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Abstract 

Alexaneder disease (AxD) is a primary genetic disorder of astrocyte caused by 

mutations in the type 111 intermediate filament (IF) glial fibrillary acidic protein 

(GFAP). The pathological hallmark of this disease is the presence of Rosenthal fibres 

(RF), ubiquitinated protein aggregates with GFAP being the primary constituent. On 

the basis of age at onset, the disease has been divided into three subtypes: infantile, 

juvenile and adult. Whilst one of the common mutations R416W is reported in A x D 

with a wide range in disease severity and age of onset, the mechanisms by which this 

mutation leads to A x D remain unknown. To investigate the role of mutated protein in 

the disease process, I have developed a cell model system in which the expression of 

GFAP can be regulated by doxycycline. Expression of R4I6W GFAP leads to 

aggregate formation, which increases small heat shock protein (sHSP) expression, 

activates stress-activated protein kinase (SAPK) pathways and partially impairs 

proteosome function. This is accompanied by the sequestration of sHSPs and activated 

SAPK into GFAP-containing aggregates, which make cells more susceptible to stress. 

However, R416W mutation was found to not always disrupt the endogenous IFs. but 

to incorporate into GFAP networks when expressed at low levels. The potential 

functional impact of incorporating low level of the disease-causing GFAP mutant into 

the pre-exiting GFAP networks is that cells respond poorly to stressful conditions. 

These data provide direct evidence to suggest that astrocyte dysfunction play a key 

role in the development of A x D and stress is likely to have the most influence on the 

presence and progression of the disease. 



Chapter I 

Introduction 

Intermediate filaments are the major cytoskeletal component comprising a family of highly 

heterogeneous proteins whose main function is to provide structure support in the cytoplasm 

and nucleus of higher eukaryotes. This chapter documents the general structural features and 

functional aspects of intermediate filaments. In particular, a number of novel functions have 

recently been discovered for intermediate filament proteins. Most of the functions are related 

to the capacity of intermediate filaments to act as signalling scaffolds that translate changes of 

environmental conditions into alterations of gene expression at the cellular level. Intermediate 

filaments also provide a biochemically versatile interface that can be tailored by individual 

cells to serve as a dynamic platform for the binding of associated proteins, such as protein 

chaperones. Some of these functions are altered by genetic mutations that cause cell 

dysfunction and account for a variety of genetic diseases in humans. For instance. Alexander 

disease, a primary genetic disorder of astrocyte, is caused by mutations in a type I I I 

intermediate filament protein, glial f ibril lary acidic protein (GFAP). Whilst the genetic basis 

for Alexander disease has been f i rmly established, little is known about the mechanisms 

resulting in its devastating consequences. Here 1 review recent progress on elucidating the 

role of GFAP mutations in Alexander disease, particularly focusing on observations made by 

the cell and animal model systems. These literatures cover: I) structure and functions of 

intermediate filaments involving in mechanical, metabolic, regulatory and cell signalling 

processes, and a wide range of diseases; 2) the role of GFAP in the cell biology of astrocytes 

and the function of astrocytes in the central nervous system: 3) GFAP mutation and its 

involvement in astrocyte stress response; 4) details of Alexander disease and possible 

mechanisms leading to its pathogenesis. 



1.1 The cytoskeleton 

The cytoskeleton is a complex network of interconnected filaments that extends throughout 

the cytosol. f rom the nucleus to the inner surface of the plasma membrane. This elaborate 

internal framework forms highly structured yet very dynamic matrix that not only gives cells 

their distinctive shape and high level of internal organisation but also plays important roles in 

cell movement and division. In addition, the cytoskeleton serves as a framework for 

anchoring and transport membrane-bound organelles within the cell. The three major 

structural elements of the cytoskeleton are microtubules, microfilaments and intermediate 

filaments, each of which has a characteristic size, structure and intracellular distribution. Each 

structural element is formed by the polymerisation of a different kind of protein subunit. The 

main structural features of the three major components of the cytoskeleton are summarised in 

Table 1.1. 

Table 1.1 An overview of the cytoskeleton 

Microtubules Intermediate filaments Microfilaments 

Structural Hollow tubes with polar Biopolymers of fibrous Thin and flexible 

feature structure proteins filaments 

Diameter 25 nm 10-12 nm 6-8 nm 

Components a-tubulin A superfamily of at least a-actin 

P-tubulin 70 intermediate filament p-actin 

proteins y-actin 

Functions Maintenance of cell Mechanical support, Cell division and 

shape, mobility, cell formation of nuclear locomotion, cell shape 

division, and organelle lamina and scaffolding, maintenance. and 

movement stabilising muscle fibres muscle contraction 



1.2 Intermediate niaments 

1.2.1 General features of intermediate filaments 

Intermediate filaments (IFs) derive their name f rom the observation by electron 

microscopy (Ishikawa et al., 1968) that their apparent 10-nm diameter is intermediate in size 

between microtubules (-25 nm) and microfilaments (-6 nm). Whilst the tubulins and actin are 

highly conserved globular proteins with nucleotide-binding and hydrolyzing activity, IF 

proteins are fibrous proteins with no known enzymatic activity. In further contrast to 

microtubules and microfilaments, IFs are the most stable and least soluble constituents of the 

cytoskeleton (Osborn and Weber, 1989), which are resistant against extraction with buffers 

containing high concentrations of salt and non-ionic detergents (Zackroff and Goldman. 

1979). This feature enables their isolation and characterisation f rom various cells and tissues. 

1.2.2 The superfamily of I F proteins 

One remarkable feature of IF proteins is their diversity both in terms of number and 

expre-ssion pattern. In the human genome, at least 70 functional genes encode IF proteins 

(Hesse et al., 2001) making them one of the largest gene families in humans. IFs genes can be 

classified according to various criteria (Herrmann and Aebi, 2000), as exemplified in Table 

1.2. Based on the primary gene structure and sequence homology, IF genes are grouped into 

five distinct types. 

1.2.2.1 Type I and Type II IFs 

Keratins are IF-forming proteins that provide mechanical support and f u l f i l a variety of 

additional functions in epithelial cells. According to new nomenclature for keratin by 

Schweizer et al. (2006), type 1 keratins consist of K9-28 epithelial keratin, K31-40 hair 

keratins and K4I-70 nonhuman epithelial and hair keratins. Type I I keratins include K l - 8 and 



K7I-80 epithelial keratins, K81-86 hair keratins and K87-120 nonhuman epithelial and hair 

keratins. The members of both types of keratins are unusual in that they assemble in vitro as 

obligatory heteropolymers in a 1:1 ratio of any combination of at least one type I and one type 

II keratin (Hofmann and Franke, 1997; Steinert et al.. 1976). 

Table 1.2 The I F proteins multigene family 

Member Name No. of Sequence Assembly Protein Cell/Tissue 

Gene(s) Type Group Size (kDa) Distribution 

Keratin 60 I A 40-64 Epithelial 

Keratin 58 11 A 52-68 cells 

Vimentin 1 I I I B 55 Heterogeneous 

Dsemin 1 I I I B 53 Muscles 

GFAP 1 I I I B 50 Astrocyte/glia 

Peripherin 1 I I I B 52 PNS* neuron 

NF-H 1 IV B 110 C N S V P N S neuron 

NF-M 1 IV B 102 C N S / P N S neuron 

NF-L 1 IV B 62 C N S / P N S neuron 

a-internexin 1 IV B 66 C N S neuron 

Nestin 1 7 B 240 Heterogeneous 

Synemin 1 7 B 182 Muscles 

Paranemin 1 7 B 178 Muscles 

Lamin A/C 1 V C 72/62 A l l cell types 

Lamin (31 1 V C 65 A l l cell types 

Lamin |32 1 V C 78 A l l cell types 

BFSP/CP49/Phakanin 1 7 Orphan 46 Lens 

BFSP2/CPI 15/Filensin 1 7 Orphan 83 Lens 

* PNS, peripheral nervous system. 

" CNS, central nervous system. 



1.2.2.2 Type III IFs 

Type I I I IF proteins include vimentin, desmin, GFAP, and peripherin. Vimentin is the most 

widely expressed IF protein in a number of cells of endothelial, fibroblastic and 

hematopoietic origin (Lane et al., 1983; Virtanen et al., 1981), as well as in the eye lens 

(Bloemendal et al., 1981). Desmin represents the major IF protein in all muscle tissues. It is 

one of the earliest marker protein specifically expressed in skeletal muscle where it becomes 

detectable in somites and myoblasts (Kaufman and Foster, 1988). GFAP is the main protein 

constituent of glial filaments in mature astrocytes and glial cells associated with central 

nervous system (CNS) (Eng, 1982). Peripherin is predominantly expressed in peripheral 

neurons (Portier et al., 1983) or neurons whose axon lies at least partially outside the CNS 

(Escurat et al., 1990). Unlike the keratins, type I I I IF proteins can form both homopolymers 

(Steinert et al., 1981) and heteropolymers with other type III or type IV IF proteins (Eliasson 

et al., 1999; Monteiro and Cleveland, 1989). 

1.2.2.3 Type IV IFs 

Type IV IF proteins comprise neurofilament (NF) triplet proteins and a-internexin. The 

core of mature axons of both central and peripheral nervous system (PNS) is f i l led with NFs. 

This heteropolymer is composed of three subunits, NF-H (heavy chain), NF-M (medium 

chain) and NF-L (light chain), which differ greatly in molecular weight (Lee and Cleveland, 

1996). An additional type IV IF protein a-internexin was first isolated f rom optic nerve and 

spinal cord, and was found particularly abundant in the developing nervous system (Pachter 

and Liem, 1985). 



1.2.2.4 Type V IFs 

Type V IF proteins are nuclear lamins that are the main structural constituents of nuclear 

lamina, a filamentous scaffold that supports inner nuclear membrane (Aebi et al., 1986; 

Stuurman et al., 1998), and are also present in the nucleoplasm (Goldman et al., 2002). 

Lamins are divided into A and B types on the basis of their expression patterns and protein 

structure. A-type lamins are derived through alternative splicing of a single gene LMNA, and 

are expressed only in differentiated cells and more complex organisms. B-type lamins are 

encoded by two separate genes {LMNBl and LMNB2), and are present in all metazoan cells. 

Lamins differ f rom other IF proteins by an insertion of 42 amino acids within I B subdomain 

(Fig. 1.1). This feature is also found in cytoplasmic IF proteins of invertebrates, whereby it is 

very likely that lamins were the first IF protein to occur in evolution. 

1.2.2.5 Type VI IFs 

Several recently identified proteins are clearly members of IF protein superfamily based on 

the gene structure and sequence identity, but they do not f i t easily into either of the 

established types of IF proteins. To reflect this current indecision, they are tentatively grouped 

as type V I IFs (Table 1.2). For instance, nestin is a novel IF protein expressed in 

neuroepithelial stem cells of mammalian CNS (Lendahl et al., 1990). It is also expressed early 

in cardiac and skeletal muscles, but is only retained in adult skeletal muscle at the 

neuromuscular and myotendinous junctions (Carlsson et al., 1999). In vitro assembly studies 

suggested that whilst nestin is unable to self-assemble into typical lO-nm IFs, it could form 

heteropolymeric filaments when co-assembled with purified vimentin or a-internexin 

(Steinert et al.. 1999). Two additional high-molecular-weight IF proteins, synemin 
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Figure 1.1 Schematic representation of the domain structure common to cytoplasmic 

(A) and nuclear (B) I F proteins. A central rod-forming domain, consisting of a-helical 

subdomains coil 1 and coil 2, is flanked by non-a-helical amino-terminal head and 

carboxy-terminal ' tail ' domains. Helical regions are boxed and are connected by non-

helical 'linker' (L) regions. The numbers of amino acids found with the individual domains 

is indicated. The hatched area in the coil 1 of (B) represents the 42-amino acid insertion 

found in general in nuclear IF proteins, but also in cytoplasmic IFs of lower vertebrates. 

Note that the heptad substructure is maintained in L I of nuclear IF proteins, suggesting that 

lamins have a continuous helix 1 segment. The darkened regions at both ends of coil l A 

and coil 2B indicate the evolutionarily highly conserved regions. The light grey marking at 

the end of the tail domain of nuclear IF proteins (B) represents the so-called 'CaaX' box, in 

which post-translational modification occurs. NLS, nuclear location sequence. 



(Bilak et al., 1998; Granger and Lazarides, 1980) (also called desmuslin (Mizuno et al.. 

2001)) and paranemin (Hemken et al., 1997: Price and Lazarides. 1983). are coexpressed in 

muscle and form heteropolymers with desmin (Schweitzer et al.. 2001). A recently discovered 

IF protein syncoilin is also present in skeletal muscle (Newey et al.. 2001), where it 

colocalises with desmin but does not co-assemble with desmin to form heteropolymers (Poon 

et al., 2002). Furthermore, two other IF proteins found exclusively in the eye lens comprise a 

unique cytoskeletal structure called beaded filaments (Maisel and Perry, 1972). The two 

structural components initially isolated f rom urea-soluble extract of chicken lens were termed 

cytoskeletal protein 49 (CP49) and cytoskeleta) protein 95 (CP95) according to the molecular 

weight by SDS-PAGE (Ireland and Maisel, 1983; Ireland and Maisel, 1984). CP95 was later 

renamed filensin (Merdes et al., 1991) to avoid confusion due to different apparent molecular 

weight in the different species. These two lens-specific IF proteins filensin and CP49 have 

acquired a number of unique structural features and distinct assembly properties (Perng and 

Quinlan, 2005), which mark them out f rom the other cytoplasmic IF proteins. 

1.2.3 Structure features of cytoplasmic I F proteins 

Although IF proteins differ remarkably in size and amino acid compositions, they all share 

a common structural organisation, a schematic version of which is shown in Fig. 1.1. A 

centrally located a-helical rod domain of about 310 amino acids that is flanked by non-a-

helical domains of different size and sequence (Fuchs and Weber, 1994; Geisler and Weber, 

1982). Variations in these so-called "head" and " t a i f domains contribute significantly to the 

marked heterogeneity of members of this protein family. The rod domain features a heptad 

repeat pattern, which mediates coiled-coil dimer formation and represents the major driving 

force for IF self-assembly (Strelkov et al., 2003). The heptad periodicity with hydrophobic 

residues usually being in the first and fourth of every seven residues is interrupted by short 
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Figure 1.2. A textbook view of the IF" assembly. Two monomers (A) paired together to 
form dimers (B) in which the conserved central rod domains are aligned in parallel to 
form a coilcd-coil. Two dimcrs then lined up side by side to form an anti-parallel 
tetramer (C). Within each tetramer the dimers are staggered with respect to one another, 
thereby allowing it to associate with another tctramer, as shown in (D). In the final step 
of assembly, tetramers are packed together to form a typical 10-nm filaments (E). An 
electron micrograph of the final filament is shown upper left (courtesy of Dr Ming-Der 
Perng). This figure is modified from Figure 16.14 in the Molecular Biology of the Cell 
3 rd edition, 1994. 



linkers L I , L12 and L2. resulting in four consecutive segments l A , I B , 2A and 2B. With the 

exception of nuclear lamins, filensin and invertebrate IF proteins, the size of the rod domains 

and the position of the linker regions are well conserved throughout all cytoplasmic IF 

proteins (Fuchs and Weber. 1994; Parry and Steinert, 1999). Another highly conserved feature 

of the rod domain is a discontinuity in the heptad repeat pattern within the 2B subdomain, a 

so-called "stutter". The stutter is equivalent to an insertion of extra four amino acids into a 

continuous heptad repeat, which is located at exactly the same position despite a considerable 

sequence variation in this region (Weber and Geisler, 1985). 

1.2.4 In vitro assembly of IFs 

IF proteins are remarkable in that they can self-assemble into 10-nm filaments in a 

complex and hierarchical fashion in the absence of accessory proteins or cofactors. Owing to 

the presence of heptad repeats within the rod domain, IF proteins readily form stable coiled-

coil dimer (Burkhard et al., 2001), which is the molecular building block of IFs. Whilst most 

IF proteins assemble into homodimers, keratins are obligatory heterodimers formed by one 

acidic chain and one basic/neutral chain (Hatzfeld and Franke, 1985). Despite the 

heteropolymeric nature of keratin dimers, they do not dimerise with other IF proteins. In 

addition, certain IF proteins, even those belonging to different types can form heterodimers 

with each other. Accordingly, IF proteins can be divided into three assembly groups (Table 

1.2). The first assembly group (Group A ) consists of keratins and the most other cytoplasmic 

IF proteins are assigned to the second group (Group B). The third group (Group C) includes 

nuclear lamins. IFs f rom members of the three assembly groups do not copolymerise with 

each other but can co-exist as distinct filament systems in one cell type. 

IF assembly begins with a pair of monomers (Fig. I .2A) associated in parallel into a 

coiled-coil dimer (Fig. I.2B). In the next stage of assembly, two dimers associate laterally in 
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an anti-parallel fashion to form a tetramer (Fig. 1.2C). Soluble tetramers are found in small 

amounts in cells (Soellner et al., 1985), indicating that they are fundamental subunits f rom 

which IFs are assembled. The anti-parallel arrangement of dimers implies that IF formed 

f rom tetramer is a nonpolarised structure (Herrmann and Aebi, 1998). This feature 

distinguishes IFs f rom microtubules and actin microfilaments, which are polarized and whose 

functions depend on this polarity (Table I . I ) . Microtubules and microfilaments polymerize 

non-covalently f rom a slow-growing end (minus end) and a fast-growing end (plus end). At 

steady state, the shrinkage at the minus end and the growth at the plus end give rise to an 

effect known as treadmilling (Akhmanova and Steinmetz, 2008; Carballido-Lopez, 2006). IF 

assembly beyond tetramer is less well characterised, because IF proteins have been diff icul t to 

crystallise owing to their notorious insolubility, lack of specific assembly inhibitors and 

polymerisation-prone character (Strelkov et al., 2003). Current models proposed that in vitro 

assembly of cytoplasmic IF proteins takes place in a three-step process (Fig. 1.31), in which 

first tetramers rapidly associate laterally to form the so-called "unit-length filament" (ULF). 

These ULFs are approximately 16 nm in diameter and 60 nm in length (Herrmann et al., 

1999; Herrmann et al., 2003). Once formed, the ULFs start to anneal into loosely packed 

filaments that are 200-300 nm long (Fig. 1.311). On further elongation, these filaments 

undergo intrafilamentous subunit reorganisation leading to a radial compaction (Fig. 1.3111). 

The filament diameter decreases to 1 I nm in the case of human vimentin and 14 nm in the 

case of human desmin, without reducing their mass-per-length. With this general scheme, the 

assembly of vimentin, desmin, keratin 8/18 and NF-L have been described previously 

(Herrmann et al., 1999; Herrmann et al., 2002). 

1 I 
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Figure 1.3. Current model of I F assembly in vitro. Negatively stained electron micrographs 
show vimentin assembled in vitro through three-step process. I. Unit-length filaments 
(ULFs). n. Loosely packed short immature filaments. IH Longer, conq>act mature filaments. 
A model shows diat ULFs anneal end-to-end to fcain loosely packed, short IF. These 
immature filaments tmdergo internal con^action to produce mature IFs. Images courtesy of 
Drs. H. Herrmann (German Cancer Research Centre. Heidelberg) and U. Aebi (Maurice E. 
Muller Institute for structural biology, Biocentrun Basel, Switzerland). Reproduced fiom 
(Herrmann, H. and Aebi, U.. Cur. Opin. Struct. Biol. 8,177-185,1998) with permission. 



1.2.5 The role of end domains on I F assembly 

Previous studies on the specific inter-molecular interactions involved in IF assembly are 

based upon examining the effect of certain truncated or mutated IF protein. On one hand, such 

studies have revealed that two highly conserved segments in the rod domain, the helix-

initiation segment located at the beginning of l A subdomain and helix-termination segment 

situated at the very end of the 2B subdomain, are critical for the correct IF assembly 

(Herrmann and Aebi, 1998). On the other hand, whilst in vitro and in vivo studies have often 

led to contradictory conclusions, there seems to be a general agreement that the highly 

conserved rod ends play essential roles in IF assembly. In particular, the head domain seems 

to control both end-to-end and lateral associations (Hatzfeld et at., 1992; Herrmann et al., 

1996; Raats et al., 1990), whereas the tail domain plays an important role both in controlling 

filament width in vitro (Herrmann et al., 1996; Kaufmann et al., 1985; Kouklis et al.. 1991) 

and establishing proper IF networks in vivo (Chen and Liem, 1994; Eckelt et al., 1992; 

Makarova et al., 1994; McCormick et al., 1993). Furthermore, given their exposure at the 

filament surface, the end domains could mediate coordinated interactions of IFs with other 

cytoskeletal components and a host of cellular proteins (Green et al., 2005), as well as serve 

as substrates for post-translational modifications (Izawa and Inagaki. 2006; Omary et al., 

2006) that regulate IF structure, organisation, and function. 

1.2.6 Organisation of IFs in living cells 

The assembly of IF in cells was first investigated by microinjecion experiments (Kreis et 

al.. 1983). When keratin mRNA was injected into cultured cells, the first structure observed 

by immunfluorescence microscopy was dots that with time elongated into short fibres and 

eventually giving rise to extended filaments. Such a scenario is entirely compatible with 

recent studies by live cell imaging using GFP-tagged vimentin (Ho et al., 1998; Prahlad et al., 
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1998: Yoon et al.. 1998). These studies have shown vimentin exists in several assembly 

intermediates, including non-filamentous particles and short filaments that are known as 

"squiggles". Individual particles are frequently converted into squiggles, which might be 

precursors in the assembly of long IFs. The exact structures of these IF precursors are 

currently unknown, but they are assembled in a highly regulated process to form typical IF 

networks. Interestingly, keratin filaments appear to be formed fol lowing a similar multistep 

process (Windoffer et al., 2004; Yoon et al., 2001). 

1.2.7 I F dynamics and motile properties 

Studies of variable types of live cells have revealed that IFs and their precursors are 

remarkably dynamic and exhibit highly motile properties (Helfand et al., 2003; Liovic et al., 

2003; Windoffer et al., 2004). Initial studies using fluorophore-tagged IF proteins showed that 

when microinjected into cells, they form discrete particles that are subsequently incorporated 

into the endogenous IF networks in a dose-dependent manner (Miller et al., 1993. Miller et 

al., 1991). These observations provide direct evidence that a dynamic equilibrium exists 

between soluble subunit and polymerised filaments. Subsequent studies using fluorescence 

recovery after photobleaching (FRAP) following microinjection of fluorophore-tagged 

vimentin (Vikstrom et al., 1992) or in cells expressing GFP-tagged vimentin (Yoon et al., 

1998) have confirmed that IF subunit exchange is apolar and exists along the entire length of 

polymerised IFs. Whilst the mechanisms responsible for the steady-state dynamics remain to 

be defined, variable dynamics between soluble subunits and polymerised filaments may allow 

cells to continuously rearrange IF structure in a gradual manner, which is important for many 

cellular processes during cell division and differentiation. 

Recent time-lapse studies of live cells expressing GFP-tagged IF proteins clearly show that 

many types of IF engage in a complex array of movements that are closely associated with 
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assembly, disassembly and subcellular organisations (Martys et al., 1999; Yoon et al., 1998). 

However, not all IFs move in the same vvay. For instance, the motile properties of keratin 

tonofibrils and squiggles are dramatically different f rom those of vimentin fibrils and 

squiggles within the same cytoplasmic regions (Liovic et al., 2003; Yoon et a!., 2001). The 

difference in motility may be related to their interactions with IP-associated proteins or 

molecular motors, such as conventional kinesin, cytoplasmic dynein and myosin. These 

associations are not only responsible for many of the motile properties of IPs, but also appear 

to be involved in regulating the subunit exchange that is critical for the maintenance of IP 

structure and organisation within cells. When considered together, the evidence supporting 

the dynamic and motile properties of IFs has overturned the long-standing view that IPs 

simply form static space-filling cytoskeletal networks that serve nothing but structural 

support. 

1.2.8 Regulation of I F dynamics and functions 

IP dynamics is reflected not only by their steady-state equilibrium between a soluble and 

an insoluble pool but also by their reorganisation in response to a spectrum of stimuli 

including mitosis, apoptosis and other cellular stresses. These dynamic properties are 

regulated by post-translational modifications particularly on the non-helical head and tail 

domains of IP proteins. 

Phosphorylation is the best-studied IF post-translational modification given its prevalence 

and functional implications (Ku et al.. 1996a). IF phosphorylation is essential for the 

regulation of IP dynamics by modulating IP solubility, conformation, turnover and filament 

organisation (for recent review see (Omary et al.. 2006)). Moreover. IF-phosphorylation 

provides a key point for the regulation of other IP post-translational modifications, such as 
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ubiqiiitination (e.g. ( K L I and Omary. 2000)). These phosphorylation-regiilated properties 

determine generalised and unique IF functions that reflect their tissue-specific expression. 

Identification of phosphorylation sites on IF proteins is, therefore, of great importance in 

order to understand the mechanism by which cellular IF reorganisation is regulated. A variety 

of tools have been used to characterize in vivo IF phosphorylation sites. In particular, 

generation of phosphorylation site-specific antibodies allows visualisation of spatiotemporal 

distribution of intracellular IF phosphorylation sites (Izawa and Inagaki, 2006). These 

antibodies can also monitor localised kinase activity responsible for a specific IF 

phosphorylation. IF phosphorylation sites are clustered in the head and tail domains and 

primarily at serine and threonine residues, although tyrosine phosphorylation can also be 

detected in some IF proteins (Ku et al., 1996a). Whilst tyrosine phosphorylation occurs on IF 

proteins, such as vimentin (Valgeirsdottir et al., 1998; Meriane et al.. 2000). peripherin 

(Angelastro et al.. 1998), and keratins (Feng et a!.. 1999), it appears to be less common 

compared to serine/threonine phosphorylation. 

IF phosphorylation is regulated by many in vivo kinases (see Appendix I ) , most of which 

dramatically alter the network configuration and induce filament disruption. For many of the 

identified in vivo kinases, direct or indirect interaction of the kinase with its IF substrate has 

also been demonstrated. However, it is important to keep in mind that although IF can be 

phosphorylated by purified kinases, the in vitro phosphorylation sites may not necessarily 

reflect in vivo situations. 

Cellular processes that are controlled by phosphorylation require not only kinases, but also 

phosphatases. The serine/threonine phosphatases and tyrosine phosphatases (Mumby and 

Walter. 1993) comprise two major groups of protein phosphatases in eukaryotes. The 

importance of protein phosphatases in IF phosphorylation is highlighted by the dramatic 

hyperphosphorylation of IFs upon phosphatase inhibition as demonstrated for vimentin 
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(Eriksson et al.. 1992). keratins (Toivola et al.. 1997), NFs (Sacher et al., 1992). and lamins 

(Almazan et al.. 1993). Furthermore, the inhibition of tyrosine phosphatase by pervanate and 

orthovanadate resulting in hyperphosphorylation of keratins implies the significance of 

tyrosine phosphatases on the regulation of phosphate turnover on IP proteins (Feng et al., 

1999). Finally, recent studies have provided evidence that IFs may potentially serve as a 

"phosphate sponge" that absorbs excessive kinase activity (Ku and Omary, 2006). Upon 

apoptotic stimulation, the hepatocytes extracted f rom mice with a human disease associated 

keratin 8 mutation (G61C) or its phosphorylation site (S73) have shown increased nonkeratin 

proapoptotic substrates phosphorylated by stress-activated kina.ses, compared with wild-type 

hepatocytes. Hence, keratin 8 with conserved S73 containing phosphoepitope can protect 

tissue f rom injury by acting as a phosphate sponge for stress-activated kinases. Other than 

keratin, the tail domain of NF-H, can also provide such a molecular sink for preventing 

untoward phosphorylation of other kinase substrates in neurons (Nguyen et al.. 2001). 

indicating that this type of phosphate buffering could be a general phenomenon for IFs. 

1.2.9 Ubiquitination of IFs 

1.2.9.1 Ubiquitin-proteasome system 

Ubiquitination is another type of post-translational modification that is essential for 

selective degradation of many short-lived proteins in eukaryotic cells. Indeed, as many as 

30% of newly synthesized proteins in eukaryotes are degraded by the ubiquitin-proteasome 

system (UPS) within minutes of synthesis (Schubert et al., 2000), as well as the aberrant 

proteins resulted f rom mutation or translational damage (Sherman and Goldberg, 2001). The 

ubiquitin-mediated degradation of proteins plays important roles in the control of myriad 

cellular processes, including cell cycle progression, differentiation, apoptosis, transcription 
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regulation, DNA repair, signal transduction, endocytosis, immune response and quality 

control of protein folding (see Appendix 2). 

In the UPS pathway, proteins are targeted for degradation by covalent ligation to ubiquitin, 

a 76-amino-acid globular protein that is highly conserved throughout eukaryotes. 

Ubiquitination is a multistep process (Fig. 1.4), involving three types of enzymes. First, an 

ubiquitin-activating enzyme (also known as E l ) forms a thiol-ester bond with the carboxy-

terminal glycine of ubiquitin in an ATP-dependent process. Then, an ubiquitin-conjugating 

enzyme or ubiquitin-carrier enzyme (also known as E2) accepts the carboxyl terminus of 

ubiquitin f rom the E l by a transthiolation reaction to the active cysteine residue of the E2. 

Finally, an ubiquitin protein ligase (E3) catalyses the transfer of ubiquitin f rom the E2 

enzyme to the lysine residue in the substrate that is selected exquisitely by the E3. 

Ubiquitinated proteins are recognised and degraded by the 26S proteasome, an ATP 

dependent proteolytic complex. The catalytic component of this remarkable and highly 

complex structure is a cylindrical chamber of 28 subunits (the 20S core) that includes two 

copies of subunits vvith trypsin, chymotrypsin, and peptidylglutamyl peptidase-like activities 

(Kierszenbaum. 2000: Mochida et al., 2000). The 208 core is capped at each end by a 

multisubunit regulatory complex, the i9S cap. Protein recognition and ATP-dependent 

unfolding occur in the I9S cap and subsequent proteolysis takes place in the 20S core. At the 

proteosome. deubiquitinating enzymes (DUBs) cleave multi-ubiquitin chains f rom residue 

peptides (Papa and Hochstrasser, 1993) and shorten protein-bound multi-ubiquitin chains by 

removing the terminal ubiquity I group (Lam et al., 1997). The ubiquitin released f rom the 

proteosome can be reused for additional ubiquitination. 
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Figure 1.4. The ubiquitin-proteasome system. Proteolysis of a target substrate by the 
ubiquitin-proteasome system involves two steps— first, conjugation of ubiquitin moieties 
to the protein substrate (A); second, degradation of the ubiquitin-marked substrate by the 
26S proteasome (B). Protein ubiquitination is catalyzed by three enzymes: El (ubiquitin-
activating enzyme) hydrolyses ATP (adenosine triphosphate) and forms a thioester-linked 
conjugate with ubiquitin 111; E2 (ubiquitin-conjugating enzyme) receives ubiquitin f rom 
El and forms a similar thioester linkage with ubiquitin | 2 | ; E3 (ubiquitin-protein ligase) 
binds both E2 and the substrate, and transfers the ubiquitin that is bound to E2 to the 
substrate. |3-7|. Two major classes of E3 are identified: the HECT (homologous to the 
E6-AP C-terminus) | 3 | directly catalyses the attachment of ubiquitin | 4 | to substrate 
proteins | 5 | or the RING (really interesting new gene) finger domain | 6 | promotes target 
protein ubiquitylation or autoubiquitylation |7 | . Successive conjugation of ubiquitin 
molecules to one another generates a polyubiquitin chain | 8 | that serves as a binding and 
degradation signal for the 26S proteasome. The substrate tagged with a polyubiquitin 
chain is shuttled to the proteasome, in a process requires ATP |9 | . The 26S proteasome 
contains two i9S cap regulatory complex and 20S cylindric catalytic core complex 110|. 
Each outer ring of the 20S comprises seven a subunits for the entrance of the substrate, 
while each inner ring of the 20S encompasses seven P subunits with proteolytically 
active sites. The target protein is degraded to short peptides | I I | and then hydrolysed to 
amino acids by cytosolic peptidases 112|. The polyubiquitin chain is cleaved away from 
the substrate by the UCH (ubiquitin carboxy-terminal hydrolase) 1131, and can be recycled 
by deubiquitinating enzymes (DUBs) 114|. 



1.2.9.2 Substrates of the ubiquitin-proteasome system 

1.2.9.2.1 Nrf2 

Nrf2 (nuclear factor erythroid-2 related factor 2) is a redox-sensitive transcription factor 

that regulates the expression of genes encoding antioxidants, xenobiotic detoxification 

enzymes and drug efflux pumps, and confers cytoprotection against oxidative stress and 

xenobiotics in normal cells. Under homeostatic conditions, Nrf2 is normally localised in the 

cytoplasm via its Neh2 domain tethered with an actin-binding protein homologous to the 

Drosophila actin-binding protein Kelch called Keapl (Kelch-like ECH-associated protein I ; 

Li et al., 2005; Itoh et al., 1999; Dhakshinamoorthy and Jaiswal, 2001). Keapl functions as an 

adaptor protein for redox-regulated substrate to a Cul3-dependent ubiquitin ligase, and 

negatively regulates Nrf2 activity by targeting it to proteasomal degradation (Zhang et al., 

2004). Upon exposure to oxidative stress, Nrf2 is released for nuclear translocation (Dinkova-

Kostova et al., 2002; Motohashi and Yamamoto, 2004) by modification of the sulfhydryl 

group interactions in the Keapl-Nrf2 complex. Whilst translocated into the nucleus, Nrf2 

specifically binds the antioxidant response element (ARE) found in the promoters of phase 2 

and antioxidant defense enzymes, such as NAD(P)H:quinone oxidoreductase, glutathione-S-

transferase, glutathione peroxidase and heme oxygenase-1 (Venugopal and Jaiswal, 1996). 

Nrf2 has a short half-life, Tl/2 = 15 minutes (Nguyen et al.. 2003) to 3 hours (Stewart et 

al., 2003). The fast turnover of Nrf2 is a result of degradation through the UPS, and it can be 

inhibited by Keapl (Sekhar et al., 2002). Since several protein kinase pathways including 

mitogen activated protein kinase and protein kinase C have been implicated in transducing 

signals that control Nrf2 dependent gene expression (Huang et al.. 2002; Kong et al., 2001; 

Lee et al., 2001). a link between Nrf2 phosphorylation. Nrf2 stability, and mitogen activated 

protein kinase pathway is proposed by Nguyen and coworkers (Nguyen et al., 2003). 

Recently, antioxidant stress response including increased gene expression regulated by Nrf2 
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had been found in mice overexpressing wild-type GFAP along with Rosenthal Fibres 

formation (Hagemann et al., 2005). 

1.2.9.2.2 Cyclin D l 

Cyclin D l , D2. and D3 make up the cyclin D family. Cyclin D proteins and their 

associated kinases are uniquely positioned to regulate the cell cycle as they link mitogenic 

signals to the cell cycle machinery (Ekholm and Reed, 2000). For instance, cyclin D l 

accumulation is necessary for Gl-S phase cell cycle transition. Phosphorylation of 

retinobla.stoma (Rb) protein by active cyclin Dl-dependent kinase 4/6 (cdc4/6) complexes 

leads to release of sequestered E2F transcription factors that activate expression of genes 

required for progression into S phase (Sherr and Roberts, 1999). 

Cyclin D l degradation occurs at the end of G 1 phase, where turnover of cyclin D I is rapid 

(Tl/2 = -20-30 minutes) (Diehl et al., 1998). This degradation is critical for progression into S 

phase, and inability to degrade cyclin D l results in G l arrest (Sherr and Roberts, 1999). 

Levels of cyclin D l elevate in response to mitogen fol lowing S phase, which is essential for 

continued cell cycling (Baldin et al., 1993). Ubiquitin-dependent cyclin D l degradation 

requires cyclin D l phosphorylated by GSK3P at threonine residue (Thr'*^'') near the carboxyl 

terminus, triggering polyubiquitination of cyclin D l and its subsequent degradation by the 

26S proteasome (Diehl et al., 1998; Diehl et al., 1997). Besides, cyclin D l can also be 

ubiquitylated by alternative mechanisms independent of Thr'^^ phosphorylation (Germain et 

al., 2000). Ras-activated pathways increase cyclin D l stability by inhibiting GSK3(3 activity 

in proliferating cells (Diehl et al.. 1998). Conversely, activated p38 kinase promotes the 

transcriptional down-regulation of cyclin D l that is enhanced by the specific p38 inhibitor 

SB203580 upon exposure to a variety of stresses (Lavoie et al.. 1996; Casanovas et al., 2000). 

Aggregates resulted from overexpression of mutant keratin 14 have shown to suppress 20S 
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proteasome function, as judged by the inhibited turnover of cyclin D l that is under the 

regulated control of the UPS in normal circumstances (Diehl et al., 1997). 

1.2.9.3 Ubiquitination of IFs 

IF proteins are also targets for ubiquitination, but little is known about the role of 

ubiquitination on IPs. A direct evidence of in vivo ubiquitination of IFs comes from studies 

with keratin 8/18 (Ku and Omary, 2000). When cotransfected with ubiquitin followed by 

proteosome inhibition or overexpression of each keratin individually, keratin 8 and keratin 18 

are significantly ubiquitinated. Keratin ubiquitination is associated with its degradation as 

evidenced by decreased keratin degradation after proteosome inhibition. Furthermore, keratin 

ubiquitination seems to be cross-regulated by phosphorylation. Similar modes of 

ubiquitination and degradation are likely to involve other IP proteins. Thus proper 

ubiquitination and subsequent degradation of IP proteins may be required for their turnover. 

Uncoupling of ubiquitination and degradation may lead to aberrant accumulation of ubiquitin 

in IP-enriched cytoplasmic inclusions in a number of diseases, such as Mallory bodies in liver 

diseases, intrasarcoplasmic inclusions in desmin-related myopathies and Rosenthal fibres in 

Alexander disease. One potential explanation is that the formation of inclusions results in the 

proteosome capacity being exceeded or inhibited, with subsequent accumulation of 

ubiquitinated proteins within aggresome (Johnson and Englund, 1998). In the case of 

Rosenthal fibres, ubiquitinated protein inclusions containing GFAP and the small stress 

proteins HSP27 and aB-crystallin occur as an early event during their formation (Perng et al., 

2006). 
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1.2.10 I F associated proteins 

IF dynamics and functions can be regulated by interactions with binding partners, such as 

IF-associated proteins (IFAPs). IFAPs coordinate interactions of IFs with a variety of cellular 

proteins and other cytoskeletal elements, which provide a dynamic platform for the 

organisation of the cytoplasm on a structural and functional level. The number of known 

IFAPs is increasing steadily. Appendix 3 summarises a range o f IFAPs that interact with 

various cytoplasmic IF proteins. This appendix is not intended to be comprehensive, but 

rather is to provide a general overview that cytoplasmic IFs interact with a number of cellular 

proteins. 

In particular, proteins of plakin family are cytoskeletal linkers that feature a long a-helical 

rod domain, flanked by globular end domains that mediate binding to IFs and other 

cytoskeletal proteins (Jefferson et al., 2004). This type of IFAPs thus serves as critical 

connecting links in the IF scaffolding that organise the cytoplasm and confers mechanical 

stability to cells and tissues. However, IFAPs are not limited to crosslinkers but also include 

chaperones, kinases, phosphatases, adapters and receptors, which function in signalling 

networks that regulate cell cycle, programmed cell death and the cellular response to stress 

(Pallari and Eriksson, 2006). Whilst the role of IF. particularly keratin IFs, in resisting 

mechanical stresses has been well established (Ku et al., 1995; Loranger et al., 1997), 

evidence that IFs exert a cytoprotective role in countering non-mechanical stress is emerging. 

Probably, the best example is provided by the simple epithelial keratins 8/18 in protecting 

liver hepatocytes from non-mechanical stress (Ku et al., 1996b; Toivola et al., 1998; 

Zatloukal et al., 2000). The role of IFs in protection f rom mechanical and non-mechanical 

stresses may involve their interactions with stress proteins. For instance, keratins interact with 

a broad range of stress proteins, including HSP70. GRP78 and M r j , a DnaJ/HSP40 family 

protein (Appendix 3). Stress proteins not only associate with keratins but also reside 
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abundantly in other IPs (Quinlan, 2001). A l l type I I I IF proteins and the lens-specific IF 

proteins CP49 and filensin have been shown to associate with the small heat shock proteins 

(sHSP) aB-crystallin and HSP27 (Appendix 3). 

1.2.11 IFs and apoptosis 

Among the more recently recognised IFAPs are enzymes and receptors involved in the 

apoptosis (Marceau et al., 2007). Apoptosis, or programmed cell death, is a tightly controlled, 

energy-dependent process mediated by discrete intracellular signals, characterised by cell 

shrinkage, nuclear condensation and DNA fragmentation. In the later stages, the cell 

membrane devolves into neatly packaged vesicles, termed apoptotic bodies, which are taken 

up by neighboring cells. The apoptotic signals are often transduced by two cellular processes, 

the "extrinsic" and "intrinsic" pathways (Dragovich et al., 1998; Strasser et al., 2000). Whilst 

the intrinsic apoptosis death pathway is mitochondrial-dependent, the extrinsic apoptosis 

pathway is activated by two death receptors, tumor necrosis factor-a (TNP-a) and Fas 

receptors. Following ligand binding, these receptors trimerize and recruit the death domain 

adaptor molecules, such as T R A D D (TNF receptor-type I-associated death domain protein) 

and PADD (Fas receptor-associated death domain protein) to form the death-inducing 

signalling complex (DISC) (Peter and Krammer, 2003; Ozoren and El-Deiry, 2002). Both 

receptor-mediated and mitochondrial-dependent apoptotic pathways are often executed by a 

group of cysteinyl-aspartate-directed proteases called caspases (Nicholson, 1999; Takahashi 

and Earnshaw, 1996). Caspases degrade multiple cellular proteins as the apoptotic programme 

moves into its execution phase. 

Several IF proteins are directly cleaved by effector caspases at an early stage of apoptosis 

(Byun et al.. 2001; Chen et al., 2003; Mouser et al.. 2006; Oshima. 2002; Ruchaud et al., 

2002). Cleavage often occurs at a conserved site within the rod domain of IFs, leading to loss 
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of filament integrity and destruction of the IF networks. Initial studies suggest that caspase-

mediated cleavage of IFs promotes the apoptotic signalling cascade and timely execution of 

apoptosis (Schietke et al., 2006), as evidenced by the delay incurred when caspase-resistant 

forms of IFs were overexpressed (Byun et al., 2001; Rao et al., 1996). The cleavage of IF 

proteins has additional significance. For instance, caspase-cleavage of vimentin releases the 

filament-bound p53 to the nucleus, where it can enhance TNF-a-induced apoptosis (Yang et 

al.,2005). 

IFs are not only caspase substrates, but they also act as scaffolds in the sequential caspase 

activation. This regulated process involves an apoptosis-signalling molecule, such as the 

death effector domain containing DNA binding domain (DEDD) (Schutte et al., 2006; Lee et 

al., 2002). Recent studies on keratins revealed that DEDD associates with IFs and directs 

caspases to IFs to facilitate their ordered cleavage during apoptosis (Dinsdale et al.. 2004). In 

addition, keratins 8/18 have also been shown to attenuate TNF-a induced apoptosis by 

interacting with T R A D D (Inada et al., 2001). Keratin mutations associated with 

epidermolysis bullosa simplex (EES; e.g. R125C K I 4 ) abrogates its interaction with T R A D D , 

making keratinocytes more susceptible to apoptosis (Yoneda et al., 2004). 

1.2.12 I F and signalling pathways 

IFs serve as signalling platforms for intracellular kinases and phosphatases, which not only 

regulate phosphorylation and assembly states of IFs, but also modulate kinase/phosphatase 

activities (Omary et al., 2006; Pallari and Eriksson, 2006; Sihag et al., 2007). With IFs being 

substrates for many of the estimated 518 human kinases (Johnson and Hunter. 2005), 

mitogen-activated protein kinases (MAPKs) signalling pathways are evolutionary highly 

conserved. Cells respond to a variety of stimuli by activating MARK pathways to regulate a 

given cellular process, such as gene expression, cellular metabolism, and cellular response to 
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differentiation, proliferation, apoptosis, inflammation and stress response (Chang and Karin, 

2001; Johnson and Lapadat, 2002; Kyriakis and Avruch, 2001; Cowan and Storey, 2003; Xia 

and Karin, 2004). 

1.2.12.1 M A P K family 

The M A P K family is composed of three prototype kinases: the extracellular signal-

regulated protein kinases (ERKs), c-Jun NH2-terminal kinase (JNK) and p38 kinase (Kyriakis 

and Avruch, 2001; Cowan and Storey, 2003). Both JNK and p38 are involved in cellular 

stress, whereas ERKs are activated by growth factors and other mitogens. A l l M A P K 

pathways are operated in a three-tiered system (Fig. 1.5). The first component of the system is 

MAPK kinase kinases ( M A P K K K s or MAP3Ks), which are activated by stimuli-activated 

membrane receptors or by interaction with GTP-binding proteins. This activation leads to 

phosphorylation of dual-specific M A P K Kinases (MAPKKs or MAP2Ks) on serine/threonine 

and tyrosine residues within a conserved motif of the MAPKs. MAPKs are serine/threonine 

kinases that can phosphorylate a number of target proteins ranging f rom transcription factors 

to cellular proteins on a consensus sequence Pro-Xaa-Ser/Thr-Pro (Widmann et al., 1999). 

1.2.12.1.1. E R K l and E R K 2 

ERK I and ERK2 share 83% amino acid identity, and are expressed to various extents in all 

tissues (Chen et al., 2001). The ERK pathway responds primarily to growth factors, serum, 

and phorbol esters (Lewis et al., 1998). Depending on the strength and duration of 

stimulation, activated ERK often leads to cell proliferation, development, differentiation, 

meiosis cellular survival and learning and memory in neurons (Marshall. 1995; Xia et al., 

1995; Guyton et al.. 1996; Wang et al., 1998). ERKl and ERK2 are activated by MAPKKs 

M E K l and MEK2, which phosphorylate ERK at Thr-Glu-Tyr motif. The MEKs are in turn 
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Figure 1.5. Mammalian mitogen-activated protein kinase ( M A P K ) signalling 
pathways. In response to stimuli, four subfamilies of M A P K in mammalian cells 
are activated: ERK1/2, ERK5, JNKs and p38s. M A P K pathways are three-tiered 
signalling modules comprising MAPK kinase ( M A P K K K ; M E K K ) , MAPK kinase 
( M A P K K ; M E K ; M K K ) and^MAPK. Most upstream, M A P K K K is activated by 
MAPK kinase kinase knase ( M A P K K K K ) . GPCR,G protein-coupled receptor; 
RTK, receptor tyrosine kinase; ECM, extracellular matrix; TNF, tumor necrosis 
factor; TNFR, tumor necrosis factor receptor; I L - 1 , interleukin-1; ILR, 
lnterleukin-1 receptor; NESK, NIK-like embryo-specific kinase; AP-1, activator 
protein-1; HSF-1, heat shock factor-1; ATF-2, activating transcription factor-2; 
CREB, camp response element-binding protein; NFAT, nuclear factor of activated 
T-cells; NF- K B , nuclear factor kappa B; MSK, mitogen- and stress-activated protein 
kinase; RSK, 90 kDa ribosomal S6 kinase; M K , MAPK-activated kinase; Nup2i4, 
nucleoprotein 214; NFs, neurofilaments; A(3, amyloid (3; NGF, nuclear growth 
factor; PRAK, p38 regulated/activate kinase; CHOP, CCAAT/enhancer-binding 
protein-homologous protein; SRF. serum response factor; MEF2, myocyte enhancing 
factor 2; LSPl , lymphocyte-specific protein 1; PGC, peroxisome proliferators 
activated receptor y coactivator; SAP, serum response factor accessory protein; HBP, 
high mobility group-box transcription factor; MAPKAP-K, MAPK-activated protein 
kinase; M N K , MAPK-interacfing protein; T A K , transforming growth factor-^-activated 
kinase; K8/19, kerafins 8 and 19; eEF2. eukaryofic elongafion factor 2. This diagram is 
not intended to be comprehensive, but representative. 



activated by the GTPase Ras (Cowan and Storey. 2003). When activated ERKs are 

translocated to the nucleus, they phosphorylate various transcription factors (AP-1 (activator 

protein-1), N F - K B (nuclear factor kappa B ) , Elk-1, c-myc and c-fos) depending on the initial 

stimuli (Widmann et al., 1999: Cowan and Storey, 2003). In addition, ERKs can also 

phosphorylate cytoplasmic substrates, such as several MAPK-activated protein kinases (MKs) 

(Chen et al., 2001; Frodin and Gammeltoft, 1999), cell survival regulator (e.i. Bcl-2, cPL2), 

epidermal growth factor receptor, paxillin and NFs (Lenormand et al., 1993; Widmann et al., 

1999; Cowan and Storey, 2003). Recently, ERKl /2 has been demonstrated in chronic 

neuronal death in vitro and in vivo (Colucci-D'Amato et al., 2003), albeit ERKl /2 was mostly 

regarded as a pro-survival signalling molecule. 

