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ABSTRACT 

In Saccharomyces cerevisiae, the general stress response (GSR) protects cells from diverse stress 

conditions such as osmotic stress and heat stress, while the Unfolded Protein Response (UPR) is a 

protein folding stress signalling pathway which maintains homeostasis of the endoplasmic 

reticulum (ER). A mechanism of how and if at all the UPR integrates with other pathways is largely 

unknown. The focus of this thesis was to determine whether essential components of the UPR like 

the bZIP transcription factor Hac1p and the Rpd3p-Sin3p histone deacetylase integrated within 

osmotic stress and to identify a possible mechanism of such an integration event.  

Data from this thesis demonstrate that UPR components protect cells from hyperosmotic stress. 

Hac1p is a direct positive regulator of GSR genes. Rpd3p and Hac1p belong to the same pathway 

in activating GSR genes.  Data also suggest that Hac1p does not contribute to the increase in 

nucleosomal histone acetylation levels after osmotic stress. The Gcn5 histone acetyltransferase 

contributes to the increase in histone acetylation observed after osmotic stress. The Rpd3p 

represses GSR genes in unstressed cells but also contributes to the activation of GSR genes after 

hyperosmotic shock. The Rpd3 large complex and not the small complex is involved regulating 

GSR gene expression. Subsequent investigation demonstrates that a possible mechanism by 

which the UPR contributes to the GSR gene activation is by the RNA polymerase II clearance at the 

GSR gene promoters. 
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All organisms have developed mechanisms to deal with stress. Yeast cells have evolved 

mechanisms to adapt to stresses including osmotic stress, cell wall stress, ER stress, oxidative 

stress and heat stress. Gene regulation is central in responding to stress environments and yeast 

cells regulate either a subset of genes or many genes across the entire genome in a coordinated 

attempt to regain cellular homeostasis.  

In the introduction chapter, a general overview of gene regulation will be presented in yeasts and 

higher organisms. The contents of this section will present basic information on chromatin 

structure and molecules regulating the chromatin structure. The introduction will then 

concentrate on histone acetylation as a posttranslational modification of histones and the 

molecules involved in this modification. Recent literature has linked molecules involved in histone 

acetylation to stress responses like osmotic stress and ER stress. The introduction will then 

present an overview of ER, osmotic and cell wall stress responses in yeast, S.cerevisiae specifically. 

The osmotic stress and ER stress will then be linked to gene regulation from which the aims and 

objectives of this study will be derived. 

 

1.1 Chromatin structure and gene expression 

DNA associates closely with histone proteins to form the chromatin which is enclosed within the 

cell nucleus. The benefits of packaging DNA with proteins include condensing it to fit into the 

nucleus, aiding the control and coordination of gene expression and replication and also the 

prevention of DNA damage. Largely, the structure of the chromatin depends on the stage of the 

cell cycle.  

The packaging of DNA with histones to form chromatin is explained by the ‘beaded’ nucleosomes 

which consist of a pair of four core histones-H2A, H2B, H3 and H4. A set of these four core 
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histones form a tetramer. Two tetramers together form an octamer around which a 146bp region 

of DNA is wound to form a ‘bead’. This results in the DNA being compacted five to ten fold 

(Kornberg, 1974). The amino acid terminal end of histones form the histone tails regions. If the 

chromatin structure is closed (the heterochromatin) then genes are not transcribed. This is 

because the packed chromatin structure sterically interferes with access of proteins like 

transcription factors and the general transcription machinery to regulatory sites present on the 

DNA. When the chromatin structure is open (the euchromatin), DNA is accessible for DNA 

template associated molecular processes. Chromatin structure and gene expression processes are 

hence linked. But the event of gene activation cannot be categorised as a step-wise, ordered 

phenomenon. Where in one case the nucleosomes may be repositioned at a promoter site by 

chromatin remodelling complexes, in other cases it may be exactly vice-versa where TFs, RNA 

polymerase and other proteins are recruited to promoters prior to the chromatin remodellers 

(Felsenfeld and Groudine, 2003). Figure 1.1 revisits some basic concepts in gene regulation and 

transcription which is also the essence of this thesis. 

In this section of the introduction chapter the following topics will be described keeping the 

information focussed on S. cerevisiae, but an overview of the same in other eukaryotes will also 

be presented: 

 Important molecules which affect chromatin structure during gene expression 

 Post-translational modifications of histone proteins 

 Lysine acetylation and deacetylation on the N-terminal tails of core histones 

 Histone deacetylases (HDACs) and Histone acetyltransferases (HATs) 

 Nucleosomal histone lysine acetylation, gene regulation and stress  
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1.1.1 Molecules affecting chromatin structure 

1.1.1.1 Chromatin remodelling complexes 

There are many molecules which affect the chromatin structure which eventually lead to the 

dissociation of the histone protein from DNA for a molecular process like transcription to take 

place (Berger, 2002; Ptshane and Gann 2001). Firstly, there are the chromatin remodelling 

complexes which are ATP dependent which regulate chromatin structure (Becker and Hörz, 2002). 

ATP-dependent complexes can move nucleosome positions thereby exposing or occluding DNA 

 

Figure 1.1 A few basic concepts revisited in chromatin regulation and gene expression 

processes The sketch represents some of the basic but essential concepts and the molecules involved 

which are central to this thesis. 
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sequences. The ATPase subunits display homology only within the ATPase domain and contain 

additional domains. The two best studied family of remodelling complexes in yeast are the 

SWI/SNF (Switch/sucrose non fermentable) family and the ISWI (imitation switch) -based family of 

complexes (Figure 1.2). 

 

The RSC (Remodels structure of chromatin) complex is another chromatin remodelling complex 

which was discovered in 1996 (Cairns et al., 1996) and has some subunits common with the 

SWI/SNF complex as shown in Figure 1.2. The most well known mechanism by which the 

remodelling complexes make DNA accessible is the ‘sliding’ of DNA with respect to the histone 

octomer (Meersseman et al., 1992). Sliding involves the identical amounts of entry and exit points 

of the DNA in the same direction. This results in the octamer being repositioned resulting in the 

DNA originally interacting with the octamers becomes non-nucleosomal. The roles of the 

remaining subunits in the remodelling complexes have been hypothesised to perform two 

 

Figure 1.2 Main chromatin remodelling complexes known in yeast (From Narlikar et al., 

2002) 
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functions. Firstly, the subunits can modulate remodelling activity of the ATPase subunit or 

secondly, they can be involved in directing the remodelling complex to gene promoters directly or 

via transcriptional activators. 

 

1.1.1.2 Histone Variants 

Histone variants may replace one of the core histones, thereby affecting the dynamics of the 

chromatin (Ahmed and Henikoff, 2002). In yeast two of the nucleosomal histone families, H2A 

and H3 have highly conserved variants with specialised functions. Histone H1 has numerous 

sequence variants such as H10, H5, and the spermand testis-specific variants (Kamakaka and 

Biggins, 2005). Among the core histones, H2A has the largest number of variants, including H2A.Z, 

MacroH2A, H2A-Bbd, H2AvD, and H2A.X (Ausio and Abbot, 2002; Redon et al., 2002; Fernandez-

Capetello et al., 2004). The H2A.X variant plays a role in DNA double stranded breaks (Redon et 

al., 2002). The H2A.Z variant has been associated with genes during transcriptional activation and 

is essential for development in higher eukaryotes. The H2A.Z variant is incorporated into 

nucleosomes as a H2A.Z/H2B dimer by the Swr1 complex and by the SRCAP and p400/Tip60 

complexes in mammalian cells (Svotelis et al., 2009). Another variant for histone H3, the H3.3 in 

metazoans has also been associated with active transcription. Its role in histone replacement is 

conserved to the single histone H3 in yeast. With a strikingly small amino acid difference to the 

canonical histone H3, the H3.3 variant is associated with a variety of cellular and developmental 

processes (Elsaesser et al., 2010). In addition, there are the centromeric histone H3 variant (Albig 

et al., 1996) and the mammalian testes tissue-specific histone H3 variant, H3.4 (Witt et al., 1996). 

The literature does not provide much information on the variants in either H2B or H4 core 

histones. 
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1.1.1.3 Histone posttranslational modifications 

Other than chromatin remodellers and histone variants, the post translational modification of the 

histone tails also significantly contributes to the chromatin dynamics. The covalent post-

translational modifications of histones are one of the prominent means to regulate chromatin 

structure. Regulation of chromatin structure is important for the control of DNA-templated 

processes like gene expression and silencing.  

 

The idea of how post translational modifications of histones affect transcription is shown in Figure 

1.3. Core histones have N-terminal tails whose sequences are highly conserved from yeast to 

human. Genetic studies in yeast have demonstrated that these histone tails are essential for 

 

Figure 1.3 Histone tails are critical for the post translational modification of histones A sketch 

representing the post-translational modification of histone tails that are critical in affecting chromatin 

structure. The different coloured dots in N-terminal tail of a representative core H3 histone illustrate 

modifications like acetylation, methylation and phosphorylation which contribute to activation of genes 

(‘on’ mode). 
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cellular viability because simultaneous deletion of H3-H4 tails or H2A-H2B tails is lethal (Ling et al., 

1996). Involvement of histone tails  in control of gene expression may result from two interlinked 

but distinct mechanisms i) a change in structure or composition of the nucleosome and/or the 

nucleosome fibre and ii) the modulation of the interaction of the histone tails with regulatory 

factors (Hartzog and Winston, 1997). The N-terminal tails of the four core histones are targets for 

posttranslational modifications that correlate with changes in gene activity. Contribution of 

histone tails in maintaining nucleosome structure and nucleosome arrays has been demonstrated 

(Ausio et al., 1989; Fletcher et al., 1995; Tse et al., 1998). 

Chromatin is not an inert structure but rather a structured and instructive DNA scaffold which 

responds to a stimulus to regulate many functions of the DNA molecule. An important component 

of the chromatin which plays a key role in regulating the DNA is the modification of histones. A 

large number of modifications are currently known as shown in Figure 1.4 and the complexity of 

their action is just beginning to be understood. Evidence has been accumulating over the past 

three decades, which confirms that histone modifications play a fundamental role in many 

biological processes which involve manipulation and expression of DNA. 

 

 

Figure 1.4 Some posttranslational histone tail modifications in yeast and higher eukaryotes A 

cartoon showing the range of histone tail posttranslational modifications possible in yeast and higher 

eukaryotes. 
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Histone tail modifications are not an independent event occurring during chromatin regulation 

which makes DNA accessible. Instead they are known to recruit remodelling enzymes which use 

ATP-hydrolysis to reposition nucleosomes and also act as substrates for essential chromatin 

related enzymes. The recruitment of regulatory proteins and complexes with specific enzymatic 

functions is now an accepted idea of how histone modifications mediate their function. The 

chemical nature of these modifications is a covalent interaction between the donor and the 

acceptor molecules. Some of the well studied histone posttranslational modifications are histone 

acetylation, histone phosphorylation and histone methylation. These three histone modifications 

involve the addition or removal of small functional groups to the specific amino acids in the 

histone tail regions. In contrast, ubiquitylation and sumoylation involve the addition of much 

larger functional groups. 

Lysine acetylation, one of the most dynamic modifications is regulated by the opposing action of 

two families of enzymes, HATs and HDACs. Like histone acetylation, the phosphorylation of 

histones is highly dynamic. It takes place on serines, threonines and tyrosines, predominantly but 

not exclusively in the N-terminal histone tails. The level of phosphorylation is controlled by 

kinases and phosphatises which add or remove the phosphate group respectively (Oki et al., 

2007). Histone methylation occurs mainly on lysine and arginine in histone tail regions. Unlike 

acetylation or phosphorylation, methylation does not alter the charge on the histone protein. In 

addition, the methylation modification is of a more complex nature as lysines can be mono-, di- or 

trimethylated whereas arginines can be mono-, symmetrically or asymmetrically di-methylated 

(Lan et al., 2009;  Bedford and Clark 2009; Ng et al., 2009). Further sections beyond this point of 

the introduction chapter will focus on lysine acetylation because an important molecule which is a 

point of focus for my study is the Rpd3p-Sin3p HDAC in S. cerevisiae. 
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1.1.2 Lysine acetylation- a post translational modification on histones 

The lysine acetylation was discovered as a covalent histone modification process in 1964 by the 

pioneering studies by Vincent Allfrey (Allfrey et al., 1964). It is a reversible process and is 

catalysed by enzymes acetyl transferase and deacetylase that act antagonistic to each other. 

Lysine (K) acetylation is a transfer of an acetyl moiety from acetyl-coenzyme A (CoA) cofactor to 

the ε-amino group of a lysine residue. The deacetylation of histone tails is brought about by HDAC 

and acetylation by HAT (Figure 1,5), with one of the common substrates for both enzymes being 

the ε-NH2 groups of the lysine residues in N-terminal tails of the core nucleosomal histones 

(Bradbury, 1992).  

 

 

Figure 1.5 HATs and HDACs regulate nucleosomal histone acetylation A cartoon showing 

histone acetyltransferases and histone deacetylases which regulate chromatin structure by post-

translationally modifying lysine acetylation, the common substrates for both enzymes are the N-

terminal tail lysine residues of the core histones.  
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Before the 1990’s, a much simpler understanding existed of how genes were regulated. One of 

the ideas was that transcriptional regulation was correlative with the acetylation pattern on 

nucleosomal histones. An overall increase in histone acetylation resulted in a transcriptionally 

active state whereas during transcriptional repression there was a decrease in histone acetylation. 

After 1990’s this view of the chromatin state during transcriptional regulation became more 

complicated. The biochemical characterisation of the histone acetyltransferases and deacetylases 

revealed a more complex pattern of histone acetylation and deacetylation of the chromatin 

(Travis et al., 1984; Kleff et al., 1995; Glozak et al., 2005). In the past two decades, an impressive 

amount of literature has been collected on lysine acetylation as a posttranslational modification.  

The targets for lysine acetylation have now extended from histones to transcription factors and 

other proteins such as metabolic enzymes and signalling molecules in the cytoplasm. Lysine 

acetylation affects a number of protein properties including regulation of DNA-protein 

interaction, non-histone proteins, transcriptional activity, nuclear stability and involvement in 

various signalling pathways (Spange et al., 2009; Chowdhary et al., 2009; Kim et al., 2006; Glozak 

et al., 2005; Patel et al., 2011). In recent years the dynamic state of lysine histone acetylation has 

been linked to various pathological states and diseased conditions (McCullough and Grant, 2010; 

Lu et al., 2009; Yang and Seto, 2008; Haberland et al., 2009; Minucci et al., 2001; Saha and Pahan, 

2006). 

 

1.1.2.1 Histone deacetylases in yeast and the Rpd3p-Sin3p HDAC in S cerevisiae 

There are 10 known HDACs in yeast S.cerevisiae which have been categorised into three main 

classes. These classes were made based on the phylogenetic analysis and sequence homology to 

yeast Rpd3 (Reduced potassium deficiency 1), Hda1 and Sir2 (Silent information regulator 2) 

HDACs (Gregoretti et al., 2004; Grozinger and Schreiber, 2002; Khochbin et al., 2001; Pandey et 
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al., 2002). The first deacetylases for lysine residues in mammalian cells was HDAC1 and 

correspondingly in yeast was Hda1 (Rundlett et al., 1996; Taunton et al., 1996). HDA1 (Histone 

deacetylase 1) encodes for a histone deacetylase enzyme (Rundlett et al., 1996). It is a 350kDa 

protein complex and was found to be sensitive to the deacetylase inhibitor trichostatin A. HDA2 

and HDA3 are genes which encode for the other interacting partners of Hda1p (Wu et al., 2001). 

Subsequently, other deacetylases were discovered. Table 1.1 lists out the names and classes of 

the known Rpd3 HDACs in yeast along with their mechanism of catalysis and localisation in the 

cell.  

 

Class Name Mechanism of catalysis Cell localisation 

I 
Rpd3, Hos1, 

Hos2 
Zn2+ion dependent Ubiquitous 

II Hda1, Hos3 Zn2+ion dependent 
Moves between the 

nucleus and cytoplasm 

III 
Sir2, Hst1, 
Hst2, Hst3, 

Hst4 
NAD+ dependent 

Shuttles between the 
nucleus, cytoplasm and 

mitochondria 

Table 1.1 gives an overview of the known yeast HDACs 

 

RPD1 (Reduced potassium deficiency 1, also known as SIN3, UME4 and GAM3) is required for 

maximal activation and repression of diverse yeast genes. The product of the SIN3 gene codes for 

a 175-kDa protein which functions as a transcriptional corepressor in S cerevisiae (Kasten et al., 

1997).  Sin3 (Switch independent 3), a co-repressor known to interact with DNA-binding 

protein,was found in the same complex as Rpd3 (Alland et al., 1997; Hassig et al., 1997; Heinzel et 

al., 1997; Kadosh and Struhl, 1997; Kasten et al., 1997; Laherty et al., 1997; Nagy et al., 1997). 

RPD3 (Reduced potassium deficiency 3, also known as REC3, SDI2 and SDS6) was shown to encode 
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a second protein required for maximum transcriptional activation and repression (Vidal and 

Gaber, 1991; Dora et al., 1999; Stillman et al., 1994; Sussel et al., 1993). Another protein, Ume1p 

(Unscheduled meiotic gene expression 1) was shown to be critical for the repression of meiotic 

genes and to interact with the Rpd3p-Sin3p HDAC and contributed to its enzymatic activity (Strich 

et al., 1989; Kurdistani et al., 2002; Mallory and Strich, 2003). 

 

1.1.2.2 Two Rpd3 complexes- the Rpd3 large (Rpd3L) and the Rpd3 small (Rpd3S) 

complex 

Two distinct complexes of Rpd3 have been identified, the Rpd3 small complex of 0.6 MDa (Rpd3S) 

and a large complex of 2.1 MDa (Rpd3L) (Kasten et al., 1997; Keogh et al., 2005; Carrozza et al., 

2005). These two complexes have three common subunits, namely, Rpd3, Sin3, and Ume1. The 

Rpd3 large complex includes subunits like Sap30, Pho23, Rxt1, Rxt2, Dep1, and Sds3 which are 

specific to the large complex. Table 1.2 lists the known subunits of the Rpd3 large complex, their 

function and the citation which originally described them. Rco1 (Regulation of conidiation 1) and 

Eaf3 (Esa1p associated factor 3) were found to be specific for the small Rpd3 complex (Keogh et 

al., 2005; Carrozza et al., 2005; Huh et al., 2003). The functional differences between the two 

complexes were shown using clustering of genetic interactions and gene expression profiles (Tong 

et al., 2001 and 2004; Keogh et al 2005). Eaf3 was also identified as a component of the HAT 

complex, NuA4 (Eisen et al., 2001; Krogan et al., 2004). 
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 Subunit of Rpd3L complex Role Reference 

1. Sds3 (Supressor of defective 
silencing 3) 

maintains the integrity and the catalytic 
activity of the Rpd3p-Sin3p complex 

Lechner et al., 2000 

2. Dep1 (Disability in regulation of 
expression of genes involved in 
phospholipid biosynthesis) 

integral part of the Rpd3L complex 
involved in suppressing genes and keeping 
the complex intact 

Lamping et al., 1994 

3. Sap30 (SIT4 protein 
phosphatase associated 
protein) 

required for the normal function of the 
Rpd3L complex in maintaining gene 
repression 

Zhang et al., 1998 

4. Pho23 (Phosphate metabolism) involved in the normal function of gene 
regulation and silencing 

Loewith et al., 2001 

5. Cti6, same as Rxt1 (Cyc8-Tup1 
Interacting protein 6) 

a part of the Rpd3L complex containing a 
PHD finger domain which is essential for 
growth under low iron and regulation of 
telomeric silencing but is not involved in 
transcriptional repression 

Puig et al., 2004 

6. Ash1 (Asymmetric synthesis of 
HO 1) 

sequence specific repressor stably 
associated with the Rpd3L complex 

Carrozza et al., 2005 

7. Ume6 (Unscheduled meiotic 
gene expression 6) 

sequence specific repressor stably 
associated with the Rpd3L complex 

Carrozza et al., 2005 

9. Raf60, same as Rxt2 (Rpd3-
associated factor) 

Required for normal Rpd3L complex 
activity and repression of gene expression 

Colina and Young, 2005 

10. Rxt3  Subunit of Rpd3L complex involved in 
deacetylation 

Samanta and Liang, 
2003 

Table 1.2 Lists out the presence of the known subunits of the Rpd3L complex other than Rpd3p, Sin3p and 
Ume6p. 

 

 

1.1.2.3 Histone acetyltransferases in yeast and the Gcn5 HAT in S. cerevisiae 

In mammals, the first nuclear Gcn5 HAT was identified in 1996 (Brownell et al., 1996). In yeast, 

Gcn5 (General control nonderepressible 5) is required for the expression of a subset of genes 

(Lucchini et al., 1984; Georgakopoulos and Thireos, 1992; Kleff et al., 1995). Yeast Gcn5 is found in 

at least 2 distinct multiprotein complexes and neither of these is associated with RNA Pol II (Grant 

et al., 1997). SAGA complex also contains Spt proteins including Spt3 which interact with the 

TATA-binding protein (Eisenmann et al., 1992). There are two major classes of HATs: type-A and 
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type-B. The type-B HATs are predominantly cytoplasmic, acetylating free histones but not those 

which are already associated with the chromatin. This class of HATs are highly conserved. Type-B 

HATs acetylate newly synthesised histone H3 K5 and K12, as well as a few lysine residues in 

histone H3. This pattern of acetylation is important for the deposition of the histones after which 

the acetylation modifications are removed (Parthun, 2007). The type-A HATs are a more diverse 

family of HATs than type-B HATs. They can be classified into three main categories depending on 

the sequence homology and conformational structure: GNAT, MYST and the CBP/p300 families 

(Hodawadekar and Marmorstein, 2007). Confirmed and putative HAT proteins have been 

identified from various organisms from yeast to humans, and they include Gcn5-related N-

acetyltransferase (GNAT) superfamily members Gcn5, PCAF, Elp3, Hpa2, and Hat1: MYST proteins 

Sas2, Sas3, Esa1, MOF, Tip60, MOZ, MORF, and HBO1; global coactivators p300 and CREB-binding 

protein; nuclear receptor coactivators SRC-1, ACTR, and TIF2; TATA-binding protein-associated 

factor TAF(II)250 and its homologs; and subunits of RNA polymerase III general factor TFIIIC 

(Sterner and Berger, 2000).  

There are at least two well characterised HAT complexes in yeast, the SAGA (Spt-Ada-Gcn5-

Acetyltransferase) complex the NuA4 complex (Nucleosome acetyltransferase of histone H4) 

(Figure 1.6). The NuA4 and NuA3 belong to the same family of complexes and are named 

depending on substrate specificity (Allard et al., 1999). Gcn5 is the catalytic subunit of the SAGA 

complex while Esa1 (Essential SAS-2 related acetyltransferase) is the catalytic subunit of the NuA4 

complex.  



School of Biological and Biomedical Sciences | PhD Thesis | Chapter 1 

Durham University | 16  

 

 

The Ada2/Ada3/Gcn5 and Piccolo NuA4 complexes are functionally sufficient for the nucleosomal 

HAT activity of the megadalton SAGA and NuA4 complexes. Gcn5 is the catalytic HAT subunit of 

SAGA, but acetylates only histone tails weakly, whereas the Ada2/Ada3/Gcn5 is sufficient to form 

a subcomplex with similar robust HAT activity and histone H3 and H2B specificity for nucleosomal 

histones as the full megadalton SAGA complex. Similarly, Esa1 is the catalytic subunit of the NuA4 

complex with weak activity on free and nucleosomal histones, but the Piccolo NuA4 subcomplex 

comprised of the Epl1, Yng2 and Esa1 subunits acetylates nucleosomal histones with the same 

preference for histones H4 and H2A as the full NuA4 complex (Figure 1.7) (Barrios et al., 2007). 

 

Figure 1.6 The yeast SAGA and NuA4 complexes The figure shows the different subunits identified in 

the SAGA and the NuA4 complexes 
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The NuA4 and SWR1-C chromatin-modifying complexes alter the chromatin structure through 3 

distinct modifications in yeast: post-translational addition of chemical groups, ATP-dependent 

chromatin remodelling, and histone variant incorporation (Lu et al., 2009). Fractionation of yeast 

cell extracts showed the presence of Esa1 in the presence of NuA4. Combined biochemical and 

genetic data indicate that the Piccolo complex is responsible for a global acetylation pattern in 

yeast in contrast to activator-directed acetylation at the active gene promoters by the NuA4 

coactivator complex (Boudreault et., 2003). 

SAGA/SLIK complex Biological function component (this table has been taken from the article 
by Baker and Grant, 2007). 

Gcn5 (Ada4) Acetylation of lysines on H3 and H2B; transcriptional activation; NER 
recognition of acetylated lysine via bromodomain 

Ada1 Complex stability 

Ada2 Required for nucleosomal acetylation by Gcn5 

 Ada3 

Spt3 TBP interaction, transcriptional repression at HIS3 and ARG1 loci 

 Spt8 

 

Figure 1.7 Functional attributes of the SAGA and the NuA4 complexes The figure has been taken 

from the research article by Barrios and colleagues (Barrios et al., 2007). 
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Spt7 Complex stability 

 Spt20 (Ada5) 

TAF5 Structural integrity of complex and interaction with basal transcription 
machinery 

 
TAF6 

TAF9 

TAF10 

TAF12 Required for nucleosomal acetylation by Gcn5 and interaction with 
transcriptional activators 

Tra1 Interaction with transcriptional activators 

Ubp8 Deubiquitylation of H2B Lys 123; transcriptional activation 

Rtg2 SLIK stability; links complex to retrograde response pathway 

Chd1 Recognition of H3 Lys 4 methylation via chromodomain; potentiation of 
histone acetylation by Gcn5 

Sus1 mRNA export 

Sgf11 Required for association of Ubp8 and Sus1 with SAGA 

Sgf29 ? 

Sca7 Poly(Q) expansion inhibits nucleosomal acetylation by Gcn5 

Table 1.3 The SAGA/SLIK complex biological function component (this table has been taken 

from the article by Baker and Grant, 2007). 

 

Yeast Gcn5 acetylates H3 K14, a modification correlated with transcriptional activation (Brownell 

et al., 1996; Howe et al., 2001; Lo et al., 2000; Syntichaki et al., 2000; Trievel et al., 1999). In S. 

pombe, Gcn5 has been shown to be critical for maintaining genome wide acetylation levels in the 

transcribed regions of highly expressed genes. Gcn5 also antagonistically regulates these genes 

with the Class- II HDAC Clr3 (Johnsson et al, 2009). Gcn5 and Gcn5-dependent acetylation of 

histone H3 K14 tends to be more common in the upstream regions of genes that require Gcn5 for 

correct expression compared to genes that are independent of Gcn5. This suggests a critical role 

of Gcn5 in the transcriptional initiation of these genes (Johnsson and Wright, 2010). The Gcn5 and 
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Rpd3 enzymes are general regulators of histone acetylation, but have been shown to have affinity 

for specific lysine residues. For example, Gcn5 preferentially acetylates H3 K14 and lysines 8 and 

16 of histone H4 (Kuo et al., 1996), and the Rpd3 HDAC preferentially deacetylates lysines 5 and 

12 of histone H4 (Rundlett et al., 1996; Tauton et al., 1996). In addition, HATs differ in their ability 

to act on nucleosomal or free histones, and in this regard, the recombinant form of the enzyme 

can differ dramatically from the HAT complex that exists in cells. For example, recombinant Gcn5 

can only acetylate free histones, whereas the Gcn5 in SAGA complex can acetylate core histone N-

terminal lysines (Grant et al., 1997).  

Work on yeast Gcn5 and Rpd3 suggests that lysines in the N-terminal tails of core histones are 

physiologically relevant substrates for these enzyme complexes, and that the histone acetylase 

and deacetylase activities are critical for transcriptional regulation. Studies of bulk acetylation 

levels have shown that upto 13 of the 30 lysine tail residues in the histone core octamer are 

acetylated (Roth et al., 2001). So far, no body of evidence has been generated which suggests an 

order in which chromatin remodelling complexes and chromatin remodifiers function during gene 

regulation. Rather data suggest that each individual promoter uses a specific set order of function 

of these complexes for transcriptional activation or repression.  It has also been shown that there 

is a strict correlation between histone acetylase activity in vitro and transcriptional activity in vivo 

(Kuo et al., 1998; Wang et al., 1998). In one of these studies, histone acetylation by the various 

Gcn5 derivatives was performed in the context of the Ada and SAGA complexes on nucleosomal 

substrates (Wang et al., 1998). In the other study, additional evidence for physiological relevance 

was obtained by analyzing directly the acetylation state of chromatin in yeast cells (Kuo et al., 

1998). Data from these two studies revealed that when overexpressed, Gcn5 leads to increased 

acetylation of core histones. More interestingly, Gcn5 increases promoter histone acetylation in a 

manner that correlates with Gcn5-dependent transcriptional activation and histone acetylase 

activity in vitro. 
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Histones are also physiological substrates for yeast Rpd3 and Hda1 histone deacetylases (Rundlett 

et al., 1996). As would be predicted from the enzymatic specificities of these deacetylases, yeast 

strains lacking either Rpd3 or Hda1 show increased acetylation at lysines 5 and 12 of histone H4. 

Furthermore, it has also been shown that catalytically inactive mutants of an enzyme complex still 

maintain the structural integrity of the complex. For example, single mutant derivatives of Rpd3, 

H150A, H151A and H188A that abolish histone deacetylase activity do not affect Sin3–Rpd3 

complex formation but are defective for transcriptional repression in vivo (Kadosh and Struhl, 

1998). 

Histone acetyltransferases and deacetylases cause localized fluctuations of chromatin structure 

because they are targeted generally or during a specific stimulus to the promoters.. At present, 

there is virtually no information on the localization of modified chromatin in vivo. It is not known 

so far whether these two enzymes modify a single nucleosome or if the chromatin structure is 

affected over a larger distance. In addition, the histone acetylases and deacetylases differ with 

respect to the individual lysine residues and specific histones that are affected, and there is 

limited information on how such differences affect chromatin structure and protein accessibility 

in vivo (Struhl, 1998).  

Local perturbations of chromatin structure are expected to specifically affect the accessibility 

and/or function of transcriptional regulatory proteins that bind DNA sequences in the region 

where histone acetylation or deacetylation occurs (Struhl, 1998). However, accessibility to the 

promoter is also influenced strongly by the inherent ability of a given DNA-binding protein to bind 

nucleosomal templates (Hassig et al. 1997; Laherty et al. 1997, Kadosh and Struhl 1997, Nagy et 

al. 1997), the inherent positioning of nucleosomes on particular promoter DNA sequences, the 

intracellular levels of the DNA-binding proteins and the inherent quality of the binding site and 

competition between binding sites in promoter regions and those located throughout the genome 

(Struhl, 1998).  
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1.1.3 Nucleosomal lysine acetylation- site for protein-protein interaction domains 

Lysine acetylation when first discovered was thought to neutralise the positive charge on the 

histones, thus reducing the affinity between the histone and negatively charged DNA. Recent 

studies have shown that lysine acetylation of the core nucleosomal histones as well as the other 

posttranslational modifications of histones generate binding sites for specific protein-protein 

interaction domains. Numerous chromatin associated factors have been shown to specifically 

interact with posttranslationally modified histones via distinct domains. Use of new proteomic 

approaches have revealed that there are multivalent proteins and complexes that have specific 

domains within them that allow the simultaneous recognition of several modifications and other 

nucleosomal features (Vermeulen et al., 2010; Bartke et al., 2010). These domains are part of 

protein complexes and are important in recognising modifications for gene regulation. A few 

known protein domains are described in the following section. 

A protein domain is part of the protein sequence and structure which can evolve, function and 

exist independently of the rest of the protein chain. 

 A bromodomain (BRD) is a protein domain that can recognise acetylated lysine residues 

such as those on the N-terminal tails of core histones. This recognition is often a prior 

condition for an enzyme complex and histone interaction (Owen et al., 2000). The 

bromodomain was identified as a novel structural motif by John W. Tamkun and 

colleagues while studying the BRM (brahma) gene, and showed sequence similarity to 

genes involved in transcriptional activation (Tamkun et al., 1992).  

 A chromodomain (chromatin organization modifier ) is a protein structural domain of 

about 40-50 amino acid residues commonly found in proteins associated with the 

remodeling and manipulation of chromatin (Messemer et al., 1992). The chromodomains 

bind to methylated lysines (Neilsen et al., 2002; Jacobs and Khorasanizadeh, 2002). 

http://en.wikipedia.org/wiki/Structural_motif
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Structural_domain
http://en.wikipedia.org/wiki/Amino_acid
http://en.wikipedia.org/wiki/Chromatin
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 The PHD finger (Plant Homeo Domain) was discovered in 1993 as a Cys4-His-Cys3 motif in 

the homeodomain protein HAT3 in Arabidopsis thaliana (Schindler et al., 1993). The PHD 

finger motif resembles the metal binding RING domain (Cys3-His-Cys4) and FYVE domain. It 

occurs as a single finger, but often in clusters of two or three, and it also occurs together 

with other domains, such as the chromodomain and the bromodomain. 

 RING (Really Interesting New Gene) finger domain is a protein structural domain of zinc 

finger type which contains a Cys3HisCys4 amino acid motif which binds two zinc cations 

(Freemont et al., 1991; Lovering et al., 1993). Many proteins containing the RING domain 

play a key role in the ubiquitination pathway. 

Histone acetylated lysines are bound by bromodomains, which are often found in HATs like Gcn5 

and chromatin remodelling complexes (Mujtaba et al., 2007). These bromodomains, about 110 

amino acid residue structures recognize several of the residues flanking the acetyl-lysine, thereby 

providing acetyl-lysine recognition within a sequence context (Hudson et al., 2000; Muitaba et al., 

2002; Owen et al., 2000). For example, Swi2/Snf2 contains a bromodomain that targets it to 

histones which are acetylated. In turn, this recruits the SWI/SNF remodelling complex, which 

functions to ‘open’ the chromatin (Hassan et al., 2002). Recently, it has also been shown in 

mammalian cells that PHD fingers are capable of specifically recognizing acetylated histones. The 

DPF3b protein is a component of the BAF chromatin remodelling complex and it contains tandem 

PHD fingers that are responsible for recruiting the BAF complex to acetylated histones (Zeng et al., 

2010). Other complexes that rely on bromodomains for their full function include chromatin 

remodelers, which use the energy of ATP hydrolysis to move and/or eject nucleosomes to 

uncover the underlying DNA (Cairns, 2005). Important initial work demonstrated that 

bromodomains present on the yeast remodeler SWI/SNF are important for recruitment of the 

remodeler on acetylated chromatin templates. This is consistent with a role for bromodomains in 

targeting enzyme complexes to histones (Hassan et al., 2002, 2006). The paralog of yeast Swi/Snf 

http://en.wikipedia.org/wiki/Structural_domain
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/RING_domain
http://en.wikipedia.org/wiki/FYVE_domain
http://en.wikipedia.org/wiki/Chromodomain
http://en.wikipedia.org/wiki/Bromodomain
http://en.wikipedia.org/wiki/Zinc_finger
http://en.wikipedia.org/wiki/Zinc_finger
http://en.wikipedia.org/wiki/Amino_acid
http://en.wikipedia.org/wiki/Zinc
http://en.wikipedia.org/wiki/Cation
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is the 15 subunit Rsc complex, which is both abundant and essential in S. cerevisiae (Cairns et al., 

1996) and is involved in multiple chromosomal processes including transcriptional regulation, 

DNA repair, stress response, and chromosome cohesion and segregation (Angus-hill et al., 2001; 

Baetz et al., 2004; Cairns et al., 1999; Chai et al., 2005; Chang et al., 2005; Yukawa et al., 1999). 

Importantly, RSC subunits contain 8 of the 15 bromodomains in S. cerevisiae, indicating that 

histone acetylation likely plays a central role in recruiting RSC to chromatin and/or in regulating its 

remodeling activity. Consistent with this notion, acetylation of histones promotes nucleosome 

remodeling by RSC and the passage of RNA polymerase II through chromatin in vitro (Carey et al., 

2006). 

 

1.1.4 Lysine acetylation, chromatin dynamics and stress responses 

  Literature on lysine acetylation and chromatin dynamics between the years 1990 and 2000 

provided experimental validation that posttranslational modifications like lysine acetylation was 

an essential requirement for DNA template related molecular processes. It was also the time 

period when a number of critical discoveries were made regarding protein complexes and 

regulators which played a major role in chromatin dynamics. There was a paradigm shift in our 

understanding of how the chromatin was regulated through acetylation from the year 2000 

onwards. Previous work suggested that posttranslational modification was required to maintain 

overall genome stability, acetylation and other modifications are now seen as a molecular fulcrum 

controlling healthy and diseased states. The fundamental marking on histones by covalent 

modification and recognition by specific domains has been termed “the histone code” (Fischle et 

al., 2003; Strahl and Allis, 2000). These binding domains reside on both chromatin regulators and 

transcriptional regulators. Thus, most factors are targeted to particular locations in the genome 



School of Biological and Biomedical Sciences | PhD Thesis | Chapter 1 

Durham University | 24  

 

by one of two mechanisms: through interactions with site-specific DNA binding proteins or by 

using specialized domains to interact with modified histones (Kouzarides, 2000). 

