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ABSTRACT

INFORMATION THEORETIC THRESHOLDING TECHNIQUES BASED ON
PARTICLE SWARM OPTIMIZATION

Surina

July 10, 2018

In this dissertation, we discuss multi-level image thresholding techniques

based on information theoretic entropies.

In order to apply the correlation information of neighboring pixels of an image

to obtain better segmentation results, we propose several multi-level thresholding

models by using Gray-Level & Local-Average histogram (GLLA) and Gray-Level &

Local-Variance histogram (GLLV). Firstly, a RGB color image thresholding model

based on GLLA histogram and Tsallis-Havrda-Charvát entropy is discussed. We

validate the multi-level thresholding criterion function by using mathematical induc-

tion. For each component image, we assign the mean value from each thresholded

class to obtain three segmented component images independently. Then we obtain

the segmented color image by combining the three segmented component images.

Secondly, we use the GLLV histogram to propose three novel entropic multi-

level thresholding models based on Shannon entropy, Rényi entropy and Tsallis-

Havrda-Charvát entropy respectively. Then we apply these models on the three

components of a RGB color image to complete the RGB color image segmentation.

An entropic thresholding model is mostly about searching for the optimal

threshold values by maximizing or minimizing a criterion function. We apply par-

ticle swarm optimization (PSO) algorithm to search the optimal threshold values
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for all the models. We conduct the experiments extensively on The Berkeley Seg-

mentation Dataset and Benchmark (BSDS300) and calculate the average four per-

formance indices (Probability Rand Index, PRI, Global Consistency Error, GCE,

Variation of Information, V OI and Boundary Displacement Error, BDE) to show

the effectiveness and reasonability of the proposed models.
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CHAPTER 1

INTRODUCTION

Image segmentation is a process that partitions an image into non-overlapping

regions such that each region is homogeneous in terms of some features, such as

color, texture and brightness. Image thresholding, because of its simplicity, is

one of the most widely used segmentation techniques. Generally speaking, based

on the gray level histogram of an image, thresholding models are grouped into

two classes: bi-level thresholding and multi-level thresholding. Under the assump-

tion that an image has only two homogeneous regions, bi-level thresholding models

[1, 4, 9, 15, 28, 30, 31, 45, 49] classify the pixels of an image into two groups, called

object and background, by using one threshold value. However, in many applica-

tions, one must deal with multi-modal images, such that multi-level thresholding

models [7, 11, 18, 23, 34, 35, 37, 47, 48] are used to segment the pixels of an image

into multiple classes by using more than two threshold values.

The notion of a one-dimensional (1D) histogram [9, 10, 15, 20, 28, 33, 37, 47]

has been used in thresholding techniques for years. It is derived from the gray level

information of an image, so it does not take into account the spatial correlation

between a pixel and its neighbor pixels. In order to overcome this drawback, people

presented several types of two-dimensional histograms (2D) in the past few years.

The first thresholding model based on a 2D histogram and Shannon entropy was

introduced in 1989 [1]. This 2D histogram was constructed by using the gray level

of each pixel and the average gray level from the local neighborhood of the pixel

and was named the Gray-Level & Local-Average histogram (GLLA). In 2017, a new
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type of 2D histogram, named the Gray-Level & Local-Variance histogram (GLLV)

was developed [49]. The GLLV histogram is constructed by applying the dispersion

of gray level distribution of pixels in a neighborhood. In this dissertation, we apply

GLLA and GLLV histograms to build the proposed models. In general, thresholding

methods based on 2D histograms [1, 18, 19, 22, 30, 31, 34, 48] perform better than

the 1D histogram methods [2, 9, 11, 28, 35, 37, 47].

Recently, entropic thresholding techniques have attracted more and more

attention [2, 9, 11, 14, 18, 19, 29, 32, 42, 47, 48, 49], [28] - [37]. Entropy [8, 13,

16, 39] is originally from thermodynamics and is proposed as a measure of the

information of a random signal. According to the information theory, an entropy of

a random process is the amount of information in the process [13]. A measure of the

information is defined as certain formulations of the probability distribution from

the process [13, 36]. An entropic thresholding model is mostly about searching

for optimal threshold values by maximizing or minimizing an entropic criterion

function. In 2004 [9], a 1D bi-level thresholding model was presented based on the

non-extensive property of the Tsallis entropy. In the same year, P. K. Sahoo and

G. Arora [30] proposed a Rényi entropic bi-level thresholding method by using the

GLLA histogram. In 2006 [31], they combined the GLLA histogram with the Tsallis-

Havrda-Charvát entropy and proposed a Tsallis-Havrda-Charvát entropic bi-level

thresholding model. As for the multi-level thresholding, normally formulating the

multi-level criterion function based on the 1D Shannon entropy [11] is not a difficult

task because of the extensive property of Shannon entropy. But formulating the

multi-level criterion function based on the Tsallis-Havrda-Charvát entropy is not

easy. A. C. Sparavigna [37], in 2015, formulated a multi-level thresholding model

based on the 1D Tsallis entropy. Furthermore, in 2017, A. B. Ishak [18, 19] presented

two multi-level thresholding models based on the GLLA histogram by using the

Rényi entropy and the Tsallis entropy respectively. We point out that, in 2016, a
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multi-level thresholding model based on the GLLA histogram and Kullback-Leibler

divergence, instead of entropy, was developed in [48].

We know that most of the bi-level thresholding methods can be extended to

multi-level with some appropriate modifications. But, the 2D multi-level extension

gives rise to the exponential increase of computational time [30], since exhaus-

tively searching for the optimal threshold values of a multi-level thresholding is an

NP-hard combinatorial optimization problem [18]. In order to reduce the computa-

tional time, in recent years, people have been focusing on metaheuristic algorithms,

such as, Artificial Bee Colony (ABC) approach [47], Differential Evolution (DE)

approach [34], Quantum Genetic (QG) algorithm [18] and Particle Swarm Opti-

mization (PSO) algorithm [11, 21, 35, 37, 48]. In this dissertation, we implement

our experiments by applying PSO algorithm because of its simplicity in concept,

time efficiency and highly convergent properties.

We test our method on The Berkeley Segmentation Dataset and Benchmark

(BSDS300) extensively by computing the average four performance indices (Prob-

ability Rand Index, PRI, Global Consistency Error, GCE, Variation of Informa-

tion, V OI and Boundary Displacement Error, BDE). We compare the average

four performance indices of the models from our dissertation with the ones in [48]

to illustrate the effectiveness and reasonability of our models.

Mathematically, a gray-level image is a function f(x, y): Z
M
× Z

N
→ G,

where Z
M

= {1, 2, ...,M} for M ≥ 2, and G = {0, 1, ..., 255} is the gray levels of

the image. For example, the image 113016.jpg in the Figure 1.1 (a) has 225 gray

levels. The 1D histogram of a gray-level image f(x, y) provides information about

the gray level distribution of the image, so the 1D histogram is a map h : G → N

such that:

h(t) = the number of pixels with gray level t ,

where t ∈ G = {0, 1, ..., 255}.
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(a) (b) (c)

Figure 1.1 – Gray-level image, its 1D histogram h(t) and normalized 1D histogram

ĥ(t)

Then the normalized 1D histogram is:

ĥ(t) =
h(t)

total # of pixels : M ×N
,

where t ∈ G = {0, 1, ..., 255}. What’s more, we have
∑255

t=0 ĥ(t) = 1. Figure 1.1 (b)

and (c) illustrate the 1D histogram h(t) and normalized 1D histogram ĥ(t) of the

corresponding gray-level image respectively.

A RGB color image is a vector function ~f(x, y) : ZM × ZN :→ G × G × G

such that:

~f(x, y) = [fr(x, y), fg(x, y), fb(x, y)] ,

where fr(x, y), fg(x, y), fb(x, y) are red, green and blue components whose mixtures

generate any color that can be displayed. We use fc(x, y) to represent an arbitrary

(red, green or blue) component image. Thus a RGB color image is an M ×N × 3

array of color pixels, where each color pixel is a triplet corresponding to the red,

green and blue components at a specific spatial location. Figure 1.2 shows a RGB

color image and its three component images.

1.1 Two-dimensional histogram

In this section, we introduce the Gray-Level & Local-Average histogram

(GLLA) and the Gray-Level & Local-Variance histogram (GLLV) and use a simple
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(a) RGB image (b) Red component (c) Green component (d) Blue component

Figure 1.2 – Original RGB color image and its red, green and blue component images

matrix f as an example to show how to construct each 2D histogram mathemati-

cally.

For the pixels that are from the top and bottom rows and right and left

columns of the matrix f , since they do not have enough neighboring pixels, we

pad zeros in their neighbors. For example, the entry f(1, 1) = 1 only has three

neighboring pixels f(1, 2) = 2, f(2, 1) = 6 and f(2, 2) = 7, so we pad five zeros in

its neighbor if we want to use a 3× 3 neighborhood of the pixel. Thus we obtain a

matrix fzeropad, which is used in the 2D histogram construction. For example:

f =



1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25


⇒ fzeropad =



0 0 0 0 0 0 0

0 1 2 3 4 5 0

0 6 7 8 9 10 0

0 11 12 13 14 15 0

0 16 17 18 19 20 0

0 21 22 23 24 25 0

0 0 0 0 0 0 0



1.1.1 Gray-Level & Local Average histogram (GLLA)

The Gray-Level & Local Average histogram (GLLA), known as the tradi-

tional two-dimensional histogram [1], is constructed from the gray level of each

pixel and the average gray level value of its neighborhood.

Let g(x, y) be the average gray level value of the 3× 3 neighborhood of the

5



pixel that is located at the point (x, y). Then it is calculated as:

g(x, y) =

⌊
1

9

1∑
i=−1

1∑
j=−1

f(x+ i, y + j)

⌋
, (1.1)

where brc denotes the floor function, or the integer part of the number r. Then the

GLLA histogram is formulated as:

h(t, s) = Prob (f(x, y) = t and g(x, y) = s) ,

where Prob refers to the number of pixels that satisfy f(x, y) = t and g(x, y) = s

with t, s ∈ G.

For a given image, there are several methods to estimate this density function.

One of the most frequently used methods is the method of relative frequency [30, 31].

The normalized histogram is given by the following formula:

ĥ(t, s) =
h(t, s)

total # of pixels of f(x) (M ×N)
.

The joint probability mass function p(t, s) is given by:

p(t, s) = ĥ(t, s) ,

where t, s = 0, 1, · · · , 255. Figure 1.3 illustrates the (a) gray-level image, (b) corre-

sponding 1D histogram, (c) GLLA histogram plane and (d) 3D demonstration of

the GLLA histogram. From Figure 1.3 (c), we notice the information we are inter-

ested in is mainly distributed along the main diagonal on the 2D histogram plane

because the average gray level value from the 3× 3 neighborhood of a pixel is very

close to the original gray level. We consider this information as the background and

object information.

In the matrix fzeropad, if we apply equation (1.1) to the entry f(1, 1) = 1,

then the local average value g(1, 1) from its 3 × 3 neighborhood is computed as

6



(a) (b)

(c) (d)

Figure 1.3 – Gray-level image, correspoding 1D histogram, GLLA histogram plane
and 3D demonstration of GLLA.

follows:

fzeropad =



0 0 0 0 0 0 0

0 1 2 3 4 5 0

0 6 7 8 9 10 0

0 11 12 13 14 15 0

0 16 17 18 19 20 0

0 21 22 23 24 25 0

0 0 0 0 0 0 0



,

g(1, 1) =

⌊
(1 + 2 + 6 + 7)

9

⌋
= b1.7778c = 2 .

In the same manner, we can obtain the local average values for all the entries of f

7



such that the local average matrix gLA for the original matrix f is as follows:

gLA =





1.7778 3 3.6667 4.3333 3.1111

4.3333 7 8 9 6.3333

7.6667 12 13 14 9.6667

11 17 18 19 13

8.4444 13 13.6667 14.3333 9.7778




=



2 3 4 4 3

4 7 8 9 6

8 12 13 14 10

11 17 18 19 13

8 13 14 14 10


.

1.1.2 Gray-Level & Local-Variance histogram (GLLV)

The Gray-Level & Local-Variance histogram (GLLV) [49] is constructed from

the gray level of each pixel and the local variance from its neighborhood. Local

variance is a measure of the dispersion of the gray level distribution of a pixel in a

neighborhood. If a pixel’s gray level is close to the gray levels from its neighboring

pixels, then its local variance has a small value, and vice versa. In general, the

object and background of an image are homogeneous regions. A pixel from the

object and background has a gray level which is close to its neighboring pixel’s gray

level, so that this pixel has small local variance value. At the same time, the pixel

from the edges and noise regions of an image has a large local variance value. In

this dissertaion, we use the local sample standard variance, instead of local sample

variance that was used in [49], to construct GLLV histogram.

Let g(x, y) be the local sample standard variance function from the 3 × 3

neighborhood of a pixel located at the point (x, y). Then g(x, y) is calculated as

follows:

g(x, y) =

√√√√ 1

9− 1

1∑
i=−1

1∑
j=−1

[
f(x+ i, y + j)− f(x, y)

]2
, (1.2)

where f(x, y) is the average gray level in the 3×3 neighborhood of this pixel, which
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also is calculated by equation (1.1):

f(x, y) =
1

9

1∑
i=−1

1∑
j=−1

f(x+ i, y + j) .

Let gmin = min
(x,y)∈Z

M
×Z

N

g(x, y) and gmax = max
(x,y)∈Z

M
×Z

N

g(x, y). Then the function

g(x, y) has boundaries as follows:

gmin ≤ g(x, y) ≤ gmax , (1.3)

According to the paper [49], we normalize the local sample standard variance as:

g(x, y) =

⌊
g(x, y)− gmin

gmax − gmin

× L′
⌋
. (1.4)

where L′ = 64 according to the experience. Thus g(x, y) is bounded by 0 and 64 for

all the experiments. We point out that if we use the original gmin and gmax as the

boundaries of g(x, y), then a different image has different boundaries of g(x, y) .