1.2.12.1.2 J N K s 

Cells are constantly exposed to a variety of stresses, such as metabolic stress, heat and 

osmotic shocks, UV irradiation, and pro-inflammatory cytokines (Davis, 2000), which lead to 

the activation of the JNK pathway. The JNKs, also referred to as stress-activated kinases 

(SAPKs). are encoded by three different genes J N K l . JNK2 and JNK3 (Gupta et al., 1996). 

J N K l and JNK2 are expressed ubiquitously, whereas the expression of JNK3 is largely 

restricted to the brain, heart and testis (Derijard et al., 1994; Kyriakis et al., 1994; Pulverer et 

al., 1991; Yang et 1., 1997). These genes are alternatively spliced to generate as many as 10 

different isoforms. Transcripts derived f rom all three JNKs encode proteins with or without a 

C-terminal extension to create 46 kDa and 54 kDa isoforms (Pulverer et al., 1991). The JNKs 

are phosphorylated on the Thr-Pro-Tyr motif by M K K 4 and iVlKK7 (Davis, 2000; Kyriakis 

and Avruch, 2001). Upstream kinases include IVlEKKl-4, ASK (apoptosis signal-regulating 

kinase) and mixed-lineage kinases (MLKs) . which are activated by members of the Rho 

family. 
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Activated JNKs are translocated to the nucleus, where they phosphorylate trancription 

factors. c-Jun was the first identified substrate for JNK. which then leads to increased activity 

of AP-I (Davis, 2000). Other transcription factors activated by JNK include Jun, Fos, Maf 

and A T F (activating transcription factor) subunits (Behrens et al., 1999). Since then, a number 

of other substrates, predominantly transcription factors have been recognised, including ATF-

2, Elk-1, p53 and NFAT4 (nuclear factor of activated T-cells 4) (Chen et al., 2001; Kyriakis 

and Avruch, 2001). 

Activation of JNKs often leads to apoptosis, when JNKs function as a proapoptotic protein 

kinase (Davis, 2000; Lin, 2003). JNKs can also promote cell survival under certain 

circumstances. For instance, activated JNKs protect neonatal cardiac myocytes after 

reoxygenation (Dougherty et al, 2002) and JNK upstream kinase M E K K l suppresses 

apoptosis induced by hydrogen peroxide in embryonic stem cell-derived cardiac myocytes 

(Minamino et al., 1999). In addition, JNKs have a significant role in tumorigenesis (Zenz and 

Wagner, 2006; Yang et al., 2003; Papachristou et al., 2003; Hess et al., 2002), inflammation 

(Ricci et al.. 2004; Sumara et al., 2005; Karin and Gallagher, 2005: Karin et al., 2006). and 

metabolic disregulation (Hirosumi et al., 2002; Hotamisligil. 2005; Musi and Goodyear, 

2006). 

1.2.12.1.3 p38 

In mammals, p38 MAPKs are identified as four isoforms. Of which. p38a (also called 

SAPK2a) (Han et al., 1994) is the best characterised. Three additional isoforms were encoded 

by different genes. p38|3 (also called SAPK2b) (Jiang et a!.. 1996). p38Y (also called SAPK3 

and ERK6) (Lechner et al., 1996; Mertens et al.. 1996), and p386 (also called SAPK4) 

(Goedert et al., 1997). Despite all p38 isoforms are widely expressed, p38Y is mainly 

expressed in skeletal muscle and p386 is most found in pancreas, kidney, small intestine and 
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testis (Goeclerl et al.. 1997). Based on the amiiio-acicl sequence identity and the 

susceptibilities to inhibition by SB203580 (Cuenda et al., 1995) and SB202190 (Davies et al., 

2000) compounds, the p38 M A P K subfamily can be further divided into two distinct subsets. 

p38a and p38|3 on the one hand and p38Y and p386 on the other. For amino-acid sequence, 

the former are 75% identical, whereas the latter share ~70% identity. Furthermore, the p38 

inhibitors only affected p38a and p38p, but not p38Y and p386 (Goedert et al., 1997; Cuenda 

et al., 1997; Kuma et al., 2005). 

Similar to other MAPKs, p38 MAPKs are subject to dual phosphorylation on a Thr-Gly-

Tyr motif by M K K 3 and M K K 6 (Kyriakis and Avruch. 2001), in turn activated by M K K K s . 

M K K K s including MLKs , M E K K and ASK are activated by GTPase such as Racs and Rhos, 

which are responsible for signal transmission of the stress stimuli. The p38 kinases are 

generally activated by heat, osmotic and oxidative stresses, inflammatory cytokines and T N F 

receptor-mediated signalling, leading to the phosphorylation of diverse substrate proteins 

ranging from transcription factors (e.g. Elk-1, ATF-2 or SAPl (serum response factor 

accessory protein I)) (Tan et al., 1996; Raingeaud et al., 1995; Janknecht and Hunter, 1997) 

to cytoplasmic targets (e.g. MAPKAP-2 and -3, HSP25/27) (Rouse et al., 1994; Freshney et 

al., 1994; Stokoe et al., 1992; Ben-Levy et al., 1998). 

1.2.12.2 I F and M A P K s 

Besides being important modulators of transcription factors, MAPKs are also involved in 

the regulation of IF phosphorylation. For instance, keratin 8 is phosphorylated by ERKl /2 in 

vitro on Ser-431. and phosphorylation of this site increases dramatically upon epidermal 

growth factor (EGF) stimulation and mitotic arrest (Ku and Omary. 1997). In addition, keratin 

8 is phosphotylated by and associated with SAPKs p38 (Ku et al., 2002a) and JNK (He et al.. 

2002) both in vitro and in stressed cells. These phosphorylations could play important roles in 
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regulating SAPK signalling and keratin filament reorganisation. The K8 phosphorylation 

motif is unique among type II keratin and recent studies have shown that keratins 5 and 6 are 

also phosphorylated by p38 kinase in vitro (Toivola et al., 2002). Furthermore, keratinocyte 

cell lines carrying keratin 1 4 mutations associated with EBS have higher basal level of 

activated JNK (D'Alessandro et al., 2002). Upon osmotic shock, the stress-activated response 

by JNK was induced more rapidly in EBS keratinocytes with severe mutations than those 

with milder mutations. Interestingly, expression of keratin 10 prevents cell proliferation 

through the inhibition of Ak t kinase activity (Paramio et a!., 2001), which impairs N F - K B 

activity and leads to increased production of TNF-a and concomitant activation of JNK in the 

epidermis of K10 transgenic mice (Santos et al., 2003). 

Recent studies have revealed that MAPKs are also involved in the regulation of other IF 

protein phosphorylation. For instance, NF-H has been implicated as a JNK substrate, with 

phosphorylation at repeated Lys-Ser-Pro-X-Glu motif within the C-terminal domain (Giasson 

and Mushynski, 1996). In addition, expression of the disease-causing GFAP mutant in a range 

of cell types leads to accumulation of GFAP and induces the activation of JNK and its 

upstream kinase MLKs and ASK-1 (Tang et al., 2006). Activated JNK is associated with 

GFAP-enriched protein inclusions both in transfected cells and in samples f rom Alexander 

disease brain tissues (Tang et al.. 2006). It is hypothesized that GFAP accumulation induced 

JNK activation could lead to a positive feedback loop that produces further protein 

accumulation and cellular stress response. Moreover, vimentin was recently implicated in a 

novel function on preserving the activated states of MAPKs (Perlson et al., 2005). After nerve 

injury, translation of vimentin and importin-|3 mRNAs is locally activated in the wound-

proximal axoplasm, together with phosphorylation-dependent activation of ERK kinases 

(Perlson et al.. 2005). Newly expressed vimentin appears to act in concert with importin-p 

and cytoplasmic dynein to mediate the retrograde transport of activated ERKs to the cell body 
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and nucleus during axonal regeneration. Therefore, vimentin could function as a vehicle to 

transport long-range kinase signalling. These findings indicate that IF protein may play an 

active role in transmitting specific signals f rom the cell periphery to the nucleus in different 

cell types (Chang and Goldman, 2004; Paramio and Jorcano, 2002). 

1.2.13 IF-related diseases 

The role of IFs in protection f rom mechanical and non-mechanical stresses distinguishes 

them f rom other cytoskeletal elements. This cytoprotective function is reflected by a broad 

range of human diseases that are associated with mutations in genes encoding IFs (see 

http://www.interfil.org). Collectively, these disorders span diverse clinical manifestations that 

include ectodermal dysplasias, cardiomyopathies, neuropathies, muscular dystrophies, 

lipodystrophies and premature ageing (Table 1.3). Most mutations behave dominantly and the 

disease pathogenesis often involves fragility of cells expressing mutant IF proteins (Omary et 

al., 2004; Porter and Lane, 2003), whereas a minority may predispose to disease. For instance. 

NFs mutations may predispose to amyotrophic lateral sclerosis (Al-Chalabi and Miller. 2003; 

Lariviere and Julien, 2004) and keratins 8/18 mutations may predispose to end-stage liver 

disease (Ku et al.. 2003). A significant number of IF-associated diseases are typified by the 

presence of intracellular aggregates of abnormal IF proteins, such as Mallory bodies in liver 

disease (Zatloukal et al., 2007), Lewy bodies in Parkinson's diseases (Galloway et al.. 1992), 

NF aggregates in Charcot-Marie-Tooth disease (Perez-Olle et al., 2002) and Rosenthal fibres 

in Alexander diseae (Quinlan et al., 2007). 
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Table 1.3 Genetic disorders associated with I F gene mutations 

Disorders IF gene mutated O M I M * * Main clinical features 

Keratin-related disorders 

Epidermolytic Keratins 1, 10 

hyperkeratosis 

Meesman corneal 

dystrophy 

Oral white-sponge 

nevus 

Epidermolysis 

Bullosa Simplex 

Pachyonichia 

congenita 

Inflammatory bowel Keratin 8 

disease 

Chronic pancreatitis Keratin 8 

Cirrhosis, Hepatitis Keratins 8, 18 

Ichthyosis bullosa of Keratin 2e 

Siemens 

Loose-anagen 

syndrome 

Monilethrix 

Epidermolytic 

palmoplantar 

keratoderma 

Non-epidermolytic Keratins I , 16 

palmoplantar 

keratoderma 

Steatocystoma Keratin 17 

multiplex 

I 13800 

600648 

146590 

607602 

Keratins 3, 12 122100 

Keratins 4, 13 193900 

Keratins 5, 14 131760 

131800 

131900 

131960 

Keratins 6a, 6b, 16, 167200 

17 167210 

601458 

266600 

Not 

assigned 

215600 

146800 

600628 

158000 

144200 

148700 

607654 

600962 

Keratin 6hf 

Human-hair 

keratins I , 6 

Keratins I . 9 

184500 

184510 

Hyperkeratosis, 

Skin fragili ty 

Fine punctuate opacities in 

cornea 

Thickened, white, opalescent 

spongiform mucosa in mouth 

Generalised or localised f lu id-

f i l led bullous skin lesions 

Severe nail dystrophy, variable 

effects on other epithelial 

appendages 

Ulcerative colitis, Crohn's 

disease, extra intestinal feature 

Malabsorbtion, pain, weight 

loss 

Variceal bleeding, ascites 

Bullous ichthyosis erythema 

Sparse, short hair that falls out 

easily 

Alopecia, beaded and fragile 

hair 

Diffuse hyperkeratosis of palm 

and sole 

Focal hyperkeratosis of palm 

and sole 

Multiple oval cystic 

tumourson back, anterior 

trunk, arms and thighs 
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Table 1.3 (Continued) 

Disorders IF gene mutated O M I M * * Main clinical features 

Lamin-related diseases 
Charcot-Marie-Tooth Lamins A and C 605558 Symmetrical muscle 

disease, type 2B1 weakness, wasting, foot 
deformities, reduced tendon 
reflexes 

Dilated Lamins A and C 115200 Conduction defects in the 

cardiomyopathy heart 

Familial partial Lamins A and C 151660 Substantial redistribution of 

lipodystrophy adipose tissue 

Lipoatrophy with Lamins A/C 608056 General lipoatrophy, liver 

diabetes steatosis, skin alterations 

Emery-Dreifuss Lamins A and C 181350 Contractures of elbows and 

muscular dystrophy 604929 Achilles' tendons, muscle 
weakness 

Limb-girdle muscular Lamins A and C 159001 Progressive proximal 

dystrophy, type 1B weakness, cadiac conduction 
defects 

Hutchison-Gilford Lamins A and C 176670 Prematuring ageing, alopecia, 

progeria dystrophic nail 

Werner's syndrom Lamins A and C 277700 Prematuring ageing, 
senescence 

Mandibuloacral Lamins A and C 248370 Mandibular and clavicular 

dysplasia hypoplasia, joint contractures, dysplasia 
lipodystrophy 

Atrial fibrillation Lamins A and C 607554 Atrioventricular conduction 
defects 

Other disorders 
Alexander Disease Glial f ibri l lary 

acidic protein 
203450 Megaiencephaly, progressive 

spasticity, dementia 

Desmin-related Desmin 601419 Peripheral and distal muscle 

myopathies weakness, arrhythmias, 
restrictive heart failure 

Dilated Desmin 604765 Pure cardiomyopahty 

cardiomyopathy 
Amyotrophic lateral NF-H 105400 Rapid loss of motor function 

sclerosis Peripherin 
Charcot-Marie- Neurofilament light Motor and sensory 

Tooth, type 2E, chain (NF-L) 607684 neuropathies, demyelination 

type 1 F 607734 

Cataract CP49, Filensin 604219 Ocular cataracts 
* information comes from Human Intermediate Filament Database ( w w v v . i n t e r f i l . o r g ) 

** Online Mendelian 1 Inheritance in Man 
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1.3 G F A P 

1.3.1 General information on G F A P 

My study is particularly focused on GFAP and its role in Alexander disease. GFAP is a 

type 111 IF protein, first identified f rom multiple sclerosis plaque in the brain (Eng et al., 1970; 

Eng et al., 1971). Whilst GFAP is mainly expressed in cells of astroglial origin in the central 

nervous system (CNS) (Inagaki et al., 1994; Rutka et al., 1997; Tardy et al., 1989), it is also 

expressed at low levels in a range of other ceils, including retinal Miiller cells (Guerin et al., 

1990; Lewis et al., 1992; Vaughan et al., 1990), non-myelinating Schwann cells (Jessen et al., 

1990), enteric glia cells (Jessen and Mirsk, 1980), as well as other tissues, such as liver, testis, 

kidney and bowel (Galea et al., 1995; Barber and Lindsay, 1982; Feinstein et al., 1992). 

During brain development, GFAP progressively replaces vimentin in the asctocytes for IF 

network until the astrocytes mature, whereby vimentin levels become undetectable 

(Bovolenta et al., 1984: Pixley and de Vellis, 1984; Eng, 1995). As GFAP is the major IF 

protein in astrocytes, it has been used as a specific marker to track the development of 

astrocyte in vivo and in primary cultures (Bock et al., 1997; Trimmer et al.. 1982). 

Convincingly, GFAP positive cells are reported to exert normal astrocyte functions, such as 

modulation of neuronal proliferation (Gomes et al., 1999; Yoshimura et al., 1998). 

1.3.2 G F A P gene and isoforms 

GFAP has been isolated and characterised in a number of species, including human, 

mouse, and rat (Lewis et al., 1984; Balcarek and Cowan, 1985; Reeves et al., 1989; Brenner 

et al., 1990; Feinstein et al., 1992). Human GFAP gene is located on chromosome 17q21.1-

q25 (Bongcam-Rudloff et al., 1991) and comprises nine exons extending over 10 kb. Whilst 

most IF genes are not alternatively spliced, GFAP is known to generate several splice variants 

(Quinlan et al., 2007). Previously, three GFAP isoforms were identified. The major isoform 
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a-GFAP is predominantly expressed in subependymal astrocytes adjacent to the cerebral 

ventricles of the central nervous system, protoplasmic astrocytes of the gray matter, fibrous 

astorcytes in the white matter and radial Bergmann glia in the cerebellum (Eng et al., 2000). 

Accordingly, a-GFAP is widely employed as a marker of astrocytes, especially in astrogliosis 

or astrocytoma. Compared to the most common GFAP isoform, a-GFAP (Reeves et al., 1989; 

Bongcam-Rudloff et al., 1991), the mRNAs of the (3- and y-GFAP splice variants are 

produced by transcription f rom different start sites of the GFAP gene. The P-GFAP 

transcription starts upstream of a-GFAP and is found predominantly in Schwann cells of the 

peripheral nervous system (Feinstein et al., 1992; Galea et al., 1995). The y-GFAP mRNA 

lacks exon 1, but contains a part of the intron I and is expressed in mouse bone marrow and 

spleen as well as in human and mouse CNS (Zelenika et al., 1995). Whilst the |3- and y-GFAP 

mRNAs are expected to produce translation products differing in the N-terminal head domain, 

alternative splicing of the 3"-end of the GFAP gene produces two new products e- and K-

GFAP that differ in their C-terminal tail domains to a-GFAP. 

In the case of e - G F A P , a splicing event replaces the last two exons of the a - G F A P gene 

with an alternative terminal exon located within intron 7 (Nielsen et al., 2002). This resulting 

spliced form has initially been found in rat and was called 6 - G F A P (Condorelli et al., 1999). 

e - G F A P is specifically expressed in the subpial zone of the cerebral cortex, the subgranular 

zone of the hippocampus, and. most intensely, by a ribbon of astrocytes fol lowing the 

ependymal layer of the cerebral ventricles. Unlike a - G F A P , E - G F A P is not upregulated by 

astrogliosis, and overexpression of E - G F A P in transfected cells has a negative effect on 

filament formation (Roelofs et al., 2005). Furthermore, it has been shown that e - G F A P is able 

to bind to preseniliii proteins (Nielesen et al., 2002), whose mutations are associated with 

familial Alzheimer's disease (Cruts et al., 1996). Intriguingly, three novel out-of frame G F A P 

splice forms. AI35nt, exon 6 and AI64nt, have been reported in patients with Alzheimer's 
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disease and Down's syndrome (Hoi et al., 2003), and in these situation they are expressed 

mainly in neurons. Periphery nerve injury also increases GFAP levels in Schwann cells 

(Triolo et al., 2006). Indeed, increased GFAP expression is one of the hallmarks of 

astrogliosis (Pekny and Pekna, 2004; Pekny and Nilsson, 2005). 

1.3.3 Astrogliosis and G F A P 

Throughout the adult lifespan of mice, rat and human, GFAP gradually increases with age 

(Eng and Lee, 1998; Nichols et al., 1993). Nevertheless, in the CNS of higher vertebrates, 

fol lowing injury as a result of mechanical trauma, brain ischemia, chemical insult, tumors, or 

neurodegenerative diseases, astrocytes become activated and respond in a manner called " 

astrogilosis" or "reactive gliosis", which causes hypertrophy of existing astrocytes and the 

proliferation of new astrocytes (Eng and Ghirnikar, 1994; Aschner, 1998). This is a prominent 

feature for astrocytes adjacent to the site of lesion, as they can proliferate and migrate to 

injury. The upregulation of GFAP. together with vimentin. is a crucial step for astrocyte 

activation in response to a wide range of insults to the brain (Steward, et al., 1991; Hansen et 

al., 1990; Khurgel et al., 1992). Unexpectedly, nestin is also re-expressed (Umeoka et al.. 

2001). though it is usually only expressed in immature astrocytes (Eddleston and Muche, 

1993; Eng and Ghirnikar, 1994; Frisen et al., 1995; Ridet et al., 1997; Eng et al., 2000). The 

conserved nature of the astrocyte response to injury suggest that it might have a protective 

effect (Eddleston and Mucke, 1993). although other studies implicate reactive astrocyte as 

major inhibitors of axonal regeneration (Privat, 2003). 

Reactive gliosis has been observed in a broad range of neurodegenerative disease, such as 

multiple screlosis (Hallpike et al., 1983), adrenoleukodystrophy (Schaumburg et al., 1975), 

amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, 

Wilson's disease, Pick's disease, Gerstmann-Straussler syndrome, and Down's disease 

37 



(Calne, 1994). Moreover, astrogliosis also occurs in the brains of amygdala-kindled subjects 

(Khurgel et al., 1992; Racine et al.. 1989). epilepsy (Hawrylak et al., 1993; Vessal et al.. 

2004), stroke, trauma, and tumor (Pekny and Nilsson, 2005). 

1.3.4 Functions of G F A P by gene knockout studies 

Since GFAP accumulation is a prominent feature of reactive astrocytes, several groups 

have focused on studying the function of astrocytes and GFAP by inhibiting GFAP synthesis 

through either anti-sense technology (Lefrancois et al., 1997; Chen and Liem, 1994; 

Weinstein et al., 1991) or gene knockout approach. Mice carrying a null mutation in GFAP 

have been generated by several groups (Pekny et al., 1995; Gomi et al., 1995; Liedtke et al., 

1996; McCall et al., 1996; Shibuki et al., 1996). Surprisingly, GFAP deficient (GFAP-/ - ) 

mice show normal development, reproduction, gross CNS morphology and behaviour, and are 

indistinguishable f rom their wild-type littermates (Pekny et al.. 1995; Gomi et al., 1995; 

McCall et al., 1996). This absence of apparent phenotypes is not caused by compensatory 

upregulation of vimentin and nestin, as expression levels of both proteins are unaltered in 

GFAP null mice (Gomi et al., 1995; Liedtke et al., 1996; McCall et al., 1996; Pekny et al.. 

1998). Interestingly, astrocytes devoid of GFAP are still able to elaborate processes 

(stellation) when cocultured with neurons and exhibit increased cell saturation density (Pekny 

et al., 1998). Consistent with these results are observations made in tumor cells that GFAP-

negative cells show higher proliferation rate and longer cell processes (Rutka and Smith, 

1993; Toda et al., 1994) compared to GFAP-positive cells (Hara et al., 1991; Kajiwara et al., 

1992). 
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1.3.5 Modulation of neuron functions by G F A P 

Neuron and glia are densely packed and make up most of the volume of the brain. Glia 

contains two major cell types, microglia and macroglia, which are primarily composed of 

oligodendrocytes and astrocytes in the CNS. Whilst microglia act as phagocytic cells, the 

immune cells of the CNS, to remove debris after nerve injury, oligodendrocytes form 

insulating myelin sheath around axons of neurons that conduct electrical signals, similar to 

the functions of Schwann cells in the PNS. Astrocytes control access of blood vessels to the 

extracellular f lu id surrounding nerve cells, thereby help to form the blood-brain barrier to 

prevent large molecules/particles in the blood from entering the brain (Janzer and Raff, 1987). 

The dynamic interaction between neurons and astrocytes due to close apposition of their 

membranes contributes to additional functions for astrocytes, as summarised in Table 1.4. 

Table 1.4 Astrocyte functions in the central nervous system 

Functions of astrocytes Reference 

Control of extracellular homeostasis of water and electrolytes. Hertz, 1965; Orkand et al.. 

e.i. K"̂  ions 1966; Walz, 1989 

Induction and maintenance of the blood-brain barrier in Janzer and Raff, 1987 

endothelial cells 

Production of neurotrophic factors Rudge et al., 1992; Miiller et 

al., 1995 

Uptake and metabolism of neurotransmitters released by Smith. 1992 

neurons during synaptic transmission 

Protecting neurons f rom oxidative stress in stroke Kraigeta l . , 1995 

Modulation of neuronal proliferation, as the guidance Yoshimura et al., 1998; 

migrating neurons during development Gomes etal. , 1999 

Providing neurotrophic support to neurons Voutsinos-Porch et al., 2003; 

Zonta et al.,2003 

Reaulation of synaptogenesis and synaptic plasticity Allen and Barres, 2005 

Functioning as neural stem cells He and Sun, 2006 

Engaging in inflammatory processes that defend the CNS Skaper, 2007 

f rom pathogens and preservation of the CNS integrity after 

stress and injury 
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The exact function and role of the astrocytic IF in these processes are not well understood. 

However, after suppressing GFAP expression by the approach of antisense oligonucleotides, 

it has been shown that GFAP is essential for the formation of astrocytic processes and growth 

regulation in cultured astrocytes (Weinstein et al., 1991; Rutka and Smith, 1993; Toda et al., 

1994). Moreover, they are also important in the guidance of migrating neurons during 

development, in the repair of the nervous system, in the removal of debris and in the 

regulation of metabolites and transmitters. 

Mice ablated of GFAP provide direct evidence that a primary defect in astrocytes 

influences modulation of neuronal functions. In fact, GFAP knockout mice demonstrate signs 

of altered neuronal functions, including changes in motor control (Shibuki et a!., 1996; McCall 

et al., 1996), disorganisation of white matter architecture, late-onset impaired blood-brain 

barrier integrity and leading to late-onset demyelination of oligodendrocytes in the CNS 

(Liedtke et al.. 1996). Furthermore, GFAP-null mice also exhibit deficient cerebellar long-

term depression, impaired eyeblink conditioning, but normal motor coordination (Shibuki et 

al., 1996) along with enhanced long-term potentiation in hippocampal neurons (McCall et al., 

1996). These observations indicate that GFAP is vital for astrocyte-neuron interactions and 

astroctye processes are essential to modulating synaptic efficacy in the CNS. In addition, it has 

been demonstrated that loss of GFAP impairs Schwann cell proliferation and delays nerve 

regeneration after damage (Triolo et al., 2006). 

GFAP is the principal component of the glial scar. It is proposed that glial scar may play a 

role as a physical barrier to neurite outgrowth (Houle and Reier, 1989; Hatten et al., 1991; 

Eng et al.. 1992), since they are largely formed by astrocytic IFs networks that are compact at 

the scarring area. Supporting data f rom GFAP/vimentin double knockout studies (Pekny et 

al., 1999) show that GFAP and vimentin are required for glial scar formation after spinal cord 

or brain injury. Interestingly, mice devoid of either one of the IF proteins exhibit normal scar 
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formation after the CNS injury (Pekny et al.. 1995; Galou et al., 1996). suggesting that some 

degree of functional overlap exists between these IF proteins. A parallel study showed that 

whilst astrocytes f rom either GFAP or vimentin null-mice can still maintain their volume in 

response to change in osmotic pressure, astrocytes f rom GFAP/vimentin deficient mice had 

compromised volume regulation. The complete loss of IF structure in GFAP/vimentin-null 

astrocytes strongly suggests that IF cytoskeleton is involved in astrocyte volume regulation. 

In addition, the loss of IFs in astrocytes also results in a less prominent thickening of 

astrocytic processes, the immediately increased synaptic loss at the initial stage after 

neurotrauma, and later on association with increased axonal sprouting of supraspinal systems 

and synaptic regeneration in the hippocampus (Menet et al., 2003; Wilhelmsson et al., 2004). 

Furthermore, in the absence of GFAP and/or vimentin, cell migration is compromised (Eckes 

et al., 1998; Lepekhin et al., 2001). These findings highlight the pivotal role of GFAP in 

maintaining cell shape and in particular astrocyte hypertrophy. 

In the retina, GFAP and vimentin ablated in astroglial cells leads to improved integration 

of retinal transplants, and provides a permissive environment for grafted neurons to migrate 

and extend neurites (Kinouchi et al., 2003; Emsley et al., 2004; Quinlan and Nilsson, 2004; 

Pekny et al., 2004). Besides, under mechanical stress, the absence of IFs f rom Miiller cells 

leads to decreased ability of newly formed blood vessels to traverse the inner limiting 

membrane within the retina (Lundkvist et al.. 2004). In this scenario, the loss of vimentin can 

partially be compensated by GFAP (Galou et al.. 1996; Eliasson et al., 1999; Pekny, 2001). 

These studies greatly strengthen the postulation that a primary defect in astrocytes can 

influence neuronal physiology. 
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1.4. Alexander disease 

Alexander disease (AxD) is a rare, but often fatal degenerative disorder of the CNS, first 

described by W. S. Alexander in 1949 in a 15-month infant with progressive hydrocephalus, 

mental retardation and physical developmental delays (Alexander, 1949). Before death, the 

infant suffered f rom Jacksonian seizures, vomiting, diarrhea and fever, and died of a 

pulmonary embolus and thrombosis of the lateral sinus after an 8-month illness. At autopsy, 

the most striking finding is large numbers of fibrinoid fuchsinophil bodies disseminated 

throughout the brain, especially distributed in the subpial, subependymal and perivascular 

zones, where the astrocytes presented hypertrophied fibril lary morphology and degeneration. 

These bodies were rod-shaped with tapered, rounded or blunt ends, up to about 30 (-im in 

length, which are now known as Rosenthal fibres (RFs) (Rosenthal, 1898). 

1.4.1 Clinical manifestations 

In 1964, A x D was proposed as an eponym by Friede in his case report (Friede, 1964). Fifty 

years on, around 1 1 I A x D cases have been reported worldwide, age range f rom birth to adult 

(Barkovich and Messing, 2006). unlike most of the other neurodegenerative diseases, which 

are usually late-onset. Russo et al. (1976) reviewed the cases and reappraised A x D was 

divided into three subtypes based on the age of onset: infantile, juvenile, and adult forms (Li 

etal. ,2005). 

Apart f rom some rare familial cases (Wohlwil l et al.. 1959; Seil et al., 1968; Barbieri et al., 

1980: Duckett et al., 1992; Howard et al., 1993; Honnorat et al., 1993; Schwankhaus et al,, 

1995: Thyagarajan et al., 2004; Shiihara et al., 2004), most of the A x D cases are sporadic. 

With onset f rom birth to two years of age, the infantile form is the most common and fatal; 

especially if the onset is at birth (Townsend et al.. 1985) or during the neonatal period 

(Springer et al.. 2000). Typically, the infantile form is characterized by megalencephaly. 
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hydrocephalus, seizures, psychomotor retardation, spastic quadriparesis, and increased 

intracranial pressure can present (Garcia et al., 1992). The patients usually die early within the 

first decade, but some survive into their early teens. 

The juvenile form occurs f rom 2 years of age to the middle or late teens with frequent 

bulbar or pseudobulbar signs (e.i., dysphagia and speech difficulties), accompanied by ataxia 

and spasticity, particularly affecting the lower limbs (Borrett and Becker, 1985; Goebel et ai., 

1981; Pridmore et al., 1993; Sawaishi et al., 2002; Probst et al., 2003). Some cases show 

kyphoscoliosis (Deprez et al., 1999; Nonomura et al., 2002). The psychic and intellectual 

functions are essentially normal. The patients run a more slowly progressive course than the 

infantile form, and generally die within 10 years of onset. 

The clinical features of the adult-onset form are variable. Some cases are asymptomatic 

(Riggs et. al., 1988) or present cerebellar ataxia, palatal myoclonus, tetraparesis, and other 

brainstem signs (Howard et al., 1993; Schwankhaus et al., 1995; Namekawa et al.. 2002; 

Okamoto et al.. 2002; Mastri and Sung, 1973; Honnorat et al.. 1993; Martidis et al.. 1999). 

Others demonstrate the symptoms resembling the juvenile form, with a more protracted 

course, or mimic multiple sclerosis (Seil et al., 1968; Spaike and Mennel, 1982; Walls et al.. 

1984; Herndon et al., 1970; Klein, 1970). 

1.4.2 Pathology 

The pathological hallmark of A x D is widespread accumulation of RFs throughout the CNS 

(Alexander. 1949; Rosso et al., 1976; Borrett and Becker, 1985; Pridmore et al., 1993; 

Herndon et al., 1970; Kepes and Ziegler. 1972; Mastri and Sung, 1973; Soffer and Horoupian. 

1979; Riggs et al., 1988; Wilson et al., 1996). These round or rod-shaped deposits are 

insoluble hyaline and eosinophilic inclusion bodies in the cytoplasm of astrocytes, reside in 

the perikarya. processes or end-feet. In the CNS. RFs may form either as a focal or as a 
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diffuse process, which is a relatively non-specific change in astrocytes and usually reflects 

chronicity of disease. 

In addition to AxD, RFs are observed in a variety of conditions as a focal phenomenon, 

including syringomyelia and intramedullary ependymoma (Rosenthal, 1898), slowly growing 

astrocytic gliomas, especially pilocytic astrocytomas, cerebellar astrocytomas, and optic nerve 

gliomas (Gullotta and Riedner, 1972), long-standing reactive gliosis around 

craniopharyngiomas, hemangioblastomas, pineal cysts, and syringomyelic cavities (Grcevic 

and Yates, 1957; Gluszez, 1964; Tihen, 1972; Smith et al., 1975; Albright et al., 1986; 

Herndon, 1970; Kuroiwa et al., 1999; Cillekens et al., 2000), multiple sclerosis (Herndon et 

al., 1970; Ogasawara, 1965), progressive parkinsonism and dementia (Friedman and Ambler, 

1992), debilitating systemic disease like acquired immune disease syndrome (AIDS) (Jacob et 

al., 2003), and rat brains with nickel implanted (Kress et al., 1981; Horoupian et al.. 1982). 

However, the abundance and widespread distribution of RFs in A x D are unique. They are 

characteristically located in the subpial and subependymal regions with a diffuse and 

perivascular pattern. 

Ultrastructurally, RFs reveal as granular, osmiophilic, and electron-dense masses 

enmeshed in extensive collections of glial IFs (Schochet et al., 1968; Herndon et al., 1970; 

Borrett and Becker, 1985; Seil et al., 1968), mainly GFAP (Johnson and Bettica, 1986; 

Johnson and Bettica, 1989; Bettica and Johnson, 1990; Tomokane et al., 1991). Two small 

heat shock proteins, aB-crystallin and HSP27 are also found to be the components of RFs, as 

well as ubiquitin (Tomokane et al., 1991; iwaki et al., 1989; Iwaki et al., 1993; Head et al.. 

1994). Some of the aB-crystallin is ubiquitinated (Goldman and Corbin. 1991) and 

phosphorylated (Mann et al.. 1991; Kato et al., 2001). Elevation of aB-crystllin and HSP27 in 

the cerebrospinal fluid has been reported (Ochi et al.. 1991; Takanashi et al., 1998; Imamura 

et al., 2002). whereas study of the gene for aB-crystallin fails to reveal mutations (Iwaki et 
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al., 1992). Furthermore, post-translational modification including advanced glycation 

modification (Castellani et al.. 1997) and lipid peroxide modification (Castellani et al., 1998) 

are found in RFs of A x D brains. According to the previous findings, although knowing the 

components in RFs and whose post-translational modification, however, the precise 

pathogenicity of RFs to A x D is currently not understood. 

1.4.3 Radiological features 

Brain images of A x D cases f rom ultrasound, computed tomography (CT) or magnetic 

resonance imaging (MR!) showed extensive white-matter changes throughout the neuraxis 

and relative axonal sparing. Due to the pronounced destruction of the white matter and the 

involvement of demyelination or dysmyelination, A x D is therefore classified as a 

leukodystrophy. By M R l , pathologically leukodystrophy can be divided into three categories: 

dysmyelination — abnormal formation of white matter; demyelination — spongiform or 

cystic degeneration of myelin: and hypomyelination — delayed or decreased production of 

myelin (Noetzel. 2004). In A x D white matter abnormalities progressively spread from the 

frontal to the posterior lobes and f rom the periventricular to subcortical regions with time. 

The severity of myelin abnormalities in white matter generally decreases in a rostrocaudal 

gradient of the telencephalon (Wohlwil l et al. 1959; Crome, 1953; Friede, 1964; Escourolle et 

al., 1979). In younger patients, the myelin loss is predominant in the frontal lobes (Arend et 

al., 1991; Knaap et al., 2001). while it is obvious in the cerebrum (Schwankhaus et al., 1995), 

brain stem, cerebellum or upper cervical cord (Probst et al., 2003; Namekawa et al., 2002; 

Okamoto et al., 2002) in older patients. 

In 2001. MRl criteria for diagnosing infantile and juvenile A x D have been defined by van 

der Knaap et al. (van der Knaap et al., 2001) (Fig. 1.6): ( I ) extensive cerebral vvhite matter 

abnormalities with frontal predominance, presented by the extent of the white matter 
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abnormalities, the degree of swelling, the degree of signal change, or the degree of tissue loss 

(i.e., white matter atrophy or cystic degeneration); (2) presence of a periventricular rim 

dominated by decreased signal intensity on T2-weighted images, and elevated signal intensity 

on TI-weighted images; (3) abnormalities in the basal ganglia and thalami; (4) brain stem 

abnormalities, particularly involving the midbrain and medulla; (5) contrast enhancement 

involving ventricular lining, periventricular rim of tissue, frontal white matter, optic chiasma, 

fornix, basal ganglia, thalamus, dentate nucleus, or brain stem, which show the highest 

density of RFs. An MRI-based diagnosis for A x D requires fulf i lment of four of these five 

criteria. Consistent with the results of Farrell et al. (1984), the contrast enhancement is 

caused by the insufficiency of the blood-brain barrier due to astrocytic dysfunction. 

Aside f rom one case exhibiting unusual ocular motility abnormalities (Gingold et al., 

1999), the majority of the infantile (Hess et ai.. 1990; Bobele et al., 1990; Schuster et al., 

1991; Garcia et al.. 1992; Staba et al., 1997; Madsen et al., 1999) and juvenile A x D (Reichard 

et al., 1996; Deprez et al., 1999) are confirmed by histopathologic diagnosis and MRl 

findings presented mainly white matter abnormalities. Nevertheless, since four patients of 

A x D have been observed without apparent leukodystrophy, but possessing ventricular 

garlands with prominent abnormalities in the medulla and spinal cord (van der Knaap et al., 

2006), A x D is not simply a leukodystrophy (Barkovich and Messing, 2006). 

In concern of the role of GFAP in A x D , Brenner and cooperators disclose that genetic 

defects in GFAP gene are a primary cause of A x D (Brenner et al., 2001). Most recently, 

GFAP accumulation is found to synergistically damage proteasome activity and activate JNK 

signalling pathway (Tang et al., 2006), and in turn, JNK activation leads to increased GFAP 

accumulation and inhibited proteasome function. 
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Figure 1.6. Magnetic resonance image of Alexander disease. A ten year old 
boy with Alexander disease was shown extensive abnormalities (asterisks) of 
the cerebral white matter with frontal predominance by magnetic resonance 
imaging. This figure is reprinted f rom (Messing and Goldman, Alexander 
disease, Elsevier, Amsterdam, 2004) with permission. 



1.4.4 Genetic diagnosis ( G F A P mutations) 

As GFAP is primarily expressed in astrocytes and a major component of RFs. it is 

conceivable that GFAP gene might be a candidate for the pathogenesis of AxD. Two lines of 

evidence have provoked the question "is there any GFAP gene defect in AxD?" First, the 

transgenic mice engineered to constitutively express human GFAP developed a fatal 

encephalopathy with protein aggregates in perinuclear regions and processes of dystrophic 

astrocytes that are immunohistochemically and morphologically indistinguishable f rom RFs 

(Messing et al., 1998). Second, primary astrocytes cultured f rom transgenic mice carrying 

human GFAP gene induce RF formation (Eng et al., 1998). These discoveries provide strong 

evidence that a primary alteration in the expression of GFAP could lead to the hallmark 

feature of AxD. 

Based upon these findings, GFAP coding region was evaluated and non-observative point 

mutations were found in I I of 12 infantile cases and in the single older patient examined 

(Brenner et al., 2001). Following this initial report, a number of other studies have extended 

these findings. A diagram showing the distribution of all confirmed mutations in relation to 

the protein subdomains of GFAP and variants of A x D is shown in Fig. 1.7. Websites that 

continue to update newly identified GFAP mutations can be found at the Human Intermediate 

Filament Mutation Database (http://www.interfil.org) and University of Wisconsin-Madison 

(http://vvvvw.vvaisman.vvisc.edu/alexander). 

To date, at least 53 mutations have been found within the GFAP coding region in the 

clinically or pathologically proven cases of A x D , affecting 45 sites in the protein (see 

Appendix 4). Nearly all of the disease-causing mutations in GFAP occur as heterozygous 

single base-pair changes within the coding region, mostly in the conserved central a-helical 

rod domain but with a few occurring in the amino- and carboxy-terminal tail domains. 

Exceptions include a 6-bp insertion (Li ei al.. 2005). a 6-bp duplication and a 6-bp deletion-
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Figure 1.7. Location of Alexander disease-causing mutations in G F A P in relation to the domain structure of IFs . 
Like other IF proteins, GFAP consists of a central a-helical rod domain, flanked by non-helical amino-terminal head (N) 
and carboxy-terminal tail (C) domains. The blue boxes indicate the four a-helical subdomains within the central a-helical rod 
domain, separated by non-helical linkers. The red boxes at the ends of the rod domain reflect the location of the highly 
conserved L N D R and TYRKLLEGE motifs. Symbols are coloured coded for clinical category based on the age of onset. 
The R416W mutation (as indicated by the green box) in the tail domain is associated with three forms of Alexander 
disease. This diagram is adapted and updated f rom Figure 1 of L i et al., InL J. Devel. Neurosci. 2002. 



insertion (van der Knaap et al., 2006). Two mutation hotspots are apparent at R79 and R239, 

accounting for almost half of all reported cases. The arginine residue has been recognised as 

being particularly prone to mutation due to methylation of CpG dinucleotide (Cooper and 

Youssoufian, 1988). 

The heterozygous nature of GFAP mutations suggests that they are dominant. For most of 

the reported cases where parents were available for testing, the parents were genotypically 

and phenotypically normal, confirming these mutations often occurred de novo. There is one 

example of inherited GFAP mutation occurring in a family of adult-onset cases where mother 

and two children were affected and carried the same V87G mutation (Okamoto, Y , 2002). 

The finding that GFAP mutations were found in nearly all forms of A x D implicates that 

the same basic mechanism may underlie all forms of the disease. The genotype-phenotype 

correlations, however, are not clear (Rodriguez et al., 2001). For instance, whilst R239H is 

usually associated with the infantile form and presents the most severe clinical case of A x D 

(Li et al.. 2005). R79C, R79H. R239C and R416W mutations occur in at least two forms of 

AxD. R4I6W, in particular, has been found in three forms of A x D cases. 

1.4.5 G F A P mutations 

Most of the GFAP mutations of A x D are clustered in the central a-helical rod domain (see 

Fig. 1.7) and several GFAP mutations occur within an amino acid sequence that is highly 

conserved among IF proteins (Quinlan et al., 1995). For instance, M73, L76, N77, R79 and 

E373 are located within the highly conserved ends of the rod domain, and each mutation has a 

homologous counterpart among disease-causing keratin mutations (Li et al., 2002). 

Particularly. R79 is frequently mutated in A x D and this position is also the hot spot for 

keratin mutations. In addition, R88 and R239 GFAP mutations are homologous to those in 

lamin A/C mutations (Bonne et al.. 2000: Brown et al., 2001). Like R79. R239 is frequently 
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mutated, but R239 appears to produce more severe phenotype than mutations at the highly 

conserved rod ends. Previous studies have demonstrated that whilst R239C mutation does not 

appear to affect filament formation per se, the mutation alters the normal solubility and 

organisation of GFAP networks (Hsiao et al., 2005). 

One of the common mutations outside the central rod domain of GFAP that causes all 

forms of A x D (Brenner et al., 2001; Gorospe et al., 2002; Kinoshita et al., 2003; Thyagarajan. 

2004; Li et al., 2005) is R4I6W. This mutation lies in the tail domain within the 

K T V E M R D G E motif that is highly conserved among nearly all GFAP f rom multiple species, 

as well as the related type 111 IF proteins vimentin and desmin. Recent studies have 

demonstrated that R4I6W GFAP mutation dramatically alters IF assembly in vitro and 

network formation in transfected cells, and does so in a dominant manner (Perng et al., 2006, 

see appendix 5). A mutation exactly homologous to the R416W in GFAP has been found in 

the muscle-specific IF protein desmin, which is the primary underlying cause of desmin-

related cardiomyopathies (Bar et al., 2007). Although homologous sites are affected, most of 

the IF mutations lead to loss of function, because the similarity of phenotypes between the 

human patients and mouse knockouts of the relevant genes (Fuchs and Cleveland, 1998). In 

contrast, the dominant effect of GFAP mutations appears to be caused by a gain of function 

rather than loss of function, because GFAP-null mice do not show A x D phenotypes and 

human GFAP-null mutations have not been found (Li et al., 2002). One study, however, 

reports late onset dysmyelination in GFAP knockout mice (Liedtke et al., 1996), suggesting 

the loss of GFAP function may also involved in certain aspects of A x D pathology. 

In addition to GFAP mutations associated with A x D . GFAP gene sequencing has revealed 

the presence of nucleotide changes in both unaffected parents and A x D patients. These GFAP 

variants, including P47L, V I 151, DI57N, E223Q, were tentatively classified as 

polymorphisms. For instance. P47L was found in conjunction with disease-causing mutations 
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R239C and R4I6W, which alone appear to be sufficient to cause disease (Brenner et al., 

2001). This mutation may act as genetic modifier, as its presence is likely to ameliorate the 

consequences of these other mutations rather than increasing the severity of the disease. In 

several instances, it is not clear i f a coding change is a rare polymorphism or disease-related. 

For instance, although VI151 . DI57N, E223Q mutations are tentatively classified as 

uncommon polymorphisms by their presence in normal parents, they could be disease-related 

mutations with incomplete penetrance. Finally, it is important to note that GFAP mutations 

have not been found in all cases of A x D , indicating that there could be other genetic, 

epigenetic or environmental causes for this diseases (Omary et al., 2004). 

The effort to screen GFAP gene had greatly expanded the number of A x D patients found 

to have GFAP coding mutations (Li et al., 2005), particularly for the late onset patients. The 

immediate benefit derived f rom the close association of GFAP mutations with A x D is that 

screening of GFAP mutations appears to be a reliable diagnostic tool for A x D . The dominant 

GFAP missense mutations underlying most cases of A x D provide a unique window for 

illuminating the mechanism of the disease. 

