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Abstract 

The endoplasmic reticulum (ER) is responsible for the folding and modifications of 

numerous proteins produced by the cell. To ensure that only correctly folded proteins 

proceed to the surface, a highly conserved process called the unfolded protein 

response (UPR) has been developed. In mammals, signalling in the UPR is induced 

by membrane embedded stress sensors, IRE1, PERK and ATF6. IRE1 is the only ER 

stress sensor conserved across all eukaryotes.   

Yeast Ire1 has a serine/threonine kinase and endoribonuclease domains needed to 

exert its functions. During accumulation of unfolded or misfolded proteins, Ire1 

oligomerises and autophosphorylates leading to the activation of its RNase domain. 

The activated RNase domain then targets mRNA to remove an intron and produce a 

bZIP transcriptional activator (Hac 1 in yeast and XBP-1 in metazoans), which 

activates the downstream pathways of UPR. The aim of this study was to purify and 

characterise the enzymatic activity of tryptophan mutants of yeast Ire1 in order to 

potentially use them in future tryptophan fluorescence studies.  

Three single tryptophan mutants were purified as GST-fusion proteins and 

characterised for kinase and RNase activity. Results presented in this thesis show 

one of the mutants (W855F-W1025F-Ire1) purifies well based on previously optimised 

protocols and two mutants probably purify as a mixture of full length and truncated 

proteins. All of the tryptophan mutants retain kinase activity, but only one of them has 

partial RNase activity (W855F-W981F-Ire1). It is also shown here that removal of the 

GST tag decreases the protein RNase activity, potentially because the protein 

becomes monomeric. 

Further optimisation of the induction and purification conditions is needed to obtain 

full length proteins. Alternatively, it may be necessary to use a different induction 

system for protein purification.  
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1 Introduction 

The healthy existence of any organism is dependent on reliable cell signalling. 

Signals must be received and interpreted correctly for normal cell development, 

immune response, tissue homeostasis, etc. Faulty signalling often leads to a variety 

of diseases including cancer (Clarke et al., 2014), autoimmunity (Todd et al., 2008), 

and diabetes (Özcan et al., 2004). Much information required for this process is 

transmitted by either secreted or membrane - embedded proteins. All these proteins 

in eukaryotic cells enter the secretory pathway to be folded and modified in the 

endoplasmic reticulum (ER). The process of folding can be impaired by a variety of 

physiological or metabolic conditions that threaten cell survival such as extreme 

temperature changes, toxins, and viral infections (Lee, 1992) leading to accumulation 

of misfolded proteins, which activates the unfolded protein response (UPR). Only 

correctly folded proteins are allowed to move along the secretory pathway towards 

the Golgi apparatus. Therefore, the UPR has three main aims: reduce global mRNA 

translation, activate the molecular chaperones that increase the ER folding capacity 

and stimulate ER-associated degradation (ERAD) of misfolded proteins (Cao and 

Kaufman, 2012). However, if the UPR cannot deal with the amount of unfolded or 

misfolded proteins using the three main strategies – programmed cell death or 

apoptosis will be activated (Fribley et al., 2009). 
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1.1 The Unfolded Protein Response 

The ER is a membrane enclosed compartment responsible for protein folding, storage 

and transportation. It is the first step of the secretory pathway. Proteins enter the ER 

as nascent polypeptide chains during translation where they undergo folding and 

post-translational modifications. The key proteins responsible for folding in the ER are 

foldases and chaperones. Some proteins stay in the ER, but most move along the 

secretory pathway and become distributed throughout the organelles and different 

membranes.  

The UPR is a highly conserved process found in mammalian, plant, yeast, fly and 

worm cells (Mori, 2009) which evolved to ensure correct protein folding and normal 

ER function. An ER stress signal arising from its lumen is transmitted across the 

membrane by transmembrane (TM) proteins. In mammalian cells, three TM proteins 

are involved in transmitting UPR signals: inositol-requiring 1 (IRE1), pancreatic ER 

eIF2 kinase (PERK), and activating transcription factor 6 (ATF6). Interestingly, the 

complexity of UPR increases with evolution from only one functional TM protein in 

Saccharomyces cerevisiae (Ire1), two in Caenorhabditis elegans and Drosophila 

melanogaster (ire-1 and pek-1), and three in mammals (IRE1, PERK and ATF6) 

(Mori, 2009).  

A prototype of UPR was first mentioned in the literature in 1977, when virus-

transformed chick embryo fibroblasts had increased levels of novel proteins GRP78 

and GRP94 in the absence of glucose (Shiu et al., 1977). The synthesis of the two 

glucose-regulated proteins was later shown to be induced by accumulation of 

unfolded proteins by other stress factors including treatment with glycosylation 

inhibiting drugs, calcium ionophores or amino acid analogues (Kozutsumi et al., 

1988). GRP78 was also reported to have a sequence similar to the sequence of a 

heat shock protein, Hsp70 (Munro and Pelham, 1986), and to be identical to an Ig 

heavy chain-binding protein BiP (Hendershot et al., 1988), which binds to misfolded 

proteins that accumulate in the ER. GRP94 was found to belong to the Hsp90 family 

of ER molecular chaperones. These findings suggested that both proteins were 

involved in maintaining the homeostasis in the ER by neutralising and removing the 

accumulated misfolded proteins. GRP78/BiP was initially believed to play a key role in 
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the UPR, because of its capacity to bind to all three ER stress transducers in 

mammalian cells and to keep them in an inactive state (Figure 1.1). In conditions of 

ER stress, BiP is released from the UPR regulators and binds to unfolded or 

misfolded proteins leading to the activation of the UPR regulators and downstream 

signaling molecules. IRE1 and PERK homodimerise through their lumenal domains, 

autophosphorylate and become activated (Bertolotti et al., 2000). ATF6 is cleaved by 

site-1 protease (S1P) and site-2 protease (S2P) to release its cytosolic domain, which 

travels to the nucleus, where it acts as a transcription factor for UPR target genes 

including GRP78 and GRP94 (Ye et al., 2000). However, BiP is essential for protein 

folding and translocation in the ER, therefore, mutants of BiP cause ER stress and it 

is hard to determine whether activation of Ire1 is a result of the mutations in BiP or a 

result of different ER conditions (Gardner et al., 2013). In 2004, it was shown that the 

lumenal domain of Ire1 has two regions essential for activity and BiP-binding sites do 

not belong to any of them. It was also shown that deletion of the BiP-binding site 

stopped BiP from binding to UPR signal transducing proteins. However, Ire1 

remained inactive in the absence of ER stress. Therefore, it was concluded that BiP 

could not be the principal factor determining Ire1 activity (Kimata et al., 2004). 
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Figure 1.1. An early ER stress model. 
A model of ER stress suggesting that BiP is the central player responsible for activating 
UPR signaling. (Lee, 2005) 

 

1.2 The structure and function of Ire1 

Ire1 is the only ER stress sensor conserved across all eukaryotes. It is a regulatory 

protein that alters gene expression as a result of endoplasmic reticulum stress. Ire1 is 

composed of five major functional domains (Figure 1.2). Two homologues of Ire1 are 

present in mammalian cells: Ire1α and Ire1β. Ire1α is universally expressed, while 

Ire1β expression is restricted to intestinal epithelial cells (Bertolotti et al., 2001). The 

N-terminal lumenal domain senses stress and transmits a signal across the 

membrane leading to dimerisation of Ire1 (Shamu and Walter, 1996). Oligomerisation 

leads to autophosphorylation by its cytoplasmic serine/threonine kinase domain and 

phosphorylation of downstream molecules in the UPR pathway.  
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Figure 1.2. Schematic representation of the structure of Ire1. 
On the left, a schematic representation of the structure of yeast Ire1 showing the five 
functional domains and the boundaries of each in terms of amino acid sequence. On the 
right, a model proposed by (Rubio et al., 2011), suggesting that conserved D797 and 
K799 in the nucleotide binding pocket catalyse phosphate transfer to substrate serine . 

 

Studies show that mutations in the conserved K702 residue in the kinase domain of 

Ire1 prevent UPR activation (Mori et al., 1993) suggesting that the kinase activity is 

crucial for Ire1 to activate the unfolded protein response. Kinase autophosphorylation 

results in activation of the endoribonuclease (RNase) domain, which specifically 

cleaves precursor mRNAs (HAC1 in S. cerevisiae and Xbp1 in metazoans) to remove 

an intron and to generate a functional transcriptional activator. However, this process 

can be bypassed using ATP-competitive kinase inhibitors (see next paragraph). 

HAC1 exons in yeast are joint by a tRNA ligase Rlg1p (Sidrauski et al., 1996). Intron 

removal leads to a translational frame shift, which produces a potent basic leucine 

zipper (bZIP) transcription factor. The active transcription factor up-regulates UPR 

target genes and leads to increased folding capacity of the ER. The recently identified 

RtcB ligase joins the two XBP-1 exons in metazoans (Kosmaczewski et al., 2014; Lu 

et al., 2014). 
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1.3 Efficient Ire1 activity is dependent on cooperation of the kinase and 

endonuclease domains  

The activity of Ire1 is highly cooperative and full RNase activity is only obtained upon 

oligomerisation of various Ire1 molecules (Korennykh et al., 2009). The crystal 

structure reveals a symmetric back-to-back organisation of the kinase domains 

attached to an RNase dimer with two separate active sites (Lee et al., 2008). The 

crystal structures of human IRE1α also reveal that states of limited RNase activity are 

consistent with inactive kinase conformations while active endonuclease domains are 

consistent with active kinase conformations (Joshi et al., 2015). The formation of 

higher order oligomers is enabled by the active, nucleotide-bound conformation of the 

kinase. Initial studies supported the hypothesis that phosphorylation by the kinase 

domain is essential for activation of the RNase domain. However, in the presence of 

an ATP-competitive kinase inhibitor, 1NM-PP1, the UPR was retained suggesting that 

a conformational change rather than phosphorylation was key for Ire1 function (Papa 

et al., 2003). From this finding, it was further suggested that 1NM-PP1 must enforce a 

closed conformation and stimulate dimerisation and activation of the RNase domain 

(Lee et al., 2008). It was also suggested, that 1NM-PP1 binding may be so different 

from ADP binding that Ire1 becomes unresponsive to the phosphorylation status or 

that the binding is strong enough to shift the inhibitory conformation of the activation 

segment. 

 

1.4 Understanding the Ire1 protein kinase activity by looking at the 

evolutionary conservation of other kinases 

Phosphorylation is essential for a variety of cellular functions including protein 

regulation and signal transduction. Protein kinases are responsible for catalysing this 

reaction. One of the most common mechanisms for regulating the protein kinases is 

phosphorylation of the activation loop (Nolen et al., 2004). cAMP-dependent protein 

kinase (PKA) is one of the best studied protein kinases. It was actually the first kinase 

to have a solved crystal structure of the catalytic subunit (Knighton et al., 1991). The 

kinase was in an active conformation and showed that the activation loop has 
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nucleotide binding segment and a larger peptide binding segment. It was also shown 

that the amino acid residues in the catalytic core are conserved among other kinases. 

One of the older crystal structures in the unphosphorylated state (Zhang et al., 1994) 

shows that the domains of inactive ERK2 are more separated than PKA in the active 

conformation. Peptide binding is also inhibited by Y185 residue, which is 

phosphorylated in the active kinase. Other kinases adopted various different 

conformations (Goldberg et al., 1996; Hubbard et al., 1994), which explains the 

specificity for target ligands. The activation segment has been defined as the region 

between two conserved tripeptide motifs, DFG and APE. The sequence in between 

typically contains 20 – 35 residues. The DFG motif forms a Mg2+ binding site and the 

rest of the sequence forms a short β sheet β9, the activation loop, and the P+1 loop 

(Nolen et al., 2004). Comparison of the homology between the activation segments of 

different kinases showed conservation in both ends of the activation segment, but 

much less in the activation loop itself. This explains the diversity of the inactive kinase 

conformations and supports the specificity for different ligands. 

Several mutations in the core cytosolic area affecting the Ire1 activity have been fairly 

well studied and understood. K702 found in the catalytic region is predicted to 

facilitate nucleophile attack by contacting the α- and β-phosphates and to neutralise 

the negative charges on the β-phosphate, which increase when the bond to the γ-

phosphate of ATP is cleaved. K702 was reported to be essential for Ire1 activity (Mori 

et al., 1993). D828 is found within the conserved Asp–Phe–Gly (DFG) kinase motif 

and is predicted to coordinate β and γ phosphates of ATP with Mg2+. D828A mutants 

have been proposed to bind ATP but not be able to autophosphorylate (Chawla et al., 

2011). However, these data are not very reliable because it is unclear whether the 

authors corrected their data for binding of fluorescently-labelled nucleotides for inner 

filter effects. Therefore, their observation of D828A mutant binding ATP and further 

assumptions that nucleotide binding mimics an active RNase conformation required 

for mRNA splicing may be questionable. D797 and K799 were suggested to act as 

catalytic residues involved in coordinating the terminal ATP phosphate and catalysing 

phosphate transfer (Rubio et al., 2011) (Figure 1.2). In analogy to other protein 

kinases, the catalytic aspartate D797 is believed to bind the nucleophile and orient it 

for attack onto the γ-phosphate. The lysine two residues away (K799) is thought to 
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contact the γ-phosphate, neutralise negative charges and facilitate attack of the 

nucleophile (Endicott et al., 2012). Most of these mutants were reported to lack 

kinase or RNase activities (Chawla et al., 2011) and are therefore useful for studying 

the activity and structural characteristics of Ire1. The effect of the K799A mutation has 

not yet been described in the literature. Mutations in conserved endonuclease domain 

residues disrupted the RNase activity, but could autophosphorylate efficiently 

(Tirasophon et al., 2000) suggesting that RNase activity is not required for kinase 

activity.  

The molecular mechanism of oligomerisation and RNase domain activation are not 

completely clear. It is generally agreed that the kinase domain is key for stress 

response, but different hypotheses have been suggested for how it may be 

inactivated (Sicheri and Silverman, 2011). One publication suggested that trans-

autophosphorylation in the hyperphosphorylation loop (a highly phosphorylated 28-

amino acid loop at residues 864 to 892) of Ire1 is required for disassembly and works 

as a reset mechanism (Rubio et al., 2011). Another paper argues that de-

phosphorylation rather than phosphorylation is the switch for UPR attenuation 

(Chawla et al., 2011). 

 

1.5 Using tryptophan mutants to observe conformational changes in Ire1 

Extensive preliminary work in our laboratory suggests that K799, N802 and D828 are 

the key residues controlling the RNase activity (Schrӧder, unpubl.). A novel model for 

the control of RNase activity by the kinase domain has been proposed, but further 

evidence and appropriate controls are needed to support the hypothesis. We 

hypothesise that ATP-ADP hydrolysis cycles in the kinase domain are responsible for 

controlling RNase activity. The model suggests that ATP bound to the kinase domain 

inhibits RNase activity and ADP bound to the kinase domain activates the RNase 

domain. This would explain the requirement for kinase activity in vivo, the inactivity of 

kinase mutants (D797A) and the bypass of kinase activity by 1NM-PP1. 1NM-PP1 is 

smaller than ATP and may mimic ADP. This may also explain the phenotypes of the 

K799A, N802A and D828A mutants, which have previously shown increased RNase 
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activity when introduced into D797A, because the residues contact the γ-phosphate 

directly (K799) or indirectly (N802 and D828) via Mg2+ ions. We will be trying to get 

experimental evidence to support this hypothesis based on the analogy to other 

kinases. 

The model predicts that there are at least two distinct conformations of the RNase 

domain when ATP or ADP are bound to the kinase domain. This project aims to 

provide evidence using the intrinsic fluorescent properties of tryptophan.  

