
University of Louisville
ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2015

Improved self-consistency for SCED-LCAO.
Lyle C. Smith
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Part of the Applied Mathematics Commons

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional
Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact
thinkir@louisville.edu.

Recommended Citation
Smith, Lyle C., "Improved self-consistency for SCED-LCAO." (2015). Electronic Theses and Dissertations. Paper 2093.
https://doi.org/10.18297/etd/2093

https://ir.library.louisville.edu?utm_source=ir.library.louisville.edu%2Fetd%2F2093&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F2093&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F2093&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=ir.library.louisville.edu%2Fetd%2F2093&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/2093
mailto:thinkir@louisville.edu

IMPROVED SELF-CONSISTENCY FOR SCED-LCAO

By

Lyle C. Smith, III
B.S. Physics, Virginia Tech, 1995

M.S. Mathematics, Virginia Tech, 1997
M.S. Physics, University of Louisville, 2005

M.Div., Southern Baptist Theological Seminary, 2005

A Dissertation
Submitted to the Faculty of the

College of Arts and Sciences of the University of Louisville
in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy in Applied and Industrial Mathematics

Department of Mathematics
University of Louisville

Louisville, Kentucky

May 2015

Copyright 2015 by Lyle C. Smith III

.
This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 444

Castro Street, Suite 900, Mountain View, California, 94041, USA.

IMPROVED SELF-CONSISTENCY FOR SCED-LCAO

By

Lyle C. Smith, III
B.S. Physics, Virginia Tech, 1995

M.S. Mathematics, Virginia Tech, 1997
M.S. Physics, University of Louisville, 2005

M.Div., Southern Baptist Theological Seminary, 2005

A Dissertation Approved on

24 April 2015

by the following Dissertation Committee:

Dr. Shi-Yu Wu, Dissertation Director

Dr. Chakram Jayanthi

Dr. Lee Larson

Dr. Thomas Riedel

Dr. Prasanna Sahoo

Dr Ming Yu

ii

This dissertation is lovingly dedicated to my wife, Erin Smith. Her support,

encouragement, and constant love have sustained me throughout my life. Together with my

children, she has shown patience and love when none was deserved. She never wavered in

her belief in me and for that I cannot offer sufficient thanks.

iii

ACKNOWLEDGEMENTS

I would like to acknowledge the inspirational instruction and guidance of Dr. Shi-Yu

Wu. He has given me a deep appreciation and love for the beauty and detail of quantum me-

chanics in general and condensed matter theory specifically. His guidance was also essential

to this work.

I owe a great debt to Dr. Yu Ming. Her continued help and advice in the operation of

the molecular dynamics code was indispensable, especially when time was short. She has

always assisted with every request and I look forward to continuing our efforts together.

Dr. Chakram Jayanthi has been a fountain of suggestions and directions for improvement

of the research and this dissertation. Thanks also to her for introducing me to the joy of

scientific computing and for instruction in the finer points of solid state physics.

Professor Thomas Riedel and everybody in the University of Louisville Department of

Mathematics has supported me both academically and financially at every turn.

Dr. Lee Larson taught me both advanced real analysis and typesetting in LATEX, later

providing an assistantship where I could hone my skills in both. I truly enjoyed my time

spent working on The Real Analysis Exchange.

Dr. Prasanna Sahoo took interest in my work and provided valuable feedback on the

improvement of this work.

Finally, I would also like to acknowledge the support and assistance given me by my

co-workers Dr. Christopher Leahy, Paul Tandy, and Harrison Simrall. Their patient expla-

nations and mutual encouragement were absolutely necessary in the generation of all results

obtained.

iv

ABSTRACT

IMPROVED SELF-CONSISTENCY FOR SCED-LCAO

Lyle C. Smith, III

24 April 2015

In this document I describe a novel implementation of the generalized bisection method

for finding roots of highly non-linear functions of several variables. Several techniques were

optimized to reduce computation time. The implementation of the bisection method allows

for the calculation of heterogeneous systems with SCED-LCAO, since derivative-based

methods often fail for these systems.

Systems composed of Gallium and Nitrogen are currently receiving much interest due

to their behavior as semi-conductors and their ability to form nano-wires. The methods de-

veloped here were employed to create a set of SCED-LCAO parameters for homogeneous

Gallium and heterogeneous Gallium Nitride systems. These parameters were shown to pro-

vide SCED-LCAO with predictive power for future Gallium Nitride systems.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv
ABSTRACT . v
LIST OF TABLES . viii
LIST OF FIGURES . ix

1 INTRODUCTION . 1

1.1 Motivating Applications . 1

1.2 Basics of the Problem . 3

1.3 SCED-LCAO Theory . 6

1.4 Previous SCED Work . 10

1.5 Heterogeneous Systems . 11

2 SELF-CONSISTENCY . 13

2.1 The Self-Consistent Problem . 13

2.2 System Characteristics . 14

2.3 Reducing System Size . 15

2.4 Higher Dimensions . 17

2.5 Derivative Methods . 21

2.6 Generalized Bisection . 22

2.7 An Example Using Generalized Bisection 25

2.8 Generalized Bisection Relaxation . 26

2.9 Initial Vector . 28

2.10 Comparison of Methods . 30

3 GALLIUM NITRIDE . 32

3.1 Gallium . 36

3.2 Nitrogen . 42

vi

3.3 Gallium Validation . 46

3.4 Nitrogen Validation . 48

4 PREDICTION OF GALLIUM NITRIDE STRUCTURES 53

5 CONCLUSION . 57

5.1 Comparison of Methods . 57

5.2 Gallium Nitride . 58

5.3 Direction for Future Work . 58

REFERENCES . 60

A GALLIUM CLUSTER DATABASE . 67

B NITROGEN CLUSTER DATABASE . 70

C GENERALIZED BISECTION COMPUTER CODE 72

Total Cluster . 72

Root Multi . 80

D FINAL RESIDUALS . 97

CURRICULUM VITÆ . 101

vii

LIST OF TABLES

2.1 Comparison of Initial Vectors. 30

3.1 Initial SCED-LCAO parameters for gallium. 40

3.2 Scale weight factors for gallium. 41

3.3 Final SCED-LCAO parameters. 42

3.4 Scale weight factors for gallium nitride. 45

D.1 Final bulk property residuals. 97

D.2 Final Gallium cluster property residuals. 97

D.3 Final Gallium cluster property residuals. 98

D.4 Final Gallium Nitride cluster property residuals. 99

D.5 Final Gallium Nitride cluster property residuals. 100

viii

LIST OF FIGURES

1.1 Nanocar . 1

1.2 Carbon Nanotube . 2

2.1 Example one-dimensional self-consistency curve. 15

2.2 Ga1N2 cluster with D∞ h symmetry. 16

2.3 A self-consistency curve for Ga8 D4h. 17

2.4 SC heat plot for dimension one of B2N3 C2v. 18

2.5 SC heat plot for dimension two of B2N3 C2v. 18

2.6 Isocline plot for Ga4 C2v. 19

2.7 Isocline plot for Ga7 C3v. 20

2.8 Charge Sloshing for Ga8 D4h. 21

2.9 Initial domain for two-dimensional Generalized Bisection. 23

2.10 Two-dimensional Generalized Bisection. 24

2.11 Example of Two-dimensional Root Finding. 25

2.12 Example of Two-dimensional Generalized Bisection. 26

2.13 Relaxation in Generalized Bisection. 27

2.14 Structure of Fitting Procedure. 29

3.1 Ga4N4 D3d cluster found with Gaussian™. 33

3.2 Three-atom cluster with D∞h symmetry. 35

3.3 Gallium dimer energy versus atomic separation. 36

3.4 β-gallium energy versus lattice scaling. 37

3.5 Ga3 C2va . 38

3.6 Ga8 D2h . 38

3.7 Ga6N6 D3d . 44

ix

3.8 Ga13 Validation . 47

3.9 Ga20 Validation . 47

3.10 Pair-Distribution functions for Ga13 (a) and Ga20 (c) and angle-distribution func-

tions for Ga13 (b) and Ga20 (d). 48

3.11 Ga12N12 Validation . 49

3.12 Pair-Distribution and Angle-Distribution functions for Ga12N12. 50

3.13 Hexagonal wurtzite structure for gallium nitride. 51

3.14 Block of gallium nitride. 51

3.15 GaN bulk energy versus lattice scaling. 52

4.1 Pair-Distribution and Angle-Distribution functions for Ga16N16. 54

4.2 Pair-Distribution and Angle-Distribution functions for Ga24N24. 55

4.3 Density of States results for SCED results. 55

4.4 GaN band gap versus number of GaN pairs N. 56

A.1 Ga3 D3h . 67

A.2 Ga5 D5h . 67

A.3 Ga5 D4h . 67

A.4 Ga5 C2v . 67

A.5 Ga6 C2v a . 68

A.6 Ga6 D3h . 68

A.7 Ga6 C2v b . 68

A.8 Ga6 D3d . 68

A.9 Ga5 D2d . 68

A.10 Ga7 C3v . 68

A.11 Ga7 Cs . 69

A.12 Ga8 D2h . 69

B.1 Ga1N3 C2v b . 70

B.2 Ga1N3 Pyramidal . 70

x

B.3 Ga1N3 C∞h . 70

B.4 Ga3N1 C∞h . 70

B.5 Ga3N1 D3h . 70

B.6 Ga1N4 C∞h . 70

B.7 Ga2N3 C∞h . 71

B.8 Ga2N3 D∞h . 71

B.9 Ga3N2 D∞h . 71

B.10 Ga4N1 C2v . 71

B.11 Ga4N1 C∞h . 71

B.12 Ga6N6 D3d . 71

xi

CHAPTER 1

INTRODUCTION

1.1 – Motivating Applications

As physics pushes into the nano scale and begins to create objects on the order of 10-9

meters, classical modeling of these atomic systems begins to break down. Numerous solid

state phenomena can be predicted only with quantum mechanics. The creation of complex

machinery comprised of only hundreds of atoms is rapidly becoming a reality. Recent re-

search has seen the creation of a nanocar by a research group at Rice University (see fig-

ure 1.1)[1] that can crawl along material surfaces. Exciting opportunities exist in manufac-

turing, medicine, electronics, and other areas for this emerging technology.

Figure 1.1: Nanocar

The rediscovery of Carbon Nanotubes (CNTs) in 1991 has resulted in a blossoming

field of applications. Along with this renewed interest, there is a great need for modeling

capable of predicting electrical, chemical, thermal, and other properties of these structures

(see figure 1.2). New applications for CNTs are being discovered at a rapid pace. These

include photo-voltaic cells, transistors, chemical sensors, and protective clothing.

1

Figure 1.2: Carbon Nanotube

Another focus of recent research is with heterogeneous gallium nitride structures. Gal-

lium nitride is a semiconductor that is known to be able to handle high thermal stress and

high voltage. Thus, it is ideal for power amplifiers, especially when operating at high fre-

quencies. As the structural limit of silicon manufacturing of microchips becomes a larger

factor, gallium nitride is seen as a possible substitute that should allow higher frequency

computing. Gallium nitride is also resistant to ionizing radiation, making it an excellent

choice for electronics operating in space. Enhancement mode GaN transistors are poised to

replace standard MOSFETs, providing improved efficiency under higher load. This tech-

nology is proving invaluable for the construction of the Smart Power Grid. Gallium Nitride

has also been shown to form nanotubes [2]. These have been employed to create blue and

ultraviolet light emitting diodes and for stimulated emission in blue lasers. Gallium nitride

is proving to be a versatile and valuable material. Research into its various properties is

rapidly expanding.

Given the many and emerging technologies that rely heavily on nano-scale architectures

and quantum mechanical effects, there exists a need for a computation scheme that can

accurately model these systems quickly. Even systems as large as thousands of atoms will

behave in strictly quantum mechanical ways. In order to explain and predict this behavior,

2

we need a method that can calculate properties for thousands of atoms while maintaining

the salient quantum mechanical flavor.

1.2 – Basics of the Problem

Quantum Mechanics has shown itself to be an invaluable framework for understanding

physics at the atomic and molecular levels. Modern physics relies on the assumptions and

conclusions of quantum mechanics in nearly every field. While the results of quantum me-

chanics have proven to be very reliable, the mathematics employed often leads to highly

complex and intractable problems.

The Schrödinger Equation is used analogously to Newton’s Second Law (F = ma) and

thus forms the basis of most quantum mechanical calculations. It is a partial differential

equation relating the time derivative of the wave function to the energy operator (Hamilto-

nian) operating on the wave function. The wave function ψ itself is a mathematical construct

that when multiplied by its complex conjugate yields the probability density function for the

system. For example, if #»r represents the position vector of the particles in the system, then

the Schrödinger Equation has the form

i~
∂

∂t
ψ(#»r , t) = Ĥψ(#»r , t),

where i =
√

-1, ~ is Planck’s constant divided by 2π, t is time, and Ĥ is the Hamiltonian of

the system. For a system of many particles, this becomes

i~
∂

∂t
ψ(#»r1,

#»r2, . . . , t) = − ~2

2m
∇2ψ(#»r1,

#»r2, . . . , t) + V(#»r)ψ(#»r1,
#»r2, . . . , t)

where the Hamiltonian has been expressed in terms of its kinetic operator (- ~2

2m∇
2) and po-

tential (V(#»r)) component. The solution of this equation is intractable for all but the simplest

problems. Therefore, simplifications and approximations are necessary to tackle many of the

problems in solid state physics.

3

The field of computational material science is the branch of physics that attempts to

predict chemical, electrical, structural, and other properties of a system of atomic particles.

As with most fields of computational science, there is an inherent trade-off between com-

putational speed and accuracy. Increases in speed come with additional assumptions and

approximations that often reduce accuracy. Since the nuclear mass is orders of magnitude

larger than the electron mass, we can apply the Born-Oppenheimer Approximation and solve

the wave function for the electrons while treating the nucleus classically. We also assume

that the system is non-relativistic. Then we employ the variational principle to calculate

the stationary state associated with the lowest total energy of the system, since this will be

favored by nature. A stationary state is an eigenvector of the Hamiltonian, i.e. ĤΨ = EΨ,

where the energy (the eigenvalue) is independent of time. This leads to the Many-Body

Schrödinger Equation, with potential given by

V =
1
2
∑
n ̸=m

1
| #»rn − #»rm|

−
∑
n,m

ZIm

| #»rn −
#»R Im |

+
1
2
∑
n ̸=m

ZInZIm

| #»R In −
#»R Im|

.

A variety of different approximations are employed at this point. Nearly all of them re-

strict the solutions to the ground state of the system. Hartree-Fock Theory was developed

early in the history of quantum mechanics, but was not widely used until the advent of com-

puters. This method approximates the many-body wave function with a Slater Determinant

of single orbital functions. Here we express the total wave function of the system as a product

of one-electron atomic orbitals (AO). An atomic orbital is a stationary state of a one-electron

atom, whereas a molecular orbital is a stationary state for an electron in a molecule. For a

many-electron system, a molecular orbital is very different from a total stationary state. The

Hartree-Fock Method uses the atomic orbitals to approximate the molecular orbitals and

then combines the molecular orbitals to find a total stationary state of the system through

a linear combination of atomic orbitals (LCAO). The wave function is found through an

anti-symmetrized (to account for fermions) determinantal product of atomic orbitals known

4

as the “Slater” determinant. In this way, Schrodinger’s equation is transformed into a set of

Hartree-Fock equations.

The Hartree-Fock method was ground-breaking in that it allowed the calculation of wave

functions for many-body systems. It is a self-consistent field (SCF) method in that the final

result is required to be consistent with the initial field. In practice, this means that Hartree-

Fock calculations are performed iteratively until the output field matches the input field.

The accuracy of the representation of the true molecular orbital increases with the size of

the basis set. Therefore, there is a wide array of basis sets with varying degrees of compu-

tational expense. However, the concept of a one-electron atomic orbital is only meaningful

if we ignore the electron-electron repulsion terms in the Hamiltonian. Due to this Coulomb

correlation, the total Hartree-Fock electronic energy is always higher (less negative) than

the actual electronic energy. The difference is called the correlation energy. This rather

large omission limits the accuracy of Hartree-Fock. Other methods and refinements were

developed to provide more accurate results.

Another approximation is Density Functional Theory (DFT), which transforms the prob-

lem by operating on the electron density function rather than the wave function itself. DFT,

after refinement to better model the exchange and correlation interactions, provides highly

accurate results for most systems, but still struggles in some areas, such as modeling Van

der Waals forces. When DFT is employed with a large basis set and a modern correlation-

exchange functional, it is computationally expensive and is limited to smaller atomic systems

for practical calculations.

At the opposite extreme is classical potential modeling, which models only pairwise

atomic interactions using a classical energy potential. The Lennard-Jones potential and its

refinements have proven useful for modeling very large systems, but at the expense of remov-

ing any quantum mechanical flavor. Tight-Binding methods attempt to provide additional

accuracy, but still only deal with two-center interactions.

5

1.3 – SCED-LCAO Theory

The Self-Consistent Environment Dependent Linear Combination of Atomic Orbitals

(SCED-LCAO) approach was developed by Dr. Shi-Yu Wu in order to provide a reliable

and transferable semi-empirical method for quantum-mechanics based simulations of ma-

terials. Charge redistributions are calculated through the use of a Self-Consistent (SC) iter-

ation and the effects of electron screening and electron-electron correlation are contained in

Environment-Dependent (ED) multi-center terms which handle two-center and three-center

interactions explicitly and four-center interactions implicitly.

In the framework of a semi-empirical LCAO-based approach, we seek to find functions

which adequately model the interactions between electrons for each atomic orbital α and

for each atom i. We define #»R ij =
#»R i −

#»R j to be the relative position vector from atom i to

atom j and solve the matrix form of the Schrödinger Equation

Hcλ = EλScλ, (1.1)

where H is the SCED Hamiltonian and S is the overlap matrix corresponding to the basis

functions ϕiα(
#»r) used. It is important to note that this formulation admits a range of ba-

sis functions, thus providing flexibility. This forms a general eigenvalue problem where we

solve for the eigenvectors cλ, which define the coefficients of expansion of the eigenfunction

ψλ in terms of the basis functions ϕiα, and Eλ which corresponds to the energy of each or-

bital. The geometrical configuration of the atomic nuclei for which the energy is minimized

gives the equilibrium structure, from which we find bond lengths, bond angles, the lattice

parameters, etc.

What makes SCED unique is the construction of the Hamiltonian for Equation (1.1).

The Hamiltonian matrix for the many-body system can be written as

H = −
∑

l

~2

2m
∇2

l +
∑

l,i

v(#»r l −
#»R i) +

∑
l,l′

e2

4πε0rll′
+
∑

i,j

ZiZje2

4πε0Rij

6

where the summations over l and l′ are taken over all valence electrons, rl,l′ = | #»r l − #»r l′|,

Ri,j = | #»R i −
#»R j|, and Zi is the number of valence electrons associated with the ion at #»R i.

The first term captures the kinetic energy of the electron, the second term is the potential

energy between an electron at rl and the ion (nucleus and inner electrons) at Ri, the third

term represents the electron-electron interaction, and the last term represents the ion-ion

interaction.

The SCED Hamiltonian diagonal (on-site) elements are rewritten as

Hiα,iα = ε0
iα + uintra

iα + uinter
iα + viα.

For the electron in orbital iα, ε0
iα is the kinetic energy and the interaction with its own ionic

core, uintra
iα is the interaction with other electrons from the same atom, uinter

iα is the interac-

tion with electrons in orbital jβ (from other atoms), and viα is the interaction with off-site

ions. More specifically, we let ε0
iα = εiα − ZiUi, where εiα is the energy of the orbital α

for the isolated atom at i. For the SCED formulation, we take this to be the value of the

Hartree-Fock calculated energy for the orbital. Again Zi is the positive charge of the ion at

i (nucleus and inner electrons) and also the number of valence electrons associated with

the uncharged atom at i. The term Ui is a Hubbard-like term representing the effective en-

ergy of electron-electron interactions for electrons associated with the atom at site i. This

Hubbard term is allowed to vary when optimizing the parameters, but we restrict its val-

ues to be near the Hubbard calculated value. We let uintra
iα = NiUi, where Ni is the num-

ber of valence electrons associated with the atom at i when the atom is in self-consistent

equilibrium within the system (also called the Self-Consistency vector). We also rewrite

uinter
iα + viα =

∑
k̸=i

[
NkVN(Rik) − ZkVZ(Rik)

]
. Here NkVN represents the effective energy of

interaction between an electron associated with an atom at site i and electrons associated

with an atom at k, and ZkVZ models the effective energy of interaction between an elec-

tron associated with an atom at i and an ion at site k. The terms VN and VZ are treated as

7

parametrized exponential functions that will be optimized for each elemental species.

The addition of a W term models the spread shift in the energy of the electron orbitals

due to the effects of electrons from neighboring atoms. Especially with atomic species which

are prone to de-localizing electrons, the electronic environment can push the local electrons

into higher orbitals. This effect could be captured by adding higher energy orbitals (d, for

instance), but it is more efficiently modeled with this W term. We model each type of orbital

with a separate short-ranged function. For instance, for sp3 bonding, we have

Ws(Rik) = was · e−wes·Rik

Wp(Rik) = wap · e−wep·Rik

where was, wes, wap, and wep are taken to be parameters which will be optimized.

Therefore, the diagonal elements are

Hiα,iα = εiα +
∑
k̸=i

Wiα(Rik) + (Ni − Zi)Ui +
∑
k ̸=i

[NkVN(Rik)− ZkVZ(Rik)].

Similarly, we defined the off-diagonal (off-site) elements of the SCED Hamiltonian as

Hiα,jβ =
1
2

{
ε′

iα + ε′
jβ +

∑
k̸=i

Wiα(Rik) +
∑
k̸=j

Wjβ(Rjk)K(Rij)

+
[
(Ni − Zi)Ui + (Nj − Zj)Uj

]
+
∑
k ̸=i

[NkVN(Rik)− ZkVZ(Rik)] (1.2)

+
∑
k ̸=j

[NkVN(Rjk)− ZkVZ(Rjk)]
}

Siα,jβ(Rij).

Once again, Ni and Zi are the number of electrons at site i and for a neutral site i. The

first term is related to the Wolfsberg-Helmholtz relation in the extended Hückel theory. The

coefficient is given by K(Rij) = eaKRij . The term VZ(Rjk) models the interaction between

site k ion and site i electrons. Together with VZ, VN(Rjk) forms the environment-dependent

multi-center terms. Thus, the off-site Hamiltonian elements include three-center interactions

8

explicitly (i, j, and k) and four-center interactions implicitly. From Equation (1.2), it can be

seen that the environment-dependent multi-center interactions are dependent on VN and VZ.

More precisely, the interactions are governed by the difference ΔVN = VN −VZ. Since VZ is

defined as the energy of effective interaction per ionic charge between an ion at site k and an

electron associated with the atom at site i, we may model VZ by the following parametrized

function

VZ(Rik) =
(e2

4πε0

) 1
Rik

[
1 − (1 + BZRik)e−αZRik

]
.

Similarly, we define

ΔVN(Rik) = (AN + BNRik)
[1 + e−αNdN]

[1 + e−αN(dN−Rik)]
.

The overlap matrix Siα,jβ(Rij) is comprised of mixing factors for each pair of orbitals in

the system. Typically, each atom is represented by its valence electrons in their sp3 orbitals,

although d orbitals and higher are possible with SCED. In this case, each atom contributes

four rows and four columns for the ssσ, spσ, ppσ and ppπ valence orbitals. Each is a short-

ranged function of the distance between the two atoms Rij represented by

Sij,τ = (Aτ + BτRij)
1 + e−ατ dτ

1 + e−ατ(dτ−Rik)

where τ runs over the four orbitals. Based on the orthogonality of the s and p orbitals of the

same atom, we have Assσ = Appσ = Appπ = 1 and Aspσ = 0.