In the early 1990’s it was shown that highly transcribed genes correlated with high acetylation 

levels and silencing of genes required hypoacetylation. For example, it was shown that 

chromosomal regions which undergo prolific transcription often have hyperacetylated histones 

while the heterochromatinized silent regions are hypoacetylated (Turner, 1993). Some examples 

where an increased histone H4 acetylation levels have been observed were in the actively 

transcribed chicken globin gene (Hebbes et al., 1992), human platelet derived growth factor gene 

(Clayton et al., 1993), and the Drosophila male X chromosome (Bone et al., 1994). On the contrary 

histone H4 was observed hypoacetylated at specific lysine residues 5,8 and 16 in human 

(Jeppesen and Turner, 1993) and yeast (Braunstein et al., 1993). However it has been reported 

that in drosophila (Turner et al., 1992) and yeast (Braunstein et al., 1996), the H4 K12 is 

hyperacetylated even in the heterochromatin. Recent reports have suggested that the H4 K12 

acetylation regulates telomere heterochromatin. The NuA4 HAT binds to silent telomeric regions 

and prevents overaccumulation of Sir proteins (Zhou et al, 2011). Moreover, elimination of the H4 

K12 acetylation caused defects in multiple telomere-related processes like transcription, telomere 

replication and recombination (Zhou et al, 2011). For transcriptional silencing in budding yeast, 

the evolutionarily conserved lysine deacetylase Sir2, in concert with its partner proteins Sir3 and 

Sir4, establishes a chromatin structure that prevents RNA polymerase II (Pol II) transcription. One 

mechanism by which Sir2 propagates silencing of gene transcription is by targeting the transition 

between RNA pol II initiation and elongation (Gao and Gross, 2008).  

A crosstalk between different modifications is essential for transcriptional activation. For 

example, in S.cerevisiae and S.pombe, the H3 K4 acetylation and H3 K4 methylation are both 

interdependent and critical on active gene promoters (Guillemette et al., 2011; Xhemalce and 

Kouzarides, 2010). In Saccharomyces cerevisiae, genetic experiments indicate that H3 K4 
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methylation functions in diverse cellular processes that include transcription, DNA repair, meiotic 

differentiation, and silencing at telomeres and rDNA (Dehe and Geli, 2006).  Similarly, 

deacetylation and methylation are also intrinsically linked as indicated in the literature. Pho23 and 

Cti6, two PHD-containing proteins, cooperatively anchor the large Rpd3 (Rpd3L) complex to 

the H3 K4-methylated PHO5 promoter and the deacetylation activity of Rpd3 on histone H3 is 

required for the function of Set1 methylase at the PHO5 promoter in yeast. The H3 K4 

hypermethylation in turn prevents aberrant nucleosome remodelling at the PHO5 promoter 

(Wang et al., 2011). Dimethylation of H3 K4 by Set1 histone methyltransferase recruits the Set3 

histone deacetylase complex to 5' transcribed regions (Kim and Buratwoski, 2009).  

Chromatin remodellers and other associated proteins not only have a general functional role but 

specifically tend to affect histone modifications and are critical for gene regulation. Deletion of 

SPT6, a chromatin remodeller, reduced levels of H3 K9 trimethylation, elevated levels of H3 

K14 acetylation, reduced recruitment of several silencing factors, and defects in heterochromatin 

spreading suggesting that it plays roles during transcription and post-translational events (Kiely et 

al., 2011). In yeast, it has been shown that Gcn5p subunit of the SAGA complex preferentially 

acetylates histone H3 K18 on the gene promoters and that Gcn5p activity is required for removal 

of histone H3 from one of the promoters (van Oevelen et al., 2006). In mammalian cells, the 

transcriptional coactivator and acetyltransferase, CREB-binding protein behaves synchronously 

with acetylation patterns specific for H3 K18 and H3 K23 during porcine oocyte first meiotic 

division (Xue et al., 2010). Thus experimental analyses from various literature studies indicate that 

the H3 K9 and H3 K18 are important lysine substrates for a number of chromatin protein 

complexes. Moreover, in plants, specifically the H3 K18 and H3 K23 on differential histone 

modification are associated with the removal and the regeneration of the cell wall (Tan et al., 

2011). The Sir2 deacetylase which regulates chromatin silencing and lifespan in S.cerevisiae is 

specifically a H3 K9 deacetylase modulating the telomeric chromatin (Michishita et al., 2008). The 
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rice SIR2-like gene is required for safeguard against genome instability and cell damage by 

regulating H3 K9 acetylation and methylation in order to ensure plant cell growth (Huang et al., 

2007). 

On exposure to stressing agents, in mammalian cells however, for instance, in presence of 

genotoxic agents causing DNA damage result in an increase in H3 K56 and H4 K16 acetylation 

levels but not the H3 K9 levels (Vempati, 2011). Epigenetic modifications induced by a cell cycle 

activator in colon cancer is shown to have an increase in acetylation for histones H2B lysine 5 

(H2B K5), H2B K15, H3 K9, H3 K18, and H4 K8 and a decreased trimethylation of H3 K27 (Vlaicu et 

al., 2010). It has also been shown that lower global or cellular levels of H3 K4 dimethylation and 

H3 K18 acetylation predict a high risk of prostate cancer reoccurance (Seligson et al, 2009). In 

another study it was shown that the corresponding nuclear global expression levels in moderate 

to well differentiated tumors for H4 K12 and H3 K18 acetylation were increased while these levels 

were decreased in poorly differentiated tumors. In addition, HDAC2 expression was correlated 

significantly with progression of adenoma to carcinoma suggesting HDAC2 expression is 

significantly associated with colon adenoma and carcinoma progression (Ashktorab et al., 2009). 

The acetylation status of cardiac histones in mice affected by hemorrhage is modulated by 

resuscitation and causes increase in acetylation at a large number of lysine sites, predominantly 

histone H3 (Alam et al., 2008). 

Although the effects of histone acetylation and deacetylation are essentially viewed in terms of 

promoter accessibility, experimental evidence indicates that effect of histone acetylation and 

deacetylation serves as signals for interaction with proteins. For example, the transcriptional 

repression domain of the Tup1 corepressor interacts with hypoacetylated forms of histones H3 

and H4 (Edmondson et al., 1996). In cases where histone acetylation or deacetylation is targeted, 

recognition of such signals by relatively general chromatin-associated proteins could lead to local 

chromatin structures that differ considerably from that of bulk chromatin. For example, H4 K12 is 
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preferentially acetylated in transcriptionally silent heterochromatin (Braunstein et al. 1996), and 

Rpd3 histone deacetylase counteracts heterochromatic silencing in yeast and flies (Derubertis et 

al., 1996; Vannier et al., 1996). These observations are surprising because, in striking contrast to 

the usual correlation, histone acetylation is associated with deceased transcriptional activity. In 

addition, it has been shown that H3 K56 modification is required for efficient transcription of 

heterochromatic locus by RNA pol II (Varv et al., 2010). It has also been shown that Gcn5 and 

SAGA complex, proteins usually associated with actively transcribed genes are involved in 

maintaining the telomeric regions (Atanassov et al., 2009). The SAGA complex subunit Ada2, has 

been shown to be positioned at the chromosome termini and to participate in both 

transcriptional repression and activation in response to nutrient signalling (Jacobson and Pillus, 

2009). In accordance with such diverse and unorthodox roles of Gcn5 and SAGA complex in 

maintaining telomere structure and regulating the chromosomal termini, recent reports suggest 

that the Rpd3 HDAC is associated with transcriptional activation of genes. 

 

1.1.5 Rpd3 HDAC and its role in transcriptional activation of genes 

The Rpd3 HDAC is a well characterised HDAC in yeast. It has been shown to repress genes 

involved in meiosis, arginine metabolism, enhanced heterochromatin silencing, enhanced rRNA 

silencing, mating type locus (Kadosh and Struhl, 1997; Rundlett et al., 1996; Dorland et al., 2000; 

Vannier et al., 1996; Smith et al., 1999; Sun and Hampsey., 1999; Schröder et al., 2004) and has 

been shown to act as global repressor of a large number of other genes in the yeast genome 

(Kurdistani et al., 2002). Rpd3 was shown to be associated with promoters involved in actively 

transcribing genes and also reveals new sites within the yeast genome where Rpd3 function was 

not previously known (Kurdistani et al., 2002). It has been shown previously that the Rpd3 

complexes associate with DNA-binding repressors such as Mad (Hassig et al. 1997; Laherty et al. 

http://genesdev.cshlp.org/content/12/5/599.full#ref-5
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1997), Ume6 (Kadosh and Struhl 1997), YY1 (Yang et al. 1996a), or with transcriptional 

corepressors for nuclear receptors such as SMRT (Nagy et al. 1997) and NCoR (Alland et al. 

1997; Heinzel et al. 1997). Despite the known role of Ume6 in Rpd3 recruitment, it was shown by 

Kurdistani and colleagues that only a limited of genes targeted by Rpd3 are also associated by 

Ume6. This indicated that Rpd3 was brought to many promoters by other recruiters (Kurdistani et 

al., 2002). In 2005, the discovery was made that Rpd3 exists as two complexes, the Rpd3 large and 

small complex. Figure 1.8 shows that the Rpd3L complex is associated with promoter driven 

transcriptional repression while the Rpd3S complex regulates gene transcription by suppressing 

cryptic transcript initiation (Carrozza et al., 2005; Keogh et al., 2005). 

 

Traditionally, the Rpd3 HDAC has been shown to repress various subsets of genes and has been 

credited as being a global repressor in yeast as described before. Surprisingly however, in the past 

 

Figure 1.8 Role of the two Rpd3 complexes in transcriptional regulation in S. cerevisiae  A 

representative diagram of the two known Rpd3 complexes in yeast and their function in gene 

regulation. The two complexes have Rpd3, Sin3 and Ume6 common to them shown in yellow, red and 

orange colour respectively. Eaf3 and Rco1 (in blue) are specific to the small complex and the subunits 

highlighted in green colour are members specific to the large complex. 
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seven years (2004-2011), the Rpd3 large complex has been associated with the activation of a 

large number of genes in stress responses (Bumgarner et al., 2009; Sertil et al., 2007; Sharma et 

al., 2007; Xin et al., 2007; Alejandro-Osorio et al., 2009; de Nadal et al., 2004; Mas et al., 2009). 

The first report came from deNadal and colleagues in 2004, when they demonstrated that the 

Hog1 MAPK recruits the Rpd3 HDAC to GSR osmoresponsive genes during hyperosmotic stress. 

Promoter deacetylation by Rpd3 was proposed to activate the GSR genes ALD3 (Aldehyde 

dehydrogenase 3), CTT1 (Catalase T 1), HSP12 (Heat shock protein 12), STL1 (Sugar transporter 

like protein 1) and GRE2 (Genes de Respuesta a Estres -Genes responsive to stress 2) (deNadal et 

al., 2004). Three more reports in the year 2007 showed that Rpd3 is involved in the transcriptional 

activation of genes other than the GSR genes. Rpd3 was shown to induce the anaerobic DAN1 

(Delayed anaerobic 1) and TIR (Tlp1-related 2) genes. The Swi/Snf chromatin remodelling complex 

was also shown to be involved in regulating DAN1 expression (Sertil et al., 2007). The other paper 

in 2007 showed that Rpd3 along with Hos2, another HDAC were involved in activating DNA 

damage-inducible genes RNR3 (Ribonucleotide reductase 3) and HUG1 (Hydroxyurea, UV and 

gamma radiation induced) (Sharma et al., 2007). Surprisingly the activation of RNR3 was 

independent of the Tup1 corepressor complex. Both these papers strongly emphasise the role of 

RNA polymerase holoenzyme associated activation via Rpd3 (Sertil et al., 2007; Sharma et al., 

2007) but do not demonstrate the mechanism of Rpd3 associated activation of the genes. Rpd3 

was also shown to activate HAP1 (Heme activator protein 1) along with other known HDACs (Xin 

et al., 2007). Rpd3 was also shown to be required for transient changes in genome expression in 

response to salt, peroxide and temperature stress (Alejandro-Osorio et al., 2009). Rpd3 was also 

shown to positively regulate the non coding RNA which in turn controls the variegated gene 

expression in yeast (Bumgarner et al., 2009). 

Literature mentioned above indicates that Rpd3 HDAC does regulate expression of a large number 

of genes in response to various abiotic and chemical stresses. In spite of having a positive role of 
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activating various subsets of genes under different stress responses, the mechanism of gene 

activation by Rpd3 in stress responses still remains unknown. A study by deNadal and colleagues 

first identified the positive role of Rpd3 under osmotic stress response (deNadal et al., 2004). A 

mechanism of how Rpd3 regulates gene expression with a bZIP transcription factor Hac1 under ER 

stress is known (Schröder et al., 2000 and 2004). Thus various stress responses seem to be a 

common denominator though which Rpd3 either positively or negatively regulates gene 

expression. Hence it is plausible that Hac1 interacts with Rpd3 to activate a large set of genes in 

the environmental stress response. This also raises the possibility of a mechanism of signal 

integration between two different stress pathways such as ER stress and osmotic stress via the 

Rpd3 HDAC and bZIP transcription factor Hac1p.  

Section 1 of the introduction chapter presents an overview of chromatin structure and regulation 

of gene expression. The experimental evidence defines a role of Rpd3 HDAC as a positive and 

negative regulator of gene expression. Hac1p and Rpd3p have been shown previously to interact 

together under nutritional stress (Schröder et al., 2000 and 2004). The following part of 

introduction will discuss the response of S. cerevisiae to nutritional stress and the role of Rpd3 

HDAC and bZIP transcription factor Hac1 in the ER stress response.  

 

1.2 Nutrient requirement and growth pattern in S. cerevisiae 

The way yeasts respond to nutrient availability has various physiological outcomes. Whether yeast 

takes the sporulation pathway or the pseudohyphal growth pathway is controlled by nutrient 

availability, cell type and environmental factors. The diploid yeast S.cerevisiae, in the presence of 

nitrogen and fermentable carbon sources, maintains vegetative growth. In absence of nitrogen 

and fermentable carbon sources, the diploid yeasts sporulate (Kupiec et al., 1997), a mechanism 

through which they remain dormant until conditions are favourable again to maintain vegetative 
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growth. Absence of nitrogen but presence of fermentable carbon induces pseudohyphal growth 

(Gimeno et al., 1992). Thus, different stress responses allow yeast to exhibit various physiological 

conditions. The process of sporulation requires meiotic divisions and meiosis in turn to produce 

four spores. Four spores together form a tetrad (Figure 1.9). The process of meiosis requires a 

transcriptional activity of nearly 1000 genes and can be divided into three major stages: early, 

middle and late. Each stage is characterised by the expression of a specific subset genes required 

for meiosis (Chu et al., 1998). In S. cerevisiae, the cascading effect of genes called Early Meiotic 

Genes (EMGs), a set of preliminary genes for meiosis (Mitchell, 1994), initiate a transcriptional 

program which eventually results in the physiological response of spore formation. 

. 

1.2.1 A link between nutrient nitrogen availability and ER functionality in yeasts 

Many carbon and nitrogen sources are metabolised by yeast to maintain cellular processes. For 

example, fermentable sugar provided in the media is taken up by yeasts for glucose metabolism. 

 

Figure 1.9 A diagram showing growth pattern of yeast growth in presence or absence of 

carbon and nitrogen sources 
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Similarly, nitrogen provided in the media results in a sufficient pool of amino acids, building 

material of proteins. An organelle whose function is to maintain protein homeostasis is the 

Endoplasmic Reticulum (ER). This organelle is a cytoplasmic membranous network of branching 

tubules and flattened sacs present in all eukaryotes. It is the principal site for protein and lipid 

biosynthesis. Together with the Golgi complex, the ER facilitates the transport and release of 

correctly folded proteins to their respective target locations in a cell.  

 

1.2.2 The Unfolded Protein Response (UPR) 

Disruption of protein folding in the ER activates a signalling network, collectively called the 

Unfolded Protein Response (UPR). The cells respond to this ER stress through a signal 

transduction pathway that transduces the signal of unfolded or misfolded proteins from the ER 

lumen to the nucleus (Schröder and Kaufman, 2005). The UPR response is elicited to maintain 

protein homeostasis within a cell by balancing protein folding capacity and the unfolded protein 

cargo on ER. Upregulation of chaperone gene expression is one of the essential outcomes of 

activating the UPR pathway. There are four main activities which the UPR performs in order to 

alleviate unfolded or misfolded protein stress and these are as follows (Schröder and Kaufman, 

2005): 

1. The UPR increases synthesis of ER resident molecular chaperones and foldases.  

2. The UPR stimulates phospholipid synthesis which results in ER expansion and dilution of 

the unfolded protein load. 

3. Transcription of genes encoding secretory proteins and general translation is inhibited. 

4. The clearance of slowly folding proteins from the ER is upregulated by stimulating ER 

associated degradation (ERAD).  
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The UPR pathway when activated controls the transcriptional regulation of 381 open reading 

frames in yeast. Nearly 50% of ORFs are known to function in the secretory pathway, but still ~100 

ORFs regulated by UPR, have other known functions unrelated to secretory pathway, indicating 

that they may be related to other cellular processes (Travers et al., 2000). One function of UPR is 

control of differentiation responses in S. cerevisiae. The UPR or the ER stress pathway is a well 

characterised pathway in yeast and mammalian cells. In the following introduction section a brief 

overview of known mechanisms by which the UPR operates in mammalian cells will be presented 

after which the UPR pathway in S. cerevisiae will be discussed. 

 

1.2.2.1 Mechanisms of signal transduction by the UPR in mammalian cells 

Four principal mechanisms of signal transduction by the UPR have been identified. In mammalian 

cells the UPR signalling pathways are initiated through three ER resident transmembrane protein 

sensors: PERK (double stranded RNA-dependent protein kinase (PKR)- like ER kinase), IRE1 

(Inositol requiring 1) and ATF6 (Activating transcription factor 6).  There is a fourth mechanism for 

UPR activation in mammalian cells by the activation of procaspase-12 which activates a caspase 

cascade to promote apoptosis ((Hetz et al., 2006; Nishitoh et al., 2002; Urano et al., 2000; Yoneda 

et al., 2001). A brief description of the other three pathways in mammalian cells (Figure 1.10) is 

described below: 

1. The PERK pathway- PERK is an ER type one transmembrane serine/threonine protein 

kinase that has three domains for recognising and processing the unfolded proteins. The 

luminal domain acts as a sensor for the unfolded proteins. The transmembrane domain 

enclaved in the ER membrane and a cytosolic domain transmit signals to downstream 

effectors. In the inactive state the luminal domain of the protein is bound to the ER 

resident chaperone BiP. During ER stress, Bip releases from the luminal domain leading to 
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activation through oligomerization and autophosphorylation and leading to activation of 

its cytosolic kinase domain (Bertolotti et al., 2000; Liu et al., 2003; Ma et al., 2002; Ron 

and Walter, 2007; Schröder and Kaufman, 2005; Yoshida, 2007). PERK activates the Cap 

‘n’ Collar bZIP transcription factor NRF2, which activates genes for antioxidant response. 

In addition, PERK phosphorylates the subunit of the eukaryotic translation initiation 

factor 2 (eIF2) (Harding et al., 1999; Schröder and Kaufman, 2005). 

2. The IRE1/ HAC1 pathway- Ire1p, is the second sensing molecule in the ER membrane and 

is a serine/threonine protein kinase endoribonuclease which like the PERK has two 

domains. The ER lumen has the transmembrane domain while the two cytosolic domains 

are the kinase domain and endoribonuclease domain. The protein is conserved in all 

eukaryotes and in mammals the Ire1p has two isoforms, Ire1α and Ire1β. Ire1α is a 

ubiquitous protein expressed is all tissues while the Ire1β is localised to the epithelial cells 

of the gastrointestinal tract. The inactive state of Ire1 is also maintained by the BiP 

binding to the luminal domain. Close contacts between the cytosolic domains result in the 

trans-autophosphorylation and activation of the ribonuclease domain. The activated 

Ire1α ribonuclease domain cleaves the XBP1 (X-box binding protein 1) constitutively 

transcribed pre-mRNA into a mature mRNA by an unconventional splicing mechanism.  

The XBP1 mRNA has two conserved overlapping ORFs. On UPR activation, Ire1α removes 

a 26- nucleotide intron from the precursor XBP1 mRNA into a functional, mature mRNA 

which is then translated to form the Xbp1 transcription factor.  Unspliced XBP1-mRNA 

(XBP1u) encodes a short lived protein responsible for repression of these UPR target genes 

(Yoshida et al., 2006). The splicing of XBP1 mRNA by Ire1 excises an intron resulting in a 

frameshift in the XBP1 transcript (XBP1s) resulting into Xbp1s similar to Hac1ip in yeast. 

IRE1 is involved in activation of cell death pathways in response to prolonged ER stress by 

its interaction with tumor necrosis associated factor (TRAF2) to modulate the activity of c-



School of Biological and Biomedical Sciences | PhD Thesis | Chapter 1 

Durham University | 35  

 

JUN N-terminal kinase (JNK) pathway via the apoptosis signaling-regulated kinase 1 (ASK-

1), which controls apoptosis through caspase-12 activation (Hetz et al., 2006; Nishitoh et 

al., 2002; Urano et al., 2000; Yoneda et al., 2001). The non-specific Ire1p RNAse activity 

has also been suggested to reduce global reduction of protein into ER by degradation of 

mRNA localized to the ER membrane (Hollien et al., 2009). 

3. The ATF6 pathway- Atf6 is a type two transmembrane protein having an ER luminal 

domain for sensing unfolded proteins and two cytosolic domains namely, a DNA binding 

domain containing a basic leucine zipper motif and a transcriptional activation domain 

(Yoshida, 2007). ATF6 translocates to the Golgi complex (Chen et al., 2002), where the 

site-specific proteases S1P and S2P proteolytically release the cytosolic domain of ATF6 

(Haze et al., 1999). This domain is predicted to heterodimerise with XBP1 and localise to 

the nucleus to activate the ER chaperone genes (Yoshida et al., 2000). 

The ER associated protein degradation (ERAD) pathway is also activated when the ER cargo is 

loaded with unfolded or misfolded proteins (Friedlander et al., 2000; Travers et al., 2000). 

Synthetic lethalities in yeast between UPR and ERAD (Travers et al., 2000) or chaperone 

machinery (Tyson and Stirling, 2000), and increase in UPR signaling have been reported with 

defective ERAD in yeast (Cox and Walter, 1996) and mammalian cells (Hori et al., 2004; Lee et al., 

2003). 
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1.2.2.2 The mechanism of UPR induction in S. cerevisiae 

The Ire1p mediated mRNA splicing of HAC1/XBP1 is conserved from yeast to mammals. In the 

budding yeast S. cerevisiae, Ire1p (Inositol requiring 1) in unstressed conditions is bound to 

BiP/GRP78/KAR2 chaperones in a monomeric form (Bertolotti et al., 2000; Gardner and Walter, 

2011). On an increase of unfolded proteins in the ER, BiP/GRP78/KAR2 binds the unfolded 

polypeptides, which results in freeing Ire1p from these molecules. Ire1p then oligomerizes and 

autophosphorylates through its serine threonine kinase domain, activating its RNAse domain. 

Ire1p was shown to form a higher order oligomer to activate response in order to counter the 

build up of unfolded proteins in ER (Korennykh et al., 2009). The activated Ire1p splices at the 5’ 

and 3’ exon-intron junctions of HAC1 messenger RNA (mRNA). HAC1 mRNA then encodes Hac1ip, 

a basic leucine zipper transcription factor (bZIP) (Cox and Walter, 1996; Kawahara et al., 1997). 

The exons are ligated by transfer RNA ligase Rlg1p (Sidrauski et al., 1996). Recent reports suggest 

that splicing and release of translational attenuation of HAC1 mRNA are separable steps and 

Rlg1p plays specific roles in both these steps (Mori et al., 2010). The induced form of Hac1p, 

Hac1ip (”i” for induced) then activates genes by binding to the consensus sequence, Unfolded 

 

Figure 1.10 Three mammalian ER resident sensors for misfolded proteins The IRE1/XBP1 

(Hac1p/HACA) pathway is the only known pathway for UPR in yeast which is common to the mammalian 

UPR pathway. 
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Protein Response Element (UPRE; CAGCGTG) present in the promoters of responsive genes like 

chaperone genes and activates their transcription (Mori et al., 1996; Mori et al., 1998; Mori et al., 

1992). The expressed chaperones help to deal with ER unfolded protein stress. Unspliced HAC1u 

mRNA is poorly translated and is unable to activate transcription as efficiently as Hac1ip from 

spliced HAC1i mRNA (Chapman and Walter, 1997; Welihinda et al., 2000). The transcriptional 

activation through UPRE is dependent on the SAGA histone acetyltransferase complex (Welihinda 

et al., 1997). Hac1ip interacts with Gcn5p in vitro, the catalytic subunit of SAGA (Welihinda et al., 

2000).  

 

1.2.2.3 Protective role of UPR beyond ER stress 

The UPR is thus a response to protect cells against ER stress. The transcriptional program 

activated by the UPR not only serves to reduce protein load on the ER by activating chaperones 

but has been implicated in alleviating metabolic toxicity as well. The UPR has also been shown to 

have a role in genome maintenance (Henry et al., 2010). In addition, ER stress response has been 

shown to be an important feature of the Cadmium toxicity but not with Arsenite or Mercury 

poisoning. The full functionality of the pathways involved in ER stress response is required for Cd2+ 

tolerance. Gardarin and colleagues also suggest that Cd2+ -induced ER stress and Cd2+ toxicity are a 

direct consequence of Cd2+ accumulation in the ER. Cd2+ also does not inhibit disulfide bond 

formation but perturbs calcium metabolism. In particular, cadmium activates the calcium channel 

Cch1/Mid1, which also contributes to Cd2+ entry into the cell (Gardarin et al., 2010). During C. 

elegans development, XBP-1 has been shown to provide an essential role in protecting the host 

during activation of innate immunity. Activation of the PMK-1-mediated response to infection 

with Pseudomonas aeruginosa induces the XBP-1-dependent UPR. Whereas a loss-of-function 

xbp-1 mutant develops normally in the presence of relatively non-pathogenic bacteria, infection 
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of the xbp-1 mutant with P. aeruginosa leads to disruption of ER morphology and larval lethality 

(Richardson et al., 2010). 

 

1.2.3 Nitrogen availability and S. cerevisiae differentiation control via the UPR 

The UPR pathway senses nitrogen availability and regulates differentiation of yeast. The splicing 

of HAC1 mRNA observed in nitrogen-rich conditions is inhibited under nitrogen starvation. In 

nitrogen-rich conditions the UPR pathway represses both the pseudohyphal growth and meiosis 

(Schröder et al., 2000). Overexpression of Hac1ip also represses pseudohyphal growth and 

deletion of HAC1 or IRE1 derepresses pseudohyphal growth. Thus Hac1p is synthesized in 

response to nitrogen-rich environment and negatively regulates nitrogen starvation responses. A 

model of a UPR-signaling pathway that senses the nutritional state of the cell and regulates 

nitrogen starvation induced differentiation responses, was suggested by Schroder et al, 2000 and 

is shown in Figure 1.11. The model proposed that splicing of HAC1 mRNA in response to 

extracellular nitrogen may be due to increased protein synthesis leading to high levels of newly 

synthesized unfolded polypeptides in nitrogen-rich conditions compared to nitrogen-starved 

conditions and this activates the UPR by splicing of HAC1 mRNA. Conversely under nitrogen 

starved conditions when the rate of protein synthesis is lower, thereby decreasing the ER load, 

this leads to Ire1p inactivation and thereby results in no Hac1ip synthesis. Thus the UPR plays a 

role in nutrient sensing and controlling differentiation events in yeast.  

Healthy cells under nutrient rich conditions also experience basal UPR activity in presence of 

unfolded proteins in ER. HAC1 mRNA splicing varies dynamically in response to nitrogen 

availability and presence of different carbon sources. The level of HAC1 mRNA splicing is induced 

tenfold in non-fermentable carbon source compared to fermentable carbon sources. In addition, 

the basal UPR activity serves to aid protein folding in healthy cells (Schröder et al., 2000). The 
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repression of metabolic genes ACS1 encoding acetyl coenzyme A synthethase, CAR1 encoding 

arginase, and INO1 in Ume6p and Rpd3 HDAC-dependent manner further highlights the role of 

UPR in healthy cells to its metabolic regulation (Schröder et al., 2004). 

 

 

The role of the UPR in mammalian systems including the immune response, pancreatic cell 

development and plasma cell differentiation has been reported. IRE1 mediated XBP1 splicing is 

required to drive the differentiation and activation of UPR is needed to expand the ER and meet 

the demand of high secretory activity of B-cells (Calfon et al., 2002; Iwakoshi et al., 2003; Lee et 

al., 2005a; Reimold et al., 2001; Zhang et al., 2005). The role of IRE1 mediated XBP1 splicing is 

consistent with the requirement for XBP1 in pancreatic acinar cell development (Lee et al., 2005) 

and during ER expansion through induction of phospholipid biosynthesis and membrane 

proliferation for plasma cell differentiation (Shaffer et al., 2004; Sriburi et al., 2004). Mammalian 

 

Figure 1.11 ER stress and nitrogen availability is linked in yeast A diagram showing the link between 

nitrogen requirements and eliciting the UPR response (from Schroder et al., 2000) 
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Rpd3p orthologs bind to the c-myc promoter by Blimp-1 (Yu et al., 2000) for c-myc transcriptional 

repression (Lin et al., 2000) required by terminal differentiating B-cells. Hence there is evidence 

that the UPR signaling robustly is involved in maintaining differentiation in mammalian cells.  

 

1.2.4 A mechanism of transcriptional repression of EMGs by Rpd3 HDAC and bZIP Hac1p 

Hac1i represses transcriptional induction of a large class of genes controlled by the promoter 

element URS1, including the starvation-induced EMGs (Schröder et al., 2000; Schröder et al., 

2004). URS1 (Upstream repressing sequence 1) can be found in promoters of meiosis-specific 

genes like SPO13, HOP11 and IME2 and non-meiotic genes like CAR1 (Gailus-Durner et al., 1996). 

Synthesis of Hac1i in nutrient-rich conditions and rapid shut-off of Hac1i synthesis in nitrogen-

starved cells suggest that Hac1i transduces a nitrogen signal to EMG promoters (Schröder et al., 

2000). Overexpression of Hac1ip decreases activation of EMGs under nitrogen starvation, while 

deletion of HAC1 increases mRNA levels of EMGs under nitrogen-rich conditions (Schröder et al., 

2000). URS1 is the DNA binding site for the transcriptional regulator Ume6 (Unscheduled meiotic 

gene expression 6), a zinc cluster DNA binding protein. (Strich et al., 1994), which recruits the 

ISW2 chromatin remodeling complex (Goldmark et al., 2000) and the Rpd3-Sin3 HDAC ( Schröder 

et al., 2004) to promoters of EMGs. Repression of EMGs by Hac1i required the HDAC activity of 

Rpd3 as shown in Figure 1.12 (Schröder et al., 2004). Deletion of SDS3, a subunit specific to one of 

two Rpd3 complexes in S. cerevisiae, the large Rpd3 complex (Rpd3L), abolished the effects of 

Hac1i on EMG expression, suggesting that Hac1i represses EMGs through the HDAC activity of the 

Rpd3 large complex (Schröder et al., 2004).  
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  1.2.5 Rpd3 HDAC in ER stress and osmotic stress 

Studies on ER stress response in S. cerevisiae (as shown in Figure 1.12) show that transcriptional 

regulation of EMGs involve important chromatin associated factors like the bZIP transcription 

factor Hac1p and the Rpd3p HDAC. Thus in general, transcription machinery and chromatin 

dynamics are intimately linked. Onset of transcription is based on interaction of molecules like 

RNA pol II, transcription factors, coactivators, corepressors and sequence specific DNA binding 

proteins associated with the chromatin (Roeder and Rutter, 1969; Matsui et al., 1980; Segall et al., 

1980). In contrast to the role of Rpd3 in repressing EMGs (Schröder et al., 2004), it has been 

shown that Rpd3 can have activating functions as well. Osmotic stress was the first stress 

response where Rpd3 was shown to activate a subset of osmoresponsive genes (deNadal et al., 

2004). 

 

 

Figure 1.12 A mechanism of regulating EMGs via Rpd3 and Hac1 in S.cerevisiae A diagram showing that 

Hac1 and Rpd3 interact together to repress EMGs (Schröder et al., 2004). 
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1.3 Stress response and transcriptional regulation in S. cerevisiae 

Studies on ER stress by Schröder and colleagues (Schröder et al., 2004) investigating the role of 

Hac1p and Rpd3p is the point from which this study developed. Yeast cells gain cross protection 

against different stresses. Cellular perturbances during stress, if not dealt with immediately by the 

cell can affect the optimal enzymatic activities, disrupt cellular structures and disrupt metabolic 

fluxes resulting in an overall instability. Yeast cells have evolved to become extremely adaptable 

to sudden changes in their environment. Details regarding how yeasts coordinate gene regulation 

mechanisms for adapting to environmental challenges has been accumulating over years. There is 

evidence that yeast cells when exposed to a mild dose of one stress become resistant to large, 

normally lethal doses of other stresses (Mitchel and Morrison 1982; Blomberg et al. 1988; 

Flattery-O'Brien et al. 1993; Lewis et al. 1995). This observation provided the basis for the idea 

that yeast cells use a general mechanism of cellular protection that is provoked when cells are 

exposed to stressful stimuli. Subsequently it became apparent that the stress induced gene 

expression was controlled by a common mechanism. A number of studies identified a sequence 

element common to the promoters of the stress responsive genes known as the Stress 

Responsive Elements (STRE) (Kobayashi and McEntee 1990; Kobayashi and McEntee 1993; 

Marchler et al., 1993) which eventually were discovered as the the DNA binding site for the 

‘global’ transcription factors Msn2 and Msn4 (Martínez-Pastor et al., 1996; Schmitt and McEntee, 

1996). The activity of Msn2/4 is controlled by several major signaling pathways, such as protein 

kinase A (Smith et al., 1998) and Tor (Beck and Hall, 1999) signaling. It was also shown that under 

certain stress conditions the genes identified as targets of these two global transcription factors 

were normally induced regardless of their deletion indicating that regulation of stress response 

was not entirely dependent on these two factors (Schuller et al., 1994). 

The recent increase in popularity of whole genome studies for transcription and protein analysis 

(gene expression microarray analysis and protein microarrays) in the past two decades has 
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provided a better understanding of yeast stress response. In the yeast Saccharomyces cerevisiae 

the general stress response (GSR) exists to protect cells from diverse stress conditions. This GSR 

consists of ~600 co-repressed and ~300 co-induced genes (Causton et al., 2001; Gasch et al., 

2000). Of the co-induced genes, many function in detoxification of reactive oxygen species, cell 

wall strengthening, protein folding and degradation, DNA damage repair, control of osmolyte 

balance, and production of storage carbohydrates. A strong, global correlation between Msn2/4-

dependent genes and genes whose expression is dependent on the mitogen-activated protein 

(MAP) kinase Hog1 (Capaldi et al., 2008; Rep et al., 2000) suggests extensive overlap between the 

GSR and the high osmolarity glycerol (HOG) MAP kinase pathway. 

 

1.3.1 Osmosis and organisms adapting to water stress in a natural environment 

Water is essential for survival for all living organisms as it is critical for all cellular processes. Loss 

of water from cells due to evaporation, excretion of wastes or osmosis poses a threat for a cell. 

Osmosis is a phenomenon where a solvent moves from a system through a selective permeable 

membrane, to equilibrate solute concentrations on both sides. Osmosis may occur in an 

environment of excess saline, extracellular freezing or from diseases that cause osmotic 

imbalances like diabetes. Thus to prevent osmotic shrinkage, internal cellular fluids equilibrate the 

pressure exerted by an external hypertonic environment. The basic solutes found in most cells (K+, 

metabolites, proteins etc) have an average osmotic concentration of 300-400 milliosmoles 

(mOsm) per litre. While the major osmotic components inside cells are usually organic osmolytes, 

the extra cellular fluids in multicellular organisms are dominated by NaCl (Yancey, 2004, 2005).   

Organisms have been divided into two broad categories depending on their ability to adapt to 

water stress. Osmoconformers are mostly found in oceans and include most types of life forms 

other than most vertebrates and some arthropods. These organisms regulate their physiology by 
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having the same osmotic pressure as that of the external water environment of about 1000 

mOsm. The internal osmolytes can be upregulated or downregulated in many species to prevent 

osmotic shrinkage or swelling if the osmotic concentration of the environment changes. 

Osmoregulators have regulatory organs (eg, gills or kidneys) which keep the internal body fluids at 

around 400 mOsm or less. This is also the pattern in terrestrial vertebrates (Yancey, 2005).  

