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ABSTRACT

MATHEMATICAL HYBRID MODELS FOR IMAGE SEGMENTATION

Carlos M. Paniagua Mej́ıa

May 24, 2016

Two hybrid image segmentation models that are able to process a wide variety

of images are proposed. The models take advantage of global (region) and local

(edge) data of the image to be segmented. The first one is a region-based PDE

model that incorporates a combination of global and local statistics. The influence

of each statistic is controlled using weights obtained via an asymptotically stable

exponential function. Through incorporation of edge information, the second model

extends the capabilities of a strictly region-based variational formulation, making

it able to process more general images. Several examples are provided showing the

improvements of the proposed models over recent methods along with an application

to dermoscopy imaging. A number of avenues for future research are also discussed.
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CHAPTER 1

INTRODUCTION

Ever since the advent of computers an interest in equipping these devices with

human-like capabilities has been a constant staple in the fields of Image Processing

and Computer Vision. In particular, it is of interest to have a computer process an

image in order to obtain a meaningful partition of its constituent objects. This is

the basic problem in the subfield of Image Segmentation, and it has proven to be

a challenging one due to the complexities present in images, and the imperfections

introduced by the mechanisms through which images are obtained [17,62].

Over the past 25 years, beginning with the seminal works of Kass, et al. [27],

and Mumford and Shah [41], an ever increasing number of Variational and partial

differential equation (PDE) based methods (often termed Deformable models or

Active Contours) for image segmentation have been proposed. The basic idea is

to overlay a contour over the given image and evolve it so that it stops at the

boundaries of relevant objects present in the image. This is typically accomplished

by minimizing some kind of energy functional. Many other classical (non-PDE)

approaches to the problem such as thresholding and local filtering (see e.g. [26])

have also been introduced. However, there is no unifying theory within the field,

and as a result, most methods can only render satisfactory segmentation results

for specific classes of images (see the discussion in [37, p. 367]). Our goal is to

propose an overarching image segmentation scheme that is able to segment two

very important classes of images: piecewise constant images, and inhomogeneous

images which appear quite frequently in the medical sciences [17, 23].
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This chapter introduces the preliminary background necessary for the reader to

completely comprehend and appreciate the results presented in this thesis. We start

with a review of curve evolution, and present a thorough description of two relevant

models (one Parametric and one Geometric) for object detection. Subsequently, we

provide a brief overview of the level set method, and conclude with a discussion on

PDE-based models.

In what follows, and throughout this dissertation we represent by Ω a bounded

and open subset of the plane R2. The grayscale image I to be segmented is realized

as a bounded real valued function defined on Ω, I : Ω → R. In image processing

tasks such as image segmentation Ω̄ is typically a rectangle [0, a] × [0, b], and I

is a discrete function taking values from 0 to 255. The number I(x) = I(x, y) is

called the graylevel or intensity of I at the pixel x = (x, y) ∈ Ω. Let C = C(q, t) :

[0, 1]×[0,∞)→ Ω be a smooth family of closed planar curves where q parameterizes

the curve C(·, t) and t parameterizes the family.

1.1 Parametric Models

The first variational model for image segmentation was proposed by Kass,

Witkin, and Terzopoulos in the late 1980’s [27]. Their idea consisted on overlaying

the image with a curve and allow the curve to deform until it conforms to the

boundaries of relevant objects present in the image. Forces that propagate the curve

are specified by the image itself in the form of a potential. Marr and Hildreth in

their Theory of Edge Detection [38] argue that objects’ contours occur at irregular

parts of an image. In particular, one expects significant changes in image intensity

across an ideal edge. To this end in [27] a very simple potential in terms of the

gradient vector of I is proposed for edge detection:

P (x) = −‖∇I(x)‖2. (1.1)
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Using this potential, we can define the functional

Eext(C) =

∫ 1

0

P (x)dq. (1.2)

and seek curves C that make (1.2) as small as possible. However, minimizers of (1.2)

are not guaranteed to be well-defined curves, so other terms ought to be added to

(1.2) in order to control the regularity of the minimizer C. If we envision C as a

thin membrane, we can exert control over its rigidity using the internal energy

Eint(C) =
1

2

∫ 1

0

(
α‖C ′(q)‖2 + β‖C ′′(q)‖2

)
dq (1.3)

where α, β > 0 and the primes represent derivatives with respect to the parameter

q1. The full energy is then

E(C) = Eint(C) + Eext(C)

=

∫ 1

0

(
α

2
‖C ′(q)‖2 +

β

2
‖C ′′(q)‖2 + P (x)

)
dq (1.4)

1.1.1 Variational Analysis of the model

The problem of minimizing (1.4) is stated in weak form. To obtain a minimizer,

assuming one exists, we restate the problem in its strong form using the Calculus

of Variations. This is, we take the first variation, Gateaux derivative, or functional

derivative [4, 5, 53] of E with respect to t. Before this, we pause to obtain the time

derivatives for each of the terms in the integrand of (1.4). In its most explicit form

the curve C can be written as a vector in R2 as C(q, t) = 〈x(q, t), y(q, t)〉, where

x(q, t) and y(q, t) are real valued functions of q ∈ [0, 1] and t ≥ 0. Then

‖C ′(q)‖2 = (xq(q, t))
2 + (yq(q, t))

2

1We shall use the usual notation for partial derivatives: For the function x(q, t), we represent

by xq(q, t) and xt(q, t) its derivatives with respect to q and t, respectively.

3



and

d

dt
‖C ′(q)‖2 = 2(xqxqt + yqyqt)

= 2Cq · Cqt. (1.5)

Similarly,

‖C ′′(q)‖2 = (xqq)
2 + (yqq)

2

and its derivative is

d

dt
‖C ′′(q)‖2 = 2(xqqxqqt + yqqyqqt)

= 2Cqq · Cqqt. (1.6)

Finally, the derivative of the potential is

d

dt
P (x) = ∇P · Ct. (1.7)

We are now ready to obtain the first variation of (1.4). Differentiating (1.4) we get

dE

dt
=

d

dt

∫ 1

0

(
α

2
‖C ′(q)‖2 +

β

2
‖C ′′(q)‖2 + P (x)

)
dq

=

∫ 1

0

d

dt

(
α

2
‖C ′(q)‖2 +

β

2
‖C ′′(q)‖2 + P (x)

)
dq

=

∫ 1

0

(
α

2

d

dt
‖C ′(q)‖2 +

β

2

d

dt
‖C ′′(q)‖2 +

d

dt
P (x)

)
dq (1.8)

and using (1.5)–(1.7) in (1.8) after some simplification we arrive to

dE

dt
=

∫ 1

0

(αCq · Cqt + βCqq · Cqqt +∇P · Ct) dq. (1.9)

To get the strong form (Euler equation) we need to raise Cqt and Cqqt in the first

two terms of (1.9) to Ct. We do this using integration by parts on the q variable.

To do this we recall that the curves C(·, t) are closed, so the following conditions

4



hold for C and its derivatives:

C(0, t) = C(1, t)

Cq(0, t) = Cq(1, t)

Cqq(0, t) = Cqq(1, t)

Cqqq(0, t) = Cqqq(1, t)

(1.10)

After integrating by parts (1.9) once, we obtain

dE

dt
=α

(
Cq · Ct

∣∣∣1
0
−
∫ 1

0

Cqq · Ct dq
)

+ β

(
Cqq · Cqt

∣∣∣1
0
−
∫ 1

0

Cqt · Cqqq dq
)

+

∫ 1

0

∇P · Ct dq

which simplifies to

dE

dt
=

∫ 1

0

(−αCqq · Ct − βCqqq · Cqt +∇P · Ct) dq (1.11)

after using conditions (1.10). Integrating by parts once more (on the middle term

only) we have

dE

dt
=

∫ 1

0

−αCqq · Ct dq − β
(
Cqqq · Ct

∣∣∣1
0
−
∫ 1

0

Cqqqq · Ct dq
)

+

∫ 1

0

∇P · Ct dq,

and by (1.10) for the third order derivative of C we arrive to

dE

dt
=

∫ 1

0

(
−αCqq · Ct + βC(iv) · Ct +∇P · Ct

)
dq

=

∫ 1

0

(
−αCqq + βC(iv) +∇P

)
· Ct dq,

(1.12)

where C(iv) = Cqqqq. At a minimum (1.12) must be zero, and this is so if and only

if the integrand (with Ct not identically zero) is zero. This observation yields the

strong form of (1.4)

−αCqq + βC(iv) +∇P = 0 (1.13)

with boundary conditions (1.10). As the terms of energy (1.4) are quadratic, equa-

tion (1.13) is a linear partial differential equation. Its solution can be approximated

5



using Gradient (or Steepest) descent method. This is accomplished by converting

and elliptical-type problem to a parabolic one. For problem (1.13) we can write

Ct = −αCqq + βC(iv) +∇P (1.14)

so that the steady state of (1.14), that is, when Ct = 0, renders the solution of

(1.13).

At this point we make a few remarks about this model:

a) Due to dependency of the chosen parametrization of the initial curve C(q, t)|t=0

different solutions may be obtained under a parametrization C(p, t)|t=0, even

with C(q, t)|t=0 = C(p, t)|t=0.

b) Due to shape constraints (1.3) the curves C(q, t), t > 0 are to be very similar

to C(q, t)|t=0– in particular, changes in topology cannot be handled.

1.2 Geometric Models

Geometric models for image segmentation are based on techniques from the

fields of differential geometry and geometric partial differential equations. Stemming

from such formal branches of mathematics, geometric models for shape analysis

enjoy theoretical robustness and some existence, uniqueness, and numeric results

have being obtained [2]. Most geometric models, unlike the parametric model just

presented, are not formulated via an energy minimization problem [3, 6, 36, 66].

These were proposed, preeminently, to overcome the weaknesses of the parametric

model presented on the previous section [6, 7]. In order to illustrate the main ideas

underpinning these models, in this section we present a fairly detailed description

of one of the most important geometric models for image segmentation.

6



1.2.1 Geometric heat flows

For the planar curve C(q, t), we denote by κ = κ(x, y), ~T = ~T (x, y), and ~N =

~N (x, y), respectively, the curvature, the unit tangent vector, and principal inward

unit normal vector at the point (x, y). These parameters have explicit representation

~T =
Cq
‖Cq‖

, ~N =
~Tq
‖~Tq‖

, κ =
‖~Tq‖
‖Cq‖

. (1.15)

With this notation, we introduce the geometric heat equation

Ct = κ ~N . (1.16)

This equation prescribes the motion of the points of C along the normal direction

with velocity the curvature κ. We are going to show that this flow reduces the arc

length of C as quickly as possible. Let us denote by L(t) the arc length of C at time

t. Then, by definition of arc length

L(t) =

∮
C

ds =

∫ 1

0

‖Cq‖dq.