With these functions, the SCED-LCAO Hamiltonian is completely defined. In total, we

have 25 parameters, using sp3 bonding, which will need to be optimized for each elemental

species. There are 12 overlap (Sij) parameters, three each for the four orbitals. In addition,

we have U, was, wes, wap, wep, aK, BZ, αZ, BN, αN, dN, ε′
s, and ε′

p.

The Hamiltonian and overlap matrix elements constructed using the SCED-LCAO for-

9

mulation can then be used to solve the general eigenvalue Equation (1.1) for a given system

of atoms to yield a set of SCED–LCAO band structure eigen-values Eλ and the correspond-

ing eigen-vectors cλ. Once the eigenvector coefficients are known, one can determine the

total number of electrons Ni associated with an atom at site i through the expression

Ni =
∑

λ

∑
α

∑
jβ

(cλ,iα)
∗cλ,jβ nλ Siα,jβ ,

where nλ is the electron occupation number determined by the Fermi–Dirac distribution

function for the specified temperature of the system. The total charge at each site (-eNi) is

calculated self-consistently through an iterative procedure and is subsequently used in the

evaluation of the total energy and the atomic forces.

For a given system of atoms, the total energy consistent with the SCED-LCAO Hamil-

tonian is given by E = EBS − Edbc + Eion-ion. Here EBS is the band-structure energy, Edbc

is the correction to the double counting of the electron-electron interactions between the

valence electrons in the band structure energy calculation, and Eion-ion is the repulsive inter-

action between ions. Using the notation above for the SCED-LCAO formulation, this can

be rewritten as

E =
∑

λ

nλEλ +
1
2
∑

i

(Z2
i − N2

i)Ui −
1
2
∑

i

∑
j ̸=i

NiNjVN(Rij) +
1
2
∑

i

∑
j̸=i

ZiZj
E0

Rij
,

where E0 = e2

4πε0
, EBS is the first term, Edbc is terms two and three, and Eion-ion is the final

term.

1.4 – Previous SCED Work

Much work has already been done to create a working collection of SCED-LCAO tools.

In 2006, Leahy et.al.[3] presented the initial findings from the first element to be fully mod-

eled – Silicon. This included modeling binding energy for Si bulk, intermediate size clusters,

10

the Silicon (100) surface, and the adsorption of a Si atom on the Si (111) surface. SCED-

LCAO was found for silicon to be reliable and highly transferable, thus providing predictive

power for future studies. In 2009, Yu, et.al. [4], [5] extended SCED-LCAO to carbon, with

special emphasis on the modeling of small carbon clusters, specifically comparing stability

of fullerene, bucky-diamond, and other geometries developed by relaxing sections of bulk

carbon. Also in 2009, the condensed matter theory group at University of Louisville also

published a review article [6] detailing the development of SCED-LCAO theory and appli-

cation. In this article, we find the modeling of the first heterogeneous systems composed of

Silicon and Carbon. Unique and stable heterogeneous bucky-diamond and cage structures

were discovered. This was later extended [7], [8] to include SiC tubular and graphitic struc-

tures, as well as SiC nanowires [9]. Additional results [10] extend SCED-LCAO further to

include Boron and Phosporous.

In this work, I generate parameters for Gallium and Nitrogen. This represents the first

effort of constructing a SCED-LCAO parameter set for an element (Nitrogen) based on

a heterogeneous database. Special care is required when dealing with self-consistency on

heterogeneous systems because of the higher degree of charge transfer among the atoms in

a cluster. This is especially true when pairing column III elements with column V elements,

such as Gallium and Nitrogen.

1.5 – Heterogeneous Systems

For SCED-LCAO to be truly transferable and applicable to a wide range of elemental

types, it needs to accurately calculate results for heterogeneous systems. True transferabil-

ity requires that we use the same set of parameters for each element regardless of the envi-

ronment created by the surrounding atoms of the system. However, the interaction of two

different types of atoms will require a mixing of the two sets of parameters. The simplest

approach would be to simply average the two parameter sets to calculate the interactions

between the two elements. However, it seems more natural to allow for a weighting of one

11

element more heavily. This is due to the fact that some elements are significantly more

chemically active than others. For example, we expect a column III element to interact with

a column V element in such a way as to emphasize one parameter set more than the other. To

this end, we introduce a mixing term that depends on the two elements used. For example,

to determine a parameter p for Ga and N, we introduce αGa,N and mix each parameter as

pGa,N = αGa,NpGa + (1 − αGa,N)pN.

In this way, the two elemental species retain their original parameters, but share a unique

mixing term, as outlined in [6].

12

CHAPTER 2

SELF-CONSISTENCY

2.1 – The Self-Consistent Problem

Solving the generalized Schrödinger Equation (1.1) with the SCED-LCAO Hamiltonian

yields a set of eigenvalues Eλ and eigenvectors cλ for the molecular orbitals. These eigen-

values are then ordered and electrons are assigned to them starting with the lowest energy.

The assignment algorithm allows for non-integer electron values at each atomic site. This

distribution of electrons to each atomic site is stored in the vector N⃗. The sum of these

electron values over the atomic sites (
∑

i Ni) is constant, i.e. the total charge is conserved

at each iteration. We will denote this total charge by T. While physically meaningless, the

computer algorithm allows for the possibility of a negative number of electrons at a given

atomic site. Therefore each entry in N⃗ can be any real number, i.e. for a system of n atoms

N⃗ is an element of Rn with each entry being the number of electrons on one atom. However,

the self-consistent solution will only contain non-negative real numbers.

SCED-LCAO is a self-consistent field formulation. For a given system, the first solution

of Equation (1.1) will likely yield a charge distribution that, if used to solve the system

a second time, will produce different results. The self-consistent solution will produce a

charge distribution that yields identical results each time Equation (1.1) is solved. Therefore,

we must solve iteratively for the self-consistent charge vector N⃗∗. That is, we seek to find

N⃗∗ such that Equation (1.1) becomes Ĥλ(N⃗∗)cλ(N⃗∗) = EλS(N⃗∗)cλ(N⃗∗). Since the solution of

the charge vector depends on the charge vector itself, this process can be viewed as solving

for the steady state, or fixed point, of a discrete system of n equations. The equations are

transformed into a root finding problem in the usual way. We rewrite the equation so that

we want to find N⃗∗ such that Ĥλ(N⃗∗)cλ(N⃗∗)− EλS(N⃗∗)cλ(N⃗∗) = 0.

13

A large body of literature exists concerning the self-consistency problem, but nearly all

publications deal with the continuous case [11], [12]. As a result, we choose to deal with the

system as if it were a black box. We know only the values of the input and output vectors.

A typical Self-Consistency iteration consists of the following for a fixed set of parameters

and fixed geometry.

1. Calculate Ĥλ(N⃗in,i), the SCED Hamiltonian for step i.

2. Solve the general eigenvalue problem, Equation (1.1),

Ĥλ(N⃗in,i)cλ(N⃗in,i) = EλS(N⃗in,i)cλ(N⃗in,i) for Eλ and cλ.

3. Calculate the new charge vector N⃗out,i.

4. Apply root-finding algorithm to choose N⃗in,i+1 based on previous

step(s).

We continue this process until the norm of the difference |N⃗out,i − N⃗in,i| is satisfactorily

small. The final charge vector is then the steady state solution N⃗∗. The system solution then

consists of the eigen-values Eλ and eigen-vectors cλ found by solving Equation (1.1) using

N⃗∗ as the charge distribution. This is of course just the last solution found in the iterative

process. Note that each step involves the computationally expensive solution of the general

eigenvalue problem, including a matrix inversion on the order of (4n)2 for only sp3 bonding,

where n is the number of atoms. For this reason, we would like to find the solution in a

minimum number of self-consistency steps.

2.2 – System Characteristics

In its simplest form, the self-consistent problem is only an n-dimensional root-finding

problem. Much work has been done to solve these types of systems so that typically one

would use a readily-available numerical recipe to find the solution. However, this self-

consistent problem has proven resistant to these algorithms. This is largely due to the na-

ture of the problem – it is highly non-linear. In one dimension with one unknown atomic

charge, the function for a typical dimer closely resembles the Fermi-Dirac function (see

14

figure 2.1). This is largely due to the use of the Fermi-Dirac function in determining the

occupation of each orbital. The difficulty in solving this system is that near the solution, the

..

Nin

.

Nout − Nin

..

N∗

Figure 2.1: Example one-dimensional self-consistency curve.

self-consistency (SC) curve is highly non-linear, having the shape of a step function.

Given the physical origin of the system, we expect the SC curve to be continuous and

differentiable. In practice, we have found that the SC curve is continuous, but with some

systems the SC curve can become a step function to within computer accuracy. Thus, dif-

ferentiating the function N⃗out− N⃗in accurately is sometimes difficult or impossible. This will

be a determining factor in our choice of solution algorithms. The curve is also found to be

monotone decreasing in each component, with N⃗out − N⃗in steadily decreasing with increas-

ing Nin in all n components. This feature is present throughout all the SC curves we found.

Essentially, this results from the self-consistent nature of SCED-LCAO. An increase in the

input number of electrons Nin on a given atomic site will decrease the additional electrons

assigned to that site Nout − Nin.

2.3 – Reducing System Size

Much effort was spent to precondition the system to simplify the calculations. First, we

invoke the conservation of charge for a given atomic configuration. That is, the total number

of electrons is fixed. For the self-consistent problem, that means we require the sum of the

components of N⃗ to remain constant, i.e.
∑n

i=1 Ni = T, a constant. This enables us to remove

one of the dimensions from the problem. We use our self-consistency algorithms to solve

15

for the first n− 1 entries and then set the final entry to be whatever number of electrons are

remaining (possible negative), Nn = T −
∑n−1

i=1 Ni.

Further reductions in the dimensions of the self-consistent problem can be obtained by

exploiting the symmetry of the atomic cluster. The effect of symmetry is to define two or

more atomic sites to have the same characteristics. We take this to encompass the charge on

the atoms. In other words, the physics of the system requires two or more components of N⃗

to always be equal.

Figure 2.2: Ga1N2 cluster with D∞ h symmetry.

In figure 2.2 the two Nitrogen atoms (1N and 3N) are at equal distances from the central

Gallium atom (2Ga). Thus, we assume that they will have equal charge for every solution

for this geometry. Therefore, there are only two unknowns for this cluster – the charge on

the central Gallium atom and the charge on either Nitrogen atom. Combine this with the

conservation of charge, and we can reduce the self-consistent problem for this cluster to one

dimension.

Unfortunately, while the reduction in size for the SC problem will greatly speed up the

computational process, it does not improve the shape of the curve. For example, we found

that for one 8-atom gallium cluster with one degree of freedom in the self-consistency prob-

lem, the resulting SC curve is highly non-linear near the root, as shown in figure 2.3. The

behavior near the solution is still nearly a step function, but the behavior away from the

root is more complex. Indeed, it is nearly ideal for frustrating derivative-based root-finding

methods as we will see.

16

..
6

.

6

.

Nout − Nin

. Nin

Figure 2.3: A self-consistency curve for Ga8 D4h.

2.4 – Higher Dimensions

Moving to higher dimensions introduces additional complexity. Let f = N⃗out − N⃗in. In

two dimensions, we are looking for the fixed point of a function f : R2 → R2. If we consider

each component of f = (f1, f2) as a separate function, f1 : R2 → R1 and f2 : R2 → R1, then

we examine each as a three-dimensional surface above the domain. Then z = f1(x, y) and

z = f2(x, y) can be plotted to find the points where z = 0.

Consider a 5-atom cluster composed of boron and nitrogen, B2N3 C2v. The resulting

self-consistency problem can be reduced from five unknowns to two unknowns using charge

conservation and exploiting symmetry. Thus N⃗out − N⃗in forms a function from R2 to R2.

Breaking this into f1 and f2, we create heat plots for each. In these heat plots in figure 2.4

and figure 2.5, the domain [0, 8]× [0, 8] is plotted with various colors representing the value

of z1 = f1(x, y) and z2 = f2(x, y). The x and y axes represent the number of electrons in the

two-dimensional input vector #»N in(x, y) and the color of the plot displays the change in the

number of electrons in each component of the output vector, z1 = (N1
out − N1

in)(x, y) and

z2 = (N2
out − N2

in)(x, y).

The surfaces are far from flat, but they appear to be monotonically decreasing, i.e. z1

decreases monotonically with increasing N1
in for every value of N2

in and z2 decreases mono-

17

tonically with increasing N2
in for every value of N1

in. This is a feature we will exploit to slightly

reduce the number of calculations needed to find the root.

..

Figure 2.4: SC heat plot for dimension one of B2N3 C2v.

..

Figure 2.5: SC heat plot for dimension two of B2N3 C2v.

To better visualize the solutions to two-dimensional SC problems, isocline plots are

often helpful. In an isocline plot, a curve is plotted showing all values where z is equal to

some desired value. For our purposes, we want to plot all values where z1 = 0 and where

18

z2 = 0. In the heat plots, this would be the curve where the plot is a medium red color,

corresponding to z = 0.

Since these are now just curves in the same plane, we can plot both on the same axes.

The self-consistent solution is then the point of intersection of these two curves. This is

where z1 = z2 = 0 and thus N⃗out − N⃗in = (0, 0).

Computationally, these isocline plots were constructed by fixing one dimension and gen-

erating a solution for the root in the other dimension. For example, fix N1
in = 2 and solve

for y∗ where z2 = (N2
out − N2

in)(2, y∗) = 0. Then (2, y∗) is plotted in the isocline. The first

dimension is incrementally varied throughout its domain to produce a curve representing

the fixed points of the function f1. The second dimension is then varied to plot the fixed

points of the second function f2. An example isocline plot is given in figure 2.6. While it

..

6

.

6

.

N2

.
N1

.

Ga4C2v

....

Figure 2.6: Isocline plot for Ga4 C2v.

appears from this plot that the uniqueness of the solution has been lost, a closer examina-

tion reveals that the single root is preserved. Figure 2.7 illustrates a closer look at another

isocline, this time for the Ga7 C3v cluster. The solution was also found numerically through

the iterative process and plotted with an × in the figure. Isoclines with this behavior are

19

Figure 2.7: Isocline plot for Ga7 C3v.

typical for two-dimensional self-consistent systems in the author’s experience.

20

2.5 – Derivative Methods

Newton’s Method is the prototypical derivative method. At an initial point, the deriva-

tive is calculated (or Jacobian matrix in more than one dimension) and the next point of

evaluation is derived from the direction of the derivative. Newton’s method requires that the

function being evaluated is continuous with continuous first derivative. Since our SC curves

are often approximately discontinuous, Newton’s method may not be the best choice.

In more than one dimension, Newton’s method requires the inversion of an n×n matrix.

Broyden’s method eliminates this inversion and modifies the calculation to speed up compu-

tation time, but it also requires the function to have continuous first derivatives. Many other

methods have been developed to reduce calculation time and to improve reliability [13],

[14], but all require continuous first derivatives. Some hybrid of these derivative methods,

such as Brent’s Method, is usually employed for multi-dimensional root finding, including

self-consistency [15], [16].

As an example of the failure of derivative methods in self-consistency algorithms, con-

sider the self-consistency curve for the Ga8 D4h cluster given in figure 2.8. If given an initial

point a on the curve, we calculate the derivative and use Newton’s method to follow to point

..
6

.

6

.

Nout − Nin

. Nin. a.
b

..

Figure 2.8: Charge Sloshing for Ga8 D4h.

b. Applying Newton’s method at point b, the derivative leads us back to a point near a. This

21

system using Newton’s method will oscillate between two or more points, never reaching

the root. When this occurs in the context of the self-consistency problem, this phenomenon

is known as “Charge Sloshing” due to the pattern of back-and-forth movement of the elec-

trons in the system between a few points in the domain. Thus, derivative methods often fail

to converge to a solution when applied to the self-consistency problem, even when a root is

known to exist.

2.6 – Generalized Bisection

An efficient form of the bisection method generalized to higher dimensions was first

described by B. Kearfott [17] and refined by M.N. Vrahatis [18], [19]. An excellent de-

scription of the Generalized Bisection and the associated issues was given by G. R. Wood

[20]. Building on the research in degree theory, this method removes the need to compute

the topological degree of the system (the number of times a function crosses zero along a

curve), instead opting to remove the certainty of finding a root in order to greatly reduce

computation time. It was later shown to provide solutions in a variety of problems where

derivative-based methods had failed [21]–[23].

To develop the Generalized Bisection method, first consider the one-dimensional bisec-

tion method. The bisection method is a root finding algorithm for functions f : R1 → R1.

If for some interval [a, b] in the domain of f, the product f(a)f(b) < 0 and f ∈ C0[a, b] then

the Intermediate Value Theorem guarantees that a root of f exists in [a, b]. There are less re-

quirements on f, only that f be continuous in the region of interest and f must attain opposite

signs on the boundary. The highly non-linear behavior of the SC curves at the root do not

cause the bisection method to fail. This is largely because most of the computation for the

algorithm is performed in the domain of the function. For the self-consistency problem, the

domain (Rn × Rn) is smooth and continuous.

Moving to higher dimensions poses challenges. Begin by considering the simplest do-

main in two dimensions, a rectangle. While degree theory guarantees a root in the domain

22

if the component functions change sign only once on the boundaries, this requirement is

nearly impossible to check numerically. Attempting to check this requirement would also

be very computationally expensive. Therefore, we proceed with the assumption that the

signs change only once along the edge and develop a routine for when this assumption fails.

We will also make the assumption that the function is continuous on the entire domain. In

the context of the self-consistency problem, this assumption is believed to be valid.

Consider the signs (positive or negative) of the component functions on the corners of

the region. If the two-dimensional root lies within the box and the component functions

have exactly one root on each side, we expect two opposite corners to have opposite signs

for the two component functions f1 and f2 as shown in figure 2.9. There will be one pair that

is positive-positive and one that is negative-negative. The assumption is that f1 and f2 change

only once on the edge if the endpoints are of opposite sign and do not change if the end-

points are of same sign. It is recognized that this may not be true, but a relaxation procedure

(described below) will be performed when this assumption breaks down. In figure 2.9, f1

will have one root along the top and bottom edges while f2 will have one root along the left

and right edges. As we will see, this is generally the case for the self-consistency problem.

..

(+,−)

.
(+,+)

.

(−,−)

.
(−,+)

....

Figure 2.9: Initial domain for two-dimensional Generalized Bisection.

23

To proceed with the Generalized Bisection, we first choose a side and test its midpoint.

If the functions at the midpoint are found to have the same sign as one of the endpoints of

that side, that endpoint is removed and the midpoint becomes the new corner point repre-

senting that sign configuration. We then proceed to the next edge (or line segment in higher

dimensions) and test its midpoint. Continuing with this procedure reduces the size of the

domain where we believe the root exists. In figure 2.10, we see the first five steps of Gen-

..

(+,−)

.
(+,+)

.

(−,−)

.
(−,+)

..........

(+,−)

..
(−,+)

..

(−,−)

..

(+,−)

..

(−,−)

..
(−,+)

....

Figure 2.10: Two-dimensional Generalized Bisection.

eralized Bisection for the Ga4 C2v cluster. The isocline plot for this cluster was plotted in

figure 2.6. The shaded areas are regions of the domain that have been excluded. Notice how

the unshaded region matches the part of the isocline plot (figure 2.6) where both isoclines

run together. In general, Generalized Bisection works well up to this point.

The Generalized Bisection continues until the desired accuracy is achieved. While this

may be changed in the program, it is set to 10-10 by default. Thus, when the norm of N⃗out−N⃗in

is sufficiently small,

∥N⃗out − N⃗in∥ < 10-10,

the root N⃗out is passed to the next step in the SCED-LCAO system. This same criterion is

24

also employed for Broyden’s Method.

2.7 – An Example Using Generalized Bisection

Consider for example the function f : [0, 1]× [0, 1] → R2 defined by

f(x, y) =
(π

12
+ x − 2y, xy + x − 1

2
)
.

Here f1 = π
12 + x − 2y and f2 = xy + x − 1

2 . Since we have the algebraic form of the

function, we can solve this system algebraically. Solving f1 = 0 and f2 = 0 yields the

equations for the isoclines, y1 = π
24 + 1

2x and y2 = 1
2x − 1. The equations for the isoclines

can then be used to find the steady state solution of the function by equating y1 = y2. We find

(x∗, y∗) ≈ (0.3787, 0.3203). We can check our answer by plugging back into the original

function to find f(x∗, y∗) = (0, 0). These isoclines and the steady state solution are plotted

.. x.

y

.

1

.
1

..

(x∗, y∗)

....

Figure 2.11: Example of Two-dimensional Root Finding.

in figure 2.11.

If we instead use Generalized Bisection to find the solution, we begin by finding the

signs of the functions f1 and f2 at each of the four corners of the domain. We check to make

sure that each corner has a unique pair of signs and that (−,−) and (+,+) are not connected

25

by an edge. In SCED-LCAO, this is a direct result of the monotonicity of the component

functions. Next we find the signs of the functions at the mid-point of one of the edges. It

does not matter which edge is chosen as the initial edge, so we will start on the edge along

the y-axis. Here we find the signs of the functions at (0, 0.5) are (−,−). Thus we remove

the corner (0, 1) since it has the same set of signs. The result is a set of four corner sharing

the same set of signs for the component functions as the initial corners.

We then proceed to the next edge. The algorithm used in SCED-LCAO chooses edges

in a clockwise manner, although it need not choose them in that order. The next edge would

then be the newly created edge from (0, 0.5) to (1, 1). We evaluate the signs at the edge

midpoint (0.5, 0.75) to find (−,+). Thus, we replace (1, 1) with (0.5, 0.75) and proceed to

the next edge. This is then repeated until the norm of the function at an edge midpoint is

less than the desired accuracy A, |f(xk, yk)| < A. The initial bisection and several following

steps are shown in figure 2.12.

..
(+,−)

.

(−,−)

.

(−,+)

. (+,+). x.

y

.

1

.
1

.

(−,−)

..... ..
(+,−)

.

(−,−)

.

(−,+)

. (+,+). x.

y

.

1

.
1

.

(−,−)

.

(−,+)

.

(+,+)

.
(+,−)

.

(−,−)

..........

Figure 2.12: Example of Two-dimensional Generalized Bisection.

2.8 – Generalized Bisection Relaxation

However, there are some issues that need to be addressed. First, we would like to avoid

the situation where the acceptable region of the domain becomes very narrow or distorted.

Repeated attempts to force uniform convergence rates on all sides were met with failure. This

26

is what prompted the creation of the isocline plots. The isocline in figure 2.6 makes it clear

that this is a problem inherent to the SC solution. Secondly, we would like to maintain the

quadrilateral shape of the acceptable region. This will ensure that the acceptable region does

not become a triangle to within computer accuracy (which does happen), thus destroying our

ability to further bisect. This was successfully enforced by skipping over any line segment

that is 50 times smaller than the longest line segment.

If the functions at the midpoint are found to have a different sign configuration then

either of the endpoints of the line segment, we cannot remove either end point. It’s likely

at this point that multiple functions are changing sign along this line segment. This implies

that our assumption that the root is contained in the acceptable region is false. Therefore,

we pursue a relaxation of the acceptable region, expanding its size to encompass the root

once again. As shown in the example in figure 2.13, the sign configuration of the midpoint

is matched with the (unique) corner point of the acceptable region which has the same

sign configuration. Then the acceptable region is expanded by “pushing” the midpoint away

..