 

1.3.2 Osmotic stress, osmolytes and need for glycerol production in S.cerevisiae 

Yeast cells in a hyperosmotic environment experience loss of water from its internal surrounding 

and shrink. This in turn results in an increase in concentration of biomolecules and ions resulting 

in an arrest of cellular activity. The osmotic properties of S.cerevisiae have been studied 

extensively as it is both a model organism and due to its use in industrial processes. The initial 

need to understand the molecular mechanisms in response to hyperosmotic shock was to 

produce robust strains for industrial processes (Pretorius, 2000; Randez-Gil et al., 1999). Studies 

intensified in this area with the discovery of a mitogen activated protein kinase (MAPK) cascade, a 

conserved eukaryotic signal transduction pathway that was found to be intrinsically linked to 

osmoregulation in yeasts (Brewster et al., 1993; Gustin et al., 1998). High molar concentrations of 

substances like sodium chloride (NaCl) and sorbitol have been used extensively as osmotic shock 

agents for S. cerevisiae (Hirasawa et al., 2006; Karlgren et al., 2005). NaCl stimulates osmotic 

responses in essentially the same way as sugars or sugar alcohols (Rep et al., 1999, 2000; Causton 

et al., 2001). The Na+ ion is toxic however because it replaces the K+ ions in biomolecules (Serrano, 

1996; Serrano 1997). Thus the Na+ stimulates additional detoxification pathways in response to 

hyperosmotic stress. Several mechanisms are involved in the adaptation to water stress by S 

cerevisiae. Accumulation of glycerol is essential for salt tolerance since mutants that cannot 

accumulate glycerol are salt sensitive (Albertyn et al., 1994). The two most important functions of 
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glycerol synthesis in yeast are related to redox balancing and hyperosmotic stress response. One 

of the consequences of hyperosmotic stress is the rapid diffusion of water from the cell to the 

external surrounding. To prevent this many yeasts produce glycerol and many other polyols 

(Brown, 1976). Cells require glycerol production to maintain the redox balance as respiration is 

limited by glucose and oxygen deficiency (Lowry and Zitomer, 1984). 

 

1.3.3 The MAP kinase pathway in S.cerevisiae 

About 15% of yeast genes are activated when a cell is under hyperosmotic shock indicating the 

importance of gene regulation in the osmotic shock response (Causton et al., 2001; Gash et al., 

2000; Posas et al., 2000; Rep et al., 2000; Yale and Bohnert., 2001; Martínez-Montañés et al., 

2010; Miller et al., 2011). Exposing yeast to osmotic shock has been shown to affect different 

signalling pathways. Upregulation or downregulation of genes is controlled by signalling pathways 

which sense a shift in the osmotic balance and subsequently transmit a signal to the 

transcriptional machinery. The best characterised pathway to date is the HOG pathway which is 

activated within less than a minute of osmotic upshift (Brewster et al., 1993).  The protein kinase 

A (cyclic AMP [cAMP]-dependent protein kinase) has been shown to affect expression of genes 

upon an osmotic upshift (Norbeck and Blomberg, 2000) but it is not well understood how the 

activity of Protein kinase A reacts to control osmotic stress. Protein kinase A mediates a general 

stress response that is observed under essentially all stress conditions, such as heat shock, 

nutrient starvation, high ethanol levels, oxidative stress, and osmotic stress (Marchler et al., 1993; 

Siderius and Mager, 1997; Ruts and Schüller, 1995). Hence it is expected that protein kinase A 

most probably does not respond directly to osmotic changes. The MAK kinase pathways are highly 

conserved signalling cascades occurring in all eukaryotes, where each molecule in the cascade 

plays an essential role in response to an environmental signals or hormones, growth factors or 
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cytokines. Many recent studies have shown that the MAPK pathway controls a number of cellular 

physiological parameters like growth, morphogenesis and proliferation (Saito, 2010; Fuchs and 

Mylonakis 2009; Hohmann, 2009). 

 

 

Different pathways within a eukaryote, including S. cerevisiae share kinases. Hence Figure 1.13 is 

an oversimplified view of MAP kinase signalling. MAP kinase pathways are negatively controlled 

by protein phosphatases (Keyse, 2000). Genetic analyses and transcriptional readout from 

physiological, pharmacological and genetic stimulation have revealed that there are five known 

MAP kinases in S. cerevisiae (Hohmann, 2002). These 5 MAP kinases belong to six distinct MAP 

kinase pathways as shown in Figure 1.14.  

 

Figure 1.13 A diagram showing the molecules involved in the MAPK cascade signalling Arrows 

indicate the path of the cascade and the pathway specific proteins are similar in all eukaryotes and 

required for signal transmission (from Hohmann, 2002).  
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In S. cerevisiae, Sln1p and Sho1p have been described as sensors of the two upstream branches 

controlling the HOG MAP kinase pathway. The HOG pathway is activated by osmotic upshift 

(Brewster et al., 1993) and genetic evidence places Sho1p (Posas and Saito, 1997) and Sln1p 

(Maeda et al., 1994) upstream of all other HOG pathway components. Moreover, mutations in 

SHO1 (Posas and Saito, 1997) and SLN1 (Maeda et al., 1994) affect the activity of the HOG 

pathway, and both Sho1p and Sln1p have been shown to be located in the plasma membrane 

(Reiser et al., 2000; Ostrander and Gorman, 1999) 

A two-component system in Saccharomyces cerevisiae regulates an osmosensing MAP kinase 

cascade. The signal is transferred by the Hog1 (High osmolarity glycerol 1) and, among many other 

effects, potentiates expression of the glycerol biosynthetic pathway (Maeda et al., 1994). The 

production of glycerol requires the precursor Glycerol-3-Phosphate dehydrogenase (GPD), which 

is encoded by two genes, GPD1 and GPD2. The level of glycerol and the expression of GPD1 and 

GPD2 are partially controlled by the HOG1 signal transduction pathway when yeast is exposed to 

hyperosmotic shock (Albertyn et al., 1994). As in other yeasts, active glycerol uptake from the 

environment has been observed (Lages et al., 1999) but does not normally contribute to 

osmoadaptation in S. cerevisiae (Holst et al., 2000). Rather, intracellular glycerol levels are 

controlled by passive glycerol export, which is mediated by Fps1 (Hohmann, 2002; Luyten et al., 

1995; Tamás et al., 1999; Oliveira et al., 2003). In combination with a SLT2/MPK1 double deletion 

strain, which causes sensitivity to hypo-osmotic shock dues to a weaker cell wall, the FPS1 

deletion causes lethality and visible cell bursting (Philips and Herskowitz, 1997; Tamas et al., 

1999).  Upon a hyperosmotic shock the transport capacity of Fps1 is sequestered to ensure that 

glycerol is maintained inside the cell (Hohmann, 2002; Luyten et al., 1995). 
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Pbs2p is activated by phosphorylation of Ser514 and Thr518 by Ssk2p, Ssk22p or Ste11p. Pbs2p is 

a cytoplasmic protein and appears to be excluded from the nucleus (Ferrigno et al., 1998; Reiser 

et al., 1999). Thus phosphorylation of Hog1, the substrate of Pbs2 occurs in the cytosol. 

Phosphorylated Hog1-GFP appears to be concentrated in the nucleus within a minute of osmotic 

shock while under normal conditions appears to be evenly distributed in the nucleus and the 

cytoplasm (Ferrigno et al., 1998; Reiser et al., 1999). This effect is specific because a range of 

other stress conditions does not cause Hog1 phosphorylation (Schüller et al., 1994; Ferrigno et al., 

1998; Reiser et al., 1999). Phosphorylation on both Thr174 and Tyr176 of Hog1p by Pbs2p is 

 

Figure 1.14 A sketch of the yeast MAPK pathways (modified from Hohmann, 2002) Sho1p 

together with Ste20p, Ste11p, Ste7p, Kss1p, and Ste12p appears to form an independent MAP kinase 

pathway, the STE vegetative growth pathway, which seems to be part of the systems that control cell 

wall integrity (Cullen et al., 2000; Lee et al., 1999). The STE vegetative growth pathway is required for 

growth at normal osmolarity. 
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necessary and sufficient for nuclear concentration, since mutation of one or both of these sites 

makes the subcellular localization of Hog1p unresponsive to osmotic shock (Ferrigno et al., 1998; 

Reiser et al., 1999). The catalytic activity of Hog1p, however, is not required for transfer to the 

nucleus, since a catalytically inactive mutant of Hog1p is transferred to the nucleus very much like 

wild-type Hog1p (Ferrigno et al., 1998; Reiser et al., 1999). 

 

1.3.3.1 Mechanism of Hog1 activation 

The HOG pathway is controlled by a phosphorelay switch comprised of the cell surface sensor 

kinase (Sln1), a histidine phosphotransfer protein (Ypd1), and two response regulators (Skn7 and 

Ssk1) (Ketela et al., 1998; Li et al., 1998; Maeda et al., 1994;  Ota and Varshavsky, 1993;  Posas et 

al., 1998; Posas et al., 1996). The Skn7 protein is one of only two yeast proteins related to 

bacterial response regulators of so-called two-component signal transduction pathways (Li et al., 

1998). Like many bacterial response regulators, Skn7 is a transcription factor. The other yeast 

response regulator, Ssk1, activates the MAP kinase cascade of the HOG pathway. Whereas Ssk1 

appears to be entirely under the control of Sln1, the lone sensor kinase of yeast, Skn7 activity is 

only partially regulated by Sln1 (Li et al., 1998).  

Changes in osmolarity are detected by two distinct putative osmosensors in the plasma 

membrane, Sln1p (Synthetic lethal of N-end rule 1) and Sho1p (Synthetic high osmolarity sensitive 

1). Sln1 is a sensor of turgor pressure which is inactivated under conditions of low turgor  or high 

osmolarity (Reiser et al., 2003). Under high-osmolarity conditions, inactive Sln1 accumulates, 

resulting in dephospho-Ssk1, which is the active form of this response regulator. The 

unphosphorylated Ssk1 activates the MAPKKKs Ssk2 and Ssk22 (Hohmann et al., 2007) which in 

turn activates the next MAPKK Pbs2 eventually leading to the phosphorylation and activation of 

Hog1. The alternative MAP kinase pathway, the Sho1 dependent pathway also eventually leads to 
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the activation of Hog1. The Sho1 dependent pathway does not appear to be conserved in all other 

fungi (Bahn, 2008). Thus, high extracellular osmolarity stimulates the Hog1 MAP kinase, which 

mediates, among other pathways, the biosynthesis and retention of glycerol as a compatible 

intracellular solute (Albertyn et al., 1994; Luyten et al., 1995; Thevelein and Hohmann, 1999). 

Under conditions of low osmolarity, Sln1p is active, causing autophosphorylation of a histidine 

residue, H576. This phosphate group is transferred to an aspartate residue, Asp1144 in the 

receiver domains of Sln1p and the signal transducers, Ypd1, Ssk1p and Skn7. Both Ssk1 and Skn7, 

constitute two branches of the same pathway as shown in Figure 1.15. Once Ssk1 is 

phosphorylated, it is inactivated resulting in the absence of HOG1 pathway stimulation (Maeda et 

al., 1994). By contrast with Ssk1, dephospho-Skn7 is inactive. Thus in response to hypo-osmotic 

stress (high turgor pressure), Sln1 activity inhibits Ssk1 and stimulates Skn7 by phosphorylation at 

Asp427. Thus, depending on the direction of the change in osmotic conditions, one or the other 

branch of the HOG pathway is activated. Hypo-osmotic activation of Skn7 results in the 

transcriptional activation of at least one gene, OCH1 (Lee et al., 2002), which encodes a 

mannosyltransferase involved in maturation of N-glycoproteins, many of which are destined for 

the cell wall and hence cell wall strengthening.  
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1.3.3.2 Transcriptional regulators of HOG pathway 

There are very few known genes whose stimulation under hyperosmotic stress is regulated by 

Hog1.  Transcriptional regulators have now been identified by global gene expression analyses 

(Gash et al., 2000; Posas et al., 2000; Rep et al., 2000). Some of the well known transcriptional 

regulators are listed in Table 1.4 

 

 

 

Figure 1.15 The Sln1 branch of the Hog1 pathway The phosphorelay mechanism of Hog1 activation 

depends on the Sln branch of MAP kinase pathway operating under hypoosmotic stress. 



School of Biological and Biomedical Sciences | PhD Thesis | Chapter 1 

Durham University | 52  

 

 Protein Family Function Role Reference 

1. Sko1/ 

Acr1p 

bZIP/ 

CREB 

Repressor; also needed 
for activation from CREs 

Hog1p target in vitro and in 
vivo; genetic evidence, 
promoter association 

Proft and 
Serrano, 
1999 

2. Msn2p/ 

Msn4p 

Zinc 
finger 

Activator; binds to 
STREs (CCCCT) and 
mediates protein kinase 
Adependent 

gene expression 

Target genes depend on 
Hog1p under osmotic stress; 
STRE dependent reporter 
depends on Msn2p/Msn4p 
and HOG pathway 

Rep et al., 
2000; 
Schüller et 
al., 1994 

3. Hot1 Novel  

Helix-
loop-helix 

Activator; present 
together with Hog1p on 
some target promoters; 
for normal expression of 
some genes 

Interaction with Hog1p, 
Hog1pdependent 

phosphorylation, 

promoter association 

Alepuz et 
al., 2001; 
Rep et al., 
1999 

4. Smp1 MADS 
box 

Activator Hog1p target deNadal et 
al., 2003 

5. Msn1 Novel 
Helix-
loop-helix 

Activator; also involved 
in pseudohyphal growth 
and many more 
processes 

Required for full expression of 

some Hog1p targets 

Rep et al., 
1999 

6. Sgd1 Zinc 
finger 

Putative activator Overexpression suppresses 
hog1Δ 

and pbs2Δ osmosensitivity 

Akhtar et 
al., 2000 

7. Gcn4p bZIP Activator; required for 
stimulated expression 
of genes under general 

amino acid control 

Required for Hog1p-
dependent activation of HAL1 
expression from CRE 

Pascual-
Ahuir et al., 
2001 

8. Skn7p Heat 
shock 
factor 

Activator; involved in 
numerous cellular 
processes, such as 
oxidative stress and cell 
wall metabolism 

Part of Sln1p-Ypd1p 

phosphorelay, activates 
hypoosmotic genes 

 

Brown et 
al., 1994 

 

Table 1.4 List of known TFs associated with Hog1 (From Hohmann, 2002). 

Global gene expression analysis reveal that the expression pattern of approximately 10% of yeast 

genes are jointly altered by several seemingly unrelated stress conditions, such as nutrient 
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starvation, oxidative stress, heat shock, and hyperosmotic shock. The exact gene number lies 

between 216 and 300 induced genes and 283 and 600 repressed genes (Gash et al., 2000; Causton 

et al., 2001). The general stress responses studied have been termed environmental stress 

response (Gash et al., 2000) and common environmental response (Causton et al., 2001). The 

induced genes are activated either by a general stress response factors like Msn2/Msn4 or 

promoter specific transcription factors, each of which regulates a small subset of genes either 

under hyperosmotic shock or a combination of stress responses. A large number of general stress-

responsive genes are controlled by the stress response elements (STREs) via the transcriptional 

regulators Msn2p and Msn4p (Martinez-Pastor et al., 1996; Schmitt and McEntee, 1996). 

Bioinformatic studies have revealed that STREs have been found by in many gene promoters in 

yeast (Moskvina et al., 1998;  Treger et al., 1998), and about 150 genes show altered expression in 

a mutant lacking both MSN2 and MSN4 (Gash et al., 2000, Causton et al., 2001; Rep et al., 2000). 

It was also observed that not all genes whose expression under stress is strongly affected in a 

MSN2/MSN4 double deletion mutant strain contain an obvious STRE in their promoter. Hence, 

Msn2p and Msn4p might control many genes indirectly.  Most genes that have been 

demonstrated to be directly controlled by Msn2p and Msn4p contain several STREs in close 

proximity (Moskvina et al., 1998). Hence it is likely that the two factors may be able to bind to 

different promoter elements, perhaps in conjunction with other factors. 

 The controlled expression of individual genes in response to a specific stress depends on 

promoter specific activation. For instance, a number of genes whose expression is induced by 

osmotic shock and oxidative stress are controlled by Sko1/Acr1p via the HOG pathway and by 

Yap1p, which specifically mediates oxidative stress responses (Jamleson, 1998). Sko1/Acr1p and 

Yap1p control target promoters via distinct promoter elements (Rep et al., 2001). Certain heat 

shock protein genes are induced by heat shock through the activity of the heat shock transcription 

factor and require Skn7p for induction by oxidative stress; both factors appear to operate via the 
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same promoter site, the heat shock element (Raitt et al., 2000). Another example is genes 

apparently induced by osmotic stress and nutrient starvation; the HAL1 expression appears to be 

controlled by Hog1p-Sko1/Acr1p and Gcn4p through the same promoter site, a CRE (Pascual-

Ahuir et al., 2001).  

 

1.3.4 Cell wall integrity (CWI) pathway 

The CWI pathway or the protein kinase C pathway orchestrates morphological changes in the cell 

by both controlling expression of genes encoding enzymes involved in cell wall metabolism and by 

reorganising the active cytoskeleton (Jung et al., 1999; Gustin et al., 1998; Heinisch et al., 1999). 

The CWI pathway is not a unidirectional pathway but like many other pathways is a network of 

interacting signalling routes that either diverge or converge from the Protein kinase C (Pkc1p) and 

the Rho1p G protein. The Pkc1p and the Rho1p are two central components of the CWI pathway 

and interact with other molecules from the Slt2/Mpk1 MAP kinase cascade (Lee et al., 1993), the 

calcineurin pathway (Garrett-Engele et al., 1995), the TOR pathway (Schmidt et al., 1997), the 

HOG pathway (Helliwell et al.,1998;  Davenport et al., 1999), a phosphatidylinositol pathway 

(Yoshida et al., 1994), Cdc28p-dependent control of the cell cycle (Gray et al., 1997;  Marini et al., 

1996; Zarzov et al., 1996), and probably other additional pathways (Ragni et al., 2011; Heinisch et 

al 1999; Harrison et al., 2001;  Posas et al., 1993;  Nikas et al., 1996). 

 

1.3.4.1 Mechanism of CWI activation 

In S. cerevisiae, the CWI cascade is initiated by the CW sensors Mid2 (Mating pheromone induced 

death 2) and Wsc1 (Hcs77 or Slg1 –synthetic lethal with gap 1) (Verna et al., 1997; Ketela et al., 

1999). These proteins bind to Rom2 (Rho1 multicopy suppressor1), which is a guanyl nucleotide 
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exchange factor for Rho1 (Ras homologue 1) (Ozaki et al., 1996; Philip and Levin, 2001). Rho1 

binds and activated Pkc1 (Kamada et al., 1996; Nonaka et al, 1995) which in turn regulates the 

MAPK pathway. Pkc1 phosphorylates Bck1 (Bypass of C Kinase 1) a MAPK kinase kinase (MAPKKK) 

which then relays the signal to MAP kinases Mkk1 (Mitogen activated protein kinase kinase 1) and 

Mkk2 (MAPKKs). These two kinases eventually activate the MAPKs Slt2 (Supressor at low 

temperature 2) and Mpk1 (MAP kinase 1) (Banuett, 1998). Slt2 and Mpk1 then phosphorylated 

the transcription factors Rlm1 (Resistance to lethality of MKK1P386 overexpression 1) and SBF 

(Swi4 and Swi6) to activate genes involved in cell wall biogenesis (Dodou and Treisman, 1997; 

Jung et al., 2002; Watanabe et al., 1995; Madden et al., 1997).  

 

1.3.4.2 Crosstalk between the CWI pathway and the osmotic pathway 

The maintenance of cell integrity by the CWI pathway is similar within fungal species. The 

activation of the pathway is not restricted to a single stimulus and can be attributed to more than 

one stress response. A genome analysis of five cell wall mutants resulted in the transcriptional 

regulation of 5% of the yeast genes, many of which belonged to other stress signalling pathways 

(Lagorce et al., 2003). This suggests that the CWI pathway does integrate with other pathways in 

regulating cellular homeostasis under a stress or multiple stress environments. In S. cerevisiae, it 

has been shown that changes in an external osmotic environment elicit responses from both the 

CWI pathway and the Hog1 mediated MAP kinase pathway as indicated in Figure 1.16. In addition, 

the two pathways have been linked under CW stress (García  et al., 2009; Reinoso-Martín et al., 

2003). Furthermore, under hypoosmotic stress, the CWI pathway is activated which involves the 

MAP kinase Slt2/Mpk1 (Figure 1.16). The phosphorylation of Slt2/Mpk1 occurs without specificity 

toward osmotic solutes and is observed with hypotonic solutions of sorbitol, NaCl or glucose 

(Davenport et al., 1995). Cross talk thus occurs between the CWI pathway and the Hog1 pathway 
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involving Slt2/Mpk1. While hypotonic solution results in the phosphorylation of the Slt2/Mpk1 via 

a PKC pathway- dependent manner, hyperosmotic stress induce transcription of SLT2/MPK1 in a 

Hog1 and Rlm-dependent manner (Hahn and Thiele, 2002). The CWI pathway properties are thus 

consistent with the fact that it controls cell wall metabolism during growth and development and 

protects cells upon stress leading to cell expansion or shrinkage, or cell wall damage. The CWI 

pathway and Hog1 MAPK pathway tend to collaborate in protecting and preserving the cell wall 

and the cell membrane (Hohmann, 2002). 

 

 

 

 

 

Figure 1.16 A sketch of the CWI pathway The CWI pathway has molecules which are common to 

both the Pkc and MAP kinase pathways. 
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1.3.5 Osmotic stress and nutritional adjustment in S.cerevisiae 

Osmotic stress demands metabolic adjustments in several different ways. Osmotic stress strongly 

reduces the uptake of several amino acids (Norbeck and Blomberg, 1998; Pascual-Ahuir et al., 

2001). The availability of nutrients determines cellular functions like cell cycle progression, cell 

growth or a morphological switch. Nutrient stress occurs when cells are shifted from a nutrient 

rich to a nutrient depleted media. A shift could be an external environment like soil or in vitro. 

Nutrient deprivation itself is stressful and stimulates a general stress response (Gash et al., 2001; 

Causton et al., 2000). Adjustment of cellular metabolism at the transcriptional and 

posttranscriptional level in response to the availability of carbon sources or the quality of carbon 

is controlled by the Snf3/Rgt2 sugar-sensing pathway (Boles and Hollenberg, 1997), the Gpr1-

cAMP-protein kinase A pathway (Lengeler et al., 2000; Thevelein and Winde, 1999), the Snf1 

pathway (Carlson, 1999; Gancedo, 1998), and the TOR pathway (Rohde et al., 2001; , Schmelzle 

and Hall, 2000). Availability and quality of nitrogen sources and amino acids are monitored by the 

Ssy1 sensing system (Forsberg and Ljungdahl, 2001), the Gcn4p transcriptional regulator 

(Hinnebusch, 1997), a pathway that involves the ammonium sensor Mep2p’s mediating nitrogen 

catabolite repression (Lengeler et al., 2000), and again the TOR pathway (Rohde et al., 2001; , 

Schmelzle and Hall, 2000). In S cerevisiae, the TOR (Target of Rapamycin) signalling pathway has 

been well studied under different nutritional conditions. There are two genes involved, TOR1 and 

TOR2. There is evidence for cross-talk between the CWI pathway and TOR signalling (Torres et al., 

2002). The TOR signalling and CWI pathways share a common role in actin assembly and 

organisation, however only TOR2 is known to participate in the actin assembly process (Schmidt 

et al., 1996).  
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1.3.6 Links and signal integration events occur between different stress response 

pathways 

Different stress response pathways can often share common transducers. For example, crosstalk 

occurs between the CWI pathway and the osmotic stress pathway as described previously. In the 

following part of the introduction, from the literature there is strong evidence that stress 

pathways are linked via common interacting molecules. Some of these stress pathways have a 

characterised mechanism of signal integration, while in others a mechanism is yet to be identified. 

In the next section, the link between ER stress and other stress signalling pathways will be 

introduced. 

 

1.3.6.1 ER stress and cell wall stress 

 In S. cerevisiae, cell wall defects (Scrimale et al., 2008) and hypoosmotic stress (Pal et al., 2007) 

activate the UPR, while mutants defective in the cell wall integrity and Hog1 MAP kinase signaling 

pathways are sensitive to ER stress (Chen et al., 2005; Torres-Quiroz et al., 2010) and activate the 

UPR (Bicknell et al., 2010). Rpd3 HDAC is shown to have opposite roles in regulating genes during 

ER stress and osmotic stress (Schröder et al., 2004; deNadal et al., 2004) but other histone 

deacetylases, like the Hos2/Set3 HDAC integrate into ER stress signalling via the Mpk1p cell wall 

integrity pathway (Cohen et al., 2008). Putative cell wall stress sensors WscA and WscB are 

involved in hypo-osmotic and acidic pH stress tolerance in fungi, Aspergillus nidulans (Futagamy et 

al., 2011). ER stress activates Hog1 (Bicknell et al., 2010) and Slt2 (Babour et al., 2010; Bonilla and 

Cunningham, 2003), the MAP kinase of the cell wall integrity signaling pathway. Interestingly in 

one study, 20 plasma membrane proteins, including the P-type H+-ATPase Pma1, ABC 
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transporters, glucose and amino-acid transporters, t-SNAREs, and proteins involved in cell wall 

biogenesis showed a significant and rapid decrease in abundance in response to both 0.4 M and 1 

M NaCl. It was proposed that rapid protein internalization occurs as a response to hyper-

osmotic and/or ionic shock, which might affect plasma membrane morphology and ionic 

homeostasis. It was also suggested that this rapid response might help the cell to survive until the 

transcriptional response takes place (Szopinska et al., 2011).  

 

1.3.6.2 ER stress and heat shock stress 

The ER stress component Rpd3 HDAC and the SAGA complex have been shown to dynamically 

regulate the heat shock gene structure and function (Kremer and Gross, 2009). It has also been 

 

 

Figure 1.17 A link between ER stress and CW stress There is a link between the ER and cell wall 

stress response in S. cerevisiae (Krysan, 2009)  
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shown that heat shock relieves ER stress by affecting multiple ER activities (Liu and Chang, 

2008). Genome analysis reveals that greater than 25% of the genes have function in common with 

the UPR targets. Using a constitutively active Hsf1 transcription factor to induce HSR without 

temperature shift, it was shown that HSR rescues growth of stressed ire1Δ cells, and partially 

relieves defects in translocation and ERAD. HSR is activated by ER stress in vivo, but to a lower 

level than that caused by heat (Liu and Chang, 2008).  

 

1.3.6.3 ER stress and osmotic stress 

Hog1 is a MAPK intrinsically linked to the osmotic stress pathway and Hac1p and Rpd3p are 

critical within the ER stress pathway. Interactions between ER and osmotic stress responses have 

been reported in all eukaryotes. For example, salt stress in Arabidopsis thaliana activates an ER 

stress-like response (Liu et al., 2007). A genome-wide RNAi screen in Caenorhabditis elegans 

found that the majority of genes whose inactivation caused constitutive expression of an 

osmosensitive reporter, were involved in the regulation of protein translation, cotranslational 

protein folding or the targeting and degradation of damaged proteins (Lamitina et al., 2006), 

suggesting that unfolded proteins trigger expression of genes protecting against osmotic stress. 

Stimulation of glycerol production by Hog1 contributes to survival of ER stress (Torres-Quiroz et 

al., 2010). During hyperosmotic Hog1 contributes to glycerol synthesis which is involved in 

maintaining the redox potentials within the mitochondria. Hence a signalling event between ER 

and the mitochondria is also likely during hyperosmotic stress. As is the case, the mitochondrial 

antioxidant function has been shown to be an inducible determinant of osmotic stress adaptation 

in yeast. The osmosensitivity of mitochondrial mutants was not caused by impaired stress-

activated transcription or by a general depletion of the cellular ATP pool during osmotic stress. 

The growth defect of mitochondrial mutants in high salt medium could be partially rescued by 
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supplementation of glutathione. Additionally, mitochondrial defects caused the hyper-

accumulation of reactive oxygen species during salt stress. These data suggest that the 

antioxidant protective properties in mitochondria possibly provide resistance against 

hyperosmotic stress (Pastor et al., 2009). Again, Copper or Zinc oxide dismutase, important 

enzymes in antioxidant defense and NADP (H) homeostasis, both critical to mitochondria have 

been shown to be required for ER stress tolerance in yeast (Tan et al., 2009). 

 

1.3.6.4 ER and osmotic stress related bZIP transcription factors in plants 

While the UPR response is well documented in plants, less is known about the components within 

the signalling pathway. Plants possess at least two signaling pathways specific for UPR. ER 

membrane-bound ER stress sensor/transducers, AtbZIP60 and AtbZIP28, are basic leucine zipper 

transcription factors that are activated by regulated intramembrane proteolysis systems and 

regulate transcription of the UPR genes. It has been shown recently that A thaliana bZIP 

transcription factor AtbZIP60 modulates the ER stress response by activating a sub-group of 

protein disulphide isomerase genes (Lu and Christopher, 2008).  These signaling pathways play 

important roles not only in the UPR but also have been shown to play a role in biological 

processes such as the response to pathogens and heat stress (Urade, 2009). Furthermore, 

overexpression of AtbZIP60 produces plants with a higher tolerance for salt stress, suggesting that 

this transcription factor may play a role in abiotic stress. Hence cross-talk between genes involved 

in the UPR and abiotic stress appears likely (Moreno and Orellana, 2011). In soyabean plants, a 

novel transcription factor, ERD15 (Early Responsive to Dehydration 15) has been discovered that  

connects ER stress with an osmotic stress-induced cell death signal (Alves et al., 2011). The ERAD 

pathway has been shown to be critical for plant survival to high salt stress (Liu et al., 2011). 
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1.3.6.5 Links between bZIP transcription factors and osmotic stress in plants and 

mammals 

Hac1p is a bZIP transcription factor involved in the UPR in yeast. Recent reports suggest that a 

number of bZIP transcription factors (TFs) in plants and higher mammals protect against osmotic 

and salt stress. The Arabidopsis thaliana AtbZIP1 transcription factor is a positive regulator of 

plant tolerance to salt, osmotic and drought stresses (Sun et al., 2011). bZIP transcription factor 

ZmbZIP72 confers drought and salt tolerance in transgenic Arabidopsis plants (Ying et al., 2011) 

while the bZIP TF AP2/ERF RAP2.6 participates in ABA, salt and osmotic stress responses (Zhu et 

al., 2010). A ThZFL zinc-finger- like gene is induced under salt, osmotic stress and ABA treatment 

and over-expression of this gene confers osmotic and salt resistance in S cerevisiae and tobacco 

(An et al., 2011).  

Evidence is mounting which supports the idea that there are links between various stress 

pathways. Mechanisms of signal integration between stress pathways such as osmotic stress and 

cell wall stress, and cell wall stress and ER stress have been discussed. A signal integration event 

linking osmotic stress and ER stress yet remains unidentified, this despite the fact that key 

regulatory molecules linking both pathways have been identified. Investigating a possible link 

between the ER stress pathway and osmotic stress is the aim of this work. 
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1.4 Aims and objectives 

Hac1p and Rpd3p have been shown to be important molecules in nutrient signalling in yeast 

(Schröder et al., 2000). These two molecules play a critical role in ER stress by repressing EMGs 

(Schröder et al., 2004). Recent reports suggest that the Rpd3 HDAC, known to repress genes and 

acting as a global repressor in yeast (Kurdistani et al., 2002) provides activating functions to a 

number of genes (Bumgarner et al., 2009; Sertil et al., 2007; Sharma et al., 2007; Xin et al., 2007), 

including several genes of the GSR (Alejandro-Osorio et al., 2009; de Nadal et al., 2004). Rpd3p-

dependent transcriptional repression by Hac1i and Rpd3 being a positive regulator of GSR gene 

activation suggests that: 

 Hac1p has a protective role in hyperosmotic stress  

 Hac1p acts via Rpd3p and is a positive regulator of GSR gene expression  

 Hac1p affects nucleosome histone acetylation levels in regulating GSR genes 

Therefore the aim of this PhD thesis is to investigate whether there is a crosstalk between the ER 

signalling pathway and osmotic stress.  

The objectives of this thesis can be summarised as follows: 

 Hac1p and Rpd3p are critical components of the ER pathway and have been shown to act 

together during ER stress (Schroder et al., 2004). ER specific components like IRE1, HAC1 

and RPD3 will be examined for their protective role during hyperosmotic stress (Chapter 

3). 

 Hac1i splicing is an important phenomenon during ER stress. Whether or not Hac1i 

splicing occurs during osmotic stress will be demonstrated (Chapter 3). 
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 Hac1p and Rpd3p act together in the same pathway to repress EMGs (Schröder et al., 

2004). Whether Hac1p acts via Rpd3p in the osmotic stress pathway to regulate GSR gene 

expression will be investigated (Chapter 4). 

 

 

If it is demonstrated that Hac1p and Rpd3p are required for the osmotic stress response and 

together they regulate the GSR genes, then the following questions will be addressed: 

 How does Hac1p regulate GSR gene expressio (Chapter 4)?  

 Does Hac1p directly regulate GSR genes (Chapter 4)?  

 

Figure 1.18 Summary of the aim and objectives The aim of my PhD work is to determine if there is 

crosstalk between the ER stress signalling and osmotic stress. The black ovals and arrows represent 

known concepts in the two pathways. The red ovals and arrows are some questions which will be 

addressed in this thesis. Hac1p and Rpd3p are well characterised molecules during ER stress and act in 

the same pathway to repress EMGs (Schröder et al., 2004). The aim is to determine whether Hac1p and 

Rpd3p are required for the osmotic stress response or not, and whether they act together in the same 

pathway to activate and epigenetically regulate GSR gene expression.  
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 Are the GSR genes regulated epigenetically (Chapter 4 and Chapter 5)? 

 What is the mechanism by which Hac1i and Rpd3 potentiate expression of GSR genes 

(Chapter 6)? 
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CHAPTER 2 

MATERIAL AND METHODS 
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2.1 Chemicals, reagents and commercial kits 

 

The table below lists the chemicals, reagents and commercial kits used in this study. 