As stated before, C (and its first order partial derivatives with respect to q and

t) being a closed curve satisfies the boundary conditions

C(0, t) = C(1, t)

Cq(0, t) = Cq(1, t)

Ct(0, t) = Ct(1, t)

(1.17)

Computing the Gateaux derivative (or first variation) of the arc length functional

we get

d

dt
L(t) = L′(t) =

∫ 1

0

d

dt
‖Cq‖dq =

∫ 1

0

Cq · Cqt
‖Cq‖

dq =

∫ 1

0

Cq
‖Cq‖

· Cqt dq. (1.18)

In view of (1.16), we want to obtain an equivalent formulation of (1.18) with its

integrand a product involving Ct. In this way, by the theory of the calculus of

7



variations and steepest descent, we can define a flow of C, that is Ct, with its right

hand side the other factor involved in the integrand. To this end we integrate (1.18)

by parts with respect to q so that

L′(t) =

∫ 1

0

Cq
‖Cq‖

· Cqt dq

=

∫ 1

0

~T · Cqt dq =
Cq
‖Cq‖

· Ct
∣∣∣∣1
0

−
∫ 1

0

Ct · ~Tq dq

= −
∫ 1

0

Ct · ~Tq dq

= −
∫ 1

0

(Ct ·
~Tq
‖Cq‖

)‖Cq‖ dq.

where we have used the boundary conditions (1.17) and multiplied and divided by

the scalar ‖Cq‖. By formulas (1.15) and parameterizing with respect to arc length

we arrive to

L′(t) = −
∫ L(t)

0

Ct · κ ~Nds, (1.19)

where ds := ‖Cq‖dq. It is now evident that L(t) decreases most rapidly when Ct =

κ ~N , as claimed.

The flow (1.16) is called (for good reason) the shortening flow. These types of

flows are the most important for image segmentation as we would like the object

delimiting contours to have minimal length.

1.2.2 Weighting the arc length

In [28] Kichenassamy et al., proposed to redifine the arc length of C by weighting

the infinitesimal element of length ds with a positive differentiable function g(x, y).

For the purposes of shape detection this function ought to be chosen according to

the properties of the image to be segmented. For now it is only assumed that g is

smooth so that a steepest descent flow for the weighted arc length can be obtained

in a similar way as in the previous section. The new flow is obtained as follows: the

8



weighed arc length is defined as

dsg = g ds = g(x, y)‖Cq‖ dq, (1.20)

so that the total weighted arc length of C is

Lg(t) =

∫ 1

0

‖Cq‖ g dq. (1.21)

We now compute the first variation of (1.21) to get

d

dt
Lg(t) = L′g(t) =

∫ 1

0

d

dt
[‖Cq‖ g] dq. (1.22)

Note that

d

dt
(g(x, y)) = gxxt + gyyt = ∇g · Ct (1.23)

Then (1.22) becomes

L′g(t) =

∫ 1

0

d

dt
[‖Cq‖ g] dq =

∫ 1

0

[
g~T · Cqt + ‖Cq‖(∇g · Ct)

]
dq

=

∫ 1

0

g~T · Cqt dq +

∫ 1

0

(∇g · Ct)‖Cq‖dq.
(1.24)

Integrating the underlined term in the right hand side of (1.24) by parts we get

L′g(t) = g~T · Ct
∣∣∣1
0
−
∫ 1

0

Ct ·
∂

∂q

(
g~T
)
dq +

∫ 1

0

(∇g · Ct)‖Cq‖dq. (1.25)

We assume that the conditions (1.17) remain valid, so the underlined term in (1.25)

vanishes. For the derivative in the middle term we note that ~Tq = ‖Cq‖κ ~N . Thus,

L′g(t) = −
∫ 1

0

Ct ·
[
(∇g · Cq)~T + g‖Cq‖κ ~N

]
dq +

∫ 1

0

(∇g · Ct)‖Cq‖dq

= −
∫ 1

0

Ct ·
[
(∇g · ~T )~T + gκ ~N −∇g

]
‖Cq‖dq

(1.26)

where have used the fact that (∇g ·Cq)~T = (∇g · ~T )~T ‖Cq‖. Therefore, the weighted

arc length Lg(t) decreases most rapidly when

Ct = gκ ~N + (∇g · ~T )~T −∇g. (1.27)
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The middle term in the right hand side of (1.27) can be removed as tangential

components of velocities do not affect the deformation of planar curves. This result

is referred to as the Epstein-Gage lemma. We state this lemma whose proof can be

found in [19].

Lemma 1.1. Let C(q̃, t) : S × [0, T ) → R2 be a family of closed embedded curves

that obeys the pde:

Ct(p̃, t) = α(p̃, t)~T (p̃, t) + β(p̃, t) ~N (p̃, t),

C(p̃, 0) = C0(p̃),

(1.28)

for some initial curve C(p̃, 0). If the normal component of speed β does not depend

on the parameterization, then the curve C(p̃, t) that satisfies (1.28) is identical to

the family of curves C(p, t) that satisfies

Ct(p, t) = β(p, t) ~N (p, t). (1.29)

In view of Lemma 1.1, the model in (1.27) reduces to

Ct = gκ ~N −∇g. (1.30)

One hopes that the steady state of (1.30) will render a meaningful segmentation of

the given image. The edge-stopping function g acts on the image I, so that its value

becomes small at discontinuities of I. For example, in [28] (and other works cited

therein), the authors use

g =
1

1 + ‖∇Gσ ∗ I‖n
(1.31)

where n = 1, 2. Gσ ∗ I is the convolution of the image I with a Gaussian kernel

Gσ = σ−1/2e−|x|
2/4σ with standard deviation σ (see Fig. 1.1).

A few remarks are in order. The model represented by (1.30) is nonlinear. As a

result trying to prove existence and uniqueness of solutions for this type of equation

in the classical sense is typically very hard or altogether avoided. Moreover, weak
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Figure 1.1: An image I (on the left) and a blurred version Gσ ∗ I, σ = 1. Some
sharpness is removed from the original as a result of the operation.

(in the now classical sense) solutions are not possible either since (1.30) does not

belong to the class of problems that can be written in divergence form (see [21], for

example). Due to the great variety of objects and anomalies that may be present

in an image, evolving contours are to develop singularities (contours may split to

conform to edges, angles etc.) A different paradigm is thus needed as the solutions

of PDEs such as (1.30) may not be everywhere differentiable. To this end, a new

notion of weak solution was introduced by Evans in [20], and later expanded by

Crandall and Lions in [15] in the early 1980’s, that seems to be suitable to describe

solutions of front propagation (a variant being addressed here) and optimal control

problems. This new paradigm is the so-called sense of viscosity solutions (see for

example [13–15]). We are going to be more concerned with numerical solutions of

our models for which we employ the level set method first introduced by Sethian in

[49], and further developed by Sethian and Osher in [44]. Benefits of this represen-

tation include automatic handling of changes in topology and self-intersections of

the evolving contours (shocks). We do so for model (1.30) next.

1.2.3 Level set representation

If we embed the family of curves in the plane C(x(q, t), y(q, t)) = C(x, y, t)

(again, q parameterizes the curve for a given t ≥ 0) as the zero (chosen for simplicity–
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any level line c is adequate) level set of a Lipschitz continuous function u, we can

describe C in terms of u as

C(x, y, t) = L0 ≡ {(x, y, t) : u(x, y, t) = 0}. (1.32)

For a fixed t, it is easy to see that ‖∇u‖ is perpendicular to the tangent vector of

C. This implies that the vectors ~N and ∇u are orthogonal. This allows to define

the inward unit normal vector ~N to L0 as

~N = − ∇u
‖∇u‖

, (1.33)

which leads to an equation for the curvature κ in terms of the level set curve u:

κ = div

(
∇u
‖∇u‖

)
= ∇ ·

(
∇u
‖∇u‖

)
. (1.34)

In the classical level set method [49,50] the typical choice for the embedding function

u is the signed distance function to the curve C. For C a smooth, closed, planar

curve, we denote its interior by int(C) and by ∂int(C) its boundary. We can define

the signed distance function to the curve C as follows

u = u(x) =


d(x), x ∈ int(C)

0, x ∈ ∂int(C)

−d(x), x /∈ int(C)

where

d(x) = inf ‖x− y‖, for all y ∈ ∂int(C).

The choice of having positive distances on int(C) is arbitrary. However, for compu-

tational purposes that do not require the key property of signed distance functions,

namely ‖∇u‖ = 1 [43] (see also [44, 49] for explanations as to why this property

is desirable for certain applications), any function that is positive on int(C) and
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negative on the outside of C are equally adequate and much simpler to compute

[66]. For example, if one is only interested in tracking the zero level set we can define

u = ũ(x) =


1, x ∈ int(C)

0, x ∈ ∂int(C)

−1, x /∈ int(C)

. (1.35)

Let us now present the evolution of the level sets of u as prescribed by (1.30)

(shown below for convenience):

Ct = gκ ~N −∇g. (1.36)

We differentiate u with respect to t. Thus, by the chain rule we have

d

dt
(u(x, y, t)) = ∇u · Ct + ut.

In view of (1.36), we get

gκ ~N · ∇u−∇g · ∇u+ ut = 0

⇒ ut = −gκ ~N · ∇u+∇g · ∇u (1.37)

and using (1.33) and (1.34) in (1.37) we arrive, after a straightforward simplification,

to

ut = g div

(
∇u
‖∇u‖

)
‖∇u‖+∇g · ∇u. (1.38)

We now describe the contributions of each term of (1.38). The first term in the right

hand side is the shortening term; it propagates (shrinks) u in the normal direction

according to the velocity g. On the other hand, the term ∇g ·∇u stops the shrinking

at objects’ boundaries. Indeed, if the zero level set of u is near and inside an object

with relative homogeneous gray level intensity, ∇u will point toward the exterior of

the object where the change in gray level is the greatest.

From a practical standpoint model (1.36) (and (1.38) in the level set framework)

has a number of weaknesses:
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a) This flow decreases arc length of C(q, t) (or u). Therefore, the initial contour

must surround the target objects of the image. However, some control can be

exerted on this behavior. The contour can be made to expand (like a balloon

[6]) by introducing a constant parameter c as follows:

ut = g

[
div

(
∇u
‖∇u‖

)
+ c

]
‖∇u‖+∇g · ∇u. (1.39)

In this way the arc length can be made to increase (according to the sign of c),

so that the initial curve could be placed within the boundaries of the target

objects.

b) Since the model relies on an edge detector g to stop the propagation of the

curves, boundaries in images consisting of weak edges may not be properly

segmented. Typical examples are x-ray images, MRIs, military applications

(radar) images.

c) Presence of spurious objects, or noise, in images may hamper the effectiveness

of the model, making preprocessing tasks such as denoising a necessity before

conducting the segmentation task.

1.3 Other models

In this concluding section we briefly show yet another way in which shape

reconstruction models can be formulated from a level set based formulation. We

refer the reader to [6] for another classical example of these type of models. As

before, we denote by u the level set function representation of a planar curve C as

in (1.32). The basic idea here is to define appropriate speed functions F , depending

on the given image I and initial curve u(x, t)|t=0, such that the equation

ut + F ‖∇u‖ = 0 (1.40)
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attains steady state at the boundary of objects in images. In [36], for example, the

proposed speed function is F = FA + FI with

FI = − FA
M1 −M2

(‖∇Gσ ∗ I‖ −M2) (1.41)

where FA is a positive number, and M1 and M2 are, respectively, the maximum and

minimum values of the image gradient ‖∇Gσ ∗ I‖, 0 ≤ M2 < M1 < ∞ (see page

10). Now

M2 ≤ ‖∇Gσ ∗ I‖ ≤M1

0 ≤ ‖∇Gσ ∗ I‖ −M2 ≤M1 −M2

0 ≤ ‖∇Gσ ∗ I‖ −M2

M1 −M2

≤ 1

0 ≤ FA
M1 −M2

(‖∇Gσ ∗ I‖ −M2) ≤ FA

−FA ≤ −
FA

M1 −M2

(‖∇Gσ ∗ I‖ −M2) ≤ 0.