(+,−)

.
(+,+)

.

(−,−)

.
(−,+)

..

(+,+)

..

(+,−)

..

(−,−)

..
(−,+)

.....

c

.

.25
c

..

(−,−)

..

(+,−)

.
(+,+)

.

(−,−)

.
(−,+)

..

(+,−)

..

(−,−)

..
(−,+)

.....

(−,−)

Figure 2.13: Relaxation in Generalized Bisection.

from this corner point. A straight line is drawn from the matching corner point to the tested

midpoint. A new point is created along this line 25% further away from the matching corner

point. The new point is tested and if found to be matching one of the endpoints, it replaces

the matching corner point and Generalized Bisection continues as before. If the new point

27

still does not match one of the endpoints in sign configuration, the point is further moved

further along the line by 50% and tested again. The point is moved in this direction until its

sign configuration matches an adjacent corner point and Generalized Bisection continues

with the next line segment.

2.9 – Initial Vector

The importance of the initial guess for derivative methods cannot be understated. An

initial vector near the solution will allow for very fast convergence, while starting points

further away can lead to very slow convergence or even Charge Sloshing. The Generalized

Bisection method is also sensitive to the initial point. I modified the algorithm to try to

create an initial box in the domain which is as small as possible. It takes the initial point and

adds a small δ = 10−3 to each coordinate. Then the corner points of this region are tested to

verify that the signs match the required signs for Generalized Bisection. If successful, the

algorithm proceeds with this small box. If unsuccessful, the box is enlarged by a factor of

10 until the required signs are found. Therefore, either type of method can be greatly aided

by a wise choice of initial vector.

Initially, the program simply sets the initial guess to be the number of valence electrons

on the neutral atom; i.e., 3 for Gallium, 5 for Nitrogen, etc. This method is sufficiently close

to the solution for most homogeneous systems so as to provide an excellent initial vector.

However, with heterogeneous systems charge transfer in the SC solution is a key feature of

molecular bonding. Therefore self-consistency is essential to calculate accurate solutions.

Hence using the electrons count for neutral atoms is unlikely to yield an initial vector that

is near the self-consistent solution for heterogeneous systems.

The first step in improving the initial guess requires a good understanding of the al-

gorithm used in fitting. In figure 2.14, the hierarchical structure of the fitting procedure is

outlined. The parameters for the SCED Hamiltonian are fit to a set of reference values using

a gradient method. The reference values are a list of geometry and energy values obtained for

28

..

Parameter Fitting Loop

.

Geometry Fitting Loop

. Self-Consistentcy Loop.

Close Geometry Loop

.

Close Parameter Loop

Figure 2.14: Structure of Fitting Procedure.

clusters using DFT methods, ab initio, experimental, or other methods. They also include

information for homogeneous bulk structures, such as relaxation curves and band energy

data. For each reference value, the fitting procedure uses the current set of parameters to

reproduce the value.

For a specific cluster, the geometry is varied to find the set of geometric values that

provide the minimum energy (produced with SCED and the current parameter set). Once

the minimum energy for the cluster is determined, the geometric values and energy value

are compared with the reference values and a weighted “residual” is calculated for each

reference value. This residual represents a measure of the percentage difference between

the reference value and the calculated value. All of these “local residuals” are averaged

together to produced a “global residual” for that parameter set using a square root of the

sum of the squares. The fitting procedure can be viewed as a functional operating on the

system to produce a single positive value which represents the error in the parameter set;

i.e., the system residual becomes a functional R : Rx → R1,+, where x is the number of

parameters, typically 24. The parameters are fit to the reference values in such a way as to

minimize this residual.

As can be seen from the outline in figure 2.14, the self-consistency procedure is per-

formed very many times for even a single set of parameters. For this reason, the self-

consistent solution needs to be produced in as few steps as possible. Because the solutions

are being used for two additional levels of optimization, accuracy cannot be sacrificed to

29

Initial Vector SC Steps for 1 Parameter Loop
Neutral Atom 824,197

Previous Solution 63,476
Known Solution 59,966

Table 2.1: Comparison of Initial Vectors.

speed the calculations. Attempts to raise the accuracy threshold above 10−10 caused the

geometry optimization to fail.

However, the hierarchy of optimization can be exploited to garner initial guesses very

near to the solution. The geometry optimization uses a gradient method which calculates

the derivative (or Jacobian) for the geometry values using a double difference method. The

very small changes in geometry used to calculate the derivatives have very little effect on the

self-consistent solution. Therefore, for any given cluster, we use the previous SC solution

as the initial value for the current calculations. This resulted in huge increases in efficiency,

as can be seen from table 2.1. This table lists the resulting number of SC steps used during

one parameter loop for a typical fitting procedure. Here we are fitting 25 parameters to 132

reference values for a heterogeneous set of clusters including Boron, Carbon, and Nitrogen.

Using the previous SC solution for each cluster results in a 92% reduction in the number of

SC steps used. This situation still uses the neutral atom electron count for the initial vector

each time a new geometry optimization is begun. Replacing this with a known solution for

each cluster (with similar, but not identical parameters) results in a further 1% reduction in

steps, as shown in the third row of table 2.1. The reductions shown are for a combination of

Broyden’s Method and the Generalized Bisection Method described below.

2.10 – Comparison of Methods

Three methods were employed to find the root in the SCED-LCAO self-consistency

problem. The initial method was a simple Newton method using the inverse of the Jacobian

matrix. This was replaced with the faster and more accurate Broyden’s method. Broyden’s

method and the Generalized Bisection method were compared, as well as a hybrid method

30

which made use of both.

We note with some displeasure that the guaranteed convergence seen in the one-dimensional

bisection method is lost when moving to the Generalized Bisection method. In this regard,

Generalized Bisection is equal to Broyden’s Method, which also does not guarantee a so-

lution. Given the much less stringent continuity requirements, Generalized Bisection of-

ten converges when Broyden’s Method will not. However, Generalized Bisection is much

slower than derivative methods. While Broyden’s method can converge on the order of 2n,

Generalized Bisection converges on the order of 2n, where n is the size of the system under

consideration (the length of #»N for SCED-LCAO self-consistency). This makes General-

ized Bisection a particularly poor choice for systems with higher self-consistency degrees

of freedom. This suggests that we try Broyden’s Method first and then switch to General-

ized Bisection should Charge Sloshing be detected. This method was employed for the final

version of the SC algorithm.

31

CHAPTER 3

GALLIUM NITRIDE

SCED-LCAO is a semi-empirical method, meaning that its predictive power relies on a

set of parameters that are acquired from empirical data. In the case of SCED-LCAO we use

the fitting procedure described previously in this work to develop these parameters. This

fitting procedure is based on a set of test clusters, which are described by their properties.

These properties include the geometrical degrees of freedom within the given symmetry

and the total energy of the cluster. In addition to these clusters, we also use data from bulk

phases and the dimer energy curve.

Unfortunately, very little experimental data exists for small clusters of atoms beyond the

dimer so we will use a very accurate ab initio calculation to obtain these properties. We have

chosen Gaussian™ to perform calculations in the Density Functional Theory (DFT) formal-

ism. In DFT, one of the most common forms of the exchange-correlation energy functional

is the Becke, 3-parameter, Lee-Yang-Parr (B3LYP) treatment. This hybrid approach was

introduced by Axel Becke in 1993 [24] and incorporates a portion of the exact exchange

from Hartree-Fock theory with the exchange and correlation from other sources (ab initio

or empirical). The result is an improvement in many of the predicted molecular properties

such as atomization energies, bond lengths, and vibration frequencies.

The form of the functional must be paired with a set of basis functions to allow for com-

putation. Gaussian™ provides an array of different basis sets, although not all of them are

compatible with Gallium. We tried several basis sets, but eventually settled on the Dunning

correlation-consistent triple zeta basis set cc-pVTZ [25]. This basis set “has had redundant

functions removed and has been rotated in order to increase computational efficiency.” [26]

It also includes polarization functions, which are additional functions added to the minimal

32

basis set to model unfilled atomic orbitals. For instance, for Gallium the cc-pVTZ basis set

includes six s-type orbital functions, five p-type orbital functions, three d-type orbital func-

tions, and one f -type orbital function for polarization. We also decided to include diffuse

functions, which aid in calculating long-range interactions, such as Van der Waals forces. In

Gaussian™, the addition of diffuse functions is denoted by the aug prefix. All calculations

included in the database were thus performed with aug-cc-pVTZ basis sets for consistency.

This represents the current state of the art in DFT calculations.

Typically when the geometry of the structure was unknown, we would employ a “lighter,”

and therefore faster computationally, basis set such as LanL2DZ or STO-3G to arrive at an

approximate set of properties and then use aug-cc-pVTZ to verify the stability of the struc-

ture and fine-tune the properties. This provides a catalog of cluster geometries and energies

against which we fit the SCED parameters.

Bulk data often exists for many forms of periodic systems. For homogeneous systems we

will also leverage this crystal structure information to improve our parameters. We use the

Vienna Ab-Initio Simulation Package (VASP™) to calculate energy curves as the geometry

is varied.

Figure 3.1: Ga4N4 D3d cluster found with Gaussian™.

33

Residual Scaling

When searching for an optimal set of parameters, we need to have a measure of how

well the current parameter set results in calculations which match the reference values. This

is accomplished through the use of a simple residual. The difference between the calculated

value TC and the reference value TR is calculated for each fitting property and the residual

R is given for N atoms as

R2 =
1
N

N∑
i=1

(TC
i − TR

i)
2.

Unfortunately, this formula will result in weighting all of the reference values equally. Since

a typical set of reference values consists of both geometries and energies which are on

vastly different scales, this will result in some reference values becoming insignificant in the

residual calculation. A possible solution would be to divide the differences by the reference

values to provide a percentage difference in each value, but a more general approach is to

introduce a scaling factor Si as discussed in [27] for each reference value,

R2 =
1
N

N∑
i=1

(TC
i − TR

i

Si

)2
.

Now different types of data can be scaled to allow for equal weighting or perhaps some other

weighting system better suited to the system.

One additional problem encountered with the geometry is that the choice of coordinate

system can greatly affect the residual. Consider the simple cluster with three atoms and D∞h

symmetry shown in figure 3.2.

If we set the origin of the coordinate system to be at an end atom, the two geometric

degrees of freedom will be different from a system with the origin at the center atom. This

is represented in the figure by the solid and dashed arrows. If we take the residual to be

percentage changes, we obtain two different results for the residual. Assume that the mea-

surements are as in the figure and that atom 3 is calculated to be at 3.2 (with reference value

34

..1 .2. 3.

-2

.

-1

.

0

.

1

.

2

.

3

Figure 3.2: Three-atom cluster with D∞h symmetry.

3.0). The residual for the position of atom 3 in the dashed coordinate system is

R2 =
(TC

i − TR
i

Si

)2
=

(3.2 − 3.0
3.0

)2
= 0.004

while the residual in the solid coordinate system is

R2 =
(TC

i − TR
i

Si

)2
=

(5.2 − 5.0
5.0

)2
= 0.00016

Certainly we want the residual to be based on the difference in the position, but independent

of the coordinate system used.

This problem is avoided with the energies since the energies are all relative to some fixed

value, typically the ground state energy of a single atom. So our first inclination is to use

one standard scaling factor for all reference geometries. This would give equal residuals in

the example above. The most obvious choice for a scaling factor would be the bond length

of the dimer (for homogeneous calculations).

However, given the physics of the situation we may want to weight some geometric

references more than others. For instance, we may desire to capture the angular flavor of

p-bonding or perhaps focus only on inter-atomic distances. We would then choose to weight

differences in directions that are tangential to the inter-atomic distances more heavily than in

differences in the distances between the atoms. A reasonable compromise is to use some set

reference value for each type of distance. After careful consideration, we chose five reference

values for five types of measurements. These are given for each element discussed below.

35

The residual is then multiplied by 10 to yield a scale that is more readable.

3.1 – Gallium

Neutral Gallium atoms contain 31 electrons, making it very expensive computationally

to form clusters. A typical calculation of a high-symmetry cluster consisting of eight Gal-

lium atoms will take approximately a week of computer time. For this reason, we created

our database of fitting properties using smaller clusters and supplemented this with energy

curve data from the dimer and bulk phases.

Database Generation

The energy curve for the Ga2 dimer is shown in figure 3.3. This was created by varying

the separation distance of the two atoms using a small mesh of 0.1 Angstroms and calculat-

ing the resulting energy in Gaussian™.

.. r (A).

E

Figure 3.3: Gallium dimer energy versus atomic separation.

Gallium bulk data was included for both the alpha α and beta β phases. The most com-

mon solid form of gallium is the α-gallium phase. The fitting program allows for the inclu-

sion of a simple expansion (“breathing”) mode energy curve where all degrees of freedom

in the lattice are increased by the same scaling factor. The structure for the unit scaling

36

(scale=1.00) was based upon the experimentally-observed lattice vectors. This was scaled

by multiplying all three dimensions of the unit cell vectors by 0.98, 0.99, 1.01, 1.02, etc.

We then fit the parameters for gallium against the resulting energies from these VASP™

calculations. This energy curve from VASP™ is given in figure 3.4, along with the results

using the final SCED parameters for gallium.

..

ΔE (eV)

. scaling..................

VASP™

..

SCED

.
0.97

.
1.00

.
1.03

Figure 3.4: β-gallium energy versus lattice scaling.

For clusters, a thorough search of every symmetry was performed for clusters consisting

of up to four gallium atoms. Convergence was tested for each degree of freedom by testing

the cluster in Gaussian™ starting both above and below the convergence value. Since Gaus-

sian™ forces clusters to retain the input symmetry, test clusters were also converged after

the symmetry was broken by moving an atom slightly out of position. For example, in fig-

ure 3.5 there are two degrees of freedom in the Ga3 C2va cluster, namely the distance from

1Ga to 3Ga and the horizontal distance from 2Ga to the line connecting 1Ga and 3Ga. Each

of these was tested above and below the equilibrium value.

Stable clusters ranging in size from five to seven atoms were found using high-symmetry

geometrical configurations. Others were suggested by literature [28]–[31]. One cluster of

eight gallium atoms was considered, the D2h structure in figure 3.6. This structure has only

three degrees of freedom and will therefore converge quickly enough to allow for parameter

fitting.

Once a collection of stable structures was generated, a subset was selected to comprise

37

Figure 3.5: Ga3 C2va

Figure 3.6: Ga8 D2h

the database properties. Preference was given to the lowest energy clusters for each stoi-

chiometry (the number of each element present), but others were also included. Each cluster

was tested at the three lowest spin multiplicity states and the lowest energy of those three

was used. Since SCED-LCAO does not incorporate spin in this version, we included only

those clusters with minimal spin contamination.

Fitting Procedure

The choice of initial parameters is extremely important. We are attempting to perform

a global optimization on a function of 24 variables, i.e. we wish to find the values of the

24 parameters that result in a minimum residual. The domain of some variables is limited,

e.g. we expect aK to be positive, but less than one half. Other parameters have a much wider

38

range of possible values. No method exists to arrive quickly at the global minimum residual,

so we are employing a random search pattern (see [27]). A poor choice of initial parameters

could result in years of additional calculations.

The initial gallium parameters were chosen as shown in table 3.1. All units are in angstroms

and electron volts. The initial overlap parameters are generated by producing overlap curves

in Gaussian™ for the Ga2 dimer and using a fitting algorithm to arrive at parameters to match

these curves with the form of our overlap functions. We used the freely available plotting

program XMGrace™ to calculate these fits. The values for εs and εp are standard results

for the Hartree-Fock atomic orbital energies for the 4s and 4p valence orbitals from Atomic

Structure Calculations by Joseph B. Mann [32]. These were simply doubled for the initial

ε′ values. It is important that these be set at least 50% below the values for ε since it is the

difference between them that allows for bonding in SCED-LCAO. The value for AK will typ-

ically vary from -0.5 to 0.5, so any value near zero will suffice. The inter-atomic Coulomb

repulsion term U is given by Walter A. Harrison in Elementary Electronic Structure [33].

This value was fixed initially, but allowed to vary slightly once the residual was less than 80.

The VN and Z terms were initially set to zero. However, if values from another column V ele-

ment were available, they would be a better choice for the starting parameters. The distance

parameter dN was set to the dimer bond length, as were the reciprocal length parameters

wes and wep since we expect the effect to occur on that distance scale. The other parameters

for the W term were initially fixed at zero and then allowed to vary once the residual was

below 100 since we expect them to be fine-tuning values. Finally, the energy constant value

is fixed at E_const to allow the reference properties to be given in Hartrees as output from

Gaussian™ while the SCED-LCAO parameters and output will be in electron volts.

We decided to use the scaling weights for homogeneous Gallium shown in table 3.2.

The energies for the reference gallium clusters vary from -0.024 for the dimer to -0.061 for

the Ga8 D4h cluster. Therefore, a scale value of 0.045 is reasonable. The bulk energy values

vary across a large range, with the minimum set to exactly zero. They also don’t vary evenly

39

Name Value Source
Assσ 1 XMGrace fit to dimer overlap; fixed.
Bssσ -0.0798843 XMGrace fit to dimer overlap.
αssσ 1.472260 XMGrace fit to dimer overlap.
dssσ 1.977800 XMGrace fit to dimer overlap.
Aspσ 0 XMGrace fit to dimer overlap; fixed
Bspσ 0.484434 XMGrace fit to dimer overlap.
αspσ 1.719130 XMGrace fit to dimer overlap.
dspσ 1.906810 XMGrace fit to dimer overlap.
Appσ 1 XMGrace fit to dimer overlap; fixed.
Bppσ -0.788506 XMGrace fit to dimer overlap.
αppσ 2.112320 XMGrace fit to dimer overlap.
dppσ 2.337990 XMGrace fit to dimer overlap.
Appπ 1 XMGrace fit to dimer overlap; fixed.
Bppπ 0.0566966 XMGrace fit to dimer overlap.
αppπ 1.683180 XMGrace fit to dimer overlap.
dppπ 1.27176 XMGrace fit to dimer overlap.
εs -11.55396 Atomic Structure Calculations [32]; fixed.
εp -5.673576 Atomic Structure Calculations [32]; fixed.
ε′

s -23.10792 twice εs.
ε′

p -11.34715 twice εp.
AK 0.000001 ≈ 0.
U 6.701734 Elementary Electronic Structure [33]; fixed.
BZ 0 Start at zero.
AN 0 Start at zero.
BN 0 Start at zero.
αN 0 Start at zero.
dN 2.52000 Set to dimer bond length.
was 0 Start at zero.
wes 2.52000 Set to dimer bond length.
wap 0 Start at zero.
wep 2.52000 Set to dimer bond length.
E_const 14.3996 For Angstroms and electron volts; fixed.

Table 3.1: Initial SCED-LCAO parameters for gallium.

40

Name Value Source
Bond 2.6 Å Bond length
Half-bond 1.3 Å Half bond length
Angular 2.0 Å Lengths directly affecting bond angle.
Cluster Energy 0.045 Har. Energy per atom of clusters
Bulk Energy 0.002 Har. Energy per atom

Table 3.2: Scale weight factors for gallium.

due to the fact that the length scale was varied in DFT, but the property scale is based on the

volume. Therefore, we use the DFT value for scaling the bulk, i.e. we scale by percentage.

The dimer energy curve and the dimer cluster property were used to begin the parameter

search. However, once a rough estimate was achieved, these were removed from the refer-

ence properties. The dimer curve contains a cusp-like (non-differentiable) point where there

is a transition in the lowest energy eigenvalue curve from DFT. The Ga2 dimer cluster was

also shown to have a high degree of spin contamination. It was decided that these features

were not something we desired to capture in our model. The ultimate goal of SCED-LCAO

is to quickly model systems of many atoms, so the behavior of a naked dimer is not some-

thing upon which we will focus.

Initially, the overlap curves were fixed, along with U and the W terms. Once the dimer

had provided a rough estimate of the best parameters, we gradually added in additional

clusters starting with two of the largest and a second small cluster. The goal is to allow the

fitting code to run quickly by only computing a small number of clusters while capturing the

behavior of the range of clusters in the database. Once the residual had reached a relatively

low value of 100 and most of the clusters were included, we began to optimize the overlap

curves, U, and W as well. This process was also expedited by optimizing only the overlap

parameters or the only other half of the parameters at any given time, e.g. we would first

optimize the non-overlap parameters, second optimize the overlap parameters, then repeat.

Eventually, we arrived at a residual of 71.2. The resulting parameters for both Gallium and

Nitrogen are given in table 3.3. The residuals for each fitting property can be found in the

41

Name Gallium Nitrogen
εs -11.55396000 -26.23360000
εp -5.67357600 -13.84240000
ε′

s -15.89942562 -34.67487053
ε′

p -9.78502345 -20.28141541
αK 0.09070368 0.25788710
U 13.66059628 15.88403566
BZ 1.57855854 3.84869042
AN -1.40923471 -3.50765478
BN -1.74623609 1.78176908
αN 2.38478380 3.94697772
dN -0.04540130 0.57207437
was -0.00445490 0.24230389
wes 1.32305085 1.38831534
wap -0.10498407 -0.40115070
wep 1.39086822 1.45510897
α mixing 0.63574873
Bssσ -0.17126234 0.67554176
αssσ 1.71417826 1.72525441
dssσ 1.66785074 0.24987968
Bspσ 0.49124563 0.47210819
αspσ 2.04314742 3.08262899
dspσ 1.68594570 1.27079590
Bppσ -0.61936298 -1.52123746
αppσ 2.57254048 3.29562875
dppσ 2.36229832 0.96429255
Bppπ -0.11258717 0.03734260
αppπ 1.69590206 3.69029550
dppπ 1.29280440 0.74092947

Table 3.3: Final SCED-LCAO parameters.

appendices. In total, there were 35 gallium cluster properties and 16 bulk properties used.

During this fitting process, it is important to maintain a minimum gap between ε′
s and

ε′
p. Since the difference between εs and εp is approximately 6 eV, we chose to enforce a

minimum ε′ gap of 6 eV while both values were allowed to vary.

3.2 – Nitrogen

Nitrogen poses a much more difficult problem. Nitrogen forms no known homogeneous

molecular structures beyond the dimer N2. Rather than try to form artificial clusters in DFT

42

– a task that is likely to fail – we chose to generate the Nitrogen parameters using a database

of heterogeneous clusters containing Nitrogen atoms. In addition, the version of the fit-

ting code used for this work does not allow for the inclusion of heterogeneous bulk in the

database. Such heterogeneous bulk structures require a formulation that can capture long-

range interactions. This is typically done through the use of an Ewald summation, which

uses a Fourier transform to perform the calculations for long-range periodic forces. The

version of the fitting code used here does not incorporate Ewald sums.

Since the ultimate goal is to model GaN systems, we created a database of clusters

containing both gallium and nitrogen. For this nitrogen parameter generation, the gallium

parameters are treated as being fixed. They are not allowed to vary from the values found in

the previous section.

While nitrogen is a much lighter atom than gallium with only seven electrons in the

neutral atom, there are still limitations on the size of the clusters that can be included in

the database. Stoichiometries with many more nitrogen atoms than gallium tend to separate

into individual N2 pieces. Elemental formulas with many more gallium atoms than nitrogen

would tend to over emphasize the gallium parameters, leading to little benefit for nitrogen

fitting. Therefore, we chose a database that emphasizes stoichiometries with approximately

the same number of gallium and nitrogen atoms. In this situation, computation time limits

the size of the clusters to approximately twelve atoms – six nitrogen and six gallium.