Table 2.1 List of chemicals, reagents and commercial kits used in this study 

Name of Chemical Company and Catalogue number (Cat.No) 

Acetic acid Fisher Scientific,  
# A/0360/PBH  

Agarose molecular grade Bioline, # BIO-41025  

Clelands reagent Calbiochem, # 233155  

Diethyl pyrocarbonate (DEPC) Sigma, # D5758 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich, # D5879  

Disodium hydrogen orthophosphate  

dodecahydrate 

Fisher Scientific,  
# 10039-32-4 

Disodium hydrogen orthophosphate  Sigma-Aldrich, # S3264-250G  

 

2 mM dNTPs  
 

Fermentas Life Sciences,  
# R0181 

Ethanol (Et-OH) Fisher Scientific ,  
# E/0500/17  

Ethylenediamine tetraacetic acid 

(EDTA) 

Fisher Scientific, # BPE119-500  
 

Ficoll 400 Fluka, # 46327  
 

Formaldehyde (37% w/v stock 

solution) 

Fisher Bioreagents, # BP531-500 

Gene RulerTM 1Kb DNA ladder  
 

Fermentas Life Sciences, # SM0311 

D -Glucose  Fisher Scientific, # 50-99-7  
 

Glycerol Fisher Scientific, # 56-81-5  
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Glycine Fisher Bioreagents, # BP 381-1 

HEPES Fisher Bioreagents, # BP 310-100 

Hydrochloric acid Fisher Scientific ,  
# H/1100/PB17  

Isoamyl alcohol BDH, # 272124U 
 

Lithium acetate (LiOAc) Fisher Scientific ,  
# L/2050/50  

Lithium Chloride (LiCl)  

Magnesium chloride (MgCl2) BDH, # 2909647  
 

 

Phenol:CHCl3:isoamylalcohol  

25:24:1;v/v/v) 

 
 
Fisher Scientific,  
# BPE1752P-400  

Polyethylene glycol 4000 Sigma-Aldrich, # P 3640  
 

Potassium acetate Fisher Scientific, # P3760153  

Potassium chloride Fisher Scientific,  
# P/4240/53  

Potassium dihydrogen phosphate Fisher Scientific,  
# 7778-77-0  

Potassium phthalate 

monobasic  

 

 

Sigma-Aldrich, # P6758 -500 G 

Protease inhibitor cocktail  
• Complete  
• Mini  
 

Roche Applied Science,  
# 11836153001  
# 11836153001  

Proteinase K  VWR International, # 390973P 
Protein A Agarose beads  Santa Cruz Biotechnology 

Sheared salmon sperm DNA (8.31 
mg/ml or 6.89 mg/ml)  
 

Sigma, # D-1626  
 

Sodium chloride  
 

Fisher Scientific, # 7647-14-5  
 

Sodium deoxycholate Sigma, # D6750 
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Sodium dodecyl sulfate (SDS) 
 

Promega, # H5114 
 

Sodium hydroxide (NaOH) 
 

Sorbitol 

Anal-R Normapur,  
# 28244.262  

Sigma, # S0900 

SybrGreen stock solution (10000X 
stock solution) 

Invitrogen, Paisley, UK,       

  # S7563 
Tris (hydroxymethyl) methylamine  
 

Fisher Scientific,  
# T/3710/60  

Triton-X 100 Fisher Scientific, # T/3751/08 
Tween 20  
 

Fisher Scientific,  
# BPE 337-500 

Wizard SV Gel and PCR clean up 
system  

Promega, # A9282  
 

Zirconium silica beads (Ø = 0.5 mm) Stratech, #11079105z 

 
 

2.2 Media reagents 

Table 2.2 List of media reagents used in this study 

Media Company, Cat.No 

YNB agar Formedium, # CCMO210  
 

YNB broth Formedium, # CCMO110  
 

YNB w/o a.a. Formedium, # CYNO405  
 

Bacto-peptone BD, # 211677  
 

Bacto-yeast extract  
 

BD, # 212750  
 

Agar Fisher Scientific, # 9002-18-0  

Single drop out (SD-Trp) Formedium, # DSCK092 
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2.3 Commercial antibiotics, enzymes and antibodies 

Table 2.3 List of commercial antibiotics, enzymes and antibodies used in this study 

Antibiotics/enzymes/antibodies Company, Cat.No 

RNase A, 10-20 mg/ml, DNase-free  
 

Fermentas, # EN0531  
 

GoTaq DNA polymerase (5 Ul) Promega, Southampton, UK, # M8305 

 
Tunicamycin (Streptomyces 
lysosuperficus)  

 
Calbiochem, # 654380  
 

G-418  Melford, # G0175  

Kanamycin  Gibco, # 11815-024 

anti-H3 total antibody. Abcam, Cambridge, UK, # ab1791 

anti-acetyl histone H3 K9 Millipore, Watford, UK, # 07-352 

anti-acetyl histone H3 K18 Abcam, # ab1191 

anti-acetyl histone H4 K8 Millipore,# 07-328 

anti-Pol II antibody Abcam, # ab5408 

anti-Pol II serine 5 phosphorylation 

antibody 

Abcam, # ab5131 

anti-Pol II serine 2 phosphorylation 

antibody 

Abcam, # ab5095 

anti-MYC (9B11) antibody Cell Signaling Technology, #2276 

anti-HA antibody Sigma-Aldrich, #H6908 
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2.4 The plasmids used in this study 

Table 2.4 below lists the plasmids used in this study: 

Plasmid Features Reference 

pFA6a-kanMX2 PTEF-kanMX2-TTEF bla (Wach et al., 

1994) 

pRS314 CEN6 ARSH4 TRP1 bla (Sikorski and 

Hieter, 1989) 

pRS314- HAC1i CEN6 ARSH4 TRP1 HA-HAC1i bla (Schröder et 

al., 2004) 
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2.5 Yeast strains used in this study 

All strains are in the SK1 genetic background (Kane and Roth, 1974). All haploid SK1 strains have 

the additional alleles ura3 leu2::hisG trp1::hisG lys2 ho::LYS2. The alleles arg6 (Neigeborn and 

Mitchell, 1991), hac1TRP1 (Schröder et al., 2003), his3SK (Neigeborn and Mitchell, 1991), 

ho::hisG (Alani et al., 1987), ho::LYS2 (Alani et al., 1987), ire1kanMX2 (Schröder et al., 2000), 

leu2::hisG (Alani et al., 1987), lys2 (Alani et al., 1987), met4 (Neigeborn and Mitchell, 1991), 

rme15::LEU2 (Covitz et al., 1991), rpd3natMX4 (Schröder et al., 2004), rpd3URA3 (Lamb 

and Mitchell, 2001), sds3URA3 (Dorland et al., 2000), SIN3-MYC (Lamb and Mitchell, 2001), 

sin3LEU2 (Lamb and Mitchell, 2001), trp1::hisG (Alani et al., 1987), and ura3 (Alani et al., 1987) 

have been described before. 

Strain Genotype Reference 

MSY 36-34  arg6 Schröder lab strain inventory 

MSY 42-38  arg6 rpd3URA3 Schröder lab strain inventory 

MSY 49-06  arg6 sin3LEU2 (Schröder et al., 2004) 

MSY 56-01  arg6 sds3URA3 (Schröder et al., 2004) 

MSY 134-36 a arg6 rme15::LEU2 (Schröder et al., 2004) 

MSY 136-40  arg6 rme15::LEU2 (Schröder et al., 2004) 

MSY 138-17  his3SK rme15::LEU2 (Schröder et al., 2004) 

MSY 211-02 a arg6 rme15::LEU2 hac1TRP1 (Schröder et al., 2004) 

MSY 287-01 a arg6 rme15::LEU2 rpd3kanMX2 (Schröder et al., 2004) 

MSY 288-01  arg6 rme15::LEU2 rpd3kanMX2 (Schröder et al., 2004) 

MSY 291-01 a arg6 rme15::LEU2 rpd3natMX4 (Schröder et al., 2004) 

MSY 296-01  his3SK rme15::LEU2 hac1kanMX2 This study (Dr Schröder) 
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MSY 307-03 a arg6 rme15::LEU2 rpd3natMX4 

hac1TRP1 

Schröder lab strain inventory 

MSY 358-03  arg6 rme15::LEU2 rpd3Δ::Ura3 

H150A-rpd3-FLAG-TCYC8 

(Schröder et al., 2004) 

MSY 359-01 

 

 arg6 rme15::LEU2 rpd3Δ::Ura3 

H151A-rpd3-FLAG-TCYC8

(Schröder et al., 2004) 

 

MSY 525-07  his3SK rme15::LEU2 ire1kanMX2 Schröder lab strain inventory  

MSY 718-01 a arg6 rme15::LEU2 gcn5::kanMX2 This study (Dr Dainty) 

MSY 732-01  arg6 rme15::LEU2 eaf3kanMX2 This study (Dr Parmar) 

MSY 703-01  arg6 rme15::LEU2 rco1kanMX2 This study (Dr Parmar) 

MSY 726-03 

 

a arg6 rme15::LEU2 SDS3-MYC18-

natMX4

This study (Dr Dainty) 

 

MSY 727-03 

 

a arg6 rme15::LEU2 SIN3-MYC 

hac1TRP1 

      This study (Dr Schröder) 

 

MSY 728-07 

 

a arg6 rme15::LEU2 SDS3-MYC18-

natMX4 hac1TRP1 

     This study (Dr Schröder) 

 

MSY 721-01 a arg6 rme15::LEU2 GCN5-13MYC         This study (Dr Dainty) 

TLY 446 a arg6 rme15::LEU2 SIN3-MYC (Lamb and Mitchell, 2001) 
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2.6 Oligonucleotides used in this study 

The oligodeoxynucleotides were synthesized by Eurogentec Ltd. Lyophilised primers were 

resuspended in sterile water to a final concentration of 100μM and stored in -20°C.  The 

oligonucleotides used in this study are listed in Table 2.6 

Name Purpose Sequence 

H8051 HSP12 probe PCR, forward primer CGCAGGTAGAAAAGGATTCG 

H8052 HSP12 probe PCR, reverse primer TCAGCGTTATCCTTGCCTTT 

H8053 STL1 probe PCR, forward primer CTTCAGAGGGCTTTGATTGC 

H8054 STL1 probe PCR, reverse primer TGAAACTGCTTGACCTGTGG 

H8055 CTT1 probe PCR, forward primer GACTTCGAACAGCCAAGAGC 

H8056 CTT1 probe PCR, reverse primer TAATTGGCACTTGCAATGGA 

H8057 ALD3 probe PCR, forward primer ATGCGGTGGTAAGTCTCCTG 

H8058 
ALD3 promoter PCR, reverse 

primer 
TCCCACTCCTTCTTTGCAGT 

H8249 
HSP12 promoter PCR, forward 

primer GAGGGGAAAAGGAAAAGGAAAAG 

H8250 
HSP12 promoter PCR, reverse 

primer GAGGAAGTAGAACGCAATTC 

H8253 
STL1 promoter PCR, forward 

primer TTGCAGTTCAGGAGTAGTCACA 

H8254 STL1 promoter PCR, reverse primer AAATTTGCCTTTGAAATTCGAT 

H8255 
CTT1 promoter PCR, forward 

primer CGTATCCCCTACTGCTACACG 

H8256 CTT1 promoter PCR, reverse primer ACCGAACACGTTCATTTGTG 
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H8257 
ALD3 promoter PCR, forward 

primer AAAATGGCAAATCTGGATG 

H8258 
ALD3 promoter PCR, reverse 

primer TTTTCAATTGTGGGATTTCG 

H8400 
ALD3 ORF, 3’ end PCR, forward 

primer GCGGTCTTCACCAAAGATGT 

H8401 
ALD3 ORF, 3’ end PCR, reverse 

primer TGAAAGATCCACATGGACTGA 

H8402 
CTT1 ORF, 3’ end PCR, forward 

primer TTCGTTCATAACGTTGTTTGC 

H8403 
CTT1 ORF, 3’ end PCR, reverse 

primer CCTTCAAGGTCAACAGGTTCC 

H8404 
STL1 ORF, 3’ end PCR, forward 

primer AACCATTTGCCCAAGTTATCC 

H8405 
STL1 ORF, 3’ end PCR, reverse 

primer CCCTCAAAATTTGCTTTATCG 

H8408 
HSP12 ORF, 3’ end PCR, forward 

primer AACAAGGGTGTCTTCCAAGG 

H8409 
HSP12 ORF, 3’ end PCR, reverse 

primer TTGGTTGGGTCTTCTTCACC 
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2.7 Preparation of yeast media buffers and stock solutions: 

2.7.1 Preparation of stock solutions 

Solution Quantity Recipe 

EDTA, 0.5 M 500 ml 1. Dissolve 93.1 g Na2EDTA·2H2O in 
~350 ml H2O and adjust pH to 8.0 
with 10 M NaOH (~25 ml). 

2. Add H2O to 500 ml. and autoclave. 

HEPES (pH 7.5), 1 M 100 ml 1. Dissolve 23.83 g HEPES in ~80 ml 
autoclaved H2O. and adjust pH to 7.5 with 
KOH. Then add H2O to 100 ml. 

2. Autoclave. 

MgCl2, 1 M 100 ml 1. Dissolve 20.33 g MgCl2·6 H2O in ~ 80 ml 
H2O and add H2O to 100 ml. 

2. Autoclave. 

Na2CO3, 1 M 500 ml 1. Dissolve 53.0 g Na2CO3 in ~ 400 ml H2O. 
2. Add H2O to 500 ml. 

NaH2PO4, 0.2 M 500 ml 1. Dissolve 12 g NaH2PO4 in ~400 ml H2O. 
2. Add H2O to 500 ml. 
3. Autoclave. 

NaH2PO4, 0.4 M 500 ml 1. Dissolve 24 g NaH2PO4 in ~400 ml H2O. 
2. Add H2O to 500 ml. 
3. Autoclave. 

Na2HPO4, 0.2 M 500 ml 1. Dissolve 14.2 g Na2HPO4 (35.82 g 
Na2HPO4·12 H2O) in ~400 ml H2O. 

2. Add H2O to 500 ml. 
3. Autoclave. 

Na2HPO4, 0.4 M 500 ml 1. Dissolve 28.4 g Na2HPO4 in ~400 ml H2O. 
2. Add H2O to 500 ml. 
3. Autoclave. 

NaOAc (pH 6.0), 3 M 100 ml 1. Dissolve 40.83 g NaOAc·3H2O in ~60 ml 
H2O and adjust pH to 6.0 with glacial HOAc 

2. Add H2O to 100 ml. 
3. Autoclave. 

NaOH, 10 M 500 ml 1. Dissolve 200 g NaOH in ~350 ml H2O. 
Solution will get very hot! 

2. Store in a polyethylene bottle. 

NH4OAc, 10 M 100 ml 1. Dissolve 77.08 g NH4OAc in a small amount 
of H2O and add H2O to 100 ml. 

2. Autoclave. 

10% (w/v) NP-40 50 ml 1. Dissolve 5.55 g NP-40 in ~ 40 ml autoclaved 
H2O and add H2O to 50 ml. Filter sterilize. 

10% (w/v) SDS 500  1. Dissolve 50 g SDS in ~450 ml H2O and add 
H2O to 500 ml. 

2. Do NOT autoclave. 

Tris·HCl (pH 6.8), 1 M 1 l 1. Dissolve 121.14 g Tris in ~800 ml H2O. 
2. Adjust pH to 6.8 with conc. HCl (~ 42 ml). 
3. Add H2O to 1 l and autoclave. 

Tris·HCl (pH 8.0), 1 M 1 l 1. Dissolve 121.14 g Tris in ~800 ml H2O. and 
adjust pH to 8.0 with conc. HCl (~ 42 ml). 

2. Add H2O to 1 l and autoclave. 
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10% (v/v) Triton X-100 50 ml 1. Dissolve 5.55 g Tween 20 in ~ 40 ml 
autoclaved H2O and add H2O to 50 ml. 
Filter sterilize. 

10% (v/v) Tween 20 50 ml 1. Dissolve 5.55 g Tween 20 in ~ 40 ml 
autoclaved H2O and add H2O to 50 ml. 

2. Filter sterilize. 

 

 

 

2.7.2 Buffers 

Buffer Composition Quantity Recipe 

10 x PBS 80 g/l NaCl 
  2 g/l KCl 
14.4 g/l Na2HPO4 
  2 g/l KH2PO4 

4 l 1. To 320 g NaCl ,  8 g/l KCl, 

57.6 g/l Na2HPO4 and   8 g/l 

KH2PO4 add H2O to 4 l. 

Dissolve all salts by stirring 

and autoclave 

1 x PBS   8.0 g/l NaCl 
  0.2 g/l KCl 
14.4 g/l Na2HPO4 
  0.2 g/l KH2PO4 

1 l 2. 100 ml 10 x PBS 
3. Add sterile H2O to 1 l. 

50 x TAE 2 M Tris·HOAc 
0.1 M EDTA 
pH ~ 8.5 

1 l 1. 242 g Tris 
2. 57.1 ml HOAc 
3. 37.2 g Na2EDTA·2H2O 
4. Add H2O to 1 l 

1 x TAE 40 mM Tris·HOAc 
2 mM M EDTA 
pH ~ 8.5 

1 l 1. 20 ml 50 x TAE 
2. Add H2O to 1 l 

10 x TE (pH 8.0) 100 mM Tris·HCl (pH 8.0) 
10 mM EDTA 

4 l 400 ml 1 M Tris·HCl (pH 8.0) 
80 ml 0.5 M EDTA 
Add H2O to 4 l 
Autoclave 

1 x TE (pH 8.0) 10 mM Tris·HCl (pH 8.0) 
1 mM EDTA 

50 ml 5 ml 10 x TE (pH 8.0) 
Add sterile H2O to 50 ml 

 

 

2.7.3 Specialised solutions 

Solution Composition Quantity Recipe 

ChIP elution buffer 50 mM Tris-HCl (pH 8.0) 
10 mM EDTA 
1 % (w/v) SDS 

50 ml   2.5 ml 1 M Tris-HCl (pH 8.0) 
  1.0 ml 0.5 M EDTA 
  5.0 ml 10% (w/v) SDS 
41.5 ml H2O (autoclaved) 
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ChIP lysis buffer 50 mM HEPES·KOH, (pH 7.5) 
500 mM NaCl 
1 mM EDTA 
1.0 % (v/v) Triton X-100 
0.1% (v/v) SDS 
0.1% (w/v) sodium deoxycho-
late 

500 ml 1. Dissolve 14.61 g NaCl, 0.5 
g sodium deoxycholate, 
25 ml 1 M HEPES·KOH (pH 
7.5), and 1 ml 0.5 M EDTA 
in ~350 ml H2O. Make up 
to 445 ml and autoclave. 
Then add: 

2. 50 ml 10% (v/v) Triton X-
100 and  5 ml 10% (w/v) 
SDS. 

Deoxycholate buffer 10 mM Tris-HCl (pH 8.0) 
1 mM EDTA 
0.25 M LiCl 
0.5% (v/v) NP-40 
0.5% (w/v) sodium 
deoxycholate 

100 ml 1. Dissolve 1 ml 1 M Tris·HCl 
(pH 8.0), 200 µl 0.5 M 
EDTA, 1.06 g LiCl, and 0.5 
g sodium deoxycholate in 
~80 ml H2O. Make up to 
95 ml and autoclave. Then 
add: 

2. 5 ml 10% (v/v) NP-40. 

1 M dithiothreitol 1 M dithiothreitol (DTT) 10 ml 1. 1.54g dithiothreitol 
2. Dissolve in ~ 9 ml H2O. 
3. Add H2O to 10 ml. 
4. Filter sterilize. 
5. Store at -20°C. 

2 mM dNTPs 2 mM dATP 
2 mM dCTP 
2 mM dGTP 
2 mM dTTP 
1 mM Tris·HCl (pH 8.0) 

1 ml 1. 910 μl H2O 
  10 μl 100 mM Tris·HCl 
(pH 8.0) 

2. 20 μl 100 mM dATP 
  20 μl 100 mM dCTP 
  20 μl 100 mM dGTP 
  20 μl 100 mM dTTP 

5.0 mg/ml ethidium 
bromide 

5.0 mg/ml ethidium bromide 50 ml 1. 250 mg ethidium bromide 
2. Dissolve in ~ 40 ml sterile 

H2O. 
3. Add sterile H2O to 50 ml. 
4. Store at 4°C protected 

from light. 

5 M KOAc, pH 4.8 5 M KOAc, pH 4.8 500 ml 1. 147.5 ml HOAc, add H2O 
to ~ 450 ml, adjust pH to 
4.8 w/ KOH pellets while 
cooling in an ice/H2O 
bath. Add H2O to 500 ml 
and autoclave. 

1 M LiOAc 1 M LiOAc 250 ml 1. 25.50 g LiOAc·2H2O 
2. Dissolve in ~200 ml H2O. 
3. Add H2O to 250 ml. 
4. Filter sterilize. 

20 μg/μl Proteinase 
K 

20 μg/μl Proteinse K 
50 mM Tris·HCl (pH 8.0) 

500 μl 1. Dissolve 10 mg proteinase 
K in 500 μl 50 mM Tris·HCl 
(pH 8.0). Dispense into 20 
μl portions and store at -
20°C. 

Triton X-100 
solution 

2% (v/v) Triton X-100 
50 mM Tris·HCl (pH 8.0) 

1 l 1. Dissolve 21 g Triton X-100 
and 50 ml 1 M Tris·HCl 
(pH 8.0) in H2O, add H2O 
to 1 l, and filter sterilize. 
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2.7.4 Solutions for RNA work 

General guidelines: Fresh pair of gloves is always used for RNA work. There are a separate set of 

chemicals, glassware, and plastic materials dedicated for work with RNA. All glassware, all stir 

bars, and all metal spatulas used for work with RNA are sterilized by baking for ≥ 4 h at 180°C. 

Baked glassware is always used to prepare solutions. Plastic materials (for example: 15 ml 

centrifuge tubes, 50 ml centrifuge tubes, 1.5 ml microcentrifuge tubes) used for RNA work is 

always purchased with packaging under sterile conditions.  Electrophoresis equipment is cleaned 

thoroughly with 2% (w/v) SDS and rinsed with type I laboratory water before use. A final wash is 

given with DEPC water. Hybridization bottles need to be clean, but sterilization by autoclaving or 

baking is not necessary (and may be detrimental to the bottles). DEPC is always handled in a fume 

hood. 

2.7.4.1 Preparation of RNA reagents 

Reagent Recipe 

Formamide 1. Mix 100 ml formamide with 5 g Dowex MR-3 mixed bed ion 
exchanger for 1 h at RT. 

2. Separate the Dowex MR-3 mixed bed ion exchanger from the 
formamide by filtration in a sterile filter unit. 

3. Store formamide at 4°C protected from light for ~ 1 year. 

6 M glyoxal 1. Mix 50 ml 40% (w/w) glyoxal (= 6 M) w/ 5 g Dowex MR-3 mixed bed 
ion exchanger for 1 h at RT. 

2. Separate the Dowex MR-3 mixed bed ion exchanger from the glyoxal 
solution by filtration in a sterile filter unit. 

3. Store glyoxal at -20°C for a 1 year in 0.5 ml aliquots. 

Phenol: CHCl3:isoamyl-
alcohol (25:24:1 
(v/v/v)), saturated with 
RNA buffer 

1. Add 25 ml RNA buffer to 25 ml phenol: CHCl3:isoamylalcohol (25:24:1 
(v/v/v)), buffered w/ 0.1 M Tris·HCl (pH 8.0) in a 50 ml tube. Mix 
phases by vortexing. 

2. Separate phases by centrifugation at 3000 rpm, 4°C for 2 min. 
3. Completely remove the upper, aqueous phase. 
4. Repeat steps 1 – 3 once. This time leave ~ 5 ml aqueous phase on top 

of the phenol: CHCl3: isoamylalcohol (25:24:1 (v/v/v)) saturated with 
RNA buffer. 

5. Store protected from light at 4°C. 
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2.7.4.2 Solutions that can be treated with DEPC 

Solution Composition Quantity Recipe 

DEPC-H2O H2O 1 l 1. Add 1 ml DEPC to 1 l of 
type I laboratory H2O. 
Vigorously stir for 30 min 
at RT and autoclave. 

200 mM NaH2PO4 200 mM NaH2PO4 500 ml 1. Dissolve 12.21 g NaH2PO4 
in ~450 ml DEPC-H2O, add 
DEPC-H2O to 500 ml. 

2. Add 0.5 ml DEPC and stir 
for 30 min at RT. 

3. Autoclave. 

200 mM Na2HPO4 200 mM Na2HPO4 500 ml 1. Dissolve 14.21 g Na2HPO4 
(35.82 g Na2HPO4·12 H2O) 
in ~450 ml DEPC-H2O, add 
DEPC-H2O to 500 ml and 
add 0.5 ml DEPC and stir 
for 30 min at RT and 
satoclave. 

100 mM NaxH3-xPO4 (pH 
7.0) 

100 mM NaxH3-xPO4 (pH 
7.0) 

1 l 1. To 195 ml 200 mM 
NaH2PO4 and 305 ml 200 
mM Na2HPO4. 

2. Add DEPC-H2O to 1 l, Add 
1 ml DEPC, stir 30 min at 
RT and autoclave. 

10 mM NaxH3-xPO4 (pH 
7.0) 

10 mM NaxH3-xPO4 (pH 
7.0) 

1 l 1. 100 ml 100 mM NaxH3-

xPO4 (pH 7.0). 
2. Add DEPC-H2O to 1 l. 

6 x RNA sample loading 
buffer 

50% (v/v) glycerol 
10 mM NaxH3-xPO4 (pH 
7.0) 
0.4% (w/v) bromophenol 
blue 

100 ml 1. To 63 g glycerol and 250 
mg bromophenol blue add 
10 ml 100 mM NaxH3-xPO4 
(pH 7.0) and DEPC-H2O to 
~ 90 ml. 

2. Stir until bromophenol 
blue is dissolved. 

3. Add DEPC-H2O to 100 ml. 
4. Add 100 μl DEPC and stir 

30 min at RT. 
5. Autoclave. 

20 x SSC 3 M NaCl 
0.3 M Na3·citrate 

1 l 1. Dissolve 175.32 g NaCl and 
88.23 g Na3·citrate·2 H2O 
in ~900 ml DEPC-H2O. Add 
DEPC-H2O to 1 l. 

2. Add 1 ml DEPC, and stir at 
RT for 30 min. Vigorous 
stirring may be necessary 
to disperse the DEPC in 
the 20 x SSC, 

3. Autoclave. 

  6 x SSC 0.9 M NaCl 
90 mM Na3·citrate 

500 ml 1. To 150 ml of 20 x SSC, add 
DEPC-H2O to 500 ml. 

  2 x SSC 0.3 M NaCl 
30 mM Na3·citrate 

500 ml 2. To 50 ml 20 x SSC, add 
DEPC-H2O to 500 ml. 
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2.7.4.3 Solutions that can be treated with DEPC but cannot be autoclaved 

Solution Composition Quantity Recipe 

10% (w/v) SDS 10% (w/v) SDS 500 ml 1. Dissolve 50 g SDS in 450 
ml DEPC-H2O. 

2. Add DEPC-H2O to 500 ml. 
3. Add 500 μl DEPC and stir 

30 min at RT. 
4. Incubate o/n at 60°C. 

  2 x SSC + 0.1% (w/v) 
SDS 

0.3 M NaCl 
30 mM Na3·citrate 
0.1% (w/v) SDS 

500 ml 1. 50 ml 20 x SSC 
2. ml 10% (w/v) SDS 
3. Add DEPC-H2O to 500 ml. 

0.2 x SSC + 0.1% (w/v) 
SDS 

30 mM NaCl 
  3 mM Na3·citrate 
0.1% (w/v) SDS 

500 ml 5 ml 20 x SSC 
5 ml 10% (w/v) SDS 
Add DEPC-H2O to 500 ml. 

 

 

2.7.4.4 Solutions that cannot be treated with DEPC but can be autoclaved 

Solution Composition Quantity Recipe 

0.5 M EDTA (pH 8.0) 0.5 M EDTA (pH 8.0) 500 ml 1. Dissolve 93.05 g 
Na2EDTA·2H2O in ~ 350 ml 
DEPC-H2O. 

2. Adjust pH w/ 10 N NaOH. 
3. Add DEPC-H2O to 500 ml. 
4. Autoclave. 

1 M Tris·HCl (pH 7.5) 1 M Tris·HCl (pH 7.5) 500 ml 1. Dissolve 60.57 g Tris in ~ 
400 ml DEPC-H2O. 

2. Adjust pH w/ conc. HCl. 
3.  Add DEPC-H2O to 500 ml. 
4. Autoclave. 

1 M Tris·HCl (pH 8.0) 1 M Tris·HCl (pH 8.0) 500 ml 1. Dissolve 60.57 g Tris in ~ 
400 ml DEPC-H2O. 

2. Adjust pH w/ conc. HCl. 
3.  Add DEPC-H2O to 500 ml. 
4. Autoclave. 

20 mM Tris·HCl (pH 8.0) 20 mM Tris·HCl (pH 8.0) 500 ml 1. Add DEPC-H2O to 500 ml 
to 10 ml 1 M Tris·HCl (pH 
8.0). 

 

 

2.7.4.5 Composite solutions 

Solution Composition Quantity Recipe 

100 x Denhardt’s 
solution 

2% (w/v) Ficoll 400 
2% (w/v) 
polyvinylpyrrolidone 
2% (w/v) BSA (fraction V) 

500 ml 1. 10 g Ficoll 400 
2. 10 g polyvinylpyrrolidone 
3. 10 g BSA (fraction V) 
4. Dissolve in DEPC-H2O. Add 

DEPC-H2O to 500 ml and 
filter sterilize. Store at 
4°C. 
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70% (v/v) EtOH 70% (v/v) EtOH 50 ml Mix 35 ml EtOH and 15 ml 
DEPC-H2O and store at -20°C. 

RNA buffer 0.5 M NaCl 
0.2 M Tris·HCl (pH 7.5) 
10 Mm EDTA 

500 ml 1. Dissolve 14.61 g NaCl in 
390 ml DEPC-H2O. 

2. Add 390 ml DEPC and stir 
30 min at RT. 

3. Autoclave. 
4. Add 100 ml 1 M Tris·HCl 

(pH 7.5) and 10 ml 0.5 M 
EDTA (pH 8.0) 

 

 

2.8 Microbiological Media 

General guidelines: Solutions are prepared in type I laboratory H2O (resistivity 18 Mcm, total 

organic carbon < 20 ppb, microorganisms < 1 cfu/ml, particles < 0.05 μm diameter) generated by 

the NANOpure Diamond UV/UF TOC water purification system and sterilized by autoclaving 

(121°C, 20 – 30 min) or filter sterilized over a 0.22 µm filter when indicated. 

 

2.8.1 Liquid media for Saccharomyces cerevisiae 

Medium Composition 
Quantity 

Recipe 

YPAc broth 1% (w/v) bacto-yeast extract 
2% (w/v) bacto-peptone 
2% (w/v) KOAc 

1l 1. Dissolve 10 g 
bacto-yeast 
extract, 20 g 
bacto-peptone, 
and 20 g KOAc 
in ~ 800 ml 
H2O. 

2. Add H2O to 1 l and mix. 
3. Dispense into bottles. 
4. Autoclave. 

YPD broth 1% (w/v) bacto-yeast extract 
2% (w/v) bacto-peptone 
2% (w/v) D-glucose 

1 l 1. Dissolve 50 g 
YPD broth 
powder in 
~800 ml H2O. 

2. Add H2O to 1 l and mix. 
3. Dispense into bottles. 
4. Autoclave. 
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2.8.2 Solid media 

Medium Composition 
Quantity 

Recipe 

YPAc agar 

label: ║ 

1% (w/v) bacto-yeast extract 
2% (w/v) bacto-peptone 
2% (w/v) KOAc 
2% (w/v) agar 

1 l 1. Add 1 l H2O to 10 g bacto-
yeast extract, 20 g bacto-
peptone, 20 g KOAc, and 
20 g agar in a 2 l 
Erlenmeyer flask. 

2. Stir until suspension is 
homogenous and then 
autoclave. Let solution cool 
to ~55°C. Pour ~25 ml into 
one 90 mm Petri dish. 

YPD agar 

label: │ 

1% (w/v) bacto-yeast extract 
2% (w/v) bacto-peptone 
2% (w/v) D-glucose 
1.5% (w/v) agar 

1 l 1. Add 1 l H2O to 65 g YPD agar 
powder in a 2 l Erlenmeyer 
flask. Stir until suspension is 
homogenous and then 
autoclave. Let solution cool 
to ~55°C. Pour ~25 ml into 
one 90 mm Petri dish. 

YPD + 400 µg/ml 
G418 agar 

label: │ + 400 µg/ml 
G418 

1% (w/v) bacto-yeast extract 
2% (w/v) bacto-peptone 
2% (w/v) D-glucose 
1.5% (w/v) agar 
400 µg/ml G418 

1 l 1. Follow step 1 from above. 
2. Let solution cool to ~55°C. 

Add 400 mg G418 and mix 
until G418 has dissolved. 
Pour ~25 ml into one 90 mm 
Petri dish. 

 

 

2.9 Yeast Transformation 

 Plasmids, yeast strains and oligonucleotides used are listed in Tables 2.4, 2.5 and 2.6 respectively. 

Isogenic yeast strains were used for all experiments.   Strains lacking functional tryptophan gene 

were transformed with an empty vector pRS314 (Table 2.4). Yeast strains were transformed by 

the LiOAc method (Chen et al., 1992). The LiOAc protocol for plasmid transformation is described 

below.  

2.9.1 Reagents: Sterile water, 1 M LiOAc, filter sterilized (pH 8.4-8.9), 50% (w/v) PEG4000, One 

step buffer (0.2 M LiOAc and 40% (w/v) PEG4000), 8.31mg/ml or 6.89mg/ml sheared salmon 

sperm DNA and appropriate agar plates.  

2.9.2 Protocol: The yeast cells were inoculated and grown to an OD of 0.8-1.2 from an overnight 

preculture. 5ml of the yeast cell culture at 0.8-1.2 OD was collected by centrifugation for 2 min at 

3000rpm at 4°C. The supernatant was decanted and the cells were placed on ice. While the cells 

file:///C:/LABORATORY/Regulatory%20Documents/COSHH%20Assessments/Y-004%20(yeast%20extract).doc
file:///C:/LABORATORY/Regulatory%20Documents/COSHH%20Assessments/Y-004%20(yeast%20extract).doc
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file:///C:/LABORATORY/Regulatory%20Documents/COSHH%20Assessments/P-003%20(KOAc).doc
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were centrifuging, the sheared salmon sperm DNA was thawed at 37°C water bath and put on ice.  

The cell pellet was resuspended in 5-10 ml of one-step buffer and centrifuge for 2 min at 3000rpm 

at 4°C. While the cells were centrifuging, the salmon sperm DNA was boiled for 5 min at 100°C 

and place on ice. The transforming DNA was dispensed in 1.5 ml microcentrifuge tubes and place 

on ice.  12 μl 8.31 mg/ml (14.5 μl 6.89 mg/ml) sheared salmon sperm DNA was added to each 

tube containing the transforming DNA using a large orifice pipette tip. After centrifugation, the 

supernatant was decanted and the cells were placed on ice. All the liquid was pipetted out. 88 μl 

of one-step buffer was added to a cell pellet obtained from 5 ml YPD broth. For a cell pellet 

obtained from a larger culture a proportional amount of one-step buffer was further added. The 

cells were resuspended by vortexing and checked for presence of cell clumps.. 88 µl of the yeast 

cells and one step buffer suspensions was added to tubes containing transforming DNA and 100 

μg sheared salmon sperm DNA using large orifice pipette tips. The tubes were vortexed for 15 s at 

maximum speed. The cells were incubated in a 42C water bath for 30 min without mixing and 

then placed on ice. The cells were collected by centrifugation in a microcentrifuge for 10 s at RT. 

The cells were placed on ice and the supernatant is pippeted out completely. The cells were 

resuspended in 200μl of water and spread on appropriate agar plates. Transformations that 

introduce nutritional markers were usually plated directly onto the selective plate. 

Transformations that introduce dominant drug resistance markers were usually first plated onto a 

YPD-plate, incubated over night at 30°C, and then replica plated onto the selective plate. The 

plates were incubated at 30°C until colonies were grown (~2 days for YPD agar plates, ~3-5 days 

for SD agar plates lacking the appropriate nutrients). A small portion of the colony was streaked 

onto 1/6 to 1/8 of an YPAc using an inoculating loop. The YPAc agar plate was incubated at 30°C 

for 2-3 days. YPAc agar plate was checked for growth and clones unable to grown on acetate were 

discarded. The clones which were able to grow on acetate were further processed for genotyping. 
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2.10 Spotting Assay 

To measure the viability of yeast strains exposed to osmotic stress on plates, cells were grown to 

mid-exponential phase at 30°C. All cultures were adjusted to an OD600nm of 3.0. From this stock 

fresh tenfold serial dilution in culture medium was prepared. For each dilution 3-5 l cell 

suspension were spotted onto YPD or synthetic dextrose (SD) plates containing the indicated 

concentrations of NaCl or D-sorbitol. After 2-4 d at 30°C growth was documented by photography 

on a Gel Doc 2000 system (Bio-Rad Laboratories, Hemel Hempstead, UK). In liquid culture osmotic 

stress was induced with 0.6 M NaCl or 1.2 M sorbitol for 20 min, if not noted otherwise, in cells 

grown to mid-log phase in YPD or SD medium lacking appropriate nutrients to maintain selection 

of plasmid-borne nutritional markers. 

 

2.11 Chromatin Immunoprecipitation 

50ml of cell culture (YPD or SD-Trp) was grown to an OD600 of ~0.5-0.7 and the chromatin was 

crosslinked by addition of formaldehyde to a final concentration of 1% (w/v). Cells were slowly 

agitated for 15 min at room temperature before quenching of the remaining formaldehyde by 

addition of glycine to a final concentration of 125 mM (from a 2.5M stock solution). Cells were 

harvested by centrifugation (3,000 g, 4°C, 2 min) and resuspended in ice-cold ChIP lysis buffer. 

Cells were lysed with zirconium silica beads (Ø = 0.5 mm) in a Precellys 24 instrument (Bertin 

Technologies, Montigny-le-Bretonneux, France) using 2 cycles of a 30 s run at 6,500 rpm and a 30 

s cooling break. Crosslinked chromatin was collected by centrifugation and sheared by sonication 

in a Bioruptor (Diagenode, Liège, Belgium) using 25 cycles of a 15 s run at high power setting and 

a 30 s cooling period. Preliminary experiments established that these conditions shear S. 

cerevisiae chromatin to an average size of 0.4 – 0.6 kBp. The sheared chromatin was cleared by 

centrifugation for 30 min at 12,000 g and 4°C. A portion of this chromatin preparation was set 

aside as ‘input chromatin’. 50-400 l sheared chromatin were precleared with 20 l of a 25% 
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(w/v) slurry of protein A Agarose beads, depending on the antibody to be used, for 1 h at 4°C with 

overhead rotation. After pelleting of the agarose beads by centrifugation (30 s, 735 g, 4°C) the 

supernatant was transferred into a fresh 1.5 ml microcentrifuge tube and immunoprecipitated at 

4°C overnight with overhead rotation using 4μg of the appropriate antibody. Chromatin 

immunoprecipitates were collected by addition of 20 l of a 25% (w/v) protein A Agarose slurry 

and incubation for 2 h at 4°C. The sepharose beads were pelleted by centrifugation and washed 

successively for 4 minutes on an end-over-end rotator with 500 l of the following solutions: 

twice with ChIP lysis buffer, once with deoxycholate buffer and once with 1 x TE (pH 8.0) at 4°C. 

