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ABSTRACT

MIXTURE OF POISSON DISTRIBUTIONS TO MODEL
DISCRETE STOCK PRICE CHANGES

Rasitha Rangani Jayasekare Kodippuli Thanthillage Dona

July 10, 2013

An application of a mixture of Poisson distributions is proposed to model

the discrete changes in stock price based on the minimum price movement known

as ‘tick-size’. The parameters are estimated using the Expectation-Maximization

(EM) algorithm with a constant mixing probability as well as mixing probabilities

which depend on order size. The model is evaluated using simulations and real

data. Both the simulated and real data show reasonable estimates.

Several adjustments are made to the model implementation to improve the

efficiency with user written codes for the Newton Raphson algorithm and also

implementing one of the most recent versions of the EM algorithm (PEM). Both the

improvements show an exponentially increasing efficiency to the implementation.

Further a Clustered Signed model is proposed to use summarized data to

reduce the amount of data to be used in the model implementation using the dis-

crete order sizes and the signs of the discrete stock price changes. The clustered

model provided a significant time efficiency. A parametric bootstrap procedure

is also considered to assess the significance of the order size on the mixing prob-

abilities. The results show that the use of a variable mixture probability, which

depends on the order size, is more appropriate for the model. The methods are

illustrated with data from simulations and real data from Federal Express.
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CHAPTER 1

INTRODUCTION

1.1 Stock Markets

Stock market provides a way of fulfilling the needs of raising the capital of

a company, where the ownership of a company is shared among several personnel

via ‘shares’ or also known as ‘stocks’ (Stock Market, 2013). The stock market

is divided into two sectors as primary market and secondary market. When the

stock is first issues from a company the trading takes place in the primary market,

followed by trading in the secondary market (Stock Market, 2013).

The London stock exchange is assumed to be the first stock market in the

world which started in the early 16th century (Stock Market History, 2005). In

1792 the New York Stock Exchange (NYSE) started with just two dozen stock

brokers in the city of New York as the first stock market in the United States

of America (Stock Market History, 2005). Since then stock markets have been

introduced and grown rapidly and have become one of the major financial topics

in the daily life.

While stocks are traded constantly, it is interesting to know the factors that

govern the stock market. This interesting question has been intensely studied for a

long period of time and has led to many contributions in different fields. Different

research has looked at the changes in stock price as a problem of ‘detection’ as

well as a problem of ‘prediction’.
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1.1.1 Applications on Stock Market

The literature provides a large number of publications on stock market data

using many data mining methodologies. Time series analysis, neural networks,

regression models, support vector machines, liquidity effect model, markov chains

and hybrid models are few of them.

Gavrishchaka and Banerjee (2006), present an application of Support Vec-

tor Machines (SVM) to extract information from highly dimensional and multi

scaled stock market data for forecasting stock market volatility. Support vector

machine is a supervised learning model that is used for regression analysis and

data classification. SVM is well known for both linear and non-linear classification

data. Huang et al. (2005) also uses support vector machines to forecast stock mar-

ket movement directions. According to the authors, the model based on the SVM

outperforms the other classification models in their research. Yu et al. (2009) also

use an application of support vector machines to forecast stock market trends with

an ‘evolving least squares support vector machine’.

Liquidity Effect Model also has been used in stock data analysis. Liquidity

Effect Model describes how the purchases and the sales of stocks in the stock market

affect the changes of the stock price. Significant changes to the stock price and the

locations of those significant changes can also be identified using liquidity effect.

Gill et al. (2007) presents ‘Computation of estimates in segmented regression and

a liquidity effect model’ on stock transactions data. A weighted least squares

estimation along with a liquidity effect model is performed as a generalization to

the liquidity effect model proposed by Cetin et al (2006).

Li and Liu (2009) presents an ‘Application Study of Back-Propagation Neu-

ral Network on Stock Market Prediction’ for efficient short term prediction of stock

market based on a 3-layered feed forward neural network. Neural Networks are un-

2



supervised learning techniques in data mining. According to Zhou and Jie (2010)

Back Propagation is one of the most often used neural network models which

is based on a forward multi layered network which is trained by minimum mean

square error. Zhou and Jie (2010) perform a stock market analysis based on a back

propagation neural network. The authors research on stock transactions trend of

price to predict the future trend of the stock market and the changes in the stock

price based on the data from Chinese stock market. Enke and Thawornwong

(2005) also use neural network for forecasting stock market returns. The research

discusses the use of neural networks to uncover relationships of the stock market

returns using data mining. Oh and Kim (2002) also uses a back propagation neural

network to forecast change points to predict stock price index using a stock trading

model based on chaotic analysis and a piecewise nonlinear model.

Time series analysis is another data mining technique that is widely used

in stock market analysis. Time series analysis mines data recorded in a temporal

sequence for both detection and predication of data. A ‘Time Series Clustering

Based on Independent Component Analysis’ is presented by Guo et al. (2008). The

methods employ a feature based approach to time series clustering that includes an

independent component analysis and a modified k-means algorithm to overcome

the difficulty of the time series clustering on stock data. Yaho and Kong (2008)

presents an ‘Application of Stream Data Time Series Pattern Reliance Mining in

Stock Market Analysis’ which uses stream data, static databases along with data

mining. ‘Evolutionary Time Series Segmentation for Stock Data Mining’ (Chung

et al. 2002) presents a transformation of stock transaction data into meaningful

symbols like technical patterns to overcome the difficulty of the nature of multiple

time series of stock data.

Fuzzy time series models provide advantages when clearly separated states

are not possible and also when the linguistic values are available. Chen et al. (2007)

3



present a forecasting on stock price data based on a fuzzy time series model which

employs a Fibonacci sequence for stock price forecasting. Weighted fuzzy time

series models were used in stock index forecasting by Yu (2005). Jilani and Burney

(2008) present a time-variant fuzzy time series forecasting model for forecasting

stock prices. The proposed method uses a heuristic approach to define frequency-

density-based partitions. The implementation of the model in forecasting of stock

price in Taiwan stock exchange showed a higher accuracy compared to similar

models in forecasting.

Due to an enormous interest in stock market, a large amount of research

was performed with many different models and their variations and combinations.

Huang and Jane (2009) researched on a hybrid models based on ARX, grey system

and Rough Set theories to forecast stock market returns and portfolio selections.

The authors present that hybrid models perform better than stand alone models

and also produce greater results in forecasting.

Diaz et al. (2011) have applied a collection of knowledge discover tech-

niques on stock intra-day trade prices to identify stock price manipulations. The

techniques include regression, frequency outliers analysis, unsupervised learning

techniques and supervised learning such as QUEST and C5.0. Greenwood and

Thesmar (2011) predict volatility of the stock price based on the fragility by iden-

tifying the relationship between financial assets and non fundamental risks.

‘Mixture of Compound Poisson Processes as Models tick-by-tick Financial

Data’ (Scalas et al. 2007) implements the idea of ‘continuous random walk’ and

normal compound poisson processes. Plerou et al. (2002) performs an analysis of

stock data to investigate on how the stock prices respond to changes in demand by

identifying the relationship between stock price changes over time intervals base

on a spin system. Podobnik et al. (2009) research on volume growth rate of a

trade using a detrended cross-correlation analysis. The research further analyses

4



the properties of the volume change of trades and their relationship to stock price

changes. Atsalakis and Valavanis (2009) present a survey of more than hundreds

of research publications on stock market forecasting based on neural networks and

fuzzy logics. The authors state that the successful forecasting is achieved when

the minimum amount of input data are used to obtain the best results.

Behavioral economics and social media are also used in stock market pre-

dictions. Bollen et al. (2011) presents stock market prediction base on Twitter

moods. The public mood states are analysed using hypothesis investigated using

fuzzy neural network.

A Markov–Fourier grey model that includes a grey model, fourier series

and a markov state transition is used by Hsu et al. (2009) to predict turning time

of a stock index for increased forecasting accuracy. Markov chains is a random

process that transition between states that depend their immediate predecessors.

Bauerle and Rieder (2004) uses a markov chain based model with stochastic control

methods to maximize the expected utility from stock market.

1.1.2 Stock Price Discreteness

Apart from all the aforementioned research, there is a very wide interest on

the factors that affect the stock price changes. Harper (2013) states that “there

is no clean equation that tells us exactly how a stock price will behave” while

presenting likely forces that move the stock price up and down constantly, catego-

rized based on ‘fundamental factors’ (fundamental values of the company such as

profit), ’technical factors’ (external factors such as inflation, market trends) and

’market sentiment’ (psychological factors). However, over time, many discussions

have been made about the influence of ‘order size’ towards the stock price change

with an underlying ‘supply-and-demand’.
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The changes in stock price occur in two ways; one by decreasing the stock

price and the other by increasing the stock price. Therefore, it is important to

consider both the increase and decrease of the stock price when analyzing changes

of the stock price. This phenomenon seems interesting enough to investigate the

stock transactions from a novel angle to provide a different way of understanding

how the stock price changes with respect to the order size as a mixture of ‘stock

price increments’ and ‘stock price decrements’.

With the stock market regulations, a ‘tick size’ is maintained to provide a

minimum amount by which a stock price can change (tick size, 2013). According

to Woehrmann (2007) ‘tick-size’ has been mandated by electronic exchanges as

the ‘smallest currency unit’. The ‘tick-size’ governs an indirect discreteness to the

changes in stock price where at any given time a stock price can be changed only

as a multiple of the established ‘tick-size’. This allows the stock prices to cluster

among a smaller set of values, instead of taking all the possible real values. Harris

(1991) explains that this discreteness and clustering add an advantage towards

lowering the cost of negotiation and limiting the information exchange between

buyers and sellers. Harris also emphasizes that this clustering is subject to the

price level and the volatility of the market.

Due to the discrete nature of stock prices, it is more interesting to look at

the changes in stock price as a set of discrete values.
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1.2 Introduction to Generalized Linear Models

The equation (1.1) represents a linear regression model where x1, . . . xk are

the predictor or regressor variables, y denotes the response or outcome which

depends on the predictors, β1, . . . βk are the unknown parameters to estimate and

ε is the random error term.

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε (1.1)

The classical assumption of the linear regression model is that the response

variable (y), takes continuous values following a Normal distribution. However,

there are many instances where the response variable (y) may not be continuous.

There are instances where the response variable (y) takes binary values such as

‘successes’ or ‘failures’, or it could take non-negative integer values such as ‘number

of defects’. In these cases, the response variable (y) is not a continuous variable

and does not follow a normal distribution. Then the above mentioned classical

assumption will be violated and a more general regression model will be required.

1.2.1 Generalized Linear Model

The Generalized Linear Model (GLM) was introduced to handle the afore-

mentioned circumstances to allow the response variable (y) to model other types

of data and follow distributions other than the normal distribution, as an exten-

sion of the linear regression model. Specifically GLM allows the response variable

(y) to follow any distribution from the ‘exponential family’ of distributions, which

includes binomial, normal, poisson, negative binomial, gamma, exponential and in-

verse normal. GLM was first introduced by John Nelder and Robert Wedderburn

in 1972.

Extending the linear regression model, there are three specifications in using

the GLM; they are specification of ‘linear predictors’, a response variable and use
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of a ‘link function’.

1. Linear Predictors :

GLM uses the predictor variables (x1, . . . , xk) as a linear combination of the

parameters of the model (β1, . . . , βk). Let η denote the linear predictors, so

that η can be written as η = x1β1 + x2β2 + · · ·+ xkβk.

This can also be written using the matrix form η = xTβ.

2. Response variable (y):

Under GLM setting the response variable follows a distribution from the

‘Exponential Family ’. Let µ be the mean parameter of the response variable

(y). Then E(y) = µ

3. Link function : g(·)

The ‘link function’, g(·), links the mean parameter, (E(y) = µ) of the re-

sponse variable with the linear predictors (η). The link function is a mono-

tonic and one-to-one function with an inverse. Using the monotone and

one-to-one properties of the link function the mean can be expressed as a

function of linear predictors.

η = g(µ)

µ = g−1(η)

µi = g−1(xTi β)

µi = g−1

(∑
j

xijβj

)
(1.2)

Equation (1.2) shows how the mean parameter (µ) is expressed as a function of

the linear predictors.
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1.2.2 Properties of a Poisson Random Variable

For a random variable with count data or non-negative integers the most

natural distribution to use is the ‘Poisson distribution’. Poisson distribution is also

a member of the ‘Exponential Family’. The poisson random variable X, with the

mean λ, has following properties.

1. X ∈ {0, 1, 2, 3, . . . }

2. The probability function of X : P (X = x) = e−λλx

(x!)

3. The mean and the variance of Y are equal. E(X) = V ar(X) = λ

1.2.3 Poisson Regression Model

The ‘exponential family’ of the GLM consists of Natural and Exponential

Dispersion sub families. Poisson distribution belongs to the ‘Natural’ exponential

family, whereas the normal distribution belongs to the ‘Exponential Dispersion’

family. A poisson regression model (PRM) is an example of a GLM where the

response variable (y) takes non-negative integers.

The distributions of the ‘natural’ exponential family can be expressed as

the form given in the equation (1.3).

fy(y; θ) = exp(yθ − κ(θ))c(y), θ ∈ Ω (1.3)

where κ is the cumulant generator, θ is the canonical parameter, and Ω denotes

the parameter space which is a subset of the real line.

The probability distribution function of the poisson distribution can be

expressed as the form of the ‘natural’ exponential family given in equation (1.4).

fY (y;µ) = e−µµy

(y!)

fY (y;µ) = exp{y log(µ)− µ}
(

1
y!

)
(1.4)
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When comparing the equation (1.4) with the equation (1.3), the cumulant

generator κ(θ) = exp(θ) and θ = log(µ). The link function that satisfies θ =

g(µ) = η = xTβ is called the ‘canonical’ or ‘natural’ link function. Canonical link

functions are unique to a particular probability density function (Bonate 2011).

Since θ = log(µ) and with the logarithm link function (log(µ) = g(µ) = η), the

link function is ‘natural’ or ‘canonical’ for poisson distribution.

Then the logarithm link function is used to link the linear predictors η =

x1β1 + x2β2 + · · ·+ xkβk to the mean parameter of the response variable Y.

g(µ) = η

log(µ) = η

log(µ) = x1β1 + x2β2 + · · ·+ xkβk

log(µi) =
∑

j xijβj

The logarithm link function is monotonic and one-to-one with an inverse, therefore

the mean parameter of the response variable (E(Y ) = µ) can be expressed as a

function of the linear predictors as µi = e
∑
j xijβj With that the random variable

Yi ∼ Poisson(e
∑
j xijβj).

1.2.4 Parameter Estimation

The method of Maximum Likelihood is the theoretical basis for parameter

estimation in GLM. This is the most commonly used method to estimate param-

eters in GLM. According to Madsen & Thyregod (2011), for the GLM with the

canonical link function, the likelihood function is convex. Therefore, the maximum

likelihood estimate is unique when exists. Then to find the maximum likelihood

estimate, one of the most celebrated algorithm called the ‘Newton Raphson Algo-

rithm’ is used.
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1.3 Mixture Models

In analysis of data, often there are heterogeneous sub populations found

within the main population. In such cases use of a single distribution will not

accurately model the data. It requires modeling the sub populations in order

to appropriately model the entire population. The idea of a ‘mixture of mod-

els’ is used to model the populations with heterogeneous sub populations. The

history of the ‘mixture models’ goes back to a classical paper by Karl Pearson

in 1894 (McLachlan and Peel 2000). Since then, there have been a wide variety

of research performed in many different disciplines including astronomy, biology,

genetics, medicine, economics, engineering, marketing and many more.

The probability function of the data with K sub populations is given as

f(x; θ) =
K∑
k=1

pkfk(x; θk)

where θ denotes the set of parameters of the mixture model to be estimated and

pk the weight of each probability density function that satisfies
∑K

k=1 pk = 1 and

0 ≤ pk ≤ 1.

Sometimes the number of sub populations in a population is not a known

number. In such cases where the number of sub populations is unknown, the prob-

lem leads to an interesting instance of ‘estimation of mixture components’ which

adds extra complexity to the problem. When the number of mixture components

is known and finite the problem leads to a ‘Finite Mixture Model’.

The weight of each probability density function pk is also known as the ‘mix-

ture probability’. Mixture probability denotes the probability of the observations

belonging to each sub population. This being a value between 0 and 1 the pk could

be a constant or an expression of a variable of interest.
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1.3.1 Parameter Estimation

Parameter estimation of the mixture models is also performed with the use

of Maximum Likelihood (ML) estimation. In estimating parameters for the mixture

model there is some additional information required to fulfill in order to estimate

the parameters. It is important to know that the data do not identify their sub

population. The identification of the sub population pertaining to each observation

is missing information in this case. Therefore, ML estimation needs an additional

support to fill this missing information. The Expectation and Maximization (EM)

algorithm is used to fill the missing information.

DEFINITION 1.1. The likelihood function for independent and identically dis-

tributed data is a product of the densities of the observed value. Thus,

L(θ) = Πn
i=1f(xi; θ) is the likelihood function where θ denotes the unknown param-

eters and n is the number of observations.

The likelihood function is a function of the parameters expressed using the

observed data. In other words, for the observed data x1, . . . , xn the likelihood

function is L(θ) = f(x1)ḟ(x2) . . . f(xn).

For mixture models the likelihood function is expressed similarly using the

distributions of each mixture. For k sub populations and n number of observations,

the likelihood function is given by equation (1.5).

L(θ) = Πn
i=1ΠK

k=1 [pkfk(xi; θk)]
∆ik (1.5)

where ∆ik are unobserved indicators of k sub populations.