Again, a thorough search of every symmetry was performed for clusters consisting of

up to four atoms. Convergence was rigorously tested for each degree of freedom. The clus-

ters found were also tested for convergence after the symmetry was broken. Some clusters

ranging in size from five to ten atoms were found using high-symmetry geometrical config-

urations. Others were suggested by previous work [34]–[46].

In addition, several clusters were attempted by modeling a small chunk of the hexago-

nal gallium nitrogen bulk structure and allowing it to relax to a new geometry. Using this

method, only the Ga6N6 D3d cluster shown in figure 3.7 was found to be stable.

43

Figure 3.7: Ga6N6 D3d

Once a collection of stable structures was generated, a subset was again selected to

comprise the database properties. Preference was given to the lowest energy clusters for

each elemental formula, but others were also included. We included more clusters with

approximately equal numbers of gallium and nitrogen atoms in an attempt to focus on the

interaction between the two atomic species. Each cluster was tested at the three lowest spin

multiplicity states and the lowest energy of those three was used. Once again, we included

only those clusters with minimal spin contamination.

Fitting Procedure

The initial nitrogen parameters were chosen in the same way as for gallium. The initial

overlap parameters were generated by producing N2 dimer overlap curves in Gaussian™ and

using XMGrace™ to create parameters to match these curves with the form of the SCED

overlap functions. The values for εs = -26.2336 eV and εp = -13.8424 eV were again pulled

from Mann [32] and doubled for the initial ε′ values. The inter-atomic Coulomb repulsion

term U = 13.15 eV is given by Harrison [33]. This value was fixed initially, but allowed to

vary slightly once the residual was less than 150. The VN and VZ terms were initially copied

from the carbon values given by Yu [4].

44

Name Value Source
Ga-Ga bond 2.8 Å Ga2 bond length
Ga-N bond 2.0 Å GaN dimer bond length
N-N bond 1.1 Å N2 bond length
Angular 2.0 Å Lengths directly affecting bond angle.
Cluster Energy 0.10 Har. Energy per atom of clusters

Table 3.4: Scale weight factors for gallium nitride.

There is more to consider when deciding on a set of scaling weights for gallium nitride

systems. For example, the GaN dimer characteristic bond length is significantly different

from the characteristic N2 dimer bond length. Most of the scaling weights were set as the

characteristic bond length for that interaction. However, the ring structures Ga4N4 D4h and

Ga5N5 D5h are described by the ring radii. Therefore, the weights for those were set at the

reference values for the radii. A list of the weights is given in table 3.4.

The N2 dimer energy curve and the dimer cluster properties were not used in the param-

eter search. The lowest energy dimer occurs for multiplicity three and has a high degree of

spin contamination. The same is true for the GaN dimer cluster.

We began by fitting to the largest cluster Ga6N6 D3d and the smallest cluster Ga3N1 while

holding the overlap fixed. Experience has shown that fitting to only a handful of clusters can

lead to an unproductive search once more clusters are added. So we included every GaN

cluster that would converge quickly.We allowed ε′, AK, BZ, AN, BN, αN, and dN to vary, along

with the mixing parameter for Gallium and Nitrogen αGa-N.Then we gradually began filling

in additional Gallium-Nitrogen clusters as the residual improved. Once most of the GaN

clusters were included, we began to optimize the overlap parameters simultaneously with

the VN and VZ parameters until all GaN clusters in the database were included. Finally, we

also allowed the W terms to vary, as well as the U term.

Eventually, we arrived at a residual of 93.19. The resulting parameters and residuals for

each fitting property are given in the appendices.

45

3.3 – Gallium Validation

Care must be taken to ensure that the generated parameters indeed have predictive power

for further systems. The goal of SCED-LCAO is to quickly calculate previously unknown

atomic configurations.

Therefore, two large homogeneous gallium clusters were chosen to validate the gallium

SCED-LCAO parameters. The first is a nearly symmetric 13-atom ball. The D5h symmetry

is slightly broken due to the Jahn-Teller effect. H.A. Jahn and E. Teller used group theory

to analyze the perturbation calculation on the position of the nucleus to prove that ”All non-

linear nuclear configurations are therefore unstable for an orbitally degenerate electronic

state [47].” The addition of an electron to the system results in the perfectly symmetrical

Ga−13 D5h ball [48]. However, we modeled the neutral off-symmetric structure.

An initial structure was generated by guessing the necessary bond lengths and allowed

to relax using the VASP™ program with the GGA gallium potential. The structure that was

produced nearly possesses the D5h symmetry as predicted by Drebov, et.al. [48]. This ge-

ometry was then introduced into the SCED-LCAO molecular dynamics routine using the

gallium parameters previously produced. After 50,000 time steps, the structure has com-

pletely relaxed into a structure that matches the geometry of the VASP™ calculations, as

seen in figure 3.8. Note that the lines joining the atoms are generated by the visualization

software and do not indicate bonding or lack of bonding, but rather are based on pair dis-

tance alone.

The second validation cluster is a 20-atom with no discernible symmetry. An initial

structure was again generated and allowed to relax using the VASP™ program with the

GGA gallium potential. However, the symmetry of the initial guess was retained in this cal-

culation, so the cluster was first relaxed using the SCED-LCAO molecular dynamics routine

using the gallium parameters. Again we used 50,000 time steps and found that the structure

was completely relaxed into a structure that matches the structure pictured in Drebov, et.al.

[48]. This non-symmetrical structure was further relaxed in the VASP™ program and pro-

46

...

VASP™ output

..

SCED-LCAO output

Figure 3.8: Ga13 Validation

duced a structure very similar to the SCED-LCAO prediction, as seen in figure 3.9.

...

VASP™ output

..

SCED-LCAO output

Figure 3.9: Ga20 Validation

Both of these validation clusters were further analyzed by plotting the pair-distribution

function and the angle-distribution function for both the SCED and VASP™ results. The

plots are given in figure 3.12.

47

Given the good agreement in both validation clusters, we are confident that the gal-

lium parameters have the predictive power to correctly model other homogeneous gallium

structures. Therefore, these gallium parameters also form a solid base upon which to build

Nitrogen parameters, fitting them against gallium nitride clusters.

...

(a)

..

(b)

..

(c)

..

(d)

Figure 3.10: Pair-Distribution functions for Ga13 (a) and Ga20 (c) and angle-distribution
functions for Ga13 (b) and Ga20 (d).

3.4 – Nitrogen Validation

While matching the properties in the database for GaN structures is extremely impor-

tant for forming a useful set of SCED-LCAO parameters, SCED-LCAO should be able to

accurately predict results for larger systems. To demonstrate that our results provide this pre-

48

dictive power, we will use the SCED-LCAO formalism and the parameters we calculated to

predict properties for a larger symmetric cluster and a large periodic system.

For the larger cluster, we chose a highly symmetric 24-atom cluster that was first mod-

eled in [34]. Again, an initial structure was created using approximate GaN bond lengths

and then relaxed in both VASP™ and SCED-LCAO. The resulting structures are given in

figure 3.11. The pair-distribution and angle-distribution functions are given in ??.

...

VASP™ output

..

SCED-LCAO output

Figure 3.11: Ga12N12 Validation

There is very good agreement between the two results, although the SCED results have

a slightly larger bond lengths.

We chose to test our SCED-LCAO parameters with the most common form of GaN

bulk crystal structure. While the cubic zinc-blende is also discussed in the literature,the

hexagonal wurtzite most commonly occurs in nature and is the form used in semiconduc-

tor manufacturing. Both structures form planar hexagonal layers of gallium with a closely

bonded hexagonal layer of nitrogen at the triangle centers and offset by a small amount in the

direction of the z [001] axis. This pair of layers is repeated with a larger separation between

layer pairs. The only difference between zinc-blende and wurzite is in the layer packing.

The zinc-blende structure has layers organized as AaBbCc where the capital letters repre-

sent gallium layers and the lowercase represent the nitrogen layers. In contrast, the wurzite

49

structure has layers stacked as AaBbAa, where the every other layer is identical in the xy

plane. An illustration is given in figure 3.13.

We will predict the geometrical configuration for minimum energy. For the wurtzite

structure, three parameters are needed to completely describe the crystal lattice. We will use

the ABA layer distance c between the two aligned gallium layers, the Aa layer separation

distance d between a gallium layer and its nearest nitrogen layer, and the planar hexagon

side length a. These have known values of 5.185 Å, 0.643 Å, and 3.189 Å respectively

[Vurgaftman2003, Bernardini1997].

..

Ga12N12

SCED SCED

VASPVASP

Figure 3.12: Pair-Distribution and Angle-Distribution functions for Ga12N12.

Our SCED-LCAO predictions were made with the molecular dynamics program devel-

oped in [3]. We began with the known geometries for a block of GaN bulk as shown in

figure 3.14. We applied periodic boundary conditions and used the parameters for gallium

and nitrogen that we found earlier. The structure was allowed to completely relax to its

50

...

c

.

a

.

d

Figure 3.13: Hexagonal wurtzite structure for gallium nitride.

Figure 3.14: Block of gallium nitride.

stable structure using the powerquenching technique. As before, a breathing mode was ac-

complished by scaling all three unit cell vectors and finding the energy for each scaling. The

same procedure was performed using the VASP™ program for comparison. These results

are plotted in figure 3.15.

While the minimum energy for the SCED-LCAO results occurs at a scaling factor of

1.02, the 2% error is considered well within the acceptable range.

51

..

ΔE (eV)

. scaling...............

VASP™

..

SCED

.
0.97

.
1.00

.
1.03

Figure 3.15: GaN bulk energy versus lattice scaling.

Thus, there is excellent agreement for both the Ga12N12 cluster and the bulk properties.

This demonstrates that SCED-LCAO can accurately predict large GaN structures with the

parameters given. We can now be confident that SCED-LCAO with the parameters produced

here can accurately predict structures involving Gallium and Nitrogen.

52

CHAPTER 4

PREDICTION OF GALLIUM NITRIDE STRUCTURES

Having validated the Gallium and Nitrogen SCED-LCAO parameters, we will now turn

our attention to the prediction of larger structures. The true power of SCED-LCAO lies in its

ability to accurately predict structures and properties where ab-initio methods are too costly

computationally. SCED-LCAO is able to give accurate predictions in situations where the

multi-center interactions are important.

We continue our study of Gallium Nitride cage structures by considering two additional

clusters – Ga16N16 and Ga24N24. These were studied in depth by Brena and Ojamae [46]

using Gaussian™ with a light basis set. We extend our study beyond cluster geometries to

also include electronic structure. These clusters were allowed to relax in the SCED-LCAO

molecular dynamics simulation to find the lowest energy state. The Pair-Distribution func-

tions and Angle-Distribution functions are given for Ga16N16 and Ga24N24 in figure 4.1 and

figure 4.2, respectively. As expected, the results from SCED are a very close match with

those of VASP™ for Ga16N16. The Ga24N24 was too large to model in VASP™ with our

current machines. This confirms that the current parameters in SCED-LCAO provide a firm

foundation for additional studies.

We also explored the electronic structure of Ga12N12, Ga16N16, and Ga24N24. The elec-

tronic density of states (DoS) was calculated and plotted for each, along with the DoS for

GaN bulk. These results are summarized in figure 4.3.

One quatity of interest is the band gap for these structures. This is the gap in the energy

of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular

orbital (LUMO). For semi-conductors such as GaN, we expect a small, but distinct gap. This

gap allows for the electrical behavior that makes transistors possible. As seen in figure 4.3, in

53

each case we found such a gap. These gaps also matched very closely with the results from

Brena and Ojamae [46] using the 6-31G(d,p) basis sets in Gaussian™. These results are

plotted in figure 4.4. The gap for Ga24N24 is significantly different since the SCED cluster

relaxed into a non-symmetric structure, while the Gaussian™ result maintained symmetry.

..

Ga16N16

SCED SCED

VASPVASP

Figure 4.1: Pair-Distribution and Angle-Distribution functions for Ga16N16.

These results are encouraging and are but a glimpse of the power of SCED-LCAO.

54

..

Ga24N24

SCED SCED

Figure 4.2: Pair-Distribution and Angle-Distribution functions for Ga24N24.

..

Ga12N12

Gap=2.602 eV
Ga16N16

Gap=2.426 eV

Density of States

GaN bulk
Gap=5.064 eV

Ga24N24

Gap=2.319 eV
Expt. @ 300 K
Gap=3.4 eV

Figure 4.3: Density of States results for SCED results.

55

..

Gap (eV)

.

N

.

12

.

16

.

24

........

SCED

..

Gaussian™

.

2

.

3

Figure 4.4: GaN band gap versus number of GaN pairs N.

56

CHAPTER 5

CONCLUSION

5.1 – Comparison of Methods

The self-consistency problem provides an unusual challenge for computational solution.

Within the framework of SCED-LCAO, the SC problem is often highly non-linear in mul-

tiple dimensions, especially surrounding the root – a veritable nightmare scenario for root-

finding algorithms. The Generalized Bisection method provides solutions in many cases

where derivative-based methods fail due to charge sloshing. This is tremendously impor-

tant for the task of generating parameters for SCED-LCAO. During this fitting procedure,

failure to converge to a root can be catastrophic. The only way to deal with a self-consistency

failure in the fitting procedure is to abandon the entire set of parameters. While the optimal

parameter set usually converges to a root with derivative methods, the process of arriving

at this optimal set often requires the calculation of many self-consistent systems with the

Generalized Bisection method.

The Generalized Bisection method will often provide a solution when the Broyden

method fails, but it is comparatively very slow in its convergence to the root. Our goal

is to decrease the computational time required for generating parameters, so we need to

minimize number of steps in this process. Given a series of timing runs, it was determined

that the optimal way to find roots was to employ the gradient methods whenever possible

and to switch to the Generalized Bisection method when the derivative method fails. Since

even one root-finding failure can result in discarding hundreds of thousands of successful

solutions, the added expense of the Generalized Bisection method is more than justified in

this case.

57

5.2 – Gallium Nitride

Gallium and nitrogen form strong bonds with significant electron transfer in SCED-

LCAO. For this heterogeneous system, an improvement to the self-consistency algorithm

was necessary to find parameters to describe this bonding. In addition, our work represents

the first attempt to fit parameters for an entire elemental species using only heterogeneous

properties. Since heterogeneous nitrogen forms only dimers (N2) under most natural condi-

tions, it was not profitable to attempt to create a homogeneous nitrogen database of clusters

and bulk. Therefore, we used only heterogeneous clusters to fill out the property database

(along with the nitrogen dimer), namely those clusters consisting of gallium and nitrogen,

carbon and nitrogen, and boron and nitrogen. Given this situation, the burden on the self-

consistency algorithm was especially high, increasing the likelihood of failures. The inclu-

sion of the Generalized Bisection method as a “safety net” for when the Broyden method

failed was essential to the successful generation of SCED-LCAO parameters for nitrogen.

5.3 – Direction for Future Work

While the Generalized Bisection method allows for successful root finding in most SC

problems, it does not always converge. The particularly devilish nature of the SCED-LCAO

self-consistency problem will occasionally lead to failure. Given the importance of finding

the solution for every case in the fitting procedure, more work should be done to eliminate

this small percentage of failures. One possible route of investigation would be to improve the

Generalized Bisection method by optimizing the size of the relaxation factor after a corner

sign failure. Perhaps even a randomly generated relaxation factor would prevent Generalized

Bisection failures. Hybrid methods combining Newton’s method and the bisection method

are easy to envision in one dimension. Perhaps these can be generalized to higher dimensions

using techniques from Generalized Bisection.

Gallium nitride has been a hot topic for research in recent years. The crystal properties

of gallium nitride have been shown to be superior to other semi-conductors in heat and

58

radiation sensitivity, voltage handling, and in the production of violet laser diodes. Recent

research has been shifting to the nano-scale. Gallium nitride has been shown to form nano-

wires and nanotubes, which have the potential to provide next-generation semiconductors

and optical devices.

The inclusion of the Generalized Bisection method opens the door for a wide array of

other studies with SCED-LCAO. Parameters can be generated for many additional elements.

As demonstrated in this work, elemental species need not form their own homogeneous

crystal structure or small clusters to provide a sufficient database of properties. Since boron

has already been studied, boron nitride can be quickly investigated. Perhaps it too will form

nanowires with interesting properties.

59

REFERENCES

[1] S. Konyukhov, I. Kupchenko, A. Moskovsky, A. Nemukhin, A. Akimov, and A. Kolomeisky,

“Rigid-body molecular dynamics of the fullerene-based nanocars on the metallic sur-

faces,” J. Chem. Theor. Comp., vol. 6, pp. 2581–2590, 2010. DOI: 10 . 1021 /

ct100101y. URL: http://python.rice.edu/~kolomeisky/nanocar.htm.

[2] S. M. Lee, Y. H. Lee, Y. G. Hwang, J. Elsner, D. Porezag, and T. Frauenheim, “Stability

and electronic structure of GaN nanotubes from density-functional calculations,” Phys.

Rev. B, vol. 60, pp. 7788–7791, 11 1999-09. DOI: 10.1103/PhysRevB.60.7788.

URL: http://link.aps.org/doi/10.1103/PhysRevB.60.7788.

[3] C. R. Leahy, M. Yu, C. S. Jayanthi, and S. Y. Wu, “Coherent treatment of the self-

consistency and the environment-dependency in a semi-empirical hamiltonian: appli-

cations to bulk silicon, silicon surfaces, and silicon clusters,” Phys. Rev. B, vol. 74,

no. 15, 155408:1–13, 2006. DOI: 10.1103/PhysRevB.74.155408.

[4] M. Yu, I. Chaudhuri, C. Leahy, S. Y. Wu, and C. S. Jayanthi, “Energetics, relative sta-

bilities, and size-dependent properties of nanosized carbon clusters of different fami-

lies: fullerenes, bucky-diamond, icosahedral, and bulk-truncated structures,” The Jour-

nal of Chemical Physics, vol. 130, no. 18, 184708, p. 184 708, 2009. DOI: 10.1063/

1.3124827. URL: http://link.aip.org/link/?JCP/130/184708/1.

[5] W. Q. Tian, M. Yu, C. Leahy, C. S. Jayanthi, and S.-Y. Wu, “The self-consistent

and environment-dependent hamiltonian and its application to carbon nanoparticles,”

Journal of Computational and Theoretical Nanoscience, vol. 6, no. 2, pp. 390–396,

2009. DOI: doi:10.1166/jctn.2009.1048. URL: http://www.ingentaconnect.

com/content/asp/jctn/2009/00000006/00000002/art00016.

60

http://dx.doi.org/10.1021/ct100101y
http://dx.doi.org/10.1021/ct100101y
http://python.rice.edu/~kolomeisky/nanocar.htm
http://dx.doi.org/10.1103/PhysRevB.60.7788
http://link.aps.org/doi/10.1103/PhysRevB.60.7788
http://dx.doi.org/10.1103/PhysRevB.74.155408
http://dx.doi.org/10.1063/1.3124827
http://dx.doi.org/10.1063/1.3124827
http://link.aip.org/link/?JCP/130/184708/1
http://dx.doi.org/doi:10.1166/jctn.2009.1048
http://www.ingentaconnect.com/content/asp/jctn/2009/00000006/00000002/art00016
http://www.ingentaconnect.com/content/asp/jctn/2009/00000006/00000002/art00016

[6] M. Yu, S. Wu, and C. Jayanthi, “A self-consistent and environment-dependent hamilto-

nian for large-scale simulations of complex nanostructures,” Physica E: Low-dimensional

Systems and Nanostructures, vol. 42, no. 1, pp. 1–16, 2009, ISSN: 1386-9477. DOI:

10.1016/j.physe.2009.08.024. URL: http://www.sciencedirect.com/

science/article/pii/S1386947709003208.

[7] M. Yu, C. S. Jayanthi, and S. Y. Wu, “Geometric and electronic structures of graphitic-

like and tubular silicon carbides: Ab-initio studies,” Phys. Rev. B, vol. 82, p. 075 407,

7 2010-08. DOI: 10.1103/PhysRevB.82.075407. URL: http://link.aps.org/

doi/10.1103/PhysRevB.82.075407.

[8] M. Yu, C. S. Jayanthi, and S. Y. Wu, “Theoretical predictions of a bucky-diamond sic

cluster,” Nanotechnology, vol. 23, no. 23, p. 235 705, 2012. URL: http://stacks.

iop.org/0957-4484/23/i=23/a=235705.

[9] M. Yu, C. Jayanthi, and S. Wu, “Size-, shape-, and orientation-dependent properties

of sic nanowires of selected bulk polytypes,” Journal of Materials Research, vol. 28,

pp. 57–67, 01 2013-1, ISSN: 2044-5326. DOI: 10.1557/jmr.2012.237. URL:

http://journals.cambridge.org/article_S0884291412002373.

[10] P. Tandy, M. Yu, C. Leahy, C. S. Jayanthi, and S. Y. Wu, “Next generation of the self-

consistent and environment-dependent hamiltonian: applications to various boron al-

lotropes from zero- to three-dimensional structures,” The Journal of Chemical Physics,

vol. 142, no. 12, 2015. DOI: http://dx.doi.org/10.1063/1.4916069. URL:

http://scitation.aip.org/content/aip/journal/jcp/142/12/10.1063/1.

4916069.

[11] D. D. Johnson, F. J. Pinski, and G. M. Stocks, “Fast method for calculating the self-

consistent electronic structure of random alloys,” Physical Review B, vol. 30, no. 10,

pp. 5508–5515, 1984.

61

http://dx.doi.org/10.1016/j.physe.2009.08.024
http://www.sciencedirect.com/science/article/pii/S1386947709003208
http://www.sciencedirect.com/science/article/pii/S1386947709003208
http://dx.doi.org/10.1103/PhysRevB.82.075407
http://link.aps.org/doi/10.1103/PhysRevB.82.075407
http://link.aps.org/doi/10.1103/PhysRevB.82.075407
http://stacks.iop.org/0957-4484/23/i=23/a=235705
http://stacks.iop.org/0957-4484/23/i=23/a=235705
http://dx.doi.org/10.1557/jmr.2012.237
http://journals.cambridge.org/article_S0884291412002373
http://dx.doi.org/http://dx.doi.org/10.1063/1.4916069
http://scitation.aip.org/content/aip/journal/jcp/142/12/10.1063/1.4916069
http://scitation.aip.org/content/aip/journal/jcp/142/12/10.1063/1.4916069

[12] D. D. Johnson, “Modified broyden’s method for accelerating convergence in self-

consistent calculations,” Physical Review B: Condensed Matter, vol. 38, no. 18, pp. 807–

813, 1988.

[13] J. E. Dennis Jr and J. J. Moree, “Quasi-newton methods, motivation and theory,” SIAM

Review, vol. 19, no. 1, pp. 46–89, 1977.

[14] R. H. Byrd, J. Nocedal, and R. B. Schnabel, “Representation of quasi-newton matrices

and their use in limited memory methods,” pp. 1–30, 1996.

[15] M. Kawata, C. M. Cortis, and R. A. Friesner, “Efficient recursive implementation of

the modified broyden method and the direct inversion in the iterative subspace method:

acceleration of self-consistent calculations,” Journal of Chemical Physics, vol. 108,

no. 11, pp. 4426–4438, 1998.

[16] G. P. Srivastava, “Broyden’s method for self -consistent field convergence accelera-

tion,” J. Phys. A: Math. Gen, vol. 17, pp. L317–L321, 1984.

[17] B. Kearfott, “An efficient degree-computation method for a generalized method of bi-

section,” Numer. Math, vol. 32, pp. 109–127, 1979.