1.4.6 Possible disease mechanisms 

Whilst the genetic basis for A x D is f i rmly established, little is known regarding the 

mechanism by which GFAP mutations lead to A x D . To study the pathomechanism of this 

primary astrocyte disorder, mice engineered with the most common GFAP mutations R76H 

and R236H (corresponding to human R79H and R239H) develop RFs at sites where 

astrocytes appear reactive and total GFAP expression is increased. Although mutant mice 

demonstrated increased GFAP expression by themselves, further elevation of GFAP by 

crossing with wild-type human GFAP overexpressed mice leads to a decreased GFAP 

solubility, an increased stress response and premature death. These studies provide a formal 
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proof linking GFAP mutations with RF formation and oxidative stress, and demonstrate a 

clear correlation between total GFAP levels and phenotype severity. 

In A x D patients, RF accumulation is usually found in patients at sites where GFAP is 

highly expressed. The observation that elevated GFAP level is a consistent component of 

A x D pathology leads to the hypothesis that GFAP mutations might cause the disease by 

raising the levels of GFAP, perhaps by increasing its stability or by decreasing its turnover. 

Indeed, it has been suggested that IF network may play an important role in organising 

degradative complexes that remove aberrant proteins (Garcia-Mata et al., 1999). The 

accumulation of GFAP in the form of RFs may compromise astrocytic protein degradation 

machinery, which could be a primary event that affects the stability and turnover of GFAP. In 

addition, the presence of accumulated aggregate may reflect the inability of astrocyte to 

handle excessive GFAP properly and is a potential stress that could compromise normal 

astrocyte function. 

In support of this hypothesis is the finding that transgenic mice engineered to constitutively 

overexpress wild-type GFAP develop RFs, which was lethal for highest expression lines 

(Messing et al., 1998). Recently the effects of wild-type GFAP overexpression were studied 

in these same mice by microarray analysis (Hagemann et al., 2005). The expression profiles 

of GFAP transgenic mice reveal initial stress response in astrocytes, which results in the 

activation of microglia and compromised neuronal functions during the advanced stages of 

pathology. These studies strongly imply that astrocyte dysfunction has deleterious 

consequences on the functions of other cell types in A x D . In this respect, it is worth 

mentioning that a primary clinical feature of A x D is hypomyelination or demyelination, rather 

than astrocyte degeneration. Myelin defects involved in A x D highlights the importance of 

astrocyte-oligodendrocyte interactions in the formation and maintenance of myelin, and raises 

the possibility that this interaction is impaired in AxD. Whilst the mechanism(s) underlying 
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these impaired interactions remain unclear, alterations in astrocyte gene expression can 

initiate a cascade of changes affecting multiple cell types throughout the CNS. 

L 5 . Outline of this study 

The discovery of the GFAP mutations has paved the way to develop several cell-based 

models to investigate the initiating events that accompany the expression of GFAP mutants. 

Transient transfection of mutant GFAP into primary astrocytes or established cell lines have 

revealed that the presence of mutant GFAP causes a wide range of effects that include altered 

filament stability/solubility (Hsiao et al., 2005), elevated GFAP levels (Tang et al., 2006), 

activation of stress kinase pathways (Tang et al., 2006), increased association with plectin 

(Tian et al., 2006) and sequestration of HSP27 and aB-crystallin into GFAP aggregates 

(Perng et al., 2006). These events may all contribute to the disease mechanism. 

Whilst transient transfection provides a quick and convenient way to analyse expressed 

GFAPs in cells, this does not allow the critical steps immediately preceding aggregate 

formation to be studied. Clinical materials provide single snapshots of endpoint pathology, 

but it is diff icul t to obtain a series of brain biopsies over a time-course f rom symptom-

appearing A x D patients to fol low the progression of pathology. Therefore, inducible cell lines 

provide an excellent experimental system to identify crucial steps in the disease process and 

study the sequence of events leading to pathology. 

In this study, a common GFAP mutation R416W that is associated with all forms of AxD 

was investigated in detail to reveal its biological effects on astrocytes and obtain insights into 

the disease progression. I selected mouse astrocytoma DBT cells to established inducible cell 

lines in which human wild-type and R416W GFAP expression are regulated by aTet-On gene 

expression system. In addition, I have also generated an inducible cell line using a human 

astrocytoma U343 MG-A cells with Tet-Off gene expression system. This cell line would be 
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expected to better mimic the scenario of R4I6W GFAP being expressed in a human astrocyte 

cell background and removes potential species conflicts. These inducible cell lines with 

regulated GFAP expression, aided in part with use of antibodies specific to R416W mutant 

GFAP or human GFAP, allow me to answer the fol lowing questions: I) What are the 

downstream consequences of GFAP mutant expression? 2) Whether cells expressing mutant 

GFAP are more sensitive to stresses? 3) Whether GFAP aggregate formation affects GFAP 

stability and turnover? 4) What is the critical ratio of mutant GFAP to wild-type GFAP that 

leads to aggregate formation and astrocyte dysfunction? I have also designed a range of stress 

assays to investigate the effects of the mutant GFAP upon astrocyte function. In the fol lowing 

chapters, 1 wi l l detail how these inducible cell lines were generated and used stress assays to 

help define the cell biological basis of A x D . 
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Chapter 2 

Materials and Methods 

2.1 Chemicals 

A l l chemicals and reagents were purchased f rom Sigma (UK) or V W R (UK) unless 

otherwise stated. 

2.2 Plasmid construction and site-directed mutagenesis 

Total RNA extraction f rom human astrocytoma U373 MG-A cells was performed by the 

RNeasy kit (Qiagen, West Sussex, UK) . The complete human GFAP cDNA was produced 

by RT-PCR in the use of Superscript™ RT-PCR system (Invitrogen, Paisley, UK) with 

oligonucleotides 5 ' -CATATG GAGAGGAGACGCAT-3 ' and 5'-

TCACATCACATCCTTGTGCT-3 ' as the forward and reverse primers, respectively. The 

amplified PGR product was cloned into the pGEM®-T Easy vector (Promega, Southampton, 

UK) to generate pGEM'^-T Easy-WTGFAP, and the entire sequence was confirmed against 

the GeneBank'' data base entry (accession no. J04569). By QuickChange site-directed 

mutagenesis (Stratagene, La Jolla. CA) , the R416W mutation was introduced using pGEM®-

T Easy-WTGFAP vector as the template. The desired C ^ T mutation at nucleotide position 

1246 as underlined: 5 ' - G A A G A C C G T G G A G A T G I G G G A T G G A G A G G T C A T - 3 ' and 5'-

ATGACCTCTCCATCCCACATCTCCACGGTCTTC-3 ' were synthesised within the 

mutagenic oligonucleotides. The amplified PGR products consisting of R416W mutation was 

further cloned into the pGEM®-T Easy vector and the mutation sequence was confirmed by 

f u l l DNA sequencing. 

For expression in cultured mammalian cells, both the wild-type and R416W GFAP in 

pGEM-T easy® vector were subcloned into pcDNA3. l ( - ) vector (Invitrogen. Paisley, UK) 

through the Xha\ and EcoR\ restriction sites. For expression in bacteria, wild-type GFAP 
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plasmids were created by subcloning the cDNA of a Nclel-EcoRl fragment into pET23b 

vector (Novagen, Nottingham, UK) as well as R416W GFAP. 

2.3 Purification of recombinant human wild-type and R416W G F A P 

pET23b vector containing human wild-type or R4I6W GFAP cDNA was transformed 

into E. coli strain BL2I(DE3) pLys (Novagen, Nottingham, UK) under the control of T7 

RNA polymerase. The transformed cultures were inoculated with 1:100 dilution into LB 

(Luria Bertain) medium supplemented with 100 mg/ml ampicillin and 34 |xg/ml 

chloroamphenicol and grown at 37°C overnight with vigorous shaking at 225 rpm. Once the 

OD500 of the cultures reached 0.5-0.6, protein expression was induced by adding 0.5 m M 

isopropyl-l-thio-(3-D-galactopyranoside (IPTG) for 3 hours. After induction, the cultures 

were harvested by centrifugation at 5,000 rpm for 30 minutes at 4"C using a JA-IO rotor 

(Beckman, UK) . The bacteria pellet was resuspended in 50 ml T E N buffer (50 mM Tris-HCl 

pH 8.0, 1 m M EDTA (ethylene diamine tetra-acidic acid), 300 m M NaCI) vvith additional 

0 . 1 % (v/v) protease inhibitor cocktail and 0.2 m M PMSF (phenylmethylsulfonyl fluoride), 

and lysed by several cycles of freeze and thaw before homogenised in a 50 ml Dounce 

homogeniser. The whole extract was clarified by centrifugation at 18,000 rpm by a JA-20 

rotor (Beckman, UK) for 30 minutes at 4°C. Expressed GFAP formed inclusion bodies, 

which were prepared as described (Quinian et al., 1989). Isolated inclusion bodies were 

extracted with 1.5 M KCI, 5 m M EDTA. 0.5 % (v/v) Triton X-100, 10 m M Tris-HCl pH 8.0. 

at room temperature. After washing in 150 m M NaCI, 5 mM EDTA, 10 m M Tris-HCl pH 

8.0, at room temperature, inclusion bodies were dissolved in extraction buffer (8 M urea, 20 

mM Tris-HCl pH 7.4, 5 mM EDTA, 1 m M EGTA (ethylene glycol tetra-acetic acid), 1 mM 

DTT (dithiothreitol), and 1 m M PMSF) at room temperature for 3 hours. The insoluble 

material was removed by centrifugation at 100,000^ for 30 minutes at room temperature in a 
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benchtop Optima M A X Ultracentrifuge using an M L A - 8 0 rotor (Beckman Coulter). The 

expressed proteins were further purified by ion-exchange chromatography using a Merck-

Hitachi Biochromatography system equipped with a Fractogel-EMD TMAE-650S column 

(Merck) that was pre-equilibrated with column buffer (6 M urea, 20 m M sodium formate pH 

4.0, 5 m M EDTA, I m M EGTA, I m M DTT, and I m M PMSF). GFAP was eluted f rom the 

column using a linear gradient of 0-500 m M NaCl in the same buffer over 1 hour at a f low 

rate of 1 ml/minute. The GFAP-enriched fractions were pooled, concentrated, and applied to 

a Fractogel E M D COO-650S column (Merck) pre-equilibrated with column buffer (6 M 

urea, 20 m M sodium formate pH 4.0, 5 m M EDTA, I m M EGTA, 1 m M DTT, and 1 m M 

PMSF). After washing in column buffer, GFAP was eluted with a linear gradient of 0-500 

m M NaCI in the same buffer. GFAP-containing fractions were selected by SDS-PAGE, and 

stored at -80"C. Protein concentrations were determined by bicinchonic acid assay (BCA 

reagent; BCA reagent, PerBio Science, U K ) using bovine serum albumin (BSA) as standard. 

2.4 Cell culture 

Human astrocytoma cell lines, U343 MG-A and U373 MG-A, were cultured in a-

minimum essential medium ( a - M E M ; GIBCO, UK) and Dulbecco's modified eagle's 

medium ( D M E M ; Sigma, UK) respectively, supplemented with 10% (v/v) fetal calf serum 

(FCS; Sigma, UK), 2 mM L-glutamine. 100 U/ml penicillin and 100 f.ig/ml streptomycin 

(Sigma, UK). Except U373 cells, primary mouse astrocytes (generously provided by Dr. 

Milos Pekny, Institute for Neuroscience and Physiology, Sahlgrenska Academy, Goteborg 

University. Sweden), mouse astrocytoma DBT (delayed brain tumor) cells (a kind gi f t f rom 

Dr. Kumanishi, T.. Department of Neurosurgery. Toyama Medical and Pharmaceutic 

University, Toyama. Japan) and human breast cancer epithelial MCF-7 cells obtained from 

European Collection of Cell Cultures (Sigma, Poole, UK) , were also grown in D M E M 
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containing 10% (v/v) FCS, 2 mM L-gliitamine, 100 U/ml penicillin and 100 i-ig/nii 

streptomycin. These cells were maintained at 37"C in a humidified incubator of 95% (v/v) air 

and 5% (v/v) CO,. 

2.5 Transient transfection 

The constructs used for transient transfection were human wild-type and R416W GFAP in 

pcDNA3. l ( - ) vector (Invitrogen, UK) , which were prepared by MaxiPrep kits (Qiagen, West 

Sussex, UK) . Transfection was performed by GeneJuice™ transfection reagent (Novagen, 

UK) according to the manufacturer's instructions. Briefly, twenty-four hours after seeded on 

10 cm Petri dish plates (Greiner Bio-One Ltd, Gloucestershire, UK) , 6 well plates or 96 well 

plates, cells were transfected with 4 jug/plate, 1 j^g/well or 0.05 |.ig/well of plasmid DNA. 

respectively, at the density of 40-60% depending upon the cell line in question. Forty-eight 

hours post-transfection, cells were processed for immunoblotting, double label 

immunofluorescence microscopy or cell viability assay described as below. 

2.6 Inhibition of cellular events 

For inhibition of proteasome activity, cells were exposed to carbobenzoxy-L-leucyl-L-

leucyl-L-leucinal (MG-132; CalBiochem, UK) for 24 hours before harvesting for 

immunoblot analysis and immunoprecipitation, or cell viability assay at different time 

intervals. To inactivate MAPK phosphorylation, cells were pretreated with SB203580 

(Biomol Research Laboratories, Plymouth Meeting, PA) for inhibition of p38 kinase, 

SP600I25 (Biomol Research Laboratories, Plymouth Meeting. PA) for inhibition of JNK (c-

Jun N-terminal kinase), and U0126 (Cell Signaling, UK) for inhibition of M E K I / 2 ( M A P 

kinase kinase 1/2), upstream kinase of ERK (extracellular-signal-regulated protein kinase), 1 

hour before induction of human GFAP. Suppression of caspase activity was performed by a 
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pan-caspase inhibitor. benzyloxycarbonyl-Val-Ala-Asp-Fliioromethyloketone ( Z - V A D -

F M K ; Biomol Reserch Laboratories, Plymouth Meeting, PA) before or incubated with 

induction of GFAP. 

2.7 Preparation of the soluble and insoluble fractions 

Confluent cells grown on lO-cm Petri dishes were harvested with three washes in cold 

phosphate buffered saline (PBS; Sigma, U K ) , and lysed in 500 ^tl RIPA 

(radioimmunoprecitation assay) buffer (50 m M Tris-HCI, pH 8.0, 150 m M NaCI, 0.5% (w/v) 

deoxycholate, 1% (w/v) Nonidet P-40 (NP-40)) containing 1 m M PMSF (Merck, UK) and 

Complete^'^' proteinase inhibitor cocktail (Roche Diagnostic, Mannheim, Germany) on ice 

for 15 minutes (Fig. 2.1). In some experiments, phosphatase inhibitors including 1 mM 

sodium pyrophosphate. 10 m M sodium orthovanadate, 100 units/ml aprotinin and 100 mM 

NaF are added in the lysis buffer to detect protein phosphorylation. After cells scraped off 

f rom the plates by a rubber policeman, the extracts were homogenised by 1 ml Dounce 

homogeniser (Wheaton, Mi l lv i l l e , NJ) or 20 strokes in a 25-gauge needle, and then 

centrifuged at 13.000 rpm at 4''C for 15 minutes in a pre-cooled benchtop centrifuge 

(Eppendorf, Hamburg, Germany). Protein concentrations in whole lysates were determined 

using BCA reagent (PerBio Science, UK). The supernatant was diluted in Laemmli"s sample 

buffer (62.5 mM Tris-HCI. pH 6.8, 25% (v/v) glycerol, 2% (w/v) SDS, 0.01% (w/v) 

bromophenol blue; Laemmli, 1970). The pellet was resuspended in pelleting buffer (20 m M 

Tris-HCI, pH 8.0, 10 m M MgCl , and 1 mM PMSF) containing 250 U/ml benzonase nuclease 

(Novagen, Nottingham. U K ) , and incubated at room temperature for 30 minutes. After 

homogenisation and centrifugation at 13,000 rpm at 4"C for 15 minutes, the final pellets were 

washed in PBS containing 1 mM PMSF, and resuspended in Laemmli's sample buffer, in a 

volume that was proportional to the original sample size. Equal volumes of each supernatant 
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Figure 2.1. Preparation of the soluble and insoluble fractions. 



and pellet fractions were boiled for 5 minutes in Laemmli's sample buffer and resolved on 

10% or 12% (vv/v) sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-

PAGE) or subjected to immunoblotting analysis. For SDS-PAGE, the gels were stained with 

0.5% (w/v) Coomassie® Brilliant Blue (CBB) R-250 (Merck-BDH, UK) in 50% (v/v) 

methanol and 10% (v/v) acetic acid for 10 minutes at room temperature. After destained in 

10% (v/v) methanol and 5% (v/v) acetic acid for several times, the gels were visualized by 

Luminescent image analyser (LAS-1000 plus, Fuji Fi lm, Japan) with Image Gauge Software 

(Version 4.0, Fuji Film, Japan). 

2.8 Preparation of the cytoskeietal fractions 

Confluent cells cultured on 10-cm Petri dish plates were washed with cold PBS several 

times, and treated with cold Buffer I (10 m M Tris-HCI, pH 7.4, 140 n iM NaCl, 1% (w/v) 

Triton X-100) for 3-5 minutes on bench (Fig. 2.2). After removal of the buffer, cells were 

incubated with cold high salt Buffer II (10 m M Tris-HCI, pH 7.4, 1.5 M KCl . 140 mM NaCl. 

0.5% (w/v) Triton X-lOO) for 30 minutes on bench or until the visible peeling of the cells on 

the dishes. Cells were scraped of f with a rubber policeman and transferred into a 15-cm 

homogenizer (Wheaton, Mi l lv i l l e , NJ), followed by centrifuged at 4,300 rpm at 4°C for 20 

minutes. The pellet was washed by resuspension in PBS and centrifuged at 4,300 rpm at 4°C 

for 20 minutes. Afterwards, the pellet was resuspended again in Buffer i l l (10 m M Tris-HCI, 

pH 7.4, 140 m M NaCl, 5mM EDTA) into a 1.5 ml Eppendorf tube and re-pelleted at 10,000 

rpm at 4°C for 10 minutes in a pre-cooled benchtop centrifuge (Eppendorf, Hamburg, 

Germany). The resulting pellet was resuspended in PBS using the spatula to remove the salt, 

and further pelleted at 10,000 rpm at 4"C for 10 minutes to generate the final pellet, the 

cytoskeleton proteins. These proteins were eluted in Buffer IV (10 mM Tris-HCI, pH 8.0, 5 

mM EDTA, 2% (vv/v) SDS, 1 mM PMSF), and mixed with the equal volume of Laemmli's 
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sample buffer before 5 minutes of boiling and processed for SDS-PAGE or analysed by 

immunoblotting. 

2.9 Immunoprecipitation 

Confluent cells grown on 10 mm Petri dish plates were harvested in 500 /̂ tl of 

immunoprecipitation buffer (50 m M Tris-HCI, pH 8.0, 150 m M NaCl, 1% (w/v) NP-40) 

containing 1 m M PMSF and complete proteinase inhibitor cocktail (Roche Diagnostic, UK) 

(Fig. 2.3). After centrifugation at 13,000 rpm at 4°C for 15 minutes, cell lysates were divided 

into supernatant and pellet fractions. For immunoprecipitation of human GFAP, the 

supernatants were incubated with 2 /.<l SMl-21 antibody for 2 hours on ice, followed by 

adding of 30 protein G-Sepharose beads (Sigma, UK) to incubate on wheeler at 4"C 

overnight. For immunoprecipitating overexpressed human GFAP in pellet, the pellets were 

first resuspended with 50 /./I of resuspension buffer (10 mM Tris-HCI, pH 7.4, 5 mM EDTA. 

2% (w/v) SDS, 10 % (v/v) glycerol containing complete proteinase inhibitor cocktail (Roche 

Diagnostic. UK)) , and then diluted into 950 '̂1 of 20 mM Tris-HCI, pH 7.4, 150 mM NaCI. 

1% (w/v) NP-40, 5 m M EDTA and proteinase inhibitor mixtures (Sigma, UK). The diluted 

lysate was incubated with 2 /.d SMI-21 antibody for 2 hours on ice, and incubated with 30 ^ / l 

protein G-Sepharose beads by gentle rotation at 4"C overnight. Afterwards, the cell lysates 

were washed five times in immunoprecipitation buffer before the bound immunocomplexes 

were eluted by boiling in 50 i-il Lammeli's sample buffer and then subjected to 

immunoblotting analysis. 

2.10 Imniunoblotting 

Immunoblotting was carried out using the semi-dry electrotransfer according to the 

manufacturer's recommendations (Bio-Rad Laboratories. UK). The SDS-PAGE gel was 
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transferred to nitrocellulose membranes (0.45 i^inr. Merck-BDH, UK) for two hour at 0.8 

niA/cm'. Blots were rehydrated with deionised water and stained with 0.2% (w/v) Ponceau S 

in 3% (v/v) glacial acetic acid for 5 minutes to assess protein transfer efficiency. After the 

blot had been destained with Tris-buffered saline (TBS; 20 m M Tris-HCI, pH 7.4 and 150 

m M NaCl), the membranes were blocked in blocking buffer consisting of 5% (w/v) BSA in 

TTBS (TBS containing 0.2% (v/v) Tween 20) at room temperature for i hour. Thereafter, the 

membrane was probed with primary antibodies diluted into 5% (w/v) BSA in TTBS for 1 

hours at room temperature or overnight at 4°C. The membrane was washed with TTBS three 

times, and incubated with horseradish peroxidase (HRP)-conjugated secondary antibodies, 

anti-mouse IgG (1:1000) or anti-rabbit IgG (1:1000; DakoCytomation Ltd., Cambridgeshire, 

UK) , at room temperature for I hour. After several washes in TTBS, the blots were 

visualized by enhanced chemiluminescence reagent (ECL plus; Amersham Biosciences, UK) 

using Luminescent image analyser (LAS-1000 plus, Fuji Film, Japan) with Image Gauge 

Software (Version 4.0. Fuji Film, Japan). Quantification of the blots was performed by the 

same Software. In some experiments, the membrane was deprobed with Restore"^' western 

blot stripping buffer (Pierce, UK) , and reblotted with individual primary antibodies. Further 

procedures are proceeding as above. 

Immunoblotting of brain samples was carried out using anonymous, frozen tissues 

generously provided by Dr. Jim Goldman and Goumei Tang (New York). The tissues were 

homogenised by Dounce homogeniser on ice in 10 mM Tris-HCI pH 7.4, 2 mM (3-

mercaptoethanol, 100 mM NaCl, 5 m M EDTA, and 1 X protease inhibitor cocktail (Sigma) 

at a 10:1 (v/w) buffer:tissue ratio. The homogenate was centrifuged at 80,000 g for 1 hour at 

4°C, and the resulting pellet was dissolved in 15 volumes of the above buffer containing 2% 

(w/v) SDS. Protein concentrations were determined by BCA reagent (Pierce). 500 ng of 

aliquots of each extract were resolved on 10% (w/v) SDS-PAGE and transferred to Hybond 
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ECL membranes (Amersham Pharmacia Biotech). The signals of blots were detected by ECL 

(Amersham Pharmacia Biotech) and visualised using a Chemlmager 4400 (Alpha Innotech). 

2.11 Antibodies 

The primary antibodies used for immunoblotting were described as Tabel 2.1. 

R416WGFAP specific antibodies were generously provided by Dr. Michael Brenner, 

University of Alabama. Antibodies against phosphorylated aB-crystallin at Ser-19, Ser-45 

and Ser-59 were a kind gift f rom Dr. Kanefusa Kato, Institute for Developmental Research, 

Aichi Human Service Centre. Ant i -Nrf2 and anti-Keapl were obtained f r o m Dr. Michael 

McMahon, Biomedical Research Centre, University of Dundee. 

2.12 Immunofluorescence Microscopy 

Cells cultured on 13-mm glass coverslips were washed three times with PBS, and fixed 

either in ice-cold methanol/acetone (1:1, v/v) for 20 minutes at -20°C, or in 4% (w/v) 

paraformaldehyde prepared from 16 % (w/v) paraformaldehyde (Agar Scientific, Stansted, 

UK) for 15 minutes followed by permeabilized with 0.2% (w/v) NP-40 at room temperature 

for 5 minutes. The coverslips were then washed three times with washing buffer (PBS 

containing 0.02% (w/v) BSA and 0.002% (w/v) sodium azide), and blocked with blocking 

buffer (10% (v/v) normal goat serum in washing buffer) for 30 minutes at room temperature. 

After three washes in washing buffer, coverslips were incubated with primary antibodies 

diluted into blocking buffer for 1 hour at room temperature, followed by washed three times 

with washing buffer. For secondary antibody staining, coverslips were incubated with 4,6-

diamidino-2-phenylindole (DAPL 1 f-ig/ml; Molecular Probe Inc., Eugene, OR) for nuclear 

staining, and Alexa®488 (1:600)- and Alexa®594 (1:600)-conjugated secondary antibodies 

(Molecular Probe Inc., Eugene, OR) diluted into blocking buffer for 45 minutes at room 
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Table 2.1 Antibodies used for immunoblotting analysis 

Antigen Source Clone Epitope isolype Dilution Supplier/Reference 

(IB 

G F A P 

G F A P 

G F A P 
G F A P 

R416W G F A P 

R416WGFAP 

aB-crystallin 

aB-crystallin 

p-aB-crystallin 

Ser-19 

p-aB-crystailin 
Ser-45 
p-aB-crystallin 
Ser-59 
HSP27 

P-HSP27 

HSP25 

Actin 
HSP70 

Ubiquitin 

Cyclin Dl 

mMouse GA-5 Pig G F A P IgGl 1:5000 
mMouse 52 *a.a.418-432 IgGl 1:1000 

*pRabbit 3270 G F A P 
mMouse SMI-21 

mMouse 
mMouse 
mMouse 
pRabbit 

pRabbit 

pRabbit 

pRabbit 

mMouse 
mMouse 
pRabbit 

mMouse 
mMouse 
mMouse 

mMouse 

Nrf2 pRabbit 

Keapl pRabbit 
p-JNK pRabbit 

Thrl83/TYrl85 
JNK mRabbit 

I 2 G I 

1A3 C-terminal IgG 
19.2 C-terminal IgG 
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Palo Alto, CA 
Perng et al., 1999 
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Perng et al.,2006 
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McMahon et al., 2006 
McMahon et al., 2006 
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U K , #921 1 

Santa Cruz Biotechnology, 
USA, #sc-7972 
New England BioLabs, 
UK.#9101 

New England BioLabs. 
UK. #236! 

10 less than for IB. 
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temperature. After rinsing three times in washing buffer, the glass coverslips were mounted 

onto microscope slides using fluorescent protecting agent Citifluor® (Citifluor Labs, UK). 

The fluorescent labelling was observed with a Zeiss L S M 510 confocal laser scanning 

microscope (Carl Zeiss Inc.. Jena, Germany), equipped with a 40 X, I .4NA (numerical 

aperture) oil immersion objective. Optical sections were set to -1 .0 1,1m. Images were 

processed and prepared for figures using Adobe® Photoshop 7.0 (Adobe System, San Jose. 

CA, USA). Quantification of GFAP filament phenotypes was obtained by visual assessment 

of the cells, and scoring as cells with or without GFAP containing aggregates. 

Approximately 100-150 transfected cells were counted and each experiment repeated at least 

3 times. 

2.13 RNA extraction 

HeLa, human cervical carcinoma cell line, was maintained in minimum essential medium 

(Invitrogen) supplemented with 8% FCS, 100 U/ml penicillin, 100 mg/ml streptomycin and 

2 m M glutamax (Lemin et al.. 2007). DBT stably expressing wild-type or R416W GFAP cells 

were cultured in the absence or presence of I |.ig/ml Dox in for 4 days. For transient 

transfection experiments. DBT cells were mock transfected or transfected with wild-type and 

R416W GFAP plasmid DNA for 72 hours. Cells were then treated with 1% (v/v) sterile water 

(mock) or with 10 mM DTT for 6 hours (HeLa) or 3 hours (DBT stable cell lines and transient 

transfected DBT cells), followed by extraction in TRIzol (Invitrogen, Carlsbad, CA). Total 

cell RNA was extracted according to the manufacturer's instruction and resuspended in 30 \.{\ 

DEPC (diethyl pyrocarbonate) water after precipitation. RNA was quantitated by UV 

spectrophotometry. 
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2.14 R T - P C R 

After dilution to 50 ng/ml, 50 ng total RNA was subjected to reverse transcriptase 

polymerase chain reaction (RT-PCR) using the AccessQuick RT-PCR kit (Promega). Two 

primers for RT-PCR were used, X B P l (X-box binding protein I ; 

G A A A C T G A A A A A C A G A G T A G C A G C and GCTTCCAGCTTGGCTGATG) and |3-actin 

( C C A C A C C T T C T A C A A T G A G C and ACTCCTGCTTGCTGATCCAC), to detect the 

relative expression of these mRNAs. The thermal cycling profile consisted of the fol lowing: 

stage 1, I cycle at 45°C for I hr; stage 2, 1 cycle at 94"C for 2 min; stage 3, 30 cycles at 94''C 

for 30 sec, 60°C for I min, and 72"C for 1 min; stage 4, 1 cycle at ITC for 5 min. X B P l 

cDNA was then subjected to Pst\ digestion (see below). A l l cDNA was either analysed by 1% 

agarose gel (XBPl before Pst\ digestion) or analysed by 2% agarose gel (after all Pst\ digests) 

at 100 mV for -50 min before visualised by UV light. 

2.15 X B P l R T - P C R splicing analysis 

For Pst\ digestion, amplified XBPl cDNA was subjected to Pst\ (MBl/Fermentas) 

digestion to detect the presence of spliced niRNA. Total RT-PCR product (or total PCR 

product minus 5 |.il i f X B P l RT-PCR product was loaded beforehand) was digested by 1 ^1 

Pst\ in a total volume of 15 f.il digests at 37''C for 2 hours. DNA was extracted from the Pst\ 

digestion using the PCR purification kit (Qiagen) fol lowing the manufacturer's instructions. 

The digested DNA was then run on 2% agarose gel to visualise the activated spliced ( X B P l 5 ) 

and unspliced ( X B P l ^ ) products. Actin was used as a control. 

2.16 Cell liability assay 

For stress assay, cells were seeded into 96 microvvell cell culture plates at the density of 

5,000-10,000 cells/well depended on the type of experiment. After 48-72 hours of 
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incubation, while the cells reached -70-80% confluence, stress including osmotic shock, 

oxidative stress and proteasome inhibition was applied. Cells were recovered in normal 

growth medium for various time intervals. Cell viability was examined by the 3-(4,5-

dimethyl-thiazol-2yl)-5-(3-carboxymethoxyphenyp)-2-(4-sulfophenyl)-2H-tetrazolium 

(MTS) using CellTiter 96® Aqueous one solution cell proliferation assay (Promega, UK) and 

the procedures were described by the manufacturer. Briefly, 20 ^1 of MTS labelling reagent 

was added to 100 jul growth medium per well, and incubated for a further 1.5, 1.5 and 3.5 

hours for U343 MG-A, U373 MG-A and DBT cells respectively, to dissolve the formazan 

crystals. The optical density (OD) was measured at a wavelength of 490 nm on a microplate 

luminometer (Anthos Lucy 1; Salzburg, Austria). Each time point was carried out in 

triplicates wells and each experiment was repeated at least three times. Results represent the 

OD value at indicated time points as the mean and standard deviation (SD). 

2.17 Statistical analysis 

One factor analysis of variance ( A N O V A ) was used to distribute cells into statistically 

balanced groups for equality of growth before and after treatment. Two tailed paired t test 

was applied to compare pre- and post-treatment growth within groups over time. Two tailed 

unpaired t test was employed to compare growth between untreated and treated cells at single 

time points. A l l values were expressed as mean ± SD, and represented as an average of three 

independent experiments. In all analysis, P < 0.05 was considered statistically significant. 
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Chapter 3 

Generation of tetracycline-regulated cell lines 

3.1 Introduction 

The tetracycline (Tet)-regulated gene expression system has served as a valuable genetic 

tool that permits the expression of any gene construct introduced into either cultured cells or 

transgenic animals including mice, rats, insects and f l y , to be precisely controlled (Gossen et 

al., 1993; Sprengel and Hasan, 2007). This expression system comprises two components, a 

regulatory vector based on the prokaryotic repressor of Tet and a response vector that 

expresses the gene of interest under the control of an element responding to Tet and its 

analogues, e.g. doxycycline (Dox). In particular, this system is applicable to the study of 

genes where their expressions are toxic to cells and provides fundamental insight into how 

these gene expressions regulate cell morphology, cell structure/function, growth, 

differentiation, and disease progression. 

3.1.1 Principles of tetracycline-regulated expression system 

3.1.1.1 Elements of tetracycline-regulated system 

Tet-regulated expression system was originally developed by Gossen and Bujard (1992) 

and primarily derived f rom the Tet-resistance operon encoded in transposon Tn70 of E. coli. 

The cytoplasmic membrane embedded terA resistance protein, a proton-|Tet.Mg|* antiporter, 

enables E. coli to resist Tet (Yamaguchi et al., 1990). Under regular conditions, ret A is not 

expressed due to Tet repressor (tetR) blocking its expression. tetR contains 207 amino acids 

with 10 a-helices as interaction surfaces for terR dimerization and binding sites for Tet 

operator (retO) sequences and Tet (Orth et al., 2000). The rerO sequence 0 2 of Tn/(9 is a 19-

bp inverted repeat to which retR binds as a 46-kDa homodimer (Hillen and Berens, 1994), In 

the absence of Tet, rerR dimers can bind to the rerO and retA promoter regions and hinder 
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their transcriptional initiation, thereby down-regulating expression of these genes. This 

process is reversed by increasing intracellular concentrations of Tet to encourage binding to 

terRs resulting in a conformational change in the Ttl-terR complex, and rendering it incapable 

to bind tetOs (Hiilen and Berens, 1994). Accordingly, in order to achieve reversible control 

gene expression in eukaryotes, changing tetR aff ini ty for retO in E. coll by Tet is the 

prerequisite consideration. 

3.1.L2 Tetracycline-controUed gene expression system 

The Tet-regulated expression systems, Tet-On and Tet-Off, are binary transgenic systems 

composing a regulator vector and a response plasmid. In both systems, the expression of a 

target transgene is dependent on the activity of an inducible transcriptional activator, which 

can be modulated reversibly and quantitatively by exposing the expression construct to 

varying concentrations of Tet or its derivatives. In the Tet-Off system, the transgene is 

expressed in the absence of Tet. In the Tet-On system, the transcription of the transgene is 

activated in the presence of Tet. 

3.1.1.2.1 Tet-Off system 

The Tet-Off system was successfully modified by Gossen and Bujard f rom the well-

defined elements of the TnlO Tet operon in prokaryotes as a genetic switch to control gene 

expression in eukaryotes (Gossen and Bujard, 1992). The scheme is to incorporate two 

separate genetic modifications into HeLa cells. First, they converted tetR into a Tet-controlled 

transcriptional activator by fusing the herpes simplex virus (HSV) transcription activator 

virion protein (VP16) to the C-terminus of tetR, and this fusion protein is referred to as tTA 

(tetracycline-controlled transactivator) (Fig. 3.1 A) . rerR domain binds to heptamerized r f fO 
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sequences, whilst the C-terminal V P I 6 domain takes part in the recruitment of the RNA 

polymerase II (Pol II) transcriptional initiation complex for initiating transcription. Second, 

by linking seven tetO sequences to a minimal version of the human cytomegalovirus 

immediate early gene l E l promoter (PminCMV) containing the Pol 11 transcriptional start 

site, they generated a tTA-dependent promoter called the Tet response element (TRE) (Fig. 

3.2A). tTA initiates transcription within the CMV-promoter fragment by binding to the TRE. 

With the addition of Tet, tTA binds the antibiotic and subsequently disassociates f rom the 

promoter region. This is the Tet-Off system because without tTA bound to terOs, the 

promoter is inactive. Hence, tTA allows gene expression to be switched on and of f in 

response to Tet (Fig. 3.3A). 

3.1.1.2.2 Tet-On system 

Tet-On system was achieved by exchanging the tetR of tTA to rtetR (reverse tetracycline 

repressor) of rtTA (reverse tTA) generated f rom four point mutations in retR (Fig. 3. IB) . 

These mutations, E71K, D95N, LIOIS and GI02D, in the tetR DNA binding moiety alter the 

binding characteristics of rtTA (Hecht et al., 1993) so that it only recognises the terO 

sequences in the TRE of the target transgene when bound by Dox, a Tet derivative. 

Interestingly, Tet itself is unable to activate rtTA (Gossen et al., 1995). Thus, transcription of 

the TRE-regulated target gene is activated by rtTA when Dox is present (Fig. 3.3B). 

3.1.1.2.3 Comparison of Tet-Off and Tet-On systems 

Tet-inducible transgenic systems allow reversible, temporal regulation of transgene 

expression (Gossen and Bujard, 1992: Gossen et al.. 1995). The Tet-On system requires 
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administration of Dox for the induction of transgene expression (Lee et a!., 1998), whereas the 

transgene expression in the Tet-Off system is only activated after removal of Dox. Since the 

removal of Dox in the Tet-Off system tends to be slower, the Tet-On system is superior to the 

Tet -Off system in this regard. The Tet-Off system, however, is less leaky than the Tet-On 

system because the basal transcriptional activity and requirement of lower concentrations of 

Dox to regulate gene expression (Mizuguchi and Hayakawa, 2002). This perspective is 

supported by comparing regulation factors of tTA and rtTA, which are evaluated by the ratio 

of gene expression level in the induced condition to the uninduced condition in Hela cells. 

The 10" value of regulation factor of tTA in the Tet-Off system shows better efficiency than 

10^ of rtTA in the Tet-On system (Kistner et al., 1996). Thus, the sensitivity of rtTA is 

approximately 100 times less than tTA. Indeed, previous findings have revealed that while I 

j L i g / m l of Dox was required to activate rtTA-dependent reporter gene transcription, 10 ng/ml 

of Dox was sufficient for fu l l inactivation in the tTA system (Gossen et al., 1995). 

Compared with the Tet-On system, the Tet-Off system is less suitable for gene therapy 

applications. First, induction of the Tet-Off system is slower as it depends on the 

pharmacological elimination of Dox (Gossen et al., 1995; Kistner et al., 1996; Mohammadi et 

al., 1997). Second, the Tet-Off system requires persistent administration of Dox to suppress 

gene expression, which may not be ideal while using a lentiviral vector that provides life long 

gene expression. In addition to rapid induction of gene expression (Belteki et al., 2005), 

recent improvements in the rtTA protein, including reduced basal activity and increased Dox 

sensitivity (Urlinger et al., 2000; Das et al., 2004), make the Tet-On system a better choice for 

transcriptional regulation in most gene therapy applications. 
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3.1.1.2.4 Efficacy of tTA and rtTA 

The efficiency of Tet-controlled gene expression is influenced by the cell line tested and is 

far more complex in transgenic mice where residual activity is dependent on the tissue even in 

the absence of the transactivator (Furth et al., 1994; Kistner et al., 1996). Residual activity 

might be produced by binding of transcription factors to the CMV core promoter (Furth et al., 

1994). 

Overexpression of the VP16 domain as a fusion protein in either the Tet-On or Tet-Off 

system can be toxic, as it causes transcriptional squelching (Kiihnel et al., 2004) as a 

consequence of titrating key components of the transcriptional machinery f rom their 

intracellular pools. In particular, stable expression of tTA in some cells, such as mouse 

epithelial cells, results in morphological changes, alterations in cell cycle distribution and 

growth rate attenuation (Gallia and Khali l i , 1998). 

Tissue specificity can be achieved by driving tTA or rtTA promoter expression (Kistner et 

al., 1996), which may be also affected by the chromosomal insertion site of a TRE-regulated 

transgene. Indeed, randomly integrated transgenes tend to express unstably in the durability 

and uniformity owing to the positional effect that is contingent on the local chromatin 

structure (Masui et al., 2005). 

3.1.2 Tetracycline and its derivatives 

Tet is a broad-spectrum antibiotic that kills gram-negative, gram-positive bacteria and 

atypical organisms including Chlamydiae, Mycoplasmas, Richettsiae and protozoan parasites 

by blocking protein synthesis (Epe and Woolley, 1984; Chopra and Roberts, 2001). Given 

their high membrane permeability and affinity to tTA and rtTA. Tet and its derivatives (Fig. 

3.4) are suitable for gene regulation in mammalian cells. Af f i n i t y for tetR and antibiotic 

potency are mediated by different chemical moieties in Tet-derived antibiotics. For instance. 
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the affinity of inducers for tetR including Tet (Ka = ^10" M"'), Dox (Ka = ^10'" M ') and 

anhydrotetracyciine (ATc, Ka = - 1 0 " M ') is three to f ive fold higher than the affini ty of 

these inducers to prokaryotic ribosomes (Takahashi et al., 1986; Lederer et al., 1996). Two 

molecules of Tet binding to a tetR dimer are sufficient to reduce the affinity of tetR for tetO 

by nine folds (Lederer et al., 1996). Among these inducers, ATc is much more effective than 

Tet and Dox in inactivating tTA (Degenkolb et al., 1991) and has a lower antibiotic activity 

towards E. coli (Oliva et al., 1992; Gossen et al., 1993; Gossen and Bujard, 1993). 

3.1.2.1 Administration of Doxycycline 

Dox has a longer half-life (18-24 hours) than Tet (12 hours) (Whelton et al., 1974; 

Ramamurthy et al., 2001). Thus, Tet is cleared f rom mice quicker than Dox (Robertson et al., 

2002). Nevertheless, the concentration of Dox required to regulate gene expression is lower 

than the concentration that causes toxic side effects (Bocker et al., 1981). It has been 

estimated that 200 j.ig/ml of Dox yields less than 500 ng/ml of Dox-blood levels which is far 

below the levels used clinically (Chen et al., 1998). In addition, Dox can be easily delivered to 

animals in drinking water, food pellets and intraperitoneal injection. For these reasons, Dox is 

considered to be a better drug for regulating gene transcription in the Tet-On and Tet-Off 

systems. In fact, the Tet-On system is only responsive to Dox, but not to Tet (Gossen & 

Bujard. 1995). 

3.L2.2 Clinical use of Doxycycline 

Dox is a second generation, lipophillic Tet derivative that inhibits collagenase activity in 

vitro (Golub et al., 1995) and in vivo (Golub et al., 1990; Golub et al.. 1997). In addition, Dox 

has anti-inflammatory effects independent of its antimicrobial action (Tikka et al.. 2001; 

Yrjanheikki et al., 1998). Dox inhibits prokaryotic protein synthesis by reversibly binding to 
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bacterial 30S ribosome subunit and renders its aminoacryl tRNA incapable of binding to 

mRNA (igarashi and Kaj i , 1970; Chopra, et al., 1992; Schnappinger and Hillen, 1996). By 

crossing the blood-brain, blood-cerebral spinal f lu id and placental barriers, Dox has excellent 

brain and tissue penetration. Previous reports have revealed that Dox protects hippocampal 

neurons f rom global and focal ischemia in both animal and cell models (Yrjanheikki et al., 

1998; Yrjanheikki et al., 1999; Tikka et al., 2001) and delays cell death associated with 

Huntington's disease (Chen et al., 2000). Furthermore, Dox inhibits caspase-3 cleavage, 

which blocks apoptotic signalling propagation and promotes neuronal cell survival in 

neonates with hypoxia-ischemia injury (Jantzie et al., 2005). Hence, Dox has been clinically 

administrated to protect the brain against pathological apoptotic neuronal cell death and 

neuroinflammation secondary to brain injury owing to its superior ability to penetrate in the 

brain and the least toxic side effects of the Tet. 

3,1.3 Application of Tet-regulated gene expression system to the study of IF functions 

Tet regulated expression of transgenes encoding IF proteins or IFs associated proteins in 

cells or mice has been employed to examine the effects of these proteins on their dynamic 

properties, transport, stability, and the organization of the cytoskeleton. For instance, Tet 

regulated expression of vimentin in a certain population of fibroblasts showed no effect on 

cell growth, cytoplasmic organization, the shape of the nucleus, or the survival to chemical 

and mechanical traumas (Holwell et al., 1997). Induced expression of GFAP in human GFAP-

negative glioma cells resulted in an inhibition of cell motility and proliferation, and a change 

in cell morphology with extended cell processes (Elobeid et al., 2000). 

Expression of Keratin 16 regulated by Dox in the suprabasal epidermis in transgenic mice 

affected epidermal barrier function (Presland et al., 2004). Inducible expression of filaggrin, a 

keratin associated protein, increased keratinocyte susceptibility to apoptotic cell death 
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(Kuechle et al.. 2000), resulted in cytoskeletal disruption, loss of cell-cell adhesion, cell cycle 

arrest (Presland et al., 2001) and altered keratinocyte structure/function, growth, and 

differentiation (Presland and Fleckman, 2005). Regulated expression of desmoplakin mutant 

DPNTP led to dissociation of keratin filaments f rom the junctional plaque, the disassembly of 

actin filaments f rom adherens junctions, and further reduced intercellular adhesive strength in 

keratinocytes (Huen et al., 2002). 

Overexpression of NFH-GFP (neurofilament heavy chain-green fluorescence protein) 

induced by Dox in neuron cells disrupted filament organization and cell function, whereas 

normal cell structure and function retained when NFH-GFP expressed at low to intermediate 

levels (Szebenyi et al., 2002). Most recently, inducible expression of NF-L transgene in mice 

provides in vivo evidence that the stationary NF network in axons is pivotal to determine half-

life and transport rate of NF proteins (Millecamps et al., 2007). 

3.2 Generation of tetracycline regulatable cell lines with GFAP transgene 

A x D is associated with heterozygous GFAP mutations, which encode proteins that are 

genetically dominant and presumably act in a gain-of-function mechanism (Brenner et al., 

2001; Li et al., 2002). To date, the exact ratio of mutant to wild-type GFAP in A x D brains is 

unknown. Whilst it has been demonstrated that GFAP mutants alter filament solubility and 

stability (Hsiao et al., 2005; Perng et al., 2006), the critical ratio of mutant to wild-type 

protein leading to the disease remains unknown. Although transient transfection provides a 

quick and convenient way to analyse expressed GFAP mutant in cells, this does not allow 

critical steps before or after GFAP mutant expression to be studied. Therefore. I have selected 

physiologically relevant astrocytoma cells to generate cell lines in which GFAP expression 

can be regulated by Dox. 

83 



3.2.1 Generation of tetracycline-regulated U343 cell lines 

3.2.1.1 Experimental strategy 

U343 MG-A cell line stably transfected with Tet-Off gene expression system was kindly 

provided by Dr. J. T. Rutka (Division of Neurosurgery, University of Toronto, Canada). The 

pUHDIS-lneo vector (Resnitzky et al., 1994) derived f rom pUHD15-l (Gossen and Bujard, 

1992) encodes the E. coli tTA (Fig. 3.1 A ) , in which transcription of resistance-mediating 

genes is negatively regulated by the tetR. Regulation of Tet-Off system is achieved through 

tTA, a fusion protein consisting of tetR and VP16 activation domain. This hybrid protein 

binds specifically to the TRE and promotes transcription f rom the adjacent CMV promoter. 

Dox binds to tTA and thereby prevent its binding to the TRE. Thus, when dox is present in 

the ceil culture medium, transcription of target gene is inhibited, whereas in its absence target 

gene expression is induced (Fig. 3.3A). 