This shows that the values of FI are in the interval [−FA, 0] and those of F defined

above in equation (1.41) are in the unit interval [0, 1]. These observations suggest

that the evolution of u in equation (1.40) will stop at nearby object boundaries of

the image I.

Speeds that depend on geometric properties of the evolving curve u can also

be incorporated into model (1.40). In this way some control can be exerted over u

to keep its evolution regular, in much the same way Eint regularizes the minimizer

of the parametric model (1.4). Let this speed be denoted by FG. Then F in (1.40)

can be decomposed as

F = FA + FG + FI . (1.42)

For example, FG can be defined as a function of mean curvature of u [22]. Although

nice properties of the flow by mean curvature are inserted, steady state of the zero

level set of (1.40) with F as in (1.42) cannot be attained at the boundary of objects
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for additive image based forces FI . A way to achieve this is by incorporating a

factor, call it kI depending on the image I, so that F becomes small at object’s

boundaries. This technique was described in subsection 1.2.2 when edge stopping

functions were introduced. In this spirit, we make the image information be carried

by the edge stopping factor kI and make FI = 0 in (1.42). The corresponding model

is

ut + kI (FA + FG) ‖∇u‖ = 0, (1.43)

with, for example, kI = g of equation (1.31).

1.4 Organization of this Thesis

The contributions of this thesis are twofold.

1. In Chapter 2 we present a PDE-based model for shape detection by directly

specifying the differential equation. This model cannot be obtained from a

variational formulation, and takes advantage of both local and global region

statistics, whose contributions are balanced by edge information from the

image.

2. Chapter 3 contains a variational formulation of a second model for image

segmentation. The proposed model also incorporates edge information from

image (in a different way the model in Chapter 2 does) and extends the ca-

pabilities of a pure region based model to process a large class of images.

3. In Chapter 4 we apply the proposed models to medical imaging. Particularly,

the models are used to detect skin lesions in dermoscopy imagery.

4. Chapter 5 wraps up the dissertation and some avenues for future research are

explored.

In the Appendix we include the code used for the implementation of both models.
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CHAPTER 2

A HYBRID PDE-BASED MODEL FOR BOUNDARY DETECTION

2.1 Prior works

The fields Mathematical imaging, image processing, computer vision etc., deal

with extracting information from images and giving their contents sensible interpre-

tations. Typical operations include (see [37] for an exhaustive list) at the low level :

noise removal, blurring and deblurring; at the mid level : edge detection, segmenta-

tion, and object tracking; and the high level : analysis and interpretation of a scene.

We are concerned with the task of segmentation which at its core involves perform-

ing certain operations on a image to obtain a sort of map delineating the regions

(or objects) present within this image. Once an image has been segmented, the re-

sulting individual regions can be described, represented, analyzed, or classified, and

the applications are too many to list here [23, 37,40,47].

Many techniques have been proposed to solve this problem over the past four

decades and yet the segmentation problem remains unsolved. In the 1970’s research

mainly focused on methods such as thresholding, region growing, and split and merge

algorithms, the majority of which were proposed by computer scientists and inves-

tigators from related fields [26, 38]. Later in the mid to late 1980’s the first PDE-

based methods entered the literature incorporating edge information from image

in the form of gradients (chapter 1). These methods are often referred to as edge-

based methods. Research continued on this front and in the late 1990’s investigators
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started to consider region-based information from images to make segmentation re-

sults more robust to noisy features and location of initial contours. Out of these are

worth mentioning the works proposed by Chan and Vese [9], Yezzi et al. [65] and Li

et al. [32–34]. Subsequently, hybrid approaches, incorporating both edge and region

data, were introduced showing promising results. These include variational formu-

lations (see for example [30, 63]) and more general (non-variational) PDE-based

models [10, 11,57,66].

In this chapter, we present our first PDE-based model for image segmentation.

We start by stating our goals with the proposition of the new model. We then pro-

ceed with its formulation and implementation, and conclude with some experiments

to identify its strengths and limitations.

2.2 Proposition of a new model

2.2.1 Goals and objectives

Our goal is to obtain a more versatile model for image segmentation. From

a practical standpoint, we seek to obtain meaningful segmentations not only for

images with relatively well defined boundaries with piecewise smooth regions, but

also for inhomogeneous images with varying regions in gray level and or whose

objects are defined by somewhat weak edges. Further, we would like our model to

be free of the weaknesses models (1.4) and (1.38) exhibit, namely, that it be more

flexible in terms of the location of initial contours so that this could be located

anywhere in the image domain, and that it be able to handle changes in topology

of the evolution curve.

As we mentioned, the models described in the previous chapter belong to a class

referred to as Edge-based methods. Region-based models, on the other hand, do not

depend on edge information. Instead, they exploit statistical information carried by
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the image. For example, given a subset (or region) U of the image domain Ω, we

can employ statistics such as the mean intensity of I within U

µU =
1

|U|

∫
U
I(x)dx, (2.1)

where |U| =
∫
U dx (the measure of U), or the variance within U

σ2
U =

1

|U|

∫
U

(µU − I(x))2dx. (2.2)

We seek to incorporate both of these types of image data (edge information

and global statistics) to obtain a hybrid model

ut + F ‖∇u‖ = 0 (2.3)

where u = u(x, t) represents the level sets of a family of curves C(x, t) (as in section

1.2.3) and the velocity field F is to incorporate both types of image information.

2.2.2 Model description and formulation

We draw inspiration from models proposed in [3,6,10,36,57,66]. To specify our

hybrid velocity, we are going to rely on three key assumptions:

ASSUMPTION 2.1. The image gradient ∇I has relative large magnitude in a small

neighborhood of a pixel x at the boundary of an object.

ASSUMPTION 2.2. The image I to be segmented consists components of relatively

piecewise constant gray level intensities.

ASSUMPTION 2.3. Mean values of I inside and outside an object of interest differ

significantly in a neighborhood of a boundary pixel x, even if the regions within I

are not piecewise constant.

The first assumption is typical of edge-based models. Assumption 2.2 is reasonable

since one expects objects in (at least a wide class of) images to have the same

19



Figure 2.1: At a point x on the evolution curve u the image gradient is expected to
be smaller than at points y that are close to objects of interest.

gray level within their boundaries, Fig. 2.1. And assumption 2.3 focuses the scope

of assumption 2.2 to a neighborhood scale and should allow us to employ local

statistics. We now proceed to define the velocity field F . The idea is to partition F

into a weighted sum of two functionals

F = w1FG + w2FL

where FG and FL carry, respectively, global and local region information, and the

weights w1, w2 are to carry edge information.

Region information Let U represent the interior of the zero level set curve

u. The two operators FG(·, ·) and FL(·, ·) are defined as functions of the evolving

level set curve u and carry statistical information of the image I according to the

location of u. Their explicit representations are chosen as

FG(u, I) =
2I − c1 − c2

max |2I − c1 − c2|

FL(u, I) =
2I − d1 − d2

max |2I − d1 − d2|
.

(2.4)

Note that their dependency on u is implicit as the parameters c1, c2, d1, and d2 are

all functions of u. These are obtained using the formulas
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c1 =

∫
U

I(x)H(u)dx∫
U

H(u)dx
; c2 =

∫
U

I(x)(1−H(u))dx∫
U

(1−H(u))dx
; (2.5)

d1 =

∫
W

I(y)H(u)dy∫
W

H(u)dy
; d2 =

∫
W

I(y)(1−H(u))dy∫
W

(1−H(u))dy
. (2.6)

where H is the standard Heaviside function defined by

H(x) =


1, x ≥ 0

0, x ≤ 0

,

andW = Wρ(x) := {y ∈ Ω | y ∈ ‖x− y‖ ≤ ρ,x ∈ ∂U}, the region of pixels y within

distance ρ ∈ N of the pixel x along the boundary of the curve u. Variants of forces

(2.4) are common choices and have appeared before [66,67].

If u is a signed distance function, or has the form of ũ as in (1.35), the four

parameters in (2.5) and (2.6) above are averages of the image values I–global in

the case of c1 inside u, and c2 outside of u, and local, in a neighborhood W of

size ρ inside the image domain Ω centered at x. Thus, the operators FG and FL

attain values in the interval [−1, 1]. FG expands u toward object boundaries when

it lays on the interior of potential objects, and shrinks u when outside. FL acts in

a similar fashion but locally according to the window size ρ. A smaller value of ρ

will strengthen the ability of FL to capture object boundaries as finer variations are

expected to be detected when a smaller ρ is used. We use edge data to combine the

effects of these forces.

Edge information Edge data is typically associated to prominent varia-

tions of the image gradient ‖∇I‖, ideally, jump discontinuities across an edge line.

Further, if the evolving contour is far from the boundary of an object it is easy

to see that the local statistics will not provide any new information about the

object boundaries that is not already contained in the global statistics, that is
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ci ≈ di, i = 1, 2. In other words, the global information is dominant when the evolv-

ing contour is far from an edge where small values ‖∇I‖ are expected. On the other

hand, when the ci and di differ significantly, say |ci − di| ≥ δ, for some threshold

value δ > 0, the relevance of the local and the global statistics are exchanged when

the evolving contour is close to objects’ boundaries (with presumably higher values

of ‖∇I‖) making the information carried by local statistics more relevant. Based on

this observation, we can seek for increasing (1-to-1) functions of the image gradient

∇I(x) that approach 1 asymptotically:

F := {T : [0,∞)→ R | T increasing, T (0) = 0, lim
x→∞

T (x) = 1}. (2.7)

Note that T (x) ∈ [0, 1] for T ∈ F , so transformations in the family F make for

suitable candidates to balance the effects of the region information operators (2.4).

In light of the previous discussion, we choose the weights w1 and w2 to be functions

of the image gradient ‖∇I‖ at each point x ∈ Ω, and are defined as follows1 (see

Fig. 2.2):

w1 = w1(I(x)) = e−‖∇I‖/ν , ν > 0

w2 = 1− w1.

(2.8)

The proposed hybrid model for image segmentation is thus

ut = α [w1FG(u, I) + w2FL(u, I)] ‖∇u‖, (2.9)

with initial condition (chosen arbitrarily), u(0, x, y) = u0(x, y), with Neumann

boundary conditions, and α is a positive constant intended to control the over-

all speed of propagation of the level sets of u. The operators FG(·, ·), FL(·, ·) and

the weights w1, w2 are as in equations (2.4) and (2.8), respectively.

Before proceeding to its implementation, we make some remarks about our

PDE-based model. First, the proposed model is region based. Edge information

1We have chosen the transformation to be exponential for its simplicity. Other members of the

family F can be employed.
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Figure 2.2: A “stretched” exponential T (x) = 1− ex/ν with ν = 43.

is incorporated in the weights that control the interplay of local and global image

statistics. Exploitation of both types of image data makes the model a hybrid model.

And second, because our model does not include a curvature dependent term (see

Section 1.2) which controls the arc length of the moving front, the model favors

detection of finer regions as opposed to coarser ones. If larger scale segmentation is

desired a curvature dependent term can be added to the right-hand side of (2.9).

