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Abstract

The aim of this thesis is to present the reader with the very effective and rigorous Riemann-Hilbert

approach of solving asymptotic problems. We consider a transition problem for a Toeplitz determi-

nant; its symbol depends on an additional parameter t. When t > 0, the symbol has one Fisher-

Hartwig singularity at an arbitrary point z1 6= 1 on the unit circle (with associated α1, β1 ∈ C

strengths) and as t → 0, a new Fisher-Hartwig singularity emerges at the point z0 = 1 (with

α0, β0 ∈ C strengths). The asymptotics we present for the determinant are uniform for sufficiently

small t. The location of the β-parameters leads to the consideration of two cases, both of which are

addressed in this thesis. In the first case, when |Reβ0 − Reβ1| < 1 we see a transition between

two asymptotic regimes, both given by the same result by Ehrhardt, but with different parameters,

thus producing different asymptotics. In the second case, when |Reβ0 −Reβ1| = 1 the symbol has

Fisher-Hartwig representations at t = 0, and the asymptotics are given the Tracy-Basor conjecture.

These double scaling limits are used to explain transition in the theory of XY spin chains between

different regions in the phase diagram across critical lines.
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Introduction

The aim of this thesis is to acquaint the reader with the greatly effective and rigorous Riemann-

Hilbert approach to solving many asymptotic problems. These types of problems have applications

in statistical mechanics, most prominent being the spontaneous magnetisation problem for the Ising

model, which is discussed throughout Sections 1.3, 1.4 and 1.5, also see [15] for a thorough review

by Deift, Its and Krasovsky. For applications to random matrix theory and asymptotic results for

various orthogonal polynomials see for example [10], [12], [26], [31], [32].

Chapter 1 reviews established techniques and ideas that are subsequently used to solve the

problem in Chapter 2, as well as historical reasoning behind some of the results. In this thesis

we consider a transition problem for a Toeplitz determinant; its symbol depends on an additional

parameter t and the asymptotics we obtain for the determinant are uniform for sufficiently small

t. A considerable role in this problem is played by a Painlevé V function σ(x), which is the same

function that was considered by Claeys, Its and Krasovsky in [11]. The symbol considered within this

thesis has one Fisher-Hartwig singularity at an arbitrary point z1 on the unit circle for a t > 0 (with

associated α1 and β1 strengths, where α1, β1 ∈ C) and as t → 0, a new Fisher-Hartwig singularity

emerges (away from z1) at the point z0 = 1 (with α0 and β0 strengths, α0, β0 ∈ C). The location of

the β-parameters leads to the consideration of two cases, both of which are addressed in this thesis.

The first case provides an expression unifying two asymptotic regimes—the first regime describes the

Toeplitz determinant with one Fisher-Hartwig singularity for 0 < t < t0, and the second regime arises

for a t = 0, when the determinant has two singularities and the seminorm |||β||| = |Reβ0−Reβ1| < 1,

where the complete definition of the seminorm of β-parameters can be found in (1.4.10). These

two asymptotic regimes are both given by the same result of Ehrhardt [22] (but with different

parameters, thus producing different asymptotics). In the case when |||β||| = |Reβ0 −Reβ1| = 1 we

see a transition between asymptotics of a determinant with one singularity in the symbol and an

11
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asymptotic regime for a determinant whose symbol possesses Fisher-Hartwig representations. For a

symbol possessing these representations the asymptotics for the associated Toeplitz determinant are

then given as a linear combination of those same results by Ehrhardt; each term corresponding to a

new, non-trivial representation of the symbol. This is reffered to as the Tracy-Basor conjecture, or

the generalised Fisher-Hartwig asymptotics. We use the nonlinear steepest descent method which

was introduced by Deift and Zhou in [20] and further developed by Deift, Venakides and Zhou

in [19] and by Deift, Kriecherbauer, McLaughlin, Venakides and Zhou in [17] and [18], to solve the

Riemann-Hilbert problem for orthogonal polynomials with the weight given by our symbol. We also

utilise many results that were described in [11], where the authors presented a transition between

a smooth symbol and one possessing one Fisher-Hartwig singularity, and [14] where Deift, Its and

Krasovsky considered the case of m + 1 number of fixed singularities. To obtain the result for

|||β||| = |Reβ0−Reβ1| = 1, we used ideas from the proof of the Tracy-Basor conjecture given in [14]

to find a relation between the Toeplitz determinant whose symbol possesses representations and a

determinant with no representations and asymptotics of related orthogonal polynomials.

This transition problem for a Toeplitz determinant can be applied to statistical mechanics.

This application arises from the work of Franchini and Abanov in [25] on the emptiness formation

probability for the one-dimensional anisotropic XY spin-1/2 chain in a transverse magnetic field. In

Chapter 3 we explore this application in more detail.



Chapter 1

The Essentials

1.1 Toeplitz Determinants

Throughout this thesis, we will often be talking about the analyticity of certain functions. Recall

from a first course in complex analysis, that an analytic function is a function which has a Taylor

series expansion at every point in the region of its analyticity. Such functions are holomorphic—

satisfying the Cauchy-Riemann equations—and so, infinitely differentiable. We will denote the unit

circle in C by T and Fourier coefficients of a function g(z) ∈ L1(T) by

gk =
1

2π

∫ 2π

0
g(eiθ)e−ikθdθ. (1.1.1)

Definition 1.1.1. For 1 ≤ p ≤ ∞, we define the Hardy space Hp(T), on the circle, to be the

following,

Hp(T) = {g ∈ Lp(T) : gk = 0, k < 0} .

It is a closed subspace of Lp(T), making it a Banach space.

Definition 1.1.2. The Hardy space on the open unit disk D is defined to be

Hp(D) =

{
g ∈ H(D) : sup

0<r<1

(∫ 2π

0
|g(reiθ)|pdθ

)1/p

<∞

}

where H(D) denotes the space of analytic functions on D.

The two spaces are isometrically isomorphic which allows us to write simply Hp below.

13
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Consider a function g ∈ L2(T); we can write it uniquely as a Fourier series, g(z) =
∑∞

k=−∞ gke
ikθ

with respect to the orthonormal basis (ek)
∞
k=−∞ on L2(T), where ek(θ) = eikθ for k ∈ Z.

Definition 1.1.3. The orthogonal projection P : L2(T)→ H2 mapping g(z) onto H2 is given by

∞∑
k=−∞

gke
ikθ 7−→

∞∑
k=0

gke
ikθ. (1.1.2)

This projection can also be viewed as a singular integral operator, see (1.2.2).

Definition 1.1.4. The operator Tf : H2 → H2, for f ∈ L∞(T), defined as

Tfg = P (fg)

is called the Toeplitz operator with symbol f .

We multiply two functions together, g in H2 and a prescribed function f in L∞. The resulting

function fg is in L2, and so we project it back onto H2. Some authors also define the multiplication

operator Mf , to write the Toeplitz operator as Tfg = PMfg. The above definition specifies that

the function f is in L∞. This is a sufficient and necessary reason for the operator to be bounded.

If we take a function with Fisher-Hartwig singularities (1.4.1) for example, the resulting Toeplitz

operator is unbounded.

Definition 1.1.5. Let f(z) ∈ L1(T). We call

T (f) =


f0 f−1 f−2 · · ·

f1 f0 f−1 · · ·

f2 f1 f0 · · ·
...

...
...

. . .

 (1.1.3)

the Toeplitz matrix with symbol f(z).

Such matrices are representations of the Toeplitz operator Tϕ with respect to the standard basis{
eikθ : k ≥ 0

}
acting on the sequence space l2 (Z+) =

{
u = (u0, u1, . . . ) :

∑∞
i=0 |ui|2 <∞

}
.
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One way of seeing this, is to let f(eikθ) =
∑∞

k=−∞ fke
ikθ as f ∈ L∞(T), then

Tfen = P
∞∑

k=−∞
fke

ikteint =
∞∑
p=0

fp−ne
ipt, where p = n+ k.

Another way is by considering the inner product in L2,

fjk = (Tfek, ej) = (PMfek, ej) = (fek, P
∗ej) = (fek, ej) =

∫ 2π

0
f(eiθ)eikθe−ijθ

dθ

2π

=

∫
T
f(eiθ)e(k−j)iθ dθ

2π
= fj−k.

For great reference on matrix representation of operators (among other things) see [8].

The Toeplitz matrix is a semi-infinite matrix—entries continue for infinity in the lower(in this

case) half of the matrix—and so to understand its determinant, we need to make the matrix finite

first. We will then look at the asymptotic behaviour of the determinant as we increase the size of

the matrix to infinity.

Definition 1.1.6. Given fk ∈ C we denote by Tn(f) the n × n finite sections of the matrix in

(1.1.3), i.e.

Tn(f) =


f0 f−1 · · · f−(n−1)

f1 f0 · · · f−(n−2)

...
...

. . .
...

fn−1 fn−2 · · · f0

 , (1.1.4)

and its determinant by Dn(f) = detTn(f).

1.2 Riemann-Hilbert Problems

In what follows we take Σ to be a Carleson curve as they are the most general setting for the results

below to hold. For the definition of a Carleson curve, see [6, Chapter 1]. Let us give a short example.

Example 1.2.1. [6, Example 1.3] Let α > 0, and define

Γ = {τ ∈ C : τ = x+ if(x), 0 ≤ x ≤ 1} .
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ε

(a) Neighbourhood of a Carleson
curve (b) Cauchy Principal Value (c) Oriented circle

Figure 1.1

Let

f(x) = xα sin(1/x) for x ∈ (0, 1] and f(0) = 0.

The function f(x) is continuous on [0, 1] and continuously differentiable on (0, 1). It is also bounded

on [0, 1]. For α ≥ 2 its derivative is bounded on (0, 1) and Γ is Carleson. However for 0 < α < 2,

the curve is not Carleson.

We do not go into any detail as to what these curves are as we do not require it, we merely

mention this for completeness. Throughout this section we follow [1], [6], [21] and [38].

Definition 1.2.2. The Cauchy singular integral operator S : Lp(Σ)→ Lp(Σ) is given by

(Sf)(t) =
1

πi
−
∫

Σ

f(τ)

τ − t
dτ.

This integral exists in the Cauchy principal value sense, often also denoted by PV , defined as

−
∫

Σ

f(τ)

τ − t
dτ = PV

∫
Σ

f(τ)

τ − t
dτ := lim

ε→0

∫
Σ\Bt,ε

f(τ)

τ − t
dτ,

where we first integrate along Σ with a small ball centred at the singularity t of radius ε (i.e. Bt,ε)

removed (see Figure 1.1b), and then let ε decrease to 0. If the limit exists, we say that it exists in

Cauchy principle value sense.

Given an oriented curve we can define positive and negative regions on the left and right side of

the curve to the direction of travel respectively, see Figure 1.1c for example.

Theorem 1.2.3. (Plemelj formulae, [1, Lemma 7.2.1]) Let Σ be a (Carleson) curve. For every

ϕ ∈ Lp(Σ), 1 < p <∞, define

Φ(z) :=
1

2πi

∫
Σ

ϕ(τ)

τ − t
dτ, z ∈ C \ Σ.
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The following Plemelj formulae hold,

Φ±(t) =
1

2
(±ϕ(t) + (Sϕ)(t)) . (1.2.1)

Here, Φ+ denotes the limit as z ∈ C tends to a point t ∈ Σ entirely from the positive side of Σ

non-tangentially (within a sector of opening angle less than π). An analogous definition holds for

Φ− (cf. Figure 1.1c for Σ = T). The projection (Definition 1.1.3) can be written in integral form as

P = 1
2(I + S). Denote by Q = I − P = 1

2(I − S) its orthogonal complement, then

Φ+ = Pϕ and Φ− = −Qϕ. (1.2.2)

Further, (1.2.1) is thus equivalent to

Φ+ − Φ− = (P +Q)ϕ = Iϕ (1.2.3)

and

Φ+ + Φ− = (P −Q)ϕ = Sϕ. (1.2.4)

The Plemelj formulae are a celebrated result which is used time and time again. The equation

(1.2.3) above is what is known as an additive Riemann-Hilbert problem, with the jump ϕ. Using

Plemelj’s formulae, it is straight-forward to proceed to its solution, it is just the singular integral,

Φ = 1
2Sϕ. The reason why this is so celebrated is that it provides a way to tackle (2 × 2) matrix

Riemann-Hilbert problems. The idea is to reduce it to a form where it can be solved using this result.

The usual point of action in higher dimensional cases (see for example [32] for higher dimensional

R-H problem for multiple orthogonal polynomials), is to try and reduce it to a lower dimensional

problem. In general, the matrix Riemann-Hilbert problem, which from now on will be referred to

as R-H problem, is defined in the following way.

Definition 1.2.4. (Riemann-Hilbert Problem) Let Σ ⊂ C be a smooth oriented contour and let

there be a map from the contour mapping to the space of n×n invertible matrices (called the jump),

v : Σ → GL(n,C). Given the pair (v,Σ) , R-H problem is the problem of finding an n × n matrix

valued function m(z) such that

1. m is analytic in C \ Σ



18 CHAPTER 1. THE ESSENTIALS

2. m+(t) = v(t)m−(t), t ∈ Σ

3. m(z)→ I as z →∞.

A matrix-valued function is a matrix whose entries are functions. We say a matrix-valued

function is analytic if each of the entry functions are analytic in the usual sense. Condition 3 above

is not necessary, it is possible to work with an R-H problem that is not normalised at infinity, the

first step to tackle it would be just to transform it into a normalised R-H problem. In this thesis, I

will be considering 2 × 2 R-H problem, which have to go through series of various transformations

which with every turn make the problem easier/possible to solve. The well-posedness of the R-H

problem is equivalent to the question of the existence and uniqueness of a system of Fredholm1

singular integral equations; see [35] for more details.

1.3 Asymptotic behaviour of Toeplitz determinants

This thesis deals with the asymptotics of truncated Toeplitz determinants as we increase the size of

the matrix, n→∞. It is thus necessary for us to outline the following notation which will be used

throughout. Note that the two definitions below cover complex-valued functions. If z ∈ C and we

have say, f(z) = O(1/z) as z →∞, we mean f(|z|) = O(1/|z|) as |z| → ∞.

Definition 1.3.1. [1, Definition 6.1.1]

1. • The notation f(z) = O(g(z)) as z → z0 means there exists a finite constant M > 0 in

the neighbourhood of z0 such that |f | ≤M |g|.

• The notation f(z) = O(g(z)) as z →∞ means there exists a constant M > 0, such that

|f | ≤M |g| for z > z0, for some sufficiently large z0.

2. The notation o(g(z)) = f(z) as z → z0 means that

lim
z→z0

∣∣∣∣f(z)

g(z)

∣∣∣∣ = 0.

Here we note that throughout this thesis, the big O(·) and small o(·) notations are used inter-

changeably as a matrix with each of the elements with that order or just a scalar, depending on the
1An operator is Fredholm if it is a bounded linear operator between two Banach spaces with a finite-dimensional

kernel and cokernel.
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context, i.e. we could write,

I +O(1/n) =

1 +O(1/n) O(1/n)

O(1/n) 1 +O(1/n)

 . (1.3.1)

Definition 1.3.2. [1, Definition 6.1.2]

1. An ordered sequence of functions {δj(z)}, j = 1, 2, . . . is called an asymptotic sequence as

z → z0 if

δj+1(z) = o(δj(z)), z → z0

for each j.

2. Let I(z) be continuous in z. Let {δj(z)} be an asymptotic sequence as z → z0. The formal

series
∑N

j=1 ajδj(z) is called an asymptotic expansion of I(z), as z → z0, valid to order δN (z),

if

I(z) =
m∑
j=1

ajδj(z) +O(δm+1(z)), z → z0, m = 1, 2, . . . , N.

If we denote η(z) :=
∑N

j=1 ajδj(z). This is the same as saying,

I(z) ∼ η(z), z → z0,

or

lim
z→z0

∣∣∣∣I(z)

η(z)

∣∣∣∣ = 1.

The central result in the study of asymptotic behaviour of Toeplitz determinants is the theorem

by Gábor Szegő. In 1915 [41], he proved the following result which was conjectured by George Pőlya

and provides the leading order asymptotics for a Toeplitz determinant with a smooth symbol.

Theorem 1.3.3. (Szegő’s First Theorem) Let ϕ
(
eiθ
)
> 0 be a continuous, positive function on T

and Dn(ϕ) be the associated Toeplitz determinant (see Definition 1.1.6), then

lim
n→∞

1

n
logDn(ϕ) = (logϕ)0 . (1.3.2)

Note that we are using the notation from (1.1.1), (logϕ)k = 1
2π

∫ 2π
0 logϕ(eiθ)e−ikθdθ. This
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equation can be rewritten equivalently as follows,

Dn(ϕ) = exp {n (logϕ)0 + o(n)} , (1.3.3)

as n→∞.

The full asymptotics were computed in 1952, again by Szegő [42]. He revisited his calculations

from nearly 40 years before, encouraged by the work of Lars Onsager and Bruria Kaufman on the

Ising model in the 1940’s. The following, is a celebrated result, which finds uses to this day and was

generalised many times over by a multitude of mathematicians from diverse backgrounds. It has

several proofs from different walks of mathematics—many of them can be found in the OPUC book

by Barry Simon [40]; see also [8, 9].

Theorem 1.3.4. (Szegő’s Strong Limit Theorem (SSLT)) Let ϕ(eiθ) be positive, C1+ε (ϕ is C1 with

ϕ′ Hölder continuous of some positive order ε > 0) function on T, then

lim
n→∞

Dn(ϕ)

en(logϕ)0
= eE(ϕ), (1.3.4)

where

E(ϕ) =
∞∑
k=1

k| (logϕ)k |
2. (1.3.5)

Theorem 1.3.4 evaluates the error term in (1.3.3), it is given by o(n) = E(ϕ) + o(1). This error

term was of the main interest to Onsager and Kaufman at the time.

1.4 Fisher and Hartwig

A number of problems in statistical mechanics have brought the need to consider more complicated

symbols for Toeplitz matrices. Instead of continuous or analytic functions, these new symbols were

now required to have zeros, integrable singularities and non-zero winding numbers. Michael Fisher

and Robert Hartwig have devised a practical way to factorise out these singularities, see [23]. They

are referred to as Fisher-Hartwig (F-H) symbols and are defined on the unit circle in the following

way,

f(z) = eV (z)z
∑m
j=0 βj

m∏
j=0

|z − zj |2αjgzj ,βj (z)z
−βj
j , z = eiθ, θ ∈ [0, 2π), (1.4.1)
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for some m = 0, 1, . . . , where

zj = eiθj , j = 0, . . . ,m, 0 = θ0 < θ1 < · · · < θm < 2π,

gzj ,βj (z) =


eiπβj , if 0 ≤ arg z < θj ,

e−iπβj , if θj ≤ arg z < 2π.

(1.4.2)

and

Reαj > −1/2, βj ∈ C, j = 0, . . . ,m, (1.4.3)

and V (z) is analytic in a neighbourhood of the unit circle.

To put this into words, the symbol has m + 1 singularities at the pairwise distinct points zj =

eiθj , j = 0, . . . ,m, θj ∈ [0, 2π). The root type singularities exist for a non-zero αj ∈ C, and we

stipulate that Reαj > −1/2 to ensure integrability. The jump type singularities are given for non-

zero βj ∈ C. For the purposes of this thesis, the function V (z) is analytic in a neighbourhood of the

unit circle, however in [14], the authors have proven results for a more general V (z), see (1.4.14). In

this thesis, we take arg z ∈ [0, 2π), unless stated otherwise.

One of the driving forces behind generalising the SSLT (Theorem 1.3.4) to this new class of

symbols, was the hunt for the solution of the spontaneous magnetisation problem for the Ising model.

I refer the reader to [15] for a thorough and captivating account of the history of the problem and the

path which was taken in generalising SSLT. The Ising model in 2 dimensions concerns the interaction

of random spins σi,j = ±1 at sites (i, j) ∈ Z2 at a temperature T . One is interested in determining

the magnetisation of the system depending on the temperature, by first considering a finite box2 in

Z2 with size depending on n, and then letting n→∞. There exists a critical temperature Tc, also

called the Curie point. For instance, given a magnet, there will exist a critical temperature, such

that for temperatures T < Tc, it will exhibit spontaneous magnetisation, whereas for T > Tc the

magnetisation will be zero. The square of the magnetisation can be expressed as the large n limit

of a Toeplitz determinant with a particular symbol. More precisely,

M2
T = lim

n→∞
〈σ1,1, σ1,n+1〉T ,

2With suitable boundary conditions. There are several one can consider, cf [15].
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where the inner product denotes the correlations between the nearest neighbouring spins. Thanks

to the work of Lars Onsager and Bruria Kaufman we know that the correlation function can be

written as a determinant of a Toeplitz matrix,

〈σ1,1, σ1,n+1〉T = Dn(fT )

where the symbol fT is given by

fT (z) =

[
(z1z2z − 1)(z1z − z2)

(z − z1z2)(z2z − z1)

]1/2

. (1.4.4)

The case 0 < z2 < z1 < 1 corresponds to T < Tc, and the net winding of fT is 0. One can use

the SSLT in this case (Theorem 1.3.4—extended to complex symbols, see [15, Section 3]) to get

the expression of the magnetisation. In the case when 0 < z1 < z2 < 1 we have that T > Tc and

the winding number of fT is −1. The SSLT breaks down and we have to consider a determinant

of a Toeplitz matrix with a F-H singularity. There are complicated cancellations in the asymptotic

formula of the determinant, but one finally achieves ’zero’ to be the magnetisation—meaning there

is none.

The symbol for T > Tc can be written as

fT (z) = eV (z)z−1g1,−1(z)(1)+1, (1.4.5)

which is a F-H symbol with a singularity at 1 with (strength) β0 = −1 (compare with (1.4.1), αj = 0,

j = 0, . . . ,m, βk = 0, k = 1, . . . ,m).

Remark 1.4.1. There are other ways of writing Fisher-Hartwig symbols. They are considered in

the form (1.4.1) in the works of Claeys, Deift, Its and Krasovsky because it makes it easier in the

method they use (via R-H problems). In the works of Basor, Böttcher, Ehrhardt, Fisher, Hartwig,

Silberman, Tracy and Widom (among many others), the symbols are written as,

f(z) = b(z)

m∏
j=1

|z − zj |2αjϕzj ,βj (z), (z ∈ T), (1.4.6)

where

ϕzj ,βj (z) := exp {iβj arg(−z/zj)} . (1.4.7)
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Here we take arg z ∈ (−π, π]. One can draw parallels between the two immediately. The pioneers of

the Riemann-Hilbert approach changed the argument of z, which particularly affected the function

ϕ(z), and factorised out some of the terms. The factors z−βjj are singled out to simplify comparisons

with other literature and the z
∑∞
j=0 βj are factored out because of the nature of the work which

was carried out in [14] on the Tracy-Basor conjecture (see Section 1.4.2). The only real difference

between the two, are the conditions on V (t) and b(z) which is a continuous function. In [16] the

authors also relaxed the conditions on V (z).

Notice also that the product in (1.4.1) begins at j = 0 and the authors look atm+1 singularities.

In their papers, the authors fix θ0 = 0 and so z0 = 1 always. This is without any loss of generality

however, as the problems considered loc. cit. are translation invariant.

1.4.1 F-H Conjecture

Many people have worked on producing the asymptotics of the determinant of a Toeplitz matrix

associated with the F-H symbol. A thorough historical account can be found in [15, Section 6],

where the authors present the mathematical and physical motivation for this result, as well as who

produced what results and when. In short summary, it was Andrew Lenard in [33, 34] and Fisher

and Hartwig in [23], who propelled the study of Toeplitz determinants with discontinuous symbols

and conjectured the results for asymptotics, close together in time. In [45], Harold Widom verified

the conjecture made by Lenard which differed only by the parameters βj = 0,∀j from the conjecture

made by Fisher and Hartwig. Subsequently, Estelle Basor in [2] worked on adding β singularities

and then together with J. William Helton in [3] analyzed pure F-H singularities (with no analytic

part, V (z) ≡ 0) using iterative techniques. Albrecht Böttcher and Bernd Silbermann have obtained

in [7] an explicit formula for the determinant with such pure F-H symbols,

Dn(f) =
G(1 + α+ β)G(1 + α− β)

G(1 + 2α)

G(n)G(n+ 2α)

G(n+ α+ β)G(n+ α− β)

and Dn(f) = 0 if α ± β is a negative integer. This formula played an important role in their proof

(also in [7]) of the conjecture posed by Fisher and Hartwig in its original form. The function G(z)

is the Barnes G−function, which is an entire function defined as

G(z + 1) = (2π)z/2e−z(z+1)/2−Cz2/2
∞∏
n=1

{(
1 +

z

n

)n
e−z+z

2/(2n)
}
, (1.4.8)
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where C = 0.577 . . . is the Euler’s constant. It is worth nothing the following identity which draws

parallels between the Barnes G− and the Gamma Γ(z) functions, just as Γ(z+ 1) = zΓ(z), we have

that G(z + 1) = Γ(z)G(z). The following asymptotic relation can also be derived from (1.4.8),

G(n)G(n+ γ + δ)

G(n+ γ)G(n+ δ)
∼ nγδ as n→∞ (1.4.9)

for an arbitrary δ, γ ∈ C.

The leading order asymptotics of Toeplitz determinants with F-H symbols were conclusively

computed by Ehrhardt in his PhD thesis in 1997 (see also [22]. To state the result, we first need to

introduce the following seminorm,

|||β||| = max
j,k
|Reβj − Reβk|, (1.4.10)

where 1 ≤ j, k ≤ m if α0 = β0 = 0, and 0 ≤ j, k ≤ m otherwise. If m = 0, set |||β||| = 0.

The Wiener-Hopf factorisation of the function eV (t) (V (z) which appeared in (1.4.1)) is given

by,

eV (z) = b+(z)eV0b−(z), b+(z) = e
∑∞
k=1 Vkz

k
, b−(z) = e

∑−1
k=−∞ Vkz

k

(1.4.11)

where Vk are the Fourier coefficients of the function V (t).

Theorem 1.4.2. Let f(z) be given by (1.4.1), V (z) ∈ C∞(T), |||β||| < 1, Reαj > −1
2 and αj ±βj 6=

−1,−2, . . . for j, k = 0, 1, . . . ,m. Then as n→∞,

Dn(f) = exp

{
nV0 +

∞∑
k=1

kVkV−k

}
m∏
j=0

b+(zj)
−(αj−βj)b−(zj)

−(αj+βj) (1.4.12)

× n
∑m
j=0(α2

j−β2
j )

∏
0≤j<k≤m

|zj − zk|2(βjβk−αjαk)

(
zk
zjeiπ

)αjβk−αkβj
×

m∏
j=0

Gαj+βj ,αj−βj (1 + o(1)).

Here, the product over j < k is set to 1 if m = 0 and

Gαj+βj ,αj−βj =
G(1 + αj + βj)G(1 + αj − βj)

G(1 + 2αj)
. (1.4.13)
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In [14,16] the authors prove Theorem 1.4.2 again, but using Riemann-Hilbert problem approach

and they also generalise it further to hold for less smooth functions V (t); finite degree of smoothness,

more specifically, satisfying condition

∞∑
k=−∞

|k|s|Vk| <∞ (1.4.14)

for s such that

s >
1 +

∑m
j=0

[
(Imαj)

2 + (Reβj)
2
]

1− |||β|||
. (1.4.15)

In [14], the authors also prove the result for |||β||| = 1 if V (z) ∈ C∞(T), i.e. the generalised F-H, or

Tracy-Basor conjecture which stems from F-H representations, all of which is described in the next

section.

Remark 1.4.3. Note, that for T > Tc in the Ising model, the F-H symbol, given by (1.4.5), has the

parameters α = 0, β = −1. We call this a degenerate case of the Theorem 1.4.2. The reason for this

degeneracy is a property of the Barnes G−function, which will vanish if the sum or difference of αj

and βj is a negative integer. The symbol can be written in the following way, fT (z) = −z−1f̃(z),

with f̃(z) being a smooth function. One has the following relation for the two Toeplitz determinants

(see also Lemma 2.6.1),

Dn(f) = π̂n(0)Dn(f̃),

where π̂n(z) are orthogonal polynomials with respect to the weight f̃(z), see (1.6.1). One can

compute the asymptotics of the orthogonal polynomials using for example a R-H problem and the

determinant Dn(f̃) is given using SSLT as f̃ is smooth.

1.4.2 F-H representation and the Tracy-Basor Conjecture

Basor and Craig Tracy considered in [4] a symbol with two jump singularities, at z0 = 1 and

z1 = eiπ = −1 with strengths β0 = 1/2 and β1 = −1/2 respectively, which meant that the seminorm,

|||β||| = 1. Their asymptotics for the determinant of the associated Toeplitz matrix as n → ∞

were not of the general F-H asymptotic form. However, upon closer inspection they arrived at

the conclusion, that the asymptotics they obtained were in fact a linear combination of two F-H

asymptotic forms (1.4.12). This gave birth to their conjecture, now Theorem 1.4.6. One asymptotic

form corresponded to the original symbol as though |||β||| < 1, and the second was again F-H
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asymptotics but for a symbol with jump singularities at the same sites, z0 = 1 and z1 = eiπ = −1,

but with strengths β0 = −1/2 and β1 = 1/2. The second symbol only differed from the original one

by a constant. This is indeed the case for any F-H symbol. One can translate the β parameters

by integer values, as described in the definition below and because of uniformity in the α and β

parameters [14, Remark 1.6], one can apply the translations to the asymptotics without obtaining

anything new. However, the representations do play a significant role when |||β||| = 1, as we will find

out in what follows.

Definition 1.4.4. Let f(z) be a F-H symbol, defined as in (1.4.1). If βj 6= 0 or αj 6= 0 or both,

replace βj by βj + nj =: β̂j, nj ∈ Z, where nj satisfy the condition
∑m

j=0 nj = 0, but are otherwise

arbitrary integers. The resulting function f(z;n0, . . . , nm) is a F-H representation of f(z).

Note that all F-H representations of f(z) differ only by multiplicative constants, we have that

f(z) =
m∏
j=0

z
nj
j × f(z;n0, . . . , nm). (1.4.16)

Indeed, if we look at βj 7→ βj + nj =: β̂j ,

f(z, n0, . . . , nm) = eV (z)z
∑m
j=0 bj+

∑m
j=0 nj

m∏
j=0

|z − zj |2αjz
−βj−nj
j (1.4.17)

×


eiπβjeiπnj (= (−1)njeiπβj ), if 0 ≤ arg z < θj

e−iπβje−iπnj (= (−1)nje−iπβj ), if θj ≤ arg z < 2π,

(1.4.18)

and because
∑m

j=0 nj = 0 and
∏m
j=0(−1)nj = (−1)

∑m
j=0 nj = 1 the representations only differ from

f(z) by the product of znjj ’s.

We are interested in those F-H representations for which

m∑
j=0

(Reβj + nj)
2 (1.4.19)

is minimal. The number of such representations is finite. There exists an algorithm for finding them

explicitly which was given in [14, Lemma 1.12] and will be outlined below. We will denote the set of

all representations for which (1.4.19) is minimal byM. We call the F-H representation degenerate

if α + β̂j = αj + (βj + nj) or α − β̂j = αj − (βj + nj) is a negative integer for some j. We callM



1.4. FISHER AND HARTWIG 27

nondegenerate if it contains no degenerate F-H representations. Let us now denote by Oβ the set

corresponding to all F-H representations of f(z), i.e. the orbit of β = (β0, β1, . . . , βm),

Oβ =

β̂ : β̂j = βj + nj ,

m∑
j=0

nj = 0

 . (1.4.20)

Similarly as before we define the seminorm |||β||| = maxj,k |Re β̂j − Re β̂k|, (see (1.4.10)). The set

M can be characterised in the following way.