U343 MG-A cells were initially selected in growth medium containing a - M E M 

(Invitrogen, Paisley, UK) supplemented with 10% (v/v) FCS, 100 U/ml penicillin, 100 j,ig/ml 

streptomycin, 2 1.1M L-glutamine and 900 [.ig/ml geneticin (G4I8; Life Technologies, Inc.) 

(Tsugu et al., 2000). After selection, cells were maintained in growth medium containing 500 

^g/ml of G4I8 (Melford Laboratories Ltd.. Suffolk, UK). 

To construct a Tet-regulated GFAP expression plasmid, wild type and R416W GFAP (Fig. 

3.2C) were excised f rom pcDNA3.1(-) (Fig. 3.2B) and inserted into the Nhe\ and EcoRW sites 

of pTRE2hyg vector (Fig. 3.2A), the Tet response vector (BD Biosciences, Palo Alto, CA). 

consisting of a multiple cloning site (MCS) immediately downstream of the TRE and 

PminCMV (Fig. 3.2A). The resulting plasmids, pTRE2hyg-WTGFAP and pTRE2hyg-

R4I6WGFAP (Fig. 3.2D), encode a full-length GFAP cDNA under the control of the tTA 

dependent promoter. U343 MG-A Tet-Off cells grown in lO-cm' Petri dishes to 50-60% 
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confluency were transfected with either pTRE2hyg-WTGFAP or pTRE2hyg-R416WGFAP 

using the GeneJuice transfection reagent (Novagen) according to manufacturer's instructions. 

Selection of stable cell lines was initiated two days post-transfection by 200 j-ig/ml 

hygromycin B (Duchefa Biochemie, Haarlem, The Netherlands). This concentration was 

selected based upon the sensitivy of U343 MG-A Tet-Off cells to hygromycin (Fig. 3.5). The 

culture medium was replaced at 12 hours intervals. Two to three weeks after selection, but 

before colony contacts had occurred, individual colonies were isolated using cloning cylinders 

(Sigma, Poole, UK) , and harvested in 12-well plates. When cells reach -90% confluency, 

colonies were transferred to 6-well plates, each cell clone was then split into three wells in a 

new 6-well plate. After retaining one well for propagation and characterisation, the other two 

were maintained in medium in the presence or absence of 2 f.ig/ml Dox (BD Biosciences, Palo 

Al to , CA) . To induce GFAP expression, the cells were washed thoroughly with PBS before 

transferred to fresh growth medium lacking Dox. On the fol lowing day, the growth medium 

was changed to remove Dox completely. The selection medium containing Dox is changed 

every day to inhibit expression of GFAP. Selected clonal lines were cultivated in growth 

medium supplemented with 2 |.ig/ml Dox. 

3.2.1.2 Generation and characterisation of R416W-specific antibodies 

To screen for inducible expression of R4I6W GFAP, the insoluble pellets of each clonal 

lines, either uninduced or induced, were prepared for immunoblotting analysis using anti-

R416W GFAP antibodies. Two monoclonal antibodies, clone 19.2 and 1A3, generated by the 

U A B Epitope Recognition Core using the mutation site centred on the immunogen, 

K T V E M W D G E V I K (Perng et al.. 2006) were used for initial screening. 

To validate 1A3 and 19.2 antibodies as the specific probes for R416W GFAP in selected 

clonal lines, purified recombinant human wild-type and R4I6W GFAP were first analysed by 
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Figure 3.5. Hygromycin killing curves for U343 MG-A cells. (A) Standard curves for 
ceU numbers. Various numbers (5,000. 10,000, 15,000, 20,000, 30,000, 40,000, 60,000) 
of U343 MG-A cells were grown in 96-well plates for 4 hours. At 100% confluency, cell 
number is ~20,000 per well in 96-well plate. Cell viability was analysed by MTS assay 
kit and measured at the indicated times. (B) Dose-response curves for hygromycin. 
10,000 U343 MG-A cells were cultured in growth medium untreated or treated with 
different concentrations (50, 100, 200, 400, 800 |ig/ml) of hygromycin for the indicated 
times. (C) Plating density-dependent curves for hygromycin. U343 MG-A cells were 
seeded at different numbers (80,000, 40,000, 20,000, 10,000, 5,000, 2,500) and untreated 
or treated with 200 Hg/ml hygromycin for the indicated times. BEF, before treatment. 
Cell viabihty was determined by incubating cells in MTS reagent for 3 hours and 
represented as the measurement of mean ± SD at 490 nm. N = 3. 



immunoblotting using anti-human GFAP antibody SMI-21 and anti-R4l6W GFAP antibodies 

i A 3 and clone 19.2 (Fig. 3.6A). The SMI-21 antibody recognised both wild-type and mutant 

GFAP, whereas the IA3 and 19.2 antibodies reacted with purified R4I6W GFAP. This 

specificity is pivotal for distinguishing R416W GFAP in induced and uninduced R416W 

GFAP-expressing cells for subsequent experiments. 

To analyse the expression level and solubility of R416W GFAP in U343 MG-A cells, two 

different extraction buffers were used. In the mild extraction protocol, cells were lysed on ice 

for 15 minutes in the mild extraction buffer (MEB, 20 m M Tris-HCI, pH 7.4, 140 m M NaCI, 

5 m M EDTA, 1 m M EGTA, 0.5% (v/v) NP-40 supplemented with Complete protease 

inhibitor cocktail). In the more stringent extraction protocol, which was designed to test the 

resistance of GFAP filaments and aggregates to buffer extraction, cells were lysed in 1 ml of 

harsher extraction buffer (HEB, 20 m M Tris-HCL pH 7.4, 140 m M NaCI, 5 mM EDTA, I 

m M EGTA, 1% (v/v) NP-40. 0.5% (w/v) sodium deoxycholate. supplemented with Complete 

protease inhibitor cocktail. U343 MG-A cells (Fig. 3.6B) and the human breast cancer 

epithelial MCF-7 cells (Fig. 3.6C) grown in lO-cm' Petri dishes were either left untransfected 

(Fig. 3.6B and C. lanes I and 2) or transfected with wild-type (Fig. 3.6B and C, lanes 3 and 4) 

or R4I6W GFAP (Fig. 3.6B and C, lanes 5 and 6). After extraction with MEB, cell lysates 

were centrifuged and the resulting supernatant and pellet fractions were analysed by 

immunoblotting. Whilst a small fraction of wild-type GFAP remained in the supernatant, 

R416W GFAP was found exclusively in the pellet fraction. Analysis of both supernatant and 

pellet fractions in MCF-7 cells revealed no endogenous GFAP expressed in untransfected 

MCF-7 cells. Under the same extraction protocols, R4I6W GFAP was found again in the 

pellet fraction of U343 MG-A cells transiently transfected with R416W GFAP. Similar results 

were observed when HEB was used (Perng et al.. 2006, see Fig. 9 in Appendix 5). As R4I6W 

GFAP invariably remained in the pellet fractions after extraction, the pellet fraction prepared 
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Figure 3.6 Characterisation of R416W-specific antibodies. Immunoblots of the purified 
recombinant human wild-type (WT) and R416W GFAP were probed with two monoclonal 
anti-R416W GFAP antibodies. 1A3 and 19.2 and a standard anti-GFAP antibody SMI-21. 
The anti-R416W GFAP antibodies produce signals from purified R416W GFAP only (A . 
lane 2). whereas the SMI-21 antibody reacts with both wild-type and R416W GFAP (A. 
lanes 1 and 2). Wild-type (B. lanes 3 and 4) and R416W GFAP (B. lanes 5 and 6) were 
transiently transfected into human astrocytoma U343 MG-A cells and lysed in MEB buffer 
(see section 3.2.1.2). The supernatant (S) and pellet (P) fractions prepared f rom these 
cultures were compared with untransfected ceils (B, lanes 1 and 2). Immunoblots o f cell 
fractions were probed with antibodies to human GFAP (SMI-21) and R416W GFAP (19.2 
and 1A3). Notice that when transfected into this cell line, R416W GFAP was found 
exclusively in the pellet fraction (B, lane 6). MCF-7 ceils were transfected with either wild-
type (C. lanes 3 cind 4) or R416W GFAP (C. lanes 5 and 6). Untransfected cells were used as 
a control (C. lanes 1 and 2). At 48 hours after transfection. the supernatant (S) and pellet (P) 
fractions were prepared and analysed by immunoblotting using anti-GFAP antibody. Most of 
the wild-type GFAP was detected in the pellet fraction (C. lane 4) with a small proportion 
remained in the supernatant fraction (C. lane 3), whereas R4I6W GFAP was found 
exclusively in the pellet fraction (C, lane 6). Equal loading of each supernatant and pellet 
fraction was confirmed by probing with anti-actin antibody. 



f rom inducible cell lines w i l l be analysed by immunoblotting in the subsequent studies. 

3.2.1.3 Screening of U343 cell lines expressing R416W GFAP 

Thirty-one clones were selected for screening of wild-type GFAP expression in U343 MG-

A cell lines. Some clones had no detectable GFAP signals, whereas other clonal lines revealed 

similar GFAP levels between uninduced and induced cells (Fig. 3.7A). In addition, there are 

currently no antibodies available to distinguish the induced wild-type GFAP f rom the 

endogenous human GFAP in U343 MG-A cells. Therefore, a stable cell line with inducible 

expression of wild-type GFAP is not available for my studies. 

Thirty-five clones were selected for screening of R416W-expressing cell lines. One clone 

was selected by its high R416W GFAP expression under induced conditions and low 

background in the uninduced conditions. This clonal line, 1 l /18cl l that is designated here as 

U343-GFAP'^^"^^"'', displays well-regulated expression as shown by the increased level of 

R416W GFAP in the absence of Dox and suppression of expression in the presence of Dox 

(Fig. 3.7B, lower panel). Another twenty-four clones selected for screening did not show any 

R4I6W GFAP positive signals on blots in the presence or absence of Dox. 

The use of the mutant-specific antibody also allowed me to determine the ratio of R4I6W 

GFAP to the endogenous level of GFAP in stable U343 MG-A cell lines. To distinguish 

R416W GFAP from the endogenous GFAP in U343 MG-A cells, cells were extracted with 

the cytoskeletal extaction buffer (20 m M Tris-HCI, pH 7.4, 140 m M NaCL 5 m M EDTA, 1 

m M EGTA, 1% (v/v) Triton X-lOO, 1.5 M KCl) . After centrifugation, IF-enriched 

cytoskeletal fractions prepared f rom uninduced and induced U343-GFAP'^'"''^ cells were 

separated by SDS-PAGE and either visualised by Coomassie Blue staining (Fig. 3.8A) or by 

immunoblotting with antibody specific to R4I6W GFAP (Fig. 3.8D). A prominent band 
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Figure 3.7. Screening of Dox-regulated stable tran.sfectants for G F A P in Tet-Off 
human astrocytoma cells. U343 haiboring wild-type (WT, A ) and R416W (B) GFAP 
plasmid D N A cells were cultured i i i the absence or presence of 2 |.ig/ml Dox and 
harvested at confluency. After extraction in RIPA lysis buffer, the fractioned insoluble 
pellets were separated by SDS-PAGE and then analysed by inmiunoblotting usnig 
3270 against wild-type GFAP and R416W G E \ P specific antibody clone 19.2 to assess 
the expression level of R416W GFAP. M , marker. Pur WT, pm:ified recombinant 
wild-type GFAP. Pirr 416, purified recombinant R416W GFAP. Clones were marked 
as date-clone number. *, uidicates the clone of U343-GFAPR416W cells was 
processed for further experiments. -i-Dox, uninduced GFAP expression. -Dox, induced 
GFAP expression. 
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Figure 3.8. Expression of R416W G F A P i n U343-GFAPR416W cells resulted in its 
incorporation into the endogenous G F A P networks. Expression of R416W GFAP m 
U343-GFAPR416W cells was induced by removal of Dox for 2 days. The cytoskeletal 
fractions prepared from induced (A and B, lane 5) and uninduced (A and B, lane 6) cells 
were separated by SDS-PAGE followed by Coomassie Brilliant Blue (CBB) stainijig (A) 
or inmiunoblotting (IB; D). Representative gel shows that vimentin and GFAP are major 
IF proteins in tlie cytoskeletal fractions (A, lanes 5 and 6). By immunoblotting, a 
prominent band conesponding to R416W GFAP was detected by 1A3 antibody in induced 
cells (D, lane 5), whereas it was barely detectable in uninduced cells (D, lane 6). Tlie 
amounts of the total GFAP in die cytoskeletal fraction were determined by quantification 
of Coomassie Blue-stained gel using pmified recombinant human GFAP as standards 
(A, lanes 1-4). Tlie level of R416W GFAP in induced cells was detemiined by 
quantification of iminunoblot using pmified recombinant human R416W GFAP as 
standards (D, lanes 1-4). Quantification results were shown in (C) and (F). Tlie 
distribution of R416W GFAP in relation to the endogenous GFAP networks was visuahsed 
by double label immunofluorescence microscopy using anti-R416W GFAP (1A3) and 
standard anti-GFAP (3270). Wlien expressed m U343-GFAPR416W cells, R4i6W GFAP 
(G) integrated into the endogenous GFAP networks (H). Merged image showed tlie region 
of colocalisation between R416W GFAP and the endogenous GFAP appearing yellow (I), 
and the colocalisation of filament networks was magnified in inset. Bais = 10 um. 



corresponding to the R4I6W GFAP was detected in induced cells as revealed by the IA3 

antibody (Fig. 3.8D, lane 5), whereas this band was barely detectable in unindiiced cells (Fig. 

3.8D, lane 6). Quantification using purified GFAP as standards (Fig. 3.8B and E) revealed 

that although the induced U343-GFAP'^"'''^ cells expressed 10 times more R4I6W GFAP than 

uninduced cells, this expression level is still only ~ I 0 % of the endogenous GFAP (Fig. 3.8C 

and F), indicating that the expression level of R4I6W GFAP is relatively low compared to the 

endogenous GFAP in U343-GFAP'^^ce l l s . The distribution of R4I6W GFAP in relation to 

the endogenous GFAP in GFAP"*"'^^ cells was examined by double label immunofluorescence 

microscopy using antibodies to the R4I6W GFAP and the total GFAP. Whilst no R4I6W 

GFAP signal was detected in uninduced cells (data not shown), the expression of R416W 

GFAP (Fig. 3.8G) resulted in its incorporation into the endogenous GFAP networks (Fig. 

3.8H) in induced U343-GFAP'^^"^^ cells. Colocalisation of immunofluorescence signals 

between R4I6W GFAP and the endogenous GFAP network were shown in the merged image 

(Fig. 3.81). These data suggest that R4I6W GFAP is capable of integrating into the 

endogenous GFAP networks when expressed at a low level. 

3.2.1.4 Dose-dependent expression of R416W G F A P in U343-GFAP'**'*'' cells 

To evaluate the Dox-dependent regulation of the R4I6W GFAP expression in U343-

GFAP'^''"'^^' cells, insoluble fractions prepared f rom uninduced and induced cells were 

separated on SDS-PAGE followed by immunoblotting using the R4I6W GFAP-specific 

monoclonal antibody 1A3. The expression level of R416W GFAP decreased gradually as the 

Dox concentration increased (Fig. 3.9A). In particular, the level of R4I6W GFAP expressing 

in U343-GFAP'^'"*^^ cells in the presence of I ug/ml Dox (Fig. 3.9A, lane 3) was nearly half 

of that in untreated cells (Fig. 3.9A, lane 1) and its signal was undetectable in the presence of 

2 Mg/ml (Fig. 3.9A. lane 5) and 4 j^ig/ml Dox (Fig. 3.9A, lane 6). Therefore, U343-GFAP'' - , K - ) 1 6 \ V 
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Figure 3.9. Regulation of R416W GFAP expression by Dox in U343-GFAPR416W 
cells. U343 stably expressing R416W GFAP cells were grow'n on 10-cm Petri dishes at the 
indicated Dox concentrations for 4 days. Cells were extracted with RIPA buffer, and the 
insoluble pellet fractions were subjected to SDS-PAGE followed by inununoblotting with 
anti-R416W GFAP antibody 1A3 (A). Notice the level of R416W GFAP decreased when 
Dox concentration increased. At 2 )ig/nil Dox, R416W GFAP expression was conq>letely 
inhibited (A, lane 5). The distribution of R416W GFAP in relation to die endogenous GFAP 
was visualised by double label immunofluorescence microscopy with use of antibodies to 
total GFAP (3270, green channel; B-D) and R416W GFAP (1A3, red channel; E-G). In 
induced U343-GFAPR416W cells (B and E), R416W GFAP expression (E) resulted in its 
incorporation into the endogenous GFAP networks (B), whereas no R416W GFAP signal 
was detected in uninduced cells cultured at 2 \igftal Dox (F) or 4 jxg/ml Dox (G). 
Bars = 10 i^m. 



cells were maintained in the 2 jig/ml Dox to completely inhibit R4I6W GFAP expression in 

the subsequent studies. 

The expression and distribution of R4I6W GFAP in relation to the endogenous GFAP of 

U343-GFAP'^'"*'^' cells were examined by immunofluorescence confocal laser microscopy. 

U343-GFAP'^'"'^^"'' cells grown in the absence or presence of 2 and 4 j.ig/ml of Dox were dual 

labelled with antibodies to the R416W GFAP and total GFAP. The expression of R4I6W 

GFAP (Fig. 3.9E) in induced U343-GFAP'^""*''^ cells resulted in its integration into the 

endogenous GFAP (Fig. 3.9B), whereas no R4I6W GFAP signal was detected in uninduced 

cells (Fig. 3.9Fand G). 

3.2.1.5 I F network organisation in transient and stable expression of R416W G F A P 

The effect of R4I6W GFAP mutation upon GFAP network formation was investigated by 

transient transfection studies using U343 MG-A cells that express the endogenous GFAP and 

vimentin. When transfected into U343 MG-A cells, R4I6W GFAP showed multiple 

phenotypes including filamentous networks (Fig. 3.10A, arrow), filament bundles (Fig. 

3.10A, arrowheads), or mixtures of cytoplasmic aggregates with or without small aggregates 

at the cell periphery (Fig. 3.10A, asterisks). In contrast. R416W GFAP mainly formed 

filamentous networks or filament bundles but not aggregates in induced U343-GFAP'^'"^^' 

cells (Fig. 3.10D). 

3.2.2 Generation of tetracycline-regulated U373 cell lines 

3.2.2.1 Experimental strategy 

The human astrocytoma U373 MG-A cells that express the endogenous GFAP were 

selected to generate stable cell lines with Tet-On gene expression system to mimic the 

scenario of R4I6W GFAP being expressed in a human astrocyte background. Regulation of 
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Figure 3.10. Transient and stable expressions of R416W G F A P in U343 M G - A 
cells. U343 MG-A cells were transiently transfected with R416W GFAP (A C). At 48 
hours after transfection, cells were processed for double label immunofluorescence 
microscopy with use of antibodies to R416W GFAP (1A3, A and D) and total GFAP 
(3270, B and E). Transient expression of R416W GFAP leads to several distinct IF 
structures. Most of the transfected cells formed perinuclear inclusions (A, arrowheads) 
with small aggregates distributed throughout the cytoplasm (A, asterisks). In 
some transfected cells, however, R416W GFAP (A, arrow) incorporated into the 
endogenous GFAP networks (B, arrow). Colocalisation of R416W GFAP and the 
endogenous GFAP signals appeared yellow (C, arrow). U343-GFAPR416W cells were 
induced by removal of Dox for 48 hours and then processed for immunofluorescence 
microscopy as described above. Expression of R416W GFAP in induced U343-GFAP 
R416W cells mainly formed extended filaments or filament bvmdles (D, double arrows) 
that coloctdised with the endogenous GFAP (E and F, double arrows). Bars = 10 ^m. 



the system is achieved through rtTA, which binds the TRE and activates transcription in the 

presence of Dox (Fig. 3.3B). At 60-70% confluency, U373 MG-A cells were co-transfected 

with pTet-On and pTRE2hyg vector containing either wild-type or R416W GFAP cDNA. 

Two days post-transfection, stable cell lines were dual selected for 3~-4 weeks with 1 mg/ml 

G4I8 and 400 |.tg/ml hygromycin B. The concentrations of G4I8 and hygromycin B 

employed for selection were determined f rom the kil l ing curves with respect to the antibiotic 

concentration (Fig. 3.11 A ) and cell density (Fig. 3.1 IB) . Antibiotic resistant colonies were 

selected with use of cloning cylinders and seeded on 12-well plates. At 90-100% confluency, 

each clone was transferred to 6-well plate followed by expansion in three wells in new 6-weli 

plates. One plate of cells was for cell propagation and storage, and the other two plates of 

cells were used for screening of GFAP expression by immunoblotting. Cells were cultured in 

the absence or presence of 1 |.ig/ml Dox in the growth medium. At -90% confluency, 

insoluble fractions were prepared f rom clonal lines by extraction with RlPA buffer followed 

by immunoblotting with use of antibodies to R416W GFAP or normal GFAP. 

3.2.2.2 Screening of U373 cell lines expressing G F A P 

Forty-two clones were selected for further analysis of inducible expression of wild-type 

GFAP in U373 MG-A cell lines. Insoluble pellet fractions (see section 2.7) prepared from 

these cell lines were analysed by immunoblotting using standard human GFAP antibody SMl-

21 (Fig. 3.12A). Evaluation of the GFAP-positive signal f rom the blots revealed no significant 

difference in the expression levels between uninduced and induced cells, suggesting that 

induced U373 MG-A cells express wild-type GFAP at relative low level compared to the 

endogenous GFAP. 

Thirty-eight clones were selected for screening of R416W GFAP expression and four 

clonal lines express detectable levels of R4I6W in the presence of Dox and low background 
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Figure 3.11. (t418 and hygromycin killing curves for U373 M G - A cells. (A) Standard 
curve for cell cumbers. Varied numbers (2,500, 5,000, 10,000, 20,000, 40,000, and 60,000) of 
U373 MG-A cells were plated onto 96-well plates and incubated at 37 C for 4 hours. Cell 
number of ~40,000 reaches 1(X)% confluency per well in 96-well plate. Cell viability was 
analysed by MTS for different incubation times as indicated. (B, C) Dose-response curves for 
G418 and hygromycin. 20,000 U373 MG-A cells were cultured in growth medium containing 
various concentrations (0, 50, 100, 250, 500, 1000, 2000 |lg/ral) of G418 (B) or (0, 50, 100, 
200, 400, 800 ^ig/ml) of hygromycin (C) for die indicated times. (D, E) The ceU density-
dependence for killing curves for G418 and hygromycin. U373 MG-A cells were seeded at 
different ceU numbers (80,000, 40,000, 20,000, 10,000, 50,000 and 2,500) and untreated or 
treated with 1000 Hg/ml G418 (D) or 800 Jig/ml hygromycrn (E) for the indicated times. 
BEF, before treatment. CeU viability was determined by MTS reagent after 4-hour incubation 
and expressed as mean ± SD at OD490. N = 3. 



in its absence (Fig. 3.12B, asterisks). Among these clones, the l l / 1 6 - c l l 9 line (designated 

here as U373-GFAP'^""'^''') exhibited well-regulated expression of R4I6W GFAP in response 

to Dox and were selected for further characterisation. 

3.2.2.3 Characterisation of U373 cell lines expressing R416W G F A P 

U373-GFAP'^'"^^ cells grown in the absence or presence of Dox were extracted with either 

RIPA buffer (Fig. 3.13A) or cytoskeletal extraction buffer (Fig. 3.13B). The insoluble pellet 

fraction (see section 2.7) and cytoskeletal fraction (see section 2.8) were separated by SDS-

PAGE and visualised by Coomassie Blue staining. Analysis of the IF compositions revealed 

that whilst vimentin is the major IF protein in the cytoskeletal fractions, the endogenous 

GFAP expresses at a low level in selected U373-GFAP'*"''*^ cell line. The cytoskeletal 

fractions were further analysed by immunoblotting with antibodies to R416W GFAP and 

human GFAP. Whilst the R416W GFAP level increased in induced cells (Fig. 3.I3C, lanes 2 

and 4), uninduced cells express low level of R416W GFAP as revealed by 1A3 antibody (Fig. 

3.I3C, lane 3). 

The expression and distribution of R416W GFAP in relation to the endogenous GFAP of 

U373-GFAP'^'"''^^ cells were visualised by double label immunofluorescence microscopy with 

use of antibodies to R416W GFAP and human GFAP. The expression of R4I6W GFAP (Fig. 

3.I3D) in induced U373-GFAP'^'"'^^^' cells resulted in its integration into the endogenous 

GFAP (Fig. 3.13E), whereas no R4I6W GFAP signal was detected in uninduced cells (Fig. 

3.I3G). 

Although the expression level of R416W GFAP in the U373-GFAP''^"''' cells can be 

monitored by the R416W GFAP-specific antibody. U373-GFAP^^'' cell line is not available as 

a control for the U373-GFAP'^'"^'^^' ceils because no antibodies are currently available to 

specifically detect the induced wild-type GFAP. Therefore, I decided to develop stable cell 
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Figuix- 3.12. Screening of l)<»\-ix-gula(t'tl stable transfectant for (iF.4P in Tet-On human 
astmcUdma tolls. ILU.^ . \ l ( i A conlaininc; w ild t \ pc and l\416W ( i l A l * DNA cells were 
cultured in the absence eir presence of 1 ug/nil l.)o\. and harx csted at connueney. Cells w ere 
lysed in RIF.A biiUerand the iuMtiuble pellets were analysed b\ SDS-P.Adi: and 
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Figure. 3.13. CliaracttTisntion of Dox-regulatcd R416W (iFAP-expressing U373 
cell line. U.i73-GFAi'R416VV colls giown in the absence (-) oi presence (+) of Dox 
were lysed in either RlPA bulTer (A) or cyloskeletal extraclion buffer (B), I he 
in.soliible pellel fraction and cytoskeletal fraction were analysed by SDS-PAGEand 
the gels stained with Coomassie Blue. The molecular weight of the marker proteins 
and the main cytoskelelal proteins are indicated. Vimenlin is the major IF protein in 
U373 MG-A cells, whereas the GFAP level is relatively low. The cytoskeletal fractions 
were fmlher analysed by immunoblotting with anti-human GFAP SM1-2 I (C, lanes I 
and 2) and anti-R4l6VV GFAP i A3 antibodies (C, lanes 3 and 4). Whilst the levels of 
total GFAPin uninduced and induced cells are similar. R4I6VV GFAP signal increased 
significantly in induced cells as revealed by IA3 antibody. To follow the distribution 
of R4I6\V GFAR U373-GFAPR416W cells induced at 1 ̂ [g/m\ Dox for 2 days were 
processed for double label immunofluorescence microscopy using antibodies to R4I6\V 
GFAP(D and G) and normal human GFAP(E and H). Alter induction, R4I6VV GFAP 
formed extended filaments (D) that colocalised with the endogenous GFAP networks 
(E and F). In contrast, no R4I6W GFAP staining was observed in uninduced cells (G). 
The detailed filamentous networks are magnified in insets (D. E. F and H). Bars= 10 |.lm. 



lines expressing inducible levels of wild-type or R416W GFAP that could be monitored by 

available antibodies. 

3.2.3 Generation of tetracycline-regulated D B T cell lines 

3.2.3.1 Experimental strategy 

The monoclonal anti-GFAP antibody SMI-21 developed by Sternberger Monoclonals 

specifically recognises human but not mouse GFAP, which provides an ideal tool to monitor 

the expression of human wild-type and mutant GFAP in a mouse background. For this reason, 

I selected mouse astrocytoma DBT cells to generate stable cell lines that express inducible 

levels of human wild-type and R4I6W GFAP. 

To generate stable cell lines, DBT cells grown in 10-cm" Petri dishes to -40-50% 

confluency were cotransfected with pTet-On (Fig. 3. I B ) and pTRE2hyg vector containing 

cDNA encoding either wild-type or R4I6W GFAP (Fig. 3.2D). Regulation of the Tet-On 

gene expression system is achieved through rtTA, which binds to the TRE and activates 

transcription in the presence of Dox (Fig. 3.3B). 

DBT cells were cotransfected with pTet-On and either pTRE2hyg-WTGFAP or 

pTRE2hyg-R4l6WGFAP. Two days after transfection, cells were dual selected with 1 mg/ml 

G4I8 and 800 yig/ml hygromycin B for one to two weeks. The concentrations of G418 and 

hygromycin B used for selection were determined by generating kil l ing curves for each of the 

two antibiotics with respect to concentration (Fig. 3 . I4A) and cell density (Fig. 3.14B). After 

selection, antibiotic-resistant cell colonies were isolated using cloning cylinders and cultured 

in 6-vvell plates. Once the cells reach -80-90% confluency, each cell clone was split into three 

separated wells in 6-well plates, one for cell propagation and the other two for growing in the 

absence or presence of Dox. Medium containing Dox was changed every two days to 

maximise the effect of the inducer. 
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Figure 3.14. G418 and hygromycin killing curves for D B T cells. (A) Standard curve for 
ceU numbers. Different numbers (9,400, 18,800, 37,500, 75,000, 112,500, 150,000, 300,000, 
and 450,000) of DBT cells were seeded onto 96-well plates for 4 hours. Cell nmnber at 
~150,000 show 100% confluency in a well of 96-well plate. Cell viabUity was determined 
by MTS and analysed at the indicated times for incubation. (B, C) Dose-response curves for 
G418 and hygromycin. 20,000 cells were cultured in growth medimn containing various 
concentrations (0, 50, 100, 250, 500, 1000, 2000 Hg/ml) of G418 (B) or (0, 50, 100, 200, 
400, 800, 1600 Hg/ml) of hygromycin (C) for the indicated times. (D, E) Plating density-
dependent curves. Cells were seeded at different numbers (160,000, 80,000, 40,000, 20,000, 
10,000, and 5,000) and untreated or treated with 1000 \Lg/mi. G418 (D) or 800 [ig/ml 
hygromycin (E) for the indicated times. BEF, before treatment. Cell viabiUty was assessed 
after four hours of incubation in MTS reagent and represented as mean ± SD by OD490. 
N = 3. 



3.2.3.2 Screening of D B T cell lines inducibly expressing wild-type and R416W G F A P 

Before screening DBT cell lines, transient transfection was performed to analyse the 

expression level and solubility of human GFAP in a mouse background. DBT cells 

transfected with human wild-type or R416W were solubilised in RlPA extraction buffer and 

the resulting supernatant (S) and pellet (P) fractions were analysed by immunoblotting using 

anti-human GFAP antibody SMl-21. When expressed in DBT cells, both wild-type and 

R4I6W GFAP were found exclusively in the pellet fraction (Fig. 3.15A). The presence of 

R416W GFAP in the pellet fraction was confirmed by blotting with anti-R416W GFAP 

antibody 1A3 (Fig. 3.I5B). As human wild-type and mutant GFAP were invariably found in 

the pellet fraction of DBT cells after extraction, the pellet fraction wi l l be analysed in the 

subsequent studies (section 3.2.3.3 and 3.2.3.4). 

The expression and distribution of both wild-type and R416W GFAP in transiently 

transfected DBT cells were examined by double label immunofluorescence microscopy. The 

monoclonal antibody that specifically recognises human GFAP was used to distinguish 

transfected human GFAP and endogenous mouse GFAP. When expressed in these cells, vvild-

type GFAP formed filament bundles (Fig. 3 . I5D). which were largely colocalised with the 

endogenous GFAP networks (Fig. 3.15C). In contrast, R416W GFAP mainly formed 

filamentous bundles (Fig. 3.15G. arrowhead) and aggregates (Fig. 3.15G, asterisk), which 

often collapsed the endogenous IF networks (Fig. 3.15F). 

Forty-four wild-type GFAP clones and f i f ty - two R416W GFAP clones were selected for 

screening. Among these clones, three wild-type GFAP DBT cell lines and six R416W GFAP 

cell lines exhibiting high inducible GFAP expression and low background levels when 

uninduced were selected (Fig. 3.16, asterisks). 
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Figure 3.15. Analysis of wild-type and R416W G F A P expression in transiently 
transfected D B T cells. DBT cells were transiendy transfected with either wdd-type or 
R416W GFAP At 48 hours after transfection, cells were extracted witii RIPA buffer and the 
resulting supernatant (S) and pellet (P) fractions were subjected to immunoblotting analysis 
with SMI-21 antibody to human GFAP (A) and 1A3 antibody against R416W GFAP (B). 
Nearly all of the wild-type and R416W GFAP were found in the pellet fractions (P). The 
presence of R416W GFAP in the pellet fraction was confirmed by probing with anti-R416W 
GFAP antibody (B). To examine effect of human GFAP expression upon filament networks in 
mouse cells, DBT cells transientiy ttansfected widi wild-type (C-E) or R416W (F-H) GFAP 
were processed for double label immunofluorescence microscopy using anti-human GFAP 
antibody (SMI-21) and standard anti-GFAP antibody (3270). When transfected into these 
cells, wild-type GFAP (D) formed filament bundles that colocaUsed with the endogenous 
GFAP (C) networks, whereas R416W GFAP (G) fonned cytoplasmic aggregates that often 
collapsed the endogenous GFAP networks (F). Merged images show the regions of 
colocalisation between human and mouse GFAP appearing yellow (E and H). Bars = 10 |Xm. 
Arrowhead, filamentous bundle. Asterisk, aggregate. 
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Figure 3.16. Screening of Dox regulated stable trausfectauts of human GFAP in Tet-Ou 
mouse astrocytoma cells. DBT generated wild-t\'pe {WI) and R416W GFAP expressing 
cells were gro^^'n in the absence or presence of 1 ug/nil Dox to reach coiifluencv Cell w ere 
harvested and lysed m RIPA buffer H ie insohible pellets were sepai-ated by SDS-PAGE and 
analysed by inmiiuioblotung using SMI-21 antibody against human GFAP. Clones were 
marked as date-clone number, for example, l / l l c l . 3 and l / l l c l . 8 . *, indicates clones tliat 
show regulated GFAP expression in the presence or absence of Dox. **, mdicates clones 
designated as D B T W T and DBTR416W cells in funher experimental procedures -Dox. 
unmduced GFAP expression. -i-Dox. mduced GFAP expression. Purified WT. purified 
reconibmant W T GFAP. Purified 416, purified recombmant R416W GFAP. 



3.2.3.3 Characterisation of D B T cell lines expressing wild-type or R416W G F A P 

Two clonal lines of DBT cells expressing wild-type GFAP and R416W GFAP were 

selected for further characterisation. DBT wild-type and R4I6W GFAP cell lines were grown 

in the absence or presence of Dox for four days. Cells were then extracted with RlPA buffer 

(Fig. 3.17A) or cytoskeletal extraction buffer (Fig. 3.17B), and the insoluble fractions (see 

section 2.7) and the cytoskeletal fractions (see section 2.8) were separated on SDS-PAGE 

followed by Coomassie Blue staining. In these DBT cell lines, vimentin is the major IF 

protein in the pellet fractions, whereas the GFAP level is relatively low and barely detectable 

by Coomassie Blue staining. The cytoskeletal fractions of the DBT wild-type or R416W 

GFAP cell lines were further analysed by immunoblotting using antibodies to R416W GFAP 

and human GFAP (Fig. 3.I7C and D). Whilst D B T W T c l . l (Fig. 3.I7C, lanes I and 2) and 

D B T R 4 I 6 W c l . l (Fig. 3.I7D, lanes I and 2) exhibit either low GFAP expression in the 

induced states (Fig. 3.17C, lane 2, asterisk) or high background in the uninduced states (Fig. 

3 . I7D, lane 1, asterisk), DBTWTcl.3 (Fig. 3.I7C, lane 4, GFAP) and DBTR416Wcl.8 (Fig. 

3 .I7D, lanes 4. GFAP) are well-regulated in response to Dox with a nearly undetectable 

background level in the uninduced condition (Fig. 3.17C and D, lane 3, asterisks). The 

DBTWTcl.3 designated as DBT-GFAP""' cells and the DBTR416Wcl.8 designated as DBT-

GFAP'̂ ""^^^ cells are used for my subsequent experiments. 

3.2.3.4 Dose-dependent expression of G F A P in DBT-GFAP'^ ' and DBT-GFAP'*'" ' ' cells 

DBT-GFAP"^' and DBT-GFAP'^'"'^ cells were cultivated for 2 days in the absence or 

presence of Dox at concentrations as indicated. After cell fractionation, the insoluble fractions 

f rom DBT-GFAP^''' and DBT-GFAP'^^"'''' cells were analysed by immunoblotting using 

GFAP antibody SMl-21 that specifically recognises human GFAP. After induction of DBT-

GFAP'"" and DBT-GFAP'*'"'''' cells, both wild-type (Fig. 3.18A) and R416W GFAP (Fig. 
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Figure 3.17. Characterisation of G F A P expression in Dox reguiatable D B T cells. D B T 
stably expressing wild-type (WT) and R416W GFAP cells were cultured m the absence or 
presence of 1 |Jg/ml Dox for 4 days. (A) Cells were lysed in RIRA buffer. The insoluble 
pellets were analysed by SDS-PAGE and detected by Cooniossie Brilliant Blue. (B) Cells 
were lysed in cytoskeletal extraction buffer. Tlie cytoskeletal fractions were resolved on 
SDS-PAGE and stained with Coimnossie Brilliant Blue. Tlie induction of human wild-type 
(C) and R416W (D) GFAP in the cytoskeleton fractions was further assessed by 
inununoblotting analysis using SMI-21, human specific antibody. Tlie clones chiacterised 
here represent the clones selected f rom screening in Fig. 3.14. W T c l . L i /17c l . l ; W T cl..^, 
l / l l c l . 3 : R 4 1 6 W c l . l , 1 / l l c l l ; R416Wcl.8, l / l i c l . 8 . W T cl.3 and R416Wcl.8 are utilised 
to process further experiments, as the induced expression of GFAP in these clones appear 
regulated by adding Dox. 



3.19A) expression increased in a dose-dependent manner. Analysis of full-length wild-type 

GFAP expression demonstrated a 2.6, 4.3. 6.6 and 8.8 fold increase in DBT-GFAP*'cel ls 

induced at 0 .1, 0.5, I and 2 f-ig/ml of Dox, respectively (Fig. 3.18B). A similar increase in the 

expression of f u l l length R4I6W GFAP was observed in DBT-GFAP'^"^'^ cells (Fig. 3.198). 

When induced at higher Dox concentrations, both DBT-GFAP'''^ and DBT-GFAP"^" ' ' cells 

produced proteolytic GFAP fragments. To visualise the total IF proteins and distinguish 

endogenous f rom exogenous GFAP, cytoskeletal fractions isolated f rom uninduced or induced 

DBT stable cell lines were separated by a 6-15% gradient SDS-PAGE followed by Coomassie 

Blue staining (Fig. 3.20). Quantification of the Coomassie blue-stained gel shows the relative 

expression levels of human wild-type and R416W GFAP are 97% and 84%, respectively, to 

the endogenous mouse GFAP. The induction of human GFAP and mouse GFAP were also 

confirmed by immunoreactivity with both SMI-21 antibody and 3270 GFAP antibody (Fig. 

3.20). Although the expression levels of human GFAP in induced DBT cells were similar to 

the endogenous levels of mouse GFAP, this was equivalent to -10% of the endogenous 

levels of vimentin. Therefore, the expression levels of both human wild-type and R416W 

GFAP are relatively low compared to the total IF proteins in DBT-GFAP^''' and DBT-

GFAP"^ '̂̂ ^^ cells. 

The expression and distribution of wild-type and mutant GFAP expression in stable DBT 

cell lines were visualised by immunofluorescence microscopy with SMI-21 antibody specific 

to the human GFAP. After induction, wild-type GFAP formed filaments as vvell as aggregates 

in DBT-GFAP^^' cells, and the proportion of cells in which aggregates were formed in the 

cytoplasm increases in a does-dependent manner (Fig. 3.I8H). In DBT-GFAP'^"'^^ cells 

induced at 0.1 (Fig. 3.I9D) and 0.5 ug/ml (Fig. 3.19E) of Dox, -60% and -90% of them 

contained GFAP-positive aggregates (Fig. 3.I9H). Further increases in Dox concentrations 

did not increase the proportion of aggregates formed in DBT-GFAP'^""^^^ cells. Therefore, the 
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Figure 3.18. Characterisation of D B T - G F A P W T cells. D B T stably expressing wild-type 
GFAP cells were induced at the indicated Dox concentrations. Four days after induction, 
the insoluble pellet fractions were analysed by innnunoblotting using anti-human GFAP 
SMI-21 antibody. Representative blots show that the levels of wild-type GFAP ( A ) are 
regulated by Dox in a dose-dependent fashion. Equal loading of each protein sample 
was confirmed by inmiunoblotting with the anti-actin antibody. The positions of GFAP 
and actin are indicated. Airowhead nidicated likely GFAP proteolytic fragments. Tlie 
expression levels of wild-type GFAP were quantified as described in section 2.10. 
Quantification of the f u l l length wild-type GFAP f rom tluee independent experiments 
aie shown as mean + SD and represented as bar charts (B). Fold changes are expressed 
in arbitrary units relative to non-induced controls. For immunofluorescence microscopy, 
DBT-GFAPWT cells were induced at indicated Dox concentrations for 4 days and the 
distribution of wild-type GF.AP was examined by using SMI-21 antibody for human 
GFAP. Representative images show the distribution of wild-type GFAP induced at the 
indicated Dox concentrations (C-G). Bars = 10 i im. Cells immunopositive for GFAP were 
scored for the presence of GFAP-positive aggregates. The average mean ± SD of tluee 
independent experiments are shown as bar charts (H). 
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Figure 3.19. Characterisation of DBT-GFAPR416W cells. Does-dependent expression 
of R416W GFAP in D B T R416W GFAP-expressing cells was shown in (A) . Tlie insoluble 
pellet fractions prepaied f rom DBT-GFAPR416W cells induced at the indicated Dox 
concentrations were analysed by inummblotting with antibodies to human GFAP and actiii, 
which was used as a loading control. Quantification of the f u l l length R416W GF.AP are 
expressed as bar charts and represent tluee hidependent experiments (B). R416WGFAP 
distribution in cells mduced at different concentrations of Dox was exammed by 
inmumofluoiescence microscopy using anti-human GFAP SMI-21 antibody (C-G). 
Bars = 10 j.im. Cells iimnmiopositive for GFAP were scored for the presence of GFAP-
positive aggregates. The indicated mean + SD for each measurement represeiUs the average 
of tluee independent experiments (H). 
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Figure 3.20. Relative expression level of inducible G F A P to endogenous intermediate 
filament proteins in D B T inducible cell ines. DBT GRAPWT (lane 1) and DBT GFAP 
R416W (lanes 2 and 3) cells, either uninduced (-) or induced (-i-) with Dox, were extracted 
with cytoskeletal extraction buffer. Tlie cytoskeletal fractions were separated on 6-15% 
gradient SDS-PAGE and the major IF proteins were visualised by Coomassie Blue 
staining. Based on the quantification of Coomassie Blue stained gel, the induced human 
wild-type and R416W GFAP are 97% and 84%, respectively, to the endogenous mouse 
GEA.P. Vimentin is the major intennediate filament protein in D B T cells, which is about 
10 fold more abundant than the endogenous mouse GFAP. .Although the expression 
levels of wild-type and mutant GF.AP in Dox-regulated DBT cell lines are similar to the 
endogenous mouse GFAP, these expression levels are relatively low when compared to 
tlie total IF proteins. To f iu ther confinn the expression of induced human GFAP and 
mouse GFAP, the Cooniassie Blue stained gel was transfened onto nitrocellulose 
membrane and blotted with SMI 21 antibody. After stripping, the membrane was 
reprobed with 3270 anti-GFAP antibody. 



R416W GFAP is apparently more prone to aggregation compared to wild-type GFAP when 

induced to express in DBT cell lines. In fact, when induced at 0.5 pg/ml of Dox where both 

DBT-GFAP"^' and DBT-GFAP"^'^'" cells appear to express comparable levels of GFAP, 

aggregates formed in DBT-GFAP"^""*^ cells (Fig. 3.I9E) is significantly higher than those in 

DBT-GFAP^^^ cells (Fig. 3.I8E). Representative images show the distribution of GFAP in 

DBT-GFAP"^' (Fig. 3.18C-G) and DBT-GFAP"^'"'^ cells (Fig. 3.19C-G) induced at indicated 

Dox concentrations. 

3.3. Discussion 

3.3.1 Summary of the established cell lines 

In this study, I used three different astrocytoma cell lines, human U343 MG-A, U373 MG-

A and mouse DBT to generate stable and inducible cell lines. The average time of the whole 

selection procedure is variable among these cell lines. The main features of the established 

cell lines are summarised in Table 3.1. 

Table 3.1 Summary of the established stable and inducible cell lines 

Cell line Regulation Available Inducible Network Average time to 

system clonal lines GFAP level organisation establish clones 

U343 MG-A Tet-off R416W Low Filaments 2 months 

U373 MG-A Tet-on R416W Low Filaments 3 months 

DBT Tet-on WT and Medium Aggregates I month 

R416W 

U373 MG-A cells proved to be the most diff icult one to make the Dox-regulated cell lines. 

First, they grow much slower than U343 MG-A and DBT cells during the selection process. 

The decrease in growth rate may be due to induced expression of GFAP that affects cell 

motility and proliferation (Elobeid et al.. 2000). This is probably the reason that stably 
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transfected clones expressing high levels of GFAP cannot be selected (obtained). For 

instance, U373 MG-A cells. Second, these cells are resistant to G4I8 even at high 

concentrations (1.5-2 ug/ml), which induce aberrant cell morphology and eventually cell 

death. Hence, to increase the efficiency of selection, a combination of hygromycin and G4I8 

were used to select stable U373 MG-A cell lines. This one step procedure, however, still takes 

a long time to pick up candidate U373 MG-A clonal lines to evaluate GFAP expression by 

immunoblotting. The average time to establish a Tet-regulated U373 MG-A cell line is about 

3 month f rom the date of transfection to immunoblotting analysis to confirm GFAP 

expression in selected cultures. The successful rate for generating positive clones with well-

regulated expression of GFAP is about 10%. 

The establishment of inducible DBT cell lines is the most efficient, with 7% and 11% 

successful rate for generating wild-type and R4I6W GFAP expressing clonal lines. It takes 

about one month to select GFAP-expressing clones after cotransfection of pTet-On and 

pTREhyg2-GFAP vectors. This efficiency is due partly to the faster growth rate of DBT cells 

and their sensitivity to synergistic selection of G418 and hygromycin. in addition, the 

monoclonal antibody SMI-21 that specifically recognises human GFAP allows me to confirm 

the selection of the extremely well-regulated clones by Dox in a short time. 

Unlike DBT and U373 MG-A cell lines, U343 MG-A is a Tet-inducible cell line that 

contains tTA. This cell line was transfected with Tet responsive vector pTRE2hyg-GFAP 

followed by selection with hygromycin and G4I8. In the present study, the successful rate to 

generate Tet-regulated inducible cell lines in U343 MG-A cells is less than 3%. 