[18] M. N. Vrahatis and K. I. Iordanidis, “A rapid generalized method of bisection for solv-

ing systems of nonlinear equations,” Numer. Math., vol. 49, no. 2-3, pp. 123–138,

1986, ISSN: 0029-599X. DOI: 10.1007/BF01389620. URL: http://dx.doi.org/

10.1007/BF01389620.

[19] M. N. Vrahatis, I. Z. Emiris, and B. Mourrain, “Sign methods for counting and com-

puting real roots of algebraic systems,” 1999.

[20] G. R. Wood, “The bisection method in higher dimensions,” Math. Programming, vol.

55, no. 3, Ser. A, pp. 319–337, 1992, ISSN: 0025-5610. DOI: 10.1007/BF01581205.

URL: http://dx.doi.org/10.1007/BF01581205.

[21] M. N. Vrahatis, G. Servizi, and T. Boutis, “A procedure to compute the fixed points

and visualize the orbits ofa 2d map,” 1993.

62

http://dx.doi.org/10.1007/BF01389620
http://dx.doi.org/10.1007/BF01389620
http://dx.doi.org/10.1007/BF01389620
http://dx.doi.org/10.1007/BF01581205
http://dx.doi.org/10.1007/BF01581205

[22] M. N. Vrahatis, “An efficient method for locating and computing periodic orbits of

nonlinear mappings,” Journal of Computational Physics, vol. 119, pp. 105–119, 1995.

[23] M. N. Vrahatis, A. E. Perdiou, V. S. Kalantonis, E. A. Perdios, K. Papadakis, R. Pros-

miti, and S. C. Farantos, “Application of the characteristic bisection method for locat-

ing and computing periodic orbits in molecular systems,” 2001.

[24] A. D. Becke, “A new mixing of hartree–fock and local density-functional theories,”

The Journal of Chemical Physics, vol. 98, no. 2, pp. 1372–1377, 1993. DOI: 10.

1063/1.464304. URL: http://link.aip.org/link/?JCP/98/1372/1.

[25] D. E. Woon and J. Thom H. Dunning, “Gaussian basis sets for use in correlated molec-

ular calculations. iii. the atoms aluminum through argon,” The Journal of Chemical

Physics, vol. 98, no. 2, pp. 1358–1371, 1993. DOI: 10.1063/1.464303. URL: http:

//link.aip.org/link/?JCP/98/1358/1.

[26] E. R. Davidson, “Comment on “comment on dunning’s correlation-consistent basis

sets”,” Chemical Physics Letters, vol. 260, no. 3–4, pp. 514–518, 1996, ISSN: 0009-

2614. DOI: 10.1016/0009-2614(96)00917-7. URL: http://www.sciencedirect.

com/science/article/pii/0009261496009177.

[27] C. Leahy, “Self-consistent and environment-dependent hamiltonian for quantum-mechanics

materials simulations,” PhD dissertation, 2007.

[28] B. Song and P. Cao, “Evolution of the geometrical and electronic structures of Gan

(n=2-26) clusters: a density-functional theory study,” The Journal of chemical physics,

vol. 123, no. 144312, 2005. DOI: 10.1063/1.2047527.

[29] X. G. Gong and E. Tosatti, “Structure of small gallium clusters,” Physics letters A,

vol. 166, no. 5,6, pp. 369–372, 1992, ISSN: 0375-9601. DOI: http://dx.doi.org/

10.1016/0375- 9601(92)90725- 2. URL: http://www.sciencedirect.com/

science/article/pii/0375960192907252.

63

http://dx.doi.org/10.1063/1.464304
http://dx.doi.org/10.1063/1.464304
http://link.aip.org/link/?JCP/98/1372/1
http://dx.doi.org/10.1063/1.464303
http://link.aip.org/link/?JCP/98/1358/1
http://link.aip.org/link/?JCP/98/1358/1
http://dx.doi.org/10.1016/0009-2614(96)00917-7
http://www.sciencedirect.com/science/article/pii/0009261496009177
http://www.sciencedirect.com/science/article/pii/0009261496009177
http://dx.doi.org/10.1063/1.2047527
http://dx.doi.org/http://dx.doi.org/10.1016/0375-9601(92)90725-2
http://dx.doi.org/http://dx.doi.org/10.1016/0375-9601(92)90725-2
http://www.sciencedirect.com/science/article/pii/0375960192907252
http://www.sciencedirect.com/science/article/pii/0375960192907252

[30] Y. Zhao, W. Xu, Q. Li, Y. Xie, and H. F. Schaefer III, “Gallium clusters Gan (n=1-6):

structures, thermochemistry, and electron affinities,” J. Phys. Chem. A, vol. 108, no.

36, pp. 7448–7459, 2004. DOI: 10.1021/jp0402784.

[31] J. Moc, “Can gallium dimer react effectively with three H2 molecules to form digal-

lane?” Chemical Physics, vol. 313, pp. 93–100, 2005. DOI: 10.1016/j.chemphys.

2004.12.018.

[32] J. B. Mann, “Atomic structure calculations i. hartree-fock energy results for the ele-

ments report la-3690,” 1967.

[33] W. Harrison, Elementary Electronic Structure. World Scientific Publishing Company

Incorporated, 2004, ISBN: 9789812387080. URL: http://books.google.com/

books?id=yZrkcSwlr2YC.

[34] J. Zhao, B. Wang, X. Zhou, Z. Chen, and W. Lu, “Structure and electronic properties of

medium-sized GanNn clusters (n=4–12),” Chemical Physics Letter, vol. 422, pp. 170–

173, 2006.

[35] P. S. Yadav, R. K. Yadav, and A. B. K., “Structural, electronic and vibrational proper-

ties of small GaxNy (x+y=2–5) nanoclusters: a b3lyp-dft study,” Journal of Physics:Condensed

Matter, vol. 19, no. 076209, pp. 1–28, 2007. DOI: 10.1088/0953- 8984/19/7/

076209.

[36] A. C. Pineda and S. P. Karan, “(hyper)polarizabilities of isolated GaN nanoclusters,”

Chemical Physics Letters, vol. 429, pp. 169–173, 2006. DOI: 10.1016/j.cplett.

2006.07.067.

[37] Z. Hao-Ping and H. Jing-An, “Ab initio study of the electronic properties of the planar

Ga5N5 cluster,” Chinese Physics, vol. 14, no. 3, pp. 529–532, 2005.

[38] A. K. Kandalam, M. A. Blanco, and R. Pandey, “Theoretical study of AlnNn, GanNn,

and InnNn (n=4, 5, 6) clusters,” J. Phys. Chem. B, vol. 6, no. 8, pp. 1945–1953, 2002.

DOI: 10.1021/jp0140062.

64

http://dx.doi.org/10.1021/jp0402784
http://dx.doi.org/10.1016/j.chemphys.2004.12.018
http://dx.doi.org/10.1016/j.chemphys.2004.12.018
http://books.google.com/books?id=yZrkcSwlr2YC
http://books.google.com/books?id=yZrkcSwlr2YC
http://dx.doi.org/10.1088/0953-8984/19/7/076209
http://dx.doi.org/10.1088/0953-8984/19/7/076209
http://dx.doi.org/10.1016/j.cplett.2006.07.067
http://dx.doi.org/10.1016/j.cplett.2006.07.067
http://dx.doi.org/10.1021/jp0140062

[39] A. Costales, M. A. Blanco, A. M. Pendas, A. K. Kandalam, and R. Pandey, “Chemical

bonding in group III nitrides,” J. Am. Chem. Soc., vol. 124, no. 15, pp. 4116–4123,

2002. DOI: 10.1021/ja017380o.

[40] M. Zhou and L. Andrews, “Reactions of laser-ablated Ga, In, and Tl atoms with nitro-

gen atoms and molecules. infrared spectra and density functional calculations of GaN,

NGaN, NInN, and the M3N and MN3 molecules,” J. Phys. Chem. A, vol. 104, no. 8,

pp. 1648–1655, 2000. DOI: 10.1021/jp993429p.

[41] E. P. F. Lee and J. M. Dyke, “An ab initio study of the low-lying doublet states of linear

and t-shaped Ga-N2,” J. Phys. Chem. A, vol. 104, no. 50, pp. 11 810–11 815, 2000.

DOI: 10.1021/jp002869+.

[42] J. J. Belbruno, “The structure of small galium nitride clusters,” Heteroatom Chemistry,

vol. 11, no. 4, pp. 281–286, 2000.

[43] B. Song, P. Cao, and B. Li, “Theoretical study of the Ga6N6 cluster,” Physics Letters

A, vol. 315, pp. 308–312, 2003. DOI: 10.1016/S0375-9601(03)01035-1.

[44] A. K. Kandalam, M. A. Blanco, and R. Pandey, “Theoretical study of structural and

vibrational properties of Al3N3, Ga3N3, and In3N3,” J. Phys. Chem. B, vol. 105, no.

26, pp. 6080–6084, 2001. DOI: 10.1021/jp004404p.

[45] A. Costales and R. Pandey, “Density functional calculations of small anionic clusters

of group III nitrides,” J. Phys. Chem. A, vol. 107, no. 1, pp. 191–197, 2003. DOI:

10.1021/jp022202i.

[46] B. Brena and L. Ojamae, “Effects and quantum confinement in nanosized GaN clusters:

theoretical predictions,” J. Phys. Chem. C, vol. 112, no. 35, pp. 13 516–13 523, 2008.

DOI: 10.1021/jp8048179.

[47] H. A. Jahn and E. Teller, “Stability of polyatomic molecules in degenerate electronic

states. i. orbital degeneracy,” Proceedings of the Royal Society A, vol. 161, no. 905,

pp. 220–235, 1937. DOI: 10.1098/rspa.1937.0142.

65

http://dx.doi.org/10.1021/ja017380o
http://dx.doi.org/10.1021/jp993429p
http://dx.doi.org/10.1021/jp002869+
http://dx.doi.org/10.1016/S0375-9601(03)01035-1
http://dx.doi.org/10.1021/jp004404p
http://dx.doi.org/10.1021/jp022202i
http://dx.doi.org/10.1021/jp8048179
http://dx.doi.org/10.1098/rspa.1937.0142

[48] N. Drebov, F. Weigend, and R. Ahlrichs, “Structures and properties of neutral gallium

clusters: a theoretical investigation,” The Journal of Chemical Physics, vol. 135, no.

4, 044314, 2011. DOI: http://dx.doi.org/10.1063/1.3615501. URL: http://

scitation.aip.org/content/aip/journal/jcp/135/4/10.1063/1.3615501.

66

http://dx.doi.org/http://dx.doi.org/10.1063/1.3615501
http://scitation.aip.org/content/aip/journal/jcp/135/4/10.1063/1.3615501
http://scitation.aip.org/content/aip/journal/jcp/135/4/10.1063/1.3615501

APPENDIX A

GALLIUM CLUSTER DATABASE

The following is a list of clusters used to create the Gallium database. The geometries

and cluster energies were produced using Guassian™.

Figure A.1: Ga3 D3h Figure A.2: Ga5 D5h

Figure A.3: Ga5 D4h Figure A.4: Ga5 C2v

67

Figure A.5: Ga6 C2v a Figure A.6: Ga6 D3h

Figure A.7: Ga6 C2v b Figure A.8: Ga6 D3d

Figure A.9: Ga5 D2d Figure A.10: Ga7 C3v

68

Figure A.11: Ga7 Cs Figure A.12: Ga8 D2h

69

APPENDIX B

NITROGEN CLUSTER DATABASE

The Nitrogen SCED-LCAO parameters were found by fitting against the following het-

erogeneous clusters, pairing Nitrogen with Gallium.

Figure B.1: Ga1N3 C2v b Figure B.2: Ga1N3 Pyramidal

Figure B.3: Ga1N3 C∞h Figure B.4: Ga3N1 C∞h

Figure B.5: Ga3N1 D3h Figure B.6: Ga1N4 C∞h

70

Figure B.7: Ga2N3 C∞h Figure B.8: Ga2N3 D∞h

Figure B.9: Ga3N2 D∞h Figure B.10: Ga4N1 C2v

Figure B.11: Ga4N1 C∞h Figure B.12: Ga6N6 D3d

71

APPENDIX C

GENERALIZED BISECTION COMPUTER CODE

The Self-Consistency routines were written into the pre-existing structure of the fitting

code. The fitting code executes the many fitting loops using a reverse communication tech-

nique. Flags are used in the code to determine which parts need to be run. This allows the

program to determine optimization controls without knowing the function that is being op-

timized.

Total Cluster
!<>================================
!<>
!<> Fortran source code subroutines.
!<>
!<> Filename: total_cluster.F
!<>
!<> Description: <fitting-doc-tag-short> <need-file-description>
!<>
!<> Documentation: <fitting-doc-tag-short> <need-doc-description>
!<>
!<> Arranged by: Lyle Smith rev. 1 July 1, 2010
!<> rev. 2 Jan. 19, 2011
!<> rev. 2.1 Jan. 31, 2011
!<> rev. 2.2 Mar. 21, 2011 - improved error output.
!<> rev. 2.3 May 24, 2011 - fixed a bug in error output.
!<> rev. 2.3.1 July 12, 2011 - include cheats for all.
!<>
!<> There are 2 self-consistency schemes included in this version:
!<> 1. the Broyden Method
!<> 2. Generalized Bisection (limited to 8 or less degrees of freedom)
!<>
!<> It was determined that greatest efficiency was achieved by using the Broyden
!<> method. This is true for large systems (5+ DoFs) even when a large amount
!<> of charge sloshing occured. Therefore, the Broyden method is always used
!<> initially. If the Broyden method exceeds the maximum number of steps, then
!<> the routine will switch to the Generalized Bisection method. Preliminary
!<> tests show this to find the root in excess of 99.999% of systems.
!<>
!<>================================
!<>
!<>
!<>
!<>
!<>================================ total_cluster
!<>
!<> <fitting-doc-tag-short> <need-sub-description>
!<>
!<> <fitting-doc-tag-short> <unsupported-sub-declare>
subroutine total_cluster(E_tot, size_R, charge_config, spin_config,&
elem_R, sites_X_R,Free_R, size_MP, curr_EP, err_tot)

!<>
!<> <fitting-doc-tag-begin> <supported-use-block>

72

!<>
use alloc_module
!<>
use global_module
!<>
use clust_wrap_module
!<>
!<> <fitting-doc-tag-end> <supported-use-block>
!<>
!<>================================ declarations
!<>
!<>================ arguments
!<>
!<>-------- input
!<>
!<> <fitting-doc-tag-begin> <unsupported-arg-block>
!<>
integer(kind = 4) :: old_dec_EIG
integer(kind = 4) :: old_dec_HS
integer(kind = 4) :: size_R
character(len = length__elem) :: elem_R(size_R)
real(kind = 8) :: sites_X_R(fix__X, size_R)
integer(kind = 4) :: spin_config
integer(kind = 4) :: charge_config
integer(kind = 4) :: Free_R(size_R)
integer(kind = 4) :: old_short_R_R(alloc__R, alloc__R)
integer(kind = 4) :: size_MP
real(kind = 8) :: curr_EP(size_MP)
!<>
!<> <fitting-doc-tag-end> <unsupported-arg-block>
!<>
!<>-------- output
!<>
!<> <fitting-doc-tag-begin> <unsupported-arg-block>
!<>
real(kind = 8) :: E_tot
integer(kind = 4) :: old_size_EIG
real(kind = 8) :: old_energy_EIG(alloc__clust_HS)
integer(kind = 4) :: old_size_HS
real(kind = 8) :: old_C_HS_qHS(alloc__clust_HS, alloc__clust_HS)
character(len = *) :: err_tot
!<>
!<> <fitting-doc-tag-end> <unsupported-arg-block>
!<>
!<>================ local variables
!<>
!<> <fitting-doc-tag-begin> <unsupported-local-block>
!<>
integer(kind = 4), parameter :: MODEL_neutral_SC = 1
integer(kind = 4), parameter :: fix_EL = 4
real(kind = 8), parameter :: tune_elec_N_change = 1.0E-2_8
real(kind = 8), parameter :: tune_elec_N_toler = 1.0E-12_8
integer(kind = 4) :: size_RF, size_RF1, i_EIG
real(kind = 8) :: X_eval_RF(alloc__R)
real(kind = 8) :: G_eval_RF(alloc__R)
real(kind = 8) :: X_best_RF(alloc__R)
real(kind = 8) :: G_best_RF(alloc__R)
real(kind = 8) :: sites_prev_R(fix__X, alloc__R); save sites_prev_R
integer(kind = 4) :: n_eval
integer(kind = 4) :: rev_eval
integer(kind = 4) :: save_iso ; save save_iso
real(kind = 8) :: X_init_RF(alloc__R) ; save X_init_RF
real(kind = 8) :: X_change
real(kind = 8) :: X_scale_RF(alloc__R)
real(kind = 8) :: G_scale_RF(alloc__R)

73

real(kind = 8) :: X_toler
real(kind = 8) :: G_toler
real(kind = 8) :: G_accur
real(kind = 8) :: Ln_this_R(alloc__R)
real(kind = 8) :: Ln_next_R(alloc__R)
real(kind = 8) :: Lz_this_R(alloc__R)
integer(kind = 4) :: act_EIG
real(kind = 8) :: energy_E(alloc__clust_HS)
real(kind = 8) :: occupy_E(alloc__clust_HS)
real(kind = 8) :: E_band
real(kind = 8) :: E_cor
real(kind = 8) :: R_scale
real(kind = 8) :: E_scale
integer(kind = 4) :: flag_SC
integer(kind = 4) :: i_R, i_RF, n_RF,i_M
real(kind = 8) :: X_init, X_scale, G_scale
real(kind = 8) :: E_tract, F_set, G_norm
integer(kind = 4) :: i_R_RF(alloc__R)
integer(kind = 4) :: i_RF_R(alloc__R)
integer(kind = 4) :: flag_free, k_R
real(kind = 8) :: Ln_allbutlast, float_tot
integer(kind = 4) :: int_elec, flag_occ, degen_last
integer(kind = 4) :: get_n_val
real(kind = 8) :: f_int
real(kind = 8) :: f_invert
real(kind = 8) :: f_float_accur, max_SC_steps
integer(kind = 4) :: index_from_nat
integer(kind = 4) :: SC_method, switcher, n_eval_int
integer(kind = 4) :: n_eval_tot ; save n_eval_tot
integer(kind = 4) :: clust_curr ; save clust_curr
!<>
!<> <fitting-doc-tag-end> <unsupported-local-block>
!<>
!<>================================ body (total_cluster)
!<>
!<> <fitting-doc-tag-begin> <unsupported-body-block>
!<>
old_dec_EIG = 0
old_dec_HS = 0
call int_matrix_set(alloc__R, alloc__R, size_R, size_R, old_short_R_R, 1)
R_scale = global__R_scale
E_scale = global__E_scale
flag_SC = 0
if (MODEL_neutral_SC /= 0) flag_SC = 1
if (charge_config /= 0) flag_SC = 1
n_RF = 0
do i_R = 1, size_R
flag_free = 1
do k_R = i_R - 1, 1, -1

if (Free_R(k_R) == Free_R(i_R)) then
flag_free = 0

end if
end do
if (flag_free == 1) then

n_RF = n_RF + 1
end if

end do
size_RF = n_RF
do i_RF = 1, size_RF
i_R_RF(i_RF) = -1

end do

74

float_tot = 0.000_8
degen_last = 0
do i_R = 1, size_R
i_RF_R(i_R) = Free_R(i_R)
if (i_R_RF(i_RF_R(i_R)) == -1) then

i_R_RF(i_RF_R(i_R)) = i_R
end if
float_tot = float_tot + f_int(get_n_val(elem_R(i_R)))
if (Free_R(i_R) == size_RF) then

degen_last = degen_last + 1
end if

end do
float_tot = float_tot - f_int(charge_config)
size_RF1 = size_RF - 1
if (size_RF1 == 0) flag_SC = 0
X_init = f_int(fix_EL)
X_change = tune_elec_N_change

if (wrap__index_iso /= save_iso) then
do i_RF = 1, size_RF

X_init_RF(i_RF) = f_int(get_n_val(elem_R(i_R_RF(i_RF))))
end do
if (wrap__index_iso == 82) then

X_init_RF(1) = 3.87721401_8
X_init_RF(2) = 4.12054316_8
X_init_RF(3) = 3.89416424_8
X_init_RF(4) = 3.97334306_8
X_init_RF(5) = 4.08827692_8
X_init_RF(6) = 3.6599226_8

endif
if (wrap__index_iso == 84) then

X_init_RF(1) = 5.23366689_8
endif
if (wrap__index_iso == 85) then

X_init_RF(1) = 5.26165340_8
X_init_RF(2) = 3.69981565_8

endif
if (wrap__index_iso == 87) then

X_init_RF(1) = 5.31224911_8
X_init_RF(2) = 3.69416810_8
X_init_RF(3) = 4.03936440_8

endif
if (wrap__index_iso == 88) then

X_init_RF(1) = 5.46332360_8
X_init_RF(2) = 3.04908541_8

endif
if (wrap__index_iso == 89) then

X_init_RF(1) = 5.29908537_8
X_init_RF(2) = 3.66869170_8
X_init_RF(3) = 3.93112135_8

endif
if (wrap__index_iso == 90) then

X_init_RF(1) = 5.06291869_8
X_init_RF(2) = 4.08676190_8
X_init_RF(3) = 3.59988425_8

endif
if (wrap__index_iso == 91) then

X_init_RF(1) = 4.76712786_8
X_init_RF(2) = 5.26680042_8
X_init_RF(3) = 4.07296647_8
X_init_RF(4) = 3.62357902_8

endif
if (wrap__index_iso == 92) then

X_init_RF(1) = 4.32355135_8

75

X_init_RF(2) = 3.55442722_8
endif
if (wrap__index_iso == 95) then

X_init_RF(1) = 2.61471199_8
endif
if (wrap__index_iso == 96) then

X_init_RF(1) = 5.17036085_8
endif
if (wrap__index_iso == 97) then

X_init_RF(1) = 5.08522652_8
X_init_RF(2) = 5.01177907_8

endif
if (wrap__index_iso == 98) then

X_init_RF(1) = 2.73883116_8
endif
if (wrap__index_iso == 99) then

X_init_RF(1) = 2.67278652_8
endif
if (wrap__index_iso == 101) then

X_init_RF(1) = 5.34017854_8
X_init_RF(2) = 2.65564190_8

endif
if (wrap__index_iso == 102) then

X_init_RF(1) = 2.56369328_8
X_init_RF(2) = 5.44609954_8

endif
if (wrap__index_iso == 104) then

X_init_RF(1) = 2.61227530_8
X_init_RF(2) = 5.90704434_8
X_init_RF(3) = 3.67571873_8

endif
if (wrap__index_iso == 105) then

X_init_RF(1) = 5.36659982_8
X_init_RF(2) = 2.71144796_8
X_init_RF(3) = 4.95702874_8

endif
if (wrap__index_iso == 106) then

X_init_RF(1) = 2.96089655_8
X_init_RF(2) = 2.78469856_8

endif
if (wrap__index_iso == 109) then

X_init_RF(1) = 2.52233847_8
endif
if (wrap__index_iso == 110) then

X_init_RF(1) = 5.23726625_8
endif
if (wrap__index_iso == 111) then

X_init_RF(1) = 2.86080407_8
endif
if (wrap__index_iso == 112) then

X_init_RF(1) = 5.49707771_8
X_init_RF(2) = 2.76778807_8

endif
if (wrap__index_iso == 116) then

X_init_RF(1) = 5.11887889_8
X_init_RF(2) = 5.33782679_8

endif
if (wrap__index_iso == 117) then

X_init_RF(1) = 5.34709904_8
X_init_RF(2) = 2.63194784_8

endif
if (wrap__index_iso == 118) then

X_init_RF(1) = 5.51914985_8
X_init_RF(2) = 2.52686358_8

endif

76

if (wrap__index_iso == 119) then
X_init_RF(1) = 2.91638028_8
X_init_RF(2) = 2.78975179_8

endif
if (wrap__index_iso == 120) then

X_init_RF(1) = 2.55051764_8
X_init_RF(2) = 5.49216826_8

endif
if (wrap__index_iso == 122) then

X_init_RF(1) = 2.41893401_8
endif
if (wrap__index_iso == 123) then

X_init_RF(1) = 2.46083473_8
endif
if (wrap__index_iso == 124) then

X_init_RF(1) = 2.36275454_8
endif
if (wrap__index_iso == 125) then

X_init_RF(1) = 2.32790471_8
endif
if (wrap__index_iso == 126) then

X_init_RF(1) = 4.51277470_8
X_init_RF(2) = 3.49856210_8

endif
save_iso = wrap__index_iso

endif

X_scale = f_int(fix_EL)
G_scale = tune_elec_N_change * f_int(fix_EL)
do i_RF = 1, size_RF
X_scale_RF(i_RF) = f_int(get_n_val(elem_R(i_R_RF(i_RF))))
G_scale_RF(i_RF)=tune_elec_N_change*f_int(get_n_val(elem_R(i_R_RF(i_RF))))

end do
X_toler = tune_elec_N_toler
G_toler = tune_elec_N_toler
G_accur = f_invert(tune_elec_N_change) * f_float_accur()
n_eval = 0
n_eval_int = 0
rev_eval = 1
X_change = 0.0_8
sites_prev_R=sites_X_R
!****************** Self Consistency Controls *******************
max_SC_steps = 500*((size_RF1-1)**2)+150
!**
switcher =0
SC_method = 1
!!!!!!!!!!!!!!!!!!!!!! MAIN SC LOOP !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

do while (rev_eval /= 0)
!write(*,'(F12.6,F12.6,F12.6,F12.6)') X_eval_RF(1),&
! X_eval_RF(2),G_eval_RF(1),G_eval_RF(2)
if (flag_SC /= 0) then
G_norm = 0.0_8
do i_M=1,size_RF1

