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Zhi Li 

 

Epidermal Notch1 recruits innate lymphoid cells to orchestrate normal skin 

repair 

 

Abstract  

Skin constitutes a barrier between our body and outside environment providing the 

first line defence against microbial infection. Epithelial repair and skin wound 

healing starts with inflammation to clear up invading pathogens and debris followed 

by cell proliferation and tissue remodelling. The immune response is vital for 

protecting the body from infection and diseases, however, it remains controversial 

whether the immune cells contribute to wound closure and tissue repair, or cause 

scarring and pathology. In this thesis, I investigate the role of Notch signalling in 

epithelial tissue repair. I demonstrate Notch1 signalling activation in epidermal 

keratinocytes following acute skin injury recruits innate lymphoid cells (i.e. ILC3s) 

to the site of injury in a TNF-α/CCL20-dependent mechanism and controls 

macrophage/monocyte recruitment via ILC3-dependent CCL3. Notch1 also induces 

epidermal production of IL23 which facilitates ILC3s to produce IL22 for re-

epithelialization and skin repair.  
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Chapter 1 Introduction 

1.1 Notch Signalling 

1.1.1 Background 

The Notch gene was first discovered 100 years ago in fruit fly, Drosophila 

Melanogaster (Dexter, 1914). Mutant Notch gene has a distinct phenotype of 

‘notched’ wing tips during embryonic development (Dexter, 1914). Since that first 

discovery, it has become clear that Notch, as an evolutionary conserved gene, plays a 

key role in a range of developmental processes (Bray 2006; Penton et al., 2012; Watt 

et al., 2008). However, the implication of Notch in human development and disease 

was not revealed until early 1990s when a gain-of-function mutation in human 

Notch1 gene was reported to cause T-cell acute lymphoblastic leukaemia (Ellisen et 

al., 1991). Since that first link to human diseases, mutations of Notch family genes 

have now been related to a wide spectrum of diseases and cancers (Louvi and 

Artavanis-Tsakonas, 2012; Penton et al., 2012). The aim of this thesis is to define the 

role of Notch in skin wound healing particularly in respect to the regulation of 

immune cell recruitment and function.  

 

1.1.2 Notch signalling facilitates cell-to-cell communication 

Notch signalling is named after Notch and is essential for communication and 

interaction between different cells expressing a Notch gene encoded receptor and its 

ligand respectively at cell surface (Chiba 2006, Fortini 2009; Musse et al., 2012). In 

mammals there are four Notch (receptors), Notch1-4, with similar protein structures 

(Figure 1.1) (Chiba 2006; Musse et al., 2012). In Golgi apparatus Notch protein 

precursor undergoes post translational modification involving two events: the S1 

cleavage (Figure 1.2) mediated by furin like convertase to form a heterodimer in  
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Figure 1.1 The structures of Notch receptors and ligands (Modified from Shigeru 

Chiba, 2006). There are 36 EGF-like repeats in Notch1 and Notch2, 34 repeats in 

Notch3, 29 repeats in Notch4, 16 repeats in Jagged1 and Jagged2, and 5-9 repeats in 

Delta1 and Delta4. LNR and HD form negative regulatory region (NRR). Ligand 

binding site is located in EGF-like repeats 11 and 12. ANK, ankyrin repeat; CR, 

cysteine-rich repeat; DSL, Delta-Serrate-Lag2 domain; EGF, epidermal growth 

factor; HD, heterodimerization domain; LNR, Lin12-Notch repeat; NLS, nuclear 

localization signal; PEST, rich in proline, aspartic acid, serine and threonine residues; 

PM, plasma membrane; RAM, RBP-Jk associated molecule; TAD, transactivation 

domain.  

 

 

 

 

 

 

 

Extracellular Intracellular Intracellular 

PDZ 

C-terminus N-terminus C-terminus 
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Figure 1.2 Cleavage sites in Notch receptor and its precursor (Adapted from 

Musse et al., 2012). Mature transmembrane Notch protein is a heterodimer formed 

by furin cleavage at S1 site between N-terminal HD (yellow) and C-terminal HD 

(green) in Notch extracellular domain during post translational modification.  

Metalloproteinase ADAM10 mediated cleavage S2 site is located within C-terminal 

HD and is buried deep by Notch NRR  (negative regulatory region) domain in which 

three Notch12-Lin repeats (NLR) (purple) are conformationally compacted and wrap 

over HD to keep Notch inactivated ‘OFF state’ in the absence of ligand. The S3 

cleavage occurs in Notch intra-membrane domain and requires the substrate 

produced by S2 cleavage. The ligand binding site containing EGF (epidermal growth 

factor) like repeats 11 and 12 is indicated in red.  
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which cleaved N-terminal and C-terminal fragments remain stably associated 

through multiple non-covalent interactions between their heterodimerization 

domains (HD) HD-N and HD-C, and Fringe N-acetylglucosamine transferase 

mediated glycosylation that regulates the intensity of Notch signalling through 

altering the Notch binding affinity for ligand (Chillakuri et al., 2012; Fortini 2009; 

Musse et al., 2012). Then mature Notch receptor is transported and tethered to cell 

membrane (Chillakui et al., 2012; Fortini 2009; Musse et al., 2012). Upon binding to 

one of its ligands through epidermal growth factor (EGF) like repeats 11 and 12 in 

Notch extracellular domain, Notch undergoes sequential S2 and S3 proteolysis 

cleavages mediated by metalloproteinase ADAM10 and γ-secretase respectively 

(Figure 1.2) (Musse et al., 2012). In unbound receptors, the S2 cleavage is blocked 

by highly compacted and folded Lin12-Notch repeats (LNRs) in Notch negative 

regulatory region (NRR) (Figure 1.2) (Musse et al., 2012). The ligand binding 

stimulates a conformational change in NRR to expose the S2 site to ADAM10-

mediated cleavage which then permits S3 cleavage within Notch intra-membrane 

domain by providing a substrate for the γ-secretase enzyme catalysis (Musse et al., 

2012; Watt et al., 2008). Following S3 cleavage, Notch intracellular domain (NICD) 

is subsequently released from cell membrane and translocated into nucleus where 

NICD interacts with a DNA binding protein, recombination signal sequence binding 

protein Jκ (RBP-Jκ, also known as CSL), and a co-activator, Mastermind-like 

(MAML), through its RBP-Jκ associated molecule (RAM) and ankyrin repeat (AKN) 

domain respectively (Figure1.1) to directly activate transcription of Notch target 

genes (Ambler and Watt, 2010; Chilarkuri et al., 2012; Iso et al., 2003; Watt et al., 

2008). Notch target genes typically include basic helix-loop-helix family, such as 

Hes and Hey genes which encode transcriptional factors that in turn influence cell 
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fate and differentiation (Guruharsha et al., 2012; Kageyama et al., 2007, Watt et al., 

2008). Similar to other short-life intracellular proteins, the turnover of the NICD is 

controlled by C-terminal PEST domain, rich in proline, aspartic acid, serine and 

threonine residues, which induces NICD degradation via ubiquitin/proteasome 

mechanism to stop Notch signalling when not in need (Chillakuri et al., 2012; 

Spencer et al., 2004).  

 

Similar to Notch receptors, canonical Notch ligands are also membrane-bound 

proteins containing EGF like repeats in the extracellular domain (Figure1.1). 

Adjacent to the EGF like repeats is Notch-binding site Delta-Serrate-Lag2 (DSL) 

region. The intracellular PDZ domain has a role in promoting cell adhesion and 

inhibiting cell motility (Chillakuri et al., 2012). Notch ligands are divided into two 

families namely Jagged (Jag, also known as Serrate) and Delta (also known as Delta 

like, DLL), which are distinguished from each other by the presence or absence of a 

cysteine rich (CR) domain (Figure 1.1). At least 5 Notch ligands, Jagged1, Jagged2, 

Delta1, Delta3 and Delta4 have been detected in mammals (Musse et al., 2012).  

 

Notch and its ligands are both bound to cell membrane, thus Notch is involved in 

cell-to-cell communication and interaction. The most pronounced function of this 

interaction is to regulate cell fate decision (Blanpain et al., 2006; Moriyama et al., 

2008; Watt et al., 2008). However, new evidence suggests that Notch controls 

expression and activities of growth factors and cytokines, such as tumor necrosis 

factor-α (TNF-α), which facilitates communication between different cell types 

beyond immediate contact, for instance between epithelial cells and immune cells 

(Ambler and Watt, 2010). Furthermore, recent studies have shown that Notch 
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activation up-regulates Jagged1 expression in signal-receiving cell via nuclear factor 

NKκB or P63 pathway, which in turn relay and amplify Notch signaling from cell to 

cell (Ambler and Watt, 2010; Foldi et al., 2010; Ross and Kadesch, 2004).  

 

In conclusion, Notch, as a family of evolutionary conserved gene, has been linked to 

a range of developmental processes and human diseases (Louvi and Artavanis-

Tsakonas, 2012). Notch signaling activation in Notch-expressing cells is dependent 

on ligand-induced NRR conformational change that permits a series of proteolysis 

cleavages in Notch extracellular domain and intra-membrane domain followed by 

release of NICD to activate transcription of target genes and a signaling cascade in 

nucleus (Chillakui et al., 2012; Musse et al., 2012). Notch and its ligands are both 

bound to cell membrane, thus Notch is involved in cell-to-cell communication and 

interaction. Notch also controls expression and activity of several growth factors and 

cytokines, such as TNF-α (Ambler and Watt, 2010). 

 

1.1.3 Ligand endocytosis is required for Notch receptor activation 

Similar to other membrane-bound proteins, the surface level of Notch receptors and 

ligands are maintained appropriately through ubiquitylation-dependent endocytotic 

degradation in order to prevent over-activation of Notch signaling (Weinmaster and 

Fischer, 2011).  In mammals, ubiquitin ligases Itch/AIP4 and Neur have been found 

to promote constant endocytosis of Notch receptor and ligand respectively 

(Chastagner et al., 2008; Lai et al., 2001). By contrast, recent studies have suggested 

particular ligand endocytosis is critically required for activating ligand-induced NRR 

conformational change rather than limiting Notch signaling (Chen et al., 2009; 

Nichols et al., 2007; Wang and Struhl, 2005).  They found either genetic ablation of 
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endosomal pathway components that are known to participate in ligand 

internalization, such as dynamin, epsin and clathrin, or deletion of ligand 

intracellular domain that contains ubiquitin ligase binding sites and nuclear 

localization signal, resulted in accumulation of ligands on cell surface as expected, 

but failure in sending a signal to Notch-expressing cells (Chen et al., 2009; Nichols 

et al., 2007; Wang and Struhl, 2005). This signaling-specific endocytosis of ligand is 

thought to be unique to Notch signaling (Weinmaster and Fischer, 2011) and 

requires a specific ubiquitin ligase Mib distinct from Neur which down-regulates 

surface ligand level through constitutive ligand endocytosis (Wang and Struhl, 2005). 

The underlying mechanism is not completely understood, however, two models 

involving ligand recycling and pulling force have been proposed in order to explain 

how ligand endocytosis in signal sending cells promotes Notch activation. 

 

The recycling model is based on the finding that recycling proteins such as Rab11 

and Sec15 which are known to promote membrane-bound protein to traffic back to 

cell surface through endocytosis and exocytosis have been detected in some ligand-

expressing cells and deletion of these recycling proteins in ligand cells led to failure 

in Notch activation (Emery et al., 2005; Jafar-Nejad et al., 2005). This model (Figure 

1.3) hypothesizes that the Notch ligand initially transported to cell membrane may 

not be able to physically bind to Notch receptor in an adjacent cell due to the poor 

position of ligand against receptor, therefore dislocation of ligand into a specific 

microdomain may be required through Rab11 and Sec15 dependent ligand recycling 

to juxtapose ligand to Notch receptor before they can bind to each other (Benhra et 

al., 2010; Musse et al., 2012; Rajan et al., 2009; Weinmaster and Fischer, 2011). 

However, this proposed recycling model may only apply to polarized cells such as  
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Figure 1.3 Recycling model for ligand endocytosis to activate Notch signaling 

(Reproduced from Musse et al, 2012). The recycling model proposes ligand initially 

delivered to the cell surface is ubiquitylated (Ub) by E3 ubiquitin ligase Mindbomb 

(Mib) alone in mammals or Mib together with Neurlized (Neur) in drosophila which 

facilitates interactions with the endocytic adapter epsin, GTPase dynamin and vesicle 

coating protein clathrin to promote ligand endocytosis. Following internalization, 

ligand enters recycling endosome and traffics back a cell surface microdomain which 

supplies a better position for ligand to bind Notch receptor in adjacent cell. 
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epithelial cells since Rab11 is not required to activate Notch signaling in some other 

types of cells (Windler and Bilder, 2010). It is also believed by some researchers that 

Notch ligand might require further processing through recycling to become a more 

competent ligand with higher binding affinity for Notch, however, such an active 

form of ligand has yet to be identified (Weinmaster and Fischer, 2011).  

 

In contrast, the pulling force model (Figure 1.4) proposes ligand-Notch binding 

alone may not be sufficient to induce NRR conformational change that relieves the 

repression of S2 cleavage, and additional force may be required to pull LNR away 

from HD. This mechanical force could be generated by ligand endocytosis, and 

could invaginate cell membrane and pull ligand back into signal-sending cell during 

endosome formation. Since the fringe-enhanced binding between Notch receptor and 

ligand is strong enough, this force may unfold, stretch and pull the whole ligand-

receptor complex towards signal-sending cell and thus expose S2 site for ADAM10-

mediated cleavage.  (Liu et al., 2010; Musse et al., 2012; Nichols et al., 2007; Parks 

et al., 2000; Weinmaster et al., 2011). This model was first raised by Parks et al. 

(2000) who detected co-localization of Delta and NECD in endosomes of Delta-

expressing drosophila imaginal disc cells. It was supported by a more recent study in 

which ligand with endocytic defects was still able to physically bind to Notch, but 

failed to induce Notch signaling (Gordon et al., 2008, Nichols et al., 2007).   

 

In summary, the surface level of Notch receptor and ligand and subsequent Notch 

activity are regulated by ubiquitylation-dependent constitutive endocytosis that 

induces protein degradation (Weinmaster and Fischer, 2011). Notch activation 

requires specific ligand endocytosis which may either dislocate ligand to a better  
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Figure 1.4 Pulling force model for ligand endocytosis and the downstream 

signaling after Notch activation (Adapted from Musse et al., 2012). Pulling force 

generated by endocytosis of Notch-bound ligand pulls the LNR modules (purple) 

away from HDs (yellow and green) to directly expose S2 site in N-terminal HD 

(green) (1). Alternatively, this force unfolds HD structure and induces HD physical 

dissociation thereby removing N-terminal fragment from intact Notch dimer prior to 

S2 cleavage (2). In both cases NRR domain is targeted to expose S2 site in the 

remaining membrane bound Notch receptor for ADAM10 cleavage which directly 

generates a substrate for γ-secretase S3 cleavage. After proteolysis NICD is released 

and translocated into nucleus to bind CSL (also known as RBP-Jk) and co-regulator 

MAML to activate transcription of target genes. 
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position for binding Notch or provide pulling force for inducing NRR 

conformational change (Musse et al, 2012). 

 

1.1.4 Anti-NRR1/ NRR2 blocking antibodies target individual Notch receptor 

 Since gain-of-function mutations in Notch receptor are implicated in a number of 

diseases and cancers, most notably T-cell acute lymphoblastic leukaemia, the current 

exploration of therapeutic drugs for altering Notch signaling is focusing on how to 

block Notch signaling, ideally to block activation of individual Notch receptor 

(Groth and Fortini, 2012). Researchers were formerly interested in γ-secretase 

inhibitor (GSI) which represses γ-secretase mediated events including the S3 

cleavage of Notch, since a small number of GSIs, such as LY450139 invented by Eli 

Lilly, had entered phase III clinical trial for treating Alzheimer’s Disease by 

preventing the proteolysis of amyloid precursor protein into pathogenic amyloid 

plaques (Lanz et al., 2006; Tolia and De Strooper, 2009). However, all of these GSIs 

resulted in serious gastrointestinal toxicity and immune system defects owning to 

pan-inhibition of all Notch receptors and possibly other γ-secretase-involved 

pathways (Groth and Fortini, 2012). More recently, the development by Genotech of 

individual Notch1 and Notch2 blocking antibodies, anti-NRR1 and anti-NRR2, are 

favoured and promising due to increased specificity and reduced side effects (Wu et 

al., 2010). These individual blocking antibodies stabilize the compacted 

conformation of NRR1 or NRR2 and maintain the ‘off’ status of Notch1 or Notch2 

even when they are bound to a ligand (Wu et al., 2010).  

 

In summary, Notch is involved in a range of developmental processes and human 

diseases through cell-to-cell interaction (Bray 2006; Louvi and Artavanis-Tsakonas, 
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2010; Penton et al., 2012). Notch activation requires ligand endocytosis-dependent 

NRR conformational change which permits proteolysis cleavages and subsequently 

releases NICD (Musse et al., 2012). This activated form of Notch then translocates 

into nucleus to activate target gene transcription and a signaling cascade that usually 

functions to regulate cell fate decision (Bray 2006). Notch also controls expression 

and activity of growth factors and cytokines, such as TNF-α (Ambler and Watt, 

2010). Recently, new therapy for blocking Notch signaling has been developed by 

using anti-NRR1 or anti-NRR2 antibody to target individual Notch1 or Notch2 

receptors with high specificity and reduced side effects (Wu et al., 2010).  

 

1.2 Skin 

1. 2.1  Background 

The outer surface of our body is covered by skin which is composed of epidermal 

epithelium tissue and underlying dermal connective tissue. Skin as a physical barrier 

provides first-line defence against chemical insults and microbial penetrance from 

outside environment, and prevents excess loss of water and water-soluble salts from 

inner body (Baroni et al., 2012; Fuchs, 2007). The skin color is rendered by 

melanocytes located in epidermis via releasing pigment granules to keratinocytes to 

help protect cell nucleus from ultraviolet radiation such as sunshine (Baroni et al., 

2012). The sense of touch and other sensations are provided by epidermal Merkel 

cells which are connected with enriched nervous endings in dermis (Baroni et al., 

2012).  The tensile strength of skin is supplied by dermal myofibroblasts which are 

differentiated from dermal fibroblasts to produce components of extracellular matrix 

(ECM) such as collagen and elastic fibres (Baroni et al., 2012). The nutrients are 

supplied by blood capillaries distributed in dermis. In this section, I will focus on the 



 
29 

development and maintenance of epidermal lineages, and the properties of epidermal 

barrier. 

 

1.2.2 Epidermis is a self-renewing stratified epithelium with multiple lineages 

Epidermis is a self-renewing stratified epithelium with multiple lineages including 

interfollicular epidermis (IFE) and its specialized appendages, such as hair follicles 

(HF) and associated sebaceous gland (SG) and sweat gland (Fuchs, 2007) (Figure 

1.5a). During embryogenesis these lineages are all differentiated from a single 

epithelium (Fuchs, 2007). Invagination and down-growth of regularly spaced 

epithelium form hair follicles which are in charge of producing hairs (Alonso and 

Fuchs, 2006; Fuchs, 2007). Inside hair follicles, sebaceous and sweat glands are 

developed for producing oil-filled sebocytes and sweat (Ambler and Määttä, 2009). 

The remaining epidermis, namely interfollicular epidermis, undergoes cornification 

and stratification into several layers populated by cells with differential status of 

differentiation to form a permeability barrier at body surface for tackling the 

potential risks of excess water loss and penetrance of microbes and chemicals from 

outside environment throughout postnatal life (Ambler and Määttä, 2009; Fuchs, 

2007; Segre, 2006).  

 

Once established epidermal lineages are physiologically maintained by their own 

epidermal stem cells or progenitor cells located in distinct compartments to supply 

the needed cells through proliferation followed by terminal differentiation (Ambler 

and Määttä, 2009; Fuchs, 2007; Fuchs, 2008; Lechler and Fuchs, 2005; Plikus et al., 

2012; Watt et al., 2006). The final products of terminal differentiation, such as hairs 

and corneocytes, undergo apoptosis after a limited lifespan and shed from our body  
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Figure 1.5 Epidermis is composed of hair follicles and interfollicular epidermis 

(Adapted from Plikus et al., 2012; Shimomura and Christinano, 2010) (a) Schematic 

diagram illustrating anagen hair follicle (HF), interfollicular epidermis (IFE) and 

distinct epidermal stem cell populations. (b) Hematoxylin and eosin staining of bulb 

portion of human anagen HF. Transient amplifying cells derived from the bulge stem 

cells migrate to the matrix region (orange arrows) through outer root sheath (ORS). 

The matrix cells then differentiate into hair shaft (HS) and inner root sheath (IRS) 

layers of the HF (white arrows). The bulge stem cell also has the potential to form 

IFE. 
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to maintain homeostasis of epidermis. 

 

The predominant cell type in interfollicular epidermis is keratinocytes which are 

continuously replenished by IFE stem cells or progenitor cells in basal layer in adult 

homeostatic epidermis (Figure 1.5a) (Ambler and Määttä, 2009; Fuchs, 2007; Ito et 

al., 2005; Levi et al., 2005; Plikus et al., 2012). The currently favoured model 

proposes a proliferation-active basal cell divides into two daughter cells, one of 

which remains as progenitor cell in basal layer while the other one proceed with 

further rounds of divisions as a transient amplifying progenitor before committing 

terminal differentiation (Ambler and Määttä, 2009; Fuchs et al., 2008; Plikus et al., 

2012; Watt et al., 2006). This terminal differentiation involves withdrawal from cell 

division cycle, detachment from basement membrane, move outwards through 

spinous layer, granular layer and cornified layer while switching gene expression and 

finally production of a keratin-filled dead keratinocyte (corneocyte) in cornified 

layer (Ambler and Määttä, 2009; Fuchs et al., 2008; Watt et al., 2006). In healthy 

adults, a homeostasis is achieved to maintain normal thickness and function of IFE, 

in which only a small proportion (around 15%) of basal cells (Blanpain et al., 2006) 

are active at a time to regularly replace the older keratinocytes in interfollicular 

epidermis, which takes 4 weeks in human throughout life, while the remaining basal 

cells are resting or quiescent (Ambler and Määttä, 2009; Segre, 2006; Watt et al., 

2008). However, a larger number and more variety of epidermal stem cells localized 

in interfollicular epidermis as well as in hair follicles (e.g. bulge, isthmus and 

junctional zone) (Figure 1.5a) will be activated for re-epithelialization under certain 

circumstances, e.g. post injury (Ambler and Määttä, 2009; Blanpain et al., 2006a; 

Plikus et al., 2012).  
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Adult hair follicle composes of three concentric layers, outer rooter sheath (ORS), 

inner rooter sheath (IRS) and the final product hair shaft (HS) (Figure 1.5b) (Pan et 

al., 2004; Shimomura and Christinano, 2010). Hair follicle stem or progenitor cells 

were first found in bulge area (Cotsarelis et al., 1990), a protruding structure in the 

upper portion of ORS that is contiguous with IFE basal layer (Ambler and Määttä, 

2009). Bulge progenitor cells produce transient amplifying cells that migrate to the 

matrix of HF through ORS and differentiate into IRS and HF (Ambler and Määttä, 

2009; Shimomura and Christinano, 2010). Recently, distinct hair follicle stem cell 

populations have also been found in other areas of hair follicles, e.g. isthmus and 

junctional zone (Plikus et al., 2012). Unlike IFE terminal differentiation which is 

continuous, existing hair follicles undergo cycles of growing  (anagen), repressing 

(catagen) and resting (telogen) phases, in which the upper portion of ORS including 

bulge is permanent while the rest of ORS and entire IRS and HS are degraded and 

replaced by new hair follicles (Alonso and Fuchs, 2006). Catagen is the transition 

from anagen to telogen, which is accompanied by skin color changes from the dark 

gray to black of anagen to pale pink by telogen in pigmented mice (Alonso and 

Fuchs, 2006). Catagen is very short, lasts only 3 or 4 days in mice, while anagen and 

telogen usually last 2 or 3 weeks (Alonso and Fuchs, 2006; Oh and Smart, 1996).  A 

collection of studies have suggested that the progenies of hair follicle stem cells also 

contribute to re-epithelialization of interfollicular epidermis by migrating towards 

the centre of the wounds (Ansell et al., 2011; Langton et al., 2008; Plikus et al., 

2012). Bulge stem cells from peri-wound hair follicles contribute to wound repair 

transiently in early stage particularly during anagen (Ansell et al., 2011; Ito et al., 

2005), while a long-term role of isthmus and junctional zone stem cells in providing 
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additional interfollicular epidermal cells during wound repair has been observed 

(Langton et al., 2008; Ito and Cotsarelis, 2008; Plikus et al., 2012). 

 

1.2.3 Epidermal barrier protects from penetrance of microbes 

The cornified layer of IFE constitutes the primary barrier of skin that prevents 

penetrance of microbes and water-soluble molecules (Figure 1.6) (Segre, 2006). In 

cornified layer, keratinocytes undergo profound changes in their cell structures 

including losing nucleus and organelles (Baroni et al., 2012). Subsequently, the 

entire intracellular space is filled by structure proteins, predominantly keratins, 

which are continuously synthesized by keratinocytes and accumulated in cytoplasm 

during terminal differentiation (Baroni et al., 2012). The abundant keratin filaments 

are encased and supported by cornified envelopes formed by the other structure 

proteins, which provide a durable stress-resistant framework for corneocytes (Baroni 

et al., 2012). The individual corneocytes are held together by lipids which are 

produced by keratinocytes, stored in lamellar bodies in spinous and granular layer 

and finally extruded into intercellular space in cornified layer (Baroni et al., 2012). 

As a consequence, the primary skin barrier is now built like a wall, with protein- 

enriched corneocytes resembling the bricks and lipid-enriched intercellular media 

mimicking the cements (Baroni et al., 2012; Fuchs, 2007, Segre, 2006)   

 

In addition to preventing microbial penetrance by acting as a physical barrier, 

epidermis constitutively expresses low level of antimicrobial peptides, such as β-

defensins-1, which directly inhibit colonization of a wide spectrum of microbes by 

disrupting their phospholipid bilayer membrane in a way similar to antibiotics 

(Afshar and Gallo, 2013; Niyangsaba et al., 2007). In normal skin in steady state,  
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Figure 1.6 Schematic diagram of human skin barrier (Adapted from Segre, 2006).  

Stratum corneum also known as cornified layer which is composed of keratin 

macrofibrils and cross-linked cornified envelopes encased in lipid bilayers at the 

outmost surface of interfollicular epidermis (IFE) provides the primary barrier, like a 

wall built by bricks and mortar. The granular cells held together by tight junctions 

also play an essential role in defence against physical trauma, invading pathogens 

and fluid loss.  
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keratinocytes are the main source of antimicrobial peptides which are packaged in 

lamellar bodies in spinous and granular layer, and extruded into intercellular media 

in cornified layer (Afshar and Gallo, 2013).  Upon breakage of epidermal barrier, 

keratinocytes also produce an array of inflammatory cytokines and growth factors, 

such as TNF-α, interferon-γ (IFN-γ) and interleukin-1(IL-1), which play a role in 

activating immune system (Afshar and Gallo, 2013). In this state, the task of 

antimicrobial peptide production is primarily fulfilled by immune cells such as 

neutrophils (Afshar and Gallo, 2013).  

 

1.2.4 Notch signaling in skin 

Notch signaling, as a key regulator for cell fate decision, is typically involved in 

epithelial stratification, epidermal homeostasis and lineage decision (Ambler and 

Watt, 2010; Nicolas et al., 2003; Okuyama et al., 2008; Watt et al., 2008). The 

presence of Notch receptor and ligand including Notch1-4, Jagged1, Jagged2 and 

Delta1has been well documented in developing as well as adult epidermis 

throughout human and mouse, with the exception of Notch4 which has only been 

reported in human in rare suprabasal cells and Delta1 which is rarely detectable in 

adult mouse (Favier et al., 2000; Nickoloff et al., 2002). Nevertheless, the sub-

locations of these Notch receptors and ligands are less clear and even contradicted 

among different studies (Ambler and Watt, 2010; Blanpain et al., 2006; Estrach et al., 

2006; Estrach et al., 2007; Moriyama et al., 2008; Nickoloff et al.., 2002; Pan et al., 

2004; Thelu et al., 2002). By validating the most consistent findings from these 

studies, Fiona Watt and her colleagues (2008) have drawn a diagram illustrating the 

expression pattern of Notch1-3 and Jagged1-2 in neonatal mouse IFE and HF 

(Figure 1.7). While the expressions of Notch1-3 are somewhat overlapping with 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Okuyama%20R%22%5BAuthor%5D
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abundance in neonatal suprabasal cells, complementary location of Jagged1 and 

Jagged2 are detected with Jagged1 preferentially expressed in suprabasal cells and 

Jagged2 confined to basal cells (Ambler and Watt, 2010; Blanpain et al., 2006; 

Estrach et al., 2006; Estrach et al., 2007; Moriyama et al., 2008; Nickoloff et al.., 

2002; Pan et al., 2004; Thelu et al., 2002). Deletion of Notch1, Jagged1 or Delta1 

alone causes epidermal phenotypes in mouse while loss of Notch2, Notch3, Notch4 

or Jagged2 alone has no overt impact on epidermis, suggesting Notch1 and Jagged1 

are the primary Notch receptor and ligand that may play indispensable roles in adult 

epidermis while Delta1 is essential for epidermis development (Ambler and Watt, 

2010; Estrach et al., 2007; Kerabs et al., 2000; Kerabs et al., 2003; Pan et al., 2004; 

Watt et al., 2008).  