For all the selected cell lines, the high GFAP expression in the induced states and low 

background in the uninduced states were confirmed by inununoblotting w i t h anti-GFAP 

antibodies. The clonal lines vvith well-regulated expression in response to Dox are used for 

further experiments. 
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3.3.2 Transient expression of R416W G F A P produces heterogeneous phenotypes 

Transient transfection provides a quick and convenient way to study GFAP mutants in 

cells. Initial studies of the effect of R4I6W mutation on GFAP network formation in cells 

lacking endogenous IFs revealed that R4I6W GFAP invariably formed cytoplasmic 

aggregates and diffused background staining (Perng et al., 2006). When R4I6W GFAP was 

transiently expressed in cells expressing the endogenous GFAP, heterogeneous phenotypes 

were observed. For instance, when transfected into astrocytoma human U343 MG-A cells and 

mouse DBT cells, R4I6W GFAP formed cytoplasmic aggregates in most of the transfected 

cells (Fig. 3 . I0A and Fig. 3.15G; asterisks). In some transfected cells, however, R4I6W 

integrated into the endogenous GFAP networks (Perng et al., 2006). This variation in 

phenotypes might be attributed to the relative expression levels of the transfected GFAP 

compared to the endogenous level of GFAP already being expressed in these cells. In fact, 

unregulated expression of even the wild-type GFAP seriously perturbs filament assembly and 

promotes filament aggregation in transfected astrocytes (Koyoma and Goldman. 1999; Fig. 

3 . I5D; asterisk), suggesting that the overall level of an IF protein is important to cell 

homeostasis. This is supported by transgenic mouse studies where the overexpression of 

GFAP also produces pathologies similar to A x D (Eng et al., 1998; Messing et al., 1998). 

Therefore, when comparing the behaviour of wild-type and mutant GFAP by transient 

transfection. transfection efficiency and expression levels need to be considered. Transfection 

efficiency varies depending upon the cell lines, so as the expression levels of transfected 

proteins. These two factors are interdependent and determine the fate of GFAP in transfected 

cells. In addition, the ability of GFAP, particularly the mutant form, to compromise the 

function of IF networks also depends on the number and abundance of the endogenous IF 

proteins in the host cell. 
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3.3.3 Regulated expression of G F A P in stable cell lines 

Whilst transient transfection of R416W GFAP may produce a wide range of phenotypes in 

transfected cells due to variations of expression level at a given cell, generation of stable cell 

lines allows R416W GFAP expressed at a controlled level. In the stable U343-GFAP'^^"'''' 

cells, inducible expression of R4I6W GFAP resulted in its integration into pre-existing GFAP 

networks without precipitating aggregate formation. However, although R416W GFAP 

integrated into the endogenous GFAP and formed normal appearing IF networks in induced 

U343 MG-A cells, it remains to be seen whether they behave differently to wild-type GFAP. 

Given that the proportion of R4I6W GFAP expressing in the stable U343-GFAP''""'^* cells is 

estimated to be about 10% of the endogenous GFAP (Fig. 3.8B, C, E and F), it is possible that 

the effects of R416W GFAP expression on filament formation in this cell line could be 

masked by its greater expression level of the endogenous GFAP. In addition, vimentin is also 

highly expressed in U343 MG-A cells, which could facilitate correct spacing and organisation 

of GFAP (Eliasson et al., 1999). In other words, the R 4 i 6 W GFAP may be only dominant 

over wild-type protein once a critical threshold had been crossed. In fact, recent in vitro 

studies had demonstrated that 25% of R4I6W GFAP is sufficient to disrupt normal assembly 

of wild-type GFAP (Perng et al., 2006). Whilst the exact ratio of mutant to wild-type GFAP 

leading to disease pathologies is not fu l ly understood, initial studies suggested that elevated 

level of GFAP in addition to GFAP mutation contribute to the pathogenesis of A x D 

(Hagemann et al., 2006). Mutations in GFAP per se may increase its level, as demonstrated 

by R239C GFAP where its transient expression increases filament stability (Hsiao et al., 

2005) and impairs the capacity of the UPS (Tang et al., 2006). 
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3.3.4 Inducible expression of wild-type and R416W G F A P in stable D B T cell lines 

DBT cells express high levels of vimentin that are about 10 times more than those for the 

endogenous GFAP. The high vimentin/GFAP ratio in DBT cells provides a unique cell 

background, which is different f rom U343 MG-A cells, to study R4I6W GFAP. In induced 

DBT-GFAP'^^'"^'' cells, the expression level of R4I6W GFAP is similar to that of the 

endogenous mouse GFAP. It was estimated that the R4I6W GFAP level is 84% of the 

endogenous mouse GFAP. This expression level may mimic what is seen in A x D patients 

with heterozygous R416W GFAP expression. The proportion of cells in which aggregates 

were formed in the DBT-GFAP'^'"' ' ' cells increases to 90% when R416W GFAP level 

increased approximately f ive folds (0.5 i-ig/ml Dox) (Fig. 3.19). When wild-type GFAP 

induced to express at a similar level (0.5 |Lig/ml Dox), about 50% of DBT-GFAP^' cells 

contained GFAP-positive aggregates (Fig. 3.18). These results suggest that R4I6W GFAP is 

more prone to aggregation compared to wild-type GFAP when induced to express in DBT cell 

lines, which is consistent with previous observations (Perng et al., 2006). 

Inducible expression of human wild-type GFAP in DBT-GFAP^^' cells produced two 

distinct IF structures, filaments and aggregates. Although the expression level of human wi ld-

type GFAP is similar to the endogenous mouse GFAP, this level is less than 10% to the total 

IF pool in the DBT cells. Even at this relatively low expression level, wild-type GFAP still 

formed aggregates in some induced DBT-GFAP'''''' cells. Expression of human wild-type 

GFAP in a mouse background raises an interesting question of species conflict. Although the 

GFAP protein sequence is highly conserved between human and mouse, with 9 1 % identity 

and 95% similarity (Brenner. 1994). it is possible that minor sequence differences between 

mouse and human GFAP may contribute to some unexpected observations, such as aggregate 

formation. However, several lines of evidence argue against this possibility. For instance, the 

humanised GFAP mice generated by Takemura et al. (2002) with the first 154 codons of the 
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endogenous mouse GFAP gene being substituted by the corresponding human sequence 

appeared normal without overt phenotypes. In addition, transient expression of human GFAP 

in primary mouse astrocytes also resulted in aggregate formation (Koyama and Goldman, 

1999). Aggregates still formed when mouse GFAP was transfected into primary mouse 

astrocytes, indicating aggregate formation did not depend upon differences in species, in 

induced DBT-GFAP*^ cells, the proportion of cells that form aggregate increases with the 

elevated wild-type GFAP level, suggesting that aggregate formation is induced by excessive 

accumulation of GFAP that cannot be maintained in a filamentous form. Alternatively, 

aggregate formation may result f rom a defective interaction between human GFAP and the 

endogenous mouse GFAP, but additional studies should be performed before a clear 

conclusion can be drawn. 

Since R4I6W GFAP mutation results in different phenotypes in cell models and variable 

age onset in A x D patients, it is of importance to consider the genetic background and 

epigenetic variation while investigating the pathogenesis of AxD. 
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Chapter 4 

Results 

4.1 Introduction 

Stress refers to an environmental alteration or potentially detrimental force acting upon 

something to cause physiological or behavioral changes. Pathology results when tissue cells 

are unable to cope with stress and research on mechanisms of stress resistance in one form or 

another constitutes a large part of my study. 

Cells have evolved many mechanisms to deal with and survive periods of stress. The best-

known interpretation of stress is probably mechanical stress, and yet that is one of the least 

understood forms of stress in terms of cell sensing and response. 

A link between IF deficiency and loss of resistance to mechanical stress is particularly 

obvious in the diseases caused by keratin mutations, which typically show fragility of the 

subpopulation of tissue cells in which the mutated keratin is a major structural protein. The 

best understood and most studied of these disorders is EBS, caused by dominant mutations in 

K5 or K I 4 keratin. It was the observations on the phenotype of EBS patients with dominant 

mutations on keratins that led to the clear understanding that a major function of keratin 

filaments in the epidermis is to provide essential physical resilience to the epidermal 

keratinocytes (Kim and Coulombe, 2007). 

Mutations in other IF genes that have analogous pathological consequences are also mostly 

dominant and the majority also show a phenotype suggesting that cell resilience is dependent 

on the IFs. Biophysical analyses of IFs in vitro also indicate that this cytoskeletal element has 

properties of strain hardening and resilience that make the filaments especially suitable for 

resisting mechanical stress in tissue cells (Janmey et al., 1998). 

The CNS would seem to be one part of the body where mechanical stress is least likely to 

act except in extreme situations, but in fact this tissue is very susceptible to different types of 
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stress or injuries. For instance, astrocytes are the most abundant cells in the CNS, and can 

support neuronal structure, trophy, metabolism and regeneration after brain injury (Pekny and 

Nilsson, 2005). These functions are dependent on the ability of astrocytes to survive brain 

insults and reacting actively to the injuries. Therefore, astrocytes play a protective role to 

defend the CNS against neurotrauma, ischemia and neurodegenerative diseases (Pekny and 

Lane, 2007), and they show characteristic changes in IF expression in essentially every 

pathological condition that influences the brain, spinal cord or the retina. The term "reactive 

gliosis" is commonly used to describe astrocyte activation in stress and pathology that affects 

the CNS. The upregulation of the IF proteins GFAP and vimentin and reexpression of nestin 

are hallmarks of reactive gliosis (L i et al., 2007). 

In response to chronic gliosis, reactive astrocytes normally increase the expression of 

GFAP. In both GFAP transgenic mice and humans with A x D , the elevated GFAP expression 

leads to RFs formation. Although the precise mechanism inciting the formation of these 

astrocytic inclusions is unknown, RFs may represent an increased CNS stress response to the 

elevation of GFAP levels (Wippold et al., 2006). Indeed, A x D astrocytes display 

characteristics of physiological stress response, as demonstrated by the upregulation of sHSPs 

aB-crystallin and HSP27. Additional evidence for stress, and a suggestion that it may involve 

oxidative stress, is the association of advanced lipid peroxidation and glycation end-products 

with RFs (Castellani et al.. 1998; Castellani et al., 1997). 

As GFAP is mainly expressed in astrocytes, it raises the possibility that aberrant effect of 

GFAP may be to promote the dysfunction of astrocytes to precipitate AxD. Although the role 

of protein aggregation in neurodegenerative disorders remains controversial, it is generally 

agreed that aggregates or the interacting proteins might give rise to pathogenesis, as shown by 

mutations in NF genes NF-L and NF-M leading to respective Charcot-Marie-Tooth disease 

2E and Parkinson's disease (Lariviere and Julien, 2004). 
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R4I6W GFAP is the only AxD-causing mutation that associates with all ages of onset of 

A x D . The phenotypic variation implicates environmental and epigenetic factors could 

influence the onset of disease progression. Previous studies had demonstrated that the R4I6W 

mutation in GFAP has the potential to be very disruptive to filament assembly in vitro (Perng 

et al., 2006). Transient transfection studies suggested, however, that the level of the GFAP 

expression and the availability of a co-assembly-competent endogenous filament network 

could ameliorate this potential, to the extent that R416W GFAP could fu l ly integrate into an 

endogenous GFAP/vimentin network without overt effects upon its distribution (Perng et al., 

2006). When induced to express at low levels, R4I6W GFAP was found to incorporate into 

normal appearing filaments in stable U343 MG-A cell lines. The potential functional impact 

of incorporating low levels of the disease-causing GFAP mutant into the pre-existing GFAP 

networks was further investigated here. 

4.2 The presence of R416W G F A P compromised the ability of human astrocytes to 

recover from stress 

4.2.1 Determination of stress conditions for human astrocytoma cells 

To test whether the GFAP IF network could be compromised by the R4I6WGFAP 

mutation and render cells less able to cope with and recover f rom stress. 1 assessed the cell 

viability of inducible U343-GFAP^'"^^^ cell lines after stress-induced insults. Hyperosmotic 

shock and oxidative stress are common physiological stresses with which astrocytes have to 

cope and they lead to transient cell shrinkage. The extreme cell-shape changes induced by 

these stresses lead me to investigate the possibility that the status of functional GFAP network 

is important for cell survival. First, the effect of Dox, urea and H j O , on the U343 MG-A cell 

viability was assessed by cell proliferation assay (Fig. 4. lA-C) . This assay is based upon the 

conversion of the MTS tetrazolium compound into coloured formazan products by 
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mitochondrial dehydrogenase enzymes in metabolically active cells (Shearman, 1999), which 

reflects cell viability and proliferation as well as the integrity of the mitochondria. As shown 

in Fig. 4.1, cells grown in the presence of 2 (.ig/ml Dox for up to 6 days did not produce any 

noticeable effects upon cell viability (Fig. 4.1 A). In contrast, cells treated with urea (Fig. 

4. IB) or H2O2 (Fig. 4. IC) dramatically lost the viability in a time- and dose-dependent 

manner. Comparison of cell survival one day after stress treatment revealed that 600 mM urea 

(Fig. 4.1B, asterisk) and 400 f-iM HjOj (Fig. 4. I C , asterisk) for one-hour treatment are the best 

concentrations for stress assays. This is because both stresses did not cause massive cell death 

but decreased cell's metabolic activity that can recover to pretreated levels over time. 

Immunofluorescence microscopy revealed that the profound cell-shape changes triggered by 

urea and HjO, treatments also induced the collapse of IF networks (Fig. 4.2B and C , insets). 

4.2.2 R416W G F A P expression compromises cell recovery from stresses 

The effect of R4I6W G F A P on cell recovery from hyperosmotic shock or oxidative stress 

was examined. U343-GFAP'^'"*^^ cells under uninduced or induced conditions were treated 

with either 400 uM H^O, (Fig. 4.3A) or 600 mM urea (Fig. 4.3B) for one hour. Following 

these treatments, cells were cultivated in normal growth medium for a further 5 days and cell 

viability was measured by cell proliferation assay. Whilst uninduced U343-GFAP'^"" "''̂  cells 

had recovered well with ^84% and -73% recovery after urea and H2O2 treatments, induced 

cells had only -55% recovery from these treatments. Similar results were observed when 

U343-GFAP'^"'^''' cells were challenged with 900 mM urea (Fig. 4.3C). These harsher 

conditions caused a -90% drop in cell viability so that the long-term recovery is required. 

After 9 days recovery, -80% of uninduced cells had recovered, whereas induced cells had 

only -43% recovery from this treatment. 
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Figure 4.1. Effect of Dox and various stresses upon cell viability' in U343 cells. U343 
cells were cultivated in the absence or presence of 2 ng/ml Dox. Cell \iabibty was 
measured at the indicated times. Results from three independent experiments are shown 
as mean ± SD and present as bar charts (A). To test the effect of osmotic shock and 
oxidative stress upon cell survival, cells cultured for three days were either left untreated 
or treated with the indicated concentrations of urea (B) or H2O2 (C). Following treatments, 
cells were allowed to recover in normal growth medium for one day and cell viabihty was 
examined by MTS cell proliferation assay. UT, untreated. The viabihty of treated cells 
relative to untreated cells was expressed as percentages in panels (B) and (C). Data were 
represented as mean ± SD and analysed by unpaired t test. N = 3. *, /* < 0.05, compared 
with untreated control cells. 
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Figure 4.2. Effect of hyperosmotic shock and oxidative stress upon G F A P network 
formation in U343 cells. After plating in glass coverslips for 3 days, U343 cUs were 
untreated (Control; A) or treated with 600 inM urea (B) or 400 H2O2 (C) for 1 hour. 
Change in the GFAP networks following stress treatments were visuahsed by 
iimnunofluorescence microscopy. Cells were fixed and stained with anti-GFAP antibody. 
Notice that G F A P networks collapse and filament bxmdling were observed in U343 cells 
after stress treatments (B and C) . The higher magnification views of filament collapse 
and bundlmg in the boxed areas of panels B and C were shown in the respective inset. 
Bars = 10 jam. 
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Figure 4.3. Effect of R 4 1 6 W expression apon cell viabilib)- after h^'perosmotic shock 
and oxidative stress. U343 stably expressing R416W cells grcwn in the presence 
(uninduced) or absence (induced) of 2 fjig/ml Dan. After two days of incubation, cells 
were untreated or treated with either 400 H2O2 (A) or 600 n iM urea (B). Following 
these treatments, cells were allo^s'ed to recover in normal growth mediiun for 5 days and 
cell survival was determined by MTS-based cell viability' assay. Whilst uninduced cells 
had recovered well, induced cells had only 50% recovery after stress treatments. Similar 
results were observed on cells treated with 900 mM urea (C) . Nine days following this 
treatment uninduced cells had ~10% recovery, whereas induced cells had only 50% 
recover^' from this treatment. Results from three independent experiments are shown as 
mean ± S D , and expressed as bar charts. Statistical significance was determined by 
impaired t test and asterisks (*) highlight P value < 0.05 when comparing the viabihty 
between treated and imtreated cells in uninduced or induced condition. #, indicates 
P < 0.05 between treated induced cells and treated uninduced cells. 



By double label immunofluorescence microscopy, it was observed that untreated cells 

expressing R416W G F A P had extended filaments throughout the cytoplasm (Fig. 4.4A-C). In 

contrast, urea (Fig. 4.4D-F) and HjO, (Fig. 4.4G-I) treatments caused the collapse of G F A P 

IF networks and their accumulation in the perinuclear region of U343-GFAP'^'"*^ cells. These 

cells recovered much slower when compared to unstressed cells. 

4.2.3 R416W G F A P mutation sensitizes cells in response to proteasome inhibition 

Proteosome inhibition has been widely reported to cause cell death and has been 

implicated in AxD (Tang et al., 2006). To assess the effect of R416W G F A P upon cell 

recovery from proteolytic stress, cells were treated with the proteosome inhibitor MG-132 and 

cell viability was measured 2 days after recovery (Fig. 4.5A). To determine the best 

concentration for cell viability assay, a broad range of MG-132 concentrations were tested. 

U343 MG-A cells treated with 10 .̂iM MG-132 for 24 hours had noticeable effect upon cell 

viability and a -15% drop in metabolic activity was detected (Fig. 4.5A). These conditions 

were used to stress U343-GFAP'̂ ""^ '̂' cells and cell viability was measured at 48 hours after 

MG-132 treatment. Whilst uninduced cells had recovered well (-91% of pre-treated level), 

induced cells attained only -66% recovery (Fig. 4.5B). Taken together, these data suggest that 

the presence of R4I6W G F A P compromised the ability of astrocytes to recover from osmotic, 

oxidative and proteolytic stresses. 

4.2.4 Evaluation of stress kinases and stress proteins in U343-GFAP'*^'*^^ cells 

Induction of cellular stress response is accompanied by the activation of one or more 

SAPK pathways, most notably JNK and p38 (Gabai and Sherman, 2002). To investigate 

whether the expression of R416W G F A P in U343-GFAP^-"'''' cells induced a cellular stress 

response, whole ceil lysates prepared from parental U343 MG-A cells and U343-GFAP'^ 
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Figure 4.4. Distribution of R416W G F A P in relation to the endogenous G F A P networks 
in recovered U343-GFAPR416W cells following stress treatments as revealed by 
double label immunofluorescence microscopy. Induced U343-GFAPR416W cells 
expressing R416W G F A P were cither untreated (A-C) or treated with 600 mM urea (D-F) 
or 400 H2O2 (G-I). Following these treatments, cells were allowed to recover to 5 
days prior to processing for double label immunofluorescence microscopy with antibodies 
to total G F A P (A, D, and G ) and R416W GFAP (B, E , and H). Merged images show the 
superimposition of the green and red signals with areas of overlap in yellow ( C , F, and 1). 
Note that R416W GFAP (B) incorporated into the endogenous GFAP (A) and formed 
extended filament networks in untreated cells, whereas cells treated with urea or H2O2 had 
morphological changes accompanied by extensive filament collapse and bundling (D-1; 
arrow). These cells recovered much slower when compared to those under uninduced 
conditions. Images were acquired by a confocal laser scanning microscope. Bars = 10 (im. 
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Figure 4.5. Proteosome inhibition resulted in delayed recovery of cells expressing 
R416W G F A P . (A) U343 cells were cultured in the growth medium for 3 days, 
followed by treated with 0.1% (v/v) D M S O (labelled 0) and various concentrations of 
MG-132 as indicated. Cell viability was measured 24 hours after treatment. Cells 
treated with 0.1% D M S O was used as a control. At all concentrations tested, cells 
showed the greatest sensitivity to 10 |xM MG-132 treatment and a significant decrease 
in cell viability was observed. (B) To test the effect of R416W expression upon cell 
viability following proteosome inhibition, U343 stably expressing R416W cells were 
grown in the presence (uninduced) or absence (induced) of 2 \ig/ml Dox. After two 
days of culture, cells were treated with 0.1 % D M S O or 10 ^ M MG-132. At 24 hours 
post-treatment, cells were recovered in normal growth medium for 2 days and cell 
survival was measured by cell viability assay. The OD49() readings were normalised to 
those of untreated cells. Values are mean ± S D of three independent experiments and 
presented as bar charts. Statistic significance was analysed by t test and asterisks (*) 
highlight P value < 0.05 when compared with DMSO-treated cells. 



cells were subjected to immunoblotting analysis with antibodies to phospho-JNK and 

phospho-p38 (Fig. 4 .6A). Whilst no significant difference was observed on the levels of 

phospho-JNK and phospho-p38 between uninduced and induced U343-GFAP'^'"*''^' cells, the 

levels of phospho-JNK and phospho-p38 were higher in stable U343-GFAP'*^"^''' cells than 

those in parental U343 M G - A cells. These results suggest that generation of the U343-

QP^pR4i6w lii^g already elicits a cellular stress response. In fact, when U343-GFAP'^^'*'^ 

cells were subjected to urea or H j O , treatments, the level of phospho-JNK/p38 was only 

marginally increased (Fig. 4 .6B) , indicating that this cell line exhibited a sustained activation 

of the S A P K pathway. Whilst no marked difference was detected in the levels of HSPs 

between induced and uninduced cells (Fig . 4 .6B. lanes 1 and 4, HSP70, HSP27 and a B - c r y ) , 

the amounts of these proteins slightly increased in the cells treated with H j O , . Compared to 

untreated cells (lane I ) , -1 .2 fold of increase was observed on H S P 2 7 and a B - c r y blots in 

H j O , treated induced cells (Fig. 4 .6B, lanes 3. HSP27 and a B - c r y ) . 

4.2.5 Transient expression of R416W G F A P in astrocytes leads to various I F structures 

Whilst regulated expression of R416W G F A P resulted in its integration into the endogenous 

G F A P networks in the U343-GFAP'""'^''' cell line, transient transfection was used to investigate 

the effect of R416W mutation on IF network formation in primary astrocytes or U343 M G - A 

cells. This ceil system would be expected to better mimic the scenario of R 4 i 6 W G F A P being 

expressed in a physiological relevant cell background. 

The distribution of transfected G F A P in relation to the endogenous G F A P was visualized by 

double label immunofluorescence microscopy using monoclonal antibody SMI-21 (Fig. 4.7A and 

C ) that specifically detects human G F A P , and polyclonal anti-pan-GFAP antibody, which 

recognises both the endogenous mouse G F A P and the transfected human G F A P (Fig. 4,78 and 

D) . Mouse primary astrocytes transiently transfected with wild-type G F A P mainly ibrmed 
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Figure 4.7. Transient expression of wild-type or R416W G F A P in primary mouse 
astrocytes. Primary astrocytes tiansfected with either wild-type (A and B) or 
R416W (C and D) GFAP were processed 48 hours after transfection for double label 
immunofluorescence microscopy using antibodies to human GFAP (A and C ) and 
total GFAP (B and D). When transiently expressed into these cells, wild-type GFAP 
formed extended filaments and filament bundles (A, arrows) that largely colocahsed 
with the endogenous mouse G F A P (B, arrows). In contrast, transfected cells expressing 
R416W GFAP exhibited aggregate (C, arrows) as well as filamentous staining pattern 
(C, anowheads), which also costained with die endogenous GFAP (D, arrows and 
arrowheads respectively). Magnification view of small aggregates intermingled with 
the GFAP filaments were shown in insets in panels C and D. Bais = 10 |xm. 



niaments (Fig. 4.7A) that colocalised with the endogenous G F A P network (Fig. 4.7B). In 

contrast, most of the cells transfected with R416W G F A P contained cytoplasmic aggregates with 

smaller particles at the cell periphery (Fig. 4.7C, arrows), which colocalised with collapsed 

endogenous G F A P networks (Fig. 4.7D, arrows). In some transfected cells, however, expressed 

R 4 I 6 W G F A P was incorporated into the endogenous G F A P networks without any apparent 

changes in filament organisations (Fig. 4 .7C and D; cell on the right). Careful examination 

revealed that there were small aggregates intermingled with the filaments (Fig. 4.7D, 

arrowheads and inset), which were immunopositive for the human R416W G F A P , indicative 

of perhaps an early change in the organisation of the G F A P filaments preceding the eventual 

collapse of the network. 

Similar results were observed when R416W G F A P was transiently expressed in human 

astrocytoma U343 M G - A cells. The use of this cell line eliminated the potential variability of 

expressing human G F A P in a mouse background. T o distinguish transfected wild-type G F A P 

from the endogenous G F A P . the a n t i - G F A P antibody was titrated down to the point where the 

endogenous G F A P appeared as background staining on untransfected cells (Fig. 4.8). When 

G F A P levels were elevated by transient transfection, the signal becomes obvious above 

background. When transfected into U343 M G - A cells, wild-type G F A P formed extended 

filaments (Fig. 4.9A, asterisks) that colocalised with the endogenous G F A P networks (Fig. 

4 .9B, asterisks). The R 4 I 6 W G F A P - s p e c i f i c monoclonal antibody was used to follow the fate 

of R 4 I 6 W G F A P in the presence of the endogenous human G F A P . When transfected into this 

cell line, R416W G F A P produced two distinct I F structures, aggregates (Fig. 4.9D, arrows) 

and bundled filaments (Fig. 4.9D, arrowheads), which are largely colocalised with the 

endogenous G F A \ P (Fig. 4 . 9 E , arrows and arrowheads, respectively). These data show that 

R 4 I 6 W G F A P is capable of disrupting the endogenous networks of wild-type G F A P 
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Figure 4.8. Titration of human G F A P antibody in human astrocytoma cells. U343 MG-.A^ 
cells were either \mUansfected (A-C) or Uansfected with R416W GFAP (D-E) for 48 hours, 
llpon processed for immunofluorescence microscopy, human GFAP antibody SMl-21 was 
added at various dilutions to 109f goat seium in BSA/PBS as indicated to detect both 
endogenous GFAP and overexpressed R416W GFAP in cells. At 1 ; 300 dilution (A, D) , the 
endougenous GFAP demonstrated obseived signals (A, aiiows) that were not dramatically 
different f rom overexpressed R 4 i 6 W GFAP (D, aiTOwheads). At 1 : 600 dilution (B, E), the 
nnnuuioreactivity of R416W GFAP (E, aiiowheads) was brightened up, whereas the 
endogenous GFAP (B and E, anows) showed faint background stanung. At 1 : 900 dilution 
(C, F), the R416W GFAP stauiing (F, anowheads) was not increased significantly compared 
to the endogenous GFAP staining (C and F. arrows). Hence, the dilution of 1 : 600 was 
chosed for .SMI-21 antibody used in iiiununofluoiescence microscopy procedures. 
Bars = 10 urn. 



A WT 

'I-

B GFAP C Merged 

D R416W Merged 

(—1 

Figure 4.9. Expression of R416W mutant into human astrocytoma U343 M G - A cells 
resulted in the formation of filamentous and a ^ e g a t e d I F structures. U343 M G - A 
cells were transfected widi either wild-t^'pe ( A - Q or R416W G F A P (D-F). At 48 hours 
after transfection, cells were processed for double label immunofluorescence microscopy 
witii use of anti-human GFAP (A) and anti-R4I6W (D) GFAP antibodies and counter 
stained with anti-pan G F A P antibody (B and E ) . To distinguish transfected G F A P from 
the endogenous GFAP, it was first necessary to titrate the anti-GFAP antibodies to the 
point where the endogenous G F A P appeared as background staining on untransfected 
cells. When G F A P levels were elevated by transient transfection, the signal becomes 
obvious above background. When expressed in this cell line, wild-tjrpe G F A P formed 
filaments (A; asterisks) that colocahsed widi the endogenous GFAP (B). The expression 
of R416W G F A P resulted in both filamentous (D; arrowheads) and aggregate staining 
patterns (D; arrows), which also costained with the endogenous human GFAP networks 
(E; arrowheads and arrows, respectively). The merged images show superin^sition of 
G F A P signals with areas of overlap appearing yellow (C and F ) . Bars = 10 |im. 



filaments within the context of a human astrocytoma cell line and demonstrate the dominant 

negative potential of the R416W G F A P on the endogenous IFs . 

4.2.6 Association of R416W G F A P with stress proteins and stress kinases 

In previous studies of A x D pathology, several other proteins were also found to associate 

with G F A P aggregates, including aB-crystal l in and HSP27 (Iwaki et al., 1993). Therefore, I 

examined whether these proteins would associate with the aggregates formed by R416W 

G F A P . Double label immunofluorescence microscopy revealed that R 4 I 6 W G F A P induce the 

formation of G F A P - r i c h aggregates (Fig. 4 . lOB, arrows), which also collapsed the 

endogenous G F A P (Fig. 4. lOA, arrows). Both aB-crystal l in (Fig . 4. l O E , arrows) and HSP27 

(Fig. 4. lOH, arrows) colocalised with the GFAP-containing aggregates in these cells (Fig. 

4. lOD and G , respectively: arrows). These data show that aggregates formed by R 4 I 6 W 

G F A P have many features similar to RFs . 

Recent studies showing that the accumulation of the G F A P mutant R 2 3 9 C induces S A P K 

activation and alters phospho-JNK distribution (Tang et al. , 2006) lead me to further 

investigate whether phospho-JNK is associated with the aggregates formed by R416W G F A P . 

Double label immunofluorescence microscopy with antibodies to phospho-JNK and R416W 

G F A P demonstrated that a proportion of phospho-JNK (Fig. 4. lOK, inset) are associated with 

G F A P - r i c h aggregates in R 4 I 6 W GFAP-transfected cells (Fig . 4. lOJ, inset). The association 

of phospho-p38 with G F A P aggregates was also tested, but the results were equivocal 

because of the lack of cross reactivity of the antibody with human proteins. 

T o obtain biochemical evidence of the association of these proteins with aggregates 

formed by R416W G F A P , the supernatant and pellet fractions prepared from transfected cells 

were analysed by immunoblotting. The solubility of G F A P and the associated proteins were 

also monitored by cell fractionation followed by immunoblotting. With the use of an 
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extraction buffer containing the detergent deoxycholate, wild-type G F A P was almost 

completely extracted from the pelleted iintransfected (Fig. 4.1 l A ; Mock) and wild-type 

GFAP-transfected cells (Fig. 4.1 I A ; W T ) , conditions that also extracted stress proteins and 

phospho-JNK/p38. In contrast, R 4 I 6 W G F A P remained almost entirely in the pellet fraction 

of the extracted cells that had been transfected with R416W G F A P (Fig. 4.1 I A ; R416W). 

When the blots were also probed with antibodies to aB-crystal l in . HSP27 and HSP70, a 

significant proportion of both aB-crystal l in and HSP27 , but not HSP70, remained in the 

pellet fractions of R416W GFAP-transfected cells (Fig . 4.1 l A ) . These data confirm that a 

proportion of sHSPs associated with the insoluble R416W G F A P . Since HSP70 was 

completely extracted from the R 4 I 6 W GFAP-transfected cell pellets, the association of the 

sHSPs with R416W G F A P is specific and not a general event for all protein chaperones. It is 

also interesting to note that some of the phospho-JNK associated with the pellets of G F A P 

aggregates in cells transfected with R 4 I 6 W mutant (Fig. 4.1 I A ) . 

Immunoblotting analysis of brain tissues of A x D patients with R 4 I 6 W mutation using 

antibodies to G F A P and phospho-p38 revealed that the levels of G F A P and phospho-p38 

increased in both Triton-soluble and insoluble fractions. A significant proportion of phospho-

p38 cofractionated with R 4 I 6 W G F A P into the Triton-insoluble fraction suggests phospho-

p38 is associated with insoluble R 4 I 6 W G F A P (Fig. 4.1 I B ) . 

4.3 Stress response of mouse astrocytoma cells expressing wild-type or R416W G F A P 

Whilst the mutant-specific antibody provides an ideal tool to monitor R416W G F A P 

expression in U343-GFAP'^"'''' cells, the control U343-GFAP'^' cell line is not available 

because there is no way to distinguish the induced wild-type G F A P from the endogenous 

human G F A P . Therefore. 1 decided to generate a stable cell line using mouse astrocytoma 
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Figure 4.11. Imnuinoblot t ing conf i rmed the associations of small heat shock proteins 
and phospho-JNK/p38 wi th R416W ( iFAP. Wild-type and R4I6\V GFAP were transiently 
transfected into U343 MG-A cells. At 48 hours after transfection. supernatant (S) and pellet 
(P) fractions were prepared f rom these cell cultures and compared to mock transfected cells. 
Immunoblots of supernatant and pellet fraction from each cell culture were probed with 
antibodies toGFAR phospho-JNK. phospho-p38. uB-crystallin. HSP27. HSP70 and finally 
actin. fhe latter was used as a loading control. Cell fractionation used harsh extraction buffer 
almost completely solubilised wild-type GFAP. whereas most of the R4I6\V GFAP remained 
in the pellet fraction. Notice that when cells were transfected with R416W G I A P a 
significant proportion of phospho-J.NK.phospho-p38. a.B-crystallin and HSP27 but not 
HSP70. cofractionated with R4I6W GFAP into the pellet fractions. The phosphorylation 
states of p38 was also assessed in brain tissue samples from an .Alexander disease patient 
with R4I6W GFAP(.AxD) and compared with those f rom age-matched control (Con). 
Inmuuioblotting with antibodies to GFAPand phospho-p38 revealed that the levels of GFAP 
and phospho-p38 were increased in both Triton-soluble and insoluble fractions of R4I6 \ \ 
brain tissue (B). A significant proportion of phospho-p38 cofractionated with GFAPinto 
insoluble fraction suggests the association of phospho-p38 with insoluble GFAP. 
Immunoblotting with antibody to glyceraldehyde 3-phosphate dehydrogenase (G.APDH) 
was used as a loadiniz control. 



DBT cells because the anti-human GFAP antibody SMl-21 can be used to follow the 

expression of human GFAP in a mouse cell background. 

4.3.1 Determination of stress conditions for mouse astrocytoma cells 

To identify the best conditions for my proposed stress assays, different stressful stimuli 

were applied to DBT cells. First, the effects of different concentrations of Dox, urea and HjO, 

upon the cell survival of DBT cells were evaluated by cell viability assay. A wide range of 

Dox concentrations were examined and cell viability was determined at I and 2 days after 

treatment (Fig. 4.12A). Dox, even at a concentration as high as 4 i-ig/ml, did not produce any 

obvious effects upon cell viability. On the other hand, urea (Fig. 4.12B) and H,©, (Fig. 

4.12C) treatments dramatically decrease cell viability in a does-dependent manner. 

Comparison of the effect of different concentrations of urea and H^O, on cell viability 

revealed that DBT cells show great sensitivity, but no more than -40% of cell loss, to 450 

m M urea (Fig. 4.12B, asterisk) and 400 i-iM H j O , (Fig. 4.12C, asterisk) treatments and these 

conditions were used for subsequent experiments. 

4.3.2 R416W G F A P mutant sensitises cells in response to stresses 

To assess whether the presence of either wild-type or R4i6W GFAP makes cells more 

susceptible to stresses, DBT Dox-regulated cell lines induced for 2 days were treated with either 

450 mM urea or 400 j.iM H 2 O 2 for 1 hour. Following these treatments, cells were allowed to 

recover for three days and the cell survival was determined by cell viability assay. DBT cells 

induced to express wild-type GFAP had recovered well from stress treatments (Fig. 4.13A), 

whereas R416W GFAP-expressing cells induced by i ug/ml Dox had only -55% recovery from 

urea treatment and -40% recovery from H 2 O 2 treatment (Fig. 4.13B). 
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Figure 4.12. Effect of various concentrations of Dox, urea and H 2 O 2 on D B T cells. D B I 
cells were grown in the absence or presence of indicated concentrations of Dox and cell 
viabilit) ' was determined at 1 and 2 days (A). Dox, even at a concentration of 4 | ig /ni l . did 
not produce a noticeable effect upon cell sun'ival. To test the sensitivity of cells to osmotic 
shock and oxidative stress, cells were incubated with a wide range of concentrations of urea 
and H^h for the indicated times. Following these treatments, cells were recovered in normal 
growth medium for I day and cell viability was measured as dccribed above. The readings 
were normalised to untreated cells and the percentage o f cell viability was shown. Data f rom 
three independent experiments are presented as mean ± SD. Statistical significance was 
determined by t test and asterisks (*) highlight P value < 0.05 when comparing untreated 
and treated cells. I f f , untreated. 
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Figure 4.13. G F A P expression level-dependent effect on ceil \1ability after stress. 
DB1 stably expressing wild-type or R416W GFAP cells were grown in the absence 
(labelled 0) or presence of various concentrations of Dox. I wo days post-culture, 
cells were treated with 450 m M urea (A) or 400 fjiM H 2 O 2 (B) for 1 hour and 
incubated in fresh growth medium for another 2 days. Cell viabilit)' was determined 
by M TS reagent and represented as the percentage comparing Dox-treated cells to 
untreated cells. Data were expressed as mean ± SD and analysed by t test. N = 3 . 
*, P < 0.05 relative to Dox-untreated cells. 



4.3.3 Expression of R416W reduces cell viability after proteasome inhibition and serum 

deprivation 

The ability of DBT-GFAP'"" and DBT-GFAP*"'" cell lines to respond to different stressful 

insults was also examined. First, the effect of proteosome inhibition upon cell survival was 

tested on parental DBT cells. Cells treated with 1 ^iM IVlG-132 had noticeable effect upon cell 

viability and at 10 i-iM of MG-132, -35% loss in cell viability was observed (Fig. 4.14A). 

When DBT cell lines expressing either wild-type or R416W GFAP were treated with M G -

132, cell viability significantly decreased (Fig. 4.14B), suggesting a synergistic effect of 

GFAP expression and proteosome inhibition upon cell survival. DBT cell expressing R4I6W 

GFAP exhibited the highest sensitivity to proteosome inhibition, with a -70% loss in cell 

viability by 10 [.iM MG-132 treatment being detected (Fig. 4.14B). 

Similar results were observed when cell lines were challenged by serum starvation (Fig. 

4.14C), another type of metabolic stress. When cultured in low serum conditions ( 1 % and 

0 . 1 % serum), DBT cells expressing R416W GFAP showed a significant decrease in cell 

viability. In contrast, cells expressing wild-type GFAP in similar low serum conditions were 

comparable to those grown under normal growth conditions (10% serum). Taken together, 

these results show that cells expressing the R416W GFAP appeared to be more vulnerable to 

the serum-deprivation stress treatment as compared with cells expressing wild-type GFAP. 

4.3.4 Activation of .INK and p38 correlated with G F A P expression 

The increased cellular vulnerability leads me to further investigate whether the presence of 

GFAP evokes cellular stress response. As mentioned earlier, induction of the cellular stress 

response can be easily monitored by detection of SAPK activation and upregulation of the 

sHSPs, such as aB-crystallin and HSP25 (a homologue of human HSP27). The activation of 
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SAPK pathway in response to the expression of GFAP was investigated by monitoring the 

phosphorylation of JNK and p38. 

DBT cells induced at different concentrations of Dox were iysed in extraction buffer and 

the resulting supernatant and pellet fractions were analysed by immunoblotting. After 

induction, both wild-type (Fig. 4.15A) and mutant GFAP (Fig. 4.15B) expression levels 

increased in a does-dependent manner and they were found exclusively in the pellet fractions 

(Fig. 4. ISA and B, labelled P). Immunoblotting analysis revealed that whilst phospho-JNK 

(p-JNK) and phospho-p38 (p-p38) were not detected in uninduced DBT cell lines (Fig. 4. ISA 

and B, lanes 1 and 2), significant increases in p-JNK and p-p38 were observed in cells 

expressing wild-type (Fig. 4. ISA) and R4I6W GFAP (Fig. 4. ISB). These results indicate that 

expression of GFAP in the DBT cells activate SAPK pathways. The increased levels of p-

JNK and p-p38 were greater in cells expressing R4I6W GFAP than in cells expressing wi ld-

type GFAP and a proportion of p-p38 signal was found in the pellet fractions (Fig. 4. ISA and 

B. lanes 6, 8 and 10), suggesting the possible association of p-p38 with insoluble GFAP. It is 

also interesting to note that whilst p-JNK was almost entirely soluble in cells expressing wi ld-

type GFAP (Fig. 4. ISA, lanes 7 and 9, labelled S), most of the p-JNK signals were found in 

the pellet fraction of cells expressing R416W GFAP (Fig. 4. ISB, lanes 2, 4, 6, 8 and 10, 

labelled P). 

Upregulation of sHSPs is a hallmark of astrocytes in response to stress. Therefore, the 

levels of aB-crystallin and HSP2S were examined in DBT cells expressing either wild-type or 

R416W GFAP. Immunoblotting analysis revealed the level of aB-crystallin increased in both 

the supernatant and pellet fractions of cells expressing R4I6W GFAP (Fig. 4 . I5B, aB-

crystallin) when compared to cells expressing wild-type GFAP (Fig. 4. ISA, aB-crystallin). In 

contrast. HSP2S greatly soluble in the supernatant fraction and its level was similar between 

cells expressing wild-type (Fig. 4. ISA) and R4I6W GFAP (Fig. 4. ISB). Increa.sed association 
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of HSP2S with insoluble R416W GFAP. however, was detected upon higher expression 

levels of R4I6W GFAP (Fig. 4.ISB, lanes 8 and 10, HSP2S). These data show that cells 

expressing R416W GFAP induce activation of SAPK and increased expression of aB-

crystallin and HSP2S, indicative that these cells are undergoing a cellular stress response. 

4.3.5 Colocalisation of Dox-induced G F A P expression and p-JNK or p-p38 

To explore the association of p-JNK or p-p38 and GFAP, cells expressing either wild-type 

or R416W GFAP were processed for double label immunofluorescence microscopy with 

antibodies to GFAP and p-JNK or p-p38. Whilst some p-JNK (Fig. 4.16A) and p-p38 (Fig. 

4.16G) were colocalised with aggregates formed by wild-type GFAP (Fig. 4.16B and H), they 

were also detected by diffuse staining in other parts of the cells. In contrast, both p-JNK (Fig. 

4.16D) and p-p38 (Fig. 4.16J) colocalised with GFAP-containing aggregates (Fig. 4.16E and 

K) in cells expressing R4I6W GFAP. These results confirm that the associations of p-JNK 

and p-p38 with aggregates formed by either wild-type or mutant GFAP. 

4.3.6 Assessment of levels of activated J N K and p38 after stress 

The activation of JNK and p38 related to GFAP expression after stress was examined by 

immunoblotting using the insoluble lysates prepared f rom DBT-GFAP^"' and DBT-GFAP"^^"'^' 

cells treated with urea and H2O2. Whilst the expression level of human GFAP in wild-type cells 

was compatible with R4I6W cells (Fig. 4.17, lanes 4-6, 10-12), no dramatic difference was 

detected in terms of p-JNK and p-p38 levels between the induced cells (Fig. 4.17, lanes 4-6, 10-

12) and the uninduced cells (Fig. 4.17, lanes 1-3, 7-9). In addition, the amount of p-JNK and p-

p38 in treated wild-type (Fig. 4,17, lanes I I and 12) GFAP-expressing cells exhibited similarity 

to untreated cells (Fig. 4.17, lanes 4 and 10). albeit p-JNK levels elevated slightly under GFAP 

induction with urea treatment condition (Fig. 4.17, lanes S and i I) . 
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Figure 4.17. Effect of (JI'AP expression on S . \ P K activation after stress. |])B I 
stab!) expressing wild-iypc and R4I6\V (11 A l V c l l s were cultured in llie itbsetice 
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lysates were analysed b\ immu!ioblotting using SMl-21 antibod\ against human 
( i l AP. The rest of antibodies used included phospho-.INK (p-.INK). .INK. 
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loading control. No significant difference was observed in acti\ated p-.INK and 
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In respect to the levels of p-JNK and p-p38 in GFAP-expressing cells, the activation of these 

two SAPKs did not increase predominantly after stress treatment. These findings are consistent 

with previous data showing that regardless of the extrinsic stress, stable GFAP expression 

especially the R416W GFAP mutation, is able alnoe to activate JNK and p38. Therefore, it raises 

the possibility that the levels of p-JNK and p-p38 can not further increase dramatically under 

stress treatment conditions, as they are already highly activated by GFAP expression. 

4.3.7 Rescue of cell survival by inhibition of J N K and p38 after hyperosmotic shock 

Given the fact that the presence of R416W GFAP induces SAPK activation and makes cells 

more stress-sensitive, it is reasonable to assume that inhibition of SAPK activation could increase 

cell viability after stress-induced recovery. According to the previous results that showed urea 

treatment leading to an increase in p-JNK levels (Fig. 4.17), GFAP-expressing cells DBT-

GFAP'""' (Fig. 4.18A) and DBT-GFAP'' '"' '^ cells (Fig. 4. ISB) were exposed to 900 mM urea 

fol lowing pretreated with a wide range of cellular signalling inhibitors, including JNK inhibitor 

SP600I2S. p38MAPK inhibitor SB203S80, ERK inhibitor U0126. and general caspase inhibitor 

Z - V A D - F M K . Cells were then allowed to recover for four days and cell survival was determined 

by cell viability assay. Suppression of p38 activation by SB203S80 led to increases in cell 

viability of both DBT-GFAP'"' and DBT-GFAP''"^' ' ' cells. In contrast, inhibition of JNK 

activation by SP60012S significantly increased cell viability of the DBT-GFAP''^"''^ cells after 

stress-induced recovery. Immunoblotting confirmed that treatment of DBT-GFAP'^^"^^''' cells with 

SO LiM JNK inhibitor SP600125 (Fig. 4.I8C, lane 3) and 30 1.1M p38 inhibitor SB203580 (Fig. 

4.18D. lane 3) before hyperosmotic shock decreased JNK and p38 phosphorylation by -70% and 

-7S% respectively. These results strongly suggest the presence of R416W GFAP compromised 

the ability of astrocyte to recover f rom physiological stress and this is specifically correlated with 
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Figure 4.18. Inhibition of JNK and p38 phosphonilatiou increases cell viability after 
stress-induced recovery. DBT-GFAPWT ( A ) and DBT-GFAPR416W (B) cells were mock 
treated with 0.1% (v/v) DMSO or pre-treated for one hour widi 20 [JM Z - V A D - F M K , 

20 pM U0126, 30 ^lM SB203580 or 50 |iM SP600125. After pre-treatments, cells were 
grown in either uninduced or induced conditions for 2 days, followed by treatment again 
vnth the above inhibitors for 1 hour. Cells were then subjected to hyperosmotic shock by 
exposure to 900 mM urea for 1 hour. Following this treatment, cells were allowed to recover 
in nonual gro\̂ th medium for 4 days and cell survival was determined by cell viabilit\' assay. 
Data from three independent experiments are shown as mean ± SD and present as bar charts. 
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the levels of total J N K and p38 in imtreated cells (C and D, lane 1) were similar to those in 
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the activation of SAPK pathways, as inhibition of these pathways increased the stress resistance 

of the R416W GFAP-expressing cells. 