Thus the GLLV histogram is formulated as density function as follows:

h(t, s) = Prob (f(x, y) = t and g(x, y) = s) ,

where Prob refers to the number of pixels that satisfy f(x, y) = t and g(x, y) = s

with t = 0, 1, · · · , 255, s = 0, 1, · · · , 64. So the normalized GLLV histogram is

approximated by using the formula:

ĥ(t, s) =
h(t, s)

total # of pixels of f(x) (M ×N)
.

The joint probability mass function p(t, s) is given by:

p(t, s) = ĥ(t, s),

where t = 0, 1, · · · , 255, s = 0, 1, · · · , 64. Figure 1.4 illustrates the (a) gray-level

image, (b) GLLV histogram plane, (c) normalized GLLV histogram plane and (d)

3D demonstration of normalized GLLV. We point out that the object and back-

ground information is mainly distributed at the lower part on the GLLV histogram

9



(a) (b) (c) (d)

Figure 1.4 – Gray-level image, GLLV histogram plane, normalized GLLV histogram
plane and 3D demonstration of normalized GLLV.

plane (Figure 1.4 (b)) with upper boundary of 117 and normalized GLLV histogram

plane (Figure 1.4 (c)) with upper boundary of 64. Since GLLV and normalized

GLLV don’t have a big difference, we mainly use the normalized GLLV histogram

to contruct the thresholding models in this dissertation.

Since we already know f(1, 1) = 1.7778 for the entry f(1, 1) = 1 in the matrix

fzeropad, we plug f(1, 1) into equation (1.2) to obtain the local sample standard

variance g(1, 1) from its 3× 3 neighborhood as follows:

g(1, 1) =

√
5 · (−1.7778)2 + (1− 1.7778)2 + (2− 1.7778)2 + (6− 1.7778)2 + (7− 1.7778)2

8

= 2.7739 .

In the same manner, we can obtain the local sample standard variances for all the

entries of f such that the local variance matrix gLV for the original matrix f is as

follows:

gLV =



2.7739 3.2016 3.5707 3.9686 4.1062

4.8218 4.4159 4.4159 4.4159 5.9372

6.7639 4.4159 4.4159 4.4159 8.0777

8.9861 4.4159 4.4159 4.4159 10.3803

10.1749 10.0125 10.5000 10.9886 11.7343


,

where gmin = 2.7739 and gmax = 11.7343. Then we apply the equation (1.4) to
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(a) (b) (c)

Figure 1.5 – Gray-level and its corresponding gLA image and gLV image

normalize gLV :

gLV =





0 3.0547 5.6913 8.5334 9.5163

14.6274 11.7280 11.7280 11.7280 22.5938

28.4985 11.7280 11.7280 11.7280 37.8829

44.3708 11.7280 11.7280 11.7280 54.3286

52.8615 51.7018 55.1838 58.6739 64





=



0 3 6 9 10

15 12 12 12 23

28 12 12 12 38

44 12 12 12 54

53 52 55 59 64


.

(1.5)

Figure 1.5 demonstrates the corresponding (b): gLA image and (c): gLV image

for the gray-level image 1113016.jpg (a). Since the equation (1.1) has a smoothing

effect on the original image (a), that means, the local average image (b) is a blurred

version of (a). And the equation (1.2) measures the difference among gray levels, so

the local variance image (c) shows the edges of the original image (a). We know in

a gray-level image, 0 implies black color, and 255 implies white color. We can see

from Figure 1.5 (c) that the edge pixels are illustrated in brighter colors because

they have larger local variance values. What’s more, the main body of the horses

and the background pixels are in darker colors, because these pixels have smaller
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local variance values.

1.2 Image segmentation by thresholding

1.2.1 Bi-level image thresholding

The image thresholding methods can be classified as bi-level and multi-level

thresholding. It is well known that 1D bi-level thresholding methods [1, 9, 30, 31]

require only one threshold value τ ∈ G to partition the gray level set G into two

disjointed classes with levels {0, · · · , τ} and {τ+1, · · · , 255} respectively. For all the

models in this dissertation, we assign the mean values from each class to the pixels

from that class. Then the segmented image Seg2(x, y) has only two gray levels, m1

and m2, which are the mean values from class one and class two respectively:

Seg2(x, y) =

 m1, if 0 ≤ f(x, y) ≤ τ

m2, if (τ + 1) ≤ f(x, y) ≤ 255
(1.6)

1.2.2 Multi-level image thresholding

Generally speaking, n threshold values, {τ1, · · · , τn} ∈ G, are required for

the (n+ 1)-level thresholding methods [11, 35, 37, 47]. Then the segmented image

Segn+1(x, y) has n+1 gray levels, {m1, · · · ,mn+1}, which are the mean values from

corresponding classes respectively:

Segn+1(x, y) =



m1, if 0 ≤ f(x, y) ≤ τ1

m2, if (τ1 + 1) ≤ f(x, y) ≤ τ2

· · ·

mn+1, if (τn + 1) ≤ f(x, y) ≤ 255

(1.7)

Figure 1.6 demonstrates (a) the original image, (b) the bi-level thresholded

image S2 with τ = 100, (c) the three-level thresholded image S3 with τ1 = 100, τ2 =

12



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1.6 – Original image, bi-level image, three-level image, five-level image and
their corresponding 1D histograms

(a) (b) (c)

Figure 1.7 – Three segmented images

200, (d) the five-level thresholded image S5 with τ1 = 83, τ2 = 110, τ3 = 200, τ4 =

254, and their corresponding 1D histograms (e)-(h).

We know that Figure 1.6 (c) has only three gray levels: 68, 151 and 223.

Figure 1.7 exhibits the three segmented binary images from Figure 1.6 (c). In

Matlab, for a binary image, gray level 0 means “false” (black color), and 1 means

“true” (white color). In Figure 1.7 (a), the main body parts of the two horses are

shown in white. These pixels have gray level 68 in Figure 1.6 (c). In Figure 1.7 (b),

most of the background pixels are shown in white. These pixels have gray level 151

in Figure 1.6 (c). In Figure 1.7 (c), most of the grasses are shown in white. These

pixels have gray level 223 in Figure 1.6 (c). This is how we explain and apply the

thresholded image Figure 1.6 (c) in a real application. We can use the same manner
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to explain other thresholded images with different gray levels.

1.3 Shannon, Rényi and Tsallis-Havrda-Charvát entropies

Entropy [8, 13, 16, 39] is originally from thermodynamics, which is related to

the internal energy of a system. According to information theory, entropy is defined

as certain formulations of the probability distribution from a discrete system.

Assume that P = {pi}i=ni=1 is the probability distribution of the discrete system

A, where 0 ≤ pi ≤ 1, i = 1, 2, ..., n, n ≥ 2 and
∑n

i=1 pi = 1.

1.3.1 Shannon entropy

In 1948, Shannon [36] introduced the seminal work of Shannon entropy, which

is formulated as:

S(P ) = −
n∑
i=1

pi ln pi. (1.8)

Shannon entropy has an extensive property, that is, its value depends on the amount

of information that it presents. Let us consider a physical system that is decomposed

into two statistical independent subsystems A and B. According to the extensive

property, the combined system A ∪ B has a Shannon entropy S(A + B) = S(A) +

S(B).

1.3.2 Rényi entropy

In 1961, Rényi [27] extended the Shannon entropy to an entropy of order α,

which is a real positive parameter and α 6= 1:

R(P ) =
1

1− α
· ln

n∑
i=1

pαi . (1.9)
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Actually, the Rényi entropy becomes the Shannon entropy when α is close to 1. We

prove it as follows:

lim
α→1

R(P ) : = lim
α→1

1

1− α
· ln

n∑
i=1

pαi ( L’Hôpital’s rule )

= lim
α→1

(ln
∑n

i=1 p
α
i )
′

(1− α)′

= lim
α→1

1∑n
i=1 p

α
i
· (
∑n

i=1 p
α
i )
′

−1

= lim
α→1

−
∑n

i=1 (pαi )′∑n
i=1 p

α
i

= lim
α→1

−
∑n

i=1 p
α
i ln pi∑n

i=1 p
α
i

=
−
∑n

i=1 pi ln pi
1

= −
n∑
i=1

pi ln pi

= S(p) .

(1.10)

The Rényi entropy also has an extensive property, that means the combined system

A ∪B has the Rényi entropy R(A+B) = R(A) +R(B).

1.3.3 Tsallis-Havrda-Charvát entropy

In 1967, Havrda and Charvát [16] developed a structural α-entropy, where

α is a real positive parameter and α 6= 1:

H(P ) =
1

1− 21−α

[
1−

n∑
i=1

pαi

]
. (1.11)

Independently, in 1988, Tsallis [39] proposed another α-entropy that has the same

expression as equation (1.11) but a different coefficient:

H(P ) =
1

α− 1

[
1−

n∑
i=1

pαi

]
. (1.12)

In equations (1.9), (1.11) and (1.12), α is an arbitrary real positive parameter not

equal to 1, and the limiting case for α→ 1 is the Shannon entropy given by equation
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(1.8).

P. K. Sahoo and G. Arora [31] concluded that the two entropies, equations

(1.11) and (1.12), yield the same result and proposed the Tsallis-Havrda-Charvát

entropy with degree α:

H(P ) = N(α)

[
1−

n∑
i=1

pαi

]
, (1.13)

where N(α) is a normalizing factor. Thus in equation (1.11), N(α) = 1
1−21−α , and

in equation (1.12), N(α) = 1
α−1 .

Actually, the Tsallis-Havrda-Charvát entropy becomes the Shannon entropy

when α is close to 1. We prove it as follows:

lim
α→1

T (P ) : = lim
α→1

1

α− 1
·

[
1−

n∑
i=1

pαi

]
( L’Hôpital’s rule )

= lim
α→1

(1−
∑n

i=1 p
α
i )
′

(α− 1)′

= lim
α→1

−
∑n

i=1 (pαi )′

1

= lim
α→1

−
∑n

i=1 p
α
i ln pi

1

= −
n∑
i=1

pi ln pi

= S(p) .

(1.14)

The Tsallis-Havrda-Charvát entropy has a non-extensive property. The entropy of

the combined system A ∪B follows the non-additivity rule [8, 39]:

H(A+B) = H(A) +H(B) + (1− α) ·H(A) ·H(B) .

1.4 Particle swarm optimization algorithm

The particle swarm optimization was discovered by J. Kennedy and R. Eber-

hart in 1995 [21] from the simulation of simplified swarming behaviors such as bird
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flocking, fish schooling and bee swarming. Imagine a group of flying birds is search-

ing for food in an area with only one piece of food available and each bird has a

position and a velocity at any time. The bird changes its position by adjusting the

velocity according to how far the food is from its position. The velocity changes

based on its past experience and the feedbacks received from its neighbors.

In the application, each solution is considered as a bird, which is called a

particle with a fitness value that can be calculated using an objective function.

All the particles preserve their personal best positions, and there is a global best

position for the entire group. They adjust their velocities by considering their

personal best performances and the global best performance of the group and change

their positions by adjusting the velocities. We point out that the entropic criterion

function in our model is actually the objective function in the PSO algorithm.

Mathematically, PSO is a stochastic process of optimizing a continuous non-

linear objective function by moving a number of particles in a n-dimensional search-

ing space. Suppose that we want to maximize a real-valued multi-variable objective

function f(~xi) : Rn → R by using the PSO method. We need a swarm of m particles

in the n-dimensional space and the ith (i = 1, · · · ,m) particle has:

• position vector ~xi(t) = (xi1(t), xi2(t), ..., xin(t))T

• velocity vector ~vi(t) = (vi1(t), vi2(t), ..., vin(t))T

• previously best visited position (personal best position)

~pi(t) = (pi1(t), pi2(t), ..., pin(t))T .

For the entire swarm, there is a global best position ~g(t) = (g1(t), g2(t), ..., gn(t))T .

Then the velocity vector of the ith particle is updated based on its personal best

and global best position:

~vi(t+ 1) = ω · ~vi(t) + c1 · r1 · [ ~pi(t)− ~xi(t)] + c2 · r2 · [~g(t)− ~xi(t)] , (1.15)
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~xi(t)

~xi(t+ 1)

~pi(t)

~g(t)
~vi(t)

ω~vi(t)

c2 · r2 · [~g(t)− ~xi(t)]

c1 · r1 · [ ~pi(t)− ~xi(t)]
~vi(t+ 1)

Figure 1.8 – Illustration of PSO algorithm

where ω is an inertia weight; c1 is a cognitive parameter; c2 is a social parameter;

r1, r2 are random numbers in the interval [0, 1], and t is the iteration number.

Then, the position vector ~xi of the ith particle is updated according to the

updated velocity vector ~vi(t+ 1):

~xi(t+ 1) = ~xi(t) + ~vi(t+ 1) . (1.16)

Then, we obtain the fitness value of ~xi(t + 1) by plugging it into the objective

function f . Figure 1.8 illustrates the dynamic movement of the particle ~xi. We can

see that the particle ~xi moves along with the red line from moment t to moment t+1

according to equation (1.15). If the fitness value f(~xi(t+ 1)) performs better than

its previous best value, f(~pi(t)), then the personal best position of the ith particle

is updated as ~xi(t+ 1). Otherwise, we keep the current personal best position:

~pi(t+ 1) =

 ~xi(t+ 1) if f(~pi(t)) ≤ f(~xi(t+ 1))

~pi(t) if f(~xi(t+ 1)) < f(~pi(t))
(1.17)

The global best position ~g(t) is updated based on the best fitness value that is found

among the entire swarm:

~g(t+ 1) = arg max
~pi

{
f(~p1(t+ 1)), f(~p2(t+ 1)), · · · , f(~pm(t+ 1))

}
. (1.18)
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The maximum of the function f is achieved when all candidate solutions ~p
i

yield

the same fitness value within a tolerance.