 

However, the presence of Notch receptor and ligand does not necessarily trigger an 

active Notch signaling which normally requires ligand endocytosis-dependent NRR 

conformational change (Musse et al., 2012). Notch signaling activity in mouse 

embryonic and neonate epidermis is then confirmed by the  presence of NICD and 

expression of Notch target gene Hes1 which are both abundant in suprabasal layer 

but also detectable in basal layer corresponding to the location of Notch1 and 

Jagged1 (Estrach et al., 2006; Moriyama et al., 2008). However, Notch activity 

seems to be rapidly decreased after birth  (during the first few weeks in mouse) and 

maintained at a low level throughout adult life, since the expression of Hes1 only 

detected in rare epidermal cells in older mice at age of 7 week old (Ambler and Watt, 

2010). The decrease in mouse epidermal Notch activity after birth might be related to 

the diminished expression of Delta1 (Powell et al., 1998). 
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Figure 1.7 Sites of Notch activity in interfollicular epidermis and hair follicles in 

neonatal mice (Adapted from Watt et al., 2008). (a) Schematic diagram illustrating 

the presence and location of Notch pathway components in neonatal interfollicular 

epidermis (IFE). CL: cornified layer; GL: granular layer; SL: spinous layer. (b) 

Schematic diagram illustrating the presence and location of Notch pathway 

components in hair follicles at anagen (growing stage). Hatched shading indicates 

co-expression.  
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To investigate the function of epidermal Notch signaling, a variety of genetically 

modified mouse models have been used to mimic either loss or gain of function of 

Notch signaling by ‘knocking out’ or ‘knocking in’ a sequence that encodes a key 

component of Notch pathway, such as NICD1, Hes1 or BRP-Jκ (Table 1.1) (Ambler 

and Watt, 2010; Blanpain et al., 2006; Estrach et al., 2006;  Moriyama et al., 2008; 

Nicolas et al., 2003; Rangarajan et al., 2001; Uyttendaele et al., 2004). In these 

models, Notch signaling is altered either completely throughout body or 

conditionally within epidermis under the control of epidermis-specific promoter such 

as the promoter of keratin14 (K14) etc. Most of these studies demonstrated loss of 

Notch function in IFE resulted in decrease in basal cell fate and increase in 

suprabasal fate while gain of Notch function led to increase in basal fate and increase 

in suprabasal fate, suggesting Notch signaling promotes constitutive differentiation 

of epidermal keratinocytes from basal cell into granular cell via spinous cell. 

However, differences were noted among different studies especially among 

individual gain-of-function models and between embryo and adult models, which 

could be explained by Notch non-cell autonomous effects on adjacent layer of 

epidermis due to altered Notch activity in a single layer (Rangarajan et al. 2001) or 

skin barrier defects in adult models as a secondary effect of Notch alteration 

(Blanpain et al., 2006b). In basal layer, Notch signaling promotes transition of basal 

cell into spinous cell by repressing basal cell-specific gene expression such as 

hemidesmosome component α6β4 integrin (Figure 1.8) (Blanpain et al., 2006b; 

Estrach et al., 2006; Moriyama et al., 2008) which associates basal cell with the 

underlying basement membrane while favouring spinous cell-specific gene 

expression such as K1 and K10 through a mechanism independent of Hes1 

(Moriyama et al., 2008). In spinous layer, Notch signaling plays an essential role in 
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Table 1.1 Consequences of modulation of Notch signaling in epidermis. Arrow 

upward indicates increase; arrow downward indicates decrease. The number of 

arrows indicates the extent of the change. Horizontal line indicates no obvious 

change. UD represents undetermined.  
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homeostasis of spinous cells by maintaining spinous fate in a manner dependent on 

Hes1 while promoting transition of spinous cell into granular cell though 

upregulation of another Notch/BRP-Jk target gene Ascl2 (Moriyama et al., 2008). 

However, expression of Ascl2 gene is repressed in the presence of Hes1, thus the 

induction of granular fate in spinous cell only occurs when Hes1 is down-regulated 

probably by an auto-regulatory feedback loop (Moriyama et al., 2008).  Since either 

ectopic activating or blocking Notch signaling  causes abnormal differentiation of 

epidermis, epidermal barrier disruption may eventually occur as a side effect of 

Notch modulation (Ambler and Watt, 2010; Blanpain et al., 2006) making the 

analysis of Notch signaling function much more complicated .     

 

In addition to promoting terminal differentiation, Notch signaling also plays a role in 

regulating IFE proliferation through a mechanism which is less clear. Two separate 

studies reported that deletion of Notch1 promoted epidermal proliferation in adult 

mice through down-regulation of p21 expression which is known to induce cell 

growth arrest, suggesting Notch signaling might repress proliferation by directly 

activating transcription of p21 as a target gene (Nicolas et al., 2003; Rangarajan et al., 

2001). By contrast, a couple of studies found loss of Notch activity by deleting Hes-

1 or RBP-Jk resulted in reduced rather than increased epidermal proliferation in 

mouse embryos. Furthermore, they found such thinned hypo-proliferated epidermis 

experienced thickening and hyper-proliferation after several weeks of grafting into 

conditional RBP-Jκ or NICD1 knockout adult mice (Blanpain et al., 2006; Moriyama 

et al., 2008). Blanpain et al. (2006) and Rangarajan et al. (2001) suggested the 

distinct proliferation phenotypes observed between embryos or neonates and adults 

might be related to epidermal barrier disruption which usually causes a secondary 
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Figure 1.8 The role of Notch signaling in regulating epidermal homeostasis 

(Adapted from Blanpain et al., 2006; Moriyama et al., 2008). (a) Schematic diagram 

illustrating the role of Notch signaling in regulation of normal IFE differentiation 

and proliferation. Canonical Notch signaling (Notch/RBP-Jk) promotes basal cell 

detachment from underlying basement membrane and differentiation into spinous 

cell by repressing basal cell genes such as α6, β4 integrin and Keratin (K) 14 while 

inducing spinous cell genes such as K1 and K10 via a mechanism independent of 

Hes1. Then Notch signaling plays an essential role in maintenance of spinous fate 

and repressing transition in a manner dependent on Hes1. On the other hand, Notch 

signaling also promotes spinous cells transition into granular cells by directly 

activating Ascl2 gene expression. However, Ascl2 promoter is repressed in the 

presence of Hes1, thus the induction of granular differentiation will not occur until 

Hes1 is down-regulated in spinous layer probably by an auto-regulatory feedback 

loop. In addition, non-cell-autonomous Notch signaling from spinous cells may 

promote proliferation of basal cells probably via upregulation of p63 (Moriyama et 

al., 2008). (b) Schematic diagram illustrating Notch signaling regulates hair follicle 

maintenance by repressing the fate decision of bi-potential bulge stem cells into IFE 

(interfollicular epidermis) and promoting IRS (inner rooter sheath) differentiation 

and maturation. ORS, outer root sheath (Blanpain et al., 2006). 

 

 

 

 

 



 
46 

hyper-proliferation response. Moreover, Moriyama et al. (2008) suggested that a 

non-cell-autonomous Notch signaling sent by spinous cells might be constitutively 

activated in basal cells, the major population possessing proliferation potential in 

epidermis, as a result of differential levels of Notch activity between these two cell 

populations to contribute to basal cell proliferation possibly via upregulation of p63 

(Moriyama et al., 2008). Whereas, ectopic induction of NICD1 specifically in basal 

cells was sufficient to drive basal cell proliferation, suggesting epidermal 

proliferation might be independent of non-cell-autonomous Notch signaling sent by 

spinous cells (Ambler and Watt, 2010; Blanpain et al., 2006; Estrach et al., 2006). 

Although epidermal barrier defects could contribute to hyper-proliferation in 

postnatal epidermis, this increased proliferation phenotype was also detected in 

neonates with ectopic NICD1 induction suggesting a direct role of Notch signaling 

for promoting proliferation (Blanpain et al., 2006). Furthermore, it has been 

suggested that Notch signaling plays this role through a mechanism dependent of 

Jagged1, since deletion of Jagged1 eliminates the hyper-proliferation phenotype in 

K14NICDER mice with ectopic induction of NICD1 (Ambler and Watt, 2010). 

However, it is still unknown how Notch, via Jagged 1, directs keratinocytes to 

proliferate.   

 

Notch signaling also plays a direct role in regulating the terminal differentiation of 

IRS and/or HF and maintaining the existing hair follicle lineages by repressing the 

transition of bi-potential bulge progenitor cells into IFE fate (Ambler and Watt, 2010; 

Blanpain et al., 2006b; Estrach et al., 2006; Lin et al., 2000; Pan et al., 2004). 

However, Notch signaling is not capable to induce new hair follicle generation 

(Estrach et al., 2006).  
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In summary, skin is composed of epidermis and dermis, which are connected to each 

other via basement membrane. Adult epidermis is a self-renewing stratified 

epithelium with multiple lineages including IFE and its associated specialized 

appendages such as HF (Fuchs, 2007). IFE and HF are maintained by their own 

progenitor cells located in basal layer and outer root sheet through homeostasis and 

hair cycles respectively (Ambler and Määttä, 2009). The terminally differentiated 

cornified layer constitutes the primary skin barrier that prevents the penetrance of 

microbes and other insults (Baroni et al., 2012; Segre, 2006). The predominant 

epidermal cell type keratinocyte also secretes antimicrobial peptides to prevent 

microbe colonization in steady state and produce a range of inflammatory cytokines 

upon barrier disruption and microbial infection (Baroni et al., 2012). Notch signaling 

plays an essential role in maintaining homeostasis of epidermis by controlling the 

fate decision of HF bulge progenitor cells towards HF lineage, promoting terminal 

differentiation of both IFE and HF though cell-autonomous and non-cell-

autonomous effects (Blanpain et al., 2006b; Moriyama et al., 2008). Notch also plays 

a role in epidermal proliferation through a mechanism that is less clear (Ambler and 

Watt, 2010; Estrach et al., 2006).  

 

1.3 Immune system in skin 

1.3.1 Background 

Although skin keratinocytes constitute a physical barrier that provides first-line 

defence against pathogen invasion and secretes antimicrobial peptides that have a 

direct role in killing microbes (Baroni et al., 2012), these mechanisms may not be 

sufficient to prevent microbial infection especially when epidermal barrier is broken 

by injury. In that case, a variety of immune cells, also known as white blood cells or 
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leukocytes, are recruited into skin through dermal blood capillaries and activated by 

inflammatory cytokines leading to inflammatory response against different sorts of 

infections, damages or host cell pathogenesis (e.g. tumorigenesis) (Delves et al., 

2011). A number of immune cells are also present in skin as sentinels in steady state 

to provide immune surveillance (Nestle and Nickoloff, 2007). In this section, origin, 

location and classification of major types of immune cells circulating in blood 

vessels as well as residing in skin will be reviewed. Then the role of Notch signaling 

in immune system will be discussed. 

 

1.3.2 Origin, location and classification of immune cells 

In adults, immune cells are derived from self-renewing hematopoietic stem cell 

(HSC) in bone marrow (Figure 1.9) and released into blood circulation to patrol the 

whole body (Delves et al., 2011). However, macrophages and myeloid dendritic cells 

are localized and matured in peripheral tissues only and share a common blood 

circulating progenitor called monocytes in inflamed state (Merad et al., 2013). 

Thymus-derived lymphocytes (T cells) require further processing and development 

in thymus before joining circulation (Blum et al., 2013).  While bone marrow and 

thymus constitutes the primary lymphoid tissue which produce immune cells, the 

battlefronts of immunological defences are usually localized in spleen and lymph 

nodes spreading throughout the body, called secondary lymphoid tissues which are 

loaded and formed by massive immune cells (Delves et al., 2011). In addition, a 

number of immune cells are also accumulated in steady state in certain non-

lymphoid tissues such as epithelial tissues at the body surface (e.g.  skin, intestine 

and lung) (Table 1.2) where the risk of pathogen insults is higher than the other 

tissues  (Dupasquier et al., 2004; Luci et al., 2009; Macleod and Havran., 2011; 
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Figure 1.9 The vast majority of immune cells are derived from bone marrow 

hematopoietic stem cell in the presence of different soluble cytokines and 

growth factors (Adapted from Delves et al., 2011). SCF, stem cell factor; HSC, 

hematopoietic stem cell; Flt3L, FMS-like tyrosine kinase-3 ligand; TPO, 

thrombopoietin; IL, interleukin; CMP, common myeloid precursor; CLP, common 

lymphoid precursor; EPO, erythropoietin; GM-CSF, granulocyte–macrophage 

colony-stimulating factor; EB, erythroblast; MKC, megakaryocyte; MP,  monocyte 

progenitor; GP, granulocyte progenitor; M-CSF, monocyte colony-stimulating factor; 

G-CSF, granulocyte colony-stimulating factor; RBC, red blood cell; Plt, platelet; 

mDC, myeloid dendritic cell; Mϕ, macrophage; Neutro, neutrophil; Eosino, 

eosinophil; Baso, basophil; NK, natural killer;  pDC, plasmacytoid dendritic cell. 
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Table 1.2 Phenotypes and functions of immune cells residing in mouse skin in 

steady state. UD, undetermined. 
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Romani et al., 2010; Stone et al., 2009; Sumaria et al., 2011).   

 

Depending on their differentiation pathways, immune cells are broadly classified 

into two families, lymphoid cells which includes T cells, B cells and NK cells, and 

myeloid cells which are subdivided into monocytes (including macrophages and 

most dendritic cells), granulocytes (including neutrophils, eosinophils and basophils) 

and mast cells (Delves et al., 2011).  The majority of myeloid cells, NK cells and a 

small number (less than 5% of total circulating T cells) of T cells (γδ T cell) bearing 

γ and δ chains in their T cell receptor (TCRγδ) participate in rapid innate immune 

response by directly recognizing pathogens, infected cells or damaged cells 

(Dupasquier et al., 2004; Luci et al., 2009; Macleod and Havran., 2011; Romani et 

al., 2010; Stone et al., 2010; Sumaria et al., 2011). Conventional T cells (αβ T cells) 

and B cells participate in adaptive immune response by producing specific cytotoxic 

T cells and antibody respectively for adapting to a particular antigen processed and 

presented by professional antigen presenting cells (i.e. dendritic cells) or stressed 

host cells (non-professional antigen presenting cells) (Blum et al., 2013; Delves et al., 

2011). Compared to rapid innate immune response, adaptive immune response 

allows time for antigen presentation (Blum et al., 2013; Delves et al., 2011). 

However, adaptive system has long-lasting memory which allows it to be prepared 

for the next threat event by the microbe bearing the same antigen (Mueller et al., 

2013). 

 

1.3.3 Major circulating immune cells accessible to skin 

To confront the risk of microbial infection, a variety of circulating immune cells are  

recruited into the site of pathogen invasion or damage in dermis through blood 
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capillaries and activated to perform innate or adaptive immune reactions against 

different sorts of threats. The roles of immune cells are conserved throughout human 

and mammals, however, the phenotypes (i.e. the cell surface markers) can be slightly 

different (Delves et al., 2011; Mestas and Hughes, 2004). Here, I use mouse model 

to review the immune system.  

 

Neutrophils (CD11b
+
F4/80

-
Gr1

+
) and inflammatory monocyte (CD11b

+
F4/80

+
Gr1

+
) 

-derived macrophages (CD11b
+
F4/80

+
Gr1

-
), which are known as professional 

phagocytes, are the key players of innate immune system defending against bacteria, 

fungi as well as cell damage (Amulic et al., 2012; Wynn and Barron, 2010). They, 

via a range of cell surface pattern recognition receptor (PRRs) such as Toll-like 

receptor, recognize a highly conserved component either present in common 

infectious agents called pathogen associated molecular pattern (PAMP) or released 

by necrotic host cells undergoing uncontrolled death upon severe damage (danger 

associated molecular pattern, DAMP) (Amulic et al., 2012; Delves et al., 2011; 

Dupasquier et al., 2004). Upon recognition of a PAMP or DAMP, the pathogens or 

necrotic cells displaying the same PAMP or DAMP are engulfed by these 

professional phagocytes followed by intracellular digestion via destructive enzyme, 

chemicals or radicals (Delves et al., 2011; Dupasquier et al., 2004). Compared to 

neutrophils, macrophages are more powerful in phagocytosis, they can engulf 

apoptotic cells undergoing natural or programmed death, such as short-life 

neutrophils (Wynn and Barron, 2010). 

 

The minority of granulocytes, such as basophils and eosinophils, are often involved 

in innate immune defence against parasites which are too large to be engulfed by 
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professional phagocytes and thus require membrane lysis mediated by basophils and 

eosinophils before phagocytosis can take place (Stone et al., 2010).  

 

NK cells (CD3
-
NKp46

+
NK1.1

+
) play a key role in innate killing of virally infected 

host cells as well as host cells committed to undergo tumorigenesis (Cameron et al., 

2002; Delves et al., 2011; Luci et al., 2009). Although macrophages are the powerful 

phagocytes to engulf bacteria, fungi and damaged cells, they are not capable to target 

viruses, since viruses live inside host cells and use host ribosomes to replicate 

themselves, the recognition of PAMP or DAMP from these viruses is hindered by 

the intact host cell membrane (Delves et al., 2011; Luci et al., 2009). In that case, the 

recognition of abnormal host cells is performed by NK cells which detect missing or 

reduced expression of MHC-I that is normally expressed by all nucleated host cells, 

or MHC-related molecules (non-classical MHC) which is expressed by certain 

stressed cell types such as epithelial cells to convey a danger signal and thus allow 

themselves to be recognized (Delves et al., 2011; Luci et al., 2009). Following 

recognition, NK cells then induce apoptosis (assisted suicide) of these abnormal cells 

via releasing cytotoxic granules or activating death receptor in host cells, and 

produce interferon-γ (IFN-γ)that directly inhibit viral replication (Delves et al., 2011; 

Luci et al., 2009). Dead cells are finally engulfed and cleared by macrophages 

(Delves et al., 2011; Luci et al., 2009; Wynn and Barron, 2010). A small number of 

T cells called NK-like T cells (NKT cells, CD3
+
NK1.1

+
NKp46

+
) have the similar 

properties of NK cells, and plays a role in innate immune system (Cameron et al., 

2002; Delves et al., 2011). 
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Dendritic cells (most of them are CD11c
high

) are the major type of so called 

professional antigen presenting cells which also include macrophages and B cells, 

which activate adaptive immune response (Blum et al., 2012; Kushwah and Hu, 

2011; Merad et al., 2013). They can capture specific protein structures called 

antigens from outside pathogens followed by internalizing and processing these 

antigens and expressing the antigen peptides on their cell surface MHC-II, which 

allows the pathogen fragments to be recognized by CD4+ T cells (Blum et al., 2012; 

Dupasquier et al., 2004; Kushwah and Hu, 2011; Merad et al., 2013). Compared to 

macrophages, dendritic cells have limited capacity to directly kill the pathogen they 

have phagocytosed (Kushwah and Hu, 2011; Merad et al., 2013). However, 

pathogen-encountered dendritic cells are competent to activate adaptive immune 

system by migrating to the nearest lymph node and present an antigen derived from 

the pathogen to CD4
+
 T cells (Kushwah and Hu, 2011; Merad et al., 2013).  

 

Conventional T and B lymphocytes mediate antigen-specific adaptive immune 

response (Delves et al., 2011). Under inflamed state, B cells undergo clonal 

expansion and differentiation into effector plasma cell to produce an antibody that 

specifically target pathogens displaying a particular antigen. Naive CD8
+
 T cells 

induce apoptosis of infected cells expressing a foreign antigen via differentiation into 

effector cytotoxic T cell (Tc), while naive CD4
+ 

T cell differentiates into various 

subsets of  helper T cell (Th) to facilitate co-activation of B cell and enhance 

intracellular killing by macrophages and Tc (Delves et al., 2011; Zhu et al., 2011).  

This antigen-specific defence usually takes place 4-5 days later (Delves et al., 2011) 

than innate immune response because activation of conventional T and B cells is 

dependent on antigen presentation. Naive CD4
+
 or CD8

+
 T cells cannot recognize 
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antigen through T cell receptor (TCR) until antigen-derived peptide is expressed by 

professional APC, predominantly dendritic cells, via MHC-II or by viral infected 

cells via MHC-I (Zhu et al., 2011). B cells directly recognize extracellular antigen 

through B cell receptor (BCR), but antibody cannot be produced until B cell presents 

this antigen, via MHC-II, to a particular Th cell which has been encountered by the 

same antigen (Delves et al., 2011; Zhu et al., 2011). As a consequence, the 

extracellular pathogens which have not been phagocytosed by macrophage-

predominant innate immune system are targeted by B cell-mediated humoral 

immunity. The intracellular pathogens which have been phagocytosed but not been 

killed by macrophages and those pathogens living and replicating within the host 

cells which have not been targeted by NK cells are challenged by Tc cell mediated 

cytotoxicity (Delves et al., 2011; Zhu et al., 2010).  

 

1.3.4 Entry of circulating immune cells into dermis 

The motility and recruitment of circulating immune cells are regulated by a family of 

specialized message protein called chemokines, such as CCL and CXCL families, 

that attract immune cells bearing a corresponding chemokine receptor from adjacent 

tissue or blood circulation into the inflamed site (Dupasquier et al., 2004; Henri et al., 

2009). The penetrance of immune cells though blood vascular wall is mainly 

facilitated by mast cells which release mediators such as histamine to increase 

vascular permeability (Stone et al., 2010). After entering dermis, the clonal 

expansion and activity of these migratory immune cells are activated by another 

family of message proteins called cytokines such as interleukins (IL) and TNF that 

function over a shorter range. Then the activated immune cells can in turn, via NFκB 

pathway, produce their own cytokines and growth factors that influence the activity 



 
57 

of the other immune cells as well as non-immune cells nearby with an appropriate 

receptor (Delves et al., 2011; Dupasquier et al., 2004; Henri et al., 2009). As a 

consequence, the extra cells and fluids gathered at the site of infection or cell 

damage result in a so called inflammation reaction which is featured by swelling, 

redness and heating of local tissue (Delves et al., 2011).  

 

1.3.5 Skin resident immune sentinels 

In steady state, skin is constantly populated by a number of immune cells which 

provide immune surveillance by watching the signs for pathogen insults and cell 

damages, and produce cytokines that amplify inflammatory response by activating 

and attracting blood-circulating immune cells. These skin resident immune sentinels 

mainly include most common innate immune cells such as macrophages, dendritic 

cells, NK cells, mast cells  (Dupasquier et al., 2004; Luci et al., 2009) as well as 

those which are seeded in skin particularly in epidermis very early during fetal 

development with a long lifespan and thus are thought to be absent or rare in blood 

circulation, such as Langerhans cells (LCs, CD207
+
CD11c

low
) and dendritic 

epidermal T cells (DETCs, CD3
+
TCRγδ

+
Vγ3

+
) (Macleod and Havran., 2011; Merad 

et al., 2013). Langerhans cells are classified as a particular subset of dendritic cells 

participating in antigen presentation. In contrast to conventional DCs which are 

characterized by high expression of CD11c integrin and replenished by blood 

circulating monocytes, LCs express low level of CD11c and are primarily produced 

in sac yolk and fetal liver and maintained by local proliferation (Merad et al., 2013). 

DETCs belong to a rare subset of T cells (γδ T cells) bearing TCR γδ chains, distinct 

from the majority (95%) of circulating T cells) of T cells which express TCR αβ 

chains (Delves et al., 2011). DETCs are only present in rodent epidermis where they 
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produce keratinocyte growth factor (KGF), insulin-like growth factor-1 (IGF-1) and 

hyaluronan in response to damaged keratinocytes, which protects epidermal barrier 

integrity by promoting keratinotye proliferation and recruits macrophages to the site 

of damage respectively (Bolleville, 2012; Macleod and Havran., 2011). Recently γδ 

T cells have also been detected in steady state dermis where they produce IL-17 that 

plays a role in neutrophils (Sumaria et al., 2011). In contrast to αβ T cells, γδ T cells 

directly recognize antigen or non-classical MHC molecules expressed by stressed 

and damaged host cells without a requirement of antigen presentation (Zhu et al., 

2010). Therefore, γδ T cells usually do not express CD4 or CD8 which acts as co-

receptor for antigen within the context of MHC-II or MHC-I (Delves et al., 2011).  

 

1.3.6 Notch signaling in skin immune system 

Notch signaling, as key regulator of cell fate decision in a range of developmental 

process, also plays a role in the development of immune system. Notch1 signaling 

controls thymic T-cell maturation (Izon et al., 2001) and Notch2 signaling maintains 

splenic marginal zone B cells (Saito et al., 2003). However, new evidence suggests 

Notch signaling may play a role for epidermal keratinocytes to contact immune cells 

(Ambler and Watt., 2010; Estrach et al., 2006). In their studies, Notch activation by 

inducing ectopic NICD1 in epidermal keratinocytes resulted in epidermal production 

of inflammatory cytokines such as TNFα and dermal accumulation of CD4+ immune 

cells via a mechanism dependent on epidermal Jagged1 expression (Ambler and 

Watt., 2010; Estrach et al., 2006). Although the role of Jagged1 in downstream 

Notch signaling is less clear, other studies have suggested Jagged1 as a target gene 

of BRP-Jκ (Foldi et al., 2011), may relays and amplifies Notch signaling from cell to 

cell, which seems to be consistent to these studies.  
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In summary, immune system provides professional defence against various insults 

such as bacteria, fungi, viruses as well as abnormal host cells (Delves et al., 2011). 

The majority of immune cells are circulating throughout body via blood vessels, 

lymph vessels and lymphoid organs, such as spleen and lymph nodes, to provide 

immune surveillance (Delves et al., 2011). Some immune cells such as LC and 

DETCs (specific to rodents) are exclusively residing in epithelial epidermis to play a 

role in local immunity (Macleod and Havran, 2011; Merad et al., 2013; Nestle and 

Nickoloff, 2007). Under the inflamed state, a variety of circulating immune cells are 

recruited into skin especially dermis by chemokines and activated by cytokines to 

perform innate and adaptive immune response via direct killing and producing 

cytokines to amplify the inflammation (Delves et al., 2011). Notch signaling plays a 

role in regulating the development of immune system as well as the recruitment of 

immune cells into dermis via TNF-α (Ambler and Watt, 2010; Estrach et al., 2006; 

Izon et al., 2001; Saito et al., 2003).  

 

1.4 Skin wound healing  

1.4.1 Background 

Wound healing in epithelial tissue is a sequential process which is initiated by 

immune cell mediated inflammation to clear wound of any damaged cells, debris and 

microbes (inflammation phase), followed by epidermal proliferation and dermal 

extracellular matrix deposition to close the wound (proliferation phase), and finished 

with remodelling of dermal tissue and resolution of excessive extracellular matrix to 

restore the normal structure and function of skin (remodelling phase) (Figure 1.10). 

These events are co-ordinated in terms of timing, duration and intensity in order to 

keep the repair progressing and maintain an equilibrium between tissue synthesis and 



 
60 

degradation (Guo and DiPitro, 2010; Martin and Leibovich, 2005; Rodero and 

Khosrotehrani, 2010).  In this section, wound healing mechanism and the role of 

immune system and Notch signaling in wound closure will be reviewed.  

 

1.4.2 Mechanism of wound healing 

In wounded area, the normal skin structures are completely lost leaving dermal blood 

capillaries with open ends (Martin et al., 2005). However, blood loss is rapidly 

ceased by a platelet-composed blood plug which is then stabilized by fibrin fibers 

converted from fibrinogen (Figure 1.10) (Rodero and Khosrotehrani, 2010). Skin 

injury also directly induces damage and stress to the local cells at the wound edge by 

exposing the skin and inner body to potential pathogens in the environment. Stressed 

keratinocytes produce antimicrobial peptides and inflammatory cytokines such as 

TNF-α (Grone, 2002). In the meanwhile, the skin resident immune sentinels which 

are already present at the time of injury are activated to clear the dead cells, cellular 

debris and any invading pathogens and produce pro-inflammatory cytokines, 

chemokines and antimicrobial peptides. The cytokines and chemokines produced by 

stressed keratinocytes as well as skin resident immune cells amplify the 

inflammatory reaction by attracting and activating more immune cells into wound 

site through dilated blood vessels with the help of skin resident mast cells. 

Neutrophils are the first cells recruited into wound site with a very short lifespan, 

while monocyte-derived macrophages become the predominant cell type from 

approximately day 2 post injury to intensively phagocytose wound debris, microbes 

and apoptotic neutrophils (Rodero and Khosrotehrani, 2010). The adaptive immune 

cells such as conventional T cells and B cells are thought not to be significantly 

involved in inflammation phase in acute wound healing (Stout, 2010), probably 
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Figure 1.10 Schematics of normal skin wound healing (Modified from Martin and 

Leibovich, 2005). (a) Normal skin consists of epidermal barrier and underlying 

dermis enriched with capillary blood vessels. (b) Physical injury causes disruption of 

epidermal barrier and damage of dermis. Platelets are immediately activated and 

aggregated to prevent blood loss. Massive immune cells from adjacent dermis and 

from circulating blood vessels are recruited into wound site to promote a protective 

inflammatory response to clear damaged cells and invading microbes. (c) Fibrin clot 

is formed to cover the wound edge and (d) serve as a matrix that allows 

keratinocytes proliferation and migration along its undersurface to close the wound.  