However, once the sub populations and their mixture probabilities are in-

cluded in the likelihood function, the estimation becomes more challenging with

the complexity of the likelihood function. It is very common to use the logarithm

of the likelihood function, which is known as the ‘log-likelihood’ to further simplify

before maximizing it.
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The equation (1.6) below gives the log-likelihood of the likelihood function

given in the equation (1.5).

l(θ, p) =
n∑
i=1

log [f(xi)] =
n∑
i=1

log

[
K∑
k=1

pkfk(xi; θk)

]
(1.6)

where θ = (θ1, . . . , θk) and p = (p1, . . . , pk)

The next task is differentiating the ’log likelihood’ with respect to each

parameter in order to maximize. Then the ‘Newton Raphson Algorithm’ is used

to find the maximum likelihood estimates.

Since the first use of a mixture of two normal distributions by Karl Pearson

in 1894 (McLachlan and Peel 2000), there has been a large amount of research per-

formed on mixture models evolving both theory and applications in many different

fields. Part of the work on mixture models focuses on identifying the number of

components for the mixtures, whereas the remaining works with known number of

components.

Brame et al. (2006) proposed a mixture model for event count data in

criminology to examine the analytical characteristics of the finite mixture models.

The model selection criteria Akaike Information Criterion (AIC) and Bayesian

Information Criterion(BIC) have been used to decide the appropriate number of

mixture components in the mixture model. The authors further confirm that AIC

outperforms BIC when the components are very well separated.

According to McLachlan and Peel (2000), AIC selects the models that mini-

mizes the expression AIC= 2k−2 ln(L), where k is the number of parameters in the

mixture model, and L is the maximized value of the likelihood function for the esti-

mated model, and BIC selects the models that minimizes, BIC = −2 · lnL+k ln(n)

where n is the number of observations

Apart from the applications the theories for mixture models have also been

a subject of discussion during last few decades. The optimal rate of convergence
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for estimating mixture distributions which consist of finite number of components

has also been studied (Chen, 1995). Chen (1995) has proved that when the exact

number of the components are known, a consistent rate of
√
n is achieved and the

rate is n−1/4 when the number of components are unknown, where n is the sample

size.

1.4 EM Algorithm

The Expectation and Maximization (EM) algorithm (Dempster et al. 1977)

has been a popular tool for simplifying difficult maximum likelihood problems. It

is widely used to model applications with missing data or hidden parameters. EM

is an iterative algorithm which is used to calculate Maximum Likelihood estimates.

Due to various advantages, EM is widely used with mixture models which accom-

modates a likelihood approach. Yao (2013) states that finding ML estimates in

mixture models is an important application of EM.

There are two important steps in EM algorithm; Expectation step (E-step)

which calculates the expected probability for the missing probabilities and the

Maximization step (M-step) that replaces the missing probabilities with the ex-

pected probabilities for maximizing the likelihood function.

1.4.1 EM Algorithm in General

1. Start with initial guesses for the parameters.

2. Expectation Step : calculate the conditional expected value.

3. Maximization Step :

• fill missing data by the conditional expected values.

• maximize the simplified likelihood.

4. Iterate expectation and maximization steps until convergence.
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EM is most commonly used in mixture models when the parameters are

estimated using maximum likelihood method. EM is used to fill the missing in-

formation in identifying the mixtures using ∆ij indicators (also known as realiza-

tions). When using EM, the likelihood function of the mixture model becomes the

‘complete likelihood’.

L(θ) = Πn
i=1ΠK

k=1fk(xi; θk)
∆ikp∆ik

k (1.7)

where ∆ik are unobserved realizations of k component indicators. The ‘complete

log-likelihood’ of the equation (1.7) is given by the equation (1.8).

lcomplete =
n∑
i=1

K∑
k=1

∆ik log [fk(xi; θk)] +
n∑
i=1

K∑
k=1

∆ik log[pk] (1.8)

E-step calculates the conditional expected values denoted by (γij) to fill the missing

information in ∆ij.

γij = E(∆ij|p, x) =
fj(xi; θj)pj∑K
k=1 fk(xi; θk)pk

During the M-step, the ∆ijs in the complete likelihood are replaced with their

expected values γij and then maximized with respect to each parameter. Then the

Newton Raphson algorithm is used to estimate the parameters.

Since the first introduction in 1977, there is a substantial research carried

out in using as well as improving the efficiency of the EM algorithm. Xu and

Jordan in 1996 have made a comparison of the EM algorithm with several other

gradient based algorithms. Several important advantages have been outlined for

the EM applied to mixture models. EM is a first order algorithm and under mild

conditions it guarantees to converge to the local maximum of the log likelihood.

Its naturalness in handling probabilistic constraints of the mixture models also

assures the definite convergence compared to algorithms like Newton Raphson. Its

low computational overhead has been another reason for its popularity of use.
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As much as it is popular due to the advantages, EM is also well known as

a slow algorithm in terms of convergence. However, Xu and Jordan (1996) out-

line that EM performs faster in the mixture setting, especially when the mixture

components are well separated. The convergence of EM becomes slower when the

mixture components are not well separated. In this situation other gradient based

algorithms such as Newton Raphson also do not perform any better due to poor

conditions. The authors even mention that under appropriate conditions EM ap-

proximates super-linear methods (a sequence converges superlinearly if it converges

and the limit of the rate of convergence is equals to zero). EM is numerically stable

and generally performs well even in ill-conditioned problems. Berlinet and Roland

(2012) mentions that EM has a nice convergence and a low cost of memory space.

However, a complaint has been made that even though EM iterates quickly to a

neighborhood of local model, the final convergence can be very slow and takes a

significant amount of time to satisfy the stopping criteria.

As a solution of improvement over the time, Berlinet and Roland (2012)

have introduced a newer version of the EM algorithm named as ‘Parabolic EM

algorithm’ (PEM) using the concept of a Beizer Parabola. Their numerical results

show that a mixture of two poisson distributions will run 24.5 times faster on the

PEM than the regular EM algorithm and the CPU time and failures is 87 : 2138.

A solution to overcome reaching the local maximum is also presented by

OHagan et al. (2012), especially focusing on optimizing starting values and care-

fully utilization of maximization steps efficiently.

Selection of appropriate starting values has also been studied as a solution

of improving efficiency of the EM algorithm. Wu (1983) states that the conver-

gence of EM algorithm depends on the choice of the starting value. Karlis and

Xekalaki (2003) state appropriate initial values speed up the convergence of the

algorithm as well as the ability to locate the global maximum. The above authors
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have presented a comparison of different algorithms to choose the initial values

for the EM algorithm. The results show that the methods such as selection of

the moments of the parameters and symmetric method are outperformed by the

method introduced by Finch et. al in 1989.

1.5 Applications of Mixture Models

The attractions of the mixture models especially increased during recent

decades with a wide range of applications from biology, medicine, genetics, business

and many more.

A mixture of poisson distributions has been used in segmentation and value

estimation in PET (Positron Emission Tomography) data with the use of EM

algorithm (Su et al. 2011). “PET is a test that uses a special type of camera and a

radioactive chemical to look at organs in the body” (PET, 2011). According to the

authors this is the first time use of the EM based mixture of poisson distributions

in the medical field. A comparison of a mixture of Gaussian distributions with

the mixture of the poisson distributions has resulted that the poisson mixture

provided more robust and accurate results. It is also postulated by the authors,

due to the fact that the poisson distribution has a single parameter where as normal

distribution has two might have made the convergence faster.

Finite mixtures of poisson and negative binomial distributions have been

used to model vehicle crash data in 2009 by Park and Lord (Park and Lord, 2009).

Instead of using the maximum likelihood approach with EM algorithm the authors

have used a ‘Bayesian sampling approach’.

In 2008 a mixture of poisson distributions were used in an application of

identifying changes in RNA polymerase II binding quantity using high-throughput

sequencing technology (Feng et al. 2008). It has been assumed that the number
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of ‘poly II targeted sequences’ contained in each genomic region follows a poisson

distribution. The proposed mixture of poisson distributions were used to distin-

guish ‘Pol II binding changes in transcribed region’ with the use of EM algorithm.

Two types of breast cancer cells were modeled using the mixtures.

Mixture models is also used in clustering under data mining, where a dataset

needs to be grouped into unknown set of subgroups using patterns and relationships

among data. This instance is similar to the instance of a mixture model where

the number of sub populations are unknown. In 2004 a similar model was used

for an application designed for retail category managers to improve customized

merchandising strategies (Brijs et al. 2004). The application was used to cluster

supermarket shoppers based on their purchase patterns. A multivariate poisson

mixture model has been used among the other techniques.

A mixture of normal distributions were used to classify dolphins found in

California Bight and the Gulf of California in 2007 (Rocha et al., 2007). The

researches have monitored vocal signals of short-beaked common, pacific white-

sided and bottle nose dolphins for a period of four years. Then these vocal signals

were processed and used with a mixture of normal distributions with an unknown

number of components. The testing has resulted in a 256 component model over

mixture models of 64, 128 and 512 components, since it is more accurate in iden-

tifying the different vocal signals to help classifying dolphins.

Text mining is extracting knowledge and identifying patterns among text

documents. Mixture models have also been useful in classifying text patterns and

identifying themes across different articles. Zhai et al., (2004) have performed

research on a ‘Cross Collection Mixture Model for Comparative Text Mining’ to

summarize, compare and contrast the common themes across multiple news arti-

cles. They have used datasets with news articles and laptop reviews to discover

common themes across the collection of articles and summarize their similarities
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and differences along each common theme.

Mixture models have also been used for applications in identifying tech-

nology characteristics. One instance is to characterize end-to-end Internet delay

(Hernandez and Phillips, 2006). A finite mixture model is used to characterize

and summarize the delay experienced between edges of the Internet, using Weibull

distributions. The Weibull distribution is a continuous distribution which is used

to model lifetimes of objects. Real GPS synchronized measurements have been

used to validate the model.

Gerdtham and Trivedi (2001) presents a finite mixture model to analyze the

utilization of Swedish health care. A 2-component negative binomial distribution

has been used to distinguish the utilization of health care facilities by patients of

different social and income groups.

Applications of finite mixture models are also found in image processing.

According to Blekas et al. (2005) one of the most successful applications of Gaus-

sian mixture models is found in image segmentation. The authors have imple-

mented an improved version of the M-step of the EM algorithm and have used

models with 3 and 5 component Gaussian mixtures to evaluate the improvements.

A similar application of a finite mixture model is found in face-color modeling

and segmentation (Greenspan et al., 2001) which uses a mixture of Gaussian dis-

tributions. The mixture is used to model the color space to provide a robust

representation while permitting a large color variations, highlights and shadows.

Another interesting application of mixture models is found in evaluating

”Which Micro-finance Institutions Are Becoming More Cost Effective with Time?”

according to a research published by Caudill et al. in 2009. A mixture of two nor-

mal distributions is applied to the data on micro finance institutions from Eastern

Europe and Central Asia. The authors have found that larger micro-finance in-

stitutions that offer deposits and the micro-finance institutions that receive lower
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subsidies operate more cost effectively over time.

1.6 Data Set

Federal Express Corporation which is widely known as FedEx (FDX) was

incorporated in 1971 as an overnight delivery service. FDX sold their first shares

on the New York Stock Exchange in 1978 (History of FedEx Operating Companies,

2013). Since then FDX holds many success stories including being one of the seven

super star companies to have several stock price splits, according to Moroney

(2007). FDX have had five stock price split throughout their history. A stock

price split shows an added advantage to a company denoting that the company’s

financial stability and trend to attract more individual investors.

The data set under investigation consists of ‘tick-by-tick’ daily stock trans-

actions of five years from FDX. One interesting fact about this dataset is, it consists

of the company’s fourth stock price split. Each transaction consists of the loga-

rithm stock price, the order size of the transaction and the time of the transaction

within the day. This dataset is used to understand the changes which occur in the

stock price.

1.7 Chapter Outline

Data preprocessing is regarded as an important task, when working with

data. It even helps successful handing of row data when it is noisy, incomplete and

inconsistent. This leads to minimize errors and provides a better understanding

of the data. Therefore, the five years of stock transactions data is first prepro-

cessed and then the discrete stock price changes are identified. This is described

in Chapter 2.

Using the discrete stock price changes, a mixture model is proposed in
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chapter 3 under conditions where first as a constant mixture probability followed

by a mixture probability as a function of the order size.

Chapter 4 presents different attempts and results of efficiency improvements

to the model including the implementation of the ‘Parabolic EM’ algorithm. A

‘Clustered Signed Model’ is presented to utilize less amount of data by summarizing

the large amount of data that the proposed mixture model uses and is presented

in chapter 5.

A test is proposed to verify the suitability of the mixture probability as a

function of the order size, in chapter 6. Chapter 7 presents approximated confi-

dence intervals for the parameter estimates of the model using a simulation.

Chapter 8 presents the discussion, conclusions and the future of the current

research.
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CHAPTER 2

DATA ANALYSIS

2.1 Understanding Data

First of all it is important to analyze the data set thoroughly to understand

and prepare them for effective use. In this chapter the data pre-processing and

preparation for the implementation is discussed in detail.

The Federal Express (FDX) data set consists of the daily transactions of

stocks of the company. The data set contains tick-by-tick stock transactions for

1263 days during five years. That includes 238575 tick-by-tick transactions. Each

transaction consists of log values of the stock price, volume of the transaction (aka

trade size) and the time of the transaction in seconds within trading the day.

Figure 2.1 shows the plot of the log stock price of the entire data set. A

sample of the original data is given in Appendix A.1. As the first task, it was

required to convert the log stock price into the original stock price. The stock

price was obtained by exponentiating the log stock price. During this calculation

precision of the stock price is lost and thus it was needed to approximate the nearest

tick-size. Therefore, an additional step was required to restore the accuracy of the

actual stock price, approximating the values to the closest tick-size. Figure 2.2

shows the plot of the actual stock price throughout the five years.

With the tick-size being maintained as the smallest value the stock price

change the stock price has become a discrete value. Stock price is at its minimum of
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FIGURE 2.1 – Stock price during all 5 years

$40.13 during the 3rd year. This was due to the stock price split on 5th November

1996.

Once the stock price reaches a higher level, companies decide to split the

price of their stocks (What is Stock Split?, 2009). The stock price split does not

change the value of the company. It makes the stocks more affordable to small

investors. Stock markets consider a ’price split’ as another way of attracting more

investors resulting an increased demand of the stock.

According to analysis of the data, the number of transactions have increased

after the stock price split as expected by the stock market. The maximum stock

price of $93.13 has been observed on 7th December in 1997, about a year after the

stock price split. The summary statistics of the stock price during five years are

shown in table 2.1. However, the data shows that during 62.8% of the transactions

during the five years, the stock price has not changed due to the trade.

Stocks are purchased or sold as multiples of hundreds with the smallest

unit of the order size being 100. This makes the order size a discrete variable.

The purchases are denoted by positive values in the order size whereas sales are

denoted by negative values in the order size. For example, -200 order size means

that 200 stocks were sold and 300 order size means that 300 stocks were purchased.
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Minimum 1st Quartile Median Mean 3rd Quartile Maximum

40.13 59.00 65.75 65.54 73.31 93.13

TABLE 2.1

Summary statistics of the stock price

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

-500000.0 -500.0 100.0 82.5 600.0 628800.0

TABLE 2.2

Summary statistics of the order size

Different amounts of stocks were sold and purchased during these five years.

There were purchases as large as 628800 of stocks and sales as large as 500000 stocks

(figure 2.2). However, 92.89741% of transactions included order size 5000 or less

and 26.86115% transactions were made with either 100 or 200 stocks.

Among other influential factors, the order size also plays an important role

in changing the stock price. Purchases of more stocks make the stock price increase

more while sales of more stocks make the stock price decrease more. This phe-

nomenon is known as the ‘Market Impact’. According to Moro et al. (2009) the

‘Market Impact’ is the expected price change based on the trades and the trade

sizes. Therefore, in analyzing the price change, the order size also needs to be

analyzed.

The stock market opens at 9.30am and closes at 4.00pm for the day. During

the day a large number of transactions occur. For each transaction the time is

recorded in seconds during the day. The stock transactions during the five years

were analyzed based on the time of the day. A significantly large number of the
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FIGURE 2.2 – Order size

FIGURE 2.3 – Frequency of Different Order Sizes

transactions occur between 10.00am to 10.30am in the morning and 3.30pm to

4.00pm in the afternoon. This has been consistent throughout all five years. Out

of those more transactions were found between 10.00am to 10.30am during first

four years and more found in 3.30pm to 4.00pm during the last year. This could

be explained by the stock price split at the end of the 3rd year and the tick size

change to 1/16 during the middle of the fourth year. Figures 2.5 and 2.6 show the

frequency of the transactions during the day during all five years.

Figures 2.7 to 2.11 show the plots of stock price during each year. Figure

2.7 shows an overall decline in the price towards the end of the year and continues
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FIGURE 2.4 – Frequency of Transactions during the day

FIGURE 2.5 – No. of transactions during the day of five years

to the beginning of the year two as shown in figure 2.8. However, the stock price

starts to increase at the middle of the year two and shows an overall increase by

the end of year. The stock price kept consistently high during the third year. As

a result the company employed the stock price split at the end of the year 3.

The number of transactions also have increased during each year. Year 2

had 22% more transactions than year 1, year 3 had 11% more than year 2, year

4 had 89% more than year 3 and the fifth year had 74% more than the year 4.

The stock price split at the end of year 3 explains the largest increase of 89% in

transactions from year 3 to year 4.
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FIGURE 2.6 – Tick-by-tick stock price during year 1

FIGURE 2.7 – Tick-by-tick stock price during year 2

Apart from the stock price split, there is another important change which

took place during the five years. That is the change of the tick-size from 1/8 to

1/16. The tick-size at the beginning of the five year year period was 1/8. After 3

1/2 years, on 23rd June 1997 tick-size was changed to 1/16. The stock price was

changed by 1/16 during the last 1 1/2 years of the data set. This change in the

tick-size is also an interesting factor to consider when analyzing data. Due to the

decrease of the tick-size there were 40% more transactions made during last 1 1/2

years than the first 3 1/2 years.