1.5 Thesis motivations, contributions and outline

In this dissertation, we extend the multi-level thresholding technique to RGB

color images by using the GLLA histogram firstly. What’s more, we know that

people haven’t come up with any multi-level entropic thesholding models by using

the GLLV histogram [49] yet. This gives us another motivation to explore and

propose several novel multi-level thresholding models by using the GLLV histogram

based on the Shannon entropy, the Rényi entropy and the Tsallis-Havrda-Charvát

entropy respectively.

The main contributions of this dissertation are as follows:

1. We derive the generalized multi-level thresholding criterion functions based

on theTsallis-Havrda-Charvát entropy by using the GLLA and the GLLV

histograms respectively and validate these formulations rigorously by applying

the mathematical induction method.

2. We propose a multi-level thresholding scheme for RGB color images, which

is the first attempt that has been done so far according to our research. We

assign the mean values from each thresholded class to obtain three segmented

component images independently. Then, we obtain a segmented RGB color

image, which is very close to the original image and has fewer color levels than

the original image.

3. We formulate three different multi-level thresholding models based on the

Shannon entropy, the Rényi entropy and the Tsallis-Havrda-Charvát entropy

respectively by using GLLV histogram.
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4. We employ the PSO algorithm to seek the optimal threshold values in a very

reasonable computational time.

5. We compare the labeled segmented image with the benchmark images (ground

truth, human segmentation) from BSDS300 to evaluate the proposed model

quantitatively and objectively. We calculate the average four performance

indices (PRI, GCE, V OI and BDE) of the models from the dissertation and

compare them with the results from paper [48]. We use Matlab R2016b on a

computer with 6 GB memory and Intel Core i7, 2.00 GHz processor during

the experiments.

The outline of this dissertation is as follows:

In chapter one, we discuss the background knowledge about the GLLA his-

togram and the GLLV histogram, the Shannon entropy, the Rényi entropy, the

Tsallis-Havrda-Charvát entropy and the PSO algorithm respectively.

In chapter two, we discuss the multi-level entropic thresholding models by

using the 1D histogram and give some experimental results.

In chapter three, firstly, we discuss the multi-level entropic thresholding mod-

els by using the GLLA histogram. Then, we discuss the multi-level entropic thresh-

olding models by using the GLLV histogram. The Shannon entropy, the Rényi

entropy and the Tsallis-Havrda-Charvát entropy are used in these models respec-

tively. We formulate the multi-level thresholding criterion functions based on the

Tsallis-Havrda-Charvát entropy and validate the formulation by using mathemati-

cal induction.

In chapter four, we discuss the thresholding scheme for RGB color images

and show the experimental results on several images.

In chapter five, we discuss the average four performance indices (PRI, GCE,

V OI and BDE) and report the effectiveness of our models by applying the PSO
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algorithm on BSDS300. We calculate the average four performance indices for the

300 images from BSDS300 extensively to show to comparison results among different

models.

In chapter six, we give a conclusion of this dissertation by discussing the

advantages and drawbacks of each model. We also show some future works of this

dissertation by illustrating several different types of 2D histograms and discuss the

probability of using these 2D histograms to construct novel multi-level thresholding

models.
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CHAPTER 2

ENTROPIC THRESHOLDING MODELS BASED ON ONE-DIMENSIONAL
HISTOGRAM

In this chapter, we examine entropic thresholding models based on one-

dimensional (1D) histogram.

From the introduction, we know that an entropy of a discrete source is defined

on probability distribution of that source. A two dimensional intensity image was

viewed as an information source [13]. Then the entropy of a gray image is defined

on the its 1D histogram. A thresholding model based on an entropy is mainly about

searching for optimal threshold values by maximizing the entropy of the image. We

call the entropy function in the thresholding model as the criterion function for that

model.

2.1 Thresholding using shannon entropy

In this section, we discuss the bi-level thresholding techinque based on the

Shannon entropy first, then we move to the general multi-level situation.

If we consider the normalized 1D histogram of an image f as the probability

distribution P = {pi}i=25
i=0 , then for a bi-level thresholding, the threshold value τ

groups the 1D histogram into two disjointed distribution class (1) and class (2):

(1) :

(
p(0)

P1

,
p(1)

P1

, · · · , p(τ)

P1

)
,

(2) :

(
p(τ + 1)

P2

,
p(τ + 2)

P2

, · · · , p(255)

P2

)
.
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where P1 and P2 are two independent posteriori class probabilities:

P1 =
τ∑
i=0

p(i), P2 =
255∑

i=τ+1

p(i). (2.1)

We point out that the distributions in class (1) and class (2) are normalized prob-

ability distributions, and each class has a total probability that equals 1.

Then the Shannon entropy for distributions in class (1) and class (2) are as

follows respectively:

S1(τ) = −
τ∑
i=0

(
p(i)

P1

)
ln

(
p(i)

P1

)
, (2.2)

S2(τ) = −
255∑

i=τ+1

(
p(i)

P2

)
ln

(
p(i)

P2

)
. (2.3)

According to the extensive property of Shannon entropy, for the entire image, we

obtain the following bi-level Shannon entropy with threshold values τ . We call this

formuation as the criterion function Φ2, which will be used as the objective functioin

in the PSO algorithm.

Φ2(τ) := S1+2(τ) = S1(τ) + S2(τ) . (2.4)

Then we obtain the optimal threshold τ ∗ by maximizing Φ2:

τ ∗ = argmin
τ∈G

Φ2(τ) ,

Then a segmented image Seg2 with two gray levels, {m1,m2}, which are the means

of the gray levels from class (1) and class (2) respectively, is obtained from equation

(1.6) by using τ ∗.

Now we consider the (n+ 1)-level thresholding model. We need n threshold

values, {τ1, · · · , τn}, to classify the 1D histogram of the image into n+ 1 disjointed
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distribution classes:

(1) :

(
p(0)

P1

,
p(1)

P1

, · · · , p(τ1)
P1

)
,

(2) :

(
p(τ1 + 1)

P2

,
p(τ1 + 2)

P2

, · · · , p(τ2)
P2

)
,

· · ·

(n+ 1) :

(
p(τn + 1)

Pn+1

,
p(τn + 2)

Pn+1

, · · · , p(255)

Pn+1

)
.

where P1, P2, · · · , Pn+1 are n+1 independent posteriori class probabilities as follows:

P1 =
τ∑
i=0

p(i), P2 =

τ2∑
i=τ1+1

p(i), · · · , Pn+1 =
255∑

i=τn+1

p(i). (2.5)

Once again, these distribution classes are normalized probability distributions, and

the total probability of each class equals 1.

Then for the (n+1)-level thresholding model, we have n+1 Shannon entropies

corresponding to n+ 1 disjointed probability distribution classes respectively:

Sk(τk−1, τk) = −
τk∑

i=τk−1+1

(
p(i)

Pk

)
ln

(
p(i)

Pk

)
, (2.6)

where k = 1, 2, · · · , n+ 1 with the convention of τ0 = −1, τn+1 = 255.

By applying the extensive property of Shannon entropy again, the entire

image has the criterion function Φn+1 with threshold values τ = {τ1, · · · , τn}:

Φn+1(τ) := S1+2···+(n+1) =
n+1∑
k=1

Sk . (2.7)

Thus by maximizing Φn+1, the optimal threshold τ ∗ is as follows:

τ ∗ = argmin
τ∈G

Φn+1(τ) ,

where τ ∗ = {τ ∗1 , · · · , τ ∗n}. Then we use equation (1.7) and τ ∗ to threshold the

original image f to obtain the segmented image Segn+1.
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2.2 Thresholding using Rényi entropy

In this section, we discuss the bi-level and the multi-level thresholding model

based on the Rényi entropy.

For a bi-level thresholding, according to the extensive property of Rényi

entropy, we have a criterion function Φ2 as follows:

Φ2(τ) := R1+2(τ) = R1(τ) +R2(τ) , (2.8)

where R1(τ) and R2(τ) are Rényi entropies corresponding to distributions in class

(1) and class (2) that are mentioned in section 2.1:

R1(τ) =
1

1− α
· ln

τ∑
i=0

(
p(i)

P1

)α
and R2(τ) =

1

1− α
· ln

255∑
i=τ+1

(
p(i)

P2

)α
, (2.9)

with P1 and P2 which are two independent posteriori class probabilities from the

equation (2.1).

The criterion function Φn+1 for the (n + 1)-level thresholding model based

on the Rényi entropy with threshold values τ = {τ1, · · · , τn} is given by:

Φn+1(τ) := R1+2···+(n+1) =
n+1∑
k=1

Rk(τ) , (2.10)

where Rk is the Rényi entropy of the kth disjointed probability distribution class:

Rk(τk−1, τk) =
1

1− α
· ln

τk∑
i=τk−1+1

(
p(i)

Pk

)α
, (2.11)

for all k = 1, 2, · · · , n + 1 with the convention of τ0 = −1, τn+1 = 255, and Pk is

the kth independent posteriori class probability, which is mentioned in the equation

(2.5).

Thus the optimal threshold τ ∗ by maximizing Φn+1 is given by:

τ ∗ = argmin
τ∈G

Φn+1(τ) ,

where τ ∗ = {τ ∗1 , · · · , τ ∗n}. Then we use equation (1.7) and τ ∗ to threshold the

original image f and obtain the segmented image Segn+1.
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2.3 Thresholding using Tsallis-Havrda-Charvát entropy

We point out that even though a criterion function for the multi-level thresh-

olding by using the GLLA histogram and the Tsallis-Havrda-Charvát entropy was

given in [18, 19], the detail on how to derive this function was not discussed. We

believe that our work is the first attempt so far to illustrate the correctness of the

criterion function.

This section is mainly about the bi-level and the multi-level thresholding

models based on the Tsallis-Havrda-Charvát entropy. We use the non-additivity

rule and mathematical induction to demonstrate how to derive the general criterion

function Φn+1 for a (n+ 1)-level thresholding.

According to the non-extensive property of Tsallis-Havrda-Charvát entropy,

the criterion function Φ2 for the bi-level thresholding model with threshold values

τ is given by:

Φ2(τ) := T1+2 = T1(τ) + T2(τ) + (1− α) · T1(τ) · T2(τ) , (2.12)

where T1 and T2 are Tsallis-Havrda-Charvát entropies corresponding to distribu-

tions in class (1) and class (2), which are mentioned in section 2.1:

T1(τ) =
1

α− 1
·

[
1−

τ∑
i=0

(
p(i)

P1

)α]
, T2(τ) =

1

α− 1
·

[
1−

255∑
i=τ+1

(
p(i)

P2

)α]
,

where P1 and P2 are defined in equation (2.1). Next we induce the criterion function

for the three-level thresholding model with threshold values τ1 and τ2:

Φ3 : = T1+2+3

= T(1+2)+3

= T1+2 + T3 + (1− α) · T1+2 · T3

= T1 + T2 + (1− α) · T1 · T2 + T3 + (1− α) · [T1 + T2 + (1− α) · T1 · T2] · T3

= T1 + T2 + T3 + (1− α) · [T1 T2 + T1 T3 + T2 T3(t, s)] + (1− α)2 · T1 · T2 · T3 ,

(2.13)
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where T1, T2 and T3 are Tsallis-Havrda-Charvát entropies corresponding to three

disjointed distribution classes respectively:

T1(τ1) =
1

α− 1
·

[
1−

τ1∑
i=0

(
p(i)

P1

)α]
,

T2(τ1, τ2) =
1

α− 1
·

[
1−

τ2∑
i=τ1+1

(
p(i)

P2

)α]
,

T3(τ2) =
1

α− 1
·

[
1−

255∑
i=τ2+1

(
p(i)

P3

)α]
,

with

P1(τ1) =

τ1∑
i=0

p(i), P2(τ1, τ2) =

τ2∑
i=τ1+1

p(i), P3(τ2) =
255∑

i=τ2+1

p(i).

In the same manner, for the (n + 1)-level thresholding model, we conclude

that with threshold values τ = {τ1, τ2, · · · , τn}, the criterion function Φn+1 for the

(n+ 1)-level thresholding method based on the Tsallis-Havrda-Charvát entropy is:

Φn+1 := T1+2···+(n+1)

=
n+1∑
i=1

Ti + (1− α) ·
n∑
i=1

n+1∑
j=i+1

Ti Tj

+ (1− α)2 ·
n−1∑
i=1

n∑
j=i+1

n+1∑
k=j+1

Ti Tj Tk

+ (1− α)3 ·
n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

n+1∑
l=k+1

Ti Tj TkTl

+ · · · + (1− α)n ·
n+1∏
i=1

Ti ,

(2.14)

where Tk is the Tsallis-Havrda-Charvát entropy corresponding to the kth disjointed

probability distribution class:

Tk(τ) =
1

α− 1
·

1−
τk∑

i=τk−1+1

(
p(i)

Pk

)α (2.15)

for all k = 1, 2, · · · , n + 1 with the convention of τ0 = −1, τn+1 = 255 and Pk is

the kth independent posteriori class probability, which is mentioned in the equation
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(2.5). Thus the optimal threshold τ ∗ by maximizing Φn+1 is as follows:

τ ∗ = argmin
τ∈G

Φn+1(τ) ,

with τ ∗ = {τ ∗1 , · · · , τ ∗n}.

Now we prove the generalized formulation (2.14) by applying mathematical

induction. Using the non-additivity rule, we have

Φn+1 : = T1+2+···+n+(n+1)

= T(1+2+···+n)+(n+1)

= T1+2+···+n + Tn+1 + (1− α) · T1+2+···+n · Tn+1 .

(2.16)

From the induction assumption, we have

Φn : = T1+2+···+n

= T1 + T2 + · · ·+ Tn

+ (1− α) ·
n−1∑
i=1

n∑
j>i
j=i+1

Ti Tj

+ (1− α)2 ·
n−2∑
i=1

n−1∑
j>i
j=i+1

n∑
k>j
k=j+1

Ti Tj Tk

+ · · ·

+ (1− α)n−1 · T1 · T2 · · ·Tn

=
n∑
s=1

(1− α)s−1 ·
n−s+1∑
i1=1

n−s+2∑
i2>i1
i2=i1+1

· · ·
n−s+s∑
is>is−1
is=is−1+1

Ti1 Ti2 · · ·Tis .