Lemma 1.4.5. There exist only the following two mutually exclusive possibilities:

• ∃β̂ ∈ Oβ such that |||β||| < 1. Then such β̂ is unique and it is the unique element ofM = {β̂}.

• ∃β̂ ∈ Oβ such that |||β||| = 1. Then there are at least two such β̂’s and all of them are obtained

from each other by a repeated application of the following rule: add 1 to a β̂j with the smallest

real part and subtract 1 from a β̂j with the largest. Moreover,M = {β̂ ∈ Oβ : |||β||| = 1}.

Proof. Suppose that the seminorm |||β||| > 1. Then, following the algorithm we write:

• β(1)
s = βs + 1, where βs = minj Reβj ,

• β(1)
t = βt − 1, where βt = maxj Reβj ,

• β(1)
j = βj if j 6= s, t.

Obviously, now
∣∣∣∣∣∣β(1)

∣∣∣∣∣∣ ≤ |||β||| and f(z) corresponding to β(1) is a F-H representation with ns = 1

and nt = −1. We repeat the process until we arrive at either
∣∣∣∣∣∣β(r)

∣∣∣∣∣∣ < 1 or
∣∣∣∣∣∣β(r)

∣∣∣∣∣∣ = 1, and r is

the number of steps we needed to get there. Applying the algorithm again will not change anything

in the case when
∣∣∣∣∣∣β(r)

∣∣∣∣∣∣ = 1 and in the case
∣∣∣∣∣∣β(r)

∣∣∣∣∣∣ < 1 the seminorm will oscillate periodically,

taking values
∣∣∣∣∣∣β(r)

∣∣∣∣∣∣ and 2−
∣∣∣∣∣∣β(r)

∣∣∣∣∣∣. Thus we can conclude that all F-H symbols belong to those

two distinct classes for which

1.
∣∣∣∣∣∣β(r)

∣∣∣∣∣∣ < 1, or

2.
∣∣∣∣∣∣β(r)

∣∣∣∣∣∣ = 1.

For symbols of the first class,M has only one elementM = {β(r))}. Indeed, writing bj = Reβj , if

−1/2 < b
(r)
j − q < 1/2 for some q ∈ R and all j, then for any (kj)

m
j=0 such that

∑m
j=0 kj = 0 and not
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all kj = 0, we have

m∑
j=0

(b
(r)
j + kj)

2 =

m∑
j=0

(b
(r)
j )2 + 2

m∑
j=0

(b
(r)
j − q)kj +

m∑
j=0

k2
j (as

m∑
j=0

kj = 0) (1.4.21)

>

m∑
j=0

(b
(r)
j )2 +

m∑
j=0

(
k2
j − |kj |

)
(note − 1 < 2(b

(r)
j − q) < 1 ∀j) (1.4.22)

≥
m∑
j=0

(b
(r)
j )2 (note kj ∈ Z)

where the first inequality is strict because we said that at least kj 6= 0.

Now, for the symbols of the second class, we can find a q such that −1/2 ≤ b
(r)
j − q ≤ 1/2 for

all j. We have the same above but with the strict inequality replaced by ≥ because now we have

−1 ≤ 2(b
(r)
j − q) ≤ 1 ∀j in (1.4.22). Hence, there are several F-H representations inM in the second

case and they correspond to the equalities in (1.4.21) - which is when (1.4.19) is minimal. Adding 1 to

one of β(r)
s with b(r)s = minj b

(r)
j = q−1/2 and subtracting 1 from β

(r)
t with b(r)t = maxj b

(r)
j = q+1/2

provides a way to find them all.

Having established the way of finding all non-trivial and nondegenerate F-H representations

in the proof above, we arrive at the Tracy-Basor conjecture which was proven by Deift, Its and

Krasovsky in [14]. All of the representations of the symbol f(z) with |||β||| = 1—which correspond to

all permutations of the β-parameters which lie on the boundary of the strip−1/2+q < Re z < 1/2+q,

for some q ∈ R, z ∈ C—give contribution to the final asymptotics. The detailed proof is omitted

from this thesis. The proof of our result in Section 2.6 relies heavily on the ideas that were considered

in the proof of the Theorem 1.4.6 below.

Theorem 1.4.6. (Generalised F-H Conjecture, Tracy-Basor Conjecture) Let f(z) be given by (1.4.1),

Reαj > −1/2, βj ∈ C, j = 0, . . . ,m. LetM be nondegenerate. Then, as n→∞,

Dn(f) =
∑ m∏

j=0

z
nj
j

n

R(f(z;n0, . . . , nm))(1 + o(1)), (1.4.23)

where the sum is over all F-H representations inM. Each R(f(z;n0, . . . , nm)) stands for the right-

hand side of the formula (1.4.12), without the error term, corresponding to f(z;n0, . . . , nm).
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1.5 Transition between Szegő and F-H

Double-scaling limits play an enormous role in mathematical physics. Recall the short description

of the Ising model from Section 1.4. It is clear that we are looking for a limit as the size of the box

grows to infinity. This will tell us the magnetisation (or lack thereof) for the original problem on the

infinite lattice Z2. But if you recall further, the problem depends on some critical temperature Tc.

It was of great interest for physicists to understand the transition between the two states and what

happens close to the critical temperature. From a mathematical point of view, we are interested in

the change in asymptotic regimes. This was considered in the paper by Claeys, Its and Krasovsky

in [11], and we will give a short summary of it in this section.

1.5.1 The Symbol

We introduce a new parameter t ≥ 0 and we keep the same analytic (in an annulus containing the

unit circle) function V (z) as before. We define a new symbol a : T→ C with t ∈ R+ as,

a(z; t) = (z − et)α+β(z − e−t)α−βz−α+βe−iπ(α+β)eV (z). (1.5.1)

For t > 0, a(z; t) is analytic in C \
([

0, e−t
]
∪
[
et,∞

])
and ind a = 0. This is to some extend (with

α = 0 and β = −1, and another considerations, cf. Remark 1.4.3) analogous to the symbol (1.4.4)

with T < Tc for the Ising model. The limit as t→ 0 should be thought of as analogous to T → Tc.

Indeed the function a(z; t) is analytic in the specified region, consider a(z; t) in the following

form, with arg z ∈ [0, 2π),

a(z; t) = exp{(α+ β) log |z − et|+ (α+ β)i arg(z − et) + (α− β) log |z − e−t|

+ (α− β)i arg(z − e−t) + (−α+ β) log |z|+ (−α+ β)i arg(z)− iπ(α+ β) + V (z)}

From this expression, it is clear that a(z; t) is analytic if the radius of z = reiθ, r ∈ (e−t, et). For

the ease of the next consideration, let us restrict z ∈ T. If we picture the translated circles as in

Figure 1.2, we can see that there is a possible jump in argument where the circles intersect the real

line. Let’s consider the problem point z = 1 from either direction. Now, denoting by 1 + 0 the limit
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0

2π

π
π

(z − et) (z − e−t)

Figure 1.2: Translated circles (z − et), (z − e−t) and the unit circle z ∈ T. The 0, π, 2π are the
arguments of the complex numbers as z → 0 along the respective arc.

as ε > 0, ε→ 0 in ei(θ+ε) and 1− 0 in ei(θ−ε). We have the following,

a(1 + 0, t) = exp{(α+ β) log |z − et|+ (α+ β)iπ + (α− β) log |z − e−t|

+ (α− β)i0 + (−α+ β) log |z|+ (−α+ β)i0− iπ(α+ β) + V (z)}

= exp{(α+ β) log |z − et|+ (α− β) log |z − e−t|+ (−α+ β) log |z|+ V (z)}

and

a(1− 0, t) = exp{(α+ β) log |z − et|+ (α+ β)iπ + (α− β) log |z − e−t|

+ (α− β)i2π + (−α+ β) log |z|+ (−α+ β)i2π − iπ(α+ β) + V (z)}

= exp{(α+ β) log |z − et|+ (α− β) log |z − e−t|+ (−α+ β) log |z|+ V (z)}.

So a(1− 0, t) = a(1 + 0, t) and thus the function does not have a jump at z = 1.

For t = 0, a(z; t) has a singularity at z = 1, we have that

a(eiθ, t = 0) = |z − 1|2αzβe−iπβeV (z) = (2− 2 cos θ)αeiβ(θ−π)eV (eiθ), 0 < θ < 2π.

where (2−2 cos θ)α corresponds to a root-type singularity if α 6= 0 and eiβ(θ−π) corresponds to jump-

type singularity if β 6= 0. Again, this can be thought of the second case (with α = 0 and β = −1)

in the Ising model, when T > Tc, see (1.4.5), with the extra considerations raised in Remark 1.4.3.
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t→ 0

e−t et

Figure 1.3: Transition from Szegő to F-H

1.5.2 Asymptotic behaviour of the Toeplitz determinant

We now want to consider the asymptotics of the Toeplitz determinant with the symbol a(z; t) given

above in (1.5.1), as n → ∞. We will refer to this determinant as Dn(t). We first note the Fourier

coefficients of log a(z; t), k ∈ N,

(log a)−k = V−k − (α− β)
e−tk

k
,

(log a)0 = t(α+ β) + V0, (1.5.2)

(log a)k = Vk − (α+ β)
e−tk

k
.

There are two cases for the asymptotics of Dn(t):

1. For t > 0, we have the Szegő asymptotics, given by SSLT, Theorem 1.3.4. As n→∞,

logDn(t) = nV0 +nt(α+β)+
∞∑
k=1

k

[
Vk − (α+ β)

e−tk

k

] [
V−k − (α− β)

e−tk

k

]
+o(1). (1.5.3)

2. For t = 0, we have the Fisher-Hartwig asymptotics, given by Theorem 1.4.2. As n→∞,

logDn = nV0 +

∞∑
k=1

kVkV−k − (α− β)

∞∑
k=1

Vk − (α+ β)

∞∑
k=1

V−k (1.5.4)

+ (α2 − β2) log n+ logGα+β,α−β + o(1),

if α± β 6= −1,−2, . . . and Gα+β,α−β is defined in (1.4.13).

Figure 1.3 illustrates the situation as t→ 0. We can see the Fisher-Hartwig singularity forming on

the unit circle as the points e−t and et move towards each other and eventually coalesce. Note that

if you let t→ 0 in (1.5.3) you will not obtain (1.5.4).



32 CHAPTER 1. THE ESSENTIALS

The purpose of the double-scaling limit is to observe the consequences of taking two limits

simultaneously, as both t → 0 and n → ∞. Claeys, Its and Krasovsky provide the asymptotic

expansion for the Toeplitz determinant with the symbol (1.5.1), which holds uniformly as n → ∞

for 0 ≤ t ≤ t0 for sufficiently small t0. The expression involves, among other things, σ(x) which is

the solution of a particular Painlevé V equation; for further details on this second order ODE and

other Painleve equations, see [24].

Theorem 1.5.1. [11, Theorem 1.1] Let α ∈ R, α > −1/2, β ∈ iR. Let f be defined by (1.5.1), and

consider the associated Toeplitz determinant denoted by Dn(t) and defined in Definition 1.1.6. The

following asymptotic expansion holds as n → ∞ with the error term o(1) uniform for 0 ≤ t ≤ t0,

where t0 is sufficiently small:

logDn(t) = nV0 + (α+ β)nt+
∞∑
k=1

k

[
Vk − (α+ β)

e−tk

k

] [
V−k − (α− β)

e−tk

k

]
(1.5.5)

+ logGα+β,α−β + Ω(2nt) + o(1),

where G(z) is the Barnes G-function, see (1.4.8), (1.4.13), and

Ω(2nt) =

∫ 2nt

0

σ(x)− α2 + β2

x
dx+ (α2 − β2) log 2nt. (1.5.6)

The function σ(x)(see (1.5.9) below) is real analytic on (0,+∞) and has the following asymptotics

for x > 0:

σ(x) =


α2 − β2 + α2−β2

2α {x− x
1+2αC (α, β)}(1 +O(x)), x→ 0, 2α /∈ Z,

α2 − β2 +O(x) +O(x1+2α) +O(x1+2α log x), x→ 0, 2α ∈ Z,

x−1+2αe−x 1
Γ(α−β)Γ(α+β)(1 +O(1/x)), x→ +∞,

(1.5.7)

where

C(α, β) =
Γ(1 + α+ β)Γ(1 + α− β)Γ(1− 2α)

Γ(1− α+ β)Γ(1− α− β)Γ(+2α)2

1

1 + 2α
(1.5.8)

and Γ(z) is the Euler’s Γ-function.
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The function σ(x) is a particular solution to the following second order ODE:

(
x
d2σ

dx2

)2

=

(
σ − xdσ

dx
+ 2

(
dσ

dx

)2

+ 2α
dσ

dx

)2

(1.5.9)

− 4

(
dσ

dx

)2(dσ
dx

+ α+ β

)(
dσ

dx
+ α− β

)
,

the σ-form (Jimbo-Miwa-Okamoto [28,29]) of the Painlevé V equation

uxx =

(
1

2u
+

1

u− 1

)
u2
x −

1

x
ux +

(u− 1)2

x2

(
Au+

B

u

)
+
Cu

x
+D

u(u+ 1)

u− 1
, (1.5.10)

with parameters A,B,C,D given by

A =
1

2
(α− β)2, B = −1

2
(α− β)2, C = 1 + 2β, D = −1

2
.

The function σ = σ(x;α, β) is defined for x ∈ C with a cut from 0 to infinity and is analytic in the

cut plane apart from possible poles. The asymptotics in (1.5.7) imply that there are no poles for x

positive and sufficiently large and thus there is a finite number of poles on (0,+∞) .

The authors in [11] show in fact that for α > −1/2, α ∈ R, iβ ∈ R there are no poles on (0,+∞)

and thus took this path of integration in (1.5.6). For arbitrary β and Reα > −1/2 they take a path

of integration avoiding the poles {x1, . . . , xl}, giving the following statement:

Theorem 1.5.2. [11, Theorem 1.4] Let α, β ∈ C with Reα > −1/2, α ± β 6= −1,−2, . . . , and let

sδ denote a sector −π/2 + δ < arg x < π/2 − δ, 0 < δ < π/2. Let a(z; t) be defined by (1.5.1),

and consider the related Toeplitz determinants Dn(t). There exists a finite set {x1, . . . , xl} ∈ sδ

(with l = l(α, β, δ) and xj = xj(α, β) 6= 0) such that the expansion (1.5.5) holds uniformly for

t ∈ sδ, |t| < t0 (with t0 sufficiently small) as long as 2nt remains bounded away from the set

{x1, . . . , xl}. The function Ω is defined in (1.5.6), where the path of integration is chosen in sδ,

connecting 0 with 2nt and not containing any of the points {x1, . . . , xl}. Moreover, σ(x) solves the

ODE (1.5.9) and has the asymptotics in the sector sδ given by (1.5.7).
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1.5.3 Recovering Szegő and F-H asymptotics

From the expression in (1.5.5) we can recover back the asymptotics (1.5.4) and (1.5.3) by considering

different values of t. To obtain the F-H asymptotics, we let t→ 0 and let n be fixed. We then look

at the function Ω(2nt) (see (1.5.6)) and the asymptotics for σ(x) (see (1.5.7)),

∫ 2nt

0


α2−β2

2α {1− x
2αC (α, β)}(1 +O(x)) x→ 0, 2α /∈ Z

O(1) +O(x2α) +O(x2α log x) x→ 0, 2α ∈ Z

 dx. (1.5.11)

Considering them separately,

∫ 2nt

0

α2 − β2

2α
{1− x2αC (α, β)}(1 +O(x))dx

=

∫ 2nt

0

α2 − β2

2α
(1− x2αC (α, β))dx+

∫ 2nt

0

α2 − β2

2α
(O(x) +O(x2α)dx

≤
∫ 2nt

0
(Const1 − Const2x2α)dx+

∫ 2nt

0
(Const3x+ Const4x

2α+1)dx

→ 0 as t→ 0,

as x2α, x2α+1 are integrable for Reα > −1/2. And for 2α ∈ Z,

∫ 2nt

0
O(1) +O(x2α) +O(x2α log x)dx

≤
∫ 2nt

0
(Const1 + Const2x

2α + (Const3x
2α log x)dx

= o(1) +
Const3
2α+ 1

(x2α+1(log x− 1))|2nt0

= o(1) + Const4x
2α+1 log x|2nt0

= o(1) as lim
x→0

x2α+1 log x = 0 for 2α > −1 by L’Hopitals rule.

Therefore,

Ω(2nt) = (α2 − β2) log(2nt) + o(1). (1.5.12)

Substituting into (1.5.5) gives,

logDn(t) = nV0 + (α+ β)nt+
∞∑
k=1

k

[
Vk − (α+ β)

e−tk

k

] [
V−k − (α− β)

e−tk

k

]
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+ log
G(1 + α+ β)G(1 + α− β)

G(1 + 2α)
+ (α2 − β2) log(2nt) + o(1)

= nV0 + (α+ β)nt+

∞∑
k=1

kVkV−k − (α+ β)

∞∑
k=1

e−tkV−k − (α− β)

∞∑
k=1

e−tkVk

+ (α+ β)(α− β)

∞∑
k=1

e−2tk

k
+ logGα+β,α−β + (α2 − β2) log(2nt) + o(1)

and using the following identity for t > 0,

∞∑
k=1

e−2kt

k
= − log(1− e−2t),

we obtain,

logDn(t) = nV0 + (α+ β)nt+

∞∑
k=1

kVkV−k − (α+ β)

∞∑
k=1

e−tkV−k − (α− β)

∞∑
k=1

e−tkVk

+ (α2 − β2) log

(
2nt

1− e−2t

)
+ logGα+β,α−β + o(1).

As t → 0 we have log
(

2nt
1−e−2t

)
→ log (n) (L’Hopital) and with each e−tk → 1, we finally get the

F-H asymptotics as in (1.5.4).

The expansion (1.5.5) is also consistent with the Szegő asymptotics—comparing the O(n) terms

with (1.5.3) for a fixed t. Additionally, comparing O(1) terms gives an identity involving the Painlevé

function σ(x) via (1.5.6),

Ω(+∞) = − logGα+β,α−β = − log
G(1 + α+ β)G(1 + α− β)

G(1 + 2α)
. (1.5.13)

1.6 Orthogonal Polynomials

In this section we present the links between Toeplitz determinants Dn(f), Riemann-Hilbert problems

(R-H problems) and orthogonal polynomials (OPs). We will look at the R-H problem for polynomials

orthogonal on the unit circle (oriented in the positive direction) with respect to the complex weight

f(z). Suppose Dn(f) 6= 0, n = n0, n0 + 1, . . . , for some sufficiently large n0. Then the polynomials

φn(z) = χnz
n + . . . , φ̂n(z) = χnz

n + . . . of degree n, n = n0, n0 + 1, . . . , exist, satisfying the
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orthogonality conditions

∫
T
φn(z)z−jf(z)

dz

2πiz
= χ−1

n δjn,

∫
T
φ̂n(z−1)zjf(z)

dz

2πiz
= χ−1

n δjn, (1.6.1)

which are equivalent to,

∫
T
φn(z)φ̂j(z

−1)f(z)
dz

2πiz
= δjn, j = 0, 1, . . . , n. (1.6.2)

We say that these polynomials are orthogonal on the unit circle (sometimes abbreviated to OPUC)

with respect to the complex weight f(z)—this means they are orthogonal with respect to the measure

dµ(z) = f(z)dz
2πiz . We will be using two representations of the standard measure on the unit circle,∫ 2π

0
dθ
2π =

∫
T

dz
2πiz , interchangeably, determined by convenience. We also denote Dn(f) = Dn below

to ease notation. The polynomials are given by the following expressions

φn(z) =
1√

DnDn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0,0 f0,1 · · · f0,n

f1,0 f1,1 · · · f1,n

...
...

. . .
...

fn−1,0 fn−1,1 . . . fn−1,n

1 z . . . zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (1.6.3)

and,

φ̂n(z−1) =
1√

DnDn+1

∣∣∣∣∣∣∣∣∣∣∣∣

f0,0 f0,1 · · · f0,n−1 1

f1,0 f1,1 · · · f1,n−1 z−1

...
...

. . .
...

...

fn,0 fn,1 . . . fn,n−1 z−n

∣∣∣∣∣∣∣∣∣∣∣∣
, (1.6.4)

where we have momentarily redefined the Fourier coefficients to be,

fm,n = fm−n =

∫
T
f(z)z−(m−n) dz

2πiz
. (1.6.5)

The simplest way to see these, is to think about evaluating the determinants along the bottom row
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and far right column respectively. This immediately gives the leading coefficient for both to be

χn =

√
Dn

Dn+1
. (1.6.6)

Before we proceed, we will recall some basic theory of orthogonal polynomials, in a slightly more

general setting. It is a fact, see for example [21], that we can construct orthogonal polynomials

pn(z) = knz
n + . . . , n ≥ 0, given any Borel measure dµ(z) on some contour Σ ⊂ C (see [6]), with

bounded or unbounded support. For measures with unbounded support, we require the moments of

the measure to be finite, i.e.

∫
Σ
|z|mdµ(z) <∞, m = 0, 1, 2, . . . . (1.6.7)

The polynomials are obtained via the Gram-Schmidt procedure being applied to 1, z, z2, . . . in

L2(dµ). Two elements of L2(T)—in our case polynomials pn and qn—are orthonormal if they satisfy

∫
Σ
pn(z)qn(z)dµ(z) = δmn, m, n ≥ 0. (1.6.8)

The leading coefficient kn can be chosen to always be positive—which makes the polynomials unique.

This is what we stipulate in this thesis also. In addition, we will make use of what is known as monic

polynomials associated with the measure dµ, i.e.

πn(z) = k−1
n pn(z) = zn + . . . , n ≥ 0 (1.6.9)

1.6.1 The link between Orthogonal Polynomials and Toeplitz determinants

Given that the OPs in (1.6.1), (1.6.2) exist, we will show that they are necessarily given by (1.6.3)

and (1.6.4). And vice versa, if the polynomials are of the form (1.6.3) and (1.6.4), they are nec-

essarily orthogonal with respect to the weight that is the symbol on the Toeplitz matrix in the

given expressions, i.e. (1.6.1), (1.6.2) hold. Below we only consider φk(z), the results for φ̂k(z) are

obtained analogously.

Proposition 1.6.1. The orthogonal polynomials satisfying (1.6.1), (1.6.2) exist if and only if they

are given by (1.6.3) and (1.6.4).
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Proof. We start with OPs satisfying the orthogonality conditions (1.6.1), (1.6.2). Consider k = 0,

φ0(z) = φ̂0(z) = χ0, ∫
T
φ0(z)φ̂0(z−1)f(z)

dz

2πiz
= 1

χ2
0

∫
T
f(z)

dz

2πiz
= 1

χ2
0 =

1

f00
=

1

D1

Thus the first coefficient χ0 is a Toeplitz determinant. Now considering k = 1, we have simultaneous

equations, ∫
T
φ1(z)z−1f(z)

dz

2πiz
= χ−1

n ,

∫
T
φ1(z)f(z)

dz

2πiz
= 0,

χ2
1f00 + χ1φ1(0)f10 = 1, χ1f01 + φ1(0)f00 = 0.

Solving them gives,

χ2
1 =

f00

f2
00 − f01f10

=

√
D1

D2
, φ1(0) =

−f01√
D1D2

.

Which means,

φ1(z) =
D1√
D1D2

z +
−f01√
D1D2

=
1√
D1D2

∣∣∣∣∣∣f00 f01

1 z

∣∣∣∣∣∣
Using recurrence relations, which can be obtained from the orthogonality conditions directly, it

follows that the rest of the OPs φk(z) are explicitly given using Toeplitz determinants, for any k.

We can carry on like this to obtain (1.6.3).

Conversely, assume φk(z) is given by (1.6.3). Then by definition,

∫
T
φk(z)z

−jf(z)
dz

2πiz
=

1√
DkDk+1

∫
T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f00 f01 · · · f0k

f10 f11 · · · f1k

...
...

. . .
...

fk−1 0 fk−1 1 . . . fk−1 k

1 z . . . zk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
z−jf(z)

dz

2πiz
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=
1√

DkDk+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f00 f01 · · · f0k

f10 f11 · · · f1k

...
...

. . .
...

fk−1 0 fk−1 1 . . . fk−1 k∫
T 1 · z−jf(z) dz

2πiz

∫
T z

1−jf(z) dz
2πiz . . .

∫
T z

k−jf(z) dz
2πiz

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1√

DkDk+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f00 f01 · · · f0k

f10 f11 · · · f1k

...
...

. . .
...

fk−1 0 fk−1 1 . . . fk−1 k

fj 0 fj 1 . . . fj k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=


0, if j ≤ k − 1,

Dk+1√
DkDk+1

=
√

Dk+1

Dk
= χ−1

k , if j = k.

Thus proving (1.6.1).

1.6.2 Riemann-Hilbert Problem (R-H Problem)

Consider the following 2× 2 matrix valued function Y (n)(z) ≡ Y (z), n ≥ n0:

Y (z) =

 χ−1
n φn(z) χ−1

n

∫
T
φn(ξ)
ξ−z

f(ξ)dξ
2πiξn

−χn−1z
n−1φ̂n−1(z−1) −χn−1

∫
T
φ̂n−1(ξ−1)

ξ−z
f(ξ)dξ
2πiξ

 , (1.6.10)

with f(z) which possesses one F-H singularity at z1 with the strengths α1, β1 (see (1.4.1)). The

matrix-valued function above is the unique solution to the following Riemann-Hilbert problem:

R-H problem for Y (OPs with weight f(z))

(Y1) Y : C \ T→ C2×2 is analytic.

(Y2) Let z ∈ T \ {z1}. Y has continuous boundary values Y+(z) as z approaches the unit circle

from the inside, and Y−(z) from the outside, related by the jump condition

Y+(z) = Y−(z)

1 z−nf(z)

0 1

 , z ∈ T. (1.6.11)
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(Y3) Y (z) has a the following asymptotic behaviour at ininity:

Y (z) = (I +O(1/z))

zn 0

0 z−n

 as z →∞. (1.6.12)

(Y4) As z → z1, z ∈ C \ T,

Y (z) =

O(1) O(1) +O(|z − z1|2α1)

O(1) O(1) +O(|z − z1|2α1)

 , if α1 6= 0, (1.6.13)

and

Y (z) =

O(1) O(1) +O(log |z − z1|)

O(1) O(1) +O(log |z − z1|)

 , if α1 = 0, β1 6= 0. (1.6.14)

We will now show the connection between the R-H problem above and the OPs (1.6.1).

Proposition 1.6.2. If Y (z) solves the R-H problem (Y1)-(Y4) above, then φn(z) and φ̂n(z) in

(1.6.10) are polynomials satisfying (1.6.1).

Proof. We write the solution to the R-H problem, Y (z) in the following way, to consider each entry

of the matrix separately, and we also note each of their asymptotic behaviour as z →∞ by condition

(Y3) above,

Y (z) =

Y11(z) Y12(z)

Y21(z) Y22(z)

 =

zn +O(zn−1) O(z−n−1)

O(zn−1) z−n +O(z−n−1)

 . (1.6.15)

We suppose n ≥ 1 and consider the first row of the jump condition (Y2),

(Y11(z) Y12(z))+ = (Y11(z) Y12(z))−

1 z−nf(z)

0 1

 .

Matching the entries of the (now) vector, we have the following,

(1) (Y11)+ (z) = (Y11)− (z),

(2) (Y12)+ (z) = (Y11)− (z)z−nf(z) + (Y12)− (z).

In point (1), the limits from both sides coincide and so the function Y11(z) is analytic in the complex

plane. From (1.6.15) we have that Y11(z) = zn +O(zn−1) is a polynomial of degree n, let us call it
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πn(z) := Y11(z). Point (2) gives us,

(Y12)+ (z) = (Y12)− (z) + πn(z)z−nf(z),

which is an additive R-H problem (1.2.3). By the Plemelj formulae (1.2.1), the solution is given by,

(Y12) (z) =

∫
T

πn(s)

s− z
f(s)ds

sn2πi
.

Expanding 1
s−z for z at infinity, and nothing (Y12) (z) = O(z−n−1), we now have,

(Y12) (z) = −
∫
T
πn(s)s−n

(
s

z
+
s2

z2
+ · · ·+ sn

zn
+ . . .

)
f(s)ds

2πis
= O(z−n−1),

which gives, ∫
T
πn(s)

sj

sn
f(s)ds

2πis
= 0, for j = 1, . . . , n

∫
T
πn(s)s−k

f(s)ds

2πis
= 0, for k = 0, . . . , n− 1, where k = n− j.

But we have that πn(z) = zn + an,n−1z
n−1 + · · · + an,0, so πn(z) is the n’th monic orthogonal

polynomial w.r.t. the weight f(z) (see (1.6.9)), which means we necessarily have πn(z) = χ−1
n φn(z),

as these polynomials are unique.

We now look at the second column,

(Y21(z) Y22(z))+ = (Y21(z) Y22(z))−

1 z−kf(z)

0 1

 ,

which gives us the following:

(1) (Y21)+ (z) = (Y21)− (z),

(2) (Y22)+ (z) = (Y21)− (z)z−kf(z) + (Y22)− (z).

Again, from point (1) we deduce that Y21(z) is analytic in the complex plane and from the asymptotic

condition (Y4) and also (1.6.15), we conclude it’s a polynomial of degree n− 1. From point (2) we
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again have by the Plemelj formulae (1.2.1),

Y22(z) =

∫
T

Y
(n−1)

21 (s)

(s− z)
f(s)ds

2πisn
.

Similarly to before,

Y22(z) = −
∫
T
Y

(n−1)
21 (s)s−n

(
s

z
+
s2

z2
+ · · ·+ sn

zn
+ . . .

)
f(s)ds

2πis
= z−n +O(z−(n+1)),

which implies two things,

∫
T
Y

(n−1)
21 (s)s−nsj

f(s)ds

2πis
= 0 for j = 1, . . . , n− 1,

and

−
∫
T
Y

(n−1)
21 (s)

f(s)ds

2πis
= 1, (j = n).

We can rewrite both in the following way,

∫
T
s−(n−1)Y

(n−1)
21 (s)sj

f(s)ds

2πis
= −δj,n−1 for j = 0, . . . , n− 1. (1.6.16)

Thus z−(n−1)Y
(n−1)

21 (z) is a polynomial orthogonal with respect to the measure f(s)ds
2πis , and we have

that Y (n−1)
21 (z) = −χn−1φ̂n−1(z−1)zn−1. Now, using this in Y22(z) and what we found for the first

row gives (1.6.10).



Chapter 2

Emergence of an additional

Fisher-Hartwig singularity

The problem this thesis aims to present is to find uniform asymptotics for a Toeplitz determinant

with a varying symbol. We begin with a fixed singularity in an arbitrary position on the unit circle

(away from z = 1). The symbol will depend on an additional parameter t > 0, and as t tends to

0 we will see a new F-H singularity emerging at the point z = 1. This situation is visualised in

Figure 2.1. Because our symbol has two β-singularities, there are two separate cases we will have

to consider, see Lemma 1.4.5. The first case |||β||| < 1 will be dealt with via a Riemann-Hilbert

Problem (R-H problem—see (Y1)-(Y4) in Section 1.6.2) for polynomials orthogonal with respect

to our symbol f(z; t), which is defined in Section 2.2. We will then relate the determinant of the

associated Toeplitz matrix and the R-H problem using a differential identity (see Section 2.3). In

the second case, when |||β||| = 1 we have to take into account F-H representations of the symbol at

t = 0, i.e. f(z; 0) (see Section 1.4.2). For this we will use the ideas in [14]. Specifically we will

t→ 0

e−t et

z1

Figure 2.1: Transition between 1 F-H and 2 F-H

43
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use [14, Lemma 2.4] (or Lemma 2.6.1 in this thesis) to obtain an expression for the determinant with

the symbol where |||β||| = 1 in terms of the determinant with seminorm |||β||| < 1 and some specific

asymptotics of associated orthogonal polynomials.