With all the above findings it seems important to investigate the data as
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FIGURE 2.8 – Tick-by-tick stock price during year 3

FIGURE 2.9 – Tick-by-tick stock price during year 4

sub sets based on each year as well as based on different tick-sizes. Thus all the

investigations throughout were performed for the sub data sets considering the

year and the corresponding tick-size.

2.2 Data Preparation for Mixture Model

The focus on this study is to understand the changes to the stock prices.

It requires calculating the price changes of the stock prices of each transaction.

Based on the tick-size it is possible to identify the changes in the stock price, as a

multiple of the tick-size.
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FIGURE 2.10 – Tick-by-tick stock price during year 5

Year No. of transactions % Increment of Transactions

year 1 22358 -

year 2 27390 22.5%

year 3 30413 11.0%

year 4 57733 89.8%

year 5 100681 74.4%

TABLE 2.3

Increase of transactions over the years

Let S(t, x) denotes the stock price per share at time t that a trader receives

for an order of size x. Given observed settlement prices S(ti, xi) for i = 0, 1, . . . , n

at times t0 < t1 < . . . < tn, let

Yi =
S(ti, xi)− S(ti−1, xi−1)

τ
(2.1)

be the number of ticks that the stock price moves when the ith transaction is made

based on the tick-size τ . Then Yi ∈ {. . . ,−2,−1, 0, 1, 2, . . . }.

The number of ticks denoted by Yi takes integer values. The negative sign in

29



FIGURE 2.11 – Number of ticks of all five years

integers denotes the instances where the price goes down between two consecutive

transactions and the positive sign in integers are obtained for those where the price

increased between two consecutive transactions. The value zero was obtained when

the consecutive transactions did not have any price change. The magnitude shows

change in price as a multiple of the tick-size that was used during the time period.

Figure 2.12 shows the plot of number of ticks (Yi) of all five years. The figure

clearly shows the clouds of discrete values as horizontal lines and the separation

of tick-size from 1/8 to 1/16 at the middle of the plot. Figures 2.13 and 2.14 show

a closer view of the number of ticks separated by tick-size. A sample of processed

data is given in Appendix A.2.
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FIGURE 2.12 – Number of ticks for tick size 1/8

FIGURE 2.13 – Number of ticks for tick size 1/16
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CHAPTER 3

THE MODEL

3.1 Model Formulation

Chapter 2 presented the preparation of FDX stock transactions data which

is ready to use for the model formulation. The rest of the chapter discusses on

formulating model.

The main interest is to investigate ‘How the stock price changes with respect

to the purchases and sales of stocks’. This determines the response variable to be

the ‘change in the price’ with respect to number of predictor variables. The stock

price changes occur discretely. Therefore, the response variable is not continuous

and violates the normality assumption of the simple regression model. As it is

discussed in chapter 1, this is when it is required to use the ‘Generalized Linear

Models’ (GLM). GLM requires three important things to specify. This includes

the response variable, the linear predictors and the link function.

3.1.1 Response Variable is a Mixture

The response variable is the number of ticks denoted by Y . Y consists of

integers. Thus Y ∈ {. . . ,−2,−1, 0, 1, 2, . . . }. Here, the negative number of ticks

denote the stock price decrements and the positive number of ticks denote the

stock price increments. The value 0 was obtained from the transactions where the

price did not change between them.
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The number of ticks consists of a mixture of stock price increments and

stock price decrements. There are two sub populations within the number of ticks,

where each sub populations is represented by its corresponding distribution. This

leads to the possibility of proposing a mixture model.

Define a random variable Y1 that contains the non-negative integers of

yi. Let Y1 ∈ {0, 1, 2, 3, . . . }. With Y1 containing non-negative integers, the

first natural guess is that considering Y1 as a poisson random variable. Then

let Y1 follows a poisson distribution with mean parameter λ+. Then define an-

other random variable Y0 containing the non-positive integers of yi. Let Y0 ∈

{. . . ,−3,−2,−1, 0}. Next negate the non-positive random variable Y0. That re-

sults the random variable denoted by −Y0 which takes only non-negative integers.

Thus −Y0 ∈ {0, 1, 2, 3, . . . }. Similarly, it can be stated that −Y0 follows a poisson

distribution with mean parameter λ−.

The number of ticks formulated based on both stock price increments and

stock price decrements are modeled using the two random variables Y1 and Y0.

Thus the mixture of number of ticks calculated based on stock price increments and

decrements can now be modeled using a mixture of two poisson random variables.

Y1 ∼ Poisson(λ+)

−Y0 ∼ Poisson(λ−)

It can be seen that the random variable Y consists of the values from the two

random variables Y1 and Y0. In order to specify the relationship of Y1 and Y0

within Y , it requires a need of an indicator variable. Let ∆ be the indicator

variable which takes binary values. Then ∆ is a ‘Bernoulli’ random variable and

will denote the membership of each observation in each sub population. Let p be

the probability for ∆ = 1. Then the mixture of two poisson distributions can be

specified as below. The proposed model assumes that yi is an observed value of
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the random variable Y which is a mixture of two poisson random variables Y0 and

Y1.

Y1 ∼ Poisson(λ+)

−Y0 ∼ Poisson(λ−)

Y = (1−∆) · Y0 + ∆ · Y1

where ∆ ∈ {0, 1} with Pr{∆ = 1} = p

3.1.2 Linear Predictors - Order Size

The next task is to identify the predictors. The stock transactions data

from FDX consists of the trade size and the time of the transaction within the day.

As order size plays an important role in stock price movements, it was decided to

start with ‘order size’ as the predictor variable. Then the linear combination of

the order size can be written using the equation (3.1). Here xi denotes the order

size of the ith transaction.

ηi = β0i + β1ixi (3.1)

The response variable consists of a mixture of two random variables. Therefore,

the linear predictors are expressed for each variable.

for Y1 : η1i = β+
0i + β+

1ixi

for Y0 : η0i = β−0i + β−1ixi

3.1.3 Link Function

The logarithm link function is used to link the mean parameter of the

response variable Y with the linear predictors η. The response variable is a mixture

of two random variables and each has a mean parameter. Therefore, the link
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function is applied to the mean parameters of Y0 and Y1.

for Y1 : log(λ+
i ) = β+

0 + β+
1 xi ⇒ λ+

i = eβ
+
0 +β+

1 xi

for Y0 : log(λ−i ) = β−0 + β−1 xi ⇒ λ−i = eβ
−
0 +β−

1 xi

The proposed model can be completely specified as below.

∆i ∼ Bernoulli(p), i = 1, . . . , n

yi|∆i ∼ Poisson(λ+
i = eβ

+
0 +β+

1 xi)

−yi|∆i ∼ Poisson(λ−i = eβ
−
0 +β−

1 xi)

As the initial case of investigation the probability of ∆ = 1 is considered as a

constant. That is P (∆ = 1) = p where p is a constant. An extension to this case

where p is a function of the order size will be discussed in the next section.

3.1.4 Maximum Likelihood Method

Parameters are estimated using the maximum likelihood estimation. The

likelihood function for the mixture of two sub populations can be expressed as

given in equation (3.2) with θ = (p, β−0 , β
−
1 , β

+
0 , β

+
1 ).

L(θ) = Πn
i=1[(1− p)f1(yi)]

1−∆i [pf2(yi)]
∆i (3.2)

With the underlying poisson distribution the probability function become the prob-

ability mass function of the discrete poisson distribution. The function ‘P ’ denotes

the probability mass function of poisson distribution in the equation (3.3).

L(p, β−0 , β
−
1 , β

+
0 , β

+
1 ) = Πn

i=1[(1− p)P1(yi)]
1−∆i [pP2(yi)]

∆i (3.3)
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The logarithm of the likelihood function, l(θ), is obtained to make the calculations

easier.

l(p, β−0 , β
−
1 , β

+
0 , β

+
1 ) =

n∑
i=1

lnP (yi)

=
n∑
i=1

ln{P (yi|∆i = 0)P (∆i = 0) + P (yi|∆i = 1)P (∆i = 1)}

=
n∑
i=1

ln{(1− p)(λ−i )−yie−λ
−
i

(−yi)!
Iyi≤0 + p

(λ+
i )yie−λ

+
i

(yi)!
Iyi≥0} (3.4)

It is required to identify the indicator variables denoted by ‘Iyi≤0’ and ‘Iyi≥0’

in order to maximize the log-likelihood given in equation (3.4). It is a missing

information in the model. Therefore, the EM algorithm is used to fill the missing

information.

The membership of observations in the two sub populations are identified

during the ‘E-step’. It is important to identify the value zero belongs to both

sub populations and thus the probability of its membership is also required. The

‘E-step’ calculated the γi using the ‘conditional probability theorem’ and the ‘total

probability theorem’.

“E” - Step

γi = P (∆i = 1|yi) =
P (yi|∆i = 1)P (∆i = 1)

P (yi|∆i = 1)P (∆i = 1) + P (yi|∆i = 0)P (∆i = 0)
(3.5)

If yi < 0, then P (yi|∆i = 1) = 0 ⇒ γi = 0

If yi > 0, then P (yi|∆i = 1) = 1 ⇒ γi = 1

If yi = 0, then

γi =
p̂e−λ̂

+
i

p̂e−λ̂
+
i + (1− p̂)e−λ̂−i

=
p̂e−e

β̂+0 +β̂+1 xi

p̂e−e
β̂+0 +β̂+1 xi + (1− p̂)e−eβ̂

−
0 +β̂−1 xi
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The ‘M-step’ replaces the ∆i with γi in the log-likelihood which is then

called the ‘complete log-likelihood’ (equation 3.5).

“M” - Step

l0(p, β−0 , β
−
1 , β

+
0 , β

+
1 ) =

n∑
i=1

(1−∆i) lnP (yi; β
−
0 , β

−
1 ) +

n∑
i=1

∆i lnP (yi; β
+
0 , β

+
1 )

+
n∑
i=1

(1−∆i) ln(1− p) +
n∑
i=1

∆i ln p (3.6)

Then the complete log-likelihood given in equation (3.6) is differentiated with

respect to each parameter to obtain the maximum likelihood estimates.

Finding p̂ :

∂l0
∂p

=
n∑
i=1

(1−∆i)
−1

1− p
+

n∑
i=1

∆i
1

p

=
1

p(1− p)
{−p

n∑
i=1

(1−∆i) + (1− p)
n∑
i=1

∆i}

⇒ p̂ =

∑n
i=1 ∆i

n
(3.7)

Finding β̂−0 :

∂l0
∂β−0

=
∂

∂β−0

n∑
i=1

(1−∆i) lnP (yi; β
−
0 , β

−
1 )

=
n∑
i=1

(1−∆i)
1

P (yi; β
−
0 , β

−
1 )

∂

∂β−0
P (yi; β

−
0 , β

−
1 )

Since P (yi; β
−
0 , β

−
1 ) = exp{−e(β

−
0 +β−1 xi)}(eβ

−
0 +β−1 xi )yi

(yi)!
it results;

∂P (yi; β
−
0 , β

−
1 )

∂β−0
=

1

(yi)!
(eβ

−
0 +β−

1 xi)yi−1 exp {−e(β−
0 +β−

1 xi)}{yi − eβ
−
0 +β−

1 xi}

∂l0
∂β−0

=
n∑
i=1

e−λ
−
i (1−∆i){yi − eβ

−
0 +β−

1 xi} = 0

⇒
n∑
i=1

(1−∆i){yi − eβ
−
0 +β−

1 xi} = 0 (3.8)
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Finding β̂−1 :

∂l0
∂β−1

=
∂

∂β−1

n∑
i=1

(1−∆i) lnP (yi; β
−
0 , β

−
1 )

∂P (yi; β
−
1 , β

−
1 )

∂β−1
=

1

(yi)!
(eβ

−
0 +β−

1 xi)yi−1 exp{−e(β−
0 +β−

1 xi)}{yi − eβ
−
0 +β−

1 xi}xi

∂l0
∂β−1

=
n∑
i=1

e−λ
−
i (1−∆i){yi − eβ

−
0 +β−

1 xi}xi = 0

⇒
n∑
i=1

(1−∆i){yi − eβ
−
0 +β−

1 xi}xi = 0 (3.9)

Finding β̂+
0 :

∂l0
∂β+

0

=
∂

∂β+
0

n∑
i=1

∆i lnP (yi; β
+
0 , β

+
1 )

=
n∑
i=1

∆i
1

P (yi; β
+
0 , β

+
1 )

∂

∂β+
0

P (yi; β
+
0 , β

+
1 )

Since P (yi; β
+
0 , β

+
1 ) =

exp {−e(β+
0 +β+

1 xi)}(eβ+
0 +β+

1 xi)yi

(yi)!
it results;

∂P (yi; β
+
0 , β

+
1 )

∂β+
0

=
1

(yi)!
(eβ

+
0 +β+

1 xi)yi−1 exp {−e(β+
0 +β+

1 xi)}{yi − eβ
+
0 +β+

1 xi}

∂l0
∂β+

0

=
n∑
i=1

e−λ
+
i ∆i{yi − eβ

+
0 +β+

1 xi} = 0

⇒
n∑
i=1

∆i{yi − eβ
+
0 +β+

1 xi} = 0 (3.10)

Finding β̂+
1 :

∂l0
∂β+

1

=
∂

∂β+
1

n∑
i=1

∆i lnP (yi; β
+
0 , β

+
1 )

∂P (yi; β
+
1 , β

+
1 )

∂β+
1

=
1

(yi)!
(eβ

+
0 +β+

1 xi)yi−1 exp {−eβ
+
0 +β+

1 xi}{yi − eβ
+
0 +β+

1 xi}xi

∂l0
∂β+

1

=
n∑
i=1

e−λ
+
i ∆i{yi − eβ

+
0 +β+

1 xi}xi = 0

⇒
n∑
i=1

∆i{yi − eβ
+
0 +β+

1 xi}xi = 0 (3.11)
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After simplifications the score equations are :

p̂ =

∑n
i=1 ∆i

n
(3.7)

n∑
i=1

(1−∆i){yi − eβ
−
0 +β−

1 xi} = 0 (3.8)

n∑
i=1

(1−∆i){yi − eβ
−
0 +β−

1 xi}xi = 0 (3.9)

n∑
i=1

∆i{yi − eβ
+
0 +β+

1 xi} = 0 (3.10)

n∑
i=1

∆i{yi − eβ
+
0 +β+

1 xi}xi = 0 (3.11)

If ∆i’s are known, the mean of the ∆’s give the estimate of the p, as given

in (3.7). The estimates of β−0 and β−1 can be obtained from (3.8) and (3.9) using

a weighted Poisson regression, and the estimates of β+
0 and β+

1 can be obtained

from (3.10) and (3.11) using another weighted Poisson regression.

Only the estimator for mixture probability (p̂), given in equation (3.7), has

a closed form. Other equations of β̂−0 , β̂
−
1 , β̂

+
0 , β̂

+
1 , given by equations (3.8) - (3.11)

do not have closed forms. Therefore the Newton Raphson method is used to find

β̂−0 , β̂
−
1 , β̂

+
0 , β̂

+
1 .

It can be seen that there is a pair of equations to be solved for each mixture.

The pair (3.8) and (3.9) belong to the non-positive counts based on the stock price

decrements and the pair (3.10) and (3.11) belong to the non-negative counts based

on the stock price increments. It can also be observed that both pairs have the

similar parametric formulation.

The EM algorithm can be implemented for this model using the following steps.

1. Take initial guesses p̂, β̂−0 , β̂−1 , β̂+
0 , and β̂+

1 for the parameters.

2. E–step: Compute the expected values of each ∆i using γi given in (3.5).

If yi < 0 then γi = 0, if yi > 0 then γi = 1 and if yi = 0 then,

γi = p̂e−e
β̂+0 +β̂+1 xi

p̂e−e
β̂+0 +β̂+1 xi+(1−p̂)e−e

β̂−0 +β̂−1 xi
.
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3. M–step: Replace ∆i with γi in equations (3.7 - 3.11) and update the estimates

of p̂, β̂−0 , β̂−1 , β̂+
0 , and β̂+

1 .

4. Repeat steps 2 and 3 until convergence.

3.1.5 Parameter Estimation

The proposed mixture model of two poisson random variables with the

constant mixture probability was implemented using the statistical programming

language R. The parameter estimation was implemented via the in-built glm()

function of R.

The model was applied to the FDX data in two different ways. As FDX

data consists of two different tick sizes throughout the five years, it was decided to

separate the data set based on the tick size. First, the model was applied to the

two sub sets of FDX data based on the two different tick sizes. Table 3.2 shows

the estimates of the FDX data based on the different tick-size.

It can be identified that the mixture probabilities do not show much differ-

ence in both the data sets. However, the magnitudes of the slope and intercept

parameters of the data set with the bigger tick-size (β̂+
0 , β̂

+
1 ) are bigger than the

the magnitudes of the slope and intercept parameters (β̂−0 , β̂
−
1 ), of the smaller tick-

size. The signs of the slope parameters (β̂+
1 , β̂

+
1 ) of both data sets have turned

out to be as expected. Further interpretation of the parameters and the model is

explained in the section 3.3.

