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Abstract 

Movement disturbances in individuals with Parkinson’s disease (PD) have been associated with 

difficulties to plan complex actions. Performance of simple and complex actions overloads 

resources for individuals with Parkinson’s disease (PD). However, it is unclear if central 

resources required to plan gait adjustments while walking exacerbate gait disturbances of 

patients with PD. More specifically, it is unclear how gait impairments, sensory processing, and 

the dopaminergic system influence the load on processing resources (e.g. cognitive load) during 

the planning of step modifications. In order to investigate the relative influence of these factors 

on cognitive load and its impact on gait control, three experiments were conducted that utilized 

a naturalistic gait task, which challenged planning resources during obstacle avoidance. While 

the tasks were being performed, dual task interference on gait, and dual task performance 

were assessed in order to estimate participants’ cognitive load during these tasks. Gait control 

during obstacle approach and crossing were also evaluated to observe dual task interference on 

steps known to demand greater planning. In experiment 1 (chapter 2), the influence of gait 

impairments on planning resources was investigated. The results of this study demonstrated 

that the planning of gait adaptations in participants with freezing of gait (PD-FOG) resulted in a 

greater increase in cognitive load, relative to participants with more preserved gait PD-nonFOG 

(same disease severity without severe gait impairments). The influence of sensory processing 

on movement planning was investigated in experiment 2 (chapter 3). The results of this study 

revealed that removal of visual feedback of self-motion affected gait control when the planning 

of gait adjustments was necessary for successful crossing. In addition, PD patients prioritized 
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walking over the secondary task when visual feedback was reduced, in order to compensate for 

impaired proprioceptive processing. Lastly, experiment 3 investigated the influence of the 

dopaminergic system on gait adjustments. The results of this study revealed that dopaminergic 

replacement partially decreased the effect of cognitive load on gait and drastically improved 

gait velocity as participants approached obstacles. This study also demonstrates that the 

cognitive load and the dopaminergic impairments in PD, did not force patients to rely more 

than healthy participants, on visual information from obstacle as to correct step adjustments. In 

sum, the current thesis suggests that increases in cognitive load during the planning of gait 

adaptations causes gait impairments, in individuals with PD. These increases in cognitive load 

appear to be associated with impaired sensorimotor processing during gait. Dopaminergic 

activity modulated sensorimotor processing during movement planning and partially the 

cognitive load caused by movement planning. Finally, the results of these studies suggest that 

the complexity to plan gait adjustments, while walking, overtax processing resources of 

individuals with PD causing some observable gait impairments.  
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CHAPTER 1 - INTRODUCTION 

 

Pathophysiology of Parkinson’s disease 

 

Parkinson’s disease (PD) is a neurological syndrome caused by the degeneration of 

dopaminergic neurons in the substantia nigra pars compacta of the basal ganglia (BG). PD is the 

second most common neurological disease affecting people over 60 years of age (Alves, Forsaa, 

Pedersen, Dreetz Gjerstad, & Larsen, 2008). The cardinal symptoms of PD are resting tremors, 

bradykinesia, and rigidity (Hughes, Ben-Shlomo, Daniel, & Lees, 2001). During the early stages 

of PD, the symptoms are predominantly unilateral, but as the disease progresses the symptoms 

become bilateral. Gait and postural control can also be affected by the disease. The 

Parkinsonian gait is usually characterized by short steps, slowness, hesitations, “freezing of 

movement,” while changes in postural control are characterized by difficulties compensating 

for postural instabilities in a rapid and complete manner; with a minimum of steps (Bloem, 

1992; Hoehn & Yahr, 1967). These motor abnormalities correspond in great part with BG and 

dopaminergic dysfunction in individuals with PD. 

The BG are tonically active structures that regulate motor, sensory, and complex 

cognitive functions through segregated and parallel cortico-striatal-thalamic loops (Alexander & 

Crutcher, 1990a, 1990b, 1990c; Alexander, Crutcher, & DeLong, 1990). The BG are composed of 

five structures: caudate nucleus, putamen, globus pallidus, subthalamic nucleus, and substantia 

nigra. The majority of the cortical inputs that are processed by the BG are received by the 

striatum, which is composed of the caudate nucleus and the putamen. The substantia nigra is 

https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.1t3h5sf
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.1t3h5sf
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.2u6wntf
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.2jxsxqh
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.2jxsxqh
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.4f1mdlm
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.1fob9te
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.1fob9te
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.3znysh7
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.2et92p0
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.tyjcwt
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the structure with the greatest concentration of dopaminergic neurons in the brain. 

Dopaminergic neurons in the substantia nigra are projected to the striatum and compose the 

nigrostriatal pathway. The dopamine has important inhibitory/disinhibitory function on the 

striatum. Dopamine modulates two dopaminergic receptors in the striatum that are important 

to motor functions: D1 and D2 receptors. These receptors have distinct contributions to the 

control of movements. The D1 receptor modulates BG structures that comprise the direct 

pathway, which is responsible for reinforcing “ongoing” movements (e.g. maintenance of 

amplitude, velocity and acceleration during execution). On the other hand, the D2 receptor 

modulates BG structures (e.g. subthalamic nucleus), that comprise the indirect pathway, which 

is responsible for inhibitory processes such as initiating and stopping movements (Wichmann, 

DeLong, Guridi, & Obeso, 2011). The indirect pathway is primarily involved with the selection of 

motor plans, whereas the direct pathway is involved in the execution and maintenance of 

motor plans (Obeso, et al., 2009; Wichmann, et al., 2011).  However both pathways work 

synchronically in order to optimize motor performance especially during movement 

sequencing.  

In the BG caudal and dorsal regions of the putamen, have distinct contributions to 

sensory and motor functions, while rostral and ventral regions of the striatum, specifically the 

caudate nucleus, are important to modulate cognitive and motor functions. The putamen 

receives dense dopaminergic projections from somatosensory areas and from the visual eye 

fields (Alexander & Crutcher, 1990a, 1990b, 1990c). Lesion in the putamen is associated with 

sensorimotor deficits and difficulties to generate automatic movements. The caudate nucleus 

receives dopaminergic projections mostly from prefrontal cortex such as the dorsolateral, 

https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.4du1wux
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.4du1wux
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.2r0uhxc
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.4du1wux
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.1fob9te
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.3znysh7
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.2et92p0
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ventral, and orbitofrontal cortex (Middleton & Strick, 2000a, 2000b). Thus caudate nucleus has 

important contribution to high order cognitive processing (Lewis et al., 2003; Owen, 2004). As 

PD progresses, cortical-striatal connections become weaker and are eventually disconnected 

due to degeneration of the dopaminergic neurons. The dopaminergic degeneration progresses 

from sensorimotor regions to cognitive regions of the striatum as the disease progresses (Kish, 

Shannak, & Hornykiewicz, 1988). This pattern of dopaminergic denervation explains why motor 

difficulties in PD patients are more debilitating than cognitive impairments during the initial 

stages of the disease. Therefore, the striatal dopaminergic unbalance determines the severity 

of motor and cognitive impairments in PD. 

Dopaminergic denervation in patients with PD disrupts the balance between excitatory 

and inhibitory activity in the BG. Specifically in PD, increased inhibition of the thalamus, and 

decreased excitation of other cortical areas, disrupts the functioning of motor, cognitive, and 

sensory loops (Obeso, et al., 2008). Motor deficits are more evident than cognitive deficits in 

PD, since the majority of the output from the  BG is directed to motor areas such as premotor 

cortex, supplementary motor area, and primary motor cortex (Alexander & Crutcher, 1990a; 

Alexander, et al., 1990). Dopaminergic replacement using L-dopa is the gold standard treatment 

for PD. Motor symptoms such as bradykinesia (e.g. slowness and hypometria) can be alleviated 

using dopaminergic medications. Cognitive dysfunctions such as working memory capacity and 

cognitive planning can also be improved after dopaminergic medication intake. However, only 

PD patients in later stages of the disease benefit from dopaminergic medication to improve 

cognitive capacity (Owen, 2004; Owen, Downes, Sahakian, Polkey, & Robbins, 1990). 

Interestingly, some studies showed worsening of motor, sensory and cognitive functions in PD 

https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.1egqt2p
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.3ygebqi
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.1664s55
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.1fob9te
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.tyjcwt


4 
 

 

patients after dopaminergic treatment. These impairments caused by dopaminergic treatment 

can happen because high concentrations of striatal dopamine create noise, which impairs signal 

processing by striatal-frontal pathways (Cools, Barker, Sahakian, & Robbins, 2001). In the other 

hand dopaminergic release on striatal areas with reduced dopaminergic activity, caused by 

dopaminergic denervation, can re-establish the balance between excitatory and inhibitory 

activity improving the functioning of the BG.    

Some theoretical models suggest that the remaining striatal dopaminergic activity in PD 

allow patients to perform a limited number of motor activities (Lewis & Barker, 2009b). 

Reduced striatal dopaminergic activity results in over activation of the globus pallidus internus 

(GPi) and substantia nigra pars reticulata (SNr) causing inhibition of locomotor centres in the 

brainstem such as the Pedunculopontine (PPN). This increased inhibitory activity caused by 

dopaminergic depletion in the striatum, affect motor output which can be observed by 

increased movement slowness and rigidity.  Recent evidences also suggest that deficits in the 

motor output can be exacerbated when individuals with PD negotiate external stimuli that 

needs to be processed in one or more than one loops within basal ganglia, when there is not 

sufficient striatal dopamine (e.g. “OFF” state) to achieve the goal of the task (Lewis & Barker, 

2009a, 2009b). Thus dopaminergic replacement therapy can normalize the processing flow 

within basal ganglia loops preventing that external stimuli exacerbate motor deficits in 

individuals with PD.  

Recent theories about BG suggest that deficits in sensorimotor loops in PD, associated 

with more automatic and habitual behaviours, induce PD patients to rely more on brain 
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circuitry that underline less automatic or goal-directed behaviours. Redgrave et al. (2010) 

argued that: “These patients (PD) may therefore be forced into a progressive reliance on the 

goal-directed mode (less automatic and more attentional controlled) of action control that is 

mediated by comparatively preserved processing in the rostromedial striatum” p.760. 

Consequently PD patients will require greater conscious control over behaviours that should be 

performed with a minimum of central processing resources when being internally guided (i.e. 

without external feedback). This can explain why salient sensory information in the 

environment (e.g. visual and auditory cues) can help PD patients to improve motor control and 

the automaticity of movements.  

Cognitive processing and motor control in PD 

 

An important function of the BG is associated with movement automaticity. BG is 

responsible to process information at a subconscious level thus reducing cortical demand to 

perform actions. Impaired movement automaticity depletes resources to perform simple tasks 

in PD. In addition, performance of concurrent tasks or multiple tasks simultaneously affect PD 

patients more than healthy people. This exacerbated effect of multiple tasks on motor 

performance, among PD patients, is associated with an increased use of processing resources to 

perform motor tasks. Thus when two tasks are performed simultaneously both  tasks might be 

sharing the same resources, which compromises the performance of one or both tasks (Brown 

& Marsden, 1991). Since humans have limited resources to perform tasks (Wickens, 1976, 

2008), the increased demand for processing resources can lead to an overload in central 

capacity, consequently decreasing performance of tasks. It is important highlight that in PD the 
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processing resources can be limited by dopaminergic depletion and consequently by BG 

dysfunction (Poletti & Bonuccelli, 2013). 

Norman and Shallice (1980) proposed a model for attentional control over willed actions 

that was called the “supervisory attentional system” (SAS). The SAS has a limited capacity and 

can be called upon in specific contexts. The contexts where SAS is recruited are: (1) when 

planning and making a decision; (2) during novel or poorly learned tasks where preprogrammed 

schemata are not available; (3) and situations where a strong habitual response or temptation 

is involved (e.g., go/no-go task; Stroop test). In terms of movement control, the SAS can be 

important when movement complexity is increased, such as when the coordination demand is 

more complex (e.g., bimanual control out-of-phase, shifting motor plans, walking on a narrow 

beam, turning during walking, avoiding obstacles, walking on a busy sidewalk, etc.) or during 

the early stages of motor learning when movement is not automatized yet.  

Previous research has argued that PD “depletes” the SAS’s resources. Using a dual task 

paradigm Brown and Marsden (1988) argued that movement performance can deplete central 

resources of individuals with PD more than healthy controls. It was argued that individuals with 

PD use attentional resources to supervise the production of faulty motor plans (e.g. foot 

tapping). The authors also demonstrated that movement complexity also influence the amount 

of central resources allocated to supervise movements (e.g. foot tapping vs lip movements). 

Other studies have suggested that the effects of cognitive tasks on movements in individuals 

with PD could be explained by sharing capacity theory (Pashler, 1994). According to this theory 

when two tasks use the same resources the performance of one or both will be compromised. 

More recently imaging studies suggest increased processing demand in basal-cortical loops 

https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.1y810tw
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(limbic and cognitive) may exacerbate the abnormal inhibitory output from basal ganglia to 

motor centers. However, the neural basis for such attentional demand has been a matter of 

debate. 

However, these early theories do not distinguish between resources overload and 

depletion. An overload can be defined based on the amount of neural activation necessary to 

perform a task whereas depletion is defined as a reduction in resources available to perform 

tasks. These ideas about resources overloading and depletion have been recently explored by 

imaging studies in PD. Imaging studies have found that individuals with PD recruit more neural 

resources to overcome BG dysfunction to perform automatic movements (Wu & Hallett, 2005). 

Interestingly, even simple movements (e.g. finger tapping) performed by patients with PD may 

demand more neural activation (e.g., dorsolateral prefrontal cortex, anterior cingulate cortex, 

temporal cortex, parietal areas) compared to healthy controls. Difficulties automating 

movements and deficits in networks underlying executive functions may both overload 

cognitive processing during movements in PD (Wu & Hallett, 2008). Although an overload in 

cortical-subcortical neural resources in PD was seen in these studies, we cannot ignore the fact 

that basal ganglia have reduced (depleted) capacity to process information because of 

decreased striatal dopaminergic activity. Therefore, the performance of more complex 

movements that demand greater planning and organization may have a higher demand on 

cognitive processing for individuals with PD. Consequently, the planning demand necessary to 

perform these movements may compromise the motor output.  

 
Dual tasks are helpful to estimate the demand for resources when a  movement is 

performed in PD. Studies have found that dual tasks have a larger impact on well learned 

https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.3s49zyc
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.279ka65
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movements, such as gait, of patients with PD, compared to healthy controls (Rochester et al., 

2010; Rochester et al., 2004). Remarkably, presenting external cues to patients with PD while 

they walk (e.g., metronome, transversal lines on the floor, proprioceptive cues) has been found 

to help reduce the effects of dual tasks on their gait (Baker, Rochester, & Nieuwboer, 2008; 

Rochester, et al., 2007). These studies suggest that the abnormal attentional control over gait in 

patients with PD may be associated with difficulties monitoring or allocating attention to 

relevant sensory information used to plan and prepare steps.  Additionally, increased demand 

in cognitive, sensory and limbic loops may exacerbate inhibitory output from BG to motor 

centres (Lewis & Barker, 2009a). Therefore, although cognitive resources can be used to 

compensate gait impairments, an overload in cognitive processes may also exacerbate 

movement impairments in individuals with PD causing slowness and variability. Thus, it is 

important to carefully distinguish between the terms depletion and overload when considering 

how the basal ganglia contribute to movement control in PD. 

Gait variability and dual-task performance in PD 

 

Movement variability is often associated with a lack of automaticity during motor 

performance. Hence measures of variability may be indicative of the amount of conscious 

processing necessary to perform movements. Although self-paced gait is controlled in great 

part at the spinal level, recent studies have demonstrated that degeneration of mental 

functions, such as attention and executive functions, is related to increased variability and 

slowness in elderly individuals and individuals with PD (Hausdorff, Schweiger, Herman, Yogev-

Seligmann, & Giladi, 2008; Montero-Odasso et al., 2009; Yogev-Seligmann, Hausdorff, & Giladi, 

https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.26in1rg
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.1x0gk37
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2008). This suggests that cognition has an important role on gait control for individuals with 

neurological impairments in general. It is speculated that dual-task influence on gait is 

increased among individuals with neurological impairments due to the increased conscious 

control required to maintain gait stability while planning resources are shared with processing 

of the dual task.  

 

Gait variability among individuals with PD is higher than in healthy individuals 

(Hausdorff, Cudkowicz, Firtion, Wei, & Goldberger, 1998). In addition, when patients perform 

dual-tasks, gait slowness and variability are significantly increased compared to healthy 

individuals performing the same dual-task (O'Shea, Morris, & Iansek, 2002; Yogev et al., 2005). 

These studies speculated that decreased gait automaticity make PD patients more susceptible 

to dual-task costs. Although it is unknown exactly why dual-tasks affect movements in PD 

patients, limited processing resources in the striatum could potentially be the core cause of the 

movement impairments provoked by dual-task or multi-task performance. This idea has been 

confirmed by recent imaging studies, that show increased inhibitory output from basal ganglia 

to motor centers in individuals with PD, when they perform tasks with increased cognitive and 

sensorimotor load (i.e., performing a Stroop task while passing through virtual narrow 

apertures) (Lewis & Barker, 2009b; Shine, Matar, Ward, Bolitho, Gilat, et al., 2013; Shine, 

Matar, Ward, Bolitho, Pearson, et al., 2013). Therefore limited resources for cognitive and 

sensorimotor processing in the striatum might exacerbate gait impairments in PD. 

The variability of the step times has been considered the key variable to understand the 

influence of dual-task on gait. This variable is sensitive to increases in central processing. 
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However it is important to note that other important gait variables such as spatial variables 

have not been evaluated in previous studies because of methodological limitations. Gait in 

these studies was assessed by using foot switches that are only able to measure the duration of 

each step cycle. The importance of measuring spatial variables resides on the fact that BG 

regulate the amplitude of movements (Desmurget, Grafton, Vindras, Grea, & Turner, 2004). 

Regulation of the step amplitude is extremely important in situations where individuals need to 

modulate distances to avoid contact with objects in the environment. Increased spatial 

variability may reveal deficits to plan and/or maintain the amplitude of steps that was centrally 

set (Morris, Iansek, McGinley, Matyas, & Huxham, 2005). Increased spatial variability of steps 

prior an obstacle would suggest that the movement plan was incomplete so individuals had to 

perform more adjustments or re-plan the obstacle avoidance. However little is understood 

about the dual-task interference on spatial planning in PD. 

Several types of dual-tasks have been used in previous studies with individuals with PD. 

However, the effects of secondary tasks on gait in PD may be confounded with increased 

demand on either cognitive or motor systems. Dual-tasks in previous experiments included 

tasks with cognitive and motor components (e.g., speech articulation), such as number 

subtraction (Yogev et al., 2005) where participants were required to perform mental 

calculations but also say the results aloud, which added an additional motor load to the tasks. 

Verbal fluency tasks as secondary tasks have also been used in previous experiments (Camicioli, 

Oken, Sexton, Kaye, & Nutt, 1998) where participants were asked to say as many words that 

begin with a specific letter. However, it should be acknowledged that this task also involves jaw 

and vocal cord voluntary movements, since individuals are required to say the words aloud. 
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Carrying trays while walking (Bond & Morris, 2000; Rochester et al., 2004) has also been used 

as a secondary task, however the fact that individuals need to move their upper limbs while 

walking to stabilize the cups on the tray increases the overall motor load during the gait task. 

Thus, because of the lack of specificity of secondary tasks, it is difficult to isolate the influence 

of cognitive load from motor load during gait control.  Therefore, the influence of cognitive load 

on gait should be better understood with secondary tasks that only involve cognitive processing 

and do not involve interfering secondary motor requirements.  

Phoneme monitoring is an example of a secondary task that requires the exclusive use 

of cognitive resources, since no verbal motor response is required. This task consists of 

monitoring or silently counting one or more phonemes (e.g. “of”) spoken in an audio track. The 

complexity of phoneme monitoring can be increased by asking individuals to monitor more 

than one phoneme in an audio track (Pieruccini-Faria, Jones, & Almeida, 2014; Yogev et al., 

2005). Sustained attention and working memory are the main cognitive processes required to 

perform this task. Although this task is exclusively cognitive, gait performance and mental 

performance (counting) in PD patients can be significantly affected when individuals attempt to 

count the number of phonemes spoken on an audio track. This suggests that sensorimotor 

processing and cognitive processing may share the same processing resources in individuals 

with PD, although this requires further study. 

Freezing of gait (FOG): The extreme case of loss of automaticity in PD 

 

Freezing of gait (FOG) is an extreme case of gait dysfunction in patients with PD. FOG is 

an episodic phenomenon that affects nearly 30% of patients with PD (Giladi, et al., 2001). This 

https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.3o7alnk
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phenomenon is characterized by sudden and involuntary interruptions in the progression of 

patients’ gait, which can be elicited by environmental conditions such as narrow apertures, 

turning, dual tasks, and obstacles on the walkway. FOG has been consistently associated with a 

severe loss of movement automaticity and impaired cognitive resources such as executive 

functions (Amboni, Cozzolino, Longo, Picillo, & Barone, 2008; Camicioli, Oken, Sexton, Kaye, & 

Nutt, 1998; Heremans, Nieuwboer, Spildooren, et al., 2013; Naismith, Shine, & Lewis, 2010; 

Vercruysse, et al., 2012).   Within the gait spectrum disorder observed in individuals with PD, 

FOG can be characterized as the extreme case of gait impairment among individuals with PD. 

FOG symptoms lead individuals with PD to progressive loss of independence and disability. 

Patients with FOG (PD-FOG) may display distinct and more severe gait impairments 

compared to patients with PD who do not experience FOG (PD-nonFOG), such as greater step-

to-step variability, shorter step length, slower gait velocity, and gait asymmetry (Nanhoe-

Mahabier, et al., 2011; Plotnik, Giladi, Balash, Peretz, & Hausdorff, 2005; Plotnik, Giladi, & 

Hausdorff, 2008) during free gait. These gait abnormalities in PD-FOG are usually magnified 

when environmental conditions challenge gait control, such as when they need to turn; 

especially if the turning requires sharp angles (Bhatt, Pieruccini-Faria, & Almeida, 2013; 

Spildooren, et al., 2010; Spildooren, et al., 2012), to pass through narrow apertures (Lebold & 

Almeida, 2011), or to avoid unexpected obstacles (Snijders, et al., 2009). In situations when 

these patients freeze, increased visuospatial processing, sensorimotor integration (Ehgoetz 

Martens, Pieruccini-Faria, & Almeida, 2013; Ehgoetz Martens, Pieruccini-Faria, Silveira, & 

Almeida, 2013), and greater cognitive load (Bhatt, Pieruccini-Faria, & Almeida, 2013; Shine et 

https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.4d34og8
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.2xcytpi
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.2xcytpi
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.3fwokq0
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.3cqmetx
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.upglbi
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.1rvwp1q
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.1rvwp1q
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.2iq8gzs
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.xvir7l
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.xvir7l
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.1ksv4uv
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.haapch
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.319y80a
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.1mrcu09
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.1mrcu09
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.48pi1tg
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.1pxezwc
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.1pxezwc
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.49x2ik5
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.49x2ik5
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al., 2012; Spildooren et al., 2010) are required.  Therefore, impaired cognitive and sensorimotor 

processing may contribute to FOG behaviours. 

Studies demonstrate that PD-FOG patients often require extra attentional resources to 

control self-paced gait compared to non FOG patients (Camicioli et al., 1998); during more 

complex situations such as when turning (Spildooren et al., 2010); during unusual situations 

such as walking backwards (Hackney & Earhart, 2009), or passing through narrow doorways 

(Knobl, Kielstra, & Almeida, 2012) compared to PD-nonFOG. These studies demonstrated that 

the performance of secondary tasks while walking affects the gait parameters of PD-FOG more 

than they do for PD-nonFOG. According to previous studies the influence of dual-tasks on gait 

of PD-FOG is associated with cognitive loading, and not with poor dual-task abilities (e.g. 

shifting between tasks; Knobl, et al., 2010; Shine et al., 2013).  Researchers have proposed that 

reduced automaticity (Heremans, Nieuwboer, & Vercruysse, 2013; Nieuwboer & Giladi, 2013; 

Shine, Matar, et al., 2013) and impaired cognitive processing (e.g. executive functions) may be 

disruptive to gait control, and movements in general when PD-FOG patients have to voluntarily 

adapt gait behaviour to environmental conditions. However the nature of FOG behaviours in 

patients with PD remains unclear, and warrants extensive investigations using gait tasks that 

can trigger FOG episodes. 

Sensorimotor processing during gait in PD 

 

Impaired sensory processing has been considered one of the causes of motor 

disturbances in patients with PD. Impaired kinesthesia (Demirci, Grill, McShane, & Hallett, 

https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.28h4qwu
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.pkwqa1
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.1v1yuxt
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.4bvk7pj
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.pkwqa1
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1997), impaired proprioceptive integration (Adamovich, Berkinblit, Hening, Sage, & Poizner, 

2001; Konczak et al., 2012) and poor visual spatial processing (Davidsdottir, Cronin-Golomb, & 

Lee, 2005; Lee, Harris, Atkinson, & Fowler, 2001a, 2001b) could contribute to abnormal 

movement planning (e.g. hypometric movements) in patients with PD. As a result of 

sensorimotor impairments that causes poor movement control, individuals with PD may exhibit 

an abnormal reliance on visual input control gait (Almeida et al., 2005; Azulay et al., 1999; 

Schubert, Prokop, Brocke, & Berger, 2005) and posture (Azulay, Mesure, & Blin, 2006). External 

feedback not only helps individuals with PD to overcome motor impairments, but also make 

them to operate in a more automatic mode. Therefore, PD patients may reweigh the use of 

sensory information, especially vision, while walking in order to improve motor performance 

and to decrease the workload during gait. 