4.4. Possible disease mechanisms related to R416W G F A P compromising cell recovery 

from stresses 

4.4.1 R416W G F A P is more stable than wild-type G F A P when induced to express 

Whilst the genetic basis for A x D is now f i rmly established, little is known regarding the 

mechanisms by which GFAP mutations lead to disease. One possible mechanism by which 

GFAP mutations are responsible for the disease is by raising levels o f the protein; for instance, by 

increasing its stability, as shown in R239C GFAP-transfected cells (Hsiao et al., 2005). 

To assess the stability of wild-type and R416W GFAP, DBT-GFAP"^' and DBT-GFAP''^"'''' 

cells were induced by Dox for 3 days. After induction, cells were cultured for further 4 days 

either in the presence of Dox for continuous induction or in the absence of Dox to switch of f 

GFAP expression. The insoluble fractions were prepared f rom these cultures and analysed by 

immunoblotting with an anti-human GFAP antibody. After induction, the levels of both wild-type 

(Fig. 4.19A, lanes 2-7) and mutant GFAP (Fig. 4.19B, lanes 2-7) increase over time. Whilst 

R416W GFAP expression can be detected one day after induction (Fig. 4.19B, lane 2). wild-type 

GFAP was not expressed until the third day of induction (Fig. 4.19A, lane 3). To shut down 

GFAP expression, cells were first induced for three days and then returned to normal growth 

conditions for various times as indicated. Removal of Dox f rom growth medium rapidly turned 

o f f wild-type GFAP expression (Fig. 4.19A, lanes 8-1 1), whereas this occurs slowly for R416W 

GFAP (Fig. 4.19B, lanes 8-1 I ) . These results suggest R416W mutation in GFAP may alter the 

normal turnover of GFAP and possibly increase GFAP filament stability that remains to be 

investigated. In line with that R239C mutant was reported to alter the extraction solubility and 
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influence the stability of GFAP (Hsiao et al., 2005), here the findings in R416W GFAP after 

withdrawal of Dox further confirmed the stable status o f mutant GFAP. 

4.4.2 The UPS-mediated proteolysis of G F A P 

RFs are astrocytic inclusions that accumulate in the brains of AxD patients. Previous 

biochemical analysis of RF-enriched fractions showed that GFAP, ubiquitin and the small stress 

proteins aB-crystallin and HSP27 are the major components (Tomokane et al., 1991), and 

ubiquitylated conjugates of aB-crystallin were found in RFs (Goldman and Corbin, 1991). In 

addition to RFs, ubiquitin has also been found in association with a variety of abnormal IF 

accumulations seen in pathological conditions (Lowe et al., 1992; Johnston et al., 1998). These 

include NFs in the neurofibrillary tangles of Alzheimer's disease and Lewy bodies of Parkinson's 

disease, nestin in desmin-related myopathies (Goebel and Warlo, 2000), Pick bodies of Pick's 

disease and keratin in Malloi^ bodies in alcoholic cirrhosis. The presence of ubiquitin in these 

inclusions indicates that cells have identified the pernicious potential of aggregates and seeks their 

destruction, albeit without success. 

More direct evidence of ubiquitin involved in IFs protein turnover emerged for K8 and K18. 

The turnover of K8 and K18 was interfered with when they are ubiquitylated. Hence, inactivation 

of proteasome can stabilise their turnover (Ku and Omary, 2000). Most recently, R239C, the 

severest GFAP mutation causing AxD, was found to possess feedback interactions with 

proleasome activity, as the cytoplasmic inclusions induced by R239C human GFAP impaired 

pioteasome function, and in turn, resulted in GFAP accumulation (Tang et al., 2006). These 

reports provided an insight to study the involvement of ubiquitylation on the turnover of GFAP. 

4.4.2.1 The presence of R416W G F A P partially compromises the UPS function 

The increased GFAP stability resulted from R4I6W mutation may lead to aberrant protein 

aggregation that impairs UPS function and increases protein ubiquitination. To test whether 
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expression of R416W GFAP increases iibiqiiitin conjugates, insoluble fractions prepared f rom 

iinindiiced and induced cultures were subjected to immunoblotting analysis with antibodies to 

GFAP and ubiquitin. After induction, the levels of both wild-type (Fig. 4.20A, lanes 2 and 3) and 

R4I6W GFAP (Fig. 4.20B, lanes 2 and 3) increased, whereas ubiquitinated proteins could not be 

detected (Fig. 4.20A and B, lanes 2 and 3, (Ub)n). These results suggest the basal level of the 

endogenous ubiquitin conjugates may be low and the extent of detectable ubiquitin signal is 

minimal. 

To increase the ability to detect ubiquitinated proteins, DBT cell lines were treated with 

proteosome inhibitor MG-132 for 24 hours. Following this treatment, the level of detectable 

ubiquitinated proteins significantly increased. Both wild-type (Fig. 4.20A, lanes 4-6) and R4I6W 

GFAP (Fig. 4.20B, lanes 4-6) and their degradation products (Fig. 4.20A and B, lanes 5 and 6, 

arrowheads) were also increased. Several ubiquitin conjugates were detected in cells expressing 

R416W GFAP (Fig. 4.20B, lanes 5 and 6). Interestingly, GFAP expression was detected in DBT 

cells treated with IVlG-132 in the uninduced conditions (Fig. 4.20A and B, lane 4). On the one 

hand, GFAP could be considered as a stress protein, whose expression could be induced under 

proteolytic stress. On the other hand, Tet-On regulated protein induction in DBT-GFAP cell lines 

is likely to show leakiness for GFAP expression, since accumulation occurs after proteasome 

inhibition whereas it is processed by the UPS under normal condition. 

Immunoblotting with antibody to aB-crystallin revealed that its level profoundly increased in 

lVlG-132-treated DBT cells (Fig. 4.20A and B, lanes 4-6), confirming that cells induce a stress 

response when proteosome function is inhibited. In conclusion, wild-type and R416W GFAP 

expression impairs the UPS function and in turn leads to GFAP accumulation. Consequently, 

accumulated GFAP and overwhelmed UPS promote cell death, as demonstrated in the GFAP-

expressing cells treated with MG-132 (Fig. 4.14B). 
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4.4.2.2 G F A P expression affects turnover of cyclin D l and Nrf-2 

To assess whether aggregates formed by R4I6W GFAP compromise proteosome function, 

the turnover of defined proteosome substrate, such as cyciin D l (Diehl et al., 1997), was 

examined. Immunoblotting analysis revealed that the level of cyclin D l is low in DBT cells 

expressing wild-type GFAP (Fig. 4.20A, lanes 2 and 3) and slightly increased in R4I6W 

GFAP expressed DBT cells (Fig. 4.20B. lanes 2 and 3). Following treatment with MG-132, 

cyclin D l was markedly elevated in wild-type GFAP-expressing cells (Fig. 4.20A, lanes 5 

and 6), but only marginally increased in R416W GFAP expressed cells (Fig. 4.20B, lanes 5 

and 6). 

Similar observations were made on another proteosome substrate Nrf-2. Whilst the basal 

level of Nrf-2 is very low in both DBT-GFAP""'' (Fig. 4.20A, lanes 1-3) and DBT-GFAP''' '"'' ' ' 

cell lines (Fig. 4.20B, lanes 1-3). Nrf-2 level significantly increased after treatment with MG-

132 (Fig. 4.20A and B, lanes 4-6) and the highest level was observed in R4I6W GFAP-

expressing cells (Fig. 4.20B, lanes 5 and 6). These results suggest that the presence of R416W 

GFAP partially compromises the UPS function, as demonstrated by interfering with the 

turnover of proteosome substrates cyclin D l and Nrf-2. 

4.4.2.3 Immunoprecipitation reveals that R416W G F A P is ubiquitinated 

Proteosome inhibition of DBT cells by MG-132 markedly increased GFAP levels (Fig. 

4.21A and C: lanes I and 3) and generated GFAP ladders in induced DBT-GFAP"^'"'" cells 

(Fig. 4.21C, lane 3), which likely represent ubiquitin conjugates of R4I6W GFAP. To test 

GFAP ubiquitination, insoluble fractions prepared f rom induced DBT cells were solubilised, 

immunoprecipitated with GFAP antibody and analysed by immunoblotting with antibody to 

ubiquitin. The results showed that in the induced DBT-GFAP'^''"''''' cells a protein band of -58 

kDa recognised by both GFAP (Fig. 4.21C, lane 4, asterisk) and ubiquitin (Fig. 4.21 D, lane 4, 
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Figure 4.21. Analysis of G F A P ul)iquitination by immunoprecipitation. 
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analysed by immunoblotting with polyclonal anti-GFAP antibody (3270) 
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(G. lane 4. asterisk) and ubiquitin (D , lane 4. asterisk) was detected in MG-I32 -
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asterisk) antibodies likely corresponds to monoubiquitinated R4I6W GFAP. In contrast, the 

level of ubiquitinated wild-type GFAP in DBT-GFAP^ ' cells was undetectable by 

immunoblotting (Fig. 4.21A and B, lane 4). These data indicate that R416W GFAP is more 

prone to ubiquitination, particularly with enhanced level of ubiquitinated species upon 

proteosome inhibition. 

4.4.3 The unfolded protein stress is not activated by G F A P expression 

Accumulation of misfolded protein in the endoplasmic reticulum (ER) triggers an adaptive 

stress response, termed the unfolded protein response (UPR), which is mediated by UPR 

transducers, PKER kinase (PERK), activating transcription factor 6 (ATF6) and inositol-

requiring enzyme 1 ( IREI ) . Among these transducers. IREI is particularly important in 

modulating the excision of a 26-nucleotide intron f rom X-box binding protein I ( X B P l ) , 

resulting in the generation of a transcriptional activator (Yoshida et al., 2001). Spliced XBPl 

migrates to the nucleus and induces the expression of ER chaperones (often termed Grps), 

many of which are homologous to the cytosolic HSPs (Chapman et al., 1998; Welihinda et al., 

1999). for protein folding and genes involved in the degradation of misfolded proteins (Lee et 

al., 2003). Prior to analysing the relationship between GFAP expression and the UPR. the 

conditions for induction of the UPR was tested by stimulating the human HeLa cells with 10 

m M DTT for 6 hours. Given the fact that activation of X B P l resulted in removal of an unique 

Psr\ site from the mRNA transcript (Calfon et al., 2002), a higher molecular weight band was 

observed on agarose gels after the XBPl cDNA was digested with Psrl (Fig. 4.22, lane 2). In 

the absence of DTT, however. XBPl cDNA was not spliced and P.Trl-containing cDNA was 

digested into two fragments (Fig. 4.22, lane 1). To investigate whether accumulation of GFAP 

induces the UPR, total mRNA prepared f rom DBT cells expressing wild-type (Fig. 4.22, WT) 

or R416W GFAP (Fig. 4.22. R416W). either inducibly (Fig. 4.22. lanes 3-10) or transiently 

157 



stable Transient 

Dox HeLa 
DTT - H 

312 . 
289-

Figure 4.22. X B P l niRNA is not spliced in GFAP-expressing cells. As pre-condition 
experiments, HeLa cells were untreated (lane 1) or treated with 10 m M DTT (lane 2) for 
6 hours. DBT stably expressing wild-type GFAP (WT) or R416W GFAP (R416W) cells 
were cultured in the absence or presence of I {.ig/ml Dox for 4 days (lanes 3-10), followed 
by treated without (lanes 7-10) or with 10 m M DTT (lanes 3-6) for 3 hours. For transient 
iransfection. DBT cells were transfected with pcDNA3.1 (Mock) or WT and R416W 
GFAP plasmid DN A. After 72 hours transfection, cells were either left untreated or treated 
with 10 m M DTT for 3 hours. Following DT1" treatment, ceils were lysed in TRlzoL 
reagent, and the extracted total RNA was subjected to RT-PCR to detect X B P l . The 
resulted cDNA was digested with P.stl. and analysed by 2% agarose gel to visualise the 
activated spliced (S) and unspliced (U) X B P l . Actin served as a control (lower panel). 
After DTT treatment, a high molecular weight band (-375 bp) represented the spliced 
undigested XBPl was observed in HeLa cells (lane 2), which was used as a positive 
control. Neither WT nor R4 16W GFAP expression induced the splicing of XBPl in the 
absence of DTT. In contrary. X B P l remained unspliccd and resulted in one high molecular 
weight band as well as two digested fragments from Psr\ (lanes 1. 7-13) digestion. No 
significant difference was shown between stable cell lines (lanes 3-10) and transient 
transfected cells (lanes 11-16) expressing W T or R416W GFAR 



(Fig. 4.22. lanes 11-16), were subjected to RT-PCR. XBP-I cDNA were then digested with 

Pst\ and the resulting products were analysed by 1% or 2% agarose gel. Whilst induction of 

XBPl processing by DTT treatment generated a single F5?I-resistant band (Fig. 4.22, lanes 3-6 

and 14-16), untreated cells produced a /'^fl-sensitive product that was digested into two low 

molecular weight fragments (Fig. 4.22, lanes 7-13). Cells expressing either wild-type or 

R416W GFAP exhibited similar digestion patterns as those in untreated HeLa cells (Fig. 4.22, 

lane 1), suggesting that the UPR is not activated in wild-type or R4I6W GFAP expressed cells. 

Given that GFAP expression does not activate the UPR signalling cascades, it is suggested that 

osmotic shock and oxidative stress-induced cell loss in GFAP-expressing cells does not result 

f rom the ER stress. 

4.4.4 Proteolytic fragments induced by G F A P expression are not generated by caspase 

cleavage 

Several lines of evidence have demonstrated proteolysis of the cytoskeleton proteins is 

mediated by caspases. a conserved family of cysteine proteases which specifically degrade 

aspartate containing substrates. For instance, proteolysis of actin, the actin-serving protein 

gelsolin or Gas2 by caspases cleavage leads to the disassembly of actin microfilament 

networks (Brancolini et al., 1995; Kayalar et al., 1996; Kothakota et al., 1997; Mashima et al., 

1999). Also, keratin 14. 18 and keratin 19 (Caulin et al., 1997; Ku et al., 1997) along with the 

lamins (A. B. C) (Lazebnik et al., 1995; Orth et al., 1996; Rao et al.. 1996; Takahashi et al.. 

1996) are cleaved by caspase-6 (and/or other caspases) at their respective L1-L2 linker 

domain, resulting in the cytoskeleton reorganization during apoptotic cell death. Similarly, 

proteolysis of desmin by caspase-6 at V X M D motif in L I - L 2 linker domain also interferes 

filament assembly, and the large aggregates that are formed promote apoptosis (Chen et al., 

2003). 
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As for the IPs in astrocytes, vinientin, a multiple cleavage substrates of caspase-3, -7 (Asp^"') 

and -6 (IDVA"""'), can induced apoptosis by either caspase proteolysis to dismantle IPs. or 

producing a pro-apoptotic cleavage fragment to amplify cell death signal (Byun et al., 2001). Most 

recently, GFAP cleaved fragments were found generated by caspase-3 in Alzheimer's disease 

brains (Mouser el al., 2006). In line with this GFAP possesses a possible caspase cleavage site of 

the motif VELA in L1-L2 linker domain, corresponding to IDVA in vimentin, these findings 

suggest that the proteolysis of GFAP could be mediated by the caspase apoptotic pathway. 

Immunoblotting analysis with anti-GFAP antibody revealed that the insoluble cytoskeletal 

fraction prepared from induced cultures not only produced prominent bands corresponding to fu l l -

length GFAP (Fig. 4.23A, arrow), but also generated proteolysed GFAP fragments with higher 

electrophoretic motilities (Fig. 4.23A. arrowheads). Whilst expression of wild-type GFAP in DBT-

GFAP^"^ cells generated a -36 kDa fragment (Fig. 4.23A, lane 4), a -29 kDa fragment was 

observed in cells expressing R4i6W GFAP (Fig. 4.23A, lane 6). To investigate whether these low 

molecular weight bands correspond to proteolytic fragments generated by caspase. cells were 

treated with broad-spectrum caspase inhibitor Z-VAD-FMK (Fig. 4.23B and C. lanes 2 and 3). 

Treatment of DBT cells expressing either wild-type (Fig. 4.23B) or R4I6W GFAP (Fig. 4.23C) 

with caspase inhibitor (Fig. 4.23B and C, lanes 2 and 3) did not prevent GFAP proteolysis, 

suggesting that these proteolytic fragments were not generated by caspase cleavage. 
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Figure 4.23. K.vpression of Ix j t l i « i ld- typi ' and R416\V ( i F A P generates proteolytic 
traginenls. DB l-Cil APW r (A. lanes 3 and 4) and DB r- ( i} APR416W (A. lanes 5 and f>) 
cells were grow n in the absence ( - t or presence ( + ) of l ) o \ tor 4 da>s. Parental L^B 1 cells 
grow II in the same conditions were used as a control (A. lanes I and 2). The insoluble 
fractions prepared h\ cNtoskeletal extraction were subjected to immunoblotling analysis 
with anti-human ( i lAPant ibody. Notice that whiNt DB 1 ctlls induced to express 
wild-type ( i l A P generated a -36 kDa proleolyitc fragment (A. lane 4. arrowhead), a 
fragment of -29 kDa in size was detected in cells expressing l\416\V (H AP { A . lane 6. 
arrow head). To test w hether these fragments w ere generated by easpase clea\ age. 
DBI-Cil A P W I and DBI-Ci l APR416\V cells were pie treated with 20 u.M general 
caspase inhibitor Z -VAD-I M K lor one hour (B and ( ' , lane 3). After this treatment, cells 
were induced to express either w ild-type (B) or R416W (C) ( i l AP in the presence of 
20 Z-V.AD-FMK for two days (B and ( ' . lane 2). Induced cells treated with 
0. (V, V ) DMSO for the same period of time was used as a control (B and ( ' . lane 1). 
Represeiitali\ e blots showed the same degradation pattern between control cells and 
Z-VAD-1 MK-treated cells, suggesting that the caspase inhibitor did not prevent ( i l AP 
from proteol\sis. hc|ual loading ol each sample was confirmed b) immiinoblotting with 
anli-aetin antibody. 



4.5 Discussion 

Intracellular or extracellular protein aggregates resulted from unfolded/misfolded or mutant 

proteins are ubiquitously characterized in a wide variety of neurodegenerative diseases (Forman et 

al., 2004). For instance, accumulation of NFs is pathologically featured in various 

neurodegenerative diseases, such as Parkinson's disease (Schmidt et al., 1991). Alzheimer's 

disease (Pollanen et al., 1994) and amyotrophic lateral sclerosis (Julien, 2001). The pathogenesis 

of neurodegeneration, however, remains to be resolved by the questions including: ( I ) the nature 

of the misfolded or aggregated proteins, how do they lead to neurodegeneration? (2) the toxicity 

of the aggregates, are they themselves one of the species being toxic to the cells? (3) the selected 

vulnerability of proteins, what is the underlying mechanism to sensitize the proteins ubiquitously 

expressed in the brain? 

In the present study, I present evidence to suggest that the R4I6W mutation in GFAP causes 

AxD by compromising astrocyte sensitivity to stress. The reported cases of patients with R416W 

mutation displaying a wide range of disease severity as reflected in the age of onset, led me to 

further investigate whether environmental and epigenetic factors could influence the onset of 

disease progression. My initial studies had demonstrated that the R4I6W mutation has the 

potential to be very disruptive to filament assembly //; vitro (Perng et al., 2006). Transient 

transfection studies suggested, however, that the level of GFAP expression and the availability of 

a co-assembly-competent endogenous filament network could ameliorate this potential, to the 

extent that R4I6W GFAP could fully integrate into an endogenous GFAP/vimentin network with 

no overt effects upon its distribution (Perng et al.. 2006). Indeed, when I established stable, Dox-

inducible astrocytic cell lines, then R4I6W GFAP was found to not always disrupt the 

endogenous IF networks, but to incorporate into GFAP networks when expressed at low levels. 

The potential functional impact of incorporating low levels of the disease-causing GFAP mutant 

into the pre-exiling GFAP networks is that this cell line responded poorly to both hyperosmotic 

and oxidative stresses in the presence of R4I6W GFAP. These data show for the first time that it 
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is possible to experimentally separate the dominant effects upon IF assembly of a GFAP mutation 

from the potential negative consequences on function. The compromised function of R416W 

mutation in GFAP was revealed only when astrocytes were stressed by either hyperosmotic or 

oxidative insults and thus offers a potential explanation for the phenotypic variations seen in the 

age of disease onset for this particular GFAP mutation. 

4.5.1 Dominant-negative mutant can incorporate into the endogenous G F A P 

The most abundant cells in the CNS are astrocytes, which can support neuronal structure, 

trophy, metabolism and regeneration after brain injury (Pekny and Nilsson, 2005). These 

functions are dependent on the ability of astrocytes to survive brain insults and react actively to 

the injuries. As GFAP is the major IF in astrocytes, it raises the possibility that aberration of 

GFAP may promote the dysfunction of astrocytes to precipitate AxD. In support this human wild-

type GFAP expression in transgenic mice showed lethal effects mimicing AxD (Messing et al., 

1998; Hagemann et al., 2005), most recently the knock-in mice with human homologous GFAP 

mutations generated RFs that correlated GFAP levels to the severity of AxD (Hagemann et al., 

2006). Gain-of-function mechanisms occurred in IPs cause cell malfunction and subsequent cell 

death. 

U343 MG-A cells express high endogenous levels of GFAP and its assembly partner vimentin. 

Transient expression of R4I6W GFAP in this cell line can either form aggregates or integrate into 

filamentous networks. These results suggest that the mutation was only dominant over wild-type 

protein once a certain threshold had been crossed and the relative levels between R416W GFAP 

and the endogenous GFAP could determine the final IF network organisation. To test this 

hypothesis, I established a stable cell line using U343 MG-A ceils. The expression of R4I6W 

GFAP in this cell line was followed by a monoclonal antibody that specifically recognised the 

mutant but not the wild-type GFAP (Perng et al., 2006). Quantification of relative levels of 

R4I6W and total GFAP revealed that although the induced U343-GFAP'^""''' cells expressed 10 
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times more R4I6W GFAP than the uninduced cells, this expression level is still only < 10% of the 

endogenous GFAP, indicating that the expression level of R4I6W GFAP is relatively low 

compared to the endogenous GFAP in U343-GFAP'*'*"^^ cells. Double label immunofluorescence 

microscopy revealed that at this expression level R4I6W GFAP integrates into the endogenous 

GFAP, suggesting that GFAP filaments can tolerate the incorporation of a GFAP mutant that is by 

itself assembly incompetent. Lacking a functional assay for IF in cells, however, it can only be 

maintained that a GFAP network including R4I6W GFAP appears normal by 

immunofluorescence microscopy. 

4.5.2 Stress - a key factor in Alexanders disease 

IFs are extremely sensitive to stress and the collapse of IF is part of the stress response (Kopito 

and Silia, 2000; Welch et al., 1985). These observations suggest to me that the mutational effects 

may not be revealed unless cells are stressed. Because relatively few studies have been undertaken 

on stressing IFs to date (Pekny and Lane. 2007). there is no clear consensus yet on the best 

methods to use. I have tried various stressful conditions to test the relationships between IF 

mutation and astrocyte dysfunction. The first based on assays to test the reaction of astrocytic IF 

cytoskeleton to volume regulation (Pasanles-Morales et al., 1990), which provide a functional cell 

assay in which the impact of stress on IFs can be induced and analysed (Lane and Pekny, 2004). 

The response of mutant IFs in astrocytes to osmotic and oxidative conditions is enigmatic. Only 

astrocytes ablated of GFAP or vimentin respond less efficiently to osmotic stress, as measured by 

taurine efflux (Ding et al., 1998). 

Cells exposed to hyperosmotic stress are initially shrunk and then regain their osmotic balance 

by a compensatory mechanisms called regulatory cell volume increase (RVl) that is achieved by 

the activation of ion pumps and carriers (Haussinger, 1996; Okada et al.. 1994). The reverse, 

hypoosmotic stress causes cell swelling and returned to their normal volume by the regulatory 

volume decrease (RVD) by loss of cellular water. Most mammalian cells have developed these 
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two opposite mechanisms to respond to osmotic stress. Nonetheless, unable to cope with the 

extreme non-physiological conditions, many types of cells are disrupted by osmotic stress as the 

fate of death, or survival to reconstruct from the disturbed cell architecture and functions 

(Schwartz and Osborne, 1993; Kultz and Burg, 1998). 

In the initial studies, 1 tested a range of hypo-osmotic conditions to stress established cell lines, 

but no significant effect was observed. It was only when the cells were challenged with 

hyperosmotic shock that the deleterious effect of the R416W mutation became apparent. DBT-

GFAP"^"'** cells expressing R4I6W GFAP had delayed recovery after hyperosmotic shock 

campared to uninduced cells or the control cells expressing wild-type GFAP. These results 

implicate the integrity of the GFAP network as playing a critical role in protecting astrocytes 

against osmotic shock. The GFAP cytoskeleton network compromised by the dominant-negative 

mutation could also render cells less able to cope with, and recover from osmotic stress. These 

effects are not due to the expression of human GFAP in the mouse cell background, because 

similar results were observed when a human astrocytoma clonal cell line, U343-GFAP'^'"^^^, was 

established. Once again, no effect was seen upon the endogenous GFAP networks, but once 

R4I6W GFAP was present then these cells recovered poorly from osmotic stress. 

I expected that these effects would not be limited to just osmotic stress and therefore I used an 

oxidative stress, exposing the various cell lines to hydrogen peroxide and monitoring their 

recovery, with the idea that oxidative stress has been implicated in a mouse knock-in R236Hh 

mutant GFAP (Hagemann et al., 2006). Cells in the CNS are extremely susceptible to oxidative 

insult, as they consume high amount of oxygen and possess enriched polyunsaturated fatty acids 

in their membranes. Oxidative stress implicated in aging (Bachman et al., 1993) or brain injuries-

and neurodegenerative diseases-associated pathologic processes is mainly induced by excess 

production of reactive oxygen species (ROS) (Coyle and Puttfarcken, 1993). This can damage 

neurons as well as alter astrocyte functions (Robb and Connor, 1998) such as protecting neurons 

from oxidative injury (Desagher et al., 1996). The demonstration of ROS involved in the 
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pathological features of Alzheimer's disease like neurofibrillary tangles, senile plaques, 

mitochondrial dysfunction, and microglia activation (Smith et al., 1996; Blass et al., 1990; Colton 

and Gilbert, 1987), indicate that oxidative stress plays a role in the pathogenesis of Alzheimer's 

disease. Nevertheless, oxidative stress events such as including protein oxidation, lipid 

peroxidation, and peroxynitrite formation (Behl, 1999; Benzi and Moretti, 1995; Butterfield et al., 

1994; Markesbery and Carney, 1999; Smith et al., 1998), might not be the primary causative 

event in Alzheimer's disease. 

Analysis of the consequences of oxidative stress in Tet-regulated cell lines, showed that those 

cells expressing R416W GFAP were significantly inhibited in their recovery. The change in 

filament distributions after the stress and during recovery was also investigated. 

Immunofluorescence microscopy revealed that R416W mutation induces filaments to bundle 

more extensively, but this is only apparent when the cells have been stressed. These observations 

provide an interesting parallel with the in vitro studies (Perng et al., 2006), which suggested that 

the mutation encouraged filament- filament associations. These data provide convincing evidence 

to support the conclusion that the R416W mutation is indeed a dominant mutation, rather than 

simply one that predisposes to disease as has been seen for some liver diseases caused by keratin 

mutations (Cavestro et al., 2003; Ku el al., 2005). These data also show tor the first time that 

some GFAP with disease-causing mutations can integrate into an existing GFAP network without 

causing aggregate formation. The compromised function of GFAP only develops when the cells 

are stressed, implying that the R416W mutation requires additional factors to precipitate AxD. 

These results further highlight how important stress is to reveal the impact of the R416\V 

GFAP upon astrocytes. It is noticeable that amongst the known mutations causing AxD, the 

R416W has so far been found to induce all three forms of the disease - infantile-, juvenile- and 

adult-onset. This has led some to suggest that the patients' genetic background, environment and 

epigenetic factors could all contribute to the disease progression (Kinoshita et al,, 2003). The 

present data support this view and suggest that chronic stress could be significant contributory 
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factors to the phenotypic variation seen for this particular mutation in GFAP. 

With mutant GFAP expression, the noticeable cell death as a consequence of stress on 

astrocytes might be caused by various mechanisms. Swelling of astrocytes has been reported to 

represent a major component of the oedema (Martinez, 1968; Norenberg, 1997, 2001; Traber et 

al., 1989), perhaps attributed to the elevation of ammonia level in the brain. This hypothesis is 

supported by observed swelling of astrocytes after ammonia infusion in primates (Voorhies et al., 

1983) or cultured astrocytes (Norenberg et al., 1991; Zwingmann et al., 2000). Oxidative stress 

implicated in the pathogenesis of ammonia neurotoxicity (Norenberg, 2003) can consequendy 

activate MAPKs (Kyriakis and Avruch, 1996; Aikawa et al., 1997; Mielke and Herdegen, 2000; 

Ono and Han, 2000). Indeed, such activation has been shown in astrocytes in response to oxidant 

signalling (Luo and Roth, 2000; Mizuhashi et al., 2000; Chen S. H. et al., 2001; Lennon et al., 

2002; Jayakumar et al., 2006). 

Perturbation of cytoskeleton network is one of the early targets of oxidative stress (Dalle-

Donne et al., 2001; Zhao and Davis, 1998). it has been suggested as the initial step of oxidant-

induced cell damage. Selectively, oxidative injury changes cytoskeletal proteins (Aksenov et al., 

2001), as represented in the altered structure and spatial organization of actin fdaments (Dalle-

Donne et al., 2001). Via direct oxidation of lipids, proteins and DNA, H2O2, a major source of 

ROS and as a signalling molecule, can also mediate cell damage by triggering cellular apoptotic 

pathways (Butterfield and Lauderback, 2002; Howe et al., 2004; Huang et al., 2004; Lin et al., 

2004; Shm et al., 2004; van Rossum et al., 2004). 

4.5.3 Activation of stress response in cells expressing an Alexander disease-causing mutation 

JNK and p38 are reported to be involved in neurodegenerative mechanisms (Ferrer et al., 2001; 

Otth et al., 2003), the involvement of both kinases in AxD, however, is not clearly defined. p38 

has been hypothesized to cause cytoskeletal reorganisation and protein aggregation in 

amyotrophic lateral screlosis (Bendotti et al., 2004). It is known that the association of p38a with 
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aberrant phopshorylation of NFs consequently leads to accumulation of NFs (Ackerley et al., 

2004). 

in several models of AxD, expression of either wild-type or mutant GFAP have been shown to 

induce cellular stress responses (Quinlan et al., 2007). Such a response involves induction of 

sHSPs, and activation of stress kinases. For instance, some of the downstream consequences of 

the expression of R239C GFAP, the most common AxD mutation, include the accumulation of 

aB-crystallin and activation of stress kinases JNK and the upstream MLKs including MLK2, 

MLK3 and ASK I (Tang et al., 2006). Our expression of wild-type or R4I6W GFAP in 

astrocytoma cell lines also induces similar responses in SAPK activation, as reflected by an 

increased phosphorylation of both JNK and p38, with R416W GFAP producing a greater effect 

than the wild-type protein. In addition, it was observed that there was significant colocalisation of 

p-JNK and p-p38 with the GFAP aggregates that were formed. These associations also held for 

AxD brain samples with R4I6W mutation, as demonstrated by elevated level of p-p38 and its 

cofracdonalion with the mutant GFAP into the Triton-insoluble fraction when compared to age-

matched controls. Interestingly, pharmacologic inhibition of JNK and p38, but not ERK activation 

significantly increases cell survival after stress-induced recovery particularly in cells expressing 

R4I6W GFAP. These results strongly suggest that the presence of R4I6W GFAP decreases cell 

viability by rendering astrocytes more stress sensitive and this is correlated with the activation of 

SAPKs. Consistent with this is the observation in Alzheimer's disease model showing activation 

of JNK and p38 were associated with amyloid deposition due to aging, as well as tau 

phosphorylation and loss of synapophysin that can precede disease pathology (Savage et al., 

2002), protein accumulation may act as a stress signal to proceed to SAPKs phosphorylation. 

Activation of SAPK is part of the apoptotic signalling pathway and it plays an important role 

in several disorders including liver (Kaplowitz, 2002), cardiac (Baines and Molkentin, 2005) and 

neuronal diseases (Gallo and Johnson, 2002). Whether the enhanced sensitivity of astrocytes to 

stress leads to apoptosis remains to be experimentally verified. Recently, Tang et al. (2006) 
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investigated whether overexpression of wild-type or R239C GFAP induced apoptotic cell death. 

No significant difference was observed in U251 cells stably expressing either wild-type or R239C 

GFAP genes. Expression of R239C GFAP, however, leads to increased susceptibility of cells to 

apoptotic stimuli induced by camptothecin when compared to cells expressing wild-type GFAP. 

These data suggest that JNK pathway is important in propagating the deleterious effects of GFAP 

mutations. 

Apart from protein deposits, JNK is activated by response to osmotic shock (Niisato et al., 

1999; D'Alessandro et al., 2002) and other stress stimuli like UV (Derijard et al., 1994), y-

irradiation (Chen et al., 1994), and mechanical stress (Kippenberger et al., 2000). Osmotic stress-

induced cell growth arrest is connected with MAPK intracellular signal transduction pathways 

that are activated in response to changes in osmolarity (Burg et al., 1996; Han et al., 1994; 

Matsuda et al., 1995; Galcheva-Gargova et al., 1994). For instance, MAPKs are activated by 

hypoosmotic swelling in astrocytes (Crepel et al., 1998; Haussinger, 1996; Lang et al,, 1998) or 

by hyperosmotic stress in mouse astrocytes after exposure to sorbitol (Da Silva et al., 1997) and in 

rat astrocytes responding to mannitol (Anma et al., 2003). Hyperosmotic stress also causes cell 

growth arrest in association with MAPK activation in murine kidney cells (Kultz et al., 1998), and 

induces degradation of cyclin Dl that is mediated by proteasome in the lymphoma cell line 

Granta-519 (Casanovas et al., 2000). In addition, cell growth arrest is observed in hypoosmotic 

stressed human cells, owing to reduced protein synthesis, and subsequent degradation of cyclins 

and Cdks by proteasome activation (Tao et al., 2002). In addition to MAPK, both hypo- and 

hyper-osmotic conditions can also activate a variety of kmases, including Janus tyrosine kinases 

(Gatsops et al., 1998) and RJio kinase (Koyama et al., 2000). 

Activation of JNK and p38 is prerequisite for H 2 O 2 and 4-hydroxynonenal mediated cell death 

that is induced by amyloid p peptide (AP), a major pathogenesis of Alzheimer's disease 

(Tamagno et al., 2003). Moreover, JNK and p38 are also activated by H202-induced apoptosis in 

oligodendrocytes (Bhat and Zhang, 1999) and cardiac myoblasts (Hong et al., 2001). Concerning 

169 



the mechanism of H202-induced phosphorylation of JNK and p38, it is hypothesized that H 2 O 2 

might directly activate the upstream regulators of JNK, such as Racl (Vojtek and Cooper, 1995), 

as suggested by the fact that reactive oxygen intermediates (ROi) mediate IL-1 and TNFa-

dependent activation of JNK (Lo et al., 1996). H 2 O 2 induces reorganization of actin network and 

causes activation of p38 kinase which subsequently activates MAPKAPK-2/3 and HSP27 (Huot 

et al., 1998; Pearl-Yafe et al., 2004). 

It has been suggested that JNK-mediated degenerative process is the result of activation of c-

Jun transcription factor. Also, as potent effectors of apoptosis, JNKs possibly trigger and stabilize 

p53 (Fuchs et al., 1998; Mielke and Herdegen, 2000), which suppresses Bcl-2 and enhances Bax 

induction (Chen et al., 2003). Activation of p53 leading to mitochondrial dysfunction has been 

involved in the pathophysiology of Huntington's disease (Bae et al., 2005; Steffan et ai., 2000). 

The presented results showed that R416W GFAP significantly diminished cell viability, this was 

prevented by inhibitors of JNK and p38 which attenuate a decline of viable cells. Blockade of 

JNK particularly promoted cell survival. SP600125 is an inhibitor of JNKs but does not interfere 

ERK and p38 activity (Han et al., 2001). SB203580 is known to inhibit p38a and (3 isofonns and 

can equally to the activated and non-activated p38 kinase (Gum et al., 1998). Both inhibitors can 

reduce the production of cytokines including TNF-a that is an initiator in the extrinsic apoptotic 

pathway. 

Mechanisms underlying the differential effect of activated MAPKs upon astrocyte dysfunction 

are unclear. The distinct upstream regulators might account for the difference between JNK and 

p38 kinases. Inhibition of JNK or p38 tends to rescue R416W GFAP-expressing cells more than 

wild-type GFAP expressing-cells. Application of inhibitors to non-R416W cells completely 

prevented ceil death, but only partially rescued R416W GFAP-expressing cells. On contrary, such 

approach to impede cell loss is not dramatic in wild-type cells, albeit they appear the similar trend 

of increasing cell viability as mutant cells. This discrimination indicates that the cell death in 

R416W GFAP-expressing cells is primarily caused by mutant GFAP in concert with JNK and p38 
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activation, whereas in wild-type GFAP-expressing cells death is more due to overexpression, 

rather than activation of JNK. or p38. How does MAPKs activation link to AxD? Possibly, 

through activating the downstream kinases and transcription factors (Chen Z. et al., 2001) or by 

antagonising Akt-mediated survival signals (Sunayama et al., 2005), MAPKs may cause the 

astrocyte abnormalities seen. 

4.5.4 The role of small heat shock proteins in Alexander disease 

The response of mammalian cells to abrupt changes in their local environment entails a series 

of coordinated transcription and translation events leading to an increased expression of a group 

of proteins referred to as heat shock or stress proteins (Welch, 1992). Many of these heat shock 

proteins (HSPs) are thought to provide the cell with some degree of protection during 

environmental insults as well as to interact with unfolded and denatured proteins to prevent 

aggregation by promoting their (re-)folding and correcting their assembly (Stromer et al., 2003). 

Among these HSPs are small HSPs, comprising a structurally divergent group with molecular 

mass ranging from 12 to 43 kDa. Of the 10 current known sHSP genes in human (Franck et al., 

2004; Taylor and Benjamin, 2005), some are ubiquitously expressed and others are known to be 

induced by stress (Head et al., 1994; Klemenz et al., 1991). For instance, increased expression of 

aB-crystallin and HSP27 confer resistance to a variety of physiological stresses, including heat 

shock and oxidative stress (Lavoie et al., 1993; Mehlen et al., 1995). aB-crystallin and HSP70 

have been found to attenuate malfunction of the UPS by preventing aberrant protein aggregation 

produced by mutant desmin (Liu et al., 2006). In addition, aB-crystallin is associated with tau 

inclusions in glia (Bruijn et al., 1998; Dabir et al., 2004), while upregulation of HSP27 is found in 

aggregates o f G93A mutant SOD I in Amyotrophic lateral sclerosis (Steiber et al., 2000). The 

major histopathological feature of AxD is RFs that contain sHSPs aB-crystallin (Iwaki et al., 

1989) and HSP27 (Iwaki et al.. 1993). This association of sHSPs with AxD is specific, as the 

HSP70 class of chaperone is not included in RFs. Other protein aggregates often contain HSP70. 
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but whenever human diseases cause the accumulation of IF proteins into aggregates, sHSPs are 

also found (Lowe et ai., 1992; Sun and MacRae, 2005). In this scenario, the sHSP association can 

be interpreted as a failed attempt to prevent or remove the IF aggregates. 

My initial studies using transient transfection have demonstrated that aB-crystallin and HSP27 

specifically associate with aggregates formed by R4I6W GFAP in transfected U343 MG-A cells 

(Perng et al., 2006). In addition, aB-crystallin was also found in the pellet fraction together with 

the insoluble R4I6W GFAP in the induced stable DBT cell lines. These sHSPs normally 

minimize filament-filament associations (Perng et al., 1999) and their overexpression can dissolve 

accumulations of wild-type GFAP filaments (Koyama and Goldman, 1999) and facilitate IF 

network formation (Perng et al., 2004). Their presence, however, in both brain astrocytes of 

patients with AxD and in cultured cells does not prevent filament aggregation or the formation of 

RFs by R416W GFAP. The association of aB-crystallin and HSP27 with R416W GFAP and its 

stability is likely due to the altered filament properties induced by this mutation. Although other 

stresses have been shown to stimulate the association of both HSP27 and aB-crystallin with 

GFAP filaments (Iwaki et al., 1993; Perng et al.. 1999), these studies involved wild-type proteins. 

The results show clearly that it is specifically the presence of the R4I6W GFAP. but not wild-

type GFAP, that stabilizes GFAP and leads to the sequestration of sHSPs. 

Mice engineered to constitutively overexpress human GFAP develop a fatal encephalopathy 

with astrocyte inclusions similar to RFs (Messing et al., 1998). These mice have elevated levels of 

aB-crystallin and HSP27 mRNAs but not HSP70 mRNA in their brains. The formation of RF-like 

inclusions is also observed in astrocytes derived from these mice (Eng et al., 1998), suggesting 

that an overexpression of GFAP in astrocytes induces a specific sHSP response. The sequestration 

of aB-crystallin and HSP27 into GFAP aggregates could potentially compromise the astrocyte 

stress response and therefore contribute to the initiation of AxD. For example, it has already been 

shown that either the reduction of HSP27 or the loss of aB-crystallin compromises cytoskelelai 

integrity and function (Mairesse el al.. 1996) or induces muscular atrophy (Brady el a!.. 2001), 
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respectively. HSP27 is a key protein in protecting neurons against apoptosis (Benn et al.. 2002) 

and preserving mitochondrial function (Paul et al.. 2002). In addition. HSP27 has also been 

implicated in regulating the stress response through the ubiquitin-medialed proteosomal 

regulation of the key transcription factor, N F - K B (Parcellier et al.. 2003). Furthermore, HSP27 

protects cells against other protein aggregation-based diseases caused by huntingtin (Wyttenbach 

et al., 2002) and a-synuclein (Zourlidou et al., 2004). A more specific role of aB-crystallin has 

been implicated in modulating cellular redox states (Rajasekaran et al., 2007) and in conferring 

resistance to apoptosis by inhibiting caspase activity (Kamradt et al., 2002; Kamradt et al., 2005). 

Such studies identify diminution of sHSP levels as a potential Achilles' heel in the cellular 

response to protein aggregate-based diseases that require either upregulation (Benn et al., 2002) 

or overexpression (Zourlidou et al., 2004) to ameliorate the disease phenotype. These 

observations suggest that the early sequestration of sHSPs into GFAP aggregates and RFs is a key 

event at the onset of AxD. 

4.5.5 G F A P accumulation impairs proteosome function 

Although the role of protein aggregation in neurodegenerative disorders remains controversial, 

it is generally agreed that aggregates or the interacting proteins might give rise to pathogenesis. 

Cytoplasmic aggregates or inclusions are associated with disease-causing IF mutations, including 

desmin in myopathy (Goebel, 2003), keratin in liver disorders (Fuchs et al., 1998; Irvine and 

McLean, 1999; Denk et al., 2000), GFAP in AxD (Li et al., 2002), and NF-L and NF-M leading 

respectively to Charcot-Marie-Tooth disease 2E and Parkinson's disease (Lariviere and Julien, 

2004). This suggests these mutant IFs cannot be processed properly by the host cells. 

Consequently, the accumulating IFs deposits cause cell death and potential stress. The 

filamentous IFs. however, can also sensitize the cells. For example, expression of mutant keratins 

5 and 14 makes cells vulnerable to osmotic stress that can activate stress kinases (D'Alessandro et 

al., 2002), 
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Cells are protected against the accumulation of misfolded or aggregated proteins by 

quality-control mechanisms. For instance, molecular chaperones can promote protein 

refolding as well as prevent aggregation of non-native protein (Hartle and Hayer-Hartl. 2002). 

Apart from activities of the phagosome-lysome system, the remaining misfolded proteins are 

primarily degraded by the UPS, this is true for R239C GFAP (Tang et al.. 2006). keratin K8 

and KI8 (Ku and Omary, 2000). If the cellular quality-control machinery is overwhelmed by 

misfolded proteins, it can lead to the deposition of protein aggregates, and ultimately cell 

death in some neurodegenerative diseases. Dysfunction of the UPS has been implicated as the 

pathogenesis of various neurodegenerative diseases, it might be predicted that AxD is 

following this etiology. 

Depending on their nature and location, GFAP mutations exert a wide range of effects on the 

formation and organisation of filaments. For instance, the tail mutation, R416W, has deleterious 

effects on GFAP assembly and network organisation, whereas the rod mutation, R239C, does not 

appear to affect filament formation and organisation. Instead, the R239C mutation increases the 

stability of GFAP filament, as judged by its lower extractability at high salt concentrations (Hsiao 

et al., 2005). Similar results were observed when R4I6W GFAP was transfected into U343 MG-A 

cells. With use of a harsh extraction buffer containing deoxycholate, most of the wild-type GFAP 

was solubiiised in cells expressing wild-type GFAP, whereas R4I6W protein remained entirely in 

the pellet fraction of the R416W GFAP transfected cells. These results suggest that AxD 

mutations could confer increased GFAP stability by decreasing the soluble pool. Alternatively, 

AxD-causing mutations could increase GFAP stability by affecting the UPS function. 

Recent studies provide several pieces of evidence that GFAP accumulation impairs proteosome 

function (Tang et al.. 2006). First, at least some of the overexpressed GFAP was degraded through 

the UPS in an ubiquitin-dependent manner. Second, expressing either wild-type or R239C GFAP 

led to impaired proteasome function, as demonstrated by accumulation of a reporter protein GFP-

U and in vitro proteolytic assays. One possible mechanism for this inhibition is that the 
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accumulated GFAP saturates the capacity of free cytosolic ubiquitin that is required for the UPS 

function. Another possible mechanism might involve a direct interaction between the proteasome 

and GFAP filaments that might retain proteasomes in GFAP inclusions. Thus, a competition 

between the excess GFAP and other cellular proteins for proteasome degradation might occur, 

leading to slowed protein turnover. The data presented here support this notion by showing that 

R416W mutation alters normal turnover of GFAP. as demonstrated by the sustained levels of 

R4I6W GFAP in cells after its expression is switched off. In addition, expression of R416W 

GFAP leads to aberrant protein aggregation that partially impairs the UPS function and increases 

protein ubiquitination. It has been suggested that the IF network may play a role in organising 

components of the degradation machinery that removes aberrant proteins (Kopito and Sitia, 2000), 

and if this function were compromised by the mutant GFAP, increasing levels of the mutant 

GFAP would lead to more aggregate formation. 

4.5.6 Some I F proteins behave like stress proteins 

The data presented here also show that the levels of GFAP increase in cells following 

proteosome inhibition, suggesting that GFAP could act as a stress protein. Indeed, some of the 

keratins and type 111 IF proteins behave like classical stress proteins, as their expression is induced 

rapidly in response to cell stress. For instance, keratins 6 and 16 expression are upregulated in 

many pathological situations from psoriasis to cancer and they are also upregulated in epidermal 

wound healing (DePianto and Coulombe, 2004; Mansbridge and ICnapp, 1987). Nonkeratin IFs 

can also change their expression in response to stress. For instance, the astrocytic IF proteins 

GFAP, vimentin and nestin change their expressions in these cells at different developmental 

stages and in many pathological conditions (Pekny and Pekna, 2004). Through several analyses of 

knockout mice, it has been established that IFs in astrocytes are functionally linked to the stress 

response seen after brain and spinal cord trauma (Nawashiro el al., 1998; Pekny et al., 1999) and 

osmotic stress (Anderova et al., 2001; Ding el al., 1998). Upregulation of GFAP and vimentin and 
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reexpression of nestin were found in reactive astrocytes in response to trauma, such as ischemia, 

physical injury and neurodegeneration (Eliasson et al., 1999; Li et al., 2007; Shibuya et a!., 2002). 