To elute crosslinked chromatin from the sepharose beads, the beads were incubated for 10 min at 

65°C in 50μl of Elution buffer, pelleted by centrifugation, and incubated a second time for 10 min 

at 65°C in the same volume of Elution buffer. After pooling of both eluates, 100 l 1 x TE (pH 8.0) 

and 1 l 20 gl proteinase K in 50 mM Tris·HCl (pH 8.0) were added and the crosslinked 

chromatin was incubated for 2-3 h at 55°C, and then for 6 h at 65°C for reverse crosslinking. The 

DNA was extracted once with phenol/CHCl3/isoamylalcohol (25:24:1 v/v/v) and purified on a PCR 

purification column. The input chromatin was reverse crosslinked, extracted with phenol/CHCl3, 

ethanol precipitated and dissolved in 70 l 1 x TE (pH 8.0). All ChIP experiments were repeated 2-

3 times with independent samples. The averages and standard errors of these replicates are 

shown in all figures. ChIP results were normalized to input chromatin. ChIP results for acetylated 

H3 and H4 residues are presented as the ratio of the acetylated signal to the total H3 signal. ChIP 

results for HA-Hac1i, Sin3-MYC, Sds3-MYC and Gcn5-MYC are presented as the ratio of the signal 

normalized to input chromatin in cells expressing HA-Hac1i or MYC-tagged strains to the signal 

normalized to input chromatin obtained with the same anti-epitope antibody used on chromatin 

isolated from an untagged WT strain under the same growth conditions. 
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2.11.1 Quantitative PCR (qPCR) analysis of ChIPed DNA 

Primers for qPCR are listed in Table 2.6 

  

 

Figure 2.1 Graphical depiction of the ALD3, CTT1, HSP12, and STL1 loci indicating the location 
diagnostic PCR products in the promoters and 3’ end of the ORFs that were used to analyze 
ChIPs.  
 

qPCRs were run on a RotorGene 3000 thermocycler (Qiagen, Crawley, UK) using 2 l of 

immunoprecipitated DNA with 2 l of the corresponding 1:3 diluted input DNA. Amplicons were 

amplified with 0.5 l GoTaq DNA polymerase (5 Ul), 2 mM MgCl2, 100 M dNTPs, and 1 M of 

each primer and detected with 1:2,500 fold dilution of a SybrGreen stock solution. After 

denaturation for 5 min at 95°C samples underwent 35 cycles of denaturation at 95°C for 30 s, 

primer annealing at 55°C for 30 s, and primer extension at 72°C for 30 s. Amplification of a single 

PCR product was confirmed by recording the melting curves after each PCR run. All amplification 

efficiencies were > 0.9. Calculation of CT values and normalization of immunoprecipitated samples 

to corresponding input DNA was done with the RotorGene software. Each ChIP experiment was 

repeated 2-3 times with independent biological samples. All PCR reactions were repeated at least 

in duplicates to account for pipetting errors. 
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2.12 RNA isolation from yeast 

2.12.1 Reagents: DEPC water, Ethanol (ice cold-100% and 70%), glass/silica beads, Formamide, 

phenol: CHCl3: isoamylalcohol (25:24:1 (v/v/v)), saturated with RNA buffer (only the bottom phase 

used). 

2.12.2 Protocol: RNA was isolated from cells grown to an OD600 of 0.4-0.6 and collected before 

and after osmotic shock treatment using 0.6M NaCl and 1.2M Sorbitol. Cells were collected by 

centrifugation for 2 min at 3000 rpm, 4ºC.The supernatant was aspirated and the cells were 

resuspended in 1 ml ice-cold DEPC-H2O, and transferred into a 2.0 ml round or flat bottom screw-

cap microcentrifuge tube. After centrifuging for 10 s in a microcentrifuge at 12,000 g, room 

temperature and pipetting out the supernatant and repeating this washing step with DEPC water, 

300 µl RNA buffer was added to the washed pellets. The cell pellets were resuspended by 

vortexing and 200 µg acid-washed glass beads was added. 300 µl phenol:CHCl3:isoamylalcohol 

(25:24:1 (v/v/v)), saturated with RNA buffer was then added and the cells were lysed in a Precellys 

instrument at 4°C using two cycles of 10-15 s at 6,500 rpm with a break of 30 s between both 

cycles. After centrifuging at 13000G for 1min the upper phase was transferred to a new 1.5ml 

eppendorf tube and was once again extracted with 300 µl phenol:CHCl3:isoamylalcohol (25:24:1 

(v/v/v)), saturated with RNA buffer. After centrifuging, the upper phase was transferred to a new 

1.5ml eppendorf tube and RNA was ethanol precipitated. The RNA pellets were air dried and 

dissolved in 50-100µl of formamide and dissolved at room temperature for 1-2 hours. The RNA 

samples were stored in -80°C until used further for Northern blotting. 

 

2.13 RNA agarose gel electrophoresis: 

2.13.1 Reagents: DEPC water, DMSO, deionised glyoxal, 100 mM NaxH3-xPO4 (pH 7.0), 10 mM 

NaxH3-xPO4 (pH 7.0), RNA sample, 10 µg determined by UV spectroscopy and 6 x RNA sample 

loading buffer. 
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2.13.2 Protocol 

2.13.2.1 Gel preparation 

1.4%(w/v) of agarose is melted in an appropriate volume of 10 mM NaxH3-xPO4 (pH 7.0) in a baked 

Erlenmeyer flask. The flask is then placed in a 50°C water bath to equilibrate. Once the gel is 

poured and allowed to solidify then remove the combs and casting dams and immerse gel in 10 

mM NaxH3-xPO4 (pH 7.0). 

 

2.13.2.2 Sample preparation 

10 µg total RNA  is denatured in a sterile 1.5 ml microcentrifuge tube by adding: 

8.44 µl 6 M glyoxal, 25.00 µl DMSO,  5.00 µl 100 mM NaxH3-xPO4 (pH 7.0). The tubes are tightly 

closed, breifly vortexed, collected after a quick spin and incubated for 1h at 50°C. Once the 

samples are cooled after this incubation step, 10 µl of 6 x RNA sample loading buffer is added, 

mixed by vortexing, and droplets collected at the bottom of the tube by centrifugation for 10 s at 

12,000 g, RT. 

 

2.13.2.3 Electrophoresis 

The samples are loaded carefully onto the gel. Size standard is loaded on one side of the gel and 

one lane is left empty between the size standard and the samples. Electrophoresis is carried out 

at at 3 V/cm electrode distance with constant buffer recirculation. Electrophoresis is continued till 

the bromophenol blue has migrated ~80% along the length of the gel. 
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2.13.2.4 Ethidium bromide staining of size standard 

The lane with the size standard is cut off using a sterile razor blade. The sliced lane is placed into 

0.5 M NH4OAc + 0.5 µg/ml ethidium bromide. Once incubated overnight with slow agitation 

protected from light, the marker is destained twice 20 min in type I laboratory water H2O and 

photographed alongside a ruler. The remainder of the gel is ready for capillary transfer. 

 

2.14 Capillary transfer of RNA 

2.14.1 Protocol 

 

Figure 2.2 Diagram representing capillary transfer of RNA 

A stack of paper towels about 5 cm high is made. As shown in the above Figure 2.1, four pieces of 

Whatman 3MM filter paper is placed on top of the paper towels. A fifth filter paper is soaked with 

20 x SSC and place on top. The positive TM membrane is briefly wet in DEPC-H2O (Northern blot) 

and then transferred 20 x SSC. The membrane is then placed on top of the filter paper. Air 

bubbles are removed by rolling a pipet over the surface of the membrane. The gel is then carefully 

placed over the membrane and air bubbles removed. No part of the gel should extend over the 

edge of the membrane. Three pieces of Whatman 3MM paper cut to the same size as the gel, 

soaked with 20 x SSC and place on top of the gel. Once the air bubbles are removed by rolling the 

pipet, one larger piece of Whatman 3MM paper in 20 x SSC is placed over this assembly. This 
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piece of Whatman 3MM paper is large enough that it connected two trays with 20 x SSC on 

opposite sides of the stack. The sheet is placed on top of the stack and its ends into the trays with 

20 x SSC. After removing air bubbles the stack and the trays is covered with cling film and a glass 

plate is placed on top of the stack. This assembly is left overnight. The transfer is then 

disassembled using forceps. The membrane is placed with the nucleic acid side up onto a piece of 

Whatman 3 MM paper. It is then immediately crosslinked to the nylon membrane at 120 mJ with 

UV light. The membrane is ready for hybridization with probe. 

 

2.15 Hybridization of Northern blot 

2.15.1 Reagents: Hybridization solution: 50% (v/v) formamide, 5 x SSC, 5 x Denhardt’s solution, 

1% (w/v) SDS, 100 μg/ml salmon sperm DNA (average size 2000 bp). [Recipe for 20 ml- In a 50 ml 

tube mix: Add 5 ml 20 x SSC, 2 ml 10% (w/v) SDS, and 1 ml 100 x Denhardt’s solution. This mix is 

prewarmed at 42°C. In a second 50 ml tube 10 ml formamide is prewarmed to 42°C.Immediately 

before use 2 ml 1 mg/ml salmon sperm DNA is boiled for 5 min, then placed for 30 s on an ice-H2O 

bath. Denatured salmon sperm DNA is added to the aqueous premix and mixed. The aqueous 

premix and formamide is mixed and immediately added to the hybridization bottle containing the 

crosslinked blot. The blot is incubated with this prehybridization mix before it is hybridized with 

the probe. An equivalent mix is made for total volume of 5ml for the hybridizing mix.], Northern 

blot, 6 x SSC, 2 x SSC, 2 x SSC + 0.1% (w/v) SDS, 0.2 x SSC + 0.1% (w/v) SDS prewarmed to 42°C, 20 

mM Tris·HCl (pH 8.0) prewarmed to 65°C 

2.15.2 Protocol: The membrane is transferred into a hybridization bottle. More than one membrane 

can be added to the hybridization bottle but they must not overlap. The blot is then incubated for 15 min at 

65°C in 20 mM Tris·HCl (pH 8.0). The membrane in wet in 6 x SSC and then prehybridized at 42°C with 

20 ml hybridization solution/bottle for ≥ 3 h. The blot is then hybridized with 2 ng/ml 32P-labeled 

DNA probe overnight at 42°C in a final volume of 5 ml/hybridization bottle [protocol for labelling  

file:///C:/Users/Siddharth/Desktop/Regulatory%20Documents/COSHH%20Assessments/D-001%20(Salmon%20Sperm%20DNA).doc
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the probe is described below]. Denatured 32P-labeled DNA probe is added to the hybridization 

solution at the same step as the denatured salmon sperm DNA solution. The blot is then washed 3 

times for 5 minutes at room temperature with 200 ml 2 x SSC + 0.1% (w/v) SDS and then once for 

5 min at RT with 200 ml 0.2 x SSC + 0.1% (w/v) SDS. The membrane is then transferred into a clean 

hybridization bottle and washed once for 15 min at 42°C with 50 ml 0.2 x SSC + 0.1% (w/v) SDS. 

The membrane is rinsed in 2 x SSC and excess liquid blotted off. The washed membrane is 

wrapped in cling film and expose to Kodak BioMax MS film at -80°C or room temperature in an 

exposure cassette fitted with intensifying screens for the desired time.  The films are developed in 

dark room. Once films are developed the membrane is stripped and used again for hybridizing 

more DNA probes. The probes for HAC1, KAR2, PDI1, and the loading control pC4/2 were 

described previously (Schröder et al., 2003). Templates for probe synthesis for HSP12, STL1, CTT1, 

and ALD3 were generated by PCR with the primer pairs shown in Table 2.6. All mRNAs were 

quantified by phosphorimaging on a Typhoon 9400 system (GE Healthcare). Measurements were 

normalized to the loading control and multiplied by 100 and are shown as ‘normalized signal’ 

below each band in figures. The percentage (%) cleavage of HAC1 mRNA was calculated by the 

formula: 

           
                                        

                                      
 

All Northern blotting experiments were repeated two or three times. 
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2.16 Random Primed 32P Labeling of DNA probes (RediprimeTMII GE Healthcare) 

 

2.16.1 Reagents: Hartmann Analytic or Perkin Elmer [α-32P]-dCTP, 3000 Ci/mmol, ~10 μCi/μl, DNA 

probe 10-25 ng (must be diluted with TE buffer), TE Buffer, 0.2 M EDTA, Random Primed 32P 

Labeling kit and microspinTM S-300 HR Column (GE Healthcare), Heat block at 100°C, Plexiglas box 

for 1.5 ml tubes, Waterbath at 37°C 

 

2.16.2 Protocol: The DNA probe is diluted to a concentration of 2.5-25 ng in 45 µl of 10 mM Tris 

HCl pH 8.0, 1 mM EDTA (TE buffer). The DNA probe is denatured by heating for 5 min at 95-100°C 

and placed on ice. The sample is then centrifuged to collect the whole content at the bottom of 

the tube. The DNA is then added to the reaction tube. The blue pellet is dissolved by repeatedly 

flipping the tube. The contents are centrifuged for 10 s at RT to collect the whole solution at the 

bottom of the tube. 5 µl [α-32P] dCTP is added and mixed by flipping the tube. The mix is then 

incubated at 37˚C for 10 minutes. The reaction is stopped by adding 5 µl of 0.2 M EDTA. During 

the incubation time, the column with resin is prepared. The resin is resuspended in a microspin 

S300 HR column by vortexing. The cap is loosened and the bottom closure is snapped off. The 

column is placed in a 1.5 ml screw-cap microcentrifuge tube for support. The column is pre-

spinned at 735 x g for 1 minute. The column is then placed into a new 1.5 ml tube and the 

incubated sample is slowly applied to the top-centre of the resin, and carefully so as to not disturb 

the bed. The tube is closed with the cap being not too tight and spun at 735 x g for 2 minutes. The 

purified sample is collected in the bottom of the support tube. For use in hybridization, the 

labelled DNA is denatured again by heating to 95-100˚C for 5 minutes and then placed on ice. The 

tube is centrifuged briefly and the contents of the tube are mixed well. The probe is added to blot. 

For 5 ml hybridization solution, 10 ng of labelled probe is used (based on the input amount of 

DNA). 
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2.17 Stripping of Northern blots 

2.17.1 Reagents: Stripping solution1-50% (v/v) formamide, 1% (w/v) SDS, 0.1 x SSC prewarmed to 

65°C, Stripping solution2- 1% (w/v) SDS, 0.1 x SSC prewarmed to 65°C, Northern blot, 2 x SSC 

2.17.2 Protocol: The membrane is transferred into a hybridization bottle. The membrane is then 

incubated with the stripping solution 1, twice for 30 min at 65°C and once in strip solution 2 for 10 

min at 65°C. The membrane is rinsed in 2x SSC, wrapped in clip fling film and stored indefinitively 

at -20°C or can be used gain for rehybridization. 
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CHAPTER 3 

UPR IS REQUIRED FOR SURVIVAL OF CELLS AGAINST HYPEROSMOTIC 

STRESS 

                       



School of Biological and Biomedical Sciences | PhD Thesis | Chapter 3 

Durham University | 96 

The Unfolded Protein Response (UPR) is a signal transduction pathway between the nucleus and 

the cytoplasm to alleviate protein load on the ER. Ire1p, an endoribonucleokinase, and Hac1p, a 

basic leucine zipper transcription factor are critical components of the UPR. Another UPR 

component, the RPD3 HDAC has been shown previously to interact with HAC1 under nutritional 

stress (Schröder et al., 2004). The mechanism of how and if at all the UPR integrates with other 

pathways like osmotic, heat or anaerobic stresses is largely unknown. To understand how critical 

components of the UPR like Ire1p, Hac1p and Rpd3p responded to in an environment of 

hyperosmotic stress, Chapter 3 addressed the following questions- 

1. Are UPR components like IRE1 and HAC1 required to protect cells against hyperosmotic 

stress? 

2. Do the RPD3 HDAC and HAC1 interact together to provide resistance under acute osmotic 

shock? 

3. Does hyperosmotic stress induce HAC1 splicing? 

 

3.1 IRE1 and HAC1 provide resistance against acute osmotic shock 

The UPR is a signalling pathway between the nucleus and ER to overcome protein folding defects 

within a cell. Key molecules which operate within the UPR protect cells from a protein overload 

on the ER and maintain protein homeostasis. One such key molecule is Ire1p, an 

endoribonucleokinase which splices the HAC1 mRNA. Hac1p is pivotal to the UPR. It is a basic 

leucine zipper transcription factor. The primary metabolites for protein synthesis are obtained 

from the basic carbon and nitrogen components provided as nutrients and hence the UPR is 

strongly linked to nutritional stress in yeast. In the absence of nutrients, diploid yeast cells 

sporulate, a process during which yeast cells remain dormant until the environment is rich again 

in nutrients. In the presence of nutrients, Hac1ip negatively regulates expression of EMGs 
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(Schröder et al., 2004). This repression of EMGs requires the Rpd3p-Sin3p HDAC. Hence Hac1ip is 

a Rpd3L-dependent negative regulator of EMGs (Schröder et al., 2004). Ire1p, Hac1p and Rpd3p 

have been extensively studied under the UPR and nutritional stress signalling pathway in yeast 

but known mechanisms of how and if at all these molecules integrate within other stress 

signalling pathways has not been investigated yet.  

The Rpd3p-Sin3p HDAC is known to repress genes but recent reports have suggested that it is 

involved in the transcriptional activation of certain sets of genes under a particular stress 

condition such as osmotic stress (de Nadal et al., 2004), heat stress (Mas et al., 2009; Ruiz-Roig et 

al., 2010) anaerobic stress (Sertil et al., 2007) and DNA damage (Sharma et al., 2007). These are 

genes for which Rpd3L is a direct, positive regulator and to which Rpd3L is recruited independent 

of Ume6, such as genes of the GSR (de Nadal et al., 2004; Ruiz-Roig et al., 2010). As it was 

previously shown that Hac1p interacted with the Rpd3p HDAC, this study hypothesized that Hac1i 

is a positive, Rpd3L-dependent regulator of GSR genes.  

In order to identify whether components of the ER signalling pathway contributed in protecting 

cells under severe osmotic stress, this thesis commenced with the investigation of knowing 

whether deletion strains of HAC1 or IRE1, components critical to the UPR pathway, sensitized 

yeast to hyperosmotic stress through growth assays (spotting assays). Using lower concentrations 

of osmolytes in previous studies demonstrated no changes in the growth phenotypes when 

compared to the corresponding WT strains. For example, it was previously reported 

that ire1∆ cells were not sensitive to 0.2 M NaCl (Torres-Quiroz et al., 2010). Hence the WT and 

UPR specific deletion strains used in Figure 3.1 for a spotting assay were first tested for sensitivity 

using higher concentrations of sorbitol as an osmotic agent.  
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Under normal growth conditions scored after two days, the WT, ire1∆ and hac1∆ strains had 

similar growth phenotypes. The ire1∆ and hac1∆ cells were sensitive to high concentrations of 

sorbitol when compared to the WT strain. For 1.2 M sorbitol treatment, the phenotypes of both 

the deletion strains were comparable to each other whereas the ire1∆ strain was more sensitive 

to 2.4 M sorbitol treatment than the hac1∆ strain. Data from Figure 3.1 suggested that 

components of the ER pathway had a protective role under hyperosmotic stress when subjected 

to high molar concentrations of osmotic agents like sorbitol. As it was observed that the hac1∆ 

strain was sensitive to hyperosmotic stress, a hypothesis was drawn stating that an 

overexpressing Hac1i strain would provide resistance against hyperosmotic stress. To test this 

hypothesis, a strain overexpressing Hac1ip, derived from its own promoter in a single copy 

centromeric plasmid was subjected to osmotic shock. In addition, to rule out the possibility that 

the growth phenotypes observed for the HAC1 deletion strain were specific to varying molar 

concentrations of sorbitol alone, NaCl with varying concentrations was used to test the WT and 

the Hac1i overexpressing strains for their growth phenotypes.  

 

Figure 3.1 The UPR is required for survival of hyperosmotic stress Strains with a defective UPR 

are sensitive to osmotic stress. WT (MSY 138-17) and the corresponding isogenic hac1Δ (MSY 296-01) 

and ire1Δ (MSY 525-07) strains were grown on YPD plates, and YPD plates with 1.2 M or 2.4 M sorbitol, 

respectively. The plates were kept at 30°C and growth was scored after 1-2 days. The assay was 

repeated three times and showed similar results. The figure is a representative of one of the results. 
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 In the control SD-Trp plate having no osmotic agent (Figure 3.2) the growth phenotypes of the 

WT and HAC1i overexpressing strains were identical after 3 days. On exposure to varying 

concentrations of NaCl, the HAC1i overexpressing strain provided better resistance when 

compared to the phenotypes of the same strain with varying concentrations of sorbitol. Overall, 

the strain overexpressing Hac1ip modestly improved growth under varying concentrations of NaCl 

and sorbitol when compared to the WT strain (Figure 3.2). Data from Figures 3.1 and 3.2 have 

shown that the UPR components IRE1 and HAC1 are linked to osmotic stress. Deletion of these 

two critical UPR components resulted in a growth sensitivity when exposed to high concentrations 

of sorbitol. Moreover a strain overexpressing HAC1i provided a sufficient level of resistance to 

cells under different concentrations of NaCl and sorbitol.  

 

 

 

 

Figure 3.2 Overexpression of Hac1i slightly enhances resistance to osmotic stress WT (MSY 

134-36) with an empty pRS314 vector and a strain having plasmid borne expression of HAC1
i
   were 

spotted on SD-Trp agar plates with or without osmotic agents under different molar concentrations. The 

growth was recorded after 2-3 days after incubating cells at 30°C. 
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3.2    HAC1 and RPD3 provide hyperosmotic shock resistance 

Another UPR component which in recent years has been well studied under osmotic stress is the 

Rpd3 HDAC. Hac1p has been previously shown to interact with the Rpd3p-Sin3p HDAC under 

nutritional stress (Schröder et al., 2004). To probe whether Hac1p acted through Rpd3p or 

independent of Rpd3p under hyperosmotic stress, spotting assays using a HAC1 deletion strain, a 

RPD3 deletion strain and a HAC1 and RPD3 double deletion strain was performed. Exposing HAC1 

or RPD3 single deletion mutant strains to hyperosmotic shock environments would reveal 

whether or not these two molecules would be involved in protecting cells against acute osmotic 

shock. The growth phenotype of a HAC1 and RPD3 double deletion mutant strain in comparison 

to the individual deletion mutant strain phenotypes would reveal whether the two molecules act 

independent of one another or have masking effects (epistasis) on each other. 

 

A 0.6 M sorbitol concentration did not seem to have marked phenotypic effects on a HAC1 over 

expressing strain (Figure 3.2). Therefore a more severe osmotic shock treatment of 0.6 M NaCl 

and 1.2 M sorbitol was tested to reveal growth defects of rpd3∆ and hac1∆ strains (Figure 

3.3). Both the HAC1 and RPD3 single deletion strains were sensitive to 0.6 M NaCl and 1.2 M 

sorbitol when compared to the WT strain. The hac1∆ cells were slightly more sensitive to osmotic 

stress than rpd3∆ cells but the overall phenotypic effects of the single deletion mutant strains 

 

Figure 3.3 HAC1 and RPD3 provide resistance against osmotic shock WT (MSY 134-36), hac1∆ 

(MSY 211-02), rpd3∆ (MSY 287-01), and hac1∆ rpd3∆ (MSY 307-03) strains were spotted on YPD plates 

with or without stress as indicated. The growth was recorded after 2-3 days of incubation at 30°C. 
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suggested that HAC1 and RPD3 were involved in protecting cells during hyperosmotic shock. 

Combination of both deletion mutant strains resulted in a more severe growth defect under NaCl 

or sorbitol stress when compared to the individual deletion mutant strains.  

The data in Figure 3.3 indicate that, while HAC1 and RPD3 individually provide protection to 

hyperosmotic shock they interacted independent of each other, as the additive effects of a HAC1 

and RPD3 double deletion strain of both of these essential UPR components was more sensitive 

than the single deletion mutant stains.  

 

3.3     Hyperosmotic stress induces HAC1 splicing 

Hac1p is a bZIP transcription factor and its splicing is critical to alleviate protein folding defects 

within the UPR. The hac1∆ strain was sensitive to osmotic agents while a strain overexpressing 

Hac1ip confered resistance to hyperosmotic shock (Figures 3.1, 3.2 and 3.3). These data indicate 

that critical components of the UPR like IRE1, HAC1 and RPD3 were required to survive severe 

osmotic stress. Spliced HAC1 is an important feature of the UPR pathway because after splicing, 

the functional HAC1 mRNA is translated to generate the bZIP Hac1p. Moreover, a spliced HAC1 

mRNA is indicative of ER stress. The HAC1 and IRE1 requirement under osmotic stress suggested 

that HAC1 splicing occured when cells were under an osmotic shock. To investigate the hypothesis 

whether osmotic stress activated Ire1p and production of spliced Hac1ip, HAC1 splicing was 

characterized in osmotically-stressed cells by Northern blotting. Figure 3.4 shows the results from 

this experiment. A 3.9% splicing of induced HAC1 mRNA with 0.6 M NaCl and 7.3% splicing of 

induced HAC1 mRNA with 1.2 M sorbitol was observed in osmotically-stressed cells which are an 

increase to the basal level HAC1 splicing observed in unstressed cells (Figs. 3.4a and 3.4b). 

Osmotic stress also slightly but reproducibly induced expression of the ER chaperones KAR2 and 

PDI1, which is consistent with production of Hac1i in osmotically-stressed cells. As observed 

previously, osmotic shock also induced expression of several GSR genes like ALD3, HSP12 and 
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CTT1. Augmentation of HAC1 splicing by activation of Ire1p with tunicamycin, which induces ER 

stress (Back et al., 2005), potentiated expression of several GSR genes, such as ALD3 and HSP12. 

The data presented in Figure 3.4 suggest that osmotic stress activates Ire1p to splice HAC1.   

 

Data from figures in section 3.1 and 3.2 suggested that essential molecules associated with the 

UPR were also required to survive an osmotic shock. Hyperosmotic stress also induced HAC1 

splicing, as HAC1 splicing was observed at 0.6 M NaCl and 1.2 M sorbitol (Figure 3.4). It is also 

known that induction of many genes after hyperosmotic shock peaks even after 45 minutes (early 

phase) of treatment with an osmotic agent (Rep et al., 2000). To investigate whether UPR offered 

a protective role at higher concentrations of osmotic agents, a Northern analysis was performed 

 

Figure 3.4 Osmotic stress induces HAC1 splicing A WT (MSY 134-36) strain was grown in YPD 

medium until mid-log phase at 30°C. Total RNA was isolated from WT cells treated for 30 min with 0.6 M 

NaCl (a), 1.2 M sorbitol (b), or tunicamycin (Tm, with both NaCl and sorbitol) as indicated was analyzed 

by Northern blotting. The blots were probed for HAC1, classical UPR targets such as the chaperones 

KAR2 and PDI1, and three GSR genes CTT1, ALD3 and HSP12. pC4/2 was probed as a loading control. The 

formula to calculate the percentage cleavage for HAC1 signals is explained in Chapter 2. The method of 

generating numbers for quantitation of the gene induction levels is also explained in Chapter 2 and has 

been generated using the phosphoimaging screen images of the Northern blot. The Northern blotting 

experiment was repeated twice, giving identical results and the figure is a representative of one of the 

two biological independent experiments. 
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to probe whether HAC1 splicing occured at higher molar concentrations of NaCl and sorbitol 

during this early phase of osmotic shock (Figure 3.5). Other than tunicamycin, DTT was also used 

as an ER stressing agent (Figure 3.5). DTT was used in order to test whether further increase in 

levels of HAC1 splicing observed under osmotic stress and ER stress was not specific to 

tunicamycin treatment alone as observed in Figure 3.4. 1.2 M NaCl lowered HAC1 cleavage levels 

(Figure 3.5a and 3.5b) when compared to Figure 3.4a where the percentage of HAC1 cleavage was 

higher with 0.6 M NaCl treatment alone. In presence of 1.2 M NaCl and tunicamycin or 1.2 M NaCl 

and DTT (Figure 3.5a and Figure 3.5b) the HAC1 splicing was slightly more than with 1.2 M NaCl 

alone. This effect was still mild when compared to the augmentation of HAC1 splicing with 0.6 M 

NaCl and tunicamycin treatment (Figure 3.4a). Nearly similar HAC1 splicing effects were 

recapitulated on treatment with 2.4 M sorbitol as with 1.2 M NaCl and the effect of 1.2 M sorbitol 

with an ER stressor (Figures 3.5). The HAC1 induction levels intensified on treatment with 2.4 M 

sorbitol and DTT than with 2.4 M sorbitol alone (Figure 3.5b) while the level of HAC1 splicing with 

2.4 M sorbitol and tunicamycin was lowered when compared to the HAC1 splicing levels with 2.4 

M sorbitol treatment alone (Figure 3.5a). There was also a corresponding decrease in the 

induction levels of chaperones observed for the treatment with 2.4 M sorbitol and tunicamycin. A 

possible explanation for this diverging observation is discussed in the next section of this chapter. 

Moreover, the lower levels of HAC1 cleavage is more pronounced for treatments of osmotic stress 

agents with Tm than with DTT. Data from Figure 3.5 indicated that higher concentrations of 

osmotic agents alone attenuated HAC1 splicing and were also indicative of an illative translational 

arrest which is discussed in the next section.  



School of Biological and Biomedical Sciences | PhD Thesis | Chapter 3 

Durham University | 104 

 

3.4 Discussion 

3.4.1 The ER and osmotic stress are linked 

The first aim of this PhD work was to find whether there is a link between the UPR and osmotic 

stress. Data from chapter 3 suggested that there is indeed a link between the ER and osmotic 

stress. The UPR is a well-studied conserved nuclear-cytoplasmic signal transduction pathway. The 

Ire1p and bZIP transcription factor Hac1p are molecules which have been well studied within the 

UPR. There are many reports linking the UPR and osmotic stress (Babour et al., 2010; Bicknell et 

al., 2010; Bonilla and Cunningham, 2003; Chen et al., 2005; Lamitina et al., 2006; Liu et al., 2007; 

Pal et al., 2007; Scrimale et al., 2008; Torres-Quiroz et al., 2010).  Initial data from this study has 

shown that HAC1 and IRE1 are required for survival of severe osmotic stress (Figure 3.1 and 3.2). 

Many different yeast strain backgrounds have been tested for their growth sensitivities to osmotic 

shock (deNadal et al., 2004; Torres-Quiroz et al., 2010). The data from this thesis reported for the 

first time that SK-1 S.cerevisiae yeast background was sensitive to an osmotic agent like sorbitol. 

 

Figure 3.5 Higher concentrations of osmotic agents arrest HAC1 splicing (a) A WT (MSY 134-36) strain 

was grown in YPD medium until mid-log phase at 30°C. Total RNA was isolated from WT cells after 30 min 

treatment with 1.2 M NaCl, 2.4 M sorbitol, or Tm (with or without NaCl and sorbitol) as shown. 10 g of total 

RNA was analysed by Northern blotting. (b) Same treatment as in (a) but with 2 mM DTT. 10 g of total RNA 

were analyzed for Northern blotting. The blots were probed for HAC1, chaperones KAR2 and PDI1 and the 

loading control pC4/2. 
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This yeast strain background has previously been extensively studied under nutritional stress but 

not osmotic stress. The ire1∆ cells showed similar level of growth sensitivity to a hac1∆ at 1.2 M 

sorbitol but the IRE1 deletion strain was more sensitive than a HAC1 deletion strain at 2.4 M 

sorbitol (Figure 3.1). This suggested that IRE1 acts upstream and independent of HAC1 in 

providing resistance to osmotic stress. Conversely, an overexpressing HAC1i strain provided a 

moderate resistance to hyperosmotic shock (Figure 3.2). Lower concentrations of NaCl (0.3 M) 

and sorbitol (0.6 M) do not have a marked effect on the growth phenotype of a HAC1i 

overexpressing strain (Figure 3.2). This was in agreement with a previous published report where 

lower concentrations of osmotic agents like NaCl did not significantly affect the growth 

phenotypes of deletion strains of UPR components (Torres-Quiroz et al., 2010). Data in Figures 3.1 

and 3.2 demonstrated that deletion of UPR specific components, the IRE1 and HAC1 deletion 

strains were sensitive to hyperosmotic stress. Of other UPR components, RPD3 has been well 

studied under different stress responses including osmotic stress. IRE1 and HAC1 are intrinsically 

linked because the endoribonucleokinase Ire1p splices the HAC1 precursor mRNA which 

eventually results in a functional HAC1 mRNA, which is then translated into the Hac1p. HAC1 

interacts with RPD3 downstream of IRE1. There is evidence for interaction between Hac1p and 

Rpd3p under nutritional stress response (Schröder et al., 2004) but their interaction in other 

stress response pathways in largely unknown. Data from Chapter 3 again demonstrated that HAC1 

and RPD3 were both independently involved in conferring resistance to hyperosmotic stress 

(Figure 3.3). The growth defect observed in the HAC1 and RPD3 double deletion strain was an 

additive effect of the individual single deletion mutant strains (Figure3.3). HAC1 and RPD3 acted 

independent of each other in conferring resistance to hyperosmotic stress. A more sensitive 

growth phenotype of a HAC1 deletion strain when compared to the RPD3 deletion strain (Figure 

3.3) firstly suggested that HAC1 has a protective role against hyperosmotic shock. Secondly, the 

HAC1 deletion strain still might retain some partial Rpd3 activity. It has been shown earlier that 

deletion of HAC1 does not lead to complete loss of Rpd3 function (Schröder et al., 2004). Thus, 
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these data were consistent with Hac1ip acting upstream of Rpd3p and partially independent of 

Rpd3p to confer resistance to osmotic stress. 

 

3.4.2 Protective role of UPR in hyperosmotic stress 

Deletion strains of critical UPR components were sensitive to hyperosmotic stress (Figures 3.1, 3.2 

and 3.3). UPR is a pathway with a protective role to reduce protein folding defects within a cell. 

Biochemical knowledge and elegant genetic studies on the UPR in the past two decades have 

pinned down the splicing of HAC1 molecule as a trademark physical occurrence during ER stress 

within a cell. Hence, there was a strong possibility that if components of UPR played a role to 

protect yeast cells from osmotic stress then HAC1 splicing is critical in cells exposed to an osmotic 

shock environment. Data revealed that when cells were exposed to 0.6 M NaCl and 1.2 M sorbitol 

there is a moderate but reproducible level of HAC1 splicing (Figure 3.4). The activation of UPR 

under acute osmotic shock hence could directly or indirectly affect the ability of a cell to protect 

itself from an environment of acute osmolyte imbalance.  

Indirectly, the UPR might be activated because the ER is overloaded with a number of proteins, 

cytosolic or organelle specific which might be required to combat the severity of osmotic shock. 

For example, osmolytes require passage through the cell wall and the cell membrane. 

Hyperosmotic shock might result in weakening of the cell wall which then requires the cell to 

signal making proteins which strengthen the cell wall. Hyperosmotic stress induces expression of 

several genes encoding cell wall proteins (Rep et al., 2000). An increased osmotic shock is 

therefore correlative with increased cell wall damage and hence production of a large number of 

cell wall associated proteins. This increased protein load quite possibly result in an ER stress and 

hence the UPR activation. Thus in spite of how cells protects themselves by signalling the UPR 

under adverse osmotic shock environment, to attain cellular homeostasis the cell usually deploys 

to more than one route of saving itself. Thus cells with a defective UPR may perish due to additive 
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effects from more than one stress. Cells with a compromised UPR may be unable to effectively 

handle cell wall protein increase in secretory cargo, causing them to be sensitive to osmotic 

stress. In a more direct way to overcome hyperosmotic shock, the UPR activates the ER 

chaperones and the GSR genes.  

 

3.4.3 HAC1 induces ER chaperones during hyperosmotic stress 

HAC1 splicing is linked to nutrient starvation in yeast (Schroder et al., 2004) and during osmotic 

stress (Figure 3.4a and b) by inducing expression of chaperones to minimise the protein folding 

defects in the ER. During hyperosmotic stress, the production of Hac1ip is critical for increased 

transcription of genes coding ER chaperones, KAR2 and PDI1. Kar2p binds to secretory and 

transmembrane precursor proteins to prevent their misfolding (Normington et al., 1989; Rose et 

al., 1989). KAR2 has a high basal expression level and is further induced during the UPR activation 

(Normington et al., 1989; Rose et al., 1989). PDI1 encodes a protein disulfide isomerase, a 

multifunctional protein resident in the ER lumen which is essential for the formation of disulphide 

bonds in the secretory and cell surface proteins (Mizunaga et al., 1990; Farquhar et al., 1991; 

Noiva and Lennarz, 1992).  