Imaging studies have revealed that gait disturbances in patients with PD are correlated 

with reduced activation in the right posterior parietal cortex, an area that is important for visual 

and proprioceptive integration (Cremers, D'Ostilio, Stamatakis, Delvaux, & Garraux, 2012). 

Other studies also suggested that the right putamen is involved in the processing of 

proprioceptive information in healthy older adults (Goble, Coxon, et al., 2012) and the 

subthalamic nucleus may play an important role on proprioceptive processing deficits in PD 

(Konczak et al., 2009). Interestingly, it has been demonstrated that individuals with PD have 

cognitive and sensory loops that overlap in striatal regions that still have greater dopaminergic 

activity, such as the ventral striatum (Helmich, et al., 2010). The authors suggested that this 

neuroanatomical abnormality in PD could explain why dual tasks affect more patients than 

https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.2bn6wsx
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.2bn6wsx
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.46r0co2
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.2lwamvv
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.3whwml4
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.23ckvvd
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.vx1227


15 
 

 

healthy individuals, since cognitive and sensorimotor processing might be sharing the same 

neural resources in basal-cortical loops   

In sum, movement deficits in patients with PD can be caused by multiple factors that 

involve the motor, cognitive, and sensory dysfunctions. Impaired sensorimotor processing may 

force patients with PD to use external sensory cues to improve gait control. In addition, more 

attentional resources may be necessary to monitor the generation of steps’ motor plan during 

self-paced walking. Interestingly, sensory cues may improve gait automaticity decreasing dual 

task interference on gait. Therefore, the cognitive processing of PD patients during walking can 

be more sensitive to external sensory feedback restrictions.  

  

Movement planning in PD 

 

Motor planning is a hierarchical process that involves the selection and organization of 

appropriate motor responses to achieve a goal (Schmidt, 1982). Complementary to this 

definition, Wolpert (1997) defined motor planning as: “the computational process of selecting a 

single solution or pattern of behaviour at all levels within a motor hierarchy from the many 

alternatives that may be consistent with the goal of the task” (p.210). According to this 

approach, an example of bad planning would be grasping an empty glass with the same amount 

of force employed to grasp a full glass. In this situation, an inappropriate plan, amongst other 

possible plans, was selected to accomplish the goal. The neural computation for motor planning 

has been found to tax higher order cognitive resources such as attention and working memory, 

that are mostly resident in prefrontal areas of the brain (e.g., dorsolateral prefrontal 

https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.2w5ecyt
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.184mhaj
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cortex)  (Liu, Chua, & Enns, 2008; Spiegel, Koester, & Schack, 2013a, 2013b; Spiegel, Koester, 

Weigelt, & Schack, 2012). These authors demonstrated that motor planning, but not execution, 

demand attentional resources. 

Studies have investigated the impact of motor planning complexity on movement 

preparation and performance (i.e., delayed responses, errors) in patients with PD using 

different paradigms, such as movement imitation (ideational gesture; Goldenberg, Wimmer, 

Auff, & Schnaberth, 1986), reproduction of remembered sequences of movements (Jokinen, et 

al., 2013; Rogers & Chan, 1988), planning sequences while controlling upper limb movements 

(Benecke, Rothwell, Dick, Day, & Marsden, 1987a; Smiley-Oyen, Lowry, & Kerr, 2007) and 

mental imagery (Helmich, de Lange, Bloem, & Toni, 2007). Based on the results of these studies, 

it has been suggested that the complexity of a motor action that involves the performance of 

sequences of movements can exacerbate motor deficits, such as slowness and hesitations, in 

PD. Benecke et al. (1987a) argued that motor deficits in PD may be associated with problems to 

organize and switch between sequences that compose a motor plan. Situations that demand 

greater motor planning complexity (e.g. multiple unrelated sequences) may be detrimental for 

movement performance of individuals with PD. However it is unclear if motor deficits caused by 

the planning of complex actions would be a consequence of poor cognitive or sensory 

processes since basal ganglia has an important contribution to sensorimotor integration and 

cognitive functions.  

Recent fMRI studies demonstrate that the performance of complex sequential 

movements, such as learned alternated finger tapping and  movements out-of-phase, in PD can 

https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.111kx3o
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.1302m92
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.3mzq4wv
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.2250f4o
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.2250f4o
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.32hioqz
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.32hioqz
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.19c6y18
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.19c6y18
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.4h042r0
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demand more brain activation in areas that are associated with high order cognitive and 

sensory processing (e.g. dorsolateral prefrontal cortex, precuneus, cerebellum and premotor 

areas) (Wu, Wang, Hallett, Li, & Chan, 2010). In addition, individuals with PD overactivate brain 

areas, such as, medial frontal cortex to switch between motor plans (Helmich, Aarts, de Lange, 

Bloem, & Toni, 2009). Individuals with PD compensate difficulties to generate motor plans over 

activating brain areas that process visual information (Helmich et al., 2007). According to Lewis 

& Barker (2009) the processing demand required to negotiate external stimuli can exacerbate 

the abnormal inhibitory output from basal ganglia to motor centers that cause motor 

symptoms, such as slowness in individuals with PD. Thus, the cognitive and sensory demands 

required to plan complex actions might exacerbate motor disturbances in individuals with PD.   

In sum, motor disturbances in patients with PD can be caused by difficulties preparing 

motor responses that demand greater organization. The planning and organization of complex 

movements in PD can overload brain processing resources as a result of BG impairments. 

Interestingly the impact of complex motor planning on walking performance in PD has received 

much less attention by the literature. Finally, the understanding of how cognitive and sensory 

processing contributes to motor planning deficits during walking in PD also needs further 

investigation.    

Movement planning while walking in PD: the obstacle paradigm  

 

Walking through uneven and cluttered terrain requires frequent gait modifications to 

avoid collisions. Although a motor plan formulated before participants start to walk toward an 
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obstacle can be performed, adjustments in the initial motor plan has to be performed when 

individuals are approximately three steps away from the obstacle (Berg, Wade, & Greer, 1994; 

Patla & Greig, 2006). During the last steps prior obstacle crossing, small adjustments on steps 

allow successful crossing (Berg, et al., 1994; Bradshaw & Sparrow, 2001). However in order to 

perform these step adjustments  the central nervous system needs to integrate multiple 

sensory inputs (visual, somatosensory) that will inform how, based on current state of the body 

in relation to obstacle, the motor plan must be adjusted to avoid an obstacle collision.  

During an obstacle approach greater voluntary control may be employed to avoid 

obstacle contact. Supra-spinal regions (e.g. dorsolateral prefrontal cortex) take over gait control 

modulating the basic rhythmic and spatial patterns of gait to avoid an obstacle contact (Haefeli, 

Vogeli, Michel, & Dietz, 2011). Prefrontal cortex is involved with attentional control and 

planning of forthcoming actions (Pochon et al., 2001). Increased voluntary control to modify 

gait to avoid obstacle collisions have a cost compared to self-paced gait (Brown, McKenzie, & 

Doan, 2005; Siu, Catena, Chou, van Donkelaar, & Woollacott, 2008; Sparrow, Bradshaw, 

Lamoureux, & Tirosh, 2002).   This increased cost may be associated to the planning of foot 

clearances to avoid an obstacle contact. Animal models revealed that the execution of gait 

adjustments, such as crossing an obstacle, is underlined by the motor cortex (Drew, Andujar, 

Lajoie, & Yakovenko, 2008; Drew, Jiang, Kably, & Lavoie, 1996), while the planning of gait 

adjustments, such as gait patterns during obstacle approach, is underlined by the parietal 

cortex (Lajoie & Drew, 2007; Marigold & Drew, 2011).  Taken together, the studies mentioned 

above suggest that when individuals walk toward an obstacle, the cognitive resources utilized 

https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.35nkun2
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.25b2l0r
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.35nkun2
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.z337ya
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.3j2qqm3
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.3j2qqm3
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.1opuj5n
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.2nusc19
https://docs.google.com/document/d/104VQhKRNUr5k8ZWcrpSxCGNxx6pJnASDJ1rCAqZXLWU/edit#heading=h.2nusc19
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to plan foot clearances in advance of an obstacle may influence the resources required to 

maintain gait stability. 

Gait of individuals with PD is more affected by complex secondary goal-oriented 

visuospatial tasks (e.g. carrying a tray with glasses) (Bond & Morris, 2000; Rochester et al., 

2005). The allocation of attentional resources to perform a secondary goal-oriented visuospatial 

task (e.g. carrying a tray with glasses), disturbed gait control in PD more than in healthy people. 

Walking with obstacles is a complex functional goal-oriented task that individuals perform 

every day. Previous research has demonstrated that individuals with PD can present gait 

abnormalities (e.g. slowness) during obstacle approach and crossing (e.g. short foot-clearances) 

(Galna, Murphy, & Morris, 2010; Pieruccini-Faria et al., 2013). However, it is not known what 

causes such deficits during obstacle avoidance in PD. The high demand for processing resources 

to plan step adjustments to avoid an obstacle contact, compared to self-paced gait, could 

overload central resources of individuals with PD causing gait abnormalities. Decreased capacity 

to process information for planning in subcortical-cortical networks while individuals plan 

complex movements could disrupt gait control in PD. It is also important to determine if 

processing resources used to plan and control gait adaptations are influenced by low striatal 

dopaminergic activity in PD. Lewis and Barker (2009a) argued that dopamine increases the 

resources (in the striatum) used to negotiate complex stimuli in the environment. These 

authors suggested that low concentration of striatal dopamine may be enough for self-paced 

walking but may not be enough to deal with environmental complexity during gait. Dopamine 

may modulate the processing load on cognitive, motor and limbic loops in the basal ganglia, 

which can cause severe motor impairments in PD such as movement slowness and freezing of 
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gait (Shine, Matar, Ward, Bolitho, Gilat, et al., 2013). The abnormal motor output triggered by 

an overload on cognitive, sensorimotor, limbic loops will depend on what type of stimulus is 

being negotiated in the environment. However, recent studies have illustrated that motor and 

cognitive deficits in PD are not exclusively generated by dopaminergic and basal ganglia 

impairments (Bohnen et al., 2007; Bohnen et al., 2006; Bohnen et al., 2012; Bohnen et al., 

2010b; Rochester et al., 2012). Therefore, it is important to investigate in what extent different 

deficits associated with PD contribute to gait disturbances when motor planning resources are 

used to navigate in complex environments.  

Summary and aims 

 

Motor disturbances in patients with PD can be caused by impaired cognitive and sensory 

processing. These impairments can contribute to motor planning difficulties, which may be the 

core reason for the deficits in voluntary movements in patients with PD. Greater limitations in 

processing resources can compromise the ability of individuals with PD to perform complex 

goal-oriented tasks that involve planning of sequential actions. Patients with severe gait 

impairments but similar disease severity may have impaired cognitive and sensorimotor 

processing that can influence gait behaviours in complex environments. Sensory feedback can 

improve movement control by helping patients to allocate less attentional resources to control 

gait. However it is unclear if deficits in sensorimotor integration affect motor planning in 

individuals with PD. Although dopaminergic replacement may improve motor symptoms caused 

by PD, it is unclear the contribution of the dopaminergic system to cognitive and sensorimotor 

processing when individuals are planning and controlling complex gait adaptations.  The aim of 
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this thesis was to understand the impact of planning resources on gait control of individuals 

with PD. This thesis will attempt to understand the causes of motor disturbances associated 

with performance of a naturalistic complex goal-oriented gait task with increased planning 

demand.  

Gait measures and their meaning 

 

In order to describe motor planning difficulties while patients with PD approached 

obstacles the gait velocity, and the step-to-step variability were measured during far and close 

steps relative to the obstacle. The pilot study indicated that patients and healthy participants 

started to make gait modifications only in the last three steps of an obstacle approach. This 

result is in agreement with a previous study (Pieruccini-Faria et al., 2013) that found that 

healthy controls and patients with PD patients, regardless of medication state, start to make 

significant gait adjustments during the last three steps prior an obstacle crossing. Hence the last 

six steps, of a total of eight steps, were split into early (first three) and late phases (last three). 

Differences in gait between early and late steps might indicate when processing resources are 

being allocated to plan foot-to-obstacle distances.  

While participants approach an obstacle gait control has to be adjusted and may suffer 

the interference of central resources used to plan obstacle crossing.  Step-to-step time 

variability is sensitive to cognitive overloading in patients with PD (Hausdorff, 2005; Hausdorff 

et al., 1998). This variable may indicate when processing resources are being allocated to plan 

gait adaptations. In addition, this variable is associated with dynamic stability during gait. Step 
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length variability could also be a sign that movement was not entirely set from the beginning, 

thus indicating that participants needed more voluntary control to adjust the initial motor plan 

to avoid an obstacle contact (Berg, Wade, & Greer, 1994b; Lee & Lishman, 1977). The foot-

obstacle trajectories during obstacle crossing were measured in order to investigate if the 

plan/execution of those trajectories were affected by experimental manipulations (FOG, dual 

task, sensory feedback, dopaminergic medication). The cognitive load during each phase was 

estimated by asking participants to perform a secondary task while patients approached and 

crossed an obstacle. Gait changes during the performance of a secondary task could reveal 

differences between PD and healthy participants. PD patients use attentional resources to 

compensate movement impairments caused by basal ganglia dysfunction.   

Specific aims and hypotheses 

 

Specific aims of Experiment 1 (Chapter two): Motor planning in Parkinson’s disease patients 

experiencing freezing of gait: the influence of cognitive load when approaching obstacles. 

Specific aims: Decreased gait automaticity and problems in executive functions are 

characteristic of patients with freezing of gait (FOG), and can influence gait of individuals with 

PD while walking in complex environments. This study evaluated the impact of FOG on motor 

planning and processing resources during locomotion. We also tested if FOG affects processing 

resources during the preparatory steps where participants are planning or re-planning the foot 

clearances to cross an obstacle.  
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Hypotheses: Because planning during gait may have a cost on central processing resources, it 

was predicted that a dual task would deteriorate gait control during the approach phase of an 

obstacle more in PD-FOG than in PD non-FOG and healthy controls. The impact of the 

secondary task (auditory digit monitoring) should be observed in the closest steps (last three 

steps) to the obstacle compared to previous steps, since adjustments on gait are only initiated 

in the last steps prior an obstacle approach in general. It is also expected that PD-FOG will have 

the poorest performance on the cognitive task, because of the increased demand on their 

processing resources to plan and control gait adjustments.   

Specific aims of Experiment 2 (Chapter three) : Interaction between cognitive and sensory load 

while planning and controlling gait adaptations in Parkinson’s disease.  

Specific aims: PD patients have an abnormal reliance on visual feedback to plan and control 

movements. Relevant visual feedback not only improves gait control, but also decreases the 

cognitive load when individuals with PD walk. Thus visual feedback may also facilitate the 

sensorimotor and cognitive processing of PD patients to plan and control complex movements. 

Experiment 2 evaluated whether increasing participants’ cognitive load while walking, would 

magnify difficulties with specific aspects of gait that are associated with the planning to avoid 

an obstacle, as visual feedback of self-motion is manipulated.  

Hypotheses: Reduced visual feedback of self-motion will cause gait disturbances in patients 

with PD during an obstacle approach when visual feedback of self-motion is reduced. The 

effects of performing dual tasks on gait control of patients with PD will be more evident during 

conditions of reduced visual feedback. Foot-to-obstacle distances during obstacle crossing and 



24 
 

 

obstacle contacts in patients with PD may be more affected when visual feedback of self-

motion is decreased. Performing the dual task may exacerbate these deficits if patients with PD 

are using more processing resources to compensate for their sensorimotor processing deficits 

in situations of decreased visual feedback during locomotion.    

Specific aims of Experiment 3 (Chapter four) : Dopaminergic and eye-gaze contributions to 

movement planning in Parkinson’s disease: The influence of cognitive load 

Specific aims: Besides motor regulation, dopaminergic activity also regulates cognitive and 

sensory processing. Gaze analyses during gait could also reveal if there is an abnormal 

utilization of visual feedback that could be associated with motor planning deficits and sensory 

processing deficits. The aims of this experiment were to investigate if visual utilization and 

central processing resources are equally affected by PD and dopaminergic replacement when 

individuals plan and control gait adaptations.  

Hypotheses: It was hypothesized that PD patients would spend more time extracting visual 

information from the obstacles (i.e. longer and more frequent fixations) and from their lower 

visual field (tilting their head downwards) compared to healthy controls. We also hypothesize 

that the withdrawal of dopaminergic medication (“OFF” state) would magnify the effects of the 

dual task on gait and visual utilization of individuals with PD compared to when patients are 

medicated (“ON” state) and healthy participants. These effects will be better observed during 

the steps closer to an obstacle when the foot-obstacle distances are planned or re-planned to 

avoid a contact. 
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General methods 

 

Kinematic recording: Active markers (IRED markers using an Optotrak® system) were used to 

track body movements in relation to an obstacle. The area captured by cameras covered at 

least six steps prior to obstacle crossing, the obstacle crossing step, and one step after the 

crossing step.  

Gait task: Participants were asked to walk at their regular pace and step over an obstacle 

adjusted at 15% of the participant’s height. Gait variables such as gait speed, step length, step 

to step variability, and phases duration were used to describe gait control and the effect of 

cognitive load in all conditions. Gait events such as toe-offs and heel-contacts were defined 

using the foot vertical velocity (O'Connor, Thorpe, O'Malley, & Vaughan, 2007). These events 

were then used to find the position of iRED markers on both feet when they were in contact 

with the floor allowing the calculation of the step length; Duration of each step was defined as 

the interval of time elapsed between toe-offs of each foot (Winter, Patla, Frank, & Walt, 1990).    

Foot-obstacle distances were also calculated in order to describe the execution of the motor 

plan and to avoid an obstacle during gait adjustments under different conditions. Foot-obstacle 

distances were calculated by subtracting the position of the marker, in the sagittal plane, placed 

on the 5th metatarsal of each foot, from the obstacle position during obstacle crossing. Lead 

and trail horizontal distances before and beyond the obstacle were defined during toe-off and 

heel contact (respectively) during obstacle crossing. Foot-obstacle vertical clearances (lead and 

trail) were calculated by subtracting the position of the markers placed on 5th metatarsals of 

each foot, from the obstacle height when the marker was at the obstacle position during 
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crossing. For Experiment 3 the head pitch was calculated in order to quantify head rotation in 

the sagittal plane of the participants’ displacement.  

Dual-task: In order to investigate the cognitive processing during gait, we used an auditory digit 

monitoring task, which required sustained attention and working memory. This task required 

individuals to count the number of times a specific digit from 1 to 9 (e.g. digit “2”) was spoken 

in the audio track, while walking. The interval inter stimulus between digits was randomized 

from 100 ms to 1000ms (with increments of 100ms). The audio track lasted for 12 seconds. 

Gaze behaviour recording: A mobile eye tracker (Applied Science Laboratories ASL®) was used 

to investigate how participants acquired visual information from an obstacle during their 

approach.  This equipment was only used in the study 3 (chapter 4).  

Neuropsychological measures: Neuropsychological tests were used to describe the cognitive 

characteristics regarding executive functions and the general mental status. The Modified Mini 

Mental State Exam (3MS) measured the general cognitive status of participants with a cut-off 

score of <76 (risk of dementia) as an exclusion criteria; Corsi block test: This test assessed visual 

spatial working memory by asking participant to point to a sequence of blocks presented by 

experimenter; Digit span: this test assessed phonological working memory and attention. 

Participants had to verbally repeat a sequence of numbers forward and backwards; Trail 

Making Test: this test assesses the cognitive flexibility to shift from one motor plan to another 

action plan quickly and accurately. This is also a good predictor of the general status of 

executive functions. This test has two parts (motor and cognitive) that are subtracted from each 

other in order to separate the motor component from the cognitive component of the test. In 
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this test participants were asked to link a sequence of numbers and letters, alternately, keeping 

the numeric and alphabetic order (e.g. 1-A-2-B-3-C…). The TMT part A was also used to 

estimate the visual scanning speed of participants. 
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ABSTRACT 

 

Freezing of gait (FOG) in Parkinson’s disease (PD) is typically assumed to be a pure 
motor deficit, although it is important to consider how an abrupt loss of gait automaticity might 
be associated with an overloaded central resource capacity. If resource capacity limits are a 
factor underlying FOG, then obstacle crossing may be particularly sensitive to dual task effects 
in eliciting FOG. Participants performed a dual task (auditory digit monitoring) in order to 
increase cognitive load during obstacle crossing. Forty-two non-demented participants (14 PD 
patients with FOG, 13 PD who do not freeze, and 14 age-matched healthy control participants) 
were required to walk and step over a horizontal obstacle set at 15% of the participants’ height. 
Kinematic data were split into two phases of their approach: early (farthest away from the 
obstacle), and late (just prior to the obstacle). Interestingly, step length variability and step time 
variability increased when PD patients with FOG performed the dual task, but only in the late 
phase prior to the obstacle (i.e. when closest to the obstacle). Additionally, immediately after 
crossing, freezers landed the lead foot abnormally close to the obstacle regardless of dual task 
condition, and also contacted the obstacle more frequently (planning errors). Strength of the 
dual task effect was associated with low general cognitive status, declined executive function, 
and inappropriate spatial planning, but only in the PD-FOG group. This study is the first to 
demonstrate that cognitive load differentially impacts  planning of the final steps needed to 
avoid an obstacle in PD patients with freezing, but not non-freezers or healthy controls, 
suggesting specific neural networks associated with FOG behaviors.  

Keywords: Freezing of gait; gait with obstacle; motor planning; cognitive load; dual task; 

Parkinson’s disease 
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INTRODUCTION 

 

Parkinson’s disease (PD) is a movement disorder that is characterized by marked gait 

impairments, including freezing of gait (FOG) which occurs in approximately 30 % of people 

with PD (Giladi et al., 2001). FOG episodes have been associated with other gait deficits such as 

increased gait variability, increased gait asymmetry, slower gait velocity, and shorter steps 

(Hausdorff, Schaafsma, et al., 2003; Nanhoe-Mahabier et al., 2011; Plotnik, Giladi, Balash, 

Peretz, & Hausdorff, 2005). Interestingly, these gait abnormalities and FOG episodes tend to 

occur more commonly during goal-oriented gait tasks that require a greater level of planning 

(i.e., increased level of conscious control), such as turning (Spildooren et al., 2010), passing 

through small apertures (Almeida & Lebold, 2010), avoiding a sudden obstacle (Snijders et al., 

2008).. Since these situations involve a greater level of conscious control, it may be suggestive 

of a limited central resource capacity in those PD patients who experience FOG (PD-FOG). 

Furthermore, it might be expected that areas of the brain that are known to be involved with 

attention and planning of forthcoming actions, such as the prefrontal cortex (Pochon et al., 

2001), contribute to the impairments seen in FOG. Given this potential limited capacity, PD FOG 

might be hypothesized to be more susceptible to the influence of a secondary cognitive task, 

while attempting to step over an obstacle. While it has been well documented that in dual task 

situations PD often walk slower and with greater step to step variability (Yogev et al., 2005),  it 

is important to evaluate the interaction between  cognitive load and motor  planning in PD-

FOG.   
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 Recent research has demonstrated that  increased planning demand during a 

locomotor task has a direct influence on movement control in PD-FOG only (Knobl, Kielstra, & 

Almeida, 2011). PD-FOG have also been shown to have a greater percentage of FOG episodes in 

situations where participants have more time available to plan for an unexpected obstacle 

(compared to less time available to plan a step over)  (Snijders et al., 2010). Thus, both of these 

studies seem to suggest that goal-directed planning during  gait may serve as a dual task, 

thereby imposing increased  load on those who experience FOG, hence the resultant FOG 

behaviour. Recent research (Moreau et al., 2008) has  suggested that so called “modulated 

gait”, is controlled through a specific pathway involving prefrontal cortex projections through 

the subthalamic nucleus and downstream to the locomotor centers of the brainstem, and this is 

only employed during gait tasks that require a higher level of processing (i.e. no longer 

automatic gait).   