2.1 Summary of results

Theorem 2.1.1. Let α0 ∈ R, α1 ∈ C, α0,Reα1 > −1/2, β0 ∈ iR, β1 ∈ C such that |||β||| < 1,

where the seminorm is defined in (1.4.10). Let f be defined by (2.2.1), and consider the associated

Toeplitz determinant denoted by Dn(t). The following asymptotic expansion holds as n → ∞ with

the error term o(1) uniform for 0 ≤ t ≤ t0, where t0 is sufficiently small,

Dn(t) = exp {nV0 + nt(α0 + β0)} exp

{ ∞∑
k=1

k

[
Vk − (α0 + β0)

e−tk

k

] [
V−k − (α0 − β0)

e−tk

k

]}

× exp

{
−(α1 − β1)

∞∑
k=1

[(
Vk − (α0 + β0)

e−tk

k

)
zk1

]}

× exp

{
(α1 + β1)

∞∑
k=1

[(
V−k − (α0 − β0)

e−tk

k

)
z−k1

]}

× n(α2
1−β2

1)Gα0+β0,α0−β0Gα1+β1,α1−β1Ω̃(2nt)(1 + o(1)), (2.1.1)

where Gαj+βj ,αj−βj is the product of Barnes G-functions, see (1.4.8), (1.4.13), and

Ω̃(2nt) := exp {Ω(2nt)} = exp

{∫ 2nt

0

σ(x)− α2
0 + β2

0

x
dx+ (α2

0 − β2
0) log 2nt

}
(2.1.2)

The function σ(x) (see (1.5.9)) is real analytic on (0,+∞) whose asymptotic behaviour for x > 0 is

given by (1.5.7)

This theorem is proven in Section 2.5 and extends to α0, β0 ∈ C via the same arguments as in

Theorem 1.5.2.

Theorem 2.1.2. Let α0, α1 ∈ C, Reα0,Reα1 > −1/2, β0, β1 ∈ C be such that |||β||| = 1, where the

seminorm is defined in (1.4.10). Let f be defined by (2.2.1), and consider the associated Toeplitz

determinant denoted by Dn(t). Denote by β̃0 = β0 + n0, β̃1 = β0 + n1 the only non-trivial F-H

representation of the symbol f at t = 0. The following asymptotic expansion holds as n → ∞ with
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the error term o(1) uniform for 0 ≤ t ≤ t0, where t0 is sufficiently small,

Dn(f) = R (f(z;β0, β1)) Ω̃(2nt)(1 + o(1))

+ (zn1
1 )nR

(
f(z; β̃0, β̃1)

)
Ω̃(2nt)

× n−(2β0+1)

Γ(1 + α0 + β0)

K(2nt)

ent
(1− e−2t)−(2β0+1)Σ(t)(1 + o(1)), (2.1.3)

where, R
(
f(z; β̂0, β̂1)

)
corresponds to the RHS of (2.1.1) for a symbol f with β-parameters β̂0, β̂1,

without the error term nor Ω̃(2nt), which is defined in (2.1.2). Further,

K(x) = ex/2
∫ ∞
x

yα0+β0e−ydy, (2.1.4)

has the following behaviour,

K(x) ∼


e−x/2xα0+β0 , as x→∞,

ex/2Γ(α0 + β0 + 1), as x→ 0,

and

Σ(t) =

[(
z1 − et

z1 − e−t

)α1+β̃1

exp

{
2

∞∑
k=1

Vk (sinh(tk))

}(
2t

1− e−2t

)α0−β0

+

(
z1 − et

z1 − e−t

)α1−β̃1
exp

{
−2

∞∑
k=1

V−k (sinh(tk))

}(
2t

1− e−2t

)−(α0+β0)
]
. (2.1.5)

2.2 The Symbol

We start with one F-H singularity positioned at the point z1 = eiθ1 , θ1 ∈ (0, 2π) and one that is just

emerging, at z0 = eiθ0 = 1, θ0 = 0. Locally, around the point z = 1 we have the situation which was

described in [11]. We write the symbol in the following way,

f(z; t) =eV (z)zβ1 |z − z1|2α1gz1,β1(z)z−β11 (2.2.1)

× (z − et)α0+β0(z − e−t)α0−β0z−α0+β0e−iπ(α0+β0), (z ∈ T).
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We find the asymptotics for (2.2.1) when t > 0 is fixed using Theorem 1.4.2. We first notice that the

analytic part of the symbol is no longer just eV (z) but the function (1.5.1) with α = α0 and β = β0.

We can write the symbol as,

f(z; t) = a(z; t)× zβ1 |z − z1|2α1gz1,β1(z)z−β11 , (z ∈ T), (2.2.2)

where a(z; t) is an analytic function in the annulus containing the unit circle (in fact it is analytic

in C/[0, e−t] ∪ [et,+∞]), see Section 1.5.1,

a(z; t) = eV (z)(z − et)α0+β0(z − e−t)α0−β0z−α0+β0e−iπ(α0+β0) (z ∈ T). (2.2.3)

Recall the Fourier coefficients of log a(z; t) from (1.5.2). We can write this function in the following

way,

log a(z; t) =
∞∑

k=−∞
(log a)kz

k,

We compute the Wiener-Hopf factorisation of a(z; t) which yields,

log a(z; t) = log a+(z; t) + t(α0 + β0) + V0 + log a−(z; t),

log a+(z; t) =

∞∑
k=1

(Vk − (α0 + β0)
e−tk

k
)zk, log a−(z; t) =

∞∑
k=1

(V−k − (α0 − β0)
e−tk

k
)z−k.

We can now use Theorem 1.4.2 to obtain the following expression for the asymptotics in the case

t > 0 with t fixed,

Dn(f) = exp {nV0 + nt(α0 + β0)} exp

{ ∞∑
k=1

k

[
Vk − (α0 + β0)

e−tk

k

] [
V−k − (α0 − β0)

e−tk

k

]}

× exp

{
−(α1 − β1)

∞∑
k=1

(Vk − (α0 + β0)
e−tk

k
)zk1 − (α1 + β1)

∞∑
k=1

(V−k − (α0 − β0)
e−tk

k
)z−k1

}

× n(α2
1−β2

1)Gα1+β1,α1−β1(1 + o(1)), (2.2.4)

where Gαj+βj ,αj−βj is defined for a j ∈ N0 in (1.4.13).

At t = 0 the symbol is the symbol with 2 F-H singularities (1.4.1). The asymptotics in the case
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of |||β||| < 1 are given by Theorem 1.4.2 straightforwardly,

Dn(f) = exp

{
nV0 +

∞∑
k=1

kVkV−k

}
exp

{
−(α0 − β0)

∞∑
k=1

Vk − (α0 + β0)
∞∑
k=1

V−k

}

× exp

{
−(α1 − β1)

∞∑
k=1

Vkz
k
1 − (α1 + β1)

∞∑
k=1

V−kz
−k
1

}

× n
∑1
j=0(α2

j−β2
j )|1− z1|2(β0β1−α0α1)

( z1

eiπ

)α0β1−α1β0

×
1∏
j=0

Gαj+βj ,αj−βj (1 + o(1)). (2.2.5)

In the case when the seminorm |||β||| = 1, the symbol possesses F-H representations (see Section 1.4.2)

and one uses Theorem 1.4.6. The symbol has only two β parameters, which implies it can only have

two F-H representations. The trivial one corresponds to β0 and β1. Without loss of generality let

us assume Reβ0 < Reβ1, and so the one non-trivial representation will correspond to β̃0 = β0 + 1

and β̃1 = β1 − 1. The asymptotics are then given by (1.4.23),

Dn(f) =

[
exp

{
nV0 +

∞∑
k=1

kVkV−k

}
exp

{
−(α0 − β0)

∞∑
k=1

Vk − (α0 + β0)
∞∑
k=1

V−k

}
(2.2.6)

× exp

{
−(α1 − β1)

∞∑
k=1

Vkz
k
1 − (α1 + β1)

∞∑
k=1

V−kz
−k
1

}

× n
∑1
j=0(α2

j−β2
j )|1− z1|2(β0β1−α0α1)

( z1

eiπ

)α0β1−α1β0
1∏
j=0

Gαj+βj ,αj−βj

+
(
z−1

1

)n
exp

{
nV0 +

∞∑
k=1

kVkV−k

}
exp

{
−(α0 − β̃0)

∞∑
k=1

Vk − (α0 + β̃0)

∞∑
k=1

V−k

}

× exp

{
−(α1 − β̃1)

∞∑
k=1

Vkz
k
1 − (α1 + β̃1)

∞∑
k=1

V−kz
−k
1

}

×n
∑1
j=0(α2

j−β̃2
j )|1− z1|2(β̃0β̃1−α0α1)

( z1

eiπ

)α0β̃1−α1β̃0
×

1∏
j=0

Gαj+β̃j ,αj−β̃j

 (1 + o(1)) .

This case will be considered in detail in Section 2.6.

Notice that taking the limit as t→ 0 in (2.2.4) will not produce (2.2.5)—notice in particular the

missing product of Barnes G−functions and the powers of n—and much less (2.2.6) for |||β||| = 1.

The question we want to answer is related to the work done in [11], [12], [14] and [16]. The aim
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is to describe the transition asymptotics of the determinant of a Toeplitz matrix with symbol (2.2.1)

as the parameter t→ 0. This finds various applications, one of them is described in Chapter 3. The

problem will be tackled in a similar way to [16], we first set the problem for orthogonal polynomials

(OPs) with the weight ft(z) given by (2.2.1) and (2.2.2). After that, we find differential identities

concerning the Toeplitz determinant. These are given in terms of entries of the solution of the

R-H problem for OPs with weight ft(z). We will proceed to evaluate the R-H problem in our case,

substitute the asymptotics into the differential identity and integrating this expression will give us

the answer.

2.3 Differential Identity

In this Section we will derive the differential identity that will link our Toeplitz determinant with

symbol f(z; t) (2.2.1) to the R-H problem for polynomials orthogonal with respect to the weight

f(z; t). While the identity is the same which appeared in [11], we would like to emphasise that we

derive it via a different method, one which follows more naturally from our exposition in Chapter 1.

In [11] the authors used integral and integrable Fredholm operators, here we present the same result

using orthogonal polynomials (cf. Section 1.6). In what follows we write f(z) for f(z; t).

Lemma 2.3.1. Let t > 0 and n ∈ N. Suppose that the R-H problem for Y (z;n, t) in Section 1.6.2

with f(z) given by (2.2.1) is solvable. Then Dn 6= 0 and the following differential identity holds,

∂

∂t
logDn(t) = − (α0 + β0) et

(
Y −1dY

dz

)
22

(et) + (α0 − β0) e−t
(
Y −1dY

dz

)
22

(e−t), (2.3.1)

where
(
Y −1 dY

dz

)
22

(ξ) denotes the 22 entry of the matrix obtained by multiplying the two matrices

Y −1(z) and dY
dz (z) (each entry of Y is differentiated with respect to z) together, evaluated at z = ξ.

Proof. As has been derived in [16] and subsequently also used in [12], the following identity involving

orthogonal polynomials and the determinant of the Toeplitz matrix holds for any parameter with

respect to which the polynomials are differentiable,

∂

∂t
logDn(f(z)) = 2n

∂χn
∂t

χn
+

1

2πi

∫
T

∂

∂t

(
φn(z)

dφ̂n(z−1)

dz
− φ̂n(z−1)

dφn(z)

dz

)
f(z)dz. (2.3.2)
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Using the Leibniz rule,
∂

∂t

∫
T
F (z)f(z)dz =

∫
T

∂

∂t
(F (z)f(z)) dz, (2.3.3)

as T does not depend on t, and using the product rule one obtains that for an analytic function

F (z) and ∂F (z)
∂t , ∫

T

∂F (z)

∂t
f(z)dz =

∂

∂t

∫
T
F (z)f(z)dz −

∫
T
F (z)

∂f(z)

∂t
dz. (2.3.4)

Letting F (z) = φn(z)dφ̂n(z−1)
dz − φ̂n(z−1)dφn(z)

dz and noting that by linearity, and orthogonality con-

ditions (1.6.1)
(
as dφ̂n(z−1)

dz = −nχnz−(n+1) + . . . and dφn(z)
dz = nχnz

n−1 + . . .
)
,

∂

∂t

(
1

2πi

∫
T

(
φn(z)

dφ̂n(z−1)

dz
− φ̂n(z−1)

dφn(z)

dz

)
zf(z)

dz

z

)
=

∂

∂t
(−2n) = 0, (2.3.5)

we now have,

∂

∂t
logDn(f(z)) = 2n

∂χn
∂t

χn
− 1

2πi

∫
T

(
φn(z)

dφ̂n(z−1)

dz
− φ̂n(z−1)

dφn(z)

dz

)
∂f(z)

∂t
dz. (2.3.6)

Computing the derivative gives,

∂f(z)

∂t
=

(
−α0 + β0

z − et
et +

α0 − β0

z − e−t
e−t
)
f(z),

thus we obtain (now using the notation F (z) as mentioned before),

∂

∂t
logDn(f(z)) = 2n

∂χn
∂t

χn
+ (α0 + β0)et

1

2πi

∫
T

F (z)f(z)

z − et
dz − (α0 − β0)e−t

1

2πi

∫
T

F (z)f(z)

z − e−t
dz.

We are left with evaluating the following integral,

1

2πi

∫
T

F (z)f(z)

z − ξ
dz = I1 − I2,

where ξ = et or e−t, and,

I1 =
1

2πi

∫
T

φn(z)dφ̂n(z−1)
dz

z − ξ
f(z)dz and I2 =

1

2πi

∫
T

φ̂n(z−1)dφn(z)
dz

z − ξ
f(z)dz.
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Note first that for any polynomial of degree n ∈ Z+, pn(z) = anz
n + an−1z

n−1 + ...+ a1z + a0,

pn(z)− pn(ξ)

z − ξ
=
an(zn − ξn) + an−1(zn−1 − ξn−1) + ...+ a1(z − ξ)

z − ξ

=
an(z − ξ)(zn−1 + ξn−1)− zξn−1 + ξzn−1 + . . .

z − ξ

= anz
n−1 +O(zn−2), (2.3.7)

which also holds for n ∈ Z− by substituting z 7→ z−1 and ξ 7→ ξ−1.

Now, starting with I1, adding and subtracting dφ̂n(z−1)
dz |z=ξ in the numerator and using orthog-

onality (1.6.1) gives,

I1 =
1

2πi

∫
−φn(z)

(
dφ̂n(z−1)

dz − dφ̂n(z−1)
dz |z=ξ

)
−(z−ξ)
zξ

(
= 1

z −
1
ξ

) (zξ)−1f(z)dz +
1

2πi

∫
φn(z)dφ̂n(z−1)

dz |z=ξ
z − ξ

f(z)dz

=
1

2πi

∫
−φn(z)

(
−nχnz−n + ...+ ..z−1

)
(zξ)−1f(z)dz

+
dφ̂n(z−1)

dz
|z=ξ

1

2πi

∫
φn(z)

z − ξ
(zn − ξn + ξn)

f(z)

zn
dz

=
nχnξ

−1

χn
+
dφ̂n(z−1)

dz
|z=ξ

1

2πi

∫
φn(z)

z − ξ
(zn − ξn)

f(z)

zn
dz +

dφ̂n(z−1)

dz
|z=ξ

1

2πi

∫
φn(z)

z − ξ
ξn
f(z)

zn
dz

= nξ−1 +
dφ̂n(z−1)

dz
|z=ξ

1

2πi

∫
φn(z)(zn−1 + ...)

f(z)

zn
dz +

dφ̂n(z−1)

dz
|z=ξ

1

2πi

∫
φn(z)

z − ξ
ξn
f(z)

zn
dz,

and by comparing with the entries of the R-H problem (1.6.10),

I1 = nξ−1 + ξnχn
dφ̂n(z−1)

dz
|z=ξY12(ξ).

We now look at I2, proceeding as before,

I2 =
1

2πi

∫
φ̂n(z−1)

(
dφn(z)
dz − dφn(z)

dz |z=ξ
)

z − ξ
zf(z)

dz

z
+

1

2πi

∫
φ̂n(z−1)dφn(z)

dz |z=ξ
z − ξ

f(z)dz

=
1

2πi

∫
φ̂n(z−1)

(
nχnz

n−1 + ...
)
f(z)

dz

z
+
dφn(z)

dz
|z=ξ

1

2πi

∫
φ̂n(z−1)

z − ξ
f(z)dz.

By orthogonality in the first term and by using the following recurrence relation:

χnφ̂n(z−1) = χn−1z
−1φ̂n−1(z−1) + φ̂n(0)z−nφn(z)
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in the second, we obtain

I2 = 0 +
1

2πi

dφn(z)

dz
|z=ξ

∫
χn−1

χn

φ̂n−1(z−1)f(z)

z − ξ
dz

z
+

1

2πi

dφn(z)

dz
|z=ξ

∫
φ̂n(0)

χn

φn(z)f(z)

z − ξ
dz

zn

= −dY11(z)

dz
|z=ξY22(ξ) +

dφn(z)

dz
|z−ξφ̂n(0)Y12(ξ).

We now combine the two results,

I1 − I2 = nξ−1 + ξnχn
dφ̂n(z−1)

dz
|z=ξY12(ξ) +

dY11(z)

dz
|z=ξY22(ξ)− dφn(z)

dz
|z−ξφ̂n(0)Y12(ξ).

Using the same recurrence relation as above for φ̂n(z−1) and collecting the Y12(ξ) terms gives,

I1 − I2 = nξ−1 +
dY11(z)

dz
|z=ξY22(ξ) +

{
ξn

d

dz

(
χn−1z

−1φ̂n−1(z−1) + φ̂n(0)z−nφn(z)
)
|z=ξ

−dφn(z)

dz
|z−ξφ̂n(0)

}
Y12(ξ)

= nξ−1 +
dY11(z)

dz
|z=ξY22(ξ) +

{
ξn
(
−χn−1ξ

−2φ̂n−1(ξ−1) + χn−1ξ
−1 dφ̂n−1(z−1)

dz
|z=ξ

−nφ̂n(0)ξ−(n+1)φn(ξ) + φ̂n(0)ξ−n
dφn
dz

(z)|z=ξ
)
|z=ξ −

dφn(z)

dz
|z−ξφ̂n(0)

}
Y12(ξ).

After a cancellation and further manipulation we obtain,

I1 − I2 = nξ−1 +
dY11(z)

dz
|z=ξY22(ξ) +

{
ξ−1

(
−χn−1ξ

n−1φ̂n−1(ξ−1)
)

+ χn−1ξ
n−1dφ̂n−1(z−1)

dz
|z=ξ

−nφ̂n(0)ξ−1φn(ξ)
}
Y12(ξ).

Adding and subtracting χn−1(n− 1)ξn−2φ̂n−1(ξ−1),

I1 − I2 = nξ−1 +
dY11(z)

dz
|z=ξY22(ξ) +

{
ξ−1

(
−χn−1ξ

n−1φ̂n−1(ξ−1)− χn−1(n− 1)ξn−1φ̂n−1(ξ−1)
)

+χn−1(n− 1)ξn−2φ̂n−1(ξ−1) + χn−1ξ
n−1dφ̂n−1(z−1)

dz
|z=ξ − nφ̂n(0)ξ−1φn(ξ)

}
Y12(ξ).
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Noting that dY21(z)
dz = −χn−1(n−1)zn−2φ̂n−1(z−1)−χn−1(zn−1)dφ̂n−1(z−1)

dz we rewrite using the R-H

problem (1.6.10),

I1 − I2 = nξ−1 +
dY11(z)

dz
|z=ξY22(ξ) +

{
nξ−1Y21(ξ)− dY21(z)

dz
|z=ξ − nφ̂n(0)ξ−1χnY11(ξ)

}
Y12(ξ).

Next, we look at the term 2n ∂χn
∂t

χn
. Noting that

1

2πi

∫
∂φn(z)

dt
φ̂n(z−1)f(z)

dz

z
=

∂χn
∂t

χn
=

1

2πi

∫
∂φ̂n(z−1)

dt
φ(z)f(z)

dz

z
,

we have,

2
∂χn
∂t

χn
=

1

2πi

∫
∂

∂t

(
φn(z)φ̂n(z−1)

)
f(z)

dz

z
.

Using (2.3.4) and that ∂
∂t

[
1

2πi

∫
T φ̂n(z−1)φn(z)f(z)dzz

]
= ∂

∂t [1] = 0,

2
∂χn
∂t

χn
= − 1

2πi

∫
φn(z)φ̂n(z−1)

∂f(z)

dt

dz

z

= (α0 + β0)et
1

2πi

∫
φn(z)φ̂n(z−1)f(z)

z − et
dz

z
− (α0 − β0)e−t

1

2πi

∫
φn(z)φ̂n(z−1)f(z)

z − e−t
dz

z
.

We now evaluate 1
2πi

∫ φn(z)φ̂n(z−1)f(z)
z−ξ

dz
z , where ξ = e±t. As before,

1

2πi

∫
φn(z)

φ̂n(z−1)

z − ξ
f(z)

dz

z
=

1

2πi

∫
−φn(z)

φ̂n(z−1)
1
z −

1
ξ

(zξ)−1f(z)
dz

z
. (2.3.8)

Adding and subtracting φ̂n(ξ−1) in the numerator gives,

RHS(2.3.8) =
1

2πi

∫
−φn(z)

φ̂n(z−1)− φ̂n(ξ−1)
1
z −

1
ξ

(zξ)−1f(z)
dz

z
+

1

2πi

∫
φn(z)

φ̂n(ξ−1)

z − ξ
f(z)

dz

z
.

Continuing with a similar argument as before using (2.3.7) in the first integral and manipulating z

and adding and subtracting ξn−1 in the second integral gives,

=
1

2πi

∫
−φn(z)

(
χnz

−(n−1) + ...
)

(zξ)−1f(z)
dz

z
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+ φ̂n(ξ−1)
1

2πi

∫
φn(z)

z − ξ
(
zn−1 − ξn−1 + ξn−1

)
f(z)

dz

zn
,

by orthogonality,

= −ξ−1χnχ
−1
n + ξn−1φ̂n(ξ−1)

1

2πi

∫
φn(z)

z − ξ
f(z)

dz

zn

= −ξ−1 + φ̂n(ξ−1)χnξ
n−1Y21(ξ), c.f. (1.6.10). (2.3.9)

Using the same recurrence relation for φ̂n(z−1) as before,

RHS(2.3.9) = −ξ−1 + ξn−1Y21(ξ)χn−1ξ
−1φ̂n−1(ξ−1) + ξn−1Y21(ξ)φ̂n(0)ξ−nφn(ξ)

= −ξ−1 − ξ−1Y21(ξ)Y12(ξ) + φ̂n(0)χnξ
−1Y11(ξ)Y12(ξ).

Finally, we combine all of the results,

∂

∂t
logDn(t) = − (α0 + β0) et

(
ne−t + ne−tY21(et)Y12(et)− nφ̂n(0)χne

−tY11(et)Y12(et)
)

+ (α0 − β0) e−t
(
net + netY21(e−t)Y12(e−t)− nφ̂n(0)χne

tY11(e−t)Y12(e−t)
)

− (α0 + β0) et
(
−ne−t − dY11(z)

dz
|z=etY22(et)

+

{
−ne−tY21(et) +

dY21(z)

dz
|z=et + nφ̂n(0)e−tχnY11(et)

}
Y12(et)

)
+ (α0 − β0) e−t

(
−net − dY11(z)

dz
|z=e−tY22(e−t)

+

{
−netY21(e−t) +

dY21(z)

dz
|z=e−t + nφ̂n(0)etχnY11(e−t)

}
Y12(e−t)

)
.

After cancellations,

∂

∂t
logDn(t) = − (α0 + β0) et

(
−dY11(z)

dz
|z=etY22(et) +

dY21(z)

dz
|z=etY12(et)

)
+ (α0 − β0) e−t

(
−dY11(z)

dz
|z=e−tY22(e−t) +

dY21(z)

dz
|z=e−tY12(e−t)

)
.

We thus obtain,

∂

∂t
logDn(t) = − (α0 + β0) et

(
−dY

−1

dz
Y

)
22

(et) + (α0 − β0) e−t
(
−dY

−1

dz
Y

)
22

(e−t), (2.3.10)
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which is exactly (2.3.1), note that 0 = d
dz

(
Y −1Y

)
= Y −1 dY

dz + dY −1

dz Y .

2.4 Asymptotic analysis of the Riemann-Hilbert problem

In this section we will solve the R-H problem which was posed in Section 1.6.2 with f(z) = f(z; t)

defined in (2.2.1). In order to evaluate the asymptotics for the solution to the R-H problem above,

the problem needs to undergo a series of reversible transformations. We will be using the method of

nonlinear steepest descent, which was introduced by Deift and Zhou in 1990’s, see [20]. A very nice

example of this method can be found in [13], where the author proves the SSLT (Theorem 1.3.4).

Each transformation simplifies the problem further and brings us closer to the solution of the original

R-H problem, i.e. the problem for Y (z). The final goal of this is to arrive at a problem known as the

small-norm problem. The jump matrix behaves asymptotically like an identity, and we can obtain a

solution in terms of Neumann series. This culminating R-H problem will be called the R-H problem

for R(z). Then, after a series of reverse transformations, we will arrive at the solution we were

ultimately looking for. We proceed with the analysis in a similar way to that in [11,12,14,16].

2.4.1 Normalisation

The R-H problem for Y (z) lacks the right behaviour at infinity. Defining a new function T (z) in the

following way normalises the problem at infinity,

T (z) =


Y (z)z−kσ3 , as |z| > 1,

Y (z), as |z| < 1.

(2.4.1)

Recall one of the Pauli matrices,

σ3 =

1 0

0 −1

 (2.4.2)

it follows that z−kσ3 =

z−k 0

0 zk

.

We now have two equivalent R-H problems, if Y (z) solves the R-H problem for orthogonal

polynomials (1.6.10), then T (z) solves the following R-H problem,

(T1) T : C \ T→ C2×2 is analytic.
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(T2) T+(z) = T−(z)

zk f(z; t)

0 z−k

 for z ∈ T.

(T3) T (z) has a the following asymptotic behaviour at ininity,

T (z) = I +O(1/z) as z →∞. (2.4.3)

(T4) The asymptotic formulae close to point z1 is the same as in the problem for Y (z).

The two problems are equivalent in the sense that we can obtain a solution of one problem, using

the solution to the other, and vice versa, via simple algebraic manipulation.

Notice that the diagonal entries of the jump matrix in point (T2)—let us denote it by JT (z) for

future reference—oscillate rapidly on the unit circle for large k. The next transformation will turn

this oscillatory behaviour on the unit circle into exponential decay on a new, deformed contour.

2.4.2 Opening of the lenses

First, we note that we can factorise the jump matrix JT (z), in the following way

JT (z) =

zk f(z; t)

0 z−k


=

 1 0

z−kf(z; t)−1 1

 0 f(z; t)

−f(z; t)−1 0

 1 0

zkf(z; t)−1 1


=: J1(z)JN (z)J2(z), respectively. (2.4.4)

The initial contour—the unit circle—is now deformed as shown in Figure 2.2. The matrix-valued

functions resulting from the factorisation of the jump matrix JT (z) have some specific properties.

Namely, J1(z) and J2(z) are invertible. They both have analytic continuations (which are also

invertible) to the outside and inside of the unit disk, respectively—intersected with the annulus

where the function f(z, t) is analytic. We also note the desired decay of the off-diagonal terms in the
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z0 = 1

z1

−
+

Σ0
−
+

Σ
′
0−

+ Σ
′′
0

+

−
Σ1

+

−
Σ
′
1

+

−
Σ
′′
1

Ω4

Ω
′
3

Ω
′
2

Ω1

Ω3

Ω2

Figure 2.2: Deformed contour Σ = ∪1
j=0

(
Σj ∪ Σ

′
j ∪ Σ

′′
j

)
, and regions Ωj ,Ω

′
j for the Riemann-Hilbert

problem for S(z). Note well, T = Σ
′
0 ∩ Σ

′
1.

two matrices, in the respective regions of analytic continuation. Let us now define a new function,

S(z) =


T (z), for z ∈ Ω1 ∪ Ω4,

T (z)J1(z), for z ∈ Ω2 ∪ Ω
′
2,

T (z)J−1
2 (z), for z ∈ Ω3 ∪ Ω

′
3.

(2.4.5)

Note well, that T = Σ
′
0 ∪ Σ

′
1. The function S(z) solves the following R-H problem,

(S1) S(z) is analytic for z ∈ C \ Σ, where Σ = ∪1
j=0

(
Σj ∪ Σ

′
j ∪ Σ

′′
j

)
.

(S2) The boundary values are related by the following jump conditions:

S+(z) = S−(z)J1(z), z ∈ Σ0 ∪ Σ1.

S+(z) = S−(z)JN (z), z ∈ Σ
′
0 ∪ Σ

′
1.

S+(z) = S−(z)J2(z), z ∈ Σ
′′
0 ∪ Σ

′′
1 .

(S3) S(z) = T (z)→ I +O(1/z) as z →∞.
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(S4) As z → z1, z ∈ C \ T, outside the lense (i.e. in Ω1 ∪ Ω4)

S(z) =

O(1) O(|z − z1|2α1) +O(1)

O(1) O(|z − z1|2α1) +O(1)

 α1 6= 0, (2.4.6)

and

S(z) =

O(1) O(log |z − z1|)

O(1) O(log |z − z1|)

 α1 = 0, β1 6= 0. (2.4.7)

The asymptotic behaviour in Ω2 ∪Ω
′
2 and Ω3 ∪Ω

′
3 is given by applying jump conditions to the

expressions (2.4.6) and (2.4.7). We have the following,

S(z) =

O(1) +O(|z − z1|−2α1) O(1)

O(1) +O(|z − z1|−2α1) O(1)

 in Ω2 ∪ Ω
′
2, α1 6= 0, (2.4.8)

S(z) =

O(1) +O(|z − z1|−2α1) O(1)

O(1) +O(|z − z1|−2α1) O(1)

 in Ω2 ∪ Ω
′
2, α1 = 0, β1 6= 0, (2.4.9)

and

S(z) =

O(1) +O(log |z − z1|) O(log |z − z1|)

O(1) +O(log |z − z1|) O(log |z − z1|)

 in Ω3 ∪ Ω
′
3, α1 6= 0, (2.4.10)

S(z) =

O(1) +O(log |z − z1|) O(log |z − z1|)

O(1) +O(log |z − z1|) O(log |z − z1|)

 in Ω3 ∪ Ω
′
3, α1 = 0, β1 6= 0. (2.4.11)

The new R-H problem (S(z),Σ) is called a deformation of the problem (T (z),T) and can be compared

to the deformation of a contour in the method of evaluating a classical steepest descent problem in

complex analysis.

Let us encircle the points z0 = 1 and z1 by ε-small disks,

Uzj = {z : |z − zj | < ε}, j = 0, 1. (2.4.12)

We shall construct a global parametrix dealing with the jump condition over the unit circle and two

local parametrices around the points of intersection, z0 and z1.
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2.4.3 Global Parametrix

Here, we consider a R-H problem for N(z), ignoring ∪1
j=0

(
Σj ∪ Σ

′′
j

)
and the neighbourhoods

∪1
j=0Uzj . The model problem is given by

(N1) N : C \ T→ C2×2 is analytic,

(N2) N+(z) = N−(z)JN (z), for z ∈ T,

(N3) N(z) = I +O(1/z), as z →∞.

