan-

agonist including FABP5, while EC19 is likely to be an agonist for RARβ1 and is unlikely 

to bind FABP5. The investigation into the receptor expression patterns has generated novel 

expression domains for Rarβ1, Rarβ2 and Rarγ2 as well as characterising the expression of 

Pparβ and Fabp5 at HH20 of chick embryonic development. 
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Chapter 5) Investigation into the genetic targets of retinoids: a 

comparison of the naturally occurring ATRA and a novel 

synthetic retinoid EC23 which is photostable and potentially 

resistant to metabolism. 



165 

 

 

 

Introduction. 

 

Given the large body of research into the effect of ATRA on development and also on limb 

development, some retinoid responsive genes have been elucidated.  Many of these have 

been documented as a result of application with a bead soaked in ATRA and using whole 

mount in situ hybridisation: Shh (Riddle et al., 1993), Hand2 (Fernandez-Teran et al., 

2000), Hoxb8 (Stratford et al., 1997), Hoxd11-13 (Izpisua-Belmonte et al., 1991), hoxc6 

(Oliver et al., 1990), Meis2 (Mercader et al., 2000) and Emx2 (Prols et al., 2004). A review 

of this work and other studies in other species is summarised in a review by Balmer and 

Blomhoff (2002) and indicates that there is likely to be 532 retinoid genetic targets. These 

targets were proposed by the analysis of 1191 published articles and were graded 

according to their regulation and the evidence described (Balmer and Blomhoff, 2002).  

These methods were useful in the study of retinoids and their action during development 

but complete determination of retinoid responsive genes and their mechanisms of action 

can only be achieved by expression profiling. Such analysis has been carried out 

previously using in vitro methods and investigating different cell types: neural crest 

(Williams et al., 2004), LPM (Waxman et al., 2008), limb (Ali-Khan and Hales, 2006) or 

chondrogenic micromass cultures (James et al., 2005).  Expression profiling of retinoid 

genetic targets has also been investigated in whole rat embryos at somite stages 2-4 

cultured in rat serum containing ATRA for 4hrs (Luijten et al., 2010).  

Ali-Khan and Hales (2006) investigated retinoid targets after culturing dissected E12 limb 

buds with retinol acetate dissolved in ethanol at 2 different concentrations for 3hrs. This 

study used medium designed to promote bone growth without serum.  This indicated that 

the early response was to up-regulate gene expression and particularly genes involved in 

teratogenesis.  They identified four genes as master regulators of the teratogenic response: 

Hes1, Eya2, Id3 and Snai1 (Ali-Khan and Hales, 2006).   However, cultured limbs develop 

differently to in vivo embryonic development due to the presence of serum, lack of blood 

supply and non-localised exposure to materials or signalling proteins. It has also been 

shown that the correct development of the heart may be dependent on signalling from the 

limb (Waxman et al., 2008) and the reverse could be true. As mentioned, Ali-Khan and 

Hales (2006) investigated the effects of retinol rather than ATRA which is the primary 

bioactive retinoid (Niederreither et al., 1999).  This implies that the genetic targets found 
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by Ali-Khan and Hales (2006) are genes whose expression is modified in response to 

retinoids rather than solely to ATRA.  

Many differentiation processes occur during limb development to form a functioning limb 

and which involve a change in gene expression.  Transcription factors specific to 

developmental processes are altered.  Each stage of chondrogenesis is marked by the 

expression of specific markers:  sox9 and scleraxis are expressed in early condensations 

(Lorda-Diez et al., 2011) and subsequent cartilage development is associated with the up-

regulation of collagen type II and collagen type IX (Hall and Miyake, 2000). Pax1 has been 

implicated as an early marker of scapula cartilage development (Huang et al., 2000) 

chapter 3). Many genes have been associated with joint formation: Gdf5, Wnt14 and 

autotaxin (enpp2) ((Bachner et al., 1999; Francis-West et al., 1999; Loganathan et al., 

2005; Storm and Kingsley, 1996); see chapter 3). Muscle and tendon development also 

occur in a regulated manner during limb development under the control of various 

transcription factors.  Myogenic differentiation 1 (MyoD1) is implicated in the control of 

myogenic differentiation as are: Pax3, myogenic factor 5 (Myf5), myogenin, Hoxa11 and 

Hoxa13 (Kablar et al., 1997; Weintraub et al., 1991; Yamamoto et al., 1998).  Interesting, 

scleraxis has been documented as a marker of cartilage condensations but is also a key 

marker of tendon development (Cserjesi et al., 1995; Schweitzer et al., 2001). Tgfβ2, Fgf8 

and Fgf18 have been implicated as growth factors controlling tendon development (Edom-

Vovard and Duprez, 2004; Pryce et al., 2009). Other proteins such as tenomodulin and 

teneurin-2 are also involved (Lorda-Diez et al., 2009; Tucker et al., 2001b). 

Chapter 3 described the phenotypes generated with ATRA and two synthetic photostable 

retinoids, EC23 and EC19, in detail which are summarised here.  Despite the similarity in 

structure of EC23 and EC19, EC19 caused no effect on the limb when applied to the 

anterior wing bud. EC23 and ATRA both affected limb development but EC23 is two 

orders of magnitude more potent than ATRA. EC23 and ATRA both affect the entire PD 

axis of the wing causing: reductions to scapula blade development; alterations to cartilage 

element size of the humerus, radius and ulna; fusions at the elbow joint and digit 

duplications.  EC23 and ATRA differ in the frequency of these effects with ATRA 

generating them more frequently.  They also differ in that they generate different types of 

digit duplications: ATRA can generate the full mirror image duplication whereas EC23 

tends to duplicate multiple extra digits of the most anterior identity. Chapter 4 indicated 

that ATRA and EC23 are also differentially metabolised in that EC23 is certainly more 
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resistant to metabolism by the CYP26 enzymes than ATRA if not, completely resistant. 

Recent work by Topletz et al (Topletz et al., 2012) suggests that if metabolism at any of 

the known sites is possible, it may still be metabolised at the carbon in the equivalent 

position to C16 in ATRA. The differences in digit duplications produced by ATRA and 

EC23 and their metabolism prompted further investigation by determining their genetic 

targets. 

Considering the limitations of the previous literature, this chapter aims to investigate 

retinoid and ATRA genetic targets in vivo and will be the first in vivo analysis of ATRA 

targets, although this subject is also being addressed by Towers and Tickle (unpublished).  

Given the interesting phenotypes reported in chapter 3, this study investigates the changes 

in gene expression after treatment with EC23 and ATRA for 24hrs by application of a 

retinoid soaked bead.  It has been documented that expression of Hoxb8 (Stratford et al., 

1997), Hand2 (Fernandez-Teran et al., 2000) and Shh (Riddle et al., 1993) can be up-

regulated in the anterior wing by 24hrs, which are key markers of digit duplication and 

therefore the mechanism of action of EC23 may be elucidated at this time-point. By 24hrs 

after retinoid treatment the treated wings have reached HH23 which coincides with early 

events of cartilage condensation and muscle development. It is hoped that this study will 

highlight in vivo retinoid and ATRA genetic targets, particularly with reference to the 

mechanisms behind phenotypes described and the differences in retinoids assayed. It will 

also allow an insight into the effects of ATRA metabolites in the chick wing bud using the 

synthetic retinoid EC23 which is potentially resistant to metabolism. 
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Methods: 

 

The methods used to investigate the alteration of gene expression after retinoid treatments 

are mainly addressed in chapter 2. Briefly, ATRA, EC23 or DMSO was applied to the 

anterior wing bud at HH20 as described in chapter 2 and shown in figure 5.1. The chick 

embryos were then re-incubated for 24hrs at which point the anterior treated wing was 

dissected off for RNA isolation and subsequent microarray analysis of gene expression. 16 

anterior wing buds were collected per treatment to provide sufficient RNA for analysis and 

to decrease variation in the datasets. Three replicates were collected per treatment. RNA 

was then isolated and its integrity was visualised by agarose gel electrophoresis before the 

RNA was sent away for microarray analysis and then again using the Agilent Bioanalyser 

before and during analysis (see chapter 2 for more details). 
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Figure 5.1: The Method for treatment and isolation of RNA for microarray analysis. 

 

 

 

 

 

Figure 5.2A shows the gel containing the pools sent to Newcastle and figure 5.2B shows 

the gel containing the pools for Roslin.  As can be seen the RNA pools are of good quality 

with little degradation and rRNA in the correct proportion.  This analysis was corroborated 

by electropherograms produced at either Newcastle (figure 5.3) or Roslin (figure 5.4) from 

analysis on the Agilent Bioanalyser. These traces show no degradation of the rRNA 

species and that there are no smaller RNA products present.  As a result electropherograms 

5.4C and 5.4D were designated with a RNA integrity value (RIN) of 10. Considering this 

is the highest value and that all other electropherograms are of similar standard, this 

indicates that the RNA produced was of high quality and could reliably be used for 

microarray analysis (Schroeder et al., 2006).   

A) shows the method for in ovo microsurgery used in previous chapters to treat HH20 chick embryos with 

retinoid or DMSO.  B) shows a diagram of a chick wing bud 24hrs after treatment.  Dashed line indicates 

dissections made: anterior third was taken for microarray analysis.  C) shows the dorsal view of an embryo 

after 24hrs treatment before and after dissection for microarray analysis.  The wings were pinned to agar for 

dissection.  The arrow in the left picture indicates the bead.  This was removed before dissecting the anterior 

portion of the wing bud.  The picture on the right shows the same wings after dissection: brackets indicate the 

material dissected off for microarray analysis.  Abbreviations: nt, neural tube; wb, wing bud. 
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Figure 5.2: Analysing the integrity of isolated RNA by agarose gel electrophoresis. 

 

 

 

 

 

 

  

A) shows the analysis of RNA sent to Centre for Life, Newcastle.  Lanes: 1 RNA from anterior wing 

buds treated with DMSO (pool 1), 2 RNA from anterior wing buds treated with 0.01mg/ml EC23 (pool 

1).  B) shows the analysis of RNA sent to the Roslin Institute in Edinburgh for microarray analysis.  

Lanes: 1-3 are RNA samples from anterior wing buds treated with 1mg/ml ATRA (pools 1-3), lanes 4 

and 5 are RNA samples from anterior wing buds treated with 0.01mg/ml EC23 (pools 2 and 3) and 

lanes 6 and 7 show RNA samples from anterior wing buds treated with DMSO (pools 2 and 3).  200ng 

was run per sample on a 1% agarose: TBE gel at 200V for 10mins.  L is ladder.  Black arrows indicate 

the position of 28S rRNA and white arrows indicate the position of 18S rRNA. 



171 

 

 

 

 

 

 

Figure 5.3: Analysis of RNA isolated for microarray analysis using the Agilent Bioanalyser at Centre 

for Life, Newcastle. 

 

 

 

 

 

Figure 5.4: Analysis of RNA isolated for microarray analysis using the Agilent Bioanalyser at The 

Roslin Institute, Edinburgh. 

 

 

 

 

Electropherograms are of RNA isolated from DMSO (A) or EC23 (B) treated anterior wing buds used for 

microarray analysis. 

A and B) are RNA from DMSO treated anterior wings, pools 2 and 3.  C and D) are electropherograms of 

RNA from anterior wings treated with 0.01mg/ml EC23, pools 2 and 3.  E-G) are electropherograms of RNA 

from anterior wings treated with 1mg/ml ATRA, pools 1-3.  C and D) were designated RIN values of 10. 
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Analysis of Gene Expression: 

 

Images of the stained chips were imported into GeneSpring GX11.5 (Agilent 

Technologies, Inc.) for analysis.  The data was normalised using GeneChip-Robust 

Multiarray Averaging (GC-RMA) normalisation algorithm.  This normalisation is optimal 

as it considers the ratio of signal hybridised to perfect match vs. mismatch probe sets and 

therefore generates more accurate data and is robust to outliers.  The data was plotted as 

box and whisker plots as an indication of variation between arrays.  As can be seen from 

figure 5.5 the two microarrays hybridised at Newcastle University were different and there 

was significant variation between those carried out at Newcastle and those carried out in 

Edinburgh for the same treatments.  This may have been due to the use of a different 

amount of RNA as starting material, operator or batch of arrays which have been 

documented as sources of variation in microarray analysis (Chen et al., 2011a; Johnson et 

al., 2007; Walker et al., 2008).   

 

In order to include the microarray data generated in Newcastle, batch correction was 

necessary. This was carried out using empirical Bayes statistical tests in the R programme 

(Johnson et al., 2007).  The corrected values were then re-imported into GeneSpring 

GX11.5 for further analysis.  As can be seen from figure 5.6, this resulted in data with 

comparable means and standard deviations which allowed further analysis. The data was 

then filtered so that only genes which were expressed above the lowest 20% of values in at 

least one condition (and all three replicates) were used for analysis.  This filter removed 

around 8000 transcripts.   These genes were then clustered using both hierarchical 

clustering and K-means clustering to investigate treatment similarity (figure 5.7). Genes 

were then filtered using >2 fold change with respect to DMSO (p< 0.05) as a threshold for 

biological significance. Statistical significance of these changes was calculated using a T-

Test with p-values corrected for multiple tests.  
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Figure 5.5: Box and whisker plots of normalised intensity values for all data generated by microarray analysis. 

.CEL files were imported into GeneSpring 11.5 for analysis.  Data was normalised and control probes were removed before 

box and whisker plot analysis.  1 and 2) show data from chips hybridised with RNA from anterior wing buds treated with 

DMSO carried out at the Roslin Institute.  3 and 4) show data from chips hybridised with RNA from anterior wing buds 

treated with 0.01mg/ml EC23 carried out at the Roslin Institute.  5-7) show data from chips hybridised with RNA from 

anterior wing buds treated with 1mg/ml ATRA, carried out at the Roslin Institute.  N1 and N2) show data from chips 

hybridised with RNA from anterior wing buds treated with DMSO and 0.01mg/ml EC23 respectively but carried out at 

Centre for Life, Newcastle. 
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Figure 5.6: Box and whisker plots of normalised intensity values for all data generated by microarray analysis after batch correction. 

 

 

Batch correction was carried out in R programme and then re-imported into GeneSpring 11.5 for analysis. 1 and 2) show data from chips 

hybridised with RNA from anterior wing buds treated with DMSO carried out at the Roslin Institute.  3 and 4) show data from chips hybridised 

with RNA from anterior wing buds  treated with 0.01mg/ml EC23 carried out at the Roslin Institute.  5-7) show data from chips  hybridised 

with RNA from anterior wing buds treated with 1mg/ml ATRA, carried out at the Roslin Institute.  N1 and N2) show data from chips 

hybridised with RNA from anterior wing buds treated with DMSO and 0.01mg/ml EC23 respectively but carried out at Centre for Life, 

Newcastle. 
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Results: 

 

EC23 and ATRA alter distinct groups of genes. 

 

ATRA is known to generate digit duplications (chapter 3;(Tickle et al., 1982)) while 

DMSO causes no effect on digit development. It was shown in chapter 3 that EC23 was 

able to mimic the effect of ATRA on limb development and effects were observed on the 

entire PD axis of the wing in response to both retinoids.  Considering these phenotypes, it 

would be expected that DMSO treated wings had a different genetic profile to retinoid 

treated wings. 

 

It can be observed from the box and whisker plots that the treatments fall into three groups 

on the variance in their gene expression profile: DMSO exhibits greater variance to ATRA 

which is greater than EC23 (figure 5.6). This can also be seen after the results from two 

distinct cluster analyses. Hierarchical and K-means clustering were used to analyse the 

similarities between retinoid and DMSO treatments.  These are two distinct clustering 

algorithms which cluster data together without a priori knowledge or reference to function 

and biological significance. Data clustered together by these algorithms has the sole 

property of being more similar to the cluster in which it is located than to other clusters of 

data. These are useful techniques to determine similarity between treatment groups or a 

group of genes which are similarly regulated within datasets. Hierarchical and K-means 

clustering are two different types: supervised and unsupervised respectively. Hierarchical 

clustering determines distance between two data-points and links the two as a cluster, it 

then re-calculates distance between the cluster and other data-points until all clusters are 

linked. K-means clustering, however, clusters data randomly based on the desired number 

of clusters (k) and then re-clusters data until the profiles in each cluster are as similar as 

possible. Two distinct clustering methods were used to investigate the validity of the data 

generated and verify that the main cause of variation was the difference in treatment 

(Shannon et al., 2003; Stekel, 2003). 

 

Hierarchical and K-means clustering indicate that DMSO and retinoid treated genetic 

targets are distinct (figure 5.4).  This is true even when k is changed from 2 to 3 (figure 

5.7B-C). It can also be seen when k=4 although the clustering seen was visually less 

accurate (figure 5.7D).  Despite the similarities in phenotypes observed with both retinoids 
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the clustering analysis indicates that the expression profiles of the two retinoids are also 

distinct however, they are more similar to each other than to DMSO (figure 5.7A and 

5.7B).  These differences may provide insights into targets of ATRA metabolites in vivo or 

be the mechanism behind the differences in digit duplication demonstrated previously 

(chapter 3). Cluster analysis also validates the method used for isolating RNA as the pools 

within treatments are more similar to each other than to the other pools.  Given that the 

expression profiles can be sorted in such a robust way by three different methods, this 

validates the methodology used and allows us to consider the data in detail in the following 

sections to understand the biological significance of the variation between the treatment 

groups.   

 

The box and whisker plots in figure 5.6 indicate that there is a large change in expression 

profile in response to retinoid. There is a noticeably smaller range in expression values in 

the retinoid treated pools compared with the DMSO treated pools (Figure 5.6 compare 

lanes 2-7 and N2 with 1, 2, N1). This is consistent with the idea that EC23 and ATRA are 

altering gene expression more than DMSO and that DMSO appears to allow more diversity 

in gene expression. This suggests that the action of retinoids is to inhibit correct 

transcription during embryonic development or to maintain the cells in a different 

transcriptional state to DMSO treatment. There is also a smaller range of expression values 

in EC23 treated compared to ATRA treated pools (figure 5.6). Consistent with this it can 

also be seen that gene expression in response to ATRA is often more extreme than EC23 in 

terms of fold change (tables later).  It appears that EC23 generates a more severe retinoid 

response than ATRA which is an intermediate between EC23 and DMSO. This may be due 

to the more efficient metabolism of ATRA compared to EC23 (chapter 4) allowing limb 

development to recover from the teratogenic threat.  
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Figure 5.7: Cluster analysis of all data from all microarray chips after batch correction. 

 A) show hierarchical clustering of all data in GeneSpring after batch correction.  B-D) show K-means 

clustering of all data with B) k=3, C) k=2 and D) k=4.  Abbreviations: DM, DMSO treated anterior wing 

buds; EC, 0.01mg/ml EC23 treated anterior wing buds; RA, 1mg/ml ATRA treated anterior wing buds. 
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Both EC23 and ATRA cause transcriptional repression and activation. 

 

Previous research on retinoid genetic targets has indicated that they cause their effects by 

activating transcription (Ali-Khan and Hales, 2006; Astrom et al., 1990).  Consistent with 

this there is evidence that unliganded RARs are important for some developmental 

processes as they repress retinoid responsive genetic responses (Damm et al., 1993; Koide 

et al., 2001).  However, a study by Luijten et al (2010) has indicated that retinoids can both 

up and down-regulate gene expression during embryonic development.  Therefore, the 

regulation of genetic targets after retinoid treatment is of interest.  

 

It can be seen from the volcano plots (figure 5.8) and table 5.1 that EC23 and ATRA have 

caused statistically significant up-regulation and down-regulation of genetic targets.  214 

transcripts significantly up-regulated by more than 2-fold in ATRA treated wing buds 

compared to 150 transcripts in EC23 treated wing buds.  Interestingly, 221 transcripts were 

significantly down-regulated in the ATRA treated limb buds compared to 158 in the EC23 

treated wing buds (table 5.1).  Fewer genes are significantly altered in response to EC23 

treatment than in response to ATRA (compare figure 5.8A and 5.8B, and table 5.1).  This 

is consistent with the decreased range of expression values in response to EC23 compared 

to ATRA from box-whisker plots (figure 5.6 compare lanes 5-7 with 3, 4, N2).  

 

Table 5.1: A comparison of the number of genes significantly altered in response to 1mg/ml ATRA or 

0.01mg/ml EC23 with respect to DMSO in the anterior wing bud. 

Treatment 
Up-regulated Down-regulated 

Common Specific Total Common Specific Total 

ATRA 130 84 214 127 94 221 

EC23 130 20 150 127 31 158 

 

 

 

When comparing the ATRA and EC23 targets produced (with respect to DMSO), it can be 

seen that there are some transcripts present in response to both retinoids (common targets) 

and some are specific to one retinoid (specific).  These genes may provide novel insights 

into the role of the metabolites in vivo.  Considering that EC23 is more resistant to 

metabolism and regulates fewer “specific” genes the difference between genes altered in 

response to ATRA than EC23 may be due to the difference in metabolism (see chapter 4).  

However, they could also be due to differences between structure and isomerisation (see 

Common genes are those which are up or down regulated in response to both EC23 and ATRA.  Specific 

genes are those which show significant change in expression in response to only ATRA or EC23 by 

microarray analysis. 
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chapter 1). Interestingly, a comparison was made between the expression profiles of ATRA 

and EC23 treated RNA only generated 5 transcripts significantly up-regulated and 6 

transcripts significantly down-regulated in ATRA with respect to EC23 (based on fold 

change >1.5, p<0.05; see table 5.2).  This suggests that the difference between ATRA and 

EC23 is of magnitude of response rather than absolute changes in gene expression profile. 

 

Table 5.2: The genes altered significantly in response to ATRA with respect to those altered in 

response to EC23. 

Gene Title Gene Symbol Fold change 

--- 

chromosome 6 open reading frame 32 

Periostin, osteoblast specific factor 

heme oxygenase (decycling) 1 

ALX homeobox 1 

--- 

--- 

RNA binding motif protein 24 

LIM homeobox 9 

Hypothetical protein LOC771883 
 

 

--- 

C6orf32 

Postn 

Hmox1 

Alx1 

--- 

--- 

Rbm24 

Lhx9 

LOC771883 

 

 

+3.3 

+2.7 

+2.5 

+2.0 

+2.0 

-1.6 

-1.7 

-1.7 

-1.8 

-1.9 
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Figure 5.8:  Filtering of data to determine significantly altered genes in response to EC23 and ATRA 

using volcano plots. 

 

 

 

 

 

 

Gene expression is plotted as log2 (fold change) vs. the log 10p-value.   The horizontal green lines indicate 

the threshold above which genes are significantly altered.  The vertical green lines indicate the genes which 

are altered by 2 fold or more either up (right) or down (left).  Statistical significance was calculated using a t-

test and corrected for multiple tests.  Fold change was calculated with respect to DMSO treatment.  Genes 

which have been significantly altered 2 fold are indicated in red.  A) shows genes significantly altered by 

1mg/ml ATRA.  B) shows genes significantly altered by 0.01mg/ml EC23. 
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Functional Classification: 

 

The genes yielded after filtering for >2fold change (p<0.05) were subjected to annotation 

analysis using the Database for Annotation Visualisation and Integrated Discovery 

(DAVID).  The genes were clustered using the Functional Annotation Clustering Tool 

(Huang da et al., 2009).  This analysed the genes presented to determine the known 

biological processes associated with them and whether they were enriched in the dataset.  