Recent imaging work has associated FOG with problems  processing complex visual 

information, with the notion that PD FOG may have an impaired ability to recruit cortical and 

sub cortical areas in such complex tasks (Lewis & Barker, 2009a; Naismith, Shine, & Lewis, 2010; 

Shine, Matar, Ward, Bolitho, Gilat, et al., 2013; Shine, Matar, Ward, Bolitho, Pearson, et al., 

2013). These studies point to a direct link between the limited cognitive resources and impaired 

step generation, where the dorsolateral prefrontal cortex specifically is overactive during 

freezing behaviours. Interestingly, Almeida, Wishart, and Lee (2003) showed  that shifting 

motor plans from a more automatic to a more consciously controlled form of inter-limb 

coordination may overload attentional resources mediated by the dorsolateral prefrontal 

cortex of PD patients, thus causing motor blocks and other motor control abnormalities. Thus, it 
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seems possible that the increased demands associated with complex gait tasks may limit the 

resources available for other secondary tasks in PD-FOG. Arguably, obstacle crossing could be 

considered a secondary task in itself, since shifting from a more automatic gait (during the early 

stages of approach toward an obstacle) to a more consciously controlled gait pattern (to plan 

for safe clearance over an obstacle), becomes necessary as one approaches an obstacle.  Thus, 

studying this behaviour allows us to evaluate the contributions of the prefrontal cortex-basal 

ganglia network to freezing behaviour. While it has been well documented that in dual task 

situations, PD often prioritize a secondary task over gait control (Bloem, Grimbergen, van Dijk, 

& Munneke, 2006), leading to increased gait variability and decreased gait speed (Yogev et al., 

2005), it is important to evaluate how cognitive load might influence motor planning in PD-FOG 

during complex gait tasks, such as obstacle crossing.  Perhaps more importantly, evaluating 

when cognitive overload may influence gait control during the approach to an upcoming 

obstacle, might yield important insight into the underlying mechanisms of basal ganglia 

dysfunction.  Specifically, the current study sought to investigate if (and when) the transition 

from a more automatic to a less automatic control of gait might be a primary contributing 

factor in FOG behaviours, and if this could be systematically associated with the depletion of 

resources mediated by prefrontal areas of the brain in PD-FOG. 

 The aim of current study was to manipulate cognitive load during the approach and 

crossing phases, when PD patients with and without FOG, were asked to step over an obstacle. 

Furthermore, by comparing the results of neuropsychological tests of spatial working memory, 

cognitive flexibility and general cognitive status across our groups, we also aimed to address 
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whether a specific cognitive issue (related to the neuroanatomical correlates described above) 

might explain FOG behaviours.  

MATERIAL AND METHODS 

 

Participants 

 

Twenty-seven PD patients were recruited for the current study: 14 with FOG and 13 

without FOG, who were matched for disease severity, duration (Table 1), and severity of 

asymmetry in lower limbs (see Table 2). All patients were tested while “on” regular anti-

Parkinsonian medication. Patients were excluded from the sample if they could not 

independently walk, or had musculoskeletal problems, uncorrected visual problems or other 

neurological or cardiac diseases. Motor symptom severity and FOG episodes were assessed 

prior to data collection.  In order to assess the frequency of FOG episodes outside of our 

laboratory all patients answered with at least a score of 2 on question number 3 of the FOG 

questionnaire (Giladi et al., 2009), as well as a number of clinical tests previously described in 

(Almeida & Lebold, 2010) to confirm the presence of FOG episodes.  A sample of 14 healthy 

age-matched participants was also evaluated to compare with PD patients’ behaviour.  The 

study was approved by the research ethics board at Wilfrid Laurier University, and written 

informed consent was obtained from all subjects prior to the experiment according to the 

Declaration of Helsinki. 
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Table 1 - Demographics, clinical and neuropsychological measures 

  PD-FOG PD-nonFOG CONTROLS Group effect 

Sex 14M 10M/3F 8M/6F p value 

Age(years) 73.6(7.7) 69.6(6.1) 74.7(8.2) .202 

UPDRS-III(total) 37.3(5.1) 33.1(10.7) NA .236 

Years with PD 8.3(5.0) 7.6(4.6) 0 .879 

Height (m) 1.77(.08) 1.76(.09) 1.70(.11) .141 

FOG-Q (Item 3) 3.2(0.8)a 0.38(0.7) 0 .0001 

Years  of educ. 12.9(4.2) 13.6(4.4) 14.5(5.2) .675 

3MS 92.6(6.7) 90.7(14.0) 95.9(3.9) .340 

       TMT A(s) 61.6(40.9) 44(29.3) 40.1(21.2) .177 

TMT B(s) 329.5(62.2)a,b 163.7(35.1) 106.9(15.4) .002 

TMT B-A(s) 267.8(53.9)a,b 119.7(30.5)c 66.8(11.9) .001 

Corsi block test  4.0(1) 4.2(1.2) 4.4(1.4) .573 

 

Legend - FOG-Q – freezing of gait questionnaire; TMT – trail making test; UPDRS – Unifying Parkinson’s 

disease rating scale 
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Table 2– Mean (standard deviation) of clinical characteristics and preferred leg to step over. 

-  

-  

-  

-  

-  

-  

-  

-  

-  

 

 

b = PD-FOG different (worse) than PD-nonFOG 

 

 

 

 

 

 

 

 

 

 

 PD-FOG 
(n=14) 

PD-Non FOG 
(n=13) 

Controls 
(n=14) 

UPDRS III asymmetry-lower 
limbs(%) 

 

2.71(1.25) 2.30(1.05) NA 

Disease severity score of lower 
limbs  

 

6.50(2.08) 5.03(2.37) 
 

NA 

UPDRS III -Postural score 
 

4.71(1.7)
b
 2.79(1.5) NA 

Right side more affected than left 
side (# of patients) 

 

6 7 NA 

Right side less affected than left 
side (# of patients) 

 

7 6 NA 

Sides equally affected (# of 
patients) 

 

1 0 NA 

Trials which the right limb  was the 
lead limb (%) 

66.31(34.29) 
 

48.71(35.63) 
 

49.04(32.02) 
 



36 
 

 

Data collection and procedures 

 

All participants completed three blocks of five trials for a total of 15 trials. The order of 

blocks was randomized between participants. Participants performed six practice trials without 

performing the dual task before the actual trials began. These practice trials were not included 

in the analysis. During the experimental trials, participants were free to choose the foot that 

would lead the crossing over the obstacle. Participants were required to walk at a comfortable 

pace on a dark-gray hard floor and to step over a non-solid obstacle. The obstacle was a bar 

made of white foam covered with a thick white paper (70 cm wide x 4cm high x 1.5cm depth; 

weight = 50 g) and suspended by two lateral plastic poles that were 30 cm in height (similar to 

high jump hurdles), and was set at 15% of the participant’s height(Hahn & Chou, 2004), and 

positioned ~6.5m from the starting point. The start position was set depending on the number 

of steps each participant required to step over the obstacle. Participants made at least eight 

steps from the starting point to the obstacle; however, because the initial two steps were 

outside the capture area only six steps prior to the obstacle were analyzed. The mental task 

involved attending to an audio track while walking. This secondary task was chosen because 

there was no motor component involved thus allowing us to exclude the possibility that the 

secondary task caused motor interference on the gait task. Participants were instructed to 

mentally count the number of times they heard a digit spoken by a female voice in the audio 

track. The numbers participants heard ranged from 1 to 9. In The low demand condition 

participants were asked to mentally count the number of times they heard a single target digit 

(C1), while in the high demand condition participants counted the number of times they heard 

two target digits (C2). The baseline condition involved participants walking and stepping over 
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the obstacle without performing the dual task (NC). The order of presentation of each digit in 

the audio track was randomized across the trials. The auditory interstimulus interval was also 

randomized to prevent gait synchronization and the interval of presentation of each digit could 

vary from 100 ms to 1000 ms. Participants were instructed to initiate walking at the moment 

they heard the first digit. The sound track played for 12 seconds. The experimenter told the 

participant which digit would be the target digit(s) before each trial, and at the end of each 

trial, participants reported the number of times they heard the target digit(s). Participants were 

also instructed to count until the audio track finished playing, even if they had already finished 

the locomotor task. They were asked to equally prioritize the gait and the digit counting task. 

The volume of the loudspeakers was adjusted so that participants could comfortably hear the 

digits at the start and end position of the walkway. Feedback about their performance was not 

provided. The percentage of trials with perfect counting for each group and condition was 

computed. Participants’ movements were tracked by three Optotrak® cameras (Northern 

Digital, NDI, Waterloo, Ontario); two lateral cameras (vertically oriented) 2.0 m away from each 

other facing participants in the frontal plane (these two cameras captured all steps until the 

obstacle), and one central camera (horizontally oriented) mounted 2.75 m above the floor at 

the end of the travel path (this camera was positioned to capture the obstacle area and 

surroundings). Active IREDs (infrared light emitting diodes) were fixed to the following 

anatomical regions: Xiphoid process, shoulders (acromium), iliac crests, lateral malleolus and 5th 

metatarsals. Gait events were visually defined using a validated method described by (O'Connor 

et al., 2007). All kinematic data were filtered using a 2nd order Butterworth filter with a cut-off 
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frequency of 6 Hz using a dual-pass filter with zero lag delay. Kinematic variables were 

calculated using an algorithm created in Matlab 7.0 (The Maths Works Inc).  

Outcome measures 

Gait Parameters 

 

To remove gait characteristics associated with gait initiation, only the last 6 steps before 

the obstacle for each participant were analysed. These six steps were divided into two sets of 

three steps each (an early and late phase prior to the obstacle). Baseline gait characteristics 

were determined based on the average of the six last steps prior to the obstacle during the NC 

condition. Step length, step time, and the variability of these gait parameters were calculated 

using the coefficient of variation (CV= Standard deviation of 3 steps/Mean of 3 steps) x 100). 

Gait velocity was calculated based on the distance walked in each phase divided by the time 

spent to complete each phase. The delta of the change between phases for each gait parameter 

was also calculated; that is, late phase subtracted (steps just prior to crossing the obstacle) 

from the early phase (steps prior to the last 3 steps before stepping over the obstacle). The 

result of that subtraction was considered the magnitude of change in a particular gait 

parameter. If the result of the subtraction was positive, this meant that the parameter 

increased from early to late phase during the approach. For example, positive step time 

variability would indicate that participants increased variability as they got closer to the 

obstacle. 
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Obstacle Crossing Parameters 

 

 Foot clearance was calculated by subtracting the vertical position of the 5th metatarsal 

markers of each foot from the obstacle’s height, at the frame or instant where the foot was 

directly over top of the obstacle (i.e., the crossing point). Lead and trail limb position before and 

after the obstacle were captured as horizontal distances between the foot and the obstacle, 

subtracting the position of the markers of the 5th metatarsal of each foot from the obstacle 

position in the sagittal plane (see Figure 1). Crossing velocity was also calculated by dividing the 

lead crossing stride by the stride duration. Step width was calculated by subtracting heel 

markers in the medio-lateral plane for the crossing step.  
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Figure 1- Depiction of the phases and steps where gait parameters were calculated and the 
horizontal distances during crossing phase 
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Clinical and cognitive assessments 

 

Motor symptom severity was assessed using the UPDRS-III (motor section) prior to data 

collection. Any cognitive status and/or executive function decline was assessed using the Mini-

mental 3MS exam. Executive function related to attentional set-shifting and/or cognitive 

flexibility was assessed using the Trail Making Test, part A and B (Fitzhugh, Fitzhugh, & Reitan, 

1962). Participants were instructed to perform this test as fast and accurately as they could. 

The motor component of the test was calculated by subtracting part A from part B. This test is 

considered the best cognitive predictor of FOG severity among these patients (Naismith et al., 

2010), and also associated with the integrity of motor planning resources in PD (Xanthopoulos 

et al., 2008). The Corsi block test was used to test the spatial working memory resources of 

participants in order to rule out any memory effects that might be associated with obstacle 

crossing performance. Asymmetry of PD severity was calculated based on the absolute value 

resulting from subtraction of UPDRS scores of both lower limbs (Plotnik et al., 2005). Since we 

were specifically interested in lower limb symptomatology, only items 22b (leg rigidity) and 26 

(leg agility) were taken into account. Items 27 and 28 were used to characterize patients’ 

balance.  

Data analysis 

Baseline gait characteristics (walk without dual task) were compared between groups using a 

mixed ANOVA, with trial as the only within-subject variable as a repeated measure. Gait 

parameters for the Early and Late phases prior to the obstacle were analysed using mixed 

repeated measures ANOVAs (3x3x5) with group as the between factor (PD-FOG x PD-Non FOG x 
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Controls), while cognitive load (NC x C1 x C2) and trial (trials 1 through 5) were the within-group 

factors. A one-way ANOVA was used to compare the demographic data and clinical scores 

between groups (see Table 1 and Table 2). The delta of gait parameters from early to late phase 

was analysed using the same mixed repeated measures ANOVA model created for the other 

variables. 

The Kruskal-Wallis one-way analysis of variance was used to compare the percentage of 

correct answers (during the counting task) and the crossing success rate between groups and 

conditions. A Tukey-HSD post hoc analysis was used to make multiple comparisons between 

groups when main effects of group were found (p values ≤ 0.05). A Stepwise model regression 

analysis was performed using independent variables: age, UPDRS-III total scores, UPDRS-

Postural Scores, TMT-A, TMT B-A, Mini-Mental 3MS, Corsi block test scores, to determine which 

factors (aging, motor, cognitive) significantly contributed to the differences observed between 

groups. These analyses were conducted in order to explain the nature of the behaviour 

observed, but only when a significant interaction or group difference was identified by ANOVA. 

Non-parametric tests (Kruskal Wallis and Wilcoxon tests) were used to compare accuracy of 

answers and the crossing success rate. All statistical analyses were performed using Statistica 

8.0. 
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RESULTS 

 

 Overall Gait Characteristics 

 

The typical gait differences expected between healthy controls, PD-non FOG and PD-

FOG were confirmed and are reported in Table 3.   

 Gait during obstacle approach 

 

Only dependent variables with identified significant interactions between group and 

dual task are described in this section. All other results for dependent variables that did not 

have interactions are described in the Table 4. 

An interaction between group and dual task for step length variability was identified        

F (4,76) =3.376; p=.013 (Fig. 2). Post hoc analysis revealed that only PD-FOG showed increased 

step length variability in conditions C1 and C2 compared to NC (p=.03 and p=.002). PD-FOG also 

showed greater step length variability compared to healthy controls in conditions C1 (p=.011) 

and C2 (p=.008) (see Figure 2b).  

An interaction between dual task and group, F (4,76)  =3.572; p=.011, was also found for 

step time variability.. Post hoc comparisons revealed that step time variability for PD-FOG 

significantly increased in the C1 condition compared to NC (p=.046) condition. Step time 

variability in conditions C1 (p=.022) and C2 (p=.034) for PD-FOG were higher compared to 

controls in the same dual task conditions (see Figure 2d). 

 



44 
 

 

 

 Table 3– Typical gait differences (without dual task) between groups. 

 PD-FOG PD-nonFOG Controls Group 
effect 
(P value) 

Gait velocity 
(cm/s) 
 

72.9(±7.3)a 87.6(±6.8)c 113.8(±7.0) .006 

Step length 
(cm) 
 

49.2 (±2.9)a 59.5 (±3.0) 66.0 (±2.9) .001 

Step length 
variability 
(CV%) 
 

16.8 (±2.4)a,b
 8.2 (±2.5) 6.3 (±2.4) .01 

Step time 
variability 
(CV%) 

7.0 (±0.9) 5.4 (±0.94) 4.9 (±0.9) 0.203 

Legend - a= PD-FOG x Controls; b= PD-FOG x PD-nonFOG; c= PD-nonFOG x Controls 
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Figure 2 - Mean and standard errors (error bars) of step length and time variability for the PD-
FOG, PD-nonFOG and control groups for both in early and late phases respectively. Graphs b 
and d plot the significant interactions. Asterisks indicate significant differences p <.05. 
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Change in gait parameters between early and late phases  

 

An interaction between group and condition was only found for the magnitude of 

change in step time variability F (4,76) =3.061; p=.021. This interaction showed that the dual 

task magnified the increase in step time variability, between phases, but only in PD-FOG 

(confirmed by post hoc) (see Figure 3).  
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Figure 3 - Mean and standard errors (error bars) of the change between phases - Asterisks 

indicate differences between conditions. Symbols indicate differences found between groups in 

each condition. *= p<.05. Only C1 are different than controls 
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Figure 4 – PD-FOG had lower rate of success to cross an obstacle compared to other groups 

when monitoring one digit (C1).  
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Table 4- Effects of dual task and group on gait parameters in the Early and Late phases 

 

Legend  – NC = not counting; C1 = counting one number; C2 = counting two numbers ; Within comparisons - a = NC x C1; b = NC x C2; 

c = C1 x C2; Between groups comparisons - a = PD-FOG x PD-nonFOG ; b = PD-FOG x Controls;  c = PD-nonFOG x Control. † 

Interactions revealed that the dual tasks increased the step-to-step variability only among PD-FOG and only in the Late phase 

 

 Early Late  

 NC C1 C2 NC C1 C2 Group effect 
(p values Early / Late) 

Dual task effect 
(p values Early / 

Late) 

Group*dual (p 
values Early / 
Late) task 

Gait velocity (cm/s)          
PD-FOG 74.57(23.8) 71.50(23.4) 66.89(22.5) 76.59(24.11) 69.43(22.48) 65.6(25.32) 

.002b/.002b .001b/.0001a,b,c 
 

.729/.700 
PD-nonFOG 89.3(24.7) 86.34(26.0) 85.73(25.8) 85.1(28.71) 82.02(26.39) 78.68(26.05) 
Controls 
 

122.4(20.8) 116.9(22.1) 114.3(22.9) 104.5(22.3) 98.31(21.8) 96.15(22.2) 

Step length (cm)          

PD-FOG 45.61(14.96) 44.3(14.70) 41.34(14.35) 54.22(15.29) 50.84(16.48) 49.24(16.73) 

.0001a,b/.001 a,b .0001a,b,c/.013b 
 

.555/.421 
PD-nonFOG 57.74(8.54) 55.60(9.74) 54.76(9.97) 60.56(14.80) 60.28(11.57) 58.31(12.19) 
Controls 64.25(7.62) 63.08(8.70) 61.83(8.89) 67.95(9.65) 67.06(10.72) 67.10(10.29) 
       
Step length variability (CV%)          
PD-FOG 17.95(18.57) 20.06(20.66) 21.81(23.7) 15.40(11.69) 21.90(17.67) 23.40(25.88) 

.003a,b /.004a,b .738/.035 
 

.373/.013† 
PD-nonFOG 7.01(4.47) 7.33(3.88) 6.62(4.05) 9.19(6.76) 10.68(7.89) 9.59(6.01) 
Controls 5.00(3.14) 4.22(2.06) 4.49(2.42) 7.57(4.43) 6.38(2.75) 7.29(5.63) 
       
Step time variability (CV%)          
PD-FOG 6.02(3.65) 5.94(5.00) 5.77(3.20) 8.41(7.40) 10.46(8.51) 10.15(6.95) 

.076/.024b .345/.038b 
 

.456/.011† 
PD-nonFOG 4.65(1.80) 5.49(2.13) 6.04(2.18) 6.22(2.41) 7.25(4.07) 6.35(3.34) 
Controls 5.30(2.70) 5.06(2.61) 4.66(2.27) 4.58(1.51) 3.83(1.15) 5.40(1.97) 
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Table 5– Mean and (standard errors) of change from early to late phase 

Legend – a = difference between PD-FOG x Controls found by post hoc analysis. b The post hoc 

comparisons of this interaction are described in the Fig. 3.  

 

 

 

 

 

 

 

 

 

Change from Early to Late (Late - Early)  

 NC C1 C2    

 

 

Gait velocity (cm/s) 

   Group effect 

(p values) 

Dual task effect 

(p values) 
Group*dual 

task 
(p values) 

PD-FOG 0.92(14.1) -2.06(14.9) -2.18(13.8)  

.144 

 
.123 

 
0.803 PD-nonFOG -4.23(14.7) -4.31(15.4) -7.05(14.4) 

Controls 
 

-17.8(14.1) -18.63(14.9) -18.18(14.2) 

Step length (cm)       
PD-FOG 8.60(3.5) 6.53(3.3) 7.89(3.4)  

.084 
 

.779 
0.352 

PD-nonFOG 2.82(3.6) 4.67(3.4) 3.55(3.3) 

Controls 3.70(3.5) 3.98(3.3) 5.26(3.4) 

    
Step length variability 

(CV%) 

      

PD-FOG -2.55(3.5) 1.84(3.3) 1.58(4.2)  
.372 

 
.213 

0.441 

PD-nonFOG 2.33(3.4) 3.50(4.5) 3.27(4.4) 

Controls 2.49(3.3) 2.12(4.3) 2.62(4.2) 

    
Step time variability 

(CV%) 

      

PD-FOG 2.39(4.95) 4.51(5.04) 4.38(5.86)  
.010

a
 

 

.344 

 

.021
b
 PD-nonFOG 1.56(2.35) 1.76(4.08) 0.31(2.83) 

Controls -0.71(2.25) -1.22(1.94) 0.73(3.36) 
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 Table 6– Mean (standard errors) of crossing parameters for each group in each condition. 

 NC C1 C2 Group effect 
(p values) 

Dual task effect  
(p values) 

Group*dual task 
(p values) 

Crossing velocity (cm/s)       
PD-FOG 64.5 (12.6) 59.6(12) 56.9(12.04) .075 .001b  

           .943 PD-nonFOG 66.5(13) 63.5(12.5) 60.9(12.8) 
Controls 81.5(12.6) 75.4(12) 74.3(12.4) 
Crossing step (cm)       

PD-FOG 70.9 (7.9) 71.2(6.6) 71.2(6.4) .641 571  
 

.942 
PD-nonFOG 72.7(6.9) 75.0(5.8) 73.8(5.6) 
Controls 74.5(6.6) 75.1(5.6) 74.3(5.4) 
    
Trail foot horizontal distance 
before obstacle (cm) 

      

PD-FOG 38.1(5.7) 37.1(5.0) 36.3(5.2) .263 .782 
 

 
 

.645 
PD-nonFOG 33.5(5.2) 35.4(4.6) 35.6(4.8) 
Controls 32.0(5.0) 33.3(4.4) 32.2(4.6) 
    
Lead foot horizontal distance 
after obstacle(cm) 

      

PD-FOG 35.8 (4.1) 34.2(4.1) 35.0(3.7)  
 .014a 

 
            .101 

 
.274 PD-nonFOG 38.8(3.7) 40.1(3.8) 37.8(3.4) 

Controls 42.9(3.7) 42.3(3.8) 40.6(3.4) 

       
Lead foot vertical clearance(cm)       
PD-FOG 16.9(3.4) 17.4(3.8) 16.9(4.1)  

.472 
 

.256 
 

.261 PD-nonFOG 15.7(3.0) 16.9(3.3) 16.9(3.6) 
Controls 19.1(2.8) 19.4(3.2) 18.1(3.5) 
       
Trail foot vertical clearance(cm)       
PD-FOG 18.3(6.1) 18.5(5.6) 17.1(5.3)  

.211 
 

.873 
 

.201 PD-nonFOG 17.0(5.3) 15.5(4.8) 16.0(4.5) 
Controls 20.9(5.3) 21.3(4.8) 22.4(4.5) 
       
Crossing step width(cm)       
PD-FOG 33.8 (5.5) 33.6(5.1) 31.0(6.2)  

      .542 
 

.598 
 

.137 PD-nonFOG 31.9(4.8) 30.4(4.5) 32.5(5.4) 
Controls 29.3(4.6) 30.0(4.3) 29.1(5.2) 

Legend – a = difference between PD-FOG x Controls found by post hoc analysis; b=C1 and C2 

different than NC 
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Crossing parameters 

 

No significant interactions were identified (see table 6).  

Dual task performance and crossing success rate 

 

A main effect of group was found in the C1 condition (χ2=7.730; p=.021; df = 2) for the 

accuracy of answers (dual-task performance). Wilcoxon tests for independent samples showed 

that the percentage of trials with perfect counting was significantly lower for PD FOG (50%±36) 

compared to PD-nonFOG (84%±24)(p<.007). Since all groups performed poorly in the two digit 

monitoring task (27%) compared to one digit (69%) (p=.0001), there were no further significant 

differences identified between groups (p=.867) for C2.  

 A main effect of group was also found for the crossing success rate (i.e., number of 

contacts with obstacle while crossing), but only during C1 condition (χ2=13.124; p=.001; df = 2). 

Post hoc analysis using Mann-Whitney U tests showed that PD-FOG had ~23% more obstacle 

contacts than PD-Non FOG and healthy controls (p=.009), who made no contacts and 100% 

performance (p=.009) (see Figure 4). 

Regression analysis  

 

As described in the methods, a stepwise regression model was created by entering the 

cognitive tests, clinical characteristics and demographic features of each PD population tested 

(PD-FOG and PD- nonFOG separately). The Mini-Mental 3MS was the only predictor of the step 

length variability for freezers, F (1, 13) = 9.183; p=.010; r=.658; R2=.433. Step time variability of 
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freezers was also significantly predicted by Mini-mental 3MS, F (1, 13) = 11.523; p=.005; r=.700; 

R2=.490. The 3MS was also the best and only predictor of the change from early to late phases 

in step time variability among the PD FOG group, F (1, 13) = 5.568; p=.036;r= .563; R2=.317. The 

TMT B-A was the best predictor of the lead horizontal distances after obstacle when only PD-

FOG were included in the model, F (2, 34) = 4.857; p=.046; r=.534; R2=.285. 

In contrast, step time variability among PD-non FOG was only predicted by TMT B-A 

scores F (1, 11) = 12.787; p=.005; r=.749; R2=.561; P=.005, while change in step time variability 

from early phase to late was only predicted by UPDRS-III, F (1, 11) = 11.007; p=.008; r=.725; 

R2=.526. The percentage of correct answers in the C1 condition was only predicted by the TMT 

B-A scores in PD-FOG, F (1, 13) = 8.317; p=.014; R2=.306, whereas for PD-nonFOG the best 

predictor was age, F (1, 13) = 4.935; p=.046; R2=.335. There were no predictors of accuracy of 

answers for the C2 condition. 