Similarly to [11, 14], the problem is explicitly solvable and the solution is given using the Szegő

function,

D(z) = exp

{
1

2πi

∫
T

log ft(s)

s− z
ds

}
. (2.4.13)

We have that,

N(z) =


D(z)σ3

 0 1

−1 0

 , for |z| < 1,

D(z)σ3 , for |z| > 1.

(2.4.14)

2.4.3.1 Computing the Szegő function

Lemma 2.4.1. By evaluating the integral in (2.4.13) we can compute an explicit formula for the

function D(z),

D(z) =


(
z−z1
z1eiπ

)α1+β1 (
z − et

)α0+β0 e−iπ(α0+β0) exp
{∑∞

k=0 Vkz
k
}
, for |z| < 1,(

z−z1
z

)−α1+β1 (z − e−t)−α0+β0 zα0−β0 exp
{
−
∑−1
−∞ Vkz

k
}
, for |z| > 1.

(2.4.15)

Proof. First note that,

log f(s; t) = V (s) + β1 log s− β1 log z1 + 2α1 log |s− z1|+ log gz1,β1(s) (2.4.16)

+ (α0 + β0) log(s− et) + (α0 − β0) log(s− e−t) + (−α0 + β0) log s− iπ(α0 + β0).
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Throughout, we use the following convergent series,

1

s− z
=


1
s + z

s2
+ z2

s3
+ . . . for |z| < 1,

−1
z −

s
z2
− s2

z3
− . . . for |z| > 1,

(2.4.17)

and

log(1− z) = −
∞∑
k=1

zk

k
, for |z| < 1. (2.4.18)

We begin with the first term in (2.4.16), the analytic function V (z). Matching coefficients and using

the residue theorem, we have for |z| < 1,

1

2πi

∫
T

V (s)

s− z
ds =

1

2πi

∫
T

{
· · ·+ V−1s

−1 + V0 + V1s+ . . .
}{1

s
+

z

s2
+
z2

s3
+ . . .

}
ds

= V0 + V1z + V2z
2 + · · · =

∞∑
k=0

Vkz
k

and for |z| > 1,

1

2πi

∫
T

V (s)

s− z
ds =

1

2πi

∫
T

{
· · ·+ V−1s

−1 + V0 + V1s+ . . .
}{
−1

z
− s

z2
− s2

z3
− . . .

}
ds

= −V−1z
−1 − V−2z

−2 − V−3z
−3 − · · · = −

∞∑
k=1

V−kz
−k.

In what follows, we use the substitution s = eiθ, integration by parts, and Residue theorem,

1

2πi

∫
T

log s

s− z
ds =

1

2πi

∫ 2π

0

log(eiθ)ieiθ

eiθ − z
dθ

=
1

2πi

[
iθ log(eiθ − z)

]2π

0
− 1

2πi

∫ 2π

0
i log(eiθ − z)dθ

= log(1− z)− 1

2πi

∫
T

log(s− z)ds
s
.

For |z| < 1,

1

2πi

∫
T

log s

s− z
ds = log(1− z)− 1

2πi

∫
T

{
log s− z

s
− z2

2s2
− . . .

}{
1

s

}
ds

= log(1− z)− 1

2πi

∫
T

log s

s
ds− 1

2πi

∫
T

{
−z
s
− z2

2s2
− . . .

}{
1

s

}
ds
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= log(1− z)− 1

2πi

∫ 2π

0
i log(eiθ)dθ − 0

= log(1− z) +
1

2πi

∫ 2π

0
θdθ − 0 = log(1− z) +

1

2πi
2π2

= log(1− z)− iπ, (2.4.19)

and for |z| > 1,

1

2πi

∫
T

log s

s− z
ds = iπ + log(z − 1)− 1

2πi

∫
T

{
iπ + log z − s

z
− s2

2z2
− . . .

}{
1

s

}
ds

= iπ + log(z − 1)− iπ − log z,

= log(z − 1)− log z. (2.4.20)

Using the expansions from above and residue theorem, we have for |z| < 1,

1

2πi

∫
T

log z1

s− z
ds =

∫
T

log z1

{
1

s
+

z

s2
+
z2

s3
+ . . .

}
ds = log z1, (2.4.21)

and for |z| > 1,

1

2πi

∫
T

log z1

s− z
ds =

∫
T

log z1

{
−1

z
− s

z2
− s2

z3
− . . .

}
ds = 0. (2.4.22)

In what follows, we use the function hα1(z) = |z− z1|α1 = (z−z1)α1

(zz1eil1 )α1/2
, where l1 = 3π for 0 < θ < θ1

and l1 = π for θ1 < θ < 2π (recall that z1 = eiθ1), for more details and analyticity see (2.4.30). We

write,

1

2πi

∫
T

2α1 log |s− z1|
s− z

ds =
1

2πi

∫
T

2α1 log(s− z1)− α1 log(sz1e
il1)

s− z
ds

=
1

2πi

∫
T

2α1 log(s− z1)

s− z
ds− 1

2πi

∫
T

α1 log(s)

s− z
ds− 1

2πi

∫
T

α1 log(z1)

s− z
ds− 1

2πi

∫
T

α1 log(eil1)

s− z
ds.

We evaluate the first term in a similar way to (2.4.26) and (2.4.27) below to obtain,

1

2πi

∫
T

2α1 log(s− z1)

s− z
ds =


2α1 log(z − z1) for |z| < 1,

0 for |z| > 1.

(2.4.23)
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The second and third term was obtained in (2.4.19), (2.4.20), (2.4.21) and (2.4.22). The last term

we calculate using (2.4.25) as we note that,

1

2πi

∫
T

α1 log(eilj )

s− z
ds =

1

2πi

∫
T

α1 log(e2πi)

s− z
ds+

α1

β1

1

2πi

∫
T

log gz1,β1(s)

s− z
ds,

which by(2.4.21), (2.4.22) and (2.4.25),

1

2πi

∫
T

α1 log(eilj )

s− z
ds =


2πi+ log(z − z1)− log(1− z) for |z| < 1,

log(z − z1)− log(z − 1) for |z| > 1.

And thus, for |z| < 1,

1

2πi

∫
T

2α1 log |s− z1|
s− z

ds = 2α1 log(z − z1)− α1 log(1− z) + iπα1 − α1 log z1

− 2iπα1 − α1 log(z − z1) + α1 log(1− z)

= α1 log(z − z1)− α1 log z1 − iπα1,

and for |z| > 1,

1

2πi

∫
T

2α1 log |s− z1|
s− z

ds = 0− α1 log(z − 1) + α1 log z − 0− α1 log(z − z1) + α1 log(z − 1)

= α1 log z − α1 log(z − z1)

We now compute,

1

2πi

∫
T

log gz1,β1(s)

s− z
ds =

1

2πi

∫ θ1

0

iπβ1

s− z
ds− 1

2πi

∫ 2π

θ1

iπβ1

s− z
ds

=
1

2πi

∫
T

iπβ1

s− z
ds− 2

1

2πi

∫ 2π

θ1

iπβ1

s− z
ds, (2.4.24)

by (2.4.21), (2.4.22),

1

2πi

∫
T

log gz1,β1(s)

s− z
ds =


iπβ1 − 2 1

2πi

∫ 2π
θ1

iπβ1
s−z ds, for |z| < 1,

−2 1
2πi

∫ 2π
θ1

iπβ1
s−z ds, for |z| > 1,
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and

2
1

2πi

∫ 2π

θ1

iπβ1

s− z
ds = β1

∫ 2π

θ1

ieiθ

eiθ − z
dθ

= β1

[
log(eiθ − z)

]2π

θ1

= β1 (log(1− z)− log(z − z1)− iπ) ,

we have

1

2πi

∫
T

log gz1,β1(s)

s− z
ds =


β1 log(z − z1)− β1 log(1− z), for |z| < 1,

β1 log(z − z1)− β1 log(z − 1), for |z| > 1.

(2.4.25)

Using the expansion from before, the residue theorem and using in addition the expansion of

log(s− et) = log(exp(iπ)) + log(exp(t))−
∑∞

k=1
e−tk

k sk,

1

2πi

∫
T

(α0 + β0) log(s− et)
s− z

ds =
(α0 + β0)

2πi

∫
T

{
iπ + t− e−ts− e−2t

2
s2 − . . .

}{
1

s
+

z

s2
+ . . .

}
ds

= (α0 + β0)

(
iπ + t− e−tz − e−2t

2
z2 − . . .

)
= (α0 + β0)

(
iπ + t−

∞∑
k=1

e−tk

k
sk

)
= (α0 + β0) log(z − e−t).

(2.4.26)

And for |z| > 1,

1

2πi

∫
T

(α0 + β0) log(s− et)
s− z

ds =
(α0 + β0)

2πi

∫
T

{
iπ + t− e−ts− e−2t

2
s2 − . . .

}{
−1

z
− s

z2
− ..
}
ds

= 0. (2.4.27)

Similarly to the last integral, but now using the expansion for log(z − e−t) = log(exp(iθ) −∑∞
k=1

e−tk

k s−k, for |z| < 1,

1

2πi

∫
T

(α0 − β0) log(s− e−t)
s− z

ds =
(α0 − β0)

2πi

∫
T

{
log(s)− e−ts−1 − e−2t

2
s−2 + . . .

}
1

s− z
ds

=
(α0 − β0)

2πi

∫
T

log(s)

s
ds+

(α0 − β0)

2πi

∫
T

{
−e−ts−1 − e−2t

2
s−2 + . . .

}{
1

s
+

z

s2
+
z2

s3
+ . . .

}
ds
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= (α0 − β0) log(1− z)− (α0 − β0)iπ + 0, (Using (2.4.19) and residue theorem, respectively).

Now for |z| > 1, we proceed similarly, but using (2.4.20), we obtain

1

2πi

∫
T

(α0 − β0) log(s− e−t)
s− z

ds =
(α0 − β0)

2πi

∫
T

{
log(s)− e−ts−1 − e−2t

2
s−2 + . . .

}
1

s− z
ds

=
(α0 − β0)

2πi

∫
T

log(s)

s
ds+

(α0 − β0)

2πi

∫
T

{
−e−ts−1 − e−2t

2
s−2 − . . .

}{
−1

z
− s

z2
− . . .

}
ds

= (α0 − β0) log(z − 1)− (α0 − β0) log z − (α0 − β0)

(
−e−tz−1 − e−2t

2
z−2 − . . .

)
= (α0 − β0) log(z − 1)− (α0 − β0) log(z − e−t).

We are left with the following terms, for which we use earlier results,

1

2πi

∫
T

(−α0 + β0) log s

s− z
ds =


−(α0 − β0) log(1− z) + (α0 − β0)iπ for |z| < 1,

−(α0 − β0) log(z − 1) + (α0 − β0) log z for |z| > 1,

using (2.4.19) and (2.4.20), and

1

2πi

∫
T

−iπ(α0 + β0)

s− z
ds =


−iπ(α0 + β0) for |z| < 1,

0 for |z| > 1,

using (2.4.21) and (2.4.22), as both log z1 and iπ are just constants.

Finally, combining all the results above and exponentiating, we get the explicit formula for the

Szegő function (2.4.15).

2.4.4 Local Parametrices

We go back to the R-H problem for S(z) where we have opened the lens and therefore created a

contour which possesses intersections. We will look at each intersection separately. On their own,

the local parametrices at z0 and z1 are the same as in [14] and [11] respectively.
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z1

Σ
′′
0

+−

Σ
′
0

+−
Σ0

+−

Σ1

+−
Σ
′
1

+− Σ
′′
1

+−

∂Uz1

(a) The neighbourhood Uz1

0

Γ3

+

− Γ7

−
+

III
VII

Γ1

+ −

Γ5

−+

I

V

Γ4

+ −

Γ8

−+

IV

VIII

Γ2

+ −

Γ6

+ −

II
VI

(b) Uz1 under the ζ transformation (called
ζ(Uz1)). Contour for the Ψ1 R-H problem.

Figure 2.3

2.4.4.1 Parametrix at point z1

In this section we are basing the analysis on the works of Deift, Its and Krasovsky in [14,16]. First,

we will construct the parametrix Pz1(z) in the neighbourhood Uz1 , see (2.4.12). We again look for

a sectionally analytic matrix-valued function, this time in the neighbourhood Uz1 as opposed to

the whole complex plane. This function will have the same jump conditions as S(z), again only

restricted to the intersection Σ∩Uz1 . It will also have the same behaviour as z → z1 as the function

S(z), (2.4.6) - (2.4.11). However, instead of the condition of being normalised at infinity, the new

function will satisfy the following matching condition,

Pz1(z)N−1(z) = I + o(1), as n→∞. (2.4.28)

Consider the following transformation (which is where the n appears),

ζ = n log
z

z1
, (2.4.29)

where log x > 0 for x > 0, and the logarithm has a cut on the negative half of the real axis. This

transformation maps the neighbourhood Uz1 , which can be seen in Figure 2.3a, into a neighbourhood

of zero in the ζ-plane, Figure 2.3b. We choose the form of the Σ ∩ Uz1 to give straight lines under

the transformation. The function ζ(z) is analytic and bijective, it takes an arc of the unit circle

(recall that Σ
′
0 ∪ Σ

′
1 = T ) to an interval of the imaginary axis (see Figure 2.3). The inside of the
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unit circle corresponds to values of ζ in the sectors I, II, III, IV, whereas the outside corresponds

to ζ ∈ V, VI, VII, VIII. The pre-image of the rays Γ3 and Γ7 is added to the contour Σ ∪ Uz1 to

deal with non-analyticity of |z − z1|αj , which we will now discuss. Let us write down the following

function for z ∈ T, as it was introduced in [14, (4.13)],

hα1(z) = |z − z1|α1 = (z − z1)α1/2(z−1 − z−1
1 )α1/2 =

(z − z1)α1

(zz1eil1)α1/2
, (2.4.30)

where z = eiθ, z1 = eiθ1 , 0 ≤ θ < 2π and θ1 6= 0. We fix the cut of (z − z1)α going along the ray

θ = θ1 from z1 to infinity, and we fix the branch by the condition that on the line from z1 to the

right, perpendicular to the real axis, arg(z−z1) = 2π. For zα1/2 in the denominator, 0 < arg z < 2π.

We write,

(z − z1)α1 = exp {α1 log(z − z1)} = exp {α1 log |z − z1|+ α1i arg(z − z1)} , (2.4.31)

and

(zz1e
il1)−α1/2 = exp

{
−iα1

2
(θ + θ1 + l1)

}
. (2.4.32)

Thus,
(z − z1)α1

(zz1eil1)α1/2
= |z − z1|α1 exp

{
iα1(arg(z − z1)− θ

2
− θ1

2
− l1

2
)

}
, (2.4.33)

and we need the power of the exponential above to be 0. The values of l1 are,

l1 =


3π, 0 < θ < θ1,

π, θ1 < θ < 2π,

(2.4.34)

which can be seen by considering different triangles (see the the tables below which also consider

different locations of z1).
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2nd Quadrant 1st Quadrant

At 0: 2π −
(
π−θ1

2

)
− θ1

2 = l1
2 ⇒ l1 = 3π At 0: 2π −

(
π−θ1

2

)
− θ1

2 = l1
2 ⇒ l1 = 3π

At (π − θ1)−: 2π −
(
π−θ1

2

)
− θ1

2 = l1
2 ⇒ l1 = 3π At θ−1 : 3π

2 + θ1 − θ1
2 −

θ1
2 ⇒ l1 = 3π

(π − θ1)+: 0−
(
π−θ1

2

)
− θ1

2 +2π = l1
2 ⇒ l1 = 3π At θ+

1 : π
2 + θ1 − θ1

2 −
θ1
2 = l1

2 ⇒ l1 = π

At θ−1 : θ1 − π
2 −

θ1
2 −

θ1
2 +2π = l1

2 ⇒ l1 = 3π 2π: 2π −
(
π−θ1

2

)
− π − θ1

2 = l1
2 ⇒ l1 = π

At θ+
1 : θ1 + π

2 −
θ1
2 −

θ1
2 = l1

2 ⇒ l1 = π

At 2π: 2π −
(
π−θ1

2

)
− π − θ1

2 = l1
2 ⇒ l1 = π

3rd Quadrant 4th Quadrant

At 0: θ1−π
2 − θ1

2 +2π = l1
2 ⇒ l1 = 3π At 0:

(
θ1−π

2

)
− θ1

2 +2π = l1
2 ⇒ l1 = 3π

At θ−1 : θ1 − π
2 −

θ1
2 −

θ1
2 +2π = l1

2 ⇒ l1 = 3π θ−1 : θ1 − π
2 −

θ1
2 −

θ1
2 +2π = l1

2 ⇒ l1 = 3π

At θ+
1 : θ1 + π

2 −
θ1
2 −

θ1
2 = l1

2 ⇒ l1 = π θ+
1 : θ1 − 3π

2 −
θ1
2 −

θ1
2 +2π = l1

2 ⇒ l1 = π

At (3π − θ1)−: 2π −
(

3π−θ1
2

)
− θ1

2 = l1
2 ⇒ l1 = π At 2π: θ1−π

2 − π − θ1
2 +2π = l1

2 ⇒ l1 = π

(3π − θ1)+: 0−
(

3π−θ1
2

)
− θ1

2 +2π = l1
2 ⇒ l1 = π

At 2π: θ1−π
2 − π − θ1

2 +2π = l1
2 ⇒ l1 = π

Alternatively, we can write,

z − z1

(zz1eil1)1/2
= exp

{
i

(
π − l1

2
+ πk

)}
∓ |z − z1|


− for 0 ≤ θ < θ1

+ for 0 ≤ θ1 < θ

(2.4.35)

we want this to equal to |z − z1|, thus,

exp

{
i

(
π − l1

2
+ πk

)}
=


−1 = eiπ for θ < θ1

1 = e0 for θ1 < θ

π − l1
2

+ πk =


π mod 2π for θ < θ1

0 mod 2π for θ1 < θ

l1 =


(2k − 1)π mod 4π for θ < θ1

(2k + 1)π mod 4π for θ1 < θ
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2nd Quadrant 1st Quadrant

z1

θ1

0

2π

2ρ

ρ

ρ

µ

µ ν

π
2 < θ1 < π

θ1

z1 0

2π

2ρ

ρ

ρ

µ

µ

ν

0 < θ1 <
π
2

0 < θ < π − θ1 2π −
(
π−θ1

2

)
< arg(z − z1) < 2π 0 < θ < θ1 2π−

(
π−θ1

2

)
< arg(z−z1) < 3π

2 +θ1

π − θ1 < θ < θ1 0 < arg(z − z1) < θ1 − π
2 θ1 < θ < 2π π

2 + θ1 < arg(z− z1) < 2π−
(
π−θ1

2

)
θ1 < θ < 2π θ1 + π

2 < arg(z− z1) < 2π−
(
π−θ1

2

)
3rd Quadrant 4th Quadrant

z1

θ1

0

2π

2ρ

ρ

ρ

µ

µ

ν

π < θ1 <
3π
2

z1

θ1

0

2π

2ρ

ρ

ρ

µ

µ

ν

3π
2 < θ1 < 2π

0 < θ < θ1
θ1−π

2 < arg(z − z1) < θ1 − π
2 0 < θ < θ1

θ1−π
2 < arg(z − z1) < θ1 − π

2

θ1 < θ < 3π−θ1 θ1 + π
2 < arg(z − z1) < 2π θ1 < θ < 2π θ1 − 3π

2 < arg(z − z1) < θ1−π
2

3π−θ1 < θ < 2π 0 < arg(z − z1) < θ1−π
2
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We proceed in the same way and using the same notation as [14, Section 4.2], with j = 1. Let

us define the following auxiliary function (cf. [14, (4.15)]),

F1(z) = exp

{
1

2
log a(z; t)

}(
z

z1

)β1
2

hα1(z)×


e−iπα1 , ζ ∈ I, II, V, V1,

eiπα, ζ ∈ III, IV, VII, VIII,
z ∈ Uz1 , (2.4.36)

recall function a(z; t) from (2.2.2) and the sectors in Figure 2.3b. It can be verified that F1(z) is

analytic in the intersection of each quarter ζ-plane with ζ(Uz1) and has the following jumps,

F1,+(z) = F1,−(z)e−2πiα1 ζ ∈ Γ1, (2.4.37)

F1,+(z) = F1,−(z)e2πiα1 ζ ∈ Γ5, (2.4.38)

F1,+(z) = F1,−(z)eπiα1 ζ ∈ Γ3 ∪ Γ7. (2.4.39)

It is easy to see, after considering the analytic continuation ((2.4.30)) of ft(z) off the arcs between

singularities, (2.2.2) and how we defined F1(z) above, that

F1(z)2 = ft(z)e
−2πiαjg−1

z1,β1
(z), ζ ∈ I, II, V, VI,, (2.4.40)

F1(z)2 = ft(z)e
2πiαjg−1

z1,β1
(z), ζ ∈ III, IV, VII, VIII,. (2.4.41)

We now look for Pz1(z) in the following form,

Pz1(z) = E(z)P (1)(z)F1(z)−σ3z±nσ3/2, (2.4.42)

where the plus sign is taken for |z| < 1 and minus for |z| > 1, which corresponds to ζ ∈ I,II,III,IV,

and ζ ∈ V,VI,VII,VIII respectively. The matrix E(z) is analytic and invertible in the neighbourhood

of Uz1 , thus does not affect the jump and analyticity conditions and is chosen in order for Pz1(z) to

satisfy the matching condition on the boundary (2.4.28).

As Pz1(z) has the same jump conditions as S(z), it can be verified straightforwardly that P (1)(z)

satisfies jump conditions with constant jump matrices. As in [14], we set,

P (1)(z) = Ψ1(ζ) (2.4.43)
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Then Ψ1(ζ) satisfies a R-H problem on the contour Γ := ∪8
k=1Γk given in Figure 2.3b,

(Ψ11) Ψ1 : C \ Γ→ C2×2 is analytic.

(Ψ12) Ψ1(z) satisfies the following jump conditions:

Ψ1,+(ζ) = Ψ1,−(ζ)

 0 e−iπβ1

−eiπβ1 0

 , for ζ ∈ Γ1, (2.4.44)

Ψ1,+(ζ) = Ψ1,−(ζ)

 0 eiπβ1

−e−iπβ1 0

 , for ζ ∈ Γ5, (2.4.45)

Ψ1,+(ζ) = Ψ1,−(ζ)eiπα1σ3 , for ζ ∈ Γ3 ∪ Γ7, (2.4.46)

Ψ1,+(ζ) = Ψ1,−(ζ)

 1 0

e±iπ(β1−2α1) 1

 , with


+ in the exponent for ζ ∈ Γ2,

− in the exponent for ζ ∈ Γ4,

(2.4.47)

Ψ1,+(ζ) = Ψ1,−(ζ)

 1 0

e±iπ(β1+2α1) 1

 , with


+ in the exponent for ζ ∈ Γ8,

− in the exponent for ζ ∈ Γ6,

(2.4.48)

(Ψ13) As ζ → 0, ζ ∈ C \ Γ outside the lenses (i.e. sectors II, III, VI, VII), for α1 6= 0,

Ψ1(ζ) =

O(ζα1) O(ζα1) +O(ζ−α1)

O(ζα1) O(ζα1) +O(ζ−α1)

 , (2.4.49)

and if α1 = 0, β1 6= 0

Ψ1(ζ) =

O(1) O(log |z|)

O(1) O(log |z|)

 . (2.4.50)

The bahaviour of Ψ1(ζ) for ζ → 0 in other sectors can be computed using the appropriate

jump conditions.

This problem was solved explicitly in [14, Section 4.2] and this solutions using confluent hyperge-

ometric functions (see appendix of [27]). Define the function ψ(a, c; z) as a unique solution of the
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confluent hypergeometric equation

zw
′′

+ (c− a)w
′ − aw = 0, (2.4.51)

satisfying the following asymptotic condition

ψ(a, c; z) ∼ z−a
∞∑
n=0

(−1)n
(a)n(1 + a− c)n

n!zn
, (2.4.52)

z →∞, −3π

2
< arg z <

3π

2
,

where

(a)0 = 1, (a)n = a(a+ 1) . . . (a+ n− 1) =
Γ(a+ n)

Γ(a)
, n ≥ 1.

The authors of [14] have proved the following result.

Theorem 2.4.2. [14, Proposition 4.1] Let α1±β1 6= −1,−2, . . . . Then a solution to the above R-H

problem (Ψ11)-(Ψ13) for Ψ1(ζ), 0 < arg ζ < 2π, is given by the following matrix-valued function in

sector I:

Ψ1(ζ) = Ψ
(I)
1 (ζ) (2.4.53)

=

(
ζα1ψ(α1 + β1, 1 + 2α1, ζ)eiπ(2β1+α1)e−ζ/2

−ζ−α1ψ(1− α1 + β1, 1− 2α1, ζ)eiπ(β1−3α1)e−ζ/2 Γ(1+α1+β1)
Γ(α1−β1)

−ζα1ψ(1 + α1 − β1, 1 + 2α1, e
−iπζ)eiπ(β1+α1)eζ/2 Γ(1+α1−β1)

Γ(α1+β1)

ζ−α1ψ(−α1 − β1, 1− 2α1, e−iπζ)e−iπα1eζ/2

)
,

where ψ(a, c;x) is the confluent hypergeometric function of the second kind defined above, and Γ(x)

is the Euler’s Γ-function. The solution in the other sectors is given by successive application of the

jump conditions from (Ψ12) to (2.4.53).

The authors then match this solution with N(z) (see (2.4.28)) on the boundary ∂Uz1 for large

n. The limit n → ∞, z ∈ ∂Uz1 , corresponds to ζ → ∞. Thus the authors find the asymptotic

expansion of Ψ1(ζ) using the classical result for the confluent hypergeometric function (which is

(2.4.52) rewritten),

ψ(a, c;x) = x−a[1− a(1 + a− c)x−1 +O(x−2)], |x| → ∞, − 3π/2 < arg x < 3π/2. (2.4.54)
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These asymptotics can be taken both for ψ(a, c; ζ) and ψ(a, c; e−iπζ) for ζ ∈ I (recall the branches

are fixed by the condition 0 < arg ζ < 2π. They apply (2.4.54) to (2.4.53) to obtain the relevant

asymptotics, which due to the triangular structure of the jump matrices remain the same in the

sectors I and II,

Ψ
(I)
1 (ζ) = Ψ

(II)
1 (ζ) (2.4.55)

=

I +
1

ζ

 α2
1 − β2

1
Γ(1+α1−β1)

Γ(α1+β1) eiπ(β1+4α1)

−Γ(1+α1+β1)
Γ(α1−β1) e−iπ(β1+4α1) −(α2

1 − β2
1)

+O(ζ−2)


× ζ−β1σ3e−ζσ3/2

eiπ(2β1+α1) 0

0 e−iπ(β1+2α1)

 ,

ζ →∞, ζ ∈ I,II, α1 ± β1 6= −1,−2, . . . .

The asymptotics in the remaining sectors can be found using the relevant jump matrices. Substi-

tuting these asymptotics into the condition on E(z) (see (2.4.28)),

Pz1(z)N−1(z) = E(z)Ψ1(ζ)F1(z)−σ3z±nσ3/2N−1(z) = I + o(1), (2.4.56)

(with + for |z| < 1, and − for |z| > 1), gives

E(z) = N(z)ζβ1σ3F σ31 (z)z
−nσ3/2
1

e−iπ(2β1+α1) 0

0 eiπ(β1+2α1)

 , for ζ ∈ I,II. (2.4.57)

The matrix E(z) for the remaining sectors can be computed using the relevant asymptotics which

are obtained using (2.4.55), see [14, Equations (4.42)-(4.50)] for those details.

Now we follow the authors to obtain the expansions in u = z − z1, as u → 0, which are unique

to our problem. From (2.4.29), (2.4.15), (2.4.36), (2.4.30), recall also (2.2.2) and the Wiener-Hopf

factorisation of V (z) = exp
{∑∞

k=0 Vkz
k
}
eV0 exp

{∑∞
k=0 V−kz

−k},
F1(z) = exp {log a(z1; t)/2} e−3iπα1/2z−α1

1 uα1 (1 +O(u)) , ζ ∈ I, (2.4.58)

D(z) = uα1+β1z
−(α1+β1)
1 e−iπ(α1+β1)(z1 − et)(α0+β0)e−iπ(α0+β0)
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× exp

{ ∞∑
k=0

Vkz
k
1

}
(1 +O(u)) , (2.4.59)

ζ(z) = n log
z

z1
= n

u

z1
+O(u2) = n

u

z1
(1 +O(u)). (2.4.60)

Putting them together we obtain the following,

(
D(z)

ζβ1F1(z)

)2

= eV0
exp

{∑∞
k=1 Vkz

k
1

}
exp

{∑∞
k=1 V−kz

−k
k

}(z1 − et)(α0+β0)(z1 − e−t)−(α0−β0)zα0−β0
1

× e−iπ(α0+β0)eiπ(α1−2β1)n−2β1(1 +O(u)), ζ ∈ I.

= eV0
exp

{∑∞
k=1 Vkz

k
1

}
exp

{∑∞
k=1 V−kz

−k
k

}(1− e−tz1)(α0+β0)(1− e−tz−1
1 )−(α0−β0)

× et(α0+β0)eiπ(α1−2β1)n−2β1(1 +O(u)), ζ ∈ I. (2.4.61)

From (2.4.57) it can be seen that detE(z) = eiπ(α1−β1) (this holds for all sections I-VIII of the

ζ-plane in fact). We also note that det Ψ1(ζ) = e−iπ(α1−β1). This can be seen from Liouville’s

theorem, the function det Ψ1(ζ) has no jumps (verifying directly from the jump conditions in (Ψ12)

above), the singularity at 0 is removable as Reα1 > −1/2 (by looking at the determinant of (2.4.49))

and the value of the function follows from computing the determinant of (2.4.55). Those two facts,

(2.4.42) and that detAσ3 = 1 for any matrix A, give detPz1(z) = 1, making Pz1(z) unique (indeed,

by the usual argument, if detPz1(z) = 1 its inverse exists and it follows that Pz1(z)P̃z1(z) ≡ I

by Liouville’s). We also note that S(z)Pz1(z)−1 is analytic in the neighbourhood of Uz1 , we will

need this for the final R-H problem in Section 2.4.5. By looking at (2.4.49), (2.4.50) and (2.4.6)-

(2.4.11), it can be seen that the singularity at z1 is at most O(|z − z1|2α1) or O(log |z − z1|), but

by the construction of Pz1(z) (which as you recall, had the same jumps as S(z)), the matrix-valued

function S(z)Pz1(z)−1 has no jumps in the neighbourhood of z1, thus the singularity is removable.

