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Abstract 

 

Climate change presents a serious threat to many global ecosystems. Warming is 

predicted to be greatest at high latitudes, where increased temperatures are 

expected to lead to a longer growing season and an increased incidence of 

potentially damaging winter freeze-thaw events. The impact of these environmental 

changes on the native flora is not yet fully understood. The bryophytes are an 

ancient group of non-vascular plants which often form a large proportion of the 

plant community in the arctic and boreal regions. The response of these organisms 

to climate change has often been overlooked, despite the significant role they play 

in carbon uptake and storage in many ecosystems. 

The study used infra-red gas analysis to measure the change in net photosynthesis 

and respiration rates in several bryophyte species in response to changing 

microclimate. Experiments were conducted under controlled laboratory conditions 

using samples of the common moss species Polytrichum juniperinum, Hylocomium 

splendens and Aulacomnium palustre, collected from the North Pennines, UK. 

Additional measurements of gas exchange rates in the species Hylocomium 

splendens, Aulacomnium turgidum and Tomentypnum nitens were taken at a site near 

Inuvik, NWT in the Canadian arctic.  

The results of the study support the existing evidence that many bryophyte species 

are adapted to photosynthesis at low temperatures (<10°C), and are therefore 

unlikely to benefit from an increase in summer temperatures in terms of carbon 

uptake and growth. The study also found evidence that cycles of freezing and 

thawing during the winter and early spring cause a significant reduction in carbon 

uptake in both P. juniperinum and H. splendens compared to a single period of sub-

zero temperatures. This damage was reduced in P. juniperinum when the plants 

were air-dry at the time of freezing. The data arising from this study are important 

to improve existing models of carbon exchange in bryophyte-dominated 

ecosystems. 
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Chapter one: Introduction and literature review 

 

Introduction 

 

Since the early 20th Century the mean surface temperature of the Earth has 

increased by 0.8°C. This rise has been primarily due to the effects of anthropogenic 

climate forcing, through the release of greenhouse gasses, including carbon dioxide 

(CO2) and methane (CH4 ) (IPCC, 2007). The IPCC fourth assessment report (IPCC, 

2007), predicts that over the coming century the global climate is likely to warm by 

a further 2-4°C, as the rate at which these gasses are released into the atmosphere 

continues to increase. Climate models predict that future climate change will affect 

different areas of the globe in different ways. For example, continental areas are 

predicted to warm to a greater extent than the oceans, and the Arctic to warm more 

than equatorial regions. In addition to global temperatures, patterns of precipitation 

are also predicted to change. Many areas, including the Arctic, are predicted to 

receive increased precipitation, while others, including Western Europe, are 

predicted to experience reduced precipitation (IPCC, 2007).  

 

Climate change is already having a measurable impact on many global ecosystems. 

One major effect of climate change, particularly at higher latitudes, has been the 

earlier onset of spring events. During the last 30 years the growing season in the 

northern hemisphere has increased by 3-5 days per decade (Genet et al., 2013). An 

earlier onset of spring bud break provides the opportunity for increased plant 

growth over the summer season. However an early period of warm weather 

followed by late frosts can cause severe damage to new shoots which would 

otherwise have remained dormant until later in the year. For example, in the Arctic, 

incidents of extreme warming for a few days in the middle of winter can melt the 

insulating snow layer, leaving the plants vulnerable to damage when temperatures 

subsequently fall back well below freezing point (Bokhorst et al., 2011). 

Understanding how these different factors associated with climatic warming affect 

the overall survival and growth of plants is necessary understand the ways in which 

climate change may affect these communities as a whole.  
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The contribution of bryophytes to the global carbon balance 

 

While much research has been undertaken to investigate the responses of animals 

and higher plants to climate change, the responses of bryophytes (mosses & 

liverworts) and lichens have generally been largely overlooked (Street et al., 2012). 

The bryophytes are an ancient group of non-vascular plants which may form a 

significant proportion of the plant community, particularly in high-latitude and 

high-altitude environments where vascular plants struggle to survive. It is therefore 

important that these organisms are not ignored if these ecosystems are to be fully 

described, and the potential impacts of climate change upon such ecosystems 

understood (Douma et al., 2007; Turetsky et al., 2012).  

 

Although bryophytes have been clearly observed as a dominant form of vegetation 

in arctic and upland ecosystems, until recently little was known about the relative 

contribution they made to the overall carbon budget of these ecosystems. Recent 

work has begun to separate the contribution of mosses from that of vascular plants. 

In northern Sweden mosses are estimated to be responsible for an average of 60% 

of annual ecosystem carbon uptake across the landscape (Douma et al., 2007). The 

relative contribution of bryophytes compared to vascular plants is often greater 

during the spring and autumn, when vascular plant leaves have either not fully 

developed, or are entering senescence. For example, between March and May 

carbon dioxide uptake by Polytrichum pilferum in northern Sweden is up to three 

times that of vascular plants (Street et al., 2012). The loss of moss cover in the tundra 

environment would therefore be expected to have severe consequences for the 

carbon balance of these ecosystems (Street et al., 2013). 

 

The majority of research on the responses of mosses to climate change has been 

conducted in the arctic and alpine tundra regions, as these environments are some 

of those most heavily dominated by bryophytes (Bates et al., 2005; Lang et al., 2012). 

Bryophytes are however also a dominant form of vegetation in many other 

ecosystems, including boreal woodland, and the moorland and peatland ecosystems 

of temperate latitudes. Below the treeline bryophytes make a smaller, but still 

significant, contribution to the ecosystem carbon balance. In the black spruce forests 

of central Canada, for example, moss photosynthesis is estimated to contribute 
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approximately 13% of the total ecosystem gross production (Swanson and 

Flanagan, 2001). In total, moss-dominated northern hemisphere boreal and 

temperate peatlands are estimated to sequester an average of 23g C m-2 y-1 from the 

atmosphere. Values as high as 102g C m-2 y-1 have been reported from UK peat bogs, 

where conditions are warmer and wetter than comparable continental ecosystems 

(Billett et al., 2010).  

 

Climate change has the potential to significantly alter these ecosystems by changing 

the competitive balance between bryophytes and vascular plants, or creating 

conditions which are detrimental to both. Such a shift could, in turn, have major 

implications for the global carbon balance (Turetsky et al., 2012). If warming causes 

increased plant growth and carbon storage, this may help to negate some of the 

effects of anthropogenic carbon release. If however plant growth is reduced, a 

negative feedback cycle could contribute to further warming (IPCC, 2007). In many 

northern ecosystems, warming is expected to significantly increase the rate of soil 

carbon release. Therefore, even if the vegetation of these ecosystems is relatively 

unaffected by climate change, the net result may be a fall in net carbon uptake 

(Billett et al., 2010). In order to predict the likely consequences of climate change in 

these ecosystems, it is necessary to understand the responses of both vascular 

plants and bryophytes to a range of potential future climate scenarios. 

 

The effect of changing temperature on Bryophytes 

 

In arctic regions where summer temperatures typically remain low, several studies 

have shown mosses responding positively to summer warming. Warming of just 1°C 

above ambient during the summer months caused a significant increase in shoot 

length and overall biomass production in Sphagnum fuscum (Dorrepaal et al., 2004). 

In northern Canada, experimental warming of 1°C was associated with a 6% 

increase in overall bryophyte cover after 15 years; however this was coupled with a 

3.5% loss of lichen cover (Hudson and Henry, 2010). In Alaska, increasing 

temperature has been correlated with increased abundance of the common mosses 

Sphagnum girgensohnii, Hylocomium splendens and Pleurozium schreberi. However 

the abundance of many other bryophytes, including rarer mosses and lichens, is 

negatively correlated with increasing temperature (Lang et al., 2012). 
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In addition to the direct effects of summer warming on bryophyte-dominated 

ecosystems, mosses may also benefit from the indirect effects of warming. It has 

been demonstrated that the moss carpet plays an important role in assimilating the 

carbon dioxide released from wet soils by respiration of micro-organisms 

(Sommerkorn et al., 1999). Increased temperatures are predicted to increase soil 

CO2 flux, creating an environment where elevated ambient CO2 at the moss surface 

could cause elevated levels of net photosynthesis. Net photosynthesis of H. splendens 

in a sub-arctic forest in northern Sweden was found to be 2-3 x higher at an ambient 

CO2 concentration of 600ppm compared to 350ppm (Sonesson et al., 1992). These 

values are comparable to measured CO2 concentrations at the moss surface in situ, 

which rose to 730ppm in the height of summer.  

 

Whilst average winter air temperatures in the sub-arctic tundra can be as low as 

minus 40°C, in areas where the ground is covered in a deep layer of snow, the 

temperature at ground level remains close to 0°C (Olsson et al., 2003). It has recently 

been demonstrated that where a film of unfrozen water is present, and light is able 

to penetrate the snowpack, some mosses are capable of significant rates of 

photosynthesis beneath snow cover (Zotz and Rottenberger, 2001). In contrast, 

vascular plants typically require higher temperatures and light intensities for 

photosynthesis to occur (Larsen et al., 2007). The mosses which live under these 

conditions are rarely exposed to the extreme cold of the arctic winter, and the 

subnivian environment allows them to remain metabolically active throughout the 

winter. It is this protection which allows species typically found in temperate 

regions to survive the arctic winter. In experiments where the snow is artificially 

removed under these conditions mosses show significantly reduced survival and 

growth (Bjerke et al., 2011; Bokhorst et al., 2011). 