2.3 Discretization of the model

The problem we need to solve, repeated below for convenience, is
ut = α [w1FG(u, I) + w2FL(u, I)] ‖∇u‖
∂u

∂~n
= 0 on ∂Ω (Neumann boundary condition)

u(x, 0) = u0(x) (initial condition)

(2.10)

where Ω ⊂ R2 is the image domain, α a positive real number, ~n the outer unit

normal to ∂Ω, the boundary of Ω. The operators FG(·, ·), FL(·, ·) and the weights

w1, w2 are defined in equations (2.4) and (2.8), respectively.

To solve problem (2.10) we resort to a numerical solution. The underlying

nature of the problem suggests implementation of a finite difference scheme. The

image domain Ω is discretized into N ×N points along both the x and y directions
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each separated by increments of size h, so that

xi = ih, yj = jh, for i, j = 1, 2 . . . , N, and Nh = 1. (2.11)

For the time direction we choose steps of size ∆t so we define

tn = n∆t, for n = 0, 1, . . . (2.12)

In this way the unknown function u(x, t) is approximated by

unij = u(xi, yj, tn) (2.13)

at each pixel (ih, jh) = (i, j) for each time n∆t. The time derivative is estimated

using first-order accurate forward differences

ut =
un+1
ij − unij

∆t
(2.14)

and the spatial derivatives are estimated using second-order accurate centered dif-

ferences

∥∥∇u‖2 =
(
u2
x + u2

y

)∣∣n
ij

=

(
uni+1,j − uni−1,j

2h

)2

+

(
uni,j+1 − uni,j−1

2h

)2

(2.15)

for interior points i, j = 2, 3, . . . , N − 1. At boundary points i, j = 1, N we employ

forward/backward differences as necessary (Fig. 2.3). For example, at the left and

top edges we use forward differences in the x and y directions, respectively. For

pixels at the right and bottom boundaries we employ backward differences. This

leads immediately to the following boundary conditions:

un2j = un1j (top boundary)

unN,j = unN−1,j (bottom boundary)

uni2 = uni1 (left boundary)

uni,N = uni,N−1. (right boundary)

(2.16)
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Figure 2.3: Pixel classification according to location within image: interior, or
boundary. Corner pixel (1,1) belongs to top and left boundaries. The other cor-
ner pixels share a similar property.

Finally, the initial condition is discretized by

u0
ij = u0(xi, yj). (2.17)

2.4 Experiments

Using Matlab, we have written code to test the proposed model on a number

of images. On each example the original image is shown along with the location

(chosen arbitrarily) of the initial contour to be evolved. A more judicious selection

of the initial curve is expected to translate in more accurate and faster segmenta-

tions. Via experimentation, we have settled on a standard set of parameters for its

implementation. Unless stated otherwise, we choose α = 25, the time step ∆t = 1,

the standard deviation σ = 1, and the length of the local neighborhood ρ = 20. We

also present segmentation results using models proposed in [66], the global model,

and in [57], the local model. We have chosen to compare our PDE-based model to
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these because they are also PDE-, region-based but ours takes advantage of edge

data.

Our first example features an image with a number of objects, an array of coins,

to be detected. Both the global and proposed model render a correct segmentation

whereas the local model suggests the presence of a band surrounding the coins

(Fig. 2.4). Note that the original contour splits to locate all objects in the image,

an advantage provided by the embedded level set method implementation.

In Fig. 2.5 the global model (which assumes piecewise constant regions in the

image) fails to identify the silhouette of the plane that conspicuously stands out. The

local and proposed models correctly identify the object of interest. Note further that

the segmentation of our model converges closer to the boundaries of the plane. This

particular experiment shows that the proposed model exhibits certain robustness

over initialization as the initial front barely touches the target object.

Figure 2.6 shows the results of the models on an image with nonuniform back-

ground. In practice such backgrounds are regarded as being contaminated by noise;

coarse segmentation is desired so that small variations in the background are ig-

nored. In addition, pre-processing tasks as such image denoising are usually applied

to the image prior to segmentation. Our proposed, as mentioned, does not exert

control over the arc length of the moving front. Nevertheless, our model provides

a much cleaner result disregarding almost all the irregularities of the background

near the object of interest.

Finally, in Fig. 2.7, we test the algorithms on an MRI image of the brain. Such

images contain smooth boundaries that are hard to detect by deformable models.

Note that the proposed model provides a greater number of these features than the

global and local models. In Chapter 4 we consider a more specific class of medical

images where the models presented in this chapter and in Chapter 3 are applied to

the detection of lesions from dermoscopy imagery.
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(a) (b)

(c) (d)

Figure 2.4: An image that poses a relatively simple segmentation problem. (a)
Original image and initial contour, and final segmentations of (b) model proposed
in [66], (c) model in [57], and (d) our proposed model.
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(a) (b)

(c) (d)

Figure 2.5: Robustness to initial condition: The global method in [66] fails to obtain
a correct segmentation (a) Original image and initial contour, and final segmenta-
tions of (b) model proposed in [66], (c) model in [57], and (d) our proposed model.
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(a) (b)

(c) (d)

Figure 2.6: Sensitivity to noise and noisy features: Image with an irregular back-
ground that heavily hampers the segmentation results of [57, 66] on (b) and (c),
respectively. Ours (d) is able to isolate the most meaningful object in the image.
Parameters: α = 100.
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(a) (b)

(c) (d)

Figure 2.7: MRI image: The proposed model (d) captures the highest level of detail.
(a) Original and initialization, (b) result using [66], (c) result using [57].
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(a) (b) (c)

Figure 2.8: Representatives of three special classes of images. (a) Multimodal im-
age; (b) image with triple junction of colors/graylevel; (c) image with nonuniform
lighting.

2.5 Further Experiments

Many images consist of two distinguishable regions, background and foreground;

this is the basic premise of our model. However, some images can have three or more

objects of interest along with the background. For example, two objects of different

color placed adjacent to each other on a tabletop. We refer to these images as mul-

timodal images. Also, images with nonuniform lighting prove difficult to segment,

Fig. 2.8. In this section we test our PDE-based model against representatives of

these image classes to provide a proof of concept for the model we shall introduce

in Chapter 3.

2.5.1 Performance on multimodal images

The first experiment attempts a segmentation of an multimodal image with

four nonadjacent objects of different graylevel and background, as in Fig. 2.8a. The

goal is to obtain a separation of the four objects. Perhaps traditional methods such

as multithresholding [17] or region growing [26] are able to delineate every object

in this image, but the task is not as straightforward for deformable models. In fact,

our PDE-based model is only able to separate the object with highest contrast
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(a) (b)

Figure 2.9: Unsuccessful segmentation of multimodal image. Our PDE-based model
is only able to separate the object with highest contrast relative to the background
regardless initialization. (a) and (b) show two initializations and their respective
(identical) steady states.

(a) (b)

Figure 2.10: Graylevel histograms for (a) ‘coin’ and (b) ‘four-object’ images.

relative to the image background without performing pre-processing tasks such as

histogram equalization or histogram matching [26], Fig. 2.9. It is interesting to

compare this result with that of Fig. 2.4 in which all the objects (the coins, some of

which have different graylevel intensities) in the scene were successfully detected by

the model. Inspection of the image histograms reveals the reason why this occurs,

Fig. 2.10. Our PDE-based model measures deviations of I form the intensity means

inside and outside the evolving front as this moves about the image domain. Due

to the jumps in the frequency distribution for the ‘four-object’ image and lack of

continuity across the dynamic range of the image, the means (2.5) remain constant

32



2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

n

c1(un)

Figure 2.11: Intensity mean inside front c1 as function of number of iterations for
‘four-object’ image.

for each iterative step n, making the evolving curve converge after just one iteration,

Fig. 2.11. Therefore, only one object is detected by our model. For such images,

and other texture images [65], graylevel information is inadequate. In Chapter 5 we

discuss other image discriminants and techniques that could prove useful for object

detection in multimodal imagery.

2.5.2 Images with Nonuniform Illumination

Shading (also intensity nonuniformity, intensity inhomogeneity, ect.) occurs

often in everyday and specialized imagery [25]. This phenomenon may originate from

imperfections of the image acquisition process or inadequate object preparation [35,

59]. Uniform lighting is desirable because pixels of the same class (within an object,

for example) are expected to possess equal brightness (graylevel) regardless of their

location within the image. Lack of uniform illumination in an image can hamper

its viability for analysis; this is particularly true when using mathematical models

for object detection. In particular, our PDE-based model, being a region based

model that combines global and local statistics via edge data, is not impervious to

33



(a) (b)

Figure 2.12: Segmentation of ‘monkey’ image by PDE-base model.(a) Original and
initialization, (b) final segmentation. Bright region on the floor is also detected as
a possible region of interest.

the negative effects of severe intensity inhomogeneity. Consider again the ‘monkey’

image from Fig. 2.8c. Note the regions that are very bright (head, hands, abdomen,

face, and shoulders) within the monkey itself and the floor. Not only is illumination

not uniform, the monkey itself is a multimodal object (belly, face, eyes, fur, etc.).

Segmentation results for the PDE-based model are shown in Fig. 2.12

We will address these weaknesses, at least partially, in the next chapter where

we propose our second model for image segmentation based on a variational formu-

lation.
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CHAPTER 3

A HYBRID VARIATIONAL MODEL FOR BOUNDARY DETECTION

In the previous chapter we presented a PDE-based hybrid model (combining

both edge and region data) by directly specifying the evolution equation for an initial

curve C0. One expects the steady state of the PDE to correspond (in principle) to

the boundary of objects in an image. The formulation of the model relied on a

number of assumptions which lead, in turn, to the formulation of speeds F that

propagate points x of C0 toward the edges of relevant regions. In this chapter we

propose a hybrid model for image segmentation based on a variational formulation.

We draw inspiration form the models in references [7, 29,64].

3.1 Preliminaries

Let the image domain D ⊂ R2 be open and bounded, and I : D → R the given

image. In [64] (see also [65]) it is assumed that I is bimodal, that is, it consists of

two regions, foreground and background, with respective constant intensities ι1, ι2,

with ι1 6= ι2
1. Let C(x, t) : D × [0,∞) → R2 be a family of planar curves in the

image domain, and µ1, µ2 be, respectively, the mean intensity of I inside and outside

C(·, t). Then

µ1 = µ1(x,Ω) =
1

|Ω|

∫
Ω

I(x) dx, (3.1a)

µ2 = µ2(x,Ω) =
1

|Ωc|

∫
Ωc

I(x)dx, (3.1b)

1We will relax this condition later.
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Foreground

Background

ω
C(x, t)

Figure 3.1: Composition of a bimodal image. Foreground (in color), background,
and the boundary ω (in blue) separating the two regions. A segmentation is obtained
as C approaches ω.

|Ω| =
∫

Ω

dx, (3.2)

where Ω is the interior of C(·, t), and Ωc its exterior. Let ω represent the ideal

boundary separating the background and foreground regions in I (see Fig. 3.1).

Clearly, as C approaches the unknown boundary ω the absolute difference of the

dynamic means µ1, µ2 increases and gets closer to the absolute difference of the

region intensities ι1, ι2. In symbols,

|µ1 − µ2| → |ι1 − ι2| as C → ω. (3.3)

In this way, C gives a separation of the foreground and background regions according

to the “distance” separating their respective means. Based on this analysis, the

following variational formulation is proposed [64]:

supE = sup (µ1 − µ2)2, (3.4)

where the sup is taken over all admissible deformations of the curve C on W 1,2(D) =

{C ∈ L2(D);∇C ∈ L2(D)}. We call this model the Mean Separation (MS) model as

in [31]. When the images are not bimodal, however, the model (3.4) is not effective

for segmentation of more general images, Fig. 3.2.
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(a) (b)

Figure 3.2: Incorrect segmentation using separation of means. (a) Original image
and initial curve, and (b) final segmentation. The evolving curve is attracted to the
brightest regions in the image.