G_norm = G_norm + (1/(1.0_8*size_RF1))*G_eval_RF(i_M)**2
enddo
if(size_RF1 <= 8) then

if (n_eval > max_SC_steps-5 .AND. switcher==0) then
SC_method = 2 ! switch to Bisection when Broyden struggles.
write(*,'(A29,I5,A27,I4,A1)') 'Switching to Bisection after ', &

n_eval_int,' Broyden steps on cluster #',wrap__index_iso,'.'
switcher = 1

77

n_eval_int=0
endif

endif
call root_TEST_REVX(size_RF1, X_eval_RF, G_eval_RF, &

X_best_RF, G_best_RF, n_eval_int,rev_eval, err_tot, X_init_RF, &
SC_method, X_scale, G_scale,G_accur)

if (err_tot(1:1) == '-') then
err_tot="--Backout: total_cluster >> << root_multi_rev.@@"<cat>TRIM(err_tot)
write(*,'(A29,I6,A19,I4,A1)') 'Self-consistency error after ',n_eval_int, &

' steps on cluster #',wrap__index_iso,'.'
write(*,'(A18)') 'Elem Positions'
do i_R = 1, size_R
write(*,'(A1,A2,F18.12,F18.12,F18.12)') ' ', elem_R(i_R),&

sites_X_R(1,i_R),sites_X_R(2,i_R),sites_X_R(3,i_R)
end doreturn

end if
end if
if (.NOT. flag_SC /= 0) then
call float_array_set(size_RF1, X_eval_RF, float_tot / size_R)
rev_eval = 1
if (n_eval + 1 > 1) rev_eval = 0

end if
if (rev_eval /= 0) then
Ln_allbutlast = 0.000_8
do i_R = 1, size_R

if (i_RF_R(i_R) /= size_RF) then
Ln_this_R(i_R) = X_eval_RF(i_RF_R(i_R))
Ln_allbutlast = Ln_allbutlast + Ln_this_R(i_R)

end if
end do
do i_R = 1, size_R

if (i_RF_R(i_R) == size_RF) then
Ln_this_R(i_R) = (float_tot - Ln_allbutlast) / degen_last

end if
end do
do i_R = 1, size_R

Lz_this_R(i_R) = f_int(get_n_val(elem_R(i_R)))
end do
call model_eig_clust(alloc__clust_HS, act_EIG, energy_E, old_dec_HS, &

old_size_HS, old_C_HS_qHS, size_R, elem_R, sites_X_R, &
charge_config, Free_R, alloc__R, old_short_R_R, size_MP,&
curr_EP, err_tot, n_eval, Ln_next_R, Ln_this_R, Lz_this_R)

if (err_tot(1:1) == '-') then
write(*, *) "err_eig", err_tot

err_tot="--Backout: total_cluster >> << model_eig_clust.@@"<cat>TRIM(err_tot)
return

end if
int_elec = 0
do i_R = 1, size_R

int_elec = int_elec + get_n_val(elem_R(i_R))
end do
int_elec = int_elec - charge_config
flag_occ = 1
if (int_elec <= 2) then

do i_EIG = 1, act_EIG
occupy_E(i_EIG) = 0.000_8

end do
occupy_E(1) = int_elec
flag_occ = 0

end if
if (int_elec >= 2 * (act_EIG - 1)) then

do i_EIG = 1, act_EIG
occupy_E(i_EIG) = 2.000_8

end do

78

occupy_E(act_EIG) = int_elec - 2 * (act_EIG - 1)
flag_occ = 0

end if
if (flag_occ == 1) then

call occ_clust_front(act_EIG, occupy_E, energy_E, size_R, elem_R,&
charge_config, E_scale, err_tot)

if (err_tot(1:1) == '-') then
write(*, *) "err_occ"

err_tot="--Backout: total_cluster >> << occ_clust_front.@@"<cat>TRIM(err_tot)
return

end if
end if
do i_RF = 1, size_RF
G_eval_RF(i_RF) = Ln_next_R(i_R_RF(i_RF)) - Ln_this_R(i_R_RF(i_RF))
end do
n_eval = n_eval + 1
n_eval_int = n_eval_int + 1
n_eval_tot = n_eval_tot + 1

end if
end do
!!!!!!!!!!!!!!! End of Main SC Loop !!
!if (clust_curr .NE. wrap__index_iso) then
! write(*,*) 'SC finished on cluser #', wrap__index_iso
! write(*,*) 'Used ',n_eval_int, ' steps for a total of ',n_eval_tot, ' steps.'
! do i_RF = 1, size_RF1
! write(*,'(F12.8)') X_eval_RF(i_RF)
! end do
! if (wrap__index_iso == 2) Pause
! clust_curr = wrap__index_iso
!endif

X_init_RF=X_eval_RF

call sum_A_A(E_tract, act_EIG, occupy_E, energy_E)
E_band = E_tract / f_int(size_R)
call cor_cluster(E_cor, size_R, elem_R, sites_X_R, alloc__R, old_short_R_R, &
size_MP, curr_EP, err_tot, Ln_this_R, Lz_this_R)

if (err_tot(1:1) == '-') then
write(*, *) "err_cor"
err_tot = "--Backout: total_cluster >> << cor_cluster.@@" <cat> TRIM(err_tot)
return

end if
E_tot = E_band + E_cor
if (old_dec_EIG /= 0) then
call check_index(index_from_nat(act_EIG),old_dec_EIG,"act_EIG",&

"total_cluster")
call float_array_copy(act_EIG, old_energy_EIG, energy_E)
old_size_EIG = act_EIG

end if

!if (size_RF1 > 0) PAUSE
!<>
!<> <fitting-doc-tag-end> <unsupported-body-block>
!<>
!<>================================ total_cluster
end subroutine
!<>
!<>
!<>
!<>

79

Root Multi
!<>================================
!<>
!<> Fortran source code subroutines.
!<>
!<> Filename: root_multi.F
!<>
!<> Description: <SC routines> <need-file-description>
!<>
!<> Documentation: <fitting-doc-tag-short> <need-doc-description>
!<>
!<> Arranged by: Lyle Smith rev. 1 July 1, 2010
!<> rev. 2 Jan. 19, 2010
!<> generalize to N dimensions
!<> rev. 2.2 Mar. 21, 2011 - replace STOP with RETURN
!<> rev. 2.3 May 24, 2011 - fixed a bug in error output.
!<> rev. 2.3.1 July 12, 2011 - now runs on the CRC.
!<>
!<> There are 2 self-consistency schemes included in this version:
!<> 1. the Broyden Method
!<> 2. Generalized Bisection (limited to 8 or less degrees of freedom)
!<>
!<> Which method is used is controlled by the variable 'SC_method',
!<> with 1 for Broyden and 2 for Bisection.
!<>
!<> rev. 2 implements the bisection method up to 8 dimensions. Higher
!<> dimensions can be solved by increasing the size of the storage
!<> matrices.
!<>
!<>================================
!<>
!<>
!<>
!<>
!<>================================ root_TEST_REVX
!<>
!<> <fitting-doc-tag-short> <need-sub-description>
!<>
!<> <fitting-doc-tag-short> <unsupported-sub-declare>
subroutine root_TEST_REVX(ord_M, X_eval_M, G_eval_M, X_best_M,&

G_best_M,n_eval,continue_eval, err_root, X_init_M,&
SC_method,X_scale, G_scale, G_accur)

!<>
!<> <fitting-doc-tag-begin> <supported-use-block>
!<>
use global_module
!<>
!<> <fitting-doc-tag-end> <supported-use-block>
!<>
!<>================================ declarations
!<>
!<>================ arguments
!<>
IMPLICIT NONE
!<>-------- input
!<>
!<> <fitting-doc-tag-begin> <unsupported-arg-block>
!<>
integer(kind = 4) :: ord_M
real(kind = 8) :: G_eval_M(ord_M)
integer(kind = 4) :: n_eval
real(kind = 8) :: X_init_M(ord_M)
integer(kind = 4) :: SC_method
real(kind = 8) :: X_scale
real(kind = 8) :: G_scale
real(kind = 8) :: G_accur
!<>
!<> <fitting-doc-tag-end> <unsupported-arg-block>
!<>

80

!<>-------- output
!<>
!<> <fitting-doc-tag-begin> <unsupported-arg-block>
!<>
real(kind = 8) :: X_eval_M(ord_M)
real(kind = 8) :: X_best_M(ord_M)
real(kind = 8) :: G_best_M(ord_M)
integer(kind = 4) :: continue_eval
character(len = *) :: err_root
!<>
!<> <fitting-doc-tag-end> <unsupported-arg-block>
!<>
!<>================ static local variables
!<>
!<> <fitting-doc-tag-begin> <unsupported-local-block>
!<>
integer(kind = 4), parameter :: alloc_M = 20
integer(kind = 4), parameter :: SPEC_done_Jac = 2
integer(kind = 4), parameter :: SPEC_done_Rone = 3
integer(kind = 4), parameter :: SPEC_done_dir = 4
integer(kind = 4), parameter :: SPEC_done_fwd = 3
integer(kind = 4), parameter :: SPEC_done_init = 2
integer(kind = 4), parameter :: SPEC_done_none = 1
integer(kind = 4), parameter :: SPEC_done_opt = 5
integer(kind = 4), parameter :: SPEC_done_rev = 4
integer(kind = 4), parameter :: SPEC_need_Jac = 1
integer(kind = 4), parameter :: SPEC_need_Rone = 2
integer(kind = 4), parameter :: SPEC_need_dir = 3
integer(kind = 4), parameter :: SPEC_need_fwd = 2
integer(kind = 4), parameter :: SPEC_need_init = 1
integer(kind = 4), parameter :: SPEC_need_opt = 4
integer(kind = 4), parameter :: SPEC_need_rev = 3
!<> control parameters for bisection
integer(kind = 4), parameter :: SPEC_need_inbx = 1
integer(kind = 4), parameter :: SPEC_need_main = 2
integer(kind = 4), parameter :: SPEC_need_relx = 3
integer(kind = 4), parameter :: SPEC_need_diag = 4
integer(kind = 4), parameter :: SPEC_need_side = 5
integer(kind = 4), parameter :: SPEC_done_inbx = 1
integer(kind = 4), parameter :: SPEC_done_main = 2
integer(kind = 4), parameter :: SPEC_done_relx = 3
integer(kind = 4), parameter :: SPEC_done_diag = 4
integer(kind = 4), parameter :: SPEC_done_side = 5
!<> saved local variables
integer(kind = 4) :: spec_done ; save spec_done
integer(kind = 4) :: spec_need ; save spec_need
integer(kind = 4) :: flag_Rone ; save flag_Rone
integer(kind = 4) :: flag_prev ; save flag_prev
integer(kind = 4) :: n_steps ; save n_steps
integer(kind = 4) :: n_Rone ; save n_Rone
integer(kind = 4) :: n_Rone_reset ; save n_Rone_reset
integer(kind = 4) :: n_Jac ; save n_Jac
integer(kind = 4) :: continue_Jac ; save continue_Jac
integer(kind = 4) :: n_opt ; save n_opt
integer(kind = 4) :: continue_opt ; save continue_opt
real(kind = 8) :: J_calc_M_M(alloc_M, alloc_M) ; save J_calc_M_M
real(kind = 8) :: J_vtile_M_M(alloc_M, alloc_M) ; save J_vtile_M_M
real(kind = 8) :: J_vttwo_M_M(alloc_M, alloc_M) ; save J_vttwo_M_M
real(kind = 8) :: X_Jac_M(alloc_M) ; save X_Jac_M
real(kind = 8) :: G_Jac_M(alloc_M) ; save G_Jac_M
real(kind = 8) :: X_dir_M(alloc_M) ; save X_dir_M

81

real(kind = 8) :: X_opt_M(alloc_M) ; save X_opt_M
real(kind = 8) :: XG_vtile_M(alloc_M) ; save XG_vtile_M
real(kind = 8) :: XG_vttwo_M(alloc_M) ; save XG_vttwo_M
real(kind = 8) :: X_delta_M(alloc_M) ; save X_delta_M
real(kind = 8) :: G_delta_M(alloc_M) ; save G_delta_M
real(kind = 8) :: X_prev_M(alloc_M) ; save X_prev_M
real(kind = 8) :: G_prev_M(alloc_M) ; save G_prev_M
real(kind = 8) :: G_best ; save G_best
real(kind = 8) :: G_Jac ; save G_Jac
real(kind = 8) :: G_eval ; save G_eval
real(kind = 8) :: P_eval ; save P_eval
real(kind = 8) :: P_opt, G_opt ; save P_opt, G_opt
real(kind = 8) :: P_init ; save P_init
real(kind = 8) :: P_change ; save P_change
real(kind = 8) :: P_scale ; save P_scale
real(kind = 8) :: Jac_scale ; save Jac_scale
real(kind = 8) :: P_toler ; save P_toler
real(kind = 8) :: X_left ; save X_left
real(kind = 8) :: X_right ; save X_right
real(kind = 8) :: G_left ; save G_left
real(kind = 8) :: X_corners(256, 8) ; save X_corners
real(kind = 8) :: G_corners(256, 8) ; save G_corners
integer(kind = 4) :: M_corners(256, 8) ; save M_corners
integer(kind = 4) :: Ord_corners(1024, 2) ; save Ord_corners
integer(kind = 4) :: Ord_diag(128, 2) ; save Ord_diag
integer(kind = 4) :: init_corner ; save init_corner
integer(kind = 4) :: bigger_box ; save bigger_box
integer(kind = 4) :: loop_Rone ; save loop_Rone
integer(kind = 4) :: point_Rone ; save point_Rone
integer(kind = 4) :: cor_match ; save cor_match
integer(kind = 4) :: Ord_curr ; save Ord_curr
integer(kind = 4) :: tot_SC_num ; save tot_SC_num
integer(kind = 4) :: main_loop_number ; save main_loop_number
integer(kind = 4) :: relx_loop_number ; save relx_loop_number
integer(kind = 4) :: diag_loop_number ; save diag_loop_number
!<>
!<> <fitting-doc-tag-end> <unsupported-local-block>
!<>
!<>================ local variables
!<>
!<> <fitting-doc-tag-begin> <unsupported-local-block>
!<>
integer(kind = 4) :: i_M,j_M,k_M,i_dist,Ord_min_diag,Ord_max_diag
integer(kind = 4) :: t_M,m_M,good_corner,left_corner,right_corner
integer(kind = 4) :: Ord_next, i_Ord, max_SC_steps
real(kind = 8) :: G_norm, F_scale, MaxStepSize, JacScale
real(kind = 8) :: X_dist(ord_M*2**(ord_M-1))
real(kind = 8) :: X_diag(2**(ord_M-1))
integer(kind = 4) :: Perm_M(alloc_M)
integer(kind = 4) :: LWORK
integer(kind = 4) :: WORK (ord_M*5)
integer(kind = 4) :: errc_DGESV
integer(kind = 4) :: errc_DGETRI
integer(kind = 4) :: errc_DGETRF
integer(kind = 4) :: query_backout
integer(kind = 4) :: deb
real(kind = 8) :: f_int
real(kind = 8) :: f_frac
real(kind = 8) :: f_sqrt_f
real(kind = 8) :: f_float_accur
real(kind = 8) :: SC_min_val, SC_max_val,G_toler

82

real(kind = 8) :: X_norm,X_relax
real(kind = 8) :: X_eval_temp(ord_M)
!<>
!<> <fitting-doc-tag-end> <unsupported-local-block>
!<>
!<>================================ body (root_TEST_REVX)
!<>
!<> <fitting-doc-tag-begin> <unsupported-body-block>
!<>
!************** Initialize Variables to prevent NSLEF **********
!***** Output Variables *****
G_best_M(ord_M) = 0.0_8
continue_eval = 0
err_root = '0'
!***** Saved Local Variables *****
if (n_eval == 0) then
!********** Integers ************
tot_SC_num = tot_SC_num + 1
spec_done = SPEC_done_none ; spec_need = SPEC_need_Jac
n_Jac = 0 ; n_opt = 0 ; n_Rone = 0; n_Rone_reset = 7
flag_Rone = 0 ; flag_prev = 0
n_steps = 0; M_corners=0; Ord_corners=0
continue_Jac = 1; continue_opt = 1
Ord_diag = 0; init_corner = 0; bigger_box = 0
loop_Rone = 0; point_Rone = 0; cor_match = 0
Ord_curr = 0; deb = 0; diag_loop_number =0
main_loop_number = 0; relx_loop_number =0

!************ Reals *************
J_calc_M_M = 0.0_8; J_vtile_M_M = 0.0_8
J_vttwo_M_M = 0.0_8; X_Jac_M = 0.0_8; G_Jac_M = 0.0_8
X_dir_M = 0.0_8
X_opt_M = 0.0_8; XG_vtile_M = 0.0_8; XG_vttwo_M = 0.0_8
X_delta_M = 0.0_8; G_delta_M = 0.0_8; X_prev_M = 0.0_8
G_prev_M = 0.0_8; X_corners = 0.0_8; G_corners = 0.0_8
G_best = 0.0_8; G_Jac = 0.0_8; G_eval = 0.0_8; P_eval = 0.0_8
P_opt = 0.0_8; G_opt = 0.0_8; P_init = 0.0_8
P_change = 0.0_8; P_scale = 0.0_8; Jac_scale = 0.0_8
P_toler = 0.0_8; X_left = 0.0_8; X_right = 8.0_8
G_left = 1.0_8
call float_array_copy(ord_M, X_eval_M, X_init_M)
call float_array_copy(ord_M, X_opt_M, X_init_M)
call float_array_copy(ord_M, X_prev_M, X_init_M)
call float_array_copy(ord_M, X_best_M, X_init_M)
Jac_scale = X_scale

end if
!***** Unsaved Local Variables *****
Perm_M = 0 ; WORK = 0
i_M = 0 ; j_M = 0 ; k_M = 0 ; t_M = 0 ; m_M = 0
i_dist = 0; i_Ord = 0 ; LWORK = 0
Ord_min_diag = 0 ; Ord_max_diag = 0; Ord_next = 0
good_corner = 0 ; left_corner = 0 ; right_corner = 0
errc_DGESV = 0 ; errc_DGETRI = 0 ; errc_DGETRF = 0
query_backout = 0 ; deb = 0; max_SC_steps = 0
X_dist = 0.0_8; X_diag = 0.0_8; X_eval_temp = 0.0_8
G_norm = 0.0_8; F_scale = 0.0_8; MaxStepSize = 0.0_8
JacScale = 0.0_8
SC_min_val = 0.0_8; SC_max_val = 0.0_8
X_norm = 0.0_8; X_relax = 0.0_8

!************** All Variables Initialized *************

!****************** Self Consistency Controls *******************
max_SC_steps = 500*((ord_M-1)**2)+700

83

G_toler = 8.0_8 ! accuracy = 1/(10^G_toler)
deb = 0 ! set to 1 for verbose output.
SC_min_val = -1.0_8 ! starting boundary for bisection box

! minimum number of electrons on an atom.
SC_max_val = 16.0_8 ! starting boundary for bisection box

! maximum number of electrons on an atom.
!**
!if (n_eval >= 885 .AND. tot_SC_num==22) deb=1
if (n_eval + 1 > max_SC_steps) then
G_norm = 0.0_8
do i_M=1,ord_M

G_norm = G_norm + (1/(1.0_8*ord_M))*G_eval_M(i_M)**2 !
enddo
write(*,*)'SC fail on cluster ',tot_SC_num,' with G_norm = ',G_norm
call term_string_void("ERR_TEST_steps")
err_root = "--Backout: root_TEST_REVX >> << n_steps.@@"<cat>TRIM(err_root)
return

end if
!if (tot_SC_num==4602) deb =1
call float_array_copy(ord_M, X_eval_temp, X_eval_M)
!****************** One-dimensional Bisection *******************
if (SC_method == 2 .AND. ord_M == 1) then
if (n_eval == 1) then

if (G_left*G_eval_M(1) > 0)then
X_left = X_eval_M(1)
X_eval_M(1) = X_eval_M(1) + 0.05

elseif (G_left*G_eval_M(1) < 0) then
X_right = X_eval_M(1)
X_eval_M(1) = X_eval_M(1) - 0.05

else
X_right = X_eval_M(1) + 0.05
X_left = X_eval_M(1) - 0.05

endif
end if
if (n_eval > 1) then

if (G_left*G_eval_M(1) > 0)then
X_left = X_eval_M(1)

else
X_right = X_eval_M(1)

endif
X_eval_M(1) = 0.5_8*(X_left + X_right)

end if
G_norm = G_eval_M(1)**2
if (n_eval > 0) then

continue_eval = 1
if (G_norm < 10**(-2 * G_toler)) then
continue_eval = 0

end if
end if

!****************** N-dimensional Bisection *********************
elseif (SC_method == 2 .AND. ord_M > 1) then
if (n_eval == 0) then !initial setup