It then clustered the annotation terms on similarity and provided an enrichment score 

highlighting those processes which are most altered in the genes up or down-regulated in 

response to both retinoids. Considering that the datasets used to investigate functional 

analysis are retinoid as compared to DMSO, it indicates that these processes are altered in 

retinoid treatment to a greater extent than DMSO treated wings.   

 

Table 5.3: Functional Classification of genes up-regulated in response to ATRA and EC23 using 

DAVID. 

ATRA EC23 

Function Enrichment Function Enrichment 

Embryonic Skeletal Development 3.45 TFs in embryonic development 3.72 

Transcription factors 2.78 Carbohydrate binding proteins 1.56 

Epithelial cell proliferation 1.75 Cation binding 1.15 

Cation binding proteins 1.53 +ve regulators of transcription 1.10 

Transcriptional regulators 1.46 ECM and Adhesion 1.10 

Oxidative metabolism 1.45 

 

Kidney/limb embryonic 

development 
1.43 

+ve regulators of transcription 1.25 

Cytoskeleton 1.24 

Cell and Neural development 1.08 

 

 

The top 10 most enriched clusters for ATRA and EC23 treatments are shown in table 5.3 

(up-regulated genes) and table 5.4 (down-regulated genes).  Due to the difference in the 

number of genes analysed the enrichment scores are not comparable between the two 

datasets however, conclusions can be drawn from their relative positions.  Interestingly 

Abbreviations: ATRA, all-trans retinoic acid; ECM, extracellular matrix; TFs, transcription factors; +ve, positive. 
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only 5 functions were clustered in the EC23 up-regulated genes compared to 10 in the 

ATRA treated dataset (table 5.3).  This is consistent with an up-regulation of disparate 

targets in response to the more potent EC23 and appears to be less coordinated than 

ATRA.  ATRA could be interpreted as a more regulated change in gene expression as table 

3 shows the coordinated up-regulation of many transcription pathways.   

It is particularly notable that ATRA up-regulates skeletal, neural and embryonic 

development and proliferation while EC23 down-regulates these functions (compare tables 

5.3 and 5.4). The up-regulation of these functional groups in ATRA but not EC23 targets is 

consistent with the idea that these retinoids may be showing different stages of the retinoid 

response or that they alter different processes to achieve digit duplication and the 

phenotypes seen in chapter 3. The comparison of EC23 and ATRA genetic targets yielded 

very few significantly different targets (table 5.2) indicating that, for the most part, where a 

gene showed significant change in one treatment it was significantly altered in the other 

treatment although the magnitude of the response was different. Considering this, it can be 

proposed that the expression profiles of the limb 24hrs after EC23 or ATRA exhibit 

different stages of the retinoid response rather than altering different processes. 

Considering the great enrichment of transcription factors in the EC23 up-regulated dataset 

while there are other functional classifications present in ATRA target genes, the retinoid 

response may be to up-regulate transcription factors (EC23) which then coordinate up-

regulation of other pathways (ATRA).  

The clusters enriched in the ATRA up-regulated genes suggest that ATRA is affecting 

skeletal development, although not limb development (see table 5.3 and below), and 

increasing cell proliferation.  The enrichment of genes involved in epithelial proliferation 

is consistent with previous research which suggests that ATRA must increase AER length 

in order to generate new digits and full digit duplications (Tickle et al., 1989).  The fact 

that EC23 does not cause an increase in epithelial proliferation is consistent with the 

phenotypes seen where it can only induce additional digit 1s and that limb development is 

blocked. The idea that genes involved in skeletal development are being up-regulated 

suggests that ATRA is re-patterning the anterior-posterior axis to allow skeletal 

development (the earliest sign of limb differentiation) to take place and also that it is 

recovering from the initial inhibition of development.  

 

Interestingly, there is also a cluster of genes involved in oxidative metabolism, including 

the Cyp26 enzymes, in the up-regulated ATRA genes suggesting that these wings are 
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metabolically active to try and neutralise excess ATRA.  This is consistent with the ability 

of ATRA to up-regulate Cyp26 in the anterior wing bud as seen previously (Martinez-

Ceballos and Burdsal, 2001). This also indicates that ATRA treated wing buds are more 

likely to contain oxidative derivatives of ATRA than EC23, especially as this cluster is not 

enriched in EC23 up-regulated targets. This is consistent with data suggesting that EC23 is 

resistant to metabolism at most known sites by the CYP26 enzymes (see chapters 1 and 4). 

This provides further evidence that ATRA is metabolised more than EC23 in the 

developing wing bud and that the additional functional classes in ATRA may reflect that 

ATRA metabolites are needed for these pathways, which are this not available with EC23. 

 

Table 5.4: Functional Classification of the genes down-regulated in response to ATRA and EC23 using 

DAVID. 

ATRA EC23 

Function Enrichment Function Enrichment 

Limb Development 3.57 ECM 3.34 

ECM 3.12 Embryonic development 3.00 

Embryonic development 2.88 Skeletal Development 2.90 

Blood vessel development 2.57 Adhesion 2.56 

Urogenital development 2.54 Patterning 2.40 

Growth factors 2.33 Lung development 2.15 

Neural Development 2.16 Neural Development 1.92 

Muscle Development Inc. adhesion 2.10 +ve regulators of proliferation 1.83 

Patterning genes 2.07 Ear Development 1.74 

Muscle development 2.04 Urogenital Development. 1.67 

 

 

Table 5.4 shows the functional classification of the down-regulated genes in response to 

ATRA and EC23. Interestingly similar numbers of clusters are formed in response to both 

retinoids suggesting that both retinoids coordinate the down-regulation of many processes 

unlike the differential coordination of up-regulated genes. A hypothesis for the differences 

between the coordination of the retinoid targets may be that the primary response to 

retinoid is to down-regulate genes including those involved in limb development (see table 

5.4) and in fact stall limb development. Once the retinoid is metabolised retinoid treated 

wings can undergo re-specification or continuation of normal limb development 

Abbreviations: ATRA, all-trans retinoic acid; ECM, extracellular matrix; inc, including; +ve, positive. 
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(enrichment of skeletal development genes in ATRA up-regulated dataset; table 5.4). 

Considering the differences in metabolism of EC23 and ATRA, this may account for the 

differences in coordination of genes: EC23 treated wing buds are inhibiting limb 

development at 24hrs while ATRA treated wings begin to recover. It could also be 

proposed that EC23 and ATRA have different abilities to activate the RARs while their 

ability to repress transcription is similar.  This may be the case as the similar retinoid, 

TTNPB, has decreased affinity for and activation of the RARs (Pignatello et al., 1997). 

However, these differences in activation could also be due to the oxidation products of 

ATRA which are decreased or absent with EC23. Therefore, it is not possible to comment 

on receptor activation at the present time.  

 

When the anterior limb was harvested, embryos were estimated to be at HH23 from the 

size of the contralateral wing.  At this point in normal, untreated limb development muscle 

differentiation is starting to occur within the limb as well as significant chondrogenesis and 

vascular remodelling (Duprez, 2002; Vargesson, 2003). Muscle precursors are known to 

enter the limb between HH15-18 but then are rearranged into the dorsal and ventral muscle 

masses between HH21-23 (Murray and Wilson, 1997) which express myod1 (Weintraub et 

al., 1991). Nerves are held at the brachial plexus at this time-point until HH25 (Araujo et 

al., 1998; Landmesser and Morris, 1975). Considering that table 5.4 shows an enrichment 

of genes involved in limb development in the ATRA down-regulated dataset it is perhaps 

unsurprising that these processes are also enriched in the down-regulated genes. This 

provides further evidence that the ATRA treated wings are stalled in their development. 

Cartilage development occurs before subsequent muscle development and innervation (Al-

Ghaith and Lewis, 1982; Duprez, 2002; Searls et al., 1972).  The up-regulation of genes 

involved in skeletal development in the ATRA treated wing and down-regulation of 

muscle development indicates that the ATRA treated wing is at an earlier developmental 

stage than the DMSO treated wing e.g. the limb is being re-specified. This is supported by 

the fact that genes involved in patterning are enriched in the down-regulated dataset (table 

5.4). In response to EC23, a number of these processes are also seen in the clusters from 

the down-regulated gene sets but blood vessel development is far less enriched and there is 

no cluster of genes involved in muscle development or containing growth factors.  This 

lack of genes involved in muscle development in the EC23 treated wing bud when 

considered with the down-regulation of genes involved in skeletal development may 

indicate that EC23 is stalling limb development further than ATRA. However, it could also 
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indicate that EC23 does not affect or cause duplication of muscle development and may 

represent an area for further study.   

 

Overall this functional clustering suggests that there is little difference between the 

function of ATRA and EC23 down-regulated targets as many of the clusters are present in 

response to both retinoids with differences in their enrichment score.  However, their up-

regulated targets appear to be functionally different. The analysis indicates that EC23 up-

regulates many unrelated genes but down-regulates skeletal and neural development in a 

coordinated manner.  ATRA, however, up and down-regulates genes in a coordinated 

fashion causing, mainly, a down-regulation of differentiation.  The fact that ATRA up-

regulates genes which cluster under “oxidative metabolism” while EC23 does not is more 

evidence that EC23 is metabolised less and that ATRA treated wing buds may contain 

oxidative derivatives of ATRA while EC23 treated wing buds will not. 

 

Consideration of the genetic targets. 

 

The discussion of the genes in the following sections focuses on a selection of genes from 

those altered in response to either EC23 or ATRA treatment. The selection of these genes 

was influenced by the level of change to their expression, the current knowledge on their 

expression patterns, known roles in the limb bud system and phenotypes which their 

manipulation have produced in previous literature which could aid the understanding of 

EC23 and ATRA in the current study. Given this selection process, it must be noted that 

many genes were not investigated but which may also play a role in the development of the 

phenotypes generated by EC23 and ATRA as they have not been documented previously 

or are un-annotated transcripts. This is a shortcoming of the present analysis but the current 

analysis is intended as a baseline from which further investigation and experiments can be 

generated to enhance our understanding of the effect of retinoids in limb development. 

 

Both EC23 and ATRA induce a common response. 

 

As previously indicated from table 5.1 and the cluster analysis (figure 5.7), ATRA and 

EC23 induce a common retinoid response.  Among these are genes which are known to be 

retinoid responsive as well as genes which may contribute to the phenotypes observed in 
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chapter 3. The following sections address the individual genes in more detail to try and 

elucidate key markers or regulators of limb and digit development.  

  

Retinoid responsive genes 

 

It can be seen that a number of genes known to be up-regulated by retinoid treatment were 

present after treatment with both ATRA and EC23 (see table 5.5) one of which is the most 

up-regulated gene in response to both retinoids (Cyp26a1).  These include genes which are 

known to encode proteins involved in retinoid metabolism or signalling: Cyp26 (Reijntjes 

et al., 2005), dehydrogenase/reductase member 3 (dhrs3; (Feng et al., 2010)), Rarβ (Rowe 

et al., 1991), retinol binding protein (rbp5), stimulated by retinoic acid 6 homologue 

(stra6) (Bouillet et al., 1995) and cyp1b1 (Chambers et al., 2007; Choudhary et al., 2007).  

Interestingly, both retinoids up-regulate a receptor through which retinoids can modulate 

gene expression: Rarβ1 and Rarβ2/4 (Nagpal et al., 1992). Rarβ2 is known to be retinoid 

responsive and expressed at the proximal limb (Mendelsohn et al., 1994a; Nagpal et al., 

1992; Smith et al., 1995). Of particular interest is the up-regulation of Cyp1b1 by both 

retinoids consistent with previous research.  This has previously been documented to 

convert retinol to retinoic acid (Chambers et al., 2007; Choudhary et al., 2007).  Rbp5 and 

Stra6 are thought to be involved in retinoid transport (Blomhoff and Blomhoff, 2006) 

indicating that this is affected at high concentrations of retinoid.  

 

Table 5.5: The response of genes involved in retinoid metabolism and signalling after ATRA or EC23 

treatment. 

Gene Gene Title ATRA EC23 

Cyp26A1 Cytochrome P450, family 26, subfamily A, polypeptide 1 +98.14 +63.94 

Cyp26B1 Cytochrome P450, family 26, subfamily B, polypeptide 1 +6.80 +4.98 

Cyp26C1 Cytochrome P450, family 26, subfamily C, polypeptide 1 +6.65 +5.54 

Rbp5 Retinol Binding Protein 5 (Cellular) +4.54 +3.54 

Stra6 stimulated by retinoic acid gene 6 homolog (mouse) +4.40 +2.77 

Dhrs3 dehydrogenase/reductase (SDR family) member 3 +28.44 +22.85 

Cyp1b1 cytochrome P450, family 1, subfamily B, polypeptide 1 +2.90 +2.42 

Rarβ retinoic acid receptor, beta +5.85 +4.58 

Rarβ1 retinoic acid receptor, beta +5.19 +4.70 

Rarβ2/4 retinoic acid receptor, beta +15.33 +11.67 

+ denotes up-regulation. 
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It can be seen that other genes altered by both retinoids have been previously implicated as 

being retinoid responsive (see tables below).  Those from the up-regulated list are: Pbx1 

(Qin et al., 2004), Meis2 (Mercader et al., 2000), Hoxa4 (Packer et al., 1998), Hoxb3 

(Leroy and De Robertis, 1992), Hoxb4 (Folberg et al., 1999), Hoxb5 (Conlon and Rossant, 

1992), Periostin (Lindner et al., 2005) and Wnt11 (Uysal-Onganer and Kypta, 2012). 

Those from the down-regulated genes are: Lect1/chondromodulin (Azizan et al., 2000), 

collagen type 7 (LOC416696)(Chen et al., 1997), Gnot1 homeodomain protein (Gnot) 

(Knezevic et al., 1995) and Snail homologue 2 (Drosophila) (Slug/Snai2) (Buxton et al., 

1997).  

 

It can be concluded that genes known to be involved in the retinoid metabolism and 

signalling pathways are up-regulated as are genes known to be responsive to ATRA. The 

functional clustering observed previously showed that targets of both retinoids are enriched 

in genes involved in oxidative metabolism or cation binding which include cytochrome 

oxidases and glutathione transferases. This functional clustering as well as the fact that 

Cyp26a1 is the most up-regulated gene in response to both retinoids, indicate that a major 

part of the retinoid response is to metabolise excess levels so that limb development can 

continue. 

 

Changes to axis patterning  

 

Many of the genes known to be retinoid responsive (above) are also implicated in limb axis 

patterning.  It has been documented from studies on Axolotl (Maden, 1983) and on the 

chick wing bud (Mercader et al., 2000), that retinoids can affect the PD axis and cause 

proximalisation of limb bud cells.  The changes to digit development resulting from 

retinoid treatment are a manifestation of changes to AP axis patterning possibly via the 

induction of an ectopic ZPA (Wanek et al., 1991).  The genetic mechanisms behind this are 

thought to involve an increase in Hoxb8 expression (Stratford et al., 1997) followed by 

increased Hand2 (Fernandez-Teran et al., 2000) and Shh expression (Riddle et al., 1993). 

Therefore, the genetic targets were interrogated for these markers as well as to their 

expression patterns during normal limb development. 

 

Table 5.6 shows the effect of ATRA and EC23 on genes involved in axis patterning.  As 

shown, Hoxb8 is up-regulated by retinoid treatment consistent with previous literature 
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(Stratford et al., 1997) and with the phenotypes generated in chapter 3.  This has been 

suggested to position the ZPA early in limb development prior to Hand2 and Shh 

expression and possibly before limb initiation (Fernandez-Teran et al., 2000; Lu et al., 

1997; Stratford et al., 1997). The fact that this is reminiscent of very early time points of 

wing development suggests that retinoids may stall limb development causing the anterior 

wing to exhibit properties shown by the posterior wing before initiation. Previous research 

has suggested that Hand2 expression is up-regulated by 20hrs and Shh by 24hrs ATRA 

treatment (Fernandez-Teran et al., 2000; Riddle et al., 1993), however, in this microarray 

analysis both Hand2 and Shh are absent in response to either retinoid.  Altogether, this 

indicates that the retinoid treated wings are at earlier stages of development compared to 

DMSO treated wings and retinoid treatments of previous studies.  

 

Hox genes have been documented to control axis patterning in many areas of the 

developing embryo. Their roles have been studied extensively and hoxa9-13 and hoxd9-13 

are expressed in the developing limb bud in very distinct spatio-temporal patterns (Izpisua-

Belmonte et al., 1991; Yokouchi et al., 1991b).  They have been shown to be ectopically 

induced in the anterior wing bud during the process of digit duplication in response to 

retinoid (Izpisua-Belmonte et al., 1992). Interestingly the expression of neither the 5’hoxa 

nor hoxd genes is altered in response to both ATRA and EC23 (but see later) as would be 

expected with axis re-specification and subsequent digit duplication.  Considering that 

Izpisúa-Belmonte et al (1991) began to see Hoxd13 expression in the anterior wing after 

48hrs of 1mg/ml ATRA treatment, this may indicate that digit duplication is at a very early 

time point. However, other members of the Hox family are altered after retinoid treatment 

(table 5.6).  
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Table 5.6: The response of genes involved in axis patterning or anteriorly restricted genes after ATRA 

or EC23 treatment. 

Gene Title Gene Symbol ATRA EC23 

Homeobox  a4 Hoxa4 +5.43 +2.67 

Homeobox b3 Hoxb3 +18.0 +11.8 

Homeobox b4 Hoxb4 +19.7 +14.2 

Homeobox b5 Hoxb5 +13.4 +9.6 

Homeobox b8 Hoxb8 +34.6 +14.3 

Distal-less Homeobox 5 Dlx5 -4.5 -2.8 

Distal-less Homeobox 6 Dlx6 -7.8 -4.5 

Goosecoid Homeobox Gsc +3.2 +2.4 

Secreted phosphoprotein 1/Osteopontin / Bone Sialoprotein Spp1 -3.2 -2.1 

Lim homeobox 9 Lhx9 -3.9 -2.7 

Chondromodulin Lect1 -3.4 -2.8 

Gnot1 Homeodomain Protein Gnot1 -15.6 -5.1 

Differential screening-selected gene Aberrant in Neuroblastoma DAN -4.5 -3.6 

Platelet-derived Growth Factor C. Pdgf-c -2.9 -2.2 

Snail Homolog 2 (Drosophila) Snai2/Slug -2.2 -2.2 

 

 

Consistent with posteriorisation to the anterior wing bud as shown by increased Hoxb8 

expression, Lhx9 and Dlx5 expression are down-regulated.  Expression of Lhx9 (Nohno et 

al., 1997) and Dlx5 (Ferrari et al., 1995) are restricted to the anterior wing bud at HH23 

and therefore down-regulation of these genes is highly significant.  Table 5.6 also shows 

other genes normally expressed in the anterior wing which are down-regulated by both 

retinoids: Lect1/chondromodulin (Shukunami et al., 1999), Gnot (Ranson et al., 1995), 

Goosecoid homeobox (Gsc) (Heanue et al., 1997), differential screening-selected gene 

aberrant in neuroblastoma (NO3/DAN) (Gerlach-Bank et al., 2002; Ogita et al., 2001), 

platelet derived growth factor-c (Pdgf-c) (Ding et al., 2000) and Slug/Snai2 (Buxton et al., 

1997).  This suggests that re-specification of anterior-posterior axis is occurring in retinoid 

treated wing buds consistent with the phenotypes generated (chapter 3) and previous 

literature. The fact that more anterior genes are down-regulated than the number of 

posterior genes up-regulated (Hoxb8 alone) is consistent with the hypothesis that retinoid 

treated wing buds are at early stages of digit duplication. 

 

Consistent with the role of retinoids in proximalisation of limb bud cells (Mercader et al., 

1999) many genes restricted along the PD axis are altered accordingly.  Table 5.7 shows 

+ denotes up-regulation; - denotes down-regulation. 
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genes known to be expressed in proximal limbs which are up-regulated in response to both 

retinoids: Emx2 (Prols et al., 2004), Meis2 (Mercader et al., 2000), Pbx1 (Capellini et al., 

2006), Pleiotropin (Mittapalli et al., 2009), Gsc (Gaunt et al., 1993; Heanue et al., 1997), 

Alx1 (Beverdam and Meijlink, 2001; GEISHA), Cyp1b1 (Chambers et al., 2007), receptor 

tyrosine kinase-like orphan receptor 1 (Ror1) and Slit homologue 1 (Drosophila) (Slit1; 

(Vargesson et al., 2001)).  Some of these genes have been implicated or necessary for 

scapula development and may provide the mechanism for the truncated scapulae seen with 

these retinoids (see chapter 3 and discussion). The up-regulation of these genes suggests 

that retinoid treated wings are becoming more proximalised ((Mercader et al., 2000); 

figures 5.9-11).  
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Table 5.7: The response of genes with proximal-distal restriction to ATRA or EC23 treatment. 

Gene Title Gene Symbol ATRA EC23 

Empty Spiracles Homeobox 2 Emx2 +4.2 +3.0 

Meis homeobox 2 Meis2 +2.8 +2.5 

Pre-B-cell leukaemia homeobox 1 Pbx1 +3.6 +3.0 

Pleiotropin Ptn +2.9 +2.1 

Goosecoid Homeobox Gsc +3.2 +2.4 

Aristaless Homeobox 1 Alx1 +4.0 +2.0 

Slit Homolog 1 Slit1 +4.1 +3.4 

Receptor tyrosine kinase-like orphan receptor 1 Ror1 +3.1 +2.7 

Gnot1 Homeodomain Protein Gnot -15.6 -5.1 

Sal-like 1 Sall1 -4.9 -3.1 

Snail homolog 2 (Drosophila) Snai2/Slug -2.2 -2.2 

 

 

Concurrent with an up-regulation in genes in the proximal region of the limb, there is also 

a down-regulation of genes usually restricted to the distal limb (see table 5.7).  These 

include: Gnot (Ranson et al., 1995), Sal-like 1 (Sall1) (Capdevila et al., 1999) and 

Slug/Snai2 (Buxton et al., 1997).  Fewer distally restricted genes are significantly altered 

than proximal genes (3 distally restricted against 7 proximally restricted).  This may reflect 

the fact that ATRA directly regulates proximal genes but indirectly regulates distal genes 

via FGF8, SHH and CYP26B1 (Probst et al., 2011). Overall, this data is consistent with 

previous literature than retinoid treatment causes proximalisation of cells (Mercader et al., 

2000) and that the retinoids affect the entire PD axis of the limb (chapter 3). 