 

In recent years the number of midwinter warming events in the Arctic has increased, 

an effect of climate change which is expected to continue in the future. During these 

events the air temperature can rise from far below freezing to above 0°C in a few 

hours (Olsson et al., 2003; Bokhorst et al., 2011). This causes rapid snow-melt, 

exposing plants to higher temperatures and light intensities. Under these conditions 

mosses can respond with a rapid increase in photosynthetic rate within minutes. 
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Within days the plants begin to develop new freeze-susceptible shoots, responding 

as though it were spring. (Bjerke et al., 2013). When the warming event passes, the 

mosses are left exposed to freezing air temperatures. In the Arctic the majority of 

snowfall generally occurs in the autumn, with little during the winter or early spring 

(Olsson et al., 2003). The mosses are therefore likely to remain exposed for the 

remainder of the winter. This exposure has been shown to severely damage their 

photosynthetic capability. In the field, patches of Hylocomium splendens showed 

significant reductions in growth and photosynthetic rate of up to 50% in the 

summer following an artificially induced winter warming event (Bjerke et al., 2011). 

Recovery from laboratory-induced freeze-thaw events is slower when the mosses 

are frozen at lower temperatures, and when they are subjected to multiple cycles of 

freezing and thawing compared to a single warming event (Kennedy, 1993). 

 

In temperate regions where snow cover is erratic through the winter the plants do 

not have the benefit of the protection of a deep, long-lived snowpack. Whilst air 

temperatures do not drop as low as in the arctic, night-time minima of -10° C or 

lower are not uncommon in many regions including the UK (Met Office, 2012). Few 

studies have been undertaken on the effect that these sudden dips in temperature 

may have on the native bryophyte species. As in the Arctic, bryophytes in these 

regions respond to unseasonably warm temperatures with rapid growth and 

development, leaving them potentially vulnerable to late frosts. Research into the 

effects of rapid freeze-thaw cycles on these species is therefore equally applicable 

to arctic and temperate environments.  

 

In warmer regions where winter temperatures rarely fall below freezing and the 

risk of late spring frosts is minimal, bryophytes may benefit from winter warming. 

The ability to photosynthesise at relatively low temperatures and light intensities 

places them in the ideal position to take advantage of cool and wet winter conditions 

in regions where summers are likely to be hot and dry; conditions that are 

detrimental to moss growth (Zotz and Rottenberger, 2001; Bates et al., 2005). The 

response of individual bryophyte species to warming is therefore dependent upon 

a range of environmental and temporal factors, including the competitive dynamics 

of the ecosystem, and can vary significantly between sites and species (Bates et al., 

2005; Davey and Rothery, 1997). 
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The effect of changing water availability on bryophytes 

 

Mosses and other bryophytes differ from vascular plants in that bryophytes lack 

xylem vessels and true roots; instead they obtain water and nutrients by absorbing 

them directly through the leaves over the whole surface of the plant (Dilks and 

Proctor, 1979). This strategy allows them to grow directly on surfaces which cannot 

support higher plants, for example bare rock, tree stumps, and low-quality soils. A 

lack of vascular system for the transport and storage of water means that mosses 

can only grow in damp areas where water is abundantly available for at least part of 

the year. The majority of moss species also lack a cuticle on their leaves. This, in 

combination with their small size, means that water loss in dry conditions is often 

rapid (Dilks and Proctor, 1979). 

 

When the moisture content of mosses is reduced below an optimum, the net 

photosynthetic rate also falls (Williams and Flanagan, 1996). During periods when 

water is not available, many species are able to survive desiccation by entering a 

form of stasis where metabolism is halted until water once again becomes available 

(Davey, 1997). In a laboratory study, air-dried samples of Racomitrium lanuginosum, 

Anomodon viticulosus and Rhytidiadelphus loreus, all demonstrated a full recovery of 

maximum net photosynthesis within 24h of re-wetting (Proctor and Smirnoff, 

2000). Therefore, while mosses are very sensitive to water loss in the short term, 

they do not suffer any long term harm from desiccation, and remain readily able to 

take advantage of an increased water supply. 

 

Many studies investigating the effects of climate change on mosses have found that 

the response to warming varied considerably depending on the availability of water 

(Uchida et al., 2002; Williams and Flanagan, 1996). In the common Arctic moss 

Sanionia uncinata, net photosynthesis was found to be constant over a wide 

temperature range (7-23° C) when the moss was fully hydrated (Uchida et al., 2002). 

The study found that the large inter-annual variation in the net primary productivity 

of this species was almost entirely due to water availability. In Alaska, summer net 

photosynthesis of mosses was found to be higher during years when water content 

was favourable for growth in the early season, compared to years with greater 

precipitation overall, but drier conditions during the spring  (Skre and Oechel, 
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1981). These findings suggest that even in colder regions, moss growth is limited by 

water availability rather than temperature. 

 

Studies have shown that mosses in temperate regions are most productive during 

the spring and autumn, taking advantage of the high precipitation levels and cool 

temperatures. Growth rates are then reduced during the warmer, but drier, summer 

period (Bates et al., 2005). A study of a moss community growing on a stone wall in 

Germany found that net productivity of all species was highest in the autumn and 

lowest in the summer, with winter and spring rates intermediate and more variable 

between species. Rates of photosynthesis in all seasons were highly variable 

between years depending on weather conditions (Zotz and Rottenberger, 2001). In 

areas where annual precipitation is predicted to decrease as a consequence of 

climate change, including much of Western Europe, warming is likely to reduce the 

growth and production of mosses during the formerly productive cooler months.  

 

The response of mosses to freezing stress is also highly dependent on moisture 

availability. For example, mosses in a desiccated state show significantly less 

damage and recover more rapidly from freezing at very low temperatures (Kennedy, 

1993). The similarity between drought and freezing stress has been well 

documented in vascular plants. The physiological responses induced by both 

stresses share many of the same biochemical pathways and produce similar 

physiological effects. For example, the accumulation of compatible solutes inside 

cells lowers the water potential of the inter-cellular fluid, both reducing water loss 

from the cell and lowering its freezing point (Kasuga et al., 1999; Burke et al., 1976). 

 

While snow cover can help to insulate mosses from frigid arctic winters, increased 

precipitation during the spring, when temperatures regularly fluctuate above and 

below freezing, may exacerbate the effects of freezing stress on mosses (Kennedy, 

1993). In xeric habitats, the natural desiccation response helps to protect mosses 

from freezing damage (Schlensog et al., 2004). In addition to this, mosses which are 

metabolically inactive due to drought, will not respond to warming with new growth 

which may be vulnerable to later freezing (Bjerke et al., 2013). While this may be a 

disadvantage when spring arrives 'for real', during periods of freeze-thaw 

conditions it provides a vital defence. These studies demonstrate that there are 
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multiple factors which influence how bryophytes may respond to climate change. 

Further study is necessary to determine the overall impact that these combined 

factors may have on different species.  

 

Context and justification for the study 

 

Whilst research into the effects of climate change on bryophytes is still in the early 

stages, it is clear that environmental change is having a significant impact on the 

physiology and ecology of these important plants. Perhaps unsurprisingly it has 

been found that different bryophyte species show radically different responses to 

climate change (Lang et al., 2012). These organisms should therefore not be treated 

as a single group as they often are in ecological studies, but instead studied 

separately and in competition with one another (Turetsky et al., 2012). It is 

important that quantitative data are collected on the responses of a wide range of 

species to different possible future climate scenarios if we are to understand the 

potential impacts of climate change on these communities.  

 

The discovery that many bryophytes are photosynthetically active for a longer 

period of the year than vascular plants opens up an important area for research. 

Little is known about the photosynthetic capabilities of bryophytes at low 

temperatures (-5 to +5 °C), and how they may respond to an earlier spring thaw 

(Street et al., 2012). A number of challenges exist in this area of research. For 

example, due to the severity of winter conditions in high latitude and altitude 

environments, field measurements during the winter and early spring are almost 

impossible to make. It is therefore desirable to conduct much of this research in the 

laboratory, under controlled environmental conditions. Accurately quantifying the 

gas exchange capability of bryophytes at these temperatures is a key aim of this 

study. 

 

The majority of research on the responses of bryophytes to climate change has been 

conducted in the Arctic; however bryophytes also make a significant contribution to 

the carbon cycle in temperate and tropical environments (Bates et al., 2005; Billett 

et al., 2010). Although there are some bryophyte species which grow only in Arctic 

environments, many of the most common are found over a very large climatic range, 
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from the arctic and alpine tundra to temperate and even sub-tropical regions. The 

challenges faced by these plants as a result of climate change differ from the 

challenges faced by arctic populations. This study will investigate populations of 

common bryophyte species from both a sub-arctic tundra site in northern Canada, 

and a temperate upland environment in the UK. 

 

Aims and objectives 

 

The aim of this study was to investigate the response of a range of dominant boreal 

bryophyte species to altered microclimate, with a focus was on measuring changes 

in carbon exchange between plant and atmosphere in response to changes in 

ambient temperature and water availability. A significant challenge of the project 

was to measure rates of photosynthesis and respiration at temperatures close to the 

freeze-thaw boundary (< +5 °C) using infra-red gas analysis. The data arising from 

the study are important to improve existing models of carbon exchange in 

bryophyte-dominated ecosystems, and will be applicable to both sub-arctic and 

temperate environments. The aims of the study were addressed by postulation of 

the following hypotheses: 

 

1: At temperatures in excess of freezing, climate warming will result in enhanced 

photosynthetic activity of the moss component, so long as water supply is sufficient.  

 

2: Cycles of freezing and thawing during the winter period will negatively impact the 

photosynthetic capabilities of mosses. 