(2.17)
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By pluging (2.17) in (2.16), we have

Φn+1 : =

 n∑
i=1

Ti + (1− α) ·
n−1∑
i=1

n∑
j>i
j=i+1

Ti Tj + · · ·+ (1− α)n−1 ·
n∏
i=1

Ti

+ Tn+1

+ (1− α) ·

 n∑
i=1

Ti + (1− α) ·
n−1∑
i=1

n∑
j>i
j=i+1

Ti Tj + · · ·+ (1− α)n−1 ·
n∏
i=1

Ti

 · Tn+1

=
n+1∑
i=1

Ti + (1− α) ·
n∑
i=1

n+1∑
j>i
j=i+1

Ti Tj + · · ·+ (1− α)n ·
n+1∏
i=1

Ti .

(2.18)

Thus we proved the general equation (2.14).

2.4 Experiments

In this section, we conduct our experiments on the image 113016.jpg men-

tioned in Fig. 1.1 (a).

For a (n + 1)-level thresholding, the position of the ith particle in the PSO

algorithm is a n-dimensional threshold vector of the original image f(x, y):

~xi(t) = (τi) = (τi1, τi2, · · · , τin) ,

where i = 1, . . . ,m, and m is the total number of particles in the n-dimensional

searching space. The main parts of the PSO algorithm are given by the following

steps:

Step 1: Initialize ~xi(t) and use ~xi(t) to initialize ~pi(t)

Step 2: Evaluate the criterion function Φn+1 (according to which model we want to

use) at ~xi(t)

Step 3: Update ~g(t) by equation (1.18)
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(a) (b) (c)

(d) (e) (f)

Figure 2.1 – Three-level segmentations with the corresponding 1D histograms

Step 4: Evaluate velocity ~vi(t) by equation (1.15)

Step 5: Update ~xi(t) by equation (1.16)

Step 6: Update ~pi(t) and ~g(t) by (1.17) and (1.18) respectively

Step 7: Return to step 2 .

We assign c1 = 0.7, c2 = 1.43 and swarm size m = 20 for each experiment

[11]. Experimental results in Figure 2.1 are from three-level thresholding models

based on the Shannon entropy (a) (section 2.1), the Rényi entropy (b) (section

2.2) and the Tsallis-Havrda-Charvát entropy (c) (section 2.3) respectively. Their

corresponding 1D histograms are shown in (d), (e) and (f).

Figure 2.2 demonstrates the segmentation results from ten-level thresholding

models in which (a) is from the Shannon entropic model, (b) is from the Rényi

entropic model and (c) is from the Tsallis-Havrda-Charvát entropic model. Their

corresponding 1D histograms are shown in (d), (e) and (f).
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(a) (b) (c)

(d) (e) (f)

Figure 2.2 – Ten-level segmentations with the corresponding 1D histograms

Table 2.1 – Mean values from each thresholded class.

Models Shannon Rényi Tsallis-Havrda-Charvát

3-level 56, 151, 239 82, 154, 218 75, 152, 218

10-level
28, 33, 56, 68, 90,

136, 161, 183, 221, 248

39, 47, 55, 67, 96,

122, 150, 175, 190, 225

28, 63, 97, 132,

157, 185, 206, 216, 232, 249

We notice that the Rényi based model and the Tsallis-Havrda-Charvát based

model not only give similar results (see Figure 2.1 (b) and (c)) but also perform

better than the Shannon based model (see Figure 2.1 (a)). This is because the Rényi

and the Tsallis-Havrda-Charvát entropies become the Shannon entropy when α is

close to 1 (see (1.10) and (1.14)). It implies that the Shannon entropy actually is a

special case of Rényi and Tsallis-Havrda-Charvát entropies.

What’s more, for an entropic thresholding model, the larger level we use to

threshold an image, the more accurate result we obtain from the model (compare

Figure 2.1 with Figure 2.2). Ten-level thresholding results are closer to the original

image (see Figure 1.1 (a)) than three-level thresholding results.
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Table 2.2 – Thresholds values for different entropic models.

Models Shannon Rényi Tsallis-Havrda-Charvát

3-level 64, 230 123, 192 114, 192

10-level
29, 33, 63, 73, 104,

153, 169, 200, 242

41, 49, 59, 79,109,

130, 171, 178, 203

31, 88, 105, 145, 171,

202, 210, 221, 243

Table 2.1 lists all the mean values that we used to exhibit images in Figure

2.1 and Figure 2.2. Table 2.2 lists all the threshold values that we obtained from

three different entropic models. We point out that for 3-level thresholding models,

we need two threshold values, and for 10-level thresholding models, we need nine

threshold values.
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CHAPTER 3

ENTROPIC THRESHOLDING MODELS BASED ON TWO-DIMENSIONAL
HISTOGRAMS

From chapter one, we know that only the gray level information is used to

build the one-dimensional (1D) histogram and the spatial correlation among pixels

in a neighborhood is not considered. In this chapter, we are going to discuss the

entropic image thresholding techniques by using two-dimensional (2D) histograms

GLLA and GLLV, respectively, to illustrate that 2D histograms perform better

than the 1D histogram.

People have been constructing several multi-level thresholding models by us-

ing the GLLA histogram [18, 19, 30, 31, 48]. However, very few multi-level thresh-

olding models involve the GLLV histogram. So in the first section of this chapter,

we discuss a variety of thresholding models by using the GLLA histogram, then in

the next section, we develop three novel multi-level thresholding models by appying

the GLLA. At the end of each section, we demonstrate the effectiveness of models

by some experiments.

3.1 Entropic thresholding model based on Gray-Level & Local-Average histogram

Firstly, we illustrate thresholding models based on the Gray-Level & Local-

Average histogram (GLLA). In the introduction chapter, we know that the GLLA

is constructed from the gray level of each pixel and the average gray level value of

its neighborhood.

Now we consider a GLLA histogram plane from Figure 1.3 (c) as the prob-
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ability distribution plane in the following models. We claim that for a (n + 1)-

level thresholding, the threshold value is actually the threshold pair (τ, σ), such

that τ = (τ1, τ2, · · · , τn) is the threshold from the original image f(x, y) and σ =

(σ1, σ2, · · · , σn) is the threshold from the average image g(x, y). We also point out

that the optimal value τ ∗ that is obtained from the original image is the one we use

to segment the image at the last step.

For the bi-level thresholding with n = 1, we assume that GLLA histogram

surface p(t, s) has two peaks and one valley (see Figure 1.3 (d)), then the threshold

vector (τ, σ) divides the GLLA histogram plane into four quadrants (see Figure 3.1

(a)). In this case, the third and fourth quadrants contain information about edges

and noise, so they are ignored in the calculation. The object and the background

information are from the main diagonal quadrants or vice versa. We consider the

first quadrant ([0, τ ]× [0, σ]) and the second quadrant ([τ + 1, 255]× [σ+ 1, 255]) as

two different independent probability distributions, then we have two independent

posteriori class probabilities P1 and P2 as follows:

P1 =
τ∑
i=0

σ∑
j=0

p(i, j) , P2 =
255∑

i=τ+1

255∑
j=σ+1

p(i, j) .

What’s more, a probability distribution must be normalized such that the total

probability equals 1 in each quadrant. Thus two normalized probability distribu-

tions associated with first and second quadrants are:

(1) :

(
p(0, 0)

P1

, · · · , p(0, σ)

P1

,
pc(1, 0)

P1

, · · · · · · , p(τ, σ)

P1

)
,

(2) :

(
p(τ + 1, σ + 1)

P2

, · · · , p(τ + 1, 255)

P2

,
p(τ + 2, σ + 1)

P2

, · · · · · · , p(255, 255)

P2

)
.

Now we discuss the three-level thresholding with n = 2. Threshold value

(τ, σ) with τ = (τ1, τ2) and σ = (σ1, σ2) segments the 2D histogram plane into 9

divisions (see Figure 3.1 (b)). We use the object and the background information

from the first, second and third quadrants to construct the model, meanwhile ig-

noring the rest of quadrants with edges and noise information. Three normalized
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disjointed probability distributions associated with first, second and third quadrants

are:

(1) :

(
p(0, 0)

P1

, · · · , p(0, σ1)
P1

,
p(1, 0)

P1

, · · · · · · , p(τ1, σ1)
P1

)
,

(2) :

(
p(τ1 + 1, σ1 + 1)

P2

, · · · , p(τ1 + 1, σ2)

P2

,
p(τ1 + 2, σ1 + 1)

P2

, · · · · · · , p(τ2, σ2)
P2

)
,

(3) :

(
p(τ2 + 1, σ2 + 1)

P3

, · · · , p(τ2 + 1, 255)

P3

,
p(τ2 + 2, σ2 + 1)

P3

, · · · · · · , p(255, 255)

P3

)
,

where P1, P2 and P3 are three independent posteriori class probabilities as follows:

P1 =

τ1∑
i=0

σ1∑
j=0

p(i, j), P2 =

τ2∑
i=τ1+1

σ2∑
j=σ1+1

p(i, j) P3 =
255∑

i=τ2+1

255∑
j=σ2+1

p(i, j).

In the same manner, for the (n + 1)-level thresholding model, we conclude

that the generalized (n + 1)-level thresholding model has the threshold values τ =

(τ1, τ2, · · · , τn) and σ = (σ1, σ2, · · · , σn). Therefore, (n + 1) normalized disjointed

probability distributions associated with n + 1 quadrants from the main diagonal

are as follows:(
p(τk−1 + 1, σk−1 + 1)

Pk
, · · · , p(τk−1 + 1, σk)

Pk
,
p(τk−1 + 2, σk−1 + 1)

Pk
, · · · · · · , p(τk, σk)

Pk

)
,

where Pk is the kth independent posteriori class probability:

Pk =

τk∑
i=τ

k−1
+1

σk∑
j=σ

k−1
+1

p(i, j), (3.1)

for all k = 1, 2, · · · , n+ 1 with the convention of τ0 = −1, σ0 = −1 τn+1 = 255, and

σn+1 = 255.

3.1.1 Thresholding using Shannon entropy

From the discussion of Shannon entropy in section (2.1), we know that cri-

terion function Φn+1 for the (n + 1)-level thresholding model based on Shannon

entropy is given by equation (2.7):

Φn+1 := S1+2···+(n+1) =
n+1∑
k=1

Sk ,
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Figure 3.1 – GLLA histogram planes with bi-level and three-level segmentation

where Sk is the Shannon entropy corresponding to the kth disjointed probability

distribution class:

Sk = −
τk∑

i=τ
k−1

+1

σk∑
j=σ

k−1
+1

(
p(i, j)

Pk

)
ln

(
p(i, j)

Pk

)
and Pk, k = 1, 2, · · · , n + 1 are given in the equation (3.1) with the convention of

τ0 = −1, σ0 = −1, τn+1 = 255, and σn+1 = 255.

The optimal threshold pair (τ ∗, σ∗) is obtained from:

(τ ∗, σ∗) = argmin
(τ, σ)∈Gn×Gn

Φn+1(τ, σ) ,

where τ ∗ = (τ ∗1 , τ
∗
2 , · · · , τ ∗n) and σ = (σ∗1, σ

∗
2, · · · , σ∗n). However, we only use τ ∗ =

(τ ∗1 , τ
∗
2 , · · · , τ ∗n) to segment the image. Then the segmented image Segn+1 is given

by:

Segn+1 =



m1, if 0 ≤ f(x, y) ≤ τ ∗1

m2, if (τ ∗1 + 1) ≤ f(x, y) ≤ τ ∗2

· · ·

mn+1, if (τ ∗n + 1) ≤ f(x, y) ≤ 255 ,

(3.2)

where {m1, · · · ,mn+1} are the mean values from each corresponding class respec-

tively (see section 1.2.2).
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3.1.2 Thresholding using Rényi entropy

From the discussion of the Rényi entropy in section (2.2), we know that the

criterion function Φn+1 for the (n+1)-level thresholding method based on the Rényi

entropy is given by equation (2.10):

Φn+1 := R1+2···+(n+1) =
n+1∑
k=1

Rk ,

where Rk is the Rényi entropy corresponding to the kth disjointed probability dis-

tribution class:

Rk =
1

1− α

ln

τk∑
i=τ

k−1
+1

σk∑
j=σ

k−1
+1

(
p(i, j)

Pk

)α
and Pk, k = 1, 2, · · · , n + 1 are given in the equation (3.1) with the convention of

τ0 = −1, σ0 = −1, τn+1 = 255, and σn+1 = 255.

The optimal threshold pair (τ ∗, σ∗) is obtained from:

(τ ∗, σ∗) = argmin
(τ, σ)∈Gn×Gn

Φn+1(τ, σ) ,

where τ ∗ = (τ ∗1 , τ
∗
2 , · · · , τ ∗n) and σ = (σ∗1, σ

∗
2, · · · , σ∗n). The segmented image is also

obtained from equation (3.2).

3.1.3 Thresholding using Tsallis-Havrda-Charvát entropy

From the discussion of the Tsallis-Havrda-Charvát entropy in section (2.3),

we know that the criterion function Φn+1 for the (n+ 1)-level thresholding method
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based on the Tsallis-Havrda-Charvát entropy is given by equation (2.14):

Φn+1 := T1+2···+(n+1)

=
n+1∑
i=1

Ti + (1− α) ·
n∑
i=1

n+1∑
j=i+1

Ti Tj

+ (1− α)2 ·
n−1∑
i=1

n∑
j=i+1

n+1∑
k=j+1

Ti Tj Tk

+ (1− α)3 ·
n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

n+1∑
l=k+1

Ti Tj TkTl

+ · · · + (1− α)n ·
n+1∏
i=1

Ti ,

where Tk is the Tsallis-Havrda-Charvát entropy corresponding to the kth disjointed

probability distribution class:

Tk =
1

α− 1

1−
τk∑

i=τ
k−1

+1

σk∑
j=σ

k−1
+1

(
p(i, j)

Pk

)α (3.3)

and Pk, k = 1, 2, · · · , n + 1 are given in the equation (3.1) with the convention of

τ0 = −1, σ0 = −1, τn+1 = 255, and σn+1 = 255.