Dermis undergoes massive angiogenesis and deposition of extracellular matrix 

(dermal scar) that gradually replaces the fibrin clot. (e) When the epidermis has 

healed over the exposed wound, dermis undergoes remodelling involving resolution 

of vascular sprouting and dermal scar to restore tissue strength.   

(a) (b) 

(c) (d) (e) 
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because the defence against common environmental pathogens do not require 

antigen-specific response. 

 

The later stage of inflammation phase is overlapped with proliferation phase where 

fibrin clot acts as a scaffold for keratinocytes at the wound edge to proliferate and 

migrate along the undersurface of fibrin clot to bridge the gap between wound edges 

(Martin and Leibovich, 2005).  In wound dermis, a large number of fibroblasts from 

adjacent dermis and derived from circulating fibrocytes are accumulated to form so 

called granulation tissues with macrophages to promote dermal extracellular matrix 

deposition and wound contraction as well as inflammation. In these specialized 

granulation tissues,  massive blood vessels are generated to supply cytokines, growth 

factors as well as nutrients to tissue repair, some fibroblasts are converted to 

myofibroblasts which synthesize extracellular matrix components  such as collagens,  

contract wound edges and drawing up wound bed thereby promoting wound closure 

(Rodero and Khosrotehrani, 2010).  

 

Subsequently, wound is closed when keratinocytes migrated from wound edges 

confront and adhere to one another. Whereas, wound dermis, which is largely 

composed of granulation tissues and collagen scar, requires remodeling to replace 

collagen-producing granulation tissue and restore the normal structure and tensile. 

This remodeling could last for years involving apoptosis of myofibroblasts, vascular 

endothelial cells and macrophages, degradation of excessive extracellular matrix via 

metalloproteinases which are expressed by epidermal cells, fibroblasts and remaining 

macrophages (Guo and DiPietro, 2010). However, it is not always possible to restore 

adult skin to its pre-injury state and scar formation usually occurs as a common 
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result of adult wound healing, although incisional fetal wound may heal perfectly 

without scar (Guo and DiPietro, 2010).  

 

1.4.3 The role of immune cells in wound closure 

The three phases of wound healing are coordinated and occur in an order. 

Inflammation  phase is typically mediated by immune cells that protect host body 

from infection and clear wound of damaged cells and debris, proliferation phase 

contributes to wound closure, while remodeling phase replace dermal scar with 

normal skin structure. However, inflammation must be self-sustained once pathogen 

infection and wound clearance is under control to allow proliferation phase to 

proceed. Therefore, the entry and exit of inflammatory immune cells in appropriate 

timing are equally important for wound closure (Guo and DiPitro, 2010; Martin and 

Leibovich, 2005; Rodero and Khosrotehrani, 2010). Macrophages have long been 

considered the key regulator for wound healing, since they not only act as a 

predominant type of inflammatory cells (M1 macrophage) in inflammation phase, 

but also are involved in proliferation phase (M2 macrophage) as well as remodeling 

phase, following being activated by different pathways (Rodero and Khosrotehrani, 

2010).  

As a main type of professional phagocyte, macrophages are recruited into wound site 

following neutrophils and become the predominant immune cells present in the 

wound approximately from day 2 post injuries (Rodero and Khosrotehrani, 2010). In 

the initial inflammation phase, the majority of macrophages are classically activated 

by interferon-γ (IFN-γ) (M1 macrophages)  to perform extensive phagocytosis to 

clear wound of any debris including the short-life neutrophils and secrete pro-

inflammatory cytokines such as TNF-α, IL-1β, IL-6 (Rodero and Khosrotehrani, 
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2010). During later inflammation phase and proliferation phase, the functional 

phenotypes of macrophages are converted (M2) to promote granulation tissue 

formation angiogenesis, collagen synthesis, ECM deposition and wound contraction 

through producing transforming growth factor β (TGFβ) (Rodero and Khosrotehrani, 

2010). These macrophages displaying M2 phenotypes are thought to be alternatively 

activated by IL-4 or IL-13 (Martin and Leibovich, 2005; Rodero and Khosrotehrani, 

2010). As the main source of TGF-β that activates dermal myofibroblast 

differentiation, which in turn switches on collagen production to generate 

extracellular matrix, macrophages have also been considered as a key contributor to 

fibrosis and scarring formation especially when inflammation is persistent or 

repeated (Wynn and Barron, 2010). However, the issue of fibrotic and scarring 

wound healing is beyond the focus of this thesis. In remodeling phase, macrophages 

undergo apoptosis and remaining macrophages play a minor role in promoting 

degradation of excessive extracellular matrix via directly producing 

metalloproteinase (Wynn and Barron, 2010; Leibovich and Ross, 1975). The critical 

importance of macrophages over the other common immune cells to normal  wound 

healing is supported by a collection of studies, where depletion of macrophages 

during inflammation phase or proliferation phase of wound healing by using anti-

macrophage serum or macrophage- knockout animals hinders wound closure (Goren 

et al., 2009; Leibovich and Ross, 1975; Lucas et al., 2009; Mirza et al., 2009; Rodero 

and Khosrotehroni, 2010), while depletion of neutrophils, mast cells or conventional 

T cells (Grawnska-Kozak et al., 2006) by using antiserum or genetic knock-out 

animals leads to normal or speedier healing (Simpson and Ross al., 1972; Dovi et al., 

2003; Egozi et al., 2003; Martin and Leibovich, 2005). These studies suggest that 
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macrophages may play a non-redundant role in inflammation and proliferation 

phases in normal wound healing. 

 

However, the non-redundant role of macrophages and even the requirement for 

immune cells in adult wound closure are disfavored by an older study. In the year of 

2003, Martin et al. reported that PU.1 null mice which lacked macrophages along 

with neutrophils and were pre-treated with antibiotics to prevent infection, had 

decreased levels of granulation tissues, less efficient phagocytosis and reduced TGF-

β production in their skin wounds. However, these PU.1 null mice had similar 

reconstitution rate of both wound epidermis and dermis and no overt wound closure 

defects compared to wild type mice (Martin et al., 2003). Furthermore, the normal 

presence of myofibroblasts which is associated with wound contraction was detected 

in PU.1 null wound and dermal fibroblasts were found to act as candidate phagocytes 

to clear cell and matrix debris to compensate for the absence of macrophages (Martin 

et al., 2003). Therefore, it was suggested that immune cells are not absolutely needed 

for tissue repair (Martin et al., 2003). Whereas, the author admitted that the 

administration of antibiotics and deficiency in neutrophils might have led to reduced 

requirement for macrophage-associated phagocytosis and following intracellular 

killing, thus the candidate phagocyte dermal fibroblasts was proved to be capable to 

play macrophages role in that case (Martin and Leibovich, 2005).  

 

In addition, skin-resident DETCs have shown a role in promoting skin wound 

healing by activating keratinocytes proliferation via KGF and IGF-1 and by 

recruiting macrophages into wound site via hyaluronan (Jameson et al., 2002; 

Macleod and Havran, 2011). In their studies, TCR-δ deficient mice had a 2- or 3- 
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day delay in wound closure and reduced epidermal thickness compared to wild type 

mice (Jameson et al., 2002; Macleod and Havran, 2011).  

 

New evidence suggested IL-22 as a key signaling for epithelial tissue repair 

promotes fibroblast-mediated skin repair (Dudakov et al., 2012; McGee et al., 2013). 

Their study demonstrated IL-22 receptor which was thought to be exclusively 

expressed by epithelial cells is also expressed by dermal fibroblasts in vivo and IL-22 

knockout mice had wound closure defects resulting from the failure in myofibroblast 

differentiation (McGee et al., 2013). However, the source of IL-22 needs to be 

determined yet, although IL-22 has been reported to be produced by novel innate 

lymphoid cells in intestine to promote epithelial proliferation (Spits and Cupedo, 

2012; Spits and Santo, 2011).   

 

1.4.4 The role of Innate lymphoid cells in epithelial repair  

A novel group of innate lymphoid cells (ILCs) (ILC3s, characterized by CD3
-

CD127
+
RORγ

+
) distinct from NK cells which belong to Group 1 innate lymphoid 

cells, has drawn our attention due to its role in promoting epithelial tissue repair in 

intestine via producing IL-22 that induce epithelial tissue proliferation (Spits and 

Cupedo, 2012; Spits et al., 2013; Spits and Santo, 2011). Activation of IL-22 

production in these ILCs requires IL-23 released from dendritic cells (Spits and 

Cupedo, 2012). The term innate lymphoid cells (ILCs) have been recently given to a 

heterogeneous immune cell family that have morphological characteristics of 

lymphoid cells and share cytokine production profile with various T helper cells (Th) 

subsets, but lack a specific antigen receptor which is usually required for adaptive 

immune cells (Spits and Cupedo, 2012). Therefore, ILCs are likely to be derived 
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from common lymphoid precursor but do not express CD3 which is considered as a 

T cell marker (Spits and Cupedo, 2012). They participate in innate immune response 

and function in lymphoid organogenesis, tissue remodeling, antimicrobial immunity, 

and inflammation, particularly at barrier surfaces (Spits and Cupedo, 2012). ILCs 

can be grouped into three major categories (Table 1.3): (1) Group 1 ILCs (ILC1s) 

including NK cells, which mainly produce IFN-γ; (2) Group 2 ILCs (ILC2) , which  

are RORγ t-independent and function in helminth immunity; (3) Group 3 ILCs 

(ILC3s, also known as RORγ
+
 ILC), which are dependent on IL-7 and retinoid-

related orphan receptor gamma (RORγ, a key nuclear transcriptional factor) during 

development and maturation , express IL-7 receptor (CD127) and RORγt,  and 

produce IL-17, IL-22 or both in a mechanism dependent on IL-23 (Spits and Cupedo, 

2012; Spits and Santo, 2011). ILC3s may contain several distinct subsets such as 

lymphoid tissue inducer cells (LTi), IL17-expressing cells (ILC17), IL22 expressing 

cells (ILC22), depending on the main cytokines they produce (Spits and Cupedo, 

2012). However, the current classification and nomenclature within this category are 

not clear or uniform, and require further knowledge of lineage development and 

relationship (Spits and Cupedo, 2012; Spits et al., 2013).  Although the presence of 

ILC3s has not been reported in skin, the finding that IL-22 has a significant role in 

skin repair suggests the repair mechanism might be conserved among tissues 

containing epithelium. 

 

1.4.5 Notch signaling in wound healing 

It has been suggested that Notch signaling might be involved in wound healing by a 

study using topically-applied pan-Notch activator and inhibitor (Chigurupai et al., 

2007). However, the action site and mechanism remain less clear. Recently our lab 
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has demonstrated forced activation of epidermal Notch signaling promotes dermal 

accumulation of immune cells via epidermal production of TNF and epidermal 

proliferation, resembling the remarks of early and middle stages of wound healing 

(Ambler and Watt 2010; Estrach et al., 2006). These results suggest a potential link 

between epidermal Notch signaling and skin wound healing. 

 

In summary, skin wound healing is a coordinated and sequential process including 

inflammation phase which clears wound of any damaged or dead cells, debris and 

microbes, proliferation phase which involves epidermal proliferation, dermal 

extracellular matrix deposition and remodeling phase which restore the normal 

architecture of skin (Martin and Leibovich, 2005). Macrophages have long been the 

key immune cells that participate in normal wound healing by serving as major 

professional phagocytes that stimulating inflammation and by acting as the main 

source of TGF-β that promotes wound contraction and dermal extracellular matrix 

deposition (Rodero and Khosrotehrani, 2010). However, the redundant role of 

immune cells in skin repair is in dispute. Recent studies suggest IL-22 which could 

be produced by a novel population ILC3s plays a key role in promoting intestine 

epithelial repair and dermal repair by mediating the interaction between immune 

cells and non-immune cells (Luci et al., 2009; McGee et al., 2013; Sonnenberg et al., 

2012). Notch signaling might be involved in skin wound healing (Ambler and Watt, 

2010; Chigurupai et al., 2007; Estrach et al., 2006). 
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Table 1.3 Family of innate lymphoid cells (ILCs) in mouse. (Information based on 

Luci et al., 2011; Sonnenberg et al., 2011; Spits and Cupedo, 2012; Spits et al., 2013;  

Spits and Santo, 2011) 
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1.5 Hypothesis 

Slow or non-healing wounds have affected many people especially for diabetics and 

elderly people (Guo and DiPietro, 2010). Wound healing requires immune cells 

especially innate immune cells, such as macrophages and DETCs, to stimulate an 

acute inflammatory response to remove pathogen threats and damaged cells, and to 

communicate with epidermal keratinocytes, dermal fibroblast and vascular 

endothelial cells to start epidermal proliferation, dermal extracellular matrix 

deposition and wound contraction via releasing cytokines and growth factors. The 

timing of inflammation is tightly controlled to allow healing proceed with 

proliferation phase. Persistent inflammation infiltrate could impact this coordinated 

process and lead to massive scar formation (Guo and DiPietro, 2010; Martin and 

Leibovich, 2005).  

 

I hypothesize that some currently poorly defined immune cells, such as ILC3s, a 

novel group of innate lymphoid cells recently found to promote epithelial repair in 

intestine via IL-22 (Luci et al., 2009; McGee et al., 2012; Sonnenberg et al., 2012), 

other than macrophages (Stout, 2010) or DETCs (Jameson et al., 2002; Macleod and 

Havran., 2011) may play a uncovered role in skin repair. Recently a skin study 

suggests dermal fibroblasts require IL-22 signal to start differentiation and skin 

repair (MacGee et al., 2013). However, the role of IL-22 in epidermal compartment 

and the source of IL-22 in skin wound healing have not been determined. It is 

possible that this possible key signal in skin repair could be provided by ILC3s as 

demonstrated by recent studies in intestinal repair (Luci et al., 2009; Sonnenberg et 

al., 2012). It is possible that ILC3s also be recruited in wound inflammatory phase 

and produce IL-22 in skin, which orchestrates skin repair by mediating the 
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interaction between immune cells, epidermal keratinocytes and dermal fibroblasts. I 

will examine the presence of ILC3s in post injury skin, determine the role of ILC3s 

(RORγt
+
ILCs) in wound healing by comparing the wound closure rate between  

RORγ-/- mice and wild type mice, and study the mechanism of how ILC3s mediates 

skin repair.  

 

I also hypothesize epidermal Notch signaling might be involved in skin wound 

healing by promoting a prompt inflammation reaction and mediating the interaction 

between keratinocytes and immune cells. Previous studies suggests a role of Notch 

signaling in promoting skin wound healing by using pan-Notch inhibitor (Chigurupai 

et al., 2007). However, the underlying mechanism is less clear, and the individual 

roles of Notch1 and Notch2 are unknown due to lack of appropriate agents. Recent 

studies showed forced activation of epidermal Notch signaling promotes dermal 

accumulation of immune cells via epidermal production of TNF-α and stimulates 

epidermal proliferation  via a mechanism that is less clear (Ambler and Watt 2010; 

Estrach et al., 2006). These two striking phenotypes highly resemble the remarks of 

inflammation and proliferation stages of wound healing. It is possible that Notch 

signaling might play a role in recruitment of ILC3s that produce IL-22, which might 

in turn activate epidermal epithelial cells to proliferate as it does in intestinal 

epithelial cells (Luci et al., 2009; McGee et al., 2012; Sonnenberg et al., 2012). 

Therefore, I will examine the correlation between ILC3s and Notch activity using 

Notch activation and blocking models. With the recent progress in development of 

Notch individual antibodies, I will be able to study the individual roles of Notch1 

and Notch2 signaling in ILC3 recruitment (Wu et al., 2010). I will also determine the 

mechanism of how Notch signaling, via TNF-α, regulates ILC3 recruitment. 
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Chapter 2 Methods 

2.1 Research animals 

K14NICDER, RORγ
GFP/GFP

 (RORγ
-/-

), Rag2
-/-

, CD11c
Cre

Rosa26
iDTR

 and CXCL13
-/- 

mice have been described previously (Ambler and Watt, 2010; Ansel et al., 2000; 

Buch et al., 2005; Estrach et al., 2006; Johnston et al., 2013; Jung et al., 2002; Luther 

et al., 2000; Sun et al., 2000). All experimental procedures were performed with 

ethical permission by Durham Universities under appropriate UK government Home 

Office licenses. Experiments followed the national and institutional guidelines for 

the care and use of animals based on the Animal [Scientific Procedures] Act 1986. In 

every experiment mice were age and sex matched with wild type littermate controls 

used when possible and within each experiment 3 or more mice per 

genotype/experimental group were included. Experiments were repeated 2 to 4 times 

to confirm results. The majority of mice reported were females between 6 and 9 

weeks of age. Occasionally, male mice or mice between 9 and 18 weeks were 

included in an experiment, however RNA and protein analysis was performed on age 

and sex-matched tissues and analysis was performed amongst experimental 

replicates where appropriate. Mice were housed in pathogen-free facilities and had 

access to food and water. In K14NICDER mice, estrogen-inducible ectopic Notch 

activity (i.e. fragment of Notch1 intracellular domain (NICD1)  was induced and 

activated specifically in epidermal basal cells under the control of Keratin 14 (K14) 

promoter by topical application of 2mg of 4-hydroxytamoxifen (4OHT, H6278 from 

Sigma) dissolved in acetone (Figure 2.1). In RORγ
GFP/GFP 

(RORγ
-/-

) mice, a 200-bp 

fragment containing the exon encoding the DNA-binding domain of RORγ gene was 

replaced with the 1.2-kb neomycin resistance gene and flanking a coding sequence 

of enhanced green fluorescence protein (eGFP) (Sun et al., 2000). RORγ
-/-

 were born  
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Figure 2.1 Ectopically activated Notch signaling in 4OHT treated K14NICDER 

mice (Adapted from Estrach et al., 2006; Watt et al., 2008). Black arrow represents 

normal Notch signaling. Red arrow represents ectopically activated Notch signaling. 

In K14NICDER mice, ectopic Notch1 intracellular domain is specifically induced in 

basal cells of epidermis under the control of keratin 14 promoter (K14Pr) and enters 

nucleus to activate Notch signaling when a chemical drug 4-hydroxytamoxifen 

(4OHT) is topically applied. To make this transgenic model, a vector containing the 

sequence encoding amino acid 1751-2290 of NICD1 and a modified 4OHT 

responsive human oestrogen receptor (ER) was generated. For stabilizing its 

transcript, a rabbit β-globin untranslated region (UTR) encompassing a human β- 

globin gene intronic sequence to a BamHI site (βg int), K14 UTR and 

polyadenylation signal from human K14 mRNA (K14pA) was added into this vector. 

Then this stable NICDER construct was sub-cloned into the BamHI restriction site 

of the K14 promoter cassette and injected into the pronucleus of F1 embryos. 

ADAM10 
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healthy, had no discernible physical defect, and were fertile. However, these mice 

completely lack lymph nodes and Peyer’s patches (Sun et al., 2000). Mice 

heterozygous for this targeted mutation RORγ
+/-

 (RORγ
+/eGFP

) were used as controls 

by breeding RORγ
-/- 

mice to wildtype C57Bl/6 mice. In Rag2
-/- 

mice, mature T and B 

cells are depleted (Hao and Rajewsky, 2001). CD11c
Cre

Rosa26
iDTR 

mice were 

produced by cross-breeding B6.Rosa26
iDTR

 mice to B6.CD11c
cre 

mice.
 

In 

CD11c
Cre

Rosa26
iDTR 

mice, Cre recombinase is expressed under the control of CD11c 

promoter permitting the expression of induced simian Diphtheria Toxin Receptor 

(iDTR) in CD11c
+
 cells (Buch et al., 2005; Jung et al., 2002). When being treated 

with 100 nanograms of Diphtheria Toxin (DT) (D0564, Sigma) per mouse via 

intraperitoneal (i.p.) injection for 4 consecutive days before wounding, mouse 

CD11c
+
 cells are killed by DT via uptake through Cre-induced iDTR. CXCL13

-/- 

mice do not display any gross physical or behavioral abnormalities but have defects 

in lymphoid tissue (e.g. lymph node) development (Luther et al., 2000). 

 

2.2 Wound healing 

Mice were anesthetized using 2% inhaled isoflurane and then injected 

subcutaneously with the analgesic, Vetergesic (0.05mg/kg, Alstoe Animal Health). 

The back skin was shaved and sterilized with Videne surgical scrub (from Ecolab) 

then rinsed with sterile water. Two full-thicknesses, 4mm diameter back skin 

wounds were made using a punch biopsy (from Stiefel) (Figure 2.2). Some wounds 

were then topically treated daily with recombinant TNFα (8 µg/kg, product code: 

PNRMTNFAI, Thermo Scientific Pierce), TNFα antagonist (10 mg/kg, Adalimumab, 

Humira, Abbott Laboratories) or PBS until humanely sacrificed 2 days or 5 days 

post-wounding. Some mice were i.p. injected with anti-NRR1 (5mg/kg, from  



 
76 

 

Figure 2.2 Surgical wounding model. (a) Full thickness-skin wounds were created 

by using a 4mm punch biopsy on mouse back skin with hairs shaved. (b) Mice with 

two wounds on back skin were kept up to 8 days post injury for examining the 

wound closure rate, cytokine production profile and immune cell recruitment. 

 

 

 

 

 

 

 

 

 

 

 

 

                                    (A)                 (B) 
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(a) Collection 

 

(b) Embedding 

 

(c) Cryostat 

 

Figure 2.3 Collection and frozen sectioning of skin wounds. (a) Back skin from 

wounded mice was collected. (b) 1.5cm x 0.5cm piece of skin sample including half 

a wound and surrounding area was immersed into optimal cutting temperature 

compound (OCT) in a 24cm x 24cm mold before being frozen in liquid nitrogen or 

in cold isopentane.  (c) Frozen sample was cut into 8 micron sections using a cryostat.  
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Genotech), anti-NRR2 (5mg/kg, from Genotech), or both anti-NRR1 and anti- NRR2 

(2.5mg/kg for each), or control (anti-ragweed, 5mg/kg, from Genotech) for 7 days 

prior to wounding and then every 2 to 3 days post-wounding for the duration of the 

experiment (Wu et al., 2010). CD11c
Cre

Rosa26
iDTR 

mice were treated with 

100ng/mouse DT via i.p. for 4 consecutive days prior to wounding. Some RORγ
-/-

 

mice received splenocyte transplantation 1 day prior to wounding. In these RORγ
-/-

 

mice 1x10
6
 cells harvested from Rag2

-/- 
spleen were injected via tail vein. Wounds 

were photographed daily using a Canon digital camera.  

 

2.3. HE staining and antibody labeling 

Back skin tissue was collected and processed as previously described (Figure 2.3) 

(Braun et al., 2003; Estrach et al., 2006). For Haematoxylin and Eosin (HE) staining, 

8µm-thick paraffin sections were dewaxed by immersing into xylene, ethanol and 

distilled water sequentially and stained with Harris’ haematoxylin for 10 minutes. 

Then sections were washed and stained with Eosin for 30 seconds. Finally, the slides 

were mounted with DPX media (06552, Sigma). For antibody labeling, 8µm-thick 

frozen or paraffin sections were fixed in 4% or 0.4% paraformaldehyde (PFA) for 15 

minutes, blocked in 10% goat or donkey serum, 0.25% fish skin gelatin and 0.2% 

bovine serum albumin for 30 minutes, and then stained with the following antibodies 

diluted in blocking solution (dilutions in brackets) for 1 hour or overnight: activated 

Notch1 (1:200, Abcam, ab8925), Activated Notch2 (1:200, Abcam, ab8926), CD3 

(1:100, BD Biosciences, clone 17A2), CD4 (1:100, BD Biosciences, clone RM4-5), 

CD8a (1:100, BD Biosciences, 53-6.7), CD11b (1:100, BD Biosciences, clone 

M1/70), CD11c (1:100, Biolegend, clone N418), CD19 (1:100, BD Biosciences, 

clone 1D3), CD117 (also known as C-kit, 1:100, BD Biosciences, clone 2B8), 

http://www.ncbi.nlm.nih.gov/pubmed/12954714
http://www.ncbi.nlm.nih.gov/pubmed/17035290
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CD127 (also known as IL7R, 1:100, eBiosciences, clone SB/199), CD207 (also 

known as Langerin, 1:100, eBioscience); F4/80 (1:100, eBiosiences, clone BM8), 

Gr-1 (Ly-6G, 1:100, eBiosiences, clone BR6-8C5), NKp46 (also known as CD335, 

NCR1, 1:100, eBiosciences, clone 29A1.4), Ki67 (1:400, NeoMarkers), CXCL13 

(also known as BLC, BCA-1, 1:300, eBiosciences, polyclone). Tissue sections were 

stained with appropriate fluorescent secondary antibodies (1:1000, Invitrogen), 

counterstained with DAPI and mounted with Mowiol (2.4g Mowiol, 6g glycerol, 

12.5ml Tris pH8.5, topping up to 50ml with water) before imaging tissues using a 

Leica Tandem SP5 confocal microscope. To detect RORγ, 8µm frozen sections were 

fixed in 4% PFA for 10 minutes then incubated with antibody as described above. 

Sections were incubated with PE-conjugated RORγ antibody (eBiosciences, clone 

AFKJS-9, Cat. 12-6988-82) diluted to 1:100 in permeabilization buffer 

(eBiosciences, Kit 00-5521) for 1 hour. Brightness of images was adjusted using 

Adobe Photoshop CS3 software.  

 

2.4  Isolation of cells for flow cytometry 

A 4-5 cm
2 

piece mouse back skin was removed then dermal surface was gently 

scraped to remove subcutaneous fat and muscle. Tissue was floated in freshly-

prepared 2mg/ml dispase (17105-041, Invitrogen) 0.01% DNase I (Roche) in 

Roswell Park Memorial Institute (RPMI) 1640 medium (R8758, Sigma) with dermal 

side down overnight at 4
o
C. The following day, epidermis was separated from 

dermis using forceps, then dermis was chopped into tiny pieces and dermis and/or 

epidermis were incubated with 1mg/ml collagenase type I (17100-017, Invitrogen) 

and collagenase type II (LS004176, Worthington) in RPMI 1640 media in an orbital 

mixer for 2 hours at 37
o
C. After incubation the suspension of digested tissue was put 
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through a 70µm strainer to isolate single cells. Thymocytes were collected by gentle 

disruption of the thymus in RPMI media. Cutaneous lymph nodes from axillary and 

inguinal regions and splenocytes were collected by using a syringe to gently smash 

the tissue through cell strainer. Then splenocytes were subjected by incubation with 

red blood cell lysis buffer (0.15M NH4Cl, 1mM NaHCO3, 0.1mM EDTA) for 1 

minute. Cell suspensions from all types of tissue were pelleted and re-suspended in 

0.5% BSA in PBS prior to antibody staining for flow cytometry. 

 

2.5 Antibody staining for flow cytometry 

Antibody staining was performed in 96-well V-bottom plates with the following 

antibodies: CD3 Alexa-647 (BD Bioscience, clone 17A2) or Allophycocyanin-

Cyanine 7 (APC-Cy7) (Biolegend, clone 17A2), CD4 Alex-488 or Phycoerythrin 

(PE) or Allophycocyanin (APC) (BD Bioscience, clone RM4-5), CD5 (BD 

Biosciences, clone 53-7.3), CD8a PE (BD Biosciences, clone 53-6.7) or APC,  

CD11b Alexa-647 (BD Bioscience, clone M1/70), CD19 Alexa-647 or PE-Cy7 (BD 

Biosciences, clone 1D3), CD21 Alexa 647 (BD Bioscience, clone 7G6), CD23 Alexa 

488 (BD Bioscience, clone B3B4), CD45 Peridinin Chlorophyll (PerCP) (BD 

Biosciences, clone 30-F11) or pacific blue (Biolegend, clone 30-F11), CD45R PerCP 

(also known as B220, BD Bioscience, clone RA3-6B2), TCR-β PE-Cy7 (Biolegend, 

clone H57-597), Vγ3 APC (Biolegend, clone 536), Gr-1 FITC (Biolegend, clone 

BR6-8C5), CD11c PE (Biolegend, clone N418), F4/80 PE-Cy7 (Biolegend, BM8),  

CD127 PE or APC (Biolegend, clone SB/199), NK1.1 PE-Cy5 (Biolegend, clone 

PK136), NKp46 Alexa-647 (eBiosciences, clone 29A1.4), CD117 PE-Cy7 (BD 

Bioscience, clone 2B8) incubated with cells for 1 hour on ice. Following surface 

labeling, cells were prepared for intracellular staining and fixed overnight in Fixation 
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buffer (kit 00-5521, eBiosciences). After incubation, PE-conjugated RORγt antibody 

was added to the cells for 1 hour with permeabilization buffer (00-5521, 

eBiosciences) before analyzing cells. Cells were analysed using a FACSCaliber 

Flow Cytometer (BD Bioscience) or CYAN (Beckman-Coulter).  