3.2 Model Formulation

To extend the capabilities of model (3.4) to a larger class of images we refor-

mulate it as a minimization problem. Further, we incorporate an edge function g

(as in (1.31), for example) to augment its scope for boundary detection. We thus

propose the following energy for object detection:

Ê(x,Ω) = −1

2
g(x)(µ1 − µ2)2 (3.5)

where µ1, µ2 are as in equations (3.1a) and (3.1b). Minima of (3.5) (possibly local)

are expected to attract evolving curves toward object boundaries due to forces

exerted by the region features embedded in the separation of the means µ1, µ2,

while the edge function g pins down the contours to salient discontinuities. To

further strengthen (3.5) we add a regularization term [58]

L =

∮
C

ds (3.6)

which penalizes C to have minimal arc length. We do so via a Lagrange multiplier

λ > 0 which controls the influence of the regularizing effects of (3.6). The resulting
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model is

E(x,Ω) = −1

2
g(x) (µ1 − µ2)2 + λ

∮
∂Ω

ds. (3.7)

We pause for a moment to put matters in mathematical perspective. While the

energies for the variational models presented in Chapter 1 involved line (boundary)

integrals, energy (3.7) not only entails such integrals (regularization term), it also

involves region integrals. As a result, the techniques presented in Chapter 1 do not

apply (at least directly) to model (3.7). In particular, the first term in (3.7) requires

special treatment. We address how to obtain the Gateaux derivatives of region

functionals in the next section. This will lead to the associated Euler equations,

which in turn lead to the evolution parabolic PDE for our proposed model.

3.3 Velocity Fields of Region Functionals

As we showed in the introduction of this thesis, solutions of variational problems

typically involve PDEs (Euler equations) whose solution determines minima of the

associated energies. If the energy involves only line integrals, the techniques of

Chapter 1 are sufficient to compute the velocity fields. Energies like the one we

propose in the previous section involve region functionals. To handle these, two

approaches are possible:

a) either, as it is classical, the region integrals are converted to line integrals,

which is possible by invoking solutions of Poisson’s equation with Dirichlet

conditions and an application of Green’s theorem, or

b) obtain the Euler equations from the region functionals directly using shape

derivation methods.

We choose the former approach and remark that the latter has interest in its

own right. We refer the reader to [5] and references therein for more on shape

derivation.
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3.3.1 Converting Region Integrals to Boundary integrals

We follow [5]. Let us consider region integrals of the form

F (Ω) =

∫
Ω

f(x,Ω) dx (3.8)

where f is a scalar function and Ω is an open, regular and bounded subset of Rn

with boundary ∂Ω. We prove the following result.

PROPOSITION 3.1. Let Ω be a bounded open set with regular boundary ∂Ω. Let

f : Ω̄→ R be continuous and u the unique solution of Poisson’s equation:
−∆u = f in Ω,

u = 0 on ∂Ω.

(3.9)

The following identity holds:∫
Ω

f(x,Ω) dx =

∫
∂Ω

∇u · ~N ds. (3.10)

Proof. Let u satisfy the hypothesis. Then,∫
Ω

f(x,Ω) dx = −
∫

Ω

∆u dx =

∫
∂Ω

∇u · ~N ds.

The first equality follows by (3.9) inside Ω, and the second by Green’s theorem. The

proof is complete.

3.3.2 Computation of the Gateaux derivative

With the region integrals converted into line integrals, we can follow the ideas

of Chapter 1 to obtain the Euler equation associated with energy (3.7). But first

we obtain the general result for functional (3.8).

THEOREM 3.2. The Gateaux derivative of (3.8) is

F ′(Ω) = −
∫ 1

0

Ct · f ~N ds = −
∫ 1

0

Ct(q) · f(C(q)) ~N ds.
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Note that F ′ does not depend on u, but on the original integrand of functional (3.8).

Proof. By Proposition 3.1 we have∫
Ω

f(x,Ω) dx =

∫
∂Ω

∇u · ~N ds. (3.11)

Explicitly the gradient (column) vector2 field of u is

∇u = 〈ux, uy〉T , (3.12)

and the inward unit normal vector ~N to ∂Ω is

~N =
〈−yq, xq〉T

‖Cq‖
. (3.13)

Note that we could use the principal unit normal vector as in (1.15) but the above

representation is simpler. Substituting (3.12) and (3.13) in (3.11) we get∫
Ω

f(x,Ω) dx =

∫
∂Ω

∇u · ~N dq =

∫ 1

0

(uyxq − uxyq) dq. (3.14)

Differentiating with respect to t gives

F ′(Ω) =
d

dt
F (Ω) =

∫ 1

0

d

dt
(uyxq − uxyq) dq

=

∫ 1

0

(xq∇uy · Ct + uyxqt − (yq∇ux · Ct + uxyqt)) dq

=

∫ 1

0

((xq∇uy − yq∇ux) · Ct + 〈uy,−ux〉 · Cqt) dq.

(3.15)

Integrating the second term of the last equation above by parts, one has

F ′(Ω) =

∫ 1

0

(xq∇uy − yq∇ux − 〈∇uy · Cq,−∇ux · Cq〉T ) · Ct dq

=

∫ 1

0

((uxx + uyy)〈−yq, xq〉T ) · Ct dq

=

∫ 1

0

(∆u ~N‖Cq‖) · Ct dq.

(3.16)

The hypothesis of Proposition 3.1, ∆u = −f , and the fact that ds = ‖Cq‖dq verifies

the claim. The proof is complete.

2We use ~V T = 〈a, b〉T to denote the transpose of the row vector ~V .
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We now compute the Gateaux derivative of energy (3.7). Its first term is the

region functional to which Theorem 3.2 applies. The derivative of the second term

was obtained in equation (1.19) of Section 1.2.1:

L′(t) = −
∫ L(t)

0

Ct · κ ~Nds, (3.17)

where κ is the mean curvature of at each pixel x of C. Consider now the region

dependent term of (3.7):

R(x,Ω) = −1

2
g(x) (µ1 − µ2)2, (3.18)

where the region functionals are embedded in the means µ1, µ2 (equation (3.1)).

The Gateaux derivative of (3.18) is

R′(x,Ω) = −1

2
g(x)

d

dt
(µ1 − µ2)2

= g(x)(µ2 − µ1)
d

dt
(µ1 − µ2)

= g(x)(µ2 − µ1)(
d

dt
µ1 −

d

dt
µ2)

(3.19)

where we have used the chain rule and the fact that g = g(I(x)) does not change

with time. The problem has been reduced to computing the derivatives of µ1 and

µ2. We consider each individually beginning with µ1:

d

dt
µ1 =

d

dt

(∫
Ω
Idx∫

Ω
dx

)
=

∫
Ω
dx d

dt

(∫
Ω
Idx

)
− d

dt

(∫
Ω
dx
) ∫

Ω
Idx(∫

Ω
dx
)2 .

(3.20)

By Theorem 3.2, d
dt

(∫
Ω
Idx

)
= −

∫ 1

0
Ct ·I ~Nds and d

dt

(∫
Ω
dx
)

= −
∫ 1

0
Ct · ~Nds. Also,

to simplify notation, we write |Ω| for
∫

Ω
dx. Substituting these expressions in (3.20)
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we get

d

dt
µ1 =

∫ 1

0
Ct · ~Nds

∫
Ω
Idx− |Ω|

∫ 1

0
Ct · I ~Nds

|Ω|2

=

∫ 1

0
Ct · µ1

~Nds−
∫ 1

0
Ct · I ~Nds

|Ω|

= −
∫ 1

0
Ct · (I − µ1) ~Nds

|Ω|

= −
∫ 1

0

Ct ·
I − µ1

|Ω|
~Nds

(3.21)

For µ2 =
∫

Ωc Idx/
∫

Ωc dx, we note that the inner normal vector to Ωc is − ~N . Its

Gateaux derivative is computed in similar fashion:

d

dt
µ2 =

∫ 1

0

Ct ·
I − µ2

|Ωc|
~Nds. (3.22)

Finally, using (3.21) and (3.22) in (3.19) results after some rearranging in:

R′(x,Ω) = −
∫ 1

0

Ct · g(x)(µ2 − µ1)

(
I − µ1

|Ω|
+
I − µ2

|Ωc|

)
~Nds, (3.23)

and adding (3.17) and (3.23) we arrive at the Gateaux derivative for the proposed

model:

E ′(x,Ω) = −
∫ 1

0

Ct ·
[
g(x)(µ2 − µ1)

(
I − µ1

|Ω|
+
I − µ2

|Ωc|

)
+ λκ

]
~Nds. (3.24)

3.3.3 Construction of the velocity field for the solution of minE

From the Gateaux derivative we immediately obtain the associated Euler equa-

tion. Starting from an initial curve C(x, 0) = C0 the steepest descent method gives

the following evolution equation the minima of (3.7):

Ct = g(x)(µ2 − µ1)

(
I − µ1

|Ω|
+
I − µ2

|Ωc|

)
~N + λκ ~N . (3.25)

We expect the steady state of (3.25) to provide meaningful image partitions taking

advantage of both edge and statistical information from more general images.
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3.4 Numerical Implementation

Again, we use the level set method for the numerical implementation of (3.25).

Let C be represented by the zero levels set of the embedding curve u : R2 → R.

Then (see Section 1.2.3):

∇u · Ct + ut = 0 (3.26)

Using (3.25) in (3.26) along with ~N = −∇u/‖∇u‖ we obtain the evolution of C in

terms of the level sets of u:

ut = −∇u · Ct

= ∇u ·
(
g(x)(µ2 − µ1)

(
I − µ1

|Ω|
+
I − µ2

|Ωc|

)
+ λκ

)
∇u
‖∇u‖

=

(
g(x)(µ2 − µ1)

(
I − µ1

|Ω|
+
I − µ2

|Ωc|

)
+ λκ

)
‖∇u‖.

In terms of u the curvature κ = div(∇u/‖∇u‖). Using this in the above equation

we arrive at the level set evolution model for the solution of problem (3.7):



ut =

[
g(x)(µ2 − µ1)

(
I − µ1

|Ω|
+
I − µ2

|Ωc|

)
+ λdiv

(
∇u
‖∇u‖

)]
‖∇u‖

∂u

∂~n
= 0 on ∂Ω (Neumann boundary condition)

u(x, 0) = u0(x) (initial condition)

(3.27)

Equation (3.27) gives the evolution of all the levels sets of u. However, we are only

interested in the zero level set which represents Ct. For our purposes it is sufficient

to only consider pixels x in a small neighborhood (strip or band) of the zero level

set. Aiming for computational efficiency, we implement localized techniques known

as narrowband methods. We refer the interested reader to references [1, 51, 52] for

details. For the discretization of (3.27) we employ forward differences for the time

derivatives and central differences for the spacial derivatives at interior pixels and

forward/backward differences for pixels at the boundary, as we did in Section 2.3
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for our PDE-based model, and hence we will not repeat this analysis. We only detail

how to obtain the curvature κ as it involves second partial derivatives. By definition,

κ = div

(
∇u
‖∇u‖

)
and expanding the divergence operator gives

κ = div

(
∇u
‖∇u‖

)
=

∂

∂x

(
ux

(u2
x + u2

y)
1/2

)
+

∂

∂y

(
uy

(u2
x + u2

y)
1/2

)
.