Note that the error term in (2.4.56), o(1) = n−Reβ1σ3O(n−1)nReβ1σ3 , which is o(1) if −1/2 <

Reβ1 < 1/2. We now compute the first correction term ∆1(z) in the asymptotic series in inverse

powers of n of (2.4.56),

Pz1(z)N−1(z) = I + ∆1(z) + n−Reβ1σ3O(n−2)nReβ1σ3 (2.4.62)
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A full series can be found by considering further terms in (2.4.55). We start by denoting by Eij and

Ψ1,ij , i, j = 1, 2, the matrix elements of E(z) and the asymptotic expansion of Ψ1(ζ), (2.4.55). In

what follows, we only compute using the values valid in sector I (equivalently, where appropriate

|z| < 1); the expression for the asymptotic series extends to the whole boundary ∂Uz1 by analytic

continuation by a consideration of other sectors. Multiplying out the matrices in (2.4.57) we get

E11 = E22 = 0, and

E12 = D(z)ζ−β1F−1
1 z

n/2
1 eiπ(β1+2α1), (2.4.63)

E21 = −E−1
12 e

iπ(α1−β1). (2.4.64)

Further, multiplying the matrices in (2.4.56),

Pz1(z)N−1(z) =

E12Ψ1,22F1z
−n/2D(z)−1 −E12Ψ1,21F

−1
1 zn/2D(z)

E21Ψ1,12F1z
−n/2D(z)−1 −E21Ψ1,11F

−1
1 zn/2D(z)

 , (2.4.65)

and substituting in (2.4.63),(2.4.64) and using (2.4.55) for Ψ1,ij gives,

∆1(z) =
1

ζ

 −(α2
1 − β2

1) zn1
Γ(1+α1+β1)

Γ(α1−β1)

(
D(z)

ζβ1F1

)2
eiπ(2β1−α1)

−zn1
Γ(1+α1−β1)

Γ(α1+β1)

(
D(z)

ζβ1F1

)−2
e−iπ(2β1−α1) (α2

1 − β2
1)

 . (2.4.66)

Later on we will need the 12 element of the correction term and so we write it down in detail here,

(∆1(z))12 =
1

ζ
zn1 e

V0(1− z1e
−t)(α0+β0)(1− e−tz−1

1 )−(α0−β0) exp

{ ∞∑
k=1

Vkz
k
1

}
exp

{
−
∞∑
k=1

V−kz
−k
k

}

× et(α0−β0)n−2β1 Γ(1 + α1 + β1)

Γ(α1 − β1)
(1 +O(u)), (2.4.67)

and we also note,
1

ζ
=

z1

n(z − z1)
+

1

2n
+O(z − z1), z → z1. (2.4.68)

2.4.4.2 Parametrix at point z0 = 1

Before we proceed with the local parametrix near the point z0, we first look at the R-H problem

for Ψ(z)—the problem for Painlevé V—which will play a crucial role in finding the solution to the

problem for the local parametrix. This problem was presented and solved in [11, Section 1.3], we

provide a short summary of it here for the benefit of the reader. We will also use some of the
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details from [11, Section 4.1,4.2] to compute some additional details that are relevant to solving our

problem.

The parametrix Pz0 will be constructed for 0 < t < t0, for t0 sufficiently small. Similarly to

the paramtetrix at z1, it will satisfy the same jump conditions as the R-H problem for S(z) in the

neighbourhood Uz0 of z0, which has a sufficiently small, fixed radius. And we will have a matching

condition with the R-H problem for N(z) on the boundary of Uz0 (referred to as ∂Uz0 , which will

be determined by an analytic (in Uz0) matrix function E(z)).

Riemann-Hilbert Problem for Painlevé V

Here, we will be looking at the solution of the following second order ODE,

(
x
d2σ

dx2

)2

=

(
σ − xdσ

dx
+ 2

(
dσ

dx

)2

+ 2α0
dσ

dx

)2

− 4

(
dσ

dx

)2(dσ
dx

+ α0 + β0

)(
dσ

dx
+ α0 − β0

)
,

(2.4.69)

which is the σ-form of the Painlevé V equation,

uxx =

(
1

2u
+

1

u− 1

)
u2
x −

1

x
ux +

(u− 1)2

x2

(
Au+

b

u

)
+
Cu

x
+D

u(u+ 1)

u− 1
, (2.4.70)

which was produced by Jimbo, Miwa, Okamoto (see [28,29]). With regards to the R-H problem we

are considering, we have the following parameters for the equation above,

A =
1

2
(α0 − β0)2, B = −1

2
(α0 + β0)2, C = 1 + 2β0, D = −1

2
. (2.4.71)

The solution of (2.4.69), the function σ(x), can be constructed explicitly in terms of the R-H

problem below. We consider Γ = ∪6
j=1Γj ⊂ C as the contour for this problem (see Figure 2.4),

where
Γ1 = 1

2 + eiπ/4R+, Γ2 = 1
2 + ei3π/4R+, Γ3 = 1

2 + ei5π/4R+,

Γ4 = 1
2 + ei7π/4R+, Γ5 = (1,+∞), Γ6 = (0, 1).

(2.4.72)

The contours Γ1, . . . ,Γ5 are oriented towards infinity and Γ6 is oriented to the right. As before, we

assume that Reα0 > −1/2. Consider the following R-H problem.

Riemann-Hilbert problem for Ψ0

(Ψ01) Ψ0 : C \ Γ→ C2×2 is analytic.
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Γ6

−
+0 Γ5

−
+ 1

Γ3

− +

Γ1

−+

Γ2

+ −

Γ4

− +

(
1 eiπ(α0−β0)

0 1

)(
1 0

−e−iπ(α0−β0) 1

)

(
1 0

eiπ(α0−β0) 1

) (
1 −e−iπ(α0−β0)

0 1

)
e2πiβ0σ3e−πi(α0−β0)σ3

I
II

III

IV
V

Figure 2.4: Jump contour and jump matrices for the Painleve V R-H problem for Ψ0

(Ψ02) Ψ0 has continuous boundary values on Γ \ {0, 1/2, 1}, and they are related by the following

jump conditions,

Ψ0,+(ζ) = Ψ0,−(ζ)

1 eπi(α0−β0)

0 1

 , for ζ ∈ Γ1, (2.4.73)

Ψ0,+(ζ) = Ψ0,−(ζ)

 1 0

−e−πi(α0−β0) 1

 , for ζ ∈ Γ2, (2.4.74)

Ψ0,+(ζ) = Ψ0,−(ζ)

 1 0

eπi(α0−β0) 1

 , for ζ ∈ Γ3, (2.4.75)

Ψ0,+(ζ) = Ψ0,−(ζ)

1 −e−πi(α0−β0)

0 1

 , for ζ ∈ Γ4, (2.4.76)

Ψ0,+(ζ) = Ψ0,−(ζ)e2πiβ0σ3 , for ζ ∈ Γ5, (2.4.77)

Ψ0,+(ζ) = Ψ0,−(ζ)e−πi(α0−β0)σ3 , for ζ ∈ Γ6, (2.4.78)

(Ψ03) Ψ0 has the following asymptotic behaviour as ζ →∞, for some matrices C1 = C1(x, α0, β0),

C2 = C2(x, α0, β0),

Ψ0(ζ) =

(
I +

C1

ζ
+
C2

ζ2
+O(ζ−3)

)
ζ−β0σ3e−(x/2)ζσ3 . (2.4.79)
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(Ψ04) Ψ0 has the following asymptotic behaviour close to the following points,

(Ψ04.1) Ψ0(ζ) = O

|ζ|(α0−β0)/2 |ζ|−(α0−β0)/2

|ζ|(α0−β0)/2 |ζ|−(α0−β0)/2

 , as ζ → 0, (2.4.80)

(Ψ04.2) Ψ0(ζ) = O

|ζ − 1|−(α0+β0)/2 |ζ − 1|(α0+β0)/2

|ζ − 1|−(α0+β0)/2 |ζ − 1|(α0+β0)/2

 , as ζ → 1, (2.4.81)

and Ψ0 is bounded near ζ = 1/2.

Let Lj denote the jump matrices in the jump conditions above, for j = 1, . . . , 6, corresponding to

each Γj . In all cases we have that detLj = 1, and so,

(det Ψ0)+(ζ) = (det Ψ0)−(ζ) detLj , for each j = 1, . . . , 6

= (det Ψ0)−(ζ).

Thus, det Ψ0(ζ) is analytic in C. And, det Ψ0(ζ) = 1 since det Ψ0(ζ) = 1 +O(ζ−1) as ζ →∞, thus

using (2.4.79), we have that trC1 = 0. In light of this, let us denote the elements of the matrix C1

by,

C1(x) =

q(x) r(x)

t(x) −q(x)

 . (2.4.82)

Now, define the following functions, v and u in terms of the matrix elements of C1,

v(x) =
α0 + β0

2
− q(x)− xr(x)t(x) (2.4.83)

u(x) = 1 +
xt

(2β0 + 1− x)t(x) + xt′(x)
. (2.4.84)

It was shown in [11, Section 4.3] that the solution to the Painlevé V equation above can be written

as,

σ(x) =

∫ +∞

x
v(ξ)dξ. (2.4.85)

This function plays a crucial role in describing transition asymptotics, as we will find out later on.
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)
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Figure 2.5: Jump contour and jump matrices for the Φ-R-H problem

The Parametrix at z0

Let us assume that Ψ0(ζ) solves the R-H problem for Ψ0 above and define

Φ(λ;x) = e
x
4
σ3x−β0σ3Ψ0

(
λ

x
+

1

2
;x

)
G(λ;x)

1
2
σ3e±

πi
2

(α0−β0)σ3 , for ± Imλ > 0, (2.4.86)

respectively. The function G(λ;x) is defined to be,

G(λ;x) =
(
λ+

x

2

)−(α0−β0) (
λ− x

2

)α0+β0
eλe−πi(α0−β0), x > 0, (2.4.87)

and is analytic in C \ ((−∞,−x/2] ∪ [x/2,+∞)). We choose −π < arg(λ + x/2) < π and 0 <

arg(λ − x/2) < 2π. The matrix function Φ = Φ(λ;x) defined above, solves the R-H problem for

x > 0 below.

Riemann-Hilbert problem for Φ

(Φ1) Φ : C \∪4
j=1e

πi(2j−1)/4R+ → C2×2 is analytic, with the rays eπi(2j−1)/4R+ oriented as shown

in Figure 2.5.

(Φ2) Φ has continuous boundary values on ∪4
j=1e

πi(2j−1)/4R+ \ {0}, and they are related by the

following jump conditions,

Φ+(λ) = Φ−(λ)

1 G(λ : x)−1

0 1

 , as λ ∈ eπi/4R+ ∪ e7πi/4R+, (2.4.88)
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Φ+(λ) = Φ−(λ)

 1 0

−G(λ;x) 1

 , as λ ∈ e3πi/4R+ ∪ e5πi/4R+ (2.4.89)

(Φ3) Φ has the following behaviour as λ→∞,

Φ(λ) = I +O(λ−1). (2.4.90)

(Φ4) Φ is bounded near 0.

The following result was proven by Claeys, Its and Krasovsky and can be found in [11, Proposition

3.1]. It reads as follows.

Proposition 2.4.3.

• If Reα0 > −1/2, the R-H problem for Φ is uniquely solvable for all but possibly a finite number

of positive x−values {x1, . . . , xk}, where xj = xj(α0, β0) and k = k(α, β)

• If α0 > −1/2 (Imα0 = 0) and Reβ0 = 0, the R-H problem for Φ is uniquely solvable for all

x > 0.

• If Reα0 > −1/2, the asymptotic condition (2.4.90) for Φ is valid uniformly for x ∈ (0,+∞)

provided that x remains bounded away from the set {x1, . . . , xk}.

We now transform the jump matrices for Φ into the jump matrices for S near z0 = 1. First of

all, notice that the off-diagonal entries of the jump matrices for Φ have branch points at ±x/2, and

the ones for S have the branch points at e±t. We thus define the following conformal mapping in

the neighbourhood of z0,

λ(z) =
x

2t
log(z), z ∈ Uz0 , (2.4.91)

which maps e−t to −x/2, et to x/2 and 1 to 0. Again, we take the branch of the logarithm such that

log z > 0 for z > 1, and the branch cut is along the negative real axis. We also need that eλ(z) = zn

and therefore,

x = 2nt. (2.4.92)
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We choose the contours Σ1 and Σ2 near 1, such that λ maps Σ1 ∪ Σ2 onto the jump contour

∪4
j=1e

πi(2j−1)/4R+ for Φ. We look for the parametrix Pz0 of the following form,

Pz0(z) = E(z)Φ(λ(z); 2nt)W (z), (2.4.93)

where E(z) is an analytic function in Uz0 and W (z) is given by

W (z) =


−G(λ(z))−

1
2
σ3z

n
2
σ3f(z)−

1
2
σ3σ3, for |z| < 1,

G(λ(z))−
1
2
σ3z

n
2
σ3f(z)

1
2
σ3σ1, for |z| > 1.

(2.4.94)

The function W (z) is analytic in Uz0 \T, as λ(et) = x/2 and λ(e−t) = −x/2, and the branch points

of G cancel out with the branch points of f .

If E(z) is analytic in Uz0 then Pz0(z) satisfies the same jump conditions as the matrix S(z) with

the jump conditions given in the R-H problem for S(z).

The R-H problem for Φ is not solvable for a finite set of values {x1, . . . , xk} and thus we need

the condition that x = 2nt does not belong to this set of problematic values of x, for more detail

see Theorem 1.5.2.

We now look to fix the matrix E(z) in a way that makes the parametrix Pz0(z) as defined in

(2.4.93) agree with the R-H problem for N(z ) on the boundary of Uz0 . Let us then consider the

behaviour of Pz0(z) on ∂Uz0 , starting with (2.4.91) we have that,

|λ(z)| = |n log z|

> n| log z|, | log z| < c for z ∈ ∂Uz0 , and c > 0

> cn.

Thus using Proposition 2.4.3, as n → ∞ and if 2nt stays bounded away from {x1, . . . , xk}, we can

use the asymptotic behaviour of Φ in (2.4.90) to give,

Pz0(z) = E(z)(I +O(n−1))W (z), as z →∞, (2.4.95)

uniformly for 0 < t < t0 and z ∈ ∂Uz0 . For a t0 sufficiently small, it is safe to assume that the points

e±t lie inside Uz0 , it is also safe to assume that these points lie at a distance which is bounded from
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below from ∂Uz0 . From (2.4.94) and (2.4.87) we obtain the following,

W (z) = n−β0



O(1) 0

0 O(1)

 , |z| < 1,

 0 O(1)

O(1) 0

 , |z| > 1,

(2.4.96)

as n→∞ uniformly for 0 < t < t0 and uniformly for z ∈ ∂Uz0 \ T. We set,

E(z) = N(z)W (z)−1, (2.4.97)

it can be verified using the jumps for N(z) and W (z) across T, that E(z) is analytic in the whole

neighbourhood U z0 of 1. Using (2.4.14) and (2.4.96), we have that,

E(z) =

 0 O(1)

O(1) 0

nβ0σ3 (2.4.98)

as n → ∞ uniformly for 0 < t < t0 and z ∈ ∂Uz0 . Using this and (2.4.95), we have the following

asymptotics for the matching condition for z ∈ ∂Uz0 as n→∞,

Pz0(z)N(z)−1 = E(z)(I +O(n−1))E(z)−1 = I + n−β0σ3O(n−1)nβ0σ3 , (2.4.99)

uniformly for 0 < t < t0 and if 2nt is away from the set {x1, . . . , xk}.

We also note here that S(z)P−1
z0 (z) is analytic in the neighbourhood of Uz0 , which we need for

the final R-H problem in Section 2.4.5. As Pz0(z) has the same jumps as S(z) inside Uz0 it follows

that any singularity at z = 1 is removable.

Similarly to the parametrix at z1, we will now compute the first correction term ∆1(z) in the

asymptotic series in inverse powers of n,

Pz0(z)N−1(z) = I + ∆1(z) + n−Reβ0σ3O(n−2)nReβ0σ3 . (2.4.100)
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Using (2.4.93), (2.4.97) and (2.4.14),

Pz0(z)N−1(z) =


D(z)σ3

 0 1

−1 0

W (z)−1Φ(λ(z);x)W (z)

0 −1

1 0

D(z)−σ3 , for |z| < 1,

D(z)σ3W (z)−1Φ(λ(z);x)W (z)D(z)−σ3 , for |z| > 1,

.

(2.4.101)

Recall (2.4.94) and denote the matrix elements of Φ(λ(z);x) =: Φij for i, j = 1, 2 andG(λ(z), x) =: G

to save space,

Pz0(z)N−1(z) =



 Φ22 D(z)2G−1znf(z)−1Φ21

D(z)−2Gz−nf(z)Φ12 Φ11

 for |z| < 1

 Φ22 D(z)2G−1znf(z)Φ21

D(z)−2Gz−nf(z)−1Φ12 Φ11

 for |z| > 1

(2.4.102)

We now look at the behaviour of these as z → e∓t. We denote by u = z − e∓t, choose the

appropriate region |z| ≶ 1 and take u → 0. We obtain the following, recall the Szegő function

(2.4.13) and (2.4.15),

D(z) =


(
e−t−z1
z1eiπ

)α1+β1 (
e−t − et

)α0+β0 e−iπ(α0+β0) exp
{∑∞

k=0 Vke
−tk} (1 +O(u)), z→e−t

|z|<1,(
et−z1
et

)−(α1−β1) (
et − e−t

)−(α0−β0)
et(α0−β0) exp

{
−
∑−1

k=−∞ Vke
tk
}

(1 +O(u)), z→et
|z|>1,

=


(
1− z−1

1 e−t
)α1+β1 (

1− e−2t
)α0+β0 et(α0+β0) exp

{∑∞
k=0 Vke

−tk} (1 +O(u)), z→e−t
|z|<1,(

1− z1e
−t)−(α1−β1) (

1− e−2t
)−(α0−β0)

exp
{
−
∑∞

k=1 V−ke
−tk} (1 +O(u)), z→et

|z|>1.

(2.4.103)

By (2.4.87),

G(λ(z);x = 2nt) = n2β0
(

log
z

e−t

)−(α0−β0) (
log

z

et

)α0+β0
zne−iπ(α0−β0),

=


n2β0u−(α0−β0)(2t)α0+β0e−tne−t(α0−β0)e−2πiβ0(1 +O(u)), u→0

z→e−t,

n2β0uα0+β0(2t)−(α0−β0)etne−t(α0+β0)e−iπ(α0−β0)(1 +O(u)), u→0
z→et.

(2.4.104)
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Now considering the symbol (2.2.1) and (2.4.30),

f(z; t) =



eV (e−t)(1− z−1
1 e−t)2α1(1− e−2t)α0+β0uα0−β0et(α1−β1)

×e2tα0eiπ(α1−β1)zα1−β1
1 (1 +O(u)), u→0

z→e−t,

eV (et)(1− z1e
−t)2α1(1− e−2t)α0+β0uα0+β0et(α1+β1)

×e−iπ(α1+β1)e−iπ(α1+β1)z
−(α1+β1)
1 (1 +O(u)), u→0

z→et.

(2.4.105)

For what follows, we only need the 12 matrix element of ∆1(z), which we give in detail. The other

elements can be easily computed if needed, using the information above. Combining the above with

(2.4.93), as z → e−t,

(∆1(z))12 = (1− z−1
1 e−t)2β1(1− e−2t)α0+β0 exp

{ ∞∑
k=0

Vke
−tk

}
exp

{
−
∞∑
k=1

V−ke
tk

}

× et(α0+β0)e−t(α1−β1)e−2πiβ0e−iπ(α1−β1)z
−(α1−β1)
1 (2t)−(α0+β0)n−2β0

× Φ21

(
λ(z → e−t);x = 2nt

)
(1 +O(u)), (2.4.106)

and as z → et,

(∆1(z))12 = (1− z1e
−t)2β1(1− e−2t)−(α0−β0) exp

{
−
∞∑
k=1

V−ke
−tk

}
exp

{ ∞∑
k=0

Vke
tk

}

× et(α0+β0)et(α1+β1)e−2πiβ0e−iπ(α1+β1)z
−(α1+β1)
1 (2t)α0−β0n−2β0

× Φ21

(
λ(z → et);x = 2nt

)
(1 +O(u)). (2.4.107)

All that is left to do now is to find the appropriate asymptotics for Φ(λ, x). We will find two

asymptotic expansions below, both as λ′ →∞,

Φ(λ′) = I +
C1

λ′
+O

(
(λ′)−2

)
, (2.4.108)

one will hold uniformly for 0 < x < δ and the other will hold uniformly for x > C, where δ, C > 0

and λ′(z) = λ(z)± x
2 . After that, judging by the similarities in the two asymptotic expansions, we

will attempt to give a C1 for the expansion above that will asymptotically match both cases.
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Asymptotics for Φ as x→∞

For this case we do not require any additional details. The authors have found an expansion in [11,

Section 4.1], uniform for x > C, C > 0, which has sufficient detail for our use. Specifically they have

found an expansion in ζ for a function,

Φ̃(ζ) = Φ(xζ = λ;x). (2.4.109)

They obtained the first coefficient C̃1,

Φ̃(ζ) = I +
C̃1

ζ
+O(ζ−2), as ζ →∞, (2.4.110)

which is given by,

C̃1 =

 x−2+2αe−x

Γ(α0−β0)Γ(α0+β0)

(
1 +O

(
1
x

))
−x−1+α0−β0e−x/2 e−2πiβ0

Γ(α0+β0)

(
1 +O

(
1
x

))
x−1+α0+β0e−x/2 e2πiβ0

Γ(α0−β0)

(
1 +O

(
1
x

)) −x−2+2αe−x

Γ(α0−β0)Γ(α0+β0)

(
1 +O

(
1
x

))
 . (2.4.111)

Via the transformation ζ 7→ λ
x we obtain the following for the 21 element of the expansion for Φ,

Φ21(λ;x) = xα0+β0e−x/2
e2πiβ0

Γ(α0 − β0)
λ−1

(
1 +O

(
1

x

))
+O

(
x2

λ2

)
, as λ→∞. (2.4.112)

uniformly for x > C > 0. Translating λ by ±x
2 makes no difference, thus we also have,

Φ21(λ′;x) = xα0+β0e−x/2
e2πiβ0

Γ(α0 − β0)

(
λ′
)−1

(
1 +O

(
1

x

))
+O

(( x
λ′

)2
)
, as λ′ →∞. (2.4.113)

uniformly for x > C > 0.

Asymptotics for Φ as x→ 0

For this case we will use the analysis that was performed in [11, Sections 4.2] to find asymptotics

of Ψ0 and Φ as x → 0. We go back to the R-H problem for Ψ0, (Ψ01)-(Ψ04)—equations (2.4.73)-

(2.4.81)—which has an intimate connection to the function Φ(λ(z);x) via (2.4.86).

We denote by Ψ0,I, . . . ,Ψ0,V the analytic continuation of Ψ0 from the relevant sectors I,. . . ,V in
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Γ̂6
−
+−x Γ̂5

−
+0

Γ̂3

− +

Γ̂1

−+

Γ̂2

+ −

Γ̂4

− +

(
1 eiπ(α0−β0)

0 1

)(
1 0

−e−iπ(α0−β0) 1

)

(
1 0

eiπ(α0−β0) 1

) (
1 −e−iπ(α0−β0)

0 1

)
e2πiβ0σ3e−πi(α0−β0)σ3

I′
II′

III′

IV′
V′

Figure 2.6: Jump contour and jump matrices for the Ψ̂ R-H problem

Figure 2.4 to C \ [0,+∞) and consider the following function,

Ψ̂(λ̂;x) := e(x/2)σ3x−β0σ3 ×



Ψ0,I(
λ
x + 1;x) for λ̂ in region I′,

Ψ0,II(
λ
x + 1;x) for λ̂ in region II′,

Ψ0,III(
λ
x + 1;x) for λ̂ in region III′,

Ψ0,IV(λx + 1;x) for λ̂ in region IV′,

Ψ0,V(λx + 1;x) for λ̂ in region V′.

(2.4.114)

We denote λ̂(z) := λ(z)− x
2 . The contour is translated by a half in the ζ-plane and then by realising

that ζ(z) = λ(z)
x (Note well that the ζ(z) here is not the same as in the R-H problem for Ψ1), it is

transformed into a contour in the λ̂-plane (see Figure 2.6 and compare with Figure 2.4). The main

thing to note here is that the intersection of the contour lines in now at λ̂ = 0 as opposed to ζ = 1
2 ,

i.e. λ = x
2 .

The following R-H problem for Ψ̂ follows straightforwardly from the Ψ0 problem (Ψ01)-(Ψ04).

Riemann-Hilbert Problem for Ψ̂

(Ψ̂1) Ψ̂ : C \ Γ̂→ C2×2 is analytic. Where Γ̂ := ∪6
j=1Γ̂j and

Γ̂1 = eiπ/4R+, Γ̂2 = e3iπ/4R+, Γ̂3 = e5iπ/4R+,

Γ̂4 = e7iπ/4R+, Γ̂5 = R+, Γ̂6 = (−x, 0).
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(Ψ̂2) Ψ̂ has continuous boundary values on Γ̂ \ {−x, 0}, and they are related by the following

jump conditions,

Ψ̂+(λ̂) = Ψ̂−(λ̂)

1 eπi(α0−β0)

0 1

 , for λ̂ ∈ Γ̂1, (2.4.115)

Ψ̂+(λ̂) = Ψ̂−(λ̂)

 1 0

−e−πi(α0−β0) 1

 , for λ̂ ∈ Γ̂2, (2.4.116)

Ψ̂+(λ̂) = Ψ̂−(λ̂)

 1 0

eπi(α0−β0) 1

 , for λ̂ ∈ Γ̂3, (2.4.117)

Ψ̂+(λ̂) = Ψ̂−(λ̂)

1 −e−πi(α0−β0)

0 1

 , for λ̂ ∈ Γ̂4, (2.4.118)

Ψ̂+(λ̂) = Ψ̂−(λ̂)e2πiβ0σ3 , for λ̂ ∈ Γ̂5, (2.4.119)

Ψ̂+(λ̂) = Ψ̂−(λ̂)e−πi(α0−β0)σ3 , for λ̂ ∈ Γ̂6, (2.4.120)

(Ψ̂3) Ψ̂0 has the following asymptotic behaviour as λ̂→∞,

Ψ̂(λ̂) =
(
I +O(λ̂−1)

)
λ̂−βσ3e−(1/2)λ̂σ3 . (2.4.121)

(Ψ̂4) Ψ̂ has the following asymptotic behaviour close to the following points,

(Ψ̂4.1) Ψ̂(λ̂) = O

|λ̂+ x|(α0−β0)/2 |λ̂+ x|−(α0−β0)/2

|λ̂+ x|(α0−β0)/2 |λ̂+ x|−(α0−β0)/2

 , as λ̂→ −x, (2.4.122)

(Ψ̂4.2) Ψ̂(λ̂) = O

|λ̂|−(α0+β0)/2 |λ̂|(α0+β0)/2

|λ̂|−(α0+β0)/2 |λ̂|(α0+β0)/2

 , as λ̂→ 0, λ̂ ∈ I′,V′, (2.4.123)

and for λ̂ in other sectors we apply the appropriate jump conditions to (2.4.123).

In [11] the authors then solve the problem for Ψ̂ using the same steepest descent techniques as

are being used to solve the main problem (notice the ’Inception’ style situation). For small values

of x, they construct a global and a local parametrix, match them on the boundary of a small

neighbourhood of λ̂ = 0, denoted by Uε (this neighbourhood contains also [−x, 0]), and show the
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final R-H problem is a small norm R-H problem, thus solvable. We will summarise the key points

here, only providing the details that we will need for our own computation.

Riemann-Hilbert Problem for M (Global Parametrix for the Ψ̂ R-H problem)

(M1) M : C \ (∪5
j=1Γ̂j)→ C2×2 is analytic.

(M2) M has continuous boundary values on (∪5
j=1Γ̂j)\{0} related by the following jump conditions,

M+(λ̂) = M−(λ̂)

1 eπi(α0−β0)

0 1

 , for λ̂ ∈ Γ̂1, (2.4.124)

M+(λ̂) = M−(λ̂)

 1 0

−e−πi(α0−β0) 1

 , for λ̂ ∈ Γ̂2, (2.4.125)

M+(λ̂) = M−(λ̂)

 1 0

eπi(α0−β0) 1

 , for λ̂ ∈ Γ̂3, (2.4.126)

M+(λ̂) = M−(λ̂)

1 −e−πi(α0−β0)

0 1

 , for λ̂ ∈ Γ̂4, (2.4.127)

M+(λ̂) = M−(λ̂)e2πiβ0σ3 , for λ̂ ∈ Γ̂5, (2.4.128)

(M3) M has the following behaviour at infinity,

M(λ̂) =
(
I +O(λ̂−1)

)
λ̂−β0σ3e−(1/2)λ̂σ3 , as λ̂→∞. (2.4.129)

The problem is explicitly solvable in terms of the confluent hypergeometric function (2.4.51). We

give the solution as it was presented in [11, Section 4.2.1], but only for sector I′ (compare with the

analysis performed in Section 2.4.4.1), details of other sectors can be found in [11], or by applying

the appropriate jumps. We define the following matrix-valued function,

H(λ̂) :=

e−iπ(2β0+α0) 0

0 eiπ(β0+2α0)

 e−(iπ/2)α0σ3

×
(

λ̂α0ψ(α0 + β0, 1 + 2α0, λ̂)eiπ(2β0+α0)

λ̂−α0ψ(1− α0 + β0, 1− 2α0, λ̂)eiπ(β0−3α0) Γ(1+α0+β0)
Γ(α0−β0)
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λ̂α0ψ(1 + α0 − β0, 1 + 2α0, e
−iπλ̂)eiπ(β0+α0) Γ(1+α0−β0)

Γ(α0+β0)

λ̂−α0ψ(−α0 − β0, 1− 2α0, e−iπλ̂)eiπα0

)
× e(iπα0/2)σ3e−λ̂σ3/2, α0 ± β0 6= −1,−2, . . . , (2.4.130)

where ψ(a, b, x) is the confluent hypergeometric function (2.4.51), and Γ(x) is the Euler’s Γ-function.

The solution to the R-H problem for M in the sector I′ is then given by,

M(λ̂) = M1(λ̂) := H(λ̂)

1 −eiπ(α0−β0)

0 1

 , for 0 < arg λ̂ <
π

4
, (2.4.131)

and we denote the matrix elements of M(λ̂) by Mij , i, j = 1, 2 for future use.

The authors then proceed to the construction of a local parametrix at λ̂ = 0, details of which

we do not need here. In particular they prove that for λ̂ ∈ ∂Uε,

P (λ̂;x)M(λ̂)−1 =


I +O(x) +O(x1+2α0), as x→ 0, if 2α0 /∈ Z,

I +O(x log x), as x→ 0, if 2α0 ∈ Z.
(2.4.132)

= I + o(1) as x→ 0, (2.4.133)

which makes the following final R-H problem small-norm for sufficiently small x.

Riemann-Hilbert problem for R

(R1) R : C \ ∂Uε → C2×2 is analytic.

(R2) R has the following jump condition,

R+(λ̂) = R−(λ̂)J(λ̂), for λ̂ ∈ ∂Uε, (2.4.134)

where J(λ̂) = P (λ̂)M(λ̂)−1.

(R3) R(λ̂) = I +O(λ̂−1) as λ̂→∞.

The solvability of this problem implies also through the invertible transformations Ψ0 → Ψ̂ → R

and Ψ0 → Φ that the R-H problems for Φ and Ψ0 are solvable for 0 < x < δ. Further, from the fact

that J(λ̂) = I + o(1) and (R2), it follows that R(λ̂) = 1 + o(1) uniformly for λ̂ ∈ C \ Uε as x → 0.
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This holds in particular at infinity, thus we have that R(λ̂) = I +O(λ̂−1) as λ̂ → ∞ uniformly for

small x.