 

Overall this data indicates that the retinoid response is to up-regulate genes associated with 

proximal and posterior patterning of the limb while down-regulating genes associated with 

anterior and distal limb development which is consistent with the phenotypes seen in 

chapter 3. This is consistent with the functional analyses carried out previously indicating 

that genes involved in patterning are enriched in both ATRA and EC23 down-regulated 

target genes providing further support that development is being stalled. The absence of 

these from the up-regulated data set indicates that these genes have not yet been 

documented in axis patterning or that other functional attributes are present at a far more 

enriched level. 

+ denotes up-regulation; - denotes down-regulation. 
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EC23 and ATRA have similar effects on proximal relocation of cells. 

 

ATRA and EC23 have been shown to up-regulate proximally restricted genes and down-

regulate distally restricted genes. It is known that ATRA causes proximal relocation of 

cells around the bead (Mercader et al., 2000) which is probably due to a change in adhesive 

properties (Tamura et al., 1997; Wada, 2011).  It has also been well documented that 

ATRA soaked beads are found in more proximal positions than untreated beads (Mercader 

et al., 2000).  The following section explores whether this occurs with the stable retinoid 

EC23 compared to naturally occurring ATRA, particularly given the alteration of 

proximally restricted genes.  Unlike previous applications of retinoid in the present study, 

HH23 chick wing buds were treated with EC23 or ATRA soaked beads dipped in 1mM 

DiI.  These were re-incubated for 48hrs (Mercader et al., 2000) and then fixed in 4% PFA.  

DiI was used to track cells which had come into contact with substances loaded onto the 

bead.  The labelled cells were used to investigate the effect of retinoid on cell distribution 

within the limb bud.   

 

Representative images showing how measurement of labelled cell area and distance from 

the AER was carried out is shown in figure 5.10.  Area of cells was calculated using un-

flattened limbs and the ellipse tool to capture 95% of labelled cells in ImageJ.  Un-

flattened limbs were used to determine area of labelled cells as flattening displaced cells in 

an AP direction. The distance that labelled cells had relocated was estimated using the line 

tool in ImageJ. This was drawn from the most distal part of the ellipse surrounding the 

cells to the closest part of the AER as this was deemed the most reproducible method. This 

was carried out on flattened limbs as the expansion of the limb in the PD axis upon 

flattening was less than in the AP axis and therefore would provide a more accurate 

measurement.   

   

It can be seen that EC23 and ATRA affected both the PD and AP location of labelled cells.  

Figure 5.9 shows representative composites of phase and fluorescent images of limbs after 

DMSO, ATRA or EC23 treatment in un-flattened limbs.  It can be seen that labelled cells 

in the presence of DMSO are widely spread around the bead in both AP and PD axes.  In 

response to retinoid the dispersal of the labelled cells along either axis appears to be less as 

shown by the decrease in average area of cell dispersal (figure 5.11A) but this is not 

statistically significant.  It is evident from flattened limbs that cells exposed to retinoid are 
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found further from the distal tip of the wing after 48hrs treatment (figures 5.10 and 5.11B).  

This indicates that ATRA and EC23 cause significant proximal relocation of cells.  It also 

appears that EC23 causes cells to be relocated further than ATRA treatment but this is not 

statistically significant (figure 5.11B).  Therefore EC23 mimics the effect of ATRA on cell 

relocation in the wing bud consistent with previous literature (Mercader et al., 2000) and is 

consistent with the alteration of genes seen earlier (table 5.7). 

 

 

 

 

 

 

 

Figure 5.9: The dispersion of cells around beads soaked in DMSO or retinoid on un-flattened limbs. 

 

 

 

 

HH23 wings were treated with DMSO or retinoid by a bead implanted into the most distal AER.  The bead was 

dipped in DiI before implantation to allow treated cells to be visualised.  A-C) are merged montages of images 

taken in phase contrast and fluorescence.  A) indicates the spread of cells after DMSO treatment.  B) shows cell 

dispersal after 1mg/ml ATRA treatment.  C ) shows cell dispersal after 0.01mg/ml EC23 treatment.  Areas of 

labelled cells were calculated using the ellipse tool in ImageJ as shown in figure 5.10.  Scale bars are 1mm and 

n=6. 
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Figure 5.10: The extent of migration of retinoid treated cells compared to DMSO. 

 

 

 

 

HH23 wings were treated with DMSO, ATRA or EC23 placed in a disto-central slit and allowed to develop for 48hrs before fixing and visualisation.  Beads were 

labelled with DiI before implanting so that cells in the immediate vicinity of the bead are labelled.  A-D) were treated with DMSO.  E-H) were treated with 1mg/ml 

ATRA.  I-L) were treated with 0.01mg/ml EC23.  A, E and I) are imaged under phase contrast.  B, F and J) are fluorescent images of the same wing.  C, G and K) are 

merged images of the previous two.   D, H and L are merged images showing representative measurements taken on the same wing bud using Image J. 1 is the ellipse 

(area of labelled cell dispersal) and 2 is a measure of relative proximal-distal location of labelled cells. Scale bars are 1mm and n=6. 
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Figure 5.11: The extent of proximalisation of retinoid treated cells. 

 

 

 

 

Chick wings were treated with DMSO or retinoid at HH23 by implanting the bead at the AER.  DiI was used to label cells treated by the bead.  Embryos were then 

harvested after 48hrs and cell migration investigated by measuring area and distance migrated of labelled cells (see figure 5.10).  A) shows  the extent of cell 

dispersion around the bead in the anterior-posterior axis by measuring the area of an ellipse drawn around 95% of labelled cells on un-flattened wings.  B) shows 

the shortest distance of cell migration to proximal limb after treatment with retinoid and compared to DMSO.  This was measured after limbs had been flat 

mounted onto a slide (see figure 5.10).  Significance was tested using an unpaired t-test. * p<0.05,  ** p<0.01,  *** p<0.001. N=6 per treatment. 
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The effect of retinoid on Shh expression. 

 

Considering that both ATRA and EC23 generate digit duplications, it may be proposed that 

these retinoids would induce expression of genes associated with ectopic ZPA formation.  

It has been shown that excess ATRA can induce Shh expression in the anterior wing bud at 

low levels at 24hrs (Riddle et al., 1993) and that preaxial polydactyly can be associated 

with an ectopic anterior ZPA (Qu et al., 1997; Wanek et al., 1991). The factors involved in 

the positioning or induction of the ZPA are thought to be Hand2 (Charite et al., 2000; 

Fernandez-Teran et al., 2000), Alx4 (Takahashi et al., 1998), Gli3 (te Welscher et al., 2002) 

and Hoxb8 (Stratford et al., 1997).  Therefore it seemed likely that the generated digit 

duplication may correlate with a change in expression level of one of these genes after 

24hrs retinoid treatment.   

 

As mentioned earlier, neither retinoid altered expression of Shh or Hand2.  There was also 

no alteration in Gli3 or Alx4 expression.  As previously mentioned, the up-regulation of 

Hoxb8 indicates that the anterior wing bud may be in the early stages of digit duplication. 

The expression of Shh after 24hrs retinoid treatment was then validated by whole mount in 

situ hybridisation. Figure 5.9 shows that after 24hr treatment with either ATRA or EC23 

no ectopic Shh domain is observed as expected from microarray analysis of the anterior 

wing bud after retinoid treatment.  This is not consistent with the study by Riddle et al 

(1993) which documented low Shh levels in the anterior wing bud after 24hrs of retinoid. 

Considering that it had been documented that ATRA could induce Shh expression between 

24-30hrs of treatment (Stratford et al., 1999) and that levels were increased at 36hrs 

(Riddle et al., 1993), Shh expression in the anterior wing bud was also investigated after 

30hrs retinoid treatment.  As seen in figure 5.10, ATRA was able to induce Shh expression 

in the anterior wing bud at a similar frequency to the number of severe digit duplications 

observed (n=2 /6, compare to table 3.2).  However, EC23 was never observed to induce 

Shh expression in the anterior wing (n=11). The absence of Shh expression after 30hrs 

EC23 treatment vs. 30hrs ATRA treatment suggests that digit duplication or limb 

development is inhibited in EC23 treated wings vs. ATRA treated wings.   This inhibition 

of limb development may preclude the production of more posterior digit duplication.  It 

was also observed that the endogenous posterior Shh domain was often reduced in treated 

wing buds after 30hrs compared to the contralateral limb bud (figure 5.10) but not after 

24hrs (figure 5.9).  This suggests that these quantities of retinoid inhibit normal limb 

development as well as cause digit duplication.  
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The inhibition of limb development suggested by these observations is consistent with the 

functional analyses carried out previously using DAVID as ATRA down-regulated genes 

are enriched for genes involved in limb development.  However, the same cannot be said 

for EC23 target genes. Instead, EC23 down-regulates processes involved in limb 

development while ATRA down-regulates genes in limb development but up-regulates 

genes in skeletal development. These functional analyses, when considered alongside the 

analysis of Shh expression, indicate that ATRA treated wing buds recover from excess 

retinoids quicker than EC23 treated wing buds and begin to re-specify the AP axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



198 

 

 

 

 

 

 

 

Figure 5.12: The expression of Shh after 24hrs treatment with 1mg/ml ATRA or 0.01mg/ml EC23. 

 

 

 

 

 

 

 

 

A, C and E) represent Shh expression after treatment with 1mg/ml ATRA after 24hrs.  B, D and F) 

represent Shh expression after treatment with 0.01mg/ml EC23 for 24hrs.  A and B) are dorsal views of 

embryos pinned to agar; operated wing is right and anterior top.  C-F) are dorsal views of wing buds 

dissected: C and D are retinoid treated and E and F are the contralateral wing buds to those depicted in C 

and D.  The arrow in A indicates the bead.  Abbreviations: nt, neural tube; wb, wing bud.  Scale bars are 

1mm. 
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Figure 5.13: The expression of Shh after 30hrs treatment with 1mg/ml ATRA or 0.01mg/ml EC23. 

 

 

 

  

A, C and E) represent Shh expression after treatment with 1mg/ml ATRA after 30hrs.  B, D and F) 

represent Shh expression after treatment with 0.01mg/ml EC23 for 30hrs.  A is a right lateral right view 

of the torso. The box in A) indicates the operated wing and highlights ectopic expression of Shh (white 

arrow).  B) is dorsal view of embryo pinned to agar; operated wing is right and anterior top.  C-F) are 

dorsal views of wing buds dissected: C and D are retinoid treated and E and F are the contralateral wing 

buds to those depicted in C and D.  The arrow in C) highlights ectopic Shh expression in response to 

30hrs treatment with 1mg/ml ATRA. Abbreviations: nt, neural tube; wb, wing bud.  Scale bars are 1mm. 
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Retinoids inhibit limb outgrowth: 

 

It has been seen that high concentrations of retinoids can cause inhibition of limb 

outgrowth leading to limb truncations (see chapter 3(Tickle et al., 1985)).  Considering that 

endogenous Shh expression appears to be decreased and that only early indicators of digit 

duplication are altered, it may be proposed that genes involved in the control of limb 

outgrowth are likewise inhibited in response to retinoids.  

 

Interestingly, table 5.8 shows a number of genes linked to limb outgrowth are down-

regulated in retinoid treated anterior wing buds.  Tbx5 is essential for limb development 

and correct forelimb identity but also for correct outgrowth of the anterior limb bud (Rallis 

et al., 2003). Lhx9 is an anterior marker during chick limb development (Nohno et al., 

1997) but during mouse limb development has been implicated in regulating limb 

outgrowth (Tzchori et al., 2009). Short stature homeobox (Shox; table 5.10) has also been 

implicated in limb outgrowth as it is known to cause shortened limbs when mutated 

(Sabherwal et al., 2007). The down-regulation of these genes is consistent with the idea 

that retinoids are inhibiting some pathways controlling limb outgrowth and further 

supporting the idea that limb development is stalled by both retinoids.  

 

Table 5.8: The response of genes involved in limb outgrowth to 1mg/ml ATRA or 0.01mg/ml EC23. 

Gene title Gene Symbol ATRA EC23 

T-box 5 Tbx5 -3.5 -2.8 

Lim homeobox 9 Lhx9 -5.1 -2.9 

Fibroblast growth factor 1 Fgf1 -6.0 -3.8 

Fibroblast growth factor 13 Fgf13 -2.1 -2.0 

Fibroblast growth factor 18 Fgf18 -4.4 -2.3 

Transforming growth factor β2 Tgfβ2 -5.5 -3.1 

 

Growth Factors 

 

Correct limb development has been shown to be partly under the control of Shh in the 

ZPA.  Limb development is also controlled by two other signalling centres: the AER and 

the dorsal ectoderm (Niswander et al., 1994; Parr and McMahon, 1995).  The AER 

controls growth in the PD axis via the secretion of the following proteins: FGF2, FGF4, 

FGF8, FGF9 and FGF17 although FGF8 alone is sufficient to sustain outgrowth (Mariani 

- denotes down-regulation. 
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et al., 2008).  Interestingly, other FGFs (fgf2, fgf10, fgf12 and fgf13) are expressed in the 

mesenchyme of the limb and they may have other roles e.g. fgf10 is involved in limb 

initiation and AER maintenance (Ohuchi et al., 1997; Zakany et al., 2007). BMP, TGFβ 

and WNT signalling are also known to influence limb size and differentiation (Brunet et 

al., 1998; Choocheep et al., 2010; Loganathan et al., 2005; Macias et al., 1997; Spagnoli et 

al., 2007).  Considering that these signalling pathways are interrelated, particularly the 

FGF-SHH signalling loop, and that the endogenous level of Shh expression was reduced in 

retinoid treated wing buds, the retinoid genetic targets were interrogated for changes to the 

expression of these genes. 

 

As shown in table 5.8, the expression of some Fgf genes has been down-regulated after 

retinoid treatment.  Oddly the FGFs which are altered in response to both retinoids are not 

those traditionally linked to AER function: Fgf2, Fgf4, Fgf8, Fgf9 and Fgf17.  The fact that 

these Fgfs are not significantly altered indicates that EC23 and ATRA are not shortening 

the limb or generating digit duplications by disrupting AER-FGFs despite the fact that 

genetic targets of both are enriched for genes involved in epithelial proliferation (see later), 

therefore disruption to the AER could occur via another mechanism.  However, retinoids 

may inhibit outgrowth as those Fgfs altered may have hitherto unappreciated roles in 

communication or outgrowth. Fgf13 (Munoz-Sanjuan et al., 1999) and Fgf18 (Ohbayashi 

et al., 2002) have been linked to limb cartilage development and their down-regulation is 

consistent with dysregulation of chondrogenesis. Interestingly Fgf18 is also expressed in 

the anterior-distal wing bud mesenchyme (GEISHA, March 2013) and therefore may 

further support a suppression of distal identity as discussed previously.    

 

Tgfβ2 is also down-regulated after 24hrs retinoid treatment. Tgfβ2 has been implicated in 

the control of chondrogenesis (Miura and Shiota, 2000) and its down-regulation at 24hrs is 

consistent with inhibition of humerus development, which is occurring at this time (Searls 

et al., 1972). This inhibition of cartilage development is also consistent with the functional 

analysis of EC23 regulated genes but not those of ATRA down-regulated genes. This 

indicates that other genes may be altered in response to ATRA causing the function of 

skeletal development to be enriched in ATRA targets (see later for ATRA specific genes). 

Tgfβ2 has also been implicated in the control of limb outgrowth (Lorda-Diez et al., 2010) 

and tendon development (Edom-Vovard and Duprez, 2004) indicating that EC23 and 

ATRA may be causing effects on aspects of limb development other than solely affecting 

cartilage development. This is consistent with the functional classifications seen previously 
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although neither outgrowth or tendon development are present in the functions clustered. 

This may indicate that only few genes involved in limb outgrowth and tendon development 

are altered in response to retinoid.  

 

ECM 

 

Growth factor signalling is also known to be affected by the composition of the ECM.  

FGFs, TGFβ and BMP signalling are some of the pathways affected by ECM composition 

(Johnson and Newfeld, 2002; Thisse and Thisse, 2005).  The presence of heparan sulphate 

proteoglycans (HSPGs) in the ECM is required for some interactions e.g. FGF1-FGFR2 

(Thisse and Thisse, 2005).  There are known to be many changes to the ECM during limb 

bud development most of which have been studied in the context of chondrogenesis.  One 

of the major changes is the dynamic expression of collagen: Collagen type I is produced 

early while collagen type II and X indicate early and later cartilage development (Behonick 

and Werb, 2003).  Collagen type IX is also coexpressed with collagen type II in the early 

stages of cartilage condensation.  Many cell surface proteoglycans contain the 

carbohydrate β-D-Gal-Nac-D-Gal as it is up-regulated in chondrogenesis (Hall and 

Miyake, 1995).  Investigation of ECM markers and modifiers in the retinoid genetic targets 

are therefore of interest to determine the effect of retinoids on limb development.   
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Table 5.9: The response of genes involved in ECM composition and cell adhesion to ATRA or EC23 

treatment. 

Gene Title Gene Symbol ATRA EC23 

N-cadherin Cdh2 -2.1 -2.0 

Collagen, type XIV, alpha1 Col14α1 +3.0 +2.4 

Collagen, type IX, alpha3 Col9α3 -5.1 -5.4 

CD44 molecule (Indian blood group) Cd44 -4.0 -2.6 

CD200 molecule Cd200 +3.7 +2.2 

UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 6 (GalNAc-T6) 

Galnt6 +7.1 +5.8 

UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 9 (GalNAc-T9) 

Galnt9 -3.9 -4.1 

Cadherin 17 (LI) Cdh17 +5.7 +6.0 

ADAM metallopeptidase with thrombospondin type 1 motif, 17 Adamts17 +2.3 +2.9 

Matrillin 4 Matn4 -10.4 -10.2 

 

 

As can be seen from table 5.9, N-cadherin (cdh2) is down-regulated by retinoid.  N-

cadherin has been shown to be essential for cell aggregation during cartilage condensation 

(Oberlender and Tuan, 1994a) as well as later stages of chondrogenesis (Delise and Tuan, 

2002).  This indicates that the early events of chondrogenesis are inhibited in response to 

retinoid.  As N-cadherin is a target of TGFβ2 (Miura and Shiota, 2000), other genes in this 

pathway may also be down-regulated. Interestingly, there is a concurrent up-regulation of 

cadherin 17 in response to retinoid. Cadherin17 has not been linked to limb development 

although it has been implicated in the correct development of the pronephric ducts in 

zebrafish (Horsfield et al., 2002). This supports the idea that there is a great change in the 

ECM of the developing limb after retinoid treatment.   

 

Unexpectedly there is no change in collagen type II which is an early marker of cartilage 

differentiation (Hall and Miyake, 1995).  However, retinoids cause increased col14α1 

which is thought to bind to a member of the CD44 family (Ehnis et al., 1996).  Cd44 

(Indian) is seen to be down-regulated in response to retinoid indicating that this member is 

unlikely to be the col14 receptor. As previously mentioned collagen type IX is involved in 

later steps of cartilage differentiation (Hall and Miyake, 1995) therefore the down-

regulation of col9α3 indicates that chondrogenesis is delayed.  Galnt9 is also down-

+ denotes up-regulation; - denotes down-regulation. 
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regulated which is involved in O-linked glycosylation (Ten Hagen et al., 2001). There are 

known to be many sites for O-glycosylation in ECM proteins e.g. collagen I and HSPG 

(Gould et al., 1992), this therefore further implicated retinoids in modulating the ECM. 

Interestingly there is also a down-regulation of matrilin4 expression in response to 

retinoid.  This gene is a cartilage matrix protein and is known to be connected to scapula 

development (Feenstra et al., 2012). The down-regulation of these genes suggests that the 

changes to ECM are not consistent with cartilage development and support the idea that 

retinoids are inhibiting limb development by the inhibition of chondrogenesis.  

 

Retinoids inhibit developmental processes occurring in the developing wing. 

 

As previously mentioned many processes occur simultaneously during limb development 

to ensure the correct number and positioning of cartilage, tendons, muscle and nerves for 

correct limb function.  It has been shown previously that muscle as well as cartilage is 

duplicated after ATRA application to the anterior wing bud (Yamamoto et al., 1998).  

Although the effect of these retinoids on other aspects of limb development has not been 

the subject of this study, EC23 and ATRA may alter the expression of genes involved in 

these processes as well as those involved in cartilage development. 
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Table 5.10: The response of genes known to be involved in differentiation of cartilage, muscle, tendon, 

nerve and vascular development to ATRA and EC23. 

Gene Title 
Gene 

Symbol 
ATRA EC23 

Cartilage Development 

Periostin, osteoblast specific factor. Postn/Osf2 +8.3 +3.1 

wingless-type MMTV integration site family, member 11 Wnt11 +6.1 +3.8 

Chondromodulin/Leukocyte Cell Derived Chemotaxin 1. Lect1 -3.4 -2.8 

Cytokine like 1 Cytl1 -8.7 -4.4 

EGF-containing fibulin-like extracellular matrix protein 1/ Fibulin-3 Efemp1 -17.5 -14.4 

Fibulin-5 Fbln5 -2.7 -2.4 

Sperm Adhesion Molecule1 (PH-20 hyaluronidase) Spam1 -2.8 -2.3 

Short stature homeobox Shox -3.3 -2.9 

Thrombospondin 4 Thbs4 -2.5 -2.5 

 

Tendon Development 

Collagen, type XIV, alpha 1 (undulin) Col14α1 +3.0 +2.4 

odz, odd Oz/ten-m homolog 2 (Drosophila)/teneurin-2 Odz2 +6.2 +3.7 

Pleiotropin Ptn +2.9 +2.1 

Slit homologue 1 Slit1 +4.1 +3.4 

 

Muscle Development 

Mesenchyme Homeobox 2 Meox2 -6.0 -3.4 

Ectonucleotide pyrophosphatase/phosphodiesterase 2/Autotaxin Enpp2 -3.9 -2.9 

Brain Derived Neurotrophic Factor. Bdnf -2.3 -2.1 

 

Vascular Development 

hairy/enhancer-of-split related with YRPW motif 1 Hey1 -2.2 -2.4 

 

 

Many genes implicated in these processes have been altered by retinoid treatment (see 

table 5.10).  Both retinoids have up-regulated some genes or their receptors implicated in 

cartilage development: Periostin (Zhu et al., 2008b), slit1 (Vargesson et al., 2001), and 

wnt11 (Uysal-Onganer and Kypta, 2012). Periostin has been seen to be expressed in mouse 

chondrocytes at a later stage than studied here (Zhu et al., 2008b) and this may indicate an 

earlier role for this gene in chick wing development. However, EC23 and ATRA have 

down-regulated more genes linked to cartilage development consistent with the idea that 

cartilage development is inhibited: lect1 (Shukunami et al., 1999), cytokine-like 1 (Cytl1) 

(Kim et al., 2007), EGF-containing fibulin-like extracellular matrix protein 1 (efemp1) 

+ denotes up-regulation; - denotes down-regulation. 
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(Wakabayashi et al., 2010), Sperm Adhesion Molecule1 (PH-20 hyaluronidase) (Spam1) 

(Bastow et al., 2008), n-cadherin (Oberlender and Tuan, 1994a), Shox2 (Yu et al., 2007) 

and thrombospondin 4 (Tucker et al., 1995). 