Next the model is applied to each year of the data set separately. Due to

the tick-size change in the middle of the fourth year, it was decided to ignore the

fourth year. The stock transactions data in the years 1, 2, 3 and 5 were used. The

estimates are given in table 3.2. The estimates of the year 5 were smaller than the

years 1, 2, and 3. This is not surprising as the tick-size changed from 1/8 to 1/16
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tick-size 1/8 tick-size 1/16

β̂+
0 -1.18543053 -0.68856613

β̂+
1 4.44756808 e-05 1.09540896 e-05

β̂−0 -1.05153782 -0.51439889

β̂−1 -1.77055672 e-05 -0.99221302 e-05

p̂ 0.527551 0.5403506

TABLE 3.1

FDX parameter estimation using constant model

Year β̂+
0 β̂+

1 β̂−0 β̂−1 p̂

1 −1.14039 4.61744e−05 −0.98357 −1.42761e−05 0.52359

2 −1.18736 4.90303e−05 −0.98491 −2.22884e−05 0.54883

3 −1.16548 4.68462e−05 −0.82659 −2.22209e−05 0.56980

5 −0.59867 1.00522e−05 −0.49124 −9.16075e−06 0.52991

TABLE 3.2

Parameter estimates for the FDX data using the model with constant mixing
probabilities for years 1994, 1995, 1996, and 1998.

during 4th year that made the stock price movements by a smaller value during

the year 5.

3.1.6 Simulation

A simulation study was conducted to assess the performance of the estima-

tion methods based on the EM algorithm. Data sets were generated according to

the model described under ‘Model Formulation’ with sizes 102, 103, 104 and 105.
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n p̂ β̂+
0 β̂+

1 β̂−0 β̂−1

True 0.35 -0.5 0.2 -0.7 -0.1

102 0.372423779 -0.571396076 0.195167803 -0.687471677 -0.101024391

103 0.351164389 -0.504860191 0.200677783 -0.696302985 -0.104609607

104 0.350694262 -0.501873677 0.198851347 -0.698943031 -0.099952896

105 0.350676824 -0.501917391 0.200009997 -0.699273218 -0.099871496

TABLE 3.3

Simulation : average parameter estimates of 1000 replicates using the constant
model

The proposed model with constant mixture probability was applied to each data

set and parameters were estimated for 1000 simulated data sets. The average value

of each estimate was recorded. Table 3.3 shows the average estimate value of each

parameter.

Figures 3.1 to 3.5 show the plot of the estimates of each parameter based

on different sizes of the simulated data sets. In each figure the dotted horizontal

line denotes the true value of each parameter and the solid dots denote the average

estimates.

According to figures 3.1 to 3.5, the average of the estimates are all reason-

ably close to the true values. Also the average of the estimates generally becomes

closer to the true value as the sample size increases. It appears that the modes

produce consistent estimates of the parameters.
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FIGURE 3.1 – Estimated mean for p̂ based on 1000 replicates

FIGURE 3.2 – Estimated mean for β̂+
0 based on 1000 replicates
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FIGURE 3.3 – Estimated mean for β̂+
1 based on 1000 replicates

FIGURE 3.4 – Estimated mean for β̂−0 based on 1000 replicates
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FIGURE 3.5 – Estimated mean for β̂−1 based on 1000 replicates

45



3.2 Variable Mixing Probabilities

A mixture of two poisson distributions was formulated with the constant

mixing probability in the section 3.1. As discussed previously, there is a large

effect of the order size towards changing the stock price. Order size was included

as the predictor variable in the model. Furthermore, it was decided to check the

influence of the order size on the mixture probability. Therefore, the proposed

mixture model is extended further to accommodate the mixture probability pi as

a function of order size xi. Thus, a variable mixture probability is modeled by a

‘logistic regression model’ in which,

pi =
exp(α0 + α1xi)

1 + exp(α0 + α1xi)
. (3.12)

When calculating the responsibilities denoted by γi in the E-step, the p in

the constant model is replace by pi as shown in (3.12). This results in a complex

expression for γi when yi = 0 as given in (3.13).

If yi = 0, then γi =
π̂ie
−λ̂+i

π̂ie−λ̂
+
i + (1− π̂i)e−λ̂

−
i

=
eα0+α1xi

1+eα0+α1xi
e−e

β̂+0 +β̂+1 xi

eα0+α1xi
1+eα0+α1xi

e−e
β̂+0 +β̂+1 xi + (1− eα0+α1xi

1+eα0+α1xi
)e−e

β̂−0 +β̂−1 xi

=
e(α0+α1xi)e−e

(β̂+0 +β̂+1 xi)

e(α0+α1xi)e−e
(β̂+0 +β̂+1 xi) + e−e

(β̂−0 +β̂−1 xi)

=
e(α0+α1xi)

e(α0+α1xi) + e−e
(β̂−0 +β̂−1 xi)ee

(β̂+0 +β̂+1 xi)

=
exp{α0 + α1xi}

exp{α0 + α1xi}+ exp{e(β̂+
0 +β̂+

1 xi) − e(β̂−
0 +β̂−

1 xi)}
(3.13)

The complete log-likelihood is similar to the expression given in the equation

(3.6) except that with the variable mixing probabilities p will be replaced by pi as

given in the equation (3.12).
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M - Step

l0(α0, α1, β
−
0 , β

−
1 , β

+
0 , β

+
1 ) =

n∑
i=1

(1−∆i) lnP (yi; β
−
0 , β

−
1 ) +

n∑
i=1

∆i lnP (yi; β
+
0 , β

+
1 )

+
n∑
i=1

(1−∆i) ln(1− πi) +
n∑
i=1

∆i ln πi

l0(α0, α1, β
−
0 , β

−
1 , β

+
0 , β

+
1 ) =

n∑
i=1

(1−∆i) lnP (yi; β
−
0 , β

−
1 ) +

n∑
i=1

∆i lnP (yi; β
+
0 , β

+
1 )

+
n∑
i=1

(1−∆i) ln(1− eα0+α1xi

1 + eα0+α1xi
)

+
n∑
i=1

∆i ln(
eα0+α1xi

1 + eα0+α1xi
)

l0(α0, α1, β
−
0 , β

−
1 , β

+
0 , β

+
1 ) =

n∑
i=1

(1−∆i) lnP (yi; β
−
0 , β

−
1 ) +

n∑
i=1

∆i lnP (yi; β
+
0 , β

+
1 )

−
n∑
i=1

(1−∆i) ln(1 + eα0+α1xi)

−
n∑
i=1

∆i ln(1 + eα0+α1xi)

+
n∑
i=1

∆i(α0 + α1xi)

l0(α0, α1, β
−
0 , β

−
1 , β

+
0 , β

+
1 ) =

n∑
i=1

(1−∆i) lnP (yi; β
−
0 , β

−
1 ) +

n∑
i=1

∆i lnP (yi; β
+
0 , β

+
1 )

−
n∑
i=1

ln(1 + eα0+α1xi) +
n∑
i=1

∆i(α0 + α1xi) (3.14)

Similarly the complete log-likelihood of the variable model is differentiated

with respect to each parameter and maximized to obtain the estimates. When

extending the initial model with variable mixing probabilities, only p was changed

to pi. Therefore, instead of differentiating with respect to p now there are two new

parameters in the model; α0 and α1 replace p in the new model.
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Finding α̂0:

∂l0
∂α0

=
n∑
i=1

∆i −
n∑
i=1

eα0+α1xi

1 + eα0+α1xi

⇒
n∑
i=1

∆i −
n∑
i=1

eα0+α1xi

1 + eα0+α1xi
= 0

⇒
n∑
i=1

{∆i −
eα0+α1xi

1 + eα0+α1xi
} = 0 (3.15)

Finding α̂1:

∂l0
∂α1

=
n∑
i=1

∆ixi −
n∑
i=1

eα0+α1xi

1 + eα0+α1xi
xi

⇒
n∑
i=1

∆ixi −
n∑
i=1

eα0+α1xi

1 + eα0+α1xi
xi = 0

⇒
n∑
i=1

{∆i −
eα0+α1xi

1 + eα0+α1xi
}xi = 0 (3.16)

After simplifications the score equations for the model with variable mixing

probabilities consist of the equations similar to the equations (3.8) to (3.11) of the

first model and two new equations (3.15) and (3.16).

n∑
i=1

(1−∆i){yi − eβ
−
0 +β−

1 xi} = 0 (3.8)

n∑
i=1

(1−∆i){yi − eβ
−
0 +β−

1 xi}xi = 0 (3.9)

n∑
i=1

∆i{yi − eβ
+
0 +β+

1 xi} = 0 (3.10)

n∑
i=1

∆i{yi − eβ
+
0 +β+

1 xi}xi = 0 (3.11)

n∑
i=1

{∆i −
eα0+α1xi

1 + eα0+α1xi
} = 0 (3.15)

n∑
i=1

{∆i −
eα0+α1xi

1 + eα0+α1xi
}xi = 0 (3.16)

If ∆i’s are known, then the estimates of β−0 , β−1 , β+
0 , and β+

1 can be obtained

as they were in the model with constant mixing probabilities, and the estimates of
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α0 and α1 can be obtained from (3.15) and (3.16) using a logistic regression. Al-

though each ∆i is either 0 or 1, the EM algorithm will replace it with its expected

value γi which might not be an endpoint of [0, 1]. Consequently, the implementa-

tion of the method for computing estimates for logistic regression must allow for

fractional response values.

The EM algorithm for the model with variable mixing probabilities then

proceeds as follows.

1. Take initial guesses α̂0, α̂1, β̂−0 , β̂−1 , β̂+
0 , and β̂+

1 for the parameters.

2. E–step: Compute the expected values of each ∆i using (γi). The calculations

are similar to the constant case except that, if yi = 0, then

γi =
p̂ie
−λ̂+i

p̂ie−λ̂
+
i + (1− p̂i)e−λ̂

−
i

=
exp (α̂0 + α̂1xi)

exp (α̂0 + α̂1xi) + exp(eβ̂
+
0 +β̂+

1 xi − eβ̂−
0 +β̂−

1 xi)
.

3. M–step: Replace ∆i with γi in equations (3.15), (3.16), and (3.8) - (3.11) and

update the estimates of α̂0, α̂1, β̂−0 , β̂−1 , β̂+
0 , and β̂+

1 .

4. Repeat steps 2 and 3 until convergence.

3.2.1 Parameter Estimation

Similar to the constant model, the variable model is also applied to the FDX

data sets based on different tick-sizes and for different years separately. Table 3.4

shows the parameter estimates of the data sets based on the tick-size.

In the variable model there are two parameters (α̂0, α̂1) which are used for

the mixture probability. In both the data sets, α̂1 has turned out to be a positive

value as expected. Similar to the constant model, the magnitudes of the slope and

intercept parameters of the data set with the bigger tick-size (β̂+
0 , β̂

+
1 ) are bigger

than the the magnitudes of the slope and intercept parameters (β̂−0 , β̂
−
1 ), of the
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tick-size 1/8 tick-size 1/16

β̂+
0 -1.192732 -0.7306984

β̂+
1 2.678521e-05 1.610377e-05

β̂−0 -1.048063 -0.4843464

β̂−1 -1.4159e-05 -7.095849e-06

α̂0 0.1437902 0.2203968

α̂1 0.005914745 0.002465908

TABLE 3.4

FDX parameter estimation using variable model

smaller tick-size. The signs of the slope parameters (β̂+
1 , β̂

+
1 ) of both data sets

have turned out to be as expected. Further interpretation of the parameters and

the model is explained in section 3.3.

The variable model is applied to each year of the data set separately. The

estimates of the years 1, 2, 3 and 5 are given in table 3.5.

3.2.2 Simulation

Similar to the constant model, a simulation study was conducted to assess

the performance of the estimation methods based on the EM algorithm. Data

sets were generated according to the model described under ‘Model Formulation’

and with sizes 102, 103, 104 and 105. The proposed model with constant mixture

probability was applied to each data set and parameters were estimated as 1000

replicates. The average value of each estimate was recorded. Table 3.6 shows the

average estimate value of each parameter.

The figures 3.6 to 3.11 show the plot of the estimates of each parameter

based on different sizes of the simulated data sets. In each figure the dotted
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Year β̂+
0 β̂+

1 β̂−0 β̂−1 α̂0 α̂1

1 −1.09231 2.42998e−05 −1.03044 −1.13407e−05 −0.00889 0.00291

2 −1.13954 1.67870e−05 −1.02011 −1.87965e−05 0.12750 0.00566

3 −1.12029 2.53253e−05 −0.88099 −1.66876e−05 0.29315 0.00702

5 −0.63951 5.43784e−06 −0.44293 −6.17989e−06 0.18239 0.00222

TABLE 3.5

Parameter estimates for the FDX data using the model with variable mixing prob-
abilities for years 1994, 1995, 1996, and 1998.

n β̂+
0 β̂+

1 β̂−0 β̂−1 α̂0 α̂1

True -0.5 0.2 -0.7 -0.1 0.3 0.8

102 -0.49526 0.17393 -0.67327 -0.07445 0.35865 0.93145

103 -0.49681 0.19469 -0.69465 -0.09166 0.30484 0.81542

104 -0.49904 0.19919 -0.70192 -0.10158 0.29616 0.80042

105 -0.49857 0.19997 -0.70138 -0.10079 0.29688 0.79843

TABLE 3.6

simulation parameter for variable model
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FIGURE 3.6 – Estimated mean for α̂0 based on 1000 replicates

horizontal line denotes the true value of each parameter and the solid dots denote

the average estimates. According to figures 3.6 to 3.11, the average of the estimates

are all reasonably close to the true values. Also the average of the estimates

generally becomes closer to the true value as the sample size increases. It appears

that the models produce consistent estimates of the parameters.
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FIGURE 3.7 – Estimated mean for α̂1 based on 1000 replicates

FIGURE 3.8 – Estimated mean for β̂+
0 based on 1000 replicates
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FIGURE 3.9 – Estimated mean for β̂+
1 based on 1000 replicates

FIGURE 3.10 – Estimated mean for β̂−0 based on 1000 replicates
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FIGURE 3.11 – Estimated mean for β̂−1 based on 1000 replicates

55



3.3 Interpretation

In sections 3.1 and 3.2 the stock price increments and decrements were

modeled using the concepts ‘Poisson Regression’ and ‘Mixture Models’. The pa-

rameters were estimated using the ‘Method of Maximum Likelihood’. This section

explains the interpretation of the estimated parameters.

Unlike in simple linear regression where the response follows a normal dis-

tribution with an identity link function, interpretation of poisson regression is not

straight forward. Due to the choice of logarithm link function in the poisson re-

gression, the unit change can not be linearly expressed. Therefore, interpretation

in terms of a relative change of the mean would simplify the complexity.

In calculating relative change of the mean of the price change, it is important

to consider that the orders are placed by multiples of hundreds. Therefore, a change

in a single unit means order size changing by one hundred.

The relative change of the mean of the price change is given by

λx±100

λx
=
eβ0+β1(x±100)

eβ0+β1x
= e±100β1 . (3.17)

Using expression (3.17), the relative increment of the stock price change is calcu-

lated using e100β+
1 and the relative decrement of the stock price change is calculated

by e−100β−
1 . It uses only the slope parameter.

3.3.1 Interpretation of the Parameters

The stock price change (both increment and decrement) was modeled using

mixture model where each sub population is modeled using poisson regression with

the use of logarithm link function. Each sub population can be expressed using

the log-linear model.

The stock price increment can be expressed using a log linear model with
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average stock price increment λ+ and the order size xi.

log(λ+) = β̂+
0 + β̂+

1 xi (3.18)

The estimates of the FDX data set can be used to further describe the

expression given in (3.18). For example, the slope and intercept parameters of the

FDX data set with 1/8 tick-size was estimated as β̂+
0 = -1.18 and β̂+

1 = 0.00004.

The the log-linear model for average stock price increment when the tick-size for

1/8 is given by : log(average stock price increment)=-1.18 + 0.00004xi.

The log-linear model of the average stock price increment has a positive

slope. With the positive slope, the logarithm of the average stock price increment

increases as the order size increases. This reflects the fact that the average log

stock price increments increase with the increasing order size. This conforms the

stock market behavior that, when more stocks are purchased, the price of a stock

will increase more.

Similarly, stock price decrement can be expressed using a log linear model

with average stock price decrement λ− and the order size xi.

log(λ−) = β̂−0 + β̂−1 xi (3.19)

For example, the slope and intercept parameters of the FDX data set of stock price

decrements with 1/8 tick-size was estimated as β̂−0 = -1.05 and β̂−1 = - 0.000018.

The the log-linear model for average stock price increment when the tick-size for

1/8 is given by : log(average stock price decrement)=-1.05 - 0.000018xi.

The log-linear model of the average stock price decrements has a negative

slope. With the negative slope, the logarithm of the average stock price increment

decreases as the order size increases. This reflects the fact that the average log

stock price decrements decrease with the increasing order size. This conforms the

stock market behavior that, when more stocks are sold, the price of a stock will

decrease more.
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3.3.2 Probability of Stock Price Change

It is also interesting to find probabilities of discrete stock price changes

based on the estimates of the parameters. The probabilities of the discrete stock

price changes are calculated as given in (3.21), (3.22) and (3.23).

P (yi > 0) denotes the probability of discrete stock price increment, P (yi <

0) denotes the probability of discrete stock price decrement and P (yi = 0) denotes

the probability that the stock price stays same between two consecutive transac-

tions.