In sum, the regression analysis showed that, increased gait variability (spatial and 

temporal) during dual task conditions in PD-FOG was predicted by 3MS scores (lower scores = 

higher variability) and Dual task performance (accuracy of answers) of PD-FOG was predicted by 

TMT B-A scores (longer TMT times = more inaccurate answers). During the crossing phase the 

shorter placement of the lead limb beyond obstacle (in PD-FOG) was predicted by lower scores 

on TMT B-A (longer TMT times = shorter distances). 
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Figure 5 – Scatter plots showing the relationship between gait characteristics and cognitive 

scores: A) 3MS scores with step time variability in the late phase during C2 (only in PD-FOG). 

Freezers with low 3MS scores had increased step time variability; B) TMT B-A was the best 

predictor (for all groups) of foot-obstacle distances. Individuals who had more difficulties 

(longer times) to perform the TMT test also tended to land their foot closer to the obstacle.  
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DISCUSSION 

 

The objective of the current study was to evaluate how increasing cognitive load might 

influence the gait of PD patients with and without FOG during obstacle crossing, since it 

requires more planning than straight line walking. More specifically, given our expectation that 

cognitive load would lead to increased FOG, we aimed to identify ‘when?’, during the approach 

to an obstacle might cognitive load start to influence gait planning and control. As expected, 

the results of the current study demonstrated that the dual task affected PD-FOG more than 

both healthy controls and PD-nonFOG participants, and more importantly, this was more 

evident  as they drew nearer to the obstacle (i.e., in the late phase of their approach). These 

findings are supported by interactions between group and dual task condition for both step 

length and step time variabilities. During crossing itself, it should also be noted that, PD-FOG 

landed their lead foot significantly closer to the obstacle when landing the foot that was 

responsible for more planning errors (obstacle contacts). Interestingly, the regression analysis 

showed that this crossing behaviour was only associated with declined executive function 

(specifically with attentional set-shifting) and not with any other cognitive or motor issue.  In 

other words, the transition from a more automatic gait to a more consciously controlled gait 

revealed a profound influence over the PD-FOG group only. These results are discussed in 

greater detail in the sections below, with respect to the neuroanatomical correlates for these 

findings. 
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Anticipatory gait regulation, motor planning and cognitive load in PD  

 

The current study found that PD-FOG was the only group influenced by dual task when 

walking. However, this influence was only significant when they were about to step over the 

obstacle, as seen in the step length and step time variability during the late phase. Fluctuations 

in step time in participants with PD have been found when attentional resources were shared 

with gait control (Hausdorff, 2005; Hausdorff et al., 1998). The current results showed that the 

change in step time variability between early and late phases was similar in both PD groups in 

the baseline condition where no dual task was involved; however, the PD-FOG group increased 

variability incrementally, specifically in the late phase, with each level of dual task complexity.  

These results suggest that the planning of gait adjustments is not as automatic in PD-FOG, as it 

is in PD-nonFOG and healthy controls. In fact, the current results support the notion that as PD-

FOG draw nearer to an obstacle, greater resources are dedicated to gait. In dual task conditions 

however, the demand for these limited resources is shared with the cognitive task, thus leading 

to increased gait variability (as seen in both step time and step length variability interactions 

between group and dual task condition). Chee et al (2009) also showed that exaggerated step 

length variability is associated with FOG episodes, induced by the maintenance of a 

predetermined short step length at the beginning of a walking trial. However, if this ‘sequence 

effect’ explained the increased variability identified for PD-FOG in the current study, we would 

have expected a decrease in step length from Early to Late phase, but this was not the case. 

Thus, the current study provides new evidence that cognitive overload is likely associated with 

the simultaneous processing of a secondary task plus the motor planning of an approaching 
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obstacle, but this occurs predominantly in the late phase (as the individual with PD is closest to 

the obstacle).  

FMRI studies using a mental imagery paradigm have associated gait impairments in 

freezers with problems within neural mechanisms that underlie planning and execution of gait 

tasks. For example, Snijder et al. (2011) found that PD-FOG and PD-nonFOG had lower 

activation of the right superior parietal cortex and right anterior cingulate cortex when planning 

a precision gait task, relative to healthy control participants. Their study also showed that 

although PD-FOG tended to have lower activation in both of these areas, compared to PD-

nonFOG, only PD-FOG presented hypo-activation in the SMA.  Cells in the SMA are involved 

with the advanced planning of movement sequences (Makoshi, Kroliczak, & van Donkelaar, 

2011; Tanji & Shima, 1994). However, in the current study, significant differences between PD-

FOG and PD-nonFOG were found only with the secondary task present, and in the late phase of 

their approach to an obstacle. It is unlikely that this difference would be caused by the 

secondary auditory monitoring task directly affecting SMA activity. Indeed, this secondary task 

was specifically chosen because it did not require motor involvement to ensure that the gait 

impairments we observed would not be associated with shared motor control resources.  

Although it is possible that the neural mechanisms supporting motor control are more 

affected in PD individuals who freeze compared to those who do not, it is important to consider 

how the gait variability effects of a cognitively demanding secondary task in PD-FOG might be 

caused by visuo-spatial processing deficits; since they may be important for the planning of gait 

adjustments when avoiding an obstacle, especially in the late phase of the obstacle approach. 
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Neurophysiological studies that evaluated the activity of parietal cells in cats, while stepping 

over obstacles, showed higher activation only during the final stride before crossing the 

obstacle (Andujar & Drew, 2007; Drew et al., 2008; Marigold & Drew, 2011), thus providing 

evidence that parietal regions mediate gait with obstacles during the approaching phase. 

Lesions in the superior parietal cortex of cats generated temporal and spatial abnormalities to 

regulate the penultimate stride before the obstacle, as well as more obstacle contacts (Lajoie & 

Drew, 2007). Prefrontal areas in the brain of healthy young adults associated with planning and 

sustained attention are activated when an obstacle is about to be stepped over (Haefeli et al., 

2011). These previous studies indicate the importance of fronto-parietal areas in the brain 

during the preparatory and crossing phases of an obstacle crossing. Dual-task performance in 

PD patients has been characterized by abnormal greater activation of fronto-parietal networks 

compared to healthy controls(Wu & Hallett, 2008). Recently neuroimaging studies revealed 

that PD-FOG hyper activate areas in the brain associated with the cognitive control (e.g. 

dorsolateral prefrontal cortex and parietal cortex) during gait simulation in a virtual 

environment with different cognitive loads (Shine, Matar, Ward, Bolitho, Pearson, et al., 2013). 

The authors argued that the abnormal hyper vigilance or monitoring would be a compensatory 

mechanism to prevent and/or to stop a FOG episode. However this compensatory cognitive 

strategy in PD-FOG may overload central resources specifically those mediated by the 

dorsolateral prefrontal cortex that are important in planning and control of gait in more 

complex situations, such as when avoiding obstacles during gait.  
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FOG symptoms affect obstacle crossing performance of PD patients 

 

The only significant main effect of group while crossing the obstacle was that PD-FOG 

landed their lead foot closer to the obstacle after crossing. The current study did not find the 

same results as previous studies (Galna et al., 2010; Vitorio, Pieruccini-Faria, Stella, Gobbi, & 

Gobbi, 2010), where PD-nonFOG also landed their lead foot significantly closer to the obstacle 

after crossing it, but it should be recognized that this may be the result of the previous studies 

not having included a PD-FOG group. Since crossing step length and height were similar for all 

groups, it is also possible that shorter horizontal placement of the lead limb of freezers after 

obstacle clearance (as well as their greater number of obstacle contacts) could be partially 

explained by deficits in  planning needed to successfully crossover an obstacle. In addition, the 

increased number of obstacle contacts in PD-FOG compared to other groups when performing 

the dual task (C1), suggests that successful obstacle crossing may demand greater central 

resources for PD-FOG. 

Using Neuropsychological Tests to Understand the Role of the Cognitive Resources during gait 

with obstacles in PD 

 

The absence of a relationship between visuospatial memory (Corsi test), 

attentional/cognitive flexibility (TMT B-A), disease severity (UPDRS-III and Gait and Posture 

section), and gait parameters in PD-FOG patients suggest that the observed deficits in gait of 

PD-FOG during the dual task conditions were not related to one specific executive function. 

Rather a more general cognitive decline in PD-FOG may underlie problems with the motor 

planning necessary to avoid an obstacle. Indeed, the regression analysis showed that Mini-
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Mental 3MS scores was the only variable that predicted the increased step time and step length 

variabilities in PD-FOG. However, this relationship is somewhat unexpected because the groups’ 

3MS scores were not statistically different. Nevertheless, it is well known that Mini-Mental 

scores are worse in patients with deficits in cholinergic function and cortical degeneration. For 

example, Perry et al. (1993) showed that the cholinergic activity in Parkinson’s disease without 

dementia can be even lower than patients with Alzheimer disease (also known to be affected 

by a severe cholinergic dysfunction). Recently, studies have suggested that PD-FOG have lower 

cholinergic activity compared to PD-non FOG (Moreau et al., 2012; Rodriguez-Oroz, 2012). One 

possible explanation for the current results is that the cognitive resources affected by 

cholinergic dysfunction may be responsible for the gait variability observed when approaching 

an obstacle. Another possible explanation is that 3MS scores are based on the assessment of 

the general cognitive status, which is supported by several brain areas. This might suggest that 

when PD-FOG are required to perform tasks with greater planning demand, they tax brain areas 

needed to accomplish the task more than those with PD who do not freeze. Over activation of 

brain areas (e.g., right dorsal premotor area, precentral gyrus, right inferior parietal lobe, 

bilateral precuneus) was recently observed in an fMRI study in which PD patients had to 

imagine themselves walking and stepping over an obstacle (Wai et al., 2012). The authors 

argued that the activation of additional neural resources observed in PD patients represents a 

compensatory mechanism to improve the efficacy of gait with obstacles. However an actual 

gait test was not performed in that study. Future studies should investigate the hypothesis that 

PD-FOG patients recruit additional neural resources by correlating brain activity with an active 

gait test.   
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The current study found that all participants (on average) adopted a slower crossing 

velocity, specifically when performing the two-digit monitoring task. Slower velocities while 

dual-tasking in free gait, and also when crossing obstacles has been shown to be associated 

with executive function decline, including attentional set-shifting capacity (TMT B-A) (Ble et al., 

2005; Springer et al., 2006; Yogev-Seligmann et al., 2008). Slower velocities may be necessary to 

facilitate the monitoring of the dual task as well as movement characteristics that might help 

prevent a trip or loss of balance while crossing. Although no interactions between dual task and 

group were found (for velocity) in the current study, performance on the TMT B-A was 

significantly correlated with crossing velocity in all conditions, for all groups (r > -.393; p<.01). 

This correlation suggests that limited cognitive resources (related to executive function) play 

some role in movement control during obstacle crossing. Although PD-FOG had poorer clinical 

postural scores compared to PD Non FOG (see Table 3) this did not influence crossing 

parameters. The absence of this relationship may in part be explained by increased arousal 

during obstacle crossing that compensates for negative effects on postural control (Brown, 

Doan, McKenzie, & Cooper, 2006). Situations provoking greater postural instability may 

increase the conscious processing of gait (Huffman, Horslen, Carpenter, & Adkin, 2009), which 

has the potential to partially compensate for postural control deficits in PD.  

The regression analysis also revealed that the TMT B-A was the best and the only 

predictor of lead horizontal distance (landing distance) after the obstacle for all groups. Thus, it 

is unlikely that a motor impairment caused by aging, dopaminergic degeneration or deficits in 

postural control affected the participants’ performance. The TMT B-A is a test that measures 

the capacity to quickly shift between action plans while monitoring the overall motor planning 
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required to complete the entire action effectively  (Petrova, Raycheva, Zhelev, & Traykov, 

2010). Performance in this test has been related, in part, to left parietal, left temporal areas and 

dorsolateral prefrontal cortex in healthy young adults (Jacobson, Blanchard, Connolly, Cannon, 

& Garavan, 2011). These two areas are related to working memory and manipulation of the 

perceptual representations stored in working memory, respectively (Fiehler et al., 2011; Fuster, 

2004). Thus cognitive decline related to these brain areas are likely to play an important role 

during gait adaptations when vision is required to plan tasks such as obstacle avoidance.  

Limitations 

Some limitations regarding the current study should be acknowledged. The variability 

calculated in current study might have been obtained from too small a number of steps. 

Previous studies have reported the effect of dual task on variability calculated from hundreds of 

steps (e.g., Yogev et al., 2005). However in the current study, all gait variables were calculated 

from the same number of steps in each phase of the approach for all participants. Another 

limitation was the use of only one modality for the secondary task (auditory tracking). Previous 

studies have investigated the impact of different modalities on gait performance (e.g., 

phoneme monitoring and subtracting a sequence of numbers backwards) in order to infer the 

nature of the dual task deficit (e.g., sharing or bottleneck theoretical explanation), however, 

one the goals of the current study was to avoid a secondary motor task that might overload the 

motor system. A baseline score for the dual task performance during free gait or in a ‘without 

walking’ condition was not included in the current experiment, thus whether the groups of 

participants in the current study may have suffered from an auditory digit monitoring deficit, 
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although unlikely, cannot be verified. A more detailed cognitive assessment was not included 

due to time limitations for this study. The current study also did not provoke FOG episodes 

during experimental trials. However a previous study (Snijders et al., 2010) showed that even 

when PD-FOG were in “off” or unmedicated state, not all patients presented FOG episodes 

when stepping over a suddenly dropped obstacle  on a treadmill, thus the lack of FOG may not 

be all that surprising. The authors recognized that an obstacle can not only act as a distractor, 

but also as a visual cue to enhance motor performance.  

CONCLUSION 

 

 In summary, the current study demonstrated that approaching an obstacle increases the 

need for planning resources prior to stepping over an obstacle in PD patients with FOG. 

Cognitive overload (associated with dual task performance) likely affects gait control of PD with 

FOG, especially during the late phase, where motor planning of the sequence of steps was most 

crucial to avoid tripping over the obstacle. This result suggests that depleted cognitive 

resources are likely associated with the prefrontal cortex, specifically when a cognitive dual task 

is being processed as patients with PD FOG get closer to an upcoming obstacle. Although no 

FOG episodes occurred, the current study suggests that the FOG status of patients with PD is 

associated with a limited resource capacity to plan and enact the gait adjustments necessary for 

crossing obstacles. This is more evident when PD-FOG are simultaneously engaged in a 

cognitively challenging secondary task developed to overload cognitive functions associated 

with pFaulty foot regulation in PD-FOG when crossing the obstacle can be explained by a 

decline in executive functions that may have caused an impaired capacity to plan and monitor 
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movement.  From a therapeutic point of view, the results of current study suggest that the 

complexity of gait tasks must be considered during interventions, in order to decrease the 

probability of falls and gait impairments among PD patients with FOG symptoms.  
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ABSTRACT 

 

Recent research has argued that removal of relevant sensory information during the 
planning and control of simple, self-paced walking can result in increased demand on central 
processing resources in Parkinson’s disease (PD).  However, little is known about more complex 
gait tasks that require planning of gait adaptations to cross over an obstacle in PD.  In order to 
understand the interaction between availability of visual  information relevant for self-motion 
and cognitive load, the current study evaluated PD participants and healthy controls while 
walking toward and stepping over an obstacle in three visual feedback conditions, including: (i) 
no visual restrictions; (ii) vision of obstacle and lower limbs in complete darkness and (iii) vision 
of obstacle alone in complete darkness; as well as two conditions of cognitive load (single task 
versus dual task).  Each walk trial was divided into an early and late phase to examine changes 
associated with planning of steps adjustments when approaching the obstacle. Interaction 
between visual feedback and dual task conditions during the obstacle approach was not 
significant. Patients with PD showed greater deceleration and step time variability in the late 
phase of the approach to the obstacle while walking in both dark conditions compared to the 
controls. As well, only participants with PD had increased obstacle contacts when vision from 
lower limbs was not available during the dual task condition. Dual task performance was worse 
in PD compared to healthy controls but notably only in the ‘walking in darkness’ conditions. 
These results suggest that planning resources, to step over an obstacle, affect gait control of PD 
patients, especially when visual feedback is reduced. This influence happens because PD 
patients dedicate more cognitive resources to interpreting proprioceptive information when 
visual feedback of self-motion is reduced. Overall, trips and falls among individuals with PD may 
result from increased demands in sensorimotor integration and cognitive processing.  

 

Keywords: Parkinson’s disease; Visual Feedback; Dual task; Gait with obstacle; cognitive load 
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INTRODUCTION 

It has been well documented that people with Parkinson’s disease (PD) rely more on 

visual feedback than healthy individuals to plan and control their movements (Desmurget, 

Grafton, Vindras, Grea, & Turner, 2003; Ghilardi et al., 2000; Klockgether & Dichgans, 1994). 

Although the cause of this increased reliance on vision in PD patients is not well understood, 

previous studies have suggested that the reliance on visual information during goal-directed 

tasks may be compensation for proprioceptive deficits (Adamovich et al., 2001; Azulay et al., 

1999; Contreras-Vidal & Gold, 2004). Specifically, studies have demonstrated that patients with 

PD rely on optic flow more than healthy individuals to modulate gait parameters (Schubert et 

al. 2005; Azulay et al. 1999). As well, Almeida et al. (2005) found that patients with PD who 

walked towards a remembered target in a dark room had poorer estimation of the target 

location than healthy controls. However, when a small light-emitting diode (LED) was attached 

to their chest, estimation of the target location improved. Yet, the authors suggested that the 

visual cue for body position, attached to patients’ chest, helped them to update proprioceptive 

feedback into a motor plan. Together, these studies suggest that patients with PD are more 

dependent on visual feedback to update their sense of self-motion and body position, 

compared to healthy controls during gait. This dependence on vision may also be important for 

estimating the distance between their body and targets/obstacles that they have planned to 

negotiate in their environment. 

The importance of visual feedback for perception of self-motion in higher demanding 

tasks, as well as, for compensatory stepping right after a postural perturbation, has recently 
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been explored.  For example, Vitorio et al. (2013) showed decreased rates of success (more 

obstacle contacts) when optic flow was disrupted by strobe lighting. This study suggested that 

visual feedback of self-motion may be important for accurate planning (decreasing accidental 

obstacle contacts) of obstacle crossing, although measures of gait control during the obstacle 

approach was not evaluated. However, it is important to note that strobe lighting might also 

affect the perception of an obstacle’s spatial location, as well as  the feedback from vision of 

the lower limb needed for accurate clearance over the obstacle. Jacobs and Horak (2006) 

showed that visual feedback (of the lower limbs) helps the patients with PD to improve 

accuracy of their step placement relative to a target (that they are asked to step on), during a 

postural task. Thus, while visual feedback has been argued to contribute to successful stepping 

adjustments, there have been no direct tests of the relative contribution of visual feedback for 

perception of self-motion, or accuracy of lower limb positioning, during complex gait tasks that 

involve obstacle clearance in PD. Additionally little is known about the influence of reduced 

visual feedback on gait control of individuals with PD when the demand for planning resources, 

to avoid an obstacle, increases while walking. 

It is also important to consider how directing attention to relevant sensory feedback 

(stripes on the floor, somatosensory cues, timing cues) while walking, not only improves gait 

control, but is also argued to decrease processing demands required to control gait in PD 

(Baker, Rochester, & Nieuwboer, 2007; Rochester et al., 2007; van Wegen et al., 2006). 

Distorted signals from sensorimotor processing, overload cognitive processes in individuals with 

PD (Redgrave et al., 2010). Thus sensorimotor processing affects cognitive resources of 

individuals with PD, especially when patients cannot use external feedback to guide their 
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movements. The availability of relevant sensory cues are thought to help patients with PD 

direct their attention to key elements of locomotion, thus automating gait control in a fashion 

that allows individuals with PD to  compensate for faulty internal modulation of steps. Greater 

processing demands and decreased automaticity when walking is often reflected in decreased 

velocity and increased step-to-step variability (O'Shea et al., 2002; Yogev et al., 2005).  Although 

the relationship between sensory and cognitive load for gait control is relatively well 

understood (Baker et al., 2007; Rochester et al., 2007), little is known about the interaction 

between visual feedback of self-motion and cognitive load during more complex gait tasks 

where planning and control are necessary to step over an obstacle.  

Previous research has shown that a cognitive dual task did not affect the planning and 

control of step modifications to avoid an obstacle in patients with PD with mild gait impairment 

(Pieruccini-Faria et al., 2014). It was observed that gait control of individuals with PD and 

healthy controls during obstacle approach (where individuals plan foot clearances) and crossing 

(where individuals execute their motor plan) were similarly affected by increased cognitive load 

in both groups. However patients in this study were tested in conditions that did not impose 

visual restrictions (i.e., a typically well-lit room). Therefore, it is still unknown whether reducing 

the availability of visual feedback for perception of self-motion and lower limb positioning (e.g., 

walking in a dark room towards a visible obstacle) might affect planning resources available.  

Our first objective was to determine whether increasing participants’ cognitive load 

while walking, would magnify difficulties with specific aspects of gait that are associated with 

the planning to avoid an obstacle, as visual feedback of self-motion is manipulated. Since 
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planning demand may increase as participants approach an obstacle (Bradshaw & Sparrow, 

2001; Sparrow, Bradshaw, Lamoureux, & Tirosh, 2002), we split the approach phase into early 

(far from the obstacle) and late phases (close to the obstacle). Thus the secondary aim of this 

study was to evaluate whether the dual task interferes with gait in the late compared to the 

early phase of an obstacle approach differently during the visual manipulations. It was 

predicted that during dual task conditions combined with decreased visual feedback of self-

motion, PD patients would show slower gait velocity, and also higher step-to-step variability 

than healthy controls, especially as participants walked closer to the obstacle. These gait 

changes might indicate the importance of visual feedback on planning resources necessary for 

complex gait tasks in PD. It was also expected that the foot clearance measures, including the 

obstacle contacts, would be affected by reduced visual feedback and the addition of cognitive 

dual task at the same time. In addition, if reduced visual feedback results in an increased 

dedication of planning resources (for appropriate gait control), then we should expect that  

dual task performance will be worse in PD during the most reduced visual feedback 

manipulations, as a result of the overload in planning resources.  

MATERIAL AND METHODS 

 

Participants 

 

Eighteen people with PD and fifteen healthy controls (HC) were recruited for the current 

study. All patients with PD were tested while “on” regular anti-Parkinson’s medication. PD 

patients were excluded from the sample if they could not independently walk, had 
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musculoskeletal problems, uncorrected visual problems, dementia, or other neurological or 

cardiac diseases. Patients with PD and HC were matched by age, height, and general cognitive 

status [assessed by Mini-Mental 3MS (Teng & Chui, 1987)](see Table 7). The study was approved 

by the research ethics board at Wilfrid Laurier University, and written informed consent was 

obtained from all subjects prior to the experiment according to the Declaration of Helsinki.  
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Table 7- Demographics of groups. Comparisons were run using ANOVAs one way for each item 

in the table (except UPDRS III scores). 

 

Asterisks indicate differences between groups *p<0.05;**p<0.01; F= females in each group; na 

= not available; 3MS = Mini mental 3MS; DSPAN = digit span; TMT= trail making test part B, 

subtraction B-A.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GROUP AGE HEIGHT(cm) UPDRS III 3MS DSPAN TMT-B(s) TMT B-A(s) 

PD(n=18;4F) 71.5(±7) 1.74(±4) 25.0(±6) 98.1(±3) 16.3(±3) 134.7(±14)** 94(±12)** 

HC(n=15;9F) 69.5(±6) 1.71(±5) na 97.6(±2) 15.8(±3) 70(±15) 40(±14) 
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Obstacle and data collection 

 

Obstacle and capture area. In all trials, participants walked at a comfortable pace on a 

runway (gray carpet) and stepped over an obstacle. The obstacle was a bar made of white foam 

covered with thick white paper (70 cm width x 4cm height x 1.5cm depth; weight = 50 g) and 

supported by two lateral plastic poles (30 cm in height). The bar of the obstacle was 

horizontally set at 15% of the participant’s height (~25cm), and positioned ~6.5m from the 

starting point. The whole obstacle structure was covered with glow-in-the-dark tape. The same 

tape (12 cm length x 3 cm width x 0.7 mm depth) was attached along the length of the 

participant’s feet (aligned with the toe tips) and thighs (just above the knees) using Velcro® (Fig. 

5). These illuminated strips were used to provide visual information regarding the position of 

the participant’s knees and the anterior portion of their feet, as well as the location and height 

of the obstacle in the room.  