 

2.6 Protein extraction/ Western blotting 

Pieces of back skin (0.5-1 cm
2
) were snap-frozen in liquid nitrogen and stored in -

80
o
C freezer. Frozen tissue was homogenized in Radio-immunoprecipitation Assay 

(RIPA) buffer [150 mM NaCl, 50 mM Tris-HCl (pH 7.5), 1% Nonidet P-40, 0.25% 

sodium deoxycholate with cOmplete, Mini, EDTA-free proteinase inhibitor cocktail 

tablet (1 tablet in 10ml RIPA buffer, product No. 04693159001, Roche)]. Lysates 

were run on a 10% gradient polyacrylamide gel (Invitrogen), transferred to 

polyvinylidene difluoride (PVDF) membrane, blocked with 3% cold water fish skin 

gelatin (Sigma)/0.2% Tween-20/PBS or 5% powdered skimed milk/0.2% Tween-

20/PBS and hybridised with antibodies to activated Notch1 (ab8925, 1:400, Abcam), 

activated Notch2 (1:400, Abcam, ab8926) or beta-actin (A5441, 1:3000, Sigma). 

Blots were rinsed in 0.2% Tween-20/PBS, incubated with horseradish peroxidase 

(HRP)-conjugated anti-rabbit or anti-mouse secondary antibody (Sigma) and 

visualized with enhanced chemiluminescence (ECL) Western Blotting Substrate 

(Pierce). Following film detection of blots, band intensity was quantified using 

ImageJ and the mean band intensity value was calculated against the loading control.  

 

2.7 RNA extraction  

RNA extraction methods have been described previously (Ambler and Watt, 2010). 

In summary, freshly-isolated tissues were immediately snap-frozen in liquid nitrogen 
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or immersed in RNAlater (Invitrogen) for 24 hours prior to freezing. Tissues were 

homogenized using polytron tissue homogenizer then RNA was isolated using a 

Qiagen, RNeasy Mini Kit following manufacturer’s instructions including the 

optional, on-column DNase I digestion step. An additional proteinase K digestion 

step was performed in the protocol. Briefly, after homogenising lysates in Qiagen 

RLT buffer (from RNeasy Mini kit) + 1% ß-mercaptoethanol (BME) , 40 microliters 

of proteinase K (20mg.ml, P6556, Sigma) and RNase-free water were added to a 

final volume of 1.8 ml and incubated  at 55
o
C for 10 minutes. RNA concentrations 

were quantified using a Nanodrop microspectrophotometer and cDNA prepared 

using a High Capacity cDNA Reverse Transcription Kit (Cat. 4368814, Life 

Technology). 

  

2.8 Quantitative polymerase chain reaction (QPCR) 

To quantify the mRNA levels of IL-22, IL-23a (p19), CCL20 and TNFα, QPCR was 

performed using a Rotor-Gene Q instrument (Qiagen), with a two-step rapid-cycling 

procedure as described by the manufacturer (Roter-Gene Probe Handbook, Qiagen). 

Triplicate reactions (20 microlitre) of each experimental sample were analysed using 

fluorescein amidite (FAM) probes for the gene of interest (TNFα, Mm00443258.m1; 

CCL20, Mm01268754.m1; IL23a (P19), Mm01160011.g1, Life Technologies) at a 

final concentration of 900 nM for each primer and 250nM for the probe and TaqMan 

Fast Universal PR master mix (ABI) at 1x. Reactions were subjected to an initial 3-

minute denaturation step at 95
o
C, followed by 45 cycles of 95

o
C for 3 seconds and 

60
o
C for 10 seconds. Data was analysed using the Comparative Quantitation 

algorithm in the Rotor-Gene software, with calibrator samples for each run being 

compared in a common experiment. MIP1α and IL-22 mRNA levels were examined 
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using unlabelled primers (MIP1α: Forward 5’-GTTCTTCTCTGTACCATGAC-3’; 

Reverse 5’-CTCTTAGTCAGGAAAATGAC-3’, final concentration 400 nM; IL-22: 

PPM05481A-200, Qiagen) in a reaction using SYBR-green master mix (Sigma). 

Reactions were subjected to an initial 3-minute denaturation step at 95
o
C, followed 

by 45 cycles of 95
o
C for 10 seconds, 60

o
C for 10 seconds and 72

o
C for 10 seconds. 

Reference genes Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and β-2 

microglobulin (B2M) were used to quantify genes of interest. 

 

2.9 Primary dermal cells 

Primary mouse fibroblasts were isolated using a method based on Jahoda and Oliver 

(1984). In brief, after sacrificing the mouse, the back skin hair was clipped and then 

the skin tissue was washed in Dulbecco’s modified Eagle’s medium (DMEM) 

(Invitrogen) with double strength antibiotics (2x Pen/Strep - Penicillin 100 Unit/ml 

Streptomycin 100 µg/ml, Fisher). The fat and non-dermal tissue was gently scrapped 

from the tissue before cutting into pieces of approximately 10mm
2
. Each piece of 

tissue was cut repeatedly using curved blade scissors until it became slurry and the 

tissue was spread onto the bottom of a 6-well plate. The tissue was then covered with 

DMEM + 10% fetal calf serum (FCS, PAA Laboratories) and 1x Pen/Strep and 

placed in a 37ºC incubator at 5% CO2. After 12 days cells were passaged. 

 

Then passaged (P1) mouse fibroblasts when 90% confluent were treated with either 

TNFα (20 ng/ml, product code: PNRMTNFAI, Thermo Scientific Pierce), TNFα 

antagonist (50 µg/ml, Adalimumab, Humira, Abbott Laboratories) or both diluted in 

DMEM + 10% FCS and 1x strength Penicillin/Streptomycin. Some passaged (P1) 

cells were left untreated. Cells were incubated for an additional 24 hours then lysed 
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by using Qiagen RLT buffer (Qiagen RNeasy Mini Kit) + 1% BME and RNA 

collected using an RNeasy Mini Kit (Qiagen) following the manufacturer’s protocol.  

 

 

2.10 Systems Biology Analysis of Gene Expression Data Sets   

To determine the key signaling pathways involved in Notch-mediated wound 

healing, unbiased analysis of gene arrays from RORγ
+ 

innate lymphoid cells (NIH 

GEO: GSE29777, in Reynders et al., 2011 and unpublished results) and from 

uninjured, K14NICDER transgenic mouse back skin epidermis and dermis (NIH 

GEO: GSE23782, in Ambler and Watt, 2010) was used. The MAS5-processed 

datasets of differentially expressed genes were imported into Ingenuity Pathway 

Analysis software (Ingenuity® Systems, www.ingenuity.com) for analysis. All 

secreted, skin-derived factors that could interact with a cytokine or chemokine 

receptor on ILCs were determined. The highly upregulated genes in the epidermis 

and the dermis were filtered by the "extracellular matrix" gene ontology term. 

Ingenuity Pathway Analysis was used to build direct connections from the 

upregulated genes to their possible target receptors. The genes displayed in Figure 

6.1 were further selected to show the most probable/relevant/interesting interactions 

between secreted factors and their target receptors. 

 

 

2.11 Statistical Analysis 

For western blotting and mRNA quantification samples were normalized where the 

average of uninjured skin control unless otherwise stated was designated as 1 or 

100%. Independent samples from at least 3 individual animals or wounds were used 
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to calculate group averages. Standard error of the mean (SEM) was calculated and 

significance determined using a Student’s t-test to compare the means of two 

unpaired samples. Results are shown as mean ± SEM. In figure legends, * denotes p 

value < 0.05; ** denotes p value < 0.005; *** denotes p value < 0.0005 unless 

otherwise stated.  
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Chapter 3 Involvement of immune cell in normal skin wound healing 

3.1 Introduction 

Skin wound healing is a coordinated and sequential process which is initiated by 

inflammation phase where a large number of immune cells either migrate from 

adjacent skin or are recruited by chemokines from blood circulation into the wound 

site and are activated by cytokines to clear damaged cells, debris and pathogens 

(Martin and Leibovich, 2005). This inflammatory reaction is thought to be largely 

mediated by innate immune system, especially professional phagocytes such as 

neutrophils and macrophages (Rodero and Khosrotehrani 2010; Stout, 2010). By 

contrast, antigen-specific adaptive system including conventional αβ T cells and B 

cells, is considered not to be significantly involved in wound healing (Stout, 2010). 

Neutrophils are the earliest immune cell type that are recruited into wound site 

within hours, while blood-derived macrophages arrives at wound site approximately 

day 2 post-wounding to perform intensive phagocytosis of wound debris and 

microbes and apoptotic short-life neutrophils (Stout, 2010). However, the evidence 

for the infiltration of skin wound by the other cells of innate immune system, such as 

NK cells, dendritic cells, etc., is less clear (Liu et al., 2012).  

 

In addition to promote inflammation after injury, some immune cells have shown 

roles in tissue regeneration by communicating with other cell types. Wound 

associated M2 macrophages, via TGFβ, contact dermal fibroblasts to activate their 

differentiation into myofibroblasts that are in charge of producing matrix collagens 

and wound contraction (Rodero and Khosrotehrani, 2010). DETCs contact 

keratinocytes to promote their proliferation after damage via IGF-1 and KGF, and 

promote macrophage recruitment via hyaluronan (Jameson et al., 2002; Macleod and 
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Havran, 2011). Given the new evidence that subsets of emerging RORγt+ innate 

lymphoid cells (ILC3s) play key roles in epithelial tissue homeostasis and repair in 

thymus and intestine after damage or infection via producing IL-22 (Dudakov et al., 

2012) and IL-22 contributes to epidermal proliferation during skin wound healing 

(McGee et al., 2012), I hypothesize ILC3s might be present in skin and involved in 

skin wound healing through IL-22 production.  

 

To examine the presence and involvement of individual immune cell subsets in skin 

wound healing, flow cytometry and immunofluorescence chemistry were performed 

using a variety of antibodies to analyze the quantification and location of well-

defined immune cell types, such as neutrophils (CD11b
+
CD11c

-
Gr-1

+
F4/80

-
), mature 

macrophages (CD11b
+
CD11c

-
Gr-1

-
F4/80

+
), conventional dendritic cells (cDC, 

CD11b
+/-

CD11c
high

), Langerhans cells (LC, CD11b
+
CD11c

low
), inflamed monocytes 

(CD11b
+
CD11c

- 
Gr-1

+
F4/80

+
, which give rise to macrophages, cDC and possibly 

LC), NK cells (NK1.1
+
NKp46

+
CD3

-
), NK-like T cells (NKT cells, NK1.1

+
NKp46

+
 

CD3
+
), dendritic epidermal T cells (DETCs, CD3

+
 TCRβ

-
 Vγ3

+
), αβ T cells (CD3

+
 

TCR-β
+
 Vγ3

-
), dermal γδ T cells (CD3

+
 TCR-β

-
 Vγ3

-
) and B cells (CD19

+
) as well as 

ILC3s (RORγ
+
CD127

+
CD3

-
) at different time-points following wounding in 

wildtype mouse back skin. To determine the phenotypical markers and subsets of  

RORγt
+
 ILCs in skin, punch-wounded wildtype as well as GFP-expressing RORγ

+/-

mice were analyzed. 

 

3.2 Results 

3.2.1 Timing of the healing process of skin wound  
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To examine skin wound healing process, wounded mouse model was used. Two 4-

mm diameter full-thickness wounds were made by using punch biopsy on wildtype 

mouse back skin. Wounded skin including central wound as well as surrounding area 

was collected on day 2, 5 and 8 post-wounding representing the early, middle and 

late stages of wound healing. To examine the histology of normal healing of skin 

wound, skin sections were analyzed by using hematoxylin and eosin (HE) stainings. 

On day 2, the wound was covered by a clot (Figure 3.1A) composed of platelets and 

fibrin (Martin and Leibovich, 2005). The cellular density in dermis at the wound 

edges is increased resulting from infiltration of immune cells (Figure 3.1E) and other 

cell types (Martin and Leibovich, 2005). Epidermis at the wound edges was slightly 

thickened (Figure 3.1A) suggesting epidermal proliferation had just started, which is 

consistent with the fact that the wound healing is a coordinated process, sequential 

inflammation and proliferation phases in wound healing are somewhat overlapped 

(Martin and Leibovich, 2005). On day 5, hyper-thickening of epidermis was detected 

underneath the clot and migrated towards the wound (Data not shown). Dermal 

cellular density was continuously increased resulting from persistent inflammation 

infiltration (Figure 3.1F), granular tissue generation and dermal matrix deposition 

(Martin and Leibovich, 2005). These results suggested the healing programme was 

in intensive proliferation phase on day 5 post-wounding. On day 8, the wound was 

almost closed and drawn up to the normal level parallel to the surrounding area 

(Figure 3.1B). This was accompanied by dramatically reduced immune cell 

infiltration (Figure 3.1G). These results suggested the healing programme had started 

remodeling phase. 
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Figure 3.1 Skin wound healing is initiated by immune response. (A-B) Histology 

of wounded mouse back skin is shown by HE staining on paraffin sections at early 

stage (day 2 post-wounding) (A) and late stage (day 8 post-wounding) (B) of wound 

healing. (C-G) Cells isolated from wounded skin were analyzed by flow cytometry 

for CD45, a pan marker for immune cells. Total skin cells are first gated on forward 

scatter and side scatter to remove dead cells and debris (C). (D-G) show flow 

cytometry histograms of CD45 staining (red line) of total skin cells gated on FSC vs 

SSC from unwounded back skin (D), wounded back skin on day 2 (E), 5 (F) and 8 

(G) post-wounding. Negative control without adding CD45 antibody is indicated in 

blue line. Gate frequencies are indicated in percentages. Shown one biological 

sample; 3 individual biological replicates were tested (not shown). Scale bars equal 

300 micron. 
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To define the timing of inflammatory cell infiltration, wounded skin was analyzed 

for CD45, a pan cell surface marker for immune cells, by flow cytometry. A same 

size of skin with the same location in unwound mice was used as control. Total skin 

cells were gated by forward scatter (FSC) and side scatter (SSC) (Figure 3.1C). In 

unwounded skin, immune cells accounted for around 8-12% of total skin cells 

(Figure 3.1D), which represents the skin resident immune cells in steady state. This 

percentage was dramatically increased by nearly 2 fold by day 5 post-wounding 

(Figure 3.1F) with the sharpest rise within the first 2 days post-wounding (Figure 

3.1E), confirming the inflammation phase is initiated early upon injury. On day 8 

post-wounding, this percentage dropped back to unwounded level (Figure 3.1G) 

confirming the healing programme was in late proliferation phase and early 

remodeling phase. 

 

Taken together, these results suggest the time-points day 2, day 5 and day 8 post-

wounding represent intensive inflammation and proliferation phase, and the start of 

remodeling phase respectively wound healing process in mouse skin. 

 

3.2.2 Myeloid cells 

To examine myeloid cells including granulocytes (mostly neutrophils), macrophages, 

monocytes, cDC and LCs, wounded skin were analyzed for CD11b (a marker for the 

majority of myeloid cells except CD11b
-
cDC ), CD11c (expressed by cDC with high 

level and by LC with low level) (Romani et al., 2009), F4/80 (a marker for 

macrophages, monocytes, Langerhans cells as well as CD11b
+ 

cDC), and Gr-1 (a 

maker for neutrophils and inflamed (activated) monocytes which give rise to mature 

macrophages and cDC and possibly  LC) (Auffray et al., 2009).  
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To distinguish cDC (CD11c
high

 CD11b
+/-

) and LCs (CD11c
low

 CD11b
+
) from the 

other myeloid cells (CD11c
-
 CD11b

+
), I first analyzed their expression of CD11b 

and CD11c. A rare number of CD11c
high

 cDCs were detected in unwounded skin, 

accounting for 0.1-0.2% of total skin cells (Figure 3.2A). This percentage was 

increased by 1.7 ± 0.2 fold on day 2 post-wounding (Figure 3.2C) arising from 

derivation from inflamed monocytes (Figure 3.2D) and dropped back to unwounded 

level on day 5 and day 8 (Figure 3.2E and G), suggesting cDCs are present in skin 

wound healing especially at early stage of inflammation. To confirm the location of 

DCs, skin sections were analyzed using CD11c antibody which could detect both 

CD11c
high

 cDCs and CD11c
low

 LCs. However, I was only able to detect CD11c
+
 cells 

in dermis but not in epidermis where resident LCs are constantly present, suggesting 

these detectable CD11c
+
 cells were uniformly CD11c

high 
cDCs. CD11c

high 
DC were 

detected in rare dermis in unwounded skin with an rounded morphology (Figure 

3.3A and B), suggesting they were immature DC with high ability to phagocytose, 

poor motility and low potential for antigen presentation (Delves et al., 2011). 

However, an increased number of these CD11c
high

 dendritic cells were detected in 

dermis adjacent to the wound on day 2 post-wounding (Figure 3.3C). The 

morphology of the cells which were immediately adjacent to the wound became 

dendritic, suggesting they were mature DC with poor ability to phagocytose but with 

high motility that had enabled them to migrate to wound site from distal area and 

wound enable them to migrate to the draining lymph nodes nearby to present antigen 

to T cells (Delves et al., 2011). In contrast, the cells which were not immediately 

adjacent to the wound remained rounded suggesting these immature DC might be 

recently derived from inflamed monocytes recruited to the wounded dermis (Figure 

3.2D). On day 5 post-wounding, less CD11c
high

 DC were detected in dermis  
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Figure 3.2 Quantification of myeloid cells and dendritic/Langerhans cells in 

skin wounds. Cells isolated from unwounded (A-B) as well as wounded mouse back 

skin on day 2 (C-D), 5 (E-F) and 8 (G-H) post-wounding were labelled with CD11b, 

CD11c, Gr1 and F4/80 antibodies and were first analyzed by flow cytometry for 

CD11c, CD11b to distinguish dendritic cells (DC) (CD11c
high

 CD11b
+/-

) and 

Langerhans cells (LC) (CD11c
low

 CD11b
+
) from the rest cells (A, C, E, G). Then 

CD11b
+
 CD11c

-
 myeloid cells were gated and analysed for F4/80 and Gr-1 to 

distinguish between neutrophils (Gr1
+
 F4/80

-
), mature macrophages (Gr1

-
 F4/80

+
) 

and inflamed monocytes (Gr1
+
 F4/80

+
). Gate frequencies are indicated in 

percentages. Shown one biological sample; 3 individual biological replicates were 

tested (not shown).  
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Figure 3.3 Dendritic cells are recruited into dermis in wound edges. Back skin 

tissues from unwounded (A and B) as well as wounded mice on day 2 (C) or 5 (D) 

post-wounding were collected. A shows unstained negative control. In B-D, sections 

were stained with an antibody to CD11c antigen (green) and DAPI counterstained 

(blue). Arrows indicates CD11c
high

 dendritic cells. Asterisk marks wound site. Scale 

bars equal 100 microns. 
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compared to day 2 post-wounding and all of them were located immediately adjacent 

to the wound with dendritic morphology (Figure 3.3D), suggesting no CD11c
high

 

were being differentiated from inflamed monocytes. These results confirm that  

CD11c
high

 DC are involved in skin wound healing, especially in early stage (first 2 

days post-wounding) of  healing programme.  

 

In contrast to cDCs, CD11c
low

 CD11b
+
 LCs were relatively abundant in unwounded 

skin, accounting for 0.9-1.0% of total skin cells determined by flow cytometry 

(Figure 3.2A). This percentage was rapidly increased by 1.3 ± 0.1 fold on day 2 post-

wounding (Figure 3.2C), possibly resulting from increased self-proliferation (Merad 

et al., 2013) and derivation from inflamed monocytes (Figure 3.2D). Subsequently, 

this percentage remained above unwounded levels at both day 5 (Figure 3.2E) and 

day 8 time-points (Figure 3.2G) probably due to their long lifespan, capability to 

self-proliferation and also derivation from inflamed monocytes (Merad et al., 2013; 

Romani et al., 2009). These results suggest that LCs constitute the predominant skin 

resident DCs and were accumulated upon wounding throughout the healing 

programme. To confirm the location of LCs, skin sections were analyzed by using 

CD207 (Langerin) antibody which could detect Langerhans cells as well as a 

recently discovered, rare subset of dermal cDC cells (Henri et al., 2009). In 

unwounded skin, CD207
+
 LCs were detected in epidermis with a frequency of 4-7 

cells per mm length of skin (Figure 3.4A). An increased number of CD207
+
 LCs was 

detected in epidermis at wound edges with a frequency of 15-20 cells per mm length 

of skin on day 2 post-wounding (Figure 3.4B) and maintained afterwards on day 5 

and 8 (Figure 3.4C and data not shown). These results confirm epidermal LCs 

constitute the predominant DC in skin and are present in skin wound  
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Figure 3.4 Langerhans cells reside in epidermis and are replenished early 

following wound healing. Back skin tissues from unwounded (A) as well as 

wounded mice on day 2 (B) or 5 (C) post-wounding were collected. Sections were 

stained with an antibody to CD207 antigen (green) and DAPI counterstained (blue). 

Long arrows indicate epidermal Langerhans cells. Arrow heads indicate either 

migratory Langerhans cells trafficking to lymph nodes through dermis or a rare 

subset of dermal dendritic cells (Langerin-expressing dermal dendritic cells). 

Asterisk marks wound site. Scale bars equal 100 microns. 
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healing, probably at all stages of healing programme.  

 

Then I analyzed CD11b
+
 CD11c

-
 myeloid cells, among which neutrophils (Gr-1

+
 

F4/80
-
), mature macrophages (Gr-1

-
 F4/80

+
) and inflamed monocytes (Gr1

+
 F4/80

+
, 

including immature macrophages and possibly monocyte-derived Langerhans cells 

and dendritic cells in transition status) were distinguished by the expression of Gr-1 

and F4/80. Neutrophils (CD11b
+
 CD11c

-
 Gr-1

+
 F4/80

-
) were hardly detectable (less 

than 0.001% of total skin cells) in unwounded skin (Figure 3.2A and B) and were 

detected with a small percentage to total skin cells on day 2 (0.23 ± 0.03%) and 5 

(0.28 ± 0.04%) post-wounding. This percentage was dramatically reduced to less 

than 0.05% by day 8 post-wounding. These results suggest neutrophils may be 

involved in early stage of skin wound healing probably within early hours. To 

confirm the location of neutrophils, skin sections were analyzed using Gr-1 antibody 

which could detect both neutrophils and inflamed monocytes which are known as 

precursors for mature macrophages, cDCs and possibly LCs in inflamed settings 

(Auffray et al., 2009). Unwounded skin was largely devoid of neutrophils (Figure 

3.5A), however, a few Gr-1
+
 cells were detected in hypodermis, which were 

probably circulating neutrophils in skin blood networks. On day 2 post-wounding, a 

large number of Gr-1
+
 cells were detected in both dermis and hypodermis adjacent to 

the wound (Figure 3.5B). According to flow cytometry results, the majority of Gr-1
+
 

cells at this time-point were in deed CD11b
+
 CD11c

- 
Gr1

+
 F4/80

+ 
inflamed 

monocytes (Figure 3.2D) which are supposed to be located in blood vessels in 

hypodermis as well as in newly generated dermal granular tissues (Martin and 

Leibovich, 2005), while the majority of neutrophils are supposed to be outside blood 

vessels in dermis. To test this, skin sections were analyzed for  
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Figure 3.5 Neutrophils are recruited into dermis in wound edges. Back skin 

tissues from unwounded (A) as well as wounded mice on day 2 (B), 5 (C) or 8 (D) 

post-wounding were collected. Sections were stained with an antibody to Gr1 

antigen (green) and DAPI counterstained (blue). Some sections were co-stained with 

antibodies to Gr-1 (green) and CD31 (red). Long arrows indicate neutrophils in 

dermis. Arrow heads indicate either neutrophils or inflamed monocytes in 

hypodermis blood capillaries Asterisk marks wound site scale bars equal 100 

microns. 
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CD31 (a marker for blood vascular endothelial cells) together with Gr-1. Most of Gr-

1
+ 

cells in reticular (lower part) dermis and hypodermis were surrounded by CD31
+
 

vascular endothelial cells (Figure 3.5B) confirming the dramatic increase in the 

number of Gr-1
+ 

cells on day 2 post-wounding were related to massive granular 

tissue generation in which new blood vessels were formed and massive inflamed 

monocytes as precursors of macrophages as well as DCs were recruited into wound 

site to transiently express Gr-1 (Howe et al, 2012; Hume et al., 2008). On day 5, Gr-

1
+
 cells were mostly detected hypodermis and in rare papillary dermis (upper portion 

of dermis), and were absent in reticular dermis (Figure 3.5C). Combined with the 

flow cytometry results that neutrophils remained in the wound site at a low 

percentage at this time-point and the percentage of inflamed monocytes were 

decreased compared to day 2 post-wounding (Figure 3.2F), I confirmed that those 

rare Gr-1
+
 cells detected in rare papillary dermis were neutrophils, while those 

detected in hypodermis were primarily inflamed monocytes. In addition, the absence 

of Gr-1
+
 cells in reticular dermis indicated that granular tissue might be repressed on 

day 5 post-wounding leading to the decrease of inflamed monocyte infiltration. 

These results confirmed that a small number of neutrophils were maintained in 

papillary dermis adjacent to the wound on day 5 post-wounding when the healing 

programme was in the transition from proliferation phase to remodelling phase. On 

day 8 post-wounding, neutrophils were hardly detectable in dermis, and the number 

of inflamed monocytes in hypodermis were also dramatically reduced (Figure 3.5 D), 

which is consistent with flow cytometry results (Figure 3.2H). All of these results 

suggest that neutrophils are present in skin wound healing, especially within early 

hours of the healing programme, and day 5 post-wounding is probably the transition 

point from proliferation phase to remodelling phase in mouse skin wound healing. 
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Mature macrophages (CD11b
+
 CD11c

- 
Gr-1

-
 F4/80

+
) accounted for 5-6% of total 

skin cells in unwounded skin, which made them become the major resident immune 

cells in skin (Dupasquier et al, 2004). The percentage of mature macrophages to total 

skin cells in wounded skin was not evidently changed within the first 2 days post-

wounding (Figure 3.2D). However, this percentage was rapidly increased afterwards 

and reached its peak with a 1.5 ± 0.2 fold increase on 5 post-wounding (Figure 3.2F) 

resulting from derivation from massive inflamed monocytes that were recruited into 

wound site from approximately day 2 post-wounding (Figure 3.2D). On day 8 post-

wounding, there was an sharp decrease in the recruitment of inflamed monocytes 

leading to an reduction in the percentage of mature macrophages to the unwounded 

level (Figure 3.2H). To confirm the location of macrophages, skin sections were 

analyzed using F4/80 antibody which could also detect LCs, some cDC (Merad et al., 

2013) and inflamed monocytes the vast majority of which are recruited into skin as 

the precursors of mature macrophages in inflamed setting (Hume, 2008). At all time-

points, the epidermal F4/80
+
 cells (Figure 3.6) were detected with a similar 

frequency to CD207
+
 epidermal LCs (Figure 3.4), suggesting F4/80

+
 cells in 

epidermis are uniformly LCs. Since cDC were very rare accounting for up to 0.3% of 

total skin cells at all time-points (Figure 3.2A, C, E and G), the dermal F4/80
+
 cells 

were considered to be primarily composed of mature macrophages and inflamed 

monocytes. In unwounded skin where the inflamed monocytes were not present 

(Figure 3.2B), skin resident macrophages were detected throughout dermis (Figure 

3.6A). Following wounding, massive infiltration of F4/80+ macrophages/monocytes 

were detected in dermis and hypodermis adjacent to the wound on both day 2 and 

day 5 (Figure 3.4B and C) with different proportions (Figure 3.2F and H). On day 2 

post-wounding, 48.7 ± 5.3% of macrophage/monocytes heterogeneous population  



 
105 
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Figure 3.6 Monocytes/Macrophages are recruited into dermis in wound edges. 

Back skin tissues from unwounded (A) as well as wounded mice on day 2 (B), 5 (C) 

or 8 (D) post-wounding were collected. Sections were stained with an antibody to 

F4/80 antigen (green) and DAPI counterstained (blue). Note F4/80
+
 in epidermis are 

Langerhans cells. Asterisk marks wound site scale bars equal 100 microns. 
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were mature macrophages (Figure 3.2F), while this proportion was increased to 63.7 

± 4.2% on day 5 post-wounding (Figure 3.2H) due to the conversion from inflamed 

monocytes to mature macrophages and reduction in the number of inflamed 

monocytes accompanied by granular tissue degeneration (Figure 3.5C). By day 8 

post-wounding, the number of dermal macrophages were dramatically reduced to 

unwounded level, and the number of inflamed monocytes as detected in hypodermis 

were also dramatically reduced to a low level (Figure 3.4D). These results suggest 

that dermal macrophages are the predominant skin resident immune cells, and 

macrophages/ monocytes constitute the predominant immune cells involved in skin 

wound healing. Specifically, skin resident macrophages are present in early stage 

(first 2 days post-wounding), while monocyte-derived macrophages are involved in 

later stage (after 2 days post-wounding) of healing programme.  