Increased expressions of vimentin and nestin were also observed during the early stage of 

regeneration after muscle injury (Vaittinen et al., 2001). 

4.6 Future perspectives 

4.6.1 Potential interactions of astrocytes with oligodendrocytes and neurons 

AxD is unique among the neurodegenerative diseases associated with abnormal protein 

aggregates in that the most severe consequences of the disorder are not manifested in the astrocyte 

bearing the inclusion body, but rather in other cell populations in the brain. For instance, there is a 

major dysfunction of oligodendrocytes as revealed by the severe hypo-myelination that 

accompanies the infantile forms of this disease and apparent demyelination in older patients. In 

the late onset form of AxD, neuronal dysfunctions are suggested by the clinical signs with 

dramatic changes in white matter and pathology predominantly affecting cerebellum and 

brainstem. These clinical and pathological manifestations suggest that critical interactions of 

astrocytes with oligodendrocytes and neurons must play a central role in this disease. What are the 

mechanisms by which accumulation of mutant GFAP in astrocytes produces deleterious effects on 

their neighbouring cells? One possibility is that accumulation of mutant GFAP in astrocytes inay 

induce a stress response, and as part of this response, soluble factors are released that are toxic to 

neighbouring oligodendrocytes and perhaps neurons as well. These factors could include TNF-a, 

a cytokine that is toxic to oligodendrocytes (Ledeen and Chakraborty, 1998). Interestingly, TNF-

a toxicity is exacerbated by iron (Zhang et al., 2005), whose accumulation was reported in mice 

overexpressing GFAP (Hagemann et al., 2005). In addition, astrocytes express growth factors, 

such as platelet-derived growth factor (PDGF), basic fibroblast growth factor (BFGF) and insulin

like grow factor 1 (IGFl) , which promote proliferation and differentiation of oligodendrocyte 

progenitors (Dubois-Dalcq and Murray. 2000; Orenlas and Miller, 1998). Expression of mutant 
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GFAP in astrocytes may reduce the secretion of these factors, leading to compromised 

oligodendrocyte development and consequently a defect of myelination. 

The second possibility is that mutant GFAP-mediated astrocyte dysfunction may compromise 

one or more neuronal support functions, thus damaging vulnerable neurons. Astrocytes are the 

most abundant cells in the CNS, and outnumber neurons by about ten to one in the adult human 

brain. Astrocytes are known to respond to various kind of stress and in this respect can be viewed 

as guardians of the CNS. They provide essential services to the neurons they support, including 

roles in regulating cerebral blood flow and maintaining synaptic function, and they also transport 

various nutrients and metabolic precursors to neurons (Maragakis and Rothstein, 2006). The best 

known example is their essential role in rapid recovery o f glutamate, the primary excitatory 

neurotransmitter in the CNS from synaptic clefts by astrocyte glutamale transporters Glt-1 and 

Glast (also known as EAAT2 and E A A T l respectively). The activation of stress response induced 

by expression of mutant GFAP may cause a significant decrease of Glt-1 in astrocytes. A defect 

in glutamate uptake leading to increase in synaptic glutamate level and exitotoxicity (Maragakis 

and Rothstein, 2004) could explain the seizures commonly observed in early-onset infantile 

patients and kainate-induced seizures in GFAP mutant knock-in mice (Hagemann et al., 2006; 

Tanaka et al., 2007). Indeed, Glt-1 knockout mice have demonstrated that defective glutamate 

transport by astrocytes can lead to an increase in seizure activity (Tanaka et al., 1997). In addition, 

increased glutamate can be toxic to both neurons and oligodendrocytes (Johnston, 2005; Matute et 

al., 2002). In particular, the hypersensitivity of oligodendrocytes to glutamate could explain the 

demyelination that often occurrs in infantile cases of AxD. 

4.6.2 Splice variant of G F A P and its role in Alexander disease 

Whilst exactly how GFAP mutations in astrocytes translate into catastrophe for neurons and 

oligodendrocytes remains unknown, there is clearly abundant evidence for how astrocytes might 

regulate the properties of these cells (Lobsiger and Cleveland, 2007). It is worth mentioning that 
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G F A P is not only expressed in astrocytes, but it is also expressed in a range of other cells, 

including enteric glia, nonmyelinating Schwann cells, liver stellate cells, breast myoepithelial 

cells, lymphocytes and respiratory tract chondrocytes (see (Su et al., 2004) and references 

therein). The G F A P levels are low in these other cells, suggesting that its primary role is not to 

form filament networks, in addition, G F A P expresses several splice variants at low levels 

(reviewed recently in (Quinlan et al., 2007), about which much less is known than the most 

common G F A P isoform, a - G F A P . One of these splice variants, E - G F A P arises by alternative 

splicing and produces a protein with a novel C-terminal tail that interacts specifically with 

presenilin (Nielsen et al., 2002). Transcription infidelity might also lead to the expression of 

abnormal forms of GFAP (van Leeuwen et al., 1998), some of which are expressed in neurons 

(Hoi et al.. 2003). Interestingly, a subpopulation of GFAP-positive astrocytes (Laywell et al., 

2000; Roelofs et al.. 2005) and radial glial (Campbell and Gotz, 2002; Noctor et al., 2001) have 

been identified as multipotent neuron stem cells in the adult mammalian brain. If mutant GFAPs 

were to exert their effects at the level of such stem cells, the defect could then be manifested in a 

diverse population of cellular progeny. 
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Chapter 5 

Conclusions 

In this study, 1 started with transient transfection to investigate the properties of the mutant 

GFAPs in a range of cell lines. 1 focused mainly on the R416W GFAP, a relatively common 

but unusual mutation that can give all three forms of A x D . Some studies were also performed 

on the most common A x D mutation R239C as a comparative purpose. When expressed in IF-

free cell lines such as SW13 ( v i m ) cells or primary mouse astrocytes derived from 

GFAP/vimentin double knockouts, both yielded only aggregates or diffuse background 

staining, and this effect was dominant upon cotransfection with the wild-type GFAP (Pemg et 

al., 2006). Unexpectedly, transient expression of R416W GFAP in primary mouse astrocytes 

resulted in aggregate formation as well as filament integration. Similar obser\'ations were 

made on the astrocytoma-derived U343 MG-A cell lines. In this case, an R4l6W-specific 

monoclonal antibody was used to reveal the integration of the R416W GFAP into the 

endogenous human GFAP, eliminating the possibility that aggregate formation was due to a 

species incompatibility. The conclusion from these transfection studies was that R416W 

GFAP could be integrated into existing GFAP filament networks without precipitating 

aggregate formation. In other words, the mutation was only dominant over wild-type protein 

once a certain threshold had been crossed. 

The previous history o f IFs, their proposed role as mechanical integrators and those 

diseases of skin and muscle tissues where structure is paramount, has conditioned us to expect 

that mutations in IF proteins should be disruptive and induce aggregate formation. This study 

has challenged this assumption and demonstrates for the first time that it is possible to have a 

disease causing GFAP mutation that does not dramatically alter the filament network, 

providing the levels and cell environment are close to those in the target cells. 
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Whilst wild-type GFAP can incorporate into extended IF networks, R416W GFAP formed 

aggregates in most of the transfected cells. Colocalisation studies showed that GFAP-

containing aggregates are also positive for chaperone proteins and signalling molecules, 

including aB-crystallin and HSP27 and phospho-JNK. GFAP aggregates are also 

ubiquitinated, as demonstrated by co-tranfection of His6-rnyc tagged ubiquitin with R416W 

GFAP (Perng et al., 2006, see Fig. 9 in Appendix 5). Subcellular cofractionation studies 

provide direct biochemical evidence that these components are all associated with GFAP 

aggregates. With the use o f the mutant-specific antibody, it was also shown for the first time 

that mutant protein is a component in GFAP-containing aggregates of transfected human 

astrocytoma cells. These results suggest the aggregates formed by R416W GFAP in cultured 

cells have many features similar to Rfs . The key question is what are the downstream 

consequences of RFs formation? Are RPs directly involved in the toxic gain-of-function 

mechanism, part of the protective response, or only an innocent bystander of the secondary 

effect o f astrocyte dysfunction? 

To answer these questions, 1 have established several Dox-inducible stable cell lines to 

investigate the biological effect o f GFAP aggregates on astrocyte function. These cell lines 

allow me to I) determine the time course of events leading to GFAP expression and aggregate 

formation; 2) establish whether abnormal accumulation of GFAP results in astrocyte stress 

response; 3) determine the critical wild-type to mutant GFAP ratio giving rise to aggregate 

formation to be determined. The data show that R416W GFAP is capable of integrating into 

GFAP networks when expressed at a low level. The incorporation of the dominant-negative 

mutant can potentially change the filament properties by increasing filament stability and 

altering inter-filament interactions. It was only when these cells were challenged with either 

osmotic or oxidative stress that the deleterious effects of the R416W mutation apparent. 
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In the DBT cell lines, initiation of GFAP expression resulted in aggregate formation, with 

R416W GFAP being observed to form aggregates at a significantly higher frequency than 

wild-type GFAP. The aggregate fomiation induces a stress response, as demonstrated by the 

elevated expression o f the sHSP aB-crystallin and activation o f stress protein kinases, such as 

JNK and p38. These proteins are also associated with the GFAP-enriched aggregates fonned 

by R4I6W GFAP, which may compromise astrocyte function. This is supported by the 

findings that expression o f R416W GFAP leads to increased susceptibility of cells to stressful 

stimuli when compared to cells expressing wild-type GFAP. Furthermore, the presence of 

R416W GFAP partially compromises the UPS function and increases GFAP filament 

stability, as demonstrated by the slowed turnover of, GFAP, Nrf2 and cyclin D I . This in turn 

may further increases GFAP level and more aggregation. In fact, GFAP itself may act as a 

stress protein, whose expression is induced in response to stress. 

From this study, together with the wealth of infomiation now emerging on the intracellular 

pathways, I propose a model, in which pathogenic GFAP mutations set in motion events that I 

believe to be important in the development of A x D (Fig. 5.1). It is worth noting that although 

A x D is a primary disorder o f astrocyte, the clinical consequences are myelination defects and 

neurodegeneration. This feature highlights the critical importance of interactions o f astrocytes 

with oligodendrocytes and neurons. Whilst how these cells communicate with each other 

remains elusive, there are many possibilities for astrocytes to become dysfunctional and to 

impair the function o f other cell types in the CNS. I incorporate some o f the current 

hypothesis in this model to highlight the inter-cell interactions that could be mediated by 

soluble cytoplasmic factors, such as growth factors and cytokines. 

Last but not least, several publications provide direct or indirect evidence that 

mitochondrial defects also play an important role in A x D . although whether this occurs 

independently or as a consequence of the disease remains unclear. For instance, transgenic 
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mice overexpressing human GFAP induce an oxidative stress response (Hagemann et al., 

2005) and examination o f A x D brain samples shows the presence of lipid peroxidation end-

products in RFs (Castellani et al., 1998). In addition, an elevated level of lactate and 

mitochondrial abnormalities have been reported in several cases of A x D patients (Caceres-

Marzal et al., 2006; Nobuhara et al., 2004). Furthermore, the clinical symptoms of the 

mitochondrial disorder Leigh syndrome are remarkably similar to those of infantile A x D . My 

study also showed that cells expressing R4I6W GFAP are particularly sensitive to oxidative 

stress. Taken together, the role of mitochondrial dysfunction in A x D is beginning to emerge. 

Therefore, I also include mitochondrial defect as a potential contributor to the disease 

progression of A x D . 
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Figure 5.1. A proposed model in which G F A P mutations lead to Alexander disease. The 

presence of the R4 i6W mutation decreases the solubility of the GFAP, probably by 

increasing GFAP filament stability or altering the filament-filament interactions in a manner 

that encourages aggregation ( I ) . GFAP aggregation increases sHSP expression (2A. red 

arrow), induces stress-activated protein kinase (2B, SAPK) activation (red arrow) and impairs 

ubiquitin-proteosome system (2C, UPS) function (red arrow). This is accompanied by the 

sequestration of sHSPs (3A, broken line) and phophorylated SAPKs (38, broken line), which 

compromise cellular stress response and render ceils more susceptible to stressful stimuli (4). 

GFAP aggregates may undergo a maturing process, with additional posttranslational 

modifications of integral components, such as the phosphorylation (P) and ubiquitination (Ub) 

of aB-crystallin to form the Rosenthal fibres (RFs). This model is not exclusive to R416W 

GFAP, since RFs are a characteristic diagnostic feature of Alexander disease. Other GFAP 

mutations may differ in the details of the mechanism by which they produce aberrant 

filament-filament interactions leading to the formation of stabilized aggregates, but, once 

formed, they then fol low a common pathway to RFs formation. Possible disease mechanisms 

also involve toxic cellular interactions mediated by signalling molecules and receptors. 

Upregulation o f stress pathway by the presence of GFAP aggregates may cause a decreased 

expression o f glutainate transporter in astrocytes (5). Excessive glutamate due to reduced 

glutamate uptake through astrocyte glutamate transporters causes neuronal toxicity. In 

addition, astrocytes under stress may release soluble substances, such as cytokines (6A) and 

growth factors (68) , which are toxic to oligodendrocytes. The effects of GFAP mutation at 

the level o f cell-cell interactions may be relatively far downstream from the immediate effects 

of aggregate formation. However, they may represent a final common pathway for many 

aspects of pathogenesis. Finally, mitochondrial abnormalities as a result of astrocyte 

dysfunction may produce reactive oxygen species (ROS) (7), which are toxic to astrocytes 

and its neighboring cells. 
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Appendix 1 . Protein kinases involved in I F phosphorylation 

IF protein In vivo Kinases Binding to IFs In vitro Kinases Reference 

K8 PKC Yes Yes [1] 
PKC6 [2] 

JNK Yes Yes [3] 

p38 Yes Yes [4] 

K18 Raf-I Yes Yes [5] 

GFAP Rho-kinase Yes Yes [6, 7] 

Desmin Rho-kinase Yes [8] 

Peripherin PKA Yes [9] 

Vimentin Cdkl Yes Yes [8, 10] 

PKA Yes [11] 
PKC Yes [8, 12] 

CaMK 11 Yes [8] 

Aurora-B Yes [13] 

Rho-kinase Yes [8] 

MAPKAP-2 Yes [14] 

PIk-1 Yes [15] 

NF-H GSK3P Yes Yes [16] 

Erk 1/2 [17] 

Cdk 5 Yes Yes [18-20] 

SAPK [21] 

N F - M PKA [22] 

Erk 1/2 Yes [17,23] 

Cdk 5 Yes [18] 

NF-L PKA Yes Yes [24, 25] 

CaMK 11 Yes Yes [26] 

Lamin A/C Cdkl Yes [27] 

PKC Yes Yes [27, 28] 

Lamin B PKC Yes [29] 

PKCa Yes [30] 

PKCpIl Yes Yes [31,32] 

PKC6 Yes Yes [33] 

Nestin Cdkl Yes [34] 

Cdk5 Yes Yes [35] 
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Appendix 2. Cellular functions and associated substrates in the ubiquitin-proteosome 

system 
Function Substrate Reference 
Cell cyclins Ml 
Cycle cdks and their inhibitors 121 
Progression P2I | 3 | 
Signal Protein kinase C | 4 | 
Transduction Src | 5 | 
Oncogenesis p27Kipi | 6 | 

p53 | 7 | 
DCC | 8 | 
retinoblastoma protein 191 
Myc |10 | 
c-Myb | 1 1 | 
Mos | I 2 | 
Bcr-AbI 1131 
Raf-I |14 | 
P-catenin |15| 
HIF-1 | I 6 | 

Regulation of p53 |71 
gene expression c-Jun, E2FI , I K B , N F - K B . c-Myc, H I F - l a , j i v j 

M A T a 2 , (3-catenin 
c-Fos M8 | 
STAT3 1191 
Glucocorticoid receptors 1201 

DNA repair RAD4 1211 
RAD23 1221 
Xeroderma pigmentosum B protein 

Apoptosis Mdm2 and bax 1231 
c lAP 1241 
Bid 1251 
caspase 3 |26| 

Regulation of Ornithine decarboxylase 1271 
Metabolic HMG-CoA reductase 1281 
Pathways Cup9 |29 | 
Protein quality CFTRAF508 1301,1311 
Control a 1-antitrypsin (Z-variant) 1321 

aged calmodulin |33 | 
Inflammation I K B 1341 

pi05 precursor of N F - K B 1351 
Long-term Protein kinase A (regulatory subunit) 1361 
memory 
Immune Most cytosolic and nuclear proteins |37 | 
surveillance 
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Appendix 3. Intermediate filaments and their associated proteins 
IF interacting partner IF protein Reference 
Anchoring proteins 

4.1R Neurofilament-L and a-intemexin [1] 
a-dystrobrevin Synemin, syncoilin [2 ,3 ] 
BPAGle Peripherin, neurofilament, keratins [4-7] 
Desmoplakin Keratins, vimentin [8-13] 
Periplakin Keratin 8, vimentin [14-16] 
Plakophilin Keratins, vimentin, desmin [17-20] 
Plectin Keratins, vimentin, GFAP, desmin [21-26] 
Spectrin Desmin, neurofilament-L [27-29] 
Aquaporin Filensin, CP49 [30] 

Cytolinkers 
a-actinin Synemin [31] 
Calponin Desmin [32-34] 
Filaggrin Keratins [35] 
Fimbrin Vimentin [36] 
Nebulin Desmin [37] 
Trichohyalin Keratins [38, 39] 
Tropomodulin Filensin [40] 

Chaperones 
aB-crystallin GFAP, desmin, vimentin, filensin. [41-46] 

CP49, keratins 8/18, peripherin 
HSP27 GFAP, keratins 8/18, Vimentin [41, 47-49] 
HSP40 ( M r j ) Keratins 8/18 [50] 
HSP70 GFAP, Keratins 8/18 [41,47,51] 
GRP78 Keratins 8/18 [52] 

Enzymes 
Akt/PKB Keratin 10 [53] 
Caspase 3/9 Keratins 8/18 [54] 
Cdk5/p35 Nestin, neurofilaments [55, 56] 
JNK Keratins 8/18 [57] 
p38 Keratins 8/18 [58] 
PKC Vimentin, keratins 8/18 [59-62] 
Raf l kinase Vimentin, keratins 8/18 [63, 64] 

Receptors 
c-Flip Keratins 8/18 [65] 
Polycystin-1 Keratins 8/18, vimentin, desmin [66] 
TNFR2 Keratins 8/18 [67] 

Adapters 
N U D E L Neurofilaments [68] 
14-3-3 Keratins 8/18, GFAP, vimentin [69-72] 
AP-3 Vimentin [73] 
DEDD Keratins 8/18 [54, 74, 75] 
T R A D D Keratins 8/18 [76] 
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Appendix 4. G F A P mutations associated with Alexander disease 
GFAP mutation Type Domain Reference 
P47L Substitution Head [1] 
K63Q Substitution Head [2] 
K63Q Substitution Head [3] 
R70W Substitution l A [4] 
R70Q Substitution l A [5] 
M73R Substitution l A [6] 
M73R Substitution l A [2] 
M 7 3 K Substitution l A [5] 
M74T Substitution l A [V] 
L76F Substitution l A [8] 
L76F Substitution l A [2] 
L76V Substitution l A [2] 
N77Y Substitution l A [8] 
N77S Substitution l A [2] 
D78E Substitution l A [9] 
R79C Substitution l A [1] 
R79G Substitution l A [6] 
R79C Substitution l A [6] 
R79C Substitution l A [10] 
R79L Substitution l A [11] 
R79C Substitution l A [12] 
R79C Substitution l A [2] 
R79H Substitution l A [1] 
R79H Substitution l A [8] 
R79H Substitution l A [6] 
R79H Substitution l A [13] 
R79H Substitution l A [14] 
R79P Substitution l A [5] 
Y83H Substitution l A [37] 
K86/V87- E86/F87 Deletion/insertion l A [3] 
V87G Substitution l A [15] 
R88C Substitution l A [8] 
R88S Substitution l A [8] 
R88C Substitution l A [6] 
R88C Substitution l A [16] 
R88C Substitution l A [17] 
R88C Substitution l A [2] 
R88C Substitution l A [18] 
L90P Substitution l A [19] 
L97P Substitution l A [2] 
L97P Substitution l A [13] 
V I 15F Substitution IB [2] 
V I 151 Substitution IB [3] 
R126/L127 Duplication IB [18] 
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Appendix 4. (Continued) 
GFAP mutation Type Domain Reference 
E207K Substitution IB [2] 
E207Q Substitution IB [2] 
E207K Substitution IB [3] 
E207Q Substitution I B [3] 
E210K Substitution I B [2] 
E210K Substitution I B [3] 
E223Q Substitution L12 [20] 
L235P Substitution 2A [2] 
L235P Substitution 2A [3] 
R239C Substitution 2A [1] 
R239C Substitution 2A [8] 
R239C Substitution 2A [11] 
R239C Substitution 2A [6] 
R239C Substitution 2A [13] 
R239C Substitution 2A [21] 
R239C Substitution 2A [2] 
R239C Substitution 2A [3] 
R239H Substitution 2A [1] 
R239H Substitution 2A [8] 
R239H Substitution 2A [2] 
R239H Substitution 2A [22] 
R239P Substitution 2A [13] 
R239P Substitution 2A [2] 
R239P Substitution 2A [3] 
R239L Substitution 2A [23] 
Y242D Substitution 2A [6] 
A244V Substitution 2A [24] 
A244V Substitution 2A [2] 
A244V Substitution 2A [3] 
A253G Substitution L2 [2] 
A253G Substitution L2 [3] 
Y257C Substitution 2B [25] 
R258P Substitution 2B [1] 
A267P Substitution 2B [26] 
R276L Substitution 2B [27] 
K279E Substitution 2B [2] 
R330G Substitution 2B [38] 
R330G Substitution 2B [39] 
L331P Substitution 2B [28] 
E332K Substitution 2B [38] 
E332K Substitution 2B [39] 
L352P Substitution 2B [29] 
L352P Substitution 2B [2] 
L359V Substitution 2B [2] 
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Appendix 4. (Continued) 
GFAP mutation Type Domain Reference 
L359P Substitution 2B [5] 
D360V Substitution 2B [30] 
E362D Substitution 2B [31] 
A364P Substitution 2B [2] 
A364V Substitution 2B [40] 
Y366H Substitution 2B [2] 
E371G Substitution 2B [32] 
Y366C Substitution 2B [40] 
E373K Substitution 2B [6] 
E373K Substitution 2B [2] 
E373K Substitution 2B [41] 
E374G Substitution 2B [2] 
Q386I Substitution Tail [33] 
S393I Substitution Tail [34] 
R416W Substitution Tail [ I ] 
R416W Substitution Tail [6] 
R416W Substitution Tail [35] 
R416W Substitution Tail [36] 
R416W Substitution Tail [2] 
R416W Substitution Tail [18] 
1247-1249GGG>GG Deletion Tail [42] 
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A R T I C L E 

The Alexander Disease-Causing Glial Fibrillary Acidic Protein 
Mutant , R416W, Accumulates into Rosenthal Fibers by a Pathway 
That Involves Filament Aggregation and the Association 
of cvB-Crystallin and HSP27 
Ming Der Perng,' Mu Su," Shu Fang Wen, Rong Li, Terry Gibbon, Alan R. Prescolt, 
Michael Brenner, and Roy A. Quinian 

Here, we describe the early event.s in the disease pathogenesis of Ale.'fander disease. This is a rare and usually fatal 
neurodegenerative disorder whose pathological hallmark is the abundance of protein aggregates in astrocytes. These 
aggregates, termed "Rosenthal fibers," contain the protein chaperones orB-crystallin and HSP27 as well as glial fibrillary 
acidic protein (GFAP), an intermediate filament (IF) protein found almost e.xckisively in astrocytes. I leterozygous. missense 
GFAP mutations that usually ari.se spontaneously during spermatogenesis have recently been found in the majority of 
patients with Ale.xander disease. In this study, we show that one of the more frequently obser\'ed mutations, R4I6W, 
significantly perturbs in vitro filament assembly. The filamentous structures formed resemble assembly intermediates but 
aggregate more strongly. Consistent with the heterozygosity of the mutation, this effect is dominant over wild-t\pe GFAP 
in coas.sembly experiments. Transient transfection studies demonstrate that R416W GFAP induces the formation of GFAP-
containing cytoplasmic aggregates in a wide range of different cell types, including astrocytes. Fhe aggregates have several 
important features in common with Rosenthal fibers, including the association of al5-crystalliii and HSI'27. This as.so-
ciation occurs simultaneously with the formation of protein aggregates containing R416VV GFAP and is also specific, 
since I-1SP70 docs not partition with them. Monoclonal antibodies specific for R416VV GFAP reveal, for the first time for 
any IF-based disease, the presence of the mutant protein in the characteristic histopathological feature of the disease, 
namely Rosenthal fibers. Collectively, these data confirm that the effects of the R416VV GFAP are dominant, changing 
the assembly process in a way that encourages aberrant filament-filament interactions that then lead to protein aggre
gation and chaperone .sequestration as early events in Alexander disease. 

Ale.xander disease (MINI 203450) is a rare and often fatal dominant mutations in 26 other 11- genes that are linked 
neurological disorder, first described by VV. S. Alexander.' to human disease,'" " summarized in the online Inter-
O n the basis of age at onset, the disorder has been divided mediate Filament Disease Mutation Database. The list of 
into three subtypes: infantile, juvenile, and adult . -The in- known mutations in GFAP now includes 32 nucleotide 
fantile form, with onset between birth and age ~2 years, changes that affect 24 aa spread throughout the entire 
is the most common type and is characterized by e.xtensive sequence'' (see also the Ale.xander Disease Web site). The 
loss of white matter'"'' A striking neuropathologlcal fea- mutations usually arise spontaneously during spermato-
ture of all forms of Ale.xander disease is the presence of genesis,'' with familial cases being quite rare because of 
Rosenthal fibers, unique cytoplasmic inclusions within as- the high morbidity associated with the disease. The mu-
trocytes that contain the major astrocytic intermediate ration studied in this report, R416VV, is one of the four 
filament (IF) protein glial fibrillary acidic protein (Gl-AP) mutations reported in familial cases and is also found in 
and the chaperones aB-crystallin and HSP27.""'' Although sporadic cases.'-

the GFAP within Rosenthal fibers appears disorganized, as- Like other IF family members, Gl-AP has a characteristic 
troc\^es in Ale.xander disease also possess GFAP filaments domain stmcture comprising a central a-helical rod do-
with conventional 10-nni inorphology. main flanked by non-a-helical N-terminal "head" and C -

Recently, missensc point mutations in GFAP have been terminal "tail" domains.''' The rod domain contains char-
identified as a genetic basis for Ale.xander disease.'^ To date, acteristic heptad repeats of hydrophobic residues, which 
all known niutations have been heterozygous, indicating are the underlying basis for the coiled-coil dimer in the 
that the mutant form of the protein is dominant over the filament, and the highly conserved LNDR and T Y R K -
wild type. This is consistent with the finding of autosomal L E G G E motifs that are present at the start and the end of 
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thi.s central rod domain.'" Both of these motifs arc highly-
conserved throughout the whole II- family,'" and those 
mutations in Alexander disease and other genetic IF pro
tein disorders found within them usually correlate with 
the severest forms of the diseases.'"" The crystallization 
of regions containing these two motifs from vimentin, a 
closely related type 111 IF protein"' '" that coassembles with 
GFAP, has provided the atomic structure of these particular 
highly conserved motifs. Our knowledge of the important 
higher order interactions within the filament, however, is 
still limited to low-resolution studies'""^"; therefore, the 
full structural impact of most of these rod mutations has 
not yet been detailed. 

One of the other common mutations outside the cen
tral rod domain of GFAP that causes .Alexander disease is 
R416VV. This mutation occurs in the tail domain within 
the R D G motif, which is conserved among all GFAP pro
teins from multiple species, as well as the related type 111 
IF proteins vimentin and desmin. Here, we describe the 
effects of this mutation on GFAP assembly and use this 
R416VV GFAP mutant to identify the early events in the 
development of Alexander disease. 

Material and Methods 
Plasmid Construction and Site-Directed Mutagenesis 

Total RNA was extracted from human astrocylonia U37.'̂ MG cells 
with tlic RNeasy kit (Qiagcn). The complete h L i m a n GI-AI'cDNA 
was amplified by irr-PCR, with the Superscript RT-PCR system 
(Irivitrogen), with use of oligonucleotides 5'-CA r . A T G G A G A G G A -
GACGCAT-3' and 5 ' - T C A C . A T C A C A T C C T r G TGCT-.^' as forward 
and reverse prnncrs, respectively. 'I'he amplified PGR product 
was cloned into the pGEM-T Easy vector (Promega), to generate 
pGEM-T F.asy-VVTGFAP, and the entire sequence was confirjned 
against the GcnBank database entry for GI-'AI' (accession number 
.104.^69). The R416VV mutation was introduced by QuickChange 
site-directed mutagenesis (Stratagene) with u.se of the pGEM-T 
Easy-WTGI-AP vector as a template. The following mutagenic ol
igonucleotides that contained the desired G—T mutation at np 
124r3 were synthesized: .S'-GAAGACCGTGGAGA TGTGGGATGG-
AGAGGTCAT-3'and S'-ATGACCTCTCCATCCCACATCTCGAGG-
GTC' lTC-:r . The amplified PGR product containing the R416VV 
mutation was cloned into the pGEM-T Easy vector, and the mu
tation sequence was confirmed by DNA sequencing. For expres
sion in cultured mammalian cells, both the w ild-type and R416VV 
GEAP cDNA in the pGEM-T Easy vector were subcloned into the 
pcDNA3.1 (-) vector (Invitrogen) with use of the Xim\ and CcoRI 
restriction sites. The GEAP mutant R239C was also subcloned into 
pGDNA3.1 from the pRSVi vector-' with use of the restriction 
enzyme H//idlM. Eor expression in bacteria, wild-type and R416VV 
GEAP cDNA samples were subcloned into the pET23b vector (No-
vagen) with use of the Ndel and feVoRI restriction sites. 

Expression and Purification of Recontbinant GFAPs 

Eor bacterial expression of proteins, pET 23b vector containing 
either wild-type or mutant GEAPcDNA samples were transformed 
into llschcrichia cvli strain BL21(DE3) pEysS (NovagcnI. After trans
formation, cultures were grown in Euria Rertani medium supple-
iucntcd with appropriate antibiotics to Oi:),.,., of C S - C e , and pro

tein expression was induced by the addition of 0..5 jiiM isopropyl-
l-thio-/3-i)-galactopyranoside for 3 h. Overexpressed GEAP formed 
inclusion bodies, which were prepared as described elsewhere." 
The final pellets, consisting predominantly of GEAP, were solu-
bilized in extraction buffer (8 M urea, 20 mM Tris-EICl jpH 7.4], 
5 mM EDTA, 1 mM EGTA, 1 niM dithiothreitol |D'ITj, and 1 mM 
phenylmethylsulfonyl fluoride |PMSF|) at room temperature for 
3 h, and any insoluble material was removed by centrifugation, 
at 100,000 5, in a benchtop Optima MAX Ullracentrifuge with 
use of an MLA-80 rotor (lieckman Goulter). GFAP was further 
purified by ion-exchange chromatography with use of a Merck-
Elitachi Biochromatography system equipped with a Fractogel-
EMD TMAE 650S column (Merck) pre-equilibrated in the column 
buffer (6 M urea, 10 mM Tris-HCl |pH 8.0), 5 mM EDTA, 1 mM 
EGTA, 1 niM DIT, and 1 mM I'MSE). GFAP was eluted from the 
column with a linear gradient of 0-0.5 M NaCI in the same buffer 
over 1 h at a flow rate of 1 ml/min. The GEAP-enriched fractions 
were pooled, concentrated, and applied to a Eractogel EMD COO-
650S c o l u i T i n (Merck) and were pre-equilibrated with column 
buffer (6 M urea, 20 mM sodium formate |pH 4.0], 5 mM EDTA, 
1 mM EGTA, 1 mM DTT, and 1 tiiM PMSE). After washing with 
buffer B, GFAP was eluted with a linear gradient of 0-0.5 M NaCl 
in the same buffer. Column fractions were analyzed bySDS-PAGE, 
and those containing purified GEAP were collected and stored at 
-80°C. Protein concentrations were determined by bicinchonic 
acid assay (BCA reagent [Perbio Science)) w'ith use of BSA as 
standard. 

J)t Vitro Assembly and Sedimentation Assay 

Purified GEAP was diluted to 0.3 mg/ml in 6 M urea in a buffer 
of 10 mM Tris-l-ICI (pH 8.0), 5 mM EDTA, 1 mM EGTA, and 1 
mM DTE and was dialyzed stepwise against 3 M urea in the same 
buffer for 4-6 h at room temperature and then against the same 
buffer without urea overnight at 4°C. Filament a.ssembly was com
pleted by dialyzing against assembly buffer (20 mM imidazole-
ElCl IpH 6.8], 100 mM NaCI, and 1 inM D'lT) for 12-16 h at room 
temperature. The efficiency of in vitro assembly was assessed by 
sedimentation assay as described elsew-here.-' In brief, the assem
bly mixture was layered onto a 0.85-M sucrose cushion in assem
bly buffer and was centrifuged at 80,000 ^ for 30 min. To inves
tigate the effect of mutations on filament-filament interactions, 
assembled filaments were subjected to low-speed centrifugation 
at 3,000i' for 10 min in a bench-top centrifuge (Eppendorf). The 
supernatant and pellet fractions were analyzed by SDS-P.'\GE-' and 
were visualized by Coomassie blue staining. In .some instances, 
the proportion of GF.AP distributed between pellet and super
natant fractions was measured using an image analyzer (LAS-
lOOOplus |Fu|iEilm|). Coomassie blue signals for individual bands 
were quantified using the Image Gauge .software (v. 4.0) (EujiEilm). 

Electron Microscopy 

GEAP was diluted in assembly buffer to 100 ng/m\ and was neg
atively stained with Wn (w/v) uranyl acetate (Agar Scientific). 
Samples on carbon-coated copper grids were examined w îlh a 
Phillips 400T transmission electron microscope, with use of an 
accelerating voltage of SO kV. Images ŵ ere acquired at a magni
fication of 17,(K)0 X on Kodak 4489 film and then were digitized 
at 1,200 X 1,200-pixel resolution before being processed further 
in Adobe Photoshop 7 (Adobe Systems). 
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Cell Ciiltiircs and Tmnsicnl Traiisft'ction 

l l i i i i i a M breast cancer epithelial MCF7 cell.s ux-re obtained from 
the European Collection of Cell Cultures (Sigma). Human adrenal 
corte.K carcinoma SVV/cl.l and SVVl,'Vcl.2 cells were kindly pro
vided by Dr. Robert Kvans (University of Colorado l lealth Sciences 
Center, Denver). The human astrocytoma cell line U34.'?MG was 
a gift from Dr. lUitka (Toronto), and the cells were grown in rvMEM 
(Invitrogen). The.se cells express vimentin and GI'AP a s well as 
HSP27 and aB-crystallin. Primary mouse astrocytes from wild-
type and vimentin/GFAP double-knock littermates were a gen
erous gift of Dr. Milos Pekny (Goteborg, Sweden). They were pre
pared and grown as described elsewhere.-^ Unless otherwise 
stated, cell.s were grown in Dulbecco's modified Eagle medium 
supplemented with lO'Mi (v/v) fetal calf serum, 2 niM i.-glutamine, 
100 U/nil penicillin, and 0.1 mg/ml streptomycin (Sigma) and 
were maintained at iTC in a humidified incubator of 95% (v/v) 
air and i'Vn (v/\ | CO,. 

For transient transfection studies, cells grown on l.'̂ -mm cov-
erslips at a density of 40'Ki-50% confluency were transfected with 
pcDNA3.l(-) expressing either wild-type or R416VV GFAP, with 
use of Gene.luice transfection reagent (Novagen) according to the 
manufacturer's protocol. In some experiments, the R239CGFAP'' 
and myc-tagged ubiquitin (His,.-myc-Ubiquitin)-" were used. Cells 
were analyzed by double-label immunofluorescence microscopy 
-18 h after transfection. 

Antihoily Prorliiction 

Mouse jnonoclonal antibodies were made that specifically rec
ognized human but not wild-type R416VV GFAP. The immuno-
gen was a peptide doclecamer centered on the mutation site, 
K'FVEMWDGEVIK (Genemed Synthesis), which was linked to 
keyhole limpet heinocyanin. Monoclonal antibodies were pro
duced by the UAH Epitope Recognition Core, which also per
formed an initial ELISA screen against purified recombinant wild-
type and R4I6VV mutant GI'AP. The corresponding wild-type 
peptide, KTVEMRDGEVIK, failed to produce monoclonal anti
bodies specific to the wild-type sequence. 

Iinniiiiiostniiiiii;^ of Cells and Tissues 
and Ininniuinofhioresence Microscopy 

Immunocytochemislry of cultured cells was performed on cov-
erslips washed twice with PliS, and the cells were fixed in either 
ice-cold methanol/acetone (1:1 |v/v]) for 20 min or in 4'K) (w/v) 
paraformaldehyde/PBS for 10 min. In the case of paraformalde
hyde fixation, cells were subsequently permeabilized with O.S'X̂  
NP-40 in PUS for 10 min. After being washed l̂ vice w îth PBS 
containing 0.02% (w/v) sodium azide and 0.02'Mi (w/\ ) USA (PBS/ 
BSA/azidc), cells were blocked with lO'Kj (v/v) goat serum in PBS/ 
BSA/azide for 20 min and then were incubated with primary an
tibodies at room temperature for 1 h. The primary antibodies used 
in this study were mouse monoclonal anti-GFAP (G-A-.S, 1;500 
[Sigma]), rabbit polyclonal GFAP antibodies (Z03.34, 1:500 |Da-
ko|), monoclonal anti-human GFAP {SMl-21, 1:500 [Sternberger 
Monoclonals]), [nonoclonal anti-keratin 18 (LE41 (kindly pro
vided by Prof. Birgil l.ane, University of Dundee, Oimdee, United 
Kingdom), monoclonal anti-R416VV' GFAP (19.2 and 1A3, de
scribed below, 1:500), rabbit polyclonal anti-(;FAP (clone 3270, 
1:200)," polyclonal anti-vimenlin (clone 3052, 1:200),-" and the 
myc-epitope monoclonal antibody (Clone 9E1I. 1:10).-'" After 
cells \vere washed with PBS/BSA/azide, the primary antibodies 

were detected using Alexa 4S8 (1:4001Molecular Probes]) or Alexa 
594 (1 :600 |Moiecular Probes]) conjugated secondary antibodies. 
All antibodies were diluted in PBS/BSA/azide buffer. The gla.ss 
coverslip.s were mounted on slides with the fluorescent protecting 
agent Citifluor (Citifiuor Labs) and were obser\'ed with a Zeiss 
LSM 510 confocal laser scanning microscope (Carl Zeiss). Optical 
sections were set to ~ 1.0 ^m. Images were proces.sed and prepared 
for figures with Adobe Photoshop 7 (Adobe Systems). Quantita
tion of the GFAP filament phenotypes was by visual assessment 
of the cells and by scoring cells for the presence or absence of 
GFAP-containing aggregates. Approximately 100-150 transfected 
cells were assessed, and each experiment was repeated at least 
three times. 

Immunohistochemi.stry from normal human and Alexander 
disease brain sections was performed on 6 /zm-thick paraffin sec
tions kindly provided by Drs. Jim Goldman and Goumei Tang 
(Columbia Medical School. New York). Internal review board ap
proval was obtained from Columbia Medical School for these 
studies. Archival material for the infantile R416W Alexander dis
ease case used in this study was described elsewhere.'" Primary 
antibodies were rabbit anti-cow GFAP (Z0334, 1:5,000 [Dako]), 
and mou.se anti-R416VV GFAP (19.2, described below, 1:2,000). 
Secondary antibody for the peroxidase method was peroxidase-
conjugated donkey anti-mouse IgG (Jackson InimunoResearch) 
(1:2,000), with staining \-isualized using 3,3'-diaminobenzidine 
tetrachloride (DAB, metal-enhanced Substrate Kit ]Pierce]). Sec
ondary fluorescent antibodies are described above. Some sections 
were counterstained with l loechst 33258 (Sigma) to reveal nuclei. 

UltrnstnictiirnI Ajinlysis by Inurniimelectroii Microscopy 

MCF7 cells grown on 10-cm' petri dishes (Greiner Bio-One) were 
transfected with either wild-type or R416VV GFAP for 48 h. Cells 
were then fixed directly in 80 niM cacodylate buffer (pH 7.2) 
containing 1.25'Mi (v/v) glularaldeliyde and I'X) (w/v) paraformal
dehyde for 30 min at room temperature. Cells were scraped off 
the dish by a rubber policeman, were pelleted by low-speed cen-
trifugation, and were washed three times with cacodylate buffer. 
The cells were then postfixed with I'M. (w/v) osmium tetroxide 
in cacodylate buffer. After several waslies with distilled water, cells 
were subjected to a series of graded ethanol dehydration, followed 
by overnight incubation in 1:1 propylene oxide:epoxy resin 
(Durcupan [Sigma]). After two changes of lOO'Xj fresh resin, cell 
pellets were transferred to BEEM capsules (Agar Scientific) and 
were polymerized in fresh resin o\'ernight at 6(J°C. Ultrathin sec
tions were generated using a Leica Ultracut ultramicrotome and 
were collected on pioloform and carbon-coated nickel grids (Agar 
Scientific). Tlie grid specimens were then etched with I'Mi periodic 
acid, and osmium was removed by 2"A, (w/v) sodium periodate 
before incubation with blocking solution consisting of 0.5'Mi (w/ 
\ ) fish skin gelatin (Sigma) in PBS. Subsequently, sections were 
incubated with polyclonal anti-GFAP antibodies (clone 3270) di
luted 1:20 in blocking solution for 90 min, were washed three 
times in PBS, and then were incubated with protein A conjugated 
with 5-nm gold particles (British BioCell International) for 2 h. 
After several washes in distilled water, specimens were stained 
with saturated aqueous uranyl acetate (3'Ki Iw/v]) for 30 min, 
followed by staining with lead citrate for 30 min." Stained sam
ples were subsequently examined on an FEI Tecnai 12 transmis
sion electron microscope (FEI). 
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Figure 1. The dominant effect of R416W GFAP, revealed by 1n vitro assembly studies. Purified GFAP at a concentration of 0.3 mg/ml 
was assembled in vitro by stepwise dialysis into assembly buffer, as described in the "Material and Methods" section. Assembled filaments 
were negatively stained and were visualized by transmission electron microscopy. Under these assembly conditions, wild-type GFAP 
assembled into typical lO-nm filaments with length of several microns {A), whereas R416W GFAP alone and in different proportions 
with wild-type protein formed short filamentous intermediates that had a strong tendency to aggregate (S- f ) . It is difficult to see the 
structural detail of the aggregates formed by R416W GFAP (D) and mixtures thereof (6 and Q when negatively stained with uranyl 
acetate. Sometimes, less aggregated material can be found, and then, at higher magnification (f), the filamentous structures that 
comprise the aggregates are clearly seen. Mixing wild-type GFAP in either 75:25 (S) or 50:50 (Q proportions with R416W GFAP failed 
to rescue intermediate filament formation, and similar aggregates were formed (fi and C). A low-speed sedimentation assay was used 
to assess the extent of this aggregation. F, Wild-type (WT) {lanes 1 and Z) and R416W GFAP {lanes 7 and S) were assembled, either 
individually or in mixtures of 75:25 {lanes 3 and 4) or 50:50 {lanes 5 and 6) WT:R416W GFAP. After assembly, the samples were subjected 
to low-speed centrifugation, and the resulting supernatant (S) and pellet (P) fractions were analyzed by SDS-PAGE and were visualized 
by Coomassie blue staining. Whereas only one-third of assembled wild-type GFAP was sedimented {lane 1), almost all the R416W mutant 
was found in the pellet fraction {lane 8). Mixing wild-type GFAP with the R416W mutant in different proportions did not dramatically 
increase the GFAP signal in either the supernatant fraction of the 50:50 mixture (tone 5) or the 75:25 mixture (tone 3). These data 
show that the effects of R416W GFAP on in vitro filament assembly is dominant over the wild-type protein. Bars = 1 /jm, except in 
panel E, where it is O.l^m. 

Preparation of Cytoskeletal Fractions ami bnniunohlotting 
Analysis 

Cells grown on lO-cm ' petri dishes were transfected with control 
vector (pcDNA:^.l) or vectors containing cither wild-type or 
R416W GFAP cDNA. At 48 h after transfection, cells were lysed 
using two different extraction buffers, designed to test the resis
tance of GFAP filaments and aggregates to extraction. In the mild 
extraction protocol, cells were lysed on ice for 15 min in 1 ml 
mild extraction huflcr (MEB; 20 mM Tris-HCl |pH 7.6], 140 mM 
NaCl, 5 mM EDTA, 1 mM EGTA, 0.5'X) [v/v] NP-40 supplemented 
with Complete [irotcase inhibitor cocktail IRcx'he Diagnostics], 
ami 1 mM PM.SF). In the more severe extraction prcitocol, cells 
were lysed in 1 ml of a harsher extraction buffer (HF.B) containing 

deoxycholate (20 mM Tris-HCl [pH 7.6], 140 mM NaCl, 5 mM 
EDTA, 1 mM EGTA, \% Jv/v] NP-40, 0.5% [w/v] sodium deoxy
cholate supplemented with Complete protease inhibitor cocktail 
]Roche Diagnostics], and 1 mM PMSF). Cell lysates were collected, 
were homogenized in a Dounce homogenizer (Wheaton), and 
were centrifuged at 16,000 g for 15 min at 4°C. The pellet was 
resuspended in pelleting buffer (20 mM Tris-HCl ]pH 8.0], 10 mM 
MgCh, and 1 mM PM.SF) containing 250 U/ml benzonase nucle
ase (Novagen) and was incubated for .̂ 0 min at room temperature. 
After repelleting, the final pellets were washed in PBS containing 
1 mM PMSF and then were resuspended in Laemmli's sample 
buffer,'^ in a volume that was equivalent to the supernatant. .Su
pernatant and pellet fractions were then boiled for 5 min in 
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Figure 2 . Effect of R416W and R239C mutations on the de novo GFAP IF network formation in IF-free cells. SW13/cl.2 {A-Q and 
primary astrocytes derived from GFAP/vimentin-null mice (D-f) were transiently transfected with either wild-type {A and D), R416W (6 
and E), or R239C (C and f) GFAP. At 48 h after transfection, the distribution of GFAP was assessed by confocal immunofluorescence 
microscopy with use of the rabbit polyclonal anti-GFAP antibody. When expressed in SW13/cl.2 cells, wild-type GFAP assembled into 
bundled filaments that extended throughout the cytoplasm [A). In contrast, cells transfected with either R416W (S) or R239C (C) GFAP-
expression plasmiiJs exhibited only GFAP-positive aggregates. In the IF-free mouse astrocytes, wild-type GFAP assembled into extended 
filaments at the cell periphery with some perinuclear accumulations (0), whereas R416W mutant GFAP formed punctuate aggregates 
scattered throughout the cytoplasm without any detectable filaments (f) . Expression of R239C GFAP also induced numerous GFAP 
aggregates in the cytoplasm (f). For both R416W and R239C GFAP all the transfected cells had aggregates. Bars = 10 |ttm. 