The probability of discrete stock price increment is calculated by :

P (Yi > 0) = P (∆i = 1 and Yi > 0)

= P (∆i = 1)P (Yi > 0|∆i = 1)

= piP (Y +
i > 0)

= pi[1− P (Y +
i = 0)]

P (Yi > 0) = pi(1− e−λ
+
i ) (3.20)

The probability of discrete stock price decrement is calculated by :

P (Yi < 0) = P (∆i = 0 and Yi < 0)

= P (∆i = 0)P (Yi < 0|∆i = 0)

= (1− pi)P (Y −i < 0)

= (1− pi)[1− P (Y −i = 0)]

P (Yi < 0) = (1− pi)(1− e−λ
−
i ) (3.21)
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The probability that the stock price stays same :

P (Yi = 0) = P (∆i = 0 and Yi = 0) + P (∆i = 1 and Yi = 0)

= P (∆i = 0)P (Yi = 0|∆i = 0) + P (∆i = 1)P (Yi = 0|∆i = 1)

= (1− pi)P (Y −i = 0) + piP (Y +
i = 0)

P (Yi = 0) = (1− pi)e−λ
−
i + pie

−λ+i (3.22)

The probabilities given by expressions (3.21), (3.22) and (3.23), pi = eα0+α1xi
1+eα0+α1xi

,

λ−i = eβ
−
0 +β−

1 xi and λ+
i = eβ

+
0 +β+

1 xi . The actual probabilities can be calculated

using the estimates of the parameters in the FDX dataset for given order size (xi).

The figures 3.12, 3.13, 3.14 and 3.15 show the probabilities of the discrete stock

price changes based on different order sizes. The estimates are based on table 3.5.

According to figures 3.12, 3.13 and 3.14, the probability of no price change

between two consecutive transactions with respect to the order size, P (Yi = 0),

is between 0.5 and 0.6 for the first three years. In the same three years, the

probabilities of stock price increment(P (Yi > 0)) and decrement (P (Yi < 0))

between two consecutive transactions on order size are below 0.4. These are the

first three years of the FDX dataset with same tick size 1/8.

Once the tick size is changed during the fourth year, the behavior in fifth

year is different from the first three years. During the fifth year (figure 3.15) the

probabilities of no price change between two consecutive transactions (P (Yi = 0))

has decreased to be below 0.5. However the upper limits of the probabilities of stock

price increment(P (Yi > 0)) and decrement (P (Yi < 0)) between two consecutive

transactions on order size, has increased to 0.45. This stock price volatility can be

justified with the smaller tick size as the minimum possible change (tick-size) is

smaller price tends to move faster.
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These facts on the probabilities P (Yi = 0), P (Yi > 0) and P (Yi < 0) in

figures 3.12, 3.13, 3.14 and 3.15, further conform the model with the expectations

of the stock market.
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FIGURE 3.12 – Probabilities of discrete stock price changing on order size in year
1

FIGURE 3.13 – Probabilities of discrete stock price changing on order size in year
2
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FIGURE 3.14 – Probabilities of discrete stock price changing on order size in year
3

FIGURE 3.15 – Probabilities of discrete stock price changing on order size in year
5
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CHAPTER 4

EFFICIENCY IMPROVEMENTS

The proposed mixture of poisson distributions is implemented using the

statistical programming language R. R is used as a popular statistical software

package. There are several built-in statistical functions that facilitate carrying out

statistical modeling.

In estimating the parameters of the model, the in-built function glm() of R

is used. However, the execution times of both models in R were not satisfactory.

Therefore, the code was further investigated to identify the possibilities of reducing

the execution time.

4.1 Improvements in the Code

During the initial implementation of the model, the glm() function of R was

used when estimating the slope (β−1 ) and intercept (β−0 ) parameters of each model.

However, the glm() function in R does not only output the intercept and the

slope parameter. It outputs the values for parameters such as Akaike Information

Criterion (AIC), degrees of freedom and residual deviance in addition. Therefore,

this adds a heavier work within the designed algorithms, thus taking more time to

provide the required output. EM algorithm is usually known to be slow. When

glm() function in R is used with EM algorithm the execution time gets bigger than

expected.

Therefore, the first task in improving the efficiency was to replace glm()
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Constant Mixing Probability

using glm() using NR method

Size Time Iterations Time Iterations

100 0.25 33 0.05 33

1000 1.07 45 0.16 45

10000 9.72 43 1.01 43

100000 94.61 42 10.08 42

1000000 967.69 43 105.83 43

TABLE 4.1

Comparison of Efficiency with the user written NR method in the constant case

function with a function that does only what is required for the execution of the

proposed model. As a solution the ‘Newton Raphson’ (NR) algorithm was imple-

mented in R. This helped in reducing the execution time. The Newton Raphson

method described in Garthwaite et al. (2002, pp 44-45) is used for the above task.

Tables 4.1 and 4.2 show the comparison of execution time and the number of

iterations of using NR method and the glm() function in both models with different

sizes of simulation data sets. Figure 4.1 - 4.4 further summarizes the data in tables

4.1 and 4.2. In figures 4.1 and 4.3, it is evident that use of the NR method has

reduced the execution time greatly. Figure 4.5 shows the time difference between

the two methods. It is clear that use of the NR method instead of the built-in

glm() function has increased the efficiency of the execution time. According to

figure 4.5 the amount of the time saved will increase exponentially as the size of

the data set increase.

However, the figures do not provide a consistent evidence on the number of

iterations.
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Variable Mixing Probability

using glm() using NR method

Size Time Iterations Time Iterations

100 0.49 51 0.08 27

1000 0.97 31 0.18 32

10000 9.36 31 1.18 38

100000 101.03 35 10.36 32

1000000 910.83 32 111.64 32

TABLE 4.2

Comparison of Efficiency with the user written NR method in the Variable Case
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FIGURE 4.1 – Time of glm() vs Newton Raphson for constant model with simu-
lation. Solid line denotes the glm function and the dotted line denotes the NR
method

FIGURE 4.2 – Iterations of glm() vs Newton Raphson for constant model with
simulation
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FIGURE 4.3 – Time of glm() vs Newton Raphson for Variable model with simula-
tion

FIGURE 4.4 – Iterations of glm() vs Newton Raphson for Variable model with
simulation
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FIGURE 4.5 – Time Effectiveness of NR method in both models
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4.2 Parabolic EM Algorithm

As outlined in section 1.4, there have been a significantly large amount of

discussions in improving the efficiency of the EM algorithm which was introduced in

1977. This section implements one of the most recent and relevant improvements of

the EM algorithm introduced by Berlinet and Roland in 2009 (Berlinet and Roland,

2009). The algorithm is named the ‘Parabolic EM’ (PEM) and uses the concept of

the ‘Bazier Parabola’. As highlighted by the authors, the implementation of PEM

on mixture models of two poisson distributions has exhibited a significantly larger

acceleration by a factor of 22, with no failures (Berlinet and Roland, 2012).

Berlinet and Roland (2012) have demonstrated that the effectiveness of

PEM by comparing recent acceleration algorithms based on the behavior and the-

oretical formulation. Among several recent accelerations, the use of PEM in a

mixture of poisson distributions shows its relevance to the proposed model. The

authors have proved that “the sequences generated by PEM do not decrease the

likelihood”.

Therefore, it was decided to investigate using PEM in the implementation

of the proposed model. The next section presents the basic idea of the PEM

algorithm, as presented by the original authors in Berlinet and Roland (2012).

4.2.1 PEM Algorithm

According to Berlinet and Roland (2012), the PEM is designed based on

the concept of the ‘Bezier Parabola’. It uses three initial points, which are called

‘control points’, to control the arc of the parabola. These three control points form

a triangle, known as a control triangle, containing the arc of the parabola. Under

the properties of the Bezier parabola, the n + 1 number of control points needed

to define the curve of degree n and all the Bezier curves are differentiable with
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continuous derivatives (De Adana et al., 2011). Thus the Bezier parabola having

degree 2 needs three control points to define the parabola.

The plane Π(P0, P1, P2) is defined by the three non co-linear points P0, P1

and P2 in RP . Then the parameterized equation of the parabola is given by M(t)

in equation (4.1) or equivalently in (4.2).

M(t) = (1− t)2P0 + 2(1− t)P1 + t2P2 (4.1)

where the parameter t ∈ [0, 1]

With ∆P0 = P1 − P0 and ∆P1 = P2 − P1 equation (4.2) is obtained from the

equation (4.1).

M(t) = P0 + 2t∆P1 + t2∆2P2 (4.2)

where the parameter t ∈ [0, 1]

When t is allowed to take values from the whole real line, the equation (4.1) gives

the Bezier parabola. This gives a unique parabola which passes through the points

P0 and P1 and is tangent to the lines l1 and l2 as shown in figure 4.6. The vector

∆2P0 directs the axis of the parabola.

The basic idea of PEM lies on the fact that three estimates of the parameters

will control the local curvature of the surface consists of the parameters and the

likelihood (θ, L(θ)) (Berlinet and Roland, 2012). Since the EM moves quickly

closer to a neighborhood of a stationary point, it was attempted to use the Bezier

parabola and then maximizing the likelihood over a subset of the parabola. Berlinet

and Roland (2009) also have proved that the sequence of estimates generated by

PEM increases likelihood.

The PEM algorithm starts similar to the general EM by accepting initial

values for the parameters (P0). Then it is requires to perform two iterations of

the general EM to generate two estimates of the parameters (P1 and P2). The

70



three estimates P0, P1 and P2 are then used as the control points of the parabola

and define M(t) as given in the equation (4.1) for t ∈ R. Starting from P2,

a subset of the parabola is maximized in each iteration until the likelihood can

not be further improved on the parabola. If the desired likelihood is achieved at

the beginning, M(t) is equal to P2 for t = 1. Otherwise, starting from t = 1,

the algorithm performs a geometric search on a grid to compute the increasing

maximum likelihood at each iteration until the likelihood can not be increased

any more (Berlinet and Roland, 2009). R implementation of the PEM is given in

Appendix B.

The algorithm for PEM does not change the original structure of the EM,

which enables a fair comparison to be made between PEM and the original EM

that was implemented for the proposed model.

4.2.2 Efficiency in the Constant Model

In section 4.1 it was identified that the use of NR method is more efficient

in place of glm() function of R. As a further improvement the basic EM used

in the previous section is replaced with PEM and efficiency was evaluated using

simulations.

Data sets for the constant model were simulated using the true parameter

values p = .35, β+
0 = −.5, β+

1 = .2, β−0 = −.7, β−1 = −.1. The execution time and

the number of iterations were compared on both implementations of the EM (with

NR method) and PEM algorithms, as shown in table 4.3.

Conforming to the work of Berlinet and Roland (2012), the PEM is more

efficient in both execution time and the number of iterations. Figures 4.7 and 4.8

show the plots of the execution times and the number of iterations that are given

in table 4.3. Up to the size 105, both EM and PEM, provided very close execution
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FIGURE 4.6 – Control Points P0, P1 and P2 makes a triangle on the parabola

times. However, when the data set size was increased to be above 105, the PEM

accelerated its execution. It can conclude that, for larger data sets PEM gives a

better execution time than EM.

Also PEM cuts down the number of iterations by about one third. This

means compared to EM, an iteration in PEM takes more time. The expected

stability of the PEM was also achieved, with the failure rate of 0% in all the

executions in the constant model.

4.2.3 Efficiency in the Variable Model

The data sets for variable model are generated similar to the constant model

with α0 = 0.3 and α1 = 0.8 in the mixing parameter. The execution time and the
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Constant Mixing Probability

EM with NR PEM

Size Time Iterations Time Iterations

100 0.05 33 0.05 12

1000 0.16 45 0.11 13

10000 1.01 43 0.94 14

100000 10.08 42 10.20 15

1000000 105.83 43 76.33 13

TABLE 4.3

Comparison of Efficiency with EM and PEM on Constant Model

number of iterations were compared on both implementations of EM (with NR

method) and PEM algorithms, as shown in table 4.4. The figures 4.9 and 4.10

summarize the values given in table 4.4.

The test results of the simulations do not favor the PEM. The PEM was

originally introduced for a mixture model with constant probability. Thus it is

reasonable to expect its performance over constant probability, but not in variable

mixture probabilities. As figures 4.9 and 4.10 show, the performance of PEM in

the variable model is opposite to that of the constant model.

Apart from this poor performance, PEM was not stable during several ex-

ecutions. About 30% of the time, PEM failed to reach the maximum point even

with 100000 iterations. Thus, it can be concluded that PEM is not very well suited

for the proposed mixture model with variable mixing probabilities.
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FIGURE 4.7 – Time of EM vs PEM for constant model on simulated data

FIGURE 4.8 – Number of Iterations of EM vs PEM for constant model on simulated
data
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Variable Mixing Probability

EM with NR PEM

Size Time Iterations Time Iterations

100 0.08 27 0.45 40

1000 0.18 32 0.55 58

10000 1.18 38 4.94 61

100000 10.36 32 45.58 58

1000000 111.64 32 452.48 58

TABLE 4.4

Comparison of Efficiency with EM and PEM on Variable Model
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FIGURE 4.9 – Time of EM vs PEM for Variable model on simulated data

FIGURE 4.10 – Number of Iterations of EM vs PEM for Variable model on simu-
lated data
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4.3 Parallel Processing

As another way of reducing the execution time of the model, a possibility of

using a parallel processing environment was investigated. The High Performance

Computing (HPC) facilities of the Cardinal Research Cluster (CRC) of the Uni-

versity of Louisville were utilized in achieving this task. Figure 4.11 shows the

infrastructure of the HPC cluster.

The use of HPC cluster was beneficial when performing simulations with

large amounts of data. The HPC cluster was accessed through a SSH Secure Shell

within the university network. A Virtual Private Network (VPN) was needed to

use the SSH Secure Shell when accessing from outside the university network.

The R codes of the models and the simulations were executed on 40 and 100

parallel processes to reduce the run time. Depending on the number of parallel

processes used, whether it is 40 or 100, a list of seeds were generated and used

in a separate file so that the same could be used if the outputs needed to be

generated repeatedly under the same environment. Then additional codes were

written using Unix commands to separated the codes into the number of processes

and to combine the outputs once execution is completed.
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FIGURE 4.11 – HPC Cluster (source : http://louisville.edu/it/research/for-
researchers/materials)
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CHAPTER 5

CLUSTERED SIGNED MODEL

One of the biggest challenge in handling data is effectively manipulating

large volumes of data. A similar challenge was experienced during the data manip-

ulation for the proposed mixture model. When possible, it is desired to investigate

if difficulties manipulating large volumes of data can be alleviated when the data

set has special structures.

The proposed model employs the discrete stock price changes. The model

considered those stock price changes in terms of negative, positive and also zero

price changes. It was already discussed the effect of order size on the price change.

According to the stock market the stocks are traded as a multiple of hundreds

with hundred being the smallest size and also the most frequent size of a trade.

Based on the data the order size do not have a large variation of different values.

Therefore, it is possible to cluster the stock transactions based on different order

sizes. Instead of taking each single stock price change and its order size, all the

stock prices based on each different order size can be clustered. This clustering

based on each order size summarizes data reducing the amount of repeatedly using

multiple order sizes.

As per the proposed mixture model, the discrete stock price changes are

treated based on their sign; negative, positive and zero. This fact is also used to

further summarize data. Along with clustering, the respective discrete stock prices

are summarized further, but taking sum of the magnitude of the sum of the stock

price changes for sign from negative, positive and zeros.
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A clustered model based on order size and the sign of the stock price change

is introduced to reduce the amount of data used in the model. Section 5.1 presents

the ‘Clustered Signed Poisson Mixture Model’ for constant mixture probability,

and the section 5.2 presents the variable mixture probabilities.

5.1 Clustered Signed Poisson Mixture Model with Constant Mixing
Probability

First consider the different discrete stock price changes made based on each

different order size. Those are the observations clustered by order size given by xi.

For each value of xi there are N observations with different discrete price changes

given by yij. The observed independent data are given by (x1, y11), . . . , (x1, y1N),

(x2, y21), . . . , (x2, y2N), · · · , (xM , yM1), . . . , (xM , yMN) where yij is a realization of

the random variable Yij. The random variable Yij is defined using the mixture of

two random variables Y −ij and Y +
ij as given by the expression (5.1).

Yij = (1−∆ij)(−Y −ij ) + ∆ijY
+
ij (5.1)

with

∆ij ∼ Bernoulli(p)

Y +
ij ∼ Poisson(λ+

i = eβ
+
0 +β+

1 xi) and

Y −ij ∼ Poisson(λ−i = eβ
−
0 +β−

1 xi)

Once the model was set, the EM algorithm is applied for computing the estimates

of the unknown model parameters. The step wise procedure for the EM algorithm

is given from Step 1 to Step 4 below.

Step 1 : Start with initial estimates of p, β−0 , β
−
1 , β

+
0 , β

+
1 .
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Step 2 : (E-step) Estimate responsibilities (estimates of P (∆ij = 1|yij))

γij =


1 if yij > 0

pe−λ
+
i

pe−λ
+
i +(1−p)e−λ

−
i

if yij = 0

0 if yij < 0

.

Step 3 : (M-step) Maximize the complete likelihood with fixed gammas by solv-

ing the system of equations given in (5.2) to (5.6).

M∑
i=1

N∑
i=1

(1− γij)
{
−yij − eβ

−
0 +β−

1 xi
}

= 0 (5.2)

M∑
i=1

xi

N∑
i=1

(1− γij)
{
−yij − eβ

−
0 +β−

1 xi
}

= 0 (5.3)

M∑
i=1

N∑
i=1

γij

{
yij − eβ

+
0 +β+

1 xi
}

= 0 (5.4)

M∑
i=1

xi

N∑
i=1

γij

{
yij − eβ

+
0 +β+

1 xi
}

= 0 (5.5)

1

MN

M∑
i=1

N∑
i=1

γij = p (5.6)

Step 4 : If the convergence of parameter estimates is not achieved in two consec-

utive steps, go back to step 2.

The M-step requires Weighted Poisson regression to solve some of the equa-

tions. The Weighted Poisson regression with weights wi, sizes ni, and data (xi, yi)

for i = 1, . . . , n computes the values θ0 and θ1 which solve the system of equations

given in (5.7) and (5.8).

N∑
i=1

wi
{
yi − eθ0+θ1xi

}
= 0 (5.7)

N∑
i=1

xiwi
{
yi − eθ0+θ1xi

}
= 0 (5.8)
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The equations given in (5.2) and (5.6) are simplified further to compute

using Poisson regression. As a way of improving the efficiency of the EM algorithm,

this simplification attempts to reduce the amount of data used for the E-step.