Tryptophan is a non-polar aromatic amino acid used extensively in fluorescence 

studies for its intrinsic properties such as anisotropy, lifetimes, excitation and 

emission spectra. All these properties can be measured using fluorescence 

spectrophotometers. Tryptophan works as an intrinsic probe for studying the 

structure, dynamics and function of various proteins (Szabo and Rayner, 1980). The 

tryptophan fluorescence is sensitive to the environment and it can be used to report 

changes in protein conformation and interactions with other molecules. The excitation 

maximum of tryptophan in solution is ~280 nm and the emission maximum is ~350 

nm. A conformational change leads to different accessibility of tryptophan to the 

solvent, which results in different levels of quenching of tryptophan fluorescence. For 

instance, in hydrophobic environment the fluorescence gets blue-shifted (Möller and 

Denicola, 2002). Small proteins often have only one tryptophan, which makes it easy 

to interpret experimental data. However, in the case of larger proteins, the detected 

fluorescence is mostly a combination of the fluorescence of individual aromatic 

residues. Therefore, having more than one tryptophan residue in the protein makes it 

unlikely for the Trp fluorescence decay to be monoexponential and mutating the other 

residues is often necessary to use fluorescence spectroscopy measurements for 

research. Protein fluorescence is usually excited at 280 nm or longer wavelengths. 

The tryptophan emission lifetime is ~2.6 ns and the quantum yield ranges from zero 

to 0.35 (Eftink, 1991), which is useful for interpreting the protein structure based on 

changes in fluorescence. 
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Figure 1.3. The sequence of yeast Ire1 kinase and RNase domains. 
The kinase domain is in red, the RNase domain is in purple. The important residues for 
this study are marked in bold  

 

Yeast Ire1 has a total of eight Trp residues, three of them are in the cytosolic domain 

at the positions 855, 981 and 1025. Figure 1.3 shows the amino acid sequence of WT 

yeast Ire1 kinase and endonuclease domains, which are important for this study. The 

kinase domain is marked in red and the RNase domain in purple. Important residues 

including K799, N802, D828 and the three tryptophan residues in the cytosolic region 

are marked in bold. For all analysis of Ire1, we only purify the cytosolic region of the 

protein, therefore, only these three Trp residues are considered important. The Trp 

fluorescence decay is exponential and the lifetime is extracted by fitting exponential 

functions to the measured decay curves. We will be mutating two of the three 

residues in the sequence at one time, because retaining only one Trp residue may 

allow measuring the lifetime of the decay of fluorescence of this single tryptophan. 

The term single tryptophan mutants used in the text will refer to Ire1 containing only 

one Trp residue. The approach used here should ultimately lead to the development 

of a new model to study nucleotide binding to Ire1 and test the hypothesis that the 

conformation of the RNase domain is different depending on the nucleotide bound to 

the kinase domain. 
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1.6 Aims and hypothesis 

The aim of this project was to purify and characterise the enzymatic activities of the 

tryptophan mutants of Ire1. This was achieved by addressing the following objectives:  

1. Expression and purification of three single Trp mutants, namely W855F-

W981F-Ire1, W855F-W1025F-Ire1 and W981F-W1025F-Ire1 as N-terminal 

GST-fusion proteins. 

2. Measurement of the kinase activity of these mutants using in vitro kinase 

autophosphorylation assay. This will determine whether the protein kinase 

activity is affected by the mutations. 

3. Measurement of the RNase activity of the mutants by in vitro XBP-1 splicing 

assay. This will determine if the mutants retain the RNase activity. 

4. Cleavage of the GST tags using thrombin and further characterisation of the 

kinase and RNase domains because only those tryptophan mutants with 

RNase and kinase activities can be used as reliable models for studying the 

conformational changes using fluorescence spectroscopy. 

5. Large scale purification and thrombin cleavage of the mutants, which retain 

both kinase and RNase activities. 
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2 Materials and Methods 

2.1 Materials 

The following chapter summarises all the materials used for the experiments in this 

study. Any specific preparation or storage instructions for the solutions are described 

in the notes section. 

2.1.1 Escherichia coli strains 

Table 1. List of E. coli strains used in this study 

Name Genotype Source 

BL21-CodonPlus (DE3)-
RIL 

E. coli B F– ompT hsdS(rB
– 

mB
–) dcm+ Tetr gal λ(DE3) 

endA Hte [argU ileY 
leuW Camr] 

Agilent 
Technologies, Stockport, 
UK, cat. no. 230245 

XL-10 GOLD TetrΔ (mcrA)183 Δ(mcrCB-
hsdSMR-mrr)173 endA1 
supE44 thi-1 recA1 gyrA96 
relA1 lac Hte [F´ proAB 
lacIqZΔM15 Tn10 (Tetr) 
Amy Camr] 

Agilent 
Technologies, Stockport, 
UK, cat. no. 200314 

 

2.1.2 Plasmids 

Table 2. List of plasmids used in this study 

Name Features Source 

pGEX-1λT-W855F-
W981F- C’(S658)-IRE1 

Ptac-GST- W855F-
W981F-C’IRE1 lacI bla 

Sergej Šesták,  
Slovak Academy of Sciences, 
Institute of Chemistry, 
Dubravska cesta 9, Bratislava 
84538, Slovakia. 

pGEX-1λT-W855F-
W1025F- C’(S658)-IRE1 

Ptac-GST-W855F-
W1025F-C’IRE1 lacI bla 

Sergej Šesták,  
 

pGEX-1λT-W981F-
W1025F- C’(S658)-IRE1 

Ptac-GST-W981F-
W1025F-C’IRE1 lacI bla 

Sergej Šesták,  
 

pBS-hXBP1-UN PT7-XBP1 splice 
junction bla 

(Imagawa et al., 2008) 
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2.1.3 Reagents 

Table 3. List of reagents used in this study 

Name Product Number Company 

[α-32P]Adenosine 5'-
triphosphate (ATP), 111 TBq 
(3000 Ci)/mmol 

SCP-207 Hartmann Analytic,  
Germany 

[γ-32P]Adenosine 5'-
triphosphate (ATP), 111 TBq 
(3000 Ci)/mmol 

SCP-301 Hartmann Analytic 

2-Mercaptoethanol M6250 Sigma-Aldrich, Gillingham, 

UK 
2-Propanol 33539 Sigma-Aldrich 
3-[(3-
Cholamidopropyl)dimethylam-
monio]-1-propanesulfonate 
(CHAPS) 

BIMB1085 
 

Apollo Scientific, 
Stockport, UK 

4-(2-Aminoethyl)-
benzenesulphonyl fluoride 
hydrochloride (AEBSF) 

BIMB2003 Apollo Scientific 

4-(2-Hydroxyethyl)-1-
piperazineethanesulphonic acid 
(HEPES) 

BP310-100 Thermo Fisher Scientific, 
Loughborough, UK 

Acetic acid A/0360/PB17 Thermo Fisher Scientific 
Acrylamide A8887 Sigma-Aldrich 
Acrylamide/bis-acrylamide, 30% 
solution 

A3699 Sigma-Aldrich 

Adenosine 5'-diphosphate 
(ADP), sodium salt (1.5 
mol/mol), hydrate 

A2383 
 

Sigma-Aldrich 

Adenosine 5'-triphosphate 
(ATP), disodium salt, hydrate 
(3.5 mol/mol) 

A2383 
 

Sigma-Aldrich 

Agar AGA03 ForMedium, Hunstanton, 
UK 

Agarose MB1200 Melford, Ipswich, UK 
Alanine, L- DOC0104 ForMedium 
Ammonium chloride A9434 Sigma-Aldrich 
Ammonium persulfate BP179-25 Thermo Fisher Scientific 
Ampicillin, sodium salt BIA0104 Apollo Scientific 
Arginine, L- W38,191-8 Sigma-Aldrich 
Asparagine, L- DOC0116 ForMedium 
Aspartic acid, L- DOC0121 ForMedium 
Boric acid B7901 Sigma-Aldrich 
Bovine serum albumin A2153 Sigma-Aldrich 
Bromophenol blue 11.439-1 Sigma-Aldrich 
1-Butanol 100616J VWR, East Grinstead, UK 
Calcium chloride C1016 Sigma-Aldrich 

https://www.hartmann-analytic.de/product-search.html?&tx_extendedshop_pi1%5BproductID%5D=210&tx_extendedshop_pi1%5Bpid_product%5D=36&cHash=01eddbe3e1c5e6b9a725b56fda63b1f4
https://www.hartmann-analytic.de/product-search.html?&tx_extendedshop_pi1%5BproductID%5D=210&tx_extendedshop_pi1%5Bpid_product%5D=36&cHash=01eddbe3e1c5e6b9a725b56fda63b1f4
https://www.hartmann-analytic.de/product-search.html?&tx_extendedshop_pi1%5BproductID%5D=221&tx_extendedshop_pi1%5Bpid_product%5D=36&cHash=ab7f5067cdf900600ab6df66ce266e0d
https://www.hartmann-analytic.de/product-search.html?&tx_extendedshop_pi1%5BproductID%5D=221&tx_extendedshop_pi1%5Bpid_product%5D=36&cHash=ab7f5067cdf900600ab6df66ce266e0d
https://www.hartmann-analytic.de/product-search.html?&tx_extendedshop_pi1%5BproductID%5D=221&tx_extendedshop_pi1%5Bpid_product%5D=36&cHash=ab7f5067cdf900600ab6df66ce266e0d
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Chloramphenicol BIC0113 Apollo Scientific 
Cobaltous chloride hexahydrate 60820 Fluka, Gillingham, UK 
Complete protease inhibitor 
cocktail tablets, EDTA free 

11 873 580 001 Roche Diagnostics, 
Burgess Hill, UK 

Coomassie Brilliant blue R-250 BP101-25 Thermo Fisher Scientific 
Copper(II) chloride C3279 Sigma-Aldrich 
Ethylenediaminetetraacetic acid 
(EDTA) 

D/0700/53 Thermo Fisher Scientific 

Diethyl pyrocarbonate (DEPC) 170250250 Thermo Fisher Scientific 
Ecoscint A LS-273 National Diagnostics 
Ethanol, absolute  10100332 Thermo Fisher Scientific 
Ethidium bromide BP102-1 Thermo Fisher Scientific 
Formamide 1.04008.2500 VWR 
Glucose, D-(+)- G/0500/61 Thermo Fisher Scientific 
Glutamic acid, L- 3510 Calbiochem, Watford, UK 
Glutamine, L- DOC0132 ForMedium 
Glutathione, reduced G1346 Duchefa Biochemie, The 

Netherlands 
Glycerol G/0650/17 Thermo Fisher Scientific 
Glycine G/0800/60 Thermo Fisher Scientific 
Glycogen, RNA grade R0551 Thermo Fisher Scientific 
Guanidine hydrochloride 0118-1KG Amresco, USA 
Histidine, L- DOC0144 ForMedium 
Hydrochloric acid, 37% 10316380 Thermo Fisher Scientific 
Iron(III) chloride hexahydrate F2877 Sigma-Aldrich 
Isoleucine, L- DOC0152 ForMedium 
Lactose, α-, monohydrate L8783 Sigma-Aldrich 
LB-agar Lennox LBX0202 ForMedium 
LB-broth Lennox LBX0102 ForMedium 
Leucine, L- DOC0157 ForMedium 
Lysine, L-, hydrate DOC0161 ForMedium 
Lysozyme, from chicken egg 
white 

62971-10G-F Sigma-Aldrich 

Magnesium acetate 0131-500G Amresco 
Magnesium chloride 63068 Fluka 
Magnesium sulphate M/1050/53 Thermo Fisher Scientific 
Manganese chloride 
tetrahydrate 

M8054 Sigma-Aldrich 

Methanol M/4000/PC17 Thermo Fisher Scientific 
Methionine, L- DOC0168 ForMedium 
N,N,N',N'-
Tetramethylethylenediamine 
(TEMED) 

T8133 Sigma-Aldrich 

N,N'-Methylenebisacrylamide M7279 Sigma-Aldrich 
Nickel(II) chloride hexahydrate N6136 Sigma-Aldrich 
N-Z-Amine A C0626 Sigma-Aldrich 
PageRulerTM Plus Prestained 
Protein Ladder 

26619 
 

Thermo Fisher Scientific 
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Pepstatin A BIMI2205 Apollo Scientific 
Phenol/Chloroform/Iso-
amylalcohol 

BP1752-400 Thermo Fisher Scientific 

Phenylalanine, L- DOC0173 ForMedium 
Phenylmethanesulphonyl 
fluoride (PMSF) 

MB2001 Melford 

Pierce 660 nm protein assay 
reagent 

22660 Thermo Fisher Scientific 

Potassium acetate 220150010 Acros Organics, 
Loughborough, UK 

Potassium chloride P3911 Sigma-Aldrich 
Potassium dihydrogen 
orthophosphate 

P/4800/53 Thermo Fisher Scientific 

Proline, L- P0380 Sigma-Aldrich 
RNasin N2111 Promega, Southampton, 

UK 
Serine, L- DOC0181 ForMedium 
Sodium acetate trihydrate 301035K BDH, East Grinstead, UK 
Sodium chloride S/3120/65 Thermo Fisher Scientific 
Sodium dodecyl sulphate (SDS) 161-0301 Bio-Rad, Hemel 

Hempstead, UK 
Sodium hydroxide 28244.262 VWR 
Sodium molybdate dihydrate 71756 Sigma-Aldrich 
Sodium phosphate, dibasic S/4520/53 Thermo Fisher Scientific 
Sodium phosphate, monobasic 389870010 Acros Organics 
Sodium selenite pentahydrate 00163 Fluka 
Sodium sulphate 23,931-3 Sigma-Aldrich 
Sodium sulphide nonahydrate 208043 Sigma-Aldrich 
Sucrose, D- BPE220-1 Thermo Fisher Scientific 
Sulfuric acid, 98% 30325 BDH 
Threonine, L- DOC0185 ForMedium 
Tris(hydroxymethyl)-
methylamine (Tris) 

BI2888 Apollo Scientific 

Triton X-100 T/3751/08 Thermo Fisher Scientific 
Tryptophan, L- DOC0188 ForMedium 
Urea AM9902 Ambion, Gillingham, UK 
Valine, L- DOC0197 ForMedium 
Xylene cyanol FF 95600 Fluka 
Yeast extract powder YEA02 ForMedium 
Zinc sulphate heptahydrate 22,137-6 Sigma-Aldrich 
λ protein phosphatase P9614 Sigma-Aldrich 
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2.1.4 Solutions for protein work 

Table 4. Solutions for protein work 

 

 

 

 

 

Solution Composition Notes 

10 x PBS 80 g/l NaCl 
2 g/l KCl 
14.4 g/l Na2HPO4 
2 g/l KH2PO4 

 

10 x Protein kinase buffer 
(Welihinda and Kaufman, 
1996) 

180 mM HEPES (pH 7.5) 
100 mM Mg(OAc)2 

0.5 mM ATP 

For each 250 µl of 180 
mM HEPES (pH 7.5), 
100 mM Mg(OAc)2 

add 1.25 µl 100 mM 
ATP in 1 mM Tris·HCl 
(pH 8.0) 

10 x SDS-PAGE buffer 1.92 M glycine 
0.248 M Tris 
10 g/l SDS 

 

6 x SDS-PAGE loading 
buffer 

350 mM Tris·HCl (pH 6.8) 
30% (v/v) glycerol 
10% (w/v) SDS 
0.5 g/l bromophenol blue 
2% (v/v) 2-mercaptoethanol 

 

Coomassie brilliant blue 
staining solution 

0.1% (w/v) Coomassie brilliant 
blue  
50% (v/v) methanol  
10% (v/v) acetic acid 

 

Gel de-staining solution 7% (v/v) methanol 
8% (v/v) acetic acid  

 

Anion exchange start 
buffer 

20 mM Tris-HCl, 1 mM EDTA, 
0.5% CHAPS, pH 7.5 

 

Anion exchange elution 
buffer 

20 mM Tris-HCl, 1 mM EDTA, 
0.5% CHAPS, 1 M NaCl, pH 
7.5 
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2.1.5  Media for E. coli 

Table 5. Media for E. coli 

Solution Composition Notes 

17 aa 10 mg/ml of amino acids 
(all except for cysteine, 
tyrosine and 
methionine) 

To make 100 ml: 
Dissolve 1 g of each of the 
17 amino acids in H2O.  