!if (deb==1) write(*,*)'X_corners Matrix = '
do j_M=1,2**ord_M
do i_M=1,ord_M

M_corners(j_M,i_M)=(-1)**((j_M-1)/(2**(ord_M-i_M))+1)
if(M_corners(j_M,i_M)<0) then
X_corners(j_M,i_M)=SC_min_val
G_corners(j_M,i_M)=-1.0_8 * SC_max_val

else
X_corners(j_M,i_M)=SC_max_val
G_corners(j_M,i_M)=SC_max_val

84

endif
enddo
!if (deb==1) write(*,'(F9.5,F9.5,F9.5,F9.5)') X_corners(j_M,1),&

! X_corners(j_M,2),X_corners(j_M,3),X_corners(j_M,4)
enddo
!if (deb==1) then
! write(*,*)'M_corners Matrix = '
! do j_M=1,2**ord_M
! write(*,'(I5,I5,I5,I5)') M_corners(j_M,1),M_corners(j_M,2), &
! M_corners(j_M,3),M_corners(j_M,4)
! enddo
! write(*,*)'Ord_corners Matrix = '
!endif
i_M=0
do j_M=1,ord_M
do t_M=1,(2**j_M)-1,2

do m_M=1,2**(ord_M-j_M)
i_M=i_M+1
Ord_corners(i_M,1)=(t_M-1)*(2**(ord_M-j_M))+m_M
Ord_corners(i_M,2)=Ord_corners(i_M,1)+(2**(ord_M-j_M))
!if(deb==1)write(*,'(I4.1,I4.1)') Ord_corners(i_M,1),&

!Ord_corners(i_M,2)
enddo

enddo
enddo
!if (deb==1) write(*,*)'Ord_diag Matrix = '
do j_M=1,2**(ord_M-1)
Ord_diag(j_M,1)=j_M
Ord_diag(j_M,2)=(2**ord_M)+1-j_M
!if (deb==1) write(*,'(I4.1,I4.1)') Ord_diag(j_M,1),Ord_diag(j_M,2)

enddo
Ord_curr = 0 ; Ord_next = 1 ; main_loop_number = 0 ; loop_Rone = 2
cor_match = 0; spec_need = SPEC_need_inbx; spec_done = 0
relx_loop_number = 0; diag_loop_number = 0
Ord_min_diag=0;Ord_max_diag=0
init_corner = 1; good_corner = 0
bigger_box = 0
X_dist = 100.0_8
do i_M=1,ord_M
X_eval_M(i_M) = X_init_M(i_M) - 0.00001_8*M_corners(1,i_M)

enddo
endif !end of initial setup
if (n_eval > 0) then
!if(spec_need /= SPEC_need_inbx .AND. deb==1) then ! write data
! PAUSE
! write(*,*)
! write(*,*)'n_eval = ',n_eval
! write(*,'(A15,F15.11,F15.11,F15.11)')'prev X_eval_M = ', X_eval_M
! write(*,'(A15,F15.11,F15.11,F15.11)')' G_eval_M = ', G_eval_M
! write(*,'(A12,F9.5,F9.5,F9.5)')'X_corners = ',X_corners(1,1),&
! X_corners(1,2),X_corners(1,3)
! do i_M=2,2**ord_M
! write(*,'(A12,F9.5,F9.5,F9.5)')' ',X_corners(i_M,1),&
! X_corners(i_M,2),X_corners(i_M,3)
! enddo
!write(*,'(A12,F9.5,F9.5,F9.5,F9.5)') 'G_corners = ', G_corners(1,1), &
! G_corners(1,2),G_corners(1,3),G_corners(1,4)
!do i_M=2,2**ord_M
! write(*,'(A12,F9.5,F9.5,F9.5,F9.5)')' ', G_corners(i_M,1), &
! G_corners(i_M,2),G_corners(i_M,3),G_corners(i_M,4)
!enddo

!endif ! end of write data
if (spec_need == SPEC_need_inbx) then ! initial box setup
! Test corner against M matrix
!if (deb==1) write(*,'(A12,F9.5,F9.5,F9.5)') 'X_eval_M = ',X_eval_M(1),&

85

! X_eval_M(2),X_eval_M(3)
!if (deb==1) write(*,'(A12,F9.5,F9.5,F9.5)') 'G_eval_M = ',G_eval_M(1),&
! G_eval_M(2),G_eval_M(3)
!if (deb==1) write(*,'(A12,I5,I5,I5)') 'M_corners = ', &
!M_corners(init_corner,1),M_corners(init_corner,2),&
! M_corners(init_corner,3)
good_corner=0
do i_M=1,ord_M
if (G_eval_M(i_M)*M_corners(init_corner,i_M)>0)good_corner=good_corner+1
enddo
if (good_corner == ord_M) then
do i_M=1,ord_M

X_corners(init_corner,i_M) = X_eval_M(i_M)
G_corners(init_corner,i_M) = G_eval_M(i_M)

enddo
init_corner = init_corner + 1
!bigger_box = 0 !optimize each corner separately.

else
bigger_box = bigger_box + 1

endif
do i_M=1,ord_M
if (bigger_box < 6) then

X_eval_M(i_M) = X_init_M(i_M)&
-(10**(bigger_box))*0.00001_8*M_corners(init_corner,i_M)

elseif(bigger_box == 6) then
X_eval_M(i_M) = X_init_M(i_M)-5.0_8*M_corners(init_corner,i_M)

elseif(bigger_box == 7) then
X_eval_M(i_M) = X_init_M(i_M)-10.0_8*M_corners(init_corner,i_M)

elseif(bigger_box > 7) then
if (M_corners(init_corner,i_M) <0) then
X_eval_M(i_M) = SC_max_val

else
X_eval_M(i_M) = SC_min_val

endif
endif

enddo
if (bigger_box > 8) then
write(*,*)'Initial box is not big enough.'
continue_eval = 0
return

endif
if (init_corner > 2**ord_M) then ! initial box setup is complete
spec_done = SPEC_done_inbx
Ord_curr = 1
X_eval_M = 0.5_8*(X_corners(1,:) + X_corners(5,:)) ! First bisection
!if(deb==1) then
! write(*,*)'steps used for initial box = ',bigger_box,n_eval

! write(*,'(A12,F9.5,F9.5,F9.5,F9.5)') 'X_corners = ', X_corners(1,1), &
! X_corners(1,2),X_corners(1,3),X_corners(1,4)
! do i_M=2,2**ord_M

! write(*,'(A12,F9.5,F9.5,F9.5,F9.5)')' ', X_corners(i_M,1), &
! X_corners(i_M,2),X_corners(i_M,3),X_corners(i_M,4)
! enddo
! write(*,'(A13,I7)') ' spec_need = ', spec_need
! write(*,'(A13,I7)') ' spec_done = ', spec_done
!endif

endif
endif ! initial box setup

! Test box to determine next X_eval_M
if (spec_need > 1) then

!if (deb == 1) then
! write(*,*)'Test current bisection point.'
!write(*,*)'Ord_curr = ',Ord_curr
!do j_M=1,ord_M*2**(ord_M-1)
! write(*,'(I4.1,I4.1)') Ord_corners(j_M,1),Ord_corners(j_M,2)

86

!enddo
!write(*,*)'Current corners', Ord_corners(Ord_curr,1),Ord_corners(Ord_curr,2)
!write(*,'(A12,I9,I9,I9)') 'M_corner(1)=',&
! M_corners(Ord_corners(Ord_curr,1),1)&
! ,M_corners(Ord_corners(Ord_curr,1),2),M_corners(Ord_corners(Ord_curr,1),3)
!write(*,'(A12,I9,I9,I9)') 'M_corner(2)=',&
! M_corners(Ord_corners(Ord_curr,2),1)&
! ,M_corners(Ord_corners(Ord_curr,2),2),M_corners(Ord_corners(Ord_curr,2),3)
!write(*,'(A12,F9.3,F9.3,F9.3)') 'G_eval_M = ', &
! G_eval_M(1),G_eval_M(2),G_eval_M(3)

!endif
good_corner=0; left_corner = 0
do i_M=1,ord_M

if(G_eval_M(i_M)*M_corners(Ord_corners(Ord_curr,1),i_M)>0)&
left_corner=left_corner+1

if(G_eval_M(i_M)*M_corners(Ord_corners(Ord_curr,2),i_M)>0)&
right_corner=right_corner+1

enddo
if (left_corner == ord_M) then

!************** Signs match first corner in Ord_corners matrix **************
!if(deb==1) write(*,*)'Signs match first corner in Ord_corners matrix'
cor_match = Ord_corners(Ord_curr,1)
X_corners(Ord_corners(Ord_curr,1),:) = X_eval_M
G_corners(Ord_corners(Ord_curr,1),:) = G_eval_M
spec_need = SPEC_need_main

elseif (right_corner == ord_M) then
!************** Signs match second corner in Ord_corners matrix ***********

!if(deb==1) write(*,*)'Signs match second corner in Ord_corners matrix'
X_corners(Ord_corners(Ord_curr,2),:) = X_eval_M
G_corners(Ord_corners(Ord_curr,2),:) = G_eval_M
cor_match = Ord_corners(Ord_curr,2)
spec_need = SPEC_need_main

else
!************** No sign match - relax needed. **************************

!if(deb==1) write(*,*)'No sign match - relax needed.'
spec_need = SPEC_need_relx
if (spec_done /= SPEC_done_relx) relx_loop_number = 0

endif
do i_dist=1,ord_M*2**(ord_M-1)

X_dist(i_dist)=(X_corners(Ord_corners(i_dist,1),1)&
-X_corners(Ord_corners(i_dist,2),1))**2&
+(X_corners(Ord_corners(i_dist,1),2)&
-X_corners(Ord_corners(i_dist,2),2))**2

enddo
do i_dist=1,2**(ord_M-1)

X_diag(i_dist)=(X_corners(Ord_diag(i_dist,1),1)&
-X_corners(Ord_diag(i_dist,2),1))**2 &
+(X_corners(Ord_diag(i_dist,1),2) &
-X_corners(Ord_diag(i_dist,2),2))**2

!X_diag(i_dist)=SQRT(X_diag(i_dist))
enddo
!if (maxval(X_diag)/minval(X_diag) > 7) then
! !spec_need = SPEC_need_diag ! diagonal fix routine currently off
! if (spec_done /= SPEC_done_diag) diag_loop_number = 0
!endif
!if(deb==1) then
! write(*,*)'Distance Ratio = ',maxval(X_dist)/minval(X_dist)
! write(*,*)'Distance Matrix = '
! write(*,'(F19.15,F19.15,F19.15,F19.15)') &
! X_dist(1),X_dist(2),X_dist(3),X_dist(4)
! write(*,'(A19,F19.15,F19.15)') ' ',X_diag(1),X_diag(2)
! write(*,*) 'X_corners = ', X_corners(1,:)

87

! write(*,*) ' ', X_corners(2,:)
! write(*,*) ' ', X_corners(3,:)
! write(*,*) ' ', X_corners(4,:)
! write(*,'(A13,I7)') ' spec_need = ', spec_need
! write(*,'(A13,I7)') ' spec_done = ', spec_done
! !PAUSE
!endif

endif

if (spec_need == SPEC_need_main) then
!if(deb==1) write(*,*)'Entering main subroutine.'
main_loop_number = main_loop_number + 1
Ord_next = mod(main_loop_number,ord_M*2**(ord_M-1)) +1
!if(deb==1) write(*,*)'Main Loop Number = ',main_loop_number
!if(deb==1) write(*,*)'Ord_next = ',Ord_next
do while (maxval(X_dist)/X_dist(Ord_next) > 50)
!if(deb==1) write(*,*)'Skipping simplex #',Ord_next
main_loop_number = main_loop_number + 1
Ord_next = mod(main_loop_number,ord_M*2**(ord_M-1)) +1

enddo
Ord_curr = Ord_next
X_eval_M = 0.5_8*(X_corners(Ord_corners(Ord_next,1),:)&

+X_corners(Ord_corners(Ord_next,2),:))
!if(deb==1) then
! write(*,'(A30,I7,I7,I7)') ' n_eval, Ord_curr, Corner # = ', &
! n_eval,Ord_curr,main_loop_number
!write(*,'(A15,F9.5,F9.5,F9.5)')'G_eval_M = ', G_eval_M
!write(*,'(A15,F9.5,F9.5,F9.5)')'next X_eval_M = ', X_eval_M
!endif
spec_done = SPEC_done_main

endif
if (spec_need == SPEC_need_relx) then

!if(deb==1) write(*,*)'Entering relaxation subroutine.'
!if(relx_loop_number==0)then !find reflection point on first relax only.

!if(deb==1) write(*,*)'Finding new reflection point.'
do i_Ord=1,2**ord_M

left_corner =0
do i_M=1,ord_M
if (G_eval_M(i_M)*M_corners(i_Ord,i_M)>0) left_corner =left_corner+1
enddo
if (left_corner == ord_M) then
point_Rone = i_Ord

endif
enddo

!endif
loop_Rone = loop_Rone + 1
X_relax = 0.5_8
relx_loop_number = relx_loop_number + 1
!if(deb==1) then
! write(*,*)'Reflection point = ',point_Rone
!write(*,*)'X_relax = ', X_relax

! write(*,*)'relx_loop_number = ', relx_loop_number
!endif
X_eval_M = X_eval_M + X_relax*(X_eval_M - X_corners(point_Rone,:))
spec_done = SPEC_done_relx
if (relx_loop_number > 7) then !skip relax; go to next simplex
main_loop_number = main_loop_number + 1
Ord_next = mod(main_loop_number,ord_M*2**(ord_M-1)) +1
Ord_curr = Ord_next
X_eval_M = 0.5_8*(X_corners(Ord_corners(Ord_next,1),:)&

+X_corners(Ord_corners(Ord_next,2),:))
spec_done = SPEC_done_main
!if(deb==1) write(*,*)'Skipping simplex #',Ord_curr,'. Bad relax.'

88

endif
endif
G_norm = 0.0_8
do i_M=1,ord_M

G_norm = G_norm + (1/(1.0_8*ord_M))*G_eval_M(i_M)**2 !
enddo
X_norm = 0.0_8
do i_M=1,2**(ord_M-1)

X_norm =(1/2**(1.0_8*ord_M-1))*&
((X_corners(Ord_diag(i_M,1),1)-X_corners(Ord_diag(i_M,2),1))**2&
+ (X_corners(Ord_diag(i_M,1),2)&
-X_corners(Ord_diag(i_M,2),2))**2)

enddo
!if(spec_need/=SPEC_need_inbx .AND. deb==1)write(*,*)'G_norm,X_norm = ',&

G_norm, X_norm
if (spec_done == SPEC_done_inbx) spec_need = SPEC_need_main
if (spec_done == SPEC_done_main) spec_need = SPEC_need_main

! if (spec_done == SPEC_done_relx) spec_need = SPEC_need_main
! if (spec_done == SPEC_done_side) spec_need = SPEC_need_main
endif ! n_eval > 0 block
!if (deb == 1) then
! write (*,*) X_init_M(1)
! write(*,'(A22,I7,I7,I7)') ' n_eval, Ord_curr, Corner # = ', n_eval,&
! Ord_curr,main_loop_number
! write(*,*) 'X_eval_M = ', X_eval_temp
! write(*,*) 'G_eval_M = ', G_eval_M
! write(*,*) 'X_corners = ', X_corners(1,:)
! write(*,*) ' ', X_corners(2,:)
! write(*,*) ' ', X_corners(3,:)
! write(*,*) ' ', X_corners(4,:)
! write(*,*) 'next X_eval_M = ', X_eval_M
! write(*,*)n_eval,G_norm,X_norm
! write(*,*)'Distance Matrix = '
! write(*,'(F18.15,F18.15,F18.15,F18.15)') X_dist(1),X_dist(2),&
! X_dist(3),X_dist(4)
! write(*,'(A18,F18.15,F18.15)') ' ',X_diag(1),X_diag(2)
! write(*,*)'Distance Ratio = ',maxval(X_dist)/minval(X_dist)
! PAUSE
!endif
if (n_eval > 0) then
continue_eval = 1
if (G_norm < 10**(-2 * G_toler)) then

X_eval_M = X_eval_temp
continue_eval = 0
!PAUSE

end if
end if

elseif (SC_method == 1) then ! Broyden *****************************
!***
if (n_eval == 1) then
call float_array_norm(G_norm, ord_M, G_eval_M, 'yes-mean')
G_best = G_norm
call float_array_copy(ord_M, X_best_M, X_eval_M)
call float_array_copy(ord_M, G_best_M, G_eval_M)
call float_array_copy(ord_M, G_prev_M, G_eval_M)

end if
if (n_eval > 1) then
call float_array_norm(G_norm, ord_M, G_eval_M, 'yes-mean')
if (G_norm < G_best) then

89

G_best = G_norm
call float_array_copy(ord_M, X_best_M, X_eval_M)
call float_array_copy(ord_M, G_best_M, G_eval_M)

end if
end if
if (spec_need == SPEC_need_Jac) then
call float_array_copy(ord_M, X_Jac_M, X_opt_M)
call Jac_double_REVX(alloc_M,ord_M,X_eval_M,G_eval_M,J_calc_M_M,n_Jac, &

continue_Jac, G_Jac_M, X_Jac_M, Jac_scale, G_accur)
n_Jac = n_Jac + 1
if (.NOT. continue_Jac /= 0) then

n_Jac = 0
spec_done = SPEC_done_Jac ; spec_need = SPEC_need_dir

end if
end if
if (spec_need == SPEC_need_dir) then
call float_matrix_copy(alloc_M,alloc_M,ord_M,ord_M,J_vtile_M_M,J_calc_M_M)
call float_array_copy(ord_M, XG_vtile_M, G_Jac_M)
call DGESV(&

ord_M, 1, &
J_vtile_M_M, alloc_M, &
Perm_M, &
XG_vtile_M, alloc_M, &
errc_DGESV)

if (errc_DGESV /= 0) then
err_root = "--Backout: root_TEST_REVX >> << DGESV.@@" <cat> TRIM(err_root)
call term_string_void("ERR_TEST_DGESV")
Print*, "Jacobian is singular:"
return

end if
LWORK =5*ord_M
call DGETRI(ord_M, &

J_vtile_M_M, alloc_M, Perm_M, &
WORK, LWORK, &
errc_DGETRI)

if (errc_DGETRI /= 0) then
err_root = "--Backout: root_TEST_REVX >> << DGETRI.@@" <cat> TRIM(err_root)
call term_string_void("ERR_TEST_DGETRI")
return

end if
call float_matrix_copy(alloc_M,alloc_M,ord_M,ord_M,J_calc_M_M,J_vtile_M_M)
call float_array_copy(ord_M, X_dir_M, XG_vtile_M)
F_scale = - f_int(1)
call float_array_scale(ord_M, X_dir_M, F_scale)
spec_done = SPEC_done_dir ; spec_need = SPEC_need_opt

end if
if (spec_need == SPEC_need_opt) then
P_init = global__float_zero
P_change = f_int(1)
P_scale = f_int(1)
if (G_norm < 1.0E-9_8) P_scale = 0.1d0
P_toler = f_sqrt_f(f_float_accur())
G_toler = f_float_accur()
call sum_A_A(G_Jac, ord_M, G_Jac_M, G_Jac_M)
G_Jac = f_frac(1, 2) * G_Jac
if (n_opt > 0) then

call sum_A_A(G_eval, ord_M, G_eval_M, G_eval_M)
G_eval = f_frac(1, 2) * G_eval

end if
end if
if (spec_need == SPEC_need_opt) then
call opt_Nash_REVX(P_eval, G_eval, P_opt, G_opt, n_opt, continue_opt,&

90

err_root, P_init, P_change, P_scale, G_scale, P_toler, &
G_toler)

if (err_root(1:1) == '-') then
err_root = "--Backout: root_TEST_REVX >> << opt_Nash_REVX.@@" &

<cat> TRIM(err_root)
return

end if
if (n_opt == 0 .AND. P_eval /= global__float_zero) then

call bailout_string("n_opt and P_eval in root_TEST_REVX.")
end if
if (n_opt == 1 .AND. P_eval /= f_int(1)) then

call bailout_string("n_opt and P_eval in root_TEST_REVX.")
end if
if (P_eval == global__float_zero) then

G_eval = G_Jac
n_opt = n_opt + 1
call opt_Nash_REVX(P_eval, G_eval, P_opt, G_opt, n_opt, continue_opt,&
err_root, P_init, P_change, P_scale, G_scale, P_toler, &
G_toler)

if (err_root(1:1) == '-') then
err_root = "--Backout: root_TEST_REVX >> << opt_Nash_REVX .@@" &

<cat> TRIM(err_root)
return

end if
end if

end if
if (spec_need == SPEC_need_opt) then
if (G_eval < 0.990_8 * G_Jac) then

continue_opt = 0
if (ord_M >=2) then
Jac_scale = SQRT(G_eval)
if (Jac_scale < 1.0E-11_8) Jac_scale = 1.0E-10_8

end if
end if
do i_M = 1, ord_M

X_eval_M(i_M) = X_Jac_M(i_M) + P_eval * X_dir_M(i_M)
X_opt_M(i_M) = X_Jac_M(i_M) + P_opt * X_dir_M(i_M)

end do
n_opt = n_opt + 1
if (.NOT. continue_opt /= 0) n_opt = 0
if (.NOT. continue_opt /= 0) then

spec_done = SPEC_done_opt ; spec_need = SPEC_need_Jac
if (ord_M > 1) spec_need = SPEC_need_Rone

end if
if (.NOT. continue_opt /= 0) then

n_steps = n_steps + 1
end if

end if
if (n_Rone >= n_Rone_reset) then
spec_need = SPEC_need_Jac
n_Rone = 0

end if
if (spec_need == SPEC_need_Rone) then
call float_array_copy(ord_M, X_Jac_M, X_opt_M)
call float_matrix_copy(alloc_M,alloc_M,ord_M,ord_M,J_vtile_M_M,J_calc_M_M)
X_delta_M = X_opt_M - X_prev_M
G_delta_M = G_eval_M-G_prev_M
call sum_R_A(ord_M, ord_M, XG_vtile_M, J_vtile_M_M, G_delta_M)
call sum_A_A(JacScale, ord_M, XG_vtile_M, X_delta_M)
XG_vtile_M = X_delta_M - XG_vtile_M
call sum_L_A(alloc_M, ord_M, XG_vttwo_M, J_vtile_M_M, X_delta_M)
call outer_A_A(alloc_M, ord_M, J_vttwo_M_M, XG_vtile_M, XG_vttwo_M)
J_calc_M_M = J_vtile_M_M + (1/JacScale)*J_vttwo_M_M
call sum_R_A(ord_M, ord_M, XG_vtile_M, J_calc_M_M, G_Jac_M)

91

call float_array_copy(ord_M, X_dir_M, XG_vtile_M)
F_scale = - f_int(1)
call float_array_scale(ord_M, X_dir_M, F_scale)
call float_array_copy(ord_M, G_Jac_M, G_eval_M)
G_prev_M = G_eval_M
X_prev_M = X_opt_M
spec_done = SPEC_done_Rone ; spec_need = SPEC_need_opt
if (JacScale ==0.0d0) spec_need = SPEC_need_Jac
n_Rone = n_Rone + 1

end if
if (n_eval > 0) then
continue_eval = 1
call float_array_norm(G_norm, ord_M, G_eval_M, 'yes-mean')
if (G_norm < 1.0E-8_8) then

continue_eval = 0
end if

end if
else
write(*,*) 'no SC method selected.'
STOP

endif !************************** not bisection **************************
!***

if (n_eval == 0) then
continue_eval = 1

end if

!<>
!<> <fitting-doc-tag-end> <unsupported-body-block>
!<>
!<>=========================== root_TEST_REVX ============================
!<>===
!<>===
end subroutine
!<>
!<>
!<>
!<>
!<>================================ Jac_double_REVX
!<>
!<> <fitting-doc-tag-short> <need-sub-description>
!<>
!<> <fitting-doc-tag-short> <unsupported-sub-declare>
subroutine Jac_double_REVX(dec_M, ord_M, X_eval_XM, G_eval_GM,&