The optimal threshold pair (τ ∗, σ∗) is obtained from:

(τ ∗, σ∗) = argmin
(τ, σ)∈Gn×Gn

Φn+1(τ, σ) ,

where τ ∗ = (τ ∗1 , τ
∗
2 , · · · , τ ∗n) and σ = (σ∗1, σ

∗
2, · · · , σ∗n). The segmented image is also

obtained from equation (3.2).

We claim that discussion on this model and its corresponding experiments

is presented in our paper [3].

3.1.4 Experiments

The main part of the PSO algorithm is the same process as the one mentioned

in section (2.4). However, for a (n + 1)-level thresholding based on the GLLA his-

togram, the ith particle from the PSO algorithm is a 2n-dimensional vector instead
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Table 3.1 – Mean values from each thresholded class.

Models Shannon Rényi Tsallis-Havrda-Charvát

3-level 88, 158, 224 66, 147, 214 59, 134, 194

10-level
61, 97, 116, 150, 182,

200, 221, 234, 254

42, 56, 64, 87, 119,

147, 180, 214, 237, 253

35, 57, 94, 136, 160,

177, 186, 211, 232, 243

of n-dimensional vector:

~xi(t) = (τi, σi) = (τi1, τi2, · · · , τin, σi1, σi2, · · · , σin) ,

where i = 1, . . . ,m, and m is the total number of particles. The searching space is a

2n-dimensional space. We notice that τi = (τi1, τi2, · · · , τin) represents the threshold

for the original image f(x, y) and σi = (σi1, σi2, · · · , σin) represents the threshold

for the average image g(x, y). According to section (1.4), the main parts of the PSO

algorithm are as follows:

Step 1. Initialize ~xi(t) and use ~xi(t) to initialize ~pi(t)

Step 2. Evaluate the criterion function Φn+1 (according to which model we want to

use) at ~xi(t)

Step 3. Update ~g(t) by function (1.18)

Step 4. Evaluate velocity ~vi(t) by function (1.15)

Step 5. Update ~xi(t) by function (1.16)

Step 6. Update ~pi(t) and ~g(t) by (1.17) and (1.18) respectively

Step 7. Return to step 2 .
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.2 – Original image, the three-level thresholded images and their correspond-
ing 1D and GLLA histograms

Figure 3.2 illustrates the experiment results from three-level models. (a)

is the original image 113016.jpg, (b) is the thresholded image from the Shannon

entropic model, (c) is the thresholded image from the Rényi entropic model and (d)

is the thresholded image from the Tsallis-Havrda-Charvát entropic model. Images

(e)-(h) in Figure 3.2 are the corresponding 1D histograms, and images (i)-(l) in

Figure 3.2 are the corresponding GLLA histograms. Since all the thresholded images

have only three gray levels, their GLLA histograms also have only three stripes.

Figure 3.3 illustrates the experiment results from ten-level models. (a) is

the original image 113016.jpg, (b) is the thresholded image from the Shannon en-

tropic model, (c) is the thresholded image from the Rényi entropic model and (d)

is the thresholded image from the Tsallis-Havrda-Charvát entropic model. Images

(e)-(h) in Figure 3.3 are the corresponding 1D histograms, and images (i)-(l) in Fig-

40



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.3 – Original image, the ten-level thresholded images and their correspond-
ing 1D and GLLA histograms

ure 3.3 are the corresponding GLLA histograms. We can notice that their GLLA

histograms have ten stripes because the level we used in the experiment is 10.

Table 3.1 lists all the mean values that we used to exhibit the images in

Figure 3.2 and Figure 3.3. Table 3.2 lists all the threshold values that we obtained

from three different entropic models. We point out that for 3-level thresholding

models, we need two threshold values, and for 10-level thresholding models, we

need nine threshold values.

3.2 Entropic thresholding model based on Gray-Level & Local-Variance
histogram

In this section, we will discuss the thresholding method based on the Gray-

Level & Local-Variance histogram (GLLV). It is a new type of two-dimensional (2D)
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Table 3.2 – Thresholds values for different entropic models.

Models Shannon Rényi Tsallis-Havrda-Charvát

3-level 129, 202 96, 185 76, 160

10-level
13, 83, 109, 121, 179,

185, 217, 223, 251

45, 63, 64, 108, 127,

165, 200, 228, 249

37, 69, 114, 149, 174,

178, 194, 228, 236
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Figure 3.4 – GLLV histogram planes with bi-level and 3-level segmentation

histogram which was developed in paper [49]. The GLLV histogram is constructed

by applying the dispersion of gray level distribution of pixels instead of the average

gray level of a neighborhood which is used in the traditional 2D histogram, GLLA.

In this section, we build three novel models under the framework of the GLLV

histogram.

From the demonstration of a GLLV histogram (see Figure 1.4 (b) with upper

boundary of σ = 117 and Figure 1.4 (c) with upper boundary of σ = 64), we notice

that the object and the background information are mainly focused at the lower

part on the GLLV histogram plane with small local variance values within [0, σ]

because object and background are homogenouse regions with pixels whose gray

levels are close to the average gray level from its 3 × 3 neighborhood. Thus we

conclude that the object and the background pixels from the image have smaller
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local variance values within [0, σ] according to the definition (1.2) of local variance

g.

For the bi-level thresholding with n = 1, we consider the threshold vector

(τ, σ). The value τ is from the original gray-level image f(x, y), while the value σ is

from the local variance image g(x, y). The GLLV histogram plane, that is the joint

probability mass function p(t, s), gives us two peaks and one valley (see Figure 1.4

(d)). Then the GLLV histogram plane is divided into four quadrants (see Figure

3.4 (a)). Since the third and fourth quadrants contain information about edges

and noise, they are ignored in the calculation. The object and the background

information is from the first and second quadrants with small local variance values

within [0, σ]. Then we have two independent probability distributions, denoted by

first quadrant [0, τ ] × [0, σ] and second quadrant [τ + 1, 255] × [0, σ]. Also, they

must be normalized such that the total probability in each the quadrant equals 1,

thus two probability distributions associated with first and second quadrants are as

follows:

(1) :

(
p(0, 0)

P1

, · · · , p(0, σ)

P1

,
p(1, 0)

P1

, · · · · · · , p(τ, σ)

P1

)
,

(2) :

(
p(τ + 1, 0)

P2

, · · · , p(τ + 1, σ)

P2

,
p(τ + 2, 0)

P2

, · · · · · · , p(255, σ)

P2

)
,

where P1 and P2 are two independent posteriori class probabilities as follows:

P1 =
τ∑
i=0

σ∑
j=0

p(i, j), P2 =
255∑

i=τ+1

σ∑
j=0

p(i, j).

For the three-level thresholding with n = 2, the GLLV histogram plane is

subdivided by thresholds τ = (τ1, τ2) and σ into 6 divisions (see Figure 3.4 (b)).

The frist, second and third quadrants represent the object and the background

information of the original image f(x, y) because pixels from these three quadrants

have smaller local variance values within [0, σ].

Then three normalized disjointed probability distributions associated with
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first, second and third quadrants are:

(1) :

(
p(0, 0)

P1

, · · · , p(0, σ)

P1

,
p(1, 0)

P1

, · · · · · · , p(τ1, σ)

P1

)
,

(2) :

(
p(τ1 + 1, 0)

P2

, · · · , p(τ1 + 1, σ)

P2

,
p(τ1 + 2, 0)

P2

, · · · · · · , p(τ2, σ)

P2

)
,

(3) :

(
p(τ2 + 1, 0)

P3

, · · · , p(τ2 + 1, σ)

P3

,
p(τ2 + 2, 0)

P3

, · · · · · · , p(255, σ)

P3

)
,

where P1, P2 and P3 are three independent posteriori class probabilities as follows:

P1 =

τ1∑
i=0

σ∑
j=0

p(i, j), P2 =

τ2∑
i=τ1+1

σ∑
j=0

p(i, j), P3 =
255∑

i=τ2+1

σ∑
j=0

p(i, j).

Then we conclude that the generalized (n+ 1)-level thresholding model has

threshold values τ = (τ1, τ2, · · · , τn) and σ. Therefore, (n+1) normalized disjointed

probability distributions associated with (n+ 1) quadrants from the bottom of the

histogram plane are as follows:(
p(τk−1 + 1, 0)

Pk
, · · · , p(τk−1 + 1, σ)

Pk
,
p(τk−1 + 2, 0)

Pk
, · · · · · · , p(τk, σ)

Pk

)
,

where Pk is the kth independent posteriori class probability:

Pk =

τk∑
i=τ

k−1
+1

σ∑
j=0

p(i, j), (3.4)

with the convention of τ0 = −1, τn+1 = 255.

We point out that the local variance g always only requires a single value σ

according to the definition of the GLLV histogram.

3.2.1 Thresholding using Shannon entropy

From the discussion of the Shannon entropy in section (2.1) as well as secion

(3.1.1), we know that the criterion function for the multi-level thresholding model

based on the Shannon entropy is given by equation (2.7):

Φn+1 := S1+2···+(n+1) =
n+1∑
k=1

Sk ,
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where Sk is the Shannon entropy corresponding to the kth disjointed probability

distribution class:

Sk = −
τk∑

i=τ
k−1

+1

σ∑
j=0

(
p(i, j)

Pk

)
ln

(
p(i, j)

Pk

)
and Pk : k = 1, 2, · · · , n + 1 are given in the equation (3.4) with the convention of

τ0 = −1, τn+1 = 255.

Therefore the optimal threshold pair (τ ∗, σ∗) is obtained from:

(τ ∗, σ∗) = argmin
(τ, σ)∈Gn×G

Φn+1(τ, σ) ,

where τ ∗ = (τ ∗1 , τ
∗
2 , · · · , τ ∗n). For two-dimensional thresholding models, we only use

τ ∗ = (τ ∗1 , τ
∗
2 , · · · , τ ∗n) to segment the image. The segmented image is also obtained

from equation (3.2).

3.2.2 Thresholding using Rényi entropy

From the discussion of the Rényi entropy in section (2.2), as well as secion

(3.1.2), we know that the criterion function for the multi-level thresholding method

based on the Rényi entropy is given by equation (2.10):

Φn+1 := R1+2···+(n+1) =
n+1∑
k=1

Rk ,

where Rk is the Rényi entropy corresponding to the kth disjointed probability dis-

tribution class:

Rk =
1

1− α

ln

τk∑
i=τ

k−1
+1

σ∑
j=0

(
p(i, j)

Pk

)α
and Pk : k = 1, 2, · · · , n + 1 are given in the equation (3.4) with the convention of

τ0 = −1, τn+1 = 255.

Therefore the optimal threshold pair (τ ∗, σ∗) is obtained from:

(τ ∗, σ∗) = argmin
(τ, σ)∈Gn×G

Φn+1(τ, σ) ,
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where τ ∗ = (τ ∗1 , τ
∗
2 , · · · , τ ∗n). The segmented image is also obtained from equation

(3.2).

3.2.3 Thresholding using Tsallis-Havrda-Charvát entropy

From the discussion of the Tsallis-Havrda-Charvát entropy in section (2.3), as

well as section (3.1.3), we know that the criterion function for the multi-level thresh-

olding method based on the Tsallis-Havrda-Charvát entropy is given by equation

(2.14):

Φn+1 := T1+2···+(n+1)

=
n+1∑
i=1

Ti + (1− α) ·
n∑
i=1

n+1∑
j=i+1

Ti Tj

+ (1− α)2 ·
n−1∑
i=1

n∑
j=i+1

n+1∑
k=j+1

Ti Tj Tk

+ (1− α)3 ·
n−2∑
i=1

n−1∑
j=i+1

n∑
k=j+1

n+1∑
l=k+1

Ti Tj TkTl

+ · · · + (1− α)n ·
n+1∏
i=1

Ti ,

where Tk is the Tsallis-Havrda-Charvát entropy corresponding to the kth disjointed

probability distribution class:

Tk =
1

α− 1

1−
τk∑

i=τ
k−1

+1

σ∑
j=0

(
p(i, j)

Pk

)α
and Pk : k = 1, 2, · · · , n + 1 are given in the equation (3.4) with the convention of

τ0 = −1, τn+1 = 255.

The optimal threshold pair (τ ∗, σ∗) is obtained from:

(τ ∗, σ∗) = argmin
(τ, σ)∈Gn×G

Φn+1(τ, σ) ,

where τ ∗ = (τ ∗1 , τ
∗
2 , · · · , τ ∗n). The segmented image is also obtained from equation

(3.2).

46



3.2.4 Experiments

The main part of the PSO algorithm is the same process as the one mentioned

in section (2.4). However, for a (n + 1)-level thresholding based on the GLLV

histogram, the ith particle from the PSO algorithm is a (n+1)-dimensional threshold

vector:

~xi(t) = (τi, σi) = (τi1, τi2, · · · , τin, σi) ,

where i = 1, . . . ,m, and m is the total number of particles. The searching space

is a (n + 1)-dimensional space. We notice that τi = (τi1, τi2, · · · , τin) represents

the threshold for the original image f(x, y) and σi represents the threshold for the

local variance image g(x, y). According to section (1.4), the main parts of the PSO

algorithm are as follows:

Step 1. Initialize ~xi(t) and use ~xi(t) to initialize ~pi(t)

Step 2. Evaluate the criterion function Φn+1 (according to which model we want to

use) at ~xi(t)

Step 3. Update ~g(t) by function (1.18)

Step 4. Evaluate velocity ~vi(t) by function (1.15)

Step 5. Update ~xi(t) by function (1.16)

Step 6. Update ~pi(t) and ~g(t) by (1.17) and (1.18) respectively

Step 7. Return to step 2 .