18 aa (Studier, 2005) 7.14 mg/ml of 17 aa 
7.14 mg/ml methionine 

To make 14 ml: 
Mix together 10 ml of 17 
aa solution and 4 ml of 25 
mg/ml methionine 

1000 x metals (Studier, 
2005) 

50 mM FeCl3 
20 mM CaCl2 
10 mM MnCl2 
10 mM ZnSO4 
  2 mM CoCl2 
  2 mM CuCl2 
  2 mM NiCl2 
  2 mM Na2MoO4 
  2 mM Na2SeO3 
  2 mM H3BO3 

To make 100 ml: 
50 ml 0.1 M FeCl3 in ~ 
0.12 M HCl 
2 ml 1.0 M CaCl2 
1 ml 1.0 M MnCl2·4H2O 
1 ml 1.0 M ZnSO4·7H2O 
1 ml 0.2 M CoCl2·6H2O 
2 ml 0.1 M CuCl2·2H2O 
1 ml 0.2 M NiCl2·6H2O 
2 ml 0.1 M Na2MoO4·2H2O 
2 ml 0.1 M Na2SeO3·5H2O 
2 ml 0.1 M H3BO3 

Filter sterilise and store at 

20 °C. 

Autoclave individual metal 
salt stock solutions except 
for the 0.1 M FeCl3 

solution and store at 20 °C. 

25% (w/v) L-aspartate 
(Studier, 2005) 

25% (w/v) L-aspartate To make 100 ml: 
25 g L-aspartate 
8 g NaOH 
Dissolve sequentially in 
H2O. Autoclave and store 

at 20 °C. 

50 x 5052 (Studier, 2005) 25% (v/v) glycerol 
2.5% (w/v) D-glucose 
10% (w/v) α-lactose 

Dissolve in H2O. Filter 

sterilise. Store at 20 °C. 

50 x M (Studier, 2005) 1.25 M Na2HPO4 
1.25 M KH2PO4 
2.50 M NH4Cl 
0.25 M Na2SO4 

Dissolve sequentially in 
H2O. Autoclave and store 

at 20 °C. 

LB media 10 g/l tryptone 
5 g/l yeast extract 
5 g/l NaCl 

Dissolve in H2O. 

Autoclave. Store at 20 °C. 
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MDAG-11 plates (Studier, 
2005) 

25 mM Na2HPO4 
25 mM KH2PO4 
50 mM NH4Cl 
5 mM Na2SO4 
2 mM MgSO4 
0.2 x metals  
0.1% glucose  
0.1% aspartate  
200 µg/ml each of 18 aa 
50 µg/ml ampicillin 
25 µg/mL chloramphenicol 

To make 250 ml: 
Dissolve 2.5 g agar in 
~237 ml H2O 
Autoclave. 
Let cool before adding: 
500 µl 1 M MgSO4 

50 µl 1000 x metals 
625 µl 40% glucose 
1 ml 25% aspartate 
5 ml 50 x M 
7 ml 18 aa 
250 µl ampicillin (50 
mg/ml) 
125 µl chloramphenicol (25 
mg/ml) 

MDG (Studier, 2005) 25 mM Na2HPO4 
25 mM KH2PO4 
50 mM NH4Cl 
5 mM Na2SO4 
2 mM MgSO4 
0.5% (w/v) D-glucose 
0.25% (w/v) L-aspartate 

MDG forms a white 
precipitate upon storage. It 
is best to prepare the 
amount required 
immediately before use. 

ZY media (Studier, 2005) 1% (w/v) N-Z amine A 
0.5% (w/v) yeast extract 

Dissolve in H2O. 

Autoclave. Store at 20 °C. 

ZYM-5052 (Studier, 2005) 1% (w/v) N-Z amine AS 
0.5% (w/v) yeast extract 
25 mM Na2HPO4 
25 mM KH2PO4 
50 mM NH4Cl 
  5 mM Na2SO4 
  2 mM MgSO4 
0.2 x 1000 x Trace metals 
0.5% (v/v) glycerol 
0.05% (w/v) D-glucose 
0.2% (w/v) α-lactose 

To make 500 ml: 
479 ml ZY 
1 ml Mg2SO4 
100 µl 1000 x metals 
10 ml 50 x M 
10 ml 50 x 5052 
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2.1.6 Solutions for RNA work 

Table 6. Solutions for RNA work 

Solution Composition Notes 

10 x TBE 890 mM Tris 
890 mM H3BO3 
20 mM EDTA 

Dissolve in DEPC-
H2O. Autoclave 

3 M NaOAc (pH 5.2) 3 M NaOAc (pH 5.2) To make 100 ml: 
Dissolve 40.83 g 
NaOAc·3H2O in ~60 
ml DEPC-H2O. 
Adjust pH to 5.2 
with glacial HOAc 
Add DEPC-H2O to 
100 ml. 
Autoclave. 

5 M KOAc 5 M KOAc 
 

To make 100 ml: 
Dissolve 49.07 g 
KOAc in 90 ml 
DEPC-H2O. Add 
DEPC-H2O to 100 
ml. Add 100 µl 
DEPC and stir for 

30 min at 20 °C. 

Autoclave 
5 x RNA cleavage buffer 
(adapted from (Imagawa et 
al., 2008)) 

100 mM HEPES (pH 7.6) 
500 mM KOAc 
10 mM Mg(OAc)2 

 

DEPC-H2O H2O 
DEPC 

To make 1 l: 
Add 1 ml of DEPC 
to 1 l of H2O, stir 30 

min at 20 °C. 

Autoclave. 
Gel loading buffer II 95% (v/v) formamide 

18 mM EDTA  
0.025% (w/v) SDS 
0.025% (w/v) xylene cyanol 
0.025% (w/v) bromophenol 
blue 
 

 

Phenol:CHCl3:isoamylalcohol, 
saturated with DEPC-H2O 

Phenol:CHCl3:isoamylalcohol 
(25:24:1 v/v/v) 

 

RNA cleavage stop solution 50 mM NaOAc (pH 5.2) 
1 mM EDTA 
0.1% (w/v) SDS 

 

RNA elution buffer 50 mM Tris·HCl (pH 8.0) 
1 mM EDTA 
0.3 M NaOAc 

 

file:///C:/LABORATORY/Regulatory%20Documents/COSHH%20Assessments/S-002%20(NaOAc).doc
file:///C:/LABORATORY/Regulatory%20Documents/COSHH%20Assessments/A-001%20(HOAc).doc
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2.1.7 Solutions for DNA work 

Table 7. Solutions for DNA work 

Solution Composition Notes 

10 x TE (pH 8.0) 100 mM Tris·HCl (pH 8.0) 
10 mM EDTA 

Autoclave for storage 

50 x TAE 2 M Tris·HOAc 
0.1 M EDTA 
(pH 8.5) 

To make 1 l: 
242 g Tris 
57.1 ml HOAc 
37.2 g Na2EDTA·2H2O 
Add H2O to make 1 l 

 

2.1.8 Commercially available kits 

Table 8. Commercially available kits 

Name Product number Company 

E.Z.N.A.® Plasmid Midi Kit D6904-03 Omega Bio-Tek, USA 
MEGAscript® T7 High Yield 
Transcription Kit 

AM1333 Thermo Fisher Scientific 

Thrombin 
CleanCleave™ Kit 

RECOMT-1KT Sigma-Aldrich 

Wizard® SV Gel and PCR 
Clean-Up System 

A9282 Promega 

 

 

 

 

 

 

 

 

 

file:///C:/LABORATORY/Regulatory%20Documents/COSHH%20Assessments/T-001%20(Tris).doc
file:///C:/LABORATORY/Regulatory%20Documents/COSHH%20Assessments/A-001%20(HOAc).doc
file:///C:/LABORATORY/Regulatory%20Documents/COSHH%20Assessments/E-001%20(EDTA).doc
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2.1.9 Special consumables 

Table 9. Special consumables 

Name Product number Company 

Amicon Ultra-15 
Centrifugal Filter Unit with 
Ultracel-50 membrane 

UFC905008 Merck Millipore 

Carestream® Kodak® Bio
Max® MS film 

Z363006- 50EA Sigma-Aldrich 

Dialysis tubing cellulose 
membrane 

D9777 Sigma-Aldrich 

GelAir Cellophane Support 1651779 Bio-Rad 
GSTrap 4B 28-4017-48 GE Healthcare, Chalfont St 

Giles, UK 
GSTrap FF 17-5131-02 GE Healthcare 
HiTrap Q FF 17-5053-01 GE Healthcare 
illustra™ MicroSpin™ S-
300 HR Columns 

27-5130-01 
 

GE Healthcare Life 
Sciences 

Vacuum Filtration "rapid"-
Filtermax, 0.22 µm filters 

99255 TPP, Switzerland  

Zeba™ Spin Desalting 
Columns, 7K MWCO, 0.5 
ml 

89882 
 

Thermo Fisher Scientific 

 

 

 

 

 

 

 

 

 

 

http://www.merckmillipore.com/GB/en/product/Amicon-Ultra-15-Centrifugal-Filter-Unit-with-Ultracel-50-membrane,MM_NF-UFC905008
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2.2 Methods 

Unless stated otherwise, all solutions were prepared in type I laboratory H2O 

(resistivity 18 MΩ cm, total organic carbon < 1 ppb, microorganisms < 1 cfu/ml, 

particles < 0.05 μm diameter) generated using a NANOpure DIamond TOC Life 

Science ultrapure water system and were autoclaved (121 ºC, 20 min) to sterilise 

them. All solutions used for chromatography were degassed and particles were 

removed by filtration over a 0.22 µm filter before use.  

 

2.2.1 E. coli culture and plasmid extraction 

2.2.1.1 Storage and revival 

All E. coli strains were stored at -80 ºC in sterile cryo-vials as a mixture of 1 ml of 

fresh overnight culture and 1 ml of sterile 30% (v/v) glycerol. The XL-10 GOLD strain 

used for plasmid extraction was revived on LB-agar plates containing 50 µg/ml 

ampicillin at 37 ºC overnight. The BL21-CodonPlus (DE3)-RIL strain used for protein 

extraction was revived on MDAG-11 plates (Table 5) (Studier, 2005) containing 50 

µg/ml ampicillin and 25 µg/ml chloramphenicol at 37 ºC overnight. To revive the cells, 

a small droplet of the frozen stock was transferred onto the agar plate and gently 

spread using a sterile loop next to a Bunsen burner to avoid contamination and obtain 

single colonies. 

2.2.1.2 Plasmid extraction 

All plasmid containing cells were grown in LB medium (Table 5) containing 50 µg/ml 

ampicillin at 37 ºC overnight. pBS-hXBP1-UN, pGEX-1λT-W855F-W981F-C’(S658)-

IRE1, pGEX-1λT-W855F-W1025F-C’(S658)-IRE1 and pGEX-1λT-W981F-W1025F-

C’(S658)-IRE1 plasmids were extracted using Plasmid Midi kit (Omega Bio-Tek) 

according to the manufacturer’s instructions. Briefly, cells were collected by 

centrifugation at 3,500 x g at 20 °C for 10 min. Cells were re-suspended in 2.5 ml 

Solution I/RNase A. 2.5 ml of Solution II was added to the cell suspension and it was 

incubated at 20 °C for 2 min to obtain a clear lysate. Then, 3.5 ml of Solution III was 

added and mixed immediately until a precipitate formed. Cells were centrifuged at 
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23,000 x g at 4 ºC for 30 min to collect cellular debris and genomic DNA. Four ml of 

the supernatant was transferred into a HiBind® DNA Midi Column and centrifuged at 

4,000 x g at 20 °C for 5 min. Three ml of buffer HB was added to the column and 

centrifuged as before. The plasmids were washed twice with DNA Wash Buffer 

diluted with ethanol and centrifuged again. Empty columns were centrifuged at 4,000 

x g for 10 min to remove residual ethanol. Two ml of the Elution buffer was added to 

the column and incubated at 20 °C for 2 min. The column was centrifuged for 5 min at 

4,000 x g to collect the plasmid. 1/10 volume of 3 M NaOAc (pH 5.2) (Table 6) and 

7/10 volume of 2-propanol were added to the plasmid and it was centrifuged at 4 ºC 

at 23,000 x g for 30 min. The supernatant was discarded, the plasmid was washed 

once with 70% (v/v) ethanol and re-suspended in the desired amount of 1 x TE (pH 

8.0) (Table 7). 

2.2.1.3 Plasmid digests 

2.2.1.3.1 SpeI digest 

Restriction enzyme digest is an easy and informative way to confirm the structure and 

identity of the plasmid (Sambrook and Russel, 2001). pBS-hXBP1-UN plasmid was 

linearised using SpeI enzyme (New England Biolabs) in 1x reaction buffer at 37 ºC 

overnight. Digest was analysed using agarose gel electrophoresis (described in 

section 2.2.1.5). 

2.2.1.3.2 Proteinase K digest 

Proteinase K digests are used to remove contamination from plasmid extracts and 

have been shown to improve cloning efficiency of PCR products after the digest 

(Crowe et al., 1991). pBS-hXBP1-UN plasmid was incubated in 1 x TE (pH 8.0) 

(Table 7) with 100-200 µg/ml Proteinase K in the presence of 0.5% (w/v) SDS at 50 

ºC for 30 min. The digest was followed by phenol:CHCl3 extraction and ethanol 

precipitation.  

1 volume of Phenol/CHCl3/Iso-amylalcohol (25:24:1 v/v/v), saturated with 1 M 

Tris·HCl (pH 8.0) was added to the plasmid. The sample was vortexed to mix the two 

phases. The mixture was centrifuged at 12,000 x g for 1 min at 20 °C to separate the 
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phases. The upper phase was carefully transferred into a fresh 1.5 ml microcentrifuge 

tube avoiding the protein precipitate, which may form between phases. The process 

was repeated until no more precipitate was observed. The remaining phenolic phases 

were pooled together and extracted with 0.25 volume of 1 x TE (pH 8.0) (Table 7). 

The aqueous phases were combined together and 1 volume of CHCl3/iso-amylalcohol 

(24/1 v/v) was added. The sample was vortexed to mix the phases and centrifuged at 

12,000 x g for 1 min at 20 °C to separate them. The CHCl3/iso-amylalcohol extraction 

was repeated at least once and then upper phase was transferred into a fresh 1.5 ml 

microcentrifuge tube for ethanol precipitation.  

1/10 volume of 3 M NaOAc, pH 5.2 (Table 6) was added to the solution followed by 

2.5 – 3 volumes of 100% ethanol. The contents were mixed well and stored o/n (14 to 

16 h) at -80 °C. The plasmid was collected by centrifugation at 12,000 x g for 30 min 

at 4 °C. The pellet was washed with ~200 µl of ice-cold 70% ethanol and centrifuged 

at 12,000 x g for 15 min at 4 °C. The ethanol was discarded and the plasmid was left 

to air-dry for 10 – 15 min at 20 °C, re-suspended in desired amount of 1 x TE (pH 8.0)  

buffer (Table 7) and stored at -20 °C. 

2.2.1.4 PCR Spin Column Clean-Up 

PCR spin column clean-up was done according to the manufacturer’s instructions. 