 

Genes involved in tendon development are also altered in response to both retinoids. 

Retinoids up-regulate Col14α1, pleiotropin and Odz2 (see table 5.10) which have been 

implicated in tendon development later (Edom-Vovard and Duprez, 2004; Mittapalli et al., 

2009; Tucker et al., 2001b).  As mentioned previously, there is down-regulation of Tgfβ2 

and Fgf18 both of which are implicated in tendon development (Edom-Vovard and 

Duprez, 2004).  Overall, the changes in expression after retinoid treatment are consistent 

with dysregulation of tendon development but given that Tgfβ2 is thought to be an 

important regulator, these are consistent with an inhibition of tendon development. 

 

Both retinoids also appear to down-regulate genes known to be involved in muscle 

development: Fgf1 (Itoh et al., 1996) and mesenchyme homeobox 2 (Meox2) (Mankoo et 

al., 1999). Slit1 has also been linked to myogenesis (Vargesson et al., 2001) and nerve 

development indicating that retinoids affect all aspects of limb development. Similarly, 

retinoids also down-regulate enpp2 and Bdnf which have been linked to muscle and limb 

nervous development (Fotopoulou et al., 2010; Tucker et al., 2001a). Interestingly both 

retinoids also alter genes which have been connected to the control of vascular 

development: hairy/enhancer-of-split related with YRPW motif 1 (Hey1) (Fischer et al., 

2004) or its inhibition: Lect1 (Shukunami et al., 2005). 

 

Overall, these observations suggest that these developmental processes are being inhibited 

in response to retinoid, consistent with the functional analyses described previously.  

 

Genes showing differential regulation by the two retinoids tested. 

 

As shown in table 5.1 some genes appear to be altered to a greater extent after treatment 

with only one of the retinoids.  Selected genes which are only seen to exhibit 2 fold change 

significantly in response to ATRA are shown in table 5.11. It can be seen that only ATRA 

induces the following genes expressed in the proximal wing: Lix1 homologue (chicken) 

(Lix1) (Swindell et al., 2001) and down-regulates genes expressed in the distal or posterior 

wing: Gastrulation brain homeobox 2 (Gbx2) (Niss and Leutz, 1998), Msx1 (Zhang et al., 

1997), Lhx2 (Lu et al., 2000), Sall1 (Farrell and Munsterberg, 2000), tumour necrosis 
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factor receptor superfamily, member 19 (Tnfrsf19)  (Pispa et al., 2003) and hoxa13 

(Yamamoto et al., 1998) as well as altering those mentioned previously. 5’ hox genes have 

been implicated in limb axis patterning (Boulet and Capecchi, 2004; Small and Potter, 

1993) and, consistent with the change in PD axis patterning discussed previously, ATRA 

down-regulates Hoxa11 and Hoxa13.  These genes are thought to pattern the zeugopod and 

autopod limb segments respectively and support the idea that ATRA causes 

proximalisation of the limb bud cells. 
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Table 5.11: A selection of genes specifically altered in response to ATRA but not EC23 after 

microarray analysis and which may affect limb development. 

Gene Name Gene Symbol ATRA FC 

Axis patterning and retinoid responsive 

Dual specificity phosphatase 5 Dusp5 +2.8 

Lix1 homologue (chicken) Lix1 +10.3 

Gastrulation brain homeobox 2 Gbx2 -2.4 

Msh homeobox 1 Msx1 -2.1 

LIM homeobox 2 Lhx2 -2.6 

Sal-like 1 (Drosophila) Sall1 -3.0 

tumour necrosis factor receptor superfamily, member 19 Tnfrsf19 -2.3 

Homeobox a11 Hoxa11 -2.8 

Homeobox a13 Hoxa13 -13.0 

 

Cartilage Development 

Collagen type VI α3 Col6α3 +2.6 

Dispatched homologue 1 Disp1 -2.7 

Doublecortex Dcx +2.8 

ecotropic viral integration site 1 Evi1 -2.6 

FRAS1 related extracellular matrix 1 Frem1 -4.7 

Noggin Nog +5.9 

Paired box 9 Pax9 -4.1 

Sulfatase 1 Sulf1 -2.1 

Syndecan 3 Sdc3 +2.7 

Tendon Development 

Scleraxis Scx -2.3 

 

Nervous Development 

Activated leukocyte cell adhesion molecule Alcam -3.4 

 

Muscle Development 

calcium channel, voltage-dependent, gamma subunit 4 Cacng4 -2.3 

Delta-like 1 (Drosophila) Dll1 -2.3 

Myogenic differentiation 1 MyoD1 -9.2 

 

Vascular Development 

Angiopoeitin 2 Angpt2 -3.6 

 + denotes up-regulation; - denotes down-regulation. 
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Interestingly, both hoxa11 and hoxa13 have been implicated in cartilage and muscle 

patterning, indicating as before, that developmental processes are delayed in the retinoid 

response.  This is further supported by the down-regulation of other genes which may be 

involved in the control of cartilage development: Dispatched homologue 1 (Disp1; 

(Tsiairis and McMahon, 2008)), Dual specificity phosphatase 5 (Dusp5; (Bobick and 

Kulyk, 2008)), Pax9 (LeClair et al., 1999) and Sulfatase 1 (Sulf1; (Zhao et al., 2006)); 

tendon development: scleraxis (Scx; (Schweitzer et al., 2001)); nerve development: 

Activated leukocyte cell adhesion molecule (Alcam; (Weiner et al., 2004)) and Gbx2 

(Bouillet et al., 1995; Byrd and Meyers, 2005); muscle development: calcium channel, 

voltage-dependent, gamma subunit 4 (cacng4; (Kious et al., 2002)), Delta-like 1 (Dll1; 

(Rios et al., 2011)) and MyoD (Delfini et al., 2000; Kablar et al., 1997); and vascular 

development: Angiopoeitin 2 (Angpt2; (Kim et al., 2006)).  The down-regulation of Lhx2, 

mentioned previously as a distal wing marker, also has a role in limb outgrowth 

(Rodriguez-Esteban et al., 1998) suggesting that normal limb outgrowth is impaired in 

response to retinoid. The up-regulation of Dusp5, which is thought to maintain stem cell 

potency (Chen et al., 2011b), is consistent with this hypothesis. 

 

However, it can be seen that there is an up-regulation in some early markers of cartilage 

development in response to ATRA: syndecan 3 (sdc3), noggin and col6α3 (Brunet et al., 

1998; Hall and Miyake, 2000; Quarto et al., 1993). These have been shown to be early 

markers of condensation and chondrogenesis which would indicate that ATRA treated 

wing buds are overcoming the developmental delay. 
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Table 5.12: A selection of the genes specifically altered in response to EC23 but not ATRA and which 

may play a role in limb development. 

Gene Name Gene Symbol EC23 FC 

Retinoid metabolism 

Retinaldehyde dehydrogenase 2 Raldh2 -4.1 

 

Growth factors 

Fibroblast growth factor 9 Fgf9 -2.83 

Fibroblast growth factor 16 Fgf16 -3.2 

 

Cartilage development 

Bone morphogenetic protein receptor, type IB Bmpr1b -2.6 

R-spondin 3 homolog (Xenopus laevis) Rspo3 -2.1 

 

Nervous development 

Leucine rich repeat and Ig domain containing 1 Lingo1 -2.2 

Similar to KIAA0315 /// plexin B2 Plexinb2 -2.0 

 

Muscle development 

Annexin A1 Anxa1 -2.0 

bHLH transcription factor beta3 Beta3 -3.4 

Hepatocyte growth factor Hgf +2.3 

 

 

It is interesting that far fewer genes are significantly altered in response to EC23 alone than 

to ATRA alone (compare tables 5.11 and 5.12).  This is likely to be due to the fact that 

EC23 cannot isomerise in response to light and is metabolised to a lesser extent.  Table 

5.12 shows a selection of the genes which are altered in response to EC23 alone. It can be 

seen that EC23 down-regulates Raldh2, the most important retinoic acid synthesising 

enzyme during limb development (Niederreither et al., 1999).  This provides further 

evidence that the limb bud cells are less able to metabolise EC23 compared to ATRA (see 

chapter 4).  In addition to the Fgfs described previously (Fgf1, Fgf13 and Fgf18), EC23 

down-regulates two further Fgfs. Fgf9 has been documented to be expressed in the AER 

and is involved in the development of the stylopod (Hung et al., 2007) as well as Fgf16 

+ denotes up-regulation; - denotes down-regulation. 
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whose role in limb development is unknown, although it does play a role in limb initiation 

in Zebrafish (Nomura et al., 2006). This is consistent with the previous finding that EC23 

down-regulated target genes are enriched in positive regulators of epithelial proliferation.  

 

Bmpr1b (Karamboulas et al., 2010; Pizette and Niswander, 1999) and Rspondin2 (Aoki et 

al., 2008) have been implicated in cartilage development supporting the idea that cartilage 

differentiation is impaired.  Other developmental processes are also down-regulated in 

response to EC23: nervous development (outside of the limb): Lingo1 (Okafuji and 

Tanaka, 2005) and PlexinB2 (Perala et al., 2010); and muscle development: AnnexinA1 

(Bizzarro et al., 2010) and bHLH transcription factor beta3 (Beta3) (Peyton et al., 1996).  

Conversely there is an up-regulation of hepatocyte growth factor (Hgf) expression which is 

known to be involved in the early stages of myoblast migration (Ohuchi and Noji, 1999) 

indicating that the effects of EC23 on muscle development need further characterisation. 

From its expression pattern in the chick wing, Hgf has also been implicated in limb 

outgrowth (Heymann et al., 1996). 

 

Therefore it can be seen that the response to both EC23 and ATRA is to inhibit limb 

development.  Due to the differences in metabolism and isomerisation of these compounds, 

it appears that ATRA treated pools can overcome this delay earlier than EC23 treated pools 

and begin cartilage differentiation. It can also be seen that ATRA alters the expression of 

more genes with PD restrictions.  This supports the evidence that limb re-specification is 

occurring and that it is occurring earlier than in EC23 treated wings. 

 

Validation by qPCR. 

 

To confirm microarray analysis by another technique, validation was carried out using real 

time quantitative PCR on selected genes.  The genes validated were: Raldh2, Cyp26A1, 

Emx2, Meis2, Hoxb8, Hoxa13, Lhx9, n-cadherin, Hgf and Col6α3.  Their regulation after 

microarray analysis and the reason for analysis is shown in the table 5.13 below. 
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Table 5.13: The targets chosen for validation with qPCR. 

Gene Regulation Biological Reason 

Raldh2 ↓ EC23 only Retinoid metabolism (Niederreither et al., 1999) 

Cyp26a1 ↑ Most in both ATRA target and retinoid metabolism (White et al., 1997) 

Meis2 ↑ in both Proximal marker (Mercader et al., 2000) 

Emx2 ↑ in both Proximal and scapula marker (Prols et al., 2004). 

Hoxa13 ↓ in ATRA Distal Marker (Yamamoto et al., 1998) 

Hoxb8 ↑ in both Patterns posterior wing and retinoid responsive (Stratford 

et al., 1997) 

Lhx9 ↓ in both Anterior marker (Nohno et al., 1997) 

N-Cadherin ↓ in both Early condensation marker (Oberlender and Tuan, 1994b) 

Hgf ↑ in EC23 Limb skeletal muscle migration (Mic and Duester, 2003) 

Col6a3 ↑ in ATRA Early chondrogenesis  (Quarto et al., 1993) 

Gapdh - Housekeeping 

 

 

qPCR targets were chosen such that each mode of regulation could be validated as shown 

in table 5.13.  Figure 5.11 shows the expression of glyceraldehyde-3-phosphate 

dehydrogenase (Gapdh), used in the present study as a housekeeping gene to which gene 

expression was normalised, remains constant in all pools of RNA treated with retinoid or 

DMSO.  The first DMSO treated pool is an exception to this and the expression of all 

genes assayed by qPCR are altered in this pool. This has caused the alteration in gene 

expression between DMSO and retinoid treated pools to be statistically insignificant for the 

following genes e.g. Raldh2, Hoxa13 and Cdh2. Due to this, it is recommended that this 

data and the conclusions herein are considered preliminary until another pool of RNA can 

be analysed.  

 

However, it can be seen from figures 5.12 and 5.13 that qPCR validates the microarray 

analysis as the genes analysed follow the trends seen in the microarray analysis.  That said, 

qPCR does indicate that some genes thought to be specific to one retinoid is also seen to be 

significantly altered in response to the other retinoid e.g. Col6α3, Hgf and Hoxa13 (figure 

5.13C). This could be due to the fact that the qPCR method is significantly more sensitive 

than microarray analysis.  However, it should be noted that the “specific” genes tested are 

altered further in the RNA from treatment with the “specific” retinoid. This is consistent 

with the comparison of microarray chips hybridised to RNA from ATRA and EC23 treated 

wing buds which yielded very few significantly altered genes (table 5.3) even when the 

fold change was lowered to >1.5fold. Therefore, it is likely that both retinoids alter the 

↑ denotes up-regulation; ↓ denotes down-regulation. 
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same targets but the magnitude of their response differs and may be the cause of the 

differences in phenotypes seen.  This has wider implications in that, given that EC23 is 

more resistant to CYP26 mediated metabolism, this indicates that the metabolites are 

unlikely to be altering gene expression in the anterior wing bud as there is in fact little 

qualitative difference between the two retinoids. 

 

 

 

 

 

 

 

 

Figure 5.14: The Expression of Gapdh in response to all treatments. 

 

 

 

 

 

 

 

 

 

Numbers refer to the replicate of RNA.  Average CT is the number of cycles taken for the gene to be 

expressed. 
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Figure 5.15: qPCR validation of the genes involved in retinoid metabolism after ATRA or EC23 

treatment. 

 

 

 

 

 

A) shows the expression of CYP26A1 by qPCR.  B) shows the expression of Raldh2 by qPCR.  Fold 

change is with respect to DMSO treated wing buds.  RNA used was from the same pool as the RNA used 

for the original microarray analysis.  N=3, error bars ± standard deviation.  Statistical significance was 

tested using unpaired students t-test. * p<0.05,  ** p<0.01,  *** p<0.001. 
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Figure 5.16: qPCR validation of genes involved in wing bud axis patterning or differentiation after 

retinoid treatment. 

 

 

 

A) shows validation of genes known to be involved in PD axis patterning.  B) shows validation of genes 

involved in AP axis patterning. C) shows validation of genes involved in differentiation processes. Fold 

change is with respect to DMSO treated wing buds.  RNA used was from the same RNA pool as that used 

for the original microarray analysis.  N=3, error bars ± standard deviation.  Statistical significance was tested 

using unpaired students t-test. * p<0.05,  ** p<0.01,  *** p<0.001. For abbreviations see table 5.13. 
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Discussion: 

 

The results outlined in this chapter have investigated the genetic response of the anterior 

wing bud to 24hrs treatment with ATRA or EC23.  It has been seen that EC23 and ATRA 

alter similar genetic targets and that any differences between these retinoids are likely to be 

due to magnitude of retinoid response and differences in their metabolism: ATRA 

consistently alters genetic targets to a greater extent than EC23 treated wings.  This is 

notable when the mean fold change of the 30 most up-regulated common genes is 

compared: 21.82 in ATRA treated wings versus 14.62 in EC23 treated wings. Similarly, 

comparison between the 30 most down-regulated genes shows the mean down-regulation 

as -8.68 in ATRA and -5.66 in EC23. This is also supported by the low number of 

significantly altered genes after comparison between EC23 treated and ATRA treated wing 

bud RNA pools (table 5.2). It has also been seen that both retinoids appear to alter genes 

involved in axis patterning but only Hoxb8 associated with early digit duplication (tables 

5.6 and 5.7). Of particular significance is that the retinoid targets indicate that at these 

quantities and concentrations of EC23 and ATRA, retinoids inhibit limb development 

(tables 5.8-10).  This is particularly evident from the inhibition of endogenous Shh 

expression in the posterior of the retinoid treated wing (figure 5.10). Interestingly, from the 

genetic targets and the up-regulation of Shh expression after 30hrs in ATRA but not EC23 

treated wing buds, it appears that ATRA treated wing buds overcome this developmental 

inhibition earlier than EC23 treated wing buds (figure 5.10, tables 5.11 and 5.12).  This 

may be due to their differences in metabolism and may provide a mechanism for the 

differences in digit duplications seen. The target genes and their implications are discussed 

in the following sections. 

 

Functional classification and clustering. 

 

The clustering of microarray data and functional classification of the genes indicate that 

EC23 and ATRA treatments initiate a similar response.  This is due to the fact that despite 

its dissimilar structure EC23 behaves as a retinoid. Considering the structure of EC23, this 

observation further supports evidence that the trimethylcyclohexenyl ring and carboxylic 

acid groups are significant for RAR binding and retinoid signalling (Barnard et al., 2009).  

The fact that ATRA treated wing buds overcome their developmental delay earlier than 

EC23 treated wing buds (tables 5.3 and 5.4; discussed later) may be due to the differences 
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in metabolism of these compounds.  EC23 is metabolised to a lesser extent than ATRA 

(chapter 4) and therefore may directly affect retinoid responsive genes for a longer period 

as the ATRA analogue is still present. This would be consistent with evidence that the 

related retinoid, TTNPB, activates β2RARE driven luciferase for a longer time period than 

ATRA (Pignatello et al., 1999), and implies that metabolism of the excess retinoid is an 

important part of the retinoid response.  

 

On the other hand, controversial evidence has been produced on the effects of the retinoid 

metabolites (Niederreither et al., 2002a; Pijnappel et al., 1993; Reijntjes et al., 2005).  4-

oxo-retinoic acid and 4-hydroxy retinoic acid are produced by the CYP26 enzymes and are 

two of the primary metabolites of ATRA. Genetic studies in mouse infer that the CYP26 

enzymes function to eliminate excess retinoid from the developing embryo and maintain 

appropriate ATRA levels (Niederreither et al., 2002a; Topletz et al., 2012; White et al., 

1997). However, 4-oxo-RA has been documented to cause effects of its own (Pijnappel et 

al., 1993) and in fact to rescue VAD (Reijntjes et al., 2005). Therefore, in the ATRA 

treated pools there may be other retinoid derivatives responsible for the genetic response. 

Perhaps, it is more likely that the CYP26 metabolism products are having the biggest effect 

on the ATRA genetic targets.  The resistance of metabolism observed with EC23 would 

cause the dynamic turn-over of retinoid to be inhibited which may be necessary for 

differentiation processes. This is supported by the fact that ATRA alters the expression of 

more genes than EC23 and that the genes altered have a wide range of interacting functions 

as shown in the DAVID functional classifications. This would be expected from a greater 

range of retinoids in the ATRA treated wing buds. However, analysis of EC23 and ATRA 

treated wing bud RNA treated microarray chips indicate that there is little significant 

difference between EC23 and ATRA. This suggests that in fact the metabolites have little 

effect in the developing wing at this time and therefore may implicate stalling as the reason 

for the apparent differences.  

 

Likewise the fact that EC23 is also photostable may generate a different set of genetic 

targets.  ATRA undergoes isomerisation to 9-cis RA and 13-cis RA in response to light 

(Christie et al., 2008; Thaller et al., 1993).  These compounds have been shown to be 

present in developing organisms but have been associated with pathological ATRA excess 

(Horton and Maden, 1995) and are thought to have little significance at physiological 

concentrations. It has been proposed that 9-cis RA can activate RXR and therefore may 

affect: retinoid, vitamin D and PPAR receptor pathways as these can all dimerise with 
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RXR (Germain et al., 2006).  Whether there are genetic targets of the retinoid isomers is 

unknown, but they may still have indirect effects in that they will reduce the concentration 

of active ATRA in the ATRA treated wing buds.  Interestingly ATRA has also been 

proposed to activate PPARβδ/RXR heterodimers (Shaw et al., 2003) which will be 

discussed in chapter 6. During these experiments, ATRA was shielded from light during 

the operation procedure and eggs were incubated in the dark. Under these conditions it has 

been documented that ATRA is stable whereas upon exposure to light for 3 days 63% of 

the ATRA is degraded (Christie et al., 2008). Therefore, these isomers may cause less of 

an effect but it is possible that ATRA is converted to these isomers by in vivo enzymes as 

has been documented in rat embryos (Chen and Juchau, 1998). 

 

Response of genes involved in retinoid metabolism and signalling. 

 

Retinoids are shown to alter genes involved in retinoid metabolism and signalling (table 

5.5). Consistent with the idea that excess retinoid causes malformation to the developing 

wing, the Cyp26 genes are some of the most up-regulated. This response supports the idea 

that the limb is trying to eliminate excess retinoid by conversion to oxidative derivatives as 

suggested by Niederreither et al (2002). Manipulations of Cyp26b1 have also generated 

similar phenotypes to those observed in chapter 3 and will be discussed later. Also highly 

up-regulated are other genes known to be retinoid responsive and involved in the retinoid 

signalling pathway e.g. dhrs3 and Rarβ2.  Dhrs3 has been shown to inhibit retinoid 

production by a negative feedback mechanism on the conversion of retinol to retinal (Feng 

et al., 2010). This combined with the up-regulation of Cyp26 is consistent with the 

hypothesis that the limb is regulating retinoid levels tightly in the developing wing bud and 

eliminating the excess.  Rarβ has been proposed to be the receptor which modulates 

retinoic acid teratogenesis in the branchial arches (Matt et al., 2003). Given the expression 

domain of Rarβ2 (chapter 4; (Smith et al., 1995)) and the fact that retinoid induced 

reorganisation of the AER occurs via the mesenchyme (Tickle et al., 1989), activation of 

RARβ in the limb could occur in the present study and explain the absence of other Rar 

subtypes in the datasets.  Interestingly Cyp1b1 is also up-regulated in response to both 

retinoids.  Cyp1b1 has been shown to convert retinol to ATRA without the intermediate 

oxidation step (Chambers et al., 2007). This could indicate a dysregulation of retinoid 

metabolism or that Cyp1b1 is capable of converting ATRA back into retinol to maintain 

correct retinoid levels in the developing limb.  
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The significant down-regulation of Raldh2 in EC23 but not ATRA treated wing buds is 

also of interest.  Raldh2 is thought to be the most important ATRA synthesising enzyme 

during embryonic development as its knock out demonstrates that it is essential for the 

early stages of embryonic development (Niederreither et al., 1999).  The other 

retinaldehyde dehydrogenases are very restricted during development (Mic et al., 2000) 

but, more particularly for this study, have not been linked to limb development and are also 

not altered here.  Raldh2, however, is known to be expressed at the proximal wing bud 

(Swindell et al., 1999) and knock out of Raldh2 causes severe limb malformations in 

mouse (Mic et al., 2004; Niederreither et al., 2002b). Knockout of both Raldh2 and 

Cyp26a1 in mouse partially rescues the phenotypes seen with Raldh2 single knockout mice 

(Niederreither et al., 2002a) indicating that correct ATRA levels rather than oxidative 

derivatives are important for embryonic development.  Similar to Dhrs3 up-regulation, 

down-regulation of Raldh2 indicates a further decrease in the level of retinoid production 

to regulate the levels of ATRA present.  This further decrease in retinoid production in 

EC23 treated wings is consistent with the idea that EC23 is potentially resistant to 

metabolism. It could be hypothesised that as EC23 is not metabolised, retinoid levels are 

increased and the CYP26 enzymes are overcome. This could cause the secondary effects of 

decreasing retinoid synthesis via Dhrs3a and Raldh2 in EC23 treated wing buds. As the 

CYP26 enzymes can metabolise ATRA the ATRA treated wing bud does not decrease 

retinoid production to the same extent.  