 

3.4.4 HAC1 splicing attenuates at high osmolyte concentrations 

At 0.6 M NaCl and 1.2 M sorbitol treatments, these ER chaperones were induced to protect cells 

from hyperosmotic shock and their expression levels were potentiated in the presence of ER 

stressor and osmolytes (Figure 3.4). Surprisingly, the protective role of UPR was compromised 

under higher concentrations of hyperosmotic shock as 1.2 M NaCl and 2.4 M sorbitol treatments 

alone attenuated HAC1 transcription (Figure 3.5) during the early phase of osmotic shock 

treatment. This weakening of the HAC1 induction levels provided a corollary that higher 



School of Biological and Biomedical Sciences | PhD Thesis | Chapter 3 

Durham University | 108 

concentrations of osmotic agents affect Hac1p synthesis. There was a mild increase in HAC1 

splicing when the cells were exposed to 1.2 M NaCl or 2.4 M sorbitol with tunicamycin or DTT 

treatments. This mild increase of HAC1 splicing with both ER and osmotic stressors was more 

evident for treatment with DTT than tunicamycin. Tunicamycin and DTT have often been used as 

ER stressors (Back et al., 2005; Li et al., 2011).  Tunicamycin, a glucosamine containing antibiotic 

blocks the N-linked glycosylation of nascent proteins (Back et al., 2005). 1.2 M NaCl or 2.4 M 

sorbitol results in minimal level HAC1 splicing (Figure 3.5a). A minimal level of HAC1 splicing is 

indicative of the minimal level of functional HAC1 mRNA production and thereby an arrest of 

Hac1p synthesis. A protein synthesis arrest results in an arrest of N-linked glycosylation of newly 

synthesised proteins and hence no UPR was induced with tunicamycin (Figure 3.5a). DTT, while 

being a strong reducing agent affecting disulfide bond formation during protein synthesis, also 

affects newly synthesised proteins (Jamsa et al., 1994; Kuo and Lampen, 1974) thereby acting 

partially independent of protein synthesis and induced the UPR. The 2.4 M sorbitol treatment 

resulted in a basal level of HAC1 splicing (Figure 3.5a) but additive effects of two potent ER and 

osmotic stressors resulted in the inability of a cell to protect itself.  

In this view, the Hac1i signal produced by the UPR carried value specific information, that is, 

information on the presence of cell wall damage or an osmotic imbalance. While increased 

secretory cargo load or high osmolyte concentrations were direct plausible candidates for 

activation of HAC1 splicing in osmotically-stressed cells (Figure 3.5 a and b), osmotic stress may 

damage the ER by other mechanisms. Water loss in cells exposed to an osmotic shock leads to 

increased cytoplasmic ionic strength (Gaxiola et al., 1992), cell shrinkage, and invaginations of the 

plasma membrane (Morris et al., 1986). These changes may affect the ER or, more specifically, the 

cortical ER. Upregulation of GSR genes under hyperosmotic shock is another direct way through 

which cells cope with hyperosmotic shock. 
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3.4.5 Hac1p as a potential GSR gene activating transcription factor 

Hyperosmotic stress induced HAC1 splicing (Figure 3.4). Hyperosmotic stress also induced GSR 

gene expression as observed previously to minimise damage to cells in response to a 

hyperosmotic shock (Figure 3.4). If it is the same WT strain under hyperosmotic shock that 

induced GSR gene expression and HAC1 splicing, the data in Figure 3.4 quite emphatically 

suggested that the Hac1 bZIP transcription factor could potentially be involved in activation of a 

subset of GSR genes to provide osmotic shock resistance.  

Moreover, the GSR gene induction levels were enhanced in the presence of tunicamycin (Figure 

3.4). Bicknell et al. (Bicknell et al., 2010) have reported that ER stress activates Hog1. To address 

the possibility that elevated GSR gene expression in cells exposed simultaneously to osmotic and 

ER stress (Figure 3.4a and b) was due to hyper-activation of Hog1, the activation of Hog1p was 

characterized by Western blotting (Figure 3.6- unpublished data, Dr Samantha Dainty). Like other 

known MAP kinases, Hog1 activation is mediated by dual phosphorylation of its T174-X-Y176 

motif in its T-loop. The data in Figure 3.6 showed that on exposure to tunicamycin for 30 min or 3 

hours the phosphorylation of the Hog1 was similar to unstressed cells. Moreover, the 

phosphorylation of the Hog1 T-loop was not increased in cells simultaneously exposed to osmotic 

stress and tunicamycin when compared to NaCl or sorbitol treatments alone.  
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During ER stress, a conserved pathway resulting in spliced HAC1i mRNA and activation of 

chaperone genes is a classic hallmark of the UPR pathway. The role of Hac1p in oxidative, heat 

and other stresses is yet unknown but evidence has been accumulating for its interacting HDAC 

partner, the Rpd3p HDAC as a key modulator of activating the GSR genes in response to various 

stresses. To investigate the role of Hac1p and Rpd3p, important interacting UPR components in 

hyperosmotic shock, chapter 4 indicates that these two key molecules interacted together to 

transcriptionally activate a subset of GSR genes. 

 

 

Figure 3.6 ER stress does not augment Hog1p activation in osmotically-stressed cells (a) Using 

a WT strain 9MSY 134-36), a representative Western blot for phosphorylation of the Hog1 T-loop is 

shown with or without NaCl and sorbitol treatments, in presence of absence of tunicamycin. In addition, 

tunicamycin treatment alone for 30 min and 3 hours is also shown. (b) Quantitation of the Western blot 

shown in panel (a). The signal for Hog1 T-loop phosphorylation was normalized to the signal for total 

Hog1. The average and standard error from three independent biological repeats are shown. Figure 3.6 

is unpublished data from Dr Samantha Dainty. 



 

 

CHAPTER 4 

HAC1 AND RPD3 TOGETHER ACTIVATE GSR GENES UNDER HYPEROSMOTIC 

STRESS 
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Data from chapter 3 showed that UPR components provided protection against osmotic stress. 

Growth assays (Figure 3.3) showed that HAC1 and RPD3 were required during hyperosmotic 

stress. Moreover, a WT strain under hyperosmotic stress promoted HAC1 splicing and also 

induced GSR genes (Figure 3.4) suggesting that UPR might be linked to GSR gene activation. In 

order to investigate if the UPR was involved in regulation of GSR gene expression, Chapter 4 

provided answers to the following questions: 

1. Is HAC1 a positive regulator of GSR genes and if so is this effect of HAC1 direct or indirect 

in regulating GSR genes? 

2. Does HAC1 require RPD3 to activate GSR genes and if so through which Rpd3 complex, 

the small or the large complex, does HAC1 act through, to promote GSR gene activation? 

3. Does Hac1p epigenetically regulate GSR gene expression by affecting nucleosomal histone 

acetylation levels? 

 

4.1 Hac1ip is a positive regulator of GSR genes 

HAC1 requires RPD3 to repress EMGs in S. cerevisiae (Schröder et al., 2004). Rpd3p is known to 

repress genes but recent reports suggest that this molecule is a transcriptional activator of the 

GSR genes in response to various environmental stresses (deNadal et al., 2004; Sertil et al., 2007; 

Mas et al., 2009; Ruiz-Roig et al., 2010). Rpd3p acts as a positive regulator of GSR gene activation 

and as data from Chapter 3 indicated that HAC1 and the RPD3 HDAC were required during 

hyperosmotic stress, thus a hypothesis was made that Hac1p with Rpd3p was also a positive 

regulator of GSR gene expression. For characterizing the role of Hac1i in transcriptional regulation 

of other Rpd3L-dependent genes, a pilot Northern blotting experiment using a WT SK-1 

background yeast strain was performed first to optimise the duration of treatment and 

concentration of osmotic agents. The blot was then probed for a representative GSR gene, HSP12 

(Figure 4.1). Data from Figure 4.1 suggested that the optimum concentration of osmotic agents 

and optimum time for transcriptional activation for HSP12 for Northern blotting is 0.6M NaCl and 
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1.2M sorbitol treatments for 20 min (Figure 4.1). The concentration used for NaCl and sorbitol 

treatments and the time for osmotic shock for all further experiments was kept the same 

throughout the experimental work unless stated otherwise. 

 

 

 

Using optimum conditions this study elucidated the role of Hac1p in the transcriptional activation 

of the GSR genes under hyperosmotic stress. The osmotic stress transcriptional response was 

further characterised in WT, hac1∆ cells, Hac1i over-expressing cells and rpd3∆ cells (Figure 4.2).  

When compared to the WT strain, the Hac1ip over-expression potentiated induction levels of 

three GSR genes STL1, ALD3 and HSP12 while deletion of HAC1 interfered with the activation of 

these three genes (Figure 4.2). As observed in previous reports, deletion of RPD3 markedly 

interfered with the expression levels of GSR genes under osmotic stress. Data from Figure 4.2 

showed that HAC1 was a positive regulator of GSR gene activation as the GSR gene induction 

levels were proportional to the HAC1 overexpressing or HAC1 deletion strains. Hence there was 

an increase in the induction levels of GSR genes in a HAC1 overexpressing strain while the HAC1 

 

Figure 4.1 Optimizing conditions for inducing GSR genes under osmotic stress A pilot Northern 

blotting experiment was performed using a WT strain, where osmotic stress was induced for 5 or 20 min 

in a WT strain (MSY 134-36 + pRS314) with the indicated final concentrations of NaCl and sorbitol. 10 g 

total RNA was analyzed for expression of HSP12 by Northern blotting. The numbers below the HSP12 

panel were values obtained after quantitation for the induction levels. Chapter 2 describes how these 

values have been generated. pC4/2 was probed as the loading control. 
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deletion strain resulted in lower expression levels of GSR genes. The evidence presented in Figure 

4.2 correlated with the growth phenotypes observed for the same strains in Chapter 3 (Figures 3.1 

and Figure 3.2). In summary, these data suggested that Hac1p has a positive role in transcriptional 

regulation of GSR genes. 

 

 

 

 

 

 

Figure 4.2 Hac1i potentiates transcription of GSR genes during osmotic stress Northern analysis 

of expression of STL1, ALD3, and HSP12 in a WT (MSY 134-36) strain transformed with pRS314 or 

pRS314-HAC1
i
, a hac1Δ (MSY 211-02), and rpd3Δ (MSY 291-01) strain transformed with pRS314. The 

cells were grown in SD-Trp media until the mid-log phase at 30°C. The cells were then treated with or 

without 0.6 M NaCl or 1.2 M sorbitol for 20 min. The RNA was isolated and 10 μg was loaded on the gel 

for each sample. The blot was then probed for the three GSR genes mentioned above. The quantitation 

is shown below each panel of induction level of GSR genes. pC4/2 was probed as the loading control. 

The figure is representative of two independent biological repeats of the experiment with similar 

outcomes. All the lanes in Figure 4.2 were taken from the same blot and were hybridized to the same 

probes. 



School of Biological and Biomedical Sciences | PhD Thesis | Chapter 4 

Durham University | 115 

 

4.2 Hac1i acts through Rpd3L to potentiate transcription of GSR genes. 

It is known that Hac1p interacts with the Rpd3L HDAC and requires the Rpd3p enzyme complex to 

repress EMGs (Schröder et al., 2004). Epistatic analysis of HAC1 and RPD3 in Chapter 3 (Figure 3.3) 

showed that these two molecules acted independent of each other to confer resistance to 

hyperosmotic shock. The growth assay in Figure 3.3 revealed phenotypic outcomes of HAC1 and 

RPD3 during hyperosmotic stress but the results do not indicate how these two molecules 

together regulated gene expression levels, like those of a subset of genes under GSR regulation. 

Figure 4.2 provided evidence that Hac1p was a positive regulator of GSR genes during 

hyperosmotic stress. Recent reports have also shown that Rpd3L is a positive regulator of GSR 

gene expression (de Nadal et al., 2004; Ruiz-Roig et al., 2010). Hence a hypothesis was laid that 

HAC1 and RPD3 interacted epistatically to regulate GSR gene expression under hyperosmotic 

stress. A Northern blotting experiment shown in Figure 4.3 was used to address this hypothesis. 

The WT strain, overexpressing HAC1i strain and the HAC1 deletion strain recapitulated the same 

effects as observed in Figure 4.2. The strain overexpressing HAC1i on exposure to 0.6 M NaCl and 

1.2 M sorbitol for 20 min had enhanced expression levels of the GSR genes while the HAC1 

deletion strain had lower induction levels when compared to the WT strain (Figure 4.3a). 

Quantitation of induction levels on the Northern blot (Figure 4.3a) confirmed the increase or 

decrease in induction levels in cells overexpressing Hac1ip or deleted for HAC1, respectively. In 

addition, the sorbitol and NaCl treatments in Figure 4.3a more clearly detailed the GSR gene 

expression effects than the gene expression effects observed in Figure 4.2. Deletion of RPD3 

markedly interfered with activation of several GSR genes by osmotic stress, as reported previously 

(de Nadal et al., 2004). The transcriptional effects of HAC1i manipulations for STL1, CTT1, ALD3 

and HSP12 in an otherwise WT strain were stronger than in the corresponding RPD3 deletion 

strains. The deletion of RPD3 in a HAC1 overexpressing strain or a HAC1 deletion strain lowered 

the transcriptional signals in these double mutant strains when compared to the individual HAC1 
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mutant strains. This trend was observed for both, the 0.6 M NaCl and the 1.2 M sorbitol 

treatments though the induction levels in lanes 16-18 were weak in Figure 4.3a for the 1.2M 

sorbitol treatment. A longer exposure level revealed the signals in Figure 4.3b for lanes 16-18 

from Figure 4.3a. Moreover, Figure 4.3a showed that RPD3 interacted epistatically with HAC1 as 

loss of RPD3 masked the effects of over-expression of Hac1i or deletion of HAC1 on induction of 

several GSR genes under 0.6 M NaCl or 1.2 M sorbitol treatments for 20 min (Figure 4.3a, 

compare lanes 11 and 12 with lanes 8 and 9 for 0.6M NaCl treatment and likewise lanes 17 and 18 

with lanes 14 and 15 respectively for 1.2M sorbitol treatment). Overall, Figure 4.3a presented 

evidence that Hac1p acted as a positive regulator of GSR gene expression as also observed in 

Figure 4.2, and required the Rpd3 HDAC for GSR gene activation. 

 

 

 

Figure 4.3 Hac1i acts through Rpd3L to potentiate transcription of GSR genes (a) Cells were 

grown in SD-Trp media to mid-log phase at 30°C and osmotic stress was induced in WT cells transformed 

with empty vector (pRS314), a Hac1
i
 overexpressing plasmid (pRS314-HAC1

i
), hac1∆ cells, rpd3∆ cells 

transformed with pRS314 or pRS314-HAC1
i
 and rpd3∆ hac1∆ cells using 0.6 M NaCl or 1.2 M sorbitol for 

20 min. RNA was isolated and 10 μg RNA for each sample were loaded on the gel. The blot was probed 

for the four GSR genes STL1, CTT1, ALD3 and HSP12. pC4/2 was the loading control. Quantitation of 

induction levels is represented as numbers below each image panel. The experiment has been repeated 

twice with similar outcomes. (b) A longer exposure of lanes 16-18 of Figure 4.3a. 
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Data presented in Chapter 4 until Figure 4.3 elucidated how HAC1 and RPD3 together regulated 

the GSR gene activation under hyperosmotic shock. In Figures 4.2 and 4.3a, the effects of HAC1 

manipulations on GSR gene regulation suggested Hac1p has a positive role in activating GSR 

genes. To investigate whether the effect of Hac1ip on expression of GSR genes is direct under 

hyperosmotic stress, Hac1ip carrying an N-terminal HA-tag was ChIPed to the promoters of four 

GSR genes (Figure 4.4). The results for the HA-Hac1i enrichment shown in the ChIP experiment 

were relative to the untagged WT strain. As seen in Figure 4.4, Hac1ip occupied GSR gene 

promoters in osmotically-stressed, but not in unstressed cells. The data also suggested that HAC1 

does interact with RPD3 during hyperosmotic stress. Deletion of RPD3 markedly affected the HA-

Hac1i enrichment levels at the GSR gene promoter regions suggesting that presence of Hac1i on 

GSR promoters strictly required RPD3 (Figure 4.4). Data from Figure 4.4 corroborated with 

previous findings in Chapter 3 and Figure 4.3 that not only were RPD3 and HAC1 linked together 

under hyperosmotic stress but that the requirement of RPD3 was essential for HAC1 to have a 

positive role during osmosensitive gene regulation. 
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Hac1p and Rpd3p-Sin3p HDAC interacted together during hyperosmotic stress to regulate GSR 

gene expression (Figures 4.2 and 4.3). Figure 4.4 elucidated that Hac1p may have a direct effect 

on GSR gene activation. In addition, Hac1p recruitment to GSR gene promoters was Rpd3p 

dependent as deletion of RPD3 in a strain constitutively overexpressing Hac1i markedly affected 

HA-Hac1ip binding to GSR promoters (Figure 4.4).  

Rpd3p is a common subunit for two Rpd3 HDAC complexes known in yeast, the Rpd3 large (L) 

complex and the Rpd3 small (S) complex. Both complexes have Rpd3p, Sin3p, and Ume1p 

common to them and several complex-specific subunits. Of these, Rco1p and Eaf3p are specific to 

Rpd3S, whereas Sds3p and Sap30p are examples for Rpd3L specific subunits. The Rpd3L promoter 

bound complex is known to activate or repress genes while the Rpd3S is known to suppress 

 

 

Figure 4.4 Hac1p binds to GSR gene promoters Cells were grown to mid-log phase in SD-Trp media 

at 30°C. For ChIP of HA-Hac1
i
 to GSR promoters in a WT strain transformed with pRS314 or pRS314-

HAC1
i
, and a rpd3 strain transformed with pRS314-HAC1

i
, the cells were then treated with or without 

0.6 M NaCl and 1.2 M sorbitol for 20 min and crosslinked with 1% (w/v) formaldehyde. The ChIP 

protocol was performed as described in Chapter 2. The immunoprecipitated DNA was analysed using 

real time PCR. The RotorGene 3000 software was used to quantify the results and further analysis was 

calculated using Microsoft Excel. The average of three independent experimental values with error bars 

is represented in the figure. 
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cryptic transcription initiation (Carrozza et al., 2005; Keogh et al., 2005). The interaction of Hac1p 

with Rpd3L was shown earlier under nutritional stress (Schröder et al., 2004). To investigate 

whether it was the Rpd3L complex and not the Rpd3S complex that interacted with Hac1p on the 

GSR promoters, a similar ChIP experiment was performed as in Figure 4.4 using a SDS3 deletion 

mutant instead of a RPD3 deletion strain. Sds3p is a subunit specific to the large complex and also 

critical in keeping the Rpd3L complex intact. Again, the enrichment levels for the ChIP experiment 

was expressed as ratio of the tagged to the untagged WT strain. As observed in Figure 4.5, Hac1p 

was recruited to the promoters of GSR genes after osmotic shock with 0.6 M NaCl and 1.2 M 

sorbitol, as also observed in Figure 4.4. In addition, Hac1p does not show an increase in 

enrichment levels in the SDS3 deletion strain (Figure 4.5). Data from the ChIP experiment in Figure 

4.5 showed that it was the Rpd3L complex that interacted with Hac1p.  

 

 

 

 

Figure 4.5 Hac1p interacts with Rpd3pL complex to regulate GSR genes A similar ChIP 

experiment as in Figure 4.4, where HA-Hac1
i
 is ChIPed to GSR promoters in a WT strain transformed 

with pRS314 or pRS314-HAC1
i
, and a sds3 strain transformed with pRS314-HAC1

i
. The average of two 

independent experiments with standard errors is shown in the figure.  
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4.3 Hac1p does not affect nucleosomal histone acetylation pattern for GSR gene 

activation 

RPD3 was shown earlier to be a positive transcriptional regulator of GSR genes (de Nadal et al., 

2004; Ruiz-Roig et al., 2010). Histone deacetylation in GSR promoters by the Rpd3p-Sin3p HDAC 

has been reported to mediate the GSR gene activation (de Nadal et al., 2004). One of the known 

substrates for the Rpd3 HDAC enzyme is the lysine residues on the N-terminal tails of the core 

histone proteins (Roth et al., 2001; Kuo and Allis, 1998).  This study has shown that Hac1i p  was 

also a positive regulator of GSR gene expression (Figure 4.2). The deacetylation of promoter 

nucleosomes by Rpd3p was earlier shown to activate GSR genes (de Nadal et al., 2004). Hac1p 

acted through Rpd3p (Figure 4.3a) and was a Rpd3p-dependent activator of GSR genes (Figure 

4.2), and hence it was hypothesised that Hac1i potentiated deacetylation of GSR promoter 

nucleosomes. The hypothesis was tested using ChIP, where the effects of over-expression of 

Hac1ip and deletion of HAC1 on acetylation of histone H3 lysine 9 (K9), H3 K18 and histone H4 K8 

in the promoters of ALD3, CTT1, HSP12, and STL1 were characterized (Fig. 4.6). These three lysine 

residues were chosen for the study because they exhibited the most favourable acetylation 

patterns for Hac1p among all the residues studied under nutritional stress (Dr Claire Bertrand, 

unpublished data). The acetylation signals were standardized to total histone H3 promoter 

occupancy. The WT strain exhibited an increase in acetylation after osmotic stress at the four 

gene promoter regions for the three residues. This increase of acetylation level for the WT strain 

correlated with the gene expression data in Figure 4.3a, where the WT strain showed elevated 

induction levels after treatment with 0.6 M NaCl or 1.2 M sorbitol. The manipulation of Hac1i 

levels, on the contrary, had no effect on the three acetylation sites (Fig 4.6a-c) as the acetylation 

levels for the HAC1 overexpressing strain and the HAC1 deletion strain were comparable to the 

acetylation levels in the WT strain. 
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Hyperosmotic stress, increased acetylation of H3 K9, H3 K18 and H4 K8 and, consistent with an 

earlier report (Mas et al., 2009), decreased H3 promoter occupancy (Fig. 4.6d). The decrease in 

nucleosomal histone density at the GSR promoters in Figure 4.6d was correlative with the 

increase in histone acetylation as observed for the three acetylation sites.  
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Figure 4.6 Osmotic stress induces promoter nucleosome acetylation and nucleosome loss in 

GSR promoters (a-c) Nucleosome acetylation in the promoters of ALD3, CTT1, HSP12, and STL1 for the 

indicated acetylation sites before and after 0.6 M NaCl or 1.2 M sorbitol treatment in WT cells 

transformed with pRS314 or pRS314-HAC1
i
 and hac1 cells. (d) Total histone H3 density measured by 

ChIP in the promoters of the genes and strains in panels (a-c). The cells were grown in SD- Trp medium 

until mid-log phase at 30°C. The cells were treated with 0.6 M NaCl or 1.2 M sorbitol for 20 min and 

crosslinked with 1% (w/v) formaldehyde. The ChIP protocol described in Chapter 2 was followed and the 

analysis was done using the RotorGene 3000 software and Microsoft Excel. The average of two 

independent biological repeats with standard errors is represented in the figure. 
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4.4 Discussion 

4.4.1 The UPR and GSR gene regulation are connected 

Chapter 4 demonstrated how the UPR components extend their role beyond the ER stress 

response realm to activate GSR genes under hyperosmotic shock.  The role of HAC1 in other stress 

responses has not been studied before. This study, for the first time showed that HAC1, an 

important component of the UPR pathway protected cells from hyperosmotic shock though 

growth assays in Chapter 3 (Figure 3.1 and Figure 3.2). The growth phenotypes for HAC1 mutant 

strains indeed suggested that the molecule was a candidate factor involved in activation of genes 

which protected cells from hyperosmotic shock, like the GSR genes. Data in chapter 4 have 

demonstrated that the bZIP transcription factor Hac1, is involved in the transcriptional regulation 

of GSR genes. Activation of the GSR genes by Hac1p required the Rpd3L HDAC.  

 

4.4.2 0.6 M NaCl and 1.2 M sorbitol for 20 min is optimal for inducing GSR genes 

Previous reports have shown in various yeast strain backgrounds that time for induction of the 

GSR genes varies between 5-20 minutes (Alepuz et al., 2003; deNadal et al., 2004). The results 

observed in Figure 4.1 were in agreement with previous published reports. For inducing GSR 

genes, in the SK-1 genetic background of S. cerevisiae, the optimum concentrations of NaCl and 

sorbitol were 0.6 M and 1.2 M respectively, (Figure 4.1). GSR genes were also induced in a WT 

strain after five minute treatment of 0.6 M NaCl and 1.2 M sorbitol (Figure 4.1). The 20 minute 

time point provided a better intensity of induction level at the same concentrations of osmotic 

agents and hence was used as the optimal condition of treatment for all further experiments. 
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4.4.3 HAC1 regulates a subset of GSR genes under hyperosmotic shock 

Evidence generated in Chapter 4 indicated that central molecules of the ER stress pathway were 

interlinked to hyperosmotic stress at the molecular level. In the hierarchy of molecular steps 

which free DNA from its condensed chromatin state, transcription is a lot downstream. At the 

transcription level, Hac1p acted as a positive regulator to enhance expression of the GSR genes 

(Figure 4.2).  

 

During hyperosmotic stress Hac1i, a sequence-specific bZIP transcription factor, whose synthesis is 

controlled by the UPR (Cox and Walter, 1996; Kawahara et al., 1997), was directed to GSR gene 

promoters to potentiate their expression (Fig. 4.2). The role of HAC1 in hyperosmotic stress was 

determined in Figure 4.2 using the aforementioned treatment conditions. An over-expressing 

Hac1i strain facilitated the expression of GSR genes while cells having a HAC1 deletion showed 

lower induction levels of GSR genes when compared to the WT strain (Figure 4.2). The Northern 

blotting data in Figure 4.2, indicated that a transcription factor specific to the UPR behaved as a 

positive regulator during transcription of GSR genes. There are several other transcription factors 

which operate on a subset of genes under hyperosmotic stress. Deletion of a specific transcription 

factor has a very limited effect on osmosensitive gene regulation as each transcription factor 

controls a small subset of osmoresponsive genes. For example, Hot1 is a transcription factor 

known to regulate a small set of osmoresponsive genes (Alepuz et al., 2003). Hot1, a 

transcriptional activator is specific in its binding to STL1 whereas Msn2/Msn4 is specific to ALD3 

(Alepuz et al., 2001). Data showed that HAC1 not only positively regulated expression of ALD3 and 

STL1 but also HSP12 and CTT1 (Figure 4.2). Under acute osmotic shock, the transcriptional defect 

of HAC1 manipulations was not as strong as the effect of an RPD3 deletion strain but the HAC1 

effects were reproducible. Data suggested that the UPR specific transcription factor Hac1p 

behaved as a positive regulator to activate a subset of osmoresponsive genes under hyperosmotic 

shock. The full extent of how Hac1p influences different gene sets under various stress responses 
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will have to be further undertaken through studies involving a genome wide analysis or ChIP 

sequencing experiments.  

 

4.4.4 Does MAP kinase Hog1 affect the positive role of HAC1 in GSR gene regulation? 

In yeast, several transcription factors (Msn1, Msn2, Msn4, Hot1, Sko1 and Smp1) under 

hyperosmotic stress have been suggested to act downstream of the MAP kinase Hog1 (Alepuz et 

al., 2003). Two different mechanisms of how Hog1 can regulate activity of a transcription factor 

have been proposed. One mechanism involves the MEF2-like transcription factor Smp1 (de Nadal 

et al., 2003) and the other involving the Sko1 transcription factor (Proft et al., 2001). It is likely 

that the positive role of Hac1p in activating GSR genes might be linked to Hog1p via a similar 

mechanism. Data from Figure 4.4 showed that the levels of HA-Hac1ip increased after 

hyperosmotic shock whereas the levels of HA-Hac1ip remained unaltered in unstressed cells. This 

observation might be attributed to an effect of the bZIP transcription factor acting downstream 

and being phosphorylated by Hog1 MAPK. This notion is supported by a possible link between the 

mammalian UPR and PMK-1 p38 MAPK pathway in mediating resistance to microbial pathogens 

(Richardson et al., 2010).  

 

Bicknell and colleagues (Bicknell et al., 2010) recently suggested that that Hog1p is required 

during the late phase of ER stress response. However, Dr Dainty’s unpublished data in Chapter 3 

(Figure 3.6) demonstrated that the Hog1p activity increased on exposure to 0.6 M NaCl or 1.2 M 

sorbitol, which was as expected. The Hog1p activity remained largely unaltered and comparable 

to acute osmotic shock levels, in presence of both ER stress and osmotic stress (Figure 3.6). 

Moreover, in presence of tunicamycin alone for 30 min and 3 hours, the level of Hog1p 

phosphorylation was comparable to untreated cells. Data in Figure 3.6 suggested that while 

Hog1p activity was required when cells were under hyperosmotic shock alone, in presence of an 

ER stressor and osmotic shock the Hog1p activity does not increase. Another recent report also 
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suggested that the HOG1 deletion strain, in spite of having sensitivity to ER stressing agents might 

not be involved in the regulation of the UPR (Torrez-Quiroz et al., 2010) as HAC1 splicing was 

observed in a HOG1 deletion strain (Torrez-Quiroz et al., 2010). Whether Hog1 affects the UPR 

components and whether it contributes to the positive role of HAC1 in activating GSR genes is 

subject to further experimental investigation.  

 

4.4.5 Hac1p acts through Rpd3L to regulate GSR gene expression 

Rpd3p has also been extensively studied under various stress pathways. Recent reports have 

provided evidence that Rpd3p plays a critical role in activating genes, like the GSR genes to 

protect cells from an environment of acute osmotic stress. Data in Chapter 4 provided evidence 

that HAC1 and RPD3 epistatically interacted during hyperosmotic stress (Figure 4.3a). The additive 

growth defect of hac1Δ rpd3Δ double mutants (Figure 3.3) and the Northern data (Figure 4.3a) 

may reflect that hac1Δ cells retained partial Rpd3L function. The severity of transcriptional 

defects was more pronounced in a RPD3 deletion strain than a HAC1 deletion strain and this 

effect was observed for genes regulated by Hac1i in an Rpd3L-dependent manner [Figs. 4.3a, and 

(Schröder et al., 2004)].  

 

The activation of GSR genes required Hac1p (Figure 4.3a). The presence of Rpd3 complex was 

essential for Hac1p to regulate GSR gene expression (Figure 4.4). It has been previously shown 

that Hac1i physically interacts with Rpd3 complexes (Schröder et al., 2004), suggesting that Rpd3 

complexes may provide a docking platform for Hac1i on GSR promoters after acute osmotic shock. 

Tethering of Hac1i to GSR promoters after hyperosmotic shock to regulate GSR gene expression 

required Rpd3p-Sin3p HDAC and results from Chpter 4 revealed that Hac1p essentially required 

the Rpd3L complex to activate osmoresponsive genes during hyperosmotic shock (Figure 4.5). 

Using a deletion mutant strain specific to the large complex, the SDS3 deletion, ChIP experiments 

revealed that the Rpd3L complex was required for anchoring Hac1p to the GSR gene promoters 
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(Fig. 4.5). Data from Figure 4.5 also indicated that Rpd3S complex does not contribute to GSR 

gene activation because there was no Hac1i enrichment observed in the SDS3 deletion strain 

expressing HA-Hac1i. The role of Rpd3L in securing Hac1p to GSR gene promoters does not rule 

out the possibility that the Rpd3S complex might have a role is GSR gene regulation which is 

subject to further investigation. Moreover the interaction between the Rpd3L complex and Hac1 

also raised the possibility of the UPR being responsible for epigenetically regulating GSR genes. 

 

4.4.6 HAC1 does not contribute to nucleosome histone acetylation of GSR gene 

promoters 

 In S. cerevisiae, during hyperosmotic stress the Hac1p interacted with the Rpd3p HDAC (Figure 

4.3a). If Rpd3p HDAC is known to epigenetically regulate GSR genes, this study questioned 

whether the HAC1 contributed to the epigenetic regulation of GSR genes. If Rpd3 deacetylates 

nucleosomes and Hac1p interacts with Rpd3p in regulating osmoresponsive genes, then an 

overexpressing HAC1i strain is expected to have a decrease in acetylation levels when compared 

to the WT strain. A HAC1 deletion is expected to have an increase in acetylation at the GSR 

promoter nucleosomes. The increase of Hac1p using the HAC1i overexpressing strain or decrease 

in Hac1p level using the HAC1 deletion strain did not have any effect on the three acetylation sites 

H3 K9, K18 or H4 K8 (Figure 4.6a-c). The total histone H3 density on GSR promoters when 

compared to the WT strain (Figure 4.6d) remained unaltered for Hac1ip overexpressing cells or in 

HAC1 deletion cells. My data suggested that Hac1i does not influence promoter bound 

nucleosome histone deacetylation by Rpd3 bound to GSR promoters and contradicted data by de 

Nadal and colleagues, 2004. The data also showed that at least H3 K9, K18, and H4 K8 acetylation 

in GSR promoter nucleosomes increased in osmotically-stressed cells and was in agreement with 

previous published reports which states that gene activation corresponds with an increase in 

histone acetylation levels (Agricola et al., 2006; Deckert and Struhl, 2001; Johnsson et al, 2009; 
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Brownell et al., 1996; Howe et al., 2001; Lo et al., 2000; Syntichaki et al., 2000; Trievel et al., 

1999).   

 

The data from Figure 4.6 will be more elaborately discussed in Chapter 5 where the epigenetic 

effects of Rpd3 have also been analysed. Data suggested that an increase of promoter 

nucleosome acetylation for the three sites studied was correlative with a decrease in nucleosome 

occupancy (Figure 4.6). The evidence that GSR promoters displayed a significant decrease in 

nucleosome density upon activation (Figure 4.6d) has also been reported earlier by Mas et al., 

2009. All three acetylation sites studied were relative to the total histone H3. An increase in H3K9 

and H4K8 acetylation has been shown previously for recruitment of chromatin remodeling 

complexes and the general transcription initiation factors (Agalioti et al., 2002). An increase in 

acetylation for these sites observed in this study might suggest that chromatin modifying 

complexes like the SAGA and NuA4 HATs might be recruited to regulate GSR gene transcription. 

The activation of GSR genes could possibly be due to the recruitment of SAGA/Gcn5 HAT because 

the bromodomains of Gcn5 recognise acetylated lysine residues and is important for the 

expression of a number of inducible genes (Hassan et al., 2002; Zeng et al., 2008).  

 

4.4.7 Investigating the role of RPD3 in GSR gene activation 

Data from Chapter 4 showed that Hac1p is a positive regulator of GSR genes (Figures 4.2 and 

4.3a). It regulated the GSR gene expression by interacting with Rpd3L complex (Figure 4.5). Hac1p 

though involved in activating a subset of osmoresponsive genes, does not affect GSR nucleosomal 

histone acetylation levels (Figure 4.6a-c). In addition, a mechanism through which Hac1p 

regulated GSR for cellular protection against hyperosmotic stress still remains unanswered. The 

entry of Hac1i into GSR promoters does not epigenetically regulate GSR genes, because 

overexpression of Hac1i did not affect histone acetylation of promoter nucleosomes or 

nucleosome density in GSR promoters (Fig. 4.6).  
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Moreover, nucleosome loss, while being an essential requirement for GSR activation (Figure 4.6e 

and Mas et al., 2009), was not the only factor required for gene activation, because hac1Δ cells, 

which displayed similar levels of nucleosome loss as WT cells (Fig. 4.6e) were less transcriptionally 

active than WT cells (Fig. 4.2). Like the hac1Δ cells, the rpd3Δ cells also had low levels of GSR gene 

induction when compared to the WT cells (Fig. 4.2) as reported previously. Chapter 5 provides 

mechanistic insight into how RPD3 converges into the osmotic stress and ER stress signalling 

pathway. 

  



 

 

CHAPTER 5 

THE ROLE OF RPD3-SIN3 HDAC IN GSR GENE REGULATION 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Department of Biological and Biomedical Sciences | PhD Thesis | Chapter 5 

Durham University | 131 

The Rpd3 HDAC has been well characterised under different stress responses. Rpd3p is known to 

repress genes but recent reports (de Nadal et al., 2004; Sertil et al., 2007) suggest that it can 

activate various subsets of genes under different environmental stresses. Data from Chapter 4 

showed that Hac1p acted through Rpd3p to regulate GSR gene expression (Figure 4.3a). The 

positive role of Hac1p in activating GSR genes strictly required the Rpd3p large complex (Figures 

4.4 and 4.5). Moreover, the transcriptional read-out of a RPD3 deletion strain was weaker than a 

hac1Δ strain (Figures 4.2 and 4.3a) suggesting that the Rpd3p molecule played an important role 

during hyperosmotic shock. Moreover, these data suggested that the role of Rpd3 in regulating 

GSR gene expression was critical. To investigate the role of Rpd3p genetically and biochemically in 

GSR gene regulation the following questions in Chapter 5 were addressed: 

1. How does RPD3 regulate GSR gene expression? Is the acetylation levels affected by RPD3 

during GSR gene activation? 

2. Data from Chapter 4 suggested that it is the Rpd3L complex which tethers Hac1i to GSR gene 

promoters; can these results be genetically confirmed by showing causality that it is the 

Rpd3L complex and not the Rpd3S complex involved in GSR gene activation? 

3. Is the deacetylase activity of the Rpd3 HDAC essential for regulating GSR genes? 

 

5.1 Rpd3 complexes are associated with GSR promoters independent of osmotic 

stress. 