 

The following chapters include a description of the study methodology (chapter 

two), the results of the study (chapter three), and a discussion of these results 

(chapter four).  
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Chapter two: Methodology 

 

Field sites  

 

Two different field sites were used in this study, one in the United Kingdom and one 

in Canada. The UK site was located in the North Pennine hills near Stanhope, County 

Durham (54° 48' 10” N 2° 2' 34" W) (Figure 1). The landscape at this site is open 

heather moorland, and the ecosystem has a significant bryophyte component, with 

mosses forming a thick carpet beneath the heather shrub layer. The site has a 

temperate oceanic climate, with an average daily maximum temperature in July of 

20 °C, and an average minimum in January of 0 °C (Met Office, 2012). All laboratory 

experiments using moss material collected from the UK site were undertaken at the 

University of Durham, UK.  

 

 

Figure 1: The Location of the UK field site (Durham County Council, 2010). 
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The Canadian site was located at Trail Valley Creek, approximately 60 km north of 

Inuvik, North West Territories (66° 44' 17” N 133° 26' 26” W) (Figure 2). The 

landscape is a mixture of low shrub and open tundra dominated by grasses, moss, 

and lichen. The site is within the zone of continuous permafrost and has a sub-arctic 

climate with an 8 month snow-cover period. The average maximum temperature for 

July is 19 °C, and the average minimum in January is -31 °C (University of 

Saskatchewan, 2014).  

 

 

Figure 2: The location of the Canadian field site (University of Saskatchewan, 2014). 
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Study species 

 

In total five different moss species were used in this study. Species were chosen to 

be representative of the landscape, both in their abundance and in their range of 

physiological traits. Nomenclature of mosses follows Mosses and Liverworts of 

Britain and Ireland: a field guide (British Bryological Society, 2010). 

 

Hylocomium splendens has a widespread distribution in the northern hemisphere, 

and is abundant in both Europe and Canada. Of the five study species it was the only 

one studied at both UK and Canadian sites. H. splendens is a pleurocarpic 'feather' 

moss, with branching shoots up to 20 cm long. New shoots grow each year from the 

centre of the previous year's branch, resulting in a series of connected ‘fronds’. H. 

splendens is commonly associated with woodland ecosystems but is also found on 

open moorland and arctic-alpine tundra. 

 

Aulacomnium palustre is also widespread in the northern hemisphere, having a 

similar distribution to H. splendens. Whilst A. palustre was present at both sites it 

was only studied at the UK site. A. palustre commonly grows in wetland 

communities, and its presence is generally an indicator of wet soils. It is an 

acrocarpous moss which forms dense tufts of individual shoots with small, pointed 

leaves. Whilst shoots of this species can grow up to 10 cm tall, the samples taken 

from the UK field site rarely exceeded 2 cm in height. 

 

Aulacomnium turgidum is similar in appearance to A. palustre but can be 

differentiated by the blunt, swollen appearance of its shoots and leaves. A. turgidum 

is common in cold environments, including the arctic and sub-arctic tundra regions. 

It was present only at the Canadian site, where it was more abundant than the 

related A. palustre. In the UK its distribution is limited to small areas of the Scottish 

highlands. 

 

Polytrichum juniperinum is globally widespread and commonly found in dry and 

exposed habitats. It was present at both sites, but was not studied at the Canadian 

site as it was relatively scarce. P. juniperinum is an acrocarpous moss which forms 

open patches of erect, un-branched shoots approximately 4 cm tall. The stems have 
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thin, pointed leaves up to 1 cm long. It is often a pioneer species of recently burned 

or disturbed ground including quarries and woodland paths, a factor which is likely 

to have contributed to its abundance at the UK site. 

 

Tomentypnum nitens is found in boreal and sub-arctic environments globally, 

particularly in wetland communities dominated by grasses and sedges. In this study 

T. nitens was found only at the Canadian site. This species is in decline in the UK, but 

can be found in upland mires, primarily in Scotland and Ireland. T. nitens is a 

pleurocarpic moss with upright stems up to 10 cm tall which form a dense carpet. 

 

Part1: The UK 

 

Collection and storage of samples 

 

Samples of bryophyte material were collected from the UK field site in the North 

Pennine hills for use in the laboratory experiments. All the material used in 

experiments 1, 2 and 3 was collected in November 2013. Additional material was 

collected for chlorophyll analysis (experiment 4) in March and July 2014. Samples 

were collected and stored as complete turfs, including small quantities of non-study 

species, to minimise long-term damage and disturbance effects.  

 

Turfs were placed in seed trays of dimensions 37 x 24 cm within a controlled 

environment chamber (Weiss Gallenkamp, Loughborough, UK) at 5 ˚C on an 8/16 h. 

day/night cycle and sprayed with water as necessary to maintain fully moist 

conditions (Figure 3). This environmental cycle was chosen to approximate 

autumn/winter conditions at the collection site, without the confounding effects of 

severe weather or freezing events.  

 

Unfortunately, due to limited space inside the environmental chamber, the quantity 

of bryophyte material collected in the initial November survey was not enough to 

allow separate replicate moss turfs to be used in all the experiments which were 

subsequently developed. Rather than introduce confounding errors by mixing 

material collected later in the year, pseudo-replicate samples were taken from a 

single turf in each experimental condition. Individual shoots of moss were removed 
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from the turfs when required for experimentation, leaving the remainder as 

undisturbed as possible.  

 

 

Figure 3: Moss species collected from the UK field site. (a) Polytrichum juniperinum, (b) 
Hylocomium splendens, and (c) Aulacomnium palustre. 

 

Measurement of gas exchange in the laboratory 

 

Gas exchange was measured using the LI-6400 portable photosynthesis system 

(LiCor, Lincoln, Nebraska, USA) in conjunction with the LI-COR bryophyte chamber. 

As the bryophyte chamber is a newly available piece of equipment it was first 

necessary to develop a reliable experimental protocol for its use. Due to the differing 

growth forms of the species used in this study, two different protocols were 

developed. The first was used with P. juniperinum and H. splendens, and the second 

with A. palustre. The following procedures were used to measure gas exchange in 

response to temperature change, water content, and freezing-thaw stress: 

 

a) Polytrichum juniperinum and Hylocomium splendens 

 

Individual shoots of moss were cut from the turfs and rinsed in distilled water. Due 

to limited space inside the bryophyte gas exchange chamber, the shoots were 

(a) (b) (c) 
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trimmed to an approximate length of 2 cm. This corresponded to the most recent 

season’s growth, with older material removed. The prepared shoots were blotted 

dry to remove excess water and placed inside the chamber. A small ring of black 

card, 3.5 cm in diameter and 2 cm in height, was used to hold the loose shoots in 

position. This ring also acted to reduce light penetration from the side, imitating the 

natural conditions of a continuous moss carpet with illumination from above. The 

shoots were arranged inside the chamber in such a way as to approximate the 

natural growth orientation and pattern of the species (Figure 4). An average of 0.3 g 

of P. juniperinum and 0.2 g of H. splendens was used in each experimental sample. 

 

The complete photosynthesis system with the bryophyte chamber attached was 

placed inside a climate-controlled chamber (Weiss Gallenkamp Fitotron, 

Loughborough, UK). This chamber allowed the system to be cooled as necessary to 

the temperatures required for each experiment; where necessary fine-tuning of the 

bryophyte chamber temperature was done using the in-built LI-COR temperature 

control system (peltier module). Gas exchange was measured and subsequently 

calculated on a dry mass basis at 400 µmol mol-1 CO2. Light intensity within the 

bryophyte gas exchange chamber was controlled using the fluorescent lights inside 

the growth chamber with a maximum PAR of 415 µmol m-2 s-1. For measurements 

taken at 22 ˚C within the laboratory, light intensity was provided by an LED lamp 

array (Hansatech Ltd, King’s Lynn, UK) suspended directly above the bryophyte 

chamber. This allowed a higher maximum light intensity of 675 µmol m-2 s-1. A water 

jacket placed between the lamp and the chamber prevented the LEDs from having a 

significant warming effect on the bryophyte chamber. Chamber air humidity was 

maintained at ca. 70 % using the LI-COR humidity control system. 

 

The rate of gas exchange was recorded at fifteen second intervals for ten minutes 

beginning immediately after each sample was placed inside the bryophyte chamber. 

Preliminary experiments showed that during this time the gas exchange rate 

typically increased as the moss acclimated to the ambient conditions, then 

decreased as the sample dried out (Preliminary results: Figure 8). Because the rate 

of gas exchange did not remain stable for more than a couple of minutes it was 

necessary to use a different sample of moss for each data point collected. To ensure 
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that measurements were consistent, the value recorded as the rate of gas exchange 

for each sample was the maximum rate measured over this ten-minute period.  

 

b) Aulacomnium palustre 

 

A. palustre naturally grows as a dense cushion which is small enough for complete 

sections to be placed inside the bryophyte chamber. These samples contain a 

significant quantity of dead tissue, with only the top ca. 5 mm of each shoot 

photosynthetically active. Preliminary experiments found that due to the high water 

content of these turfs, measurements could not be made without condensation 

forming inside the bryophyte chamber, risking damage to the equipment. To combat 

this, the turfs were separated into individual shoots which were rinsed in distilled 

water and trimmed where necessary to remove soil and non-focal species. The 

shoots were then blotted dry before being carefully placed back together. The same 

black card ring previously described was used to hold this artificial cushion together 

inside the bryophyte chamber. Each experimental sample contained ca. 3 g of tissue.  