 

3.2.3 T cells 

To examine if T cells are present in skin wound healing, wounded skin from 

wildtype mice were analyzed for CD45, CD3 (a pan-marker for all the T cells),  

TCRβ (a marker for αβ T cells), Vγ3 (a marker for the majority of DETCs) (Jameson 

et al., 2004) by flow cytometry. I first gated on CD3
 low to high

 CD45
+
 T cells, among 

which αβ T cells (CD45
+
 CD3

+
 TCRβ

+
 Vγ3

-
), DETCs (CD45

+ 
CD3

+ 
TCRβ

-
 Vγ3

+
) 

and dermal γδ T cells (CD45
+
 CD3

+
 TCRβ

-
 Vγ3

-
) were distinguishable by their 

expression of TCRβ and Vγ3. In unwounded skin control, αβ T cells accounted for 

1.2-1.4% of total skin cells suggesting αβ T cells are one of the major resident 

immune cell type in skin (Figure 3.7A and B). This percentage was continuously 

reduced following wounding at all time-points probably suggesting αβ T cells are not 

significantly involved in skin wound healing. DETCs accounted for 1.6-1.8% of total 
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Figure 3.7 Quantification of T cell subsets in skin wounds.  Cells isolated from 

unwounded (A-B) as well as wounded mouse back skin on day 2 (C-D), 5 (E-F) or 8 

(G-H) post-wounding were labelled with CD3, CD45, TCRβ and Vγ3 antibodies and 

were first analyzed by flow cytometry for CD3, CD45 for total T cells (CD45
+
 CD3

+
) 

(A, C, E, G). Then CD45
+ 

 CD3
+
 T cells were gated and analyzed for TCRβ and Vγ3 

to distinguish αβ T cells (ab T cells) (TCRβ
+
Vγ3

-
), dendritic epidermal T cells 

(DETCs) (TCRβ
-
Vγ3

+
) and dermal γδ T cells (gd T cells) (TCRβ

-
Vγ3

- 
) from each 

other. Note αβ T cells are continuously decreased following wounding. DETCs are 

replenished and dermal γδ T cells are replenished after 5 days post-wounding. Gate 

frequencies are indicated in percentages. Shown one biological sample; 3 individual 

biological replicates were tested (not shown). 
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skin cells in unwounded skin (Figure 3.7A and B). Previous studies suggest DETCs 

are resident T cells specifically in rodent epidermis and the epidermal T cells are 

uniformly DETCs (MacLeod and Havrand, 2011; Sumuria et al., 2012). The 

percentage of DETCs to total skin cells was dramatically reduced by 2.0 ± 0.3 fold 

on day 2 post-wounding (Figure 3.7C and D), partly due to the massive infiltration 

of other immune cells and other cell types in wound site. However, they were rapidly 

replenished and increased afterwards on day 5 and day 8 post-wounding (Figure 

3.7E-H), probably through self-proliferation (Sumaria et al., 2011). However, the 

mechanism for maintenance of DETCs in injury state is yet to be determined. These 

results suggest that DETCs are involved in skin wound healing, especially in later 

stage (after 2 days post-wounding) of healing programme. 

 

In addition, a small number of γδ T cells other than DETCs were detected in 

unwounded skin, accounting for 0.5-0.6% of total skin cells (Figure 3.7A and B). 

These γδ T have been recently determined as a mixture population of resident Vγ3
- 

γδ T cells in dermis (Sumaria et al., 2011). Similar to DETCs, these Vγ3
- 
γδ T cells 

are self-proliferative in steady state (Mumaria et al., 2011) and were not expanded 

until day 5 post-wounding (Figure 3.7C and D). However, the percentage of Vγ3
- 
γδ 

T cells was reduced on day 8 compared to day 5 post-wounding (Figure 3.7E and F). 

These results suggest that dermal γδ T cells are involved in skin wound healing, 

especially in later stage (after 2 days post-wounding) of the healing programme. 

 

To visualize of T cells, skin section were analyzed by using CD3, which could detect 

all T cell subsets. DETCs cells were detected in interfollicular epidermal  basal layer 

and hair follicle outer root sheath with dendritic morphology (Figure 3.8A), while a 
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few CD3
+
 T cells were also detected in dermis, which were composed of αβ T cells 

and dermal γδ T cells (Figure 3.7B). On day 2 post-wounding, the number of DETCs 

was dramatically reduced in epidermal compartment (Figure 3.8B), which is 

consistent with the decreased percentage of CD45
+ 

CD3
+ 

TCRβ
-
 Vγ3

+ 
DETCs 

detected by flow cytometry (Figure 3.7C and D). However, a similar number of 

CD3
+
 T cells were detected at this time-point in dermal compartment adjacent to the 

wound compared to the unwounded skin (Figure 3.8B), which is apparently 

contradicted with the substantially decreased percentages of total CD3
+
 T cells and 

all T cell subsets detected by flow cytometry (Figure 3.7C and D). Although the 

migration of T cells from distal dermis into wound site could lead to T cell 

accumulation at wound edges without changing the overall T cell number in dermis, 

it could not explain the decrease in the number of dermal T cell  subsets (Figure 3.7B 

and Figure 3.8B). One of the possible reasons for the loss of all T cell subsets and 

persistent dermal presence of T cells might be increased trafficking of resident T 

cells including both αβ and γδ T cells into skin draining lymph nodes in response to 

injury or infection (Vireling et al., 2012), some T cells detected in dermis at this 

time-point might be migratory DETCs that travelled through dermis. However, it yet 

needs to be determined since DETCs, as a specialized γδ T cells, are considered to be 

immobile in steady state and reside in epidermis for life-time once they get there 

during development of early fetus (Gray et al., 2011; MacLeod and Havran, 2011). 

On day 5 post-wounding, an increased number of T cells were detected adjacent to 

the wound especially in epidermis and reticular dermis (Figure 3.8C), suggesting 

DETCs and dermal γδ T cells (Figure 3.7E and F) were replenished and expanded at 

this time-point, probably through recruitment of blood-derived γδ T cells as well as 

self-proliferation (Gray et al., 2011; MacLeod and Havran, 2011). However, the 
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Figure 3.8 T cells reside in epidermis and rare dermis, and are replenished late 

following wounding.  Back skin tissues from unwounded (A) as well as wounded 

mice on day 2 (B) or 8 (C) post-wounding were collected. Sections were stained with 

an antibody to CD3 antigen (green) and DAPI counterstained (blue). Note DETCs 

reside in epidermis and replenished after 5 days post-wounding. CD3+ T cells in 

dermis include αβ T cells dermal γδ T cells and possibly DETC precursors which are 

trafficking from blood circulation to epidermis through dermis. Asterisk marks 

wound site. Scale bars equal 100 microns. 
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mechanism of maintenance of self-proliferative DETCs and dermal γδ T cells in 

inflamed settings are currently unknown (Gray et al., 2011; MacLeod and Havran, 

2011) and needs to be determined. In addition, I found the morphologies of those 

DETCs which were most proximal to wound site became rounded in response to 

keratinocyte injury, which is consistent with previous results (Havran and Jameson, 

2010). All of these results suggest γδ T cells including both DETCs and dermal γδ T 

cells are involved in skin wound healing, especially in later stage (after 2 days post-

wounding) of healing programme, while αβ T cells may not be significantly involved 

in this healing process. 

 

3.2.4 B cells 

To examine if B lymphocytes are involved in skin wound healing, wildtype wounded 

mice were analyzed for CD45, CD19 (a marker for B cells) by flow cytometry. 

CD19
+
 B cells were very rare in both unwounded and wounded skin at all time 

points with no increase during the time course, accounting for up to 0.1% of total 

skin cells (Figure 3.9). To verify this result, skin sections were analyzed for CD19 by 

using anti-CD19 antibody. B cells were detectable in neither unwounded nor 

wounded skin (data not shown). These results suggest B cells may not be 

significantly involved in skin wound healing.  

 

3.2.5 NK cells 

To examine if NK cells are involved in skin wound healing, wounded skin was 

analyzed for NK1.1 (a marker for NK and rare T cells known as NKT cells), CD3 (a 

marker for T cells) and NKp46 (also known as natural cytotoxicity triggering 

receptor, NCR), which is co-expressed with NK1.1 by mouse NK and NKT cells, 
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Figure 3.9 B cells are not involved in skin wound healing.  Cells isolated from 

unwounded (A) as well as wounded mouse back skin on day 2 (B), 5 (C) or 8 (D) 

post-wounding (PSW) were labelled with CD45 and CD19 and were analyzed by 

flow cytometry for B cells (CD45
+
 CD19

+
). Gate frequencies are indicated in 

percentages. Shown one biological sample; 3 individual biological replicates were 

tested (not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
117 

and expressed by ILC22 in intestine) (Luci et al., 2009). NK cells (NK1.1
+
 CD3

+
) 

are distinguishable from NKT cells (NK1.1
+
 CD3

-
) and other immune cells by their 

expression of NK1.1 and lacking CD3. NKT cells were detected at a very small 

percentage (0.02-0.03%) to total skin cells in both unwounded and wounded skin at 

all time points and there was no increase during the time course up to day 8 post-

wounding (Figure 3.10), suggesting NKT cells, like the other αβ T cells, may not be 

significantly involved in skin wound healing.  

 

Compared to NKT cells, NK1.1
+
 CD3

- 
NK cells were nearly 10-fold more abundant 

in skin, accounting for 0.1-0.2% of total skin cells in steady state (Figure 3.10A). 

This percentage was considerably increased by 2.9 ± 0.3 fold on day 2 post-

wounding (Figure 3.10B) followed by a gradual decrease afterwards on day 5 

(Figure 3.10C) and day 8 (Figure 3.10D) post-wounding. I found that all of these cell 

were positive for NKp46 (data not shown), which confirmed their NK cell identity. 

These results suggest that NK cell are recruited to the wounded skin on day 2 post-

wounding and are present in skin wound healing, especially in early stage of healing 

programme. 

 

To confirm the location of NK cells in skin,  skin sections were analyzed by using 

NKp46 antibody which could detect NK cells which constitute the majority of 

NKp46
+
 cells, NKT cells, and possibly ILC22 if they exist (Luci et al., 2009). In 

contrast to spleen (Figure 3.11A), NKp46
+
 cells were hardly detectable in dermis in 

unwounded skin (Figure 3.11B). Since NK cells were increased in skin on day 2 

post-wounding (Figure 3.10B), I expected a larger number of NKp46
+
 cell detected 

in dermis adjacent to the wound. Surprisingly, rare NKp46
+
 cells were detected on  
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Figure 3.10 NK cells are recruited early into wound site determined by flow 

cytometry.  Cells isolated from unwounded (A) as well as wounded mouse back 

skin on day 2 (B), 5 (C) or 8 (D) post-wounding were labelled with CD3 and NK1.1 

and were analyzed by flow cytometry for NK cells (NK1.1
+
 CD3

-
) and NKT cells 

(NK1.1
+
 CD3

+
). Gate frequencies are indicated in percentages. Shown one biological 

sample; 3 individual biological replicates were tested (not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
120 
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Figure 3.11 NKp46
+
 cells are hardly detectable in skin wound sections.  Mouse 

spleen (A) and back skin tissues from unwounded (B) as well as wounded mice on 

day 2 (C) post-wounding were collected. Sections were stained with an antibody to 

NKp46 antigen (green) and DAPI counterstained (blue). Arrow indicates NKp46
+
 

NK or NKT cell. Asterisk marks wound site. Scale bars equal 100 microns. 
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day 2 post-wounding with a frequency similar to unwounded level (Figure 3.11C). I 

failed to detect NK cells on day 5 post-wounding (Data not shown). These two 

apparently contradicted results determined by using different methods might indicate 

that the majority of blood-derived NK cells recruited upon wounding are likely to 

express a low level of NKp46, which is below the threshold of the fluorescence 

microscopy and only detectable by flow cytometry.  

 

3.2.6 Innate lymphoid cells 

RORγt
+
 ILCs (also known as ILC3s) are an emerging group of rare innate lymphoid 

cells that play a central role in promoting innate immunity and epithelial tissue repair 

in lung and intestine (Dudakov et al., 2012) in adult human and mouse through 

producing IL-17 and/or IL-22 which were considered as Th17 cytokines (Spits et al., 

2013). Similar to Th17 cells, they are dependent on transcriptional factor RORγt for 

their development and function (Spits and Cupedo, 2012; Spit et al., 2013; Spits and 

Santo, 2011). However, they lack T cell markers such as CD3, which makes them 

distinguishable from RORγt
+
 T cells. In addition, the development of ILC3s is also 

dependent on a cytokine IL-7 through IL-7 receptor α (CD127). By inducing 

different infections to adult mouse models, at least 3 subsets of RORγt
+
 ILCs have 

been identified and named according to their phenotypical markers (e.g. CD117, 

CD4, NKp46) and cytokine production (i.e. IL-22 or IL17 or both) (Luci et al., 2009; 

Sonnenberg et al., 2012; Spits and Cupedo, 2012; Spit et al., 2013; Spits and Santo, 

2011). These RORγt+ ILCs in adults include lymphoid inducer cells (LTi cells, 

RORγt
+
 CD3

- 
CD127

+
 CD4

+
 CD117

+ 
NKp46

-
) which mainly produce IL-22 but also 

IL-17, ILC22 (also named as NCR
+
ILC3s, RORγt

+ 
CD3

- 
CD127

+ 
CD4

+/- 
CD117

+ 

NKp46
+
) which mainly produce IL-22, and ILC17 (also named as NCR

- 
ILC3s, 
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RORγt
+  

CD3
- 
CD127

+ 
CD4

- 
CD117

- 
NKp46

-
) which produce both IL-17 and IL-22 

as well as IFN-γ) .   

 

To examine if ILC3s are present in skin and involved in skin wound healing and to 

define their phenotypes, wounded as well as unwounded RORγ
+/-

 mice with RORγ-

GFP transgene were analyzed by flow cytometry for CD45, CD3, TCRβ, TCRδ, Vγ3, 

CD127, CD4, CD117 and NKp46. I first analyzed CD45
+
 RORγ-GFP

+
 cells which 

could include ILC3s as well as rare RORγt
+
 T cells such as Th17, Th22 and some 

dermal γδ T cells (Gray et al., 2011). In both unwounded skin and wounded skin, the 

vast majority of RORγ-GFP
+
 cells are positive for CD45 (Figure 3.12A-C), 

suggesting RORγ is almost exclusively expressed by immune cells. In unwounded 

skin, RORγ-GFP
+
 cells were very rare, accounting for 0.06 ± 0.02% of total skin 

cells (Figure 3.12A and B). This percentage was dramatically increased to 0.28 ± 

0.06% on day 2 post-wounding (Figure 3.12C), suggesting RORγ
+
 cells may be 

involved in early stage of skin wound healing. To distinguish ILC3s (CD3
-
) from 

RORγt
+
 T cells (CD3

+
), CD45

+
 RORγ

-
GFP

+ 
cells were analyzed for CD3 expression. 

The vast majority (approximately 95%) of CD45
+ 

RORγ-GFP
+
 cells were negative 

for CD3 (Figure 3.12D and E), suggesting the majority of RORγ
+
 cells recruited into 

skin wound site at this time-point are not T cells. To confirm this, CD45
+
 RORγ-

GFP
+ 

cells were analyzed for markers for different T cell subsets, such as TCRβ and 

TCRγ and Vγ3. Similarly, the vast majority (approximately 99%) of CD45
+ 

RORγ-

GFP
+
 cells were negative for TCRβ and TCRγ or Vγ3 (data not shown). To our best 

knowledge, only ILC3s or certain subsets of T cells are found to express RORγt 

(Spits et al., 2013), therefore these
 
RORγ

+ 
non-T cells

 
found in skin wounds are very 

likely to be ILC3s. In order to define the phenotypes and subsets of these RORγ
+ 
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Figure 3.12 The phenotypes of the vast majority of RORγ-expressing cells 

recruited in skin wounds are CD3
- 

CD4
dim to + 

CD127
dim to + 

CD117
-
 NKp46

- 

ILC3s. Cells isolated from uninjured wild type GFP-negative back skin (A), 

uninjured RORγ
+/-(GFP) 

(B) and injured
 
RORγ

+/-(GFP) 
 mouse back skin at day 2 (C-M) 

post-wounding were labelled with CD45, CD3, CD127, CD4, NKp46 and CD117 

and were first analyzed for CD45
+
 RORγ/GFP

+
 cells (A-C). Then CD45

+ 

RORγ/GFP
+
 cells as well as CD45

+
 RORγ/GFP

-
 cells in wounded RORγ

+/- 
skin on 

day 2 post-wounding were gated and compared for expression of CD3, CD127, CD4, 

NKp46 and CD117 (D-M). Gate frequencies are indicated in percentages. Shown 

one biological sample; 3 individual biological replicates were tested (not shown). 
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non-T cells, CD45
+  

RORγ-GFP
+
 cells were analyzed for expression of CD127 (IL-7 

receptor, IL-7R), CD4, CD117 (C-kit receptor) and NKp46. Approximately 60-70% 

of CD45
+ 

RORγ-GFP
+ 

cells were positive for CD127 (Figure 3.12 E-F), while the 

rest of CD45
+  

RORγ-GFP
+ 

cells expressed a very low level of CD127. Similarly, 60-

70% of CD45
+ 

RORγ-GFP
+ 

cells were positive for CD4 (Figure 3.12 G-H), while the 

rest of CD45
+ 

RORγ-GFP
+ 

cells expressed a very low level of CD4. In contrast, the 

vast majority (over 95%) of CD45
+ 

RORγ-GFP
+ 

cells were negative for CD117 and 

NKp46 (Figure 3.12J-M). Similar phenotypes were detected on day 5 post-wounding 

(data not shown). Taken together, these results suggest the phenotypes of the vast 

majority of RORγt
+ 

cells involved in skin wound healing are CD45
+ 

CD3
- 
 CD127 

dim 

to +
 CD4 

dim to +
 CD117

-
 NKp46

-
. Therefore, these RORγ

+ 
cells belong to ILC3s which 

by definition are innate lymphocytes (CD3
-
) and dependent on transcriptional factor 

RORγ (RORγ
+
) and IL-7 (CD127

+
) for their development (Spits and Cupedo, 2012; 

Spit et al., 2013; Spits and Santo, 2011). However, they may be a heterogeneous 

population or a distinct subset from currently known RORγt
+
 ILCs, such as LTi cells 

(CD4
+50%

 CD117
+
 NKp46

-
), ILC22 (CD4

+10%
 CD117

+
 NKp46

+
) or ILC17 (CD4

-
 

CD117
-
 NKp46

-
) because of their CD4

dim to +
 CD117

-
 NKp46

- 
phenotypes. 

 

 

To verify if GFP in these mice was expressed by genuine RORγt
+
 cells, skin sections 

from wounded RORγ
+/-(GFP) 

mice were analyzed by using anti-RORγt
 
and anti-GFP 

antibody. I confirmed that all GFP
+
 cells were detected by anti-RORγt

 
antibody 

(Figure 3.13A) and thus were genuine RORγt
+
 cells. Then to verify the location, 

identity and phenotypes of these RORγt+ ILCs, skin sections from wounded 

wildtype mice were analyzed by using anti-RORγt antibody together with anti-CD3, 

CD4, CD127, CD117 or NKp46 antibody. I confirmed that the vast majority of  
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Figure 3.13 Phenotypes of RORγ-expressing cells are confirmed by 

immunofluorescence chemistry on skin wound sections. Back skin tissues from 

wounded RORγ/ GFP mice on day 2 post-wounding (A) and wildtype mice on day 5 

post-wounding (B-E)were collected. Sections were double or triple stained with 

antibodies to RORγ antigen (red in A, and green in B-E) together with CD3 (purple 

in B), CD4 (red in B), CD127 (red in C), CD117 (red in D) or NKp46 (red in E) and 

DAPI counterstained (blue). RORγ/GFP cells are shown in green in A. Arrows 

indicate double positive RORγ
+ 

cells. Arrows indicate single positive 

RORγ
+
 cells Scale bar 100 µm.  
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RORγt
+
 cells were localized in dermis adjacent to the wounds and were CD3

- 
CD4

dim 

to + 
CD127

dim to + 
CD117

-
 NKp46

-
 ILC3s (Figure 3.13B-E).  

 

To examine the presence and the involvement of ILC3s at different stages of skin 

wound healing, dermis as well as axillary and inguinal skin draining lymph nodes 

from wounded wild type mice were collected on day 1, 3, 5 and 8 post-wounding 

and analyzed by flow cytometry using anti-CD45 and RORγ antibodies. At all time 

points, a small number of ILC3s were detected in both dermis and draining lymph 

nodes, accounting for less than 2% of total cells in respective tissue (Figure 3.14A). 

The percentage of ILC3s was rapidly increased in dermis on day 1 post-wounding 

and continuously increased to its peak on day 5 post-wounding. This was 

accompanied by a reduction in the number of ILC3s in skin draining lymph nodes to 

its lowest level on day 5 post-wounding, suggesting the trafficking of blood-derived 

ILC3s back to blood circulation via lymph might be blocked or delayed to allow 

more ILC3s to maintain in wounded skin. By day 8 post-wounding, the percentage 

of ILC3s in dermis was dramatically decreased to unwounded level. 

Correspondingly, this was accompanied by a considerable increase in the percentage 

of ILC3s in skin draining lymph nodes, suggesting ILC3s left the wound and 

migrated to draining lymph nodes on 8 post-wounding. To verify these results and 

confirm the location of ILC3s, skin sections from wounded wild type mice were 

analyzed by using RORγ antibody. While ILC3s were detected in the dermis at all 

time-points (Figure 3.14B-E), the maximal number of ILC3s were detected on day 5 

post-wounding at wound edges (Figure 3.14D). On day 2 post-wounding, most 

ILC3s were found in the reticular dermis (Figure 3.14 C), however, by day 5 and day 

8 post-wounding, ILC3s were detected in both the reticular and papillary dermis 
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(a)  

 

(b) RORγt DAPI  uninjured  skin 

  

 

(c) RORγt DAPI  2 days post-wounding 

 

(d)  RORγt DAPI  5 days post-wounding 

 

 

 

 

 

 

 

(e)  RORγt DAPI  8 days post-wounding 
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Figure 3.14 ILC3s are recruited into dermis following wounding and are most 

abundant on day 5 post-wounding. (a) The percentage of RORγ
+
 CD45

+
 cells in 

dermis and draining lymph nodes from uninjured or wounded mice at day 1, 3, 5 and 

8 post-wounding were determined by flow cytometry. Graph bars represent 

experimental mean of biological replicates and error bars represent standard error of 

the mean (SEM). (b)-(e) Immunofluorescence chemistry of RORγ staining (green) 

on skin sections from uninjured (b) or wounded mice at day 2 (c), 5 (d) and 8 (e) 

post-wounding. Counterstained with DAPI (blue). Asterisk marks wound site. Arrow 

marks positive cells. Scale bar 100 micron.  
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(Figure 3.14 D and E) confirming active recruitment of cells from the reticular blood 

vascular network into the dermis. These results suggest ILC3s are involved in both 

early and later stages of skin wound healing. 

 

3.3 Summary 

In this chapter, I examined the presence and dynamics of common immune cell types 

as well as an emerging group of innate lymphoid cells (i.e. ILC3s) at inflammation 

(day 2 post-wounding, or day 1 and 3 post-wounding), proliferation (day 5 post-

wounding) and remodeling phases (day 8 post-wounding) of skin wound healing by 

flow cytometry and immunofluorescence chemistry using wounded mouse model. In 

steady state, skin was populated by resident immune cells accounting for 8-12% total 

skin cells, among which macrophages residing in dermis were the predominant cell 

type. I also detected a considerable number of dermal αβ T cells and epidermal 

dendritic T cells and Langerhans cells residing in unwounded skin. On day 2 post-

wounding, the wound site was infiltrated by massive inflammatory cells which were 

either migrated from the adjacent skin or recruited from blood circulation through 

reticular blood capillaries. On day 5 post-wounding when the healing was in 

intensive proliferation phase, inflammatory infiltration at wound site was persistent 

but with a reduced speed of immune cell recruitment. By day 8 post-wounding when 

the wound was almost closed, inflammation was repressed and remodeling phase 

started. As for the specific cell types (Figure 3.15), most immune cells such as 

neutrophils, inflamed monocytes most of which gave to mature macrophages and a 

few of which acted as precursors for dendritic cells and possibly Langerhans cells, 

dendritic cells, Langerhans cells and NK cells reached their maximal number in early 

stage of wound healing followed by a reduction or maintenance (i.e. Langerhans  
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B cell － － ↓↓ 

NK cell ↑↑↑ ↓↓ ↓↓ 
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Figure 3.15 Summary of inflammation response in skin wound healing. Skin 

wound healing initiates with inflammation phase followed by proliferation phase and 

remodeling phase with the indicated timing. The overall inflammation response is 

immediately promoted upon wounding, dramatically increased on day 2 post-

wounding and persistent on day 5 post-wounding, and repressed on day 8. The 

cellular changes are shown in arrows. Upwards arrows indicate increase; downward 

arrows indicate decrease. 
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cells) in proliferation phase. Due to recruitment inflamed monocytes, the numbers of 

mature macrophages was dramatically increased in proliferation phase. In contrast, 

the numbers of γδ T cells including DETCs and dermal γδ T cells were first 

decreased in early stage of wound healing followed by recovery in proliferation 

phase probably through self-proliferation as well as recruitment of blood-derived γδ 

T cells. However, the key cells in adaptive system, αβ T cells and B cells, appeared 

not to be significantly involved in skin wound healing, which is consistent with 

previous findings (Stout, 2010). 

 

Most strikingly, in dermis from both unwounded and wounded mice, I detected 

ILC3s, a rare emerging population of innate lymphocytes which have been recently 

been identified to play a role in local immunity and epithelial tissue repair in thymus 

and intestine through producing IL-22 (Dudakov et al., 2012; Spits and Cupedo, 

2012; Spits et al., 2013; Spits and Santo, 2011). However, these ILC3s have unique 

phenotypes RORγt
+ 

CD3
- 
CD4

dim to + 
CD127

dim to + 
CD117

- 
NKp46

-
, which are distinct 

from currently known ILC3 subsets such as LTi cells (RORγt
+ 

CD3
- 
CD127

+ 
CD4

+50%
 

CD117
+ 

NKp46
-
), ILC22 (RORγt

+ 
CD3

- 
CD127

+ 
CD4

+10% 
CD117

+ 
NKp46

+
) or 

ILC17 (RORγt
+ 

CD3
- 
CD127

+ 
CD4

- 
CD117

- 
NKp46

-
).   

 

I found these ILC3s were rapidly recruited into wound site dermis through blood 

vessels and reached their maximal number in proliferation phase. Interestingly, the 

other immune cells, such as macrophages, γδ T cells, which also had a pronounced 

expansion in their numbers in proliferation phase in wound healing (around day 5 

post-wounding), are found to play important roles in skin repair (Bolleville et al., 

2012; Macleod and Havran., 2011; Rodero and Khosrotehrani 2010; Stout 2010; 
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Sumaria et al., 2011). Macrophages contribute to myofibroblast-mediated wound 

contraction and dermal matrix deposition by producing TGF-β (Rodero and 

Khosrotehrani 2010; Stout 2010). Epidermal γδ T cells (DETCs) contributes to 

keratinocyte proliferation and migration of macrophage by producing IGF-1, KGF 

and hyaluronan respectively (Bolleville et al., 2012; Macleod and Havran, 2011). 

Dermal γδ T cells are believed to play a similar role with DETCs in wound healing, 

although no evidence has been obtained (Sumaria et al., 2011).  Therefore, it would 

be very interesting to expect a role for
 
ILC3s in skin wound healing, and this will be 

tested in the next chapter.  
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Chapter 4 The function of Group 3 ILCs (ILC3s) in skin wound healing 

4.1 Introduction 

Innate lymphoid cells (ILCs) are rare populations of lymphocytes that have key roles 

in secondary lymphoid tissue formation, homeostasis and cytokine production in 

response to pathogen infection or damage (Spits and Cupedo, 2012; Spits et al., 

2013). One group of ILCs (Group 3 ILCs, ILC3s), also known as RORγt
+
 ILCs, are 

characterized by the expression of RORγt transcription factor and have key roles in 

adult thymus regeneration and intestinal epithelial barrier homeostasis and repair 

through IL22 production (Dudakov et al., 2012; Spits and Santo, 2011) which is 

dependent on IL23 produced by localized dendritic cell (Lee et al., 2012).   

 

In last chapter, I presented evidence that RORγ
+ 

CD3
- 

CD4
dim to +

 CD127
dim to +

 

CD117
- 

NKp46
- 

ILC3s are recruited early into skin wound site with a peak in 

proliferation phase of the healing programme. In contrast, RORγ
+ 

T cells were hardly 

detectable in wounded skin especially at earlier time points, suggesting RORγ
+
 cells 

recruited into wound site are primarily ILC3s. To determine whether these ILC3s 

play similar roles in tissue repair in skin as they do in the other epithelial tissues 

through producing IL-22, wounded RORγ
-/-

 mice lacking ILC3s as well as other 

RORγ
+
 cells were analyzed and compared to control littermate in respect with wound 

healing rate, inflammation influx and epidermal proliferation rate. Since skin 

resident γδ T cells play a role in wound healing as suggested by previous studies 

(Bolleville et al., 2012; Macleod and Havran, 2011; Sumaria et al., 2011), Rag2
-/-

 

mice with deficiency in γδ T cells as well as αβ T cells and B cells were used as 

defective healing controls. I found that RORγ
-/-

 mice had poorly healed wounds 

compared to control littermates and Rag2
-/-

 mice, which was directly caused by loss 
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of ILC3s. I conclude that ILC3s contribute to normal wound healing by controlling 

the timing of epidermal proliferation, regulating monocyte/macrophage entry into 

wounded dermis and supplying an important early source of IL-23-dependent IL22.  