There are a large number of transactions with the discrete stock price change

and its order size. There are also a significant number of transactions those were

based on similar order size. It is useful to consider the clusters of transactions

based on each different order size. With that, for each different xi there are a

number of yij’s. Under the clustered signed model, the amount of data that is

used for the mixture model is reduced by considering the summarized data based

on each different xi, instead of considering all the (xi, yij) pairs.

The required notation is described below.

Let,

M = number of distinct xi values

Ni0 = number of yij’s that equal 0,

Ni+ = number of yij’s that are positive, and

Ni− = number of yij’s that are negative.

Then Ni0 of the γij’s are in the interval (0, 1), Ni+ of the γij’s equal 1, and Ni− of

the γij’s equal 0 where

γi0 =
pe−λ

+
i

pe−λ
+
i + (1− p)e−λ−i

,

Also let,

yi+ = sum of the positive yij’s and

yi− = absolute value of the sum of the negative yij’s.

Then the equations (5.2) to (5.6) can be rewritten as the equations given

by (5.9) to (5.13).
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M∑
i=1

Ni−

{
yi−
Ni−

− eβ
−
0 +β−

1 xi

}
+

M∑
i=1

Ni0(1− γi0)
{
0− eβ

−
0 +β−

1 xi
}

= 0 (5.9)

M∑
i=1

xiNi−

{
yi−
Ni−

− eβ
−
0 +β−

1 xi

}
+

M∑
i=1

xiNi0(1− γi0)
{
0− eβ

−
0 +β−

1 xi
}

= 0 (5.10)

M∑
i=1

Ni+

{
yi+
Ni+

− eβ
+
0 +β+

1 xi

}
+

M∑
i=1

Ni0γi0

{
0− eβ

+
0 +β+

1 xi
}

= 0 (5.11)

M∑
i=1

xiNi+

{
yi+
Ni+

− eβ
+
0 +β+

1 xi

}
+

M∑
i=1

xiNi0γi0

{
0− eβ

+
0 +β+

1 xi
}

= 0 (5.12)

1

MN

M∑
i=1

{Ni+ +Ni0γi0} = p (5.13)

Then the model parameters are estimated using Newton-Raphson algo-

rithm.

5.2 Clustered Signed Poisson Mixture Model with Variable Mixing
Probabilities

Similar to section 5.1, the Clustered Signed Poisson Mixture Model for vari-

able mixing probabilities is defined with the observed independent data (x1, y11),

. . . , (x1, y1N), (x2, y21), . . . , (x2, y2N), · · · , (xM , yM1), . . . , (xM , yMN) where yij is a

realization of the random variable Yij which is given in equation (5.14).

Yij = (1−∆ij)(−Y −ij ) + ∆ijY
+
ij (5.14)

with

∆ij ∼ Bernoulli(pi =
eα0+α1xi

1 + eα0+α1xi
)

Y +
ij ∼ Poisson(λ+

i = eβ
+
0 +β+

1 xi) and

Y −ij ∼ Poisson(λ−i = eβ
−
0 +β−

1 xi)

The EM algorithm for computing the estimates of the unknown model parameters

is given below.
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Step 1 : Start with initial estimates of α0, α1, β
−
0 , β

−
1 , β

+
0 , β

+
1 .

Step 2 : (E-step) Estimate responsibilities (estimates of P (∆ij = 1|yij))

γij =


1 if yij > 0

pie
−λ+

i

pie
−λ+

i +(1−pi)e−λ
−
i

if yij = 0

0 if yij < 0

.

Step 3 : (M-step) Maximize the complete likelihood with fixed gammas by solv-

ing the following system of equations.

Based on the clustering of order size the independent observations (x1, y11),

. . . , (x1, y1N), (x2, y21), . . ., (x2, y2N), · · · , (xM , yM1), . . . , (xM , yMN) are

clustered as given in equations (5.15) to (5.20).

M∑
i=0

N∑
i=0

(1− γij)
{
−yij − eβ

−
0 +β−

1 xi
}

= 0 (5.15)

M∑
i=0

xi

N∑
i=0

(1− γij)
{
−yij − eβ

−
0 +β−

1 xi
}

= 0 (5.16)

M∑
i=0

N∑
i=0

γij

{
yij − eβ

+
0 +β+

1 xi
}

= 0 (5.17)

M∑
i=0

xi

N∑
i=0

γij

{
yij − eβ

+
0 +β+

1 xi
}

= 0 (5.18)

M∑
i=0

N∑
i=0

{
γij −

eα0+α1xi

1 + eα0+α1xi

}
= 0 (5.19)

M∑
i=0

xi

N∑
i=0

{
γij −

eα0+α1xi

1 + eα0+α1xi

}
= 0 (5.20)

Step 4 : If the convergence of parameter estimates is not achieved in two consec-

utive steps, go back to step 2.

The equations formulated in the M-step, are solved using either weighted

Poisson regression or a weighted modification of logistic regression. The weighted

Poisson regression with weights wi, sizes ni, and data (xi, yi) for i = 1, . . . , n
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computes the values θ0 and θ1 which solve the system of equations given in the

equations (5.21) and (5.22).

n∑
i=0

wi
{
yi − nieθ0+θ1xi

}
= 0 (5.21)

n∑
i=0

xiwi
{
yi − eθ0+θ1xi

}
= 0 (5.22)

The logistic regression with sizes ni and data (xi, yi) for i = 1, . . . , n computes the

values θ0 and θ1 which solve the system of equations that are given by equations

(5.23) and (5.24).

n∑
i=0

{
yi − ni

eθ0+θ1xi

1 + eθ0+θ1xi

}
= 0 (5.23)

n∑
i=0

xi

{
yi − ni

eθ0+θ1xi

1 + eθ0+θ1xi

}
= 0 (5.24)

Next the equations (5.15) to (5.20) are simplified using the clustered order

sizes xi and the signed discrete price changes for the E-step. Then the estimates

computed using poisson and logistic regression.

Let

Ni0 = number of yij’s that equal 0,

Ni+ = number of yij’s that are positive, and

Ni− = number of yij’s that are negative.

Based on the model settings Ni0 of the γij’s are in the interval (0, 1), Ni+ of the

γij’s equal 1, and Ni− of the γij’s equal 0 from

γi0 =
pie
−λ+i

pie−λ
+
i + (1− pi)e−λ

−
i

.

Also let, yi+ = sum of the positive yij’s and

yi− = absolute value of the sum of the negative yij’s.
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Then the equations (5.15) to (5.20) can be rewritten as the equations given

in (5.25) to (5.30).

M∑
i=0

Ni−

{
yi−
Ni−

− eβ
−
0 +β−

1 xi

}
+

M∑
i=0

Ni0(1− γi0)
{
0− eβ

−
0 +β−

1 xi
}

= 0 (5.25)

M∑
i=0

xiNi−

{
yi−
Ni−

− eβ
−
0 +β−

1 xi

}
+

M∑
i=0

xiNi0(1− γi0)
{
0− eβ

−
0 +β−

1 xi
}

= 0 (5.26)

M∑
i=0

Ni+

{
yi+
Ni+

− eβ
+
0 +β+

1 xi

}
+

M∑
i=0

Ni0γi0

{
0− eβ

+
0 +β+

1 xi
}

= 0 (5.27)

M∑
i=0

xiNi+

{
yi+
Ni+

− eβ
+
0 +β+

1 xi

}
+

M∑
i=0

xiNi0γi0

{
0− eβ

+
0 +β+

1 xi
}

= 0 (5.28)

M∑
i=0

{
(Ni+ +Ni0γi0)−N eα0+α1xi

1 + eα0+α1xi

}
= 0 (5.29)

M∑
i=0

xi

{
(Ni+ +Ni0γi0)−N eα0+α1xi

1 + eα0+α1xi

}
= 0. (5.30)

It should be noted that any large data set of size n is converted to a clustered

signed model based on M distinct values of the order size xi. Thus the sum of

a large n has become a sum of M . Another important fact is that the clustered

signed model is built based on the characteristics of a typical data set of tick–by–

tick stock transactions, where there are multiple transactions with many distinct

order sizes. Hence, will not be efficient for data sets where values of order sizes are

not repeated.

Comparison of efficiency of the proposed clustered signed model with both

constant and variable mixture probabilities are presented in section 7.3.
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5.3 Efficiency

The clustered signed models proposed in sections 5.1 and 5.2 were imple-

mented using R. Their execution times were compared with the implementations

of the mixture model discussed in section 4.1 and the PEM in section 4.2. Table

5.1 and 5.2 show the execution times of the clustered model and mixture model

with both constant and variable mixture probabilities. The figures 5.1, 5.2 and 5.3

graphically show the time efficiency of the clustered model.

In the implementation of clustered model, an additional functionality was

required to summarize the order sizes (xi) and discrete stock price changes to be

used. The summarized values include clustered xi values (xci), the number of yi

values that are zeros (Ni0), the number of yi values that are negative (Ni−), the

number of yi values that are positive (Ni+), the sum of positive yi values (yi+) and

the absolute sum of negative yi (yi−). The time shown in the above tables and

figures for the clustered model also includes the time for summarization of data.

A sample of processed data is given in Appendix A.3.

Outputs clearly show there is a significant gain in time when the clustered

model is used in compared to the mixture model proposed in chapter 3. The

clustered model shows a more efficient time compared to both the improved imple-

mentation of the EM algorithm in section 4.1 (figures 5.1 and 5.3) and the PEM

algorithm version for constant model explained in section 4.2 (figure 5.2).

Stock transactions data consist of clustered values both order sizes (xi) and

(yi) price changes. This was further conformed during the data analysis in chapter

2. For an example, there are significant number of orders placed with the order

sizes ±100 followed by ±200 and ±300. Thus, the suitability of clustered model

well reasonable.
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Size Clustered Model Mixture Model

100 0.01 0.01

1000 0.01 0.02

10000 0.04 1.47

100000 0.21 14.65

1000000 1.91 142.57

TABLE 5.1

Execution times (in seconds) of Clustered Signed Model and Mixture Model with
constant probability

Size Clustered Model Mixture Model

100 0.01 0.02

1000 0.02 0.24

10000 0.04 3.12

100000 0.22 28.54

1000000 3.43 303.42

TABLE 5.2

Execution times (in seconds) of Clustered Signed Model and Mixture Model with
variable mixture probability
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FIGURE 5.1 – Time comparison of Clustered Signed Model and Mixture Model
with constant probability

FIGURE 5.2 – Time comparison of Clustered Signed Model and PEM algorithm
with constant probability
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FIGURE 5.3 – Time comparison of Clustered Signed Model and Mixture Model
with variable probability

90



CHAPTER 6

TEST FOR MIXTURE PROBABILITY

Two versions of the poisson mixture model were proposed in chapter 3. The

initial model consists of a constant mixture probability (p) which is commonly

found in mixture model. The extension was the variable mixture probability (pi)

that depends on the order size (xi). As the order size plays a major role in the

stock price change, it seems that the variable mixture probability is a reasonable

extension of the model. However, it is important to determine whether the data has

a strong evidence to support the use of the model with variable mixing probabilities

compared to the model with the constant mixture probabilities.

The actual distribution of the proposed model is complex. In such cases,

bootstrap methods make the test of significance easier to compute. Bootstrap

methods are not asymptotic procedures. Thus work independently to asymptotic

theories. A significance test using a ‘Parametric Bootstrap’ method is decided to

perform and the results are presented in following sections.

6.1 Parametric Bootstrap

According to Chernick (1999), bootstrap means re-sampling from an original

data set. Methods of bootstrapping are also called ‘re-sampling procedures’. As

Martinez-Camblor and Corral (2012) state, bootstrap methods are useful when

measuring accuracy to statistical estimates.

The first bootstrap procedure was introduced by Bradley Efron in 1979,
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which focuses on ‘Non-parametric bootstrap’. As Chernick (1999) outlines, the for-

mal definition of Efron’s bootstrap (Non-parametric bootstrap), is given in the def-

inition 6.2. It is also important to distinguish ‘Parametric’ and ‘Non-Parametric’

models. The definitions of parametric and non-parametric models as stated by

Davison and Hinkley (1997) are given in definition 6.1.

Zhu (1997) highlights that it is sometimes better to make conclusion about

the population parameters based on the samples drawn from the original sample

than using the population to make unrealistic assumptions. Zhu (1997) also men-

tions that when the formula for the population parameters are not available, the

bootstrapping provide a useful alternative. Nevertheless, according to Zhu (1997),

the bootstrapping will not be a good solution when the original sample does not

represent the population very well or for highly skewed populations.

DEFINITION 6.1 (Parametric and Non-Parametric Models). A Mathematical

model is called parametric, when there is a fully determined probability density

function with adjustable constants or parameters, is available for the model.

In the absence of such fully determined probability density functions, the

statistical analysis uses only the fact that the random variables are independent

and identically distributed. Thus are called non-parametric.

DEFINITION 6.2 (Non-Parametric Bootstrap). Let X1, X2, . . . , Xn denote a sam-

ple of n independent identically distributed random vectors and θ̂ = θ(X1, X2, . . . , Xn)

denotes the real valued estimator of the distribution of parameter θ. An empirical

distribution function Fn is used in a bootstrap procedure to assess the accuracy of

θ̂. The probability of 1
n

is assigned to each observed values of the random vectors

Xi for i = 1, 2, . . . , n, by the assumed empirical distribution function Fn.

Chernick (1999) further states that, according to the ‘Strong Law of Large

Numbers’ for independent and identically distributed random samples, the function
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Fn as given in the definition 6.2 converges to F point-wise with probability one.

In the non-parametric bootstrap the data distribution serves as the em-

pirical distribution. The concept of parametric bootstrap is similar to the non-

parametric bootstrap. In non-parametric bootstrap, the bootstrap samples are

simulated from the empirical distribution of the independent identically distributed

data, where as, the bootstrap samples for parametric bootstrap are simulated from

an assumed parametric distribution. The parametric bootstrap is preferred when a

properly specified model is used for the application. However, in both the bootstrap

methods, a larger sample sizes are used to improve the accuracy of the estimation.

In order to evaluate the significance of the use of the mixture probability in

the model, a ‘Hypothesis Test’ will be used. ‘Hypothesis Testing’ requires handing

two sampling distributions (Shalizi, 2011), one under the null hypothesis and the

other under the alternative. Shalizi (2011) further states that the size of the test

and the significance level is obtained by the test statistic under the null hypoth-

esis and the power and realized power of the test is obtained by the alternative.

Martinez-Camblor and Corral (2012) states that “the bootstrap methods provide

a creative way for building hypothesis testing without the need for restrictive para-

metric assumptions”.

6.2 Significance Test for α1 = 0

A hypothesis test is proposed to assess whether the significance of the or-

der size on the mixing probabilities. The test proposed in this section uses the

‘Clustered Signed Model’ proposed in chapter 5 and the estimates obtained from

the EM algorithm that was described in chapter 5 based on both models. The

parametric bootstrap is used to test whether the magnitude of α1 is significantly

different from 0.
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Under the proposed model the mixtures are assumed to be following poisson

distributions. Thus the model is a properly specified. This fact is used in building

the parametric bootstrap method, with 1000 bootstrap samples. The next section

explains the use of parametric bootstrap in performing the significance test.

6.2.1 The Significance Test

The variable mixture probability that depends on the order size has two

parameters (α0 and α1) as given by the equation 6.1.

pi =
exp(α0 + α1xi)

1 + exp(α0 + α1xi)
(6.1)

If the α1 parameter is 0, then the effect of order size (xi) in the mixture probability

will vanish and thus the problem converts the use of only the constant mixture

probability.

The test statistic is defined with the null hypothesis H0 : α1 = 0 versus

the alternative hypothesis Ha : α1 6= 0 for the likelihood l(α0, α1, β
−
0 , β

−
1 , β

+
0 , β

+
1 )

under the alternative hypothesis. The generalized test statistic for the test is

Λ =
supH0∪Ha l

supH0 l
(6.2)

with the rejection rule, where H0 is rejected if Λ is sufficiently larger than the

critical value given by Λ∗. That is when Λ > Λ∗ the null hypothesis H0 is rejected.

Under the null hypothesis H0 with α1 = 0, the mixture probability p be-

comes a constant and given by p = eα0
1+eα0

. This gives that α0 = ln(1−p
p

) under the

null hypothesis H0. This leads to the estimation of the parameters p̃, β̃−0 , β̃
−
1 , β̃

+
0 , β̃

+
1

under the constant model. The alternative hypothesis Ha : α1 6= 0 results the

use of the model with the variable mixing probability to find the parameters

α̂0, α̂1, β̂
−
0 , β̂

−
1 , β̂

+
0 , β̂

+
1 .

Then the observed values are used to compute Λobs based on the hypothesis
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as given in the expression (6.3).

Λobs =
l(α̂0, α̂1, β̂

−
0 , β̂

−
1 , β̂

+
0 , β̂

+
1 )

l(α̃0, 0, β̃
−
0 , β̃

−
1 , β̃

+
0 , β̃

+
1 )

(6.3)

Then the bootstrap principle is applied using the estimates based on the

null model to generate B bootstrap samples. B number of bootstrap samples

{(x1, y
(b)
1 ), . . . , (xn, y

(b)
n )}, b = 1, . . . , B were generated and for each bootstrap

sample denoted by b, the estimates under both models. The bth bootstrap sample

is generated from the mixture under the null model as follows.

First, a latent variable ∆bi is generated from a Bernoulli distribution with

mean p̂. If ∆bi = 0, then ybi is generated from a Poisson distribution with mean

exp(β̃−0 + β̃−1 xi); otherwise, if ∆bi = 1, then ybi is generated from a Poisson distri-

bution with mean exp(β̃+
0 + β̃+

1 xi).