Briefly, an equal volume of membrane binding solution was added to the plasmid, all 

the sample was loaded on the SV Minicolumn and incubated for 1 min at 20 °C. The 

sample was centrifuged in the SV Minicolumn at 16,000 x g for 1 min at 20 °C. The 

liquid was discarded. 500 µl of membrane wash solution were added and the sample 

was centrifuged at 16,000 x g for 5 min at 20 °C. The SV Minicolumn was transferred 

to a fresh microcentrifuge tube and centrifuged at 16,000 x g for 1 min at 20 °C to 

evaporate any residual ethanol. The SV Minicolumn was transferred into another 

sterile microcentrifuge tube, 50 µl of 1 x TE buffer (pH 8.0) (Table 7) were added and 

incubated for 1 min at 20 °C. The sample was centrifuged at 16,000 x g for 1 min to 

elute the plasmid. Plasmid concentration was measured using a Nanodrop ND-1000. 

If necessary, the plasmid was ethanol precipitated and dissolved in smaller amount of 

1 x TE buffer (pH 8.0) (Table 7). 
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2.2.1.5 DNA Agarose gel electrophoresis 

Agarose gel electrophoresis is used to separate macromolecules in agarose polymer 

composed of D-galactose and L-galactose residues joined by two different glycosidic 

bonds (Sambrook and Russel, 2001). 1% Agarose gels were prepared by mixing the 

desired amount of agarose with 1 x TAE buffer (Table 7) and microwaving until the 

agarose had completely dissolved. Once the solution cooled down to ~55 ºC, 

ethidium bromide was added to the final concentration of 0.5 µg/ml. The gel was 

poured into a casting unit ensuring that no air bubbles got trapped inside and left to 

set at 20 °C. 1 x TAE (Table 7) containing 0.5 µg/ml ethidium bromide was used as 

the running buffer. The voltage applied depended on the size of the gel and the time 

required (5 V/cm electrode distance). Gels were visualised using a Gel Doc 1000 

(Bio-Rad) under UV light illumination (max = 300 nm).  

2.2.1.6 Transformation of pGEX-1λT plasmids into competent E. coli BL21 

CodonPlus (DE3)-RIL cells 

BL21-CodonPlus (DE3)-RIL cells contain additional copies of argU, ileY and leuW 

tRNA genes. The plasmid improves rare codon translation. Many previously 

published protocols use  BL21-CodonPlus (DE3)-RIL competent cells for Ire1 

expression (Lee et al., 2008; Valkonen et al., 2004) to improve translation of 

heterologous proteins coming from organisms with AT-rich genomes. 

E. coli cells were transformed using previously published methods (Green and 

Rogers, 2013). 1-5 µL of plasmid containing solution was added to 50 µl of competent 

E. coli BL21 CodonPlus (DE3)-RIL cells. Cells were incubated on ice for 30 min, heat 

shocked for 42 s at 42 ºC in a water bath and incubated on ice again for 2 min. One 

ml of LB medium (Table 5) was added to the cell suspension and it was incubated for 

1 h at 37 ºC with shaking at 250 rpm. Cells were plated on LB agar plates containing 

50 µg/ml ampicillin and incubated at 37 ºC for 16 h. Positive control was 100 ng of 

pUC18 plasmid tested before in a transformation. Negative control was 5 µl of 1 x TE 

(pH 8.0) buffer (Table 7). 
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2.2.2 Protein Extraction and Purification 

2.2.2.1 Protein expression 

Previously described methods (Studier, 2005) for protein overexpression using 

autoinduction were used for Ire1 expression in E. coli. Plasmid transformed cells were 

plated onto MDAG-11 plates (Table 5) containing 50 µg/ml ampicillin and 25 µg/ml 

chloramphenicol. Plates were incubated overnight at 37 ºC. Three ml of MDG medium 

(Table 5) containing 50 µg/ml ampicillin and 25 µg/ml chloramphenicol were 

inoculated with a single colony and grown overnight at 37 ºC with shaking at 260 rpm. 

500 ml of ZYM-5052 medium (Table 5) (Studier, 2005) containing 50 µg/ml ampicillin 

and 25 µg/ml chloramphenicol were inoculated with 500 µl of the saturated culture 

and incubated for 5 h at 37 ºC with shaking at 220 rpm. The temperature was reduced 

to 20 ºC and the cultures were incubated for additional 28 h. Cells were collected by 

centrifugation at 6,000 x g at 4 ºC for 15 min and stored at -20 ºC.  

2.2.2.2 Cell lysis 

Cells were lysed according to previously described methods (Repaske, 1958; Witholt 

and Boekhout, 1978). Cell pellets were washed twice in ice-cold 0.2 M Tris-HCl (pH 

8.0) and collected by centrifugation at 3,500 x g at 4 ºC for 15 min. Cells were re-

suspended in 25 ml lysis buffer [0.2 M Tris-HCl (pH 8.0), 0.5 M sucrose] containing 1 

tablet Complete protease inhibitors, EDTA free (Roche Applied Science), 6 mM 

AEBSF, 1 µg/µl pepstatin and 2 mM PMSF. Ten µg lysozyme/OD600nm dissolved in 

H2O to a concentration of 50 mg/ml was used to lyse the cells. Lysozyme was added 

to the cells and mixed by vortexing. EDTA was added to the final concentration of 1 

mM. One volume of H2O was added to osmotically shock the cells and help the 

lysozyme penetrate through the bacterial outer membrane. Cells were incubated at 

20 °C for 10 min. 1/10 volume of 10% (v/v) Triton X-100 was added and the sample 

was sonicated (Soniprep 150) at an amplitude of 0.22 microns for 1 min 6 times or 

until the sample was no longer viscous using the 19 mm Ø probe inserted to a depth 

of  ~ 13 mm. The temperature of the sample was always reduced to 4 ºC between 

cycles of sonication. The cells were centrifuged at 40,000 x g at 4 ºC for 15 min and 

the pH of the supernatant was adjusted to 7.4. Lysates were filtered through a 0.22 
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µm filter using a vacuum pump and a 20 µl sample was retained for SDS-PAGE 

analysis. Purification was undertaken immediately.  

2.2.2.3 Purification by affinity chromatography 

Affinity chromatography is based on a reversible interaction between the protein and 

specific ligand immobilised to a solid phase (Janson, 2012). Two types of columns 

were used for protein purification in this study: 5 ml GSTrap FF (maximum pressure 

70 psi) and 5 ml GSTrap 4B (maximum pressure 42 psi) (GE Healthcare Life 

Sciences). To prevent from reaching the maximum pressure limits, solutions were 

pumped through the system at a flow rate of 1 ml/min for GSTrap FF and at 0.5 

ml/min for GSTrap 4B. The columns were always connected to the BioLogic 

DuoFlow™ Chromatography system (Bio-Rad) by first filling the top thread of the 

column with H2O to prevent any air bubbles from entering. 

2.2.2.3.1  Pre-elution 

The column was washed with 5 column volumes of H2O and equilibrated with 5 

column volumes of Equilibration solution (1 x PBS, 5% (v/v) glycerol, 1% (v/v) Triton 

X-100, 1 mM EDTA). The cell lysate (∼25 ml) was loaded onto the column and 

washed with 5 column volumes of Equilibration solution. The column was then 

washed with 5 column volumes of Wash solution I (1 x PBS, 5% (v/v) glycerol, 0.1% 

(w/v) CHAPS, 300 mM NaCl, 1 mM EDTA) and 5 column volumes of Wash solution II 

(1 x PBS, 5% (v/v) glycerol, 0.1% (w/v) CHAPS, 5 mM MgCl2, 150 mM KCl). Five 

column volumes of Wash solution II containing 2 mM ATP were used to remove 

molecular chaperones such as DnaK or HtpG from the fusion protein. DnaK requires 

Mg2+ and K+ as cofactors, HtpG requires Mg2+. The column was prepared for elution 

by using 5 column volumes of Elution equilibration solution (1 x PBS, 5% (v/v) 

glycerol, 0.1% (w/v) CHAPS, 1 mM EDTA). The flow through was collected for each 

of the wash steps and 20 µl samples were retained for analysis by SDS-PAGE. 

2.2.2.3.2 Elution 

Protein was eluted from the column using 5 column volumes of elution buffer (20 mM 

Tris-HCl, 5% glycerol, 100 mM NaCl, 1 mM EDTA, 0.1% CHAPS) containing 10 mM 

http://www.bio-rad.com/en-uk/category/biologic-duoflow-medium-pressure-chromatography-systems?pcp_loc=catprod
http://www.bio-rad.com/en-uk/category/biologic-duoflow-medium-pressure-chromatography-systems?pcp_loc=catprod
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glutathione. The protein was collected in 1 ml fractions and the protein containing 

fractions were determined by consulting the UV profile. Two 20 µl samples were 

retained for analysis by SDS-PAGE and for measuring the concentration using a 

Thermo Pierce 660 nm protein assay kit. 

2.2.2.3.3 Column regeneration 

Columns were regenerated by washing them with 5 column volumes of H2O, 2 

column volumes of 6 M guanidine hydrochloride, 5 column volumes of 1 x PBS and 4 

column volumes of 70% (v/v) ethanol. Columns were stored in 20% (v/v) ethanol at 4 

ºC. 

2.2.2.4 Dialysis 

2.2.2.4.1 Preparation of dialysis tubing 

Dialysis tubing was washed for 3-4 h in running water to remove glycerol. Sulphur 

compounds were removed by incubating the tubing in 0.3% (w/v) Na2S at 80 ºC for 1 

min. It was then washed with hot water (60 ºC) for 2 min and acidified by immersing 

briefly in 0.2% (v/v) H2SO4. Dialysis tubing was rinsed with hot water to remove any 

H2SO4 and stored in 50% ethanol at 4 ºC. 

2.2.2.4.2 Dialysis 

1 ml fractions containing the eluted protein were pooled together, transferred into 

prepared dialysis tubing and dialysed 3 times at 4 ºC against 100 volumes of dialysis 

buffer (20 mM Tris-HCl, 5% Glycerol, 100 mM NaCl, 1 mM EDTA, 0.025% CHAPS, 1 

mM PMSF).  

2.2.2.5 Protein concentration 

The dialysed protein was concentrated in a 3,000 MWCO ultra centrifugal filter at 

3,900 x g at 4 ºC. The concentrators were equilibrated using 10 ml of the elution 

buffer without glutathione. The protein was transferred into the concentrator and 

centrifuged until the volume of the upper reservoir reduced to < 1 ml. The remaining 

protein solution was then transferred into the concentrator and centrifuged until the 

volume of the upper reservoir reduced to < 300 µl. Five µg of the protein was retained 
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for analysis by SDS-PAGE and the rest was divided into 20 µl aliquots, snap-frozen in 

liquid nitrogen and stored at -80 ºC. 

The protein concentration was determined using a Thermo Pierce 660 nm protein 

assay kit according to the manufacturer’s instructions and measured in SpectraMax 

190 Microplate Reader. The protein standards were produced by dissolving BSA in 

H2O at 2 µg/µl and performing 1:2 serial dilutions to make a standard curve from 2 

µg/µl to 0.0625 µg/µl. BSA standards were stored at -20 ºC. BSA was chosen as a 

standard based on previously published protocols (Liu et al., 2002) 

2.2.2.6 SDS-PAGE analysis 

Polyacrylamide gel electrophoresis (PAGE) is used to separate molecules based on 

their electrophoretic mobility. The glycine – Tris buffer system in the presence of SDS 

is the preferred method for analytical separation of proteins (Fling and Gregerson, 

1986). SDS unfolds and denatures proteins to form complexes that are mostly 

defined by a mass-to-charge ratio. 

SDS-PAGE gels were made fresh before analysis. Each gel consisted of a stacking 

gel (4% polyacrylamide) and a separating gel (8% polyacrylamide). The exact 

composition of each gel layer is described in Table 10. Proteins were mixed with the 6 

x SDS-PAGE loading buffer (Table 4), denatured at 100 ºC for 5 min and samples 

were loaded onto the gel. 120 V were applied for approximately 1.5 h or until the 

bands reached the bottom of the gel. Proteins were stained using Coomassie Brilliant 

Blue R250. The gel was stained for 30 min in the staining solution (0.1% Coomassie 

brilliant blue, 50% (v/v) methanol, 10% (v/v) acetic acid) and destained in 7% (v/v) 

methanol and 8% (v/v) acetic acid solution until the bands became clearly visible. 
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Table 10. Composition of SDS-PAGE gel layers. 

Component Separating gel (µl) Stacking gel (µl) 

30% acrylamide, 0.8% 
bisacrylamide 

6000 1010 

1 M Tris-HCl, (pH 8.9) 5625  
1 M Tris-HCl, (pH 6.8)  1875 
H2O 9300 4650 
10% (w/v) SDS 150 18.75 
10% (w/v) APS 130 67 
TEMED 30 22 

 

2.2.3 Thrombin cleavage assay 

10 µl of thrombin beads (Sigma-Aldrich Thrombin CleanCleave™ Kit) were washed 

twice using 500 µl of 1 x cleavage buffer (50 mM Tris, 100 mM NaCl, 10 mM CaCl2) 

by centrifugation at 500 x g for 5 min at 4 ºC. The supernatant was removed and the 

desired amount of GST-Ire1 protein (up to 500 µg for 10 µl of thrombin beads) 

together with the desired volume of 1 x cleavage buffer were added to the 

microcentrifuge tube. Samples were incubated for the desired time (0 h to 24 h as 

described below in section 3.4.1) at the desired temperature (4 ºC, 20 ºC or 37 ºC as 

described in section 3.4.1)  and centrifuged at 500 x g for 5 min at 4 ºC before taking 

samples. Samples were stored at -20 ºC before further analysis. 

2.2.4  protein phosphatase digest 

Proteins were de-phosphorylated according to the manufacturer’s instructions. ~5 µg 

of the protein was incubated for 1 h at 30 ºC with 2 µl of 400 U/µl λ protein 

phosphatase, 2 µl of 10 x λ protein phosphatase buffer [500 mM Tris-HCl, pH 7.5, 1 

mM Na2EDTA, 50 mM dithiothreitol, 0.1% (w/v) Brij 35] and 2 µl of 20 mM MnCl2 in 

the final volume of 20 µl. Samples were analysed using SDS-PAGE and stained with 

Coomassie Brilliant Blue.  
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2.2.5 Anion exchange chromatography 

The HiTrap Q FF column was connected to the system preventing any air from 

bubbles entering the system. The column was washed with 5 column volumes of 

anion exchange start buffer and 5 column volumes of anion exchange elution buffer 

at 1 ml/min. The column was then equilibrated with 5 column volumes of the start 

buffer again. The sample was applied to the system using a syringe and washed with 

5 column volumes of the start buffer at 1 ml/min. The proteins were eluted by 

generating a salt gradient starting from 5 mM NaCl increasing to 1 M NaCl. Protein 

elution was observed by consulting the UV light absorbance profile. The column was 

regenerated by washing it with 5 column volumes of elution buffer and 10 column 

volumes of the start buffer at 1 ml/min. 

2.2.6 XBP-1 splice junction cleavage assay 

The RNA cleavage assay was adjusted according to previously published methods 

(Imagawa et al., 2008). All glassware and spatulas used for this assay were baked at 

200 ºC. All buffers and solutions were DEPC-treated and autoclaved or prepared in 

nuclease-free H2O. All disposable plasticware was purchased and stored separately 

for RNA work only to avoid RNase contamination.  

2.2.6.1 In vitro transcription reaction 

MEGAscript® T7 High Yield Transcription Kit was used for the in vitro transcription. 

The T7 RNA polymerase enzyme mix, 40 U/µl RNasin, 2 U/µl Turbo DNase and the 

linearised pBS-hXBP1-UN plasmid were thawed on ice. All nucleotide solutions, 10 x 

reaction buffer and nuclease-free H2O were pre-warmed to 20 °C. The in vitro 

transcription reaction was assembled in a 1.5 ml microcentrifuge tube by pipetting 

together the following reagents in the order given below:  

To 20 µl Nuclease-free H2O,  

2 µl 10 x reaction buffer,  

2 µl 10 mM CTP, 10 mM GTP, 10 mM UTP, 

2 µl 1 mM ATP, 

1 µl 40 U/µl RNasin, 

1 µg linearised pBS-hXBP1-UN plasmid, 
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1 µl T7 RNA polymerase enzyme mix, 

5 µl [α-32P]-ATP (10 mCi/ml, > 3000 mCi/mmol) 

 

The contents were carefully mixed, centrifuged for 10 s at 12,000 x g at 20 °C to 

collect the reaction mixture at the bottom of the tube and incubated at 37 ºC for 2 h. 