 

4.2 Results 

4.2.1 RORγ
-/- 

mice have poorly healed wounds partly due to delayed epidermal 

proliferation 

The wound healing rate in RORγ
-/-

 (Rag2
+/-

RORγ
-/-

, deficient in
 
ILC3s and other 

RORγ
+
 cells i.e. RORγ

+
 T cells), Rag2

-/-
 (Rag2

-/-
RORγ

+/-
, deficient in T cells and B 

cells) and littermate controls were analyzed. Mice were photographed daily and by 

day 3 post-wounding, wound size was delectably larger in RORγ
-/-

 mice compared to 

control and Rag2
-/-

 littermates (data not shown). By day 8 post-wounding, wounds 

were fully closed in control and Rag2
-/-

 mice, while a large, crusty eschar remained 

in the poorly healed wounds in RORγ
-/-

 mice (Figure 4.1A). Consistent with previous 

studies, there was some delay in wound closure in Rag2
-/-

 mice probably due to loss 

of γδ T cells (Jameson et al., 2002), however RORγ
-/-

 mice exhibited a severe defect 

demonstrating a key, previously unrecognized role for RORγ
+
 cells in wound 

healing. As wounds in RORγ
-/-

 mice remained large, I analyzed epidermal 

proliferation by Ki67 proliferation-marker expression; proliferation was quantified 

within a 0.5-millimetre distance from the wound site. On day 5 post-wounding, 

RORγ
-/-

 mice had a marked reduction in Ki67
+
 cells compared to controls (p=0.0006, 

t-test) (Figure 4.1B and C), by day 8 post-wounding, an increase in proliferative cells 

was detected in RORγ
-/-

 mice (p=0.0143, t-test) (Figure 4.1C), suggesting the wound 

healing defect in RORγ
-/-

 mice is partly caused by delayed epidermal proliferation. 
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Figure 4.1 Skin wound healing in RORγ KO mice are delayed partly due to 

reduced epidermal proliferation. 4mm full-thickness wounds were created in 7-

week-old RORγ
+/- 

Rag2
+/-

 (control), RORγ
-/-

 (RORγ KO) and Rag2
-/-

 (Rag2 KO) 

mice.(A) On day 8 post-wounding, wounds in RORγ
-/-

 mice remained large and 

crusty compared to Rag2
-/-

 and wild type controls.(B) Sections of wounded RORγ
-/- 

(RORγ KO) and control tissues collected on day 5 post-wounding were stained with 

antibodies to Ki67 (white). Scale bars equal 100 microns. Experiment repeated ≥ 3 

times. (C) Graph shows percentage of Ki67
+
 basal epidermal cells within 500 

microns of the wound site in control verses RORγ
-/-

 mice on day 5 and day 8 post-

wounding. Tissues from 4 wounds (biological replicates) from both genotypes and 

time points were quantified. Statistics of normally distributed data compared by 

Student’s t-test between control and RORγ KO samples on day 5 (p=0.0006***) and 

day 8 (p=0.0143*) post-wounding. Graph bars represent experimental mean of 

biological replicates and error bars represent standard error of the mean (SEM).  
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4.2.2 CCL-3 dependent monocyte/macrophage recruitment is delayed in 

wounded RORγ
-/-

 back skin 

To examine if loss of RORγt
+
 cells impacts the activities of the other immune cells, 

such as macrophages, that have key roles in skin repair, wounded RORγ
-/-

 back skin 

sections were analyzed using anti-F4/80 antibody which could detect Langerhans 

cells in epidermis, macrophages including resident macrophages and blood-recruited 

monocytes (immature macrophages), and subsets of dermal dendritic cells which 

counted for less than 3% of total F4/80
+
 cells in skin (Figure 3.2). There was no 

detectable change in F4/80
+
 cells in epidermal compartment, however, a three-fold 

reduction in dermal F4/80
+
 cells was detected on day 2 post-wounding, compared to 

control (p=0.0315, t-test) and Rag2
-/- 

littermates (Figure 4.2A and data not shown). 

Since at this time-point, a large number of inflamed monocytes as precursors of 

macrophages are normally recruited into wound dermis through dermal blood 

networks in hypodermis and granular tissues (Figure 3.2), the reduction in the 

number of dermal F4/80
+
 cells (Figure 4.2A and B) reflects that 

monocyte/macrophage recruitment was impaired in RORγ
-/- 

mice. These results 

suggest RORγt
+ 

cells but not T cells promote macrophage entry into dermis. This is 

consistent with a previous study which has shown DETCs do not contribute to 

macrophage recruitment (Macleod and Havran., 2011). By day 5 post-wounding, 

F4/80
+
 cells were plentiful within the dermis in all genotypes (Figure 4.2A right 

panel) suggesting that loss of ILC3s causes a delay, but not a block in macrophage 

infiltration. To examine the mechanism underlying the impaired macrophage 

recruitment, mRNA from wounded RORγ
-/- 

back skin was analyzed for a chemokine 

CCL3 (also known as MIP1α, macrophage inflammatory protein-1α) which attracts  
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Figure 4.2 Macrophage recruitment is delayed in wounded RORγ
-/-

 back skin.  

Back skin tissues from wounded 7-week-old RORγ
+/- 

Rag2
+/-

 (control), RORγ
-/- 

Rag2
+/-

 (RORγ KO) and RORγ
+/- 

Rag2
-/-

 (Rag2 KO) were collected on day 2 or 5 

post-wounding. (A) Sections were stained with an antibody to F4/80 antigen (green) 

and DAPI counterstained (blue). Note RORγ KO wounds lack of dermal F4/80 

positive cells on day 2 post-wounding, but not on day 5 post-wounding. Red, dashed 

line marks epidermal-dermal boundary; asterisk marks wound site scale bars equal 

100 microns. (B) Graph shows percentage of F4/80
+
 dermal cells in control verses 

RORγ KO mice on day 2 post-wounding. Normally distributed data were compared 

by Student’s t-test; p=0.0315 (*). Graph bars represent experimental mean of 

biological replicates and error bars represent standard error of the mean (3SEM). (C) 

Relative mRNA levels of MIP1α (CCL3) quantified by quantitative PCR in 

unwounded back skin (UW) or wounded back skin on day 2 and 5 post-wounding 

from RORγ
-/-

, Rag2
-/-

, RORγ
-/- 

Rag2
-/-

 and littermate control mice using biological 

replicates (n = 3). mRNA levels were normalised to control mice on day 2 or day 5 

post-wounding (designated 1). MIP1α mRNA transcripts were undetectable (ND) in 

uninjured control skin. Note mean levels of MIP1α were 1.6-fold lower in 2-day 

wounded RORγ KO skin. Experiments were repeated ≥ 2 times. 
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the monocyte/macrophages to inflammatory sites. Compared to littermate controls, 

RORγ
-/-

 mice had lower levels of CCL3 mRNA
 
on day 2 post-wounding (Figure 

4.2C) when the maximal number of monocytes are activated in normal wound 

healing (Figure 3.2), but had dramatically higher level on day 5 post-wounding 

(Figure 4.2C) when monocyte recruitment are unusually reduced in normal wound 

healing (Figure 3.2). In contrast, CCL3 mRNA level was considerably higher in 

wounded Rag2
-/- 

 back skin than that in littermate controls on both day 2 and day 5 

post-wounding (Figure 4.2C), suggesting T cells, probably skin resident γδ T cells 

might have a regulatory role in monocytes/macrophages recruitment. These results 

confirm that monocyte/macrophage recruitment is delayed in RORγ
-/-

 mice in a 

mechanism dependent on CCL3. 

 

4.2.3 Loss of ILC3s directly causes wound healing defect in RORγ
-/- 

mice  

Although I have determined the vast majority of infiltrating RORγ
+
 cells in wildtype 

skin wound are negative for CD3, TCRβ and TCRγ, and thus are not T cells, a rare 

subset of RORγ
+
 γδ T cells are present at low levels in dermis (accounting for less 

than 1% of total RORγ
+
 cells, Figure 3.12) (Gray et al, 2011) and might infiltrate 

skin wounds together with other γδ T cells at later stage of wound healing as 

suggested by the increase in dermal γδ T cell influx on day 5 post-wounding (Figure 

3.7). In addition, since RORγ is also transiently expressed by double positive CD4
+
 

CD8
+
 T cells in thymus (Sun et al., 2000), T cell development and function could be 

disrupted or altered in RORγ
-/- 

mice, although the role of RORγ for T cell 

development is yet to be determined. Therefore, to determine if abnormal function of 

the remaining RORγ
-
 γδ T exist and impacted wound healing in RORγ

-/-
 mice. I 

examined wound healing in Rag2
-/-

ROR
-/-

 mice, which lack ILC3s and all T and B  
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(A)  Wound phenotypes on day 5 post-wounding 

    

(B) RORγ  DAPI               day 5 post-wounding 

 

 

Figure 4.3 Loss of ILC3s directly causes wound healing defects. (A) Pictures of 

skin wounds taken on day 5 post-wounding show wound healing was delayed in 

RORγ
-/-

 skin, however wound size in RORγ
-/- 

Rag2
-/-

 was similar to wounded 

littermate controls. Rag2
-/-

 (deficient in T cells and B cells) spleen cells (SPCs) were 

transplanted into RORγ
-/-

 mice prior to wounding (n = 3 mice). The wound size from 

RORγ
-/-

 mice with transplanted Rag2
-/- 

spleen cells (including ILC3s, but excluding 

T cells) were similar to controls). (B) Tissue sections antibody stained for RORγ 

reveal ILC3s were recruited to wound sites in RORγ
-/-

 skin with transplanted Rag2
-/-

 

spleen cells. White arrows mark positive cells; asterisk marks wound site.  
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cells. Wound healing was not delayed significantly compared to control
 
littermates 

(Figure 4.3), suggesting that T cells contribute to RORγ
-/-

 wound pathology in some 

degree but that neither ILC3s nor RORγt
+
 T cells are absolutely required for wound 

healing. To determine if the phenotype observed in the RORγ
-/- 

mice was a result of 

loss of 
 
ILC3s rather than T cells, spleen cells from Rag2

-/-
 mice (lacking αβ and γδ T 

cells but containing ILC3s) were transferred into RORγ
-/-

 mice 24 hours prior to 

wounding. Cell transplantation ameliorated wound pathology observed in control 

RORγ
-/-

 mice and donor ILC3s could be detected adjacent to wound sites (Figure 

4.3B). Therefore I conclude that the loss of ILC3s in RORγ
-/-

 mice directly causes 

wound pathology.  

 

4.2.4
 
ILC3s supply early IL-22 in skin wound healing 

By definition, ILCs are innate lymphocytes that produce the cytokines which were 

originally thought to be produced by their corresponding counterparts T lymphocytes 

(Spits and Cupedo, 2002; Spits et al., 2013). Specifically, ILC3s are considered as 

counterparts of Th17 or Th22 cells, and produce IL17 and/or IL22 in response to IL-

23 (Spits and Cupedo, 2002; Spits et al., 2013). In addition, some infiltrating γδ T 

cells may produce IL17 and/or IL22 (Gray et al., 2011). IL22 mediates its functions 

in tissues by binding to its heterodimeric receptor consisting of IL-10 receptor β (IL-

10Rβ) and IL-22 receptor α (IL-22Rα) (Xie et al., 2000). IL-22 signaling is typically 

involved in hemostasis and immunity in epithelial tissues, since IL-22Rα is almost 

exclusively expressed by epithelial cells such as epidermal keratinocytes (McGee et 

al., 2013; Wolk et al., 2006). Furthermore, IL-22 has shown a key role in tissue 

repair and regeneration in thymus and intestine (Dudakov et al 2012), and promotes 
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keratinocyte proliferation and migration while repressing their differentiation in vivo 

(Boniface et al., 2005; Wolk et al., 2006; McGee et al., 2013). In addition McGee et 

al (2013) has shown that IL22 also promotes dermal repair by functioning on dermal 

fibroblasts. Given the results in the last chapter that ILC3s are recruited early to 

wound sites and promote epidermal proliferation during wound healing, I 

hypothesize ILC3s play this role via IL-22. To test this, IL-22 mRNA levels were 

examined by QPCR. In unwounded skin, IL-22 mRNA level was at the lower limit 

of detection by QPCR. On day 2 post-wounding, IL-22 mRNA levels in RORγ
-/-

 

wounds were not significantly different from unwounded controls (Figure 4.4A). 

Rag2
-/-

 mice also had reduced levels of IL22 consistent with a role for infiltrating γδ 

T cells in wound healing (Gray et al., 2011). Only control littermates displayed an 

evident increase in IL22 mRNA levels. Normally distributed data were compared 

between RORγ
-/-

 and control littermates at day 2 post-wounding by Student’s t-test 

(p=0.017) (Figure 4.4A), suggesting a significant reduction of IL-22 mRNA levels in 

RORγ
-/-

. This reduction in IL-22 was not caused by lack of IL-23 as IL-23 mRNA 

expression was similar between RORγ
-/-

 and control wounds (Figure 4.4A). These 

results suggest the delay in epidermal proliferation in RORγ
-/-

 wounds is likely due 

in part to reduction in early IL22 expression. 

 

Surprisingly, on day 5 post-wounding, increased levels of IL-22 mRNA were 

detected in both RORγ
-/-

 and Rag2
-/-

wounds as well as control wounds compared to 

unwounded control, with highest levels detected in RORγ
-/-

 wounds (Figure 4.4B). 

Since IL-22 is known to be primarily produced by T cells (e.g. Th22) and ILC3s 

(Delves et al., 2011), this result suggested that some currently uncovered IL-22 

producing cells might switch on IL-22 synthesis and compensate for the absence of 
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Figure 4.4
 
ILC3s are an important early source of IL22. (A) mRNA was isolated 

from unwounded controls or wounded RORγ
+/- 

Rag2
+/-

 (WT), RORγ
-/-

 (RORγ KO), 

Rag2
-/-

 (Rag2 KO), RORγ
-/-

/Rag2
-/-

, or common γ chain
-/- 

Rag2
-/-

  skin collected 2 

days post wounding (dpw). Relative mRNA levels of IL22 and IL23 was quantified 

by QPCR. mRNA levels were normalised to unwounded control for IL22 

(designated 1) or to wounded control mice for IL23 (designated 1). IL22 and IL23 

mRNA transcripts were undetectable (ND) in uninjured control skin. Note only 

control mice 2 dpw (p=0.0170) had statistically significant upregulation of IL22 

compared to unwounded controls, whilst IL23 levels were not significantly different 

amongst genotypes. (B) By day 5 post-wounding, IL22 levels were elevated 

compared to unwounded controls in both wild type (WT) and leukocyte-deficient 

mice (RORγ
-/-

, Rag2
-/-

, RORγ
-/-

Rag2
-/-

 and common γ chain
-/- 

Rag2
-/-

). Error bars 

show standard error of the mean (SEM). For IL22, analysis = 5 or 6 biological 

replicates; for IL23, 3 replicates.  
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ILC3s or RORγ
+
 T cells at later stage of wound healing. To test this, Rag2

-/-
RORγ

-/-
 

wounds which lack ILC3s as well as both T cells and B cells, and γc
-/-

Rag2
-/-

 wounds 

which lack all lymphoid cells including NK cells were examined. Like the other 

immune-compromised mice examined, IL-22 mRNA levels were also elevated in 

day 5 wounds in Rag2
-/-

RORγ
-/-

 and γc
-/- 

Rag2
-/-

 mice, confirming non-lymphocyte 

source of IL22 exist in skin wounds and provide IL22 at later stage required for 

tissue repair. The RORγ
-/-

 wounds lacking early presence of IL-22 healed poorly 

despite an increased expression of IL22 at later stage, suggesting that the early IL-22 

production is essential for wound healing and is dependent on ILC3s.  

 

4.2.5 IL-23 from dendritic/Langerhans cells is required for IL-22 production in 

skin wounds 

It is well established that IL-23, a protein formed of two subunits, P19 and p40, 

stimulates ILCs to produce IL-22 or IL-17 (Sonnenberg et al., 2011). Dendritic cells 

are considered as a source of abundant IL-23, however the IL-23 subunit p19 can be 

expressed by other cell types, such as colonic sub-epithelial myofibroblasts after 

being stimulated by TNFα (McGee et al, 2013). To confirm that skin dendritic cells 

are the source of IL-23 during wound healing, CD11c
Cre

Rosa26
iDTR

 (Jung et al., 

2002) were injected intraperitoneally with diphtheria toxin (DT) to deplete all 

dendritic cells including epidermal Langerhans cells or with PBS as a control for 4 

consecutive days before wounding. Tissues were analyzed 2 or 5 days post-

wounding and I confirmed that skin dendritic cells and Langerhans cells were 

deleted in DT-treated CD11c
Cre

Rosa26
iDTR

 mice by skin section staining with CD11c 

and CD207 (Figure 4.5 B and C). From day 2 post-wounding, the wound sizes in DT 

treated animals were detectably larger than PBS-treated animals (Figure 4.5A). Both  
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Figure 4.5 IL22 production is dependent on IL23 supplied mainly by dendritic / 

Langerhans cells. CD11
cre

Rosa26
iDTR

 (CD11c-DTR) mice were injected with PBS 

or diphtheria toxin (DT) for 4 days prior to wounding. Back skin tissues were 

collected on day 2or day 5 post-wounding. (A) Pictures were taken on day 5 post-

wounding. (B-C) Tissue sections antibody stained for CD207 on day 5 post-

wounding and CD11c on day 2 post-wounding confirm Langerhans cells and 

dendritic cells were depleted in CD11c-DTR  White arrows mark positive cells; 

asterisk marks wound site. Scale bars equal 100 microns. (D and E) mRNA was 

isolated from wounded mice and IL22 or IL23 levels quantified by QPCR. mRNA 

levels were normalised to PBS-injected day 2 or day 5 wounded CD11c-DTR mice 

(designated 100%). DT-treatment reduced IL22 and IL23 levels in wounds on both 

day 2 (D) and day 5 (E) post-wounding. Error bars show standard error of the mean 

(SEM). Statistic differences were compared by using Student’s t-test in IL-23 

mRNA on day 2 (p=0.0025**) and day 5(p=0.0028**), and in IL-22 mRNA on day 

2 (p=0.0006**) and day 5 (p=0.0054*). 
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IL-23 and IL-22 mRNA levels in DT-treated animals were reduced by nearly 50% 

compared to PBS-treated animals (p=0.0025 and 0.0006 for IL-23 and IL-22 

respectively, t-test) (Figure 4.5D). On day 5 post-wounding, IL23 mRNA level was 

further substantially reduced (14% of PBS-control treated animals) (p=0.0028, t-test), 

correspondingly, IL-22 was also considerably reduced (8% of PBS-control treated 

animals) in DT-treated CD11c
Cre

Rosa26
iDTR 

wounds (p=0.0054, t-test) (Figure 4.5E). 

Taken together, these results confirm that dendritic cells in skin are the main source 

of IL-23 which is required for IL-22 production during wound healing.  

 

4.2.6 IL23 is required for IL22-dependent epidermal proliferation but not for 

monocyte/macrophage recruitment 

Since  differential productions of IL-22 were detected in DT-treated and PBS-treated 

CD11c
Cre

Rosa26
iDTR 

due to loss of dendritic/Langerhans cell-produced IL23, 

epidermal proliferation rates and monocyte/macrophage recruitment were then 

compared between these mice in order to confirm if IL22/IL23 play a role in 

macrophage/monocyte recruitment as well as epidermal proliferation. Wounded skin 

sections were first analyzed for proliferation marker Ki67 on day 5 post wounding 

using an antibody specific to Ki67. As expected, a large number of Ki67
+
 cells were 

detected in wound edge epidermis in PBS-treated CD11c
Cre

Rosa26
iDTR 

animals 

(Figure 4.6A), confirming the epidermal predominant cell type, keratinocytes, were 

undergoing extensive proliferation, although a small proportion of Ki67+ cells could 

be self-proliferating Langerhans cells. By contrast, the epidermal layers in DT-

treated CD11c
Cre

Rosa26
iDTR

 mice were much thinner than PBS-treated animals.  
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Figure 4.6 IL23/IL22 is required for epidermal proliferation but not for 

macrophage/monocyte recruitment.  CD11
cre

Rosa26
iDTR

 (CD11c-DTR) mice were 

injected with PBS or diphtheria toxin (DT) for 4 days prior to wounding. Back skin 

tissues were collected on day 2or day 5 post-wounding. Tissue sections antibody 

stained for Ki67 (A) on day 5 post-wounding and F4/80 (B) on day 2 post-wounding 

reveal dramatic reduction in epidermal proliferation but apparently normal 

macrophage recruitment in CD11c-DTR. Asterisk marks wound site. Scale bars 

equal 100 microns 
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Correspondingly, Ki67
+
 cells were almost undetectable. Skin sections were then 

analyzed for monocytes/macrophages by using an antibody to their marker F4/80 on 

day 2 post-wounding marker when a large number of monocytes/macrophages are 

normally recruited into wound site. F4/80
+
 monocyte/macrophage were plentiful in 

both wound edge dermis and hypodermis in both DT and PBS treated 

CD11c
Cre

Rosa26
iDTR

 mice (Figure 4.6B). It should be noted, the vast majority of 

epidermal F4/80
+
 cells were lost in DT-treated CD11c

Cre
Rosa26

iDTR 
mouse 

epidermis, confirming the deletion of F4/80
+
 Langerhans cells. These results suggest 

epidermal proliferation but not monocyte/macrophage recruitment is dependent on 

IL23/IL22 signaling. Consistent with previous results (Boniface et al., 2005; Wolk et 

al., 2006), I have shown a co-relationship between IL22 and epidermal proliferation. 

In addition, I found IL22 may not be required for monocyte/macrophage recruitment, 

although this is to be confirmed yet by future experiments where IL-22 needs to be 

directly targeted. 

  

4.3 Summary 

In this chapter, I presented evidence that loss of  ILC3s in RORγ
-/-

 mice directly 

impacted the wound healing rate with delayed dependent epidermal proliferation and 

monocyte/macrophage recruitment due to lack of early IL-22 and CCL3 

respectively. I also demonstrated loss of dendritic/Langerhans cells in DT-treated 

CD11c
Cre

Rosa26
iDTR

 mice causes dramatic reduction of IL-23 production and its 

dependent IL-22 production thereby indirectly impacting wound healing. These 

results suggest that ILC3s play a key role in normal skin wound healing by 

promoting early entry of monocyte/ macrophage into wound site via CCL3, and 
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supplying early source of IL-22 for epidermal proliferation. Skin localized dendritic 

cells including both Langerhans cells and dermal dendritic cells also may play a role 

in wound healing by producing IL-23 that activates ILC3s and other IL22-producing 

non-lymphocytes to produce IL22, a key signaling in epithelial tissue repair.   
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Chapter 5 Epidermal Notch1 signaling promotes skin wound healing through 

recruiting ILC3s  

5.1 Introduction 

The Notch pathway is a key, cell-autonomous signaling pathway that directs cell fate 

and has pleiotropic functions in the skin (Ambler and Watt, 2010; Watt et al., 2008). 

Notch signaling initiates when a Notch ligand binds to one of four receptors present 

on mammalian cells, which causes receptor cleavage and enables the intracellular 

domain to undergo nuclear translocation and affect changes in gene transcription 

(Artavanis-Tsakonas et al., 1999). There are 4 mammalian Notch receptors, 

expression of all 4 receptors in the epidermis has been reported (Nickoloff et al., 

2002). Genetic studies suggest Notch1 is the primary receptor needed to regulate cell 

differentiation required to maintain hair and skin epithelium (Ambler and Watt, 

2010; Estrach et al., 2007; Kerabs et al., 2000; Kerabs et al., 2003; Pan et al., 2004; 

Watt et al., 2008). However, some studies suggest Notch2 also plays a non-

redundant role in embryonic development and tissue maintenance (Pan et al., 2004; 

Saito et al., 2003). A previous study using topically-applied pan-Notch activators 

and inhibitors suggested that Notch might be involved in wound healing, however, 

the mechanistic details and site of action were unknown (Chigurupati et al., 2007). 

Our lab’s previous previous work showed that forced, ectopic epidermal Notch1 

activity in by applying 4OHT to K14NICDER mice resulted in extensive, epidermal 

proliferation and severe inflammation, two phenotypic hallmarks of skin wound 

healing (Ambler and Watt, 2007; Ambler and Watt, 2010; Estrach et al., 2006). 

Therefore, I hypothesized adult epidermal Notch signaling might play roles in skin 

wound healing by contributing to inflammatory cell recruitment and epidermal 

proliferation.  
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In this chapter, Notch1 and Notch2 activity was examined during skin wound 

healing. I found both Notch1 and Notch2 were rapidly activated in skin 

predominantly within epidermal compartment after injury with different timings, 

suggesting epidermal Notch1 and Notch2 might play different roles in skin wound 

healing. To investigate their individual roles, mice were pre-treated with individual 

Notch receptor blocking antibody, anti-NRR1 or anti-NRR2 before wounding. I 

found that the wound healing rate in anti-NRR1 treated were significantly impacted 

at early stage (2 days post-wounding) compared to control mice. However, there is 

no significant difference in later stage on day 5 post-wounding. I hypothesized the 

delay in wound healing might be caused by lack of early IL-22 following blocking 

Notch1. Since in the last chapter, I presented evidence that ILC3s supplies early IL-

22, a key signaling in epidermal proliferation in wound healing, it is possible that 

Notch1 exerts its role in wound healing via ILC3s. To test this, inflammatory cellular 

influxes were analyzed in anti-NRR1 treated wounded mice and in 4OHT-treated 

uninjured K14NICDER mice where Notch1 activity can be tightly controlled in the 

epidermis. The K14NICDER transgene contains a truncated, Notch1 intracellular 

domain (NICD1) that can be temporally and spatially activated by 4-hydroxy-

tamoxifen (4OHT) in the basal, keratin 14-expressing epidermis. I confirmed that 

ILC3 recruitment were recruited into dermis in a manner dependent on epidermal 

Notch1 signaling, which contributes to wound closure by producing early IL-22 as 

well as recruiting monocyte/macrophage early to the wound site. These results 

suggest epidermal Notch1 signaling promotes skin wound healing through an ILC3-

mediated process. 

 

5.2 Results 
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5.2.1 Skin injury activates epidermal Notch1 and Notch2  

To determine the Notch1 and Notch2 activities in wound healing, wounded mouse 

back skin were collected on day 1, 3/4 and 7 days post-wounding, and analyzed by 

western blotting and immunofluorescence chemistry using specific antibodies to 

activated forms of Notch1 or Notch2. Western blotting results (Figure 5.1A) showed 

that wounding caused an immediate increase in Notch1 activity on day 1 post-

wounding (7x) (p=0.0183, t-test) with peak activity detected on day 4 post-wounding 

(16x) (p=0.0011, t-test) (data collected by Soulmaz Boroumand). Notch2 activity 

was also immediately increased after injury with a less significant rate than Notch1. 