Hac1p acted through Rpd3p to activate GSR genes (Chapter 4). In addition, altering HAC1 

expression levels did not affect acetylation levels for GSR gene activation under hyperosmotic 

stress (Figure 4.6). Deacetylation of promoter bound nucleosomes by Rpd3 has been shown to be 

a cause for GSR gene activation (de Nadal et al., 2004). Data in Chapter 4 indicated that Hac1p 

acting via Rpd3L, does not affect nucleosomal histone acetylation levels. Consequently, the 
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histone acetylation data was in agreement with previous published reports demonstrating an 

increase in acetylation which correlated with an increased transcriptional output and vice versa 

(Rundlett et al., 1998; Deckert and Struhl, 2001; Braunstein et al., 1993; Agricola et al., 2006). To 

understand how the Rpd3 HDAC contributed towards effecting nucleosomal histone acetylation 

pattern and thereby epigenetically regulating GSR genes, a ChIP analysis was performed to assess 

the role of RPD3 before and after hyperosmotic stress.   

A RPD3 deletion strain was subjected to hyperosmotic shock and characterized for acetylation of 

H3 K9, H3 K18, and H4 K8 at the promoters of 4 GSR genes, CTT1, ALD3, STL1 and HSP12 (Figure 

5.1). As with previous histone acetylation ChIP experiments, the acetylation signals were 

normalized to the total H3 histone signal. As observed previously in Figure 4.6a-c, osmotically-

stressed WT cells showed increased acetylation of H3 K9, H3 K18, and H4 K8. Deletion of RPD3 

was expected to increase the overall histone acetylation levels. A RPD3 deletion strain indeed 

elevated nucleosomal histone acetylation at the GSR promoter regions to levels comparable to 

osmotically-stressed WT cells (Figure 5.1a-c). In addition, the acetylation levels were comparable 

before and after hyperosmotic stress for rpd3Δ cells, for the three acetylation sites. The rpd3Δ 

cells also displayed lower H3 histone promoter occupancy in unstressed condition though the 

nucleosome loss was not as drastic as observed in the WT strain after osmotic shock (Figure 5.1d). 

The nucleosome loss for the RPD3 deletion strain was comparable to the WT strain but the 

induction level GSR genes was not comparable between the two strains after osmotic shock 

(Figure 5.1d) (Figure 4.2). Data from Figure 5.1 and defective GSR mRNA production by 

osmotically-stressed rpd3Δ cells (Figure 4.2) suggested that Rpd3 promoted activation of these 

genes after nucleosome loss from GSR promoters had occurred. 
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In Figure 5.1, an increase in acetylation was observed for the three sites in the WT strain after 

osmotic shock. At least a two fold increase in acetylation for the H3 K9, H3 K18, and H4 K8 

acetylation was also observed in unstressed rpd3Δ cells when compared to the WT strain (Figure 

 

Figure 5.1 Deletion of RPD3 increases nucleosomal histone acetylation before and after 

hyperosmotic stress (a-c) Nucleosome acetylation in the promoters of ALD3, CTT1, HSP12, and STL1 

for the indicated acetylation sites in unstressed and stressed WT (MSY 134-36) and rpd3MSY287-01) 

cells transformed with pRS314 was assayed using ChIP. (d) Histone H3 density measured by ChIP in the 

promoters of the genes and strains in panels (a-c). The cells (a-d) were grown to mid-log phase in SD-Trp 

medium at 30°C. The cells were then treated with 0.6 M NaCl and 1.2 M sorbitol for 20 min and 

crosslinked with 1% (w/v) formaldehyde. The ChIP protocol and analysis were as done in previous 

chapters. The average values of two independent experiments with standard errors of the mean are 

shown in the figure. 
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5.1a-c). This indicated that the Rpd3p complex occupied GSR promoters in unstressed cells. 

Previous reports have indicated that it has been difficult to ChIP Rpd3p to gene promoter regions 

using standard ChIP experiment protocols (Kurdistani et al., 2002). Since Sin3p and Rpd3p are 

closely associated in the Rpd3 complex (Kadosh and Struhl, 1997), tagging Sin3 would provide an 

accurate estimate of Rpd3 binding. A MYC-tagged Sin3 was ChIPed as a surrogate for Rpd3 to GSR 

promoters to directly test this hypothesis. The Sin3-MYC enrichment for the tagged strain was 

normalized to the untagged WT strain (Figure 5.2). As seen in Figure 5.2, Sin3p occupied GSR 

promoters in unstressed cells. In addition, Sin3p enrichment levels do not alter much before and 

after osmotic shock. 

 

 

 

Figure 5.2 Rpd3 complexes at GSR promoters are present before and after osmotic stress 

Sin3-MYC occupancy of promoters of GSR genes in an untagged WT strain (MSY 134-36) and a strain 

expressing MYC-tagged Sin3 (TLY 446) is shown in the figure. The results are expressed as Sin3-MYC 

enrichment relative to the untagged WT strain. The cells were grown to mid-log phase in YPD media at 

30°C and then treated with 0.6 M NaCl and 1.2 M sorbitol for 20 min and crosslinked with 1% (w/v) 

formaldehyde. The ChIP protocol as described in Chapter 2 was followed and the immunoprecipitated 

(IP) DNA was analysed using real time PCR.  The average of two independent biological repeats with 

standard errors is shown in the figure.  
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Figure 5.1 showed that an increase in acetylation levels after osmotic stress was comparable in 

WT cells and rpd3Δ cells. Data in Figure 5.2 showed that Rpd3 complexes occupied GSR promoter 

regions before and after osmotic stress. Rpd3p was a contributing molecule for GSR gene 

induction after osmotic stress. ChIP data in Chapter 4 (Figure 4.5) showed that the Rpd3L complex 

interacted with Hac1p during GSR gene activation and served as a docking molecule for Hac1p. 

Again, data in Figure 5.2 lacked information on whether was the Rpd3 small or the large complex 

which positioned itself at the GSR gene promoters. Moreover, if it is the Rpd3L complex that 

interacted with Hac1p as observed before (Figure 4.5) then it is possible that deletion of HAC1 

would affect the presence of Rpd3L complex at the GSR promoters during hyperosmotic shock. A 

ChIP experiment in Figure 5.3 addressed the aforementioned posed hypotheses. A similar set up 

of ChIP experiment as in Figure 5.2 was performed but with three additional strains. As observed 

in Figure 5.3, using a MYC-tagged Sds3 strain, SDS3 being the Rpd3L complex specific subunit 

would show whether the Rpd3L complex occupies the GSR promoter regions. Using strains having 

a HAC1 deletion in a MYC-tagged Sin3 or MYC-tagged Sds3 would indicate whether HAC1 affects 

the association of Rpd3 complexes to GSR gene promoters. The ChIP experiment was expressed 

as fold enrichment relative to the untagged WT strain. In Figure 5.3, there was a strong 

enrichment of the Sds3-MYC tagged strain before and after osmotic stress as it was for the Sin3-

MYC strain as observed previously (Figure 5.2). HAC1 deletion affected Rpd3p association to GSR 

promoter regions as the Sin3-MYC strain and Sds3-MYC strains because a HAC1 deletion lowered 

the enrichment level of the Rpd3L complex.  
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The large Rpd3 complex, which includes Sap30, Pho23, Rxt1, Rxt2, Dep1, and Sds3, has been 

shown to be the gene promoter-targeting form of the two complexes and is required for 

expression of the GSR genes ALD3 and CTT1 in heat-shocked cells (Ruiz-Roig et al., 2010). Rpd3L is 

also required for expression of other subset of genes in response to various stresses; DAN1 and 

TIR genes during anaerobic stress (Sertil et al., 2007); RNR3 and HUG1 during DNA damage 

response (Sharma et al., 2007).  These reports published after the year 2005 genetically validate 

the association of Rpd3L and not the Rpd3S complex, to promoter bound activation of genes. 

Data in chapter 4 and Figure 5.3 provided evidence through ChIP experiments that the GSR gene 

activation required the Rpd3 large complex. A representative Northern blotting experiment 

(Figure 5.5) provided causality that it was the Rpd3L HDAC complex involved in the regulation of 

 

Figure 5.3 The Rpd3L complex interacts with Hac1p and is present at GSR promoter regions 

before and after osmotic stress Rpd3L occupancy of promoters of GSR genes in an untagged WT 

(MSY 134-36 + pRS314), strains transformed with pRS314 expressing MYC-tagged Sin3 (TLY 446) and 

Sds3 (MSY 726-03) and a hac1Δ:: Trp in either of the two tagged strains, MSY 727-03 and MSY 728-07. 

The cells were grown to mid-log phase in SD-Trp media at 30°C and then treated with 0.6 M NaCl and 

1.2 M sorbitol for 20 min and crosslinked with 1% (w/v) formaldehyde. The ChIP protocol as described in 

Chapter 2 was followed and the immunoprecipitated (IP) DNA was analysed using real time PCR. The IP 

DNA was quantified using the RotorGene 3000 software and further calculations using MS Excel 

spreadsheets. The average of two independent experiments with standard errors is shown in the figure. 
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GSR genes during hyperosmotic shock. The Northern blot data in Figure 5.5 does not rule out the 

possibility of Rpd3S complex in GSR gene regulation. Hence, another representative Northern 

blotting experiment (Figure 5.4) provided genetic evidence that the Rpd3S complex was not 

involved during activation of GSR genes. The Northern blotting results presented in the next 

segment made use of specific deletion mutant strains to prove the results. For Rpd3S complex not 

to be involved in activating GSR genes, the gene expression levels in small complex mutants were 

expected to be comparable to a corresponding WT strain. GSR gene expression in rco1∆ cells was 

enhanced during osmotic shock and the induction level of STL1, ALD3 and HSP12 GSR genes was 

higher than the WT strain (Figure 5.4).  The mRNA levels were consistently elevated in eaf3∆ cells 

when compared to rpd3∆ cells (Figure 5.4). Data from Figure 5.4 provided evidence that the 

Rpd3S was dispensable during hyperosmotic shock. Data in Figure 5.5 concurrently provided 

evidence that it was the Rpd3L complex and not the Rpd3S complex which was required for GSR 

gene regulation during hyperosmotic shock. 
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Deletion of the Rpd3L-specific subunit SDS3 recapitulated the transcriptional defects of rpd3∆ and 

sin3∆ cells more closely than deletion of RCO1 or EAF3 (Figure 5.5).  The ChIP biochemical analysis 

and Northern blotting genetic analysis provided evidence that it is the Rpd3L complex and not the 

Rpd3S complex which was involved in activating GSR genes under hyperosmotic shock. 

 

Figure 5.4 The Rpd3S complex is dispensable for induction of GSRs by osmotic stress For the 

Northern blotting experiment, cells were grown in YPD medium until mid-log phase at 30°C. The 

deletion strains of the Rpd3 small complex, rco1 (MSY 723-01) and eaf3(MSY 721-01), WT (MSY 134-

36) strain and an rpd3 (MSY 287-01) strain were then subjected to hyperosmotic osmotic shock for 20 

min with 0.6 M NaCl and 1.2 M sorbitol. The RNA was isolated and 10μg was loaded on the gel. The blot 

was probed for the GSR representative genes STL1, ALD3 and HSP12, and pC4/2, the loading control. 

The experiment was repeated two times with similar outcomes and the figure is a representative of one 

biological repeat. The quantitation for each lane was done using the phosphoimager and the values 

obtained from the loading control were used for normalisation. Chapter 2 describes how the 

quantitation numerals were generated. 



Department of Biological and Biomedical Sciences | PhD Thesis | Chapter 5 

Durham University | 139 

 

5.2 The GSR gene activation is partially independent of Rpd3p catalytic activity 

Previous reports which show the positive role of Rpd3p in gene activation have indicated that this 

HDAC enzyme requires its catalytic activity to manifest gene expression under different stress 

environments (Sertil et al., 2007; de Nadal et al., 2004). To investigate whether the catalytic 

activity of the RPD3-SIN3 HDAC was required for GSR gene regulation, point mutant alleles of 

RPD3, H150A and H151A were studied for their effects with or without osmotic stress. These 

point mutants are devoid of detectable histone deacetylase activity in vitro and are also defective 

in repression of target promoters in vivo (Kadosh and Struhl, 1998). However, interaction of 

Rpd3p with Sin3p remains unchanged by these point mutations in vivo (Kadosh and Struhl, 1998). 

 

Figure 5.5 The Rpd3L complex is required for induction of GSR genes by osmotic stress For the 

Northern blotting experiment cells were grown in YPD medium to mid-log phase at 30°C. WT (MSY 36-

34), rpd3(MSY 42-38), sin3(MSY 49-06) andsds3(MSY 56-01) strains were treated with 0.6 M NaCl 

and 1.2 M Sorbitol for 20 min. The RNA was isolated and 10μg of RNA was loaded for the gel run and 

probed for three GSR genes STL1, ALD3 and HSP12 and the loading control pC4/2. The Northern blot has 

been repeated thrice showing similar results and the figure is a representative of one independent 

biological repeat. The quantitation for each lane was done using the phosphoimager and the values 

obtained from the loading control were used for normalisation. 
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A RPD3 deletion strain had poor gene induction levels when compared to the WT strain (Figure 

5.6), as also observed previously in this thesis (Figures 4.3a, 5.4 and 5.5). If effects were via the 

deacetylase activity of the Rpd3 enzyme then the catalytic inactive point mutants were expected 

to have the same transcriptional defects as a RPD3 deletion strain. Surprisingly, the activation of 

GSR genes was observed to be partially independent of the Rpd3 catalytic activity (Fig. 5.6). The 

rpd3Δ cells were sensitive to osmotic stress when compared to WT strain, as observed previously. 

The point mutants had induction levels intermediate to those of the WT and rpd3Δ cells. Out of 

the two catalytic mutants, the H150A allele seemed to have more comparable level of induction 

to the WT strain. If the gene expression level of the point mutants were intermediate to the 

expression level of the WT strain and an rpd3Δ mutant, then the effect point mutants have on the 

nucleosome histone acetylation levels was expected to be correlative to the mRNA transcript data 

observed in Figure 5.6 for the point mutants.  
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A ChIP experiment was performed to investigate this hypothesis. The ChIP analysis in Figure 5.7 to 

determine the effects of Rpd3 point mutants on nucleosomal acetylation corroborated with the 

Northern blotting data in Figure 5.6. The WT strain and the RPD3 deletion strain showed a similar 

acetylation pattern and nucleosome loss as observed in Figure 5.1. In unstressed cells, the 

acetylation levels of point mutants were lower than the rpd3Δ strain. For H3 K9 and H4 K8 

acetylation, in unstressed cells, the catalytic mutants seemed to have an intermediary acetylation 

level when compared to the rpd3Δ and the WT strain (Figure 5.7a-c).  

The point mutants exhibited an increase in acetylation levels for the three sites after osmotic 

shock and the levels were comparable to the RPD3 deletion strain and the WT strain. The increase 

in H3 acetylation levels for the H151A point mutant after osmotic shock was more than the H150A 

 

Figure 5.6 The GSR gene activation is partially independent of the Rpd3-Sin3 catalytic activity 

The conditions for growing cells and osmotic shock treatments are similar to the previous Northern 

experiment in Figure 5.5. WT (MSY 136-40), rpd3Δ (MSY 288-01) and Rpd3 point mutants H150A (MSY 

358-03) and H151A (MSY 359-01) were probed for four GSR genes STL1, CTT1, ALD3 and HSP12 with or 

without osmotic stress. The Northern blot was repeated twice and gave similar outcomes. The figure is a 

representation of one biological independent experiment. The quantitation for the induction level for 

each gene is below each panel in the figure. pC4/2 is the loading control and has been used for 

normalization. 
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point mutant (Figure 5.7), despite the fact that the H150A point mutant had higher induction 

levels of GSR genes when compared to H151A point mutant (Figure 5.6). The nucleosome loss 

observed for the H151A point mutant was correlative with an increase in acetylation levels after 

osmotic stress, and so it was for the H150A mutant albeit lower than the H151A point mutant. 

Again, all the acetylation signals were normalized to the total histone total H3. Three acetylation 

sites H3K9, H3K18 and H4K8 were studied at the GSR gene promoter regions as done in Figure 

5.1.  

A decrease in nucleosome occupancy for the point mutants correlated with the similar levels of 

acetylation pattern observed for the three sites when compared to the WT strain (Figure 5.7d). In 

summary, data from Figures 5.6 and 5.7 indicated that the GSR gene induction levels partially 

overcome the need for Rpd3 catalytic activity and that the enzyme function of the molecule was 

not critical for GSR gene activation after hyperosmotic stress. 
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Figure 5.7 Rpd3 point mutant acetylation levels are similar to the WT strain after osmotic 

stress (a-c) shows the nucleosome acetylation in the promoters of ALD3, CTT1, HSP12, and STL1 for the 

indicated acetylation sites in WT, rpd3, Rpd3 H150A and Rpd3 H151A cells. These are the same strains 

as used Figure 5.6 but have been transformed with the pRS314 plasmid. (d) Histone H3 density 

measured by ChIP in the promoters of the genes and strains as in panels (a-c). The cells were grown in 

SD-Trp until mid-log phase at 30°C. After treating with 0.6 M NaCl and 1.2 M sorbitol, the cells were 

crosslinked with 1% (w/v) formaldehyde and ChIP procedure and analysis as described in Chapter 2 was 

followed. The RotorGene 3000 software was used to calculate the CT values and were normalised to the 

input chromatin. Further calculations were done on the MS Excel sheet. The average of two 

independent biological repeats with the standard errors is shown in this figure. 
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5.3 Discussion 

The Rpd3 HDAC is an enzyme which represses genes directly or indirectly.  For example, Rpd3 

HDAC is directly involved in the repression of genes in meiosis, arginine metabolism and mating 

type locus while an RPD3 deletion strain is involved in enhanced heterochromatin silencing, and  

enhanced rRNA silencing (Kadosh and Struhl, 1997; Rundlett et al., 1996; Dorland et al., 2000; 

Vannier et al., 1996; Smith et al., 1999; Sun and Hampsey., 1999). The transcriptional repression 

of these genes by Rpd3 requires Ume6, a zinc finger protein which binds to the URS1 elements 

and regulates gene expression. Gene expression changes in a genome analysis during a stress 

response have fished out Rpd3 HDAC as a key regulator in repressing and activating various 

subsets of genes. In the last few years reports suggest that Rpd3p is involved in the activation of 

genes. These are genes to which Rpd3p binds in an Ume6-independent manner like the GSR genes 

(deNadal et al., 2004 Nature; Alejandro-Osorio et al., 2009; Mas et al., 2009; Ruiz-Roig et al., 

2010).  

5.3.1 Role of Rpd3 HDAC in epigenetic regulation of GSR genes 

The role of Rpd3 in osmosensitive gene regulation was first highlighted by de Nadal and 

colleagues (deNadal et al., 2004). The paper for the first time presented evidence on the role of 

Rpd3 in activating GSR genes. Recruitment of Rpd3 by the MAPK Hog1p to promoters of the GSR 

genes ALD3, CTT1, HSP12, GRE2 and STL1, and deacetylation of promoter nucleosomes by Rpd3p 

was proposed to be required for activation of GSR genes (de Nadal et al., 2004). Since 2004, 

literature has demonstrated the positive role of Rpd3p in activating subsets of genes in various 

stress responses (Mas et al., 2009; Sertil et al., 2007; Sharma et al., 2007). In agreement with 

previous published reports on a positive role of Rpd3p, data in Chapter 4 indicated that the Rpd3p 

molecule was required for GSR gene activation as the rpd3Δ strain was the least transcriptionally 

active under osmotic stress when compared to the WT and HAC1 mutant strains (Figure 4.2). 

HAC1 acted through RPD3 (Figure 4.3a) to regulate GSR gene expression. Hac1p does not 
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contribute towards the epigenetic regulation of GSR genes. The H3 K9, H3 K18 and H4 K8 

acetylation levels were not affected when levels of Hac1ip were manipulated in cells (Figure 4.6). 

Data presented in this thesis suggested that Hac1i does not influence GSR promoter bound 

nucleosome histone deacetylation by Rpd3 and contradicted data by de Nadal and colleagues, 

2004. Chapter 5 provided answers on whether Rpd3p, the interacting partner of Hac1ip, 

epigenetically controled GSR gene regulation. ChIP data from Figure 5.1 showed that the rpd3Δ 

strain exhibited higher nucleosome histone acetylation levels and nucleosome loss in unstressed 

cells when compared to the WT strain. These data were suggestive for nucleosomal acetylation 

occurring before nucleosome loss to activate GSR genes. An increase in histone acetylation levels 

in the rpd3Δ strain before osmotic stress (Figure 5.1) suggested that Rpd3 complexes occupied 

GSR promoter regions in unstressed cells. This was indeed the case as observed in Figure 5.2, the 

data suggested that the enrichment of Rpd3p complex using a Sin3-MYC tagged strain as a 

surrogate, did not change before and after hyperosmotic stress which again deviated from 

findings by de Nadal et al, 2004. The MAPK Hog1p is responsible for recruiting Rpd3 complexes to 

GSR genes during hyperosmotic shock (de Nadal et al., 2004). Hog1p targets Rpd3p to activate 

osmoresponsive genes, but the article however does not have data indicating whether it is the 

Rpd3L or Rpd3S complex. Though the presence of two existing Rpd3 complexes was found after 

this report was published in 2004, there is a possibility that the Hog1p MAPK could be targeting 

the Rpd3S complex.  

The finding that GSR gene promoter nucleosome acetylation increased in osmotically-stressed 

cells was in conflict with nucleosome deacetylation by Rpd3p being a positive role for Rpd3p in 

activation of these genes (de Nadal et al., 2004). The acetylation data was normalized to the total 

histone H3 whereas de Nadal and colleagues have normalized their acetylation data relative to 

the telomeres. An argument can be made that the differences observed in my data and in the 

cited paper (de Nadal et al., 2004) could be due to differences in normalization. Moreover, data 

provided in this thesis has correlative evidence for the role of Rpd3 in GSR gene activation. The 
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total H3 histone occupancy was significantly lowered at the GSR gene promoters in a RPD3 

deletion strain which facilitated GSR gene activation (Figure 5.1d). This decrease in nucleosome 

occupancy resulting in activation of GSR genes has been reported earlier (Mas et al., 2009). The 

changes in steady-state GSR promoter acetylation in rpd3Δ cells thus suggested that the Rpd3p 

functions as a classical repressing HDAC in unstressed cells. The acetylation data (Figure 5.1) and 

the ChIP data (Figure 5.2) on the RPD3 deletion strain and the Sin3-MYC tagged strain 

respectively, suggested that Rpd3p was present before and after osmotic stress. Before osmotic 

stress, Rpd3p kept GSR genes repressed. The positive role of Rpd3 in activating GSR genes was 

when it switched from being a repressor complex to an activating complex under hyperosmotic 

shock. Moreover, data in Chapter 4 and Chapter 5 provided evidence that the Rpd3L and not the 

Rpd3S complex was responsible for GSR gene activation to protect cells under hyperosmotic 

shock. 

 

5.3.2 The Rpd3L complex is required for GSR gene activation 

Figure 4.3a showed that Rpd3p and Hac1p were epistatic to each other in regulating GSR gene 

expression. Figure 4.4 showed that Hac1p had a direct positive role in activating GSR genes and 

required the presence of Rpd3p complexes during GSR gene activation. Figure 4.5 indicated that 

the Rpd3L complex helped in anchoring Hac1p to the GSR gene promoter regions. Furthermore, in 

Chapter 5, ChIP experiments biochemically revealed that it was the Rpd3 large complex which was 

present at the GSR promoters before and after hyperosmotic stress (Figure 5.3). A Sin3-MYC 

tagged strain or a Sds3-MYC tagged strain having a HAC1 deletion lowered the Rpd3 enrichment 

over the GSR promoters (Figure 5.3). This observation raised a possibility that Hac1p might affect 

the structural integrity of the Rpd3 complex. Experiments co-immunoprecipitating Hac1p and 

Rpd3p have indicated that Hac1ip induces structural changes in Rpd3 complexes (Dr Martin 

SchrÖder, unpublished data). Based on the aforesaid premise, HAC1 might affect the deacetylase 



Department of Biological and Biomedical Sciences | PhD Thesis | Chapter 5 

Durham University | 147 

activity or the substrate selectivity of the Rpd3L complex during GSR gene regulation, which is 

subject to further investigation. Surprisingly, the catalytically inactive point mutants of Rpd3 

unlike the rpd3Δ strain promoted partial activation of GSR genes after nucleosome loss (Figure 5.6 

and Figure 5.7d). The acetylation pattern in unstressed cells observed for the point mutants was 

comparable to the WT strain (Figure 5.7a-c). The ChIP and Northern data for the Rpd3 point 

mutants H150A and H151A suggested that the GSR gene activation was partially independent of 

the Rpd3 catalytic activity. Rpd3 HDAC has a third catalytic residue, H188 and this third catalytic 

mutant H188A has been studied under nutritional stress earlier (Schröder et al., 2004). This study 

did not use the H188A Rpd3 catalytic mutant because it has been investigated earlier that either 

of the single point mutants H150A or H151A have a better phenotypic response than the H188A 

mutant allele. The H188A mutant disassembles the Rpd3 complexes in co-IP experiments when 

studied at endogenous levels (Dr Martin Schröder, unpublished data). The catalytic role of the 

H188A mutant in Rpd3p mediated activation has been reported earlier (Sertil et al., 2007) but 

Sertil and colleagues have not provided information on either the H150A point mutant or the 

H151A point mutant. Northern blotting (Figures 5.4 and 5.5) indicated causality that it is the 

Rpd3L complex and not the Rpd3S complex which was present on the GSR gene promoters after 

osmotic stress. Deletion of SDS3, a subunit specific to the Rpd3L complex interfered with 

activation of GSR genes (Figure 5.5), while deletion of RCO1 in cells, a subunit specific to Rpd3S, 

revealed that Rpd3S was dispensable for activation of GSR genes (Figure 5.4). The evidence 

provided in Chapter 5 on the presence of Rpd3L and not Rpd3S complex on the GSR gene 

promoters do not nullify the role of Rpd3S complex in GSR gene activation. The presence of the 

Rpd3L complex was seen at the promoter regions of GSR genes. Increased induction levels of GSR 

genes in the Rpd3S complex mutants after osmotic stress (Figure 5.4) suggested that the small 

complex might be recruited to GSR genes to prevent spurious transcription in the ORFs of the GSR 

genes after hyperosmotic stress. The Rpd3 large and small complexes have significant roles in 

epigenetically regulating genes. While Rpd3L is known to mediate promoter bound activation or 
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repression, histone deacetylation by locally recruited Rpd3S is an important event that is key to 

the suppression of spurious transcription initiation within an ORF (Carrozza et al., 2005; Joshi and 

Struhl, 2005; Keogh et al., 2005). Rpd3S and Set2 methyltransferase act together to prevent 

cryptic transcription initiation (Bing et al., 2007a). The plant homeobox domain (PHD) of the RCO1 

subunit and the chromodomain of the EAF3 subunit of the Rpd3S complex is directed to 

transcribed chromatin in order to recognise methylated histone H3 lysine 36 (Bing et al., 2007).  

This Set2-Rpd3S mechanism of preventing spurious cryptic transcription initiation within the ORFs 

could be a role of Rpd3S complex in GSR gene regulation. The presence of Set2 on promoter 

regions has been shown to cause transcription inhibition (Strahl et al., 2002). To overcome Set2 

mediated K36 methylation at the proximal regions of the promoters, cells have evolved more than 

one mechanism.  

One such mechanism is when genes are not being transcribed, the histone variant Htz1 is 

localised to the promoter regions which has an inhibitory effect on the methyltransferase activity 

of Set2 (Li et al., 2005). When genes are being transcribed, Set2 has been shown to be RNA 

polymerase II dependent (Li et al., 2002 and 2003, Xiao et al., 2003, Krogan et al., 2003). 

Moreover, on active promoters, lysine 36 is acetylated by Gcn5 (Morris et al., 2007) thereby not 

allowing Set2 to methylate the lysine 36 residue. Such tightly controlled epigenetic regulatory 

mechanisms to provide efficient and uninterrupted transcription of genes, might be resonant in 

the mechanism of GSR gene activation. The induction levels of the EAF3 deletion strain were 

lower as compared to the RCO1 deletion mutant (Figure 5.4). The lower induction levels of GSR 

genes observed in an EAF3 deletion strain could be suggestive of HATs having a role in GSR gene 

regulation as Eaf3p is a component of the NuA4 HAT (Eisen et al., 2001). The presence of HATs at 

the GSR gene promoters might possibly be necessary to aid in the increase of acetylation levels 

and balance deacetylation levels by existing HDAC complexes. In addition, HATs might also have a 

plausible protective role of inhibiting Set2 methytransferase activity. Overall, data from chapter 5 

http://genesdev.cshlp.org/content/21/11/1422.long#ref-2
http://genesdev.cshlp.org/content/21/11/1422.long#ref-10
http://genesdev.cshlp.org/content/21/11/1422.long#ref-10
http://genesdev.cshlp.org/content/21/11/1422.long#ref-11
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provided an empirical understanding for how the Rpd3L complex and not the Rpd3S complex 

HDAC regulated the GSR gene expression.  

5.3.3 Proposing a mechanism of how the UPR components regulate GSR gene 

expression during hyperosmotic stress 

Data in this study has identified steps which outline an order of events in the regulation of GSR 

genes during hyperosmotic shock. Chapter 4 showed that Hac1p and Rpd3p interacted 

epistatically during GSR gene activation (Figure 4.3a).  

ChIP data suggested that the Rpd3L complex was required by Hac1p to facilitate its direct positive 

role in activating GSR genes during hyperosmotic stress (Figure 4.5). The HA-Hac1ip enrichment 

levels in a SDS3 deletion strain was similar to the untagged WT strain (Figure 4.5) suggesting that 

Rpd3p had a structural role during osmosensitive gene regulation. One role which Rpd3p 

performed during osmosensitive gene regulation was to credibly anchor Hac1p to GSR gene 

promoters. Absence of HA-Hac1ip enrichment in a SDS3 deletion strain was also correlative with 

the Northern blotting data in Chapter 4 (Figure 4.3a) where the deletion of RPD3 masked the 

effects of a HAC1 overexpressing strain.  

The presence of Rpd3p complexes was observed before and after osmotic stress (Figure 5.2). The 

presence of Rpd3p complexes before osmotic stress suggested that the molecule was required for 

repressing GSR genes in unstressed cells. The Rpd3L complex was associated within the promoter 

regions of GSR genes after stress (Figure 5.3). The causality for Rpd3L complex and not the Rpd3S 

complex in activating GSR genes were provided by the Northern data. Deletion of RCO1, a subunit 

specific to Rpd3S derepressed GSR genes while deletion of the Rpd3L specific subunit SDS3 in cells 

recapitulated the GSR gene activation defect of rpd3Δ cells. Data also showed that the increase in 

GSR mRNA levels corresponded with an increase in acetylation levels (Figure 4.6 and Figure 5.1). 

Moreover, deacetylation by Rpd3p was also not critical for activating GSR genes after 
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hyperosmotic shock because Rpd3p point mutants resulted in a partial GSR gene expression 

(Figure 5.6).  

All these experimentally validated results strengthened the idea that Rpd3p while acting as a 

classical repressor before osmotic stress might have to potentially compete with incoming HAT 

enzymes like Gcn5p before and after osmotic stress. The Rpd3p and putative HATs vie against 

each other because both molecules have common enzyme substrates- the lysine residues on the 

N terminal histone tails of core histones. On the basis of the acetylation patterns and Northern 

analysis data presented in Chapter 4 and Chapter 5, a mechanism seems to operate the regulation 

of GSR genes during hyperosmotic stress. A potential balance of acetylation and deacetylation 

keep the GSR genes inactive in unstressed cells and hence a ‘switch-off’ mode. HATs, such as 

NuA4 or Gcn5-containing HATs are expected to be associated with GSR promoters in unstressed 

cells. The shifting of this balance in favour of acetylation, either through recruitment of additional 

HATs or through direct regulation of promoter-associated HAT and HDAC activities, increases 

nucleosome acetylation which precedes the decrease in nucleosome density. Upon hyperosmotic 

stress, Hac1p, a bZIP transcription factor which activates a subset of GSR genes, binds to the GSR 

gene promoters with the aid of the Rpd3L complex. The Rpd3p acts as a docking molecule for 

Hac1p to activate GSR genes. During acute osmotic shock Hac1p and Rpd3p interact epistatic to 

each other. Whether other sequence-specific transcription factors, such as Msn1, Msn2/4, Hot1, 

Sko1, and Smp1, that control a small subset of GSR genes, act before or after nucleosome 

acetylation or nucleosome loss is currently under investigation.  

 

5.3.4 The UPR components integrate into osmotic stress 

Data from Chapter 4 and Chapter 5 showed that important UPR components integrated into 

osmotic stress and regulated GSR gene expression. Yet, there were data in this thesis which in 

spite of explicating the role of the UPR components in hyperosmotic stress raised further 
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fundamental questions of how GSR genes were activated. For example, HAC1 and RPD3 single 

deletion mutants in cells produced lower levels of mRNA transcript when compared to the WT 

strain (Figure 4.3a). Yet on analyzing the nucleosomal histone acetylation levels and nucleosome 

density, these two strains showed an almost similar level of nucleosome loss as a WT strain 

(Figure 4.6 and Figure 5.1). These unprecedented observations suggested that even though 

products of HAC1 and RPD3 functioned as regulators in activating GSR genes during osmotic 

stress, the mechanistic role yet remained unidentified. Chapter 6 characterizes a mechanism for 

how HAC1 and RPD3 regulate GSR gene expression. 

 In addition, the epigenetic studies in this thesis provided a strong indication that HATs 

contributed to the balance of acetylation and deacetylation in activating GSR genes. Data 

indicated that an increase in acetylation contributed to GSR gene activation during osmotic stress 

(Figure 4.6 and Figure 5.1). This thesis in Chapter 6 investigates if a potential histone 

acetyltransferase (HAT), the GCN5 contributed to GSR gene activation.  

 

  



 

 

CHAPTER 6 

A MECHANISM OF SIGNAL INTEGRATION BETWEEN THE UPR PATHWAY 

AND OSMOTIC STRESS 
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 Chapter 4 and Chapter 5 showed that the HAC1 deletion strain and RPD3 deletion strain had 

similar levels of increased nucleosome histone acetylation and nucleosome loss after 

hyperosmotic stress when compared to a WT strain (Figures 4.6 and 5.1). The increase in 

acetylation levels of these two deletion strains does not correspond to levels of mRNA transcripts 

they produced as both strains had weaker mRNA signals when compared to the WT strain (Figure 

4.3a). This raised the question whether there was another unidentified role through which Hac1p 

and Rpd3p regulated GSR gene transcription. Moreover, activation of GSR genes correlated with 

an overall increase in acetylation. To understand how HAC1 and RPD3 regulated GSR gene 

transcription and which potential HAT caused an increase in histone acetylation levels, answers to 

the following questions in Chapter 6 were provided: 

1. Are Hac1p and Rpd3p involved in preinitiation complex assembly at GSR gene promoters by 

recruiting RNA polymerase II holoenzyme (RNA pol II) to activate GSR gene transcription? 

2. Do RNA pol II phosphorylation levels in the C-terminus domain (CTD) of the enzyme 

correspond to the RNA pol II levels at GSR gene promoters and 3’ends in WT, HAC1i 

overexpressing, HAC1 deletion and RPD3 deletion strains? Are Hac1p and Rpd3p involved in 

controlling RNA pol II release from the GSR gene promoters? 

3. Does the GCN5 HAT contribute to the increase in acetylation levels during GSR gene 

activation? Is Gcn5p present on the GSR gene promoter regions before and after 

hyperosmotic osmotic stress? 
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6.1 Hac1ip and Rpd3p stimulate the release of Pol II from the promoters of GSR 

genes. 

Data from Chapter 4 and Chapter 5 have shown that GSR gene activation required HAC1 and 

RPD3.  Hac1p acted through Rpd3p to activate GSR genes (Figure 4.3a). Hac1p does not affect 

nucleosome histone acetylation levels for GSR gene activation (Figure 4.6). Rpd3p was present at 

GSR gene promoters before and after stress (Figure 5.2). Moreover, data have shown that there 

was another positive unidentified function of Hac1p and Rpd3p during GSR gene activation 

because HAC1 and RPD3 deletion strains in spite of showing similar acetylation levels and 

nucleosome loss as the WT strain had defective mRNA production (Figures 4.3a, 4.6 and 5.1). To 

locate this positive function, pivotal target molecules in GSR transcription initiation steps were 

identified, molecules which acted after posttranslational modification events during the 

transcription process but which were critical just before transcription initiation. One such 

molecule was the RNA polymerase enzyme. It was expected for actively transcribed genes to have 

a proportional increase in RNA pol II levels. Based on data in my previous chapters, levels of RNA 

pol II was then expected to be less for transcriptionally sick HAC1 and RPD3 deletion mutant 

strains. ChIP was used to test this hypothesis and the results from my ChIP experiment would 

indicate whether deletion of RPD3 or HAC1 decreases entry of Pol II into GSR promoter regions. 

The presence of RNA pol II at four GSR gene promoters CTT1, ALD3, STL1 and HSP12 was tested in 

Figure 6.1a. The ChIP data in Figure 6.1a and 6.1b were represented as a percentage of chromatin 

input. 