 

Retinoid responsive genes in the anterior wing may be common to other organ 

systems and the general teratogenic response. 

 

The microarray data presented here is the first analysis of retinoid responsive genes in vivo 

using the chick wing bud as a model system. Other studies of retinoid responsive genes 

have mainly used in vitro models (Ali-Khan and Hales, 2006; Qin et al., 2002; Williams et 

al., 2004). Ali-khan and Hales (2006) have presented data on mouse limb retinoid 

responsive genes after 3hrs cultured in response to retinol.  There are some similarities in 

the retinoid responsive genes in that both retinoid responses involve the up-regulation of 

Wnt11 and Ror1. However, their analysis did not yield any genes significantly down-

regulated by vitamin A whereas from the current analysis it can be seen that more genes 

are down-regulated than are up-regulated by retinoid.   
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Some genes up-regulated after 3hrs culture were down-regulated after 24hrs treatment 

here: Snai2, Hey1 and Msx1 (Ali-Khan and Hales, 2006). This is most likely due to the fact 

that Ali-Khan and Hales analysed direct retinoid targets by investigating gene expression 

after 3hrs, particularly given that microarray analysis after 6hrs retinoid treatment showed 

21 genes to be down-regulated (Qin et al., 2002). This suggests that many genes altered in 

the present study may be indirect targets of the two retinoids. The differences between 

these two arrays may indicate the differences between retinoid compounds used, exposure 

time, species and treatment method. Interestingly and despite these differences, both the 

present study and that of Ali-Khan and Hales (2006) have concluded that the retinoid 

response is impaired differentiation as a result of teratogenesis. This is consistent with the 

phenotypes that they have seen in that untreated cultured limbs generate three limb 

segments with recognisable radius, ulna, wrist elements and digits, whereas ATRA treated 

limbs are shorter and develop two elements with few recognisable elements (Ali-Khan and 

Hales, 2003). Analysis of these arrays indicates Msx1 (Bensoussan-Trigano et al., 2011), 

Pbx, Meis and insulin like growth factor (Igf; (Qin et al., 2002)) as interesting avenues for 

further research as they have been linked to cartilage element shortening and phocomelia 

possibly due to impaired differentiation.  This is comparable to present study where Pbx1, 

Meis2 and Msx1 are altered (tables 5.7 and 5.11) and can be linked to the phenotypes 

produced in the wing bud (later and chapter 6).  

 

531 genes have been suggested to be concrete or potential retinoid genetic targets through 

the analysis of 1191 published papers depending on the evidence presented (Balmer and 

Blomhoff, 2002). They split the retinoid responsive genes according to regulation where 

group 3 were shown to be directly regulated, group 0 were implied to be retinoid regulated 

or indirectly regulated and groups 1 and 2 showed intermediate evidence. The genes shown 

in table 5.14 are those from this review (Balmer and Blomhoff, 2002) which have been 

seen to be retinoid responsive after 24hrs in the present study although they may not have 

been mentioned in the results section.  Only 23 of the 531 genes were seen in the present 

work and often exhibit a different regulation to that suggested by Balmer and Blomhoff 

(2002). 
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Table 5.14: A list of the genes determined to be retinoid responsive in both the present study and those 

suggested by Balmer and Blomhoff in 2002. 

Group 3 Group 2 Group 1 Group 0 

Present study Reg. 

BB 

Present study Reg. BB Present study Reg. 

BB 

Present study Reg. 

BB 

Egr1; up Up Protocadherin1

5; up (E) 

Cdh15; 

up 

AR; dn Vrs Col4α5;  dn 

(A) 

up 

Col4α1 

Hoxa4; up Up Cyp26; up Up CA2; up (A) Up Enpp2; dn Up 

Hoxb4; up Up Gbx2; dn (A) Up Cd44; dn Vrs Fgf1 ; dn Up 

Rarβ; up Up Gnrh; dn Up Cdh2; dn Vrs Gsc; up Dn 

Rbp5; up Up 

Rbp1 

Gpx3; up Gpx2; 

up 

Fgf9; dn (E) Up Hgf ; up (E) Dn 

 Gstz1/A3; up 

(A) 

Gstp1; 

vrs 

Jun;  up (A) Up  

Laminin A2; dn 

LamininG3; up 

Laminin 

B1; up  

Msx1; dn (A) Vrs 

Meis2; up Up Pth1r; dn Vrs 

 Slug; dn Dn 

Tcf1; dn Up 

Tgfβ2; dn Up  

Abbreviations: Reg. BB, regulation in Balmer and Blomhoff (2002); A, ATRA; Ar, androgen receptor; CA2, 

carbonic anhydrase 2; dn, down; E, EC23; Egr1, early growth response 1; Gnrh, gonadotrophin releasing 

hormone; Gpx, glutathione peroxidase; Gstz, glutathione s-transferase zeta; Pth1r, parathyroid hormone 

receptor 1; Tcf1, transcription factor 1, hepatic; vrs, various. 

  

However, Balmer and Blomhoff (2002) were not specific to any tissue but tried to list any 

retinoid responsive genes at the time. They also were not specific to any species and for 

many of the genes listed; there is no known validated sequence in chicken. Interestingly 

only 21% of the genes seen to be retinoid responsive in this study and suggested by Balmer 

and Blomhoff (2002) are known to be directly regulated.  This is consistent with the idea 

that many of the targets seen in the present study are indirect targets of ATRA and EC23 as 

mentioned with respect to down-regulated genes.  

 

A recent study has been conducted to investigate conserved genes responsive to retinoic 

acid using analysis of promoter regions for DR5 RAREs within 10kBp from transcription 

start sites. Only 6 RAREs are conserved between all jawed vertebrates one of which is 

Meis1. They found that 138 genes have RAREs conserved between mouse and human and 

the following were also altered in the present study: enpp2, Hey1, Hoxb3, Meis2, Rarβ and 

Ror1. They note that other genes e.g. Gbx2 and Cyp26b1, both of which are retinoid 
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responsive here, are not present in their dataset as they used 10kBp from the start and 

highly conserved genes as their criteria (Lalevee et al., 2011). 

 

Interestingly, despite species differences, some of the genes presented in this study as 

retinoid responsive have also been shown to be retinoid responsive in the mouse (Ali-Khan 

and Hales, 2006), Zebrafish (Feng et al., 2010) and the rat (Luijten et al., 2010) as shown 

in table 5.15.  Feng et al (2009) treated zebrafish embryos with ATRA and an antagonist to 

elucidate retinoid targets.  The following genes were up-regulated in response to ATRA in 

both this study and that of Feng et al (2009): Hoxa4, Dhrs3, Cyp26a1, Wnt11, Meis2 and 

Hoxb5.  Retinoid decreased the expression of Raldh2 and Lrrn6 in both studies. 

Interestingly, unlike Ali-Khan and Hales (2006), the study by Feng et al (2009) was not 

specific to the limb bud but investigated the whole embryo response and treatment was for 

5hrs. Recently, Luijten et al (2010) used whole rat embryo culture to investigate the 

teratogenic effects of ATRA. Many genes found altered after retinoid treatment for 24hrs 

are also in the dataset from Luijten et al after 4hrs of retinoid treatment: Cyp26A1, Dhrs3, 

Dlx5, Dusp5, Enpp2, ecotropic viral integration site 1 (Evi1), fgf18, Gbx2, Hey1, Hoxa5, 

Meis2, neural precursor cell expressed, developmentally down-regulated 9 (Nedd9), Pax9 

and Rarβ. As with the genes from Feng et al (2009) there are some similarities despite the 

fact that the species, treatment method and treatment times are different. The genes 

common to this study, Ali-Khan and Hales (2006), Feng et al (2009) and Luijten et al 

(2010) may therefore form genes of a more “general retinoid response”. Table 5.15 shows 

the genes seen in this study and those others with those in bold as seen in the present study 

and 2 or more others. These genes may form part of the general ATRA response: Cyp26, 

Meis2 and Dhrs3 as the studies exhibiting these used ATRA as the treatment. Those others 

may form a more general retinoid response and may, on further study, be particular to one 

tissue. 
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Table 5.15 : Genes determined to be retinoid responsive in the present study and their comparison 

with others. 

Study Retinoid responsive genes 

Balmer and 

Blomhoff (2002) 

Egr1, Hoxa4, Hoxb4, Rarβ, Cyp26, Gbx2, Meis2, AR, Ca2, Cd44, Cdh2, Fgf9, 

Jun, Msx1, Pth1r, Slug, Tcf1, Tgfβ2, Enpp2, Fgf1, Gsc and Hgf. 

Ali-Khan and Hales 

(2006) 

Hoxa11, Ror1, Snai2, Hey1, Jun and Wnt11. 

Feng et al (2009) Hoxa4, Dhrs3, Cyp26a1, Wnt11, Meis2, Hoxb5, Raldh2 and Lrrn6  

Luijten et al (2010) Cyp26A1, Dhrs3, Dlx5, Dusp5, Enpp2, Evi1, Fgf18, Gbx2, Hey1, Hoxa5, Meis2, 

Nedd9, Pax9 and Rarβ 

Genes in bold are genes present in 2 or more studies. 

 

It could also be proposed that these genes may form a more general “teratogen response” 

activated in the embryo to ensure that normal development is continued as soon as 

possible. Huang and Hales (Huang and Hales, 2009) investigated the genetic response to 

cyclophosphamide in mouse limbs cultured for 3hrs. They proposed that there was a 

general teratogenic response based on the following genes with those in bold appearing 

altered in the present study: hypoxia inducible factor 1α (hif1α), necdin (ndn), hes1, 

myogenin (myog), egr1, E2F transcription factor 1 (e2f1), bmpr1b, phosphoprotein 

enriched in astrocytes 15 (pea15), Harvey rat sarcoma virus oncogene 1 (hras1), Mad 

homologue 1 (smad1), V-abl Abelson murine leukaemia oncogene 1 (abl1) and 

transcription terminator factor 1 (ttf1); and that it was hypoxia related. Again, despite the 

difference in species and compound investigated some genes or their homologues are 

common to both Huang and Hales (2009) and the present study: Hey1 and Egr1. Hey1 is a 

notch target gene and has been implicated in embryonic vascular differentiation from its 

knockout mouse which is suggested to be due to impaired differentiation (Fischer et al., 

2004).  Egr1 has been implicated in zebrafish oculogenesis due to the phenotype produced 

by mopholino knock down which manifests as impaired differentiation (Hu et al., 2006). 

The presence of these genes in the present study suggests that the response to teratogen is 

to impair differentiation and is consistent with the hypothesis that retinoids stall wing 

development. Bmpr1b, which is only responsive to EC23 in the present study, suggests that 

dysregulated BMP signalling may have formed an earlier part of the ATRA response (Ali-

Khan and Hales, 2006) and may control the teratogenic response. These genes would be an 

interesting avenue for further research into teratogen as well as retinoid response. 
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Stalling. 

 

As mentioned in the results section, it can be seen that application of both retinoids to the 

anterior wing bud causes an inhibition of differentiation usually occurring at this stage 

(tables 5.4, 5.8, 5.9 and 5.10). This suggests that the development of the anterior wing bud 

at this stage of the retinoid response is stalled when compared to the DMSO treated wing 

bud. The phenotypes presented in chapter 3 after treatment with either retinoid included a 

decrease in limb outgrowth as evidenced by the shortening of cartilage elements and 

supported by the genetic targets seen in this chapter (table 5.8).  The decrease to 

endogenous Shh expression observed after 30hrs retinoid treatment (figure 5.10) further 

supports the idea that the response to retinoid is to stall limb development and outgrowth.  

Shh is known to indirectly regulate limb size by maintaining a positive feedback loop with 

FGFs in the AER (Niswander et al., 1994) and knock-down of Disp1, required for long-

range SHH signalling, in mice causes shortening of the long bones (Tsiairis and McMahon, 

2008). Limb outgrowth is stopped when this signalling loop cannot be maintained due to 

the expansion of non-Shh expressing cells previously belonging to the ZPA (Scherz et al., 

2004).  As there is a decrease in Shh expression here, it would follow that there would be a 

concomitant decrease in FGF4 signalling in the posterior forelimb bud.  However, given 

that the current analysis investigated the retinoid genetic targets of the anterior wing bud, 

alteration to Fgf4 expression would not be expected in the tissues analysed.  

 

Previously, SHH was thought to specify digit identity along the anterior-posterior axis.  It 

is still thought that SHH concentration is important for posterior digit identity (Harfe et al., 

2004; Towers et al., 2008; Zhu et al., 2008a) but that SHH is also important for 

maintaining proliferation in the anterior wing for anterior digit specification (Towers et al., 

2008). Paradoxically a decrease in posterior SHH here results in normal digit 123 

development and often duplication of at least the most anterior digit.  This could be due to 

the fact that whilst endogenous Shh is decreased in response to retinoid, after the limb has 

recovered Shh may be maintained for the same length of time to allow normal limb 

development in a similar manner to its expression after application of an inhibitor of 

proliferation (Towers et al., 2008).   

 

Consistent with a down-regulation of endogenous Shh and inhibition of limb outgrowth 

many genes which are down-regulated after retinoid treatment are involved in regulating 

limb outgrowth (table 5.8).  Tbx5 has been implicated in determination of forelimb identity 
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and scapula development but it is also linked to limb outgrowth (Rallis et al., 2003), 

particularly of the anterior limb in which SHH-dependent proliferation is also proposed to 

be important (Towers et al., 2008). Lhx9 has also been implicated in limb outgrowth due to 

its knockout mouse phenotypes (Rallis et al., 2003; Tzchori et al., 2009). Increased levels 

of Tgfβ2 have been shown to inhibit mesodermal proliferation (Lorda-Diez et al., 2010) 

and therefore, similar to Msx1, the retinoid treated wing buds may be attempting to 

normalise development by increasing proliferation. Developmental stalling and the 

implications for the phenotypes observed in chapter 3 are further discussed in chapter 6. 

 

Cartilage development. 

 

One of the crucial points in limb development is the development of cartilage. The 

cartilage is the first tissue to differentiate in the limb and cartilage condensations are the 

first morphological sign of differentiation. The cartilage is then thought to act as a template 

for the other tissues: tendon, muscle and nerve (Duprez, 2002).  As previously mentioned 

some of the earliest markers of cartilage condensation are: Noggin, Syndecan3, Bmpr1b, n-

cadherin and Tgfβ2. These genes are all altered in response to one or both of the retinoids 

here. During condensation collagen type II is switched on with collagen type IX (Hall and 

Miyake, 1995) concurrent with significant alteration to the ECM. Interestingly, collagen 

type IX is down-regulated in response to both retinoids.  

 

Tgfβ2 is needed to allow the process of chondrogenesis to occur in the condensations and 

acts upstream of n-cadherin (Miura and Shiota, 2000) which has been shown to be 

necessary for the production of cartilage condensations. Consistent with this Tgfβ2 and n-

cadherin are down-regulated in response to both retinoids.  This suggests that cartilage 

condensation is inhibited in response to both retinoids.  Low levels of Dlx5 and Dlx6 (as 

seen after both retinoids) can inhibit cartilage development (Hsu et al., 2006; Robledo et 

al., 2002). Pax9 is also known to be involved in cartilage development (LeClair et al., 

1999) and is down-regulated in this array consistent with inhibition of cartilage 

development. Thrombospondin4 and Dcx are known to be involved in cartilage 

development and their expression increases and decreases during differentiation 

respectively (James et al., 2005). However, in this microarray analysis the expression of 

these genes is reversed and Dcx is only altered in response to ATRA. Fgf18 has been 

shown to be down-regulated in response to both retinoids. FGF18 has been implicated in 

the regulation of chondrogenic differentiation (Ohbayashi et al., 2002), particularly in the 
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mouse cranial structure (Hajihosseini and Heath, 2002) where it is shown that deficiency of 

Fgf18 causes delayed development of cartilage and bone (Ohbayashi et al., 2002). The 

alteration of these genes is consistent with the data presented in chapter 4 which suggests 

that both retinoids inhibit cartilage development. 

 

Analysis of the ATRA or EC23 specific genes suggests that ATRA treated wing buds are 

recovering from the inhibition of wing development initiated as a retinoid response which 

is consistent with the observation that there is an enrichment of genes involved in 

embryonic skeletal and limb development in response to ATRA but not EC23 (tables 5.3 

and 5.11). EC23 appears to inhibit limb outgrowth to a greater extent than ATRA as it 

down-regulates Fgf9, a growth factor secreted from the AER and which is involved in 

outgrowth. This is consistent with the functional classification of down-regulated retinoid 

treated genes (table 5.4). Similarly, Lhx2 (down-regulated in ATRA table 5.11) has been 

shown to control limb outgrowth in both mouse (Tzchori et al., 2009) and chick (Nohno et 

al., 1997) and therefore indicates limb outgrowth is still inhibited. ATRA treated anterior 

wing buds, however, appear to be recovering from inhibition of limb outgrowth. It has 

been shown that defects seen in Shh knockout mice can be partially rescued by decreasing 

Msx1 expression and hence apoptosis (Lallemand et al., 2009).  Msx1 with Msx2 has been 

shown to control anterior limb apoptosis (Lallemand et al., 2005) and therefore down-

regulation of Msx1 in the anterior wing in response to ATRA is consistent with an attempt 

to preserve normal limb development. It has also been implicated in the control of digit 

identity (Bensoussan-Trigano et al., 2011; Lallemand et al., 2005).  

 

Cd44 and Syndecan3 have been implicated in the control of cartilage condensation 

boundaries (Behonick and Werb, 2003; Hall and Miyake, 1995).  While Cd44 is down-

regulated in response to both retinoids suggesting inhibition of cartilage development, 

Syndecan 3 is up-regulated in response to ATRA. There is also an up-regulation of col6α3 

after ATRA treatment which has been implicated in the earliest stages of cartilage 

development (Quarto et al., 1993).  Similarly, Bmpr1b and noggin are both known to be 

expressed in cartilage condensations (Capdevila and Johnson, 1998; Kawakami et al., 

1996; Pizette and Niswander, 2000; Zhu et al., 2008a). As shown they are differentially 

regulated after retinoid application: Bmpr1b is down-regulated after EC23 treatment while 

noggin is up regulated after ATRA treatment (tables 5.11 and 5.12). It has been shown that 

knock out or production of dominant negative BMPR1B causes decreased or absent 

cartilage condensations (Ashique et al., 2002; Karamboulas et al., 2010). The down-
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regulation of Bmpr1b in response to EC23 is further evidence that cartilage differentiation 

is being inhibited. The up-regulation of noggin in response to ATRA, however, is evidence 

that ATRA treated wing buds are overcoming the inhibition to limb development and 

initiating the early stages of condensation consistent with the enrichment of embryonic 

skeletal development in ATRA up-regulated genes during functional clustering. Both 

retinoid treatments indicate that BMP signalling is altered as part of the response. Both 

retinoid treatments also indicate that limb outgrowth and cartilage differentiation is 

inhibited but that ATRA treated wing buds are overcoming this delay in development.   

 

Tendon and muscle development: 

 

Although early stages of limb development are centred on cartilage condensation, other 

processes are also occurring such as early differentiation of muscle and tendon progenitors. 

Similar to cartilage markers, these are also altered in response to retinoid indicating that 

limb development is inhibited. Fgf18 has been shown to be expressed later in distal 

tendons and Tgfβ2 has been implicated as a regulator of tendon development as it 

modulates the expression of col12 and col14 (Edom-Vovard and Duprez, 2004), all of 

which are altered after retinoid treatment (tables 5.8 and 5.10). It has also been suggested 

that Tgfβ2 is needed to maintain the survival of tendon progenitor cells during limb 

development (Pryce et al., 2009).  Tgfβ2 has also been suggested to act upstream of the 

tendon marker scleraxis when applied to micromass cultures (Lorda-Diez et al., 2009; 

Pryce et al., 2009), also down-regulated in response to ATRA.  These alterations indicate 

that tendon development may be inhibited in response to retinoid but more so in response 

to ATRA.  

 

With respect to muscle development, these retinoids differentially regulate many factors 

involved in differentiation (tables 5.11 and 5.12). Of particular interest, Wnt11 is up-

regulated in response to both ATRA and EC23.  Wnt11 has been implicated in the 

patterning of muscle during limb development, particularly the regulations of fast vs. slow 

myocytes produced (Anakwe et al., 2003) which suggests that muscle patterning is 

occurring in retinoid treated wings but perhaps at an aberrant developmental stage. 

However, Hgf was shown to be up-regulated in response to EC23 alone. Hgf is known to 

be expressed ubiquitously in the limb until HH22 when it is expressed in anterior and 

posterior stripes and then is distally restricted by HH23 (Heymann et al., 1996). During 

limb development it has been implicated in regulating the migration of muscle progenitors 
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to the developing limb (Ohuchi and Noji, 1999) and if injected causes a down-regulation of 

MyoD1 and muscle differentiation, maintaining cells in an undifferentiated state (Scaal et 

al., 1999). Increased Hgf expression in the anterior wing may therefore indicate that limb 

development has been inhibited and that the cells are in a less differentiated state with 

respect to muscle development.  The differential effect on Hgf expression between EC23 

and ATRA is consistent with the functional clustering whereby ATRA decreases muscle 

development while there is no evidence for enrichment for this function with EC23. 

Increased Hgf expression is also consistent with a study by Mic and Duester (2003) which 

showed that Raldh2 knockout mice altered the position of Hgf expression in the limb to an 

anterior-proximal domain (Mic and Duester, 2003).  EC23 treated wings are similar in that 

they have reduced Raldh2 expression and an increase in Hgf in the anterior wing which is 

consistent with the change in position of myogenesis in the previous study (Mic and 

Duester, 2003).   It can be noted that ATRA inhibits muscle differentiation according to 

functional clustering and due to the down-regulation of MyoD1 (tables 5.4 and 5.11). 

Given that increased Hgf down-regulates MyoD1 (Scaal et al., 1999) and the differential 

regulation of Hgf and MyoD1 by these retinoids, this is consistent with the idea that EC23 

treated wing buds are more inhibited than ATRA treated wing buds causing cells to be 

maintained in a less differentiated state (tables 5.11 and 5.12). Therefore it can be 

concluded that both muscle and tendon development may be inhibited by both retinoids as 

well as cartilage development. 

 

Retinoids alter limb AP patterning.  