After using the quotient rule and some simplification we obtain

κ =
uxxu

2
y − 2uxyuxuy + uyyu

2
x

(u2
x + u2

y)
3/2

. (3.28)

Clearly, approximations to the second order partial derivatives uxx, uyy, and uxy are

needed for the approximation of κ. Let h represent the spatial step size on either

direction. From Taylor’s theorem we have the following expansions:

u(x+ h, y) = u(x, y) + hux(x, y) +
h2uxx(x, y)

2
+
h3uxxx(x, y)

6
+O(h4) (3.29)

u(x− h, y) = u(x, y)− hux(x, y) +
h2uxx(x, y)

2
− h3uxxx(x, y)

6
+O(h4) (3.30)

Adding (3.29) and (3.29) yields

u(x+ h, y) + u(x− h, y) = 2u(x, y) + h2uxx(x, y) +O(h4) (3.31)

and solving for uxx gives the second order accurate formula

uxx(x, y) ≈ u(x+ h, y)− 2u(x, y) + u(x− h, y)

h2
. (3.32)

which can be written using subindex notation as

uxx|nij ≈
uni+1,j − 2unij + uni−,j

h2
(3.33)

for every iteration n and interior pixel (ih, jh) = (i, j). Similarly for uyy we get

uyy|nij ≈
uni,j+1 − 2unij + uni,j−1

h2
. (3.34)
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Figure 3.3: 3×3 neighborhood of pixel (i, j). Corner neighbors are used for approx-
imating mixed second order derivatives.

The second order mixed partial derivative uxy requires more work. Refer to Fig. 3.3.

At the four “corner” neighbors u(x+ h, y + h), u(x− h, y − h), u(x− h, y + h), and

u(x+ h, y − h) we have the following expansions:

−u(x+ h, y + h) =− (u(x, y) + h(ux(x, y) + uy(x, y))

+
h2(uxx(x, y) + uyy(x, y))

2
+ h2uxy(x, y)) + . . .

(3.35)

−u(x− h, y − h) =− (u(x, y)− h(ux(x, y) + uy(x, y))

+
h2(uxx(x, y) + uyy(x, y))

2
+ h2uxy(x, y)) + . . .

(3.36)

u(x+ h, y − h) =u(x, y) + h(ux(x, y)− uy(x, y))

+
h2(uxx(x, y) + uyy(x, y))

2
− h2uxy(x, y) + . . .

(3.37)

u(x− h, y + h) =u(x, y)− h(ux(x, y)− uy(x, y))

+
h2(uxx(x, y) + uyy(x, y))

2
− h2uxy(x, y) + . . . .

(3.38)

Adding equations (3.35) – (3.38) and solving for uxy yields the fourth order accurate

formula

uxy =
u(x+ h, y + h) + u(x− h, y − h)− u(x+ h, y − h)− u(x− h, y + h)

4h2

or more concisely using subindex notation

uxy|nij =
ui+1,j+1 + ui−1,j−1 − ui+1,j−1 − ui−1,j+1

4h2
. (3.39)
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3.5 Simulations

To assess the strengths and weaknesses of our variational model, which we

call the Edge-Mean Separation (EMS) model, in this section we demonstrate its

performance on a number of images. In Section 3.5.1 the examples illustrate how

the EMS model is able to process images that MS model is not able to segment.

Other technical aspects are tested in Section 3.6.

3.5.1 Application to Wider Class of Images

We consider the ‘monkey’ image for our first example. We noted (Section 3.1)

that the MS Model cannot delineate the boundaries of the relevant object for this

image due to the presence of nonuniform lighting and bright regions within the

object of interest. In Fig. 3.4, using the same initial curve as for the MS model, we

obtain a meaningful segmentation of the monkey. Clearly, this example illustrates

a significant improvement.

For our next experiment we consider a galaxy image. Figure 3.5 on p. 48 shows

an example of a spiral galaxy with two spiral arms [16]. Our model is able to detect

the “cognitive” boundary of this galaxy. Note further the presence of a large star at

the end of the spiral arm extending toward the top of the image. Our model suggests

the presence of a potential object of interest there along with nearby cosmic dust,

gas, and other smaller stars–perhaps a second bulge [16].

Our third and final example shows a medical image involving two cells, Fig. 3.6,

p. 48. The advantages of using a level set formulation are apparent: starting from

a rectangular front, a change in topology occurs and the front adjust to the shape

suggested by image’s objects of interest. As in the previous examples our proposed

model provides the most meaningful segmentation.
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(a) (b)

(c) (d)

Figure 3.4: Successful segmentation using our proposed model. (a) Original image
and (b) initial curve; (c) results with the MS model and (d) the proposed EMS
model. The evolving curve clings to the outer edges of the monkey.

3.6 Further Experiments

In this section we show the results of several experiments we conducted to

assess other properties that are desired of segmentation techniques. Sensitivity to

initialization, performance on multimodal images, and sensitivity to noise are inves-

tigated.
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(a) (b) (c) (d)

Figure 3.5: A successful segmentation of ‘galaxy’ image by our proposed model.
(a) Original image and (b) initial curve;(c) results with the MS model and (d) the
proposed EMS model. The “congnitive” boundary of the galaxy is suggested by our
model.

(a) (b) (c) (d)

Figure 3.6: (a) Original image and (b) initial curve; (c) results with the MS model
and (d) the proposed EMS model. The two cells are successfully detected by our
model.

3.6.1 Sensitivity to Initialization

The problem of image segmentation from a PDE-Variational point of view is

ill-posed. Although objects in images do not change (in some sense, they are unique)

regardless of the location chosen for the initial evolving curves, two starting fronts

u0, v0, u0 6= v0, often render different solutions. Hence, there seems to be an unclear

link between the steady state of evolution equations or (local) minima of energies

and the particular image being segmented. Our proposed model does not escape

this phenomenon. We tested our model against the ‘two cells’ image using a number

of different initializations keeping all other parameters constant. Figure 3.7 shows

eight different initializations. It is found that the model tends to yield meaningful
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segmentations when single, regular initial curves surround the target objects. Also

worth noting are initial curves shown in Fig. 3.7h. Contours of this form are desirable

when detection of many objects is sought after. In this particular instance, not only

the two cells were detected but also some structures within the left cell are suggested

by the model as potential objects of interest.

3.6.2 Performance on multimodal images

In section Section 2.5 multimodal images were introduced. These images con-

tain more than one region of interest (ROI) with different color/graylevel intensity.

We also described the challenges they pose to PDE-based models. In this section

we test our variational model on these images and discuss possible improvements.

Figure 3.8 shows our first experiment. The image consist of a square split into

two black and white rectangles and the gray background. The three regions are

adjacent to each other, a configuration commonly referred to as a triple junction.

One could be interested in separating the square from the background or either

rectangle. Starting from a front surrounding the target objects, our model is able

detect the boundary of the square. This is possible due to incorporation of edge

information. Region information alone fails as the gray level averages inside and

outside the initial front are approximately equal (see Section 2.5.1). The model is

able to detect either rectangle as well, starting from an overlapping front mostly

contained within the target rectangle (Fig. 3.9).

Even if the objects of interest are not adjacent as in the example above, our

model is still able to separate each object from the background, although selectively,

Fig. 3.10. The model fails if no prior information is available and an unknown

number objects are to be detected simultaneously with one single front.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.7: Sensible initializations of the evolving front plays a crucial role in the
segmentation results for the proposed model. When initial contours encompass the
target objects, as in (a) and (e), meaningful results are obtained. In (h) an almost
correct segmatation is obtained if the detected region inside the cell on the left is
neglected.
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(a) (b) (c)

Figure 3.8: Segmentation of trimodal image with triple junction. (a) Original image
and (b) initial curve; (c) result by proposed model. Boundaries of the outer square
are detected.

(a) (b)

Figure 3.9: Selective segmentation in trimodal image with triple junction. Individual
detection of (a) black and (b) white rectangle.

(a) (b)

Figure 3.10: (a) Selective detection is still possible, (b) but detection of all objects
in the scene is not.
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Figure 3.11: Effect of noise. Noise removal techniques ought to be implemented
before segmentation.

3.6.3 Sensitivity to Noise

We have shown that our segmentation model enjoys great versatility in terms

of the class of images it can process and its scope to multimodal images. Its main

limitation is perhaps its sensitivity to noisy features in images. Being a hybrid

model, spurious objects can significantly hamper its effectiveness as such anomalies

are interpreted as possible boundaries of an object by the edge function g, Fig. 3.11.

Therefore, preprocessing of noisy images using noise removal techniques [45, 46] is

recommended before the implementation of our variational model.
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CHAPTER 4

LESION DETECTION IN DERMOSCOPY IMAGES

As we have shown in Chapters 2 and 3, our hybrid models significantly enlarge

the scope of region/edge exclusive models. We now turn our attention to a more

specific class of images: skin lesions. In particular, this chapter focuses on how our

hybrid models can be used in the segmentation and detection of lesions of the skin

in Dermoscopy (also Dermatoscopy) images.

Dermatologists rely on dermoscopy images to distinguish benign skin lesions

from malignant ones, most prominently a type of cancer known as Melanoma, which

is the third most common manifestation of skin cancer and the most aggressive [61].

Due to the high incidence and mortality rates of melanoma, and the advancement

of skin imaging acquisition technology, dermoscopy imagery has received a lot of

attention from researchers over the past 15 years. However, there is still a need for

computerized image analysis systems to minimize misdiagnoses and subjectivity of

naked-eye interpretation [48].

To diagnose melanoma and other types of malignant pathologies using computer-

aided approaches, an accurate separation of the lesion is of paramount importance.

Once a successful segmentation is obtained, it is possible to classify skin lesions

from their morphology (shape, symmetry or lack thereof, etc.) and other attributes

[56]. Segmentation of dermoscopy images, however, is not without its challenges.

For example, there exists several lesion types (melanomas, basal cell carcinomas,

nevi, and others) that range significantly in shape and color, and often feature

ambiguous boundaries, Fig. 4.1. Also, very frequently noisy features rear make un-
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(a) (b) (c) (d)

Figure 4.1: Some of the challenges of dermoscopy image segmentation: (a) hair, (b)
variation in color, (c) ambiguous boundaries, (d) bubbles and other skin irregular-
ities. Note also the invariable presence of the dark regions on the periphery of the
images.

desirable appearances–most notably hair, bubbles and other skin irregularities, and

dark regions on the periphery of the images.

4.1 Segmentation of Dermoscopy Images

A review of the literature reveals segmentation schemes that most computa-

tional biologists and other researchers have proposed typically consist of a number

of steps [8, 18,42,48,60]:

1. Pre-processing. This step seeks to remove a number of potentially problem-

atic segments of the image such as the microscope border. Further, image

smoothing is often performed to remove faulty skin texture, bubbles, and

hair. Moreover, tasks such as color quantization that reduce the number of

colors in images are also implemented prior to the segmentation step [8].

2. Segmentation. The actual segmentation step is typically achieved using one

or more techniques such as region growing, thresholding, and split and merge.

3. Post-processing. Further noise reduction, correction of nonuniform lighting,

and inpainting is also performed [42,60].