On shocking cells with 0.6 M NaCl or 1.2 M sorbitol, deletion of RPD3 did not affect the presence 

of Pol II at the promoter regions of GSR genes (Figure 6.1a). In addition, over-expression of Hac1i 

did not increase Pol II promoter occupancy. The hac1Δ cells displayed a trend toward increased 

Pol II promoter occupancy when compared to WT cells after hyperosmotic shock (Figure 6.1a), 

while at the same time were defective in GSR mRNA production under osmotic stress (Figure 
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4.3a). This behavior of the hac1Δ and rpd3Δ cells suggested that the transcriptional defect of 

hac1Δ and rpd3Δ cells lay in release of Pol II from GSR promoters. To evaluate this hypothesis, 

RNA Pol II was ChIPed to the 3’ end of GSR genes (Figure 6.1b). Pol II occupancy of the 3’ ends of 

genes was comparable in WT cells, cells over-expressing Hac1i, or hac1Δ cells, while Pol II 

occupancy at the 3’ end of genes appeared to be decreased in osmotically-stressed rpd3Δ cells 

(Figure 6.1b).  

 

 

A ratio for the ORF 3’ end to the promoter RNA pol II occupancy showed that levels of RNA pol II 

after osmotic stress was more for an over-expressing Hac1i strain and lesser for a HAC1 deletion 

strain when compared to the WT strain (Figure 6.2). The RPD3 deletion strain showed the least 

 

Figure 6.1 Hac1ip and Rpd3p stimulate the release of RNA pol II from the promoters of GSR 

genes (a) ChIP of Pol II in WT cells transformed with pRS314 or pRS314-HAC1
i
, hac1 cells, and rpd3 

cells transformed with pRS314. ChIP of Pol II to the promoter (b) and the 3’ end of ORFs. The cells were 

grown in SD-Trp media until mid-log phase at 30°C. The cells were then treated with 0.6 M NaCl and 1.2 

M sorbitol and then subsequently cross-linked with 1% (w/v) formaldehyde. The ChIP procedure was 

followed as described in Chapter 2 and analysis were conducted the same way as for previous ChIP 

experiments. The primers for the 3’ end of ORFs are listed in Table 2.6, Chapter2. The ChIP data in Figure 

6.1 is expressed as a percentage of chromatin input. The average of two independent biological repeats 

with standard errors is shown in the figure. 
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levels of RNA pol II when compared to the WT strain. The data in Figure 6.2 correlated with the 

mRNA transcript levels for the same strains in Figures 4.2 and 4.3a. 

 

S. cerevisiae genes are short, which may interfere with separation of Pol II bound to the promoter 

and the 3’ end of a gene when using randomly-sheared chromatin in ChIP assays. 

To distinguish more stringently between Pol II bound to the promoter and the 3’ end of a gene, 

antibodies recognizing Pol II phosphorylated at serine 2 (S2) or serine 5 (S5) in its CTD were used 

for the study. The hyperphosphorylated S5 of RNA Pol II CTD is involved in active transcription 

while the hyperphosphorylated S2 of RNA Pol II CTD is important for mRNA elongation and 3’ end 

processing (Phatnani and Greenleaf, 2006). A hypothesis was drawn that if HAC1 and RPD3 

deletion strains showed an increase in RNA pol II levels in the GSR promoters in Figure 6.1a then 

these two strains were correspondingly expected to have an increase in S5 phosphorylation 

levels. Likewise, it was expected that the levels of S2 phosphorylation would decrease for these 

two strains when compared to the WT strain at the 3’end of GSR genes in Figure 6.1b.  

 

Figure 6.2 The ratio of RNA pol II at 3’ to 5’ end from Figure 6.1 correlates with mRNA levels 

for the same strains in Figure 4.2 (c) A ratio of RNA pol II levels of 3’end to the promoters from 

Figure 6.1 
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The hac1Δ and rpd3Δ cells displayed elevated S5 phosphorylated Pol II in their promoters, while 

promoter-bound levels of S5 phosphorylated Pol II were decreased in Hac1i expressing cells when 

compared to the WT strain (Figure 6.2a). S2 phosphorylated Pol II at the 3’ end of genes was 

decreased in hac1Δ and rpd3Δ cells when compared to WT cells (Figure 6.2b). These data were 

consistent with a positive role for Hac1i and Rpd3 in promoter clearance by Pol II. 

 

 

 

 

 

Figure 6.3 The increase in Pol II CTD S5 and S2 levels correlates with Pol II levels at the 5’ and 

3’ ends of GSR genes respectively ChIP of Pol II phosphorylated at S5 (a) in its CTD to the promoter 

or at S2 (b) to the 3’ end of ORFs for strains indicated with or without osmotic stress. The cells were 

grown in SD-Trp media until mid-log phase at 30°C. The cells were then treated with 0.6 M NaCl and 1.2 

M sorbitol and then subsequently cross-linked with 1% (w/v) formaldehyde. The ChIP procedure was 

followed as described in Chapter 2 and analysis were conducted the same way as for previous ChIP 

experiments. The primers for the 3’ end of ORFs are listed in Table 2.6, Chapter2. The phosphorylation 

levels are expressed as a percentage of chromatin input. The average of two independent experiments 

with standard errors of the mean is represented in the figure. 
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6.2 Gcn5 HAT contributes towards increased nucleosome histone acetylation after 

osmotic stress 

ChIP data from Chapter 4 and Chapter 5 have shown that an increase in acetylation results in 

increased induction of GSR genes after osmotic stress (Figures 4.6 and 5.1). The Rpd3 HDAC was 

present at the GSR promoters in unstressed cells (Figure 5.2). After hyperosmotic shock, the 

Rpd3p complex activated GSR genes by facilitating promoter clearance by RNA pol II (Figures 6.1 

and 6.2). Hac1p which was thethered to the Rpd3p also facilitated promoter clearance by RNA pol 

II (Figure 6.1 and 6.2). This positive role of Hac1 and Rpd3 occurs after the GSR gene promoters 

are hyperacetylated during osmotic shock (Figures 4.6 and 5.1). The increase in acetylation levels 

which correlated with activation of GSR gene transcription and mRNA production suggested that a 

HAT was involved which contributed to the increase in acetylation levels. To investigate which 

HAT was involved, the presence of Gcn5 HAT at the GSR gene promoters was tested using ChIP. A 

GCN5 deletion strain and a WT strain were characterised for H3 K9, H3 K18 and H4 K8 

nucleosome histone acetylation before and after hyperosmotic stress at the CTT1, STL1, ALD3 and 

HSP12 GSR gene promoters. The acetylation data were normalised to the total histone H3. 

For the H3 K9, H3 K18 and the H4 K8 lysine residues, the overall acetylation levels in a GCN5 

deletion strain were low after hyperosmotic stress treatment when compared to the WT strain. 

Moreover, the H3 K18 acetylation levels were drastically lowered before and after osmotic stress 

in the GCN5 deletion strain when compared to the WT strain (Figure 6.4). The nucleosome loss for 

the GCN5 deletion strain was not significantly altered after osmotic stress (Figure 6.4d). 
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Data from Figure 6.4 showed that a HAT which contributed to the increase of nucleosome histone 

acetylation after osmotic shock was Gcn5p. The acetylation levels were lowered for the three 

acetylation sites after osmotic stress in a gcn5Δ strain (Figure 6.4). Data in Figure 6.4 showed that 

the acetylation levels for the GCN5 deletion strain were remarkably low in unstressed cells for H3 

K18 acetylation, and for H4 K8 acetylation at ALD3 and HSP12 promoters when compared to the 

WT strain. The data in Figure 6.4 suggested that Gcn5 associated with GSR gene promoters after 

osmotic stress and possibly before stress at gene specific promoters. To investigate this 

hypothesis, a ChIP experiment was performed using a Gcn5-MYC tagged stain to estimate Gcn5p 

 

Figure 6.4 Gcn5 HAT contributes towards increased nucleosome acetylation after osmotic 

stress ChIP of a GCN5 deletion strain (MSY 718-01+pRS314) and a WT (MSY 134-36+pRS314) strain for 

three acetylation sites (a-c) and nucleosome loss (d). The cells were grown in SD-Trp media until mid-log 

phase at 30°C. The cells were then treated with 0.6 M NaCl and 1.2 M sorbitol and then subsequently 

cross-linked with 1% (w/v) formaldehyde. The ChIP procedure was followed as described in Chapter 2 

and analysis were conducted the same way as for previous ChIP experiments using the RotorGene 

software and MS Excel.  The acetylation levels are normalised to the total histone H3. The average of 

two independent experiments with standard errors is represented in the figure. 
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levels before and after stress. The ChIP results were expressed as fold enrichment relative to the 

untagged WT strain. The results indeed showed that the Gcn5p contributed towards increase in 

acetylation levels after hyperosmotic shock as there was at least a 3-fold enrichment of the Gcn5-

MYC tagged protein after 0.6 M NaCl and 1.2 M sorbitol treatment (Figure 6.5). A mild decrease in 

acetylation levels before osmotic stress (Figure 6.4a-c) also suggested that the Gcn5p was 

recruited to the GSR promoters before osmotic stress.  There was a mild enrichment of the Gcn5-

MYC tagged protein in unstressed cells (Figure 6.5) which supported the idea that a HAT like 

Gcn5p was recruited prior to an osmotic shock treatment and oscillated the balance between 

acetylation and deacetylation, tilting it more towards acetylation thereby facilitating GSR gene 

activation. 

 

 

Figure 6.5 Gcn5 HAT is present at GSR promoters after osmotic stress Gcn5-MYC occupancy in 

an untagged WT (MSY 134-36) strain and a strain expressing MYC-tagged Gcn5 (MSY 721-01) at the 

promoters of GSR genes. The Gcn5 enrichment is expressed as a ratio of the tagged to the untagged 

strain. The cells were grown in YPD media until mid-log phase at 30°C. The cells were then treated with 

0.6 M NaCl and 1.2 M sorbitol and then subsequently cross-linked with 1% (w/v) formaldehyde. The 

ChIP procedure was followed as described in Chapter 2 and analysis were conducted the same way as 

for previous ChIP experiments using the RotorGene software and MS Excel. The Gcn5-MYC enrichment 

is relative to the untagged WT strain. The average of two independent experiments with standard errors 

is represented in the figure. 
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6.3 Discussion 

6.3.1. Signal integration between the UPR and the GSR pathways 

Data from Chapter 6 provided mechanistic insight as to how essential UPR components integrated 

into the osmotic stress pathway. The bZIP transcription factor Hac1p and Rpd3p-Sin3p HDAC 

facilitated RNA pol II clearance to promote GSR gene activation (Figure 6.1 and 6.2). This work has 

identified control of Pol II promoter clearance by a HDAC as a point of signal integration between 

the UPR and the GSR pathways. Deletion of RPD3 does not affect entry of Pol II into GSR 

promoters when compared to the WT strain (Figure 6.1a) whereas the RNA pol II levels were 

lower at the 3’ end of GSR genes (Figure 6.1b). Data from Chapter 6 provided evidence that Rpd3 

switched from a repressor to an activator of GSR genes and that the activating function of Rpd3 

was located after entry of Pol II into GSR promoters. A proportional increase or decrease in RNA 

pol II levels was expected for WT or mutant strains, which exhibited an increase or decrease in 

mRNA levels. As observed in Figure 6.2, for the ratio of RNA pol II at the 3’end to the promoters, 

the HAC1ip overexpressing strain had a higher mean ratio of RNA pol II while the HAC1 deletion 

strain had a lower RNA pol II ratio when compared to the WT strain. The RPD3 deletion strain had 

the lowest mean ratio of RNA pol II (Figure 6.2). The 3’ to 5’ ratio of RNA pol II of GSR genes 

(Figure 6.2) correlated with the mRNA signals produced by the HAC1 and RPD3 mutant strains 

(Figure 4.2 and 4.3a).  

 

6.3.2. RNA pol II S5 and S2 CTD phosphorylation levels correlate with RNA pol II at 5’ 

and 3’ regions of GSR genes respectively 

The largest subunit of Pol II (Rpb1) has a C-terminal domain (CTD). The phosphorylation of the 

CTD is an important regulatary mechanism to attract several transcription factors (Phatnani and 

Greenleaf, 2006). The CTD can be reversibly phosphorylated. The unphosphorylated form is 

recruited to the promoter while hyperphosphorylated form is involved in active transcription 
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(Phatnani and Greenleaf, 2006). The rpd3∆ and hac1∆ cells displayed elevated levels of S5 

phosphorylated Pol II in their promoters (Figure 6.3a), which allowed processing the positive 

function of Hac1 and Rpd3 in transcriptional activation of GSR genes. Binding of Hac1ip to Rpd3p 

complexes was one mechanism that activated this positive function of Rpd3p in Pol II promoter 

clearance (Figures 6.1 and 6.3), while apparently not affecting the repressing functions of Rpd3p 

because overexpression of Hac1i did not affect nucleosome acetylation or density in GSR 

promoters (Figure 4.6). Alternatively, Hac1ip may be associated transiently with Rpd3p to 

stimulate release of Pol II from promoters. The hac1Δ and rpd3Δ strains accumulated S5 

phosphorylated RNA pol II in their promoters, while Hac1ip overexpression decreased the amount 

of S5 phosphorylated Pol II in GSR promoters (Figure 6.3a). Thus, Hac1i stimulated Pol II promoter 

clearance by modulating the Rpd3L complex (Figures 4.5 and 6.1). co-IP experiments have 

revealed that Hac1ip induces structural changes in Rpd3p complexes (Dr Martin Schröder, 

unpublished data). This may affect either the specific deacetylase activity or the substrate 

selectivity of Rpd3L and may be necessary for Rpd3L to stimulate promoter clearance by RNA 

polymerase II.  

When compared to WT cells, CTD S2 phosphorylation was also decreased in cells overexpressing 

Hac1ip, which may reflect a positive function for Hac1ip in elongation (Figure 6.3b). RNA pol II CTD 

phosphorylation along with the yeast DSIF (DRB sensitivity inducing factor, an elongation factor) 

complex is known to recruit the Rpd3S complex to actively transcribed genes (Drouin et al., 2010). 

Epistatic studies between the Rpd3S complex and Hac1p to elucidate the positive role of Hac1p in 

elongation is subject to further investigation.  
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6.3.3. Gcn5 HAT contributes to increased nucleosomal histone acetylation of GSR 

genes during hyperosmotic stress 

An increase in acetylation observed after osmotic stress for GSR genes in cells quite possibly 

indicated the role of HATs in the transcriptional regulation of GSR genes. The Gcn5 HAT was 

shown to affect nucleosome histone acetylation patterns after osmotic stress (Figure 6.4) and was 

physically recruited to the GSR gene promoter regions to directly contribute to increasing 

acetylation levels (Figure 6.5). Gcn5p enrichment before osmotic stress (Figure 6.5) also indicated 

that the Gcn5 is recruited to the GSR promoters in unstressed cells and after osmotic stress 

contributed to acetylating GSR promoter nucleosomes. The increase in histone acetylation of GSR 

genes by Gcn5 HAT was further substantiated because the bromodomains of Gcn5 recognise 

acetylated lysine residues. The bromodomains is important for the expression of a number of 

inducible genes (Hassan et al., 2002; Zeng et al., 2008). The effects of a GCN5 deletion strain on 

H3 K18 acetylation level was drastic as a decrease in acetylation was observed before and after 

stress when compared to the WT strain (Figure 6.4b). The effects were not as strong for the H3 K9 

and H4 K8 acetylation levels before and after stress (Figure 6.4a and 6.4c). The GCN5 HAT is part 

of the SAGA complex (Baker and Grant, 2007) and contributes to acetylating lysine residues 

mainly in histone H3 (Grant et al., 1997; Grant et al., 1999). H3 K18 could be one acetylation site 

through which Gcn5 regulates the expression of GSR genes. It has been shown that the Gcn5p 

subunit of the SAGA complex preferentially acetylates histone H3K18 on the gene promoters and 

that Gcn5p activity is required for removal of histone H3 from one of the promoters (van Oevelen 

et al., 2006). This does not rule out the possibility that other HATS might have a role in acetylating 

GSR promoter nucleosomes. Data in Figure 5.4 suggested that the EAF3 deletion mutant specific 

to the Rpd3S complex, does not derepress GSR genes as the RCO1 deletion mutant does. Eaf3p is 

a known subunit of the NuA4 HAT complex (Eisen et al., 2001) and hence the NuA4 HAT might also 

have a role in acetylating GSR nucleosomes.  
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Chapter 5 indicated that Rpd3pL occupied GSR gene promoters before osmotic stress (Figure 5.3) 

and after osmotic stress contributed to the increased expression levels of GSR genes by RNA pol II 

promoter clearance (Figure 6.1). The data from this thesis provide evidence for a mechanism 

which results in the activation of the GSR genes. In unstressed cells, the Rpd3p and Gcn5p are 

both associated with the GSR promoters. A balance between acetylation by Gcn5p and 

deacetylation by Rpd3p at the GSR nucleosomes eventually result in favour of acetylation. The 

increase of acetylation on GSR nucleosomes though Gcn5p and the control of RNA pol II promoter 

clearance by Hac1p and Rpd3p result in activation of GSR genes (Figures 4.6, 5.1 and 6.1). 

Contrary to the role of Gcn5p attributing to an increase in acetylation after osmotic stress, the 

molecule does not contribute to a shift in nucleosomes in order to facilitate GSR gene activation 

(Figure 6.5d). Chromatin remodelling complexes regulating chromatin structure and dynamics 

during transcription initiation are known to play a role in GSR gene transcription. The chromatin 

remodeler RSC removes nucleosomes from GSR promoters in stressed cells (Mas et al., 2009). RSC 

is recruited to GSR promoters by Hog1 (Mas et al., 2009). RSC contains four bromodomains (Carey 

et al., 2006). It is likely that nucleosome acetylation is a second recruitment signal for RSC to GSR 

promoters and a HAT contributing to this increase in acetylation is the Gcn5 HAT (Figure 6.4 and 

Figure 6.5). The acetylation effects of Gcn5p on the three acetylation sites were not uniform 

(Figure 6.4). The data from Figure 6.4 suggested that other HATs like Esa1 (Bird et al., 2002; 

Tamburini and Tyler, 2005) could contribute to this increased acetylation and thereby nucleosome 

loss because the histone H3 occupancy remained largely unaltered in the GCN5 deletion strain 

(Figure 6.4d). Esa1 and Gcn5 HATs are known to act together previously to regulate gene 

transcription (Kremer and Gross, 2009). Whether GSR gene activation requires an interaction of 

both HATs is subject to further study. 
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6.3.4. Potential integration of the UPR with other stress pathways 

Hac1p acting through Rpd3p HDAC activated the GSR genes by affecting RNA pol II promoter 

clearance. Rpd3L, and not Rpd3S, appeared to be largely responsible for controlling Pol II 

promoter release, to integrate the Hac1i signal into regulation of GSR genes, and to keep GSR 

genes off by opposing HAT activity in unstressed cells. Rpd3S is recruited to the GAL1-GAL10 and 

SUC2 promoters by cryptic transcription to repress Pol II entry into these promoters (Pinskaya et 

al., 2009). Derepression of ALD3, HSP12, and STL1 in rco1Δ cells indicated that a similar 

mechanism may repress GSR genes. Activation of ALD3 and CTT1 by heat shock is defective in the 

Rpd3L mutants (Ruiz-Roig et al., 2010). Heat-shocked rpd3Δ cells display a small decrease in Pol II 

entry into the promoters of ALD3, CTT1, and HSP12 (Ruiz-Roig et al., 2010). This decrease in Pol II 

promoter occupancy appears to be smaller than the decrease that may be expected from the 

transcriptional defects of the rpd3Δ cells. Therefore, Rpd3L and Hac1i may also control release of 

Pol II from GSR promoters in heat-shocked cells. Heat shock disrupts protein folding homeostasis 

more globally than ER stress. For this reason, activation of the UPR and of Hac1i in heat-shocked 

cells is likely. The opposing activities of RPD3 HDAC and SAGA complexes are known to regulate 

heat shock gene structure and expression (Kremer and Gross, 2009). Hac1p was shown to occupy 

GSR gene promoters after osmotic stress (Figure 4.3), thus the potential role of Hac1p acting 

specifically through the SAGA activation complex or the RSC chromatin remodelling complex is yet 

to be determined. Overall, work in this thesis has shown that a signal from the stressed ER 

integrated into regulation of the GSR in osmotically-stressed cells. The contribution of the GSR to 

survival of several different environmental stresses suggested that the UPR and Hac1i will play 

similar roles in responses to other stresses.  

 

  



 

 

Chapter 7 
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7.1 UPR components protect cells against hyperosmotic stress 

The work presented in this thesis for the first time provided insight of how the UPR linked to 

osmotic stress. RPD3 was previously shown to be involved in osmotic stress. HAC1 was shown 

earlier to be associated with RPD3 under nutritional stress. The IRE1 and HAC1 deletion strains 

were sensitive to 1.2 M and 2.4 M sorbitol. The IRE1 deletion strain was more sensitive to 2.4 M 

sorbitol than the HAC1 deletion strain which suggested IRE1 independent signalling activities 

during hyperosmotic stress. Ire1p is an endoribonucleokinase which acts upstream of bZIP Hac1. 

Point mutants in the kinase or ribonuclease domains of Ire1p have been shown earlier to make 

cells extremely sensitive to survive ER stress. It would be interesting to investigate the molecular 

effects of IRE1, and know if at all it integrates with other known kinases under hyperosmotic 

stress. The IRE1 deletion strain was more sensitive than a HAC1 deletion strain to 2.4 M sorbitol. 

This observation suggested that Ire1 endoribonucleokinase had different kinase substrates, some 

of which were possibly critical during osmotic stress. Moreover, the observation that the HAC1 

deletion strain was more resistant at 2.4 M sorbitol could be due to a partial protection by the 

unspliced Hac1p. The HAC1 and RPD3 deletion strains were sensitive to hyperosmotic stress 

individually but these two molecules acted independent of each other to protect cells during 

osmotic shock. Moreover, a HAC1i overexpressing strain provided mild resistance to varying 

concentrations of NaCl and sorbitol. My data collectively showed that the UPR mediated a 

protective role during hyperosmotic shock. The protective role of Hac1p during hyperosmotic 

stress was substantiated by the fact that HAC1 splicing was observed in osmotically stressed cells. 

The role of HAC1 in protecting cells may be direct or indirect. Hyperosmotic stress requires 

strengthening of the CW. The inability of the ER to cope with excess CW protein cargo resulted in 

activation of the UPR and splicing of HAC1 mRNA, as a consequence of an indirect effect of the 

UPR. In a more direct role, HAC1 was spliced to activate chaperone genes, which is a classic 

hallmark of the UPR pathway. 
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The synergistic activation of multiple stress pathways to overcome the initial phase of an 

environmental stress raises the possibility of having essential components of the ER pathway 

acting as key components for other pathways. In addition UPR components may interact with key 

molecules of other signaling pathways in order to maintain cellular homeostasis. Osmotic stress 

requires strengthening of the cell wall. Hence, the cell wall integrity pathway seems another 

potential pathway which coalesces with the ER and the osmotic stress pathways. Components of 

the UPR pathway play a role in different stresses. For example, IRE1 deletion strain is sensitive to 

the cell wall poisons Congo red and Calcofluor White, the cell wall-degrading enzyme zymolyase 

(Scrimale et al., 2008). Likewise several mutant strains of components critical to the cell wall 

pathway are sensitive to ER stress (Bonilla and Cunningham, 2003; Chen et al., 2005; Scrimale et 

al., 2008; Torres-Quiroz et al., 2010). Consequently, ER stress causes sensitivity to cell wall stress 

and activation of cell wall integrity signalling. Thus in an ordered chain of signalling events there is 

always a likelihood of excess protein cargo on the ER. Upon osmotic stress, there seemed to be a 

threshold level for the ER to alleviate this excess protein cargo. On exposure to higher 

concentrations of osmotic stress, the ER threshold level was challenged beyond which the cells 

were incapable of triggering the UPR because of a translational shut-off. Overall, data from this 

thesis showed that molecules that were essential during the ER stress were also molecules which 

protected cells against hyperosmotic shock. Whether ER stress is linked to other stress responses 

via HAC1 is subject to further investigation. 

 

7.2 HAC1 acts via RPD3 to activate a subset of GSR genes 

The general stress response (GSR) activates a large set of genes. One subset of genes is the 

osmoresponsive genes during hyperosmotic shock. My data showed that Hac1 was a positive 

regulator of GSR genes. A Hac1i overexpressing strain demonstrated higher induction levels of 

GSR genes and a HAC1 deletion strain exhibited lower induction levels when compared to a WT 
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strain. Data also showed that HAC1 and RPD3 belonged to the same pathway in activating GSR 

genes. Growth assay results showed that HAC1 and RPD3 acted independent of each other to 

protect cells from hyperosmotic shock but the GSR gene transcription data suggested that HAC1 

and RPD3 were epistatic to each other in regulating GSR genes. Hac1p had a direct role in the 

positive regulation of GSR gene expression. Moreover, this direct role of Hac1ip in regulating GSR 

genes strictly required the presence of the Rpd3L complex. Hac1ip during UPR activation binds to 

gene promoters in a UPRE-dependent manner (Mori et al., 1998). In yeast, S.cerevisiae three 

positive transcriptional control elements have been identified which are activated under one 

particular stress or multiple stress conditions (Ruis and Schϋller, 1995).  One of the control 

elements is the Stress Response Elements (STRE) and the UPRE is a sub-type of the STRE (Schϋller 

et al., 1994). While UPRE is specific to the UPR, it is possible that Hac1p is able to bind the STREs 

of the GSR gene promoters to mediate transcriptional activation during hyperosmotic stress 

(Schϋller et al., 1994). An analysis of the gene sequences of different control elements would 

reveal if Hac1p is compatible in binding to the GSR STREs. 

HAC1 was not involved in the epigenetic regulation of GSR genes. Deacetylation of promoter 

nucleosomes by the Rpd3 HDAC was earlier shown as a mechanism of GSR gene activation. If 

Hac1p acted via the Rpd3L complex and had a direct role in regulating GSR gene expression then a 

Hac1i overexpressing strain was expected to decrease acetylation while a HAC1 deletion strain 

was expected to increase acetylation levels. The promoter nucleosome histone acetylation levels 

for H3 K9, H3 K18 and K4 K8 acetylation remained unaltered in the HAC1 mutant strains when 

compared to the WT strain. There was an overall increase in the nucleosome histone acetylation 

levels which correlated with a decrease in total histone H3 occupancy. Hac1 does not play a role 

in affecting histone acetylation levels yet there was an increase of acetylation observed after 

osmotic stress. These data suggested that a HAT contributed to the increase in acetylation after 

hyperosmotic stress.  
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Analysing Hac1p for regulating nucleosomal histone acetylation pattern by studying three lysine 

residues suggested that Hac1p might not have a role in epigenetically regulating GSR genes. 

Hac1p interacted with Rpd3p HDAC, but this does not negate the possibility that Hac1p might 

affect histone dynamics by modulating more than one molecular mark (histone modification) 

other than acetylation. Transcription factors act as key epigenetic marks during ER stress (Donati 

et al., 2006) and recent reports have suggested that it might not just be one molecular mark like 

acetylation which contributes to the dynamics of nucleosome movement but a combination of 

marks like methylation, acetylation and phosphorylation on the histone H3 and H4 tails. For 

example, in mouse cells it has been shown that methylated H3K4 affects the overall perpetual 

dynamic turnover of acetylation while methylated H3K9 does not (Hazzalin and Mahadevan, 

2005). It has also been reported that Rpd3 along with Set1-mediated H3K4me regulates PHO5 

expression (Wang et al., 2011).  Recent reports in the past one decade on chromatin and 

nucleosome regulation also have a plausible hypothesis built on strong experimental evidence 

that there exists a ‘histone code’, a foreseen pattern of histone modifications most likely 

associated with gene activation. How and where Hac1p fits in as an epigenetic regulatory unit in 

activating GSR genes is subject to further investigation.  

 

7.3 Role of Rpd3p in GSR gene regulation 

Results in this thesis demonstrated that a RPD3 deletion strain had an increase in acetylation after 

osmotic stress for three histone acetylation lysine sites. This increase in acetylation observed for 

the RPD3 deletion strain after osmotic stress correlated with a decrease in nucleosome 

occupancy. The data also demonstrated that there was an increase in acetylation in rpd3Δ cells in 

unstressed cells when compared to the WT strain. Further investigation revealed that the Rpd3 

HDAC associated with GSR gene promoters before and after stress. The Rpd3L large complex 

associated with GSR promoters and Hac1p affected the association of the complex in stressed and 
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unstressed cells. The association of Hac1p with the Rpd3L complex and a decrease in enrichment 

of the Rpd3L complex in the absence of HAC1 suggested that Hac1p affected the function of the 

enzyme complex. Whether it is the substrate specificity or the enzymatic activity of the Rpd3L 

complex that Hac1p affected during GSR gene activation is to be investigated further.  

Using complex specific deletion mutant strains, my data showed the causality for the role of 

Rpd3L complex and not the Rpd3S complex in GSR gene activation. The Rpd3S complex mutants, 

the RCO1 and EAF3 deletion mutants had different mRNA expression levels when compared to 

the WT strain. The RCO1 deletion strain caused derepression of GSR genes while the EAF3 

deletion had an intermediate induction level to the WT and RPD3 deletion strains. Eaf3p is part of 

the NuA4 HAT complex. It is a possibility that the Rpd3S complex could regulate the GSR gene 

transcription elongation steps. Data in this thesis demonstrated that the GSR gene activation 

bypassed the need of Rpd3 catalytic activity during hyperosmotic stress. The Rpd3 point mutants 

had higher induction level of GSR genes than a RPD3 deletion strain but lower induction levels 

than the WT strain. My data indicated that during GSR gene activation, the Rpd3 catalytic activity 

was not critical as Rpd3 had structural and regulatory roles for which the catalytic activity might 

not be essential.  One such structural role played by Rpd3 was to tether Hac1p to the GSR gene 

promoters.  

 

7.4   Crosstalk between the ER stress pathway and osmotic stress 

Data in this thesis indicated that the regulatory role of Rpd3p and Hac1p in GSR gene activation 

was the release of RNA pol II for promoter clearance. The hac1Δ strain showed an increase in RNA 

pol II levels at the GSR gene promoters while the rpd3Δ strain showed a similar RNA pol II level as 

the WT strain. These two strains demonstrated an increase in RNA pol II levels at the GSR gene 

promoters in spite of having weak GSR mRNA induction levels. For the WT, HAC1 manipulations 

and the RPD3 deletion mutant strains, an increase or decrease in GSR induction levels is generally 
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correlative with increase or decrease in RNA pol II levels respectively. The RNA pol II levels at the 

3’ end of the GSR genes for the hac1Δ and rpd3Δ strains demonstrated a decrease when 

compared to the WT strain. The ratio of the 3’ end to the 5’ end of the RNA pol II levels indicated 

that the Hac1ip overexpressing strain had a higher ratio of RNA pol II than the WT strain while the 

rpd3Δ strain had the lowest ratio of RNA pol II levels. These data correlated with the GSR gene 

expression levels for the WT, HAC1 mutants and the RPD3 deletion strains. The RNA pol II 

promoter clearance by the Rpd3 HDAC was thus a signal integration event between the UPR 

pathway and the ER stress.  

The Rpd3 HDAC was present on the GSR promoters before and after osmotic stress. Before 

osmotic stress the Rpd3 HDAC most likely functioned as a repressor for GSR genes whereas after 

osmotic shock it served as structural platform for Hac1p to bind to the GSR promoters and for 

promoter clearance by RNA pol II. One of the HAT contributing to the increase in acetylation 

during osmotic stress was Gcn5. The Gcn5 HAT contributed to the increase in H3 K9, H3 K 18 and 

H4 K8 acetylation. My data indicated that one of the potential lysine residues on the N-terminal 

core histone H3 tail which Gcn5 acted through to activate GSR genes was H3 K18. Gcn5p was 

enriched in the GSR gene promoter regions in unstressed cells as was the Rpd3p. The data 

indicated that there was a balance between deacetylation by Rpd3p and acetylation by Gcn5p 

before osmotic stress which eventually was in favour of acetylation after osmotic stress. This 

increase in acetylation preceded nucleosome loss which in turn contributed to the activation of 

GSR genes. Rsc has been identified as a chromatin remodeller which contributes to the shuffling 

of nucleosomes which in turn facilitate GSR gene activation (Mas et al., 2009). Figure 7.1 suggests 

a possible mechanism of GSR gene activation in the WT and the RPD3 deletion strains. In the 

absence of osmotic stress, Rpd3p keeps the GSR genes repressed. Upon hyperosmotic stress, 

there is a balance between deacetylation and the acetylation of nucleosomes. The Gcn5 HAT 

contributes to this increase in acetylation after osmotic stress. Hac1ip acts as an Rpd3p dependent 

regulator of GSR genes and promotes GSR gene activation via the RNA pol II promoter clearance. 
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In an RPD3 deletion strain, an increase in acetylation levels is observed before and after osmotic 

stress. Release of RNA pol II is delayed in an RPD3 deletion strain because of which the GSR gene 

induction levels are weak when compared to the WT strain. 

 

Figure 7.1 A diagram suggesting a mechanism of GSR gene activation in (A) WT and (B) RPD3 deletion 

cells. 

Data presented in this thesis provided a mechanistic understanding of a crosstalk between the 

UPR pathway and osmotic stress. Hac1 bZIP transcription factor acting through the Rpd3 HDAC 

have been shown to activate GSR genes by controlling the RNA pol II promoter clearance. How 

the ER pathway integrates with other stress pathways is currently unknown. The UPR pathway 

has the pivotal Ire1 endoribonucleokinase which controls HAC1 mRNA splicing. The osmotic 

pathway has the Hog1 MAPK which acts downstream in the HOG pathway. How these two kinases 

from these two specific pathways interact upstream in the signalling cascade and whether Ire1 
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interacts upstream of the HOG pathway with other MAPKKs and MAPKKKs is subject to further 

investigation.  

Hac1p was shown in this thesis to reproducibly activate a subset of GSR genes during osmotic 

shock. The effect of Hac1p on a genome wide scale and under different stress reponses can be 

undertaken using ChIP sequencing analysis and genomic microarray studies. It is likely that Hac1p, 

the only known transcription factor to be spliced by Ire1p in the ER stress pathway quite possibly 

have a role in other stress pathways. The point of signal integration between ER stress pathway 

and osmotic stress is the Rpd3p and its role in signal integration within other stress pathways is a 

possibility because Rpd3p has been shown to activate various subsets of genes under different 

stress pathways. A mechanism identified in this thesis, that of the control of RNA pol II clearance 

by Rpd3 HDAC and Hac1, is specific to a set of genes like GSR or can be identified as a common 

mechanism in other genes regulated by Rpd3 HDAC is scope of future research. Identification of a 

HDAC as a signal integration point, as well as identification of a role for a HDAC in promoting Pol II 

promoter clearance extends our knowledge about cellular functions of HDACs. On a broader 

understanding, indetifying different mechanisms by which molecules like the Rpd3 HDAC regulate 

gene expression in yeast and higher organisms is critical. Many molecules within epigenetic 

regulation are now targets for pharmacological interventions. 

7.5   Epigenetic regulation, UPR and human diseased states 

Literature is accumulating which now links epigenetic regulation to human diseased states. 

Current evidence suggest that histone modifications can alter cellular regulation either by altering 

gene expression programmes or on a broader scale, affect genome integrity and chromosome 

segregation. For example, homozygous null mutant embryos for the gene PR-Set7, display early 

lethality due to cell cycle defects, massive DNA damage and improper mitotic chromosome 

condensation (Oda et al., 2009). In addition, mice deficient for the SUV 39 H3 K9 

methytransferase demonstrate reduced levels of H3 K9 di and tri methylation have impaired 
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genome stability and show an increased risk of developing cancer (Peters et al., 2001). My work 

has shown that a HDAC serves as a point of signal integration event during two stress responses. 

ER stress and the UPR have been implicated to several diseased states. ER Ca2+ buffering, and 

protein and lipid turnover impact many cardiac functions, including energy metabolism, 

cardiogenesis, ischemic/reperfusion, cardiomyopathies, and heart failure. ER proteins and ER 

stress-associated pathways may play a role in the development of novel UPR-targeted therapies 

for cardiovascular diseases (Groenendyk et al., 2010). Because increasing number of studies 

suggest that ER stress is involved in a number of disease pathogenesis including 

neurodegenerative diseases, cancer, obesity, diabetes and atherosclerosis, promoting ER folding 

capacity through chemical chaperones emerges as a novel therapeutic approach (Engin and 

Hotamisligil, 2010). Rpd3 HDAC is a critical molecule of the UPR pathway in yeast and my work 

shows that it integrates into osmotic stress. My work paves way for further research into a 

broader understanding how HDACs work during different human diseased states and stress 

responses. Several HDAC inhibitors are currently in clinical trials both for solid and hematologic 

malignancies. Thus, HDAC inhibitors, in combination with DNA-demethylating agents, 

chemopreventive, or classical chemotherapeutic drugs, could be promising candidates 

for cancer therapy (Shankar and Srivastava, 2008).  
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