One µl of 2 U/µl Turbo DNase was added and incubated at 37 ºC for 20 min to 

remove the DNA template. 

2.2.6.2 Purification of the RNA substrate 

The RNA substrate was purified according to previously described methods (Rinaldi 

et al., 2015). A 5% denaturing PAGE gel was prepared by mixing 4.8 g of urea, 1 ml 

of 10 x TBE (Table 6), 1.7 ml of acrylamide/bis-acrylamide, 30% solution and DEPC-

H2O to the final volume of 10 ml. Once the urea dissolved completely, 80 µl of 10% 

(w/v) APS and 11 µl of TEMED were added to initiate the polymerisation reaction.  

9 µl of nuclease-free H2O was added to the in vitro transcription reaction from 2.2.6.1 

to obtain enough volume for gel filtration. Illustra Microspin S-300HR columns were 

prepared by re-suspending the resin and removing the excess storage buffer by 

centrifugation at 735 x g for 1 min. The sample was applied to the gel filtration column 

and centrifuged at 735 x g for 2 min to remove unincorporated nucleotides. The 

collected sample was mixed with 30 µl of gel loading buffer II (Table 6) and 

centrifuged at 12,000 x g for 10 s to collect the sample at the bottom of the tube. The 

sample was denatured at 90 ºC for 5 min and loaded onto a 5% denaturing PAGE 

gel. 250 V were applied for ~ 25 min or until the bromophenol blue was 0.5 - 1 cm 

from the bottom of the gel. 1 x TBE (Table 6) was used as a running buffer. The gel 

was exposed to Carestream® Kodak® BioMax® MS film at 20 °C for 2 min. The RNA 

containing bands were cut out of the gel and divided into two parts. Each part was 

chopped into pieces and transferred into a 2 ml screw-cap microcentrifuge tube. 400 

µl of RNA elution buffer (Table 6) and 400 µl of phenol:CHCl3:isoamylalcohol (25:24:1 

v/v/v), saturated with DEPC-H2O were added, the tubes were vortexed a couple of 

times and incubated at 4 ºC overnight. 
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The samples were vortexed again and centrifuged at 12,000 x g for 1 min. The upper 

phase was transferred into a new 2 ml screw-cap microcentrifuge tube and 3 volumes 

of ice-cold 100% ethanol were added. The samples were incubated at -20 ºC 

overnight. The RNA precipitate was collected by centrifugation at 12,000 x g for 30 

min. The pellet was washed with 500 µl of ice-cold 70% ethanol and centrifuged again 

at 12,000 x g for 15 min. The ethanol was discarded and the RNA was left to air-dry 

for ~20 min. Each pellet was re-suspended in 60 µl of 1 x TE (pH 8.0) buffer (Table 7) 

and stored at -20 ºC. 

2.2.6.3 Scintillation counting 

1 µl of the in vitro synthesised RNA was added to 4 ml of scintillation fluid (Ecoscint 

A) and counted in a scintillation counter (Packard Tri-Carb Liquid Scintillation 

Analyzer 1600TR) in triplicate. The counts per minute (cpm) detected by scintillation 

counting were converted into nmols of RNA substrate. 

First of all, the counts per minute were converted to disintegrations per minute (dpm) 

by using a previously determined 32P quench correction curve to which a one phase 

decay model was fitted. 

𝑌 = (𝑌0 − 𝑃𝑙𝑎𝑡𝑒𝑎𝑢) ∙ 𝐸𝑋𝑃(−𝑘 ∙ 𝑋) + 𝑃𝑙𝑎𝑡𝑒𝑎𝑢 

where Y0 is the Y value when X (time) is zero, Plateau  is the Y value at infinite times 

and k is the decay constant,  

𝑑𝑝𝑚 [𝑚𝑖𝑛−1 ∙ 𝑙−1] =
𝑐𝑝𝑚 [𝑚𝑖𝑛−1 ∙ 𝑙−1]

𝑌 ∙ 100
 

 

Then, the disintegrations per minute were divided by 60 to obtain a value for 

disintegrations per second (dps). 

The specific activity of [α-32P]ATP added to the reaction is (3000 Ci)/mmol, however, 

the dilution factor with unlabelled nucleotide must be considered.  
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The specific activity of the RNA transcript is calculated by the ratio of [α-32P]ATP to 

unlabelled ATP. Considering that the initial activity of the [α-32P]ATP added to the 

reaction is (3000 Ci)/mmol, the specific activity is  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
3000 𝐶𝑖 ∙ 𝑚𝑚𝑜𝑙−1

𝑛𝐴𝑇𝑃 𝑛[α− 𝑃32 ]ATP⁄
 

Where nATP  and n[α-32P]ATP are moles of unlabeled ATP and labelled ATP respectively. 

Once the specific activity is known, the amount of synthesised RNA can be calculated 

𝑛𝑅𝑁𝐴 =
𝑑𝑝𝑠 ∙ 𝑉𝑅𝑁𝐴

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∙ 𝑁
 

Where N is the number of adenylyl nucleotides and VRNA is the volume of RNA added 

into the scintillation vial. 

The measured dps can be converted into Curies (Ci), since 1 𝐶𝑖 = 3.7 ∙ 1010 𝑑𝑝𝑠 , 

which can then be converted into moles of synthesised RNA using the specific 

activity. 

Additionally, the decay factor must be considered because radioactive materials 

decay according to  

𝑐 = 𝑐0 ∙ 𝑒−ln (2)∙𝑡 𝑡1 2⁄⁄  

Where c is the final activity of radioactive material, c0 is the initial activity, t is the 

radiation decay time and T1/2 is the isotope half-life. 

2.2.6.4 RNA cleavage reaction 

A previously published method for HAC1 mRNA splicing was used (Gonzalez and 

Walter, 2001), but in this study, XBP-1 mRNA was used. The cleavage reaction was 

assembled by pipetting together the following reagents in the following order: 

To 30 µl nuclease-free H2O 

6 µl 5 x RNA cleavage buffer (Table 6) 

6 µl 10 mM ADP 

0.5 µl 40 U/µl RNasin 
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200 ng GST-Ire1 protein 

0.5 nM labelled RNA substrate  

 

The contents were mixed and centrifuged at 12,000 x g for 10 s at 20 °C to collect the 

sample at the bottom of the tube. Samples were incubated at 37 ºC for 40 min. The 

reactions were stopped by adding 120 µl of RNA cleavage stop solution (Table 6) and 

150 µl of Phenol:CHCl3:isoamylalcohol, saturated with DEPC-H2O. The samples were 

vortexed and centrifuged at 12,000 x g for 1 min. The upper phase was transferred 

into a new 1.5 ml microcentrifuge tube containing 15.4 µl 3 M NaOAc (pH 5.2) (Table 

6) and 3.75 µl 2 µg/µl glycogen (RNA grade). Three volumes of ice-cold 100% 

ethanol were added and the samples were incubated at -20 ºC overnight. 

The RNA precipitate was collected by centrifugation at 12,000 x g for 30 min. The 

pellet was washed with 500 µl of ice-cold 70% ethanol and centrifuged again at 

12,000 x g for 15 min. The ethanol was discarded and the RNA was left to air-dry for 

~20 min. Each pellet was re-suspended in 15 µl of gel loading buffer II (Table 6), 

denatured at 90 ºC for 5 min and loaded onto 5% denaturing PAGE gel. 250 V were 

applied for ~25 min or until the bromophenol blue was 0.5 - 1 cm from the bottom of 

the gel. 1 x TBE (Table 6) was used as a running buffer. The gel was washed in 

DEPC-H2O for 5 min on a shaking platform three times to remove excess urea. The 

gel was dried between two transparent cellophane support sheets (Bio-Rad) in a 

GelAir dryer (Bio-Rad) overnight, then exposed to Phosphor Screens (Amersham 

Biosciences) and visualised using Typhoon 9400 variable mode imager. 

2.2.7 Protein kinase autophosphorylation assay 

The protein kinase autophosphorylation assay was done according to previously 

described methods (Welihinda and Kaufman, 1996). The following reagents were 

pipetted together in the given order: 

To 20 µl H2O 

2 µl 10 x protein kinase buffer (Table 4) 

5 µg GST-Ire1 protein  

1 µl [γ-32P]-ATP (10 mCi/ml, > 3000 mCi/mmol) 
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The contents were mixed carefully, centrifuged at 12,000 x g for 10 s at 20 °C to 

collect the sample at the bottom of the tube and incubated at 30 ºC for 30 min. Four µl 

of 6 x SDS-PAGE loading buffer (Table 4) were added and the sample was denatured 

at 100 ºC for 5 min. Zeba™ Spin Desalting Columns were prepared for use by 

removing the bottom closure, loosening the cap and centrifuging at 1,500 x g for 1 

min to remove storage solution. The denatured sample was loaded onto the column 

and centrifuged at 1,500 x g for 2 min to collect the desalted solution. Five µl of 6 x 

SDS-PAGE loading buffer (Table 4) were added, the sample was denatured again at 

100 ºC for 5 min and analysed by SDS-PAGE. The destained gel was dried between 

two transparent cellophane support sheets (Bio-Rad) in a GelAir dryer (Bio-Rad) 

overnight, then exposed to Phosphor Screens (Amersham Biosciences) and 

visualised using Typhoon 9400 variable mode imager. 

2.2.8 Safety procedures 

2.2.8.1 Handling ethidium bromide 

COSHH assessment is required for all procedures that involve handling of more than 

10 g of ethidium bromide. Personal protective clothing was used at all times. Gels 

containing ethidium bromide were disposed in a designated sink fitted with a waste 

disposal unit. More information about the general safe laboratory practice at the 

department of Biosciences can be found at 

https://www.dur.ac.uk/resources/biosciences/local/SafeLaboratoryPractice.pdf 

2.2.8.2 Handling of 32P 

Full training was required before working with 32P. Permission to work was issued by 

the Departmental Radiation Protection Supervisor.  All experiments were done in a 

separate laboratory restricted to “Approved Workers”. All radioactive sources were 

stored at approved stores (-20 °C freezer or 4 °C fridge). Experiments were carried 

out in specific work stations. Personal protective clothing was used at all times. 

Radioactive waste was disposed of via the waste disposal unit. Liquid waste, gels and 

paper were disposed in the radioactive sink, contaminated solids were washed 
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extensively until non-radioactive using Decon detergent disposing of the washing as 

liquid waste. All uses and disposals of radioactive materials were recorded using the 

usage and disposal record sheets. A full and detailed list of departmental safety 

procedures can be accessed online at  

https://www.dur.ac.uk/resources/biosciences/local/Radiation_Guidelines.pdf  
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3 Results 

3.1 Cloning and transformation of E.coli with the constructed plasmids 

3.1.1 The tryptophan mutants 

pGEX-1λT-W855F-W981F-C’(S658)-IRE1, pGEX-1λT-W855F-W1025F-C’(S658)-

IRE1 and pGEX-1λT-W981F-W1025F-C’(S658)-IRE1 plasmids, which were kindly 

provided by Dr. Sergej Šesták, were successfully transformed into competent E. coli 

BL21 CodonPlus (DE3)-RIL cells. These cells will be referred to hereafter as W855F-

W981F-Ire1, W855F-W1025F-Ire1 and W981F-W1025F-Ire1, respectively. All these 

plasmids encode the cytosolic kinase, RNase and partially truncated linker domains 

of yeast Ire1 as N-terminal GST-fusion proteins. Specific amino acid substitutions are 

indicated in the names. 

As mentioned above, the plasmids were provided at the start of the project, but all 

mutagenesis reactions were performed in the pUC18-‘IRE1’-(SacI-HindIII) cloning 

vector. pGEX-1λT-W855F-C’(S658)-IRE1 was generated by cloning the 544 bp PmlI-

SacI fragment of pUC18-‘IRE1’-(SacI-HindIII) into PmlI- and SacI-digested pGEX-

1T-(S658)-IRE1. pGEX-1λT-W981F-C’(S658)-IRE1 and pGEX-1λT-W1025F-

C’(S658)-IRE1 were generated by cloning the 446 bp KpnI-SacI fragment of pUC18-

‘IRE1’-(SacI-HindIII) into KpnI- and SacI-digested pGEX-1T-(S658)-IRE1. Example 

of the cloning strategy is shown in Figure 3.1. Double mutants were also generated 

by Dr. Sergej Šesták by successive rounds of QuikChange site- directed mutagenesis 

(Agilent Technologies).  
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Figure 3.1. Cloning strategy for generating W855F-Ire1 
544 bp fragment of PmlI-SacI digested pUC18- ‘IRE1 ’-(Sac I-HindIII) cloned into PmlI-  

and SacI-digested pGEX-1T-(S658)-IRE1 
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3.1.2 WT-Ire1 and the kinase mutants 

Cells previously transformed by Dr. Martin Schröder including plasmids pGEX-1λT-

C’(S658)-IRE1, pGEX-1λT-K799A-C’(S658)-IRE1, pGEX-1λT-N802A-C’(S658)-IRE1, 

pGEX-1λT-D828A-C’(S658)-IRE1, pGEX-1λT-K799A-N802A-C’(S658)-IRE1, pGEX-

1λT-K799A-D828A-C’(S658)-IRE1, pGEX-1λT-K799A-N802A-D828A-C’(S658)-IRE1 

and pGEX-1λT-N802A-D828A-C’(S658)-IRE1 will be referred to as WT-Ire1, K799A-

Ire1, N802-Ire1, D828A-Ire1, K799A-N802A-Ire1, K799A-D828A-Ire1, K799A-N802A-

D828A-Ire1 and N802A-D828A-Ire1 respectively in this thesis. Again, all the plasmids 

encode the cytosolic kinase, RNase and partially truncated linker domains (starting at 

the position S658) of yeast Ire1 as N-terminal GST-fusion proteins. An exception is 

the pGEX-1λT-C’-IRE1 plasmid, which contains the full linker domain, cytosolic 

kinase and RNase domains. Figure 3.2 shows the structures of the full length yeast 

Ire1 compared to the cytosolic fraction (C’-IRE1) and the cytosolic part with truncated 

linker domain (C’(S658)-IRE1). Transformed E. coli strains were provided at the start 

of the project in the form of frozen stocks. 

 
Figure 3.2. Comparison of different fragments of Ire1 used in this study. 
Full length yeast Ire1 compared to the full cytosolic fraction ( C’-IRE1) and to the 
cytosolic fraction, which contains partially truncated linker domain (C’(S658) -IRE1). The 
grey shaded portion was not used for purif ication. The numbering refers to the amino 
acids.  
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3.1.3 Discussion 

The goal of this project was to purify and characterise tryptophan mutants. It is 

difficult to resolve the influence of individual chromophores in proteins that contain 

various intrinsically fluorescent residues  (Beechem and Brand, 1985). A combination 

of fluorophores results in multiexponential decay making the interpretation of the 

protein structure and dynamics more problematical, which is potentially the case of 

Ire1. A promising solution for this is mutating the tryptophan with a non-fluorescent 

amino acid that has similar structure. Phenylalanine is usually chosen for substituting 

tryptophan because both have hydrophobic aromatic side chains. However, examples 

in the literature show that often such substitutions have strong effects on protein 

structure and functions. For example, in the case of bacteriorhodopsin, some 

tryptophan substitutions result in blue shifts in the chromophore and impaired proton 

pumping (Mogi et al., 1989). Two out of eight tryptophan residues are also crucial for 

the function of yeast eIF-4E (Altmann et al., 1988). Therefore, the mutants must first 

be characterised before use in fluorescence studies. 
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3.2 Protein purification 

3.2.1 Purification using affinity chromatography 

In this study, GST-fusion proteins were expressed by autoinduction (Studier, 2005) 

using previously determined optimal conditions (Schröder, unpubl.) and purified using 

affinity chromatography on GSTrap 4B or GSTrap FF columns. Affinity 

chromatography is based on the ability of a protein to covalently bind to a specific 

matrix. When an impure protein solution is passed through this matrix, the protein 

binds to it while most of the impurities are washed away with the buffer. The protein is 

then recovered by changing the elution conditions so that the protein gets released 

from the chromatographic material. In the case of Ire1 used here, the plasmid 

construct contains a GST tag which is known for high affinity to glutathione. 