Data recording and analysis. Participants’ movements were tracked by seven 

synchronized Optotrak® cameras (Northern Digital, NDI, Waterloo, Ontario): three lateral 

cameras on each side of the runway (vertically oriented) and one central camera (vertically 

oriented) 2.5 m away from the end of the runway. These cameras tracked the entire runway 

(~10m). Active IREDs (infrared light emitting diodes) were fixed to the following anatomical 

regions: midpoint between iliac crests (defined by the umbilicus), lateral malleolus, and 5th 

metatarsals. Heel contacts and toe offs were visually defined using a validated method 

(O'Connor et al., 2007). The heel contact and toe off kinematics were used to calculate gait 



74 
 

 

variables during the approach and crossing phases. All kinematic data were filtered using a 2nd 

order Butterworth filter with a cut-off frequency of 6 Hz using a dual-pass filter with zero lag 

delay. Kinematic variables were calculated using an algorithm created in Matlab 7.0 (The Maths 

Works Inc.). 
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Figure 6- Depiction of visual feedback conditions. Bulbs with black cross indicate when the 

room was completely dark. Obstacle was visible in all conditions.  Visual feedback restrictions- 

Obs: Only obstacle was visible in the dark; Limb+Obs: Obstacle and limbs visible in the dark; Full 

vision: no visual restrictions. 
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Dual task 

 

Cognitive task (dual task). During this protocol participants performed the gait task protocol 

with the addition of a secondary task (cognitive task). The cognitive task involved attending to a 

series of spoken digits. This task was chosen because there was no motor component involved; 

eliminating the possibility that the secondary task caused motor interference (motor output 

overload) on the gait task. Participants were instructed to silently count the number of times 

they heard two different digits (assigned by the experimenter at the beginning of each trial) 

spoken by a female voice on an audio track. Participants heard numbers ranging from 1 to 9. 

The order of presentation of each digit on the audio track was randomized across the trials. 

During each trial the auditory inter-stimulus interval varied randomly from 100-1000 ms to 

prevent gait synchronization. Each stimulus (digit) presentation last 500ms. Participants were 

instructed to initiate walking at the moment they heard the first digit. The audio track played 

for 12 s. Participants were also instructed to count until the audio track finished playing, even if 

they had already finished the walking task. Participants were asked to equally prioritize the gait 

and the digit counting task. The volume of the loudspeakers was adjusted so that participants 

could comfortably hear the digits at the start and end position of the walkway. At the end of 

each trial, participants reported the number of times they heard the target digits. Feedback 

about their performance was not provided. In addition to the dual task protocol, a baseline 

condition (BL) involving participants sitting on a chair (without visual restrictions) monitoring 

the digits on the audio track was also conducted. 
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Visual feedback  

 

Visual feedback manipulations. The experiment occurred inside a room isolated from 

natural light. Participants confirmed that they could not see their body or any other object 

when the lights were turned off. Three feedback manipulations were employed: 1) Full vision - 

In this condition the room was illuminated so that the obstacle, the environment around the 

obstacle, and the participants’ limbs were fully visible; 2) In the Limb+Obs condition the room 

light was off, but participants could see the position of their lower limbs and the obstacle using 

luminescent stripes; 3) In the Obs condition, the room was dark and only the obstacle was 

visible. This condition was used to diminish visual feedback of self-motion and to eliminate 

visual feedback regarding lower limb movements. Participants completed 3 trials in each visual 

condition with and without performing the dual task resulting in a total of 18 trials. Trials were 

randomized for each participant.  

Experimental protocol 

 

Clinical and cognitive assessments. Motor symptom severity was assessed using the 

UPDRS-III (motor section) (Goetz, LeWitt, & Weidenman, 2003). Any cognitive status declines 

were assessed using the Mini-mental 3MS exam (Teng & Chui, 1987). Executive function related 

to attentional set-shifting and/or cognitive flexibility was assessed using the Trail Making Test, 

part A and B (Fitzhugh et al., 1962). Participants were instructed to perform this test as fast and 

as accurately as they could. The motor component of the test was calculated by subtracting 

part A from part B. This test is considered a good predictor of cognitive flexibility, motor 

planning resources and mobility in patients with PD (Xanthopoulos et al., 2008). The digit span 
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test (forward and backward) (Blackburn & Benton, 1957) was administered in order to quantify 

the working memory/attentional status of our participants. These tests were used to 

characterize the cognitive status of all participants. 

Gait task protocol. Each participant completed a minimum of eight steps prior to 

stepping over the obstacle. This procedure was adopted to ensure that the time it took for each 

participant to perform the dual task was similar. After each trial the starting position was 

adjusted 30 cm forward or backwards so that participants could not predict which leg they 

would step over the obstacle with.  

Data analyses and statistics 

 

Gait analysis 

 

Gait Parameters during approaching phase 

The data capture area permitted the analysis of the last eight steps prior to obstacle 

crossing. However, to remove gait characteristics associated with gait initiation, only the last 6 

steps prior to the obstacle were analysed. These six steps were divided into two phases, an 

early phase and a late phase, each containing 3 steps. The speed of gait was calculated as the 

average of the step velocity of the three steps in each phase. Step-to-step time and length 

variability were calculated using the coefficient of variation (CV) of steps in each phase 

((Standard deviation/Mean)*100).  
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Dual task performance  

 

Performance on the digit counting task was calculated using the formula:  

Performance = |Correct answer – Given answer| 

Obstacle Crossing Parameters 

  

Lead toe clearance was calculated by subtracting the vertical position of the 5th 

metatarsal marker on each foot from the obstacle’s height, at the frame or instant when the 

foot was directly over top of the obstacle (i.e., the crossing point). Trail horizontal distance 

before the obstacle and lead horizontal distance beyond the obstacle were captured as 

horizontal distances between the foot and the obstacle, subtracting the position of the marker 

on the 5th metatarsal of each foot from the obstacle position in the sagittal plane (see Figure 6).   

Statistical analyses. In order to investigate the motor planning difficulties, step-velocity 

and step-variability were analysed using a two-way mixed repeated measures analysis of 

variance  (RM ANOVA) with group (PD, Healthy controls (HC)) as a between-subjects factor on 

gait velocity, step-to-step time variability and step-to-step length variability [Conditions: visual 

feedback (3)x task (2) x phases (2) ]. In order to investigate how conditions influenced foot 

clearance, another two-way mixed RMANOVA with group (PD, HC) as a between-subjects factor 

[Conditions: visual feedback (3) x task (2)] was used to observe the interactions between task 

and visual feedback on trail-limb horizontal distance before obstacle, lead-limb toe clearance, 

lead horizontal distance beyond obstacle and their variability (standard deviation of these 

distances). Tukey-HSD post hocs were applied when appropriate. The motor planning errors 

(obstacle contacts) were analyzed using non-parametric tests. Kruskal-Wallis and the Wilcoxon 
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test were used to compare the rate of success of obstacle crossing. Differences were accepted 

when p values were ≤0.050. All statistical analyses were run in STATISTICA 8.0. 

RESULTS 

 

Baseline gait measures 

 

Overall, the PD group showed gait characteristics that are typically observed in patients 

with PD: shorter step length (PD: 54.0 cm ±1.9, HC: 64.4 cm ± 2.1; F1, 31=12.72, p=0.001) and 

slower gait speed (PD: 99.1 ±4.0 cm/s, HC: 126.2 cm/s ±4.4; F1, 31 =15.41, p<0.001).   

Gait during obstacle approach  

 

Gait velocity 

 

The hypothesized interactions between group, visual conditions, dual task and phase did 

not reach statistical significance. However, the results for gait velocity during obstacle approach 

showed significant main effects of group (PD patients were slower than the healthy controls) 

(F1,31=16.67; p=0.001), phases (PD patients were slower in the late phase than healthy controls) 

(F1,31=67.76; p<0.001) and  task (both groups were slower when performing a dual task) . A 

main effect of visual feedback (F1,62=61.82; p<0.001)  was found and post hoc tests revealed 

that participants in general  were slower in the Limb+Obs and Obs compared to Full vision 

condition. A three-way interaction between Group x visual feedback x phase for gait velocity 

(F2,62=4.05; p=0.02) revealed that PD patients reduced their walking speed (i.e., greater 
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deceleration in the late phase compared to early phase) more than healthy controls during 

their approach to the obstacle when the room was dark (Obs and Limb+Obs) (see Figure 7).  
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Figure 7 - Significant interactions between Phase x Vision x Group. PD patients had greater 

magnitude of deceleration when walking in the darkness.*p<0.05 

 

 

 

 

 

 



83 
 

 

Step time variability 

 

The hypothesized interactions between group, visual conditions, dual task and phase did 

not reach statistical significance. Main effects of group (F1,31=5.39; p=0.021) (PD more variable 

than HC), and phase  (F1,31=14.14; p=0.001) (more variability in the late phase) were also found 

for step time variability (see Table 8). A main effect of visual feedback (F1,62=9.52; p<0.001) was 

found and post hoc tests revealed that participants in general are more variable in the dark 

conditions compared to Full vision. As well, a three-way interaction between group, visual 

feedback, and phase (F2,62=4.14; p=0.02) was identified for step time variability. Post hoc 

revealed that in the Obs and Limb+Obs conditions PD patients increased step time variability 

more so in the late phase (compared to early phase)  than healthy controls, with these group 

differences apparent in only the late phase of their approach.  

 

Step length variability 

 

The hypothesized interactions between group, visual conditions, dual task and phase did 

not reach statistical significance. Main effects of group (F1,31=10.07; p=0.003)  (PD patients were 

more variable than healthy controls), and phase (F1,31=32.52; p<0.001)  (all participants were 

more variable in the late phase) were identified for step-length variability; however no 

interactions were significant. A main effect of visual feedback (F2,62=4.10; p=0.021) was found, 

and post hoc tests revealed that participants in general were more variable in the Obs condition 

compared to Limbs+Obs but not compared to Full vision.  



84 
 

 

Table 8- Mean and standard errors (in brackets) of gait parameters during obstacle approach in 

each phase. Visual conditions are collapsed in each task condition. 

 

 

 

 

 

      

 

 

 

 

 

Groups PHASE Task Gait 
velocity(cm/s) 

Step time 
variability(%CV) 

Step length 
variability(%CV) 

PD 

Early No dual task 99.5(±12.6) 5.08(±0.7) 7.29(±3.4) 
Early Dual task 87.8(±12.9) 6.33(±1.1) 5.79(±2.1) 
Late No dual task 85.8(±15.3) 12.27(±6.2) 10.74(±3.4) 
Late Dual task 76.2(±13.1) 13.45(±8.1) 11.13(±3.1) 

HC 

Early No dual task 120.3(±13.8) 3.59(±0.8) 2.82(±3.7) 
Early Dual task 106.9(±14.1) 3.73(±1.2) 2.92(±2.3) 
Late No dual task 115.8(±16.8) 5.52(±6.8) 8.82(±3.7) 
Late Dual task 105.7(±14.4) 6.10(±8.9) 8.07(±3.4) 

Effects 

Group P<0.001 P<0.05 P<0.001 
Task P<0.001 NS NS 

Phase P<0.05 P<0.01 P<0.001 
Group*task NS NS NS 

Group*phase NS NS NS 
Group*task*phase NS NS NS 
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Figure 8- PD patients had an increase in step time variability when approaching the obstacle 

only in the dark. *p<0.05;† different from late phase in the full vision condition 
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Foot clearances  

 

Groups had similar foot-to-obstacle distances during obstacle crossing. There were no 

interactions between group, visual conditions, task. We found a significant interaction between 

visual feedback and task (F2,62=5.62; p=0.001) for toe clearances. Post hoc revealed that lead 

toe clearances during Limb+Obs and Obs were larger compared to full vision, but it was shorter 

when performing the dual task only during Limb+Obs and Obs. A significant main effect of visual 

condition was found for trail horizontal distance before obstacle crossing (F2,62=4.17; p=0.004). 

Post hoc revealed that all groups placed their feet farther from the obstacle during Limb+Obs 

and Obs conditions (see Table 8). Significant main effects of visual feedback (F2, 62=59.34, 

p<0.001) and task (F1, 31=17.94, p<0.001) were also identified for lead horizontal distances 

beyond obstacle. Post hoc revealed that in general during Obs and Limb+Obs and dual task 

conditions, participants had shorter lead horizontal distances beyond obstacle (see Table 9), 

compared to during full vision.  

Variability of the foot clearances 

 

The variability of foot clearances was not influenced by conditions and was similar 

between groups (see Table 9).  

Crossing velocity 

 

Individuals with PD crossed the obstacle slower than healthy controls in all conditions F1, 

31=5.29, p=0.02. Participants crossed the obstacle slower when performing the dual task F2, 
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62=70.78, p<0.001. Participants also crossed the obstacle slower when walking in the dark with 

or without glow-in-the-dark tape attached to their lower limbs F1, 31=7.5, p=0.01. Interactions 

were not significant. 
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Table 9- Mean and standard errors of crossing variables (foot-to-obstacle distances) and its variability (standard deviation) 

 

 

 

 

 

 

 

 

 
 

 
 

Conditions 

Trail 
horizontal 
distance 
before 

obstacle(cm) 

 
Lead toe 

clearance(cm) 

Lead 
horizontal 
distance 
beyond 

obstacle(cm) 

Trail 
horizontal 
distance 
before 

obstacle 
variability(cm) 

 
Lead toe 
clearance 

variability(cm) 

Lead 
horizontal 
distance 
beyond 
obstacle 

variability(cm) 

Crossing 
velocity 
(cm/s) 

 
 

PD 

Obs 30.44(±3.8) 23.86(±2.9) 35.26(±3.3) 3.64(±0.5) 1.96(±0.2) 3.55(±0.4) 440.0(±88.6) 
Obs+DT 30.41(±3.0) 23.23(±2.3) 32.72(±2.8) 4.09(±0.4) 1.92(±0.2) 3.80(±0.4) 381.1(±75.7) 

Limb+Obs 30.65(±3.4) 24.09(±2.5) 35.09(±2.8) 4.39(±0.5) 2.74(±0.3) 3.49(±0.4) 418.7(±86.7) 
Limb+Obs+DT 29.10(±2.7) 22.89(±2.3) 34.13(±2.3) 2.39(±0.5) 1.83(±0.2) 2.25(±0.3) 393.4(±73.9) 

Full vision 28.29(±3.5) 19.06(±2.3) 41.71(±2.7) 4.02(±0.4) 1.65(±0.1) 3.09(±0.4) 605.3(±79.3) 
Full vision+DT 27.29(±3.4) 18.90(±2.3) 39.63(±2.8) 3.69(±0.5) 1.92(±0.3) 3.51(±0.4) 551.4(±75.2) 

 
 

HC 

Obs 29.30(±4.2) 27.45(±3.2) 38.12(±3.6) 3.59(±0.5) 1.91(±0.3) 3.17(±0.5) 550.7(±97.1) 
Obs+DT 29.75(±3.3) 26.14(±2.5) 36.19(±3.0) 3.77(±0.5) 2.25(±0.2) 2.63(±0.5) 556.1(±73.0) 

Limb+Obs 29.74(±3.8) 26.02(±2.7) 37.25(±3.7) 4.07(±0.6) 1.80(±0.3) 4.49(±0.5) 582.5(±95.0) 
Limb+Obs+DT 29.42(±3.0) 25.24(±2.5) 36.75(±2.5) 3.87(±0.6) 2.48(±0.3) 3.28(±0.4) 560.5(±83.0) 

Full vision 27.67(±3.8) 21.59(±2.5) 45.36(±3.0) 3.73(±0.4) 1.68(±0.2) 3.65(±0.5) 747.6(±86.9) 
Full vision+DT 26.53(±3.8) 20.33(±2.6) 42.49(±3.1) 3.40(±0.6) 2.25(±0.3) 3.12(±0.5) 664.7(±82.4) 

Effects 

Group  NS NS NS NS NS NS P=0.02 
Vision  P<0.001 P<0.001 P<0.001 NS NS NS P<0.001 
Task  NS P<0.001 P<0.001 NS NS NS P=0.01 

Group*vision NS NS NS NS NS NS NS 
Group*Task NS NS NS NS NS NS NS 
Vision*Task NS P<0.001 NS NS NS NS NS 

Group*vision*task NS NS NS NS NS NS NS 
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  Obstacle contacts during obstacle crossing  

 

Because the rate of success during obstacle crossing was not normally distributed, non-

parametric tests were used to compare groups in each condition. The interaction between 

group, visual condition and dual task was found when running non parametric tests for the 

percentage of obstacle contacts. A Kruskal-Wallis ANOVA revealed that PD patients had lower 

rates of success compared to healthy controls participants in the Obs+DT condition (χ2=9.71; 

df=1, p =0.002). Wilcoxon tests revealed a lower rate of success during obstacle crossing (more 

obstacle contacts) amongst PD patients during the Obs+DT condition compared to Full vision + 

DT (p=0.012) (Figure 9). 
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Figure 9- Bars represent the percentage of successful crossings in each condition for each 

group. Individuals with PD had more obstacle contacts when performing the dual task in the 

dark without position cues (tapes) on their limbs. *p<0.05;**p<0.01 
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Table 10- Accuracy of the answers (error mean) of each group for each visual condition. Greater 

numbers represent worse performance. A zero score would represent an exact answer. 

 

 

 

 

Legend - BL = base line condition (performing the cognitive task sitting on a chair); a different 

from baseline p<0.05; b difference between groups p<0.05. 

 

 

 

 

 

 

 

 

 

 BL Obs Limb+Obs Full vision 

PD 1.75(±0.29) 2.37(±0.29)
 b 2.29(±0.43)

  2.53(±0.30)
a 

HC 1.51(±0.31) 1.64(±0.32) 1.42(±0.47) 2.00(±0.33)
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DISCUSSION 

 

The overall objective of this study was to investigate whether the impact of a dual task 

on gait (during obstacle approach and crossing) is amplified as visual feedback of self-motion is 

reduced in PD. While approaching an obstacle, utilization of planning resources increases as 

one gets closer to the obstacle. Thus, the secondary aim of this study was to evaluate whether 

a dual task interferes with gait, more so, in the late compared to the early phase in the reduced 

visual feedback conditions. It was found that when visual feedback about self-motion was 

reduced, individuals with PD had greater number of errors in the dual task compared to healthy 

control participants. Additionally, individuals with PD had a greater number of obstacle contacts 

specifically while walking with reduced visual feedback of self-motion and with the dual task 

compared to healthy control participants. Yet, the dual task influenced gait similarly in 

individuals with PD and healthy control participants, regardless of visual feedback 

manipulations. Furthermore, the dual task did not affect gait differently in the early and late 

phases.  In summary, the dual task did not interfere with gait in either group, however, the 

increased number of obstacle contacts by individuals with PD, in the darkness (Obs), might 

suggest that the dual task interfered with planning during the late phase, when gait was most 

affected by reduced visual feedback; or shared resources in those with PD reducing their ability 

to process sensory feedback during obstacle crossing.  

In this study, individuals with PD had worse performance on the cognitive task (i.e. 

number counting) while walking in the dark specifically when only the obstacle was visible (Obs 

condition) compared to healthy control participants. It is important to note that at baseline 
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condition (i.e. when counting numbers seated) participants with PD performed similar to 

healthy participants (see table 10), highlighting that deficits in PD are specifically associated 

with reduction of visual feedback. This result suggests that individuals with PD may have been 

prioritizing the gait task when walking in the dark with reduced self-motion feedback. 

Prioritizing gait might be a strategy that individuals with PD employ, to allocate more resources 

(e.g. attention) to the processing of sensory information when critical pieces of visual 

information are not available. This notion that cognitive resources compensate poor 

sensorimotor integration has been supported by previous research that has shown that when 

visual feedback of self-motion is not available, elderly people allocate more attentional 

resources to their postural control (Meyer et al., 1991; Teasdale & Simoneau, 2001). Similar 

results are found in gait when proprioceptive feedback is reduced by peripheral neurological 

diseases (Courtemanche et al., 1996; Lajoie et al., 1996). Although dual task performance 

suffered, prioritization of gait likely allowed those with PD to control gait during the approach, 

in a similar fashion to healthy control participants. Additionally, our results are in line with 

recent theory, supporting the notion that individuals with PD operate in an attention-controlled 

mode due to an abnormal sensorimotor processing within basal ganglia loops (Redgrave et al., 

2010). Hence, PD patients might be using more central resources to overcome distorted 

sensorimotor signals when visual feedback of self-motion is not fully available to achieve gait 

control. 

Previous research has shown that sensory cues reduce the interference of a secondary 

motor task by reducing the demand on central resources (Baker et al., 2007; Rochester et al., 

2007). In neither the current study, neither adding (i.e. Limb + Obs) nor reducing (i.e. Obs) 
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visual feedback influenced the interference of the cognitive task on gait. This was contrary to 

our hypothesis and might be explained by the nature of the secondary task (e.g. carrying a tray 

with cups while walking) employed in these other studies. It might be the case that in previous 

studies, providing sensory cues may have made one of the motor tasks more automatic, 

however this did not directly evaluate whether sensory cues influence cognitive resources 

available. It is important to note that in the current study, the secondary task was purely 

cognitive, with the intention of understanding the demand of cognitive processing irrespective 

of motor interference. Therefore, based on the findings from this study, it appears that 

cognitive resources are used to compensate for the reduction of sensory feedback, to lessen 

the interference of the cognitive task and more successfully control gait in a task that involves 

increased postural threat.  

Although foot clearance variables were not different between groups, we found that 

individuals with PD contacted the obstacle more frequently than healthy controls, specifically 

when PD participants walked with reduced self-motion visual feedback (Obs) and a dual task 

(Fig. 8). One possible reason for this discrepancy may be that our measure of toe clearance was 

based on distance from 5th metatarsal to obstacle, but did not take into account other parts of 

the foot (such as heel or shank of leg) that could have contacted the obstacle. This discrepancy 

has also been reported in a previous study that employed this same measure (Vitorio et al., 

2013), and might explain why toe clearances were similar between groups while obstacle 

contacts were greater in those with PD.  This result highlights how reduced self-motion visual 

feedback taxes central resources in PD. As a result of shared resources, motor planning may 

have been affected, resulting in greater number of obstacle contacts. Alternatively, shared 
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central resources  might impair one’s ability to effectively process sensory feedback (Pashler, 

1994) or update sensory feedback into a motor plan  during obstacle crossing. Evidence from 

this study showed that providing additional visual feedback of lower limb position (i.e. 

Limb+Obs) minimized obstacle contacts, leading to similar performance as the full vision 

condition. This finding suggests that visual feedback of lower limb position compensates for 

proprioceptive impairment in PD as suggested by previous research (Jacobs & Horak, 2006; 

Konczak, Li, Tuite, & Poizner, 2008; Konczak et al., 2012). Importantly, when visual feedback is 

removed (i.e. in complete darkness) individuals with PD may allocate more attentional 

resources to the sampling of proprioceptive feedback, in order to compensate for the limited 

sensory feedback available. Increased number of errors with the dual task supports the notion 

that PD participants allocated more attentional resources to proprioceptive feedback while 

walking. However, since obstacle contacts were greater in the dark (Obs), this suggests that 

even with more resources being allocated to this mode of sensory feedback, PD participants 

were unable to fully compensate for proprioceptive deficits (Adamovich et al., 2001; Konczak et 

al., 2008). This finding can be further evaluated by examining the role of sensory feedback while 

approaching the obstacle. 

 A confirmation of the key role of sensory feedback especially in the late phase was 

demonstrated by significant deceleration (see fig 6) and increased step time variability (see fig 

7) specifically in participants with PD in the late phase (but not healthy participants). This 

change in behaviour was only evident when individuals with PD were required to walk in the 

dark with reduced visual feedback (both Obs and Limb+Obs). Gait deceleration might reflect a 

strategy used by individuals with PD to provide more time to process incoming sensory 
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information, as suggested by previous studies in elderly people (Rosano et al., 2012; Watson et 

al., 2010). Additionally, some researchers have suggested that increased step time variability 

represents difficulties to integrate sensory feedback to achieve timing control (Almeida, Frank, 

Roy, Patla, & Jog, 2007). Step time variability is also linked to less automatic gait control (Yogev 

et al., 2005), likely caused by greater dedication of resources to monitor sensorimotor 

processes. Therefore, it is important to consider that the late phase demands greater sensory 

integration to control movement just prior to crossing the obstacle, which may be why these 

differences are not seen in the early phase. Previous research has shown that visual feedback of 

body position improves gait control in PD while walking in the dark. Although the current study 

did not find that visual feedback of body position improved gait in the late phase, it was able to 

prevent obstacle contacts during the crossing phase when the cognitive load was increased. 

This might suggest that providing feedback about body limb position may provide partial 

compensation for proprioceptive deficits during more demanding gait adaptations in PD.  

 It is also important to acknowledge that walking in the dark could have generated 

anxiety in individuals with PD, since this situation may exacerbate the loss of balance in 

individuals with PD (Vaugoyeau, Hakam, & Azulay, 2011). Anxiety, created by postural threats, 

influences obstacle crossing kinematics of older adults, such as foot clearances and crossing 

speed (Brown et al., 2006). However, in current study, individuals with PD and healthy controls 

had similar crossing behaviours in the dark. Thus, it is unlikely that increased anxiety has 

contributed to the results in current study. Future studies could explore this issue further. 
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Limitations 

This study has some limitations that need to be acknowledged. The number of steps 

used to calculate step-to-step time variability is low compared to previous research (Yogev et 

al., 2005). However, variability between phases using the same number of steps for all groups 

was consistently compared. Other studies have also calculated step time variability from the 

same amount of steps (Cowie, Limousin, Peters, Hariz, & Day, 2012; Pieruccini-Faria et al., 

2014). Another limitation is that it was not possible to know the performance of the secondary 

task in each phase. It might be possible that the performance of the secondary task in each 

phase changed as participants approached the obstacle. Poor performance in the secondary 

task would also indicate that the demand for central resources (e.g. cognitive processes, 

attention) during obstacle approach increased. 