 

Patterning of the AP axis has been proposed to be due to the ZPA and SHH. ATRA has 

been shown to indirectly induce Shh in the anterior wing bud prior to digit duplication 

(Riddle et al., 1993).  This Shh domain is thought to act as an ectopic ZPA and lead to the 

mirror image duplication of digits as documented (Wanek et al., 1991). This is formed 

following the ectopic expression of the following in the anterior mesoderm: Hoxb8 (4hrs; 

(Stratford et al., 1997)), Hand2 (20hrs; (Fernandez-Teran et al., 2000)) and Shh (24hrs; 

(Riddle et al., 1993)). As EC23 and ATRA have been shown to generate digit duplications, 

it would be expected that these genes were altered after 24hrs. The data presented here 

shows that, of these factors, only Hoxb8 is expressed in the anterior wing 24hrs after 

retinoid treatment. Given the previously determined sequence of genes up-regulated to 

produce an ectopic ZPA, the up-regulation of only Hoxb8 expression in retinoid treated 

anterior wing buds suggests the limb is in the early stages of re-specifying the AP axis. The 
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lack of these later markers of digit duplication, along with a down-regulation of 

differentiation markers, indicates that the quantity of retinoid applied may have stalled 

limb development compared to previous studies.   

 

However, this change in Hoxb8 expression cannot explain the differences in the types of 

digit duplications observed in chapter 3 (although it may be implicated-see chapter 6) as it 

is altered in response to both EC23 and ATRA. However, it can be seen from this study 

that ATRA and EC23 have a differential effect on Shh expression in the anterior wing: 

ATRA up-regulates Shh after 30hrs while EC23 is never seen to up-regulate it at this time 

point. This up-regulation of Shh in response to 30hrs ATRA treatment is later than 

observed by Riddle et al (1993) who document induction of Shh after 24hrs treatment. This 

delay in Shh up-regulation may be due to differences in retinoid application: Riddle et al 

(1993) used AG1-X2 beads to apply 1mg/ml ATRA to the anterior wing bud but as they 

imitated Tickle et al (1985), it is likely that they used beads of smaller diameter to the 

present study. It is likely that the delay to Shh up-regulation is due to inhibition of limb 

development as suggested by the down-regulation of many differentiation processes which 

should occur at HH23 seen from the microarray analysis. This may also provide a 

mechanism behind the different duplications seen with EC23 and ATRA and is discussed 

further in chapter 6.   

 

There are alterations to other genes consistent with an alteration of AP axis patterning after 

24hrs retinoid treatment. At the point of microarray analysis (HH23) Lhx9 is an anterior 

marker (Nohno et al., 1997) and its down-regulation is consistent with a change to the AP 

axis (table 5.8). It may also suggest a delay to anterior digit development if Lhx9 is induced 

at a later time-point in retinoid treated embryos (Wang et al., 2011), which could be an 

avenue for further study. Another transcription factor is also involved in limb AP polarity: 

Msx1 the expression of which has been described as downstream of Gli3R in the anterior 

limb (Lallemand et al., 2009).  Therefore, its down-regulation here (table 5.11) may also 

suggest that there is a change in the post-translational state of GLI3 in the anterior wing 

bud in response to ATRA.  This would be consistent with a change in AP patterning given 

that high levels of GLI3A are seen in the posterior limb prior to ZPA formation (te 

Welscher et al., 2002).  

 

Retinoid treatment at the high concentrations and quantities studied here, therefore, causes 

re-specification of the AP axis at a delayed time point compared to other studies. The 
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retinoid potentially resistant to metabolism alters the AP axis less, consistent with the 

phenotypes seen in chapter 3. 

 

Retinoids alter limb PD patterning and cause proximalisation of limb bud cells. 

 

The data presented in chapter 3 indicated that the entire PD axis was affected by both 

retinoids: reduction to the scapula, shortening and thickening of the stylopod and 

zeugopod, and digit duplication in the autopod. The effect on the entire PD axis of the 

wing may be due to retinoid effect on a process such as chondrogenesis which occurs at 

different time points along the PD axis (see later). However, ATRA is known to cause the 

up-regulation of some genes expressed proximally (table 5.7; (Mercader et al., 2000; Prols 

et al., 2004)) indicating that retinoids cause a change to PD patterning also consistent with 

these phenotypes. Many of these are involved in scapula development and these 

proximally restricted genes are discussed in the chapter 6. Concurrent with up-regulation 

of proximally restricted genes, the expression of some distally expressed genes is down-

regulated, although this is more pronounced in ATRA treated wing buds (tables 5.7 and 

5.11).  Consistent with these alterations both EC23 and ATRA can cause proximal 

relocation of wing bud cells (figures 5.7 and 5.8). 

 

ATRA treated wing buds exhibit down-regulation of Hoxa11, Hoxa13, Lhx2 and Msx1 

amongst others which may also play an important role in the ATRA phenotypes (table 

5.11). Hoxa11 and Hoxa13 are known to be markers of zeugopod and autopod 

development respectively (Rosello-Diez et al., 2011). Their down-regulation is consistent 

with a greater re-specification of the PD axis in response to ATRA than EC23.   The down-

regulation in response to ATRA but not EC23 is consistent with the differences in 

metabolism between these retinoids as qPCR indicates that EC23 also down-regulates 

Hoxa13 but to a lesser extent (figure 5.13A).  Lhx2 has been shown to be a distal limb 

marker and to control limb outgrowth in both mouse (Tzchori et al., 2009) and chick 

(Nohno et al., 1997). Msx1 is expressed in the distal limb adjacent to the AER (Lu et al., 

2000; Zhang et al., 1997)). Therefore, ATRA down-regulates markers of distal wing 

development consistent with a proximalisation of limb bud cells suggested previously 

(figure 5.8 ;(Mercader et al., 2000; Yashiro et al., 2004)).  

 

Mercader et al (2000) have also shown that ATRA and distally produced FGFs have an 

antagonistic relationship during limb development (Mercader et al., 2000). The FGFs 
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thought to be essential for AER function have not been altered in the present study but 

interestingly Fgf9 is down-regulated in response to EC23 treatment.  Fgf9 is also known to 

be expressed in the AER and around chondrogenic condensations suggesting involvement 

in proximal cartilage development (Hung et al., 2007). This indicates that the AER 

function may be more compromised in response to EC23 than ATRA which is consistent 

with the DAVID functional classification: ATRA up-regulated genes involved in epithelial 

proliferation whereas EC23 down-regulated them (tables 5.3 and 5.4). Considering the 

increased number of distally expressed genes down-regulated in response to ATRA 

compared to EC23, this is consistent with a greater change in PD patterning in response to 

ATRA. This is also consistent with the hypothesis that limb development is further 

inhibited in response to EC23 than ATRA.  

 

A consequence of the up-regulation of these proximally restricted genes is that ATRA and 

EC23 have been shown to affect limb bud cell affinity here (figures 5.7 and 5.8) and by 

Mercader et al (2000). ATRA causes the proximal relocation of chick limb bud cells which 

is mimicked by EC23.  Although differential effects are seen on digit development 

between these retinoids, their effect on proximal relocation is the same consistent with the 

similarities in their effects on proximal limb development: both can cause scapula 

malformations and shortening of more proximal cartilage elements.  

 

Previous investigation into retinoid alteration of PD identity has suggested the alteration of 

adhesive properties. When mixed limb bud cells are known to sort into their PD, AP 

regions in a stage dependent manner (Ide et al., 1994). This can be altered by ATRA: 

treatment of older distal mesenchyme causes mixing with younger proximal mesenchyme 

and also contributes to more proximal structures (Tamura et al., 1997).  This suggests that 

ATRA endows cells with proximal adhesive properties which, from this study, also 

appears to be true of EC23 and is consistent with the similarities in their genetic targets. 

There has been extensive research into the control of adhesion in the developing limb, 

particularly as this may be a mechanism for maintaining positional identity and also is 

crucial for the first step of cartilage development. It has been suggested that n-cadherin is 

expressed throughout the limb bud but then becomes enriched in the distal region 

(Oberlender and Tuan, 1994b; Yajima et al., 1999) and its levels throughout the limb 

correlate with the number of cartilage elements formed from that part. N-cadherin is also 

known to be expressed in the cartilage condensations under the control of Tgfβ2 and, if 

inhibited, will cause delayed and malformation of cartilage development (Miura and 
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Shiota, 2000; Yajima et al., 1999). Considering that ATRA has been shown to down-

regulate n-cadherin previously (Yajima et al., 1999) and in the present study, as well as the 

phenotypes generated with both of these retinoids, altered n-cadherin may provide a 

mechanism behind this cellular proximal relocation particularly as Tgfβ2 is also down-

regulated here (figures 5.7 and 5.8, tables 5.7 and 5.8).   

 

Limb development is also tightly controlled by the Hox transcription factors which exhibit 

restricted expression during limb development and which have also been implicated in the 

control of limb bud cell adhesion. Hoxa13 is expressed in the distal limb bud and is known 

to be important for autopod development as well as muscle development. Hoxa13 positive 

cells sort out from hoxa13 negative cells (Yokouchi et al., 1995) while misexpression in 

the zeugopod causes distal transformation and the formation of many, short elements rather 

than the zeugopodal elements (Yajima et al., 2002; Yokouchi et al., 1995). It also alters the 

expression of adhesion molecules such as Eph receptor A4 (epha4) and epha7 (Stadler et 

al., 2001) which have been implicated in proximal positional identity, boundary formation, 

motor neuron, tendon and muscle differentiation during limb development (Araujo et al., 

1998; D'Souza and Patel, 1999; Flenniken et al., 1996; Iwamasa et al., 1999; Patel et al., 

1996). Interestingly, retinoids have also been shown to affect Eph and Ephrin expression 

e.g. ephb2 (Bouillet et al., 1995) which may also play a role in altering limb bud cell 

identity, however, none of these are present in the retinoid target genes presented here. 

This is consistent with the idea that, due to the high quantities of retinoid applied, limb 

development is inhibited. Another hox gene Meis2 is a retinoid target but is expressed in 

the proximal mesenchyme of the developing limb bud (Mercader et al., 1999; Mercader et 

al., 2000). Its overexpression causes proximal relocation of distal cells while its knock 

down blocks ATRA mediated proximalisation (Mercader et al., 2005). Altogether this 

indicates that ATRA and EC23 are likely to be altering limb bud cell identity via the 

suppression of distal FGF, subsequent up-regulation of Meis2 and the down-regulation of 

n-cadherin and Tgfb2. The down-regulation of Hoxa13 in response to ATRA alone (table 

5.11) is consistent with ATRA treated wing buds being at a later developmental stage than 

those treated with EC23.   
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Conclusions: 

 

The results presented in this chapter have further characterised the response to retinoid in 

the developing limb. The novel findings have indicated that the synthetic retinoid EC23 

alters genes in the anterior wing bud in a similar manner to ATRA but differs in the 

magnitude of the response. Both retinoids appear to inhibit wing development and 

differentiation which may possibly be due to the metabolism of excess retinoid. This is 

particularly likely given that EC23 treated wing buds appear to be further inhibited than 

ATRA treated wing buds. This may lead to the types of digit duplications observed in 

chapter 3 as EC23 may be unable to induce an ectopic ZPA within sufficient time to allow 

severe duplications observed with ATRA. However, it could also be unable to induce Shh 

in the anterior wing bud at all and therefore only allow formation of additional digit 1s as 

this digit is thought to be Shh-independent (see chapter 6). EC23 also appears to mimic the 

effect of ATRA in the proximalisation of limb bud cells and alteration of cell affinity. 

Interestingly, many of the genes altered in response to ATRA and EC23 have also been 

implicated in scapula development, elbow development or regulation of cartilage size in 

the developing limb and therefore are avenues worthy of further work (see chapter 6). 
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Chapter 6) Further discussion, concluding remarks and 

recommendations for future work. 
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Summary of findings: 

 

The present study has investigated the activity of two novel synthetic retinoids which are 

resistant to photoisomerisation, EC23 and EC19. Application of EC23 and EC19 to 

anterior chick wing buds has indicated that, despite their similar structures, EC23 and 

EC19 demonstrate differential potencies and effects in vivo. EC23 was seen to mimic the 

effects of ATRA: reducing cartilage element and scapula blade length, elbow fusions and 

generating digit duplications, while EC19 had no affect at the quantities tested. 

Interestingly, EC23 was able to generate a digit duplication not observed with ATRA: 

duplication of multiple additional digit 1s. EC19 and EC23 both inhibited upper beak 

outgrowth in a similar manner to ATRA but the effects of EC19 were milder compared to 

either ATRA or EC23. It was shown that EC23 and ATRA cause down-regulation of Pax1 

expression, known to be involved in the development of the scapula which may contribute 

to the mechanism behind this phenotype. The different potencies and effects seen with 

EC23 versus EC19 were shown to be partly due to differences in their metabolism: EC19 

appears to be metabolised by the CYP26 enzymes, although to a lesser extent than ATRA, 

while EC23 is more resistant to metabolism. Similarly, they may differ in the activation of 

isoforms of the RARs: EC23 is likely to be a pan-agonist while EC19 could be specific to 

RARβ1 on the basis of receptor distribution. Interestingly, EC23 may also activate the 

FABP5/PPARβδ pathway for retinoid signalling as these are expressed in the limb but not 

the developing facial processes, it is concluded that EC19 is unlikely to bind them and 

FABP5/PPARβδ binding may provide another mechanism for their differential effects. 

EC23 was subsequently investigated further to determine the effects of the metabolites and 

isomers on gene expression in chick limb development after 24hrs retinoid treatment. 

EC23 and ATRA alter similar genetic targets but differ in the magnitude of their effects. 

Further analysis of these targets indicates that high concentrations and quantities of 

retinoids inhibit limb development and differentiation until the excess retinoid is 

metabolised to suitable levels. EC23 was not seen to induce Shh expression in the anterior 

wing bud unlike ATRA and may provide a mechanism to explain the different duplications 

observed with these two retinoids. This chapter discusses the major implications of this 

work and directions for further study. 
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Differential effects seen with two retinoids of similar structure: EC19 and 

EC23. 

 

The present study has further characterised the effects of the novel, photostable, synthetic 

retinoids EC23 and EC19 in vivo. Using the chick wing bud as a model system as 

previously for the investigation of retinoids (Eichele et al., 1985; Summerbell, 1983; 

Tickle et al., 1982), I report their effects in vivo when applied at high quantities. Consistent 

with previous investigation by my research group (Budge, 2010; Christie et al., 2008), it is 

noted that EC23 is more toxic and more potent than EC19 and generates effects 

comparable to ATRA, while EC19 causes no effect on the limb and milder effects on the 

developing upper beak (chapter 3).  These differences in potencies between EC23 and 

ATRA compared to EC19 are unlikely to be due to metabolism given that EC19 and 

ATRA are seen to be metabolised by the CYP26 enzymes (chapter 4) and therefore is more 

likely to be due to their structural differences (discussed further in chapter 4).  

The structural difference between EC23 and EC19 is solely the position of the carboxylic 

acid group. In EC23 its position indicates that EC23 is similar to ATRA while the position 

in EC19 is reminiscent of 13CRA. As mentioned throughout this work, 13CRA is 

teratogenic but its effects are mainly thought to be due to its inter-conversion to ATRA 

given that its affinity for retinoic acid binding proteins is low (Chen and Juchau, 1998; 

Keeble and Maden, 1984; Klaassen et al., 2001; Maden and Summerbell, 1986; Ruhl et al., 

2001). Considering that EC19 is metabolised and has a similar structure to 13CRA, this 

compound could be of use in determining the effects of 13CRA alone.  This compound and 

its comparison to EC23 also suggest that the position of the terminal carboxylic acid group 

is of importance for retinoid function in vivo and metabolism.   

These differential effects may also be due to differences in binding to retinoic acid binding 

proteins and activation of the receptors.  The present study has investigated the localisation 

of Rarβ1, Rarβ2, Rarγ2, Pparβ and Fabp5 in an attempt to determine if any of these 

receptors can be ruled out in terms of activation by EC23 and EC19 (chapter 4). 

Considering that EC23 and EC19 are structurally similar to the RAR pan-agonist TTNPB 

(see figure 1.5) it would be hypothesized that, likewise, EC23 and EC19 were pan-agonists 

of the RARs which has in fact been shown for EC23 (Gambone et al., 2002).  However, as 

EC23 affects the both the wing and facial processes while EC19 does not, it is likely that 

EC23 is a pan-agonist of the RARs and PPARβδ pathways while EC19 is unlikely to bind 
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as efficiently to FABP5, RARγ or RARβ2 as EC23 given that these are expressed in the 

limb bud mesoderm and, in fact, Fabp5 is specific to the limb (chapter 4). On the basis of 

localisation, activation of RARβ1 by EC19 cannot be ruled out. 

Metabolites and isomers are not the main cause of retinoid effects in vivo.  

 

The study of retinoids in development has been hindered by the fact that, although ATRA 

is known to be the most important biologically active retinoid (Kistler, 1987; Niederreither 

et al., 1999), its isomers and oxidative metabolites are also bioactive and may therefore 

play a role in embryonic development (Pijnappel et al., 1993; Reijntjes et al., 2005; Thaller 

et al., 1993).  The current understanding from genetic studies is that ATRA metabolites are 

a product of metabolism and have no role in embryonic development, rather that the levels 

of ATRA must be tightly controlled (Niederreither et al., 2002a). EC23 and ATRA 

generate similar phenotypes (chapter 3) and alter similar genes but differ in the magnitude 

of their response (chapter 5) despite the fact that EC23 is resistant to CYP26-mediated 

metabolism (chapter 4). Therefore, the results of the current study are consistent with 

Niederreither et al (2002) indicating that oxidative derivatives of ATRA are not necessary 

for development. Similarly, EC23 is resistant to photo-isomerisation and therefore 

indicates that 9CRA and 13CRA are not necessary for limb development and is consistent 

with previous research indicating that these are only present after application of high 

concentrations of ATRA (Horton and Maden, 1995). Considering that the structure of 

EC19 is reminiscent of 13CRA but the effects of EC19 are milder than EC23, this provides 

further evidence that the retinoid response is not due to the isomer 13CRA. EC23 is 

therefore a useful experimental tool for investigating the effects of ATRA without 

hindrance of its oxidative derivatives or isomers. 

The retinoid response is to stall limb bud development until the teratogen 

is metabolised.  

 

The present study has further characterised the molecular and cellular response to retinoids 

in the developing wing bud and relates them to the phenotypes observed. It has been seen 

that the response to retinoid is to inhibit differentiation observed in the down-regulation of 

Pax1 (chapter 3). An inhibition of chondrogenesis, tendon and muscle development has 

also been observed in response to both retinoids by the decreased cartilage production  
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after treatment of micromass cultures (chapters 4) as well as the down-regulation of many 

differentiation markers including: col9, scleraxis, Tgfβ2 and MyoD (chapter 5). 

Considering the role documented for TGFβ2 in the limb (Lorda-Diez et al., 2010; Lorda-

Diez et al., 2009; Miura and Shiota, 2000; Pryce et al., 2009; Spagnoli et al., 2007) and the 

phenotypes after manipulation, TGFβ2 is likely to be important for limb development, in 

conjunction with BMPs (discussed later), and a key molecule altered after application of 

either EC23 or ATRA. This inhibition of development indicates that the retinoid treated 

wings are stalled with respect to DMSO treated wings and is consistent with previous 

research by Ali-Khan and Hales (2006). They showed that retinol acetate altered cell 

adhesion consistent with inhibition of chondrogenesis and up-regulated Id3, Hes1 and 

Snai1 which are markers of undifferentiated states (Ali-Khan and Hales, 2006).  

Developmental stalling by retinoids has also been suggested by Maden et al (1983) after 

application to amputated limbs of axolotl. He noted that there is a concentration dependent 

inhibition of regeneration post retinoid treatment: regeneration should occur within 18 days 

but by day 15 after retinoid no regeneration has occurred. A decrease in proliferation was 

noted and it was suggested that, similar to the chick wing, no development occurs while 

exposed to retinoid although subsequent differentiation in axolotl occurred as normal 

(Maden, 1983). The differential effects of ATRA and EC23 may be due to the differential 

stalling seen after their application: EC23 treated wing buds are stalled to a greater extent 

than ATRA treated anterior wing buds. This differential stalling of the retinoid treated 

anterior wing buds may provide a mechanism for digit duplication (discussed later) and 

aberrant chondrogenesis or elbow fusion.  

This stalling of development as a retinoid response appears to be due to persistence of 

excess retinoid given that up-regulation of Cyp26 and other genes involved in metabolism 

is a common feature of other microarray analysis after excess retinoid (chapter 5; (Ali-

Khan and Hales, 2006; Feng et al., 2010; Luijten et al., 2010)). The differential metabolism 

of EC23 and ATRA therefore is consistent with the differential stalling exhibited by EC23 

and ATRA treated anterior wing buds mentioned previously. This is also consistent with a 

recent study by Miletich et al (2011). They show that insufficient BMP levels during a 

critical juncture of tooth development causes a 24hr developmental delay during which 

time the correct BMP threshold is achieved. At this point development can proceed and 

subsequently the delay is rectified such that correct development of the tooth is observed 

(Miletich et al., 2011).  
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A similar effect may be seen in the present study but instead of insufficient levels there are 

teratogenic levels of ATRA which need to be rectified before correct development of the 

wing can be re-initiated and the delay amended.  In chapter 5, I have suggested that 

inhibition of endogenous, posterior Shh may contribute to this developmental stalling. 

Inhibition of proliferation in the limb has been shown to lead to a transient down-

regulation of Shh expression which subsequently recovers and is maintained for the correct 

length of time (Towers et al., 2008). Given that many retinoid treated wing buds continue 

to develop with a normal digit pattern, this may be the mechanism behind it, as well as the 

fact that stalled limb buds also recover to produce a limb with three segments. Further 

work is necessary to show that stalling of the limb bud occurs after retinoid treatment but 

comparison of this and other systems where developmental stalling is apparent may allow 

us to improve our knowledge of the correct regulation of development. Interestingly, I 

have carried out a preliminary comparison of the present study and an investigation of the 

teratogen cyclophosphamide and it appears that a common response is alteration of BMP 

signalling (Huang and Hales, 2009). This is also seen as an early response to retinoid in the 

developing limb (Ali-Khan and Hales, 2006) as well as implicated in malformations of 

dermomyotome-derived portions of the scapula (Wang et al., 2005) and may prove to be 

the mechanism behind teratogen response and correct timing of organogenesis.  

 

Mechanisms behind retinoid induced elbow fusions and alteration of 

cartilage element size.  