We continue to use the image 113016.jpg to illustrate the experiment results

from GLLV based models. We demonstrate ten-level thresholded results in Figure

3.5. (b) is the result from the Shannon based model, (c) is the result from the Rényi
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Table 3.3 – Mean values from each thresholded class.

Models Shannon Rényi Tsallis-Havrda-Charvát

10-level
28, 55, 67, 96, 119, 137,

148, 161, 192, 228

50, 61, 78, 94, 115, 148,

182, 198, 204, 226

57, 81, 103, 142, 164

169, 187, 215, 230, 242

Table 3.4 – Thresholds values for different entropic models.

Models Shannon Rényi Tsallis-Havrda-Charvát

10-level
31, 61 , 73, 114, 122,

146, 148, 178, 208

54, 73, 83, 104, 123,

171, 193, 202, 205

69, 92, 112, 161, 167,

171, 206, 224, 234

based model and (d) is the result from the Tsallis-Havrda-Charvát based model.

Images (e)-(h) in Figure 3.5 are their 1D histograms and images (i)-(l) in Figure

3.5 are their corresponding GLLV histograms. We notice that since (a), (b) and (c)

are ten-level results, their GLLV histogram have only 10 stripes and each stripe has

a height of at most 64 (see section 1.1.2).

Table 3.3 lists all the mean values that we used to exhibit the images in

Figure 3.5. Table 3.4 lists all the threshold values that we obtained from the three

different entropic models. We point out that for 10-level thresholding models, we

need nine threshold values.

48



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.5 – Original image, the ten-level thresholded images and their correspond-
ing 1D and GLLV histograms
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CHAPTER 4

RGB COLOR IMAGE THRESHOLDING MODELS BASED ON ENTROPIES
AND TWO-DIMENSIONAL HISTOGRAMS

Generally speaking, a color image provides a better description of a scene

than the gray-level image [4, 6, 22, 23, 28, 38, 45]. It is known that most of the

segmentation methods for a gray-level image can be directly applied to each com-

ponent of a RGB color image [6]. However, so far only a limited amount of studies

[23, 22] mentioned how to employ multi-level thresholding techniques on a color

image. We point out that all the thresholding models mentioned in the introduc-

tion section didn’t deal with a color image segmentation. Under this motivation,

we come up with a RGB color image segmentation model under the framework

of a multi-level thresholding technique by using the Shannon, the Rényi and the

Tsallis-Havrda-Charvát Entropies as well as GLLA and GLLV histograms.

By observing each 1D histogram, we select a proper threshold level for each

component (R, G and B) image. Then, we obtain the thresholded RGB image which

has less colors than the original RGB image. Thus our work implies a new scheme

for the RGB color image segmentation.

4.1 The fusion of three thresholded component image

In this part, we discuss how to threshold a RGB color image by using the

multi-level thresholding techinque based on entropies and 2D histograms.

Firstly, by observing the 1D histograms of the three components, we choose

(n1 + 1), (n2 + 1) and (n3 + 1) as thresholding levels for the red, green and blue
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components respectively and apply the PSO algorithm to search for the optimal

threshold values for each component.

Then the thresholded red component Tr has (n1 + 1) gray levels, the green

component Tg has (n2 + 1) gray levels, and the blue component Tb has (n3 + 1)

gray levels. Then, by combining three thresholded components, we obtain the

thresholded RGB image ~T (x, y):

[~T (x, y)] = [Tr(x, y), Tg(x, y), Tb(x, y)] .

Thus the segmented RGB image has at most (n1 + 1) × (n2 + 1) × (n3 + 1) color

levels, which is a much smaller number than the number of colors from the original

RGB image.

In general, the original RGB image has about 107 color levels. However color

levels for the segmented color image are between 8 and 1000 in our model if the

thresholding level n satisfies the condition 2 ≤ n ≤ 10 for each component. We

comment that the proposed scheme reduces the number of distinct colors to such

a large amount that our models are reasonable methods for the RGB color image

segmentation.

4.2 Experiments

We claim that all the 1D thresholding models mentioned in chapter 2 as

well as 2D thresholding models mentioned in chapter 3 can be directly applied on

each component of a RGB image. In this chapter, we continue to use the image

113016.jpg (see Figure 1.2 (a)) to test all the models.

In Figure 4.1, we list the red, green and blue components in (a), (b) and (c)

respectively. Images (d)-(f) are their corresponding 1D histograms. Images (g)-(i)

are their corresponding GLLA histograms. Images (j)-(l) are their corresponding

GLLV histograms. According to the 1D histogram of the red component (see Figure
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Table 4.1 – Mean values and thresholds values from 1D Tsallis-Havrda-Charvát
thresholding model.

Red Green Blue

Mean values 68, 134, 208 68, 117, 170, 237 68, 110, 230

Threshold values 100, 168 96, 136, 211 93, 182

4.1 (d)), we use 3 as the thresholding level. In the same manner, we choose 4 as

the thresholding level for the green component and 3 as the thresholding level for

the blue component. Then the segmented RGB image has at most 3× 4 × 3 = 36

color levels.

We use Tsallis-Havrda-Charvát based models from section (2.3), section

(3.1.3) and section (3.2.3) to show experiment results for the RGB image of 113016.jpg.

Experiment results in Figure 4.2 are obtained by using the model in section

(2.3): 1D Tsallis-Havrda-Charvát thresholding model. Images (a)-(c) in Figure 4.2

are the red, green and blue thresholded images respectively. Figure 4.2 (d) is a fusion

of the three components. Their 1D histograms are listed in (e)-(h) respectively.

Table 4.1 lists all the mean values and threshold values for each component image

from Figure 4.2. Table 4.2 lists 21 different color levels from the fusion of three

component images. We read the data from Table 4.2 vertically in groups of three.

For example, the first color level is a triplet (68, 68, 68), and the last color level is a

triplet (208, 237, 230).

Experiment results in Figure 4.3 are obtained by using the model in section

(3.1.3): GLLA Tsallis-Havrda-Charvátthresholding model. Images (a)-(c) in Figure

4.3 are the red, green and blue thresholded images respectively. Figure 4.3 (d) is a

fusion of the three components. Their 1D histograms are listed in (e)-(h) respec-

tively. Table 4.3 lists all the mean values and threshold values for each component

image from Figure 4.3. Table 4.4 lists 25 different color levels from the fusion of
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Table 4.2 – 21 colors from 1D Tsallis-Havrda-Charvát thresholding model.

Red
68, 68, 68, 68, 68, 134, 134, 134, 134, 134,

134, 134, 208, 208, 208, 208, 208, 208, 208, 208, 208

Green
68, 117, 117, 170, 170, 68, 68, 117, 117, 170,

170, 237, 68, 117, 117, 170, 170, 170, 237, 237, 237

Blue
68, 68, 110, 68, 110, 68, 110, 68, 110, 68,

110, 110, 68, 68, 110, 68, 110, 230, 68, 110, 230

Table 4.3 – Mean values and thresholds values from GLLA Tsallis-Havrda-Charvát
thresholding model.

Red Green Blue

Mean values 60, 137, 220 65, 121, 171, 234 22, 59, 105

Threshold values 85, 184 87, 146, 206 32, 80

three component images. We read the data from Table 4.4 vertically in groups of

three. For example, the first color level is a triplet (60, 65, 22), and the last color

level is a triplet (220, 234, 105).

Experiment results in Figure 4.4 are obtained by using the model in sec-

tion (3.2.3): GLLV Tsallis-Havrda-Charvát thresholding model. Images (a)-(c) in

Figure 4.4 are the red, green and blue thresholded images respectively. Figure 4.4

(d) is the fusion of the three components. Their 1D histograms are listed in (e)-

(h) respectively. Table 4.5 lists all the mean values and threshold values for each

component image from Figure 4.3. Table 4.6 lists 25 different color levels from the

fusion of three component images. We read the data from Table 4.6 vertically in

groups of three. For example, the first color level is a triplet (70, 62, 51), and the

last color level is a triplet (225, 203, 133).
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Table 4.4 – 25 colors from GLLA Tsallis-Havrda-Charvát thresholding model.

Red
60, 60, 60, 60, 60, 60, 137, 137, 137, 137, 137, 137, 137,

137, 137, 137, 137, 220 , 220, 220, 220, 220,220, 220, 220

Green
65, 65, 65, 121, 121, 121, 65, 65, 65, 121, 121, 121, 171,

171, 171, 234, 234, 121, 121, 171, 171, 171, 234, 234, 234

Blue
22, 59, 105, 22, 59, 105, 22, 59, 105, 22, 59, 105, 22,

59, 105, 59, 105, 59, 105, 22, 59, 105, 22, 59, 105

Table 4.5 – Mean values and thresholds values from GLLV Tsallis-Havrda-Charvát
thresholding model.

Red Green Blue

Mean values 70, 142, 225 62, 105, 154, 203 51, 96, 133

Threshold values 103, 191 79, 132, 167 69, 116

Table 4.6 – 25 colors from GLLV Tsallis-Havrda-Charvát thresholding model.

Red
70, 70, 70, 70, 70, 70, 70, 142, 142, 142, 142, 142, 142,

142, 142, 142, 142, 142, 225 , 225, 225, 225, 225, 225, 225

Green
62, 62, 105, 105, 154, 154, 203, 62, 62, 105, 105, 105, 154,

154, 154, 203, 203, 203, 105, 105, 154, 154, 203, 203, 203

Blue
51, 96, 51, 96, 51, 96, 96, 51, 96, 51, 96, 133, 51,

96, 133, 51, 96, 133, 96, 133, 96, 133, 51, 96, 133
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.1 – Red, Green and Blue component of 113016.jpg and their corresponding
1D histograms, GLLA hstograms and GLLV histograms
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.2 – Thresholded component images and the fusion RGB image from 1D
Tsallis-Havrda-Charvát thresholding model

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3 – Three thresholded component images and the fusion RGB image from
GLLA Tsallis-Havrda-Charvát model
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.4 – Three thresholded component images and the fusion RGB image from
GLLV Tsallis-Havrda-Charvát model
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CHAPTER 5

COMPARISON OF MODELS

In this chapter, we evaluate the effectiveness of each model objectively by

comparing the averages of the four performance indices (PRI, GCE, V OI, and

BDE) [44, 48] of the 300 images from The Berkeley Segmentation Dataset and

Benchmark (BSDS300). We claim that there are 300 RGB images in the BSDS300.

For each image from the BSDS300, we apply the proposed model to obtain the

corresponding thresholded image. Then we convert the thresholded image into

the corresponding labeled image, whose number of gray levels is the same as the

thresholded image’s gray level. Next we compare each labeled image with the

corresponding benchmark images from BSDS300 to calculate the four performance

indices.

We point out that the PSO algorithm does a random search for the optimal

thresholding values, and, as a result, the four performance indices change values

after each running of the program. This implies that comparing the four perfor-

mance indices of a single image among different models does not give any practical

guidance. Therefore, we repeat this process for all 300 images from BSDS300 to

calculate the average four performance indices (PRI, GCE, V OI, and BDE) which

are used in comparison among different models.

All the images have sizes 481*321 or 321*481 and are normalized to have the

sizes 320*214 or 214*320 in the calculation. For each image, a set of benchmark

images (ground truth, human segmentation), which are compiled by different human

observers, are provided. Figure 5.1 illustrates six benchmark images for the image
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Figure 5.1 – Benchmark images of 113016.jpg from BSDS300.

113016.jpg.

We start this chapter by introducing the four performance indices firstly.

Then we compute the averages of the four performance indices of 300 images for

different models from this dissertation (see chapter 2 and chapter 3). Then, we give

a conclusion based on the quantitative analysis.

We continue to use image 113016.jpg as an example. Figure 5.2 demonstrates

the original image (a), the thresholded image (b) and the labeled image (c) with

their corresponding 1D histograms. We claim that Figure 5.2 (b) is the same image

as Figure 4.3 (d). From Table 4.4, we know that Figure 5.2 (b) has 25 color levels;

that means the labeled image Figure 5.2 (c) also has 25 different labelings. We

choose three labels (Figure 5.3 (a) with label 2, (b) with label 15 and (c) with label

25) to illustrate how we apply the labeled image in future applications.

5.1 Four performance indices

Consider N pixels {xm : m = 1, · · · , N} and two clusterings of these pixels:

C = {C1, · · · , CK1} (benchmark image) and C ′ = {C ′1, · · · , C ′K2
} (segmented im-

age). Thus each segment (Ci, i = 1, · · · , K1 or C ′j, j = 1, · · · , K2) is a set of some

pixels.

Assume that nij counts the number of pixels simultaneously in the ith cluster
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(a) (b) (c)

(d) (e) (f)

Figure 5.2 – The original 113016.jpg, thresholded image and labeled image (thresh-
olding levels are R: 3, G: 4, B: 3)

(a) (b) (c)

Figure 5.3 – Label 2, 15 and 25 for the thresholded image

of C and the jth cluster of C ′ ( i = 1, · · · , K1 and j = 1, · · · , K2). We use a one-

dimensional clustering example below to show the idea behind each performance

index. Let C = {(a, b, c), (d, e, f)} and C ′ = {(a, b), (c, d, e), (f)} with N = 6; then

n11 = 2 because pixels a and b are in the 1st cluster of C and the 1st cluster of

C ′ simultaneously. In the same way, we calculate the values for all the nij, {i =

1, 2; j = 1, 2, 3}. Then it gives us a matrix:

[nij] =

 n11 n12 n13

n21 n22 n23

 =

 2 1 0

0 2 1

 .
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5.1.1 Probability rand index (PRI)

PRI [26, 40] counts the fraction of pairs of pixels whose labelings are con-

sistent between C ′ and C. William Rand [26] proposed a similarity function that

converted the problem of comparing two partitions with possibly different numbers

of classes into a problem of computing pairwise label relationships. In one word,

PRI counts the probability of pairs of pixels whose labelings are consistent between

C ′ and C. PRI has values that are between 0 (when C and C ′ are totally different)

and 1 (when C and C ′ are identical ). We conclude that the higher the value of

PRI is, the better the segmentation result is.