Autoinduction is based on the ability of certain media to induce protein expression in 

E. coli once the cells reach saturation. Cells use glucose as the initial energy source 

until mid to late log phase. Upon glucose depletion, cells start to use lactose and 

convert it into inducer allolactose. The stage of induction can be regulated by the 

levels of glucose and lactose in the media. Using auto-induction was shown to 

produce higher protein yields. Theoretically, 500 ml of starting culture should produce 

~50 mg of protein. However, we have never recovered >20 mg.  

The cells were successfully lysed and loaded onto the columns where the GST-

tagged protein efficiently and reversibly binds the matrix. After several wash steps the 

protein interaction with the matrix was reversed using 10 mM glutathione and the 

eluted protein was dialysed as described in Materials and Methods. Figure 3.3 shows 

an SDS-PAGE gel corresponding to the purification of WT-Ire1. Each lane represents 

a step in the purification process as indicated above the gel. The last lane shows the 

final dialysed protein (~5 µg). 
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Figure 3.3. Purification of GST tagged WT-Ire1. 
Each lane represents a sample of the collected flowthrough during the process of WT-
Ire1purif ication by affinity chromatography. The column was washed with H 2O (lane 1) 
to remove any excess ethanol and equilibrated with equilibration solution containing 1% 
Triton X-100 (lane 2). After loading of the lysed cells ( lane 3), column was washed with 
the same equilibration solution to remove any unbound protein  ( lane 4). The column was 
then washed with Wash solution I containing 300 mM NaCl  (lane 5) and Wash solution II 
containing 5 mM MgCl2 and 150 mM KCl (lane 6). The last wash step was done with 
Wash solution II containing 2 mM ATP (lane 7) to remove molecular chaperones. The 
column was equilibrated before elution ( lane 8).  Lane 9 contains 20 µ l of the lysed cells 
that were loaded onto the column. Lanes 10 and 11 represent the purif ied protein before 
and after dialysis respectively.  
 

 

Initially, seven proteins were purified and used for analysis including the WT-Ire1, 

three tryptophan mutants and three kinase mutants, namely K799A-N802A-Ire1, 

K799A-D828A-Ire1 and K799A-N802A-D828A-Ire1. Figure 3.4 shows an SDS-PAGE 

gel image with ~5 µg of each purified protein (names indicated above the lanes). The 

purification protocol was optimised for the wild type protein, therefore it purifies as a 

full length single band. Other proteins do not purify as well as the WT-Ire1. Out of the 

tryptophan mutants, only the W855F-W1025F-Ire1 is seen as a single band of a 

similar sized protein to WT-Ire1. The W855F-W981F-Ire1 purifies as two strong bands 
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probably corresponding to a full length protein and a truncated version. The W981F-

W1025F-Ire1 has a much fainter band of the size of the full length protein and a 

strong band corresponding to a slightly smaller protein. Again, a plausible explanation 

is that the lower band corresponds to a truncated protein. The two bands may also be 

a result of different phosphorylation states of the protein (see chapter 3.2.2). Some 

additional bands were observed at the bottom of the gel for the tryptophan mutants, 

potentially either smaller size impurities or truncated bits. K799A-N802A-Ire1 purifies 

as well as the WT-Ire1 and migrates slightly further on a gel indicating a smaller size 

protein, potentially due to lack of phosphorylation. Other kinase mutants, both K799A-

D828A-Ire1 and K799A-N802A-D828A-Ire1 also migrate further than the wild type 

protein and have visible impurities. 

 
Figure 3.4. Purification of WT-Ire1 and different mutant proteins. 
~5 µg of each of the purif ied proteins were subjected for analysis by SDS-PAGE: WT-
Ire1 (lane 1), W855F-W981F-Ire1 ( lane 2), W855F-W1025F-Ire1 (lane 3), W981F-
W1025F-Ire1 ( lane 4), K799A-N802A-Ire1 ( lane 5), K799A-D828A-Ire1 (lane 6), K799A-
N802A-D828A-Ire1 ( lane 7).  
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3.2.2 λ phosphatase digest 

 
Figure 3.5. λ phosphatase digest of the seven initially purified proteins. 
~5 µg of the GST-fusion proteins were subjected to a λ phosphatase digest. WT-Ire1 
undigested (lane 1) and digested ( lane 2), W855F-W981F-Ire1 undigested (lane 3) and 
digested (lane 4), W855F-W1025F-Ire1 undigested (lane 5) and digested (lane 6), 
W981F-W1025F-Ire1 undigested (lane 7) and digested (lane 8), K799A-N802A-Ire1 
undigested (lane 9) and digested ( lane 10), K799A-D828A-Ire1 undigested (lane 11) and 
digested ( lane 12), K799A-N802A-D828A-Ire1 undigested (lane 13) and digested ( lane 
14). 

 

First, we ruled out the initial hypothesis that the two bands observed on the gels for 

W855F-W981F-Ire1 and W981F-W1025F-Ire1 may be a phosphorylated and a non-

phosphorylated form of the same protein. Proteins were tested by digesting them with 

λ protein phosphatase (λ PP). The enzyme removes phosphate groups from 

phosphorylated serine, tyrosine and threonine residues. Figure 3.5 shows all seven 

initially purified proteins in their undigested form and the same proteins after the λ 

phosphatase treatment. The assay shows that all kinase mutants show no difference 

in migration after the digest suggesting that the kinase mutations have an effect in the 

autophosphorylation ability of these proteins and they purify in a non-phosphorylated 

form. The WT-Ire1 purifies as a phosphorylated protein and the phosphates can be 
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removed resulting in a similar sized protein to the kinase mutants (compare WT + λ 

PP and all six lanes corresponding to the K799A mutants). W855F-W1025F-Ire1 

behaved similarly to WT-Ire1. W981F-W1025F-Ire1, which does not purify as a single 

full length protein, retains additional bands on the gel after the λ phosphatase digest, 

suggesting that the two bands must represent different proteins rather than different 

forms of phosphorylation. Curiously, W855F-W981F-Ire1 was not affected by λ 

phosphatase digest. This behavior was unexpected and hard to explain, therefore, 

additional experiments were done to confirm that something went wrong with the 

digest.  

Figure 3.6 shows gel images of the repeated λ phosphatase digest. Gel A shows all 

the proteins in the absence of λ phosphatase and gel B shows the same proteins 

digested with λ PP. The gels show that the W855F-W981F-Ire1 mutant can be de-

phosphorylated because it migrates in the same way as WT-Ire1 in both 

phosphorylated and non-phosphorylated form. The only issue with this experiment is 

that all the proteins should have been loaded on the same gel again. However, before 

λ phosphatase digest, the WT-Ire1 and other proteins run above the 70 kDa band and 

after the digest they all run below the band indicating, that the digest most likely had 

worked. This result suggests that the tryptophan mutations do not have an effect on 

the ability of Ire1 to autophosphorylate and that the purification protocol optimised for 

the wild type protein may not be ideal for purifying other mutants.  
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Figure 3.6. Repeated λ phosphatase digests. 

A. ~5 µg of undigested GST-fusion proteins.  
B. ~5 µg of the GST-fusion proteins digested with λ protein phosphatase. 
Proteins were loaded in the following order: WT-Ire1 (lane 1), W855F-W981F-Ire1 (lane 2), 
W855F-W1025F-Ire1 (lane 3), W981F-W1025F-Ire1 (lane 4), K799A-N802A-Ire1 (lane 5), K799A-
D828A-Ire1 (lane 6), K799A-N802A-D828A-Ire1 (lane 7). 

 

It is possible that the mutant proteins need different expression conditions to fold 

properly. W855F-W981F-Ire1 was tested in different induction conditions. A smaller 

culture was grown for 5 h at 37 ºC and after reducing the temperature to 20 ºC 

samples were taken after 20 h, 22 h, 24 h, 26 h, 28 h, 30 h and 32 h. Cells were lysed 

and incubated with glutathione sepharose 4B beads (GE healthcare). The beads 

were washed, mixed with 6 x SDS-PAGE loading buffer, denatured and analysed by 

SDS-PAGE. All different time points retained the two bands (data not shown) 

suggesting that either that protein needs even more different induction conditions 

(lower temperature, different pH) or alternatively, the mutations may cause ribosomes 

to fall off prematurely during translation giving rise to a truncated product. 
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3.2.3 Discussion 

The initial purification results suggest that the aim to purify functional tryptophan 

mutants may be more challenging than initially expected. The purification protocol has 

been optimised on WT-Ire1 and tested in the past with a variety of kinase mutants. As 

observed in the past and also in the results presented here, the kinase mutants purify 

fairly well as single condensed bands. Of course, the observations in this case are 

based on the gel image. However, in the case of the tryptophan mutants, only one of 

them (W855F-W1025F-Ire1) purifies as a single protein, while the other two most 

likely purify as mixtures of full length and truncated versions of the proteins. The 

results obtained here support this idea, but mass spectrometry analysis would be 

helpful to determine what the two bands are. If the proteins are truncated at the C-

terminus, they probably lack the whole RNase domain, which may present problems 

in obtaining mRNA splicing activity.  

The truncated proteins may be generated by the ribosomes falling off prematurely 

during translation or by proteases. In the first case, it may be necessary to further 

optimise induction conditions for purifying mutant proteins by adjusting the 

temperature or pH. In the second case, switching to a different E. coli strain for 

purification may solve the problem.   

Since the tryptophan residues are in different parts of the protein, it would be 

interesting to look at all of them using fluorescence spectroscopy. Therefore, all the 

mutants were retained for the analysis and characterisation of the kinase and RNase 

activities instead of spending months trying to first optimise the purification conditions.   
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3.3 Characterisation of the RNase and kinase activity of the tryptophan 

mutants 

3.3.1 Optimising the RNA labelling reaction 

The RNase (endoribonuclease) domain of Ire1 initiates a non-conventional splicing 

reaction producing a potent UPR transcription activator. XBP-1 is the best studied 

mRNA substrate for Ire1 cleavage activity. It is a direct target for Ire1 

endoribonucleolytic activity (Calfon et al., 2002) and contains two overlapping open 

reading frames (Nekrutenko and He, 2006). Activated Ire1 removes a 26 nucleotide 

intron and generates a frame shift to produce active XBP-1. In vitro, Ire1 activity can 

be measured by synthesizing XBP-1 mRNA, incubating it with the protein and 

analyzing the samples on a denaturing PAGE gel. If the protein retains endonuclease 

activity, four cleavage bands will be observed on the gel. Figure 3.7 A shows a 

schematic representation of the unspliced (XBP1u) and spliced (XBP1s) forms of full 

length XBP-1 mRNA. In the presence of tRNA ligase, a functional transcriptional 

activator is generated after removal of 26 nt. The plasmid used in the assay encodes 

the splice junctions and intron only. The XBP-1 splice sites form very similar stem-

loop structures to yeast HAC 1 mRNA (Yoshida et al., 2001), therefore, the fragment 

used in this study can be cleaved using yeast protein. Part B of Figure 3.7 shows the 

splicing products, which can be observed on a denaturing PAGE gel in the absence 

of the tRNA ligase. The 26 nt intron is probably too small to be visualised. 
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Figure 3.7. The structure of XBP-1 mRNA. 

A. Inactive XBP-1 has two overlapping open reading frames.  Small arrows show 
specif ic Ire1 cleavage sites, which are separated by 26 nt. Splicing and removal 
of this fragment generates a frame shift and produces a functional transcriptional 
activator.  

B. XBP-1 mRNA cleavage by Ire1 produces five mRNA fragments, four of which can be 
visualised on a denaturing PAGE gel. 

 

The initial attempts to generate RNA substrate were unsuccessful. An old in vitro 

transcription kit (purchased two years ago) was used in this case and the plasmid 

was extracted using the plasmid Midi kit. The gels exposed to autoradiography films 

had very faint or no bands suggesting that very few or no radioactively labelled 

nucleotides were incorporated into the RNA transcript and indicating that the reaction 

had not worked. The synthesis was repeated with a new in vitro transcription kit and 

freshly prepared materials, but unfortunately, it failed again. One of the few remaining 

explanations for repeated failure was potential cross contamination coming from the 

plasmid preparation, which may inhibit the RNA polymerase. The pBS-hXBP1-UN 

was successfully isolated using a plasmid extraction kit and linearised using the SpeI 

enzyme. The attempt to use the plasmid prepared in this way resulted in very low 

yields of the RNA transcript, therefore, the plasmid was digested with proteinase K to 

remove any impurities before using it for the labelling reaction. Proteinase K is a 

broad spectrum serine protease commonly used to remove any contaminating 

proteins, especially the RNases. Digesting protein impurities in the plasmid DNA 

sample with proteinase K followed by phenol:CHCl3 extraction and ethanol 

precipitation did not solve the problem either. However, proteinase K needs the 
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presence of a detergent such as SDS to denature the proteins and make the 

hydrophobic amino acid residues accessible for cleavage. The carry-over SDS in the 

plasmid preparation is likely to inhibit the T7 RNA polymerase resulting in low yields 

of labelled RNA substrate.  Doing a PCR clean-up step to remove the traces of SDS 

solved the issue and resulted in constant and reliable labelled RNA synthesis. Figure 

3.8 A shows an example of high yield RNA synthesis and Figure 3.8 B shows a low 

yield in vitro transcription as observed by exposing the gel to autoradiography film for 

2 min.  

 
Figure 3.8. Comparison of high yield and low yield in vitro XBP1 mRNA labelling 
reaction. 

A. Gel exposed to autoradiography fi lm for 2 min indicates successful RNA 
labelling. 

B. Gel exposed to autoradiography film for 2 min indicates poor RNA synthesis. 

 

3.3.2 All tryptophan mutants retain protein kinase activity 

In order to do spectroscopy studies on the tryptophan mutants they must first be 

tested for activity. Only those proteins that retain both their kinase and RNase activity 

can be used as reliable models for such analysis. Depending on their type, kinases 

transfer the γ phosphate from ATP onto serine and threonine or tyrosine residues on 

target proteins. In some cases, the protein kinases can be dual-specificity and 

phosphorylate both serine/threonine and tyrosine residues (Lindberg et al., 1992). In 

vitro, protein kinase activity can be measured as the incorporation of radiolabeled 

phosphate from [γ-32P]ATP into a protein substrate. In the case of Ire1, 

autophosphorylation is observed by incubating the protein with [γ-32P]ATP and 



52 
 

analyzing the proteins by SDS-PAGE. Only those proteins that retain kinase activity 

will have detectable bands using autoradiography.  

Figure 3.9 shows photos for the same gel stained with Coomassie brilliant blue (A) 

and imaged for radioisotope detection (B). The images show that the WT-Ire1 and all 

tryptophan mutants have visible bands on the phosphoimager scan and therefore 

have some kinase activity. The K799A-N802A-D828A-Ire1 mutant has a very faint 

band indicating lack of activity. It also works as a negative control for this study 

because of previous observations that kinase mutations inhibit the 

autophosphorylation of Ire1 (Rubio et al., 2011). The bands were quantified by 

dividing the intensity of the bands detected by phosphoimager by the intensity of the 

Coomassie staining. The obtained values were converted into percentage and the 

activity of each mutant was compared to WT-Ire1. Nevertheless, the assay has 

certain limitations given that the proteins may be purified in their phosphorylated 

forms and cannot incorporate all of the available radioactive phosphate. Figure 3.10 

shows the quantification assuming that the WT protein has 100% kinase activity. 