 

Preliminary experiments showed that this cushion dried much more slowly inside 

the chamber than the P. juniperinum and H. splendens samples, maintaining a steady 

rate of gas exchange 90 minutes or more (Preliminary results: Figure 9). Instead of 

using a different sample of tissue for each data point, the same sample could 

therefore be used to complete a full light response curve. The sample was placed 

inside the chamber and allowed to stabilise for fifteen minutes at the highest light 

intensity. The light intensity was then lowered every five minutes; with the rate of 

gas exchange measured at 60 s intervals during this period (Figure 9). The rate of 

net photosynthesis recorded was the last of the five measurements taken at each 

light level. This ensured that the plant had sufficient time to respond to the changing 

light intensity at each step.  
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Experimental design 

 

Experiment 1: The effect of changing temperature on the photosynthetic 

activity of Polytrichum juniperinum, Hylocomium splendens, and 

Aulacomnium palustre 

 

The first experiment was designed to investigate the effect of temperature on gas 

exchange, addressing hypothesis 1. Light response curves were produced at 

ambient temperatures of 1 ˚C, 5 ˚C, 10 ˚C and 22 ˚C for P. juniperinum, H. splendens 

and A. palustre using the above methods. Due to the dense nature of the A. palustre 

cushion these samples retained heat, raising the temperature of the moss cushion to 

1 ˚C warmer than ambient at cooler temperatures. The data are therefore presented 

as being recorded at 2 ˚C and 6 ˚C instead of 1 ˚C and 5 ˚C for this species. Five 

replicate light response curves were produced for each species at each temperature. 

Measurements of gas exchange are presented per gram of dry mass.  

 

Experiment 2: The effect of changing bryophyte water content on the 

photosynthetic activity of Polytrichum juniperinum and Hylocomium 

splendens 

 

The second experiment was designed to investigate the effect of water content on 

gas exchange, addressing hypothesis 1. 24 fully hydrated samples of P. juniperinum 

(a) (b) (c) 

Figure 4: (a) Polytrichum juniperinum, (b) Hylocomium splendens, and (c) Aulacomnium 

palustre inside the small bryophyte chamber used for laboratory experiments. 
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and 26 of H. splendens were prepared as previously described. Each sample was then 

allowed to dry naturally for between 0 and 60 minutes to produce samples with a 

range of different water contents. Samples were weighed immediately before net 

photosynthesis was measured at 675 µmol m-2 s-1 PAR, 400 µmol mol-1 CO2, and at 

an ambient temperature of 22˚C. Samples were then dried at 80˚C for 24h and 

weighed again to calculate the water content of each sample at the time of gas 

exchange determination. 

 

Experiment 3: The effect of freeze-thaw conditions on the photosynthetic 

activity of Polytrichum juniperinum and Hylocomium splendens 

 

The third experiment was designed to investigate the effect of hydration status 

during freeze-thaw cycles on the long-term gas exchange capability of mosses, 

addressing hypothesis 2. Complete turfs of P. juniperinum and H. splendens were 

moved to a climate-controlled chamber at 1 ˚C for two weeks, during which time 

they were kept fully hydrated. The chamber temperature was then gradually 

increased to 10 ˚C at a rate of 2 ˚C per hour, after which it was maintained on a 

10 °C/5 ˚C day/night cycle for a total of seven days.  

 

During the warming period each turf was split into two pieces which became the 

hydrated and dehydrated conditions for that species. The hydrated condition turfs 

were sprayed with water regularly to retain a moist environment, whilst the 

dehydrated turfs were allowed to become air-dry through natural evaporation and 

air movement within the climate-controlled chamber during this period. 

 

After seven days the chamber temperature was lowered to -10 ˚C, again at a rate of 

2 ˚C per hour. It was then maintained on a -5 °C/-10 ˚C day/night cycle for a further 

seven days. After this time the temperature was once again raised to 10˚C at a rate 

of 2˚C per hour. Once thawed, both the hydrated and dehydrated turfs were returned 

to full hydration. The chamber was then kept at a constant 10 ˚C for the duration of 

the 12-day post-freezing period. 

 

Net photosynthesis was measured in four replicate sub-samples of material 

collected from each turf at four points during the experiment. Measurements were 
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taken: (1) before freezing, and (2) 24h, (3) 5 days and (4) 12 days after thawing. 

Photosynthesis was measured at full hydration, 10˚C, 400 µmol mol-1 CO2, and 

415 µmol m-2 s-1 PAR. 

 

Experiment 4: Seasonal variation in the chlorophyll content of Polytrichum 

juniperinum, Hylocomium splendens, and Aulacomnium palustre 

 

This experiment was designed to measure seasonal variation in the chlorophyll 

content of the study species in situ. Chlorophyll content is highly correlated with 

photosynthetic capacity, and low leaf chlorophyll concentration can indicate cellular 

damage due to freezing and other naturally occurring stresses. This experiment 

therefore addresses both hypotheses 1 and 2.  

 

Samples of P. juniperinum, H. splendens and A. palustre were collected in November 

2013, March 2014 and July 2014. Chlorophyll content was measured in six replicate 

sub-samples of each species at each time point. Shoots of all three species were 

trimmed so that only <1 year old green tissue was used in this experiment. The 

samples were rinsed with distilled water and blotted dry before being weighed. 

Because the chlorophyll extraction process destroys the samples it was not possible 

to obtain an accurate dry weight measurement. The results are therefore presented 

on a fresh weight basis. For each sample the chlorophyll was extracted according to 

the following method: 

 

0.2 g of hydrated moss was ground in a 4 ml of ice-cold 96 % ethanol, using a pinch 

of acid-washed silver sand as an aid to disintegration. The solution was added to an 

ice-cold centrifuge tube, and the pestle and mortar rinsed with an additional 4 ml of 

ice-cold ethanol which was also added. The extract was then centrifuged at 3000 g 

for 5 minutes. The supernatant was decanted into a 10 cm3 volumetric flask and 

made up to volume with additional ice-cold 96 % ethanol. The samples were kept in 

darkness to prevent degradation.  

 

To determine the chlorophyll content the optical density of the sample was 

measured using a spectrophotometer (UV-150-02, Shimadzu, UK) at 649, 665, and 

470 nm wavelengths of light. The total concentration of chlorophyll a, chlorophyll b, 
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and carotenoids in each sample (µg cm-3 extract) was then determined using the 

following calculations (Arnon, 1949):  

 

Chlorophyll a = 13.95 x A665 – 6.88 x A649 

Chlorophyll b = 24.96 x A649 – 7.32 x A665 

Carotenoids = (1000 x A470 – 2.05 x Ca – 114.8 x Cb)  / 245 

 

The results were then converted to µg g-1 fresh weight. 

 

 

Figure 5: LI-COR photosynthesis system set up with bryophyte chamber inside the climate 
controlled chamber. 

 

Experiment 5: Spring temperature variation of the moss carpet 

 

To provide contextual temperature data for these experiments a temperature data 

logger (Tiny Tag plus 2, Gemini data loggers Ltd, Chichester, UK) was placed at the 

UK field site. The logger was placed directly on the moss carpet beneath a patch of 

heather, thereby recording unshielded moss surface temperature. The maximum 

and minimum temperature of the moss surface was recorded daily throughout late 

winter and spring between the 21st of January and the 8th of July 2014. 
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Part 2: Canada 

 

Collection of samples 

 

Field measurements of whole plant community-level gas exchange were conducted 

at the field site in Canada in June 2014. The site was surveyed and patches of ground 

containing a majority (>90 %) of one of the three focal study species (H. splendens, 

A. turgidum and T. nitens) were selected for sampling. For each species three circular 

turfs with a diameter of 15 cm and a height of 6 cm were removed and placed inside 

an opaque plastic collar of the same size. During the early season the permafrost 

layer is close to the surface in this area of the arctic. There was therefore a clear 

distinction between the living moss layer and the frozen soil beneath allowing the 

turfs to be removed with ease. Turfs were kept largely intact with only obvious 

vascular plant growth carefully removed. Excess water was removed by gentle 

blotting to prevent condensation inside the chamber.  

 

 

Figure 6: Moss species collected from the Canada field site. (a) Hylocomium splendens, (b) 
Aulacomnium turgidum, (c) Tomentypnum nitens. 

 

Measurement of gas exchange in the field 

 

Gas exchange was measured using the same LI-6400 photosynthesis system used in 

the laboratory experiments. The small bryophyte chamber was removed and a clear 

(a) 

(b) (c) 
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open-bottomed acrylic chamber measuring 30 x 30 x 20 cm was attached to the 

IRGA (Figure 7). Each collar containing a moss sample was placed separately on an 

acrylic sheet, with the clear chamber placed over the top to create an airtight seal. 

No artificial light source was used in the field experiments; instead a light sensor 

inside the chamber (LiCOR LI-190 Quantum Sensor, LiCOR Ltd, Lincoln Nebraska, 

USA) recorded the ambient light level. Experiments were conducted at ambient CO2 

concentration and air temperature. A small fan inside the chamber ensured 

sufficient breakdown of the vegetation boundary layer resistance to allow accurate 

readings of CO2 flux. 

 

The change in CO2 concentration inside the chamber was measured over a 40 s 

period, beginning as soon as the chamber was closed with the sample inside. These 

data were then used to calculate the average CO2 flux during the 40 s period using 

the following calculation from Street et al., (2007). 

 

Fc = (ρ x V x dC/dt) / A 

                      

Where Fc is net CO2 flux (µmol m-2 s-1), ρ is air density (mol m-3), V is the chamber 

CO2 volume (m3), dC/dt is the slope of chamber CO2 concentration against time 

(µmol mol-1 s-1) and A is the chamber surface area (m2).  

 

 These results were calculated on a unit surface-area basis and are therefore not 

directly comparable to the results produced by the earlier laboratory experiments. 