Notch2 activity reached its peak (2.5x) (p<0.05, t-test) on day 1 post-wounding and 

was gradually decreased afterwards, and dropped back to unwounded level by day 8 

post-wounding (Data was collected by Soulmaz Boroumand). The location of 

Notch1 and Notch2 expression in epidermis was confirmed by immunofluorescence 

chemistry on skin sections (Figure 5.1B, data collected by Soulmaz Boroumand). In 

unwounded skin, Notch activity was detected only in rare epidermal supra-basal cells 

(data not shown; Ambler and Watt, 2010). However, increased Notch1 and Notch2 

activity was detected in all epidermal layers (Figure 5.1 B, data collected by 

Soulmaz Boroumand). These results suggest skin injury results in immediate 

activation of Notch1 and Notch2 activity in epidermal keratinocytes. However, there 

is a difference in the timings and the fold-changes between Notch1 and Notch2 

activity, suggesting Notch1 and Notch2 might have different roles in wound healing.    
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Figure 5.1 Epidermal Notch1 and Notch2 are activated upon skin injury (Data 

was collected by Soulmaz Boroumand). Back skin tissues from punch-wounded 

wild type mice were collected 1, 4 and 7 days post-wounding. (A) Quantified levels 

of cleaved, activated Notch1 and Notch2 proteins by antibody probes in a western 

immunoblotting assay. As loading controls, Notch1 and Notch2 levels were 

standardized to β-actin levels as a loading control and normalized to the average 

back skin protein levels (designated as 1) of Notch1 or Notch2 in uninjured 

littermate mice (n=3). Unwounded back skin was taken from a punch-wounded 

mouse at a distal site (minimum 2 cm) from wound site. Protein lysates from 3 

different mice were analyzed for each time point post-wounding (dpw). Statistics of 

normally distributed data are compared by Student’s t-test between wounded and 

unwounded samples at the stated days post-wounding. Notch1, 1 dpw p=0.0183 (*), 

4 dpw p=0.0011 (**), 7 dpw p=0.0001(***); Notch2, 1dpw p<0.05(*). (B) 

Antibodies specific for activated Notch1 and Notch2 and reacted with cells adjacent 

to wound on day 4 post-wounding. Note activated Notch1 and Notch2 is detectable 

in all epidermal layers. Asterisk marks wound site. Scale bar equals to 50 microns. 
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5.2.2 Treating with anti-NRR1 and anti-NRR2 blocking antibodies specifically 

reduce Notch1 or Notch2 activity in wounded skin 

To investigate the role of Notch pathway in wound healing, Notch signaling was 

blocked prior to wounding. With the most recent pharmaceutic development of 

Notch-blocking antibodies, anti-NRR1 and anti-NRR2, ligand-activation of 

individual Notch receptor (i.e. Notch1 or Notch2) could be blocked (Wu et al., 

2010). To test if anti-NRR1 and anti-NRR2 treatments were effective to block Notch 

signaling in our wounded mouse model, wildtype mice were injected 

intraperitoneally (i.p.) with 5mg/kg of anti-NRR1, 5mg/kg of anti-NRR2, 5mg/kg of 

control (anti-ragweed) or 2.5mg/kg of both anti-NRR1 and anti-NRR2 every 3 or 4 

days for 7 days prior to wounding (Figure 5.2A). Since combined treatment with 

anti-NRR1 and anti-NRR2 are reported to cause severe adverse effects on mouse 

intestine and body weight loss by at least 10% due to blockage of both Notch1 and 

Notch2 signaling (Wu et al., 2010), the body weight of mice was scaled at the 

indicated days (Figure 5.2A) and compared to their body weight prior to the initial 

treatment. As expected, the body weight of combined anti-NRR1 and anti-NRR2 

treated mice were dramatically reduced 3 days after the initial treatment and by day 7 

their body weight was decreased by over 10% compared to their original body 

weight prior to treatment. By contrast, the mice which were treated with the other 

antibodies maintained their body weight (change <5%) before wounding. It is not 

surprising that all mice lost body weight at some degrees after wounding, since 

injury causes both physical and physiological stress to mice (Guo and DiPietro, 

2010). These results confirmed that combined treatment with anti-NRR1 and anti-

NRR2 blocking antibodies caused intestinal effects as expected in our wounded 

mouse model. 
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Figure 5.2 Systemic effects of anti-NRR1 and anti-NRR2 treatment. Punch-

wounded wild type mice were injected peritoneally with 5mg/kg of anti-NRR1, 

5mg/kg of anti-NRR2, 2.5mg/kg of both anti-NRR1 and anti-NRR2 antibodies or 

5mg/kg anti-ragweed control for 7 days prior to wounding. (A) Body weight changes 

within 9 days following anti-NRR1/NRR2 treatment and wounding at day 7 

(indicated by red asterisk). Arrow heads marks the timing of anti-NRR1/NRR2 

treatment. Note the body weight in combined anti-NRR1and anti-NRR2 treated mice 

was dramatically reduced. (B) Thymus was collected on day 2 post-wounding. Cells 

isolated from thymus were labelled with CD4 and CD8 antibodies and analysed by 

flow cytometry, only 2.1% of cells are CD4
+
CD8

+
 in NRR1 treated mice. (C) Spleen 

was collected on day 2 post-wounding, cells isolated from spleen were labelled with 

CD45R (B220), CD5, CD21 and CD23, and analyzed by flow cytometry, only 0.34% 

of CD45R
+ 

B cells are CD21
+
 CD23

-
 cells. Note Notch1 activity is required for T 

cell maturation in thymus, while Notch2 activity is required for B cell maintenance 

in spleen marginal zone (Izon et al., 2001; Saito et al., 2003). (B-C) represent one 

biological sample, 3 individual biological replicates were tested (not shown).  
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To test if anti-NRR1 and anti-NRR2 are effective to specifically block Notch1 or 

Notch2 activity, wildtype mice were i.p. treated with 5mg/kg of anti-NRR1, 5mg/kg 

of anti-NRR2 or 5mg/kg of anti-ragweed control for 7 days prior to wounding, then 

thymus and spleen were collected on day 2 post-wounding. Previous studies have 

shown Notch1 activity is required for T cell maturation in thymus, while Notch2 

activity is required for B cell maintenance in spleen marginal zone (Izon et al., 2001; 

Saito et al., 2003). Therefore, cells isolated from thymus were stained with 

antibodies to CD4 and CD8 to examine double positive thymocytes (CD4
+
 CD8

+
) 

and cells isolated from spleen were stained with antibodies to CD45R (B220), CD5, 

CD21 and CD23 to examine the splenic marginal zone B cells  (CD45R
+ 

CD21
+ 

CD23
-
) (Wu et al., 2010). As seen in Figure 5.2B, there was a sharp reduction in the 

percentage of double positive thymocytes (CD4
+
CD8

+
) in anti-NRR1 treated mice 

from over 80% to below 3%, while this percentage was not significantly changed in 

anti-NRR2 treated mice (data not shown). As seen in Figure 5.2C, splenic marginal 

zone B cells were detected in anti-ragweed-treated mice, representing over 10% of 

total CD45R
+
 B cell in spleen. However, this percentage was dramatically reduced to 

less than 1% in anti-NRR2 treated mice. There was no significant change in the 

number of splenic marginal zone B cells in anti-NRR1 treated mice (data not 

shown). These results confirmed that treatment with anti-NRR1 or anti-NRR2 

specifically and completely blocked Notch1 or Notch2 signaling in large lymphoid 

organs, such as spleen and thymus as expected, in our wounded mouse model. 

 

To test if peritoneal injection with anti-NRR1 and anti-NRR2 antibodies was 

effective to target Notch1 or Notch2 activity in skin both of which have shown an 

significant increase upon wounding (Figure 5.1A), punch-wounded wildtype mice 
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were i.p. treated with 5mg/kg of anti-NRR1, 5mg/kg of anti-NRR2 or 5mg/kg anti-

ragweed control for 7 days prior to wounding, then wounded skin tissues were 

collected and processed on day 2 post-wounding. Wounded skin sections were 

stained with an antibody to activated form (cleaved form) of Notch1 or Notch2 

intracellular domain.  As seen in Figure 5.3A-D, the detectable levels of cleaved 

Notch1 and Notch2 upon wounding were lowered by anti-NRR1 or anti-NRR2 

treatment, however, cleaved Notch1 or Notch2 were still detectable in epidermis 

(indicated by arrows in Figure 5.3B and D), suggesting epidermal Notch1 and 

Notch2 activities, unlike the ones in thymus or spleen, was incompletely inhibited by 

corresponding blocking antibodies. The differential effectiveness observed between 

skin and central organs (i.e. Thymus and spleen) may be due to the relatively limited 

entry of chemicals to skin through blood circulation. To confirm if epidermal Notch1 

or Notch2 was inhibited, western immunoblotting of protein lysates extracted from 

wounded back skin from anti-NRR1, anti-NRR2, combined anti-NRR1 and anti-

NRR2, and anti-ragweed control treated mice were probed with an antibody to 

cleaved Notch1 or Notch2 as well as loading control β-actin (Figure 5.3E-F). As 

expected, the lowest levels of cleaved Notch1 protein were detected in anti-NRR1 as 

well as combined anti-NRR1 and anti-NRR2 treated mice, while the lowest levels of 

cleaved Notch2 protein were detected in anti-NRR2 as well as combined anti-NRR1 

and anti-NRR2 treated mice. Note, compared to Notch1, less abundant levels of 

cleaved Notch2 protein were detected in anti-ragweed treated mice, which is 

consistent with our finding (Figure 5.1) that the increase in Notch2 activity upon 

wounding is not as evident as Notch1 activity. In summary, I confirmed that i.p. 

treatment with anti-NRR1 and anti-NRR2 blocking antibodies specifically reduced 

Notch1 or Notch2 activity in wounded mouse back skin (i.e. epidermis). 
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Figure 5.3 Epidermal Notch1 and Notch2 activities are reduced by anti-NRR1 

or anti-NRR2 treatment. Punch-wounded wildtype mice were injected peritoneally 

with 5mg/kg of anti-NRR1, anti-NRR2, anti-ragweed control for 7 days prior to 

wounding. Skin tissues were collected and processed on day 2 post-wounding. (A-D) 

Skin sections from anti-ragweed IgG control (A, C), anti-NRR1 (B), anti-NRR2 (D) 

treated mice were stained with activated cleaved Notch1 (A-B) and Notch2 (C-D) 

respectively. Scale bars equal 50 microns. (E-F) Western immunoblotting of protein 

lysates were probed with antibodies to cleaved Notch1, Notch2 or β-actin. Shown 

one biological sample; 3 individual biological replicates were tested (not shown) and 

experiments performed twice per sample. Note, NRR1 treatment lowered detectable 

levels of cleaved Notch1 by in sections (B, arrows) and immunoblotting (E), 

however, Notch1 receptor cleavage was not completely inhibited by NRR1 blocking 

antibodies in wounded skin.  
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5.2.3 Inhibiting Notch1 activity causes wound healing delay partly due to lack of 

early IL-22 

Earlier results in this Chapter have suggested epidermal Notch1 and Notch2 

activities are involved and activated in skin wound healing, and treating with anti-

NRR1 or anti-NRR2 blocking antibody specifically reduces epidermal Notch1 or 

Notch2 activity in wounded mice. In this section, the individual roles of Notch1 and 

Notch2 activities in wound healing are determined by examining the wound healing 

rates in anti-NRR1 or anti-NRR2 treated mice with inhibited Notch1 or Notch2 

activity. Wildtype mince were i.p. treated with 5mg/kg of anti-NRR1, 5mg/kg anti-

NRR2 or 5mg/kg IgG control for 7 days prior to wounding, then mice were 

examined on day 2 or day 5 post-wounding. Wound closure rates were measured as a 

percentage of wound size at the time of examination to their initial size. On day 2, 

wounds treated with anti-NRR1 were significantly more open (77%; p=0.021, t-test) 

compared to control mice injected with anti-ragweed (66%) (Figure 5.4A and C). 

However, wounds treated with anti-NRR2 had similar sizes to anti-ragweed treated 

wounds (Figure 5.4 A and C). By 5 days post-wounding, wound size in anti-NRR1-

treated mice did not differ from controls, however, their wounds displayed a distinct 

phenotype: wounds were redder, with domed margins (signs of abnormal wound 

granulation), compared anti-ragweed treated control wounds (Figure 5.4 B and C). 

Anti-NRR2 treated mice were not well and thus were not determined at this time 

point. Since wounds remained larger in anti-NRR1 treated mice on day 2 post-

wounding, the key signaling in epidermal proliferation, IL-22 was quantified by 

QPCR at mRNA levels isolated from skin wounds. The IL22 mRNA levels in anti-

ragweed treated wounds were used as control and designated as 1. As can be seen in 

Figure 5.4D, IL22 mRNA levels were significantly reduced by 50% in anti-NRR1- 
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Figure 5.4 Inhibiting Notch1 activity delays wound closure.  Punch-wounded 

wild type mice injected peritoneally with 5mg/kg anti-NRR1, anti-NRR2 or anti-

ragweed control antibody for 7 days prior to injury. (A-B) Photos of skin wounds 

were taken on day 2 (A) and day 5 (B) post-wounding. Anti-NRR2 treated mice 

were not well and thus were not examined on day 5 post-wounding. (C) Wound 

openness was measured as a percent of initial wound size on day 2 and day 5 post-

wounding. Note NRR1-treated wounds were significantly more open on day 2 post-

wounding (* p=0.0210) but not on day 5. However, on day 5 wounds were redder 

with raised, domed margins compared to controls. (D) mRNA was isolated from 

wounded mice on day 2 post-wounding and IL22  levels  were quantified by QPCR. 

mRNA levels were normalised to IgG control-injected day 2 wounded mice 

(designated as 1). IL22 mRNA level was significantly reduced in anti-NRR1-

injected mice compared to the controls (* p=0.010). Graph bars represent 

experimental mean of biological replicates and error bars represent standard error of 

the mean (SEM). Statistics of normally distributed data compared by Student’s t-test. 

All experiments were repeated ≥ 2 times.   
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injected mice (p=0.010, t-test), while IL22 mRNA levels in anti-NRR2 treated 

wounds did not differ from control. These results suggest that inhibiting Notch1 

activity causes wound healing delay partly due to lack of early IL-22, and epidermal 

Notch1 activity may be required for IL22-dependent skin repair.   

 

5.2.4 IL22-producing ILC3s are recruited to dermis in a Notch1-dependent 

manner 

Since ILC3s are the main source of IL-22 in early wound on day 2 post-wounding 

(Figure 4.4), I hypothesize the reduction in IL-22 mRNA levels in anti-NRR1 treated 

early wounds (Figure 5.4D) are caused by lack of ILC3s. To test this, wildtype mice 

were i.p injected with anti-NRR1 and anti-ragweed control for 7 days prior to 

wounding, then wounded back skin tissues were collected on day 2 post-wounding. 

Cells isolated from anti-NRR1 or anti-ragweed treated wounded skin were labelled 

with antibodies to CD45 and RORγ and analyzed by flow cytometry, revealing that 

the recruitment of CD45
+
 RORγt

+ 
cells (the majority of which are ILC3s, Figure 

3.12) as well as the total immune cell (CD45
+
) were decreased by 2.3 ± 0.2 fold 

(Mean ± SEM) in anti-NRR1 treated mice compared to anti-ragweed treated controls 

(Figure 5.5 A). Wounded skin sections from anti-NRR1 and anti-ragweed treated 

control mice were analyzed by using an antibody to RORγ, confirming ILC3 

recruitment were inhibited by anti-NRR1 treatment (Figure 5.5 B). These results 

suggest a role of Notch1 activity, probably from epidermis, in recruiting ILC3s 

which produce early IL22 and in turn promote skin repair. However, blocking Notch 

signaling could also impact ILC3 development, since Notch signaling activity within 

ILC3 is required for adult ILC3 development (Possot et al., 2011). Although 
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 Figure 5.5 Inhibiting Notch1 blocks ILC3 recruitment following wounding. 

Punch-wounded wild type mice injected peritoneally with 5mg/kg anti-NRR1, anti-

NRR2 or anti-ragweed IgG control antibody for 7 days prior to injury. Wounded 

back skin was collected on day 2 post-wounding. (A) Cells isolated from anti-IgG 

control and anti-NRR1 treated wounded skin were labelled with CD45 and RORγ 

and were analyzed by flow cytometry, confirming the ILC3s as well as total immune 

cell recruitment were dramatically reduced in anti-NRR1 treated mice on day 2 post-

wounding. One biological sample is shown, at least 3 biological samples were 

analyzed (not shown). (B)Wounded skin stained with an antibody RORγ revealed 

that the infiltration of RORγ
+
 cells (mostly ILC3s) was blocked in anti-NRR1 treated 

mice on day 2 post-wounding. Scale bars equal 100 microns. Asterisk marks wound 

site. Experiments were repeated ≥ 3 times. 
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blocking Notch1 alone is unlikely to influence ILC3 development (Possot et al., 

2011), to confirm if ILC3 recruitment into skin is dependent on epidermal Notch1 

signaling, uninjured back skin from K14NICDER mice carrying a ectopic functional 

fragment of Notch1 intracellular domain as well as littermate controls were topically 

treated with 4OHT for 3 days to activate ectopic Notch1 signaling specifically in 

epidermis. 4OHT treated uninjured skin sections were analyzed for ILC3 recruitment 

in skin by using an antibody to RORγt. RORγt
+
 cells were dramatically accumulated 

in 4OHT-treated K14NICDER dermis compared to 4OHT-treated littermate controls 

(Figure 5.6 A and B), confirming the active recruitment of ILC3s by epidermal 

Notch1 signaling. To confirm the phenotypes of these RORγt
+
 cells in uninjured 

skin, back skin sections from 3-day-4OHT- treated K14NICDER were co-stained 

with antibodies to RORγt together with one or two of the following antibodies to 

CD3, CD4 or CD127 (Figure 5.6 C and D). I confirmed that the RORγt
+
 cells 

recruited in uninjured skin by Notch1 signaling were CD3
- 

CD4
dim to + 

CD127
+ 

RORγ
+
 ILC3s, which is consistent with the phenotypes of ILC3s recruited in skin 

wounds. These epidermal Notch1-recruited ILC3s may also produce IL-22 in 

uninjured skin in 4OHT-treated K14NICDER mice, which could lead to epidermal 

hyper-proliferation as detected previously (Ambler and Watt, 2010; Estrach et al., 

2006). In summary, I confirmed that ILC3s are recruited to dermis in an epidermal 

Notch1-dependent manner, which is an important early source of IL-22, a key 

signaling to skin repair.  
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(B) RORrt / DAPI   4OHT treated K14NICDER   

(A) RORrt / DAPI   4OHT treated WT 

(C1) RORrt / DAPI   4OHT treated K14NICDER   

(C2) CD4 / DAPI   4OHT treated K14NICDER   

(C3) CD3 / DAPI   4OHT treated K14NICDER   
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(D1) RORrt / DAPI   4OHT treated K14NICDER   

 

(D2) CD127 / DAPI  4OHT treated K14NICDER   
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Figure 5.6 Ectopic activation of Notch1 signaling promotes ILC3 recruitment 

into uninjured skin dermis.  K14NICDER mice and wildtype littermates were 

topically treated with 4OHT for 3 days. (A-B)Skin sections from 4OHT treated 

wildtype and K14NICDER were stained with an antibody to RORγt (green, indicated 

by arrows) and counterstained with DAPI (blue). (C1-C3) show higher magnification 

view of the indicated area in (B) from 4OHT treated K14NICDER and was co-

stained with RORγt (green), CD4 (red) and CD3 (purple). Arrows indicate CD3
-

CD4
+ 

RORγt
+
 cells; star marks CD3

- 
CD4

low 
RORγt

+
 cells. Counterstained with 

DAPI (blue). (D1-2) Skin section from 3-day-4OHT-treated K14NICDER mice were 

co-stained with RORγt (green) and CD127 (red) and counterstained with DAPI 

(blue). Arrows mark CD127
+
 RORγt

+ 
cells. Scale bar equals to 100 microns. 
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5.2.5 Recruitment of monocytes/macrophages, but not of neutrophils or 

dendritic/Langerhans cells, is dependent on epidermal Notch1 signaling 

I have presented evidence in last Chapter that ILC3s promote early monocyte/ 

macrophage recruitment into wound site dermis via CCL3 (Figure 4.2), which partly 

contribute to ILC3-mediated skin repair. M2 macrophages have been considered as 

the master regulator in wound healing through switching on cytokine production of 

TGF-β that is in favor of tissue repair by inducing angiogenesis for granulation tissue 

formation and activating myofibroblast differentiation for dermal extracellular 

matrix deposition and wound contraction (Rodero and Khosrotehrani 2010). 

Therefore I hypothesize monocyte/macrophage recruitment might be impaired in 

anti-NRR1 treated wounds due to loss of ILC3s. To test this, wildtype mice were i.p. 

treated with anti-NRR1 and anti-ragweed control for 7 days prior to wounding, and 

wounded back skin tissues were collected on day 2 post-wounding. Cells isolated 

from wounded back skin from anti-NRR1 and anti-ragweed control treated mice 

were labelled with antibodies to CD11b, CD11c, F4/80 and Gr-1 and were analyzed 

by flow cytometry. To distinguish monocytes/ macrophages (CD11c
- 
CD11b

+
) from 

dermal dendritic cells (CD11c
high

 CD11b
+/-

) and Langerhans cells (CD11c
low

 

CD11b
+
), I first analyzed their expression of CD11b and CD11c, revealing the cell 

number of Langerhans cells and dermal dendritic cells were not significantly 

changed in anti-NRR1 treated mice compared to control (Figure 5.7) (p=0.29, t-test), 

while the percentage of CD11c
-
CD11b

+ 
myeloid cells including monocytes/ 

macrophages were dramatically reduced by nearly 50% in anti-NRR1 treated mice 

on day 2 post-wounding compared to wounded control (p=0.0068, t-test). Since 

dermal dendritic cells are normally recruited and reach their maximal number at this 

time-point (Figure 3.2), these results suggested that Notch1 signaling or its recruited  
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              Control 2 days post-wounding                   CD11b
+ 

CD11c
-
 gated 

  

                NRR1 2 days post-wounding                 CD11b
+ 

CD11c
-
 gated 

  

Figure 5.7 Inhibiting Notch1 activity reduces monocyte/ macrophage 

recruitment. Punch-wounded wild type mice injected peritoneally with 5mg/kg anti-

NRR1 or anti-ragweed control antibody for 7 days prior to injury. Wounded back 

skin was collected on day 2 post-wounding. Cells isolated from wounded skin were 

labelled with CD11b, CD11c, F4/80 and Gr-1 were analyzed by flow cytometry, 

revealing nomoncyte/macrophage recruitment was dramatically reduced in anti-

NRR1 treated mice on day 2 post-wounding. One biological sample is shown, at 

least 3 biological samples were analyzed (not shown). Experiments were repeated ≥ 

3 times.  

F4/80 CD11c 

CD11c F4/80 

G
r-1

 

C
D

1
1
b

 

G
r-1

 

C
D

1
1
b

 



 
183 

ILC3s do not have a significant role in recruiting or replenishing 

dendritic/Langerhans cells during normal wound healing. Then I analyzed 

CD11b
+
CD11c

-
 myeloid cells, among which neutrophils (Gr-1

+
F4/80

-
), mature 

macrophages (Gr-1
-
F4/80

+
) and inflamed monocytes (Gr1

+
F4/80

+
) were 

distinguished from each other by Gr-1 and F4/80 expression. In anti-NRR1 treated 

wounds, the percentage of inflamed monocytes (p=0.0002, t-test) and mature 

macrophages (p=0.0011, t-test) to the total skin cells were both significantly reduced 

compared to anti-ragweed treated wounds, while the percentage of neutrophils to the 

total skin cells were not even increased, suggesting Notch1 activity is required for 

recruitment of monocytes/macrophages but not for neutrophils, probably through 

ILC3-mediated process (i.e. ILC3-dependent CCL3).  

 

However, recent studies have suggested Notch1 activity inside macrophages is 

required for macrophage recruitment, since Notch1
+/-

 mice had fewer macrophages 

at wound site (Outtz, et al., 2010; Outtz et al., 2011). To confirm if monocyte/ 

macrophage recruitment is dependent on epidermal Notch1 signaling through a 

ILC3-mediated process, uninjured back skin from K14NICDER mice as well as 

littermate controls were topically treated with 4OHT for 3 days to activate ectopic 

Notch1 signaling specifically in epidermis and skin sections were stained with an 

antibody to monocyte/macrophage marker F4/80 (Figure 5.8 A), revealing that 

monocytes/ monocytes were dramatically recruited to dermis in Notch1 activated 

back skin, co-related to recruitment of ILC3s. In addition, the number of epidermal 

F4/80
+
 cells was not significantly increased confirming epidermal Notch1 signaling 

has no effect on Langerhans cell self-proliferation or expansion. Since some dermal 

dendritic cells also express F4/80, to confirm the vast majority of accumulated  
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Figure 5.8 Ectopic activation of epidermal Notch1 activity results in 

monocyte/macrophage recruitment in uninjured skin dermis, but has no 

evident effects on neutrophils or dendritic/Langerhans cells.  K14NICDER mice 

and wildtype littermates were topically treated with 4OHT for 3 days. (A)Skin 

sections from 4OHT treated wildtype and K14NICDER were stained with an 

antibody to F4/80 (green) and counterstained with DAPI (blue). (B) Skin sections 

from 4OHT treated K14NICDER were stained with antibodies to F4/80 (green), 

CD11c (red) and counterstained with DAPI (blue). (C)  Skin sections from 4OHT 

treated wildtype and K14NICDER were stained with an antibody to Gr-1 (green) and 

counterstained with DAPI (blue). Arrows mark positive cells. Scale bar equals to 100 

microns. 
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F4/80
+
 cells were in deed monocytes/ macrophages, 3 day-4OHT-treated 

K14NICDER back skin sections were co-stained with F4/80 and CD11c. As 

expected, CD11c
hgih

 dermal dendritic cells, unlike monocytes/ macrophages, were 

not accumulated in Notch1 activated uninjured skin (Figure 5.8B). Similarly, Gr-1
+
 

neutrophils were not accumulated in uninjured skin with ectopic epidermal Notch1 

signaling (Figure 5.8C). Taken together, these results suggest that the recruitment of 

monocytes/macrophages but not of neutrophils or dendritic/Langerhans cells into 

skin is dependent on epidermal Notch1 signaling, probably through ILC3-mediated 

process. 

 

5.2.6 Notch1 signaling has no significant effect on NK cell recruitment 

Since a small number of NK cells are normally recruited into skin wounds early on 

day 2 post-wounding (Figure 3.10), to determine if Notch1 signaling has a role in 

NK cell recruitment upon wounding, wildtype mice were i.p. treated with anti-NRR1 

and anti-ragweed control for 7 days prior to wounding, then wounded back skin 

tissues were collected on day 2 post-wounding. Cells isolated from wounded back 

skin from anti-NRR1 and anti-ragweed control treated mice were labelled with 

antibodies to CD3, NK1.1 and were analyzed by flow cytometry (Figure 5.9), 

revealing Notch1 activity has no significant effect on NK (CD3
-
 NK1.1

+
) (p=0.057, 

t-test) or NKT (CD3
+
 NK1.1

+
) cell recruitment. 

 

5.2.7 Epidermal Notch1 signaling may have a role in regulating maintenance of 

dendritic epidermal T cells 

Dendritic epidermal T cells (DETCs), a specialized γδ T cells residing in rodent 

epidermis and uniquely expressing invariant TCR Vγ3 (MacLeod and Havran, 2011),  
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              Control  2 days post-wounding              NRR1 2 days post-wounding 

  

 

Figure 5.9 Inhibiting Notch1 activity has no significant effects on NK cell 

recruitment. Punch-wounded wild type mice injected peritoneally with 5mg/kg anti-

NRR1 or anti-ragweed control antibody for 7 days prior to injury. Wounded back 

skin was collected on day 2 post-wounding. Cells isolated from wounded skin were 

labelled with NK1.1 and CD3 and were analyzed by flow cytometry, revealing NK/ 

NKT cell recruitment was not significantly changed in anti-NRR1 treated mice on 

day 2 post-wounding. Shown one biological sample, at least 3 biological samples 

were analyzed (not shown). Experiments were repeated ≥ 3 times.  
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have been reported to be critically important for skin wound healing by producing 

IGF-1 and KGF for epidermal keratinocyte proliferation and by promoting 

macrophage migration via hyaluronan (Jameson et al., 2002; MacLeod and Havran, 

2011). However, DETCs were down-regulated in early wounds on day 2 post-

wounding (Figure 3.7 and Figure 3.8) and were replenished via a currently 

undetermined mechanism (Jameson and Havran, 2007; MacLeod and Havran, 2011) 

in later wounds on day 5 post-wounding (Figure 3.7 and Figure 3.8), suggesting they 

may only play their roles in wound healing at later stage and thus are not of our main 

interest. Furthermore, the interpretation of epidermal Notch1 effects on T cell 

recruitment or replenishment in anti-NRR1 treated mice is complicated since the role 

of Notch1 signaling has been well established in T cell development in thymus (Izon 

et al., 2001; Robey et al., 1996). Nevertheless, unexpectedly, a dramatically 

increased clonal expansion of Vγ3
+
 CD3

+
 T cells was detected following epidermal 

Notch1 signaling activation in 4OHT treated K14NICDER skin. Cells isolated from 

7-day 4OHT-treated K14NICDER and wildtype littermate control ear skin were 

stained with antibodies to CD45, CD3, TCRβ and Vγ3 and were analyzed for 

DETCs (CD45
+
CD3

+
TCRβ

-
Vγ3

+
) and other T cell subsets, such as αβ T cells 

(CD45
+
CD3

+
TCRβ

+
Vγ3

-
) and dermal γδ T cells (CD45

+
CD3

+
TCRβ

-
Vγ3

-
). I 

detected a 3 to 4 -fold increase in DETCs population while αβ T cells and dermal γδ 

T cells did not differ from 4OHT treated wildtype controls (Figure 5.10 A). Back 

skin sections from 3-day 4OHT treated K14NICDER and wildtype control mice 

were stained with an antibody to CD3, revealing T cells were dramatically 

accumulated in 4OHT treated K14NICDER dermis (Figure 5.10 B). I concluded that 

these T cells accumulated in 3-day 4OHT treated K14NICDER dermis might be the 

precursors of DETCs, which would eventually migrate to epidermis to replenish  



 
189 

            4OHT treated WT ear                  CD45+ CD3+ gated 

  

          4OHT treated K14NICDER ear                  CD45+ CD3+ gated 

  

 

 

Vγ3 CD45 

CD45 Vγ3 

Wildtype 
4OHT treated 

back skin 

T
C

R
β

 

 C
D

3
 

T
C

R
β

 

C
D

3
 

K14NICDER 
4OHT treated 

back skin 

 

CD3 Dapi 

CD3 Dapi 

(A) 

(B) 



 
190 

Figure 5.10 Ectopic activation of Notch1 activity causes the expansion of 

epidermal dendritic T cell.  (A) Ears of K14NICDER mice and wildtype littermates 

were topically treated with 4OHT for 7 days.  Cells isolated from 4OHT treated ears 

were labelled with CD45, CD3, TCRβ and Vγ3 and were analyzed by flow 

cytometry, suggesting the number of epidermal dendritic cells (DETCs) were 

significantly increased in 4OHT treated K14NICDER ears.  (B) Back skin of 

K14NICDER mice and wildtype littermates were topically treated with 4OHT for 3 

days. Back skin sections were stained with antibodies to CD3 (green), and 

counterstained with DAPI (blue). Arrows mark CD3+ cells in dermis, the majority of 

which were probably the precursors of DETCs or migratory DETCs to lymph nodes. 