W855F-W981F-Ire1 purifies as two bands, so these two bands were quantified 

individually. Separately, they have reduced activity compared to WT-Ire1, but together 

W855F-W981F-Ire1 seems to be more active. W855F-W1025F-Ire1 purifies nicely as 

a single protein and has ~50% activity of the WT-Ire1 protein. As observed in Figure 

3.9, W981F-W1025F-Ire1 has very low intensity staining with Coomassie, but a bright 

band for the 32P detection. Quantification of bands gave ~120% activity compared to 

WT-Ire1. K799A-N802A-D828A-Ire1 is a kinase mutant, which was used as a 

negative control for the experiment gave <5% activity. 
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Figure 3.9. WT-Ire1 and all tryptophan mutants retain kinase activity. 
Example image of a kinase assay gel stained with Coomassie and then exposed to 
autoradiography imager.  

A. Coomassie brill iant blue staining of ~5 µg of loaded protein.  
B. 

32
P radioisotope detection using Typhoon 9400 variable mode imager. 

Proteins were loaded in the following order: WT-Ire1 (lane 1), W855F-W981F-Ire1 (lane 2), W855F-
W1025F-Ire1 (lane 3), W981F-W1025F-Ire1 (lane 4), and K799A-N802A-D828A-Ire1 (lane 5). 
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Figure 3.10. Quantification of kinase activity for the tryptophan mutants. 
The intensity of Coomassie staining was compared to the intensity of the 
phosphoimager scan and compared to the WT-Ire1 assuming that the wild type protein 
is 100% active. The two bands for W855F-W981F-Ire1 (Figure 3.9) were quantif ied 
individually. For W981F-W1025F-Ire1 (Figure 3.9), only the intensive bottom bands were 
quantif ied. Values are averages of two repetit ions ±SEM. 
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3.3.3 Only W855F-W981F-Ire1 retains RNase activity 

Once the in vitro transcription reaction was optimised, the tryptophan mutants were 

assessed for activity. Proteins were incubated with the RNA substrate in the presence 

of RNA cleavage buffer. RNasin was also used to prevent possible RNA degradation. 

No nucleotide, ATP and ADP were tested with each protein to optimise the RNA 

cleavage assay protocol. After the incubation, reactions were stopped using RNA 

cleavage stop solution followed by phenol:CHCl3 extraction and ethanol precipitation 

using glycogen as a carrier to recover the RNA. The RNA was then subjected for 

analysis on a denaturing PAGE gel. Figure 3.11 shows the results of this assay. The 

control lane contains only the RNA substrate and works as a negative control while 

the WT-Ire1 was used as a positive control. All proteins were incubated for 40 min in 

the absence of nucleotide, with ATP and with ADP. The results for WT-Ire1 indicate 

that nucleotide binding is essential for RNase activity. Therefore, in the future 

experiments ADP was always used as the nucleotide for RNA cleavage assay. 

Unexpectedly, the W855F-W1025F- Ire1 mutant, which purifies as a full length protein 

does not seem to retain any RNase activity. The only mutant showing some cleavage 

is the W855F-W981F-Ire1. The bands are less intense than for the WT-Ire1, which 

may be attributed to only a fraction of the protein mixture being active. 
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Figure 3.11. Only one tryptophan mutant retains RNase activity. 
Nucleotide binding is essential for RNase activity and only one of the tryptophan 
mutants (W855F-W981F-Ire1) retains some activity.  The blue arrows show cleavage 
bands. The samples were loaded in the following order: RNA substrate only ( lane 1 and 
8), RNA + WT-Ire1 (lane 2), RNA + WT-Ire1 + ATP (lane 3), RNA + WT-Ire1 + ADP (lane 
4), RNA + W855F-W1025F-Ire1 ( lane 5), RNA + W855F-W1025F-Ire1 + ATP (lane 6), 
RNA + W855F-W1025F-Ire1 + ADP (lane 7), RNA + W855F-W981F-Ire1 ( lane 9), RNA + 
W855F-W981F-Ire1 + ATP (lane 10), RNA + W855F-W981F-Ire1 + ADP (lane 11), RNA 
+ W981F-W1025F-Ire1 (lane 12), RNA + W981F-W1025F-Ire1 + ATP (lane 13), RNA + 
W981F-W1025F-Ire1 + ADP (lane 14).  

 

 

 

 

 

 

 

 

 

 

 



57 
 

 

3.3.4 Discussion 

Overall, this chapter describes the activity of the initially purified proteins in terms of 

their ability to autophosphorylate and process mRNA. Results for the kinase assay 

suggest that all tryptophan mutants retain at least partial kinase activity. The kinase 

assays are probably more qualitative than quantitative because of the limitations 

arising. In order to fully determine how active each mutant is, analysis of the enzyme 

kinetics should be done (Wang and Wu, 2002).  However, in this study, the selected 

assay showed that the mutants have at least some kinase activity and theoretically 

should be usable for the fluorescence spectroscopy studies. 

In terms of the RNase activity, the results showed potential limitations. The mutant, 

which purifies well seems to have lost RNase activity. This is not surprising because 

one of the mutated tryptophan residues (W1025) is in the RNase domain and may be 

essential for its function. Interestingly, the W855F-W981F-Ire1 shows some cleavage 

activity, which may be explained by the fact that both mutations are in the kinase 

domain and therefore do not need to affect the catalytic function. Nevertheless, the 

problem with this particular mutant as described in the protein purification chapter is 

that it purifies as two individual proteins, one of them potentially lacking the RNase 

domain. The results could be interpreted in a way, that the full length W855F-W981F-

Ire1 retains full RNase activity, while the truncated portion lacks any. If this is the 

case, the concentration of active protein in the assay is lower than in the WT-Ire1, 

resulting in more faint bands. 

There is a possibility that contamination during RNA synthesis may affect protein 

RNase activity. However, WT was used as a positive control for the experiments and 

in the case of contamination it would be unlikely to see any cleavage bands for WT-

Ire1. Since the RNA substrate used for activity studies is the same for all proteins, 

mRNA cleavage should be observed for active mutants as well.   
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3.4 Optimisation of the thrombin cleavage and characterisation of the 

RNase and kinase activity of the cleavage products 

3.4.1 Optimising the thrombin cleavage assay 

Thrombin is a protease used for GST tag removal from proteins expressed from 

pGEX vectors containing a recognition sequence for thrombin. pGEX-1λT is one of 

these vectors, therefore, thrombin was used in this study for GST cleavage. WT-Ire1 

was used for optimising the cleavage assay. Different temperatures including 4 ºC, 

20 ºC and 37 ºC were tested over the time course of 24 h. Figure 3.12 shows gel 

images for thrombin cleavage assay over time at 4 ºC, 20 ºC and 37 ºC. The bands 

were also quantified using ImageJ and cleavage efficiency was calculated by dividing 

the amount of protein cleaved by the total amount of protein. The results are shown in 

Figure 3.13. These figures indicate that thrombin is inactive at 4 ºC but active at both 

20 ºC and 37 ºC. The protein is digested faster and more fully at 37 ºC reaching 

>90% cleavage in less than 4 h, whereas at 20 ºC, >24 h are needed to achieve that. 

However, Ire1 is not very stable at higher temperatures so 24 h at 20 ºC was selected 

as the optimal temperature for cleavage to avoid exposing the protein to high 

temperature and still obtain a reasonably fast and efficient cleavage.   

As described in the cloning and transformations chapter and shown in Figure 3.2, two 

different constructs of Ire1 were used in this study. For thrombin cleavage at 4 ºC, the 

shorter fragment (C’(S658)-Ire1) was used, whereas for 20 ºC and 37 ºC, the longer 

fragment (C’-Ire1) was used. The result of that can be observed on the gels in Figure 

3.12, as the protein in part A is slightly smaller and migrates further on the gel than in 

parts B and C.  
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Figure 3.12. Optimisation of the thrombin cleavage assay. 

A. GST-tagged Ire1 was incubated with 10 µl of thrombin beads and 20 µl samples were taken for 
analysis over the 24 h time course. A: At 4 °C, B: At 20 °C, C: At 37 °C. The Ire1 construct 
used in part A (truncated linker domain) was different from the one used in parts B and C (full 
length linker domain) as indicated in Figure 3.2.  

 

 

 
Figure 3.13. Quantification of the cleavage activity over time. 
The bands from Figure 3.12 were quantif ied using ImageJ and the percentage of 
cleaved protein was plotted against time.  
 

 



60 
 

3.4.2 Thrombin cleavage has no effect on the protein kinase activity 

To test if proteins retain kinase activity after removal of the GST tag, WT-Ire1 was 

incubated with thrombin over 24 h. Samples were taken at different time points and 

kinase assay was done. Figure 3.14 shows that [γ-32P]ATP is still incorporated into 

the protein after 24 h and both GST-Ire1 and Ire1 have kinase activities. 

Quantification was done in the same way as for the previous protein kinase assay. 

The phosphoimager band intensity was divided by the Coomassie staining intensity 

and converted into percentage. Assuming that at the start of the experiment (0 h) the 

protein was 100% active, after 8 h and 24 h of incubation it retained ~95% and ~65% 

(Table 11) activity respectively. Again, the assay has its limitations in terms of 

quantification, but it shows that the protein retains its function, which is essentially the 

aim. All three tryptophan mutants also retain kinase activity after 24 h of thrombin 

cleavage (data not shown). 

 
Figure 3.14. Thrombin cleaved WT-Ire1 retains kinase activity. 
Kinase assay on thrombin cleaved samples over 24 h time course.  

A. Coomassie brilliant blue staining 
B. 

32
P radioisotope detection using Typhoon 9400 variable mode imager 

 

Table 11. Quantification of the protein kinase activity over 24 h. 

Time 0 h 1 h 2 h 4 h 8 h 24 h 
Activity (%) 100 74 109 80 95 64 
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3.4.3 Thrombin cleavage decreases the RNase activity over time 

The next step after assessing the kinase activity was to test if removal of the GST-tag 

would affect the protein RNase activity. WT-Ire1 was incubated with thrombin beads 

and samples taken over the 24 h time course were tested for RNase activity. Figure 

3.15 shows that the strong activity the wild type protein has at time zero is visibly 

reduced after 1 h. After 24 h the protein shows almost no activity suggesting that 

either long exposure to 20 °C or removal of the GST tag may inhibit the protein 

function or at least inhibit the dimerisation, which is needed for RNase activity (Zhou 

et al., 2006). Previous studies show that the activities of GST-fusion must be 

interpreted carefully due to the intrinsic property of GST to form dimers in solution 

(Niedziela-Majka et al., 1998). The result obtained here indicated that it may not be 

possible to prepare the tryptophan mutants for spectroscopic measurements, at least 

not in the time that was available to complete this project. However, since the RNA 

cleavage assay was optimised and there was an excess of the RNA substrate, some 

other mutants were purified and tested for activity, which will be described in the 

following chapter.   

 
Figure 3.15. Thrombin cleavage results in decreased RNase activity over time. 
RNA cleavage assay on WT-Ire1 incubated with thrombin for desired amount of time. 
Control lane contains RNA substrate only, other lanes contain the RNA substrate, ADP 
and WT-Ire1 incubated with thrombin for the indicated amount of time.  
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3.4.4 Separating the full length W855F-W981F-Ire1 from the truncated version 

In order to still proceed towards large scale purifications, the one mutant retaining 

both protein kinase and RNase activities was used. Since it purifies as two bands, we 

attempted to separate the full length W855F-W981F-Ire1 from its truncated version. In 

theory, if the protein is truncated at the C-terminus by ~10 kDa, the theoretical pI of 

the proteins may be different enough to separate them using anion exchange 

chromatography. Ion exchange chromatography is based on the interaction between 

the resin and the proteins of opposite charges. At a pH equal to the isoelectric point 

(pI) of the protein, it will have no net charge. All proteins with lower pI than the buffer 

used will have negative charge and all proteins with higher pI than the buffer will have 

positive charge. In anion exchange chromatography, positively charged resin binds 

negatively charged proteins. Proteins bound to the matrix can be reversibly replaced 

by ions in solution, therefore, salt gradient allows eluting proteins at different salt 

concentrations. All the theoretical pI values for this experiment were calculated using 

the online ExPASy Server (Compute pI/Mw tool) (Bjellqvist et al., 1994; Gasteiger et 

al., 2005). The theoretical pI of the full length protein is 6.47. ~10 kDa smaller protein 

truncated at the C-terminus has a theoretical pI of 6.49, which is not different enough 

for separation. However, the theoretical pI difference of thrombin cleaved proteins 

may be big enough for dividing them (6.68 and 7.43 respectively). W855F-W981F-

Ire1 was digested with thrombin for 24 h and loaded onto an anion exchange column. 

Two clear peaks were observed when eluting with 200 mM NaCl and 400 mM NaCl 

(Figure 3.16). SDS-PAGE analysis of the collected fractions showed some level of 

separation, but the results were inconclusive (data not shown). Eventually, due to lack 

of time and the observation that thrombin cleavage may negatively affect the RNase 

activity (see previous paragraph), the attempts to separate the proteins were 

abandoned.  
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Figure 3.16. Anion exchange elution peaks for W855F-W981F-Ire1. 
Proteins were eluted from anion exchange column with increasing salt concentration. 
Two clear peaks were observed when eluting with 200 mM NaCl and 400 mM NaCl as 
indicated above the graph.  

 

 

 

 

 

 

 

 

 

 

 



64 
 

3.4.5 Discussion 

There are a number of modifications, which were not done due to lack of time, but 

could be done attempting to improve the purification of the tryptophan mutants. 

Temperature has been shown to have effects in protein folding (Baldwin, 1986), 

therefore, the induction conditions could be modified further to also test the effect of 

lower temperatures and different induction time. The protein could also be processed 

faster after the elution by using desalting columns instead of dialysis. Sonication 

conditions could be adjusted for more and shorter cycles to minimise heating up of 

the sample. 

Overall, this chapter summarises the results of how thrombin cleavage affects the 

proteins used in this study. First of all, thrombin was shown to be inactive at 4 °C, 

which is the temperature preferred for all Ire1 manipulations. In order to avoid 

exposing the protein to 37 °C for extended period of time, 20 °C was selected as the 

optimal temperature for cleavage. However, it may be good to test the effect of 

shorter cleavage time at higher temperature, because the loss of activity could also 

be attributed to the extended time required for digest. As observed in Figure 3.13, 4 h 

at 37 °C is probably enough to cleave nearly all of the protein. This should be 

attempted in the future. Additionally, increased thrombin to Ire1 ratio in the assay may 

speed up the process and reduce the exposure time to higher temperatures.  

The results also indicate that thrombin cleavage does not have a strong effect on the 

kinase activity, but it completely abolishes the RNase activity over time. Again, this 

may be attributed to temperature sensitivity or indicate that the dimer formation via 

the GST tags is essential for RNase activity. Previous studies showing that Ire1 on its 

own is capable to process mRNA also use GST-fusion proteins (Sidrauski and 

Walter, 1997). The protein may lose activity because it becomes a monomer. It would 

be interesting to repeat the experiments with increasing concentrations of Ire1, which 

may force Ire1 to dimerise again. 
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3.5 Characterisation of the RNase activity of the kinase mutants 

3.5.1 K799A lacks kinase activity but retains RNase activity 

As the RNA cleavage assay was finally working more reliably and an excess of RNA 

substrate was generated, some kinase mutants were also tested for RNase activity. 