Light response curves were produced by covering the chamber in layers of optically 

neutral cloth which reduced light penetration inside the chamber. Two or three 

measurements were taken with each sample at each shade level. As the ambient 

light level varied naturally throughout the experimental period, these readings were 

not exact replicates, but provided a wider spread of data points on the final curves. 
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Experimental design 

 

Experiment 6: Field measurements of whole-plant community-level gas 

exchange in Hylocomium splendens, Aulacomnium turgidum and 

Tomentypnum nitens 

 

A light response curve was produced using the data collected from each of the three 

replicate turfs of each species under similar weather conditions (12-13 °C 

sun/cloud). This process was then repeated using the same sample turfs after they 

had been left to dry naturally for 24 h under the same weather conditions. The 

temperature of the moss turf was recorded at a depth of 1 cm during each 

measurement period for later comparison. An additional set of measurements was 

taken for H. splendens under colder conditions (6 °C) but unfortunately, due to 

equipment problems, this was not repeated with the other species. Immediately 

after each set of gas exchange measurements was taken, a small sub-sample of moss 

was removed from the turf and its water content determined gravimetrically. 

 

 

Figure 7: Hylocomium splendens inside the large chamber used for field experiments. 
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Data analysis 

 

Light response curves from both the laboratory and field experiments were fitted 

using proprietary software (PHOTOSYN Assistant, Dundee Scientific, Dundee, UK). 

The program was used to calculate values of the maximum net photosynthetic rate 

(Amax), light compensation point, light saturation point, and quantum efficiency (QE) 

from each curve. The data from the laboratory experiments were tested for 

normality, and then a series of one-way ANOVA tests were used to compare these 

values from data recorded at different temperatures for each species. The data from 

the field experiments were compared using a series of paired t-tests. 

 

The relationship between sample water content and net photosynthetic rate was 

determined by plotting all the data points for each species on a scatter graph and 

conducting a linear regression analysis.  

 

Freeze-thaw data were analysed by calculating the mean net photosynthetic rate for 

both hydrated and dehydrated conditions at each time point during the experiment. 

The data were then tested for normality and the values compared using a two way 

ANOVA for each species. 

 

The mean chlorophyll content, chlorophyll a:b ratio, and carotenoid content of each 

moss species in November, March and July was also compared using a series of one-

way ANOVA tests after testing for normality. All statistical computations were done 

using statistical software (SPSS Statistics for Windows, Version 20.0).   
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Chapter Three: Results 

 

Preliminary experiments – development of methodology 

 

When samples of P. juniperinum and H. splendens were placed inside the bryophyte 

chamber, the rate of gas exchange reached a maximum after ca. 4 minutes, after 

which it declined due to water loss from the sample (Figure 8). In contrast, the rate 

of gas exchange of A. palustre was very stable, reaching its maximum after ca. 15 

minutes and remaining constant for a further 100 minutes before beginning to fall 

(Figure 9). These results were used to determine the best way to measure the gas 

exchange rate for each species, and to develop the two different protocols used in 

the study. Due to the differences in the experimental protocol used with A. palustre 

compared to the other species, it is not possible to directly compare these results to 

those from P. juniperinum and H. splendens. In the interest of clarity they have 

therefore been presented separately.  
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Figure 8: The rate of gas exchange of Polytrichum juniperinum (a), and Hylocomium 
splendens (b) inside the bryophyte chamber. 
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Figure 9: The rate of gas exchange of Aulacomnium palustre under stable light intensity (a) 
and changing light intensity (b) inside the bryophyte chamber. 
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Experiment 1a: The effect of changing temperature on the photosynthetic 

activity of Polytrichum juniperinum and Hylocomium splendens. 

 

The aim of this experiment was to determine the optimum temperature for moss 

growth by measuring the gas exchange capability of the samples at a range of 

temperatures, and producing light response curves to compare key photosynthetic 

traits. 

 

Maximum net photosynthesis 

 

The maximum net photosynthetic rate (Amax) of both P. juniperinum and H. splendens 

increased significantly with temperature (Figure 10, Table 1). In P. juniperinum Amax 

more than doubled (an increase of 115%) between 1 °C and 22 °C (p<0.001). 

However there was no significant increase between 1 °C and 5 °C, or between 10 °C 

and 22 °C (Figure 10). Amax also more than doubled (an increase of 137%) between 

1 °C and 22 °C in H. splendens (p<0.001). In H. splendens there was a significant 

increase in Amax with each increase in temperature step measured in the study 

(Figure 10). The percentage increase in Amax with each 1 °C increase in temperature 

was higher at lower temperatures. Between 1 °C and 5 °C there was a ca. 10% 

increase in Amax with every 1 °C rise in temperature. Between 5 °C and 10 °C this 

increase was ca. 7.5%, and between 10 °C and 22 °C the increase was only ca. 1.2% 

with each 1 °C increase in temperature.  

 

Dark respiration 

 

The dark respiration rate of both P. juniperinum and H. splendens increased 

significantly with temperature (Figure 10, Table 1). In P. juniperinum the dark 

respiration rate rose by a factor of 5 between 1 °C and 22 °C, giving an average Q10 

value of 2.51. The dark respiration rate measured at 1 °C in H. splendens was very 

low (0.09 µmol CO2 g-1 s-1  compared to 0.92 µmol CO2 g-1 s-1  in P. juniperinum), 

resulting in a ~50 fold increase in respiration rate between 1 °C and 22 °C, and giving 

an average Q10 value of 26.5. If the measurement at 1 °C is discounted as an anomaly, 

the average Q10 value between 5 °C and 22 °C is 1.82.  
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Quantum efficiency 

 

The quantum efficiency of P. juniperinum showed no significant change in response 

to temperature (Fig 11; Table 1). The average quantum efficiency of P. juniperinum 

was estimated to be 0.26%. In H. splendens there was a significant increase in 

quantum efficiency with temperature (Fig 11, p<0.001), rising from 0.14% at 1°C to 

0.46% at 22°C. 

 

Light compensation point 

 

The light compensation point of both P. juniperinum and H. splendens increased 

significantly with temperature (Figure 11; Table 1). In P. juniperinum the light 

compensation point increased from 3.5 to 17 µmol m-2 s-1 between 1 °C and 22°C 

(p<0.001). In H. splendens it increased from 1.3 to 10 µmol m-2 s-1 between 1 °C and 

22°C (p<0.001).  

 

Light saturation point 

 

In P. juniperinum there was a significant increase in the light saturation point with 

temperature (Figure 11, Table 1). Between 1 °C and 22 °C the light saturation point 

increased from 90.6 to 170 µmol m-2 s-1. This increase followed the same pattern 

seen in the response of the net photosynthetic rate, with no significant increase 

between 1 °C and 5 °C or between 10 °C and 22 °C (Figure 11). The light saturation 

point of H. splendens showed no significant change in response to temperature, and 

maintained an average value of 120 µmol m-2 s-1. 
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Table 1: One-way ANOVA analysis of the results of experiment 1: The effect of changing 
temperature on bryophyte photosynthetic activity. Significance indicators represent: not 
significant (p>0.05) * (p<0.05) ** (p<0.01) *** (p<0.001). 
 

Species Value 

ANOVA  

df 
F p Sig. 

Within Between  

P. juniperinum Amax 17 3 53.6 <0.001 *** 

  QE 17 3 0.8 0.51 ns 

  
Light comp. 

point 
17 3 20.7 <0.001 *** 

  Light sat. point 17 3 15.1 <0.001 *** 

  Respiration 17 3 18.5 <0.001 *** 

H. splendens Amax 16 3 67 <0.001 *** 

  QE 16 3 19.1 <0.001 *** 

  
Light comp. 

point 
16 3 9.2 0.001 *** 

  Light sat. point 16 3 1.7 0.21 ns 

  Respiration 16 3 13.1 <0.001 *** 

A. palustre Amax 13 3 18.7 <0.001 *** 

  QE 13 3 1.08 0.39 ns 

  Light comp 13 3 72.2 <0.001 *** 

  Light sat 13 3 9.69 0.001 *** 

  Respiration 13 3 42.8 <0.001 *** 
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Figure 10: Mean values of maximum net photosynthesis and dark respiration calculated 
from the analysis of light response curves of (a) Polytrichum juniperinum and (b) 
Hylocomium splendens at a range of ambient temperatures. Error bars represent +/- 1SEM. 
Different letters denote statistically significant differences at p<0.05. 
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Figure 11: Mean values of Light Compensation point (a,b), Light Saturation point (c,d) and 
Quantum Efficiency (e,f) calculated from the analysis of light response curves of Polytrichum 
juniperinum and Hylocomium splendens at a range of ambient temperatures. Error bars 
represent +/- 1SEM. Different letters denote statistically significant differences at p<0.05. 

Polytrichum juniperinum Hylocomium splendens 
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Experiment 1b: The effect of changing temperature on the photosynthetic 

activity of Aulacomnium palustre. 

 

Maximum net photosynthesis 

 

The maximum net photosynthetic rate of A. palustre increased significantly with 

temperature (Figure 12, Table 1). Between 2 °C and 22 °C there was a 30% increase 

in Amax (p<0.001). As in P. juniperinum, there was no significant change in the 

photosynthetic rate of A. palustre between 10 °C and 22 °C. 

 

Dark respiration 

 

The dark respiration rate of A. palustre increased significantly with temperature 

(Figure 12, Table 1). Between 2 °C and 22 °C the respiration rate approximately 

tripled (an increase of 216%), giving an average Q10 value of 1.6. 

 

Quantum efficiency 

 

There was no significant change in quantum efficiency with temperature in 

A. palustre (Figure 13, Table 1). The average quantum efficiency of this species was 

estimated to be 0.08%. 

 

Light compensation point 

 

The light compensation point of A. palustre increased significantly with temperature 

(Figure 13; Table 1), increasing from 10.7 to 41.3 µmol m-2 s-1 between 2 °C and 22°C 

(p<0.001).  