From the above discussion the reader can be convinced that these prevalent
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segmentation approaches are quite complex. We propose a greatly simplified ap-

proach to the segmentation of dermoscopy imagery using hybrid models introduced

in this thesis.

4.1.1 Proposed Methodology

Our approach for dermoscopy imagery segmentation is as follows:

1. Convert image to grayscale, if necessary. The only information our models

need is intensity at each pixel x.

2. Initialize evolving front surrounding the lesion. The closer the front is located

to the lesion, the faster the convergence ought to be.

3. Evolve front using either PDE-based model (2.10) or the Edge-Mean Separa-

tion model (3.25).

We note that neither pre-processing nor post-processing tasks are needed in our

proposed methodology as the images are not intrinsically modified when converted

to grayscale.

4.1.2 Performance Metric

By evolving an initial front C0 to steady state using either (2.10) or (3.25)

yields the region of interest (ROI) of an dermoscopy image I. We identify interior

points to the final front as the potential ROI containing the skin lesion. To measure

the accuracy of the ROI rendered by a model we define a metric that quantizes the

number of mislabeled pixels x of the image domain Ω.

Let F : Ω→ {0, 1} be a mapping labeling each pixel x ∈ Ω as either in the potential

ROI, F (x) = 1, or not in the ROI, F (x) = 0. Similarly, we define the “ground truth”
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mapping G : Ω → {0, 1} which provides the correct segmentation provided by an

expert. We define the error ε in the segmentation F with respect to G as:

ε(F,G) =
∑
x∈Ω

H(x)

/∑
x∈Ω

G(x) (4.1)

where

H(x) =


1, F (x) 6= G(x)

0, F (x) = G(x)

. (4.2)

The function H compares the labeling F (x) with G(x) and returns 1 if they disagree.

The number of mislabelings is counted and normalized by the total number of pixels

in the ROI for the mapping G thus providing a measurement of the error carried

by the ROI for mapping F . Note that ε ∈ [0, 1]; an error measure ε = 0 indicates

perfect agreement between the labelings F and G, whereas ε = 1 indicates total

mismatch of the labelings. Other possible metrics could also be employed [24].

4.2 Simulations

We benchmark our approach to dermoscopy image segmentation using images

from PH2 dataset [39]. The dataset consists of 200 images of melanocytic lesions,

including 80 common nevi, 80 atypical nevi, and 40 melanomas. Medical segmen-

tation of the lesions by an expert dermatologist are included in the dataset. For

metric (4.1) values in the interval [0, 0.15] are considered satisfactory [42].

For our first experiment we consider an image with a very undesirable pathol-

ogy: significant presence of thick hair covering the lesion. To overcome this using

deformable models without prior preprocessing, a judicious choice for the initial

front is crucial. Because the front is propagated in the normal direction, the initial

curve is chosen so that it “cuts off” each of the hairs perpendicularly. Even in the

presence of such unwanted feature a segmentation is obtained with a 0.106 error

using flow (3.25), Fig. 4.2. Images with thinner hair can be handled easily by our
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(a) (b) (c)

Figure 4.2: Dermoscopy image with thick hair. (a) Original, (b) initialization, and
(c) final result in yellow and ground truth in green. Error in segmentation: 0.106.

(a) (b) (c)

Figure 4.3: Dermoscopy image with thin hair. (a) Original, (b) initialization, and
(c) final result in yellow and ground truth in green. Error in segmentation: 0.077.

models as shown in Fig. 4.3 . The same strategy is implemented by cutting the hairs

perpendicularly with the initial curve and letting it evolve in the normal direction.

As the quality of the images improve in terms of hair presence, the accuracy of

the results is elevated in proportion, Fig. 4.4. Note also the presence of bubbles and

irregular spots around the lesion. All of these pathologies are overcome by a careful

selection of the initial evolving curve.

Figure 4.5 shows the result of a segmented lesion with surrounding irregular

skin. Such backgrounds require a higher number of iterations. A highly accurate

segmentation is obtained with an error score of 0.079. The lesion in Fig. 4.6 features a

somewhat ambiguous boundary. Our model is able to delineate the lesion boundary

with 93% match to the expert’s.
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(a) (b) (c)

Figure 4.4: Dermoscopy image with thin hair and bubbles. (a) Original, (b) initial-
ization, and (c) final result in yellow and ground truth in green. Error in segmen-
tation: 0.055.

(a) (b) (c)

Figure 4.5: Dermoscopy image with thin hair. (a) Original, (b) initialization, and
(c) final result in yellow and ground truth in green. Error in segmentation: 0.079.

For our last experiment we consider a dermoscopy image that poses a number

of challenges. First, it has some imperfections due to reflection of the light ema-

nating from the source. Second, it presents bubbles due to addition of a foreign

substance prior to the image acquisition step. And finally, the lesion itself consists

of several segments of different colors. Despite all these pathologies occurring in uni-

son, a 90.7% accurate segmentation is obtained without any pre- or post-processing.

Results for all experiments are summarized in Table 4.1.
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(a) (b) (c)

Figure 4.6: Dermoscopy image of lesion with ambiguous boundary. (a) Original,
(b) initialization, and (c) final result in yellow and ground truth in green. Error in
segmentation: 0.079.

(a) (b) (c)

Figure 4.7: Dermoscopy image of lesion with significant color variation. (a) Original,
(b) initialization, and (c) final result in yellow and ground truth in green. Error in
segmentation: 0.093.

Image Pathology ε

Fig. 4.2 thick hair 0.106

Fig. 4.3 thin hair 0.077

Fig. 4.4 sparse hair 0.055

Fig. 4.5 irregular skin 0.079

Fig. 4.6 ambiguous lesion boundary 0.079

Fig. 4.7 multicolored, bubbles, glare 0.093

Table 4.1 – Segmentation error for images considered in this chapter.
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CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

In this dissertation we have contributed two mathematical models that aim to

solve the problem of image segmentation for a large family of images. Starting from

a number of assumptions about the composition of the images, we proposed our

first model by specifying a differential equation directly whose steady state leads

to the segmentation of the given image. Our second model was obtained from a

variational formulation. Both models successfully take advantage of two different

kinds of image data: edge information provides a criterion for slowing down the

evolution of evolving fronts, whereas region information provides the direction for

the evolution. We explored their strengths and identified their weaknesses through

experimentation using synthetic and real images. In particular, our models are not

able to separate objects with different graylevel modalities. We presume n-modal

images, n > 1, require n evolving fronts to detect each intensity modality. This is a

natural generalization that we intend to investigate further. Finally we applied our

models to segment skin lesions in dermoscopy images with promising results.

Both proposed models ultimately lead to nonlinear partial differential equa-

tions whose solutions were approximated using finite differences. Although these

approximations are chosen most often by researchers, there are other methods that

can be explored, namely finite-element methods, finite-volume methods, and spec-

tral methods [55]. A natural question that arises is: how effective these alternate

methods are, and can formal mathematical results be obtained? When using any

numerical scheme to obtain approximate solutions of equations one is interested in
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providing an answer the following questions:

1. Consistency: How well the numerical scheme approximates the underlying

PDE.

2. Convergence: How close to the exact solution are the solutions of the chosen

numerical scheme.

3. Stability: A sort of well-posedness condition for the discretized problems,

it establishes that solutions of a numerical scheme associated to certain ini-

tial data should remain close to solutions associated to the same initial data

slightly perturbed.

With the exception of a handful of models, answers to these questions are typically

avoided.

Alternatively, one could seek to obtain an existence result directly from the

intrinsic characteristics of the numerical scheme using classical fixed point theory.

This requires care, as the manner in which the finite difference (or other) approxi-

mations are constructed (forward, backwards, centered, etc.) and the norm used to

obtain the estimates can affect the well-posedness of the problem. Unfortunately,

we cannot guarantee uniqueness of solutions due to lack of convexity of the func-

tionals, but this is not a major drawback as it relates to the practical results one

seeks in image segmentation problems as long as meaningful partition of images are

obtained. The standard approach is as follows:

1. Choose a grid of N × N equally spaced points (xi, yi) = (ih, jh) ∈ Ω, i, j =

1, 2, . . . , N , and h > 0.

2. Define φ0
ij ≈ φ(0, ih, jh), i, j = 1, 2, . . . , N .

3. Given φnij, compute φn+1
ij as the solution of a predefined numerical scheme.
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4. Show that the sequence (φnij) thus obtained converges for n→∞. This limit

is the approximate solution of the original PDE.

Often, however, the estimates required to obtain the above results prove difficult to

be realized. We intend to investigate these matters in future research work.
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APPENDIX A

MATLAB CODE

A.1 PDE-based Model

1 function c1 = pdebased seg(I,c1,n,dt,sigma,alpha,rho,refresh,nu,~,~)

Description of function arguments:

� I is the image I to be segmented with dimensions row by col.

� c1 is the initial curve in level set form, which corresponds to u0.

� n corresponds to the maximum number of iterations the loop is to run.

� dt corresponds to the time step ∆t.

� sigma, the standard deviation σ for the Gaussian kernel

� alpha is the overall propagation speed α > 0.

� rho is the size of the localization parameter ρ. Smaller values of sizew increase

the localization property of the method.

� nu controls stretching of the exponential weights w1, w2 (2.8).

� rfsh and lnclr control the frequency outputs are displayed, and the color of

coutours shown on screen, respectively.

Error Handling

The following are error handling routines that ensure the function is able to run

with at least the default parameters.
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2 %Maximum number of iterations set to 200.

3 if(~exist('n','var'))

4 n = 200;

5 end

6

7 %Propagation speed alpha set to unit speed.

8 if(~exist('alpha','var'))

9 alpha = 1;

10 end

11

12 %Time step increment dt = 1.

13 if(~exist('dt','var'))

14 dt = 1;end

15

16 %Standard deviation sigma =1

17 if(~exist('sigma','var'))

18 sigma = 1;end

19

20 %Size of localization window rho

21 if(~exist('rho','var'))

22 rho = 20;

23 end

24

25 %Parameter for the exponential weights nu

26 if(~exist('nu','var'))

27 nu = 1;

28 end

29

30 %Refresh output every 20 iterations

31 if(~exist('refresh','var'))

32 refresh = 20;end
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Initialization steps

33 % Get size of image to be segmented

34 [row, col,~] = size(I); %Only 2-D images are considered

35 % Getting working image

36 J=get working image(I);

“Filter” definitions

37 %Gradient map for input image used in exponential weights (eq. 2.4)

38 gradj=gradmag(J);

39 %Exponential weights from equation (2.4)

40 a=1-exp(-gradj/nu); b=1-a;

Loop

41 for i=1:dt:n

42 %% Boundary conditions

43 % We verify the Neumann boundary conditions are before the

44 % evolutionary process at the beginning of each iteration.

45 % See 'Subfunction: Boundary Conditions' below.

46 c1=Boundarycond(c1,row,col);

47 %% Operate on narrow band

48 %capture the pixels using indexes i

49 idx = find(c1 <= 1.2 & c1 >= -1.2)';

50 %% Evolution

51 % See subfunctions for computation of Global and Local stats.

52 c1(idx)=c1(idx)+alpha*dt.*((b(idx).*global means(J,c1,idx)+...