The following function solves the R-H problem for R(z) above,

R(λ̂) =


Ψ̂(λ̂)M(λ̂)−1 for λ̂ ∈ C \ Uε,

Ψ̂(λ̂)P (λ̂)−1 for λ̂ ∈ Uε.
(2.4.135)

We will now use this to find asymptotics of Ψ̂(λ̂) as λ̂→∞. We rewrite (2.4.86) and (2.4.87) using

λ = λ̂+ x
2 (see the discussion below (2.4.114)). We obtain,

Φ
(
λ = λ̂+

x

2
;x
)

= ex/4σ3x−β0σ3Ψ

(
λ̂

x
+ 1;x

)
G
(
λ̂+

x

2
, x
) 1

2
σ3
e
iπ
2

(α0−β0)σ3 , (2.4.136)

and

G
(
λ̂+

x

2
;x
)

=
(
λ̂+ x

)−(α0−β0)
λ̂α0+β0eλ̂ex/2e−iπ(α0−β0). (2.4.137)

Now using (2.4.114) and (2.4.135),

Φ(λ̂;x) = e−x/4σ3Ψ̂(λ̂;x)G
(
λ̂+

x

2
;x
) 1

2
σ3
e
iπ
2

(α0−β0)σ3

= e−x/4σ3R(λ̂)M(λ̂)G
(
λ̂+

x

2
;x
) 1

2
σ3
e
iπ
2

(α0−β0)σ3 for λ̂ ∈ C \ Uε.

Using the asymptotic behaviour of R(λ̂) = I +O(λ̂−1) as λ̂→∞ and using G := G(λ̂+ x
2 ) to save

space, we obtain,

Φ(λ̂;x) =

e−x/4 (M11(1 +O(λ̂−1)) +M21O(λ̂−1)
)

e−x/4
(
M12(1 +O(λ̂−1)) +M22O(λ̂−1)

)
ex/4

(
M11(1 +O(λ̂−1)) +M21O(λ̂−1)

)
ex/4

(
M12(1 +O(λ̂−1)) +M22O(λ̂−1)

)


×

G 1
2 e

iπ
2

(α0−β0) 0

0 G−
1
2 e−

iπ
2

(α0−β0)


=

e−x/4G 1
2 e

iπ
2

(α0−β0)M11

(
(1 + M21

M11
O(λ̂−1)

)
e−x/4G−

1
2 e−

iπ
2

(α0−β0)M12

(
(1 + M22

M12
O(λ̂−1)

)
ex/4G

1
2 e

iπ
2

(α0−β0)M21

(
(1 + M11

M21
O(λ̂−1)

)
ex/4G−

1
2 e−

iπ
2

(α0−β0)M22

(
(1 + M12

M22
O(λ̂−1)

)
 .

(2.4.138)
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We can find the asymptotics of each Mij as λ̂→∞, but we only concentrate on finding the details

of M21 (finding details of every Mij shows that the ratios above are O(1)). From (2.4.131) and

(2.4.130),

M21 = eiπ(β0+3α0)e−λ̂/2λ̂−α0ψ
(

1− α0 + β0, 1− 2α0, λ̂
)
eiπ(β0−3α0) Γ(1 + α0 + β0)

Γ(α0 − β0)
. (2.4.139)

Using the asymptotics for the confluent hypergeometric function ψ from (2.4.54) we obtain,

M21 = e2iπβ0e−λ̂/2
Γ(1 + α0 + β0)

Γ(α0 − β0)
λ̂−β0 λ̂−1

(
1 +O(λ̂−1)

)
. (2.4.140)

We thus obtain the following asymptotics for the 21 matrix element of the function Φ(λ;x) after

combining (2.4.138), (2.4.140) and (2.4.137),

Φ21(λ̂) = ex/4e2iπβ0(λ̂+ x)

(
α0−β0

2

)
λ̂

(
α0+β0

2

)
eλ̂/2ex/4e−λ̂/2

Γ(1 + α0 + β0)

Γ(α0 − β0)
λ̂−β0 λ̂−1

(
1 +O(λ̂−1)

)
= ex/2e2iπβ0 Γ(1 + α0 + β0)

Γ(α0 − β0)

λ̂−(α0−β02

)(
1 +

x

λ̂

)−(α0−β0
2

)
λ̂
α0−β0

2

 λ̂−1
(

1 +O(λ̂−1)
)

= ex/2e2iπβ0 Γ(1 + α0 + β0)

Γ(α0 − β0)
λ̂−1

(
1 +O(λ̂−1)

)
, as λ̂→∞, (2.4.141)

uniformly for 0 < x < δ, δ > 0. A simple translation λ̂ 7→ λ̃− x verifies also that as λ̃→∞ we also

have,

Φ21(λ̃) = ex/4G1/2
(
λ̃− x;x

)
eiπ/2(α0−β0)M21(λ̃− x)

(
1 +O(λ̃−1)

)
= ex/4

(
λ̃
−
(
α0−β0

2

)
(λ̃− x)

(
α0+β0

2

)
eλ̃/2e−x/4e−iπ/2(α0−β0)

)
eiπ/2(α0−β0)e2iπβ0e−λ̃/2

× Γ(1 + α0 + β0)

Γ(α0 − β0)

(
λ̃− x

)−1−β0 (
1 +O(λ̃−1)

)
= ex/2e2iπβ0 Γ(1 + α0 + β0)

Γ(α0 − β0)

λ̃−(α0−β02

)(
λ̃

(
1− x

λ̃

))(α0−β0
2

)
λ̃−1

(
1− x

λ̃

)−1
(1 +O(λ̂−1)

)
= ex/2e2iπβ0 Γ(1 + α0 + β0)

Γ(α0 − β0)
λ̃−1

(
1 +O(λ̂−1)

)
, as λ̃→∞, (2.4.142)

uniformly for 0 < x < δ, δ > 0.
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Expression for a fixed x

Let us introduce a new function,

K(x) = ex/2
∫ ∞
x

yα0+β0e−ydy. (2.4.143)

It has the following behaviour,

K(x) ∼


e−x/2xα0+β0 , as x→∞,

ex/2Γ(α0 + β0 + 1), as x→ 0.

(2.4.144)

Thus we could useK(x) to write down an expression for Φ21(λ′;x) with fixed x, that is asymptotically

still valid for x small or large. From (2.4.113), (2.4.141), (2.4.142) we obtain,

Φ21(λ′;x) =
e2πiβ0

Γ(α0 − β0)
K(x)

(
λ′
)−1

+O
((
λ′
)−2
)

as λ′ →∞. (2.4.145)

We also note that if x = 2nt, λ̂ = n log z
et and λ̃ = n log z

e−t and for t fixed,

1

λ̂
=

et

n(z − et)
+

1

2n
+O(z − et), z → et, (2.4.146)

and similarly,
1

λ̃
=

e−t

n(z − e−t)
+

1

2n
+O(z − e−t), z → e−t. (2.4.147)

Combining the results from (2.4.106), (2.4.107) and (2.4.141), (2.4.142), we obtain the final expres-

sion for (∆1(z))12 in the expansion of Pz0(z)N−1(z) in inverse powers of n, for z → e−t,

(∆1(z))12 = λ̂−1(1− z−1
1 e−t)2β1(1− e−2t)α0+β0 exp

{ ∞∑
k=0

Vke
−tk

}
exp

{
−
∞∑
k=1

V−ke
tk

}

× et(α0+β0)e−t(α1−β1)e−iπ(α1−β1)z
−(α1−β1)
1 (2t)−(α0+β0) n−2β0

Γ(α0 − β0)
K(2nt), (2.4.148)

and for z → et,

(∆1(z))12 = λ̃−1(1− z1e
−t)2β1(1− e−2t)−(α0−β0) exp

{
−
∞∑
k=1

V−ke
−tk

}
exp

{ ∞∑
k=0

Vke
tk

}
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+

− Σ
′′
1

Figure 2.7: Contour Γ = ∪1
j=0∂Uzj ∪1

j=0 Σj ∪1
j=0 Σ

′′
j

for the R and R̃ R-H problem.

× et(α0+β0)et(α1+β1)e−iπ(α1+β1)z
−(α1+β1)
1 (2t)α0−β0 n−2β0

Γ(α0 − β0)
K(2nt). (2.4.149)

2.4.5 Final Riemann-Hilbert Problem

We assume αj ± βj 6= −1,−2, . . .∀ j = 0, 1. Let

R(z) =


S(z)N−1(z), z ∈ C \ {Uz1 ∪ Uz0 ∪ Γ},

S(z)P−1
z1 (z), z ∈ Uz1 ,

S(z)P−1
z0 (z), z ∈ Uz0 .

(2.4.150)

As was mentioned in Sections 2.4.4.1 and 2.4.4.2, S(z)P−1
z0 (z) and S(z)P−1

z1 (z) are analytic in the

neighbourhoods Uz0 and Uz1 respectively. The function R(z) satisfies the following Riemann-Hilbert

problem, for which the contour Γ is defined in Figure 2.7,

(R1) R(z) : C \ Γ→ C2×2 is analytic.

(R2) R(z) satisfies the following jump conditions,

R+(z) = R−(z)JR(z) for z ∈ Γ. (2.4.151)
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The jump matrices are defined in the following way,

JR(z) = N(z)Jk(z)N(z)−1, with


k = 1 for z ∈ Σ := Σ0 ∪ Σ1,

k = 2 for z ∈ Σ
′′

:= Σ
′′
0 ∪ Σ

′′
1 ,

(2.4.152)

and

JR(z) = Pz1(z)N−1(z), for z ∈ ∂Uz1 , (2.4.153)

JR(z) = Pz0(z)N−1(z), for z ∈ ∂Uz0 . (2.4.154)

Recall from (2.4.4) that J1(z) =

 1 0

z−nf(z; t)−1 1

, J2(z) =

 1 0

znf(z; t)−1 1

.

(R3) R(z) = I +O(1/z) as z →∞.

To find the solution of the R-H problem for R(z), we look at the asymptotic behaviour of the

jump matrices as n→∞. The jump matrices have I + o(1) behaviour at infinity, the problem is a

so-called small norm problem and solution is given in terms of a Neumann series (see [17, Theorem

7.8]).

The jump matrices JR(z) on Σ and Σ
′′ can be estimated uniformly as I+O(e−εn), for a positive

constant ε using the Jk above (2.4.14) and (2.4.15) for 0 < t < t0 and x = 2nt bounded away from

the set {x1, . . . , xk}. Thus these jump matrices already behave the way we require.

On the contour ∂Uz1 , the jump matrix admits a uniform expansion in the inverse powers of n,

conjugated by nβ1σ3z−nσ3/21 ,

JR(z) = I + ∆1(z) + ∆2(z) + · · ·+ ∆k(z) + ∆
(r)
k+1(z) for z ∈ ∂Uz1 . (2.4.155)

Each term ∆k(z) = z
σ3n/2
1 n−σ3β1O(1/n)nσ3β1z

−σ3n/2
1 = O(n2 max1 |Reβ1|−k). To obtain the solution,

we require that JR = I + o(1), i.e. n2 max1 |Reβ1|−1 = o(1), which means that Reβ1 ∈ (−1/2, 1/2).

We have found the asymptotics for Pz0(z)N−1(z) in (2.4.99),

Pz0(z)N(z)−1 = I + n−β0σ3O(n−1)nβ0σ3

= I + ∆1(z) + · · ·+ ∆k(z) + ∆
(r)
k+1(z) for z ∈ ∂Uz0 .
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Again, for this to be of order I + o(1), we need −1
2 < Reβ0 <

1
2 .

However, we need not stipulate that Reβj ∈ (−1
2 ,

1
2). It is possible to find a solution for

Reβj ∈ (q − 1
2 , q + 1

2), for some q ∈ R; i.e. the more general condition when |||β||| < 1. To

accommodate these cases, we consider the following transformation of the R-H problem for R(z)

which was used in [14, Equation (4.63)],

R̃(z) = nωσ3R(z)n−ωσ3 (2.4.156)

where

ω =
1

2

(
min
j=0,1

Reβj + max
j=0,1

Reβj

)
. (2.4.157)

This transformation moves all βj into the strip (−1
2 ,

1
2) making the above asymptotics of the jump

matrices of the order I + o(1). Note well, that the βj are moved only in the conjugation by nβj , and

not in the actual Fisher-Hartwig symbol f(z; t).

Remark 2.4.4. As mentioned before, the solution obtained here only works for the case when the

strength of the jump singularities is contained in the strip of the width strictly less than 1, i.e.

|||β||| < 1. Later on, we consider the case when |||β||| = 1, which is of interest in some applications,

one of which is outlined in Chapter 3. Note that, considering only these two cases does not render

the case |||β||| > 1 unsolvable. On the contrary, this case is already covered if you recall the Tracy-

Basor conjecture from Section 1.4.2. It tells us that through Fisher-Hartwig representation, we can

reduce this to only these two mutually exclusive cases.

Let us look at how the transformation affects the jump conditions of the problem for R(z);

R̃+(z) = nωσ3R+(z)n−ωσ3 = nωσ3R−(z)JR(z)n−ωσ3

= nωσ3R−(z)n−ωσ3nωσ3JR(z)n−ωσ3

= R̃−(z)nωσ3JR(z)n−ωσ3 .

The asymptotic behaviour of the jump matrices on Σ and Σ
′′ remains unchanged by the trans-

formation, J̃R(z) = I +O(e−εn), but with a different ε.

The jump matrices on ∂Uz0 and ∂Uz1 are now of the form,

I + nωσ3∆1(z)n−ωσ3 + nωσ3∆2(z)n−ωσ3 + · · ·+ nωσ3∆k(z)n
−ωσ3 + nωσ3∆

(r)
k+1(z)n−ωσ3 ,
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and the order of each of the terms is O(n2 maxj |βj−ω|−k), which behaves as I + o(1) as we have that

−1
2 < β0 − ω < 1

2 .

This means that we can find the solution to the problem for R̃(z) for β-parameters in the range

Reβj ∈ (q − 1/2, q + 1/2) for any q ∈ R.

Now that we have all the jump matrices of the right order, we can use [17, Theorem 7.8] to get

the Neumann series solution of the problem R̃(z). We have that,

R̃(z) = I +

k∑
p=1

R̃p(z) + R̃
(r)
k+1(z). (2.4.158)

Each R̃p(z), is computed recursively via separate, additive R-H problems. The conditions are that

each R̃p(z) is analytic outside ∂U = ∂Uz0 ∪ ∂Uz1 , R̃p(z) → 0 as z → ∞ for all p and satisfies the

following jump condition,

R̃p,+(z) = R̃p,−(z) +

p∑
i=1

R̃p−i,−(z)nωσ3∆i(z)n
−ωσ3 , (2.4.159)

where we set R̃0(z) = I. The first R-H problem for R̃1(z) satisfies the following conditions:

(R̃11) R̃1(z) : C \ ∂U → C2×2 is analytic.

(R̃12) R̃1(z) satisfies the following jump condition,

R̃1,+(z) = R̃1,−(z) + nωσ3∆1(z)n−ωσ3 for z ∈ ∂U.

(R̃13) R̃1(z)→ 0, as z →∞ .

First, we recall the transformation (2.4.156), and denote,

Rp(z) = n−ωσ3R̃p(z)n
ωσ3 , R(r)

p (z) = n−ωσ3R̃(r)
p (z)nωσ3 . (2.4.160)

We find the solution to this additive R-H problem using the Plemelj formulae (see Theorem 1.2.3)

and the Residue Theorem,

R1(z) =
1

2πi

∫
∂U

∆1(x)dx

x− z
(2.4.161)
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=


A1
z−z1 +

Aet
z−et +

Ae−t
z−e−t , z ∈ C \ ∪1

j=0Uzj ,

A1
z−z1 +

Aet
z−et +

Ae−t
z−e−t −∆1(z), z ∈ Uzj , j = 0, 1,

(2.4.162)

where the contours in the integral are oriented in the negative direction (as seen in Figure 2.7) and

A1, Ae±t are the coefficients in the Laurent expansion of ∆1(z),

∆1(z) =
Ak

z − z1
+B1 +O(z − z1), z → z1, (2.4.163)

and

∆1(z) =
Ae±t

z − e±t
+B1 +O(z − e±t), z → e±t, (2.4.164)

The coefficients A1, Ae±t are given below and B1, Be±t can also be computed explicitly if needed. In

Sections 2.4.4.1 and 2.4.4.2 we computed the 12 entries of ∆1(z) of each parametrix at the points

z1, e
−t and et, they are given by (2.4.67), (2.4.148) and (2.4.149). Using those together with (2.4.68),

(2.4.147) and (2.4.146) respectively, we obtain the 12 elements of the matrices Az1 , Ae−t , Aet ,

Az1 =
z1

n
zn1 e

V0(1− z1e
t)(α0+β0)(1− e−tz−1

1 )−(α0−β0) exp

{ ∞∑
k=1

Vkz
k
1

}
exp

{
−
∞∑
k=1

V−kz
−k
k

}

× et(α0+β0)n−2β1 Γ(1 + α1 + β1)

Γ(α1 − β1)
(1 +O(u)), (2.4.165)

Ae−t =
e−t

n
(1− z−1

1 e−t)2β1(1− e−2t)α0+β0eV0 exp

{ ∞∑
k=1

Vke
−tk

}
exp

{
−
∞∑
k=1

V−ke
tk

}

× et(α0+β0)e−t(α1−β1)e−iπ(α1−β1)z
−(α1−β1)
1 (2t)−(α0+β0) n−2β0

Γ(α0 − β0)
K(2nt)

(
1 +O(n−1)

)
,

(2.4.166)

Aet =
et

n
(1− z1e

−t)2β1(1− e−2t)−(α0−β0)eV0 exp

{ ∞∑
k=1

Vke
tk

}
exp

{
−
∞∑
k=1

V−ke
−tk

}

× et(α0+β0)et(α1+β1)e−iπ(α1+β1)z
−(α1+β1)
1 (2t)α0−β0 n−2β0

Γ(α0 − β0)
K(2nt)

(
1 +O(n−1)

)
.

(2.4.167)
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Next we look at the R-H problem for R̃2(z):

(R̃21) R̃2(z) : C \ ∂U → C2×2 is analytic.

(R̃22) R̃2(z) satisfies the following jump condition,

R̃2,+(z) = R̃2,−(z) + R̃1,−(z)nωσ3∆1(z)n−ωσ3 + nωσ3∆2(z)n−ωσ3 for z ∈ ∂U.

(R̃23) R̃2(z)→ 0, as z →∞ .

We again use the Plemelj formulae (Theorem 1.2.3), the solutions is given by evaluating the following

integral,

R̃2(z) =
1

2πi

∫
∂U

(
R̃1,−(z)nωσ3∆1(z)n−ωσ3 + nωσ3∆2(z)n−ωσ3

) dx

x− z
. (2.4.168)

By noting that each ∆k(z) = O(n2 maxj |Reβj |−k), just as in the paper by [14], and by the fact

that we are using the same transformation also, we can conclude that our error term is in fact the

same [14, Equations (4.66),(4.74)], we have that R̃(r)
k+1(z) = O(|R̃k+1(z)|) +O(|R̃k+2(z)|) and,

R
(r)
3 (z) =

 O(δ/n) +O(δ2) O
(
δmaxk

n−2Re βk

n

)
O
(
δmaxk

n2Re βk

n

)
O(δ/n) +O(δ2)

 , (2.4.169)

where

δ = max
j,k

n2 Re(βj−βk−1). (2.4.170)

2.5 Asymptotics for the determinant if |||β||| < 1

To obtain the asymptotics of the Toeplitz determinant if |||β||| < 1, we now need to go through

reverse transformations. We are only interested in the solution near z = et and z = e−t as this is

what the differential identity (2.3.1) calls for. Thus, in this section we only restrict ourselves to only

those regions. In the Section 2.4.5 we have solved the final R-H problem, providing details for the

first terms in the series R(z) = I +
∑k

p=1Rp(z) +R
(r)
k+1(z). These details will be utilised in finding

asymptotics for the determinant if the seminorm |||β||| = 1. Here however, we only require that

R̃(z) = I +O(n−1) as n→∞ uniformly for z ∈ C \ Γ , which follows from the solution obtained in
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Section 2.4.5. Following the transformations we obtain,

Y (z) =


T (z)znσ3 , z = et,

T (z), z = e−t,

=


S(z)znσ3 , z = et,

S(z), z = e−t,

=


R(z)Pz0(z)znσ3 , z = et,

R(z)Pz0(z), z = e−t,

=


n−ωσ3R̃(z)nωσ3Pz0(z)znσ3 , z = et,

n−ωσ3R̃(z)nωσ3Pz0(z), z = e−t,

=


n−ωσ3(I +O(n−1))nωσ3Pz0(z)znσ3 , z = et,

n−ωσ3(I +O(n−1))nωσ3Pz0(z), z = e−t,

(2.5.1)

=


n−ωσ3(I +O(n−1))nωσ3D(z)σ3W (z)−1Φ(z)W (z)znσ3 , z = et,

n−ωσ3(I +O(n−1))nωσ3D(z)σ3

 0 1

−1 0

W (z)−1Φ(z)W (z), z = e−t.
(2.5.2)

It follows from the R-H problem for R̃(z) that the asymptotics for Y (z) as n→∞ are uniform for

0 < t < t0 for a sufficiently small t0, as long as 2nt remains bounded away from the set of numbers

{x0, x1, . . . , xk}.

It now remains to substitute the asymptotics into the differential identity. We need to evaluate

Y −1Y
′
z at the points z = et and z = e−t Differentiating the expressions in (2.5.1) we obtain,

Y −1Y
′
z =


nσ3
z + z−nσ3P−1P

′
zz
nσ3+

+z−nσ3P−1(z)n−ωσ3(I +O(n−1))−1O(n−1)
′
zn

ωσ3P (z)znσ3 , near et,

P−1P
′
z + P−1(z)n−ωσ3(I +O(n−1))−1nωσ3P (z), near e−t.

(2.5.3)



98 CHAPTER 2. EMERGENCE OF AN ADDITIONAL FISHER-HARTWIG SINGULARITY

Let us define A(z) as follows,

A(z) =


G(λ(z))−1/2zn/2f(z)1/2, for |z| > 1,

−G(λ(z))−1/2zn/2f(z)−1/2, for |z| < 1,

(2.5.4)

and as such, we can write,

W (z) =


A(z)σ3σ1, for |z| > 1,

A(z)σ3σ3, for |z| < 1.

(2.5.5)

We now find, using (2.5.2),

P−1P
′
z =


−σ3

A
′
z
A +W−1Φ−1Φ

′
zW −W−1Φ−1σ3ΦW

(
A
′
z
A + D

′
z
D

)
, near et,

σ3
A
′
z
A +W−1Φ−1Φ

′
zW −W−1Φ−1σ3ΦW

(
A
′
z
A + D

′
z
D

)
, near e−t.

(2.5.6)

(
G−

1
2 (λ(z), 2nt)

)′
z

=
[
(α0 − β0)(n log(z) + nt)−1 − (α0 + β0)(n log(z)− nt)−1 − 1

]
× 1

2

(n
z

)
G(λ(z))−

1
2 (2.5.7)

A
′
z(z) =

[
1

2
(α0 − β0)(n log(z) + nt)−1 − 1

2
(α0 + β0)(n log(z)− nt)−1

](n
z

)
A(z) (2.5.8)

+
1

2
f
′
z(z)f

−1(z)A(z) (2.5.9)

f
′
z(z) = V

′
(z)f(z)− (α1 − β1)z−1f(z) + 2α1(z − z1)−1f(z) (2.5.10)

+ (α0 + β0)(z − et)−1f(z) + (α0 − β0)(z − e−t)−1f(z) + (−α0 + β0)z−1f(z) (2.5.11)

We compute the derivative of |z − z1|2α near e±t using the function hαj (z) from (2.4.30). We have

that (h2
αj )
′
z = 2(hαj )

′
zhαj , where

(hαj )
′
z(z) =

(zzje
ilj )αj/2αj(z − zj)αj−1 − (z − zj)αj (αj2 )(zje

ilj )(zzje
ilj )αj/2−1

(zzjeilj )αj

= αj(z − zj)−1hαj (z)−
αj
2
z−1hαj (z), (2.5.12)
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and the derivative of gβ1,z1(z) is 0 as it’s a piecewise constant function. We proceed, from (2.5.8)

and (2.5.12),

A
′
z

A
(z) =


α0+β0

4 e−t + α0−β0
4 e−t

(
1
t + e−t

sinh t

)
+ 1

2V
′
z (et)− α1−β1

2 e−t + 2α1(et − z1)−1 near et,

α0+β0
4 et

(
1
t + e−t

sinh t

)
+ α0−β0

4 et − 1
2V
′
z (e−t) + α1−β1

2 et − 2α1(e−t − z1)−1 near e−t.
(2.5.13)

Differentiating (2.4.15) gives,

D
′
z

D
(z) =


(−α1 + β1)

(
z1e−t

et−z1

)
− (α0 − β0) e−2t

sinh t −
∑−1

k=−∞ kVke
t(k−1) for z = et,

(α1 + β1) 1
e−t−z1 − (α0 + β0) 1

2 sinh t +
∑∞

k=0 kVke
−t(k−1) for z = e−t.

(2.5.14)

From (2.5.6) we obtain the 22 entry on the matrix,

(
P−1P

′
z

)
22

(et) =
A
′
z

A
(et) +

(
Φ−1Φ

′
z

)
11

(et)−
(

Φ−1σ3Φ
′
z

)
11

(et)

[
A
′
z

A
(et) +

D
′
z

D
(et)

]
,

and

(
P−1P

′
z

)
22

(e−t) = −A
′
z

A
(e−t) +

(
Φ−1Φ

′
z

)
22

(e−t)−
(

Φ−1σ3Φ
′
z

)
22

(e−t)

[
A
′
z

A
(e−t) +

D
′
z

D
(e−t)

]
.

By substituting the results from above in (2.5.6) we obtain,

et
(
P−1P

′
z

)
22

(et) =
α0 + β0

4
+
α0 − β0

4

(
1

t
+

e−t

sinh t

)
+

1

2
etV

′
z (et)− α1 − β1

2
+ α1

et

(et − z1)

+ et
(

Φ−1Φ
′
z

)
11

(et)−
(

Φ−1σ3Φ
′
z

)
11

(et)×
[
α0 + β0

4
+
α0 − β0

4

(
1

t
− e−t

sinh t

)
−(α1 − β1)

(
et + z1

2(et − z1)

)
+ α1

et

et − z1
+

1

2
etV

′
z (et)−

−1∑
−∞

kVke
tk

]
,

and,

e−t
(
P−1P

′
z

)
22

(e−t) = −α0 + β0

4

(
1

t
+

e−t

sinh t

)
− α0 − β0

4
+

1

2
e−tV

′
z (e−t)− α1 − β1

2

+ α1
e−t

(e−t − z1)
+ e−t

(
Φ−1Φ

′
z

)
22

(e−t)−
(

Φ−1σ3Φ
′
z

)
22

(e−t)×
[
α0 − β0

4
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+
α0 + β0

4

(
1

t
− e−t

sinh t

)
−
(
α1 − β1

2

)
+ β1

e−t

e−t − z1
− 1

2
e−tV

′
z (e−t) +

∞∑
k=0

kVke
−tk

]
.

Now, from (2.5.3),

et
(
Y −1Y

′
z

)
22

(et) = −n+ et(P−1P
′
z)22(et) + (Φ̂−1(t)O(1/n)Φ̂(t))22

= −n+
α0 + β0

4
+
α0 − β0

4

(
1

t
+

e−t

sinh t

)
+

1

2
etV

′
z (et)− α1 − β1

2
+ α1

et

et − z1
+ et

(
Φ−1Φ

′
z

)
11

(et)

−
{
α0 + β0

4
+
α0 − β0

4

(
1

t
+

e−t

sinh t

)
− (α1 − β1)

(
et + z1

2(et − z1)

)
+ α1

et

et − z1
+

1

2
etV

′
z (et)

−
−1∑

k=−∞
kVke

tk

}(
Φ−1σ3Φ

)
11

(et) + (Φ̂−1(t)O(1/n)Φ̂(t))22

and

e−t
(
Y −1Y

′
z

)
22

(e−t) = e−t(P−1P
′
z)22(e−t) + (Φ̂−1(t)O(1/n)Φ̂(t))22

= −α0 − β0

4
−
(
α0 + β0

4

)(
1

t
+

e−t

sinh t

)
+

1

2
e−tV

′
z (e−t)− α1 − β1

2
+ α1

e−t

e−t − z1

+ e−t
(

Φ−1Φ
′
z

)
22

(e−t)−
{
α0 − β0

4
+
α0 + β0

4

(
1

t
+

e−t

sinh t

)
− α1 − β1

2
+ β1

e−t

e−t − z1

−1

2
e−tV

′
z (e−t) +

∞∑
k=0

kVke
−tk

}(
Φ−1σ3Φ

)
(e−t) + (Φ̂−1(t)O(1/n)Φ̂(t))22.

Now recall the differential identity (2.3.1),

d

dt
logDn(t) = −(α0 + β0)et

(
Y −1Y

′
z

)
22

(et) + (α0 − β0)e−t
(
Y −1Y

′
z

)
22

(e−t)

= (α0 + β0)n− α2
0 + β2

0

2
− α2

0 − β2
0

2

(
1

t
+

e−t

sinh t

)
+ β0(α1 − β1)

+ α1

[
−(α0 + β0)

et

et − z1
+ (α0 − β0)

e−t

e−t − z1

]
− α0 + β0

2
etV

′
z (et)

+
α0 − β0

2
e−tV

′
z (e−t) + 2nw(x) + (Φ−1σ3Φ

′
z)11(et)×

(
α0 + β0

2

)
×

(
α0 + β0

2
+
α0 − β0

2

(
1

t
− e−t

sinh t

)
+ (α1 − β1) +

β1e
t

et − z1
+
∞∑
k=0

kVke
tk −

−1∑
k=−∞

kVke
tk

)

− (Φ−1σ3Φ
′
z)22(e−t)×

(
α0 − β0

2

)(
−α0 − β0

2
− α0 + β0

2

(
1

t
− e−t

sinh t

)
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−(α1 − β1) +
β1e
−t

e−t − z1
+
∞∑
k=0

kVke
−tk −

−1∑
k=−∞

kVke
−tk

)
+ Φ̂−1O(1/n)Φ̂(t)

where we denoted w(x) by

w(x) =
α0 + β0

2

(
Φ−1Φ

′
λ

)
11

(x/2) +
α0 − β0

2

(
Φ−1Φ

′
λ

)
(−x/2). (2.5.15)

We now refer to the results that were obtained in [11] concerning the Painlevé V function σ(x).

Proposition 2.5.1. [11, Proposition 4.4] Set

a(ζ;x) =
(
Ψ(ζ;x)σ3Ψ−1(ζ;x)

)
11

= −
(
Ψ(ζ;x)σ3Ψ−1(ζ;x)

)
22

(2.5.16)

Then we have the following identities,

α0 − β0

2
a(0;x) = A0,11 = −v(x) +

α0 − β0

2
, (2.5.17)

α0 + β0

2
a(1;x) = −A1,11 = −v(x) +

α0 + β0

2
. (2.5.18)

It is also worth nothing that
[
Ψ(ζ;x)σ3Ψ−1(ζ;x)

]
diag

=
[
Φ(ζ;x)σ3Φ−1(ζ;x)

]
diag

.