 

It was noted in chapter 3 that EC23 and ATRA caused the following effects: digit 

duplication, shortening of zeugopodal cartilage elements, elbow fusions and scapula 

malformations. EC23 and ATRA generated distinct types of digit duplication and the 

mechanisms behind these are discussed in a later section of this chapter. The genes linked 

to the scapula are also discussed at a later point. These effects on the more proximal 

elements are consistent with the ability of both EC23 and ATRA to cause the proximal 

relocation of treated limb bud cells, altered cell: cell adhesion and their ability to inhibit 

chondrogenesis (chapter 4 and 5; (Mercader et al., 2000; Summerbell, 1983)). Some of the 

genes seen to be altered by the retinoids and which are implicated in the production of digit 

duplication, zeugopodal cartilage element shortening and elbow fusions will be discussed 

in this section in order of decreasing similarity with the phenotypes observed in chapter 3. 
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Some of the most up-regulated genes in response to both ATRA and EC23 are the Cyp26 

enzymes.  Humans with Cyp26b1 mutations have exhibited shortened proximal cartilage 

elements and elbow fusions are also seen in mouse knock outs (Laue et al., 2011; Yashiro 

et al., 2004). This indicates that retinoids are involved in the regulation of chondrogenesis, 

differentiation of the interzone and limb size.  Another study of Cyp26b1 knockout mice 

has indicated that the cells were maintained in a prechondrogenic state: expressing higher 

levels of pre-chondrogenic markers versican and tenascin C and lower levels of alcian blue 

staining than wild type after 6 days of culture (Dranse et al., 2011). This is thought to be 

the mechanism behind shorter limb development observed in these mutants as cartilage 

differentiation was inhibited.  Although these studies have investigated Cyp26 knock out, 

they also are likely to involve retinoid excess and therefore are pertinent to the present 

study.  The excess concentration of retinoid applied here may have overcome the CYP26 

enzymes resulting in phenotypes similar to Cyp26 deficiency: shorter limb elements and 

joint fusions.  The mechanism proposed for the phenotypes seen with Cyp26b1 knockout 

mice and similar phenotypes seen here is also consistent with the inhibition of cartilage 

development seen with EC23 and ATRA (chapter 4 and 5). The more severe phenotypes 

seen with EC23 compared to ATRA are also consistent with the fact that EC23 is resistant 

to CYP26-mediated metabolism (chapter 4) as retinoid levels would be correspondingly 

higher and further inhibit chondrogenesis. 

 

Msx1/Msx2 knockout mice exhibit either shortening or absence of the radius concurrent 

with preaxial polydactyly (Bensoussan-Trigano et al., 2011) similar to phenotypes 

observed with ATRA in chapter 3. It can be concluded that down-regulation of Msx1 may 

be an important contributor to the phenotypes generated with ATRA (table 5.12) and it 

may be altered to a lesser extent after 24hrs in response to EC23.  Fgf13 has been 

implicated in limb development as overexpression causes radial shortening and ectopic 

digit 1 development (Munoz-Sanjuan et al., 1999). Fgf13 down-regulation in response to 

both retinoids (table 5.9) is not consistent with the phenotypes seen in chapter 3 but 

overexpression was performed at a later stage than retinoid treatment here leaving open the 

possibility that Fgf13 overexpression after retinoid treatment may occur at a different 

stage.  

 

Interestingly ectopic expression of the proximally expressed Meis1 or Meis2 appears to 

produce normal stylopod element size whilst the zeugopod and autopod (Meis2 only) are 
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affected leading to: shortened ulna, bending of the radius and development of digits 1 and 

3 or just digit 2 (Capdevila et al., 1999; Mercader et al., 1999). Meis2 up-regulation here 

(table 5.8), amongst other dysregulated proximally expressed genes, may contribute to the 

phenotypes presented in chapter 3 where changes to cartilage element size or scapula 

malformation are documented.  

 

A number of other genes have been manipulated in previous studies which have resulted in 

similar shortening of limb cartilage elements and elbow fusions indicating that they may 

contribute to the effects of ATRA and EC23. Tgfβ2 is down-regulated in response to both 

retinoids (table 5.9) and has been previously mentioned with respect to the control of 

cartilage and tendon differentiation in the limb bud and n-cadherin expression (Lorda-Diez 

et al., 2009; Miura and Shiota, 2000) consistent with retinoid inhibition of chondrogenesis 

(chapter 4). Tgfβ2 knockout mice have a malformed olecranon process (elbow) as well as 

shortening of the radius and ulna (Sanford et al., 1997) similar to Rarα/γ knockout mice 

(Lohnes et al., 1994).  Considering the similarity of these phenotypes with those seen in 

chapter 3, Tgfβ2 may be one of the major contributors to the phenotypes generated. 

 

Concurrent with a decreased Tgfβ2, Noggin is up-regulated in response to ATRA (table 

5.12) indicating that BMP dysregulation may be important for the retinoid response.  Up-

regulation of Noggin in response to ATRA after 24hrs may be consistent with the 

shortening of the scapula blade and head agenesis as NOGGIN injection to the 

dermomyotome at HH20 has caused this phenotype (Wang et al., 2005).  Given that excess 

expression of Noggin after onset of chondrogenesis causes excess cartilage production 

(Pizette and Niswander, 2000), Noggin up-regulation after 24hrs in the anterior wing could 

cause the excessive production of cartilage in response to retinoid e.g. elbow fusions. This 

is not consistent with Noggin knockout mice which have thicker cartilage elements and a 

malformed olecranon (Brunet et al., 1998) similar to the phenotypes seen in response to 

EC23 and ATRA.  Also, Noggin expression is up-regulated rather than down-regulation in 

response to ATRA and is not significantly altered in response to EC23 despite the 

phenotypes seen in response to both retinoids in chapter 3.  This is contradictory and may 

suggest that BMP signalling is increased on retinoid treatment and that Noggin up-

regulation is an indirect effect which would be consistent with up-regulation of Bmp4 and 

Bmp7 observed after 3hrs retinol treatment (Ali-Khan and Hales, 2006).  Application of 

BMP2 and BMP7 to the anterior wing has shown to affect radius and ulna development 
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similar to those phenotypes seen in chapter 3 (Macias et al., 1997). The up-regulation of 

Noggin in response to ATRA may therefore be due to a dysregulation of BMP signalling to 

attenuate the phenotypes produced. Considering that Noggin is not significantly altered in 

response to EC23, this may lead to the more severe cartilage thickenings and joint fusions 

seen in chapter 3 as BMP dysregulation is unchecked and Noggin cannot be modulated if 

the retinoid persists.  

 

Other transcription factors are also linked with alteration of cartilage element size and 

elbow fusions and are altered by ATRA and EC23. The shortened elements seen in 

response to ATRA and EC23 may be partly due to decreased expression of Lhx9 and Lhx2 

(ATRA only) as Lhx2/Lhx9 knockout mice exhibit shortened limbs particularly affecting 

the zeugopod and digits (Tzchori et al., 2009).  Whole mount in situ hybridisation and 

microarray analysis of the developing digits has also suggested that Lhx9 is a marker for 

digit 1 identity in the chick wing bud at later stages (Wang et al., 2011).  This is not 

consistent with the down-regulation of Lhx9 expression in response to both retinoids (table 

5.9) considering that EC23 and ATRA generate at least one additional digit 1 but its 

expression over time during the retinoid response may be interesting to investigate. Shox is 

seen to be down-regulated by retinoid treatment (table 5.10) mutations of which have been 

linked to short stature, Leri Weill syndrome, Langer syndrome and Turner’s syndrome in 

humans (Sabherwal et al., 2007). Shox has also been shown to control stylopod 

development in mouse (Yu et al., 2007). Therefore dysregulation of this transcription 

factor concurrent with altered Meis2 expression and proximal relocation of limb bud cells 

may contribute to the shortened and thickened humerus observed in chapter 3. Pbx1 is 

implicated in the control of correct cartilage element size when concurrent with decreased 

Pbx2 (Capellini et al., 2006).  Up-regulation of Pbx1 after retinoid treatment indicates that 

dysregulation of this gene with respect to others expressed in similar domains may 

contribute to the shortening of limb cartilage elements.  

 

Interestingly, a number of markers have been documented for joint development: Cd44, 

Enpp2 and Sulf1 (Ohuchi et al., 2007; Sohaskey et al., 2008) which are down-regulated in 

response to both retinoids (table 5.10).  This is consistent with a dysregulation of joint 

development which may lead to the elbow fusions and limb shortening seen in chapter 3. 

Interestingly overexpression of Hoxa13 (down-regulated in response to ATRA; table 5.12) 

has also affected expression of Enpp2 (autotaxin) and Shox (chapter 5) (Zakany and 
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Duboule, 2007) which suggests inhibition of normal limb development and dysregulation 

of these genes may lead to joint fusions. 

 

Mechanisms behind retinoid induced scapula malformation. 

 

It was also observed in chapter 3 that application of either ATRA or EC23 could cause 

malformation of the scapula, mainly blade reduction and the absence of scapula head 

development.  Retinoids have been shown previously to affect shoulder girdle development 

in that they can duplicate the coracoid (Oliver et al., 1990) and that Rarα/γ knockout mice 

have malformed scapulae (Lohnes et al., 1994). However, excess retinoid has not been 

documented to truncate the scapula in previous literature and this may be due to the high 

concentration and quantity of retinoid released into the chick wing in this study. The 

truncation of the scapula blade has, however, been documented with retinoid signalling 

antagonists (Prols et al., 2004) however this cannot be consistent with the present study.  

Genes altered after retinoid treatment which may be linked to the scapula malformations 

are discussed in the following section. 

 

Excess ATRA leads to an up-regulation of Meis1 which is a marker of the proximal limb 

(Mercader et al., 1999; Mercader et al., 2000).  Ectopic expression of Meis1 or Meis2 (up-

regulated after retinoid treatment-chapter 5) causes loss of distal structures (Capdevila et 

al., 1999; Mercader et al., 1999) while knockout mice have not yet been described. Emx2 

has been shown to be retinoid responsive. Knockout mice exhibit the dramatic phenotype 

of complete scapula agenesis and an absence of the scapula condensation suggesting that 

Emx2 is needed to make the entire scapula condensation (Pellegrini et al., 2001; Prols et 

al., 2004). Concurrent with scapula agenesis in Emx2 knockout mice, there is also an 

expansion of Pax1 expression (Pellegrini et al., 2001) suggesting that an antagonism 

between these two factors is important for correct pectoral girdle development. The 

opposite case can be observed upon retinoid application in this study: Emx2 expression in 

up-regulated (chapter 5) but at 48hrs there is a decrease in Pax1 expression (chapter 3).  

 

Interestingly, overexpression of Emx2 does not influence scapula formation but instead 

induces an ectopic digit in the anterior limb (Prols et al., 2004) indicating a role in digit 

development and that it may contribute to malformations of the scapula and digit 

duplications (chapter 3) from its up-regulation in response to retinoid (chapter 5). Similar 
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to Emx2, the proximally expressed Pbx1 and Alx1 have also been implicated in scapula 

development (Capellini et al., 2010; Selleri et al., 2001).  Pbx1 and Pbx2 are proposed to 

interact and regulate gene expression (Capellini et al., 2006); however, only Pbx1 is altered 

in response to EC23 and ATRA.  This, combined with evidence that Pbx1 and Meis1 can 

interact to regulate gene expression in mouse (Mercader et al., 2009) indicates that aberrant 

expression of transcription factors involved in scapula development may lead to the 

malformations observed in chapter 3.  The up-regulation of these genes involved in 

proximal development is also of interest as despite their up-regulation, correct 

development of the proximal limb does not result. This may support the idea that the 

stalling of limb development is too severe after retinoid treatment to allow correct 

proximal development. The up-regulation of these genes in response to both retinoids 

indicates that they may play a similar role in the correct development of the chick scapula 

as previously documented for mouse. 

 

Retinoid effect on differentiation as a mechanism behind the effects on 

the PD axis. 

 

As mentioned, previous studies have not shown that anteriorly applied ATRA can affect 

the more proximal elements in the zeugopod, stylopod or limb girdle unless at high 

concentrations or earlier stages of development (Oliver et al., 1990; Summerbell, 1983). 

This may be due to the fact that these elements are specified earlier in development (Sato 

et al., 2007; Vargesson et al., 1997) and therefore this indicates that the retinoid effect on 

these elements is mainly due to aberrant control or inhibition of cartilage development, 

both of which can be seen from the effects on limb bud cell micromass cultures and 

microarray targets (chapters 4 and 5). It can also be noted that inhibition of chondrogenesis 

can also be proposed as a mechanism behind the shortening of cartilage elements discussed 

in the previous section. NOGGIN injection into the dermomyotome between HH20-22 

generated similar phenotypes on the scapula as seen in the present study (Wang et al., 

2005). Noggin expression is up-regulated in response to ATRA while Bmpr1b is down-

regulated in response to EC23 indicating that BMP signalling is dysregulated in response 

to both retinoids. This has been linked to the control of cartilage element size previously 

and, similar to inhibition of chondrogenesis, could provide a mechanism for the effects of 

retinoid on all elements proximal to the autopod. 
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Therefore, this aberrant control of genes involved in cartilage development and proximally 

expressed genes may contribute to the shortening or widening of cartilage elements as well 

as the elbow fusions, digit duplications and scapula truncations observed with both 

retinoids.  

Mechanisms behind the different digit duplications observed with EC23 

and ATRA. 

 

As mentioned earlier, I have shown that both ATRA and EC23 can duplicate digits and 

cause alteration to AP pattering in the developing wing (chapters 3 and 5). Despite the fact 

that EC23 mimics ATRA in other aspects of limb development, it generates a different 

type of digit duplication when applied at the present concentration and quantity. Unlike 

ATRA, it causes digit duplication of multiple additional digit 1s (chapter 3). This has been 

documented previously with applications of low concentrations of SHH (Yang et al., 1997) 

but not with retinoid. The mechanism behind this differential effect on digit duplication is 

unclear but in the following sections I put forward some proposals for future testing. 

 

Both retinoids are seen to up-regulate Hoxb8 but they differ in the magnitude of change: 

Hoxb8 is up-regulated to a greater extent in ATRA than EC23 treated wing buds (chapter 

5).  This could then cause a different response in the anterior wing bud: ATRA may 

generate an ectopic ZPA as described (Riddle et al., 1993; Wanek et al., 1991) and implied 

from up-regulation of Shh after 30hrs treatment (figure 5.14), while EC23 may cause digit 

duplication independent of an ectopic ZPA as it was never seen to up-regulate Shh 

expression in the anterior wing bud (figure 5.14). This leads to two possible conclusions 

which are not mutually exclusive: either that limb development is delayed to such an extent 

that any ectopic Shh is induced far later after EC23 treatment and therefore can only 

duplicate the most anterior digits or that EC23 generates digit duplications independently 

of Shh.   

 

Length of SHH exposure, SHH concentration and SHH dependent proliferation are thought 

to determine AP patterning of the developing digits (Harfe et al., 2004; Towers et al., 

2008; Zhu et al., 2008a). ZPA grafting has shown that the window for digit duplication is 

up to HH25 after which grafting is ineffective (Summerbell, 1974); however retinoids 

cannot induce digit duplications after HH22 (Summerbell, 1983). Therefore, if digit 

duplication is stalled by the high concentrations of EC23, there would not be a large 
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window of time available to allow induction of sufficiently high levels of Shh for the 

correct exposure time in the anterior wing to generate mirror image digit duplication.  The 

SHH induced may only allow the duplication of the most anterior digit as its levels could 

be much reduced similar to previous experiments (Yang et al., 1997) and lower than 

ATRA treated wings. On the other hand, it has been suggested that the development of 

digit 1 is Shh independent in mice (Chiang et al., 2001). This being the case, the 

duplication of additional digits of digit 1 identity may be due to the fact that EC23 does not 

induce Shh in the anterior wing.  This may still be true if EC23 were to induce very low 

levels of shh anteriorly as these may increase SHH-dependent proliferation but not be 

above the threshold needed to specify digit 2 and 3 identity.  

 

Considering that EC23 can generate mirror image digit duplications at lower quantities and 

concentrations, presumably via Shh induction, I favour the hypothesis that EC23 treated 

wing buds are stalled to such an extent that any Shh induction in the anterior wing occurs 

too late for the specification of more posterior digits. Additional digits of the most anterior 

identity are duplicated as retinoid induced proliferation still occurs, possibly involving 

FABP5 (discussed below). Further work will be necessary to verify the different effects of 

EC23 and ATRA on Shh and proliferation in the anterior wing bud. 

 

Effects of retinoids in the limb and model for the involvement of FABP5. 

 

SHH dependent proliferation has been shown to be important for the development of digits 

1 and 2 in chick (Towers et al., 2008; Towers et al., 2011). Given the necessity for SHH to 

specify more posterior digits (Harfe et al., 2004; Riddle et al., 1993; Towers et al., 2008; 

Yang et al., 1997), it could be argued that the application of such high quantities of EC23 

and subsequent stalling of wing development has led to an uncoupling of proliferation and 

digit specification in the wing bud. Increased proliferation as a result of excess retinoid 

application still occurs with high levels of retinoid, presumably via re-organisation of the 

AER (Tickle et al., 1989) and possibly via FABP5 (see later), as up to three additional 

digits form (chapter 3). However, the fact that only the most anterior identity is specified 

with EC23 suggests that SHH signalling and proliferation are uncoupled consistent with 

the absence of Shh expression in the anterior wing after 24 or 30hrs (chapter 5). This is 

consistent with previous models of limb development which implicate proliferation, SHH 

concentration and exposure time to SHH as important for digit development (Ahn and 
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Joyner, 2004; Harfe et al., 2004; Towers et al., 2008; Zhu et al., 2008a). It is also 

consistent with previous studies indicating that SHH is important for specification of digit 

identity (Davey et al., 2006; Towers et al., 2008). 

 

ATRA has been shown to promote both proliferation and differentiation in cancer cell 

lines, decreasing their use as chemotherapeutic agents, although the mechanism behind this 

is unclear. CRABP2 channels ATRA to the nucleus to bind and activate RARs (Budhu and 

Noy, 2002; Dong et al., 1999). Shaw et al showed previously that PPARβδ can also be 

activated by ATRA (Shaw et al., 2003) and subsequent research showed that FABP5 could 

translocate ATRA to the nucleus and activate PPARβδ in HaCaT cells (Schug et al., 2007). 

The FABP5/PPARβδ pathway has been implicated in the promotion of proliferation versus 

apoptosis or differentiation in response to ATRA by manipulation of the FABP5:CRABP2 

ratio in cancer cell lines (Schug et al., 2007). Cells derived from a mammary carcinoma 

containing high levels of CRABP2 (MCF-7) and which usually undergo apoptosis in 

response to ATRA, were promoted to proliferate if the ratio of FABP5:CRABP2 was 

increased. Manipulation of the levels to decrease this ratio increased differentiation and 

apoptosis via the CRABP2/RAR pathway in cells derived from a tumour which normally 

contained high levels of FABP5. Therefore, differential activation of the PPAR pathway 

versus the RAR pathway has been proposed to cause the contradictory effects of ATRA in 

cancer treatment (Schug et al., 2007; Schug et al., 2008). Interestingly, recent research has 

implicated the differential activation of RAR and PPARβδ receptors by ATRA at different 

stages of neurogenesis as well as high levels of FABP5 in the brain, providing evidence 

that FABP5/PPARβδ signalling may play a role in vivo (Yu et al., 2012). 

Fabp5 has been observed to exhibit a highly restricted expression pattern in the developing 

chick embryo at HH20. Interestingly Fabp5 is restricted to the posterior wing bud 

overlapping the PZ and absent from the ZPA (chapter 4 and figure 6.1A). Considering that 

the PZ is an area of high proliferation in the developing wing bud, FABP5 function in vivo 

may be to promote proliferation upon binding ATRA and subsequent activation of 

PPARβδ as suggested in vitro (Schug et al., 2007). Concurrent with this, there are two 

different CRABPs in chick: CRABP1 and CRABP2. The expression pattern of these 

transcripts has not been investigated but the distribution of these proteins has been 

documented. CRABP1 has been seen to be located in an anterior high, posterior low 

gradient in the developing chick wing (Maden et al., 1988; Maden and Summerbell, 1986). 

CRABP2 is also documented in the chick wing bud, highest at the distal tip overlapping 
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with the PZ at HH23. In this region levels are higher in the posterior and middle of the 

wing bud (Miyagawa-Tomita et al., 1992).  

Given the expression of Fabp5 and the distribution of CRABP protein, areas of the PZ may 

have a different FABP5:CRABP2 ratio. If the relationship described in vitro also exists in 

the limb bud this may provide a mechanism for retinoid control of proliferation in the 

distal wing bud. Mic et al have shown that retinoid signalling occurs throughout the limb 

bud at a similar stage in mouse using a RARE driven β-galactosidase reporter construct 

but that a proximal-high distal-low gradient is still apparent (Mic et al., 2004). Differential 

FABP5/CRABP2 activation may aid the separation of proliferative and non-proliferative 

response to ATRA in the PZ and posterior limb. Consistent with this, previous studies have 

indicated that CRABP2 enhances ATRA binding to RAR (Dong et al., 1999) and is most 

important when ATRA levels are limited (Budhu and Noy, 2002), similar to the situation at 

the distal wing bud. ATRA has also been documented to play a role in the correct 

development of the AER in mouse Raldh2 knockouts (Mic et al., 2004), which could be 

CRABP2 mediated given its location. Similarly CRABP/RAR signalling may also be 

involved in the reorganisation of the AER given that there is an area of high CRABP1 and 

CRABP2 at the distal wing tip in the PZ until HH24 of chick limb development (Maden et 

al., 1988; Maden et al., 1989; Tickle et al., 1989). Therefore, if ATRA and EC23 can also 

bind or up-regulate FABP5 and activate PPARβδ in vivo, activation of this pathway may 

cause increased proliferation in the PZ, after expansion of the AER, allowing an increase in 

the digit progenitor pool and digit condensations produced. 

The effect of EC23 and ATRA on proliferation via differential activation of RAR/PPARβδ 

pathways and Shh expression could determine the number and identity of the digits formed 

(summarised in figure 6.1). Activation of FABP5/PPARβδ by proximally produced ATRA 

could promote proliferation of the progenitor pool in the posterior distal wing bud and 

simultaneously control differentiation, apoptosis and wing bud shape at the anterior PZ 

(CRABP2/RAR; figure 6.1A-B). Up to a certain threshold of excess retinoid, these 

pathways would be unified leading to mirror image duplications. Excess retinoid would 

activate both pathways in the distal wing causing increased proliferation and Shh induction 

in the anterior wing, after the wing has recovered from retinoid-induced developmental 

stalling, although the mechanism behind this recovery is unclear (figure 6.1C).   

However, elevation of retinoid levels over this threshold could lead to additional digit 1s or 

generate 323 duplications and truncated wings.  EC23 can cause more severe stalling of 
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wing development in the present study (chapter 5) and could cause duplication of only the 

most anterior digit if it enhanced proliferation via FABP5:PPARβδ but Shh expression was 

not induced in the anterior wing within the time window for digit specification (HH25; 

figure 6.1D). Continued development of the increased progenitor pool in the absence of 

Shh or induction of low levels could give rise to additional digits of the most anterior 

identity as seen previously (Yang et al., 1997). This is consistent with the talpid3 mutant 

where digit identity is not specified as a member of the Shh signalling pathway is not 

functional (Davey et al., 2006).  