When C consists of a single cluster {(a, b, c, d, e, f)} and C ′ consists of clusters

containing only single points {(a), (b), (c), (d), (e), (f)}, or vice versa, we think of C

and C ′ as two totally different clusterings. William Rand defined PRI between C

and C ′ as:

PRI(C,C ′) : =
1(
n
2

)
(N

2

)
− 1

2

∑
i

(∑
j

nij

)2

− 1

2

∑
j

(∑
i

nij

)2

+
∑
i

∑
j

n2
ij


=

15− 9− 7 + 10

15
= 0.6 ,

where i = 1, 2 and j = 1, 2, 3.

5.1.2 Global consistency error (GCE)

GCE measures the extent to which one segmentation can be viewed as a

refinement of the other [24, 40]. Segmentations which are related in this manner

are considered to be consistent since they could represent the same natural image

segmentation at different scales.

For a given pixel xm, we consider the segments in C and C ′ that contain that

pixel. If one segment is a proper subset of the other, then the pixel lies in an area

of refinement, and GCE is zero. If there is no subset relationship, then the two
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regions overlap in an inconsistent manner. In this case, GCE is non-zero. When C

and C ′ don’t have any overlapped region, GCE is 1. Thus, the lower the value of

GCE is, the better the segmentation result is. GCE between C and C ′ is defined

as:

GCE(C,C ′) :=
1

N
min

{
N∑
m=1

LRE(C,C ′, xm),
N∑
m=1

LRE(C ′, C, xm)

}
, (5.1)

where LRE is the local refinement error:

LRE(C,C ′, xm) :=
|R(C, xm)\R(C ′, xm)|

|R(C, xm)|
,

with R(C, xm) as the set of pixels corresponding to the segment in C that contains

pixel xm. \ is set difference, and | | is the cardinality of a set. For the 1D clustering

example with C = {(a, b, c), (d, e, f)} and C ′ = {(a, b), (c, d, e), (f)}, we have:

R(C, a) = R(C, b) = R(C, c) = (a, b, c) ,

R(C, d) = R(C, e) = R(C, f) = (d, e, f) ,

R(C ′, a) = R(C ′, b) = (a, b) ,

R(C ′, c) = R(C ′, d) = R(C ′, e) = (c, d, e) ,

R(C ′, f) = (f) .

Then

LRE(C,C ′, a) :=
|R(C, a)\R(C ′, a)|
|R(C, a)|

=
|(a, b, c)\(a, b)|
|(a, b, c)|

=
|(c)|
|(a, b, c)|

=
1

3
.

In the same manner, we calculate the local refinement error, LRE, for all the pixels:

LRE(C,C ′, b) =
1

3
, LRE(C,C ′, c) =

2

3
,

LRE(C,C ′, d) =
1

3
, LRE(C,C ′, e) =

1

3
, LRE(C,C ′, f) =

2

3
.
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Since LRE is not symmetric in terms of C and C ′, then we have another six different

local refinement errors:

LRE(C ′, C, a) = 0, LRE(C ′, C, b) = 0, LRE(C ′, C, c) =
2

3
,

LRE(C ′, C, d) =
1

3
, LRE(C ′, C, e) =

1

3
, LRE(C ′, C, f) = 0 .

Then finally, according to definition (5.1), we have:

GCE(C,C ′) :=
1

6
min


8

3
,
4

3

 =
1

6
·

4

3
=

2

9
= 0.222 .

5.1.3 Variation of information (VOI)

The V OI, introduced by Meila in 2003 [25], measures the distance between

two clustering C and C ′ in terms of the information difference between them. V OI

has values in [0,∞]. V OI is 0 when C and C ′ are identical segmentations. So, the

lower the value of V OI is, the better the segmentation result is. In [25], V OI is

defined as:

V OI = H(C) +H(C ′)− 2 · I(C,C ′) , (5.2)

where H and I represent respectively the Shannon entropies and the mutual infor-

mation between the two clusterings.

Assume that

ai =
∑
j

nij, bj =
∑
i

nij ,

for the 1D clustering example with C = {(a, b, c), (d, e, f)} and C ′ = {(a, b), (c, d, e), (f)},

we have: a1 = 3, a2 = 3 and b1 = 2, b2 = 3, b3 = 1. Then H(C), H(C ′) and I(C,C ′)
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are given by:

H(C) = −
∑
i

ai

N
· log2

ai

N

= −

3

6
· log2

3

6
+

3

6
· log2

3

6

 = log2 2 = 1 ,

H(C ′) = −
∑
j

bj

N
· log2

bj

N

= −

2

6
· log2

2

6
+

3

6
· log2

3

6
+

1

6
· log2

1

6

 = 1.4591 ,

I(C,C ′) =
∑
i

∑
j

nij

6
· log2


nij

6

ai

6
·
bj

6


= (

1

3
log2 2 +

1

6
log2

2

3
) + (

1

3
log2

4

3
+

1

6
log2 2)

= 0.5409 .

Finally, according to definition (5.2), we have :

V OI = H(C) +H(C ′)− 2 · I(C,C ′) = 1 + 1.4591− 2 ∗ 0.5409 = 1.3773 ,

where we assume that 0 ∗ log2 0 = 0.

5.1.4 Boundary displacement error (BDE)

BDE [12, 17] measures the average displacement error of boundary pixels

between two segmented images by defining the error of a boundary pixel as the

distance between it and the closest pixel in the other boundary image. In this

paper, we use the weighted boundary segmentation error rates [17]. When C and
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C ′ are totally different, then BDE is 1. When C and C ′ are identical, then BDE

is 0. We conclude that the lower the value of BDE is, the better the segmentation

result is.

Assume that GB is the boundary for the benchmark image C, and B is

the boundary for the segmented image C ′. Then for the 1D clustering example

with C = {(a, b, c), (d, e, f)} and C ′ = {(a, b), (c, d, e), (f)}, we can label them as

CL = (1, 1, 1, 2, 2, 2) and C ′L = (1, 1, 2, 2, 2, 3). This is because, in the clustering C,

pixels a, b and c are classified into the first cluster (a, b, c). We label these three

pixels as 1 in CL, and at the same time, pixels d, e and f are in the second cluster

(d, e, f). We label them as 2 in CL. For the clustering C ′, we use the same method

to get C ′L.

Next we apply the difference method to approximate the boundaries GB and

B. For pixel a, we apply backward difference on the first element 1 from CL, then

we have 1 − 1 = 0. For pixel f , we apply forward difference on the last element 2

from CL, then we have 2−2 = 0. For pixels b, c, d and e, we apply central difference

on the non-boundary elements from CL. Then for pixel b, we have
1− 1

2
= 0. For

pixels c and d, we have
2− 1

2
= 0.5. For pixels e, we have

2− 2

2
= 0. Thus we

obtain the boundary GB = (0, 0, 0.5, 0.5, 0, 0). In the same manner, we can derive

B = (0, 0.5, 0.5, 0, 0.5, 1).

We point out that the positions of zero elements in GB and B represent the

corresponding non-boundary pixels in C and C ′ respectively, while the positions of

non-zero elements in GB and B represent the corresponding boundary pixels in C

and C ′ respectively. If we assign ‘1’ to the non-zero elements in GB and B, then

we have boundaries as follows: GB = (0, 0, 1, 1, 0, 0) and B = (0, 1, 1, 0, 1, 1). Then∣∣GB
∣∣ = 2 and |B| = 4.
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In [17], BDE is defined as:

BDE =
emB + efB

2
,

where emB =
|T1|
|GB|

is the missing boundary rate, and T1 = {x|(x ∈ GB)
∧

(x /∈ B)}

is a set of pixels where the boundary pixels in GB (or C) are mistakenly classified

as non-boundary pixels in B (or C ′). efB =
|T2|
|B|

is the false boundary rate, and

T2 = {x|(x ∈ B)
∧

(x /∈ GB)} is a set of pixels where the non-boundary pixels in

GB (or C) are mistakenly classified as boundary pixels in B (or C ′).

We claim that
∧

means ‘and’ in T1 and T2. Then we understand T1 as a set

of pixels that change from 1 in GB to 0 in B and T2 as a set of pixels that change

from 0 in GB to 1 in B. Accordingly, in the 1D clustering example, we calculate T1

and T2 as follows:

T1 = (GB). ∗ (∼ B) = (0, 0, 1, 1, 0, 0). ∗ (1, 0, 0, 1, 0, 0) = (0, 0, 0, 1, 0, 0) ,

T2 = (B). ∗ (∼ GB) = (0, 1, 1, 0, 1, 1). ∗ (1, 1, 0, 0, 1, 1) = (0, 1, 0, 0, 1, 1) ,

where “∼” is a complement operation. Then |T1| = 1 and |T2| = 3. In T1, pixel d

is a boundary pixel in the benchmark C, but it is mistakenly classified as a non-

boundary pixel in the segmented C ′. So we think of pixel d as the missing boundary

pixel. In T2, pixels b, e and f are non-boundary pixels in the benchmark C, but it

is mistakenly classified as boundary pixels in the segmented C ′. So we think of b, e

and f as the false boundary pixels.

We also notice that pixel a is classified as a non-boundary pixel in both the

benchmark C and the segmented C ′, and pixel c is classified as a boundary pixel in

both C and C ′. So pixels a and c are the only two correctly classified pixels in the

example.

Next, we calculate the missing boundary rate emB and false boundary rate efB
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as follows:

emB =
|T1|
|GB|

=
1

2
; efB =

|T2|
|B|

=
3

4

Finally we have:

BDE =
emB + efB

2
=

1
2

+ 3
4

2
= 0.625 .

5.2 Comparison of models

In order to compare the proposed method with [48], we convert the BSDS300

RGB images to their corresponding gray-level images firstly, then apply the 3-level

segmentation on the gray-level images.

Table 5.1 lists the average four performance indices of the 1D Tsallis-Havrda-

Charvát based model (section 2.3), GLLA Rényi based model (section 3.1.2), GLLA

Tsallis-Havrda-Charvát based model (section 3.1.3), GLLV Rényi based model (sec-

tion 3.2.2), GLLV Tsallis-Havrda-Charvát based model (section 3.2.3) and the paper

[48]. The bold values from the table demonstrate the best results of the compar-

ison among four models. In “No free lunch theorems for optimization” [41], one

mentioned that an optimization algorithm cannot perform its best in every aspect

for a problem. We notice from the Table 5.1 that basically each model performs

better than other models in terms of one performance index. Thus, we conclude

that all the models mentioned in this dissertation are reliable and effective image

segmentation methods.
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Table 5.1 – Average performance indices for different algorithms.

Model PRI GCE VOI BDE

1D Tsallis-Havrda-Charvát based model 0.5849 0.3122 2.7840 10.0331

GLLA Rényi based model 0.5517 0.2885 2.7738 10.6270

GLLA Tsallis-Havrda-Charvát based model 0.5574 0.2762 2.7270 10.3590

GLLV Rényi based model 0.5574 0.2873 2.7728 11.4973

GLLV Tsallis-Havrda-Charvát based model 0.5585 0.2934 2.7908 11.1799

GLLA K-L divergence model [48] 0.5975 0.4012 4.2763 11.5203
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this chapter, we give a conclusion on the entire dissertation firstly, then

we give some idea for our future work.

6.1 Conclusion

In this dissertation, we mention nine different types of multi-level thresh-

olding models based on the Shannon entropy, the Rényi entropy and the Tsallis-

Havrda-Charvát entropy. We use the 1D histogram, the GLLA histogram and the

GLLV histogram to construct each model. We apply the PSO algorithm to obtain

the thresholded images in a reasonable time period.

Because the Rényi and the Tsallis-Havrda-Charvát entropy become the Shan-

non entropies when degree α is close to 1 [18] (see equation (1.10) and equa-

tion (1.14)), Rényi and Tsallis-Havrda-Charvát entropic models have better per-

formances than the Shannon entropic model. We claim that we use α = 0.1 for all

the Rényi and Tsallis-Havrda-Charvát entropic models. We compare average four

performance indices from the GLLA Tsallis-Havrda-Charvát based model (section

3.1.3) with the indices from the Shannon based model (section 3.1.1) in Table 6.1

to demonstrate that Tsallis-Havrda-Charvát entropic model is more useful than the

Shannon based model. Values in bold imply better results. We choose 100 as the

iteration number for all the experiments after testing different values. In the future,

we will do more research on how to choose the most proper values for α and how
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Table 6.1 – Comparison of the average performance indices between the Tsallis-
Havrda-Charvát based model and the Shannon based model.

Model PRI GCE VOI BDE

GLLA Tsallis-Havrda-Charvát based model 0.5574 0.2762 2.7270 10.3590

GLLA Shannon based model 0.5432 0.2685 2.7357 10.6473

to decide the iteration value rigorously.

6.2 Future work

In this section, we discuss the symmetric padding method for the image

boundary pixels and several different types 2D histograms.

6.2.1 Symmetric padding method

In section 1.1, we mentioned the zero padding method for the boundary

pixels of a matrix f ; and we use the matrix fzeropad to build the GLLA and GLLV

histograms. Now we consider using the symmetric padding method on the image

boundary pixels to build each thresholding model. Symmetric padding is mainly

about padding the matrix boundaries with the mirror reflections of itself. We use

the matrix f from section 1.1 as an example to demonstrate this idea. For example:

f =



1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25


⇒ fsympad =



1 1 2 3 4 5 5

1 1 2 3 4 5 5

6 6 7 8 9 10 10

11 11 12 13 14 15 15

16 16 17 18 19 20 20

21 21 22 23 24 25 25

21 21 22 23 24 25 25



.
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6.2.2 Thresholding models based on other types of 2D histograms

In recent years, several thresholding models by applying other types of 2D

histograms, such as Gray-Level & Local-Variance histogram (GLLV) [49], Gray-

Level & Local-Entropy histogram (GLLE) [5], Gray-Level & Spatial-Correlation

histogram (GLSC) [14, 42], Gray-Level & Gradient-Magnitude histogram (GLGM)

[43] and 2D Direction histogram (2DD) [46] and so on are developed.