CONCLUSION 

 

The current study sheds light on the importance of central resources for sensorimotor 

processing when individuals with PD are planning and controlling gait during obstacle 

avoidance.  Visual feedback about self-motion reduces the demand on cognitive resources, 

however, this does not fully compensate for proprioceptive deficits that could be the reason of 

abnormal sensorimotor processing in PD. Increased demand in sensorimotor and cognitive 

processing during gait may increase the chances of trips and falls among individuals with PD. In 

sum, impaired gait adaptability in PD patients may be resultant from interactions between 



98 
 

 

sensory and cognitive processing.  From a clinical point of view, gait therapy programs for 

individuals with PD should include visual feedback and cognitive load manipulations to improve 

their safety and gait adaptability. 
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ABSTRACT 

 

  Attention and sensorimotor integration are critical to successful adaptation of 
footsteps during complex gait situations, such as when individuals attempt to avoid obstacles. 
Increased cognitive load caused by allocation of resources for online planning during obstacle 
approach may exacerbate gait deficits of individuals with PD. However, little is understood 
about the dopaminergic contribution to central resources required to plan and control gait 
adjustments in PD. It is also unknown how individuals with PD use vision to optimize use of 
central resources while planning foot clearances. Patients simultaneously approached an 
obstacle to be stepped over while performing an auditory digit monitoring dual task. These 
tests were completed in both the ON and OFF dopaminergic medication states, and compared 
to age matched healthy controls. Dual task performance was used to understand if gait 
disturbances   were associated with cognitive load. Gait and eye movements while approaching 
the obstacle were also recorded in order to investigate differences in visual strategies 
employed to avoid an obstacle. In order to investigate how motor planning demands affect gait 
during obstacle approach; steps prior obstacle crossing were split into two halves: early phase 
(steps while far away from obstacle) and late phase (steps when closest to obstacle). Results 
showed that PD OFF had a more abrupt deceleration in gait velocity, between early to late 
phases, which was ameliorated after dopaminergic medication intake. Dual task affected gait 
(specifically step time variability) in PD OFF, only during the late phase, when compared to 
healthy controls, however dopaminergic replacement did not decrease the dual task 
interference on gait control in the late phase. Visual strategies were similar between groups 
and medication conditions. In sum, deficits in dopamine dependent sensorimotor integration 
exacerbate gait disturbances in PD when online movement planning is required to avoid an 
obstacle. 

Keywords: Dopaminergic system; Gait control; Obstacle; Motor planning; Visual strategies; 
Gaze behaviour 
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INTRODUCTION 

 

Individuals with Parkinson’s disease (PD) exhibit poorer movement control when 

performing multiple tasks simultaneously. Dual tasks (walking while performing a secondary 

task) affect gait in PD patients more than healthy individuals (Baker et al., 2007; Bond & Morris, 

2000; Brauer, Morris, Woollacott, & Lamont, 2009; Brauer et al., 2011; O'Shea et al., 2002; 

Plotnik, Dagan, Gurevich, Giladi, & Hausdorff, 2011; Plotnik, Giladi, & Hausdorff, 2009; 

Rochester et al., 2008; Wild et al., 2013; Yogev et al., 2005), suggesting that gait and secondary 

cognitive tasks may compete for the same central resources, leading to compromised 

performance of one or both tasks. In order to maintain some level of stability during gait, PD 

allocate more resources to walking than healthy people, and therefore, less resources are 

available for secondary tasks or even both tasks (O'Shea et al., 2002; Yogev et al., 2005). 

Overall, when PD patients allocate resources to secondary tasks, gait disturbances are 

exacerbated. Specifically, the dual tasks lead to slower gait velocity and increased step-to-step 

time variability in PD, more than in healthy participants.  Although the impact of dual tasking on 

self-paced gait in PD patients is relatively well understood, little research has been conducted 

to investigate the effects of dual task performance during obstacle avoidance.  To some extent, 

walking while planning gait adaptations could be argued to be a dual task in itself, since central 

resources are necessary to plan safe clearance (Brown, McKenzie, & Doan, 2005; McIsaac, 

Diermayr, & Albert, 2012; Spiegel, Koester, Weigelt, & Schack, 2012). Therefore, using a dual 

task would help to understand when gait is most affected by an overload in central resources 

provoked by the planning of foot clearances in PD.  
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 Interestingly, a recent study (Pieruccini-Faria et al., 2014) showed that only PD patients 

with severe gait impairments (Freezers) increased step-to-step variability and obstacle contacts, 

with a secondary cognitive task. However, PD patients with less gait impairments, but with the 

same disease severity, were not affected by the secondary task. One possible reason for the 

absence of dual task interference might be that PD patients were only tested in their “ON” 

medication state. Gait disturbances, such as slowness, in PD are exacerbated when patients 

attempt to perform tasks that demand greater resources, especially during “OFF” medication 

state (Lord, Rochester, Hetherington, Allcock, & Burn, 2010; Pieruccini-Faria et al., 2013). Lewis 

and colleagues (2004; 2005) proposed that dopaminergic replacement normalizes resource 

capacity of PD patients, which may be important in improving dual task performance. In 

addition, according to these authors, reduced dopaminergic “reserve” restricts the 

performance of tasks with increased cognitive and sensory processing demands. Additionally 

impaired motor output, such as slowness, caused by basal ganglia dysfunction can be 

exacerbated by the additional demands of cognitive performance and sensorimotor integration 

during complex goal-oriented tasks (Redgrave et al., 2010).Interestingly, PD patients can use 

visual strategies during goal-oriented tasks involving either upper limb and whole body 

displacement, to prevent an overload in central resources in which motor performance would 

consequently be affected (Galna et al., 2012; Ketcham, Hodgson, Kennard, & Stelmach, 2003). 

Therefore, further research is needed to understand the role of dopaminergic replacement 

therapy and visual strategies of PD patients while approaching an obstacle with dual task 

interference.  
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While approaching obstacles, gait modifications to avoid a contact starts three steps 

prior to obstacle crossing in young, older and individuals with PD (Berg & Murdock, 2011; Berg, 

Wade, & Greer, 1994a; Bradshaw & Sparrow, 2001). These gait modifications, while 

approaching an obstacle, suggest that individuals are using increased conscious control or 

planning to regulate their footsteps in relation to the obstacle. Additionally, gaze fixations are 

used to update body-obstacle displacement which is important to maintain the accuracy of the 

motor plan (Patla & Greig, 2006; Patla & Vickers, 1997). Only one study has demonstrated, 

using a strobe effect, that PD patients might need increased visual sampling than healthy 

participants to cross the obstacle successfully (Vitorio et al., 2013). However, it remains unclear 

whether PD patients and healthy participants used different visual strategies to plan obstacle 

crossing. 

The primary aim of this study was to investigate the impact of a dual task on gait in 

individuals with PD while they approached and crossed an obstacle, both “ON” and “OFF” their 

dopaminergic medication. We expected that dopaminergic withdrawal would magnify the 

effects of the dual task on gait in individuals with PD. Specifically, the dual task would affect gait 

in the steps closer to an obstacle, when individuals are planning foot clearances. The second 

objective was to understand the visual strategy employed by participants to extract visual 

information regarding the location of the obstacle by tracking their eye movements. We also 

measured the magnitude of the head tilt to infer the contribution of the lower visual field to 

the planning of step adjustments. It was expected that PD patients and healthy controls use 

different visual strategies to prevent a cognitive overload that would affect gait control and the 
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planning of foot clearances. To our knowledge, this is the first study to evaluate gaze strategies 

during obstacle avoidance in PD.  

MATERIAL AND METHODS 

 

Participants 

 

Twenty people with PD and 19 healthy control participants (HC) were recruited (see 

Table 11). PD patients were excluded from the sample if they could not walk independently, 

had musculoskeletal problems, wore bifocal lenses, cataract, dementia, or other neurological or 

cardiac diseases. PD participants were tested on two separate days (a week apart), once in their 

OFF state (after a period of at least 12 hour withdrawal from their regular dopaminergic 

medication) and once in their ON state (approximately one hour after taking their regular 

dopaminergic dose). Half of the participants with PD were initially tested while in their OFF 

state, while the other half were initially tested during ON state. Participants who had side 

effects from their medication such as severe dyskinesia and dystonia were excluded from our 

sample. This research project was approved by the Wilfrid Laurier University Research Ethics 

Board. Written informed consent was obtained from all subjects prior to the experiment 

according to the Declaration of Helsinki.  

Clinical and cognitive assessments  

 

Motor symptom severity was assessed using the UPDRS-III (motor section) (Goetz et al., 

2007) prior to data collection. Neuropsychological assessments were performed only when PD 

patients were in their OFF medication state. Participants’ general cognitive status was assessed 
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using the modified Mini-mental 3MS exam (Teng & Chui, 1987). Visual scanning and executive 

function (set-shifting and cognitive flexibility) were assessed using the Trail Making Test, parts A 

and B, respectively (Fitzhugh, Fitzhugh, & Reitan, 1962). Participants were instructed to perform 

this test as fast and accurately as possible. The cognitive component of this test was calculated 

by subtracting part A from part B. The digit span test (forward and backward; Blackburn & 

Benton, 1957) was administered in order to quantify the working memory /attention capacity 

of our participants.  

 

 

 

 

 

 

 

 

 

 

 

https://docs.google.com/document/d/1ZclZ-5Mkv32nrTaoinjv8npxi3K4dd-rKdlP0A94yrs/edit#heading=h.3as4poj
https://docs.google.com/document/d/1ZclZ-5Mkv32nrTaoinjv8npxi3K4dd-rKdlP0A94yrs/edit#heading=h.17dp8vu
https://docs.google.com/document/d/1ZclZ-5Mkv32nrTaoinjv8npxi3K4dd-rKdlP0A94yrs/edit#heading=h.tyjcwt
https://docs.google.com/document/d/1ZclZ-5Mkv32nrTaoinjv8npxi3K4dd-rKdlP0A94yrs/edit#heading=h.tyjcwt
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Table 11– Demographics and neuropsychological measures (means and standard deviations).  

 

Neuropsychological assessments were performed when PD patients were OFF state. ‡ Motor 

symptoms significantly improved after medication intake. P<0.01. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Groups 
 

Age 
(years) 

Height  
(cm) 

 3MS Digit 
span 

TMT A 
(seconds) 

TMT B 
(seconds) 

TMT B-A 
(seconds) 

UPDRS-
III ON 

UPDRS-
III OFF 

PD 
(16M/4F) 

69.7 
(±9.3) 

171 
(±8) 

96.7 
(±4.4) 

18.1 
(±3.4) 

33.1 
(±9) 

122.2 
(±112) 

89.1 
(±106) 

22.65 
(±9)‡ 

31.9 
(±7) 

 
HC 

(11M/8F) 
69.3 

(±8.9) 

 
168 
(±9) 

97.8 
(±1.8) 

17.3 
(±2.7) 

29.1 
(±6) 

71.0 
(±26) 

41.9 
(±26) 

NA NA 
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Dual task protocol  

 

The secondary cognitive task involved attending to an audio track while walking. This 

secondary task was chosen because there was no motor component involved, allowing us to 

eliminate the possibility that the secondary task caused motor interference (motor output 

overload) on the gait task (Pieruccini-Faria et al., 2014). Participants were instructed to 

mentally count the number of times they heard two different digits, assigned by the 

experimenter at the beginning of each trial, spoken by a female voice in the audio track. The 

audio track produced numbers ranging from 1 to 9. The order of presentation of each digit in 

the audio track was randomized across the trials using the software Experiment Builder (SR 

Research Ltd., Kanata, ON, Canada). The auditory interstimulus interval was also randomized to 

prevent gait synchronization such that the inter-stimulus interval of presentation of each digit 

could vary from 100 ms to 1000 ms; and each digit lasted 500ms. The audio track played for 12 

seconds and was initiated when a synchronized light signaled participants to begin walking. At 

the end of each trial, participants reported the number of times they heard the target digits. 

Participants were asked to equally prioritize the gait and the digit counting task. The volume of 

the loudspeakers was adjusted so that participants could comfortably hear the digits at the 

start and end position of the walkway. Feedback about their performance was not provided. 

The baseline condition (BL) involved participants sitting on a chair monitoring the digits from 

the audio track prior to the gait trials. The digit monitoring performance was calculated using 

the formula: Performance = |Given answer –  Correct answer| 
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Gait protocol and data collection 

 

Participants walked and stepped over the obstacle at their own pace. Participants 

performed a total of six randomized trials (three with dual task and three without the dual 

task). Data collection was performed in a well lit room completely isolated from sunlight (room 

dimensions 20 m length x 10 m width). The data capture area permitted the analysis of the last 

eight steps prior to obstacle crossing, however, to remove gait characteristics associated with 

gait initiation, only the last 6 steps performed by each participant were analysed. These six 

steps were divided into two sets of three steps each (an early and a late phase prior to the 

obstacle). The steps were split into two phases since previous studies have revealed that gait 

modifications associated with planning begin during the last three steps before stepping over 

an obstacle (Berg, Wade, & Greer, 1994; Bradshaw & Sparrow, 2001). Gait speed was 

calculated, based on the average step velocity of the three steps in each phase. Step-to-step 

variability (time and length) was calculated using the coefficient of variation (CV) of steps in 

each phase ((SD/mean)*100). Foot clearances were calculated by subtracting the vertical 

position of the 5th metatarsal marker on each foot from the obstacle height, during the frame or 

instant when the foot was directly over top of the obstacle (i.e., the crossing point). Lead limb 

position before and after the obstacle was captured using the horizontal distance between the 

foot and the obstacle, subtracting the positions of the marker of the 5th metatarsal on each foot, 

from the obstacle position in the sagittal plane. 

  

 

https://docs.google.com/document/d/1ZclZ-5Mkv32nrTaoinjv8npxi3K4dd-rKdlP0A94yrs/edit#heading=h.2et92p0
https://docs.google.com/document/d/1ZclZ-5Mkv32nrTaoinjv8npxi3K4dd-rKdlP0A94yrs/edit#heading=h.1t3h5sf
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Data recording for kinematic analysis 

 

On each trial, participants walked at a comfortable pace on a gray carpet and stepped 

over an obstacle. The obstacle was a bar made of white foam covered with thick white paper 

(70 cm width x 4 cm height x 1.5 cm depth; weight = 50 g) and supported by two lateral plastic 

poles that were 30 cm in height. The obstacle height was set at 15% of the participant’s height 

(~25 cm), and positioned ~6.5 m from the starting point.  

Participants’ movements were tracked (over 10m) by seven synchronized Optotrak® 

cameras (Northern Digital, NDI, Waterloo, Ontario). Active IREDs (infrared light emitting diodes) 

were fixed to the following anatomical regions: lateral malleolus and 5th metatarsal on each 

foot. Heel contacts and toe offs were defined using a validated method described by (O'Connor, 

Thorpe, O'Malley, & Vaughan, 2007) allowing us to calculate gait parameters during the 

approach and crossing phases. All kinematic data were filtered using a 2nd order Butterworth 

filter with a cut-off frequency of 6 Hz using a dual-pass filter with zero lag delay. Kinematic 

variables were calculated using an algorithm created in Matlab 7.0 (The Maths Works Inc; 

Natick, Massachusetts).  

Gaze analysis   

 

Eye movements were recorded using a wireless eye tracker (Mobile Eye ASL - Applied 

Science Laboratories, Bedford, MA, USA) with a sample frequency of 30 Hz and calibrated using 

the 9-point calibration method with 1° accuracy over the obstacle area. Gaze data were 

analyzed using Results Plus GMTM software (ASL - Applied Science Laboratories, Bedford, MA, 

USA). There was only one defined area of interest (obstacle). A fixation was counted when the 

https://docs.google.com/document/d/1ZclZ-5Mkv32nrTaoinjv8npxi3K4dd-rKdlP0A94yrs/edit#heading=h.44sinio
https://docs.google.com/document/d/1ZclZ-5Mkv32nrTaoinjv8npxi3K4dd-rKdlP0A94yrs/edit#heading=h.44sinio
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participants’ gaze remained inside this area of interest for at least 100 ms. Kinematic and gaze 

data were synchronized offline using an external trigger (light-emitting diode (LED) lamp). This 

light was positioned in participants’ right lower visual field (45 degrees) at the start position. 

Participants were asked to fixate their gaze on the lamp and start walking only when the lamp’s 

LED was turned on.    

Head pitch angle 

 

Head pitch angle was only analyzed for 9 HC and 17 PD patients (ON and OFF) because 

we only identified this variable would provide important information about the participants’ 

visual behaviour during this task after running a subset of the participants. The head’s rotation 

angle in the sagittal plan (head pitch angle) was calculated using two markers (5 cm apart from 

each other) that were attached laterally to participants’ head (eye-level) and vertically to the 

eye-tracker’s goggles’ frame. Head pitch was calculated as the angle between a vertical line 

(parallel to the vertical axis)(Marigold & Patla, 2008). The average and the maximum head pitch 

angle were calculated for each step. The average of the head pitch for each phase was the 

average of the angle of the three steps in each phase. Larger positive angles represent greater 

head rotation downwards.  

Statistical analyses 

 

In order to examine the effects of medication (OFF vs ON), approach phase (Early vs 

Late), task (Dual task vs No dual task) and trial (3 trials) on our dependent variables during 

obstacle approach, a two-way mixed repeated measures analysis of variance (RM-ANOVA) 

[Medication (OFF vs ON) x Phases (Early vs Late) x Task (Dual task vs No dual task) x Trial (3 
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trials)] was used. In order to investigate the effects of medication and task on foot clearances 

another two-way mixed RM-ANOVA [Medication (OFF vs ON) x Task (Dual task vs No dual task) 

x Trial (3 trials)] was run.  

In order to examine the effects of group (PD OFF vs HC; PD ON vs HC), approach phase 

and task, two mixed RM-ANOVAS were conducted [Group (PD vs HC) x Phase (Early vs Late) x 

Task (Dual task vs No dual task) x Trial (3 trials)]. Effects of group and task on foot clearances 

were analyzed in a separate two-way mixed RM-ANOVA [Group (PD vs HC) x Task (Dual task vs 

No dual task) x Trial (3 trials)]. The comparisons between PD OFF and HC helped to understand 

the effects of PD. The comparison between PD ON vs HC was used to understand if the 

dopaminergic medication helped to normalize behaviours in PD relative to HC when 

dopaminergic replacement effects (PD OFF vs PD ON) were not significant.  

Tukey’s post hoc comparisons were conducted when appropriate. Independent sample 

t-tests were conducted to compare neuropsychological and clinical tests between groups. The 

non-parametric test Kruskal-Wallis was used to compare the accuracy of auditory digit 

monitoring task (secondary task) between groups in each condition.  Pearson’s correlations 

were performed between neuropsychological tests, motor severity and with dependent 

variables that were different between groups or when interactions involving groups and 

conditions were found. Differences were accepted when p values were ≤0.050. All statistical 

analyses were run in STATISTICA 8.0. 
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RESULTS 

 

Neuropsychological and clinical tests  

 

The groups had similar ages and similar performance on neuropsychological tests (see 

Table 11), although patients with PD showed marginally reduced executive 

functioning/cognitive flexibility as indicated by the TMT B-A (p=0.06). T-tests for independent 

samples revealed improvement of motor symptoms (UPDRS-III scores) after medication intake 

(t19=7.12, p<0.001
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Table 12 - Results from RM ANOVAS for gait variables during obstacle approach 

 

                      

GAIT VELOCITY PD OFF X HC PD ON X HC 
 

PD OFF x PD ON 

 
df F P df F P 

 
df F P 

Group  1 15.5 .0001 1 1.3 0.262 Med 1 65.21 .0001 

Phase 1 145.8 .0001 1 37.3 .0001 Phase 1 97.24 .0001 

Task 1 22.3 .0001 1 25.11 .0001 Task 1 10.81 .004 

Group x Phase 1 45.4 .0001 1 0.27 0.607 Med x Phase 1 59.2 .0001 

Group x task 1 0.1 0.824 1 0.26 0.615 Med x Task 1 0.02 0.9 

Group x Phase x Task 1 0.4 0.516 1 0.04 0.841 Med x Phase x Task 1 0.57 0.46 

Phase x Task 1 3.7 0.062 1 2.2 0.146 Phase x Task 1 4.74 .043 

           STEP LENGTH VARIABILITY PD OFF X HC PD ON X HC 
 

PD OFF x PD ON 

 
df F P df F P 

 
df F P 

Group 1 0.75 0.392 1 0.94 0.338 Med 1 0.01 0.906 

Phase 1 28.45 .0001 1 24.36 .0001 Phase 1 12.42 .002 

Task 1 0.26 0.611 1 0.37 0.546 Task 1 1.19 0.289 

Group x Phase 1 0.07 0.795 1 0.16 0.69 Med x Phase 1 1.28 0.273 

Group x task 1 0.79 0.379 1 0.83 0.369 Med x Task 1 0.08 0.776 

Group x Phase x Task 1 0.08 0.775 1 0.54 0.466 Med x Phase x Task 1 0.32 0.578 

Phase x Task 1 0.1 0.754 1 0.58 0.451 Phase x Task 1 0.69 0.415 

           STEP TIME VARIABILITY PD OFF X HC PD ON X HC 
 

PD OFF x PD ON 

 
df F P df F P 

 
df F P 

Group 1 2.49 0.123 1 1.8 0.188 Med 1 0.888 0.358 

Phase 1 13.29 .001 1 19.63 .0001 Phase 1 7.883 .012 

Task 1 2.18 0.148 1 2.06 0.16 Task 1 5.555 .030 

Group x Phase 1 0.61 0.44 1 0.05 0.832 Med x Phase 1 0.827 0.375 
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Group x task 1 4.07 0.051 1 3.94 0.055 Med x Task 1 0.041 0.842 

Group x Phase x Task 1 0 0.949† 1 3.43 0.072 Med x Phase x Task 1 3.467 0.079 

Phase x Task 1 0.91 0.347 1 7.09 .011 Phase x Task 1 5.394 .032 
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Self-paced gait characteristics  

 

Gait velocity and step length significantly improved with dopaminergic medication 

(p<0.01). The PD ON participants had significantly shorter steps, F1, 37=5.13, p=.029 (59.7 cm 

±2.5; 67.1 cm ±2.6), and a significantly slower walking speed compared to the HC participants,  

F1, 37=7.40, p=0.009 (105.0 cm/s ±5.3 ; 125.4 cm/s ±5.2). 

Gait velocity during obstacle approach (PD OFF vs HC / PD ON vs HC) 

 

An interaction between group (PD OFF vs HC) and phase, F1, 37=45.42, p<0.001, was 

identified, and post hoc tests revealed that the PD OFF participants walked slower than the HC 

participants in the late phase, but not in the early phase (see Figure 10). Main effects of phase, 

F1, 37=145.83, p<0.001, and task, F1, 37=22.32, p<0.001, showed that participants walked slower in 

the late phase compared to the early phase; and slower during the dual task conditions.  

When the PD ON participants and the HC participants were compared interactions were 

not significant, although main effects of phase (p<0.001) and task (p<0.001) were found. All 

participants walked slower in the late phase compared to the early phase, and slower when 

performing the secondary task (see Figure 10). 
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Step time variability during obstacle approach (PD OFF vs HC / PD ON vs HC) 

 

 A four-way interaction between phase, task, group, and trial, F2, 74=3.49, p=0.035, 

showed that step-to-step time variability in PD OFF participants during the late phase was 

greater than that observed for the HC participants when performing the secondary task (see 

Figure 10). This effect was found only in the first trial.  

The interaction between group, task and phase was not statistically significant when PD 

ON was compared with HC (see Table 12). The interaction between task and group was 

marginally significant (p=0.055). An interaction between phase and task revealed that the dual 

task increased step time variability only during the late phase for all participants, F1, 36=7.09, 

p=0.011.  

Step length variability during obstacle approach (PD OFF vs HC / PD ON vs HC) 

 

When the PD OFF participants and the HC participants were compared, a main effect of 

phase was found for step length variability, F1, 37 = 28.44, p<0.001. This main effect revealed that 

participants walked with greater step length variability in the late phase compared to early 

phase.  

Comparisons between PD ON participants and the HC participants also revealed a main 

effect of phase, F1, 36=24.36, p<0.001, revealing increased step length variability in the late phase 

compared to early. 
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Figure 10a,b – a) Interactions between Phase x Medication; b) Interaction between Phase x 

Medication x Dual task x Trial (PD OFF and HC comparisons only). Step time variability of PD OFF 

is higher than healthy controls in the late phase when performing the dual task only in the first 

trial. 
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 Medication effects on gait during obstacle approach (PD ON vs PD OFF) 

 

Foot clearances (mean and standard errors) are shown on Table 13. A significant 

interaction between medication and phase for walking speed, F1, 18=59.20, p<0.001, revealed 

that the PD OFF participants had greater magnitude of deceleration from the early to late phase 

compared to when they were medicated (see Figure 10). Post hoc tests revealed that walking 

velocity of the PD OFF and PD ON was slower in the late compared to the early phase. PD OFF 

walked slower in both phases compared to PD ON. There was no main effect of medication for 

step time variability, F1, 18=0.88, p=0.35. A significant interaction between phase and task, F1, 

18=5.39, p=0.032, was also found and post hoc tests revealed that patients with PD had greater 

step time variability in the late phase of the approach compared to the early phase, but only 

when the patients with PD performed the secondary task. A main effect of phase was found for 

step length variability, F1, 18=12.41, p=0.002 showing that step length variability was higher in the 

late phase, compared to the early phase. 
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Table 13 – Means and standard errors of foot clearances during ON and OFF medication states and task conditions. 