Proposition 2.5.2. [11, Proposition 4.5] If we have w(x) given by (2.5.15) then,

v(x) = − (xw(x))
′

(2.5.19)

σ(x) = xw(x) (2.5.20)

σ(x) =

∫ +∞

x
v(ξ)dξ (2.5.21)

Now, using the fact that
(
Φ(ζ;x)σ3Φ−1

)
11

(et) = a(1;x) and
(
Φ(ζ;x)σ3Φ−1

)
22

(et) = −a(0;x)

we obtain the following,

d

dt
logDn(t) = (α0 + β0)n− α2

0 + β2
0

2
− α2

0 − β2
0

2

(
1

t
+

e−t

sinh t

)
+ β0(α1 − β1)

+ α1

(
−(α0 + β0)

et

et − z1
+ (α0 − β0)

e−t

e−t − z1

)
− α0 + β0

2
etV

′
z (et) +

α0 − β0

2
e−tV

′
z (et)

+
1

t
σ(x) +

{
α0 + β0

2
+
α0 − β0

2

(
1

t
− e−t

sinh t

)
+ (α1 − β1) + 2β1

et

et − z1
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+
∞∑
k=1

k
(
Vke

tk + V−ke
−tk
)}(

−v(x) +
α0 + β0

2

)
+

{
α0 − β0

2
+
α0 + β0

2

(
1

t
− e−t

sinh t

)

+(α1 − β1) + 2β1
e−t

e−t − z1
+

∞∑
k=1

k
(
Vke
−tk + V−ke

tk
)}(

−v(x) +
α0 − β0

2

)
= (α0 + β0)n− α2

0 + β2
0

2
− α2

0 − β2
0

2

(
1

t
+

e−t

sinh t

)
+ β0(α1 − β1)

+ α1

(
−(α0 + β0)

et

et − z1
+ (α0 − β0)

e−t

e−t − z1

)
− α0 + β0

2

∞∑
k=−∞

kVke
tk +

α0 − β0

2

∞∑
−∞

kVke
−tk

+
1

t
σ(x)− v(x)

{
α0 + β0

2
+
α0 − β0

2
+

(
α0 − β0

2
+
α0 + β0

2

)(
1

t
− e−t

sinh t

)
+(α1 − β1)− (α1 − β1) + 2β1

(
et

et − z1
+

e−t

e−t − z1

)
+

∞∑
k=1

k(Vk(e
tk + e−tk) + V−k(e

tk + e−tk)

}

+

{
α2

0 + β2
0

4
+

2α0β0

4
+
α2

0 − β2
0

4

(
1

t
− e−t

sinh t

)
+

(α1 − β1)(α0 + β0)

2
+ β1(α0 + β0)

et

et − z1
+
α0 + β0

2

∞∑
k=1

k(Vke
tk + V−ke

−tk)

}

+

{
α2

0 + β2
0

4
− 2α0β0

4
+
α2

0 − β2
0

4

(
1

t
− e−t

sinh t

)
+

(α1 − β1)(α0 − β0)

2
+ β1(α0 − β0)

e−t

e−t − z1
+
α0 − β0

2

∞∑
k=1

k(Vke
−tk + V−ke

tk)

}

= (α0 + β0)n− (α2
0 − β2

0)
e−t

sinh t
+ (α0 + β0)(α1 − β1)− (α1 − β1)(α0 + β0)

et

et − z1

+ (α1 + β1)(α0 − β0)
e−t

e−t − z1
+ (α0 + β0)

∞∑
k=1

kV−ke
−tk + (α0 − β0)

∞∑
k=1

Vke
−tk +

1

t
σ(x)

− v(x)

{
α0 + α0

(
1

t
− e−t

sinh t

)
+ 2β1

(
et

et − z1
+

e−t

e−t − z1

)
+ 2

∞∑
k=1

k cosh(kt)(Vk + V−k)

}

+ Φ̂−1O(1/n)Φ̂(t).

We proceed to integrating the expression above. Let us mention beforehand the following integral,

which we will use and the form in which we will use them,

∫ t

ε

eτ

eτ − z1
dτ = log(1− z1e

−t)− log(1− z1e
−ε) + t− ε, (2.5.22)

∫ t

ε

e−τ

e−τ − z1
dτ = − log

( z1

eiπ

)
− log(1− z−1

1 e−t) + log(e−ε − z1). (2.5.23)
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We integrate from ε > 0 to some t, where 0 < t < t0, and 0 < ε < t. Noting that
∫ t
ε
d
dt logDn(τ)dτ =

logDn(t)− logDn(ε), we obtain,

logDn(t) = logDn(ε) + (α0 + β0)n(t− ε)− (α2
0 − β2

0)
(
log(1− e−2t)− log(1− e−2ε)

)
+ (α0 + β0)(α1 − β1)(t− ε)− (α1 − β1)(α0 + β0)

(
log(1− z1e

−t)− log(1− z1e
−ε) + t− ε

)
+ (α1 + β1)(α0 − β0)

(
− log

( z1

eiπ

)
− log(1− z−1

1 e−t) + log(e−ε − z1)
)

+ (α0 + β0)
∞∑
k=1

k

(
V−ke

−tk

−k

)
+ (α0 − β0)

∞∑
k=1

k

(
Vke
−tk

−k

)
+ (α0 + β0)

∞∑
k=1

V−ke
−εk

+ (α0 − β0)
∞∑
k=1

Vke
−εk +

∫ 2nt

2nε

σ(x)

x
dx+Rn(t) +O(1/n)

= logDn(ε) + (α0 + β0)n(t− ε) +
∞∑
k=1

k

[
Vk − (α0 + β0)

e−tk

k

] [
V−k − (α0 − β0)

e−tk

k

]

−
∞∑
k=1

kVkV−k + (α0 + β0)
∞∑
k=1

V−ke
−εk + (α0 − β0)

∞∑
k=1

Vke
−εk

+ (α0 + β0 − α0 − β0)(α1 − β1)(t− ε)− (α1 + β1)(α0 − β0) log
( z1

eiπ

)
+ (α1 − β1)(α0 + β0)

( ∞∑
k=1

zk1e
−tk

k

)
+ (α1 + β1)(α0 − β0)

( ∞∑
k=1

z−k1 e−tk

k

)

+ (α1 − β1)(α0 + β0) log(1− z1e
−ε) + (α1 + β1)(α0 − β0) log(e−ε − z1)

+

[∫ 2nt

2nε

σ(x)− (α2
0 − β2

0)

x
dx+ (α2

0 − β2
0) log (2nt) + (α2

0 − β2
0) log

(
n(1− e−2ε)

2nε

)]
− (α2

0 − β2
0) log n+Rn(t) +O(1/n),

where

Rn(t) = −
∫ t

ε
v(2nt)

{
α0 + α0

(
1

t
− e−t

sinh t

)
+ 2β1

(
et

et − z1
+

e−t

e−t − z1

)
+2

∞∑
k=1

k cosh(kt)(Vk + V−k)

}
, (2.5.24)

and just as in [11, (5.3)] we have,

|Rn(t)| < C

∫ t

0
|v(2nu)|du = O(1/n), as n→∞, 0 < t < t0, (2.5.25)
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and we used the following,

− (α2
0−β2

0) log(1− e−2t) = (α2
0 +β2

0)
∞∑
k=1

e−2tk

k
=
∞∑
k=1

k

[
(α0 − β0)

e−tk

k

] [
(α0 + β0)

e−tk

k

]
. (2.5.26)

We now take the limit as ε → 0. We note that limε→0Dn(ε) is the expression for the determinant

with two Fisher-Hartwig singularities. It follows that, using the L’Hopital’s rule for the limit of

log
(
n(1−e−2ε)

2nε

)
,

logDn(t) = nV0 +
∞∑
k=1

kVkV−k − (α0 − β0)
∞∑
k=1

Vk − (α0 + β0)
∞∑
k=1

V−k − (α1 − β1)
∞∑
k=1

Vkz
−k
1

+ (α2
0 − β2

0) log n+ (α2
1 − β2

1) log n+ 2(β0β1 − α0α1) log(1− z1)

+ (α0α1 − β0β1)(log z1 + log eiπ) + (α0β1 − α1β0) log
( z1

eiπ

)
+ logGα0+β0,α0−β0

+ logGα1+β1,α1−β1 + (α0 + β0)nt+
∞∑
k=1

k

[
Vk − (α0 + β0)

e−tk

k

] [
V−k − (α0 − β0)

e−tk

k

]

−
∞∑
k=1

kVkV−k + (α0 + β0)
∞∑
k=1

V−k + (α0 − β0)
∞∑
k=1

Vk − (α1 + β1)(α0 − β0) log
( z1

eiπ

)
+ (α1 − β1)(α0 + β0)

( ∞∑
k=1

zk1e
−tk

k

)
+ (α1 + β1)(α0 − β0)

( ∞∑
k=1

z−k1 e−tk

k

)

+ (α1 − β1)(α0 + β0) log(1− z1) + (α1 + β1)(α0 − β0) log(1− z1)

+

[∫ 2nt

0

σ(x)− (α2
0 − β2

0)

x
dx+ (α2

0 − β2
0) log (2nt)

]
− (α2

0 − β2
0) log n+O(1/n).

After cancellations, and recalling that we take the branch of log z to be the negative real line, we

are left with the following expression,

logDn(t) = nV0 + nt(α0 + β0) +
∞∑
k=1

k

[
Vk − (α0 + β0)

e−tk

k

] [
V−k − (α0 − β0)

e−tk

k

]

− (α1 − β1)
∞∑
k=1

[(
Vk − (α0 + β0)

e−tk

k

)
zk1

]
− (α1 + β1)

∞∑
k=1

[(
V−k − (α0 − β0)

e−tk

k

)
z−k1

]
+ (α2

1 − β2
1) log n+ logGα0+β0,α0−β0 + logGα1+β1,α1−β1

+

[∫ 2nt

0

σ(x)− (α2
0 − β2

0)

x
dx+ (α2

0 − β2
0) log (2nt)

]
+O(1/n). (2.5.27)

Thus we have obtained an expression for the asymptotics of the Toeplitz determinant from Sec-
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tion 2.2, uniform for 0 < t < t0, for t0 sufficiently small.

2.6 Asymptotics for the determinant if |||β||| = 1

In this section we consider the asymptotics of the Toeplitz determinant with the symbol given

by (2.2.1) when the seminorm (see (1.4.10)) is equal to 1. This means that that we can write

Reβ0 = q − 1/2 and Reβ1 = q + 1/2, for some q ∈ R. We also assumed here without any loss

in generality that Reβ0 < Reβ1. In this section we will make use of a lemma and the approach

that was presented in [14] to prove the Tracy-Basor conjecture (Theorem 1.4.6). We only give the

particular case of this lemma here. However, note well that the symbol (2.2.1) has only one F-H

singularity for t > 0, but two β parameters. If we translate β’s we will not get a F-H representation

as it was presented in Definition 1.4.4. The symbol we obtain by shifting β’s will vary by more than

just a multiplicative constant,

f(z; t) = eV (z)zβ1 |z − z1|2α1gz1,β1(z)z−β11

× (z − et)α0+β0(z − e−t)α0−β0z−α0+β0e−iπ(α0+β0), (z ∈ T).

= eV (z)z(β1−1)+1|z − z1|2α1gz1,(β1−1)+1(z)z
−(β1−1)−1
1

× (z − et)α0+(β0+1)−1(z − e−t)α0−(β0+1)+1z−α0+(β0+1)−1e−iπ(α0+(β0+1)−1)

=
(z − e−t)

(z − et)
z−1

1 f̃(z; t) (2.6.1)

Where f̃(z; t) is (2.2.1) with β0 and β1 replaced by β̃0 = β0 + 1 and β̃1 = β1 − 1 respectively.

Notice that shifting β1, which is associated with the F-H singularity still produced the multiplicative

constant we know. Following the idea of the proof that was considered in [14, Section 6], we will

define a new symbol f̂(z; t), which is given by (2.2.1) but whose β-parameters are replaced by β̂j ’s

where:

• β̂0 = β0,

• β̂1 = β1 − 1.

For this new symbol f̂(z; t), we have |||β||| < 1 and we have computed the asymptotics of the

corresponding Toeplitz matrix, which are given by (2.5.27)—with the βj parameters replaced by β̂j .

We will simply try to relate the two symbols, the original symbol f(z; t) with |||β||| = 1 and f̂(z; t),
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and make use of the asymptotics we already know for f̂(z; t) in order to compute the asymptotics

for f(z; t). We can obtain the original symbol by shifting β̂1 in f̂(z; t) back by +1, this is what

we would call trivial a F-H ’representation’. Alternatively, we can shift β0 by +1 to obtain the

’representation’ corresponding to β̃j ’s from (2.6.1) above. We thus have,

f(z; t) = (−1)z−1
1 zf̂(z; t), (2.6.2)

and

f̃(z; t) = (−1)
z(z − et)

(z − e−t)
f̂(z; t). (2.6.3)

It is sufficient for us to consider only one of the above relations, we pick (2.6.2) and make use of the

following lemma.

Lemma 2.6.1. [14, Lemma 2.4] Let the Toeplitz determinants Dn(f) with symbol f(z) be non-zero

for all n ≥ N0 with a fixed N0 ≥ 0. If φk(0) 6= 0, k = N0, N0 + 1, . . . , n− 1, we have

Dn(zf(z)) = (−1)n
φn(0)

χn
Dn(f(z)), n ≥ N0, (2.6.4)

where χn is the leading coefficient of the polynomial φ(z), see (1.6.1).

The proof uses Christoffel’s formula [43, Theorem 2.5] to represent new orthogonal polynomials,

say qn(z), orthogonal with respect to some weight ρ(z)f(z) (where ρ(z) is a polynomial), in terms

of polynomials φn(z), which are orthogonal with respect to the weight f(z). Using orthogonality

conditions (1.6.1) and relating the leading coefficients χn, via (1.6.6) one can link the Toeplitz

determinants with the weights that vary by a polynomial ρ(z).

Thus, using (2.6.3) and (2.6.4), we can express the Toeplitz determinant with |||β||| = 1 using

the uniform asymptotics we computed in Section 2.5 and asymptotics of the polynomials orthogonal

with respect to f̂(z; t),

Dn(f) = Dn((−1)z−1
1 zf̂)

= (−1)nz−n1 Dn(zf̂)

= (−1)2nz−n1

φn(0)

χn
Dn(f̂)

= z−n1

φn(0)

χn
Dn(f̂) (2.6.5)
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Remark 2.6.2. Note that choosing (2.6.3) instead of (2.6.2) should produce the same end result. The

reason it was not chosen is partly because of convenience of having Lemma 2.6.1 already, and partly

because I could not find an expression for polynomials with respect to the weight ρ(z)f(z), where

ρ(z) = (z − a)(z − b)−1. In fact, even (z − b)−1f(z) posed an obstacle which I could not overcome.

I feel fairly confident that it is plausible however to find an expression relating these orthogonal

polynomials—that is, if it does not already exist somewhere within the Orthogonal Polynomial

community.

2.6.1 Asymptotics for the Orthogonal Polynomials

Lemma 2.6.3. Let t > 0 and n ∈ N. Suppose that the R-H problem for Y (z;n, t) in Section 1.6.2

is solvable with f̂(z) given by (2.2.1) by replacing β-parameters by β̂,
∣∣∣∣∣∣∣∣∣β̂∣∣∣∣∣∣∣∣∣ < 1 and αj ± β̂j 6=

−1,−2, . . . , j = 0, 1. Let φ(z) and φ̂(z) be the OPs associated to the weight f̂(z) (see Section 1.6).

Then as n→∞,

φn(0)

χn
=

zn1 (1− z1e
−t)(α0+β̂0)(1− e−tz−1

1 )−(α0−β̂0) exp
{∑∞

k=1 Vkz
k
1

}
exp

{∑∞
k=1 V−kz

−k
k

}
× n−2β̂1−1 Γ(1 + α1 + β̂1)

Γ(α1 − β̂1)

+ (1− z1e
−t)2β̂1(1− e−2t)−(α0−β̂0) exp

{∑∞
k=1 Vke

tk
}

exp {
∑∞

k=1 V−ke
−tk}

et(α1+β̂1)

× e−iπ(α1+β̂1)z
−(α1+β̂1)
1 (2t)α0−β̂0 n−2β̂0−1

Γ(α0 − β̂0)
K(2nt)

+ (1− z−1
1 e−t)2β̂1(1− e−2t)α0+β̂0

exp
{∑∞

k=1 Vke
−tk}

exp {
∑∞

k=1 V−ke
tk}

e−t(α1−β̂1)

× e−iπ(α1−β̂1)z
−(α1−β̂1)
1 (2t)−(α0+β̂0) n−2β̂0−1

Γ(α0 − β̂0)
K(2nt)

]
(1 + o(1)) . (2.6.6)

Proof. We find the asymptotics for the orthogonal polynomials to be used in (2.6.5). We recall the

matrix-valued function which is the solution of the R-H problem for the polynomials orthogonal on

the unit circle with respect to the weight f̂(z) (1.6.10) and note that,

Y11(0) =
φn(0)

χn
, (2.6.7)
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where Y11(0) is the 11 element of the solution matrix evaluated at 0.

Now, going through the transformations R(z) 7→ S(z) 7→ T (z) 7→ Y (z), and using the Neumann

series solution to R(z), we obtain,

Y (z) =
[
I +R1(z) +R2(z) +R

(r)
3 (z)

]
D(z)σ3

 0 1

−1 0

 , (2.6.8)

which in turn leads to,

φn(0)

χn
= Y11(0) = −D(0)−1

[
R1,12(0) +R2,12(0) +O

(
δmax

k

n−2 Reβk

n

)]
, (2.6.9)

where we used (2.4.169) and δ is given by (2.4.170). We have by (2.4.13) or (2.4.15),

D(0) = eV0et(α0+β̂0). (2.6.10)

Now by (2.4.162),

R1(0) = −A1

z1
− Aet

et
− Ae−t

e−t
, (2.6.11)

and by (2.4.163), (2.4.164) and (2.4.165), (2.4.166), (2.4.167),

R1,12(0) = eV0et(α0+β̂0)

[
− 1

n
zn1 (1− z1e

−t)(α0+β̂0)(1− e−tz−1
1 )−(α0−β̂0)

×
exp

{∑∞
k=1 Vkz

k
1

}
exp

{
−
∑∞

k=1 V−kz
−k
k

}n−2β̂1 Γ(1 + α1 + β̂1)

Γ(α1 − β̂1)
(1 + o(1))

− 1

n
(1− z1e

−t)2β̂1(1− e−2t)−(α0−β̂0) exp
{∑∞

k=1 Vke
tk
}

exp {−
∑∞

k=1 V−ke
−tk}

et(α1+β̂1)

× e−iπ(α1+β̂1)z
−(α1+β̂1)
1 (2t)α0−β̂0 n−2β̂0

Γ(α0 − β̂0)
K(2nt) (1 + o(1))

− 1

n
(1− z−1

1 e−t)2β̂1(1− e−2t)α0+β̂0
exp

{∑∞
k=1 Vke

−tk}
exp {−

∑∞
k=1 V−ke

tk}
e−t(α1−β̂1)

× e−iπ(α1−β̂1)z
−(α1−β̂1)
1 (2t)−(α0+β̂0) n−2β̂0

Γ(α0 − β̂0)
K(2nt) (1 + o(1))

]
. (2.6.12)

We thus obtain the asymptotics in (2.6.6).
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2.6.2 Asymptotics for the determinant

We now use the relation between two Toeplitz determinants we established in (2.6.5). We again

use (2.4.18) to express the terms of the form exp
{

log(1− z)α±β
}

= exp
{
−(α± β)

∑∞
k=1

zk

k

}
for

|z| < 1—which is the case for all such terms in (2.6.6). Furthermore, we note that by the properties

of the Barnes G−function (see (1.4.8) and paragraph below, G(z + 1) = Γ(z)G(z)) and by how we

defined the shorthand (1.4.13) we have that,

Gαj+βj+1,αj−βj−1 =
G(1 + αj + βj + 1)G(1 + αj − βj − 1)

G(1 + 2αj)

=
Γ(1 + αj + βj)

Γ(αj − βj)
Gαj+βj ,αj−βj . (2.6.13)

We also denote by,

Ω̃(2nt) = exp {Ω(2nt)} = exp

{∫ 2nt

0

σ(x)− (α2
0 − β2

0)

x
dx+ (α2

0 − β2
0) log (2nt)

}
, (2.6.14)

in (2.5.27) (Ω(2nt) is also the same as in (1.5.6)) and it should be noted that it sees no shift in

β0 = β̂0.

As many terms come together in this computation, to make this somewhat easier to see, refer to

the Table 2.1 below, where matching terms are colour-coded. We obtain from (2.6.5) and (2.6.6),

Dn(f) = exp
{
nV0 + nt(α0 + β̂0)

}
exp

{ ∞∑
k=1

k

[
Vk − (α0 + β̂0)

e−tk

k

] [
V−k − (α0 − β̂0)

e−tk

k

]}

× exp

{
−(α1 − β̂1 − 1)

∞∑
k=1

[(
Vk−(α0 + β̂0)

e−tk

k

)
zk1

]}

× exp

{
−(α1 + β̂1 + 1)

∞∑
k=1

[(
V−k−(α0 − β̂0)

e−tk

k

)
z−k1

]}
n(α2

1−β̂2
1−2β̂1−1)

×Gα0+β̂0,α0−β̂0Gα1+β̂1+1,α1−β̂1−1Ω̃(2nt) (1 + o(1))

+ exp
{
nV0 + nt(α0 + β̂0)

}
exp

{ ∞∑
k=1

k

[
Vk − (α0 + β̂0 + 1)

e−tk

k

] [
V−k−(α0 − β̂0)

e−tk

k

]}

× exp

{
−(α1 − β̂1)

∞∑
k=1

[(
Vk − (α0 + β̂0 + 1)

e−tk

k

)
zk1

]}
(1− etz−1

1 )α1+β̂1 exp

{ ∞∑
k=1

Vke
tk

}

× exp

{
−(α1 + β̂1)

∞∑
k=1

[(
V−k − (α0 − β̂0)

e−tk

k

)
z−k1

]}
n(α2

1−β̂2
1)n−2β0−1
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× z−n1 (2t)α0−β0
Gα0+β̂0+1,α0−β̂0−1

Γ(1 + α0 + β̂0)
Gα1+β̂1,α1−β̂1Ω̃(2nt)K(2nt) (1 + o(1))

+ exp
{
nV0 + nt(α0 + β̂0)

}
exp

{ ∞∑
k=1

k

[
Vk−(α0 + β̂0)

e−tk

k

] [
V−k − (α0 − β̂0 − 1)

e−tk

k

]}

× exp

{
−(α1 − β̂1)

∞∑
k=1

[(
Vk − (α0 + β̂0)

e−tk

k

)
zk1

]}
(1− etz1)−(α1−β̂1) exp

{
−
∞∑
k=1

V−ke
tk

}

× exp

{
−(α1 + β̂1)

∞∑
k=1

[(
V−k − (α0 − β̂0 − 1)

e−tk

k

)
z−k1

]}
n(α2

1−β̂2
1)n−2β0−1

× z−n1 (2t)−(α0+β0)
Gα0+β̂0+1,α0−β̂0−1

Γ(1 + α0 + β̂0)
Gα1+β̂1,α1−β̂1Ω̃(2nt)K(2nt) (1 + o(1)) . (2.6.15)

Recalling that β̂0 = β0 and β̂1 = β1−1, and using β̃0 = β0 +1, β̃1 = β1−1 from (2.6.1)—a ’would-be

non-trivial F-H representation’ gives the answer,

Dn(f) = exp {nV0 + nt(α0 + β0)} exp

{ ∞∑
k=1

k

[
Vk − (α0 + β0)

e−tk

k

] [
V−k − (α0 − β0)

e−tk

k

]}

× exp

{
−(α1 − β1)

∞∑
k=1

[(
Vk − (α0 + β0)

e−tk

k

)
zk1

]}

× exp

{
−(α1 + β1)

∞∑
k=1

[(
V−k − (α0 − β0)

e−tk

k

)
z−k1

]}
n(α2

1−β2
1)

×Gα0+β0,α0−β0Gα1+β1,α1−β1Ω̃(2nt) (1 + o(1))

+ exp {nV0 + nt(α0 + β0)} exp

{ ∞∑
k=1

k

[
Vk − (α0 + β̃0)

e−tk

k

] [
V−k − (α0 − β0)

e−tk

k

]}

× exp

{
−(α1 − β̃1)

∞∑
k=1

[(
Vk − (α0 + β̃0)

e−tk

k

)
zk1

]}
(1− etz−1

1 )α1+β̃1 exp

{ ∞∑
k=1

Vke
tk

}

× exp

{
−(α1 + β̃1)

∞∑
k=1

[(
V−k − (α0 − β0)

e−tk

k

)
z−k1

]}
n(α2

1−β̃2
1)n−2β0−1

× z−n1 (2t)α0−β0
Gα0+β̃0,α0−β̃0

Γ(1 + α0 + β0)
Gα1+β̃1,α1−β̃1Ω̃(2nt)K(2nt) (1 + o(1))

+ exp {nV0 + nt(α0 + β0)} exp

{ ∞∑
k=1

k

[
Vk − (α0 + β0)

e−tk

k

] [
V−k − (α0 − β̃0)

e−tk

k

]}

× exp

{
−(α1 − β̃1)

∞∑
k=1

[(
Vk − (α0 + β0)

e−tk

k

)
zk1

]}
(1− etz1)−(α1−β̃1) exp

{
−
∞∑
k=1

V−ke
tk

}
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× exp

{
−(α1 + β̃1)

∞∑
k=1

[(
V−k − (α0 − β̃0)

e−tk

k

)
z−k1

]}
n(α2

1−β̃2
1)n−2β0−1

× z−n1 (2t)−(α0+β0)
Gα0+β̃0,α0−β̃0

Γ(1 + α0 + β0)
Gα1+β̃1,α1−β̃1Ω̃(2nt)K(2nt) (1 + o(1)) . (2.6.16)

By manipulating the above, we arrive at a more compact expression resulting in Theorem 2.1.3.
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2.7 Verifying transitions

In this section we will verify that we can recover the asymptotics (2.2.4), (2.2.5) and (2.2.6) from the

uniform asymptotics we obtained in (2.5.27) for the seminorm |||β||| < 1 and (2.6.16) for |||β||| = 1.

It is important to notice and draw a clear distinction between the two cases. In the case when

|||β||| < 1 we expect to recover asymptotics for a Toeplitz determinant with one singularity with

β parameters β0 and β1 when we keep t fixed. For the uniform asymptotics when |||β||| = 1, by

keeping t fixed, we should be able to obtain the same asymptotics for a Toeplitz determinant with

one singularity with β parameters β0 and β1, but at the same time we might also be able to quantify

the difference made by the function that arises from shifting β0 and β1 in (2.6.1). Perhaps we could

see something like this,

Dn (f(z; t)) = z−n1 Dn

(
(z − e−t)

(z − et)
f̃(z; t)

)
,

= z−n1 E(t, α̃0, α̃1, β̃0, β̃1)Dn

(
f̃(z; t)

)
,

where E(t, α̃0, α̃1, β̃0, β̃1) would tell us more about what is happening when we change the symbol

of the Toeplitz matrix by multiplication by (z−e−t)
(z−et) . It most definitely is not equal to Dn

(
(z−e−t)
(z−et)

)
,

as it is known that in general Tn(fg) 6= Tn(f)Tn(g) where f, g are two symbols for a Toeplitz matrix

Tn.

As for the recovery of asymptotics as t → 0 there is only one simple answer in both cases. If

|||β||| < 1 then we expect to recover (2.2.5) and for |||β||| = 1 we expect the Tracy-Basor generalised

F-H asymptotics (2.2.6).

2.7.1 Case |||β||| < 1

2.7.1.1 Asymptotics keeping t fixed, n→∞

We look at (2.5.27) keeping t fixed. We know from (1.5.13) and (2.6.14) that,

Ω̃(+∞) = G−1
α0+β0,α0−β0 , (2.7.1)
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using notation defined in (1.4.13). We thus obtain from (2.5.27),

Dn(t) = exp {nV0 + nt(α0 + β0)} exp

{ ∞∑
k=1

k

[
Vk − (α0 + β0)

e−tk

k

] [
V−k − (α0 − β0)

e−tk

k

]}

× exp

{
−(α1 − β1)

∞∑
k=1

[(
Vk − (α0 + β0)

e−tk

k

)
zk1

]}

× exp

{
−(α1 + β1)

∞∑
k=1

[(
V−k − (α0 − β0)

e−tk

k

)
z−k1

]}

× n(α2
1−β2

1)Gα1+β1,α1−β1 (1 + o(1)) ,

which is exactly (2.2.4).

2.7.1.2 Asymptotics as t→ 0, n fixed

We first rewrite (2.5.27) expanding the factors inside the sums,

Dn(t) = exp {nV0 + nt(α0 + β0)} exp

{ ∞∑
k=1

kVkV−k

}
exp

{
−(α0 + β0)

∞∑
k=1

e−tk

k
V−k

}

exp

{
−(α0 − β0)

∞∑
k=1

e−tk

k
Vk

}
exp

{
(α2

0 − β2
0)
∞∑
k=1

e−2tk

k

}
exp

{
−(α1 − β1)

∞∑
k=1

Vkz
k
1

}

exp

{
(α0 + β0)(α1 − β1)

∞∑
k=1

e−tk

k
zk1

}
exp

{
−(α1 + β1)

∞∑
k=1

V−kz
−k
1

}

exp

{
(α0 − β0)(α1 + β1)

∞∑
k=1

e−tk

k
z−k1

}
n(α2

1−β2
1)Gα0+β0,α0−β0Gα1+β1,α1−β1Ω̃(2nt) (1 + o(1)) .

Now, again using (2.4.18) to convert the following,

exp

{
(α2

0 − β2
0)

∞∑
k=1

e−2tk

k

}
= exp

{
−(α2

0 − β2
0) log

(
1− e−2t

)}
, (2.7.2)

exp

{
(α0 + β0)(α1 − β1)

∞∑
k=1

e−tk

k
zk1

}
= exp

{
−(α0 + β0)(α1 − β1) log

(
1− e−tz1

)}
, (2.7.3)

exp

{
(α0 − β0)(α1 + β1)

∞∑
k=1

e−tk

k
z−k1

}
= exp

{
−(α0 − β0)(α1 + β1) log

(
1− e−tz−1

1

)}
, (2.7.4)
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we obtain,

Dn(t) = exp {nV0 + nt(α0 + β0)} exp

{ ∞∑
k=1

kVkV−k

}
exp

{
−(α0 + β0)

∞∑
k=1

e−tk

k
V−k

}

exp

{
−(α0 − β0)

∞∑
k=1

e−tk

k
Vk

}
exp

{
−(α1 − β1)

∞∑
k=1

Vkz
k
1

}
exp

{
−(α1 + β1)

∞∑
k=1

V−kz
−k
1

}
(
1− e−2t

)−(α2
0−β2

0) (
1− e−tz1

)−(α0+β0)(α1−β1) (
1− e−tz−1

1

)−(α0−β0)(α1+β1)

n(α2
1−β2

1)Gα0+β0,α0−β0Gα1+β1,α1−β1Ω̃(2nt) (1 + o(1)) .

We obtained in Section 1.5.3 that if n is fixed and t→ 0, Ω̃(2nt) = exp
{

(α2
0 − β2

0) log(2nt) + o(1)
}
.

Using this and the fact that
(

2nt
1−e−2t

)
→ n as t→ 0, we have,

Dn(t→ 0) = exp {nV0} exp

{ ∞∑
k=1

kVkV−k

}
exp

{
−(α0 + β0)

∞∑
k=1

V−k

}
exp

{
−(α0 − β0)

∞∑
k=1

Vk

}

exp

{
−(α1 − β1)

∞∑
k=1

Vkz
k
1

}
exp

{
−(α1 + β1)

∞∑
k=1

V−kz
−k
1

}

n(α2
0−β2

0)+(α2
1−β2

1) (1− z1)−(α0+β0)(α1−β1) (1− z−1
1

)−(α0−β0)(α1+β1)

Gα0+β0,α0−β0Gα1+β1,α1−β1 (1 + o(1)) .