We already applied the GLLV histogram in section 3.2 to construct three

thresholding models based on Shannon, Rényi and Tsallis-Havrda-Charvát en-

tropies. Our future work will focus on applying these 2D histograms (GLLE, GLSC

and GLGM) to construct novel thresholding models. This can be done by moving

all the thresholding techniques based on the GLLA histogram to the ones based on

these 2D histogram in parallel. We take the image 113016.jpg for example again.

Figure 6.1 illustrates histograms’ planes of GLLE, GLSC and GLGM in (a)-(c); the

local-entropy image, the spatial-correlation image and the gradient-magnitude im-

age in (d)-(f); and their corresponding 3D demonstrations of the histogram planes

(g)-(i).

For the GLSC histogram, the object and background information are mostly

concentrated at the lower part on the histogram plane with only a few values, which

are {1, · · · , 9}. We can give the same discussion to the GLLE and the GLGM

histograms. Thus, one of the benefits of applying these 2D histograms in the model

is that the algorithm will become more time-efficient because we will obtain more

simplified versions of the equation (3.3) as well as the equation (2.14).

Next, we give a brief introduction on GLLE, GLSC and GLGM histograms

and discuss how to construct them individually.

1. The Gray-Level & Local-Entropy histogram (GLLE)

We know that the entropy is a measure of histogram uniformity. The Gray-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.1 – From left to right: first row: GLLE, GLSC and GLGM histogram
planes; second row: local-entropy image, spatial-correlation image and gradient-
magnitude image; thirsd row: the corresponding 3D demonstrations for each his-
togram plane.

Level & Local-Entropy histogram (GLLE) is constructed from the gray level of each

pixel and the local entropy in its neighborhood [5]. Let g(x, y) be the local entropy

function from the 3× 3 neighborhood of a pixel located at the point (x, y). Assume

that {q1, · · · , qn} is the normalized probability for the gray levels from the 3 × 3

neighborhood of pixel (x, y). For a gray-level image with n = 256, the local entropy

function g(x, y) is calculated as

g(x, y) =

⌊
−

n∑
i=1

qi · log2qi

⌋
, (6.1)
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then the GLLE histogram is formulated as density function:

h(t, s) = Prob (f(x, y) = t and g(x, y) = s) ,

where Prob refers to the number of pixels that satisfy f(x, y) = t and g(x, y) = s

with t, s ∈ G. Then the normalized GLLE histogram is approximated by using the

formula as follows:

ĥ(t, s) =
h(t, s)

total # of pixels of f(x) (M ×N)
.

The joint probability mass function p(t, s) is given by:

p(t, s) = ĥ(t, s),

where t, s = 0, 1, · · · , 255.

Now we consider the 3 × 3 neighborhood of the entry f(1, 1) = 1 with zero

padding:

fzeropad =



0 0 0 0 0 0 0

0 1 2 3 4 5 0

0 6 7 8 9 10 0

0 11 12 13 14 15 0

0 16 17 18 19 20 0

0 21 22 23 24 25 0

0 0 0 0 0 0 0



.

Because in the 3× 3 neighborhood for entry 1, there are five entries with gray level

of 0, one entry with gray level of 1, one entry with gray level of 2, one entry with

gray level of 6 and one entry with gray level of 7, the normalized probability from

this 3 × 3 neighborhood is given by q1 = 5
9
, q2 = 1

9
, q3 = 1

9
, q7 = 1

9
, q8 = 1

9
, and the

rest of the qi = 0, i ∈ {1, · · · , 26}. Then the local entropy for entry 1 is

g(1, 1) =

⌊
−

26∑
i=1

qi · log2qi

⌋
=

⌊
−(

5

9
) · log2(

5

9
)− 4 · (1

9
) · log2(

1

9
)

⌋
= b1.88c = 2 .
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In the same manner, we can obtain the local entropies for all the entries of f , so

the local entropy matrix gLE for the original matrix f is as follows:

gLE =





1.88 2.6416 2.6416 2.6416 1.88

2.6416 3.1699 3.1699 3.1699 2.6416

2.6416 3.1699 3.1699 3.1699 2.6416

2.6416 3.1699 3.1699 3.1699 2.6416

1.88 2.6416 2.6416 2.6416 1.88




=



2 3 3 3 2

3 3 3 3 3

3 3 3 3 3

3 3 3 3 3

2 3 3 3 2


.

2. The Gray-Level & Spatial-Correlation histogram (GLSC)

The Gray-Level & Spatial-Correlation histogram (GLSC) is constructed from

the gray level of each pixel and its correlation with other pixels from its N × N

neighborhood, where N is a positive odd integer [14, 42]. Normally, this correlation

is named as a local similarity function.

Let g(x, y) be the local similarity function from the 3× 3 neighborhood of a

pixel located at the point (x, y). Then g(x, y) is calculated as the number of pixels

of which the gray levels are close to f(x, y), which is the gray level of the pixel

located at the point (x, y):

g(x, y) =
1∑

i=−1

1∑
j=−1

# (|f(x+ i, y + j)− f(x, y)| ≤ ζ) , (6.2)

where ζ is the level of the similarity in the neighborhood and defined as:

# (|f(x+ i, y + j)− f(x, y)| ≤ ζ) =

 1, if |f(x+ i, y + j)− f(x, y)| ≤ ζ

0, if |f(x+ i, y + j)− f(x, y)| > ζ
(6.3)

with i, j ∈ {−1, 0, 1}. For the 3 × 3 neighborhood, the maximum value of g(x, y)

is 9 when ζ ≥ max |f(x+ i, y + j)− f(x, y)| and the minimum value of g(x, y) is 0

when ζ < min |f(x+ i, y + j)− f(x, y)|.

Then the GLSC histogram is formulated as density function:

h(t, s) = Prob (f(x, y) = t and g(x, y) = s) ,
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where Prob refers to the number of pixels that satisfy f(x, y) = t and g(x, y) = s

with t ∈ G, s ∈ {0, · · · , 9}. Then the normalized GLSC histogram is approximated

by using the formula:

ĥ(t, s) =
h(t, s)

total # of pixels of f(x) (M ×N)
.

The joint probability mass function p(t, s) is given by:

p(t, s) = ĥ(t, s),

where t = 0, 1, · · · , 255, s = 0, · · · , 9.

We use fzeropad mentioned before as an example. If we choose ζ = 2, then the

local similarity value for entry f(1, 1) = 1 is 7. Because in its 3× 3 neighborhood,

except for entries 6 and 7, there are 7 entries (0, 0, 0, 0, 0, 1, 2) with distances from

1 that are less than 2.

DistanceMatrix =

∣∣∣∣∣∣∣∣∣∣


0 0 0

0 1 2

0 6 7

−


1 1 1

1 1 1

1 1 1


∣∣∣∣∣∣∣∣∣∣

=


1 1 1

1 0 1

1 5 6

 .

In the same manner, we can obtain the local entropies for all the entries of f , so

the spatial correlation matrix gSC for the original matrix f is as follows:

gSC =



7 6 3 3 2

2 3 3 3 2

2 3 3 3 2

2 3 3 3 2

2 3 3 3 2


.

3. The Gray-Level & Gradient-Magnitude histogram (GLGM)

The Gray-Level & Gradient-Magnitude histogram (GLGM) is constructed

from the gray level and labeled gradient magnitude of each pixel. We use the
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convolution of the original image with two 3×3 kernels to approximate the derivative

of an image. Assume that we have two 3× 3 kernels which are sobel operators: one

for horizontal changes, and one for vertical:

hx =


1 0 −1

2 0 −2

1 0 −1

 , hy =


1 2 1

0 0 0

−1 −2 −1

 .

If we define f as the source image, then we use Gx to present the horizontal

derivative approximation of f and Gy to present the vertical derivative approxima-

tion of f respectively. Gx and Gy are computed as follows:

Gx = hx ∗ f, Gy = hy ∗ f ,

where ∗ denotes the 2-dimensional signal processing convolution operation. Then

the gradient magnitude matrix is given by GM =
√
G2
x +G2

y.

We apply Fibonacci numbers to label the gradient magnitude matrix GM

into a matrix whose entries have only 9 values that are assigned from {1, 2, · · · , 9}.

We name this labeled matrix as GML. Thus a sequence of 9 Fibonacci numbers is

used to set up the quantization bins: ~F ibo = {1, 1, 2, 3, 5, 8, 13, 21, 34}.

Suppose that GMmin is the mimimum value of GM and GMmax is the maxi-

mum value of GM , then the entire gradient magnitude entries from GM are scaled

into 1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 34 = 88 segments uniformly without overlap

as follows:

GMS =
GM −GMmin

step
,

where step = GMmax−GMmin

88
, and we name this matrix as GMS.

Consequently, the gradient magnitudes can be quantized as the index num-

bers of the bins where they are located. So the threshold values for partitioning

the gradient magnitude are {1, 2, 4, 7, 12, 20, 33, 54, 88}. For example, if the gra-

dient magnitude of a pixel is GMmin, then we have GMmin−GMmin

step
= 0. So we
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label 1 at this pixel. If the gradient magnitude of a pixel is GMmax, then we have

GMmax−GMmin

step
= 88. So we label 9 at this pixel. In this way, we obtain the GML.

Then, the segments are merged from low value to high value areas respec-

tively to form the quantization bins. Then the GLGM histogram is formulated as

density function:

h(t, s) = Prob (f(x, y) = t and g(x, y) = s),

where Prob refers to the number of pixels that satisfy f(x, y) = t and g(x, y) = s

with t ∈ G, s ∈ {1, · · · , 9}. Then the normalized histogram is approximated by

using the formula:

ĥ(t, s) =
h(t, s)

total # of pixels of f(x) (M ×N)
.

The joint probability mass function p(t, s) is given by:

p(t, s) = ĥ(t, s),

where t = 0, 1, · · · , 255, s = 1, · · · , 9.

We continue to use matrices f and fzeropad below as examples to illlustrate

how to construct the GLGM histogram:

f =



1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25


, fzeropad =



0 0 0 0 0 0 0

0 1 2 3 4 5 0

0 6 7 8 9 10 0

0 11 12 13 14 15 0

0 16 17 18 19 20 0

0 21 22 23 24 25 0

0 0 0 0 0 0 0



.

For entry 1 of matrix f , its horizontal derivative approximation is calculated as
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follows:

hx∗


0 0 0

0 1 2

0 6 7

 =


1 0 −1

2 0 −2

1 0 −1

∗


0 0 0

0 1 2

0 6 7

 = 0+(−2)∗6+(−1)∗7 = −19.

For entry 1 of matrix f , its vertical derivative approximation is calculated as follows:

hy∗


0 0 0

0 1 2

0 6 7

 =


1 2 1

0 0 0

−1 −2 −1

∗


0 0 0

0 1 2

0 6 7

 = 0+0+(−2)∗2+(−1)∗7 = −11.

Then GM(1, 1) =
√

(−19)2 + (−11)2 ≈ 21.9545. In the same manner, we obtain

the horizontal and vertical derivative approximations of f as well as the gradient

magnitude matrix GM as follows:

Gx = hx ∗ f =



−19 −28 −32 −36 −29

−30 −40 −40 −40 −30

−30 −40 −40 −40 −30

−30 −40 −40 −40 −30

49 68 72 76 59


,

Gy = hy ∗ f =



−11 −6 −6 −6 17

−28 −8 −8 −8 36

−48 −8 −8 −8 56

−68 −8 −8 −8 76

−61 −6 −6 −6 67


,

GM =
√
G2
x +G2

y =



21.9545 28.6356 32.5576 36.4966 33.6155

41.0366 40.7922 40.7922 40.7922 46.8615

56.6039 40.7922 40.7922 40.7922 63.5295

74.3236 40.7922 40.7922 40.7922 81.7068

78.2432 68.2642 72.2496 76.2365 89.2749


.
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Since GMmin = 21.9545 ad GMmax = 89.2749, we use a small step, 89.2749−21.9545
88

=

0.7650, to scale the entries of GM within [0, 88]. Thus we obtain the GMS matrix

as follows:

GMS =
GM − 21.9545

0.7650
=



0 8.7335 13.8602 19.0091 15.2430

24.9438 24.6243 24.6243 24.6243 32.5580

45.2931 24.6243 24.6243 24.6243 54.3461

68.4560 24.6243 24.6243 24.6243 78.1072

73.5796 60.5352 65.7448 70.9565 88.0000


.

Then according to the ~F ibo = {1, 1, 2, 3, 5, 8, 13, 21, 34}, we partition the gradient

magnitude matrix into 1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 34 = 88 segments in total

by using the threshold values {1, 2, 4, 7, 12, 20, 33, 54, 88}. So we assign label 0 to

the entries from GMS with values in [0, 1]. We assign label 1 to the entries from

the GMS with values in [1, 2]. We assign label 2 to the entries from the GMS with

values in [2, 4], and so on, until we assign label 9 to the entries from GMS with

values in [54, 88].

Finally the gradient magnitude matrix is as follows:

gGM =



1 5 6 6 6

7 7 7 7 7

8 7 7 7 9

9 7 7 7 9

9 9 9 9 9


.

We notice that for the original matrix f , the pixels have values from 1 to 25.

But, the corresponding local entropy values are either 2 or 3 (see local entropy ma-

trix gLE). For the spatial correlation matrix gSC , pixels have values from {2, · · · , 7},

and for the gradient magnitude matrix gGM , pixels have values from {1, · · · , 9}. In

conclusion, GLLE, GLSC and GLGM histograms based models will simplify the

entire image thresholding algorithms.
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