GROUP Task condition 

Trail 
horizontal 
distance 
before 

obstacle(cm) 

 
Lead toe 

clearance(cm) 

Lead 
horizontal 
distance 
beyond 

obstacle(cm) 

Trail toe 
clearance(cm) 

Trail 
horizontal 
distance 
before 

obstacle 
variability(cm) 

 
Lead toe 
clearance 

variability(cm) 

Lead 
horizontal 
distance 
beyond 
obstacle 

variability(cm) 

Trail toe 
clearance 
variability 

(cm) 

HC No dual task 30.35(2.6) 17.27(1.8) 41.82(3.3) 27.7(2.8) 2.9(0.4) 2.0(0.2) 2.4(0.3) 3.4(0.4) 

HC dual task 29.61(2.6) 16.81(1.8) 40.71(3.5) 25.9(2.7) 3.4(0.5) 1.9(0.2) 3.2(0.5) 3.1(0.4) 

PD ON No dual task 30.69(2.6) 15.2(1.8) 44.34(3.3) 24.9(3.5) 2.3(0.4) 1.5(0.2) 2.0(0.3) 3.5(0.4) 

PD ON dual task 29.89(2.6) 14.9(1.8) 41.25(3.5) 24.2(3.1) 2.5(0.5) 1.6(0.2) 3.1(0.5) 2.6(0.4) 

PD OFF No dual task 32.42(2.6) 15.6(1.8) 38.8(3.2) 23.0(2.3) 3.5(0.4) 1.3(0.2) 2.2(0.3) 3.4(0.4) 

PD OFF dual task 31.2(2.6) 15.1(1.7) 38.9(3.4) 23.5(2.5) 3.3(0.5) 1.8(0.2) 2.8(0.5) 3.6(0.4) 

Main effects and interactions are reported in table 14. There were no main effects or interactions foot clearances variability.
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Table 14- Results from RM ANOVA for crossing variables.  

       
  

   
Trail horizontal distance prior obstacle PD OFF X HC PD ON X HC 

 
PD OFF x PD ON 

 
df F P df F P 

 
df F P 

Group 1 0.763 0.388 1 0.017 0.896 Med 1 4.395 0.051 

Task 1 2.482 0.124 1 1.469 0.233 Task 1 1.524 0.233 

Group x Task 1 0.172 0.68 1 0.008 0.928 Med x Task 1 0.016 0.9 

           Lead toe clearance PD OFF X HC PD ON X HC 
 

PD OFF x PD ON 

 
df F P df F P 

 
df F P 

Group 1 1.231 0.274 1 1.779 0.191 Med 1 0.56 0.464 

Task 1 1.402 0.244 1 1.201 0.28 Task 1 0.522 0.479 

Group x Task 1 0.001 0.971 1 0.016 0.899 Med x Task 1 0.007 0.935 

           Trail toe clearance PD OFF X HC PD ON X HC 
 

PD OFF x PD ON 

 
df F P df F P 

 
df F P 

Group 1 3.6 0.06 1 1.2 0.27 Med 1 1.28 0.27 

Task 1 3.1 0.08 1 3.1 0.08 Task 1 0.12 0.72 

Group x Task 1 2.4 0.12 1 0.78 0.38 Med x Task 1 0.6 0.44 

           Lead horizontal distance beyond obstacle PD OFF X HC PD ON X HC 
 

PD OFF x PD ON 

 
df F P df F P 

 
df F P 

Group 1 0.867 0.358 1 0.349 0.558 Med 1 10.15 .005 

Task 1 0.555 0.461 1 7.852 .008 Task 1 3.56 0.075 

Group x Task 1 0.629 0.433 1 1.698 0.201 Med x Task 1 6.87 .017 
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Table 15- Results from RM ANOVA for gaze variables.  

                      

Fixations (%) PD OFF X HC PD ON X HC 
 

PD OFF x PD ON 

 
df F P df F P 

 
df F P 

Group 1 0 0.971 1 1.43 0.239 Med 1 3.29 0.086 

Phase 1 7.09 .012 1 13.61 .001 Phase 1 3.25 0.087 

Task 1 19.99 .0001 1 49.03 .0001 Task 1 57.67 .0001 

Group x Phase 1 1.72 0.198 1 0.14 0.715 Med x Phase 1 2.33 0.143 

Group x Task 1 0 0.968 1 2.48 0.124 Med x Task 1 1.81 0.194 

Group x Phase x Task 1 1.48 0.232 1 1.13 0.295 Med x Phase x Task 1 0.03 0.859 

Phase x Task 1 0.53 0.473 1 0.33 0.57 Phase x Task 1 5.78 .027* 

           Total fixation duration(%) PD OFF X HC PD ON X HC 
 

PD OFF x PD ON 

 
df F P df F P 

 
df F P 

Group 1 0.1 0.755 1 2.26 0.141 Med 1 3.09 0.095 

Phase 1 5.92 .020 1 10.81 .002 Phase 1 2.34 0.142 

Task 1 23.11 .0001 1 48.74 .0001 Task 1 63.93 .0001 

Group x Phase 1 1.62 0.211 1 0.3 0.589 Med x Phase 1 1.28 0.272 

Group x Task 1 0.04 0.838 1 1.8 0.188 Med x Task 1 1.92 0.182 

Group x Phase x Task 1 0.52 0.475 1 1.03 0.318 Med x Phase x Task 1 0.13 0.721 

Phase x Task 1 0.01 0.927 1 0.15 0.702 Phase x Task 1 2 0.173 
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Figure 11a,b – Only a main effect of dual task and phase were found for fixation time (a) and 

number of fixations (b).  
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Gaze behaviour  

 

Patients with PD and the HC patients had similar fixation durations and number of 

fixations. Both groups of participants fixated longer and more frequently on the obstacle during 

the early phase compared to the late phase (see Figure 11). Interactions involving groups, task 

and phase were not significant.  

Head pitch 

 

When PD OFF and HC were compared main effects of group, F1, 24=5.27, p=0.030, and 

phase, F1, 24=30.82, p<0.001, were found. PD OFF had larger head pitch angles than HC. During 

the late phase, participants walked with larger head pitch angles compared to early phase. An 

interaction between phase and group, F1, 24=12.83, p=0.001, revealed that PD OFF made larger 

downwards head movements in the late phase compared to HC who had similar head tilt angles 

in both approaching phases.  

When PD ON and HC were compared, a three-way interaction, F1, 24=9.78, p=0.004, 

between group, phase and dual task revealed that PD ON reduced their downward head 

movement in the late phase when performing the dual task compared to no dual task 

conditions just in the late phase. On the other hand, HC had larger head tilt angles during the 

late phase when performing the dual task compared to late phase when they were not 

performing the dual task. All main effects and interactions found for Mean Head Pitch were also 

found for Maximum Head Pitch, hence the results of Maximum Head Pitch are only reported 

graphically (see Figure 12). 
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Figure 12 a,b – Interactions between group x phase x dual task for mean (a) and maximum head 

pitch (b). Higher values mean larger head tilt downward or larger head rotation forwards. †: 

Individuals with PD have increased head tilt when walking in the late phase compared to early 

phase. The head tilt, in healthy controls, increased in the late phase compared to the early 

phase only when they performed the dual task. 
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Foot clearances  

 

The results indicated that there were no main effects of group, medication or task for 

lead toe clearance and trail horizontal distance before the obstacle (see Table 14). An 

interaction between medication and task was found for lead horizontal distance beyond the 

obstacle (see Table 14). This interaction revealed that PD ON had shorter lead horizontal 

distances beyond the obstacle comparable to PD OFF when counting numbers. However, when 

PD patients were compared to HC there were no significant differences for foot-clearances. 

Thus, the foot-to-obstacle distances exhibited by individuals with PD patients can be considered 

unaffected by PD and dual task trials. Finally, the success rate for stepping over the obstacle 

was also similar between the groups across all the experimental conditions (~99% of success). 

Auditory task performance  

 

A medication effect revealed that patients answered more accurately overall during the 

ON medication state, compared to the OFF state (F1,19=4.37, p=0.050; PD ON = 1.4/PD OFF = 1.7). 

However, there were no significant differences between groups or conditions (seated vs 

walking) on task performance. Thus the ability to monitor multiple digits is not affected in PD 

patients. 

Correlations 

 

Pearson correlation coefficients were calculated between the gait dependent variables 

and the scores on the neuropsychological tests, and the UPDRS-III scores (motor scale) when 
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interactions involving groups and conditions were found. However, there were no significant 

correlations between gait variables, neuropsychological tests and clinical scores.  

DISCUSSION 

 

Summary 

The overall aim of this study was to investigate the contribution of the dopaminergic 

system to central resources required to plan and control complex gait adaptations to avoid an 

obstacle. Another aim was to investigate if there were changes in visual strategies associated 

with cognitive overloading during obstacle approach in PD. The results showed that 

dopaminergic replacement therapy decreased the abrupt gait deceleration from early to late 

phases during obstacle approach. Interestingly the dual task only affected gait control (step-to-

step time variability) in PD OFF participants in the late phase, compared to HC participants, and 

only in the first dual task trial. However, ON and OFF comparisons showed that dopaminergic 

replacement did not reduce the dual task interference on gait of individuals with PD during the 

late phase. This suggests that dopamine gave little contribution to cognitive processes required 

to plan complex step adjustments to avoid an obstacle. Finally, visual strategies and foot 

clearances in PD were similar to healthy participants irrespective of cognitive load and 

dopaminergic withdrawal.  

Dopaminergic contributions to online movement planning in PD  

  

PD participants in the OFF state had a greater magnitude of gait deceleration during the 

transition from the early to the late phase compared to healthy participants. This abnormal gait 
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slowness, during the late phase (last three steps) compared to early phase, might have resulted 

from the planning complexity of sequential step adjustments to avoid the obstacle (Berg et al., 

1994a; Bradshaw & Sparrow, 2001). This result is in line with previous upper limb studies in 

which bradikinesia (movement slowness) was exacerbated when PD patients performed 

complex sequential movements, compared to movements having simple sequences (Benecke, 

Rothwell, Dick, Day, & Marsden, 1986, 1987b). Another explanation for exacerbated gait 

slowness during obstacle approach is that the central resources allocated to plan gait 

adaptations might have depleted the resources necessary to control gait in PD. Bond and 

Morris (2000) showed that gait velocity was abnormally reduced only among PD patients  with 

the secondary goal-directed  task(e.g. carrying a tray with glasses compared to no glasses). 

However, in the current study, the dual task (digit counting while walking) did not differentially 

influence gait velocity in PD. This suggests that the abrupt gait deceleration from early to late 

phases, was not caused by distraction or cognitive load to plan foot clearances, otherwise gait 

velocity of PD patients would have been even more affected by the secondary task (digit 

counting) than healthy controls. It is likely that a specific deficit in sensorimotor integration 

might have contributed to an abnormal motor output (slowness). Thus, this abrupt gait 

deceleration prior obstacle crossing may be interpreted more as an adaptation to overcome 

impairments in sensorimotor integration, than as a problem to allocate central resources.  

Recent imaging studies revealed that inhibitory activity of the globus pallidus 

internal/substantia nigra part reticulata (GPi/SNr) over the pedunculupontine (PPN) and 

mesencephalic locomotor region (MLR), may be exacerbated when individuals with PD need to 

negotiate complex external stimuli, which results in severe movement slowness (Lewis & 
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Barker, 2009a; Shine, Matar, Ward, Bolitho, Gilat, et al., 2013). Furthermore, recent research 

suggests that abnormal slow walk might be linked to slow sensory processing in older adults 

(Rosano et al., 2008; Rosano et al., 2012). Therefore, it is likely that the abrupt gait deceleration 

during obstacle approach, observed in PD OFF, might be a motor response triggered by an 

overload in sensorimotor processing within the basal ganglia in PD. 

Patients with PD also had a greater deceleration, from the early to late phase, in their 

OFF state (~25%) compared to the ON state (~3%). This result confirms that the abrupt gait 

deceleration may be related to decreased dopaminergic activity. Dopamine may have improved 

sensorimotor processing during online planning to avoid an obstacle, since the cognitive load 

(digit counting) did not exacerbate gait slowness in PD more than in healthy participants. This is 

in line with a previous study by Almeida et al. (2005) who suggested that dopaminergic 

replacement therapy improves sensorimotor integration during gait in PD patients.  

Interestingly, the influence of the secondary task on gait in individuals with PD was only 

observed in the step-to-step time variability and in the late phase. Step-to-step time variability 

may be more sensitive, than gait velocity, to changes in cognitive load during self-paced gait 

(Hausdorff, Balash, & Giladi, 2003; Yogev et al., 2005). In the current study, the secondary task 

increased step time variability in PD OFF participants specifically during the late phase (when 

the demands for planning increased) compared to the early phase.  However, when PD patients 

were in the “ON” state compared to healthy controls, the dual task interference on gait, in the 

late phase, was not significant. This result replicates previous findings that optimally medicated 

PD patients with relatively preserved gait characteristics were not affected by the cognitive load 
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during obstacle approach (Pieruccini-Faria et al., 2014). Interestingly, in the current study, the 

dual task interference happened only in the first trial, in the late phase when PD patients were 

OFF. Experience with the dual task (walking and counting) likely decreased the impact of the 

secondary task on gait of PD OFF in the late phase. Additionally, PD patients and healthy 

participants had similar performance in the secondary task (digit counting), even in the first trial 

of dual tasking, suggesting that PD patients and healthy controls were equally able to attend to 

the auditory dual task.   

It is important to note that the severity of the PD patients in current study was mild. 

Thus the ability to perform complex cognitive tasks while walking might be spared in our 

current sample of PD patients. Additionally, PD patients and healthy participants in the current 

study had similar cognitive scores in the neuropsychological assessments, suggesting normal 

cognitive capacity. Furthermore, correlations between neuropsychological measures and gait 

variables were not significant, also supporting the notion that gait changes during the obstacle 

approach are not linked to a specific cognitive deficit in PD. It might be possible that the dual 

task interference in the first trial was caused by impaired sensorimotor processing rather than 

cognitive deficits. This is supported by recent theory suggesting that cognitive processes 

prevent that distorted sensorimotor signals sent from basal ganglia disturb motor output of 

individuals with PD (Redgrave et al., 2010). Alternatively, Lewis and Barker (2009a) suggested 

that sensory, cognitive and limbic signals can be “jammed” within basal ganglia when 

individuals with PD negotiate complex stimuli, which affects their motor output. Sensorimotor 

adaptation during obstacle avoidance may have contributed to disentangling or differentiating 

signals (cognitive, sensory, and limbic) processed by basal ganglia.  
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Interestingly, comparisons between PD OFF and PD ON revealed that patients had 

increased step-to-step variability and slow gait velocity in the late phase compared to early 

phase when performing the dual task. In other words the dual task did not affect gait in PD OFF 

more than in PD ON, although patients in both medication conditions were more affected by 

the dual task in the late phase (compared to early phase). This would suggest that dual task 

effects on gait of PD patients may not be the result of decreased striatal dopaminergic activity, 

exclusively.  Although only speculative, neurotransmitters other than dopamine might influence 

cognitive and motor processing in patients with PD. For example, decreased cholinergic activity 

in patients with PD is linked to deficits in executive functions (Bohnen et al., 2006) and gait 

(Rochester et al., 2012). Future studies should investigate the contribution of other 

neurotransmitters to the performance of complex gait tasks in PD. 

Gaze behaviour to plan gait adaptations in PD 

 

Gaze behaviours were investigated in order to understand whether individuals with PD 

used different visual strategies when avoiding obstacles in conditions of increased cognitive 

load. Interestingly, all participants looked less to the obstacle when they performed the dual 

task. Averting gaze from obstacle to another location could be a strategy to decrease cognitive 

load during obstacle approach which could affect gait performance. However, our results do 

not suggest that individuals with PD used different visual strategies to prevent dual task 

interference during gait. This result is in contrast to previous studies in which PD patients used 

different visual strategies to avoid cognitive overload during complex goal-oriented tasks 

requiring sequential memory-motor transformations and precision (Galna et al., 2012; Ketcham 
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et al., 2003). This is also in contrast with previous assumptions that individuals with PD require 

more visual feedback from the obstacle for successful crossing (Vitorio et al., 2013). The 

similarity of visual strategies in PD and healthy controls, even when the cognitive load was 

increased, might suggest that patients employed a maladaptive visual strategy or even the only 

visual strategy in their repertoire, to avoid an obstacle successfully. It is important to 

acknowledge that our study investigated gaze behaviour associated with one area of interest 

(obstacle). Thus it is possible that individuals may have looked to other areas, perhaps close to 

the obstacle as part of their visual strategy. Therefore, future studies should analyze gaze 

behaviour of PD patients in more areas in order to understand the importance of other pieces 

of visual information, other than obstacle, to online movement plan. 

Abnormal head tilt in individuals with PD is associated with planning of complex step 

adjustments 

 

During the final steps prior an obstacle crossing individuals with PD made larger head 

tilts downwards compared to healthy controls. It is well known that head and eye movements 

are tightly related. Thus, head movements towards a specific location may suggest that 

individuals are using more visual information from that specific location. Thus individuals with 

PD might have attempted to use more visual information from the lower visual field, not 

necessarily from obstacle, compared to healthy controls. This strategy might have helped 

patients to correct or to adjust their movement plan accordingly. Additionally, the larger head 

tilt in healthy individuals when they performed the dual task in the late phase, suggested that 

head tilts downwards are influenced by the cognitive demand to plan gait adjustments during 

obstacle approach.   
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One could argue that larger downward head movements in PD patients during obstacle 

approach might have been a postural adaptation to facilitate the propulsion of the body to 

cross the obstacle. However, a recent study (Stegemoller et al., 2012) demonstrated that PD 

patients do the opposite by displacing their center of mass backwards during obstacle crossing 

as a postural strategy to prevent loss of stability when they land their foot beyond the obstacle. 

This strategy may prevent difficulties to break the center of mass displacement when 

individuals land their lead foot beyond obstacle. Thus, it is unlikely that individuals with PD 

were trying to displace their center of mass forward, using head movements. Interestingly 

healthy individuals adopted similar head tilt behaviour in the late phase when monitoring digits 

in the audio track. This suggests that abnormal head posture during locomotion in individuals 

with PD, such as stooped posture, may be centrally mediated in order to help with the planning 

of complex step adjustments during locomotion.   

Limitations 

This study has some limitations that need to be acknowledged. The number of steps 

used to calculate step-to-step time variability is low compared to previous research (Yogev et 

al., 2005). However, variability between phases using the same number of steps for all groups 

was consistently compared. Other studies have also calculated step time variability from the 

same amount of steps (Cowie et al., 2012; Pieruccini-Faria et al., 2014). Another limitation is 

that it was not possible to know the performance of the secondary task in each phase. It might 

be possible that the performance of the secondary task in each phase changed as participants 

approached the obstacle. Poor performance in the secondary task would also indicate that the 
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demand for central resources (e.g. cognitive processes, attention) during obstacle approach 

increased. The eye tracker equipment did not allow calculation of saccades due to low sampling 

frequency. Downward saccades could play an important role in updating the motor plan of 

foot-obstacle distances during locomotion(Di Fabio, Zampieri, & Greany, 2003). Future research 

should investigate the contribution of saccadic eye movements to obstacle avoidance in PD.  

CONCLUSION 

 

In summary the current study demonstrates that dopaminergic replacement decreases 

gait slowness and partially decreased the influence of cognitive load in PD patients when online 

planning was necessary to avoid an upcoming obstacle during gait. A specific improvement in 

sensorimotor integration, after dopaminergic replacement, likely contributed to decreased gait 

slowness during online movement planning. Interestingly, individuals with PD do not adopt 

different visual strategies or gaze behaviours while planning obstacle avoidance even when the 

cognitive load was increased. This lack of visual adaptation could potentially contribute to 

increased risk of falls among PD patients, especially during novel or more demanding gait 

situations. From a therapeutic point of view, it is important to consider interventions that 

expose PD patients to complex environments when they are unmedicated.  This type of 

intervention could be particularly important for PD patients who have abrupt motor 

fluctuations or to those who are less responsive to dopaminergic therapy.  
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CHAPTER 5 - GENERAL DISCUSSION 

 
The overall aim of this thesis was to better understand the influence of motor planning 

on gait control of individuals with Parkinson’s disease (PD). Specifically, we attempted to 

understand if the planning of gait adjustments and foot clearances while walking (online 

movement plan) to avoid an obstacle exacerbates gait deficits in individuals with PD. In Chapter 

1, we hypothesized that an over demand for central neural resources, when individuals with PD 

are planning obstacle avoidance while walking, could undersupply or interfere with resources 

required for gait control. A dual task was used to investigate the processing demand created by 

planning gait adaptations, and the influence this processing had on resources required to 

control gait in individuals with PD. In Chapter 2, this issue was investigated within the gait 

spectrum disorder caused by PD both in individuals with less severe (PD-nonFOG), and in 

individuals with more severe gait impairments known as freezing of gait (PD-FOG). In Chapter 3, 

the relationship between the load on central resources and sensorimotor processing during the 

planning and control of gait adaptations was investigated. Finally, in Chapter 4, the influence of 

dopaminergic replacement therapy on planning resources was investigated. 

FOG and online movement planning in PD 

 

In Experiment 1, we attempted to determine if individuals with PD-FOG are more 

influenced by cognitive load than PD-nonFOG and healthy controls when they plan and control 

complex step adjustments that are necessary to avoid obstacles. A dual task paradigm, walking 

while monitoring one or two digits in an audio track, was used to increase cognitive load during 

gait. The dual task helped to determine if the cognitive load to plan gait adjustments could 
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trigger gait disturbances and freezing episodes in individuals with PD when they approached an 

obstacle. We found that the dual task only influenced gait of PD-FOG when the demand for 

planning step adjustments increased during the steps closest to the obstacle. Performing the 

secondary task also increased the number of contacts with the obstacle, but only for PD-FOG. 

PD-FOG had abnormal planning of horizontal foot-obstacle distances beyond the obstacle 

(shorter horizontal foot-to-obstacle distance of the lead foot that landed after crossing the 

obstacle). This abnormal spatial plan correlated with poor executive functioning (i.e., worse 

attentional set-shifting/cognitive flexibility was associated with worse planning).  In addition, 

their poorer performance on the secondary task (digit counting) also indicated that PD-FOG 

were allocating greater resources to the gait task compared to PD-nonFOG. These results 

together showed that the planning and control of complex gait adjustments overload cognitive 

processing in PD-FOG, which triggers typical gait characteristics known as precursors of FOG 

episodes, such as timing variability. In addition, the magnitude of impairments in executive 

functions in PD-FOG contributed to erroneous spatial planning of foot-to-obstacle distances. 

This result is consistent with previous literature, which has shown that deficits in executive 

function are linked to FOG (Amboni, Cozzolino, Longo, Picillo, & Barone, 2008; Shine, Naismith, 

et al., 2013).  Thus, an exacerbated deficit in executive function in PD-FOG can compromise the 

ability to plan complex spatial adjustments between the foot and obstacles. Additionally, the 

combination of impaired executive functions and the processing demands for planning motor 

adaptations may have depleted the resources available to control gait in PD-FOG. It appears 

that PD-FOG's cognitive systems are not able to fully account for increased demand in central 

resources required to plan and control gait adaptations. It should be noted that individuals with 
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PD who experience FOG, compared to those who do not experience FOG, have been shown to 

have reduced activity in frontal-parietal networks; this suggests that less cognitive resources 

may be available to process information for PD-FOG, compared to PD-nonFOG (Bartels & 

Leenders, 2008). These hypoactive areas in PD-FOG are associated with higher-order cognitive 

processing and sensory processing, which are important to modulate complex actions. 

Therefore, increased cortical impairments, other than basal ganglia dysfunction, could also 

explain the impact of cognitive load to plan gait adaptations in PD-FOG.   

It is important to acknowledge that deficits in executive functions limit our conclusions 

because cognition and gait deficits are correlated. Deficits in executive functions are also a 

marker of cholinergic dysfunction in PD (Bohnen et al., 2006; Bohnen et al., 2010b). Cholinergic 

decline impairs the functioning of the pedunculopontine nucleus (PPN) which plays a critical 

role in adjusting motor plans during locomotion. This is supported by recent fMRI study 

showing that individuals with PD with FOG have abnormal activation of Mesencephalic 

locomotor region (MLR) while imagining walking (Snijders et al., 2011). Future studies should 

further investigate the contribution of locomotor networks on complex gait tasks in PD.  