 

Light saturation point 

 

The light saturation point of A. palustre also increased significantly with 

temperature (Figure 13, Table 1), increasing from 120 to 198 µmol m-2 s-1 between 

2 °C and 22°C (p=0.001) 
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Figure 12: Mean values of maximum net photosynthesis and dark respiration calculated 
from the analysis of light response curves of Aulacomnium palustre at a range of ambient 
temperatures. Error bars represent +/- 1SEM. Different letters denote statistically 
significant differences at p<0.05. 
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Figure 13: Mean values of (a) Light Compensation Point, (b) Light Saturation Point and (c) 
Quantum Efficiency, calculated from the analysis of light response curves of Aulacomnium 
palustre at a range of ambient temperatures. Error bars represent +/- 1SEM. Different 
letters denote statistically significant differences at p<0.05. 
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Experiment 2: The effect of changing water content on the photosynthetic 

activity of Polytrichum juniperinum and Hylocomium splendens 

 

The net photosynthetic rate was strongly negatively correlated with moss water 

content in both P. juniperinum (Figure 14, Pearson correlation = 0.97, n=24, 

p<0.001) and H. splendens (Pearson correlation = 0.96, n=26, p<0.001). Linear 

regression analysis predicts that the moisture compensation point is approximately 

71% in P. juniperinum and 46% in H. splendens. The maximum rate of net 

photosynthesis at 22°C was reached at approximately 180% water content in 

P. juniperinum and 230% in H. splendens. The slopes of the linear regression lines 

suggest that P. juniperinum is more sensitive to water loss than H. splendens. The net 

photosynthetic rate of P. juniperinum fell by 3.3 µmol CO2 g-1 s-1 with each 10% drop 

in water content. In contrast the net fall in photosynthetic rate of H. splendens was 

approximately half this value, a fall of 1.8 µmol CO2 g-1 s-1 with each 10% drop in 

water content. 
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Figure 14: The net photosynthetic rate of samples of Polytrichum juniperinum and 
Hylocomium splendens in relation to their relative water content. Lines of best fit represent 
linear regression analyses of each data set. P. juniperinum R2 = 0.94, H. splendens R2 = 0.93.  
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Experiment 3: The effect of freeze-thaw conditions on the photosynthetic 

activity of Polytrichum juniperinum and Hylocomium splendens 

 

The aim of this experiment was to measure the effect of a freezing event on 

bryophyte growth by comparing net photosynthesis before and after the event. The 

experiment also investigated whether the response differed according to the water 

content of the moss at the time of freezing.   

 

Polytrichum juniperinum 

 

Freezing was associated with a significant drop in the net photosynthetic rate of 

P. juniperinum (Fig 15; Table 2). 24 h after thawing, net photosynthesis of both 

hydrated and dehydrated samples was an average of 18% lower compared to pre-

freezing measurements. The hydration status of the moss at the time of freezing also 

had a significant effect on the photosynthetic rate (P<0.001). In the dehydrated 

samples, net photosynthesis gradually increased after the 24 h measurement and 

after 12 days had recovered to pre-freezing levels. In the hydrated samples, net 

photosynthesis continued to fall after thawing. After five days net photosynthesis 

was an average of 31% lower in hydrated samples compared to dehydrated samples, 

and 38% lower than pre-freezing values. After 12 days net photosynthesis had 

begun to recover in the hydrated samples, but was still 18% lower than pre-freezing 

levels. 

 

Hylocomium splendens 

 

Freezing was also associated with a small, but significant, drop in the net 

photosynthetic rate of H. splendens (Figure 15, Table 2). Whilst there was no 

significant change after 24 h, by 5 days after thawing, net photosynthesis was an 

average of 13% lower than pre-freezing measurements, under both hydrated and 

dehydrated conditions. In H. splendens, there was no significant effect of hydration 

status at the time of freezing on the post-thaw photosynthetic rate (p=0.75) and 12 

days after thawing both samples had recovered to pre-freezing rates of net 

photosynthesis.  
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Table 2: Two-way ANOVA analysis of the results of experiment 3: The effect of freeze-thaw 
conditions on bryophyte photosynthetic activity. Significance indicators represent: not 
significant (p>0.05) * (p<0.05) ** (p<0.01) *** (p<0.001). 
 

Species Factor 

2-way ANOVA  

df F p Sig. 

P. juniperinum Time 3 27.4 <0.001 *** 

  Hydration status 1 31.4 <0.001 *** 

  Time * Hydration 3 12.3 <0.001 *** 

H. splendens Time  3 4.39 0.013 * 

  Hydration status 1 0.102 0.753 ns 

  Time * Hydration 3 1.84 0.168 ns 
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Figure 15: Rates of net photosynthesis before and after freezing stress in Polytrichum 
juniperinum (a), and Hylocomium splendens (b). Error bars represent +/- 1SEM. Letters 
denote statistically significant differences at the p<0.05 level. 
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Experiment 4: Seasonal variation in chlorophyll content in Polytrichum 

juniperinum, Hylocomium splendens and Aulacomnium palustre 

 

The aim of this experiment was to determine the extent to which seasonal 

environmental stress affects the chlorophyll content of mosses in situ.  

 

Total chlorophyll content 

 

The total chlorophyll content of all three moss species varied significantly over the 

course of one year (Figure 16, Table 3). In both H. splendens and A. palustre there 

was a significant drop in plant chlorophyll content over the winter months, with 

values measured in March significantly lower than those measured in November 

(p<0.001). In H. splendens, total chlorophyll content fell by 46% over this period and 

in A. palustre it fell by 49%. There was no significant change in the chlorophyll 

content of P. juniperinum over the winter months. The chlorophyll content of 

A. palustre then increased by 28% during the spring between March and July. No 

significant change was seen over this period in H. splendens. In P. juniperinum there 

was a significant drop of 31% in total chlorophyll content between March and July 

(p<0.001).  

 

Chlorophyll a:b ratio 

 

The mean ratio of chlorophyll a:b measured in P. juniperinum was 2.18. This value 

did not show any significant seasonal variation (Figure 16). Seasonal variation in the 

chlorophyll a:b ratio was seen in H. splendens and A. palustre (Figure 16, Table 3). In 

H. splendens the ratio fell from 2.23 in November, a value comparable to that of 

P. juniperinum, to only 1.69 in March. This change reflects a much larger drop in the 

content of chlorophyll a in the plant over this period compared to chlorophyll b. As 

with the total chlorophyll content, this ratio did not change between March and July. 

The ratio of chlorophyll a:b in A. palustre did not change between November and 

March. Between March and July the ratio fell from 2.34 to 1.87, a period during 

which the total chlorophyll content increased. This change therefore reflects a 

greater increase in the chlorophyll b concentration over this period compared to 

chlorophyll a. 
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Carotenoid content 

 

Seasonal change in the carotenoid content of these species mirrored the change in 

total chlorophyll concentration over the same period (Figure 16), showing 

significant seasonal variation in all three species (Table 3). The carotenoid 

concentration in H. splendens and A. palustre fell between November and March, by 

49% and 38% respectively but showed no change between March and July. In 

P. juniperinum there was no change in carotenoid content between November and 

March, but there was a significant drop of 35% between March and July (p<0.001).  

 

 

Table 3: One-way ANOVA analysis of the results of experiment 4: Seasonal variation in 
bryophyte chlorophyll content. Significance indicators represent: not significant (p>0.05) 
* (p<0.05) ** (p<0.01) *** (p<0.001). 
 

Species Value 

ANOVA  

df 
F p Sig. 

Within  Between  

P. juniperinum Total Chl 15 2 10.6 0.001 *** 

  Chl a:b ratio 15 2 0.9 0.43 ns 

  Carotenoids 15 2 35.3 <0.001 *** 

H. splendens Total Chl 15 2 87.9 <0.001 *** 

  Chl a:b ratio 15 2 6.87 0.008 ** 

  Carotenoids 15 2 45.7 <0.001 *** 

A. palustre Total Chl 15 2 99.6 <0.001 *** 

  Chl a:b ratio 15 2 12.4 0.001 *** 

  Carotenoids 15 2 15.1 <0.001 *** 
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Figure 16: Mean values of total chlorophyll content (a,b,c), chlorophyll a:b ratio (d,e,f) and 
total carotenoid content (g,h,i), calculated from the analysis of light response curves of 
Polytrichum juniperinum, Hylocomium splendens, and Aulacomnium palustre at a range of 
ambient temperatures. Error bars represent +/- 1SEM. Different letters denote statistically 
significant differences at p<0.05.  