The p̃(b), β̃
−(b)
0 , β̃

−(b)
1 , β̃

+(b)
0 , β̃

+(b)
1 represents the estimates under the constant

model whereas α̂
(b)
0 , α̂1

(b), β̂
−(b)
0 , β̂

−(b)
1 , β̂

+(b)
0 , β̂

+(b)
1 represents the estimates under the

variable model.

Then for each bootstrap b, the value Λb is computed based on the expression

given in (6.4).

Λb =
l(α̂

(b)
0 , α̂1

(b), β̂
−(b)
0 , β̂

−(b)
1 , β̂

+(b)
0 , β̂

+(b)
1 )

l(α̃
(b)
0 , 0, β̃

−(b)
0 , β̃

−(b)
1 , β̃

+(b)
0 , β̃

+(b)
1 )

(6.4)

For each b the ̂p− value is computed using the expression given in (6.5).

̂p− value =
Number of times Λobs < Λ(b)

B
(6.5)

and the null hypothesis is rejected if the estimated p-value is less than a pre-

specified significance level.

6.2.2 Simulation Results

The proposed significant test is implemented as a simulation to assess the

size and power of the parametric bootstrap procedure. The simulations were per-
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formed with the true parameter values α0 = 0.3, β+
0 = −0.5, β+

1 = 0.2, β−0 = −0.7,

and β−1 = −0.1. For each simulated data set, r number of observations were used

with each at order sizes −5,−4,−3,−2,−1, 1, 2, 3, 4, 5. The model with constant

mixing probabilities is equivalent to the model with variable mixing probabilities

with α1 = 0.

The power of the test, that is the probability of correctly rejecting the null

hypothesis when it is false, was calculated for different α1 values. Table 6.1 shows

the estimated power of the tests for different number of observations and α1 values.

It can be observed that the power of α1 values that are closer to 0 is closer to the

significance level. When the α1 values are significantly different from zero, the

power moves further away from the significance level.

The power of the tests given in table 6.1 is graphed in figure 6.1. For

symmetric α1 values, the graph looks symmetric as expected with the minimum

around the significance level 0.05 and increased to the maximum power 1.

Based on the results from the above test, it can be concluded that the test

was performed as expected. When α1 = 0, the estimated power of the test was

very close to 5%. In other words, according to the test, the null hypothesis should

only be rejected about 5% of the time. Also, for each fixed r, the power increases

as the magnitude of α1 increases. For each fixed non-zero α1, the power increases

as the number of observations increase.
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Estimated power for

α1 r = 100 r = 200 r = 500

−0.250 1.000 1.000 1.000

−0.125 0.847 0.994 1.000

−0.100 0.635 0.942 0.989

−0.075 0.395 0.702 0.989

−0.050 0.187 0.392 0.556

−0.025 0.069 0.117 0.279

0.000 0.055 0.051 0.053

0.025 0.149 0.193 0.371

0.050 0.312 0.556 0.886

0.075 0.597 0.859 0.996

0.100 0.816 0.981 1.000

0.125 0.930 0.997 1.000

0.250 1.000 1.000 1.000

TABLE 6.1

Estimated power for tests based on parametric bootstrap at significance level 0.05
based on 1000 simulations of size r.
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FIGURE 6.1 – Estimated power curves for parametric bootstrap procedure at sig-
nificance level 0.05 based on 1000 simulati The solid line is for r=100, the dotted
line with solid points is for r=200 and the dotted lines with squares for the point
is for r=500.
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CHAPTER 7

APPROXIMATE CONFIDENCE INTERVAL

The significance test performed in Chapter 6, confirms the appropriateness

of the variable mixture probability in the proposed mixture model. The next

step during this chapter is to evaluate the approximate confidence interval for

the variable mixture probability pi and some interesting probabilities which were

presented in section 3.3.2.

One of the most popular method of finding confidence intervals, ‘Delta

Method’, is used to find approximate confidence interval. Section 7.1 briefly out-

lines the Delta Method, as described by Uusipaikka (2008).

7.1 Delta Method

Let g(θ) be a real valued function of interest and r be the value of the

function g(θ). Let J(θ) is the observed information matrix. Then the confidence

interval of r as produced by the delta method is given in the expression (7.1).

r ∈ r̂ ∓ Z∗A/2

√
∂g(θ̂)T

∂θ
J(θ̂)

∂g(θ̂)

∂θ
(7.1)

where r̂ = g(θ̂) is the maximum likelihood estimate of r and θ denotes the popu-

lation parameters.

The observed information function, J(θ), is found by negating the second

derivative of the likelihood function.
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7.2 Log Likelihood

It is important to identify that the log–likelihood given in expression (3.4)

of the proposed mixture model consists of a logarithm of a sum of two components

from the two sub populations. The logarithm of the sum makes the log–likelihood

complex. Thus computing estimators from the log–likelihood is extremely diffi-

cult. Therefore, EM algorithm was used as a solution when finding the estimates.

However, the log–likelihood is required to use directly when finding the confidence

intervals for population parameters.

Due to the complexity of the log-likelihood, the logarithm of the sum is

needed to be adjusted. Czado and Min (2005) have used a trick in simplifying a

logarithm of a sum in a similar log–likelihood function of a ‘Zero-Inflated General-

ized Poisson Model’ to divide the logarithm of a sum into a sum of three logarithms.

A similar trick is adopted in the log–likelihood of the proposed model as described

below.

The original log-likelihood function is of the two sub-populations in the

mixture model; one for non-negative integers and the other for non-positive inte-

gers. While maintaining the mixture of two sub populations in proposed model,

the sum of two components in the expression (7.2) is rearranged to a sum of three

to accommodate positives, negatives and zeros of the discrete stock price changes .

Expression (7.3) shows the three sum of the original two sum log-likelihood given

in (7.2).

l(α0, α1, β
−
0 , β

−
1 , β

+
0 , β

+
1 ) =

n∑
i=1

ln {(1− pi)P (yi)Iyi≤0 + piP (yi)Iyi≥0} (7.2)
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l(α0, α1, β
−
0 , β

−
1 , β

+
0 , β

+
1 ) =

n∑
i=1

ln

{
(1− pi)

(λ−i )−yie−λ
−
i

−yi!

}
Iyi<0

+
n∑
i=1

ln

{
pi

(λ+
i )yie−λ

+
i

yi!

}
Iyi>0

+
n∑
i=1

ln
{

(1− pi)e−λ
−
i + pie

−λ+i
}
Iyi=0 (7.3)

where,

pi =
eα0+α1xi

1 + eα0+α1xi

1− pi =
1

1 + eα0+α1xi
,

λ−i = eβ
−
0 +β−

1 xi and

λ+
i = eβ

+
0 +β+

1 xi .

The equation 7.3 can be further simplified as shown below.

l(α0, α1, β
−
0 , β

−
1 , β

+
0 , β

+
1 ) =

n∑
i=1

{
ln(1− pi)− yi(β−0 + β−1 xi)− λ

−
i

}
Iyi<0

+

n∑
i=1

{
ln(1− pi) + (α0 + α1xi) + yi(β

+
0 + β+

1 xi)− λ
+
i

}
Iyi>0

+

n∑
i=1

{
ln(1− pi) + ln(e−λ

−
i + eα0+α1xie−λ

+
i )
}
Iyi=0

−
n∑
i=1

{ln(−yi!) + ln(yi!)} Iyi=0 (7.4)

As given in expression (7.1), ‘Delta Method’ requires first derivatives of the

function interested (g(θ)) and observed information function J(θ). For the log–

likelihood function l(θ), for θ = (α0, α1, β
−
0 , β

−
1 , β

+
0 , β

+
1 ), the observed information

matrix can be expressed as given in expression (7.5). Based on six parameters, the

observed information matrix is symmetric and with the order 6 by 6. Expression

(7.5) shows the lower triangle of the observed information matrix due its symmetry.
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J(θ) =



− ∂2l
∂α2

0
. . . . .

− ∂2l
∂α0∂α1

− ∂2l
∂α2

1
. . . .

− ∂2l
∂β−

0 ∂α0
− ∂2l
∂β−

0 ∂α1
− ∂2l
∂β−2

0

. . .

− ∂2l
∂β−

1 ∂α0
− ∂2l
∂β−

1 ∂α1
− ∂2l
∂β−

1 ∂β
−
0

− ∂2l
∂β−2

1

. .

− ∂2l
∂β+

0 ∂α0
− ∂2l
∂β+

0 ∂α1
− ∂2l
∂β+

0 ∂β
−
0

− ∂2l
∂β+

0 ∂β
−
1

− ∂2l
∂β+2

0

.

− ∂2l
∂β+

1 ∂α0
− ∂2l
∂β+

1 ∂α1
− ∂2l
∂β+

1 ∂β
−
0

− ∂2l
∂β+

1 ∂β
−
1

− ∂2l
∂β+

1 ∂β
+
0

− ∂2l
∂β+2

1


(7.5)

All the required first and second order derivatives of the likelihood function

l(θ), for θ = (α0, α1, β
−
0 , β

−
1 , β

+
0 , β

+
1 ) are given Appendix C. It should be noted that

a significant challenge was faced in computing the derivatives and arranging them

based on a pattern.

Section 7.3 presents several approximate confidence intervals based on ‘Delta

Method’. The function g(θ) will be changed based on the parameter for the de-

sired confidence interval. θ consists of six population parameters α0, α1, β
−
0 , β

−
1 , β

+
0

and β+
1 . Therefore, the derivative of g(θ), denoted by ∂g(θ̂)

∂θ
, consists of six partial

derivatives of each of the six parameters as given in the expression (7.6).

∂g(θ̂)

∂θ
=



∂g(θ̂)
∂α0

∂g(θ̂)
∂α1

∂g(θ̂)

∂β−
0

∂g(θ̂)

∂β−
1

∂g(θ̂)

∂β+
0

∂g(θ̂)

∂β+
1


(7.6)
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7.3 Approximate CI

7.3.1 Approximate CI for α1

The importance of the variable mixture probability in the proposed mixture

model was highlighted throughout several chapters. In order to variable mixture

probability to exist the parameter α1 should exist. Therefore, the approximate

confidence interval for α1 is examined based on both simulations and the data

from FDX.

The ‘Delta Method’ described in section 7.1 and the observed information

matrix J(θ) given in 7.3 with g(θ̂) = α̂1 were used to generate the confidence

interval.

The data sets for simulations were generated using the true parameters

α0 = 0.3, α1 = 0.8, β+
0 = −0.5, β+

1 = 0.2, β−0 = −0.7, and β−1 = −0.1. Figure

7.1 shows the plot of 1000 confidence intervals based on the simulated data. It

can be seen that majority of the confidence intervals contain the true parameter

value, while few excluding the parameter. The computations show that 948 of

the 1000 confidence intervals contained the true parameter while 52 excluding the

true parameter α1=0.8. That is closer to the expected 95%. The average 95%

confidence interval is (0.7945263, 0.8053108).

Then the 95% confidence interval for α1 was computed on year 1 FDX

data. The data analysis for FDX data of year 1 showed that the estimated value

for α1 is 0.002071554 with the 95% approximated confidence interval (0.001955386,

0.002187722).
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FIGURE 7.1 – Approximate Confidence Interval for α1. Horizontal line denotes
the true value of the parameter, α1=0.8.

7.3.2 Approximate CI for Variable Mixture Probability

The 95% confidence interval for variable mixture probability (pi) is com-

puted using the ‘Delta Method’ described in section 7.1 and the observed informa-

tion matrix J(θ) given in 7.3 with g(θ̂) = p̂i.

pi =
eα0+α1xi

1 + eα0+α1xi
(7.7)

Figure 7.2 show the approximate confidence interval for variable mixture proba-

bility (pi) on year 1 FDX data.
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FIGURE 7.2 – Approximate Confidence Interval for Variable Mixture Probability
(pi) on Year 1 FDX data

FIGURE 7.3 – Approximate Confidence Interval for P (y > 0) with simulated data
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7.3.3 Approximate CI for Probability of Price Change

Three interesting probabilities of the proposed model were discussed in sec-

tion 3.3.2 of chapter 3, as shown in expressions (7.6), (7.7) and (7.8). They were

the probability of the stock price increment (P (y > 0)), the probability of the stock

price decrement (P (y < 0)) and the probability of no price change (P (y = 0)).

A similar ‘Delta Method’ was used in computing the confidence intervals

for P (y > 0), P (y < 0) and P (y = 0). g(θ̂) in the expression (7.1) of the method

is replaced with P (y > 0), P (y < 0) and P (y = 0) accordingly to find each

probability, as given in expressions (7.7), (7.8) and (7.9).

P (yi > 0) = pi(1− e−λ
+
i ) (7.8)

P (yi < 0) = (1− pi)(1− e−λ
−
i ) (7.9)

P (yi = 0) = (1− pi)e−λ
−
i + pie

−λ+i (7.10)

Figures 7.4, 7.6 and 7.8 show the confidence bands for year 1 for proba-

bility of the stock price increment (P (y > 0)), the probability of the stock price

decrement (P (y < 0)) and the probability no price change (P (y = 0)) respec-

tively. Figures 7.5, 7.7. and 7.9 show a subsection of the figures 7.4, 7.6 and 7.8

respectively, for closer analysis of the probabilities between order sizes −100 and

100. Figures 7.5, 7.7. and 7.9 how the probabilities of the order sizes change from

negative order sizes (sales) to positive order sizes (purchases). It is important to

identify that the order size is a discrete variable and does not include 0.

The preliminary analysis of data showed that the order sizes ±100 and ±200

occur with a significantly large frequency. The thick confidence band closer to 0

in the figures 7.4, 7.6 and 7.8 are due to those high frequent transaction of order

sizes ±100 and ±200.

According to the figure 7.4, the probability of stock price increment becomes

higher for purchases with larger order sizes. Confidence interval is larger for less
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FIGURE 7.4 – Approximate Confidence Interval for P (y > 0) on Year 1 FDX data

frequent and smaller for more frequent order sizes. The probability of stock price

decrement becomes higher for larger sales, as seen in figure 7.6. Similarly, the

confidence interval is larger for less frequent sales. Figure 7.8 shows that the

smaller order sizes have more probability towards keeping the stock price stable

than larger order sizes. The confidence intervals of the smaller order sizes are

smaller than the larger order sizes.

A jump in the probability of no price change (P (y = 0)) can be seen between

the order sizes −100 and 100 in figure 7.9. According to year 1 FDX data, the

negative order sizes have more impact on changing the stock price than the positive

order sizes. Moreover, sales of stocks have more probability to change the stock

price than purchases. The figures further show that the proposed mixture model

conforms the expectations of the stock market on the probability of stock price

change.
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FIGURE 7.5 – A sub section of figure 7.4

FIGURE 7.6 – Approximate Confidence Interval for P (y < 0) on Year 1 FDX data
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FIGURE 7.7 – A sub section of figure 7.6

FIGURE 7.8 – Approximate Confidence Interval for P (y = 0) on Year 1 FDX data

109



FIGURE 7.9 – A sub section of figure 7.8
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CHAPTER 8

DISCUSSION AND CONCLUSION

A novel method of modeling stock price changes using a mixture model was

proposed under the research performed on tick-by-tick stock transactions data.

The stock price changes were analyzed based on the minimum price movement

known as ‘tick-size’. The most natural distribution for discrete data, the Poisson

distribution, was used to model the discrete stock price changes. The model was

proposed based on a constant mixture probability and also with a variable mixture

probability which depends on the order size.

Maximum likelihood method was used to estimate the model parameters

with the use of Expectation-Maximization (EM) algorithm. The model was eval-

uated using simulated data with known parameters. The results were acceptable

and it was identified that the estimates converge to the true parameters as the

size of the data sets were increased. Tick-by-tick stock transactions from Federal

Express, were analyzed with the proposed model. Three interesting probabilities

of stock price change, namely, probability of the stock price increment (P (y > 0)),

the probability of the stock price decrement (P (y < 0)) and the probability of no

price change (P (y = 0)) were also computed based on the proposed model.

The proposed model was implemented using the statistical programming

language R. As a resolution for the challenge of efficiency, the implementations

were adjusted with user written codes and also implementing one of the most re-

cent versions of the EM algorithm, which is know as ‘PEM’. Further the university

HPC cluster was utilized for parallel processing of the model. As another resolu-
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tion for speeding up the model, a ‘Clustered Signed Model’ was proposed to using

summarized data to reduce the amount of data to be used in the model imple-

mentation. The discreteness of the order size and the sign of the discrete stock

price change were used. The clustered model exhibited a significant gain in time

compared the method discussed under the efficiency improvements.

A parametric bootstrap procedure was considered to assess the significance

of the order size on the mixing probabilities. The results of the parametric boot-

strap shows that the use of a variable mixture probability, which depends on the

order size, is more appropriate for the model, as the stock price changes do depend

on the order size. The methods are illustrated with data from simulations and real

data from Federal Express.

8.1 Model Consequences

There are several significant consequences of the proposed mixture model

of two poisson distributions.

• Novelty :

There have been a large amount of research performed on stock transactions

data treating the stock prices as continuous values. Based on the stock

market regulated ‘tick-size’ the proposed model treats the stock price changes

as a set of discrete values. The discreteness of the stock price changes is

clearly adds a novelty to the proposed model.

• Variable Mixture Probabilities (pi) :

The use of variable mixture probability as a function of order size, in the

mixture model can also be highlighted as novelty in the model, where the

mixture probability pi in the equation (8.1).
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pi =
eα0+α1xi

1 + α0 + α1xi
(8.1)

The literature suggests that the most common way of handling the mixture

probability is as treating the mixture probability as a constant. Order size

highly influences the change of the stock price. Therefore, making the vari-

able mixing probability to be a function of order size seemed to be a more

realistic assumption and later it was demonstrated to be more appropriate

on read data using the parametric bootstrap method.