Unexpectedly in Experiment 1, PD-nonFOG were not affected by the dual task during 

obstacle avoidance. This suggests that the resources required to plan gait adjustments did not 

interfere with gait control of PD-nonFOG more than in healthy individuals. However, it is 

important to acknowledge that PD patients compensate for deficits in planning and 

sensorimotor processing by using visual feedback available in the environment (Almeida et al., 

2005; Azulay et al., 1999). Differences between individuals with PD and healthy individuals are 
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more evident when visual feedback of self-motion is decreased. Removal of visual feedback of 

self-motion could force PD patients to rely on their impaired sensorimotor processing to 

achieve optimum motor control, which exacerbates movement disturbances. Additionally, 

visual feedback of step length decreases the demand on central resources during walking 

(Baker, Rochester, & Nieuwboer, 2008). This relationship between external feedback (e.g., 

vision) and cognitive processing in PD has been recently explained by a theoretical model 

(Redgrave et al., 2010).  According to this model, cognitive processes responsible for controlling 

goal-oriented movements (novel behaviours; non habitual movements) are too overloaded by 

requirements to compensate for distorted sensorimotor signals in PD. In other words, the 

cognitive system in individuals with PD can be affected by their impaired sensorimotor 

processing. Therefore, sensorimotor processing in individuals with PD depletes cognitive 

resources that are necessary to perform more complex goal-oriented tasks. Thus, Experiment 2 

tested whether the impact of movement planning on gait control of individuals with PD would 

be exacerbated in conditions where visual feedback of self-motion is reduced and conditions 

where the obstacle is the only source of visual feedback.     

Sensorimotor processing and online movement planning in PD 

 

In Experiment 2, we investigated the influence of motor planning resources on gait 

control in PD-nonFOG during conditions of reduced visual feedback of self-motion and dual 

tasking (monitoring two digits in an audio track while walking; the same dual task used in 

Experiment 1). Experiment 2 provided an opportunity to evaluate if deficits in sensorimotor 

integration increase the chances of disturbances in gait control when PD patients are walking 
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and planning gait adaptations during increased cognitive load. It was hypothesized that gait 

control would be compromised when individuals with PD start to plan complex gait 

adjustments (late phase) while walking, but only when visual feedback of self-motion is 

reduced. It was expected that during situations of reduced visual feedback, resources used to 

plan gait modifications might be shared with resources required to control gait. Thus reduced 

visual feedback would magnify the impact of planning step adjustments on gait control in 

individuals with PD. It was also expected that increased dual task interference on gait (or 

poorer dual task performance) would demonstrate increased load on central resources during 

conditions of reduced visual feedback. 

In order to manipulate visual feedback of self-motion, participants walked and stepped 

over an obstacle during full vision, in the dark with position cues on lower limbs (small piece of 

glow-in-the-dark tape attached to their thighs and feet), and in the dark without limb cues. The 

obstacle was illuminated in the dark (fully covered with glow-in-the-dark tape), and thus equally 

visible in all conditions. Results from Experiment 2 demonstrated that gait variables of PD 

patients, such as step time variability and gait velocity, were abnormally affected by reduced 

visual feedback of self-motion during the steps closer to the obstacle (late phase) compared to 

steps further from the obstacle (early phase). Specifically, greater gait deceleration and 

increased step time variability were observed when PD patients walked from the early to late 

phases during dark conditions. This result agrees with our hypothesis that motor planning 

affects gait control of PD patients during steps that require planning for complex gait 

modifications. An important finding is that there were fewer obstacle contacts during the dual 

task when PD patients had limb position cues that allowed them to see their foot and thigh in 



139 
 

 

the dark, compared to when they walked in the dark without limb position cues. This indicates 

that the central resources of individuals with PD are affected by reduced visual feedback of self-

motion. In addition, PD patients had poorer performance on digit monitoring compared to 

healthy participants, but only when they walked in the dark without glow-in-the-dark tape on 

their lower limbs. Together, these results indicate that individuals with PD relied on central 

resources more than healthy controls did during sensorimotor integration. The increased 

demand in central processing when PD patients walked in the dark may have increased the 

interference of planning resources on gait control of individuals with PD.  Overall, when visual 

feedback of self-motion was reduced in the dark conditions, gait control (step time variability 

and gait velocity) was more affected in PD patients than in healthy participants, especially 

during the closest steps before obstacle crossing (late phase), when planning is critical to avoid 

an obstacle contact. 

Interestingly, gait control exhibited by PD patients in Experiment 2 (during conditions of 

reduced visual feedback) was similar to the gait behaviours of PD-FOG in Experiment 1, as 

shown by the greater step time variability in the late phase and more obstacle contacts during 

dual task conditions. Step time variability is linked to increased cognitive challenge during gait 

(Hausdorff, Rios, & Edelberg, 2001). This suggests that PD-FOG may require increased central 

resources for sensorimotor integration compared to PD-nonFOG. Increased step time variability 

is also linked to increased risk of falling in individuals with PD. Although PD patients in general 

have a higher risk of falling compared to healthy individuals, severity of gait disorders in 

individuals with PD (such as FOG) can exacerbate this risk (Bloem, Hausdorff, Visser, & Giladi, 

2004). It is possible to conclude from these results that impaired sensorimotor integration in PD 
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patients make them more susceptible to trips and falls, especially when planning resources are 

necessary to make gait adaptations in cluttered environments.  

The results of Experiment 2 are consistent with a recent theory about basal ganglia 

dysfunction, which hypothesizes that impairments in sensorimotor processing in individuals 

with PD induce patients to use cortical networks that modulate complex goal-oriented 

behaviours (Redgrave et al., 2010). According to this theory, impaired sensorimotor processing 

caused by striatal dopaminergic depletion makes individuals use attentional networks to 

prevent their impaired sensorimotor processing from causing errors in their motor 

output.  Hence, during a condition where individuals with PD are required to integrate 

sensorimotor information to achieve gait control (e.g., in the dark), a more conscious or 

attentional control of steps is necessary. 

In Experiments 1 and 2, individuals with PD were tested (only) during their “ON” 

dopaminergic state (when patients are under the effect of dopaminergic medication). 

Therefore, it is difficult to draw conclusions about the influence of basal ganglia dysfunction on 

central resources when individuals need to plan and control gait modifications. It is important 

to understand what processes basal ganglia are modulating when PD patients are walking and 

planning gait adaptations. The basal ganglia (Alexander, Crutcher, & DeLong, 1990; Graybiel, 

1995) and dopamine (Cools, 2006; Hanna-Pladdy & Heilman, 2010; Nutt & Carter, 1984; 

O'Suilleabhain, Bullard, & Dewey, 2001; Pullman, Watts, Juncos, Chase, & Sanes, 1988; Shin, 

Kang, & Sohn, 2005) play a critical role in the modulation of sensory, motor, and cognitive 

processing. Withdrawal of dopaminergic medication might reveal the specific contributions of 
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the basal ganglia and dopamine to gait control and resources capacity during gait with obstacle. 

According to theoretical models, dopamine increases the resource’s “reserve” (Lewis & Barker, 

2009b) for motor and cognitive processing, making complex motor and cognitive tasks less 

demanding for these patients. Thus, when dopamine levels are low, the accomplishment of 

complex gait tasks may be compromised in individuals with PD. Some cognitive and motor tasks 

may require more “fuel” (more dopamine) than others. For example, previous research 

suggested that dopaminergic withdrawal exacerbates gait disturbances of individuals with PD, 

especially when the sensorimotor and cognitive complexity of the task increased (Lord et al., 

2010). However, it is not known if dopamine modulates resource allocation and/or the 

sensorimotor processes required to plan obstacle avoidance. This issue was investigated in 

Experiment 3.  

Another important issue not investigated in Experiments 1 and 2 was the visual 

strategies used by PD patients to avoid the obstacle. While Experiment 2 demonstrated that PD 

patients depended more on visual feedback of self-motion than healthy participants to plan 

and control complex step adjustments, it was not possible to understand how individuals with 

PD used visual information from the obstacle. As suggested by previous research (Galna et al., 

2010; Vitorio et al., 2013), individuals with PD could rely on visual feedback from the obstacle 

more than healthy participants and, thus use feedback regarding the obstacle’s location as a 

visual cue to plan their gait adjustments. It is well known that visually guided movements are 

not affected by basal ganglia dysfunction (Morris et al., 2005; Morris, Iansek, Matyas, & 

Summers, 1994). Alternatively, visual strategies could have optimized the dual task 

performance, preventing cognitive overload and gait impairments while PD patients walked 
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toward an obstacle. According to previous research, PD patients prevent overload in 

visuospatial working memory by looking less frequently at multiple spatial locations before 

executing sequential movements (Ketcham et al., 2003). Another recent study showed that PD 

patients reduce saccadic movements when they have to walk through a doorway while 

performing a cognitive dual task (memorizing a sequence of numbers while walking) compared 

to when they do not perform the dual task (Galna et al., 2012). Therefore, gaze strategies may 

be important to decrease the impact of cognitive overloading on motor performance in 

individuals with PD. The gaze analysis used in Experiment 3 helped to determine the 

contribution of visual strategies used by individuals with PD to plan foot clearances. 

Additionally, we sought to investigate if dopaminergic replacement and increased cognitive 

load influenced their visual strategy.  

Dopaminergic dysfunction and online movement planning in PD 

 

Experiment 3 was an attempt to evaluate the influence of dopaminergic withdrawal on 

central resources of individuals with PD during the planning and control of complex step 

adjustments, which are required to step over an obstacle. Specifically, Experiment 3 

investigated the effect of cognitive load generated by a dual task (the same task used in 

Experiments 1 and 2) when individuals approached an obstacle before (“OFF”) and after (“ON”) 

taking their regular dopaminergic medication. PD patients were tested in both the “OFF” and 

“ON” medication state (each participant was tested twice). In this experiment, participants’ eye 

movements were monitored by an eye tracker in order to understand whether their visual 
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strategies to avoid an obstacle were mediated by dopamine and by increased demand in 

central resources. 

This experiment showed that when PD patients were “OFF” medication, step time 

variability was increased during the dual task, but only in the late phase. This effect was only 

found in the first trial. However, dopaminergic replacement therapy (PD OFF x PD ON 

comparisons) did not change the impact of cognitive load on gait. The cognitive load was higher 

for individuals with PD who were OFF medication compared to healthy controls; however, 

when individuals with PD who were ON medication were compared to healthy controls, there 

were no differences. In addition, PD patients who were OFF medication had an abrupt gait 

deceleration from the early to the late phase, compared to healthy controls and PD patients 

who were ON medication, regardless of the dual task condition. However, dopaminergic 

medication withdrawal did not affect foot clearances or digit counting performance. These 

results indicate that dopamine modulates sensorimotor processing but had little influence on 

cognitive processes associated with the planning of foot clearances.    

In Experiment 3, the abrupt gait deceleration from early to late phases, found only in 

the PD patients who were OFF medication, is comparable to the gait deceleration observed in 

Experiment 2 (when PD patients walked in the dark toward an obstacle). However, in 

Experiment 3, like in Experiment 1 and 2, gait velocity of PD patients and healthy individuals 

was similarly influenced by the dual task during obstacle approach (both groups had their gait 

velocity similarly affected by the dual task). This result suggests that gait deceleration between 

phases is not associated with increased demand in cognitive processes when individuals 
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approach an obstacle. Perhaps this abnormal gait deceleration in individuals with PD who are 

OFF medication, found in Experiment 3, is more associated with impairments in processing or 

integrating sensorimotor information than with limitations in cognitive processes. Recent 

neuroimaging research revealed that dealing with external stimuli can overload the cognitive, 

limbic or sensorimotor basal-thalamic-cortical loops, which increases the  inhibitory output 

from basal ganglia to motor centres (Lewis & Barker, 2009a). Specifically the increased 

demands in sensorimotor integration during obstacle approach could have increased inhibitory 

motor output from basal ganglia to locomotor centers when individuals with PD were OFF 

medication compared to ON medication. These results together suggest that BG impairments in 

PD affect the ability to process sensory feedback to plan obstacle avoidance, but had little influence on 

cognitive processing since dual task performance of PD ON and PD OFF were similar. Results from 

experiment 3 (chapter 4) support the idea that sensorimotor integration during movement planning 

may consume a great portion of striatal dopamine. Additionally, striatal dopamine for cognitive 

processing may be more preserved than dopamine for sensorimotor processing, especially in the early 

stages of the disease. Thus, impairments in other neurotransmitter systems, such as the 

cholinergic system (Bohnen et al., 2010a), may play an important role in modulating cognitive 

processing during motor planning in PD patients.   

Gaze results showed that there were no group differences for fixation duration or 

number of fixations on the obstacle position. These gaze behaviours do not confirm previous 

assumptions that individuals with PD use visual feedback from obstacles differently than 

healthy controls (Galna et al., 2012; Vitorio et al., 2013). Additionally, these gaze results are also 

in contrast with previous assumptions that individuals with PD use different visual strategies to 
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manage cognitive load during goal-directed movements (Galna et al., 2012; Ketcham et al., 

2003). Therefore, PD does not affect how individuals extract visual information from the 

obstacle. This result suggests that patients might be using maladaptive visual strategies to plan 

movements. 

The results in Experiment 2 compared to Experiment 3 suggested that visual information 

from peripheral vision (optic flow from the environment) might be more important than foveal 

vision (obstacle location) for individuals with PD to avoid obstacles. It is possible that individuals 

with PD need more information about the spatial structure of the environment surroundings 

than healthy controls to plan gait adjustments and to estimate body displacement. However, 

we cannot make strong conclusions about the importance of central and peripheral visual 

information for PD patients since it was not directly manipulated in this thesis. Future studies 

could investigate the importance of different pieces of visual feedback (central or peripheral) 

during goal-directed tasks for individuals with PD.    

 

Influence of movement planning on gait control in PD 

 

The experiments in this thesis suggest that during the planning of gait adaptations 

central resources become overloaded, which affects gait control in individuals with PD more 

than in healthy controls. Deficits in sensorimotor integration may demand increased central 

resources in individuals with PD compared to healthy individuals, which increases the impact of 

motor planning on gait. Basal ganglia and non-dopaminergic pathways may modulate central 

resources, whereas dopamine may specifically influence sensorimotor integration during motor 
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planning in individuals with PD. In sum, online movement planning may increase the number of 

systems (cognitive, sensorimotor) relying on the same resource pool, which affects locomotion 

of individuals with PD.  

Faulty mechanisms during obstacle avoidance in PD:  Targets for intervention  

 

Understanding the role of cognitive load on gait disturbances in PD is a very important 

topic, in particular the use of a dual-task paradigm as an instrument to study this relationship is 

an emerging area of research.  Importantly, very few studies have investigated the impact of 

dual tasks during real-world tasks, such as obstacle avoidance in PD. The gait impairments and 

trips observed in the studies from this thesis are strong reflection of what likely happens when 

individuals navigate in real-world situations, making this a unique and externally valid protocol. 

Real-world contexts usually require planning for complex gait adaptations to avoid obstacle 

contacts. Thus, a better understanding of cognitive, sensory and planning mechanisms during 

navigation with obstacles and gait adaptation will be extremely relevant for many other aging 

and neurodegenerative populations as well.  Rehabilitation programs and other therapeutic 

interventions for PD patients could result from the findings of this thesis, but it is also important 

to consider other populations that present with gait impairments such as geriatric population in 

general and stroke survivors that might also benefit. Therefore, the gait task developed for this 

thesis provides an important tool, to better understand how faulty mechanisms involved in 

planning and gait control can result in greater incidence of trips and falls.  

PD patients have increased frequency of falls compared to age matched healthy 

individuals. Although multifactorial, individuals with PD report that trips and slips are among 
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the most common reasons for falls (Balash et al., 2007; Balash et al., 2005). Additionally injuries 

resultant from falls may lead individuals to hospitalization and reduced functional capacity (e.g. 

reduced strength, aerobic capacity and coordination). Hence, fall prevention is crucial to 

stabilize the health status and decrease mortality among individuals with PD. This thesis 

identifies three faulty mechanisms that could be targeted in therapies to help patients navigate 

with safety in complex environments. These mechanisms are likely associated with faulty extra-

nigral pathways, sensorimotor integration and striatal dopaminergic depletion. Identification of 

faulty mechanisms is the first step to develop pharmacological and non-pharmacological 

interventions to prevent falls.  

In the first experiment, non-dopaminergic aspects such as declined general cognitive 

status and impaired attention/executive functions were correlated to gait deficits in PD-FOG, 

whereas disease severity was not. These cognitive impairments are markers of cholinergic 

rather than dopaminergic deficit in PD (Bohnen et al., 2006). Thus, non-dopaminergic deficits 

appear to have influenced the planning to avoid an obstacle in individuals with FOG, specifically 

in the late phase and during obstacle clearance itself. Recent research has shown that severe 

gait impairments in PD may result from pronounced damage to the cholinergic system (Bohnen 

et al., 2007; Bohnen et al., 2010b). Degeneration of cholinergic neurons in the 

pedunculopontine nucleus (PPN) may disrupt postural control and gait in PD (Muller et al., 

2013). The PPN works as an interface between supra-spinal and spinal locomotor networks. 

This region plays an important role in making adaptations in the postural tonus to initiate or to 

stop gait (Pahapill & Lozano, 2000).  
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Declined cognition may compromise the ability to perform complex goal-oriented gait 

tasks that strongly rely on attentional networks. Hence improving cognition in PD patients may 

have a positive impact on gait behaviour in PD. For example, cognitive remediation therapy 

using action observation combined with physical practice decreased FOG severity in gait tasks 

that elicit FOG episodes (Pelosin et al., 2010). Another recent study showed that FOG severity 

decreased when individuals are systematically exposed to complex environments that are 

known to trigger FOG episodes (Plotnik et al., 2014). It has also been shown that locomotor 

training, using virtual reality, improves both obstacle negotiation and executive functions in PD 

(Mirelman et al., 2011). These cognitive-motor therapies may stimulate brain areas that encode 

kinematic characteristics of movement (i.e. inferior frontal gyrus) and goal/object description 

(i.e. inferior posterior parietal cortex).  Together these studies suggest that cholinergic 

stimulation combined with cognitive-motor training, may an effective strategy to improve 

obstacle avoidance in PD. 

It should also be noted that cholinesterase inhibitors have been shown to decrease the 

incidence of falls in PD (Chung, Lobb, Nutt, & Horak, 2010).  A more recent drug trial observed 

positive effects of methylphenidate (a cholinergic agonist) on step length and cadence during 

activities of daily life in individuals experiencing FOG (Moreau et al., 2012), however 

methylphenidate did not decrease the influence of dual-task on gait in freezers (Delval et al., in 

press).    These studies together suggest that the cholinergic system (specifically in PD-FOG) may 

not be contributing to a cognitive issue, since the ability to deal with multiple tasks 

simultaneously during gait does not improve.  Thus, it may be prudent to consider what other 
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mechanisms (other than cognition) the cholinergic system might be involved in, to lead to these 

gait improvements. 

One possible mechanism that may be cholinergic in nature is sensorimotor integration, 

and based on the findings from experiment 2 (chapter 3) impaired sensorimotor integration 

appears to have affected planning in individuals with PD, since they show slower velocities and 

increased step time variability (in the late phase), as well as more obstacle contacts compared 

to healthy controls. These differences were only apparent when walking in darkness, but with 

normal vision these group differences disappeared.  Sensory feedback integration is necessary 

to update an ongoing movement plan, however individuals with PD may present limitations to 

process proprioceptive feedback (Konczak et al., 2012; Maschke, Gomez, Tuite, & Konczak, 

2003), which has been proven to affect gait control (Almeida et al., 2005). Therefore, in the 

absence of visual feedback, attention should be used as a strategy to improve or enhance the 

sampling of somatosensory feedback during strenuous locomotor contexts. Hence, a viable 

intervention may be to teach individuals with PD to focus their attention on relevant 

somatosensory feedback to perform challenging gait adaptations (e.g. lower limbs position). 

For example, exercise programs can teach PD patients to focus attention to sensory feedback 

when they perform a variety of complex body movements (Sage & Almeida, 2009). This type of 

cognitive-physical intervention improves gait during more challenging gait situations (e.g. gait 

with turns) whereas self-paced gait remained unchanged. Therefore, complex gait navigation in 

individuals with PD could be improved by exercises combining attention and sensory 

manipulations. 
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Chapter 4 provides evidence that a dopaminergic mechanism is likely involved in the 

planning of obstacle clearance behaviours. Specifically, the results of this chapter support that 

dopamine contributes to sensorimotor integration when individuals are planning for an 

upcoming obstacle. Specifically, dopaminergic withdrawal resulted in similar gait deficits as 

when patients walked with reduced visual feedback (e.g. optic flow) toward an obstacle. Thus, 

it seems likely that the BG may mediate sensorimotor integration for planning, with a specific 

role in integrating proprioceptive feedback with vision.  

In terms of therapeutic interventions, and as supported by a recent literature review 

arguing that “somatosensory deficits are one in which disease-related dopaminergic 

denervation leads to a loss of response specificity, resulting in transmission of noisier and less-

differentiated information to cortical regions” (Conte, Khan, Defazio, Rothwell, & Berardelli, 

2013), cuing strategies may be very important in PD. Provision of external cues helps patients to 

focus attention on relevant sensory information thereby improving motor performance in PD. 

Cognitive strategies mentioned above, such as focusing attention to steps or lower limbs may 

be useful for patients to navigate in complex environments, where the salience of sensory 

information is reduced. Since it is well known that sudden motor fluctuations effects locomotor 

performance of patients, gait therapies should be performed also when patients are OFF 

medication whenever possible. This therapeutic strategy could teach patients to overcome 

their gait impairments when medication is not effective, or when individuals begin to 

experience frequent wearing off. 
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 Overall, this dissertation reveals that sensorimotor deficits may be the core mechanism 

causing gait impairments during obstacle avoidance. Dopaminergic dysfunction is likely the 

main contributor to faulty sensorimotor deficits in PD, however careful consideration of the 

role of the cholinergic system in sensorimotor processing should be a focus of future research. 

To improve or stabilize sensorimotor problems it will be imperative to consider combinations of 

pharmacological and cognitive remediation interventions that target both the dopaminergic 

and cholinergic pathways. These therapeutic strategies will optimize planning resources and 

therefore prevent falls in PD. However, caution is necessary when making conclusions about 

the contributions of the cholinergic system during planning and control of gait adaptations 

since we did not directly evaluate the cholinergic system in this thesis. More studies are 

necessary to understand the specific contributions of cholinergic dysfunction and obstacle 

avoidance deficits in PD. 

Limitations 

An important limitation of the current thesis was the inability to quantify the 

performance on the secondary task during each phase of the walking task. An analysis of 

secondary task performance during each phase could provide more information regarding the 

cognitive load associated with each approaching phase (early and late) and obstacle crossing 

task. In general, participants reported in each experiment that it was very difficult to keep track 

of the digits during the last steps, which corresponds to the late phase and crossing the 

obstacle. Thus, it is possible that the performance of the secondary task was worse when 

participants were closer to the obstacle and during obstacle crossing. Future studies could use 
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dual task paradigms that allow the investigation of not only the effects of a secondary task on 

gait, but also the performance on the secondary task during the approach and crossing phases.  

Another limitation is the inability to isolate planning and control using the obstacle 

paradigm. This dissociation is difficult since planning and control are interwoven neural 

networks. Thus, it is difficult to know whether gait abnormalities during obstacle avoidance in 

individuals with PD were caused by deficits in mechanisms of planning, or they were caused by 

deficits in control; this is especially problematic during obstacle approach. However, according 

to neurophysiological studies in animals brain lesions in areas that are important when 

individuals are planning actions only affect gait control in the last few steps prior obstacle 

crossing (Andujar, Lajoie, & Drew, 2010; Lajoie & Drew, 2007). Thus, gait abnormalities during 

an obstacle approach may indicate deficits associated with motor planning and not with 

execution or control of actions. Future brain imaging studies could further investigate this issue 

in PD patients. 

Future directions 

 

There are important questions that should be explored in future studies utilizing the gait 

protocol of this thesis. Since our results suggest that cholinergic dysfunction would influence 

gait with obstacles in PD-FOG, patients could be tested before and after cholinergic medication 

intake. Since cholinergic dysfunction affects the brain stem, stimulation of the PPN could be 

used to understand the specific contribution of this locomotor region for complex gait 

navigation in individuals with severe gait deficits. Additionally the use of Transcranial Magnetic 

Stimulation would be helpful to understand the contribution of specific cortical areas 
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associated with movement planning, such as the supplementary motor area and parietal areas 

in PD. Electroencephalography (EEG) could be used to verify the existence of abnormal activity 

in different cortical areas associated with planning and/or movement execution. Together these 

approaches will lead us to a greater understanding of the mechanisms that underlie movement 

control deficits in PD. 

CONCLUDING REMARKS 

 

The results of these experiments demonstrate that motor planning to cross an obstacle 

overtax resources creating gait disturbances in individuals with PD.  One possible reason for the 

influence of motor planning on gait control is that sensorimotor integration during gait requires 

more resources for individuals with PD. To put this more plainly, motor planning and 

sensorimotor integration may use the same pool of resources in individuals with PD, which 

affects their motor output. As a result, gait control becomes worse when individuals with PD 

are walking and planning foot clearances, as performing concurrent cognitive tasks either 

depletes and overload their available resources. Dopamine may have important contribution to 

sensorimotor integration processes, however had little contribution to cognitive processes that 

underlie the planning of complex step adjustments. Since dopaminergic replacement partially 

normalizes planning resources, additional therapeutic strategies (pharmacological, cognitive 

and physical) might be necessary to improve gait adaptability of PD patients. 
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