53 a(idx).*local means(J,idx,c1,rho)));

54 % Regularization step (Convolution with Gaussian kernel)

55 c1=imgaussfilt(c1, sigma); show evolution(I,c1,i,refresh);

56 end end
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Auxiliary Functions

57 %% Subfunction: Boundary Conditions

58 function g = Boundarycond(f,row,col)

59 f([1 row],[1 col]) = f([3 row-2],[3 col-2]);%top corners

60 f(2:end-1,1)=f(2:end-1,2); %left edge

61 f(2:end-1,end)=f(2:end-1,end-1); %right edge

62 f(1,2:end-1)=f(2,2:end-1); %top edge

63 f(end,2:end-1)=f(end-1,2:end-1); %bottom edge

64 g = f;

65 end

66 %% Subfunction: Global Statistical information from image

67 % Corresponds to functional $F G(\cdot,\cdot)$ from eq. (2.4)

68 function g1 = global means(J,c1,idx)

69 inidx = (c1>=0); %Get pixels inside interface

70 outidx = (c1<0); %Get pixels outside interface

71 c10 = sum(J(inidx))/(sum(inidx(:))+eps); %average inside

72 c2 = sum(J(outidx))/(sum(outidx(:))+eps); %average outside

73 num=2*J(idx)-(c10+c2); %Computation of operator

74 d=max(max(abs(num)))+eps; %Computation of maximum

75 g1=num/d; %Normalization

76 end

77 %% Subfunction: Local Statistical information from image

78 % Corresponds to functional $F L(\cdot,\cdot)$ from eq. (2.4)

79 function h1=local means(J,idx,c1,rho)

80 [dimy, dimx] = size(J);

81 [y, x] = ind2sub(size(c1),idx);

82 xneg = x-rho; xpos = x+rho; %get subscripts for local regions

83 yneg = y-rho; ypos = y+rho;

84 xneg(xneg<1)=1; yneg(yneg<1)=1; %check bounds

85 xpos(xpos>dimx)=dimx; ypos(ypos>dimy)=dimy;
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86 %Make space in memory for variables mean1, mean2, sum1, sum2

87 mean1=zeros(size(idx)); mean2=mean1;

88 sum1=mean1; sum2=sum1;

89 for i = 1:numel(idx) % Get points on the narrow band

90 img = J(yneg(i):ypos(i),xneg(i):xpos(i)); %on the image

91 P = c1(yneg(i):ypos(i),xneg(i):xpos(i)); %on the front

92

93 pts1 = find(P<=0);

94 sum1(i) = length(pts1)+eps;

95 mean1(i) = sum(img(pts1))/sum1(i);

96

97 pts2 = find(P>0);

98 sum2(i) = length(pts2)+eps;

99 mean2(i) = sum(img(pts2))/sum2(i);

100 end

101 h1=J(idx)-(u+v)*.5; % Computation along the narrow band

102 h1=h1/max(max(h1)); % Normalization

103 end

104 %% Subfunction: Visualization

105 % Visualizing the results at the current iteration.

106 function show evolution(I,c1,i,refresh)

107 if mod(i,refresh)==0

108 subplot(2,2,3);

109 imagesc(I,[0 255]); axis off; colormap(gray);hold on;

110 [~, ~] = contour(c1, [0 0], 'y','LineWidth',2);

111 contour(c1, [0 0], 'k','LineWidth',1);

112 iterNum = [num2str(i), ' iterations'];

113 title(iterNum);pause(.2);

114 hold off;

115 end

116 end
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118 %% Subfunction: Getting working image

119 function J=get working image(I)

120 if size(I,3)== 3 %Should the image be a color image

121 J = double(rgb2gray(uint8(I))); %rgb and 8 bit integer (0-255)

122 elseif size(I,3) == 2

123 J = 0.5.*(double(I(:,:,1))+double(I(:,:,2)));

124 else

125 J = im2double(I); %convert to double otherwise

126 end

127 end

A.2 Variational Model

1 function seg = variational seg(I,c1,n,alpha,sigma)

Description of function arguments:

� I is the image I to be segmented with dimensions row by col.

� c1 is the initial curve in level set form, which corresponds to u0.

� n corresponds to the maximum number of iterations the loop is to run.

� sigma, the stardard deviation σ for the Gaussian kernel

� alpha is the overall propagation speed α > 0.

Error Handling

As before, we make sure execution is possible using default parameters.

2 if(~exist('alpha','var')), alpha = 1;end %Arclenght parameter

3 if(~exist('sigma','var')), sigma = 1;end %Standard deviation
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Initialization steps

4 % Getting working image

5 J=get working image(I);

6 c1 = mask2phi(c1);% c1 Distance transform

7 % Edge function

8 g=imgaussfilt(I, sigma); %First smooth the image

9 [FX,FY] = gradient(g); %Compture gradient map

10 g = sqrt(FX.ˆ2+FY.ˆ2+eps); %eps added to avoid division by zero

11 g = 1 ./ ( 1 + g.ˆ2 );

Loop

12 for i = 1:n

13 % Get indices for narrow band

14 idx = find(c1 <= 1.2 & c1 >= -1.2)';

15 [y, x] = ind2sub(size(c1),idx); %Rectangular coords line 14

16 sum(J(inidx))/(sum(inidx(:))+eps);

17 mean1=sum(J(c1<0))/(length(J(c1<0))+eps);sum1=length(J(c1<0))+eps;

18 mean2=sum(J(c1>=0))/(length(J(c1>0))+eps);sum2=length(J(c1>0))+eps;

19 curvature = get curvature(c1,idx,x,y);

20 F = -g(idx).*((mean1-mean2).*((J(idx)-mean1)./...

21 sum1+(J(idx)-mean2)./sum2));

22 rhs = F./max(abs(F)) + alpha*curvature;

CFL condition [12] for stability:

23 dt = .45/(max(rhs)+eps);

24 %% Evolution

25 c1(idx) = c1(idx) + dt.*rhs;

26 c1 = sussman(c1, .5); %Regularization of c1 \cite{Sussman94}

27 show evolution(I,c1,i,refresh);end,show evolution(I,c1,i,refresh)

28 seg = c1<=0; %-- Get mask from levelset
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Auxiliary Functions

29 %% Subfunction: Visualization

30 function show evolution(I,c1,i,refresh)

31 if mod(i,refresh)==0

32 subplot(2,2,3);

33 imagesc(I,[0 255]); axis off; colormap(gray);hold on;

34 [~, ~] = contour(c1, [0 0], 'y','LineWidth',2);

35 contour(c1, [0 0], 'k','LineWidth',1);

36 iterNum = [num2str(i), ' iterations'];

37 title(iterNum);

38 pause(.2);

39 hold off;

40 end

41 %% Subfuction: Conversion of logical mask to SDF

42 % Logical masks have value of 1 inside the front and zero outside

43 function phi = mask2phi(c)

44 phi=bwdist(c)-bwdist(1-c)+im2double(c)-.5;

The following are standard lines of code for level set reinitialization [54].

45 % Adapted from http://goo.gl/8pg4qf

46 function D = sussman(D, dt)

47 % forward/backward differences

48 a = D - shiftR(D); % backward

49 b = shiftL(D) - D; % forward

50 c = D - shiftD(D); % backward

51 d = shiftU(D) - D; % forward

52 a p = a; a n = a; % a+ and a-

53 b p = b; b n = b;

54 c p = c; c n = c;

55 d p = d; d n = d;
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56 a p(a < 0) = 0;

57 a n(a > 0) = 0;

58 b p(b < 0) = 0;

59 b n(b > 0) = 0;

60 c p(c < 0) = 0;

61 c n(c > 0) = 0;

62 d p(d < 0) = 0;

63 d n(d > 0) = 0;

64 dD = zeros(size(D));

65 D neg ind = find(D < 0);

66 D pos ind = find(D > 0);

67 dD(D pos ind) = sqrt(max(a p(D pos ind).ˆ2, b n(D pos ind).ˆ2) ...

68 + max(c p(D pos ind).ˆ2, d n(D pos ind).ˆ2)) - 1;

69 dD(D neg ind) = sqrt(max(a n(D neg ind).ˆ2, b p(D neg ind).ˆ2) ...

70 + max(c n(D neg ind).ˆ2, d p(D neg ind).ˆ2)) - 1;

71 D = D - dt .* sussman sign(D) .* dD;

72 %-- whole matrix derivatives

73 function shift = shiftD(M)

74 shift = shiftR(M')';

75

76 function shift = shiftL(M)

77 shift = [ M(:,2:size(M,2)) M(:,size(M,2)) ];

78

79 function shift = shiftR(M)

80 shift = [ M(:,1) M(:,1:size(M,2)-1) ];

81

82 function shift = shiftU(M)

83 shift = shiftL(M')';

84

85 function S = sussman sign(D)

86 S = D ./ sqrt(D.ˆ2 + 1);
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87 %% Subfunction: Mean curvature computation

88 function curvature = get curvature(phi,idx,x,y)

89 [dimy, dimx] = size(phi);

90 %-- get subscripts of neighbors

91 ym1 = y-1; xm1 = x-1; yp1 = y+1; xp1 = x+1;

92 %-- bounds checking

93 ym1(ym1<1) = 1; xm1(xm1<1) = 1;

94 yp1(yp1>dimy)=dimy; xp1(xp1>dimx) = dimx;

95 %-- get indexes for 8 neighbors

96 idup = sub2ind(size(phi),yp1,x);

97 iddn = sub2ind(size(phi),ym1,x);

98 idlt = sub2ind(size(phi),y,xm1);

99 idrt = sub2ind(size(phi),y,xp1);

100 idul = sub2ind(size(phi),yp1,xm1);

101 idur = sub2ind(size(phi),yp1,xp1);

102 iddl = sub2ind(size(phi),ym1,xm1);

103 iddr = sub2ind(size(phi),ym1,xp1);

104 %-- get central derivatives of SDF at x,y

105 phi x = -phi(idlt)+phi(idrt);

106 phi y = -phi(iddn)+phi(idup);

107 phi xx = phi(idlt)-2*phi(idx)+phi(idrt);

108 phi yy = phi(iddn)-2*phi(idx)+phi(idup);

109 phi xy = -0.25*phi(iddl)-0.25*phi(idur)...

110 +0.25*phi(iddr)+0.25*phi(idul);

111 phi x2 = phi x.ˆ2;

112 phi y2 = phi y.ˆ2;

113 %-- compute curvature (Kappa)

114 curvature = ((phi x2.*phi yy + phi y2.*phi xx...

115 - 2*phi x.*phi y.*phi xy)./(phi x2 + phi y2 +eps).ˆ(3/2)).*...

116 (phi x2 + phi y2).ˆ(1/2);
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116 %% System information

117 % MATLAB Version: 8.6.0.267246 (R2015b)

118 % OS: Microsoft Windows 10 Home Version 10.0 (Build 10586)

119 % Java Ver: Java 1.7.0 60-b19 w/ Oracle Corporation Java HotSpot(TM)
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APPENDIX B

Frequently Used Symbols

Symbol Meaning

R real line (set of real numbers)

Rd d− dimensional Euclidean space, commonly d = 2 or 3

∇ gradient vector field (of a function), divergence of vector fields

div divergence of vector fields

∂D boundary of the set D

int(C) interior of the curve C

xq, xt partial derivative of x with respect to q, and t

· dot product of vectors

〈a, b〉 2-dimensional vector with components a, b

∆ Laplace operator

‖~V ‖ Euclidean norm of the vector ~V

∗ convolution operator

|U| Lebesgue measure of the set U
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