 

 

 

 

 

 

 

 

 

 

 

(b)

a

b b

(c)

a

c
b

C
h

lo
ro

p
h

y
ll
 a

:b
 r

a
ti
o

0.0

0.5

1.0

1.5

2.0

2.5

3.0

a a a(d) a

bb

(e)
aa

b

(f)

November March July

a

bb

(h)

November March July

a

b b

(i)

T
o

ta
l 
c
h
lo

ro
p

h
y
ll
 c

o
n

c
e

n
tr

a
ti
o

n

(µ
g

 g
-1

)

0

200

400

600

800

1000

1200

1400

(a) a a

b

November March July

T
o

ta
l 
c
a
ro

te
n

o
id

 c
o
n

c
e

n
tr

a
ti
o

n

(µ
g

 g
-1

)

0

50

100

150

200
a a

b

(g)

Polytrichum juniperinum Hylocomium splendens Aulacomnium palustre 



44 
 

Experiment 5: Spring temperature variation of the moss carpet 

 

The average temperature of the moss carpet increased over the course of the 

monitoring period (Figure 17). The lowest temperature recorded during this time 

was -9.86 °C on the 24th of March and the highest temperature was 33.3 °C on the 

18th of June. There were five days during the monitoring period when the 

temperature of the moss carpet did not exceed 0 °C, it is likely that significant snow 

cover was present during this time. The difference between the daily maximum and 

minimum temperature increased as the spring progressed. The largest daily min-

max temperature difference was 30.5 °C, recorded on the 18th of April. The 

minimum temperature recorded on this day was -4.2 °C and the maximum was 

26.3 °C. During the monitoring period there were 10 days when the min-max 

temperature difference exceeded 20 °C. 
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Figure 17: Daily temperature records measured at the moss surface at the UK field site 
between January and July 2014, (a) Moss surface temperature and (b) Daily temperature 
amplitude. 
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Experiment 6: Field measurements of whole-plant community-level gas 

exchange in Hylocomium splendens, Aulacomnium turgidum and 

Tomentypnum nitens 

 

The aim of this experiment was to accurately measure gas exchange from mosses 

growing in situ. These results provide quantitative data on the carbon exchange 

capacity of these species under natural conditions, as well as valuable comparison 

to the data obtained in the laboratory.  

 

Although the weather conditions over the two days when the 'warm' condition data 

were collected were very similar (12-13°C sun/cloud), the lack of temperature 

control inside the chamber meant that there were differences in both the chamber 

air temperature and the moss surface temperature between the different species 

studied (Table 4). There was also a high degree of variation in the relative amount of 

water that was lost from the different species between the ‘wet’ and ‘dry’ 

measurements, from an average of 28% loss in A. turgidum to a 64% loss in 

H. splendens and a 71% loss in T. nitens, due to the different physical structure and 

water-retention capabilities of these species. These factors, combined with the use 

of only three repeat samples in each condition (due to time restrictions) may explain 

the high variation and consequently few significant differences between conditions 

found in the analysis (Figure 18).  

 

There was a significantly higher maximum rate of net photosynthesis in the warm-

dry samples compared to the cool-wet samples of H. splendens (p=0.007). The light 

saturation point was also significantly higher in the warm-wet condition compared 

to the cool-wet condition in H. splendens (p=0.018). In T. nitens there was a lower 

rate of dark respiration in the warm-dry samples compared to the warm-wet 

samples (p=0.041), but no differences in the other factors between these conditions. 

There was also no significant difference between the warm-wet and warm-dry 

samples of A. turgidum in any of the parameters measured.  
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Table 4: Recorded state of the moss turves during field measurements. 

 

Species Condition 

Average relative 

water content (%) 

Moss surface 

temperature (°C) 

Chamber air 

temperature (°C) 

H. splendens Warm-wet 375.51  14 15.0 

  Warm-dry 134.79  12 17.5 

  Cool-wet 480.28  6 8.5 

A. turgidum Warm-wet 282.75  17 14.5 

  Warm-dry 202.89  15 15.5 

T. nitens Warm-wet 312.10  17 14.5 

  Warm-dry 90.12  14 16.5 
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Figure 18: Mean values of maximum net photosynthesis and dark respiration calculated 
from analysis of light response curves of Hylocomium splendens, Aulacomnium turgidum, 
and Tomentypnum nitens under a range of environmental conditions. Error bars represent 
+/- 1SEM. Different letters denote statistically significant differences at the p<0.05 level. 
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Figure 19: Mean values of the light compensation point, light saturation point, and 
quantum efficiency calculated from analysis of light response curves of Hylocomium 
splendens, Aulacomnium turgidum, and Tomentypnum nitens under a range of 
environmental conditions. Error bars represent +/- 1SEM. Different letters denote 
statistically significant differences at the p<0.05 level. 
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Chapter 4: Discussion 

 

The aim of this study was to investigate the responses of a range of dominant boreal 

bryophyte species to changes in ambient temperature and water availability. This 

work is important if we are to understand the potential impacts of future climate 

scenarios on the bryophyte-dominated communities which are likely to be some of 

those most severely affected by climate change.  

 

The effect of changing temperature on the photosynthetic activity of 

Polytrichum juniperinum, Hylocomium splendens, and Aulacomnium palustre. 

 

This study has shown that it is possible to accurately measure significant positive 

rates of net photosynthesis in mosses at 1 °C using the LI-6400 bryophyte chamber. 

The relatively high rates of gas exchange measured at these low temperatures (up 

to 72% of the maximum rate in Aulacomnium palustre) support the existing 

evidence that many temperate and sub-arctic bryophyte species are adapted to 

allow significant growth at low temperatures (Zotz and Rottenberger, 2001; Bates 

et al., 2005). The next step in this area of study is to measure gas exchange at 

temperatures <0 °C, and consequently to find the minimum temperature at which 

significant photosynthesis is possible in these species. Several studies have shown 

that some bryophyte species are capable of measurable rates of photosynthesis 

down to -5 °C (Ino, 1990; Zotz and Rottenberger, 2001), however below this 

temperature metabolic activity appears to cease. A significant challenge in achieving 

this goal is likely to be the problem of increasingly high relative humidity inside the 

bryophyte chamber causing errors in CO2 flux measurement. This was a noticeable 

problem when taking measurements at 1 °C, where the LI-COR built-in humidity 

scrub system was already used to its maximum capacity. It is likely that significant 

changes to the experimental protocol would be necessary in order to accurately 

measure at sub-zero temperatures.  

 

The results of this study support previous findings that many bryophytes have a low 

optimum temperature for photosynthesis of ca. 10 °C (Uchida et al., 2002; Ino, 

1990). This is significantly lower than vascular plants, which typically have an 

optimum temperature of 15 °C or higher, even in arctic environments. The exception 
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to this was H. splendens, which was the only species in this study to show a 

significant increase in Amax between 10 °C and 22 °C. Research suggests that the 

optimum photosynthetic temperature of some moss species changes seasonally. For 

example the optimum temperature for net photosynthesis of a sample of 

H. splendens from Alaska increased from 10 °C in early June to 25 °C in August due 

to higher rates of respiration early in the season (Skre and Oechel, 1981). It is 

therefore possible that different results would have been obtained in this study 

using moss samples collected in the spring or summer. Future studies should also 

include replicate samples taken from multiple moss turfs to ensure that the full 

range of physiological variation from within each population is measured. 

 

The moss specimens used in the laboratory experiments were stored at 5 °C for the 

duration of the study. It has been documented that bryophytes, like vascular plants, 

are able to acclimate to the ambient temperature, and that this process alters their 

physiological responses to further temperature change (Sveinbjornsson and Oechel, 

1983). It is therefore possible that the rates of photosynthesis measured in this 

study would also have been different if the plants had been exposed to the 

experimental temperature conditions for several days before measurements were 

taken. Further study could use this method to investigate how significant the effect 

of acclimation is on photosynthesis in these species. 

 

The laboratory studies were limited by the small size of the bryophyte chamber 

which prevented the study of whole P. juniperinum and H. splendens plants. Using 

only < 1 year old tissue is common practice in the study of bryophyte photosynthesis 

as it reduces the error associated with using plants of varying age and quality, as 

well as increasing the accuracy of measurements where overall carbon flux for the 

whole plant is very small (Dilks and Proctor, 1979). The disadvantage of this 

practice is the difficulty it produces in scaling the results up to a community or 

ecosystem level. Photosynthetic pigments including chlorophyll are known to 

degrade during senescence of moss shoots (Tobias and Niinemets, 2010), and 

consequently rates of photosynthesis are significantly higher in < 1 year old shoots 

compared to the plant as a whole (Zotz and Rottenberger, 2001). In this study the 

maximum photosynthetic rates recorded for P. juniperinum and H. splendens were 

3-4 x higher than the maximum rate recorded for A. palustre. It is not known 



52 
 

however how much of this difference was due to species differences, and how much 

due to the methodology used.   

 

The effect of changing water content on the photosynthetic activity of 

Polytrichum juniperinum and Hylocomium splendens 

 

The results of this study support previous findings that water content is a factor of 

equal or greater importance to temperature in bryophyte metabolism. A linear 

relationship between water content and net photosynthesis below the optimal 

water content is consistent with previous research in this area (Kennedy, 1993). In 

this study there was a strong positive linear correlation between the water content 

and net photosynthesis up to the maximum measured, with no evidence of a plateau 

or decline beyond the optimal water content as expected. The maximum rate of net 

photosynthesis of H. splendens was recorded at a water content of 230%, lower than 

the optimal water content of 425% reported by Skre and Oechel, (1981). This 

suggests that these samples may not have been fully hydrated as previously 

assumed. The value of 180% recorded for P. juniperinum in this study compares to 

an optimal water content of 100% measured in Polytrichum commune (Skre and 

Oechel, 1981), and 350% in P. alpestre (Kennedy, 1993). These results are consistent 

with the observation that P. juniperinum is adapted to maximise photosynthetic 

capability in a drier habitat than H. splendens. 

 

In comparison, H. splendens was found to have a lower moisture compensation point 

than P. juniperinum. These results are consistent with the findings of Skre and 

Oechel, (1981) who recorded a moisture compensation point of 20% for H. 

splendens and 25% for P. commune. These values are however both lower than the 

46% and 71% respectively, predicted by the results of this study. These results show 

that the response of these plants to moisture can vary significantly between closely-

related species and according to the specific characteristics (age, location, growth 

form, etc.) of the sample tested. For example, Skre and Oechel (1981) used 2 year 

old shoots measured at 15 °C, compared to 1 year old shoots measured at 22 °C in 

this study. These factors may account for some of the difference in the results. To 

date little research has investigated the effect of water content on photosynthesis at 

very low temperatures (<5 °C), this would be a promising area for future research. 
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The effect of freeze-thaw conditions on the photosynthetic activity of 

Polytrichum juniperinum and Hylocomium splendens. 