J_calc_GM_XM, n_eval,continue_eval, G_Jac_GM, X_Jac_XM,&
X_scale, G_accur)

!<>
!<> <fitting-doc-tag-begin> <supported-use-block>
!<>
use global_module
!<>
!<> <fitting-doc-tag-end> <supported-use-block>
!<>
!<>================================ declarations
!<>
!<>================ arguments
!<>
!<>-------- input
!<>
!<> <fitting-doc-tag-begin> <unsupported-arg-block>
!<>
integer(kind = 4) :: dec_M
integer(kind = 4) :: ord_M
real(kind = 8) :: G_eval_GM(dec_M)
integer(kind = 4) :: n_eval
real(kind = 8) :: X_Jac_XM(dec_M)
real(kind = 8) :: X_scale
real(kind = 8) :: G_accur

92

!<>
!<> <fitting-doc-tag-end> <unsupported-arg-block>
!<>
!<>-------- output
!<>
!<> <fitting-doc-tag-begin> <unsupported-arg-block>
!<>
real(kind = 8) :: X_eval_XM(dec_M)
real(kind = 8) :: J_calc_GM_XM(dec_M, dec_M)
real(kind = 8) :: G_Jac_GM(dec_M)
integer(kind = 4) :: continue_eval
!<>
!<> <fitting-doc-tag-end> <unsupported-arg-block>
!<>
!<>================ static local variables
!<>
!<> <fitting-doc-tag-begin> <unsupported-local-block>
!<>
integer(kind = 4), parameter :: alloc_M = 20
integer(kind = 4) :: spec_need ; save spec_need
integer(kind = 4) :: spec_done ; save spec_done
integer(kind = 4) :: v_XM ; save v_XM
real(kind = 8) :: X_step ; save X_step
real(kind = 8) :: G_fwd_GM(alloc_M) ; save G_fwd_GM
real(kind = 8) :: G_rev_GM(alloc_M) ; save G_rev_GM
!<>
!<> <fitting-doc-tag-end> <unsupported-local-block>
!<>
!<>================ local variables
!<>
!<> <fitting-doc-tag-begin> <unsupported-local-block>
!<>
integer(kind = 4), parameter :: SPEC_done_Jac = 2
integer(kind = 4), parameter :: SPEC_done_Rone = 3
integer(kind = 4), parameter :: SPEC_done_dir = 4
integer(kind = 4), parameter :: SPEC_done_fwd = 3
integer(kind = 4), parameter :: SPEC_done_init = 2
integer(kind = 4), parameter :: SPEC_done_none = 1
integer(kind = 4), parameter :: SPEC_done_opt = 5
integer(kind = 4), parameter :: SPEC_done_rev = 4
integer(kind = 4), parameter :: SPEC_need_Jac = 1
integer(kind = 4), parameter :: SPEC_need_Rone = 2
integer(kind = 4), parameter :: SPEC_need_dir = 3
integer(kind = 4), parameter :: SPEC_need_fwd = 2
integer(kind = 4), parameter :: SPEC_need_init = 1
integer(kind = 4), parameter :: SPEC_need_opt = 4
integer(kind = 4), parameter :: SPEC_need_rev = 3
integer(kind = 4) :: i_GM
real(kind = 8) :: J_build
real(kind = 8) :: f_frac
real(kind = 8) :: f_pow_frac
real(kind = 8) :: f_float_accur
!<>
!<> <fitting-doc-tag-end> <unsupported-local-block>
!<>
!<>================================ body (Jac_double_REVX)
!<>
!<> <fitting-doc-tag-begin> <unsupported-body-block>
!<>
if (n_eval == 0) then
spec_done = SPEC_done_none
spec_need = SPEC_need_init
v_XM = 1
end if
if (n_eval == 0) then

93

X_step = f_pow_frac(f_float_accur(), 1, 3) * X_scale
end if
if (spec_done == SPEC_done_init) then
call float_array_copy(ord_M, G_Jac_GM, G_eval_GM)
spec_need = SPEC_need_fwd
end if
if (spec_done == SPEC_done_fwd) then
call float_array_copy(ord_M, G_fwd_GM, G_eval_GM)
spec_need = SPEC_need_rev
end if
if (spec_done == SPEC_done_rev) then
call float_array_copy(ord_M, G_rev_GM, G_eval_GM)
spec_need = SPEC_need_fwd
end if
if (spec_done == SPEC_done_rev) then
do i_GM = 1, ord_M
J_build = f_frac(1,2) *(G_fwd_GM(i_GM) -G_rev_GM(i_GM))/X_step
J_calc_GM_XM(i_GM, v_XM) = J_build
end do
end if
if (spec_done == SPEC_done_rev) then
v_XM = v_XM + 1
end if
continue_eval = 1
if (.NOT. (v_XM <= ord_M)) continue_eval = 0
if (continue_eval /= 0) then
if (spec_need == SPEC_need_init) then
call float_array_copy(ord_M, X_eval_XM, X_Jac_XM)
spec_done = SPEC_done_init
end if
if (spec_need == SPEC_need_fwd) then
call float_array_copy(ord_M, X_eval_XM, X_Jac_XM)
X_eval_XM(v_XM) = X_eval_XM(v_XM) + X_step
spec_done = SPEC_done_fwd
end if
if (spec_need == SPEC_need_rev) then
call float_array_copy(ord_M, X_eval_XM, X_Jac_XM)
X_eval_XM(v_XM) = X_eval_XM(v_XM) - X_step
spec_done = SPEC_done_rev
end if
end if
!<>
!<> <fitting-doc-tag-end> <unsupported-body-block>
!<>
!<>================================ Jac_double_REVX
end subroutine
!<>
!<>
!<>
!<>
!<>================================ opt_Nash_REVX
!<>
!<> <fitting-doc-tag-short> <need-sub-description>
!<>
!<> <fitting-doc-tag-short> <unsupported-sub-declare>
subroutine opt_Nash_REVX(X_eval, G_eval, X_best, G_best, n_eval,&

continue_eval,err_opt, X_init, X_change, X_scale, G_scale,&
X_toler, G_toler)

!<>
!<> <fitting-doc-tag-begin> <supported-use-block>
!<>
use global_module
!<>
!<> <fitting-doc-tag-end> <supported-use-block>
!<>
!<>================================ declarations
!<>
!<>================ arguments

94

!<>
!<>-------- input
!<>
!<> <fitting-doc-tag-begin> <unsupported-arg-block>
!<>
real(kind = 8) :: G_eval
integer(kind = 4) :: n_eval
real(kind = 8) :: X_init
real(kind = 8) :: X_change
real(kind = 8) :: X_scale
real(kind = 8) :: G_scale
real(kind = 8) :: X_toler
real(kind = 8) :: G_toler
!<>
!<> <fitting-doc-tag-end> <unsupported-arg-block>
!<>
!<>-------- output
!<>
!<> <fitting-doc-tag-begin> <unsupported-arg-block>
!<>
real(kind = 8) :: X_eval
real(kind = 8) :: X_best
real(kind = 8) :: G_best
integer(kind = 4) :: continue_eval
character(len = *) :: err_opt
!<>
!<> <fitting-doc-tag-end> <unsupported-arg-block>
!<>
!<>================ static local variables
!<>
!<> <fitting-doc-tag-begin> <unsupported-local-block>
!<>
integer(kind = 4) :: n_expand ; save n_expand
real(kind = 8) :: X_step ; save X_step
!<>
!<> <fitting-doc-tag-end> <unsupported-local-block>
!<>
!<>================ local variables
!<>
!<> <fitting-doc-tag-begin> <unsupported-local-block>
!<>
real(kind = 8), parameter :: tune_Nash_contract_factor = 0.25_8
real(kind = 8), parameter :: tune_Nash_expand_factor = 0.60_8
integer(kind = 4), parameter :: tune_Nash_max_eval = 9
integer(kind = 4), parameter :: tune_Nash_max_expand = 5
integer(kind = 4) :: flag_bootstrap
integer(kind = 4) :: flag_success
integer(kind = 4) :: flag_expand
real(kind = 8) :: X_residual
real(kind = 8) :: expand_factor, contract_factor
integer(kind = 4) :: max_expand
integer(kind = 4) :: max_eval
integer(kind = 4) :: n_expand_safe
real(kind = 8) :: X_step_safe
real(kind = 8) :: f_abs
!<>
!<> <fitting-doc-tag-end> <unsupported-local-block>
!<>
!<>================================ body (opt_Nash_REVX)
!<>
!<> <fitting-doc-tag-begin> <unsupported-body-block>
!<>
expand_factor = tune_Nash_expand_factor
contract_factor = tune_Nash_contract_factor
max_expand = tune_Nash_max_expand
max_eval = tune_Nash_max_eval

95

flag_bootstrap = 0
if (n_eval == 0) then
flag_bootstrap = 1
X_best = X_init
X_step = global__float_zero
flag_expand = 0
end if
if (n_eval == 1) then
flag_bootstrap = 1
X_best = X_eval
G_best = G_eval
X_step = X_change
flag_expand = 1
end if
if (.NOT. flag_bootstrap /= 0) then
flag_success = 0
if (G_eval < G_best) then
flag_success = 1
end if
X_step_safe = X_step
X_step = - contract_factor * X_step_safe
flag_expand = 0
if (flag_success /= 0) then
X_best = X_eval
G_best = G_eval
X_step = + expand_factor * X_step_safe
flag_expand = 1
end if
end if
n_expand_safe = n_expand
n_expand = n_expand_safe + 1
if (.NOT. flag_expand /= 0) then
n_expand = 0
end if
continue_eval = 1
if (n_eval > 0) then
X_residual = f_abs(X_step) / X_scale
if (X_residual < X_toler) continue_eval = 0
end if
if (continue_eval /= 0) then
if (n_expand > max_expand) then
continue_eval = 0
return
end if
if (n_eval + 1 > max_eval) then
continue_eval = 0
return
end if
end if
X_eval = X_best + X_step
!<>
!<> <fitting-doc-tag-end> <unsupported-body-block>
!<>
!<>================================ opt_Nash_REVX
end subroutine
!<>
!<>
!<>
!<>

96

APPENDIX D

FINAL RESIDUALS

The final Gallium bulk properties used and the residual for each are given in table D.1.

Property fitted value reference value weight residual
Ga-α Bulk 0.00108891 0.00150928 0.002 -211.86053983
Ga-α Bulk 0.00048555 0.00067317 0.002 -94.55887350
Ga-α Bulk 0.00013033 0.00018363 0.002 -26.86049887
Ga-α Bulk 0.00000000 0.00000000 0.002 0.00000000
Ga-α Bulk 0.00007054 0.00008642 0.002 -8.00164586
Ga-α Bulk 0.00032298 0.00041180 0.002 -44.76338915
Ga-α Bulk 0.00074298 0.00094515 0.002 -101.88899631
Ga-α Bulk 0.00131307 0.00165605 0.002 -172.85675153

Ga-β Bulk 0.00096709 0.00109701 0.002 -65.47820889
Ga-β Bulk 0.00041535 0.00042990 0.002 -7.33176424
Ga-β Bulk 0.00009297 0.00007599 0.002 8.55923426
Ga-β Bulk 0.00000000 0.00000000 0.002 0.00000000
Ga-β Bulk 0.00013604 0.00016614 0.002 -15.17001649
Ga-β Bulk 0.00049068 0.00054712 0.002 -28.44370394
Ga-β Bulk 0.00102741 0.00111581 0.002 -44.55335841
Ga-β Bulk 0.00174131 0.00185373 0.002 -56.65945091

Table D.1: Final bulk property residuals.

The final Gallium cluster properties used and the residual for each are given in table D.2

and table D.3.

Property fitted value reference value weight residual
Ga3 D3h r 1.43487808 1.482283 1.3 -36.75625283
Ga3 D3h Energy -0.03657752 -0.036063 0.045 -11.52502081
Ga5 D5h r 2.25589641 2.280500 2.6 -9.53841468
Ga5 D5h Energy -0.04536755 -0.04010300 0.045 -117.92332174
Ga5 D4h r 2.52463120 2.517010 2.6 2.95461579
Ga5 D4h Energy -0.04565275 -0.043727 0.045 -43.13577432

Table D.2: Final Gallium cluster property residuals.

97

Property fitted value reference value weight residual
Ga5 C2v r1 1.21486480 1.263048 1.3 -37.35970732
Ga5 C2v r2 1.22085794 1.283961 1.3 -48.92808619
Ga5 C2v z1 2.37134197 2.466808 2.6 -37.01064586
Ga5 C2v z2 2.35985813 2.533019 2.6 -67.13168551
Ga5 C2v Energy -0.05173958 -0.049683 0.045 -46.06648618
Ga6 C2v a z 2.40543072 2.615500 2.6 -81.44048449
Ga6 C2v a r1 1.99663562 1.994878 2.0 0.88582179
Ga6 C2v a r2 1.45284734 1.636769 1.3 -142.60694404
Ga6 C2v a Energy -0.05695845 -0.055101 0.045 -20.75213072
Ga6 D3h z 2.19784791 2.600000 2.6 -155.90790319
Ga6 D3h r 1.53888498 1.570000 1.3 -24.12558836
Ga6 D3h Energy -0.05795073 -0.055902 0.045 -45.89061844
Ga6 C2v b r1 1.76406275 1.911780 2.0 -74.44788619
Ga6 C2v b r2 1.70684369 1.721574 1.3 -11.42141083
Ga6 C2v b r3 1.30134698 1.371566 1.3 -54.44557542
Ga6 C2v b z1 0.13990359 0.239604 2.0 -50.24792034
Ga6 C2v b z2 2.49130495 2.577068 2.6 -33.24895483
Ga6 C2v b Energy -0.05558643 -0.055101 0.045 -10.87337068
Ga6 D3d r 1.62185035 1.765801 1.3 -111.61470727
Ga6 D3d z 1.86542318 1.894614 2.0 -14.71185600
Ga6 D3d Energy -0.05520248 -0.054886 0.045 -7.08907091
Ga6 D2d r1 1.20431976 1.230612 1.3 -20.38615695
Ga6 D2d r2 2.28962801 2.265730 2.0 12.04433889
Ga6 D2d z 1.05579194 1.243194 1.3 -145.30553645
Ga6 D2d Energy -0.04955038 -0.045464 0.045 -91.53300052
Ga7 C3v r1 1.69920581 1.767103 1.3 -52.64530106
Ga7 C3v r2 1.59802688 1.617807 1.3 -15.33687261
Ga7 C3v z1 2.03090797 2.078788 2.0 -24.13101157
Ga7 C3v z2 1.93661231 1.993268 2.0 -28.55385310
Ga7 C3v Energy -0.05749826 -0.059215 0.045 38.45413787
Ga7 Cs r1 0.23181712 0.265887 2.0 -17.17084934
Ga7 Cs r2 1.43264180 1.681425 1.3 -192.89849695
Ga7 Cs r3 2.32856692 2.513624 2.6 -71.74365818
Ga7 Cs r4 1.33383421 1.313252 1.3 15.95878367
Ga7 Cs r5 2.17027601 2.341020 2.6 -66.19470343
Ga7 Cs r6 0.68161157 0.694996 2.6 -5.18892837
Ga7 Cs z1 2.10267701 1.942529 2.6 62.08681071
Ga7 Cs z2 2.22966546 2.371415 2.6 -54.95401806
Ga7 Cs z3 2.20791812 1.998043 2.6 81.36521323
Ga7 Cs Energy -0.05886136 -0.060602 0.045 38.98938985
Ga8 D2h r1 1.42813867 1.405199 2.0 11.56134495
Ga8 D2h r2 2.16986894 2.371196 2.0 -101.46664559
Ga8 D2h z1 1.21837079 1.267377 1.3 -37.99784191
Ga8 D2h z2 1.19556857 1.279033 1.3 -64.71563565
Ga8 D2h Energy -0.06253196 -0.062638 0.045 2.37528981

Table D.3: Final Gallium cluster property residuals.

98

The final Gallium Nitride cluster properties used and the residual for each are given in

table D.4 and table D.5.

Property fitted value reference value weight residual
Ga1N3 C2v r1 1.96107874 1.896811 1.4 45.93400039
Ga1N3 C2v r2 1.29373921 1.397985 1.4 -74.50746174
Ga1N3 C2v z 0.62911387 0.594313 1.4 24.87317960
Ga1N3 C2v Energy -0.09068114 -0.10365850 0.10 129.85405272
Ga1N3 C∞h r1 2.01779008 1.912230 1.4 75.44682276
Ga1N3 C∞h r2 1.22065495 1.201475 1.4 13.70845980
Ga1N3 C∞h r3 1.16599979 1.136267 1.4 21.25087925
Ga1N3 C∞h Energy -0.12997784 -0.13104750 0.10 10.70326728
Ga1N3 Pyr. r1 1.03573571 1.190017 1.4 -110.26927042
Ga1N3 Pyr. r2 1.30329321 1.448884 1.4 -104.05792083
Ga1N3 Pyr. r3 0.62478750 0.589452 1.4 25.25529321
Ga1N3 Pyr. z 1.81052627 1.558995 1.4 179.77662549
Ga1N3 Pyr. Energy -0.09621957 -0.10415450 0.10 79.39855630
Ga3N1 C∞h r1 2.46234324 2.704187 1.4 -172.85268088
Ga3N1 C∞h r2 1.70791602 1.725278 1.4 -12.40910433
Ga3N1 C∞h r3 1.90968009 1.845941 1.4 45.55615626
Ga3N1 C∞h Energy -0.06486886 -0.07495350 0.10 100.90891815
Ga3N1 D3h r 1.91206761 1.915125 1.4 -2.18520640
Ga3N1 D3h Energy -0.06997367 -0.09120750 0.10 212.47004297
Ga1N4 C∞h r1 1.81798028 1.767594 1.4 36.01252052
Ga1N4 C∞h r2 1.86623543 1.782539 1.4 59.82023922
Ga1N4 C∞h r3 1.24076908 1.197856 1.4 30.67120839
Ga1N4 C∞h r4 1.16775707 1.130722 1.4 26.47003018
Ga1N4 C∞h Energy -0.13245292 -0.10910380 0.10 -233.63597668
Ga2N3 C∞h r1 2.48401855 2.744226 1.4 -185.97774100
Ga2N3 C∞h r2 1.90510833 1.872233 1.4 23.49694254
Ga2N3 C∞h r3 1.24739455 1.198579 1.4 34.88987320
Ga2N3 C∞h r4 1.18046492 1.136618 1.4 31.33865172
Ga2N3 C∞h Energy -0.11399023 -0.10788460 0.10 -61.09417268
Ga2N3 D∞h r1 1.26334680 1.173079 1.4 64.51699280
Ga2N3 D∞h r2 1.97744385 2.020915 1.4 -31.07007726
Ga2N3 D∞h Energy -0.10199629 -0.10853960 0.10 65.47364033

Table D.4: Final Gallium Nitride cluster property residuals.

99

Property fitted value reference value weight residual
Ga3N2 D∞h r1 1.74979945 1.740596 1.4 6.57797034
Ga3N2 D∞h r2 1.78835803 1.880500 1.4 -65.85651044
Ga3N2 D∞h Energy -0.07944046 -0.08630740 0.10 68.71199387
Ga4N1 C2v r1 3.39992022 3.700572 1.4 -214.88445997
Ga4N1 C2v r2 1.27831495 1.209966 1.4 48.85095619
Ga4N1 C2v r3 1.91893693 1.902282 1.4 11.90375879
Ga4N1 C2v z 1.43383416 1.481297 1.4 -33.92305214
Ga4N1 C2v Energy -0.07004712 -0.07983020 0.10 97.89149375
Ga4N1 C∞h r1 2.51709146 2.686556 1.4 -121.12117373
Ga4N1 C∞h r2 2.32957791 2.550218 1.4 -157.69780638
Ga4N1 C∞h r3 1.71133512 1.719684 1.4 -5.96718739
Ga4N1 C∞h r4 1.90520958 1.843453 1.4 44.13919863
Ga4N1 C∞h Energy -0.05932974 -0.06696020 0.10 76.35188914
Ga6N6 D3d rG 1.83431304 1.748908 1.4 61.04143633
Ga6N6 D3d rN 2.07768866 2.025861 1.4 37.04272037
Ga6N6 D3d z 2.12729860 2.026850 1.4 71.79349594
Ga6N6 D3d Energy -0.10981760 -0.10289000 0.10 -69.31900864

Table D.5: Final Gallium Nitride cluster property residuals.

100

CURRICULUM VITÆ

Lyle C. Smith, III

Education
2015 University of Louisville

Ph.D. in Applied and Industrial Mathematics

2005 University of Louisville
M.S. in Physics

2005 The Southern Baptist Theological Seminary, Louisville, KY
M.Div. in Christian Ministry

1997 Virginia Tech, Blacksburg, VA
M.S. in Mathematics

1995 Virginia Tech, Blacksburg, VA
B.S. in Physics

Publications

“Cogging Torque Modeling and Analysis,” L. Smith, C.P. Cho, Incremental Motion

Control Systems & Devices Symp.

“FEA Analysis of Various Motor Configurations,” L. Smith, R. McConnell, C.P. Cho,

Naval Symp. on Electric Machines.

“Modeling and Simulation of a Novel Integrated Electric Motor/Propulsor,” Dr. C. Peter

Cho, William Krol Jr., and Lyle Smith III, Incremental Motion Control Systems and Devices

Symposium.

“A Novel Integrated Electric Motor/Propulsor for Underwater Propulsion,” John Ra-

posa, Lyle Smith III, William Fennell, William Krol Jr., James Uhlman, Daniel Thivierge,

and Dr. C. Peter Cho, Naval Symposium on Electric Machines.

“Application of a High-Energy Density Permanent Magnet Material in Underwater Propul-

sion Systems,” Dr. C. Peter Cho, Andrew Kim, and Lyle Smith III, Fifteenth International

101

Workshop on Rare-Earth Magnets.

“Techniques for Modeling Motors in ANSYS,” Dr. Mike Yaksh, EMAG Specialist and

Lyle Smith III, Naval Undersea Warfare Center, ANSYS Users’ Conference and Exhibition.

“Motor Macros for Operation of ANSYS Electromagnetic Models,” Lyle Smith III,

NUWC Internal Technical Memo.

102

	University of Louisville
	ThinkIR: The University of Louisville's Institutional Repository
	5-2015

	Improved self-consistency for SCED-LCAO.
	Lyle C. Smith
	Recommended Citation

	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Motivating Applications
	Basics of the Problem
	SCED-LCAO Theory
	Previous SCED Work
	Heterogeneous Systems

	SELF-CONSISTENCY
	The Self-Consistent Problem
	System Characteristics
	Reducing System Size
	Higher Dimensions
	Derivative Methods
	Generalized Bisection
	An Example Using Generalized Bisection
	Generalized Bisection Relaxation
	Initial Vector
	Comparison of Methods

	GALLIUM NITRIDE
	Gallium
	Nitrogen
	Gallium Validation
	Nitrogen Validation

	PREDICTION OF GALLIUM NITRIDE STRUCTURES
	CONCLUSION
	Comparison of Methods
	Gallium Nitride
	Direction for Future Work

	REFERENCES
	GALLIUM CLUSTER DATABASE
	NITROGEN CLUSTER DATABASE
	GENERALIZED BISECTION COMPUTER CODE
	Total Cluster
	Root Multi

	FINAL RESIDUALS
	CURRICULUM VITÆ