I.aemmli's sample buffer, and equal \ olumes were analyzed by 
SDS-PAGF. and immunoblotting. Actin was used as a loading con
trol for these samples. 

Imtiiunoblotting was performed using the semidry blotting 
method, according to the manufacturer's specifications (Bio-Rad 
Laboratories). After the blotting, protein-transfer efficiency was 
assessed by Ponceau S (Sigma) staining of the nitrocellulose mem
brane, followed by destaining in Tris-buffered saline (TBS; 20 raM 
Tris-HCI [pH 7.4], and 150 mM NaCl). Membranes were blocked 
for 2 h in blocking buffer containing 5% (w/v) BSA in either TrBS 
(TBS containing Q.l'Vn [v/v] Tween 20) or PBST (5'Mi jw/v] nonfat 
milk and O.V'A, |\/v] Tween-20 in PBS) and were incubated for 2 
h with mouse monoclonal anti-GFAP (GA-5), tiionoclonal anti-
human GFAP {SMl-21), monoclonal anti-actin (AC-40 [Sigma]), 
or rabbit polyclonal anti-GFAP antibodies (3270) diluted by 1; 
.S,()(K) in blocking buffer. In sotne e.xperiinents, the mouse inono-
clonal antibodies to the c-myc epitope (9E10, diluted by 1 :l(Mi 
in blocking buffer) were used to detect tagged ubiquitin after 
transfection. After several washes with TTBS, the membrane was 
incubated for 1 h with horseradish peroxidase-conjugated sec
ondary antibodies (Dako) diluted by 1:2,000 in blocking buffer, 
followed by washing with TBS for 30 min. Antibody labeling was 
detected by enhanced chemiluminescence (ECL Plus [Amersham 
Biosciences]) with use of a lutiiinescent linage analyzer (I.AS-
lOOOplus [FujiFilmj). The strength of signal was quantified using 
the Image Gauge software (v. 4.0) (Fu j iF i l n i i . 

Immunoblotting of brain samples was performed using anon

ymous, frozen tissues kindly provided by Drs. Jiin Goldman and 
Goumei Tang (New 'Vbrk). The tissues were Dounce homogenized 
on ice in 10 mM Tris-HCI (pH 7.4), 2 mM 3-inercaptoethanol, 
O.I M NaCl, 5 mM EDTA, and I x protease inhibitor cocktail 
(Sigma) at a 10:1 (v/w) buffer:tissue ratio. The homogenate was 
centrifuged at 80,000 for 1 h at 4°C, and the pellet was dis.solved 
in -15 volumes of the above buffer containing Z"/n (w/v) SDS. 
After deterinination of protein concentrations with the BCA re
agent (Pierce), triplicate sets of 500-ng aliquots of each extract 
were run on a 10% (w/v) SDS-polyacrylainide gel, with 20-ng 
samples of purified recoinbinant wild-type and R416W GEAP. Af
ter transfer to Ilybond ECL membranes (Amersham Pharmacia 
Biotech), the blots were probed with either anti-human GFAP 
monoclonal antibody SMI-21 (SternbergerMonoclonal)(1:2,000) 
or anti-R416W GFAP monoclonal antibodies 1A3 or 19.2 (1:1,000 
dilution). Signals were detected by ECL (Amersham) and were 
visualized using a Chemlmager 44(X) (Alpha Innotech). 

Results 
Effect ofR416W Mutation on In Vitro GFAP Assembly 

In vitro assembly studies were performed to determine 
how the R416W mutation affects the structural properties 
of GFAP filaments. Purified recombinant wild-type and 
R 4 I 6 W GFAP, produced in £. coli with a pET-based e.x-
pressic:)n system, were assembled in vitro by dialysis-based 
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Figure 3 . The n e t w o r k - f o r m i n g ab i l i t i es o f t he w i l d - t y p e and R416W GFAP i n S W 1 3 / c l . l cells. S W 1 3 / c l . l cells t r ans ien t ly t ransfected 
w i t h ei ther w i ld - type {A and 6 ) or R416W (C and D) GFAP were f ixed at 48 h a f t e r t r ans fec t ion and were processed fo r double- label 
confoca l immunof luorescence microscopy. GFAP immunofluoresence is shown in panels A and C, whereas the coun te r s ta in ing fo r v imen t in 
is i n panels B and D. Not ice t h a t w i l d - t y p e GFAP [A) incorporated i n t o endogenous v i m e n t i n (Vim) ( f i ) networks, whereas th i s 1s no t 
the case fo r R416W GFAP ( Q . Whereas some t ransfected cells exh ib i t ed one large inc lus ion w i t h small aggregates at the ce l l periphery 
{arrowheads i n C), other t ransfec ted cells displayed bundled f i laments (orrows i n Q t h a t coal igned w i t h the endogenous v i m e n t i n {arrows 
1n D). Bars = 10 f t m . (A color version o f t h i s f igure is available i n t h e on l ine e d i t i o n o f t he j o u r n a l . ) 

assembly and were visual ized by negative s ta in ing w i t h 
u r a n y l acetate f o l l o w e d by e lec t ron microscopy. Whereas 
w i ld - t y p e GFAP assembled i n t o t y p i c a l 10-nm filaments 
( f ig . lA), R416W GFAP o n its o w n or i n c o m b i n a t i o n w i t h 
mixtures of w i l d - t y p e GFAP fa i led t o f o r m extended fila
ments (f ig . 1B-1£ ) . Instead, i t f o r m e d short rod-l ike struc
tures tha t looked l ike short filament pieces tha t had fai led 
to elongate and compact p roper ly i n t o l O - n m filaments 
( f ig . 1£) . These had a s t rong t endency to lateral ly associate 
i n t o aggregates ( f ig . I D ) . Because the R416W m u t a t i o n is 
heterozygous i n patients w i t h Alexander disease, we also 
assessed the assembly behavior of R416W mutan t GFAP i n 
the presence of increasing p ropo r t i ons o f wi ld - type GFAP. 
At b o t h 50:50 ( f ig . I C ) a n d 75:25 ( f ig . I B ) p ropor t ions o f 
w i ld - type :R416W GFAP, n o r m a l filament assembly was 
d i smpted , and aggregates s imi la r to those made by R416W 
GFAP alone (f ig . I D ) were f o r m e d instead. These data i n 
dicate that, i n v i t r o , the R416W m u t a n t GFAP acts i n a 

d o m i n a n t manne r over the w i ld - t y p e p ro te in . These data 
suggested tha t the assembled R416W GFAP filaments were 
p rone to aggregation; therefore, we pe r fo rmed a low-speed 
c e n t r i f u g a t i o n assay designed to m o n i t o r the extent of 
filament-filament interactions i n the w h o l e filament pop
u l a t i o n . " W i t h use o f th is assay, o n l y app rox ima te ly one-
t h i r d o f the w i ld - t y p e GFAP was f o u n d i n the supernatant 
f r a c t i o n ( f ig . I f ; e.g., lanes I and 2) . I n contrast , w h e n 
assembled o n its o w n , nearly al l o f the R416W GFAP se-
d i m e n t e d i n t o the pellet f r ac t ion ( f ig . I f ; e.g., lanes 8 and 
7). High-speed cen t r i fuga t ion assay c o n f i r m e d that the 
w i ld - t ype GFAP had assembled ef f ic ien t ly , because >90% 
of the p ro t e in was sedimented under standard c e n t r i f u 
ga t ion c o n d i t i o n s ' ' ^ ' (data no t shown) . Decreasing the 
p r o p o r t i o n of m u t a n t GFAP i n mix tures w i t h w i ld - t y p e 
GFAP ( f ig . I f ; lanes 3-6) fai led to marked ly increase the 
p r o p o r t i o n of soluble mater ial . These data suggest that the 
R416W GFAP m u t a t i o n promotes more i n t e r f i l a m e n t i n -
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Figure 4. Expression o f R416W m u t a n t in MCF7 cells resulted i n t h e f o r m a t i o n o f GFAP aggregates. MCF7 cells t ransfec ted w i t h ei ther 
w i ld - type {A and S) or R416W GFAP ( f and D) were processed at 48 h a f t e r t r ans fec t ion fo r confocal double- label immunof luorescence 
microscopy w i t h use o f an t ibodies against GFAP {A and Q and kera t in (6 and D). When expressed in these cells, w i l d - t y p e GFAP fo rmed 
extended f i laments as we l l as perinuclear f i l a m e n t bundles [A) t h a t par t ia l ly colocalized w i t h kerat in IF networks {arrows i n A and B). 
I n contrast , t ransfec ted cells expressing R416W GFAP exh ib i t ed large aggregates ( Q t h a t also cocollapsed the endogenous kerat in IF 
networks {arrows in C and D). Bars = 10 f t m . (A color version o f t h i s f igure is available in t he onl ine e d i t i o n of the j o u r n a l . ) 

teractions and tha t th is effect is again d o m i n a n t over the 
wi ld - type p ro t e in . 

Effect ofR416W Mutation on GFAP Network Formation 
in Cells Lacking Endogenous CFAP 

Iransient t ransfec t ion assays were used t o investigate the 
effects of the R416W m u t a t i o n o n the f o r m a t i o n o f GFAP 
ne tworks i n a range o f ce l l l ines tha t have d i f f e r e n t IF 
composi t ions . To de te rmine the effect of the R416W m u 
t a t i o n o n de n o v o IF ne twork f o r m a t i o n , we selected as 
the host cells the h u m a n adrenocarc inoma-der ivedSW13/ 
c l .2 cel l l ine , w h i c h does n o t c o n t a i n any endogenous 
cytoplasmic IFs ." W h e n expressed i n SW13/cl .2 cells, 
w i ld - type GFAP fo rmed f i laments ( f ig . ZA), i n agreement 
w i t h previous s tudies ." ''' I n contrast , R416W GFAP fai led 
to assemble i n t o filaments but instead fo rmed clusters of 
cytoplasmic aggregates ( f ig . 2B). Similar results were ob
served w h e n w i l d - t y p e ( f i g . ZD) and R416W plasmids ( f ig . 
2£ ) were t rans ien t ly transfected i n t o p r i m a r y astrocytes 

derived f r o m mice lacking GFAP and viment in . - '* For c o m 
par ison, R239C GFAP was also transfected i n t o b o t h these 
cel l l ines ( f ig . 2C and 2F), and, l ike R 4 I 6 W GFAP, i t also 
f o r m e d numerous cytoplasmic aggregates w h e n the cy to
megalovi rus p romote r was u.sed to drive m u t a n t GFAP ex
pression. Previous studies have already established that 
the R239C m u t a t i o n i n GFAP makes the filaments more 
stable and changes the organiza t ion o f GFAP networks i n 
t ransfected cells. Taken together, these data suggest t ha t 
the R416W m u t a t i o n , l ike the R239C m u t a t i o n , affects the 
ab i l i ty of GFAP to self-assemble i n t o an extended filament 
n e t w o r k i n IF-free p r imary cells and that th i s def ic iency 
is independent o f the cellular background. 

Recent studies have revealed tha t t w o or more IF pro
teins are required for the f o r m a t i o n of most n o r m a l IF 
ne tworks i n v i v o , i n c l u d i n g those f o r m e d by the type I I I 
IF prote ins GFAP, desmin, and v i m e n t i n . For instance, des-
m i n requires pa ranemin to produce an extended IF net
w o r k i n nonmuscle-der ived cell lines. '" V i m e n t i n requires 
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t i l AP to f o r m l i laments i n astrocytes,'" whereas, i n other 
cell types, x i m c n t i n coassembles w i t h nest in . ' " Whereas 
GFAP is able t o self-assemble i n t o IFs w i t h i n astrocytes 
l ack ing v i m e n t i n , v i m e n t i n is requi red f o r the correct 
spacing o f the assembled f i laments . '" Therefore, it is i m 
por tan t to assess the assembly behavior o f GFAP i n cells 
c o n t a i n i n g this key assembly partner. 

For these e.xperiments, S W 1 3 / c l . l cells tha t express v i 
m e n t i n IFs were selected for t ransient t ransfec t ion studies. 
I n th i s cel l l ine , w i l d - t y p e GFAP assembled I n t o f i l a m e n 
tous networks ( f ig . 3/1) tha t colocallzed w i t h the endog
enous v i m e n t i n IFs ( f ig . 38). I n contrast, most of the cells 
transfected w i t h R416W GFAP conta ined large aggregates 
( l ig . 3C; arrows) w i t h smal l c lumps at the cel l per iphery 
( f ig . 3C; arrowheads). These aggregates disrupted the en
dogenous v i m e n t i n IF networks , usually causing t h e m to 
collapse i n t o a large perinuclear aggregate (Fig. 3D; arrows). 

The f i n d i n g tha t R416W GFAP caused the collapse o f 
the endogenous v i m e n t i n IF n e t w o r k led us t o examine 
its effects o n kerat in networks , IF proteins tha t do n o t 
coassemble w i t h GFAP. For these experiments , we used 
a h u m a n breast cancer ep i the l i a l MCF7 cell l ine tha t ex
presses o n l y kerat in IF proteins (K8, K18, and K I P ) . ' " 
W h e n transfected I n t o th i s cel l l ine , wild-t^Tie GFAP as
sembled i n t o f i laments tha t tended to bundle In most o f 
the transfected cells ( f ig . 4A) . The GFAP filament networks 
were f o u n d to par t ia l ly coa l ign w i t h the kerat in IF net
works ( f ig . 4B; arrows), w h i c h is consistent w i t h previous 
o b s e r v a t i o n s . I n contrast , nearly al l MCF cells express
ing R416W m u t a n t GFAP f o r m e d aggregates ( f ig . 4C; ar
rows) tha t o f t e n collapsed the endogenous kerat in IF 
networks ( f ig . 4D; arrows). These results suggest that the 
R416W m u t a t i o n no t o n l y impa i red the ab i l i ty of GFAP 
to f o r m n o r m a l IF n e t w o r k but also revealed a d o m i n a n t 
effect o n endogenous kera t in filament networks i n the 
absence of any obvious coassembly. 

The relative expression levels and so lub i l i t y of the w i l d -
type and the R416VV GFAP were de te rmined by I m m u n o -
l ) l o t t i ng of extracts f r o m MCF7 cells prepared using a m i l d 
lysis buf fe r p ro toco l . Analysis o f b o t h supernatant and 
pellet f ract ions revealed no endogcnt)us GFAP expressed 
In nontransfected MCF7 cells ( f ig . SA; lanes 1 and 2). I n 
contrast, cells transfected w i t h ei ther wi ld - type ( f ig . SA; 
lanes 3 and 4) or R416W ( f ig . 5A; lanes .S and 6) GFAP 
generated proteins o f the expected size at comparable lev
els, suggesting that aggregate f o r m a t i o n is l ikely due t o the 
m u t a t i o n per se rather t h a n elevated expression levels. 
A l t h o u g h a small f r a c t i on o f w i l d - t y p e GFAP remained i n 
the supernatant f r ac t ion ( f ig . SA; lane 3), R416W GFAP 
was f o u n d exclusively i n the pellet f r ac t ion ( f ig . 5^4; lane 
6), consistent w i t h its sequestration I n t o cytoplasmic ag
gregates. Equal l oad ing f o r the various supernatant and 
pellet f ract ions was ver i f ied us ing an an t l -ac t in an t ibody 
( f ig . 5i?). 
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Figure 5 . Analysis of wild-type and R416W GFAP expression in 
transfected MCF7 cells by immunoblotting. MCF7 cells were trans
fected with either wild-type ((ones 3 and 4) or R^iieW GFAP [lanes 
5 and 6). Untransfected cells were used as a control {lanes 1 and 
2). At 48 h after transfection, cells were collected, lysed with MEB, 
and centrifuged at 18,000 g for 15 min at 4°C. The resulting su
pernatant (S) and pellet (P) fractions were analyzed by SDS-PAGE, 
followed by immunoblotting using anti-GFAP {A) and anti-actin 
(S) antibodies. The blots were developed by the ECL system. Notice 
that, after transfection into MCF7 cells, both wild-type and mutant 
GFAP expressed at comparable levels, although proteolyzed GFAP 
fragments with slightly higher electrophoretic mobilities were also 
detected. Most of the wild-type GFAP was detected in the pellet 
fraction {A, lane 4) with a small proportion that remained soluble 
[A, lane 3), whereas the R416W GFAP was found exclusively in the 
pellet fraction {A, lane 6). Equal loading of each supernatant and 
pellet fractions was confirmed by probing with anti-actin antibody 
(8). 

Aikilysis of R416W GFAP AxiTCi;atM in MCF7 Cells 
by Electron Microscopy 

The h i g h t r ans fec t ion e f f i c i ency o f b o t h w i l d - t y p e and 
R416W GFAP In MCF7 cells a l lowed us t o fijrther analyze 
t h e u l t ras t ruc tura l o rganiza t ion o f GFAP by Immunoe lec -
t r o n microscopy. MCF7 cells transfected w i t h plasmids ex
pressing ei ther the wi ld - type or the R416VV GFAP were 
processed fo r I m m u n o g o l d label ing w i t h antl-GFAP an t i 
bodies f o l l o w e d by p ro te in A conjugated w i t h 5 -nm gold 
particles. I n cells expressing wi ld - type GF.AP, fibrous re
gions consis t ing of l O - n m filaments were observed ( f ig . 
6A and 6B). These filaments were organized i n t o bun
dles tha t traversed the cy toplasm ( f ig . 6A). A t a higher 
m a g n i f i c a t i o n , i n d i v i d u a l filaments were decorated w i t h 
go ld particles ( f ig . 6B; arrows), c o n f i r m i n g the presence 
of GFAP i n these filaments. I n contrast, cells expressing 
R416W GFAP displayed electron-dense aggregates, d is t r ib
uted t h r o u g h o u t the cytoplasm (f ig . 6C; arrows), tha t were 
o f t e n accompanied by IFs ( f ig . 6C; asterisks). A t a higher 
m a g n i f i c a t i o n , these electron-dense aggregates appear as 
amorphous membrane-free structures composed of aggre
gated GFAP, as evidenced by the presence of gold particles 
( f ig . 6D; arrows). 
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Figure 6. Ul t ras t ruc tura l analysis o f w i l d - t y p e and R416W GFAP in MCF7 cells by immunoelec t ron microscopy. MCF7 cells t ransfec ted 

w i t h e i ther w i l d - t y p e {A and B) or R416W (C and 0) GFAP were processed a t -48 h a f t e r t r ans fec t ion fo r i m m u n o g o l d l abe l ing , as described 

in t he "Mater ia l and Methods" sec t ion . I m m u n o g o l d label ing o f u l t r a t h i n sections was stained and visualized by a t ransmiss ion electron 

microscope. Wi ld- type GFAP assembled i n t o f i l aments t h a t were organized i n t o paral lel bundles [A). I n contrast , cells expressing the 

R416W mutan t f o rmed membrane-free irregular-shaped structures composed of electron-dense aggregates at t he perinuclear region ( Q , 

o f t e n in association w i t h IFs {asterisks [*] i n C). Panels B and D are higher magn i f i ca t ion views o f the boxed areas o f panels A and C, 

respectively, showing t h a t bo th the f i l aments (S) and aggregates (D) were decorated w i t h B-nm gold par t ic les [arrows i n B and D), 

conf i rming the i d e n t i t y o f GFAP. 

Effects ofR416W GFAP on Eiulogi'iwus GFAP Networks 
ill Primary Astrocytes 

The assembly behavior o f R416W GFAP was also examined 
i n mouse p r i m a r y astrocytes, to test the effects o f endog
enous wi ld - type GFAP and v i m e n t i n IFs o n the aggrega
t i o n process. The d i s t r i b u t i o n of transfected GFAP i n re
l a t i o n t o the endogenous GFAP was visualized by double-
label immunof luorescence microscopy w i t h use of m o n o 
c lonal an t ibody SMI-21 ( f i g . 7A and 7C), w h i c h specif ical ly 
recognizes h u m a n GFAP, and po lyc lona l ant i-panGFAP 
ant ibody, w h i c h recognizes bo th the endogenous mouse 
GFAP and the transfected h u m a n GFAP (f ig . 7B and 7D) . 
Mouse astrocytes t rans ien t ly transfected w i t h w i l d - t y p e 
GFAP m a i n l y f o r m e d filaments ( f ig . 7A) tha t colocalized 

w i t h the endogenous GFAP n e t w o r k (f ig . 7B; arrows). In 
contrast , the effects o f R 4 I 6 W GFAP e.xpression i n astro
cytes were s imi lar to those observed f o r the v i m e n t i n - c o n -
t a i n i n g .SW1.3/cl.l cells. Most of the transfected cells con
ta ined cytoplasmic aggregates w i t h smaller particles at the 
cell per iphery ( f ig . 7C), w h i c h colocalized w i t h collapsed 
endogenous GFAP networks ( f ig . 7C and 7D; arrows). I n 
some transfected cells, however, expressed R416W GFAP 
was incorpora ted i n t o the endogenous GFAP networks 
w i t h o u t any apparent changes ( f ig . 7C and 7D; cell o n the 
r igh t ) . Careful examina t ion revealed tha t there were small 
aggregates i n t e r m i n g l e d w i t h the filaments ( f i g . 7D; ar
rowheads), w h i c h were i m m u n o p o s i t i v e f o r the h u m a n 
R416W GFAP indica t ive of perhaps an early change i n the 
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Figure 7. Transient expression of w i l d - t y p e or R416W GFAP in primary mouse astrocytes. Primary mouse astrocytes were t ransfected 

w i t h e i ther human w i l d - t y p e {A and S) or R416W (C and D) GFAP. A t 48 h a f t e r t r ans fec t ion , cells were processed fo r double- label 

immunof luoresence microscopy w i t h use o f an t i -human GFAP monoc lona l an t ibody (SMI-21) and anti-panGFAP polyc lonal ant ibodies 

( 3 2 7 0 ) . When expressed in mouse pr imary astrocytes, w i l d - t y p e GFAP fo rmed f i l aments [arrows m A) that colocalized w i t h t he endogenous 

mouse GFAP [arrows i n 6 ) . The expression o f human R416W GFAP resulted i n bo th f i l amentous [arrowheads in f ) and aggregate s ta in ing 

pat terns [arrows i n Q, which also costained w i t h t he endogenous mouse GFAP [arrows and arrowheads, respectively, in D). Bars = 10 

^ m . (A color version o f th i s f igure is available in the on l ine e d i t i o n o f the j o u r n a l . ) 

organiza t ion of the GFAP filaments preceding the eventual 
collapse o f the ne twork . 

Detection of R416W GFAP in Alexander Disease Brain 
with Mutant-Specific Monoclonal Antibotiies 

The a m i n o acid sequences of mouse and h u m a n GFAP are 
h i g h l y homologous , w i t h 91% i d e n t i t y and 9 5 % similar
i t y , " but species differences cou ld inf luence the assembly 
properties o f the m u t a n t h u m a n R 4 I 6 W CSFAP i n mouse 
astrocytes. To f o l l o w the fate of the h u m a n R416W GFAP 
i n the presence o f the endogenous w i ld - t ype h u m a n GFAP, 
we sought t o develop mouse m o n o c l o n a l ant ibodies tha t 
specifically recognized h u m a n R416W GFAP but no t w i l d -
type GFAP, and vice versa (see the "Mater ia l and Methods" 
section for details). The i m m u n o g e n specific fo r the w i l d 
type fai led to e l ic i t any GFAP m o n o c l o n a l ant ibodies . The 
R416W GFAP peptide, however, y ie lded t w o m o n o c l o n a l 
antibodies, 19.2 and lA.^, tha t recognized R416W GFAP 

but not w i l d - t y p e GFAP, as judged by i m m u n o b l o t s of pu
r i f i ed , r ecombinan t proteins ( f ig . 8A}. I n add i t ion , nei ther 
of these m o n o c l o n a l ant ibodies crossreacted w i t h a lysate 
f r o m a n o r m a l bra in or w i t h a lysate f r o m a bra in con
ta in ing another GFAP m u t a t i o n c o m m o n l y associated w i t h 
Alexander disease, R239C, and b o t h produced signals f r o m 
lysates o f R 4 I 6 W bra in tha t were nearly ident ica l to those 
o f the c o n t r o l SMI-21 m o n o c l o n a l an t ibody ( f ig . 8A). Suit
ab i l i ty fo r i m m u n o h i s t o c h e m i s t r y was demonstrated by 
i m m u n o s t a i n i n g SWI.?/cl2 cells transfected w i t h vectors 
expressing either the m u t a n t R416W or w i ld - t y p e p ro t e in 
(data no t shown) . 

The R416W GFAP-specific m o n o c l o n a l ant ibodies t h e n 
al lowed us to de te rmine whe the r R416W GFAP incorpo
rated i n t o Rosenthal fibers, normal-appear ing filaments, 
or b o t h . S ta in ing of n o r m a l , c o n t r o l brain was first tested 
as a negative con t ro l . C o n t r o l b ra in was readily stained 
by a standard, GFAP po lyc lona l an t ibody ( f ig . SB), but n o 
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Figure 8. Characterization o f R416W GFAP-specific an t ibodies and demons t ra t ion o f i ts presence i n Rosenthal f ibers . A, I m m u n o b l o t s , 
performed as described i n the "(Material and Methods" sect ion, w i t h use o f pu r i f i ed , recombinant human wi ld - type (hGF-WT) and R416W 
(hGF-R416W) GFAP and lysates f r o m brain samples taken f r o m ei ther c o n t r o l human (WT) or pa t ien t s w i t h Alexander disease t h a t harbor 
e i ther an R239C m u t a t i o n (R239C) or an R416W muta t ion (R416W) in GFAP. The general an t i -human GFAP monoc lona l an t ibody (SMI-
21) reacts w i t h a l l samples, whereas the ant i -R416W monoclona l an t ibodies (1A3 and 19.2) produce signals f r o m R416W-conta in ing 
samples only, w i t h the pa t te rn fo r t he R416W pa t ien t lysate iden t i ca l t o t h a t o f S M I - 2 1 . The i d e n t i t y o f the immunopos i t i ve bands 
above and below t h e prominent GFAP-positive band are as ye t unknown. The lower bands most l ike ly correspond to degradat ion products, 
since these are normal ly seen in con t ro l brain samples. The upper bands are common to both the R239C and R416W samples, suggest ing 
these are a common feature o f Alexander disease pathology, but , as yet, the reason fo r the i r slower electrophoret ic m o b i l i t y is u n k n o w n . 
Panels B and C are s t r ia tum in a con t ro l (normal ) brain s tained w i t h standard po lyc lona l GFAP an t ibody (S) and by R416W monoclona l 
an t ibody 19.2 {Q. Note t h a t the R416W an t ibody does n o t crossreact w i t h normal human brain t issue. Panels D-F are brain sections 
f r o m a pa t i en t w i t h the R416W GFAP m u t a t i o n t h a t are s tained w i t h t he monoc lona l 19.2 an t ibody and then are visualized by ei ther 
peroxidase- (D) or rhodamine- tagged secondary ant ibodies ( f ) or are s tained w i t h t he rabbi t po lyc lona l GFAP ant ibody (Dako) and then 
are detected w i t h FITC-tagged secondary ant ibodies {£) . Nuclei are counters ta ined w i t h Hoechst 33258 ( f and F [see the "Mater ia l and 
Methods" section fo r procedure de ta i l s ] ) t o assist comparison o f t he panels E and F. Numerous Rosenthal fibers are s tained around the i r 
periphery {arrows i n f and F), a fea ture o f t e n reported fo r these aggregates (e .g . , t h e work o f Tomokane et a l . " ) . Normal - look ing GFAP 
f i l aments are also s tained by the R416W-specific mAb {arrowheads in F) and can be detected by the d i f fuse s ta in ing in o ther parts of 
the sec t ion . 



signal was produced w i t h the R4I6VV an t ibody (f ig. 8C), 
c o n f i r m i n g the i m m u n o b l o t results that the K416W a n t i 
body docs not cro.ssreact w i t h n o r m a l h u m a n brain GFAP. 
O n the other hand, the R416W an t ibody s t rongly stained 
bra in f r o m a patient w i t h Alexander disease w h o harbored 
an R416W m u t a t i o n , w i t h use o f ei ther peroxidase ( f ig . 
8 0 ) or fiuore.scent ( f ig . 8 f ) de tec t ion methods . This stain
ing was apparent b o t h a long the periphery of the Rosen
tha l fibers and in normal -appear ing filaments ( f ig . 8 f ) and 
largely colocalized w i t h s ta in ing o f total GFAP ( f ig . 8 £ ) . 
These data c o n f i r m the specif ic i ty o f the R416VV ant ibod
ies produced. Impor t an t ly , they also demonstrate, for the 
first t ime, tha t the m u t a n t p ro te in is stably expressed in 
patients w i t h the R416W m u t a t i o n and that it is incor
porated i n to bo th filaments and Rosenthal fibers. 

Assembly PivpeiUcs of Mutant CFAP Expressed in Human 
Cells Contauung Endogenous CFAP Filament Nchvorks 

These R416W GFAP-specific monoc lona l antibodies also 
permi t ted us to f o l l o w the fate o f R416W GI-'AP when t ran
sient ly expressed i n h u m a n astrocytoma U.343MG cells. 
This cell system w o u l d be expected to better m i m i c the 
scenario of R416W GFAP being expressed i n a h u m a n 
astrocyte cell background and removes po ten t ia l species 
conf l ic ts . In this model system, R416VV GFAP induced the 
f o r m a t i o n o f GFAP-rich aggregates ( f ig . 9A and 9B; arrows). 
These data show that R416W GFAP is capable o f d i s rup t ing 
the endogenous networks of w i ld - t ype GFAP filaments 
w i t h i n the context of a h u m a n astroc\ ' toma cell l ine and 
once again demonstrate the d o m i n a n t negative potent ia l 
o f the mutan t R416W GFAP o n the endogenous IFs. 

Similarities between the R416W-lnduced Aggregates 
ill Transfected Cells and Rosenthal Fibers 

In previous studies of Alexander disease pathology, several 
o ther proteins were f o u n d to associate w i t h Rosenthal fi
bers, i n c l u d i n g the smal l heat shock proteins (sHSPs) aB-
crys ta l l in" and HSP27.'" We investigated whether these 
proteins w o u l d associate w i t h the aggregates of R416VV 
CFAP fo rmed in the U 3 4 3 M G astrocytoma cells ( f ig . 9 C -
9 f ) . Both aB-crystal l in ( f ig . 9D; arrows) and HSP27 ( f ig . 
9 f ; arrows) colocalized wMth the GFAP-conta in ing aggre
gates in tliese cells ( f ig . 9C and 9£ , respectively; arrows). 
Rosenthal fibers are also ub iqu i t i na t ed . " Thai the GFAP 
aggregates i n transfected cells are also ub iqu i t i na t ed was 
demonstra ted by cot ransfec t ion of Flis,;-myc tagged ub i -
q u i t i n - ' ' a long w i t h R416W GFAP i n t o the h u m a n astro
cy toma cells ( f ig . 9G and 9H; arrows). Thus, the aggregates 
f o r m e d by R416W GFAP i n the t rans ient ly transfected hu
m a n astrocytoma cells have m a n y features reported else
where and expected fo r Rosenthal fibers." 

To ob ta in b iochemica l evidence of the similari t ies be
tween the Rosenthal fibers i n pat ients and the R 4 I 6 W 
GFAP aggregates fo rmed in the transfected U.34,3MG cells, 
we extracted the cells and m o n i t o r e d the .solubility o f the 
CFAP and the associated pro te in chaperones ( f ig . 90 . VVith 

use of an ext rac t ion buffer c o n t a i n i n g deoxychola tc , wi\d-
type CF.'XI' was almost comple te ly extracted f r o m bo th the 
untransfected ( f ig . 91; M o c k ) and w i l d - t y p e CFAP trans
fected cells ( f ig . 91; WT) , cond i t ions that also extracted aB-
crys ta l l in , HSP27, and HSP70 (f ig . 9/; M o c k and W T ) . I n 
contrast, R416W GFAP reinained ent i re ly i n the pellet frac
t i o n of the extracted cells that had been t rans ient ly trans
fected w i t h R416W GFAP ( f ig . 91; R 4 I 6 W ) . Interest ingly, 
w h e n the i m m u n o b l o t s of the supernatant and pellet frac
t ions were also probed w i t h antibodies t o aB -crys ta l l in ( f ig . 
9/; aB - c ry ) , HSP27 ( f ig . 91; HSP27), and HSP70 ( f i g . 91; 
HSP70), a s igni f icant p r o p o r t i o n of b o t h aB -crys ta l l in and 
HSP27—but not HSP70—remained i n the pellet f rac t ions 
of R416W GFAP-transfected cells ( f ig . 91; R416W). These 
data show that a p r o p o r t i o n of b o t h sHSPs is associated 
w i t h the insoluble R416W GFAP Since HSP70' ' was co in -
plete ly extracted f r o m the R416W GFAP-transfected cells 
under these cond i t ions ( f ig . 91; HSP70), the association of 
the sHSPs w i t h R416W GFAP is specific and not a general 
p roper ty for all p ro te in chaperones. 

Discussion 
The R416W Mutation in GFAP: A Dominant Mutation That 
Affects hitetfilament Interactions 

In th is study, we investigated the properties of the c o m 
m o n Alexander disease-causing R416W CFAP m u t a t i o n 
to o b t a i n insights i n t o the i n i t i a l stages o f the disease pro
cess. We demonstrated tha t this R416W CFAP m u t a t i o n 
d ramat ica l ly alters assetribly, bo th i n v i t r o and i n trans
fected cells (figs. 1, 2, 4, 7, and 9), and does so i n a d o m 
inan t m a n n e r The m u t a n t prote in can also d i s tu rb en
dogenous IF networks in cul tured cells, i n c l u d i n g those of 
v i m e n t i n ( f ig . 3D) , kerat in ( f ig . 4), and GFAP (figs. 7 and 
9A). The effects of R416W GFAP are d i f f e ren t i n several 
respects f r o m those o f R239C, the o n l y o ther Alexander 
disease-causing m u t a t i o n that has been studied i n detai l . - ' 
W h e n asseinbled i n v i t ro , the R239C m u t a n t f o r m e d IFs 
that appeared indist inguishable f r o m wi ld - type filaments,-' 
whereas the R416W GVAP fo rmed short filament inter
mediates that associated laterally ( f ig . 1). Despite this d i f 
ference, we show^ here that bo th the R239C and the R416VV 
CF.AP f o r m aggregates w h e n expressed in either the v i -
ment in-nega t ive SW13/cl .2 cell l ine or the p r imary mouse 
astrocytes lacking bo th v i m e n t i i i and CFAP (f ig . 2), con
firming some of the results in a previous study.-' W h e n 
R239C GFAP was t ransient ly expressed i n p r imary rat as
trocytes, however, its assembly properties were no t radi
cal ly d i f f e r en t f r o m those of t rans ient ly expressed w i l d -
type GFAP- ' I n contrast, we f o u n d tha t the R416W m u 
tant inva r i ab ly f o r m e d aggregates w h e n t rans ient ly over-
expressed i n several d i f fe ren t cell lines, i n c l u d i n g p r imary 
mouse astrocytes (figs. 2 and 7) and h u m a n astrocytoma 
cells ( f ig . 9li). Despite these differences, bo th muta t ions 
were f o u n d to increase the resistance o f C F A P t o e x t r a c t i o n 
(figs. 5 and 9/).- ' Taken together, these data indicate that, 
whereas the immedia te structural consequences of d i f fe r -
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Figure 9. The s imi la r i ty between Rosenthal fibers and GFAP aggregates fo rmed i n t ransfected human astrocytoma cells. U343MG cells 
were t rans ient ly t ransfected w i t h R416W GFAP and were rou t ine ly stained w i t h r abb i t polyclonal ant ibodies (3270) t o GFAP [A, C, E, 
and G) and t h e n were double s ta ined w i t h mouse monoclona l an t ibodies speci f ic t o R416W GFAP (S) , aB-c rys t a l l i n ( a B - c r y ) ( 0 ) , or 
HSP27 ( f ) . Notice t ha t t he GFAP c o n t a i n i n g aggregates are also pos i t ive for bo th aB-c rys ta l l in and HSP27 (orroivs i n C-F). To demonstrate 
the presence of u b i q u i t i n in t he GFAP aggregates, cells were cotransfected w i t h His^-myc u b i q u i t i n as w e l l as R416W GFAP and then 
were stained w i t h rabbi t po lyc lona l an t ibodies to GFAP (G) and t h e mouse monoc lona l ant ibodies t ha t recognize the myc epi tope (W), 
showing tha t t he GFAP aggregates con ta in u b i q u i t i n . Bars = 10 nm. I, Wi ld - type and R416W GFAP (R416W) were t r ans i en t ly expressed 
i n t he human astrocyte cel l l ine U343MG, and supernatant (S) and pel let (P) f r ac t ions were prepared f r o m these cul ture and were 
compared w i t h mock t ransfec ted cells. Cell f r a c t i o n a t i o n used HEB, which a lmost complete ly solubi l ized w i l d - t y p e GFAP. R416W GFAP, 
on the other hand, remained i n the pe l le t f r a c t i o n . Immunob lo t s of t he cel l f r a c t i ons were probed w i t h ant ibodies to GFAP, aB-c rys t a l l i n , 
HSP27, HSP70, and f ina l ly ac t in , wh ich was used as a loading con t ro l . Not ice t h a t , when cells were t ransfec ted w i t h R416W GFAP, a 
s i gn i f i c an t p ropor t ion o f t he HSP27 and c<B-crystallin bu t not HSP70 remained i n t h e pel le t f r a c t i o n along w i t h t he R416W GFAP. Both 
the sHSPs and R416W GFAP were more resistant t o ext rac t ion compared w i t h these proteins in t h e wi ld - type GFAP t ransfec ted cells. (A 
color version o f th i s f igure is available i n t he onl ine ed i t ion o f t he j o u r n a l . ) 



ent Gl'.AP muta t ions are l ike ly to d i f fer , as has been f o u n d 
for o ther in termedia te filament p r o t e i n s , " " - ' " there w i l l 
l ike ly be c o m m o n consequences that lead to Alexander 
disease. 

The RDG-CAmUmwi^ Motif and Its Role in Fihvncnt 
Assembly 

The R416W m u t a t i o n lies w i t h i n the RDCi m o t i f tha t is 
conserved w i t h i n the t a l l d o m a i n o f nearly al l of the type 
I I I IF proteins. Previous studies o f GFAP had conc luded 
that the RDG m o t i f was I m p o r t a n t to filament assembly, 
but o n l y i n the context of the rest of the C- te rmina l do
main . ' ' ' Our assembly data, presented here, show that 
chang ing the precise sequence o f th is m o t i f t o VVDG does 
have dramat ic effects o n t iFAP assembly (figs. 1 and 2 ) . 
Change of the equivalent a rg in ine (R449) t o p ro l i ne In 
v i m e n t i n also severely d is rupted the In v i t r o assembly and 
n e t w o r k f o r m a t i o n i n t rans ien t ly transfected cells."'" These 
c o m b i n e d data suggest that th is a rg in ine residue In the 
RDG m o t i f w i t h i n the C- te rmlna l d o m a i n is very i m p o r 
t an t fo r the assembly IF prote ins w i t h the m o t i f . 

Previous studies proposed tha t the C-terrninal d o m a i n 
associates In t ramolecular ly w i t h the C- te rmlna l end of the 
rod domain.^" Crysta lhzat lon o f the he l ix III? rod d o m a i n 
suggests that the t w o a helices f o l d away f r o m the d imer 
axis,'-' w h i c h is consistent w i t h the hypothesis that the 
C - t c r m i n a l d o m a i n cou ld f o r m a surface-exposed loop 
structure and prevent Inappropr ia te subuni t Interact ions 
i n the self-assembly process.^" This offers an exp lana t ion 
of the altered w i d t h of v i m e n t i n filaments assembled f r o m 
ta i l - t runca ted and deleted f o r m s of v l m e n t i n ^ " and the 
changed i n v i t r o assembly characteristics of the R416'W 
GFAP we report here ( f ig . I ) . 

O u r studies also suggest that the RDG m o t i f w i l l con
t r ibu te t o in t e r f i l amen t in teract ions as w e l l as .subunit or
ganiza t ion w i t h i n the IF. We have demonst ra ted the i n 
creased tendency of R416W GFAP to aggregate In v i t r o 
( f ig . 1) as we l l as i n transfected cells (figs. 2, 4, 7, and 9) . 
Studies of keratins also show that the C- te rmina l d o m a i n 
is very i m p o r t a n t i n pro i 'no t ing filai'nent-filament inter
actions. '" logether w i t h our data presented here, a con
sensus Is thus b e g i n n i n g to emerge tha t C- te rmlna l se
quences of cytoplasmic IFs help regulate bo th Intra- and 
i n t e r f i l amen t associations. 

The Miittvit R416W GFAP: A Component of Roseutlnil 
Fibers 

The presence of Rosenthal fibers has been documented In 
t w o cases of Alexander disease caused by the R416W GFAP 
m u t a t i o n . " For one o f these cases, we show, fo r the first 
t i m e fo r any .Alexander disease case, tha t the m u t a n t GFAP 
is present as the d e f i n i n g h i s topa tho log lca l feature ( f ig . 8 D 
and S f ) . This is also the first t i m e for any ll-'-based h u m a n 
disease that the l i n k between the presence of the muta ted 
p ro t e in and a characteristic hl.stopathogical IF aggregate 
has been r igorously s h o w n . In a case o f epidermolysis b u l -
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Mal func t ion Astrocyte 
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Figure 10. GFAP aggregation caused by the R416W mutation 
induces sHSP association and the association of ubiquitin as early 
events in the etiology of Alexander disease. The presence of the 
R416W GFAP mutation decreases the solubility of the GFAP fila
ments, probably by altering the filament-filament interactions in 
a manner that encourages aggregation. This is accompanied by 
the sequestration of the sHSP protein chaperones—aB-crystallin 
and HSP27 {shaded circles)—and GFAP into aggregates. Both pro
teins also localize to Rosenthal fibers, which also contain ubiquitin 
(Ub). The filament aggregates undergo a maturing process, with 
the additional posttranslational modification of integral compo
nents, such as the phosphorylation" and ubiquitination^ of aB-
crystallin to form the Rosenthal fibers. The model is not exclusive 
to R416W GFAP, since Rosenthal fibers are a characteristic diag
nostic feature of Alexander disease." Other GFAP mutations differ 
in the details of the mechanism by which they produce aberrant 
filament-filament interactions leading to the formation of stabi
lized aggregates, but, once formed, they then follow a common 
pathway to Rosenthal fiber formation. Increased GFAP filament 
stability and the specific association of sHSPs are predicted to be 
the earliest events in the development of Alexander disease. (A 
color version of this figure is available in the online edition of 
the journal.) 

losa s implex , a kerat in-bl is ter ing disease, the loss of an 
epitope was used to c o n f i r m the genotype o f pa t ien ts , ' ' 
but th i s reagent was unable to demonstrate the presence 
of the m u t a n t kera t in 5 In the aggregates f o u n d In kera-
tlnocN tes. .Another s tudy described the generation o f a poly
clonal an t i body specific for a kerat in 8 var iant (R34()H), 
w h i c h may predispose carriers to l iver disease,''' but these 
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antibodies were used o n l y for i m m u n b l o t t i n g studies. 
Fveii in the case of M a l l o r y bodies f o r m e d as a result of 
a lcohol ic hepatitis, where ant ibodies were developed that 
selectively stained the M a l l o r y bodies and not the sur
r o u n d i n g kerat in filaments, the antibodies s t i l l detected 
wi ld - type keratins.^'' Our an t i body reagents are therefore 
the first to specifically i d e n t i f y a m u t a n t missense IF pro
te in i n the presence o f its w i l d - t y p e counterpar t . These 
antibodies a l lowed us to demonstra te that the m u t a n t pro
tein is a c o m p o n e n t of Rosenthal fibers in h u m a n pat ient 
bra in tissue ( f ig . 8 D and 8 f ) and also i n GFAP-containing 
aggregates of transfected h u m a n astrocytoma cells ( f ig . 
9B). 

Association of aB-Ciystallin and HSP27 with R4I6W GFAP 
Aggregates 

We al.so discovered that the p ro te in chaperones aB-crys
t a l l i n and HSP27 specif ical ly associate w i t h the GF'AP ag
gregates that are f o r m e d i n transfected cells tha t express 
R 4 I 6 W GFAP Both chaperones are componen t s o f Ro
senthal fibers f o u n d in patients. I n c l u d i n g those w i t h the 
R4I6VV mutation."""'These chaperones normal ly m i n i m i z e 
filament-filament associations,-' and their overexpression 
can dissolve accumula t ions o f w i ld - t ype GFAP filaments. 
Their presence, however, i n b o t h bra in astrocytes o f pa
t ients w i t h .Alexander disease and i n cul tured cells docs 
not prevent the changes i n CFAP-f i lament so lubi l i ty , fil
ament aggregation, or the f o r m a t i o n of Rosenthal fibers 
by R416W GFAP The association o f HSP27 and oiB-crys-
t a l l i n w i t h R416W CFAP and resistance to ext rac t ion is 
l ike ly due to the altered filament properties induced by 
this m u t a t i o n . A l t h o u g h o ther stresses have been shown 
to s t imulate the association o f bo th HSP27 and aB-crys
ta l l in w i t h CFAP filaments,-' ""' those studies involved w i l d -
type proteins. Our data show that i t is specifically the 
presence o f the R416W GFAP, and no t wi ld - type CFAP, 
that bo th stabilizes GFAP and leads to the sequestration 
of sHSPs (figs. 9 C - 9 f and 9/). 

The sequestration of HSP27 and aB -crys ta l l in cou ld po
t e n t i a l l y c o m p r o m i s e the astrocyte stress response and 
therefore con t r ibu te to the i n i t i a t i o n of .Alexander disease. 
I'or example, it has already been shown that ei ther the 
reduct ion of HSP27 or the loss of aB -crys ta l l in compro
mises cytoskeletal in tegr i ty ai"id func t ion^ ' ' o r induces mus
cular atrophy,""' respectively. HSP27 is a key p ro te in i n 
pro tec t ing cells, i n c l u d i n g neurons,"'^" against apoptosis by 
i n h i b i t i n g caspasc ac t iv i ty ' ' ' and preserving m i t o c h o n d r i a l 
func t ion . " " H.SP27 has also been impl ica ted in regulatii"ig 
the stress response t h r o u g h the ub iqu i t i n -med ia t ed pro-
teosomal regulat ion o f the key t ranscr ip t ion factor, NI-VB.'"' 
Impor t an t ly , HSP27 protects cells against other p ro te in 
aggregation-based diseases caused by h u n t i n g t i n ' ' - and a-
synuclein. ' ' ' Such studies i d e n t i f y d i m i n u t i o n of sHSP lev
els as a potent ia l Achil les ' heel in the cellular response to 
pro te in aggregate-based diseases that require either up-
regulation-'" or overexpression"' to ameliorate the disease 
phei"iotype. These observations suggest that the early se

questra t ion o f sFISPs i n t o GFAP aggregates (this s tudy) ai"id 
Rosenthal fibers" is a key event at the onset o f Alexander 
disease. Figure 10 incorporates these ideas i n t o a diagrarn 
o f the events that we believe to be i i npo r t an t in the early 
stages o f Alexander disease. 
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