 

Sudden freezing events, especially following periods of spring warming, have been 

shown by several studies to reduce bryophyte growth in the field over the long term 

(Bjerke et al., 2011; Bokhorst et al., 2011). The results of this study suggest that 

H. splendens is better adapted to cope with freezing stress in the short-to-medium 

term than P. juniperinum. This is perhaps a surprising finding, considering the 

previous results of this study which suggest that the photosynthetic system of 

P. juniperinum is better adapted to low temperatures than that of H. splendens. 

Previous studies have also shown that H. splendens can be severely damaged by 

freeze-thaw events in the field (Bjerke et al., 2011). The cause of this discrepancy is 

likely to be the different conditions present in the two experiments, for example 

Bjerke et al recorded temperatures of -18 °C in the field compared to a minimum of 

-10 °C in this study. Further research is needed to determine the conditions under 

which H. splendens is able to tolerate freeze-thaw events, and the conditions under 

which it is damaged beyond recovery. 

 

While H. splendens suffered minimal damage from the experimental freezing event, 

P. juniperinum suffered significantly greater damage. The data from the unshielded 

surface temperature logger deployed at the field site over the late winter/spring 

period show that while prolonged periods of sub-zero temperatures were rare at 

this site, daily cycles of freezing and thawing, with as much as a 30 °C difference 

between the maximum and minimum temperature over a 24 h period, were 

common. Although the 2013-14 winter was an unusually warm one in the UK, 

climate models predict that mild winters like this will become increasingly common 

in the future (IPCC, 2007). Studies have shown that short cycles of freezing and 

thawing are even more damaging to mosses than a single thaw period (Kennedy, 

1993). These results therefore indicate that P. juniperinum could be seriously 

harmed by an increase in natural freeze-thaw events as a result of climate change. 

 

Several studies have shown that mosses with low water content suffer reduced 

damage as a result of freezing compared to fully hydrated mosses (Schlensog et al., 
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2004; Kennedy, 1993). In this study, a difference between the two conditions was 

present only in P. juniperinum. While there was no clear difference between the 

response of hydrated and dehydrated H. splendens, the overall effect of freezing on 

this species was barely significant in the present study. It is possible that under more 

severe conditions, where damage was greater, a difference would emerge between 

the hydrated and dehydrated conditions. Alternatively, the ability of H. splendens to 

tolerate freezing while hydrated with relatively little loss of photosynthetic capacity 

could be adaptive to the environment from which these samples were collected. H. 

splendens grows in thick, ground-level mats in sheltered locations which retain 

water. It is therefore more likely than P. juniperinum to be hydrated during freezing 

events and may have evolved greater tolerance to these conditions. In contrast, the 

individual shoots of H. splendens dry rapidly in the clear, dry air conditions which 

typically accompany high atmospheric pressure-associated cold weather in the UK. 

Further study would be helpful to determine whether sub-arctic populations of 

P. juniperinum, which must tolerate freezing periods in conjunction with large 

quantities of water from snow-melt, are better adapted to tolerate freezing while 

hydrated. 

 

Seasonal variation in the chlorophyll content of Polytrichum juniperinum, 

Hylocomium splendens, and Aulacomnium palustre 

 

The significant drop in chlorophyll content in H. splendens and A. palustre between 

November and March suggests that these species are suffering damage over the 

winter months, due, at least in part, to freezing stress (Skre and Oechel, 1981; Burke 

et al., 1976). A clear colour difference can be seen between moss collected in 

November and kept in the laboratory at 5 °C over the winter months, and moss 

collected from the field in March (Figure 20). Unfortunately chlorophyll 

measurements were not taken from the lab specimens, so a quantitative comparison 

is not possible here. This evidence suggests senescence in these species is partly 

triggered environmentally rather than occurring as an innate process. Measuring 

the spring chlorophyll content of these species in locations with very mild winters 

would help to determine if this is true in vivo.  
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Figure 20: Hylocomium splendens and Aulacomnium palustre collected from the field in 
November (a, c), and March (b, d). 

 

Unlike H. splendens and A. palustre, there was no reduction in the chlorophyll 

content of P. juniperinum over the winter months. If the reduction in chlorophyll 

content in H. splendens was due to freezing damage, then it is surprising that the 

same response was not seen in P. juniperinum, a species which was shown to be 

more sensitive to freeze-thaw events than H. splendens in this study. These results 

do however agree with the findings of Skre and Oechel (1981), who found that while 

the photosynthetic capacity of H. splendens fell over the winter, the overwintering 

leaves of Polytrichum commune maintained high photosynthetic capacity. Further 

research is needed into the physiological and molecular mechanisms associated 

with cold- and drought-tolerance in these species. 

 

Chlorophyll content is known to be one of the major factors in determining the 

photosynthetic capacity of all plants, including bryophytes (Marschall and Proctor, 

2004). The natural variation in seasonal chlorophyll content in H. splendens and 

A. palustre therefore highlights an important limitation of this study. All laboratory-

based measurements of photosynthesis were conducted on material collected in 

November and early December. This means that the rates measured in these 

experiments cannot be extrapolated to other times of the year, when net 

(a) 

(b) 

(c) 

(d) 

Hylocomium splendens Aulacomnium palustre 
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photosynthesis may be significantly lower than these experiments suggest. Further 

data should be collected at different times of the year to provide a more accurate 

picture of how these factors affect photosynthesis. In several species, the evidence 

suggests that autumn is often the most productive season (Zotz and Rottenberger, 

2001; Skre and Oechel, 1981). In the long term climate change could significantly 

increase the productivity of these species if winter freezing damage is reduced, 

increasing the potential for significant spring growth. 

 

Field measurements of whole-plant community-level gas exchange in 

Hylocomium splendens, Aulacomnium turgidum and Tomentypnum nitens. 

 

At first glance, analysis of the data collected in the field in Canada appears to suggest 

that the moss species studied show little response to changing environmental 

conditions in vivo. However, due to the reliance of the experimental method upon 

natural changes in weather conditions, it was difficult to achieve consistently 

different conditions for study. This, combined with the use of only three replicate 

samples due to time constraints, resulted in a high degree of variation in the results. 

If the study were repeated over a longer time period, under multiple, more strictly 

controlled, temperature and moisture conditions, it is proposed that clearer 

differences would become apparent.   

 

The finding that H. splendens had a higher rate of photosynthesis in warm-dry 

conditions compared to cool-wet conditions suggests that this species may benefit 

from warming even if water supply is not optimal. No significant difference was 

found between samples with 134% and 376% water content at 15-17 °C, suggesting 

that at this temperature the photosynthetic rate was constrained by a factor other 

than water content. If the sample was allowed to dry further, it is predicted that the 

photosynthetic rate would eventually fall. The fall in dark respiration rate between 

T. nitens samples of 312% and 90% water content is consistent with previous data.  

 

Comparison between results from the laboratory and field sections of this study is 

difficult due to the different methods of measurement used. One clear difference 

however is the high rates of dark respiration relative to net photosynthesis 

measured in the field study. This is likely to be primarily due to the use of whole 
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plants, including large quantities of old material with a low photosynthetic rate, in 

the field study (Marschall and Proctor, 2004; Zotz and Rottenberger, 2001). This 

was also seen in the laboratory experiments when comparing the results from 

A. palustre to P. juniperinum and H. splendens. Another factor is likely to be the time 

of year. The field data were collected in the early season (June), whereas the 

laboratory data were collected from samples taken from the field in November. As 

the seasonal chlorophyll analysis shows, some moss species suffer significant 

damage over the winter due to freezing stress. Skre and Oechel (1981), found that 

the net photosynthesis of H. splendens in northern Sweden was close to zero in June, 

due to the high rates of respiration necessary for repair and growth at this time of 

year. Net photosynthesis then increased as the season progressed. It is likely that a 

similar process occurred with the samples of A. turgidum and T. nitens measured in 

this study. This difference is also reflected in the higher light compensation points 

recorded in the field compared to the earlier laboratory experiments. 

 

Although extrapolation of laboratory data to the field environment is complex, the 

advantages of direct environmental manipulation and control can clearly be seen in 

the higher quality of this data compared to that collected in the field. The field data 

was severely limited by both practical difficulties and the weather conditions at the 

time of study, unlike the precisely controlled environment inside the laboratory. One 

way that these two strategies might be combined in future studies would be to use 

a larger carbon flux measurement chamber in combination with complete turfs of 

moss inside a climate controlled chamber. This strategy would combine many of the 

advantages of the two methods, and allow the investigation of factors which may 

have caused laboratory measured results to differ from those collected in the field. 

 

Conclusion 

 

The results of this study support the hypothesis that at temperatures in excess of 

freezing climate warming will result in increased moss photosynthetic activity. It is 

suggested that a longer growing season will have a greater positive impact on the 

carbon exchange capacity of mosses than an increase in summer temperatures, 

which may instead reduce photosynthesis rates due to increased evaporation from 

the moss carpet. The results also support the hypothesis that cycles of freezing and 
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thawing during the winter period negatively impact the photosynthetic capabilities 

of mosses compared to a single period of sub-zero temperatures. These results 

suggest that climate change will have a significant impact on the productivity, and 

consequently the carbon balance, of bryophyte-dominated ecosystems. The overall 

net effect, whether positive or negative, remains difficult to predict, and will depend 

greatly on the individual characteristics of species and communities. To fully 

understand the consequences of climate change in these ecosystems, it is necessary 

to accurately measure long-term gas exchange from a variety of different bryophyte 

species under a range of potential future climate scenarios. 
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