For that, K799A-Ire1, N802A-Ire1, D828A-Ire1 and N802A-D828A-Ire1 were purified 

using affinity chromatography and dialysed as previously described.  

All these have amino acid substitutions in the kinase domain and are fairly well 

characterised. K799 is a conserved catalytic residue in the nucleotide binding pocket 

predicted to coordinate the γ-phosphate of ATP (Rubio et al., 2011). N802 and D828 

are Mg2+ coordinating residues. Again, the proteins were incubated with and without 

nucleotide to show that nucleotide binding is necessary for RNA cleavage activity. 

Figure 3.17 shows that apart from WT-Ire1, which was used as a positive control for 

the assay, only K799A-Ire1 shows some cleavage activity. Other mutations may 

potentially be involved in controlling conformational changes related Ire1 activation or 

to RNase activity. 
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Figure 3.17. Only one kinase mutant shows RNase activity. 
RNA cleavage assay on four kinase mutants indicates some activity of K799A-Ire1. WT-
Ire1 was used as a posit ive control.  The blue arrows show cleavage bands. Samples 
were loaded in the following order: RNA substrate only (Lane 1), RNA substrate + WT-
Ire1 (lane 2), RNA substrate + WT-Ire1 + ADP (lane 3), RNA substrate + K799A-Ire1 
(lane 4), RNA substrate + K799A-Ire1 + ADP (lane 5), RNA substrate + N802A-Ire1 
(lane 6), RNA substrate +N802A-Ire1 + ADP (lane 7), RNA substrate + D828A-Ire1 (lane 
8), RNA substrate + D828A-Ire1 + ADP (lane 9), RNA substrate + N802A-D828A-Ire1 
(lane 10), RNA substrate + N802A-D828A-Ire1 + ADP (lane 11). 
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4 Final discussion 

4.1 None of the tryptophan mutants retains all the features of WT-Ire1 

As mentioned in the introduction, the intrinsic fluorescence of proteins owing to 

tryptophan is useful for studying the structure, dynamics and conformational changes. 

The principal fluorescence parameters of tryptophan such as the quantum yield, 

anisotropy, lifetimes, excitation and emission spectra are sensitive to the 

environment, therefore, this amino acid is used extensively as a probe for studying 

the protein structure (Lumry and Hershberger, 1978; Szabo and Rayner, 1980). The 

main aim of this study was to purify and characterise three single tryptophan mutants 

of yeast Ire1 in order to use them for such fluorescence measurements and better 

understand the ER stress sensor Ire1. Single tryptophan mutants of Ire1 have not 

been reported in the literature, however, the approach of producing Trp mutants 

generally has been known for a while (Markovic-Housley et al., 1999) . Protein 

structures are unique, so selecting the right amino acid substitution when generating 

mutants is very important. Tryptophan is usually substituted by phenylalanine or 

tyrosine due to their similar aromatic nature (Barnes and Gray, 2003). Phenylalanine 

and tryptophan both have very hydrophobic side chains and tyrosine is more reactive, 

therefore, phenylalanine was a reasonable choice for this study.  Nevertheless, 

tryptophan is unique in size and its chemistry, so mutations can sometimes have 

negative effects. We decided to generate all three possible single tryptophan mutants 

for the cytosolic domain of yeast Ire1 and characterise them aiming to test all of them 

or alternatively pick the best one in terms of activity for fluorescence spectroscopy 

measurements.  
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4.1.1 Two out of three tryptophan mutants fail to purify as clean full-length 

proteins 

Previously optimised methods were used to purify the cytosolic domain of yeast Ire1 

and its mutants as GST-fusion proteins. The quality of WT-Ire1 and the kinase 

mutants purified using this protocol in the past encouraged us to assume that the 

tryptophan mutants could be easily purified in the same way and then be used for 

fluorescence analysis. However, the mutants did not always behave as expected. 

Only one of them (W855F-W1025F-Ire1) purified as a single full-length protein and 

the other two purified as a mixture of a full length and a truncated protein. Since the 

difference in protein size is so small (~10 kDa), we initially hypothesised that the 

second band on the gels may be attributed to different state of phosphorylation. As 

previously reported in the literature, the cytosolic domain of yeast Ire1 is 

phosphorylated when purified from E. coli as a GST-fusion protein (Sidrauski and 

Walter, 1997). Both the kinase autophosphorylation assay (Figure 3.9, Figure 3.10) 

and the λ protein phosphatase digest (Figure 3.5, Figure 3.6) show results consistent 

with previous reports. However, the tryptophan mutants used in this study are novel 

and no reports on their behaviour could be found. Hence, we hypothesised that the 

mutations may have disturbed the kinase activity partially and the two bands 

observed on the gels upon purification could show different states of phosphorylation. 

The λ protein phosphatase digest showed that both bands migrate further down after 

de-phosphorylation rejecting the hypothesis and suggesting the bottom band may be 

a truncated version of the protein. In that case, the protein must be shortened at the 

C-terminus, because the N-terminus has a GST tag and purification would not be 

possible without it.  
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4.1.2 All tryptophan mutants retain kinase activity but mutations in the RNase 

domain cause loss of endonuclease function 

 

This study shows that all the tryptophan mutants retain some kinase activity 

compared to WT-Ire1 (Figure 3.9, Figure 3.10). As for the RNase activity, the story is 

more complicated. Figure 4.1 shows a very simplified graphical representation of Ire1 

with the mutated tryptophan residues indicated above. Two of these mutations are in 

the kinase domain and one in the RNase domain. Results show that the only mutant 

demonstrating some RNase activity is the mutant, which has both tryptophan 

substitutions in the kinase domain, suggesting that the W1025 residue must be 

essential for exerting the endonuclease function in Ire1.  

Studies show that Ire1 RNase domain is activated in a unique manner (Korennykh et 

al., 2009) when the kinase domain is positioned for trans-autophosphorylation in a 

way that the RNase domain could bind the mRNA substrate. Oligomerisation is likely 

to generate additional mRNA binding surface and promote interactions not possible in 

lower oligomeric states of the protein. The domains and motifs of human RNase L 

and yeast Ire1 have some similarities (Figure 4.2) (Dong et al., 2001). The authors 

suggest that the human RNase L W632 is a homolog for yeast Ire1 W1025 residue. 

The study shows that mutating W632 to alanine inhibits RNase activity, but the effect 

of yeast W1025 mutation was not tested. Other homologous residues were also 

compared in this paper and the function is often different, however, it may indicate the 

direct involvement of W1025 in RNase activity. The authors also struggled to express 

 
Figure 4.1. Simplified structure of Ire1. 
A simplif ied diagram showing the structure of yeast Ire1. Tryptophan mutations are 
indicated above the graph. The arrow represents the idea that the kinase domain 
controls the RNase domain. The grey shaded portion on the left is the part of the 
protein, which was not used for purif ication and the grey shaded part on the r ight is the 
predicted missing portion of the truncated single tryptophan mutant.  
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high levels of the W632A mutants in E. coli, suggesting the importance of this residue 

in correct protein folding. 

 
Figure 4.2. Comparison of the human RNase L and yeast Ire1 protein domains. 
SP:Signal peptide, TM: transmembrane domain. 
Adapted from (Dong et al., 2001). Authors suggest that the two proteins have various 
homologous residues, including W632 of human RNase L and yeast Ire1 W1025.  

 

The problem with the W855F-W981F-Ire1 mutant is that it contains a truncated 

version, which needs to be separated from the full-length protein. If the speculation 

that this mutant is truncated at the C-terminus is correct, it may have no RNase 

domain at all, because this is where the domain is located (see Figure 4.1). If nearly 

half of the protein used for activity assay is inactive, then the mutant protein is likely to 

be even more active than observed in this study.  

Quantification of activity is another challenge faced during data analysis. Software 

such as ImageJ or ImageQuant designed for reporting intensities of gel bands was 

sensitive enough to detect them, however, in the context of control RNA substrate 

those bands were not much stronger than background. Quantified images always 

gave <5% cleavage for all the proteins. Thus, gel images rather than amount of 

cleavage in percentage was chosen as the way to present results. 
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4.1.3 Removal of the GST tag causes loss of function 

One of the requirements for spectroscopy studies is to remove the GST tags from 

purified proteins because the GST has four tryptophan residues, which would 

interfere with the experiment and cause trouble interpreting the results. Thrombin 

cleavage assay was optimised in this study for small amounts of protein. Digests 

were carried out at 20 °C for 24 h (Figure 3.12, Figure 3.13). However, it was later 

discovered that this extended incubation time causes loss of RNase function. It is 

possible that exposure to 20 °C is the reason for function loss. It has been observed 

in the Schrӧder laboratory that Ire1 loses its activity over time when stored at -20 ºC 

and higher temperature is likely to speed up the process. However, as discussed 

before, cleavage at 37 °C for shorter time should be tested to see if the loss of activity 

may be attributed to prolonged exposure to higher temperature.  

It has been reported that dimerisation is essential for Ire1 RNase function (Tirasophon 

et al., 2000) and mutations that inhibit dimerisation cause loss of UPR activation (Lee 

et al., 2008). Loss of activity over time in this case may be explained by slow removal 

of GST tags, whose crystal structures have been reported to have ability for dimer 

formation (Fabrini et al., 2009; Parker et al., 1990).  

The crystal structure for human Ire1α has been determined and revealed that in the 

presence of ADP, the inactive Ire1 forms face-to-face dimers (Ali et al., 2011), 

different form the back-to-back dimers observed in RNase active conformation in 

yeast (Lee et al., 2008). Considering these observations, a potential mechanism of 

activation has been proposed recently (Walter and Ron, 2011). They suggest that in 

the presence of unfolded proteins, the lumenal domains rearrange to form front-to-

front dimers, which correspond to pre-autophosphorylation complex. After 

autophosphorylation, the complex forms back-to-back dimers, which can then form 

higher order structures, which activate the RNase domain.  

In the context of this study, it is possible that the low concentrations of monomeric 

Ire1 are unable to form higher order structures and, as a result, unable exert its RNA 

cleavage function. 
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The loss of RNase function was observed at the same time when separation of the 

two W855F-W981F-Ire1 proteins was attempted. The separation showed some 

progress and I strongly believe that the GST-free proteins can be separated using 

anion exchange chromatography. However, the observation that thrombin cleavage 

causes loss of activity led to stopping the experiments and briefly looking at the 

kinase mutants, because there was not enough time left to try and optimise the 

thrombin cleavage again. This would be one of the first things to do in the future 

studies to test the hypothesis that thrombin cleavage makes Ire1 monomeric and if 

larger amounts of protein may dimerise again. The purchased thrombin has the 

following activity: 200 µl of a 50% suspension of resin will cleave >85% of 1 mg of 

fusion protein in 1 ml in 4 hours at 20 °C (information provided in the RECOMT 

product technical bulletin). In order to optimise thrombin cleavage in less than 24 h, it 

would first be necessary to start purifying thrombin in the laboratory because it is 

much more cost effective. Commercially available thrombin is expensive, so purifying 

it in the lab would allow using larger amount of thrombin to reduce incubation time 

and possibly prevent activity loss. Potentially, thrombin may have reduced activity in 

the presence of the GST-elution buffer and the protein may need to be desalted into a 

different solution to increase activity. Alternatively, much larger concentrations of 

thrombin must be used to reduce the incubation time and preserve activity.  

4.2 Ire1 Kinase activity is not essential for RNase activity 

As described in the introduction, preliminary work in the lab suggested that K799, 

N802 and D828 are essential for controlling the RNase activity. K799 known for 

catalysing the γ phosphate transfer of ATP (Rubio et al., 2011), D828, known for 

coordinating the β and γ phosphates with Mg2+ (Chawla et al., 2011)  and N802, which 

is also likely to be involved in coordinating Mg2+. The proposed model suggests that 

ADP binding to the kinase domain activates the RNase domain of yeast Ire1 and 

therefore explains increased RNase activity of K799A, N802A and D828A mutants. 

This study looks into the same mutants and provides contrasting results. Of course, 

the results are rather limited to draw conclusions, but lack of RNase activity was 

observed by N802A-Ire1, D828A-Ire1 and N802A-D828A-Ire1 (Figure 3.17). The only 

kinase mutant showing some RNase activity is K799A-Ire1 supporting the hypothesis 
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that phosphorylation may not be essential for XBP-1 splicing. It is not clear why other 

mutants have lost activity. The assay itself seemed to work well, both positive and 

negative controls worked as expected. The reasons may be similar to why the 

tryptophan mutants have lost activity, prolonged dialysis or overheating during the 

sonication when lysing the cells. The only certain conclusion drawn from the RNA 

cleavage assays is that nucleotide binding is always essential for RNase activity.  

4.3 Future studies 

If more time was available, it would be interesting to continue with this project using a 

variety of approaches. 

Naturally, the first thing to do would be to try to further optimise the expression 

conditions for the tryptophan mutants, test lower temperatures and see if that affects 

protein folding. Adjusting the cell lysis conditions may also be useful. Performing all 

the manipulations at 4 °C and reducing the length of sonication cycles to prevent the 

protein from overheating may solve loss of activity issues.  

In order to determine the nature of the truncated species, it would be interesting to 

elute the different bands from the SDS-PAGE gels and analyse them using mass 

spectrometry.  

During the protein elution step, I would analyse a small amount of each fraction on a 

gel to see if all of them have truncated protein. If possible, I would only pool the 

fractions containing full length protein. If not, then I would try to change the E. coli 

expression system. 

Alternatively, it would be interesting to try different substitutions of tryptophans to see 

if maybe the phenylalanines negatively affect the Ire1 function. 

Optimising the thrombin cleavage again is necessary in order to test, whether larger 

amounts of Ire1 sustain RNase activity after removal of the GST tag. As mentioned 

before, low protein concentrations may favour the monomer, which causes the 

inactivity (Li et al., 2010).  



74 
 

Yeast survival assays for all the tryptophan mutants may also offer better 

understanding of the effect of these particular mutations on the protein activity. The 

yeast system offers some advantages like short growth time and easy genetic 

manipulations for various genetics and molecular biology experiments. 

Another alternative would be to switch to more complex eukaryotic systems. 

Genetically manipulating human or mice cells to generate tryptophan mutants may 

allow doing a western blotting analysis using anti XBP-1 antibodies and testing if 

these particular mutations also reduce RNase activity in higher eukaryotes.  
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5 Conclusions 

In conclusion, this study provides evidence that none of the single tryptophan mutants 

of yeast Ire1 can easily be used for fluorescence spectroscopy studies. W855F-

W1025F-Ire1 purifies as a single full length protein, has kinase activity but lacks 

detectable RNA cleavage activity due to a tryptophan mutation in the RNase domain. 

W981F-W1025F-Ire1 purifies as two bands, a full length and possibly a truncated 

version. Most of this protein is truncated, it retains the kinase activity but also lacks 

RNase activity, again, most likely due to a mutation in the domain and because most 

of this protein purifies as a truncated version. W855F-W981F-Ire1 is the only mutant 

retaining kinase activity and showing some splicing potential, but it also purifies as 

two bands and a significant proportion of the protein used in the experiments was 

possibly truncated.  

In order to still try and use W855F-W981F-Ire1, thrombin cleavage protocol to remove 

the GST tag must be optimised for much shorter time and/or lower temperature. In 

the case that these mutants retain activity after GST release, proteins may be 

separated using anion exchange chromatography. In the case this still results in lack 

of splicing, alternative mutations may be made. Tryptophan could also be mutated to 

alanine or other hydrophobic amino acids. 

During this study, the RNA splicing assay was optimised from solving issues of 

reliably synthesising the RNA substrate in vitro to obtaining clear bands in the 

cleavage assay. This assay was used to show that GST release from the protein 

results in loss of RNase activity and that out of four kinase mutants tested here, only 

K799A-Ire1 has RNase activity. This result indicates that phosphotransfer may not be 

essential for XBP-1 splicing.  
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