Rewriting (
1− z−1

1

)
= eiπ(2k−1)z−1

1 (1− z1) , for k ∈ Z, (2.7.5)

recalling the function hα(z) from (2.4.30) and using the right k to suit our branch cuts, we obtain,

(1− z1)−(α0+β0)(α1−β1)
(
eiπ(2k−1)z−1

1 (1− z1)
)−(α0−β0)(α1+β1)

= (2.7.6)

= (1− z1)−(2α0α1−2β0β1)
(
eiπ(2k−1)z−1

1

)−(α0α1−β0β1) (
eiπ(2k−1)z−1

1

)−(α0β1−β0α1)
(2.7.7)

=

(
1− z1

(e−iπ(2k−1)z1)1/2

)−2(α0α1−β0β1) ( z1

eiπ(2k−1)

)(α0β1−β0α1)
(2.7.8)

= |1− z1|−2(α0α1−β0β1)
( z1

eiπ

)(α0β1−β0α1)
. (2.7.9)
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Finally,

Dn(0) = exp {nV0} exp

{ ∞∑
k=1

kVkV−k

}
exp

{
−(α0 + β0)

∞∑
k=1

V−k

}
exp

{
−(α0 − β0)

∞∑
k=1

Vk

}

exp

{
−(α1 − β1)

∞∑
k=1

Vkz
k
1

}
exp

{
−(α1 + β1)

∞∑
k=1

V−kz
−k
1

}

n(α2
0−β2

0)+(α2
1−β2

1)|1− z1|−2(α0α1−β0β1)
( z1

eiπ

)(α0β1−β0α1)

Gα0+β0,α0−β0Gα1+β1,α1−β1 (1 + o(1)) ,

which is exactly (2.2.5).

2.7.2 Case |||β||| = 1

2.7.2.1 Asymptotics keeping t fixed, n→∞

Here we fix t > 0 and send n→∞, as we take x = 2nt, we thus need to recall the asymptotics for

K(x) as x→∞, see (2.4.144),

K(2nt) ∼ e−nt(2nt)α0+β0 as 2nt→∞. (2.7.10)

What we do next is in many ways similar to undoing the factorisations from (2.6.15) and the

Table 2.1 should again be helpful in following this computation. Cancelling the product of Barnes

G−functions Gα0+β0,α0−β0 in the first term of the sum using (2.7.1) and then taking the factor of

Dn(f(z; t, α0, α1, β0, β1)) (2.2.4) out in (2.6.16) gives,

Dn(f) = Dn(f(z; t, α0, α1, β0, β1))
[
1 + z−n1 n−2β0−1n2β1−1e−nt(2nt)α0+β0

× exp

{
−
∞∑
k=1

[(
Vk − (α0 + β0)

e−tk

k

)
zk1

]}
exp

{ ∞∑
k=1

[(
V−k − (α0 − β0)

e−tk

k

)
z−k1

]}

× Γ(1 + α1 − β1)

Γ(α0 − β0)Γ(α1 + β1)

(
(1− z−1

1 e−t)2β̂1(1− e−2t)α0+β0 exp

{ ∞∑
k=1

Vke
−tk

}
exp

{
−
∞∑
k=1

V−ke
tk

}

× e−t(α1−β̂1)e−iπ(α1−β̂1z
−(α1−β̂1)
1 (2t)−(α0+β0) + (1− z1e

−t)2β̂(1− e−2t)−(α0−β0)

× exp

{
−
∞∑
k=1

V−ke
−tk

}
exp

{ ∞∑
k=1

Vke
tk

}
et(α1+β̂1)e−iπ(α1+β̂1)z

−(α1+β̂1)
1 (2t)α0−β0

)]
.
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We take note only of the terms containing n. It is clear that z−n1 = O(1) as z1 is a point on the unit

circle. We could also note that n−2 Reβ0−1+2 Reβ1−1 = n−2q+2q for some q ∈ R for Reβ0 = q − 1/2,

Reβ1 = q+1/2, so n−2β0+2 Reβ1−2 = O(1). For the rest we note that e−nt(2nt)α0+β0 → 0 as n→∞

and t fixed. All this and the fact that the rest of the expression behaves like a constant for a fixed

t gives us exactly what we expect,

Dn(f) = Dn(f(z; t, α0, α1, β0, β1)(1 + o(1)).

2.7.2.2 Asymptotics as t→ 0, n fixed

To aid the presentation of this case we will denote the terms in the sum of (2.6.16) in the following

way,

Dn(f) = Ξz1 + Ξt + Ξ−t. (2.7.11)

Throughout this section we keep n fixed and take the limit as t→ 0. The case of Ξz1 is identical to

what we considered in Section 2.7.1.2 for |||β||| < 1. We obtain Ξz1 = (2.2.5).

Next, we recall that Ω̃(2nt) = exp
{

(α2
0 − β2

0) log(2nt) + o(1)
}
as t → 0 and n fixed. We also

recall the asymptotics for K(x) as x→ 0 are given by (2.4.144),

K(2nt) ∼ entΓ(1 + α0 + β0), as 2nt→ 0. (2.7.12)

Expanding out the sums in Ξt, we send t to 0,

Ξt→0 = exp {nV0} exp

{ ∞∑
k=1

kVkV−k

}
exp

{ ∞∑
k=1

−(α0 + β̃0)V−k −
∞∑
k=1

(α0 − β0 − 1)Vk

}

× exp

{
(α0 + β̃0)(α0 − β0) lim

t→0

∞∑
k=1

e−2tk

k

}
exp

{
−(α1 − β̃1)

∞∑
k=1

Vkz
k
1

}

× exp

{
(α1 − β̃1) lim

t→0

∞∑
k=1

(α0 + β̃0)
e−tk

k
zk1

}
lim
t→0

(1− etz−1
1 )α1+β̃1

× exp

{
−(α1 + β̃1)

∞∑
k=1

V−kz
−k
1

}
exp

{
(α1 + β̃1) lim

t→0

∞∑
k=1

(α0 − β0)
e−tk

k
z−k1

}
n(α2

1−β̃2
1)

× n−2β0−1z−n1 Gα0+β̃0,α0−β̃0Gα1+β̃1,α1−β̃1 lim
t→0

[
(2t)α0−β0 exp

{
(α2

0 − β2
0) log(2nt)

}]
(1 + o(1))
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We once again use (2.4.18) (see also (2.7.2),(2.7.3),(2.7.4)), noting that β̃0 = β0 + 1 in the first and

second lines above,

Ξt→0 = z−n1 exp

{
nV0 +

∞∑
k=1

kVkV−k

}
exp

{ ∞∑
k=1

−(α0 + β̃0)V−k −
∞∑
k=1

(α0 − β̃0)Vk

}

× exp

{
−(α1 − β̃1)

∞∑
k=1

Vkz
k
1

}
exp

{
−(α1 + β̃1)

∞∑
k=1

V−kz
−k
1

}

× lim
t→0

exp

{
(α2

0 − β2
0) log

(
2nt

1− e−2t
+

)
+ (α0 − β0) log

(
2t

1− e−2t

)}
× lim
t→0

[
(1− e−tz1)−(α1−β̃1)(α0+β̃0)(1− etz−1

1 )α1+β̃1(1− e−tz−1
1 )−(α1+β̃1)(α0−β0)

]
× n(α2

1−β̃2
1)n−2β0−1Gα0+β̃0,α0−β̃0Gα1+β̃1,α1−β̃1 (1 + o(1))

= z−n1 exp

{
nV0 +

∞∑
k=1

kVkV−k

}
exp

{ ∞∑
k=1

−(α0 + β̃0)V−k −
∞∑
k=1

(α0 − β̃0)Vk

}

× exp

{
−(α1 − β̃1)

∞∑
k=1

Vkz
k
1

}
exp

{
−(α1 + β̃1)

∞∑
k=1

V−kz
−k
1

}

× exp
{

(α2
0 − β2

0) log n+ (α0 − β0) log 1
}

×
[
(1− z1)−(α1−β̃1)(α0+β̃0)(1− z−1

1 )−(α1+β̃1)(α0−β0−1)
]

(2.7.13)

× n(α2
1−β̃2

1)n−2β0−1Gα0+β̃0,α0−β̃0Gα1+β̃1,α1−β̃1 (1 + o(1))

In line (2.7.13) we proceed in the exact same way as in (2.7.5)-(2.7.9) (note well different β-

parameters), we factorise the power of n relating to α0, β0, β̃0, we thus obtain,

Ξt=0 = z−n1 exp

{
nV0 +

∞∑
k=1

kVkV−k

}
exp

{ ∞∑
k=1

−(α0 + β̃0)V−k −
∞∑
k=1

(α0 − β̃0)Vk

}

× exp

{
−(α1 − β̃1)

∞∑
k=1

Vkz
k
1

}
exp

{
−(α1 + β̃1)

∞∑
k=1

V−kz
−k
1

}

× |1− z1|2(β̃1β̃0−α0α1)
( z1

eiπ

)α0β̃1−β̃0α1

× n(α2
1−β̃2

1)+(α2
0−β̃2

0)Gα0+β̃0,α0−β̃0Gα1+β̃1,α1−β̃1 (1 + o(1)) ,

which is exactly the RHS of (2.2.5) with β0, β1 replaced by β̃0, β̃1 respectively, multiplied by z−n1 .

Taking the limit as t → 0 in Ξ−t follows the exact same route as the limit of Ξt and produces the

same result. We arrive at Ξt=0 = Ξ−t=0.
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Putting the terms in the sum back together,

Dn(f) = exp {nV0} exp

{ ∞∑
k=1

kVkV−k

}
exp

{
−(α0 + β0)

∞∑
k=1

V−k

}
exp

{
−(α0 − β0)

∞∑
k=1

Vk

}

× exp

{
−(α1 − β1)

∞∑
k=1

Vkz
k
1

}
exp

{
−(α1 + β1)

∞∑
k=1

V−kz
−k
1

}

× n(α2
0−β2

0)+(α2
1−β2

1)|1− z1|−2(α0α1−β0β1)
( z1

eiπ

)(α0β1−β0α1)

×Gα0+β0,α0−β0Gα1+β1,α1−β1 (1 + o(1))

+ 2z−n1 exp

{
nV0 +

∞∑
k=1

kVkV−k

}
exp

{ ∞∑
k=1

−(α0 + β̃0)V−k −
∞∑
k=1

(α0 − β̃0)Vk

}

× exp

{
−(α1 − β̃1)

∞∑
k=1

Vkz
k
1

}
exp

{
−(α1 + β̃1)

∞∑
k=1

V−kz
−k
1

}

× n(α2
1−β̃2

1)+(α2
0−β̃2

0)|1− z1|2(β̃1β̃0−α0α1)
( z1

eiπ

)α0β̃1−β̃0α1

×Gα0+β̃0,α0−β̃0Gα1+β̃1,α1−β̃1 (1 + o(1)) ,

which is (2.2.6) up to a constant in the second term.
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Chapter 3

Applications

3.1 Statistical Mechanics

Statistical mechanics is a branch of physics which concerns itself with studying the average properties

of a mechanical system of a large number of particles, often looking at these properties as the number

of the particles in the system grows to infinity. Of special interest in the study of statistical mechanics

is the existence of phase transitions and the behaviour of particles close to the critical point—when

the transition occurs. A simple example of a phase transition related to temperature in the system

is boiling water, turning it into steam at 100◦C, or freezing it at 0◦C. The most famous problem in

the study of statistical mechanics is the Ising model, which was mentioned in Sections 1.3 and 1.4.

This is because the Ising model is extremely varied. In one dimension, the Ising model does not

undergo any phase transitions at all. The case of the Ising model in two dimensions has been studied

extensively and it not only has a ferromagnetic phase transition, but also exhibits many physical

properties which can be computed explicitly. In three dimensions the Ising model is extremely

complicated and no exact computation exists. See [5] and [37] for thorough introductions to the

Ising model and statistical mechanics.

In what follows, we will be looking at a particular case of what is known as a Heisenberg spin

chain. This is a one-dimensional model of magnetism or model of spin-1
2 particles that have a spin-

spin interaction. The one-dimensional Ising model is also a particular example of this. The spin

chain consists of a number of sites, N , on some lattice (in one dimension the lattice is typically just

Z) and we consider a spin-1
2 particle on each site. This is described using spin operators sx,y,zi , two

121
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dimensional unit vectors which prescribe an angle to each site of the lattice. For example in the

Ising model we consider spins that only point up or down, σi = ±1 and in the problem below we

take the spin operators to be the Pauli matrices which are the following,

σ1 = σx =

0 1

1 0

 , (3.1.1)

σ2 = σy =

0 −i

i 0

 , (3.1.2)

σ3 = σz =

1 0

0 −1

 . (3.1.3)

In a lot of problems we are only interested in the case when only the nearest neighbouring spins

interact with each other which is written down in the following way,

Jxσ
x
i σ

x
i+1 + Jyσ

y
i σ

y
i+1 + Jzσ

z
i σ

z
i+1, (3.1.4)

where Jα, α = x, y, z, are called the interaction constants and describe the interactions between the

two spins at sites i and i + 1. The whole system is governed by the Hamiltonian, H, which is the

collection of all interactions in the system,

H =

N∑
i=1

[
Jxσ

x
i σ

x
i+1 + Jyσ

y
i σ

y
i+1 + Jzσ

z
i σ

z
i+1

]
− h

N∑
i=1

σzi , (3.1.5)

the last term for a h 6= 0 adds the effects of a non-zero external magnetic field acting on the system.

This is a Hamiltonian for a so-called XYZ spin chain model. If Jx = Jy, it would be called the XXZ

spin chain model and in the case below Jz = 0 making it a XY spin chain model. As we want to

consider this for a large or growing system, i.e. as N → ∞, we need to set boundary conditions.

Here the matrices are periodic σαi = σαi+N . The next natural step is to compute a correlation

function which models physical phenomena such as phase transitions. There is no unique correlation

function for each mechanical system, these functions are computed to highlight the particular average

properties of the system that one is interested in. Linking back to the example of boiling or freezing

water, one would be interested in the density of the water molecules for instance. In the Ising model
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Σ+

Σ0

Σ−

γ

Ω+

Ω−

Ω0

h

1

−1

ΓI

ΓE

Figure 3.1: Phase diagram of the XY model for γ ≥ 0. There are three critical lines: Ω+: h = 1,
Ω0: γ = 0, |h| < 1, Ω−: h = −1 and three non-critical domains: Σ+: h < −1, Σ0: −1 < h < 1, Σ−:
h > 1. The line ΓI when γ = 1 represent the Ising model in transverse magnetic field. On the line
ΓE when γ2 + h2 = 1 the gorund state of the theory is a product of single spin states.

we are interested in magnetisation and in the problem below, a correlator called the Emptiness

Formation Probability.

3.2 XY Spin Chains

The XY model was first introduced by Matsubara and Matsuda in 1956 [36], as a model of a quantum

lattice gas. The critical behaviour of this model has since been investigated in detail between 1968

and 1974 by Betts and his collaborators, who have also emphasised the relevance of this model to

the study of insulating ferromagnets. The XY model has gathered a lot of attention within groups

studying quantum entanglement with works such as Vidal et al [44], Jin and Korepin [30] or Keating

and Mezzadri [31].

In [25] Franchini and Abanov look at how the change between regions over critical lines in the

phase diagram (see Figure 3.1) influences the asymptotics of a special correlator called the Emptiness

Formation Probability (EFP) for the 1-dimensional, anisotropic XY spin-1/2 chain in a transverse
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magnetic field h. The Hamiltonian for this model is given by,

H =
N∑
i=1

[(
1 + γ

2

)
σxi σ

x
i+1 +

(
1− γ

2

)
σyi σ

y
i+1

]
− h

N∑
i=1

σzi , (3.2.1)

where σαi , with α = x, y, z are the Pauli matrices (see Equations (3.1.1)-(3.1.3)), which describe the

spin operators on the i-th lattice site of the spin chain and the boundary conditions are chosen to

be periodic: σαi = σαi+N with (N >> 1). The EFP is given by,

P (n) ≡ 1

Z
Tr

eH/T
n∏
j=1

1− σzi
2

 , (3.2.2)

where the partition function is given by Z ≡ Tr
{
eH/T

}
and T is the temperature. The majority of

the paper [25] deals with the case when T = 0. In that case,

P (n) ≡ 〈0|
n∏
i=1

1− σzi
2
|0〉,

and P (n) is then the probability that n consecutive spins are all aligned downward in the ground

state |0〉.

After reformulating (3.2.1) using ‘spinless fermions’ and other transformation techniques fre-

quently used by the statistical mechanics community, the authors arrive at fermionic correlators in

the thermodynamic limit, these are given by

Fjk ≡ i〈ψjψk〉 = −i〈ψ†jψ
†
k〉 =

∫ 2π

0

1

2
sinϑqe

iq(j−k) dq

2π
, (3.2.3)

Gjk ≡ 〈ψjψ†k〉 =

∫ 2π

0

1 + cosϑq
2

eiq(j−k) dq

2π
, (3.2.4)

where ψi are the spinless fermions (c.f. Jordan-Wigner transformation) and

eiϑq =
1

εq
(cos q − h+ iγ sin q), (3.2.5)

εq =

√
(cos q − h)2 + γ2 sin2 q. (3.2.6)
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The EFP is given as

P (n) = Pf(M),

where

Pf(M) ≡
∑
P

(−1)PMp1p2Mp3p4 . . .Mp2n−1p2n ,

is called the Pfaffian. Here the sum is taken over all possible permutations P = {p1, p2, . . . , p2n} of

the set {1, 2, . . . , n} and (−1)P denotes the parity of the permutation. The matrix M is a 2n× 2n

skew-symmetric matrix of correlation functions given by

M =

−iF G

−G iF

 ,

were F and G are n × n matrices with entries given by Fjk and Gjk in (3.2.3) and (3.2.4). One of

the properties of the Pfaffian1 gives that

P (n) = Pf(M) =
√

det(M).

After performing a unitary transformation one arrives at

M′ = UMU† =

 0 Sn

−S†n 0

 , U =
1√
2

I −I
I I

 ,

where I is a unit n× n matrix and Sn = G + iF, S†n = G− iF. The ‘dagger’ † denotes the adjoint

of that matrix in the Hilbert space. The unitary transformation does not change the determinant

and so we get that

det(M) = det(M′) = det(Sn) det(S†n) = |det(Sn)|2.

Thus the EFP is given by calculating,

P (n) = | det(Sn)|,

1Let A be a skew symmetric matrix, i.e. when −A = AT . The determinant of A can always be written as the
square of a polynomial in the matrix entries. Moreover, this polynomial has integer coefficients which only depend
upon the size of the matrix. The value of this polynomial, when applied to the coefficients of A, is called the Pfaffian
of A. Thus, for a skew-symmetric matrix A, Pf(A)2 = detA.
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where the matrix Sn is an n× n Toeplitz matrix with the following symbol,

σ(q) =
1

2
+

cos q − h+ iγ sin q

2
√

(cos q − h)2 + γ2 sin2 q
, (3.2.7)

where q ∈ (0, 2π] and h is the external magnetic field, the values of which affect the analyticity of the

above function. This can be seen by critical lines in the phase diagram (Figure 3.1). Let us assume

that γ 6= 02. To find the symbol of the Toeplitz matrix Sn recall that by definition the entries are

given by

(Sn)jk =

∫ 2πi

0
σ(q)eiq(j−k) dq

2π
, (3.2.8)

for some σ(q). The function σ(q) can then be found by recalling that Sn = G + iF and by (3.2.3)

and (3.2.4),

σ(q) =
1

2

(
1 + eiϑq

)
, eiϑq = cosϑq + i sinϑq. (3.2.9)

Further, by recalling (3.2.5) and (3.2.6) we obtain (3.2.7).

Region Σ− corresponding to h < −1

In this region, for γ 6= 0 and h < −1, the symbol (3.2.7) is analytic for all q and we can use SSLT

(Theorem 1.3.4) to get the asymptotics. From now on let us use q ≡ θ to simplify comparison with

the work of this thesis and let us emphasise the dependence on h or t by writing σ(θ, h) or σ(θ, t)

respectively. In this region we can think of h = −et with t > 0, and t→ 0 corresponds to the limit

as h approaches −1 from h < −1. By taking the limit t → 0 we arrive at the case of region Σ0

below.

We can factorise another analytic function (for t > 0) out of σ(θ, t),

T−1(θ, t) =
(
eiθ + et

)
e−3πi/2, θ ∈ (0, 2π), (3.2.10)

to write simply,

σ(θ, t) = T−1(θ, t)eV (θ,t), (3.2.11)

where eV (θ,t) is an analytic function left after the factorisation. Function eV (θ,t) depends on t, but

2For γ = 0, the problem is isotropic and instead of exponential, we see a Gaussian behaviour using Widom’s
Theorem with a power law prefactor, cf [39].
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the limit t → 0 does not affect its analyticity. We have that the function T−1(θ, t) → F−1(θ) as

t→ 0 where

F−1(θ) = |eiθ + 1|eiθ/2g−1,1/2(eiθ)e−iπ/2, (3.2.12)

and function gzj ,βj (z) is the one defined in (1.4.2). Compare F−1(θ, t) with (1.4.1) and z = eiθ, this

is the so-called pure F-H singularity at z = −1 or θ = π with α1 = 1/2 and β1 = 1/2. Indeed we

see that

T−1(θ, 0) =
(
eiθ + 1

)
e−3πi/2

=
(
eiθ + 1

)2(1/2)
e−iθ/2e−πig−1,−1/2(eiθ)g−1,1/2(eiθ)e−πi/2eiθ/2

=

(
eiθ + 1

)2(1/2)

(e−iθeil1)
1/2

g−1,1/2(eiθ)e−πi/2eiθ/2

= F−1(θ)

where we used (2.4.30) and (2.4.34) with θ1 = π as

eil1(−1/2) = e−πig−1,−1/2(eiθ) =


e−iπeiπ(−1/2) = e3πi(−1/2), 0 ≤ θ < π,

e−iπe−iπ(−1/2) = eπi(−1/2), π ≤ θ < 2π.

We thus cross the critical line h = −1 and arrive at the next non-critical region Σ0.

Region Σ0 corresponding to −1 < h < 1

For −1 < h < 1 the symbol has one F-H singularity at θ = π with strength β = 1
2 , α = 1

2 . This

is evident by using earlier notation (3.2.12). We can factorise the singularity out of σ(θ, h). The

function F−1
−1 (θ)σ(θ, h) is analytic for −1 < h < 1 as shown on the plots in Figure 3.3.

As h → 1 we see an emergence of a second singularity at z = 1 or θ = 0. In this region we can

think of h = e−t with t > 0 (note that t here is different to the one in the previous region), and

t → 0 corresponds to the limit as h approaches 1 from h < 1. By taking the limit t → 0 we arrive

at the region Σ+. Similarly as before, we can define a new function

T1(θ, t) =
(
eiθ − e−t

)
e−iθ, θ ∈ (0, 2π). (3.2.13)
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(a) h = −2 (b) h = −1.1 (c) h = −1

(d) h = −0.9 (e) h = 0 (f) h = 0.9

(g) h = 1 (h) h = 1.1 (i) h = 2

Figure 3.2: Plots of absolute value (blue) and argument (red) of the function σ(θ, h) for different
values of −2 ≤ h ≤ 2 with γ = 1; showing jumps in argument and vanishing in the absolute value
forming at θ = π as h ≥ −1 and at θ = 0 as h ≥ 1.

(a) h = −0.8 (b) h = 0.5 (c) h = 0.9

Figure 3.3: Plots of absolute value (blue) and argument (red) of the function F−1
−1 (θ)σ(θ, h) with

γ = 1; showing no jumps in argument and boundedness and non-vanishing in absolute value for
−1 < h < 1.

(a) h = 1.2 (b) h = 1.5 (c) h = 5

Figure 3.4: Plots of absolute value (blue) and argument (red) of the function F−1
−1 (θ)F−1

1 (θ)σ(θ, h)
with γ = 1; showing no jumps in argument and boundedness and non-vanishing in absolute value
for h > 1.
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Compare this function to (2.2.3) with α0 = 1/2 and β0 = −1/2. We can write

σ(θ, t) = T1(θ, t)F−1(θ)eṼ (θ,t), (3.2.14)

where eṼ (θ,t) is an analytic function left after the factorisation. Notice that this is exactly (2.2.2)

with z1 = −1, α0 = 1/2, β0 = −1/2, α1 = 1/2, β1 = 1/2. Again, eṼ (θ,t) depends on t, but the limit

t→ 0 does not affect its analyticity. We have that the function T1(θ, t)→ F1(θ) as t→ 0 where

F1(θ) = |eiθ − 1|e−iθ/2eiπ/2. (3.2.15)

Compare F1(θ, t) with (1.4.1) and z = eiθ, this is now a pure singularity at z = 1 or θ = 0 with

α0 = 1/2 and β0 = −1/2. Indeed we see that

T1(θ, 0) =
(
eiθ − 1

)
e−iθ

=

(
eiθ + 1

)2(1/2)

(eiθeiπ)
1/2

e−iθ/2eiπ/2

= F1(θ)

where we have used (2.4.30) again. We thus cross the critical line h = 1 and arrive at the next

non-critical region Σ+.

Region Σ+ corresponding to h > 1

For h > 1, the symbol σ(θ, h) has two F-H singularities at θ = 0 and θ = π. Using our notation from

Chapters 1 and 2, denote θ0 = 0 and θ1 = π. The corresponding strengths are β0 = −1
2 , α0 = 1

2 ,

β1 = 1
2 , α1 = 1

2 . Using earlier notation (3.2.12), (3.2.15), we can write the symbol as

σ(θ, t) = F−1(θ, t)F1(θ, t)eV̂ (θ,h). (3.2.16)

To see eV̂ (θ,h) is analytic for h > 1, we look a the plot of F−1
−1 (θ)F−1

1 (θ)σ(θ, h) in Figure 3.4 and

notice the function has no jumps in argument and its absolute value does not vanish or blow up.

However, this symbol has another representation, corresponding to the seminorm of β-paramters,

recall from Sections 1.4.2 and (1.4.10) that when |||β||| = maxi,k |Reβi−Reβk| = 1 we can write the
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symbol using different β-parameters and the resulting function will only vary from the original by a

multiplicative constant. By denoting

F β̂−1(θ) = |eiθ + 1|e−iθ/2g−1,−1/2(eiθ)eiπ/2, (3.2.17)

and

F β̂1 (θ) = |eiθ − 1|eiθ/2e−iπ/2, (3.2.18)

we have that

σ(θ, t) = e−iπF β̂−1(θ, t)F β̂1 (θ, t)eV̂ (θ,h).

By the Tracy-Basor conjecture (or the generalised F-H asymptotics), the asymptotics of the Toeplitz

determinant are given using contributions from both representations, see Theorem 1.4.6.

It is natural to ask about the transition between each region. In fact, it is of great interest

in problems of statistical mechanics to see what happens close to the critical points. In [11] (see

also Section 1.5) Claeys, Its and Krasovsky obtain a uniform expression for the asymptotics of

the Toeplitz determinant with a symbol that can be written in the form (3.2.11) after rotating the

problem in [11] by π. This transition can thus be used to describe the change between the regions Σ−

and Σ0. This thesis describes the transition between Σ0 and Σ+, i.e. the emergence of an additional

singularity with the resulting F-H symbol satisfying |||β||| = maxi,k |Reβi−Reβk| = 1. We can write

the symbol (3.2.14) as (2.2.1) with z1 = −1, α0 = 1/2, β0 = −1/2, α1 = 1/2, β1 = 1/2 and use

Theorem 2.1.2 to give the uniform asymptotics in this case.
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Notation

Greek Alphabet in the following order:

α, β, γ,Γ, δ,∆, ε, ζ, η, θ, ϑ,Θ, κ, λ, µ, ν, ξ,Ξ, π,Π, ρ, σ,Σ, τ,Υ, φ, ϕ,Φ, χ, ψ,Ψ, ω,Ω

αj α-singularity, Equation (1.4.3), page 21

βj β-singularity, Equation (1.4.3), page 21

|||β||| β seminorm, Equation (1.4.10), page 24

Γ Euler’s Γ-function

δ Equation (2.4.170), page 96

∆1(z) Term in the expansions of Pz1 and Pz0 , Equation (2.4.100), page 80

εq Equation 3.2.6, page 124

ζ Equation (2.4.29), page 64

ϑq Equation 3.2.5, page 124

λ(z) Equation (2.4.91), page 78

Ξj Equation (2.7.11), page 117

σ1, σ2, σ3 Pauli matrices, Equation(2.4.2), page 54, Equations (3.1.1)-(3.1.3),

page 122

σ(x) Solution to a Painlevé V equation. Equation (1.5.9), page 33

σ(q) Equation (3.2.7), page 126

Σ∓,Σ0 Non-critical regions of the phase diagram for the XY spin-1/2 chain, Equation (3.1),

page 123

Σ(t) Equation (2.1.5), page 45

φn, φ̂n Orthogonal polynomials, Equation (1.6.1), page 36

ϕzj ,βj (z) Equation (1.4.7), page 22

Φ± Equation (1.2.1), page 17

Φ(λ;x) Equation (2.4.86), page 77

Φ̃(ζ) Equation (2.4.109), page 83

χn Leading coefficient of φn and φ̂n (1.6.6), page 37

ψ(a, c; z) Confluent hypergeometric function, Equation (2.4.51), page 70
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Ψ0(ζ) Riemann-Hilbert problem for Ψ0(ζ), page 75

Ψ1(ζ) Solution to the Riemann-Hilbert problem for Ψ1(ζ), Equation (2.4.53),

page 70

Ψ̂(λ̂) Equation (2.4.114), page 84

ω Equation (2.4.156), page 93

Ω(2nt) Equation (1.5.6), page 32

Ω̃(2nt) Equation (2.6.14), page 109

Roman Alphabet

a(z; t) Symbol in [11], Equation (1.5.1), page 29

A(z) Equation (2.5.4), page 98

b± Wiener-Hopf factorisation of the function b, Equation (1.4.11), page 24

Dn Toeplitz Determinant, Equation (1.1.4), page 15

D(z) Szegő function, Equation (2.4.13), page 58

f(z; t) Toeplitz matrix symbol, Equation (2.2.1), page 45

Fjk Equation (3.2.3), page 124

F1(z) Auxiliary function, Equation (2.4.36), page 68

F−1(θ) Equation (3.2.12), page 127

F1(θ) Equation (3.2.15), page 129

F β̂−1(θ) Equation (3.2.17), page 130

F β̂1 (θ) Equation (3.2.18), page 130

gk Fourier coefficients of a function g(z) ∈ L1(T),

Equation (1.1.1), page 13

gzj ,βj (z) Equation (1.4.2), page 21

Gαj+βj ,αj−βj Product of Barnes G−function, Equation (1.4.13), page 24

Gjk Equation (3.2.4), page 124

G(λ;x) Equation (2.4.87), page 77

G(z) Barnes G−function, Equation (1.4.8), page 23

hαj Equation (2.4.30) page 65

H Equation (3.1.5), page 122, Equation (3.2.1), page 124

Hp(D) Hardy space on the open unit disk, Definition 1.1.2, page 13
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Hp(T) Hardy space on the circle, Definition 1.1.1, page 13

H(λ̂) Solution to the Riemann-Hilbert problem for H(λ̂), Equation (2.4.130),

page 87

J1(z), J2(z), JN (z), JT (z), Jump matrices, Equation(2.4.4), page 55

K(x) Equation (2.4.143), page 90

l1 Equation (2.4.34), page 65

M(λ̂) Solution to the Riemann-Hilbert problem for M(λ̂), Equation (2.4.131),

page 87

N(z) Solution to the Riemann-Hilbert problem for N(z), Equation (2.4.14),

page 58

Oβ Orbit of β’s, Equation (1.4.20), page 27

O, o Big and Small ‘o’ notation, Definition 1.3.1, page 18

P Orthogonal Projection, Definition 1.1.3: Orthogonal Projection,

page 14

P (n) Equation (3.2.2), page 124

Pz0(z) Parametrix at z0, Equation (2.4.93), page 79

Pz1(z) Parametrix at z1, Equation (2.4.42), page 68

Q Complementary Projection, Equation (1.2.2), page 17
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