High concentrations of retinoids can also cause more severe digit duplications such as 323 

as well as truncations of the autopod (chapter 3; (Tickle et al., 1985)). Vastly elevated 

retinoid levels, or wings which cannot cope with EC23, may cause an over-activation of 

CRABP2: RAR pathway throughout the entire PZ for a prolonged period. This could lead 

to an increased CRABP2/RAR activation and subsequent apoptosis in the PZ leading to 

truncations. This elevated level of ATRA may also cause over-activation of 

FABP5/PPARβδ pathway but, as this is solely present in the posterior wing bud, it may be 

insufficient to prevent the CRABP2/RAR induced apoptosis across the entire progress 

zone. In some cases Shh may still be induced in the anterior limb causing the 323 digit 

duplication if any autopodal cells survive via FABP5/PPARβδ over-activation (figure 

6.1E). This theory for FABP5 in limb development fits with other research that retinoids 

do not need to bind CRABP2 with high affinity to generate digit duplications (Maden et 

al., 1991).  That it increases their potency if they do bind CRABP2 (Keeble and Maden, 

1984) may be due to an effect on re-specification of cells in the PZ.   
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Figure 6.1: A model for digit duplication with respect to CRABP2 and FABP5. 

 

 

 

This hypothesis requires further investigation as does the expression of Crabp1, Crabp2, 

Pparβ and Fabp5 during subsequent wing development and the affinities of EC23 and 

ATRA for FABP5 as compared to CRABP2. The affinity for ATRA to FABP5 and 

CRABP2 have been investigated in COS-7 cells using similar procedures to be 57nM 

(Schug et al., 2007) and 0.13nM (Dong et al., 1999) respectively, reflecting the role of 

CRABP2 at low levels of retinoid (Budhu and Noy, 2002). This could indicate that FABP5 

is not important for normal limb development given that retinoid levels in the distal wing 

are thought to be lower although signalling occurs throughout the limb bud at a similar 

stage to HH20 (Mic et al., 2004; Yashiro et al., 2004) and that Fabp5 null mice are not 

documented to exhibit a limb phenotype (Yu et al., 2012). However, it may still be 

consistent with a role of FABP5 in excess levels of retinoid as at higher levels its activation 

A) indicates the current knowledge of FABP5 and proposed CRABP2 localisation at HH20. B-E) are 

hypotheses for the involvement of these retinoid binding proteins in digit development in untreated 

embryos and retinoid excess at HH24. A) and B) postulate that differential activation of CRABP2 and 

FABP5 in the wing by endogenous ATRA controls differentiation and proliferation in the production of 

digits. C-E) show hypotheses for the effects seen with retinoid (R; C), EC23 (D) and excess retinoid (ER; 

E). Abbreviations: ATRA, all trans retinoic acid; CRABP2, cellular retinoic acid binding protein 2; 

FABP5, fatty acid binding protein 5; Shh, sonic hedgehog. 
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may become more prominent compared to that of CRABP2 and cause enhanced 

proliferation. 

Interestingly, there is no evidence from the microarray analysis of retinoid treated anterior 

wings that there is an increase in either Fabp5 or Crabp2 expression (chapter 5) despite the 

fact that ATRA can induce Crabp2 expression and both retinoids can increase levels of 

CRABP2 in TERA2.cl.SP12 cells (Astrom et al., 1994; Balmer and Blomhoff, 2002; 

Maltman et al., 2009). This does not rule out increased activation of these proteins and 

alteration to the expression of these proteins may have occurred previously which would 

not be observed after microarray analysis. Were this to be the case, targets of PPARβδ 

would be expected; particularly in the datasets from EC23 treated anterior wing buds from 

the model described (figure 6.1D). The targets of PPARβδ have been elusive as this 

receptor has been relatively uncharacterised compared to the other PPARs. It has been 

shown to repress the action of the other PPARs (Shi et al., 2002) and also to repress many 

genes, only a subset of which are de-repressed by microarray analysis after treatment with 

a PPARβδ agonist (Adhikary et al., 2011). This study (Adhikary et al., 2011) and its 

comparison with the microarray analysis of retinoid targets presented here may suggest the 

activation of this pathway in the developing chick limb. However, considering this study 

used a human prostate cell line (Adhikary et al., 2011) the PPARβδ targets in the chick 

wing may be distinct to those in vitro and this requires investigation, as do the effects of 

PPARβδ agonists in vivo.  

 

Retinoids and FGFs. 

 

It has been documented previously that retinoids and FGFs have an antagonistic 

relationship in the developing limb bud (Mercader et al., 2000). This has previously been 

linked to PD patterning but recent research has suggested that ATRA synthesis is not 

necessary for PD patterning i.e. Meis1/2 expression in mouse as they are not altered in 

Rdh10 or Raldh2 null mice (Cunningham et al., 2013). Given the phenotypes seen with 

excess ATRA and the spread of Meis1/2 expression (Mercader et al., 2000; Yashiro et al., 

2004), the antagonistic relationship is still evident in the limb and may affect PD patterning 

indirectly via FGF8 suppression. Consistent with this, analysis of retinoid responsive genes 

in the anterior wing bud indicates that at least three FGFs (fgf1, fgf13 and fgf18) are down-



252 

 

 

 

regulated and Meis2 is up-regulated by both EC23 and ATRA (chapter 5). EC23 also 

down-regulates Fgf9 and Fgf16 (chapter 5). Alongside the support for this antagonistic 

relationship this down-regulation of Fgf also implies that limb outgrowth is inhibited and 

may provide a mechanism behind the phenotypes seen on the humerus (chapter 3; (Hung et 

al., 2007)). The antagonistic relationship between FGF8 and ATRA has been implicated 

for murine forelimb initiation and observations suggest that this is dependent of the levels 

of FGF in the secondary heart field (Cunningham et al., 2013; Zhao et al., 2009). This 

implies that FGF-ATRA antagonism is used in other areas of development. Among these 

other areas is the forebrain. It has been shown that ATRA inhibits the development of 

GNRH-1 neurons whilst FGF8 promotes it (Sabado et al., 2012). Similarly, the expression 

of Fgf8 at the ANR has an antagonistic relationship with ATRA (Halilagic et al., 2007) 

which may be due to signalling via the FABP5/PPARβδ pathway given that the expression 

domain of Fabp5 is similar to that of Fgf8 (chapter 4). This indicates that the results seen 

from the microarray analysis of retinoid targets and the expression of Fabp5 may have 

wider implications for other regions during embryonic development. 

Future work. 

 

Considering the novel findings and implications for limb development described in this 

work, there are a number of avenues available for future investigation. One of the major 

findings is that high quantities of retinoid can stall development but which can be corrected 

depending on the metabolism of the retinoid. This requires further work to prove that 

cartilage development in ATRA and EC23 treated wings are stalled compared to DMSO 

treatment. It also appears that non-metabolisable retinoid (EC23) can cause stalling of 

wing development to a greater extent and appears to uncouple proliferation and SHH 

signalling. The effect of EC23 on SHH signalling in the anterior wing bud at later time 

points is a vital experiment needed to confirm the mechanisms behind the novel 

duplications of additional digits with anterior identity. EC23 could also be used for future 

study of the development of digit 1 in chick and whether, like mouse (Chiang et al., 2001), 

it is Shh independent.  As mentioned in chapter 5 and the present chapter, the comparison 

of this work and other studies of retinoid or teratogenic effects may improve our 

understanding of the mechanisms involved in ensuring that correct development occurs 

within the correct time-frame. BMP dysregulation has been implicated in this and other 
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aspects of the phenotypes observed in this study and therefore they would be an interesting 

avenue for further study at earlier time points including the master regulator TGFβ2. 

In this work, I have proposed a model to explain the phenotypes generated with excess 

retinoid via the potential binding of the retinoic acid binding proteins CRABP2 and 

FABP5. However, these proposals assume that FABP5 plays the same role in vivo as has 

been previously described in vitro (Schug et al., 2007; Shaw et al., 2003). An important 

area for future work is to investigate the expression of Fabp5 after retinoid treatment and 

whether manipulation of Fabp5 levels affects digit duplication or limb development. 

Linked to the hypothesis of FABP5 involvement in limb development, another area of 

future work is to investigate the binding of EC23 and EC19 to RARs, CRABP2, FABP5 

and PPARβδ as well as further characterisation of all Rars, Pparβ and Fabp5 expression 

during chick development. Similarly, given the interesting expression of Fabp5 in other 

areas of the developing embryo, it would be of interest to manipulate the levels of Fabp5 

to confirm its role in the development and border control of the developing nervous 

system.  

Another major finding here is that excess retinoids can cause malformation of the scapula. 

As discussed earlier, the microarray analysis of EC23 or ATRA genetic targets have 

implicated many genes linked to mouse scapula development and which need further 

characterisation in chick. However, other proximally restricted genes may provide further 

avenues for investigation into the control of scapula development, one of which is seen to 

be altered in response to both EC23 and ATRA (Gsc; chapter 5).  Gsc is perhaps, one of 

the more interesting prospects for the regulation of scapula and joint development in chick. 

It has been shown to be expressed in the chick limb from HH20 onwards in an anterior-

ventral-proximal domain (Heanue et al., 1997). This domain is similar to the later domain 

of Pax1 expression, a known marker of scapula development (Huang et al., 2000; LeClair 

et al., 1999). In mouse and chicken, it is then described to be expressed surrounding the 

developing cartilage and the shoulder, elbow and wrist joints (Gaunt et al., 1993; Heanue 

et al., 1997). The mouse knock out does not exhibit a limb phenotype (Yamada et al., 

1995) and the phenotype exhibited by Gsc misexpression in chick is of a change to the 

angle and length of limb outgrowth as well as elbow fusions (Heanue et al., 1997). This 

implicates Gsc up-regulation in this microarray (chapter 5) as one of the mechanisms 

behind elbow fusion and cartilage element length concurrent with Cyp26 and other genes 

such as enpp2. While the misexpression of Gsc alone may not have generated a scapula 
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phenotype, it is possible that its up-regulation after retinoid treatment in conjunction with 

other genes involved in scapula development (Alx1, Pbx1 and Emx2; chapter 5) and down-

regulation of Pax1 expression, it may have contributed to the phenotypes observed 

previously (chapter 3).  

 

Blimp1 is not seen to be altered in response to retinoid in the present study however; 

Blimp1 knockout in Zebrafish causes shortening or absence of the scapulocoracoid in a 

similar frequency to the present study (Lee et al, 2006) and may therefore be of interest. 

Interestingly a study of the genetic targets of LIM homeobox transcription factor 1, beta 

(Lmx1b) in mouse has striking similarity to the present data.  Lmx1b is induced by Wnt7a 

in the dorsal ectoderm and controls the production of dorsal fate. WNT7A signalling is 

also thought to interact with the ZPA and AER in correct limb development (Capdevila 

and Belmonte, 2001) which fits with observations that limb development is inhibited here 

alongside similar phenotypes. Lmx1b knockout mice exhibit scapula hypoplasia amongst 

other malformations and mutation to this gene in humans causes Nail-Patella syndrome, 

indicating a role in joint development (Feenstra et al., 2012). Feenstra et al (2012) 

generated a list of 23 genes which were altered in Lmx1b knockout mice over 2 days of 

limb development (Feenstra et al., 2012).  Many of these genes are implicated in the 

development of the scapula as it is a dorsal limb structure. Interestingly, 10 of the 23 genes 

are also seen to be altered in response to retinoid in the present work.  There are also 4 

genes altered in response to retinoid also altered in Lmx1b knockout mouse limbs at E11.5 

in another study (Krawchuk and Kania, 2008). Considering that the number of similar 

genes is high and that two of the phenotypes seen with retinoids are also seen in Lmx1b 

knockout mice, it is likely that Lmx1b may play an earlier role in the retinoid response and 

is an interesting avenue for further research for both scapula and elbow development. 

 

Whilst Hoxb8 has been implicated in digit duplication, it is also of interest to note that 

Hoxb8 has been linked to scapula development and is up-regulated in response to both 

retinoids (chapter 5; (Charite et al., 1994). It has been considered an important factor in the 

production of the ZPA (normal or ectopic) but interestingly, overexpression under the 

βRARE promoter caused malformation of the scapula as well as digit duplication and 

reduced zeugopod length in mouse. Malformation was shown to be thinning of the scapula 

as well as abnormalities of the acromion concurrent with malformation of the olecranon. 

Interestingly, they also noted that under these conditions, there was a delay in development 
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between anterior and posterior halves of the limb with respect to patterning (Charite et al., 

1994), similar to that described with retinoid (chapter 5; (Ali-Khan and Hales, 2006). This 

may indicate that Hoxb8 is an important regulator of limb development, may contribute to 

the developmental delay seen with both retinoids tested here and is worthy of future work.   

 

Concluding remarks: 

 

Altogether, it can be seen that EC23 and EC19 appear to be analogues of ATRA and 

13CRA and therefore can be useful tools to study their effects in vivo. As EC23 is resistant 

to CYP26 induced metabolism but causes the same effects in vivo as ATRA, it can be 

concluded that the oxidative metabolites of ATRA do not play a role in development. The 

differential effect of EC23 on digit development and differentiation compared to ATRA 

indicates that high levels of retinoid can stall wing development.  That ATRA treated 

wings overcome the developmental stalling quicker than EC23 treated wings indicates that 

metabolism is a vital part of the early retinoid response. This may allow investigation into 

teratogenic targets and mechanisms by which the developmental schedule is maintained 

with respect to other organs. The effects of EC23 also indicate that proliferation and Shh 

induction have been uncoupled in the anterior wing leading to duplication of multiple digit 

1s and are consistent with the current understanding of digit development. Given the 

expression of Fabp5 in the developing embryo, it may be involved in the control of 

proliferation in the developing wing, amongst other interesting areas, and provides a 

mechanism by which EC23 and ATRA may cause the effects seen.  
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Appendices. 

Appendix 1: The 30 most up-regulated genes in response to 1mg/ml ATRA. 

Gene 

Symbol 

Gene Title FC Corrected 

p-value 

CYP26A1 cytochrome P450, family 26, subfamily A, polypeptide 1 98.14 0.0050 

CMBL carboxymethylenebutenolidase homolog (Pseudomonas) 52.29 0.0076 

--- --- 47.95 0.0061 

NEFM neurofilament, medium polypeptide 150kDa 38.37 0.0053 

--- --- 35.34 0.0117 

HOXB8 homeobox B8 34.56 0.0159 

NEFM neurofilament, medium polypeptide 150kDa 31.26 0.0061 

DHRS3 dehydrogenase/reductase (SDR family) member 3 28.44 0.0050 

--- --- 26.96 0.0061 

PDE1A Phosphodiesterase 1A, calmodulin-dependent 20.64 0.0085 

HOXB4 homeobox B4 19.66 0.0095 

--- --- 18.83 0.0053 

HOXB3 homeobox B3 18.00 0.0227 

SIAH3 seven in absentia homolog 3 (Drosophila) 16.94 0.0266 

NEFL neurofilament, light polypeptide 68kDa 15.84 0.0112 

RARB retinoic acid receptor, beta 15.33 0.0068 

PGM5 phosphoglucomutase 5 14.98 0.0111 

--- --- 14.08 0.0143 

TFPI2 tissue factor pathway inhibitor 2 13.40 0.0053 

HOXB5 homeobox B5 13.37 0.0389 

LOC422895 hypothetical gene supported by CR390900 11.50 0.0272 

LIX1 Lix1 homolog (chicken) 10.25 0.0353 

LYG2 lysozyme G-like 2 9.84 0.0085 

LOC423474 hypothetical LOC423474 9.46 0.0153 

GATA5 GATA binding protein 5 9.25 0.0454 

PAMR1 peptidase domain containing associated with muscle regeneration 

1 

8.91 0.0196 

--- --- 8.56 0.0157 

GPM6A glycoprotein M6A 8.45 0.0070 

--- --- 8.37 0.0081 

POSTN periostin, osteoblast specific factor 8.258 0.00001 

Abbreviations: FC, fold change with respect to DMSO; ---, unknown.  Significance was calculated using a t-

test and the p-value was corrected for multiple tests. 
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Appendix 2: The 30 most down-regulated genes in response to 1mg/ml ATRA. 

Gene Symbol Gene Title FC Corrected  

p-value 

CPA6 carboxypeptidase A6 -26.71 0.00001 

EFEMP1 EGF-containing fibulin-like extracellular matrix protein 1 -17.51 0.00001 

GNOT1 Gnot1 homeodomain protein -15.57 0.00007 

MSTN myostatin -14.54 0.00008 

HOXA13 homeobox A13 -13.04 0.00093 

TMEM215 Transmembrane protein 215 -12.51 0.00091 

C6orf142 chromosome 6 open reading frame 142 -12.18 0.00010 

FGF13 fibroblast growth factor 13 -11.24 0.00030 

MATN4 matrilin 4 -10.43 0.00000 

MNX1 motor neuron and pancreas homeobox 1 -10.41 0.00010 

MYOD1 myogenic differentiation 1 -9.16 0.00032 

CYTL1 cytokine-like 1 -8.68 0.00000 

DNER delta/notch-like EGF repeat containing -8.52 0.00010 

--- --- -8.35 0.00001 

RELN reelin -8.08 0.00001 

DLX6 distal-less homeobox 6 -7.79 0.00003 

--- --- -7.70 0.00000 

--- --- -7.56 0.00007 

--- --- -7.39 0.00031 

RLBP1 retinaldehyde binding protein 1 -7.11 0.00012 

--- --- -6.93 0.00005 

--- --- -6.61 0.00010 

MAB21L2 mab-21-like 2 (C. elegans) -6.61 0.00008 

CA8 carbonic anhydrase VIII -6.23 0.00006 

STK17A serine/threonine kinase 17a -6.10 0.00038 

FGF1 fibroblast growth factor 1 (acidic) -6.01 0.00029 

MEOX2 mesenchyme homeobox 2 -5.89 0.00002 

LMO3 LIM domain only 3 (rhombotin-like 2) -5.81 0.00006 

GNRH1 gonadotropin-releasing hormone 1 (luteinizing-releasing 

hormone) 

-5.73 0.00006 

TGFB2 transforming growth factor, beta 2 -5.46 0.00008 

Abbreviations: FC, fold change with respect to DMSO; ---, unknown.  Significance was calculated using a t-

test and the p-value was corrected for multiple tests. 
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Appendix 3: The 30 most  up-regulated genes in response to 0.01mg/ml EC23. 

Gene 

Symbol 

Gene Title FC Corrected 

p-value 

CYP26A1 cytochrome P450, family 26, subfamily A, polypeptide 1 63.94 0.00160 

--- --- 33.13 0.00329 

CMBL carboxymethylenebutenolidase homolog (Pseudomonas) 31.99 0.01325 

NEFM neurofilament, medium polypeptide 150kDa 27.90 0.00482 

--- --- 26.12 0.01130 

DHRS3 dehydrogenase/reductase (SDR family) member 3 22.85 0.00295 

NEFM neurofilament, medium polypeptide 150kDa 22.29 0.00547 

--- --- 17.93 0.00741 

SIAH3 seven in absentia homolog 3 (Drosophila) 16.46 0.02467 

HOXB8 homeobox B8 14.34 0.04387 

PDE1A Phosphodiesterase 1A, calmodulin-dependent 14.31 0.00733 

HOXB4 homeobox B4 14.24 0.01352 

LYG2 lysozyme G-like 2 13.16 0.00603 

--- --- 11.92 0.00635 

HOXB3 homeobox B3 11.83 0.02976 

RARB retinoic acid receptor, beta 11.67 0.00785 

NEFL neurofilament, light polypeptide 68kDa 10.05 0.01216 

HOXB5 homeobox B5 9.62 0.04581 

PGM5 phosphoglucomutase 5 9.51 0.01832 

TFPI2 tissue factor pathway inhibitor 2 9.11 0.00184 

--- --- 8.75 0.01507 

LOC423474 hypothetical LOC423474 6.50 0.01704 

--- --- 6.23 0.04876 

CDH17 cadherin 17, LI cadherin (liver-intestine) 5.98 0.01216 

GALNT6 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 6 (GalNAc-T6) 

5.77 0.02976 

AADACL4 arylacetamide deacetylase-like 4 5.66 0.01437 

CYP26C1 cytochrome P450, family 26, subfamily C, polypeptide 1 5.54 0.00870 

--- --- 5.43 0.02589 

FER1L3 fer-1-like 3, myoferlin (C. elegans) 5.28 0.00676 

--- --- 5.27 0.00786 

Abbreviations: FC, fold change with respect to DMSO; ---, unknown.  Significance was calculated using a t-

test and the p-value was corrected for multiple tests. 

 

 

 

 

 

  



259 

 

 

 

Appendix 4: The 30 most  down-regulated genes in response to 0.01mg/ml EC23. 

Gene 

Symbol 

Gene Title FC Corrected 

p-value 

EFEMP1 EGF-containing fibulin-like extracellular matrix protein 1 -14.43 0.00565 

CPA6 carboxypeptidase A6 -10.30 0.01398 

MATN4 matrilin 4 -10.20 0.00068 

C6orf142 chromosome 6 open reading frame 142 -10.17 0.02317 

COL9A1 collagen, type IX, alpha 1 -9.56 0.01337 

MNX1 motor neuron and pancreas homeobox 1 -9.22 0.01777 

MSTN myostatin -8.17 0.02236 

RELN reelin -7.63 0.00717 

--- --- -7.27 0.00233 

RLBP1 retinaldehyde binding protein 1 -5.84 0.00576 

COL9A3 collagen, type IX, alpha 3 -5.39 0.01097 

--- --- -5.37 0.00068 

--- --- -5.10 0.02178 

GNOT1 Gnot1 homeodomain protein -5.10 0.03134 

COLEC12 collectin sub-family member 12 -5.08 0.01144 

GNRH1 gonadotropin-releasing hormone 1 (luteinizing-releasing 

hormone) 

-5.05 0.01134 

LMO3 LIM domain only 3 (rhombotin-like 2) -4.84 0.00212 

--- --- -4.83 0.00729 

ITGBL1 integrin, beta-like 1 (with EGF-like repeat domains) -4.51 0.03033 

--- --- -4.50 0.01556 

DLX6 distal-less homeobox 6 -4.49 0.00870 

CYTL1 cytokine-like 1 -4.42 0.00991 

MASP1 mannan-binding lectin serine peptidase 1 (C4/C2 activating 

component of Ra-reactive factor) 

-4.30 0.00221 

FAM19A1 Family with sequence similarity 19 (chemokine (C-C motif)-

like), member A1 

-4.29 0.01709 

STK17A serine/threonine kinase 17a -4.26 0.02687 

ALDH1A2 aldehyde dehydrogenase 1 family, member A2 -4.13 0.01373 

GALNT9 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 9 (GalNAc-T9) 

-4.07 0.00409 

CBLN2 cerebellin 2 -3.98 0.03132 

DNER delta/notch-like EGF repeat containing -3.91 0.01704 

LOC40803

8 

beta-keratin -3.87 0.03484 

Abbreviations: FC, fold change with respect to DMSO; ---, unknown.  Significance was calculated using a t-

test and the p-value was corrected for multiple tests. 
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