Scale bar equals to 100 microns. 
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DETCs and cause clonal expansion of DETCs as detected in 7-day 4OHT treated 

K14NICDER skin. However, since there might be some differences in the 

distribution of immune cells between ear skin and back skin, further experiments are 

needed to confirm the role of Notch signaling in DETC maintenance. These results 

uncover a possible mechanism of DETC maintenance regulated by epidermal Notch1 

signaling through recruiting precursors of DETCs from circulating γδ T cells.  

 

5.3 Summary 

In this chapter, I presented evidence that Notch1 and Notch2 activities are 

immediately and robustly activated upon skin injury predominantly in epidermal 

keratinocytes. Interestingly, activated Notch1 levels are correlated with the number 

of immune cell accumulation at the wounded skin. By seven days post-wounding, 

during the remodeling phase when the epidermis has almost closed (Figure 3.1B) 

(Shaw et al., 2009) and there is very low risk of pathogen infection, Notch activity 

and immune cell number returns unwounded to skin levels (Figure 3.1 G and Figure 

5.1A). By using chemical tools including blocking antibodies specific to Notch1 or 

Notch2 receptor, I have shown that inhibition of Notch1 inhibits wound closure, 

ILC3 recruitment, and correspondingly IL22 production and  monocyte/macrophage 

recruitment, while inhibition of Notch2 did not differ from the controls, suggesting 

Notch1 signaling has an indispensable role in promoting skin wound healing 

especially at early stage by recruiting ILC3s that produce IL-22 for epidermal 

proliferation and facilitate the recruitment of monocytes/macrophages to the wound 

site. I further confirmed that these Notch1-regulated immune responses in skin 

wound healing is specifically dependent on epidermal Notch1 signaling by using 

genetic tools including a transgenic mouse (K14NICDER) where Notch can be 
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controllably activated specifically in the epidermis by 4OHT drug application. In 

conclusion, epidermal Notch1 signaling promotes skin wound healing through ILC3-

mediated process. However, since all 4 Notch receptors have been detected in skin, 

and Notch2 activity is increased upon wounding, it may be possible that the other 

Notch receptors play redundant roles or contribute to other aspects in skin wound 

healing.  
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Chapter 6 Mechanism of how epidermal Notch1 regulate ILC3s 

6.1 Introduction 

In last chapter, I have presented evidence that epidermal Notch1 signaling promotes 

skin wound healing through recruiting ILC3s, the key roles of which in wound 

healing have been determined in Chapter 4. In this chapter, I will investigate the 

mechanism of how Notch1 regulates ILC3s in terms of recruitment and activation.  

The cell-autonomous role for Notch signaling in determining the fate of cells 

expressing a Notch receptor within both adaptive and innate immune systems has 

been well established (Radtke et al., 2013). However, how epidermal keratinocytes 

Notch receptor activity regulates immune cell may be different from some of the 

currently established mechanisms, and may be rely on cytokines and chemokines 

soluble factors (Ambler and Watt, 2010). Using 4OHT-treated K14NICDER mouse 

model where Notch1 signaling can be controllably and specifically activated in 

epidermis, 4 key cytokine or chemokine candidates, including TNFα, CCL20, 

CXCL13 and IL23, have been identified by micro-array (NIH GEO:GSE 782, 

Ambler and Watt, 2008; NIH  GEO: GSE29777, Reynders et al., 2011) as Notch-

regulated factors that can function on ILC3s through their cell surface receptor, such 

as TNF receptor superfamily (TNFRSF), CCR6, CXCR5 and  IL12 receptor beta1 

subunit (IL12RB1) / IL23 receptor (IL23R) respectively. Among these factors, IL23 

have been determined to be largely expressed by dendritic/Langerhans cells (Figure 

4.5) and required for IL22 production by ILC3s for epidermal proliferation (Figure 

4.5 and Figure 4.6). To test the roles of the rest factors in recruiting ILC3s, each 

factor was blocked either by genetic or chemical tool in mice prior to wounding, then 

the number of ILC3s recruited in the wound site as well as the wound healing rate 

were examined. I found CXCL13
-/-

 mice had normal ILC3 recruitment and normal 
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healing rate, suggesting CXCL13 is not required for ILC3 recruitment in skin. 

Strikingly, I found both the number of ILC3s infiltrating in wound site and the 

wound closure rate were co-related with the level of TNFα by applying chemical 

drug recombinant TNFα or TNFα antagonist (Adalimumab) to the wound, 

suggesting TNFα is a key cytokine required for ILC3 recruitment. However, since 

TNFα, as a cytokine, usually acts transiently and in a relatively short range, other 

soluble factors are required to transmit this signaling. By stimulating dermal 

fibroblasts with TNFα, I demonstrated that CCL20 and IL22 can be expressed by 

dermal fibroblasts. I conclude that epidermal Notch1 regulates ILC3 recruitment in a 

mechanism dependent on TNFα/ CCL20. However, due to the availability of CCL20 

genetic or chemical tools, we were not able to directly demonstrate the role of 

CCL20 regulates ILC3 recruitment.    

 

6.2 Results 

6.2.1 Epidermal Notch1 up-regulates cytokine and chemokine production, 

including TNFα, CCL20, CXCL13 and IL-23.  

Previously, our lab has shown that Notch activity, via jagged1, stimulates epidermal 

production of pro-inflammatory TNFα (Ambler and Watt, 2010). To investigate the 

mechanism by which Notch1 leads to ILC recruitment, dermal and epidermal gene 

expression profiles of 10-day 4OHT treated, uninjured K14NICDER transgenic 

mouse back skin (NIH GEO:GSE 782, Ambler and Watt, 2008) were examined. 

Ingenuity Pathway Analysis software was used to identify secreted factors up-

regulated in 4OHT-treated K14NICDER skin (6x or greater) that could facilitate 

immune cell infiltration into the dermis and the subsequent activation. Analysis 

identified seven key candidates (Figure 6.1) (4 epidermal: IL-23(10.3x), 
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Figure 6.1 Ingenuity Pathway Analysis of secreted factors that can interact with 

receptors expressed on ILC3s (RORγt
+
 ILCs). (A) Factors expressed by epidermis. 

(B) Factors expressed by dermis. (NIH GEO: GSE 782, Ambler and Watt, 2008; 

NIH GEO: GSE29777, Reynders et al., 2011) 
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TNF-α (17.1x), CXCL12 (8.0x), CCL20 (14.1x) and 3 dermal: CXCL13 (6.5x), 

FGF23 (5.4x), neurexophilin-1 (6.0x) that could regulate innate immune cell 

recruitment and activation (NIH  GEO: GSE29777, Reynders et al., 2011). Of these 

Notch-regulated factors TNFα, CCL20, CXCL13 and IL23 were of particular 

interest as these factors regulate ILC3s through cell surface receptor TNF receptor 

superfamily (TNFRSF), CCR6, CXCR5 and  IL12 receptor beta1 subunit (IL12RB1) 

/ IL23 receptor (IL23R) respectively (Marchesi et al., 2009).  

 

6.2.2 CXCL13 is not required for ILC3 recruitment 

It has been reported that CXCL13 expression in the gut promotes accumulation of 

ILC3s and formation of isolated lymphoid follicles (Marchesi et al., 2009). To test if 

CXCL13 expression in skin also promotes ILC3 recruitment, CXCL13
-/- 

mice and 

wildtype littermate controls were wounded and the number of ILC3s recruited into 

wound site and wound healing rate were examined. Surprisingly, CXCL13
-/- 

mice 

did not show evident wound healing defects and no difference in ILC3 recruitment 

was detected in wounded skin sections between CXCL13
-/- 

mice and littermate 

controls by using an antibody to RORγ (Figure 6.2 and data not shown), suggesting 

CXCL13 is not required for ILC3 recruitment in wound healing. However, it may 

play a redundant role in recruiting ILC3s.   

 

6.2.3 Notch regulated factor TNFα mediates ILC3 recruitment 

To confirm that TNFα mediates ILC3 recruitment, wildtype mice were punch-

wounded and then treated with recombinant TNFα, TNFα antagonist (Adalimumab)  
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Figure 6.2 CXCL13 is not required for ILC recruitment into skin wounds. (a, b) 

Sections of wounded back skin 5 days post injury from CXCL13
-/- 

(B) and wild type 

(WT) control mice (A). Antibody labelling of RORγ (green) and DAPI 

counterstained (blue). No difference in ILC recruitment in CXCL13
-/-

 wounds; 

asterisk marks site of wound; scale bars equal 100 microns; arrows mark positive 

cells in dermis; experiments were repeated ≥ 2 times. 
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(Calabrese 2003) or PBS daily. By day 5 post-wounding, a substantial difference 

was observed between the three groups of mice (Figure 6.3): TNFα accelerated 

wound closure and ILC3 recruitment (1.8x), while the antagonist inhibited wound 

closure and ILC recruitment (0.4x). Moreover, injection of adalimumab for 7 days 

prior to 4OHT-activation of Notch in unwounded K14NICDER transgenic mice 

blocked Notch-mediated ILC recruitment into the skin (Figure 6.4) confirming that a 

Notch/TNFα mechanism recruits of ILC3s in to the skin dermis. 

 

6.2.4 TNFα regulates ILC3 recruitment by inducing CCL20 expression in 

dermal fibroblasts  

I have determined that Notch-regulated factor TNFα has a key role in recruiting 

ILC3s, however, as a cytokine, TNFα action is transient and usually short range and 

thus is not present in blood circulation (Delves et al., 2011). Therefore, TNFα may 

have to play its role in recruiting ILC3s through other soluble molecules (e.g. 

chemokines) which usually act in a longer range (Delves et al., 2011). Since TNFα 

can direct CCL20 expression in the skin (Tohyama et al., 2001), a key recruitment 

factor for
 
ILC3s in lymphoid tissues, I hypothesize TNFα regulates ILC3 recruitment 

by inducing CCL20 expression in skin. CCL20 mRNA levels were measured 4, 8, 

16, 24 and 40 hours after injury by QPCR and CCL20 levels were elevated 

immediately following wounding and returned to background levels by 24 hours post 

injury (Figure 6.5A) and were sustained at low levels 48-72 hours (Figure 6.5B) 

post-wounding in a TNFα-dependent process (Figure 6.5C, data collected by 

Rebecca Lamb). Primary dermal cells were treated with TNFα for 6 hours in vitro 

leading to increased CCL20 expression (13x) (Figure 6.5C, data collected by  
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Figure 6.3 Notch-regulated factor TNFα regulates ILC3 recruitment and 

activation. (A) Punch wounds treated with PBS (vehicle), TNFα or 

antagonist (Adalimumab) were photographed on day 2 and day 5 post-wounding. 

Note red, inflamed tissues were evident adjacent to TNFα-treated day 2 wounds. 

Experiment repeated twice (

antagonist; n = 8 TNF). (B)  RORγt (green) antibody stained back skin sections from 

punch-wounded mice treated with PBS (control), TNFα or TNFα antagonist 

(Adalimumab) collected 2 days post-wounding. DAPI counterstained. Positive cells 

are marked by white arrows. Asterisk marks wound site; scale bars equal 100 

microns. (C) Quantification of dermal RORγ
+ 

cells in wounded back skin from mice 

treated with vehicle, TNFα or TNFα antagonist on day 2 post-wounding (n = 3 

control; n = 5 TNFα antagonist; n = 5 TNFα. Sample number equals biological 

replicates; quantified area < 1600 micrometres distal to wound site). Error bars 

represent standard error of the mean (SEM).  
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Figure 6.4 TNFα antagonist (Adalimumab) blocks Notch1-induced ILC3 

recruitment. Uninjured K14NICDER transgenic mice treated with PBS  or  

Adalimumab  for  7  days  followed  by  2  days  of  4OHT -treatment to activate  the  

transgene. Skin sections were stained with an antibody to RORγ (green) and 

counterstained with DAPI. Positive cells are marked by white arrows. Asterisk 

marks wound site; scale bars equal 100 microns. 
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Figure 6.5   CCL20 are immediately produced in skin wounds and can be 

expressed by dermal fibroblasts after stimulation by TNFα. (A) mRNA levels of 

CCL20 quantified by quantitative RT-PCR in unwounded and wounded back skin 4, 

8, 16, 24 and 40 hours post-wounding. mRNA levels were normalised to unwounded 

skin. (B)  mRNA levels of CCL20 quantified by quantitative RT-PCR in wounded 

back skin 8, 24 or 72 hours post-wounding. mRNA levels were normalised to 

unwounded skin (designated as 1). (C) mRNA levels of CCL20 quantified by QPCR 

in primary dermal cells treated in vitro with TNFα or TNFα Adalimumab for 6 

hours. mRNA levels were normalised to vehicle-only treated cells. Experiment 

repeated twice. Graph bars represent experimental mean of technical replicates (n = 

3) and error bars represent standard error of the mean (SEM). 
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Rebecca Lamb). Taken together these results show that activating the TNFα pathway 

either chemically or via Notch activation resulted in a correspondingly increased 

CCL20 expression in dermal fibroblasts linking TNFα to ILC3 recruitment.  

 

6.2.5 Epidermal Notch1 signaling might stimulate Langerhans cells to secrete 

IL23 that is required for ILC3s as well as dermal fibroblasts to produce IL22 

Previous studies suggested IL23 is required for ILCs to secrete IL22 in intestine 

(Sonnenberg et al., 2011). I have also determined that Langerhans/ dendritic cells are 

the main source of IL23 that is required for IL-22 production by ILC3s as well as 

other IL22-producing cells including non-lymphocytes in skin (Figure 4.4), although 

the candidate cell types which produce IL22 at skin wounds at later stage in the 

absence of ILC3 or T have not been determined. Since we have determined dermal 

fibroblasts can express CCL20 upon stimulated by TNFα, I hypothesize fibroblasts 

might be able to produce IL-22 as well in certain conditions. To test this, we used 

recombinant TNFα to stimulate primary dermal cells (Figure 6.6) and confirmed 

dermal fibroblasts have the capability to produce IL22. 

 

Since Langerhans cells are at least 4-fold more abundant than dermal dendritic cells 

at all stages of wound healing (Figure 3.2 and Figure 5.7), and epidermal Notch1 

induced IL23 expression are most significantly detected in epidermis (NIH 

GEO:GSE 782, Ambler and Watt, 2010), it is logical to deduce that epidermal 

Notch1 might activate Langerhans cells to secrete IL-23. However, we cannot 

exclude that some other cell types may also express IL23 following Notch activation,  
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Figure 6.6 IL-22 can be produced by dermal fibroblasts after stimulation by 

TNF-α. mRNA levels of IL22 in primary dermal cells treated with vehicle control, 

TNF-α, TNF-α antagonist (adalimumab) or both TNFα, adalimumab. TNF-α 

treatment induces IL22 expression in dermal fibroblasts.  Experiment repeated twice. 

mRNA levels were normalised to vehicle-only treated cells. Graph bars represent 

experimental mean of technical replicates (n = 3) and error bars represent standard 

error of the mean (SEM). 
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and epidermal Notch1 signaling does not appear to have a significant role in 

Langerhans cell number expansion as suggested by no change in epidermal F4/80
+
 

cell number in 4OHT-treated K14NICDER back skin (Figure 5.8). Taken together, 

these results suggest epidermal Notch1 signaling might stimulate Langerhans cells to 

secret IL23 that is required for ILC3s as well as dermal fibroblasts to produce IL22 

 

6.3 Summary 

In this chapter, using genetic and chemical tools including CXCL13
-/- 

mice and 

recombinant TNFα or TNFα antagonist (Adalimumab), I analyzed the effects of 

blocking the key Notch-regulated soluble factors that are known to function on 

ILC3s through their respective cell surface receptor, suggesting epidermal Notch1 

signaling recruits ILC3s in a mechanism dependent on TNFα/ CCL20, and activates 

ILC3s and dermal fibroblasts to produce IL22 by inducing epidermal expression of 

IL23 probably by Langerhans cells.  

 

However, due to the availability of genetic and chemical tools on targeting CCL20, 

we do not have direct evidence suggesting CCL20 recruits ILC3s through CCR6. I 

demonstrated that Notch1 stimulation of TNFα directly regulates CCL20 in 

wounded skin. However, although CCL20 expression is very rapidly expressed and 

it is transcriptionally down-regulated within 24-hours of wounding suggesting other 

factors in addition to TNFα tightly control CCL20 expression. CXCL13 is expressed 

in the wound site (data not shown) and might contribute to ILC3 recruitment and 

retention, however analysis of CXCL13 deficient mice show no evident defects in 
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wound healing or dermal ILC recruitment indicating that CXCL13 is either 

redundant or not key in this process.   
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Chapter 7   Discussion 

The normal wound healing is a highly coordinated process consisting of three 

sequential and overlapping phases: inflammation, proliferation and remodeling 

(Table 7.1) (Guo and DiPietro, 2010). The postponed, incomplete, or uncoordinated 

healing process usually causes pathologic inflammation, leading to delayed acute 

wounds or chronic wounds like ulcers. Non-healing wounds are associated with   

diabetes and other diseases, affecting about 3 to 6 million people in the United 

States, especially the elderly people (Mathieu et al., 2006). Treating and caring of 

these non-healing wounds cost more than 3 billion dollars per year according to 

estimation (Mathieu et al., 2006). Better understanding of how wound healing is 

regulated will help us to find a more efficient and economic solution for the delayed 

or non-healing wounds.  

 

In this thesis, I first analyzed normal immune responses in wound healing by using a 

surgical wounding mouse model. Consistent with previous results, I found that 

monocytes/ macrophages are the predominant immune cells residing in unwounded 

skin and infiltrating in wounded skin, and are recruited early into wound site at 

approximately day 2 post-wounding (Figure 3.2; Figure 3.6), while γδ T cells 

including dendritic epidermal T cells are dramatically replenished at later stage 

approximately from day 5 post-wounding (Figure 3.7; Figure 3.8), confirming these 

cells are heavily involved in normal skin wound healing and important for this 

process (Delavary et al 2011; Dupasquier et al 2004; Havran and Jameson 2010;  

Jameson et al, 2002; Jameson and Havran 2007; Rodero and Khosrotehrani 2010; 

Stout 2010). However, I am the first to Group 3 demonstrate innate lymphoid cells  
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Normal skin wound healing process 

Phase Major cellular events  

Inflammation 1. Neutrophil recruitment and infiltration 

 2. Innate lymphoid cell recruitment and infiltration 

 3. Monocyte recruitment, infiltration and differentiation 

into macrophage 

 4. Epidermal dendritic T cell replenishment 

Proliferation 1. Keratinocyte division  

    (re-epithelialization, epidermal proliferation) 

 2. Fibroblast differentiation into myofibroblast  

    (dermal collagen synthesis, wound contraction) 

 3. Vascular endothelial cell division 

     (granulation tissue formation) 

Remodeling  1. Vascular endothelial cell apoptosis  

    (granulation tissue repression) 

 2.  Dermal collagen type switch 

 

Table 7.1 Major cellular events of normal skin wound healing process. 
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(ILC3s) which were only identified in lymphoid tissues and some other epithelial 

tissues such as intestine, are recruited into skin wound site early on day 2 post-

wounding and  continue to infiltrate the wounded skin on day 5 post-wounding, and  

participate in normal skin wound healing.  I have determined that the phenotypes of 

these ILCs are CD45
+
RORγt

+
CD3

-
CD127

dim to +
CD4

dim to +
CD117

-
NKp46

-
, which 

belong to Group 3 ILCs (ILC3), but are different from current subsets identified in 

other sites. Although RORγt is also reportedly expressed by some dermal γδ T cells 

(Gray et al., 2011), I confirmed that the vast majority (> 90%) of RORγ
+
 cells at 

wound site are non-T cells (CD3
-
) and thus are ILCs.  

 

I then analyzed the function of these ILC3s in skin wound healing. I have shown loss 

of ILC3 causes severely delayed wound healing partly due to lack of early IL22-

dependent epidermal proliferation and early CCL3-dependent monocyte/macrophage 

recruitment during wound healing, while transfer of ILC3 to the recipients inhibits 

the wound pathology. Furthermore, I have demonstrated IL23 signaling from 

localized dendritic/Langerhans cells is required for the production of IL22 in ILC3.  

Thus I suggest that ILC3 play key roles in skin repair through promoting epidermal 

proliferation via supplying early IL22 which is dependent on IL23 secreted by 

dendritic/ Langerhans cells and recruitment of monocytes/ macrophages via 

supplying early CCL3, which is consistent with previous studies on the role of ILC3s 

in tissue repair in thymus and intestine through IL-22 (Dudakov et al., 2012; 

Sonnenberg et al., 2012). Given the new evidence that IL22 receptorα is also 

expressed by dermal fibroblasts (McGee et al., 2013), IL-22 may have roles in both 

epidermal and dermal compartment and thus may be a key signaling to skin repair. 

However, I am the first to uncover a role of ILC3 in regulating monocyte/ 
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macrophage recruitment via CCL3. The recruitment of  monocytes/ macrophages are 

reportedly unrelated to the resident macrophages (MacDonald et al., 2010) and are 

thought to be partly regulated by neutrophils via an array of cytokines including 

CCL3 (Amulic et al., 2012). However, in our models neutrophil infiltration is not 

affected by absence of ILC3, confirming ILC3 has a specific role in regulating early 

macrophage/ monocyte recruitment into wound site via CCL3. Increasing evidence 

has shown that macrophages in wounds have complex phenotype in different stages 

of healing: in the initial inflammation phase (1 day post-wounding) (Daley et al., 

2010), the majority of macrophages are classically activated by interferon-γ (IFN-γ) 

(M1 macrophages) to perform extensive phagocytosis to clear wound of any debris 

including the short-life neutrophils and secrete pro-inflammatory cytokines such as 

TNF-α, IL-1β, IL-6 (Rodero and Khosrotehrani, 2010), while as the healing 

progresses M1 macrophages are converted to M2 macrophages which are activated 

by distinct cytokines (alternatively activated), thought to be IL4 and IL13, and play a 

key role in inflammation resolution and tissue repair (e.g. granulation tissue 

generation, dermal extracellular matrix deposition and wound contraction) via 

producing TGF-β (Delavary et al., 2011; Martin and Leibovich, 2005; Rodero and 

Khosrotehrani, 2010). However, the timing of macrophage phenotype conversion 

and the cytokines involved in this conversion are currently less clear (Daley et al., 

2010). I propose that the skin resident macrophages may display M1 phenotype to 

undertake phagocytosis, while ILC3-recruited macrophages may exert M2 

phenotype to provide an early signaling for tissue repair. However, further 

experiment to analyze the macrophage activation cytokines is required to confirm 

this. 
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More strikingly, I have demonstrated that epidermal Notch1 signaling promotes 

wound healing through an ILC3-mediated process. Previous studies suggested that 

Notch is implicated in wound healing by using topically-applied Notch activator and 

inhibitor, however, the mechanistic detail or the site of action was unknown (Ambler 

and Watt, 2010; Chigurupai et al., 2007; Estrach et al., 2006).  Using surgical 

wounding mouse models, I have shown that both Notch1 and Notch2 activities are 

robustly activated in wound edge skin predominately in epidermal keratinocytes after 

injury. Using chemical and genetic tools including blocking antibodies specific for 

Notch1 or Notch2 (Wu et al., 2010) and a transgenic mouse (K14NICDER) where 

Notch1 can be controllably activated in the epidermis by 4OHT drug application, I 

have shown that Notch1 signaling from non-immune cells (i.e. epidermal 

keratinocytes) rather than from immune cells has an essential temporal role in the 

wound healing process via regulating wound immune responses specifically 

recruiting ILC3 and monocytes/ macrophages, and inhibition of Notch1 inhibits 

wound closure (Figure 5.4). Since I have demonstrated ILC3 recruits monocytes/ 

macrophages via CCL3 in Chapter 4, I propose epidermal Notch1 signaling 

indirectly promotes macrophage/ monocyte recruitment through ILC3-dependent 

CCL3. This is partly supported by recent studies where Notch1
+/-

 mice had fewer 

macrophages in wound site (Outtz, et al., 2010; Outtz et al., 2011), although the 

authors concluded these defects in macrophage recruitment and inflammatory 

response are caused by lack of Notch1 activity within macrophages, without giving 

further evidence to show the sites of Notch activity in normal wound healing. 

However, in our wounding model, Notch1 activity is hardly detectable in dermal 

compartment where massive immune cells are normally infiltrating suggesting loss 

of Notch1 signaling from epidermal compartment was likely to cause decreased 
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macrophage response in Notch1
+/-

 mice. I have uncovered a novel connection 

between Notch signaling in epithelium and initiation of the immune response, which 

would become an important paradigm in understanding epithelial tissue repair and 

homeostasis. The capacity of ectopically activated epidermal Notch1 signaling to 

recruit ILC3 in unwounded skin, suggesting ILC3 recruitment is dependent on 

neither pathogen stimulation nor pattern recognition receptor. However, all 4 Notch 

receptors are expressed in skin epithelial, therefore it will be interesting to determine 

if other Notch receptors have a contributing role in other aspects in wound healing. 

 

Finally, I demonstrated the mechanism of how epidermal Notch1 recruits ILC3s and 

regulates their function during skin repair. I have shown that epidermal Notch1 

signaling stimulates epidermal production of TNFα which controls ILC3 recruitment 

to the wound site partly through inducing CCL20 synthesis in dermal fibroblasts, and 

induces IL23 production (Figure5.1; NIH GEO: GSE 782, Ambler and Watt, 2008) 

probably by Langerhans cells which together with dermal dendritic cells have been 

demonstrated as the main source of IL23 in skin wounds (Figure 4.5) in order to 

activate ILC3 to function through IL22 production. Interestingly, I have shown 

dermal fibroblasts also have the capacity to secrete IL22 following stimulation by 

TNFα (Figure 6.6) and may compensate for the absence of ILC3 to supply IL-22 in 

later stage of wound healing (Figure 4.4). Given the evidence showing fibroblasts are 

the key candidate phagocytes in the absence of macrophage during wound healing 

(Martin et al., 2003) and responsive to IL22 signaling (McGee et al., 2013), I suggest 

dermal fibroblasts are a versatile candidate playing roles in a wide range of events 

during wound healing.   
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In conclusion, I uncovered that the classic developmental signal Notch directs innate 

immune response after skin damage. The skin wounding activates Notch pathway 

robustly in epidermal keratinocytes (Figure 7.1). This injury induced Notch1 activity 

up-regulates epidermal cytokine TNFα, which induces CCL20 in fibroblasts, and 

recruits innate lymphoid cells (i.e. ILC3) to the wound site. ILC3 at the wound site 

are activated by Notch-stimulated production of IL23 from Langerhans cells to 

produce early IL22 and CCL3 which subsequently promotes epidermal proliferation 

and monocyte/ macrophage recruitment, two key events in normal skin wound 

healing programme. Thus we propose that epidermal Notch1 signaling acts as a 

damage “sensor” transmitting a “stress/injury signal” instigating skin repair through 

an ILC mediated process. This signaling may be conserved among different 

epithelial tissues in the body playing a key role in tissue homeostasis and repair. 

 

However, the cytokines and chemokines were only determined and compared at 

mRNA levels in this thesis. There might be some proportion of cytokines or 

chemokines that are preformed and secreted by cells after activation, for example, 

the preformed TNF-α can be released by skin mast cells via degranulation (Gibbs et 

al., 2001), and this might not be reflected in mRNA levels. Further studies using 

intracellular staining by flow cytometry or protein assay (e.g. enzyme-linked 

immunosorbent assay, ELISA) are required to determine both newly generated and 

preformed cytokines and chemokines. In addition, I did not find a direct link 

between TNF-α and CCL20 in skin wound healing context. Further studies using 

recombinant TNF-α or TNF-α antagonist at early hours in wounded mice are 

required to confirm CCL20 is regulated by TNF-α. In this thesis, CD3, CD4, CD117, 

CD127, NKp46 were RORγ were used to characterize the phenotypes of ILC3s, 
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however, more ILC3 markers such as CCR6 (receptor for CCL20), CD25 and CD90 

may need to be tested to confirm the phenotypes and subsets of ILC3s in skin 

wounds preferably using flow cytometry. Since CD11c
Cre

Rosa
DTR

 mice deficient in 

Langerhans and dendritic cells had poorly wound healing, specific depletion of skin 

Langerhans cell by using DT treated Langerin
Cre

Rosa
iDTR 

mice would be our next 

interest to examine their wound healing rate and cytokine production (e.g. IL-23, IL-

22), and compare them to DT treated CD11c
Cre

Rosa
iDTR

 as well as wildtype wounds. 

This future study would confirm whether Langerhans cells or skin conventional 

dendritic cells had a more critical role in producing IL-23 that activates ILC3 

functioning on wound healing. 
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Figure 7.1 Notch1 orchestrates wound healing through control of Innate 

Lymphoid Cells (i.e. ILC3s). Skin wounding activates Notch pathway (orange 

cells) in the basal and suprabasal epidermis. Injury induced Notch1 activity 

upregulates TNFα (TNF), which induces CCL20 in fibroblast cells (grey cells), and 

recruits ILC3s (green cells) to the wound site. ILCs at the wound site are activated 

by Notch-stimulated production of IL23 to produce IL22 and CCL3 (MIP1α) which 

subsequently influence epidermal proliferation and macrophage (Mϕ) recruitment, 

two key events in the skin wound-healing programme.  
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