• Different Parametric Formulation :

The use of Mixtures of Poisson distributions are found in many different ap-

plications. The most common setting is, when handling two sub populations

of non-negative integers in a population. That uses a similar and standard

parametric formulation of the poisson distribution as given in equations (8.2).

Y1 ∼ Poisson(λ1) (8.2)

Y2 ∼ Poisson(λ2)

where Y1 = Y2 = {0, 1, 2, . . . }

The mixture of discrete stock price changes consists of both stock price incre-

ments and decrements. Therefore, the population under research is composed

of a mixture of a set of non-negative integers which was resulted from stock

price increments and a set of non-positive integers which was resulted from

stock price decrements. The non-negative integers clearly follow a poisson

distribution, however, the non-positive integers were needed to be negated to

apply a poisson distribution. This results a different parametric formulation

of the poisson distribution to be used in the mixture model as shown in the

equation (8.3).
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Y1 ∼ Poisson(λ+) (8.3)

−Y0 ∼ Poisson(λ−)

where Y1 = {0, 1, 2, . . . } and Y0 = {. . . ,−3,−2,−1, 0}

With the common mixture models of poisson or normal distributions, both

the mixtures contain data with the same range of values. For example, if in

a mixture of normal distributions, each sub population contains continuous

real values. Then EM does not identify whether the group of estimates are

from the first sub population or the second sub population. In such cases,

there is a considerable possibility of iterating the estimates between the two

sub populations and making the convergence of EM more difficult.

Whereas, in the proposed model, the mean parameter of the non-negative

integers is positive and the mean parameter of the non-positive integers is

negative. When estimating parameters of the model, EM algorithm has an

additional knowledge as one sub population has non-negative values and the

other sub population has non-positive values. That will make the estimation

more convenient for the EM algorithm, adding an advantage when performing

parameter estimation in the proposed model.

• Clustered Signed Model :

The initially proposed mixture model consumes the processed data of tick-

by-tick transactions. The processed data includes the discrete stock price

change and its corresponding order size. There is a large amount of data

with discrete stock price change and its order size. Although, there were

two variables used for the model (yi and xi), the amount of data are still

massive. Under the ‘Clustered Signed Model’ the proposed model was further
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simplified using the known properties of the two variables. Both the order

size and stock price changes were discrete variables, and the orders are placed

in multiples of hundreds and hundred being the most frequent value.

The summarized values include clustered xi values, the number of yi values

that are zeros (Ni0), the number of yi values that are negative (Ni−), the

number of yi values that are positive (Ni+), the sum of positive yi values

(yi+) and the absolute sum of negative yi (yi−). An additional functionality

was also implemented to summarize the data set of order size (xi) and the

discrete stock price changes (yi) as above, in order to use with the clustered

model. Simulations show that there is a significant gain in the efficiency from

the proposed clustered model. The constant model of the clustered model

even outperforms the implementation of the PEM algorithm of the clustered

model.

• Approximate Confidence Interval :

One of the most popular method of finding confidence intervals, ‘Delta Method’

was used to estimating the approximate confidence intervals of the the pa-

rameters. To avoid the complexity of differentiation, a trick was employed

to divide the original log-likelihood of two sum of two mixtures, was changed

to be a three sum of positives, negatives and also zeros of the discrete stock

price changes.

Approximate confidence intervals were computed for α1, the variable mix-

ture probability (pi), probability of stock price increment (P (y > 0)), the

probability of the stock price decrement (P (y < 0)) and the probability no

price change (P (y = 0)).
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8.2 Future Research Directions

The research performed on the proposed model and the tick-by-tick stock

transactions data offer many interesting paths to continue investigations. A few

are described below.

1. Asymptotic Properties

There has been limited theoretical research performed on theoretical asymp-

totic properties of the estimates of the parameters in mixture models. There-

fore, it would be interesting to find a way to theoretically derive the asymp-

totic distributions, weak and strong consistencies of the parameter estimates.

The work of Fahrmeir and Kaufmann (1985) on the consistency and asymp-

totic normality of the Maximum Likelihood Estimator in Generalized Linear

Models has made an important milestone, thus provides support to prove

asymptotic properties of the estimates of the parameters in the proposed

mixture models.

2. Recover the Supply Chain Curve

Cetin et al. (2006) assumes the stock’s supply curve satisfies the equation

given in

S(t, x) = eαxS(t, 0) with α > 0 (8.4)

where

S(t, 0) =
s0exp{µt+ σWt}

exp{rt}
(8.5)

for constants µ and σ with Wt denoting a standard Brownian motion and

spot rate of interest r. S(t, x) represents the stock price, per share, at time

t ∈ [0, T] that a trader pays/receives for order flow x normalized by the value

of a money market account as described by Cetin et al. in 2006.

It would be interesting to work on recovering the supply curve S(t, x) from

the stock price used in the Poisson mixture model. Preliminary progress was
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made for the case when is close to 0 and assume S(ti−1, xti−1
) = S(ti−1, 0) to

avoid the confounded effects between the previous order size and the current

order size.

3. Time of the Transaction

The covariates of the proposed mixture model only the order size. The

model seemed reasonable with order size due to the fact that the size of a

purchase order will increase the stock price more and the size of a sell order

will decrease the stock price more. However, it is an interesting question to

investigate that whether the time of transaction within the day has an effect

towards the stock price change.

During one of the earlier investigations based on an extension of Gill et al.

(2007), on “Multiple change point analysis on stock transactions” it was

identified that the stock price has significant changes during the beginning,

middle and end of the day. Therefore, ‘time of day’ is also an important

factor when it comes to the volatility of the stock price. With that, the next

step is to investigate ways to incorporate the ‘time’ into the Poisson mixture

model.
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APPENDIX A - SAMPLE DATASETS

A.1 Raw Data

The original dataset that was obtained from FDX consisted of daily tick–

by–tick transactions. Log–stock price, order size and the time of the transaction

was available for each transaction. A sample of the original dataset is given below.

logprice ordersize time

4.2626801 2000 34801

4.2609177 -500 35136

4.2591524 -1200 35201

4.2609177 300 35298

4.2609177 500 35868

4.2591524 -2200 37648

4.2573843 -1000 39142

4.2573843 200 40280

4.2556129 -200 40541

4.2556129 -700 40554

4.2556129 200 41528

4.2520604 -3400 42565

A.2 Processed Data for the Mixture Model

In order to make the data suitable to use in the proposed mixture model,

the discrete stock price change was computed. The following computations were

performed on raw data.

1. Log–price exponentiated to obtain the stock price

2. Stock price adjusted according to tick-size

3. Number of ticks between each consecutive transaction computed.
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Processed data for the proposed mixture model is shown below. Y denotes the

discrete stock price change and X is the order size.

Y X

-1 -500

-1 -1200

1 300

0 500

-1 -2200

-1 -1000

0 200

-1 -200

0 -700

0 200

A.3 Processed Data for the Clustered–Signed Model

The Clustered–Signed model also requires processed data. The data used in

section A.2 is further processed based on the similarity and the sign of the values

as described below.

1. Order size xi is classified based on similarity of values, denoted by xc.

2. For each distinct xi, the following are computed.

(a) compute the sum of positive yij, denoted by yp.

(b) compute the sum of negative yij, denoted by yn.

(c) compute the number of positive yij, denoted by Np.

(d) compute the number of negative yij, denoted by Nn.

(e) compute the number of zero yij, denoted by N0.
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A sample of data processed for clustered–signed model is shown below.

xc :

-500 -1200 300 500 -2200 -1000 200 -200 -700 -3400

-1500 -5000 -1400 -4400 1200 -11000 100 2600 2000 -300

-1300 8300 800 6000 1700 1500 -4800 -19700 -2000 400

-400 700 1600 2400 -800 -900 -4000 -1700 3200 1800

yn :

330 73 14 35 26 460 23 410 95 13 0 0 21 29 78 95 343 0 17

74 115 104 34 4 2 6 10 0 0 181 47 0 2 0 2 5 5 3

189 6 151 2 3 5 69 56 39 19 0 3 4 2 55 27 3 2 0

78 3 15 0 0 3 0 0 0 0 3 1 0 3 4 1 0 0 2

yp :

16 1 200 379 0 34 292 9 8 0 16 6 1 470 0 39 11 0 1

0 3 2 1 0 47 0 365 8 201 5 2 1 79 20 28 111 0 0

4 87 34 12 7 1 0 0 16 28 59 58 0 2 117 73 0 0 43

0 0 17 0 55 3 5 0 0 6 4 91 0 0 10 30 54 0 0

Nn :

287 61 7 15 23 386 13 399 81 10 0 0 20 11 67 83 329 0

14 57 94 89 32 3 2 5 7 0 0 161 37 0 2 0 2 3

4 2 157 5 135 2 2 2 60 52 32 16 0 2 2 2 46 25

2 1 0 59 3 13 0 0 2 0 0 0 0 2 1 0 2 4

Np :

9 1 174 327 0 13 273 9 3 0 13 5 1 405 0 3 9 0

1 0 2 2 1 0 41 0 334 7 174 4 1 1 73 17 26 95

0 0 4 108 2 84 32 11 3 1 0 0 14 24 52 51 0 1

107 65 0 0 37 0 0 4 0 44 2 4 0 0 5 3 78

N0 :

670 105 545 782 44 668 1013 1266 182 20 26 4 74 800

103 271 1150 2 24 83 145 107 60 12 80 4 1145 26

354 559 67 1 179 20 55 170 10 1 253 370 422 167

78 34 139 124 46 53 22 40 78 95 103 73 216 124
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APPENDIX B - PEM CODE

B.1 R Code for Parabolic-EM Algorithm

The R implementation of PEM algorithm (Berlinet and Roland, 2012) is

given below. The PEM is implemented in the function ‘PEM Const’. ‘PEM Const’

uses three other functions within its functionality; ‘like’ function, ‘Func’ function

and the ‘NR poisson’ function.

‘like’ function calculates the log-likelihood of the poisson mixture model

for given values of x, y and estimates denoted by P . The function ‘Func’ imple-

ments the successive ‘E’ and ‘M’ steps of original EM algorithm, that is needed in

PEM. ‘Func’ operates on similar arguments as ‘like’. ‘NR poisson’ computes the

maximum likelihood estimates.

# Newton Raphson implementat ion f o r po i s son r e g r e s s i o n
NR poisson=function (X, y , e p s i l o n =.0000001 ,max. i t e r =1000 ,k=1){

b .new=c ( 0 , 0 )
d i f f . b0=1
d i f f . b1=1
i=1
while ( ( ( abs ( d i f f . b0)> e p s i l o n ) |

abs ( d i f f . b1)> e p s i l o n ) )& i<max. i t e r ){
b . old=b .new
theta . old=X%∗%b . old
lambda . old=exp( theta . old )
W=c ( lambda . old )
m=lambda . old
b .new=b . old+solve ( t ( k∗X)%∗%(W∗X) ,

t ( k∗X)%∗%(y−m) )
d i f f . b0=b . old [1]−b .new [ 1 ]
d i f f . b1=b . old [2]−b .new [ 2 ]
i=i+1
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}
b .new

}

# computes the l i k e l i h o o d
l i k e=function (x , y , P){

coef . p=P [ 1 : 2 ]
coef . n=P [ 3 : 4 ]
p i=P [ 5 ]
l i k=sum( log ((1− pi )∗dpois(−y , lambda=exp( coef . n [ 1 ]

+coef . n [ 2 ] ∗x))+ pi∗dpois (y , lambda=
exp( coef . p [1 ]+ coef . p [ 2 ] ∗x ) ) ) )

l i k
}

# s u c c e s s i v e E and M s t e p s needed f o r PEM
Func=function (x , y , P){

n=length ( y )
yp=y [ y>=0]
yn=−y [ y<=0]
xp=x [ y>=0]
xn=x [ y<=0]
coef . p=P [ 1 : 2 ]
coef . n=P [ 3 : 4 ]
p i=P [ 5 ]
gamma=pi∗exp(−exp( coef . p [1 ]+ coef . p [ 2 ] ∗x ) ) /

((1− pi )∗exp(−exp( coef . n [1 ]+ coef . n [ 2 ] ∗x ) )
+pi∗exp(−exp( coef . p [1 ]+ coef . p [ 2 ] ∗x ) ) )

gamma=(y>0)∗1+(y<0)∗0+gamma∗( y==0)
k=gamma
kp=k [ y>=0]
kn=1−k [ y<=0]
coef . p=NR poisson (cbind (1 , xp ) , yp , k=kp )
coef . n=NR poisson (cbind (1 , xn ) , yn , k=kn )
p i=sum( k )/n
P=rbind ( coef . p [ 1 ] , coef . p [ 2 ] , coef . n [ 1 ] , coef . n [ 2 ] , p i )

}
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# PEM algor i thm implementat ion
PEM const=function (x , y , param . i n i t=c ( rep ( 0 , 4 ) , . 5 ) ,

e p s i l o n =.0000001 ,max. i t e r =10000){
print ( param . i n i t )
n=length ( y )
# 1−2 p o s i t i v e i n t e r c e p t and s l o p e parameters ,
# 3−4 n e g a t i v e i n t e r c e p t and s l o p e parameters ,
# 5 i s p
P0=rbind ( param . i n i t [ 1 ] , param . i n i t [ 2 ] , param . i n i t [ 3 ]

, param . i n i t [ 4 ] , param . i n i t [ 5 ] )
another . step=TRUE
Lold=l i k e (x , y , P0)
P1=Func (x , y , P0)
P2=Func (x , y , P1)
Pold=P0
i t e r =0
while ( ( i t e r<=max. i t e r )& another . step ){

i t e r = i t e r + 1
Pbest = P2
Lbest = l i k e (x , y , P2)
# geometr ic g r i d search
i = 0
t = 1.1
Pnew = (0 . 01∗P0)−(0.22∗P1)+(1.21∗P2)
Lnew = l i k e (x , y , Pnew)
while (Lnew > Lbest ){

Pbest = Pnew
Lbest = Lnew
i = i + 1
t = 1 + ( ( 1 . 5 ˆ i )∗ 0 . 1 )
Pnew = ((1−t )∗(1−t ) )∗P0+(2∗t∗(1−t ) )

∗P1+(t ˆ2)∗P2
Lnew = l i k e (x , y , Pnew)

}
another . step=(max(abs ( Pbest−Pold))> e p s i l o n )
P0 = P1
P1 = P2
P2 = Func (x , y , Func (x , y , Pbest ) )
Lold = Lbest
Pold=Pbest

}
i f ( another . step==TRUE){

cat ( ”EM algor i thm did not converge in ” ,
max. i t e r , ” i t e r a t i o n s \n” )
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}
coef . p=P2 [ 1 : 2 ]
coef . n=P2 [ 3 : 4 ]
p i=P2 [ 5 ]
l i k=Lbest
e s t=cbind ( p0=coef . p [ 1 ] , p1=coef . p [ 2 ] , n0=coef . n [ 1 ] ,

n1=coef . n [ 2 ] , p=pi , l i k , count=i t e r +2)
e s t

}
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APPENDIX C - DERIVATIVES

C.1 First Derivatives

The first derivatives of the log–likelihood function that is given in expression

(7.4) in chapter 7 are needed for the approximate confidence interval. The log-

likelihood function is differentiated with respect to each of the six parameters of

the model. The six first derivatives are given below.

∂l

∂α0

=
n∑
i=1

{−piIyi<0}+
n∑
i=1

{(1− pi)Iyi>0}

+
n∑
i=1

{
pi

(e−λ
+
i − e−λ−i )

(e−λ
−
i + e(α0+α1xi)e−λ

+
i )
Iyi=0

}
∂l

∂α1

=
n∑
i=1

{−pixiIyi<0}+
n∑
i=1

{(1− pi)xiIyi>0}

+
n∑
i=1

{
pixi

(e−λ
+
i − e−λ−i )

(e−λ
−
i + e(α0+α1xi)e−λ

+
i )
Iyi=0

}
∂l

∂β−0
=

n∑
i=1

{(−yi − λ−i )Iyi<0} −
n∑
i=1

{
λ−i e

−λ−i

(e−λ
−
i + e(α0+α1xi)e−λ

+
i )
Iyi=0

}
∂l

∂β−1
=

n∑
i=1

{(−yi − λ−i )xiIyi<0} −
n∑
i=1

{
λ−i e

−λ−i xi

(e−λ
−
i + e(α0+α1xi)e−λ

+
i )
Iyi=0

}
∂l

∂β+
0

=
n∑
i=1

{(yi − λ+
i )Iyi>0} −

n∑
i=1

{
λ+
i e

(α0+α1xi)e−λ
+
i

(e−λ
−
i + e(α0+α1xi)e−λ

+
i )
Iyi=0

}
∂l

∂β+
1

=
n∑
i=1

{(yi − λ+
i )xiIyi>0} −

n∑
i=1

{
λ+
i e

(α0+α1xi)e−λ
+
i xi

(e−λ
−
i + e(α0+α1xi)e−λ

+
i )
Iyi=0

}
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C.2 Second Derivatives

The second derivatives of the log–likelihood function (expression (7.4)) is

needed for the observed information matrix of the ‘Delta Method’. The second

derivatives are given below.

∂2l

∂α2
0

= −
n∑
i=1

{pi(1− pi)Iyi<0 + pi(1− pi)Iyi>0}

+
n∑
i=1

{
pi(e

−λ+i − e−λ−i )[(1− pi)e−λ
−
i − pie(α0+α1xi)e−λ

+
i ]

(e−λ
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+
i )2
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C.3 Expected Values

Expected values of the second derivatives that were computed in the previ-

ous section are given below.
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